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a b s t r a c t

This paper uses quick process machines to provide characterisations of computable
randomness, Schnorr randomness and weak randomness. The quick process machine is
a type of process machine first considered in work of Levin and Zvonkin. A new technique
for building process machines and quick process machines is presented. This technique
is similar to the KC theorem for prefix-free machines. Using this technique, a method of
translating computable martingales to quick process machines is given. This translation
forms the basis for these new randomness characterisations. Quick process machines are
also used to provide characterisations of computable randomness, Schnorr randomness,
and weak randomness in terms of truth-table reducibility.
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1. Introduction

Underlying the study of randomness is our intuition about how a random real number should behave. This intuition can
be expressed through different perspectives such as:

• Compressibility — a real number is random if it is incompressible.
• Betting — a real number is random if a gambler could not make money betting on its bits.
• Test — a real number is random if it has no rare properties.

The first two perspectives use that fact that a real number can be represented by an infinite binary sequence. An intriguing
aspect of the study of randomness, is that these perspectives, once formalised, often lead to equivalent definitions.

The betting perspective is typically formalised using martingales. This use of martingales has found widespread
application. For example, Lutz pioneered the use of martingales to study the exponential time complexity classes [13]. In
this paper, we show how to change between the betting perspective and the compressibility perspective by translating back
and forth betweenmartingales and a variant of processmachines. This allows us to provide consistent compressibility based
definitions of several types of randomness. The main theorems of this paper provide new characterisations of computable
randomness, Schnorr randomness and weak randomness. The quick process machines that we will use come from work of
Levin and Zvonkin [11].

Definition. A martingale is a function d : 2<ω
→ R≥0 (where 2<ω is the set of all finite binary strings) such that for all

σ ∈ 2<ω we have

d(σ ) =
d(σ0) + d(σ1)

2
. (1.1)
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A martingale is a strategy for betting of the bits of a real number. The martingale condition (1.1) ensures that the betting is
fair. We say that a martingale succeeds on a real α if limn→∞ d(α � n) = +∞ (where α � n is the first n bits of some binary
representation of α).

The idea is that a real number is not random if a gambler could make an infinite amount of money betting on the bits
of the real number. For this to work, we need to place some effectivity constraints on the martingales, and potentially the
speed at which the gambler makes money. By changing the constraints we get different notions of randomness.

There are a number of different randomness notions that we will investigate in this paper: Martin-Löf randomness,
computable randomness, Schnorr randomness andweak randomness. These notionswere originally defined in very different
ways. However, they can all be characterised in terms of martingales. For simplicity, we will take these martingale
characterisations as our definitions.

Definition. A function h : N → N is called an order function if it is computable, non-decreasing, and unbounded.

Definition. (1) A real α is Martin-Löf random if no computably enumerable martingale succeeds on α.
(2) A real α is computably random if no computable martingale succeeds on α.
(3) A real α is Schnorr random if for all computable martingales d, for all orders h, for almost all n, d(α � n) < h(n).
(4) A real α is weakly random if for all computable martingales d, for all orders h, there exists an n, d(α � n) < h(n).

Martin-Löf randomness and Schnorr randomness are both named after the people who first defined them [14,19]. The
characterisation ofMartin-Löf randomness in terms ofmartingales is due to Schnorr [19]. In the same paper Schnorr defined
computable randomness. Schnorr argued that the effectivity requirements in the definition of computable randomnesswere
insufficient. He suggested that tomake themartingale truly effective, the gambler should be able to identify when theywere
winning. Weak randomness was first defined by Kurtz [9]. The characterisation in terms of martingales was established by
Wang [23]. For a full discussion of the early history of this field see Downey and Hirschfeldt, or Li and Vitányi [5,12].

We can weaken the notion of martingale success as follows. We can say that a martingale d succeeds on a real α if
limsup d(α � n) = +∞. Changing the definition of martingale success in this way does not alter the underlying notion of
randomness. This is because given a d that succeeds, in this weakened sense, on a real α, anothermartingaled can be defined
such that limn→∞

d(α � n) = +∞. The definition ofd uses a technique known as the savings trick. Details of the savings
trick can be found in Downey and Hirschfeldt, or Nies [5,16].

Initial work by Solomonoff, Kolmogorov and Chaitin showed that compressibility could be used to describe randomness
for finite strings [2,8,22]. Following this, Levin and Schnorr showed that compressibility could be used to characterise
Martin-Löf randomness [10,21]. Schnorr provided a characterisation in terms of process machines. In order to give this
characterisation, first let us denote the set of all binary strings of length n, the set of all finite binary strings, and the set of
all infinite binary strings, by {0, 1}n, 2<ω , and 2ω respectively. The empty string will be represented by λ. The relation ≼ on
2<ω

× (2<ω
∪ 2ω) is defined by σ ≼ τ if σ is an initial segment of τ . We say σ ≺ τ if σ ≼ τ and σ ≠ τ . The relations ≽ and

≻ are defined to be the inverse relations of ≼ and ≺ respectively. If σ is a finite string and τ a finite or infinite string, then
we will write στ to represent the concatenation of σ and τ .

Definition. A process machine is a partial computable function M : 2<ω
→ 2<ω such that if τ ∈ dom(M), and τ ′

≼ τ , then
τ ′

∈ dom(M) andM(τ ′) ≼ M(τ ).

This definition of a process machine was given by Levin and Zvonkin [11]. Independently to Levin and Zvonkin, Schnorr
defined a very similar notion of a process machine [21]. In the Schnorr definition, it is not necessary for the domain of the
process machine to be closed downwards i.e. a Schnorr process machine is a partial computable function M : 2<ω

→ 2<ω

such that if τ , τ ′
∈ dom(M), and τ ′

≼ τ , then M(τ ′) ≼ M(τ ).
Given a processmachine P , we call τ a P-description of σ if P(τ ) = σ . We define the complexity of a string σ with respect

to P in terms of its shortest P-description:

CP(σ ) =


min{|τ | : P(τ ) = σ } if ∃τ ∈ 2<ω, P(τ ) = σ

∞ otherwise.

Schnorr showed that a real α is Martin-Löf random if and only if for all process machines P , CP(α � n) ≥ n−O(1) [21]. Note
that this theoremholds for both definitions of processmachine. (For a discussion of the differences between the complexities
induced by the different definitions of process machine see Day [3].) Levin also provided a similar characterisation using
monotonic complexity [10].

Levin and Zvonkin defined a process machine P as being applicable to a real number α, if there was an order h such that
|P(α � n)| ≥ h(n). We suggest the following name for a process machine that is applicable to all real numbers.

Definition. A process machine P is a quick process machine, if it is total and there is an order function h such that for all
τ ∈ 2<ω , |P(τ )| ≥ h(|τ |).
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By compactness, it is equivalent to require that P is defined and unbounded in length, on the prefixes of any real. Given
a quick process machine P , there is a simple procedure to determine the complexity of any string σ with respect to P i.e.
CP(σ ) is a computable function. This is due to a combination of the facts that P is total and h is an order function. Because h
is an order function, there are only finitelymany strings in the domain of P that couldmap to σ . Hencewe can compute P(τ )
for all strings τ such that h(|τ |) ≤ |σ |. If σ has a P-description, it must be one of these strings, and thus we can compute
the minimum length of a description.

In Theorem 2.13, a characterisation of computable randomness, Schnorr randomness, and weak randomness in terms
of quick process machines is made. These are not the first compressibility characterisations of these types of randomness.
Downey and Griffiths have characterised Schnorr randomness in terms of computable measure machines [6]. Mihailović
provided a machine characterisation of computable randomness in terms of bounded measure machines [5]. Downey,
Griffiths and Reid characterised weak randomness in terms of computably layered machines [7]. The value of these new
characterisations lies in their simplicity and consistency.

A prefix-free machine, is a partial computable function M : 2<ω
→ 2<ω such that the domain of M forms an anti-chain

with respect to ≼. One reason that prefix-free machines have been widely used in the study of randomness is the existence
of the KC theorem [5].1 The KC theorem provides ameans of building prefix-freemachines via requests. Given a computable
sequence S = (σ0, n0), (σ1, n1), . . . , such that


i∈N 2−ni ≤ 1 (this sum is the weight of the requests), the KC theorem

establishes the existence of a prefix-free machine M such that for all i ∈ N, there is some string τi of length ni such that
M(τi) = σi. In fact we can regard our sequence S as returning a sequence τ0, τ1, . . . of pairwise incomparable descriptions
where |τi| = ni. The KC theorem greatly simplifies the construction of prefix-free machines. Underlying Theorem 2.13, is
a new technique for building process machines. This technique can be thought of as a KC theorem for process machines. It
allows process machines to be built by listing the strings that need descriptions, the description length and the relationship
between described strings. This technique is presented in Theorems 2.2 and 2.3.

Demuth showed that there is a link between truth-table reducibility and randomness [4]. For an updated treatment
of Demuth’s theorem see Bienvenu and Porter [1]. We provide further evidence for this link. There is a close relationship
between quick process machines and truth-table functionals. We use this relationship to provide truth-table reducibility
characterisations of computable randomness, Schnorr randomness and weak randomness in Theorem 3.1.

2. Quick process machines and randomness

Our goal is to show that quick process machines can be used to characterise computable randomness, Schnorr
randomness and weak randomness. This is due to the fact that quick process machines are very similar to martingales.

Proposition 2.1 shows how to construct a martingale from a quick process machine. This proof is essentially due to Levin
(note that the relevant theorems in the paper of Levin and Zvonkin are attributed solely to Levin).

Proposition 2.1 (Levin [11]). For any quick process machine P, there is a computable martingale d such that for all σ , d(σ ) ≥

2|σ |−CP (σ ).

Proof. Let P be a quick process machine with associated order function h. Define g(n) = min{x : h(x) > n}. If τ ∈ {0, 1}g(n)
then |P(τ )| ≥ h(|τ |) = h(g(n)) > n. We define a computable martingale d as follows. First for any string σ define
Eσ = {τ ∈ {0, 1}g(|σ |)

: P(τ ) ≻ σ }. Now define d by

d(σ ) =
|Eσ |

2g(|σ |)−|σ |
.

The function d is computable because P is total so Eσ is computable for all σ .Wewill now show that d is amartingale. First
note that d(λ) = 1 because P is total. For any σ , Eσ0 and Eσ1 are disjoint because the strings σ0 and σ1 are incomparable
and so no element of the range of P can extend both of them. If τ ∈ Eσ0 we have that τ � g(|σ |) ∈ Eσ because
P(τ � g(|σ |)) ≼ P(τ ), σ ≼ P(τ ) and |σ | < |P(τ � g(|σ |))| so σ ≺ P(τ � g(|σ |)). Similarly if τ ∈ Eσ1, then τ � g(|σ |) ∈ Eσ .

Now if τ ∈ Eσ , and τ ′
≽ τ with |τ ′

| = g(|σ | + 1) then it must be that |P(τ ′)| ≥ h(|τ ′
|) = h(g(|σ | + 1)) > |σ | + 1.

Hence τ ′
∈ Eσ0 ∪ Eσ1. Thus we have that (|Eσ0| + |Eσ1|)2g(|σ |)−g(|σ+1|)

= |Eσ |. This gives us that

d(σ ) =
|Eσ |

2g(|σ |)−|σ |
=

|Eσ0| + |Eσ1|

2g(|σ+1|)−|σ |
=

1
2

|Eσ0| + |Eσ1|

2g(|σ+1|)−(|σ |+1)
=

d(σ0) + d(σ1)
2

.

Assume CP(σ ) = |σ | − c , and |σ | = n. If so, for some τ with |τ | = n − c , we have that P(τ ) = σ . This means
that h(|τ |) ≤ n and consequently that g(n) > |τ |. If τ ′

≽ τ with |τ ′
| = g(n), then P(τ ′) ≻ σ and so τ ′

∈ Eσ . Hence
|Eσ | ≥ 2g(n)−(n−c). Thus

d(σ ) =
|Eσ |

2g(n)−n
≥ 2c

= 2|σ |−CP (σ ). �

1 This theorem is known by the names Kraft–Chaitin and Kraft Computable.
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A similar result holds, by essentially the same proof, for process machines and left-c.e. martingales. Our next objective is to
build a quick process machine from a martingale. While Levin showed how to build a process machine from a computable
measure [11], Levin’s objective was to show that any computable measure could be obtained using similar techniques to
Proposition 2.1. The process machine Levin built was not total but instead applicable to a set of uniformmeasure 1. Further,
Levin did not relate the complexity of a string σ with respect to the process machine created, to the measure of the cylinder
{σα : α ∈ 2ω

}.
Before showing how to build a quick process machine from a martingale, we will present a new technique for building

process machines. The benefit of this technique is that it allows us to build process machines without worrying about which
descriptions to use. Instead, like the KC theorem, we request a description length.

Definition. We call a partial computable function f : ω<ω
→ 2<ω

× N a process request function, if:

(1) The domain of f is closed downwards;
(2) For all ρ ∈ dom(f ), 2−f2(ρ)

≥


ρx∈dom(f ) 2
−f2(ρx); and

(3) If ρ1, ρ2 ∈ dom(f ) and ρ1 ≺ ρ2, then f1(ρ1) ≼ f1(ρ2), and f2(ρ1) < f2(ρ2).

In this definition, f1 and f2 are the co-ordinate functions of f , and ω<ω is the set of all finite strings of elements of N.

Item (1) means closure under prefixes. It is not necessary that f (ρ0) is defined if f (ρ1) is defined.
The idea behind this definition is the following. We want to represent the essential combinatorics of a process machine

by a tree. Each node of the tree maps to a pair (σ , n) where σ ∈ 2<ω and n ∈ N. When we turn this tree into a process
machine, this node generates a description of σ of length n. Suppose we have two nodes ρ1, ρ2. If ρ1 is an initial segment of
ρ2, then the description generated by ρ1 will be an initial segment of the description generated by ρ2. We need the second
condition so that the combined weight of the descriptions generated by the children of a node, does not exceed the weight
of the description generated by the node itself. We need f1(ρ1) ≼ f1(ρ2) in order to make a process machine. We will use
the fact that f2(ρ1) < f2(ρ2) in the proof of Theorem 2.2. Essentially this ensures that the mapping from elements in the
domain of the process request function, to elements in the domain of the process machine is one-to-one.

Definition. A process machine P implements a process request function f if for all σ ∈ 2<ω , CP(σ ) = min{n : (σ , n) ∈

rng(f )}.

Theorem 2.2. Any process request function is implemented by some process machine, and any process machine implements some
process request function.

Proof. Given a process machine P , there is a natural process request function f that P implements. We define f by
f (τ ) = (P(τ ), |τ |). In this case we have dom(f ) = dom(P) ⊆ 2<ω .

Given a process request function f , each node ρ ∈ dom(f ) defines a prefix-free machine Mρ via the KC theorem in the
following manner. Let (υ, n) = f (ρ). For any x ∈ N, if f (ρx) halts, then let (υσx,mx + n) = f (ρx) where mx > 0. If this
occurs we add (σx,mx) to our KC request sequence. Condition (2) for f to be a process request function ensures that the
weight of the requests does not exceed 1 because

1 ≥


ρx∈dom(f )

2−(f2(ρx)−f2(ρ))
=


ρx∈dom(f )

2−(mx+n−n).

Given τ in the domain of Mρ , we can determine the node ρx that made the request that returned τ . We will call ρx the
node associated with τ and Mρ . In the verification we will make use of the fact that f1(ρ)Mρ(τ ) = υσx = f1(ρx).

We will now build a process machine P that implements f . If f is the empty function, then so is P . Otherwise f (λ) halts
and so we can define τ0 = 0 f2(λ), and P(τ ′) = f1(λ) for any τ ′

≼ τ0.
We set P(τ ) = σ if at any stage we find a decomposition of τ = τ0τ1 . . . τn, and a node ρ ∈ ω<ω of length n− 1 with the

following properties:

(1) For all i ∈ {0, . . . , n − 1}, τi+1 ∈ dom(Mρ�i),
(2) For all i ∈ {0, . . . , n − 2}, ρ � (i + 1) is the node associated with τi+1 andMρ�i, and
(3) σ = f1(λ)Mρ�0(τ1) . . .Mρ�(n−1)(τn).

Note that because f2 is strictly increasing, for all i ∈ {1, . . . , n}, τi ≠ λ.
To make P a process machine, we need to close the domain of P downwards. To achieve this, we also define P(τ ′) =

P(τ0τ1 . . . τn−1) for all τ ′ such that τ0 . . . τn−1 ≺ τ ′
≺ τ .

If P fails to be a process machine, then there must be some τ , π added to the domain of P with τ ≼ π such that
P(τ ) ⋠ P(π). Furtherwe can assume that τ was not added to the domain of P in order to close the domain downwards. Let us
take the decompositions used by the construction to be τ = τ0τ1 . . . τm andπ ≽ π0π1 . . . πn, where P(π) = P(π0π1 . . . πn).

By construction, τ0 = π0 = 0 f2(λ). Further, τ1 = π1 because Mλ is a prefix-free machine. This also means that the node
ρ1 associated with τ1 and Mλ, is the same node associated with π1 and Mλ. Hence τ2 = π2 because Mρ1 is a prefix-free
machine. By repeating this argument we establish that π ≽ τ0 . . . τmπm+1 . . . πn. This implies that

P(π) ≽ f1(λ)Mρ0(τ1) . . .Mρn−1(τn) = P(τ )
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contracting our assumption that P was not a process machine. Note that because for all i > 0, πi ≠ λ, the decomposition of
σ is unique. This means that P(σ ) is defined at most once during the construction.

We will now verify that P implements f . Let τ0 = 0 f2(λ). Let ρ ∈ dom(f ), and let (σ , n) = f (ρ). For i ∈ N, 0 ≤ i < |ρ|,
for each machineMρ�i let τi+1 be the element of the domain of this machine such that the node ρ � (i+1) is associated with
τi+1 and Mρ�i. For all such i, f1(ρ � i)Mρ�i(τi+1) = f1(ρ � (i + 1)). Hence we have that f1(λ)Mρ�0(τ1) . . .Mρ�(|ρ|−1)(τ|ρ|) =

f1(ρ) = σ . Thus P(τ0τ1 . . . τn) = σ , and
|ρ|
i=0

|τi| = f2(λ) +

|ρ|
i=1

(f2(ρ � i) − f2(ρ � (i − 1))) = f2(ρ) = n. �

The proof shows that the implementation is uniform; given an index for a process request function f , we can compute
an index for a process machine P that implements f .

We can do a similar thing for quick process machines. The first two conditions below ensure that the quick process
machine we create is total. The third condition ensures that once we build a process machine there is some order function
h such that for all τ ∈ 2<ω , |P(τ )| ≥ h(|τ |).

Definition. A process request function f is a quick process request function if:

(1) dom(f ) is finitely branching,
(2) For all n ∈ N,


ρ∈dom(f ),|ρ|=n 2

−f2(ρ)
= 1,

(3) For some order h, for all ρ ∈ dom(f ), |f1(ρ)| ≥ h(|ρ|).

Theorem 2.3. Any quick process request function is implemented by a quick process machine, and any quick process machine
implements a quick process request function.

Proof. Given a quick process machine P , the natural quick process request function that P implements is again defined by
f (τ ) = (P(τ ), |τ |).

Given a quick process request function f , we use Theorem 2.2 to construct a processmachine P . The additional conditions
on f , that dom(f ) is finitely branching, and for all n ∈ N,


ρ∈dom(f ),|ρ|=n 2

−f2(ρ)
= 1 ensure that P is total.

Let l(x) = max{f2(ρ) : |ρ| = x and ρ ∈ dom(f )}. This function is computable because the domain of f is computable
and finitely branching. If |τ | ≥ l(x), then for some τ ′

≼ τ we have that P(τ ′) = f1(ρ) for some ρ of length x. This follows
from condition 2 for f to be a quick process request function. This means that |P(τ )| ≥ |f1(ρ)| ≥ h(x).

We can define another order function h′ by h′(n) = max{x : l(x) ≤ n}. As |τ | ≥ l(h′(|τ |)), we have that |P(τ )| ≥

h(h′(|τ |)) and because h ◦ h′ is also an order function, P is a quick process machine. �

We will now present a method for translating from computable martingales to quick process machines. One difficulty
is that, when running a computable martingale, the value of d(σ ) can increase at any stage, albeit by a very small amount.
However, we can avoid this issue by using the following result of Schnorr [20].

Proposition 2.4 (Schnorr). If d is a computable martingale, then there exists a computable martingale d such that for all
σ ∈ 2<ω:

(1) d(σ ) ≤d(σ ) ≤ d(σ ) + 2; and
(2) d(σ ) is a computable dyadic rational i.e. there is an integer pair (n, z) uniformly computable from σ such thatd(σ ) = n2z .

From now on we will assume that all our martingales d are dyadic rational valued, and further that d(λ) = 1. Given a
martingale, we can define itsmeasure precision function r : N → N by

r(n) = min{m ∈ N : ∀σ ∈ 2<ω, |σ | = n ⇒ d(σ ) · 2−|σ | is an integer multiple of 2−m
}.

We call this the measure precision function because there is a standard transformation from a martingale to a measure
on 2ω by taking, for any finite string σ , the measure of the basic open set {α ∈ 2ω

: σ ≺ α} to be d(σ ) · 2−|σ |. The measure
precision function of a computable martingale is computable. We will also make use of the following lemma.

Lemma 2.5. Let (a1, a2, . . . , an) be a tuple of positive integers andm ∈ N such thatm ≤ ai for all1 ≤ i ≤ n. If
n

i=1 2
−ai ≥ 2−m,

then for some J ⊆ {1, . . . , n} we have that


i∈J 2
−ai = 2−m.

Proof. We can assume that the elements of the tuple are non-decreasing. Consider the partial sum Sk =
k

i=1 2
−ai .

S1 ≤ 2−m. If Sk < 2−m, it must be that Sk ≤ 2−m
− 2−ak (as Sk is some integer multiple of 2−ak ). As ak+1 ≥ ak, so Sk+1 ≤ 2−m.

Hence for the least k such that Sk ≥ 2−m, it must be that Sk = 2−m. �

Given a computable martingale d, it may not be possible to find a quick process machine P , such that for all strings σ ,
CP(σ ) =

+
|σ |− ⌊log d(σ )⌋. For example, consider the martingale defined by d(σ ) = 2n if σ = 1n for some n, and d(σ ) = 0

otherwise. In this example, for any n, |1n
| − ⌊log d(1n)⌋ = 0 and a process machine has only one description of length 0.

The problem with this example is that the martingale wins too quickly on the sequence 1ω . We will restrict ourselves to
martingales that do not win ‘‘too quickly’’ on any sequence.

Our objective is to determine an infinite set M , and build a quick process machine P such that for all strings σ such that
|σ | ∈ M , CP(σ ) = |σ | − ⌊log d(σ )⌋. We will take M to be the range of a strictly increasing computable function. Given a
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computable martingale dwith measure precision function r , we will say that a strictly increasing computable functionm is
a selection function for d if:
(1) For all n ∈ N, m(n + 1) ≥ r(m(n)) + n + 2; and
(2) For all n ∈ N, for all σ ∈ 2<ω , |σ | = m(n) ⇒ d(σ ) ≤ 2n.
Proposition 2.6. Let d be a computable martingale and let m be a selection function for d. There exists a quick process machine
P such that for all σ ∈ 2<ω with |σ | ∈ rng(m), CP(σ ) = |σ | − ⌊log d(σ )⌋.

Proof. We will assume that m(0) = 0 as this simplifies the exposition of the proof, and this is all we will need later.
We construct P using a quick process request function f . Let r be the measure precision function for d. At stage s in the
construction we will define f on all strings ρ in the domain of f of length s. We will prove that the function f has the
property that if f (ρ) = (σ , x) with |ρ| = n + 1, then |σ | = m(n + 1) and r(m(n)) < x ≤ r(m(n + 1)). As m(n + 1) is
defined to be larger than r(m(n)), this allows us to request short descriptions of strings of lengthm(n + 1) if necessary.

At stage 0, we set f (λ) = (λ, 0). At stage s + 1, for all σ ∈ 2<ω such that |σ | = m(s), we let Eσ = {ρ ∈ ωs
: f1(ρ) = σ }.

We make the following inductive assumptions on the construction:
(1) For all ρ ∈ Eσ , f2(ρ) ≤ r(m(s)); and
(2)


ρ∈Eσ

2−f2(ρ)
= d(σ )2−|σ |.

If s = 0, then Eλ = {λ} and the inductive assumptions hold.
Choose σ ∈ {0, 1}m(s). Let σ0, . . . , σn be all extensions of σ of length m(s + 1). Now as d is a dyadic rational valued

martingale, for each i, there is some finite set of integers Ai such that
a∈Ai

2−a
= d(σi)2−|σi|. (2.1)

Hence by applying the martingale condition and the second inductive assumption:
n

i=0


a∈Ai

2−a
=

n
i=0

d(σi)2−|σi| = d(σ )2−|σ |
=


ρ∈Eσ

2−|f2(ρ)|.

Fix an i, and fix any a ∈ Ai. We want to show that r(m(s)) < a ≤ r(m(s + 1)). First a ≤ r(m(s + 1)) because r is
a measure precision function for d. Hence d(σi)2−|σi| is an integer multiple of 2−r(m(s+1)) and thus a ≤ r(m(s + 1)). By
(2.1), 2−a

≤ d(σi)2−|σi|. Further as d(σi) ≤ 2s+1 (the second condition for m to be a selection function), we have that
2−a

≤ 2s+1−|σi|. Hence a ≥ |σi| − s − 1 = m(s + 1) − s − 1 > r(m(s)) (the last inequality follows from the first condition
for m to be a selection function). Let I = {(i, a) : 0 ≤ i ≤ n, a ∈ Ai} be an index set for the finite sets Ai. If ρ ∈ Eσ , then
f2(ρ) ≤ r(m(s)) < min Ai. Hence by Lemma 2.5, we can partition I into subsets Sρ for each ρ ∈ Eσ , such that

(i,a)∈Sρ

2−a
= 2−f2(ρ). (2.2)

Now for each such ρ, we define f (ρ⟨i, a⟩) = (σi, a) if (i, a) ∈ Sρ (where ⟨_, _⟩ is a computable bijection between N × N
and N). We repeat this step for all σ of lengthm(s). Once this has been done for all such σ , we move to the next stage. Note
that our first construction assumption is maintained because f2(ρx) ≤ max{a : (i, a) ∈ I} ≤ r(m(s + 1)). Our second
construction assumption is maintained because of (2.1) and that every element of Ai generates a new node in the domain of
f .

This completes the definition of f . First we need to verify that f is a quick process request function. This construction
ensures that the domain of f is closed downwards, and that each node is finitely branching (as the index set I is always
finite). Additionally f1 is strictly increasing because m is strictly increasing, and f2 is strictly increasing because f2(ρ) ≤

r(m(|ρ|)) < f2(ρx) for any x ∈ N with ρx ∈ dom(f ). Eq. (2.2) ensures that wemeet condition 2 for f to be a process request
function and this along with the fact that f2(λ) = 0 implies wemeet condition 2 for f to be a strict process request function.
From f , we can construct a quick process machine P using Theorem 2.3.

Now P has the desired property because for any n, take any σ with |σ | = m(n). Let A be the set of integers used for
σ in (2.1). If a ∈ A, then there is some description τ such that P(τ ) = σ and |τ | = a. For (2.1) to hold, it must be that
|σ | − ⌊log d(σ )⌋ ∈ A. �

The above construction has an additional property that will be useful when we consider truth-table reductions.
Lemma 2.7. Let α ∈ 2ω , let d be a computable martingale and let m be a selection function for d. Let P be the quick process
machine created by an application of Proposition 2.6. Then the set {τ : ∃n, c ∈ N P(τ ) = α � m(n) and d(α � m(n)) = 2c

} is a
chain with respect to ≼.

Proof. Assume that there exists τ1, τ2 such that P(τ1) = α � m(n1) and P(τ2) = α � m(n2) with n1 ≤ n2 and
d(α � m(n1)) = 2c for some c ∈ N.

Now by construction, there is some initial segment τ ≼ τ2 such that |P(τ )| = m(n1) and hence because P is a process
machine we have that P(τ ) = α � m(n1).

At stage n1 of the construction, we have that α � m(n1) = σi for some i. Now because d(α � m(n1)) = 2c , we have that
|Ai| = 1. Hence τ1 is the unique element in 2<ω such that P(τ1) = α � m(n1). Thus τ1 = τ ≼ τ2. �
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We can use Proposition 2.6 to build a quick process machine that turns high martingale values into short descriptions.
While this proposition only works for martingales with selection functions, we will show that this is not a significant
limitation for our purposes. First we consider the case of Schnorr randomness and weak randomness.

Proposition 2.8. Let d be a computable martingale and let h be a computable order. There exists a computable martingaled and
m, a selection function ford, such that for all α ∈ 2ω:
(1) ∀n d(α � n) ≥ h(n) ⇒ ∀nd(α � m(n)) = 2n; and
(2) ∃

∞n d(α � n) ≥ h(n) ⇒ ∃
∞nd(α � m(n)) = 2n.

Proof. We buildd by adopting the betting strategy of d unless this strategy would forced(σ ) > 2n for some string σ of
lengthm(n). In this case, we restrain the betting so thatd(σ ) = 2n.

We constructd and m as follows. At stage 0, definem(0) = 0 andd(λ) = 1. At stage s + 1, define

m(s + 1) = max{r(m(s)) + s + 2,min{x : h(x) ≥ 2m(s)+s+1
}}.

For all σ ∈ 2<ω such that m(s) < |σ | ≤ m(s + 1), we inductively defined(σ ) by

d(σ i) =


2s+1 if d(σ i) ·

d(σ )

d(σ )
≥ 2s+1

2d(σ ) − 2s+1 if d(σ (1 − i)) ·
d(σ )

d(σ )
≥ 2s+1

d(σ i) ·
d(σ )

d(σ )
otherwise.

To verify the construction first note that the construction ensures thatm is a selection function ford. Now consider if for
all n, d(α � n) ≥ h(n). First we have thatd(α � m(0)) =d(λ) = 20. Second ifd(α � m(n)) = 2n, then by definition ofm,

d(α � m(n + 1)) ·

d(α � m(n))
d(α � m(n))

≥ h(m(n + 1)) ·
2n

2m(n)
> 2n+1.

This means thatd(α � m(n + 1)) = 2n+1.
Now assume that there are infinitely many n such that d(α � n) ≥ h(n). To show that there are infinitely many n such

thatd(α � m(n)) = 2n, it is sufficient to show that for any c , there exists an n and an s such that d(α � n) ≥ 2s+c and
m(s) ≤ n < m(s + 1). From this it follows that the construction must restrain the martingale along α infinitely often, and
hence for infinitely many n,d(α � m(n)) = 2n. Fix any c and choose s and n such that c ≤ m(s − 1), m(s) ≤ n < m(s + 1)
and d(α � n) ≥ h(n). It follows that

d(α � n) ≥ h(m(s)) ≥ 2m(s−1)+s
= 2c+s. �

Corollary 2.9. (1) If α is not Schnorr random, then there exists a quick process machine P and a strictly increasing computable
function m such that ∃∞n CP(α � m(n)) = m(n) − n.

(2) If α is not weakly random, then there exists a quick process machine P and a strictly increasing computable function m such
that ∀n CP(α � m(n)) ≤ m(n) − n.

Proof. These results follow from combining Propositions 2.6 and 2.8. �

To establish a similar result for computable randomness, we need to vary the construction slightly. In the previous
proposition, there was an order function that told us what value the martingale ‘‘should’’ have. In that situation we were
able to fix a single value at each stage of the construction and prevent the martingale exceeding this value. For the case
of computable randomness, we cannot do this because the martingale may win very slowly. However, we can construct a
suitable martingaled by restraining the betting the first time a martingale exceeds 2n, for any n, along any path.

Proposition 2.10. Let d be a computable martingale. There exists a computable martingaled and m, a selection function ford,
such that for all α ∈ 2ω , if d succeeds on α then ∀c ∃nd(α � m(n)) = 2c .

Proof. We constructd and m as follows. At stage 0, definem(0) = 0 andd(λ) = 1. At stage s + 1, define

m(s + 1) = r(m(s)) + s + 2.

For all σ ∈ 2<ω such that |σ | = m(s), let nσ = min{n : for all τ ≼ σ , 2n > d(τ )}. We inductively defined(σ ′i) for all
i ∈ {0, 1} and all σ ′

≽ σ with |σ ′
| < m(s + 1) as follows.

d(σ ′i) =


2nσ ifd(σ ′) ·

d(σ ′i)
d(σ ′)

≥ 2nσ

2d(σ ′) − 2nσ ifd(σ ′) ·
d(σ ′(1−i))

d(σ ′)
≥ 2nσd(σ ′) ·

d(σ ′i)
d(σ ′)

otherwise.

Observe thatd is a martingale. This can be proved by induction over the stages of the construction and over the length
of σ ′ at each stage. The martingaled is attempting to follow the betting strategy of d above σ .

To verify the construction we observe that if d succeeds on α, then the construction of d will enforce that for all c
there exists an n,d(α � m(n)) = 2c . Otherwise, we would have that both limsupd(α � n) is bounded above and thatd(α � n) ≥ a · d(α � n) for some positive rational a. �
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Corollary 2.11. If α is not computably random, there exists a quick process machine P such that for all c, there exists some n with
CP(α � n) = n − c.

Proof. Combine Propositions 2.6 and 2.10. �

We are now able to provide characterisations of computable randomness, Schnorr randomness and weak randomness
in terms of quick process machines. First we establish the following lemma.

Lemma 2.12. If m is a strictly increasing computable function, d a computable martingale and α ∈ 2ω such that for all n,
d(α � m(n)) ≥ 2n, then α is not weakly random.

Proof. Construct a computablemartingaled from d by following the betting strategy of d except thatwheneverd’s unbanked
capital exceeds 2 along some path,d banks half its unbanked capital and only bets with the remaining half. This ensures that
the amount of unbanked capital thatd has along any path never exceeds 4. This means that at α � m(n), the martingaled
must have banked capital at least n − 2 times and sod(α � m(n)) ≥ n − 2. �

Theorem 2.13. (1) A real α is not computably random if and only if there exists a quick process machine P, such that

∀c ∃n CP(α � n) ≤ n − c.

(2) A real α is not Schnorr random if and only if there exists a quick process machine P, and a strictly increasing computable
function m, such that

∃
∞n CP(α � m(n)) ≤ m(n) − n.

(3) A real α is not weakly random if and only if there exists a quick process machine P, and a strictly increasing computable
function m such that

∀n CP(α � m(n)) ≤ m(n) − n.

Proof. The left to right directions are just Corollaries 2.9 and 2.11 restated. For the right to left direction, given such a quick
process machine P , we use Proposition 2.1 to build a martingale d. Now d(α � n) ≥ 2n−CP (α�n). Hence if ∀c ∃n CP(α � n) ≤

n − c , we have that α is not computably random.
If for some strictly increasing computablem, ∃∞n CP(α � m(n)) ≤ m(n)−n, then let h(x) = max{{0}∪{2n

: m(n) ≤ x}}.
For infinitely many n, d(α � m(n)) ≥ 2n

= h(m(n)) and so α is not Schnorr random.
Finally assume for some strictly increasing computable m, ∀nCP(α � m(n)) ≤ m(n) − n. In this case, for all n,

d(α � m(n)) ≥ 2n and so by Lemma 2.12, α is not weakly random. �

3. Quick process machines and truth-table functionals

There is a simple technique to translate between truth-table functionals and quick process machines that allows
further characterisations of computable randomness, Schnorr randomness and weak randomness in terms of truth-table
reducibility. However, for these characterisations to hold, we need to be careful about how we define the use of a truth-
table reduction. Nerode observed that a truth-table reduction can be regarded as a Turing reduction that is total on all
oracles [15]. This result is also attributed to Trakhtenbrot [17]. We will take this as our definition of a truth-table reduction.
Given a truth-table reduction Φ we now define φα(n) to be the largest query made of the oracle α during the computation
of Φα(m) for anym ≤ n.

Theorem 3.1. (1) A real α is not computably random if and only if there exists a truth-table functional Φ , and β ∈ 2ω , such that
Φβ

= α and ∀c ∃n φβ(n) ≤ n − c.
(2) A real α is not Schnorr random if and only if there exists a truth-table functional Φ , β ∈ 2ω , and a strictly increasing

computable function m such that Φβ
= α and ∃

∞n φβ(m(n)) ≤ m(n) − n.
(3) A realα is notweakly random if and only if there exists a truth-table functionalΦ ,β ∈ 2ω , and a strictly increasing computable

function m such that Φβ
= α and ∀n φβ(m(n)) ≤ m(n) − n.

Proof. The right to left direction of the above statements can be established by constructing a martingale d from a truth-
table functional Φ as follows. Let d(σ ) = µ{α : Φα

≽ σ } · 2|σ |. The fact that Φ is total on all oracles makes d computable.
Now if Φβ

= α, then we have that d(α � n) ≥ 2n−φβ (n). The right to left direction for (1) and (2) follow immediately. For (3)
an application of Lemma 2.12 is needed.

To establish the left to right direction, given a quick process machine P , we define a truth-table functional Φ that
computes Φα(n) by finding the shortest initial segment of τ of α such that |P(τ )| > n and setting Φα(n) to be the (n+ 1)th
bit of this output.

Now if α is not computably random, then by Corollary 2.11, there is some quick process machine P such that ∀c∃n
CP(α � n) = n − c. Further by applying Lemma 2.7, for all c , we can take some τc with P(τc) = α � (|τc | + c) and that
{τc : c ∈ N} is a chain. Let β =


c τc . Thus Φβ

= α and φβ(|P(τc)| − 1) ≤ |P(τc)| − c. Similarly if α is Schnorr random or
weakly random. �

The author would like to note that this characterisation of computable randomness in terms of truth-table reducibility
has been independently arrived at by Bienvenu and Porter [18].



A.R. Day / Theoretical Computer Science 452 (2012) 47–55 55

Acknowledgments

The author thanks his PhD supervisors, RodDowney andNoamGreenberg for helpful discussions on this topic. The author
also thanks the anonymous referees for their helpful comments.

References

[1] L. Bienvenu, C. Porter, Strong reductions in effective randomness, Preprint.
[2] G.J. Chaitin, On the length of programs for computing finite binary sequences, J. ACM 13 (1966) 547–569.
[3] A.R. Day, On process complexity, Chic. J. Theoret. Comput. Sci. (2010) 13. Article 4.
[4] O. Demuth, Remarks on the structure of tt-degrees based on constructive measure theory, Comment. Math. Univ. Carolin. 29 (2) (1988) 233–247.
[5] R.G. Downey, D.R. Hirschfeldt, Algorithmic Randomness and Complexity, Springer-Verlag, 2010.
[6] R.G. Downey, E.J. Griffiths, Schnorr randomness, J. Symbolic Logic 69 (2) (2004) 533–554.
[7] R.G. Downey, E.J. Griffiths, S. Reid, On Kurtz randomness, Theoret. Comput. Sci. 321 (2-3) (2004) 249–270.
[8] A.N. Kolmogorov, Three approaches to the quantitiative definition of information, Prob. Inf. Trans. 1 (1965) 1–7.
[9] S. Kurtz, Randomness and genericity in the degrees of unsolvability, Ph.D. Thesis, University of Illinois at Urbana–Champaign, 1981.

[10] L.A. Levin, On the notion of a random sequence, Sov. Math. Dokl. 14 (5) (1973) 1413–1416.
[11] L.A. Levin, A.K. Zvonkin, The complexity of finite objects and the development of the concepts of information and randomness of means of the theory

of algorithms, Russian Math. Surveys 25 (6) (1970) 83–124.
[12] M. Li, P. Vitányi, An Introduction to Kolmogorov Complexity and its Applications, second ed., Springer-Verlag New York, Inc, Secaucus, NJ, USA, 1997.
[13] J.H. Lutz, The quantitative structure of exponential time, in: L.A. Hemaspaandra, A.L. Selman (Eds.), In Complexity Theory Retrospective II, Springer,

1997, pp. 225–260.
[14] P. Martin-Löf, The definition of random sequences, Inform. and Control 9 (1966) 602–619.
[15] A. Nerode, General topology and partial recursive functions, in: Summaries of talks presented at the Summer Institute for Symbolic Logic, Cornell

University, 1957, pp. 247–251.
[16] A. Nies, Computability and Randomness, Oxford University Press, 2009.
[17] P. Odifreddi, Classical Recursion Theory. The Theory of Functions and Sets of Natural Numbers, in: Studies in Logic and the Foundations ofMathematics,

vol. 125, North-Holland Publishing Company, Amsterdam, 1990.
[18] C. Porter, Mathematical and philosophical perspectives on algorithmic randomness, Ph.D. Thesis, University of Notre Dame, 2012.
[19] C.P. Schnorr, A unified approach to the definition of random sequences, Theory of Computing Systems 5 (3) (1971) 246–258.
[20] C.P. Schnorr, Zufälligkeit und wahrscheinlichkeit, in: Lecture Notes in Mathematics, vol. 218, Springer-Verlag, Berlin-New York, 1971.
[21] C.P. Schnorr, Process complexity and effective random test, J. Comput. System Sci. 7 (1973) 376–388.
[22] R.J. Solomonoff, A formal theory of inductive inference, Information and Control 7 (1964) 224–254.
[23] Y. Wang, Randomness and complexity, Ph.D. Thesis, University of Heidelberg, 1996.


	Process and truth-table characterisations of randomness
	Introduction
	Quick process machines and randomness
	Quick process machines and truth-table functionals
	Acknowledgments
	References


