
Theoretical Computer Science 452 (2012) 100–106

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

The index of a binary word
Aleksandar Ilić a, Sandi Klavžar b,c,∗, Yoomi Rho d

a Faculty of Sciences and Mathematics, University of Niš, Serbia
b Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
c Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia
d Department of Mathematics, University of Incheon, Republic of Korea

a r t i c l e i n f o

Article history:
Received 17 September 2011
Accepted 20 May 2012
Communicated by M. Crochemore

Keywords:
Binary words
Combinatorics on words
Good words
Index of a word
Algorithm
Generalized Fibonacci cube

a b s t r a c t

A binary word u is f -free if it does not contain f as a factor. A word f is d-good if for any
f -free words u and v of length d, v can be obtained from u by complementing one by one
the bits of u on which u and v differ, such that all intermediate words are f -free. We say
that f is good if it is d-good for any d ≥ 1. A word is bad if it is not good. The index β(f) of
f is the smallest integer d such that f is not d-good, so that β(f) < ∞ if and only if f is bad.

It is proved that β(f) <| f |
2 holds for any bad word f . In addition, β(f) < 2 | f | holds

for almost all bad words f and it is conjectured that the same holds for all bad words. We
construct an infinite family of 2-isometric bad words. It is conjectured that the words of
this family are all the words that are bad and 2-isometric among those with exactly two 1s.
These conjectures are supported by computer experiments.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Let f be a finite binary word. Then a binary word u is called f -free if it does not contain f as a factor. For instance,
110100110 is 111-free but not 1001-free.

Let d be a positive integer. Then f is called d-good if for any f -free words u and v of length d, the following holds: u can
be transformed into v by complementing one by one all the bits on which u differs from v, such that all of the new words
we obtain in this process are f -free. Such a transformation will be called an f -free transformation of u to v. Clearly, if there is
an f -free transformation of u to v, there is also an f -free transformation of v to u. Now, we say that f is good if it is d-good
for any d ≥ 1. The word f is bad if it is not good, that is, if there exist words u and v (of the same length) for which no f -free
transformation of u to v exists.

A motivation for the present study comes from isometric embeddings of graphs, as we will describe below, but the
concepts and problems are of general nature which we follow here. Good and bad words were introduced in [7] as follows.
For a finite binary word f , the generalized Fibonacci cube, Qn(f), is the graph obtained from Qn by removing all vertices that
contain f as a factor [5]. The classical Fibonacci cubes Γn [4,6] can be thus defined with Γn = Qn(11), and the subclass Qn(1s)
of generalized Fibonacci cubes was studied in [8,11] (also under the name generalized Fibonacci cubes). Now, it is easy to
see that a binary word f is good if and only if Qd(f) is an isometric subgraph of Qd for any d ≥ 1.

To test (say, using a computer) if a given word f is good or bad, it would be most useful to know whether there is a
function β such that f is good as soon as f is d-good for d < β(f). We therefore introduce the index of a word f , denoted
β(f), as the smallest integer d for which f is not d-good. If no such integer exists we set β(f) = ∞. Clearly, β(f) < ∞ if
and only if f is bad.

∗ Corresponding author at: Faculty of Mathematics and Physics, University of Ljubljana, Slovenia. Tel.: +386 1 47 66 557.
E-mail addresses: aleksandari@gmail.com (A. Ilić), sandi.klavzar@fmf.uni-lj.si (S. Klavžar), rho@incheon.ac.kr (Y. Rho).

0304-3975/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2012.05.025

http://dx.doi.org/10.1016/j.tcs.2012.05.025
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:aleksandari@gmail.com
mailto:sandi.klavzar@fmf.uni-lj.si
mailto:rho@incheon.ac.kr
http://dx.doi.org/10.1016/j.tcs.2012.05.025

A. Ilić et al. / Theoretical Computer Science 452 (2012) 100–106 101

To the best of our knowledge, these concepts and problems were not studied earlier, except in [7]. However, numerous
other operations on (binary) words have been investigated. One such operation is a prefix reversal, see [3], where it has been
in particular proved that the prefix reversal distance between two arbitrary binary strings is NP-hard. Another example is
the paper [2] where operations are presented that preserve primitivity of words. For the general theory on combinatorics
on words and their applications, see the books [9] and [10], respectively.

We proceed as follows. In the rest of this section remaining necessary definitions are given. In the next section we first
prove that the index of any bad word f is smaller than |f |2. Then we demonstrate that the index of almost all bad words f is
smaller than 2|f | and conjecture that this is eventually true for all bad words. Then, in Section 3, we consider the words that
are 2-isometric but are not good. An infinite family of such words is constructed. Each of these words contains exactly two
1s and we conjecture that among such words, the constructed are the only words that are bad and 2-isometric. Computer
support for the two conjectures is also provided.

Let B = {0, 1} and call elements of B bits. An element of Bd is called a binary word (or simply a word) of length d. A word
u ∈ Bd will be written in the coordinate form as u = u1u2 . . . ud. The ith unit word, that is, the word with 1 in coordinate i
and 0 elsewhere, will be denoted with e(i). We will use the product notation for words meaning concatenation, for example,
1d means 11 . . . 1, the word of length d. A word f is a factor of a word x if f appears as a sequence of |f | consecutive bits of
x. For a word f , bk(f) denotes the prefix of f of length k and ek(f) its suffix of the same length k.

2. Bounding the index of a word

As announced, we first prove that the index of a word can be bounded by the square of its length:

Theorem 2.1. Let f be a bad word. Then β(f) < |f |2.

Proof. Let d = β(f) and let u and v be words of length d such that there is no f -free transformation of u to v. We may
assume that u and v are different in the smallest number, say r , of bits among all such pairs of words.

Consider the following directed graph Df = (V (Df), A(Df)):

V (Df) = {f + e(i)
| i = 1, . . . , |f |}

and

A(Df) = {(f ′, f ′′) | ek(f ′) = bk(f ′′) for some k ≥ 1}.

As an example, Fig. 1 shown for the digraph D1100. For instance, since 1110 ends with 110 which is at the same time the
beginning of 1101, there is an arc from 1110 to 1101.

Let i1, . . . , ir be the coordinates in which u and v differ. The word u + e(ij) contains f as a factor for j = 1, . . . , r . Indeed,
otherwise u + e(ij) ∈ Qd(f) and dQd(f)(u + e(ij), v) > dQd(u + e(ij), v) = r − 1, a contradiction to the minimality of r .

For j = 1, . . . , r , let f (ij) be a copy of f that appears as a factor in u+ e(ij) and let f (ij) be the subword of u from which f (ij)

is obtained by complementing the ith bit.
Note that each f (ij) has a common coordinate with at least one f (ij′), where j′ ≠ j, because otherwise v would contain f

as a factor. Observe also that u is covered with ∪
r
j=1

f (ij), that is, in each coordinate u intersects with at least one of the f (ij).
Indeed, otherwise dwould not be the index of f .

Consider now the subdigraph X of Df induced by vertices f (ij), j = 1, . . . , r . For example, for f = 1100 and vertices
u = 1110100 and v = 1101000, the subdigraph is induced by vertices 1110, 1101, and 0100.

Assume that two among the words f (ij) are equal. Then X contains a directed cycle, say C = f1 → f2 → · · · → fs → f1.
Construct new vertices u′ and v′ with smaller length by removing the path f2 → · · · → fs → f1. Clearly, v′ and u′ differ in
less bits than v and u, which is a contradiction. Therefore, X does not contain directed cycles and thewords f (ij), j = 1, . . . , r ,
are pairwise different. Then r ≤ |f | and since u is covered with the f (ij)’s, d < r · |f | ≤ |f |2. �

We could define also the edgeweights in the digraph: theweight of the directed edge (f ′, f ′′) is the largest number k such
that ek(f ′) = bk(f ′′). Since each vertex is represented by the path in digraph Df , for each bad word f its index corresponds
to the directed path lengths in Df . We also remark that we could further refine the β(f) < |f |2 bound by considering the
intersection of every two consecutive vertices from D, but it would be still quadratic. On the other hand, we can do much
better with high probability:

Theorem 2.2. For almost all bad words, β(f) < 2|f |.

Proof. If bk(f) and ek(f) agree in all but r positions, then f has an r-error overlap of length k. If f has an r-error overlap for
some length k then we simply say that f has an r-error overlap. We also say that f is a stutter if f has an r-error overlap of
length k, where r ≤ 2 and k ≥

n
2 . In [7] it was proved that the proportion of stutters among all words of length n tends

to zero when n → ∞. Moreover, asymptotically close to 92% of all words are bad. It follows from these two facts that the
proportion of stutters among all bad words of length n also tends to zero when n → ∞. Hence, the theorem will be proved
if we show that the index of any bad word f that is not a stutter is less that 2|f |.

102 A. Ilić et al. / Theoretical Computer Science 452 (2012) 100–106

Fig. 1. Digraph D1100 .

Fig. 2. 2-error overlap when f is not a stutter.

Suppose therefore that f is a badwordbut not a stutter. Since f is bad, a theoremof [7] guarantees that f has a 2-error over-
lap. Let k be the length of a 2-error overlap and let bk(f) disagree from ek(f) in positions i and j of bk(f), where i < j, see Fig. 2.

Set d = 2n− k and define words u, v ∈ Bd as follows. Let u be the concatenation of bn−k(f) and the word f + e(i), and let
v be the concatenation of bn−k(f) with f + e(j), see Fig. 2 again. Clearly, u and v disagree in positions n− k+ i and n− k+ j.
Now consider the words u′

= u + e(n−k+i) and v′
= u + e(n−k+j). Observe that u′ contains f as its suffix of length n and that

v′ contains f as its prefix of length n. Because f is not a stutter and k < n/2 we conclude that neither of u′ and v′ is f -free.
Hence v cannot be obtained from u by an f -free transformation. Since d < 2n, we conclude that β(f) < 2n. �

We note that Theorem 2.2 is implicit in [7]. Based on this theorem and computer experiments we close the section with:

Conjecture 2.3. For any bad word f , β(f) < 2|f |.

3. On words that are bad and 2-isometric

We say that a word f is s-isometric if for any words u and v of the same length that differ in s bits there is an f -free
transformation of u to v. Another look at the proof of Theorem 2.2 reveals that in the case when f is not a stutter, there exist
wordsw andw′ of length d = 2|f |−k (where k is the length of a 2-error overlap) demonstrating that f is not 2-isometric. In
other words, any bad word that is not a stutter is not even 2-isometric. In view of Conjecture 2.3 one might be tempted that
this is the case for all badwords, that is, as soon as aword is bad, it is not 2-isometric. That this is not the case is demonstrated
with the following result:

Theorem 3.1. Let r ≥ 0. Then

f = 02r+1
102r−1102r−1

is a 2-isometric, bad word.

Proof. We first show that f is not 3-isometric. Set d = 7(2r
− 1) and consider the words

u = (002r−1)2002r−1102r−1002r−1(102r−1)2

and

v = (002r−1)2102r−1002r−1102r−1(102r−1)2.

Note that both u and v are f -free and that they differ in three bits. The three words obtained from u by complementing the
bits in which u differs from v are

A. Ilić et al. / Theoretical Computer Science 452 (2012) 100–106 103

(002r−1)2102r−1102r−1002r−1(102r−1)2,

(002r−1)2002r−1002r−1002r−1(102r−1)2,

and

(002r−1)2002r−1102r−1102r−1(102r−1)2.

None of these three words is f -free, hence f is not 3-isometric. So f is bad.
To complete the proof we need to show that f is 2-isometric. Assume on the contrary that there exist two f -free words u

and v of length at least |f | = 2r+2 that differ in two bits, but there is no f -transformation of u to v. Let i and j be the positions
in which u and v differ, where i < j. It follows that both words u′

= u+e(i) and u′′
= u+e(j) contain f as a factor. Denote the

factor f of u′ with f ′ and the factor f of v′ with f ′′. Let factors f ′ and f ′′ start from positions k′ and k′′, respectively. Assume
that k′ < k′′, the case when k′′ < k′ is treated analogously. Note that f ′ and f ′′ must have some common indices because
otherwise v would contain f as a factor. In other words, k′ < k′′

≤ k′
+ 2r+2. Note that the common indices of f ′ and f ′′ are

from the segment S = [k′′, k′
+ 2r+2

− 1].
Both indices i and j belong to the segment S. Indeed, if i is not from S, then v would contain f ′′

= f as a factor. Similarly,
u would contain f ′

= f as a factor if j were not from S.
Consider the word f = 02r+1

102r−1102r−1; its first half is composed of 0s and its two 1s are on the positions |f |
2 + 1 and

3|f |
4 + 1. Since f ′

= f and f ′′
= f differ in exactly two positions from the segment S, namely in positions i and j, this is

possible only when k′′, the first bit of f ′′, is under the position |f |
2 + 1 of f ′. Here is an example for r = 2:

0000000010001000
0000000010001000

But now u contains the factor 02r+1
002r−1

102r−1102r−1102r−1, a contradiction since we assumed that u is f -free. �

For the special case r = 0 (that is, f = 0011) of Theorem 3.1 it was earlier [5] proved that 0011 is a bad word.
The 2-isometric (and bad) words from Theorem 3.1 contain precisely two 1s. On the other hand, many such words are

not 2-isometric:

Proposition 3.2. Let r, s, t ≥ 0 and t ≥ r + s + 3. Then the word 0r10s10t in not 2-isometric.

Proof. Let k = r + 1. Then k ≤ t − s − 2 since we have assumed that t ≥ r + s + 3. Let d ≥ 2r + 2s + t + 5 and consider
the words

u = 0d−r−2s−t−k−40r10s10k00s10t

and

v = 0d−r−2s−t−k−40r10s10k10s00t .

Note first that u and v differ in two bits. In addition, we claim that they are f -free. Indeed, if u is to contain f as a factor, then
the factor must contain the first two 1s, but this is impossible as k ≤ t − s − 2. Similarly, suppose v contains f as a factor.
As we already know that u does not contain f as a factor, the factor f in v cannot contain the first two 1s. But the factor also
cannot contain the last two 1s since k ≠ s. This proves the claims.

The words that differ from u in the two bits in which u differs from v are

w = 0d−r−2s−t−k−40r10s10k00s00t

and

w′
= 0d−r−2s−t−k−40r10s10k10s10t .

Clearly, w contains f . Moreover, the same also holds for w′ because k ≥ r . (Actually w′ is not f -free if and only if k ≥ r
because if w′ contains f as a factor, then the factor contains the last two bits of 1 of w′, which occurs exactly when k ≥ r .)
Hence f is not 2-isometric. �

By symmetry, the same conclusion can also be made for words f = 0r10s10t with r ≥ s + t + 3.

Recall that by Theorem 3.1, the word

00001010

is 2-isometric. On the other hand, Proposition 3.2 and the above remark imply that the word

000001010

(obtained by s = t = 1, r = 5) is not 2-isometric. These two words show that there is a very thin line between being
2-isometric and not being 2-isometric.

We also conclude this section with a conjecture. It is motivated by Theorem 3.1 and computer experiments.

104 A. Ilić et al. / Theoretical Computer Science 452 (2012) 100–106

Table 1
The index of words with two 1s.

Length The index Words

2 ∞ 11

3 4 101
∞ 110

4 5 0110
7 0011
∞ 1010

5 6 00110, 10001
7 01001
8 00011, 01010
∞ 00101

6 7 000110, 001100, 100001
8 010001, 010010
9 000011, 000101, 001010
∞ 001001

7 8 0000110, 0001100, 1000001
9 0010100, 0100001, 0100010
10 0000011, 0000101, 0010001
11 0010010
∞ 0001001(?), 0001010(?)

8 9 00000110, 00001100, 00011000, 10000001
10 00010100, 01000001, 01000010
11 00000011, 00000101, 00100001, 00100010
12 00001001, 00010010, 00100100
14 00001010
∞ 00010001

9 10 000000110, 000001100, 000011000, 100000001
11 000010100, 000101000, 010000001, 010000010
12 000000011, 000000101, 001000001, 001000010, 001000100
13 000001001, 000100001, 000100100
14 000001010, 000100010
∞ 000010001(?), 000010010(?)

10 11 0000000110, 0000001100, 0000011000, 0000110000, 1000000001
12 0000010100, 0000101000, 0100000001, 0100000010
13 0000000011, 0000000101, 0001001000, 0010000001, 0010000010,

0010000100
14 0000001001, 0001000001, 0001000010
15 0000001010, 0000010001, 0000010010, 0000100010, 0000100100,

0001000100
∞ 0000100001

Conjecture 3.3. Let f be a bad word that contains exactly two 1s. Then f is 2-isometric if and only if f = 02r+1
102r−1102r−1 (or

its reverse) for some r ≥ 0.

4. Computational results

For each length 3 ≤ r ≤ 10 we generated all binary words of length r (reverse words and complements are excluded)
and calculated the index of these words by considering all possible words of lengths d, r ≤ d ≤ 20. For each word f and
dimension d we constructed a generalized Fibonacci cube Qd(f) and then ran a breadth first search algorithm from each
vertex of a cube in order to determine the distance matrix and check the embeddability of Qd(f) in the hypercube Qd. In
Table 1 the computational results for words with exactly two 1s are presented.

The table needs some comments. The words that were recognized as bad and for which the index was computed,
clearly support Conjecture 2.3. Among them, only the word 0011 attains the conjectured upper bound: let f = 0011, then
β(f) = 7 = 2|f | − 1. It was proved in [5] that for any s ≥ 2, the word 1s01s0 is good, and that for any s ≥ 1, the word
(10)s is good. These two results cover all the good words from the table except the four words with ‘‘(?)’’ attached to them.
These are the words 0001001, 0001010, 000010010, and 000010001. Each of them is a stutter, so we cannot use the proof
of Theorem 2.2 to conclude that they are good. However, it follows from our computations that either each of them is good
or Conjecture 2.3 is false. Note also that the obtained results support Conjecture 3.3.

We also designed an O(|f |4) algorithm for checking whether a given binary word f is 2-isometric. If f is not 2-isometric,
then there exist two words v and u which differ on two places i and j, such that v + e(i) contains f as a prefix and v + e(j)

contains f as a suffix. This means that we can try to overlap two copies of f such that bk(f) and ek(f) differ on exactly zero
or two places (see Fig. 2), where k is the number of bits in the intersection of two copies of f . That is, in order to construct

A. Ilić et al. / Theoretical Computer Science 452 (2012) 100–106 105

possiblewords u and v to demonstrate that f is not 2-isometric, wewill consider caseswhen bk(f) and ek(f) differ on exactly
zero or two places.

If the number of differences is two, we can construct the words u and v by changing the bits on the ith and jth positions,
respectively. Finally, if v and u do not contain f as a subword, it follows that f is not 2-isometric. If the number of differences
is zero, we need to traverse all pairs (i, j), 1 ≤ i < j ≤ k, construct the words u and v as above and check whether u and v
contain f as a subword.

For searching the occurrences of f in the words u and w we use the Knuth–Morris–Pratt string searching algorithm [1].
The KMP algorithm searches for occurrences of awordw within amain text string s by employing the observation thatwhen
a mismatch occurs, the word w itself embodies sufficient information to determine where the next match in s could begin.
The running time of this algorithm is linear O(|w| + |s|), which is optimal in the worst case sense. The pseudo-code of this
approach is shown below as Algorithm 1.

Input: Binary word f
Output: True if f is 2-isometric, false otherwise
n = |f |;
for k = 2 to n − 1 do

diff = 0;
i = −1;
j = −1;
for s = 1 to k do

if f [s] ≠ f [n − k + s] then
diff = diff + 1;
if diff > 2 then

break;
end
if i = −1 then

i = s;
else

j = s;
end

end
end
if diff = 2 then

v = f + substring(f , k + 1, n);
u = substring(f , 1, k) + f ;
v[k + i] = 1 − v[k + i];
u[k + j] = 1 − u[k + j];
if KMP(v, f) = false and KMP(u, f) = false then

return false;
end

end
if diff = 0 then

v = f + substring(f , k + 1, n);
u = substring(f , 1, k) + f ;
for i = 1 to k − 1 do

v[k + i] = 1 − v[k + i];
for j = i + 1 to k do

u[k + j] = 1 − u[k + j];
if KMP(v, f) = false and KMP(u, f) = false then

return false;
end
u[k + j] = 1 − u[k + j];

end
v[k + i] = 1 − v[k + i];

end
end

end
return true;

Algorithm 1: Determining whether a word f is 2-isometric.

106 A. Ilić et al. / Theoretical Computer Science 452 (2012) 100–106

Acknowledgments

This work was supported by Research Grants 174010 and 174033 of the Serbian Ministry of Science, by Research Grant
P1-0297 of the Ministry of Higher Education, Science and Technology Slovenia, and by the Basic Science Research Program
through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology grant
2011-0025319. The work was partially done during a visit of S.K. to the University of Incheon, Korea, whose support is
gratefully acknowledged.

References

[1] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, Second ed., MIT Press, 2001.
[2] J. Dassow, G.M. Martín, F.J. Vico, Some operations preserving primitivity of words, Theoret. Comput. Sci. 410 (2009) 2910–2919.
[3] C. Hurkens, L. van Iersel, J. Keijsper, S. Kelk, L. Stougie, J. Tromp, Prefix reversals on binary and ternary strings, SIAM J. DiscreteMath. 21 (2007) 592–611.
[4] W.-J. Hsu, Fibonacci cubes—a new interconnection technology, IEEE Trans. Parallel Distrib. Syst. 4 (1993) 3–12.
[5] A. Ilić, S. Klavžar, Y. Rho, Generalized Fibonacci cubes, Discrete Math. 312 (2012) 2–11.
[6] S. Klavžar, Structure of Fibonacci cubes: a survey, J. Comb. Optim. (in press). http://dx.doi.org/10.1007/s10878-011-9433-z.
[7] S. Klavžar, S. Shpectorov, Asymptotic number of isometric generalized Fibonacci cubes, European J. Combin. 33 (2012) 220–226.
[8] J. Liu, W.-J. Hsu, M.J. Chung, Generalized Fibonacci cubes are mostly Hamiltonian, J. Graph Theory 18 (1994) 817–829.
[9] M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, Cambridge, 2002.

[10] M. Lothaire, Applied Combinatorics on Words, Cambridge University Press, Cambridge, 2005.
[11] N. Zagaglia Salvi, On the existence of cycles of every even length on generalized Fibonacci cubes, Matematiche (Catania) 51 (1996) 241–251.

http://dx.doi.org/10.1007/s10878-011-9433-z

	The index of a binary word
	Introduction
	Bounding the index of a word
	On words that are bad and 2-isometric
	Computational results
	Acknowledgments
	References

