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a b s t r a c t

We analyze transient and stationary behaviors of multidimensional Markov chains defined
on large state spaces. In this paper, we apply stochastic comparisons on partially ordered
state which could be very interesting for performance evaluation of computer networks.
We propose an algorithm for bounding aggregations in order to derive upper and lower
performance measure bounds on a reduced state space. We study different queueing
networks with rejection in order to compute blocking probability and end to end mean
delay bounds. Parametric aggregation schemes are studied in order to propose an attractive
solution: given a performance measure threshold, we vary the parameter values to obtain
a trade-off between the accuracy of bounds and the computation complexity.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Quantitative analysis of multidimensional Markov chains could be very difficult if there is no specific solution form
(product-form,matrix geometric solutions, . . . ). Indeed, we can apply numerical methods, but with the state space explosion
problem it is very hard or intractable to compute probability distributions [1]. In performance and dependability studies,
the stochastic comparison of Markov chains provides an efficient technique to overcome the state space explosion [11,10].
The key idea of this method is the following: given a large size Markov chain, we propose to bound it by another Markov
chain which is easier to analyze, and which provides bounds on performance measures. Various applications of stochastic
comparison in queueing networkswithmany related references are presented in [13]. In [9] stochastic comparison is applied
for performance evaluation of different kinds of network architectures. Aggregation techniques have been largely applied
for the analysis of large size systems such as queueing networks [2]. In the case of specific networks as closed networks
or tandem queueing networks, Norton’s theorem is used for aggregating the stations, obtaining an equivalent system with
one station. In [1] the Courtois decomposition method is presented for steady state aggregations of large Markov chains.
This method can be applied for special systems called decomposable, defined by state subsets that represent tightly coupled
structures. In the case of totally ordered state spaces, lumpability and stochastic ordering theory have been combined to
derive bounding Markov chains [14].

In the present paper, we use stochastic comparisons by mapping functions [4], in order to aggregate the state space.
We can thus reduce the size of large Markov chains by defining bounding Markov chains on a smaller state space. We
study stochastic comparisons on state spaces endowed with at least a preorder (so it could be a partial or a total order).
The relevance of the paper is to propose algorithms to build aggregated bounding Markov chains. They are based on the
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definition of many to one mapping functions, and aggregated bounding infinitesimal generators. We can indeed construct
the aggregated process without generating the original one, thus there is no supplementary complexity and the bounding
procedure can be included in the model construction phase.

We consider the component-wise order which is a partial order onmultidimensional state spaces. Note that it is suitable
for performance evaluation of communication networkswith several nodes. For instance, we can derive bounds for blocking
probabilities, mean number of customers and response times in every node. Moreover, using a partial order rather than a
total order induces less constraints, since we compare only the transition rates for comparable states. We define parametric
aggregations in order to propose a trade-off between reducing the size of the Markov chains, and improving the quality of
the bounds. The originality of this paper is to propose a very flexible aggregation scheme allowing to reduce largely the
original model. We can start with the smallest bounding model and then gradually increase its size in order to improve
the quality of the bounds. This paper is organized as follows. In the next section, we present main theoretical concepts on
stochastic comparisons and the stochastic ordering theory. In Section 3, we present the algorithm and its proof. Section 4
presents some applications on different queueing networks for which we compute performance measure bounds using
this algorithm. Finally as a conclusion, we present the main contributions of this paper, and we give comments on further
research items.

2. Stochastic comparisons

Let A be a discrete and countable state space, and ≼ be at least a preorder relation on A (a reflexive and transitive binary
relation [10]). Let us remark that total and partial orders are also preorder relations. For instance, on A = N, ≤ is a total
order, and on A = Nn, the component-wise order is a partial order, which are both also preorders. We apply the stochastic
comparison approach to define a newMarkov chainwhich is an aggregation of the initial one andwhich provides bounds on
themeasure of interest. Let {Xt , t ≥ 0}be aContinuous TimeMarkovChain (CTMC) taking values in a large,multidimensional
and preordered state space A. We denote by Q the infinitesimal generator. We consider the performability measure R(t)
defined as a functional at time t of the considered CTMC:

R(t) =


x∈A

Π(x, t)f (x) (1)

where f : A → R+ is an increasing reward function and Π(x, t) is the probability to be in state x at time t . For t → ∞, if
the process has a stationary behavior, then we denote by Π(x) the stationary probability to be in state x, and R represents
the measure of interest computed from the stationary probability distribution Π . If there is no specific solution to compute
Π , then its numerical computation is very difficult and may be intractable due to the large state space. Since we are also
interested in transient performancemeasures, we propose to define bounding systems in order to overcome this state space
explosion problem. So we reduce A by aggregating some states and by mapping them into one state. We define aggregated
processes on the state space S ⊂ A, from which we can derive performance measure Ru(t) such that: R(t) ≤ Ru(t) if it is
an upper bound, or Rl(t) such that Rl(t) ≤ R(t) if it is a lower bound. Stochastic comparisons are based on the stochastic
ordering theory. Next, we present the main theoretical concepts.

2.1. The stochastic ordering theory

We consider two random variables X and Y defined on A, and their probability measures given respectively by the
probability vectors p and q where p[i] = Prob(X = i), ∀i ∈ A (resp. q[i] = Prob(Y = i), ∀i ∈ A). The ≼st ordering
can be defined using increasing real functions as follows [10].
Definition 1. X ≼st Y ⇔ E[(f (X))] ≤ E[(f (Y ))], ∀f : A → R+, ≼ −increasing whenever the expectations exist .
We present now the comparison of stochastic processes. Let {Xt , t ≥ 0} and


Xu
t , t ≥ 0


be stochastic processes defined onA.

Definition 2. We say that {Xt , t ≥ 0} ≼st

Xu
t , t ≥ 0


if Xt ≼st X

u
t , ∀t ≥ 0. (2)

When the processes are defined on different state spaces, we can compare them on a common state space usingmapping
functions. Let Xt (resp. Xu

t ) be a process defined on A (resp. S), g be amany to onemapping from A to S. Next, wewill compare
themapping of the process Xt by themapping function g , whichmeans g(Xt)with the process Xu

t . The stochastic comparison
by mapping functions is defined as follows [4].
Definition 3. We say that {g(Xt), t ≥ 0} ≼st


Xu
t , t ≥ 0


if g(Xt) ≼st Xu

t , ∀t ≥ 0. (3)

Different formalisms can be used to define a stochastic ordering: increasing functions, and increasing sets [10]. We focus on
the increasing set formalism, as we will use it for the proof of our algorithm. Let Γ ⊆ A, we denote:

Γ ↑= {y ∈ A | y ≽ x, x ∈ Γ } . (4)
We have the following definition for the increasing set.
Definition 4. Γ is called an increasing set if and only if Γ = Γ ↑.
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From the general definition of an increasing set, three stochastic orderings have been defined from different families of
increasing sets [8]. The most known stochastic ordering ≼st is derived from the family Φst(A) which is defined from all the
increasing sets of A:

Φst(A) = {Γ ⊂ A | Γ = Γ ↑} . (5)

The stochastic ordering ≼st can be defined between the random variables X and Y using the family of increasing sets Φst(A)
[8] as follows.

Definition 5. X ≼st Y ⇔


x∈Γ p[x] ≤


x∈Γ q[x], ∀Γ ∈ Φst(A).

Other families generating weaker orderings are defined from particular increasing sets [8]. Increasing set formalism is
widely used for the comparison of multidimensional Markov chains through their infinitesimal generators. It is suitable
with algorithms based on matrices. Stochastic comparisons are often based on the monotonicity which is defined as an
increase of the process with time t [7].

Definition 6. We say that {Xt , t ≥ 0} is ≼st-monotone if:

Xt ≼st Xt+τ , ∀t ≥ 0, τ > 0. (6)

In [5] it is shown that many queueing systems verify the monotonicity property. As an example, systems represented by
multidimensional Markov chains where components are modified by +1 (arrivals) or −1 (services), and at the same time
−1 in a component and +1 in another component (transit between queues) are monotone. These kinds of processes model
queueing systems as Jackson or BCMP networks. On the other side, G-Networks are not monotone due to synchronized
departures. Generally, the monotonicity of time-homogeneous Markov chains can be proved using the coupling of the
chains, by comparing different realizations of the chains with different initial conditions [6,7]. The monotonicity can be also
proved by comparing the rows of the generators [8]. If Xt is the Markov chain defined on the state space Awith infinitesimal
generator Q , then we have the following theorem [8].

Theorem 1. {Xt , t ≥ 0} is ≼st- monotone, if ∀Γ ∈ Φst(A):

∀x ≼ y ∈ A | x, y ∈ Γ or x, y /∈ Γ ,

z∈Γ

Q [x, z] ≤


z∈Γ

Q [y, z].

We consider now Xt as defined previously and also the Markov chain Xu
t defined on another state space S with

infinitesimal generator Q u, and g a many to one mapping from A to S. If we suppose that at least one process is monotone,
then the theorem of the comparison of these Markov chains by the mapping function g is as follows [8].

Theorem 2. If the following conditions 1, 2, 3 are satisfied:

1. g(X0) ≼st Xu
0

2. {Xt , t ≥ 0} or {Xu
t , t ≥ 0} is ≼st-monotone

3. Q [x, ∗]Mg ≼st Q u
[y, ∗], ∀x ∈ A, y ∈ S, g(x) = y

then we have:

{g(Xt), t ≥ 0} ≼st

Xu
t , t ≥ 0


(7)

where Q [x, ∗] is the row in the matrix Q corresponding to the state x, and Mg , is the matrix representation of the mapping
function g described as follows [8]:

Mg [i, j] =


1 if g(i) = j
0 else , i ∈ A and j ∈ S.

The following relation between the rows of the generators:

Q [x, ∗]Mg ≼st Q u
[y, ∗]

is equivalent to:
g(z)∈Γ

Q (x, z) ≤


z∈Γ

Q u(y, z), ∀Γ ∈ Φst(S). (8)

This theorem can be also used to compare the Markov chain {Xt , t ≥ 0} with a lower bound {X l
t , t ≥ 0}, by reversing the

inequalities, and by considering the generator Q l instead of Q u. We deduce that Theorem 2 is based on three conditions in
order to have the comparison by mapping functions of Markov chains defined on different state spaces : (1) the comparison
of the chains at initial time, (2) the monotonicity of at least one chain, and (3) the comparison of the generators. Next, we
use these theoretical concepts in order to define algorithms generating aggregated bounding chains.



H. Castel-Taleb et al. / Theoretical Computer Science 452 (2012) 12–20 15

3. Bounding aggregations

We use the theoretical concepts of stochastic comparisons by mapping functions in order to propose an algorithmic
approach to generate aggregated bounding chains for the computation of upper or lower bounds on performancemeasures.

3.1. Presentation of the algorithm

The key idea of Algorithm 1 is to build two aggregated bounding Markov chains: an upper bound, Xu(t) and a lower
bound, X l(t) on g (Xt), at each time t . For ease of presentation, we give the algorithm only for the upper bound. In Algorithm
1, first we have to define in (1) a preorder in the state space such that the reward function in an increasing function. Second,
in (2) we verify that the CTMC to aggregate is monotone (as it is a condition of Theorem 2). After that, we have two main
steps for the definition of the aggregated bounding Markov chains: first we define the many to one mapping function g in
order to reduce the state space A; secondwe define the infinitesimal generatorsQ u of the aggregated upper bounding CTMC.

3.1.1. Definition of the many to one mapping function
The many to one mapping function g : A → S (S ⊂ A) is defined by aggregating some states of A. We have two cases for

a state xi ∈ A.

1. The state xi ∈ A is not aggregatedwith other states, whichmeans that xi ismapped to the same state xi, so it is represented
exactly and it is called a simple state of S. So we have: g(xi) = xi, and ̸ ∃y ∈ A | y ≠ xi and g(y) = xi.

2. The set of states {x1, . . . , xi, . . . , xn}, is mapped to xn which is the upper state (∀1 ≤ i ≤ n, xi ≼ xn), and xn is a macro-
state. Note that in the case of the lower bound we map to the lower state x1 which is a macro-state.

So g is such that g(x1) = g(x2) = · · · = g(xi) = . . . g(xn) = xn for the upper bound. Obviously, the macro-states
represent disjoint sets of states. It is also important to note that g is an increasing function since we compute bounds
defined as an increasing reward function on a probability distribution of the CTMC. From definition of g , we obtain the
process {g (Xt) , t ≥ 0}, where states correspond to the mapping g (Xt) of Xt .

3.1.2. Building the aggregated bounding Markov chain
We define the infinitesimal generator Q u from Q andMg defined previously. The product QMg is the matrix representing

the transition rates from states x ∈ A into states y ∈ S. The infinitesimal generator Q u is defined as follows:

∀x ∈ S, Q u
[x, ∗] = Q [x, ∗]Mg (9)

where Q u
[x, ∗] is the row in the matrix Q u corresponding to the state x. Note that if we define a lower bound, then after the

definition of the mapping function g as the mapping to the lower state, then we deduce the generator Q l as in Eq. (9).

Algorithm 1 Construction of an aggregated upper bounding Markov chain Xu
t such that R(t) ≤ Ru(t)

Require: infinitesimal generator Q , state space A, reward function f used to define the underlying performance measure
R(t).

1: Define a preorder ≼ on A such that f is an increasing function with respect to this order
2: Check the monotonicity of {Xt , t ≥ 0}
3: For each state x ∈ A, give y ∈ S such that y = g(x). Note that y can be a simple or a macro-state. If it is a macro-state,

then y is the upper state of the set.
4: For each state x ∈ S define the row in Q u corresponding to the transition rates from state x : Q u

[x, ∗] = Q [x, ∗]Mg .
5: If {Xu

t , t ≥ 0} is not irreducible, then return to (3), otherwise, go to the next step.
6: Compute Πu(t), and Ru(t).

In step (4) of Algorithm1, the bounding generator is constructed bymultiplying the generatorQ withMg . Since the entries
ofMg are 0 or 1, the product QMg is computed by additions of entries of Q . Thus for each state in A the number of additions
is bounded by the size of S. The complexity of step (4) is thus in O(|A| × |S|), where |A| and |S| represent respectively the
sizes of the state spaces A and S. Once the bounding chain is defined, it is numerically analyzed by conventional techniques
[12]. Note that step (2) can be concluded directly since for some classes of systems their monotonicity is established. For
the definition of the many to one mapping function, the choice of states to aggregate is not simple. Different criteria are
considered: the irreducibility of the aggregated Markov chain, and the quality of the bounds. In model-driven performance
studies, this procedure can be done with heuristics: by taking into account the dynamic of the original model, the bounding
model can be derived by modifying some parameters and/or characteristics of the model. Thus the bounding model can be
directly constructed without storing the generator Q . In the case the original model is not monotone, we can generalize this
algorithm by defining monotone bounding models, since for stochastic comparisons, the monotonicity of one of the models
is sufficient. Next, we prove that the aggregated Markov chain provides really bounds.
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Fig. 1. A tandem queueing network.

3.2. Proofs

We give the proof only for the upper bound case. From Algorithm 1, we define the mapping function g : A → S such that
the states are aggregated and mapped to the upper state. We apply Theorem 2 in order to prove that:

{g(Xt), t ≥ 0} ≼st {Xu
t , t ≥ 0}. (10)

We have two cases for the mapping function g : either it maps a state to itself, or it maps some states into the upper state
(aggregation). In the first case, as there is only one state x ∈ A such that g(x) = x, and as Q u

[x, ∗] = Q [x, ∗]Mg , it is easy to
deduce that:

∀x ∈ A, y ∈ S | g(x) = y, Q [x, ∗]Mg ≼st Q u
[y, ∗]. (11)

In the case where the states x1, . . . , xn ∈ A such that xi ≼ xn, ∀i ≤ n are mapped to xn, then from the monotonicity property
of {Xt , t ≥ 0} [8] we have:

Q [x1, ∗] ≼st Q [xn, ∗] (12)
Q [x2, ∗] ≼st Q [xn, ∗] (13)
. . .

Q [xn−1, ∗] ≼st Q [xn, ∗]. (14)

Moreover, since g is an increasing function, then ∀ 1 ≤ i ≤ nwe have:
Q [xi, ∗]Mg ≼st Q [xn, ∗]Mg . (15)

As Q u
[xn, ∗] = Q [xn, ∗]Mg , then it is easy to deduce that:
∀x ∈ A, y ∈ S | g(x) = y, Q [x, ∗]Mg ≼st Q u

[y, ∗]. (16)
From Theorem 2, if condition (1) is verified then we deduce that:

{g(Xt), t ≥ 0} ≼st

Xu
t , t ≥ 0


. (17)

From the stochastic comparison of Markov chains by mapping functions, we obtain the comparison of transient and
stationary probability distributions. So we can deduce that for the upper bound:

R(t) ≤ Ru(t) =


x∈S

Πu(x, t)f (x). (18)

For the lower bound, the algorithm considers the mapping function g : A → S to the lower state of the set, and we derive
Mg . We can compute Q l for each state x ∈ S: Q l

[x, ∗] = Q [x, ∗]Mg . From Theorem 2, we deduce that the aggregated process
{X l(t), t ≥ 0} allows to compute a lower bound Rl(t):

Rl(t) =


x∈S

Π l(x, t)f (x) ≤ R(t). (19)

Next, we give some numerical results obtained from the algorithm for computation of performance measure bounds
using bounding aggregations.

4. Applications

We present in this section some applications on different queueing networks to illustrate how different performance
measure bounds can be obtained from bounding aggregations. First, we apply our algorithm on a tandemqueueing network,
and after on a more general queueing network with feedback.

4.1. A tandem queueing network

The first considered model is an open tandem queueing network which may represent a path in a network defined as a
series of network nodes (switches, routers). We suppose that the leftmost node has index 1, and indices increase in the path
until node n (see Fig. 1).

For any queue i such that 1 ≤ i ≤ n, arrivals follow a Poisson process with rate λi, the service time is exponential with
rate µi, and the capacity is Bi. After a service in queue i, the packet goes out with probability di or transits to the next queue
i + 1 with probability pi,i+1 if i < n. In the case when the queue is full, the customer is lost. This system can be represented
by a CTMC {Xt , t ≥ 0} on A = {0, . . . , B1} × · · · × {0, . . . , Bi} × · · · × {0, . . . , Bn}. Each state x ∈ A is represented by the
vector x = (x1, . . . , xi, . . . , xn), where xi is the number of customers (or packets) waiting in queue i.
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4.1.1. Performance measures
We explain how to compute the blocking probabilities at each node i and the end to end delays. The blocking probability

Pbi(t) of queue i at time t is given by:

Pbi(t) =


x∈A|xi=Bi

Π(x, t). (20)

The mean number of packets at queue i at time t is given by Ni(t):

Ni(t) =


x∈A

xiΠ(x, t). (21)

In the case where the stationary distribution Π exists, we denote limiting cases of the number of packets and the blocking
probabilities by Ni and Pbi. The end to end mean delay can be computed by means of the Little formula. Let Λi be the
throughput, Di the mean delay and Ni the mean number of packets at queue i. It follows from the Little formula:

Di =
Ni

Λi
. (22)

Since in the equilibrium, the throughput of a queue is equal to the arrival rate of accepted packets, it can be computed as
follows: Λ1 = λ1(1− Pb1), and Λi+1 = (Λipi,i+1 + λi+1)(1− Pbi+1) for 0 ≤ i ≤ n− 1. The end to end mean delay D is then
obtained by summing the mean delays Di through the path:

D =

n
i=1

Di. (23)

The computation of the stationary distribution for {Xt , t ≥ 0} is very difficult or intractable: there is no product-form,
and the number of states increases exponentially with the number of components. In [3], performance analysis of tandem
queueing networks has been proposed using stochastic bounds. Their results will be compared with those obtained by our
algorithm.

4.1.2. Application of the algorithms
We propose to apply Algorithm 1 for the generation of aggregated bounding processes in order to derive performance

measure bounds. Two conditions must be satisfied to apply the algorithm. The first one is the definition on the state space
A of an order such that we can compute bounds for Pbi and D. We propose the component-wise partial order:

∀x, y ∈ A, x ≼ y ⇔ x1 ≤ y1, . . . , xn ≤ yn.

We can see from Eqs. (21) and (20) that according to the component-wise ordering, these performance measures are
defined as increasing rewards on the probability distributions. Thus if Π(t) ≤st Πu(t) then the mean number of packets
and the blocking probability computed from Π(t) are less than that of computed from Πu(t). For the average delay in the
equilibrium, we can see that in order to compute an upper bound on D, we must consider an upper bound on Ni and a lower
bound on Λi. Thus the upper bound on D can be derived by computing Nu

i and Pbui from the upper bounding stationary
distribution Πu. Similarly the lower bound on D can be computed from the lower bounding stationary distribution. The
second condition is the monotonicity of {Xt , t ≥ 0} which has been proved in [5] using the coupling by event. Thus,
the aggregated processes {Xu

t , t ≥ 0} and {X l
t , t ≥ 0} can be derived through the algorithm generating bounds for the

performance measures.
For the definition of the mapping function g , we propose parametric aggregation schemes based on two parameters: ∆

and k. Let k be a number of queues (such as k < n), and ∆ ≤ Bi, ∀1 ≤ i ≤ n. The general idea of the aggregation scheme is
the following: for a state x = (x1 . . . , xk, . . . , xn) ∈ A, we change values of components x1, . . . , xk, (corresponding to queues
1, . . . , k) to upper or lower values, and we keep unchanged the other components. Obviously, the value of k will have an
impact on the quality of the bounds: if k increases the bounds will be degraded. Moreover, for all the aggregation schemes,
the component xn has not been changed, as we compute the blocking probability of queue n. Next, we describe the upper
bound defined by overestimating the number of packets, and the lower bound by underestimating the number of packets
in the modified k queues, as follows.

1. For the upper bound: states x such that xi ≤ Bi − ∆, ∀1 ≤ i ≤ k, are mapped to (B1 − ∆, . . . , Bk − ∆, xk+1, . . . , xn).
2. For the lower bound: states x such that xi ≥ ∆, ∀1 ≤ i ≤ k, are mapped to the lower state (∆, . . . , ∆, xk+1, . . . , xn).

For ∆ = 0 we can see that the size of the state space S is (B + 1)n−k. Hence the state space size is largely reduced when k
increases compared with the size of the exact process which is (B + 1)n. Note that we could also define bounding systems
with different values of ∆ for each queue. The main advantage of these aggregation schemes is the possibility to obtain a
very reduced Markov chain, and to increase gradually the size in order to improve the quality of the bounds.
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Table 1
The blocking probabilities computed from theM/M/1/Bi queue.

λ 20 30 40 50 60 70 80 90
Pbu∗4 2.6e−5 0.1667 0.375 0.5122 0.5811 0.6413 0.6822 0.7223

Table 2
Blocking probability bounds in queue 4: impact of k.

λ Pbu4 (k = 3) Pbu4 (k = 2) Pbu4 (k = 1) Pbl4 (k = 3) Pbl4 (k = 2) Pbl4 (k = 1)
size = 41 size = 1681 size = 68921 size = 41 size = 1681 size = 68921

20 1.5e−3 8.6e−5 1.0e−5 0 1.0e−16 1.0e−14
30 0.02439 0.01628 0.01401 0 9.0e−13 1.7e−8
40 0.0927 0.0917 0.0916 0 6.3e−8 6.2e−4
50 0.1667 0.1666 0.1666 4.0e−13 2.2e−4 8.8e−2
60 0.2307 0.2307 0.2307 5.0e−10 0.0352 0.1811
70 0.2857 0.2857 0.2857 1.0e−7 0.1597 0.2856
80 0.3333 0.3333 0.3333 2.0e−5 0.2646 0.3011
90 0.3751 0.3751 0.3751 1.0e−3 0.3460 0.3522

Table 3
End to end delay bounds: impact of ∆.

λ D Du (∆ = 5) Du (∆ = 20) Dl (∆ = 20)
size = 2825761 size = 8856 size = 379701 size = 379701

20 0.066 1.190 0.824 0.036
30 0.105 1.309 1.009 0.075
40 0.348 1.420 1.181 0.299
50 0.742 1.469 1.269 0.538
60 0.988 1.493 1.316 0.653
70 1.131 1.508 1.348 0.726
80 1.182 1.520 1.378 0.770
90 1.241 1.529 1.414 0.811

4.1.3. Numerical results
Next, we consider an example of network with n=4 queues in tandem. For each queue 1 ≤ i ≤ 4, the arrival rate λi is

such that λ1 = λ2 = λ3 = λ2 = λ. We have also the following assumptions: µi = 100 Mb/s, and B1 = · · · = Bn = B. The
routing probabilities are such that: ∀1 ≤ i ≤ n , di = 0.3, ∀1 ≤ i ≤ n − 1, pi,i+1 = 0.7.

We take a buffer size B equal to 40 for each queue. In Table 2, we give the steady state blocking probability bounds
of queue 4, for different values of k and for ∆ = 0. In order to show the interest of our results, we compare our upper
bounds with those obtained in [3]. In this paper, the blocking probability upper bounds of any queue i (1 ≤ i ≤ n) in a
tandem queueing network of n queues are derived from the blocking probability of anM/M/1/Bi queue, by supposing that
all previous queues {1, . . . , i − 1} have an infinite capacity. We denote by Pbu∗4 the blocking probability for queue 4, and
we give in Table 1 the values obtained using the same input parameter values as those used for Table 2 in order to compare
them.

First, we remark in Table 1 that values obtained from Pbu∗4 are larger than upper bounds of Table 2. If we study in detail
Table 2, thenwe see that when the number ofmodified queues, k decreases, the quality of bounds is improved. Furthermore,
when λ is greater than 50, k has no impact on the upper bounds because when λ is sufficiently large, then all queues are full
for the upper bound. For the lower bound, the last n − k queues are full, and arrivals from the k queues are neglected. For
this reason we can see that in the case of k = 3, the lower bounds are very low (lower than 10−16 for λ ≤ 40).

From Table 2, we can use parameter k in order to verify step by step that Pb4 is in an interval. For example, for λ = 60, if
we want to check that the blocking probability is in the interval [0.1, 0.3], we begin with the smallest CTMC: k = 3 for the
upper bound (size of 41) and k = 2 (size of 1681) for the lower bound. We obtain the interval [0.0352, 0.2307] of bounding
values. Since we need a more accurate lower bound, we decrease k. For k = 1 (size of 68921), we obtain the lower value
equal to 0.1811. So with the interval [0.1811, 0.2307] we have verified the constraint on blocking probabilities, without
computing the exact Markov chain of size 2825761 states. In Table 3, we give the exact end to end delays, and also the upper
and lower bounds Du and Dl. We take B = 40, k = 3, and we consider different values of ∆.

We can notice in Table 3 the influence of ∆, if it increases the bounds are more accurate. Next, we take a larger system
with 9 queues. We suppose that B = 20, n = 9, k = 5 and ∆ = 1. In Table 4, we give the blocking probabilities and end
to end mean delay bounds. We can see that the size of the exact CTMC is 219, which is intractable. The sizes of bounding
models are reduced to 214

× 25 and we can have estimations to check if constraints on performance measures are satisfied
or not. From these results, we have noticed the influence of both parameters∆ and k on accuracy of bounds. First, we choose
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Table 4
Blocking probabilities and
end to end mean delay
bounds.

λ Pbu9 Pbl9

20 5.0e−4 6.1e−7
30 2.6e−2 9.8e−4
40 0.097 0.051
50 0.168 0.131
60 0.231 0.211
70 0.285 0.261
80 0.333 0.311
90 0.375 0.361

λ Du Dl

20 1.376 0.066
30 1.376 0.104
40 1.531 0.220
50 1.620 0.365
60 1.670 0.469
70 1.700 0.537
80 1.720 0.580
90 1.733 0.619

Fig. 2. A queueing network with feedback.

Table 5
Blocking probability bounds in a queueing network with feedback.

λ Pb4 Pbu4 (∆ = 5) Pbu4 (∆ = 10) Pbl4 (∆ = 10) Pbl4 (∆ = 15)
size = 194481 size = 15876 size = 53361 size = 53361 size = 112896

20 2.0e−13 1.7e−3 2.2e−6 6.5e−15 8.2e−15
30 5.7e−10 6.8e−3 4.6e−5 1.7e−11 2.3e−11
40 1.5e−7 1.8e−2 4.6e−4 3.9e−9 6.0e−9
50 9.8e−6 3.8e−2 2.7e−3 2.3e−7 4.0e−7
60 2.6e−4 6.6e−2 1.1e−2 5.1e−6 1.0e−5
70 0.004 0.103 0.03 5.4e−5 1.2e−4
80 0.023 0.145 0.066 3.0e−4 7.0e−4
90 0.074 0.18 0.114 9.0e−4 2.0e−3

the value of k as it has an important impact on the size of the state space, and after that we choose the value of ∆ in order
to improve the quality of the bounds.

4.2. A queueing network with feedback

We study a more general queueing network with feedback given in Fig. 2. We suppose that arrivals to the system are
into queue 1 and follow a Poisson process. For each queue i (1 ≤ i ≤ 4), the service rates are exponential with parameter
µi = 100. The routing probabilities between the queues are as follows: p1,2 = p1,3 = 0.5, p3,1 = 0.3, and p3,4 = 0.7. We
suppose that B1 = B2 = B3 = B4 = 20, and k = 2. The system can be represented by a multidimensional CTMC which is
monotone. The monotonicity of Jackson networks has been proved in [7], and considering finite capacities does not modify
the monotonicity.

In Table 5, we give the blocking probabilities (exact and bounds) of queue 4, for different values of ∆.
In Table 6, we give the transient blocking probabilities (exact and bounds) for different values of t . We choose the initial

probability vector such that the probability is one in the greatest state (when all the queues are full) and 0 in others.
We can remark in Table 6 that transient bounds are decreasing in time. This is due to the monotonicity: the original

model is monotone and since the many to one application, g is increasing, the bounding model is also monotone. Since the
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Table 6
Transient blocking probability bounds: the monotonicity behavior.

t Pb4(t) Pbu4(t) (∆ = 10) Pbl4(t) (∆ = 10)
size = 194481 size = 53361 size = 53361

1.0e−5 0.9991 0.9999 0.998
1.0e−3 0.9137 0.9138 0.9120
1.0e−2 0.6655 0.666 0.6211

initial state is the greatest state, the convergence to the stationary distributionwill be decreasing over time. From numerical
results presented in this section,we can conclude that by varying the aggregation parameterwe canhave a trade-off between
accuracy of bounds, and computation complexity.

5. Conclusion

We apply bounding aggregations on Markov processes in order to compute upper and lower performance measure
bounds. Different queueing networks are proposed in order to show the relevance of the approach. Moreover, as we have
applied stochastic comparisons, thenboth stationary and transient bounds are derived.Wedevelop aparametric aggregation
scheme which allows to have a trade-off between accuracy of bounds and computation complexity. As a future work, we
need to define an algorithm for nonmonotone Markov processes by building monotone bounding processes. It will be also
interesting to generalize this algorithm to weaker stochastic orderings.
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