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In this paper we study the family of thin probability measures on the domain A∞ of
finite and infinite words over a finite alphabet A. This structure is inspired by work of
Jean Goubault-Larrecq and Daniele Varacca, who recently proposed a model of continuous
random variables over bounded complete domains. Their presentation leaves out many
details, and also misses some motivations. In this and a related paper we attempt to fill
in some of these details, and in the process, we reveal some features of their model. Our
approach to constructing the thin probability measures uses domain theory, and we show
the family forms a bounded complete algebraic domain over A∞. In the second paper in
this series, we explore using the thin probability measures to reconstruct the bounded
complete domain of continuous random variables over any bounded complete domain due
originally to Goubault-Larrecq and Varacca.
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1. Introduction

Domains are perhaps the most widely-used models of computational processes (cf. [2,4,24]). This is due to the remark-
ably simple basis for their structure – a partial order closed under directed suprema and supporting an approximation
relation – that allows an equally simple description of the relevant morphisms – maps that preserve the order and that also
preserve suprema of directed sets. There is a wealth of Cartesian closed categories of domains, the maximal ones of which
have been charted in the seminal work of Achim Jung [13]. The approach proposed by Moggi [21] in which computational
effects [11,22] such as continuations, nondeterminism, etc., should be modeled as monads has largely been successful, with
CCCs of domains demonstrating that various combinations of these monads all can be accommodated “under one roof”.

The singular exception to this program has been models of probabilistic choice. To be sure, there is a natural model for
probabilistic choice over a domain – the family of (Borel) probability measures over the domain is again a domain (cf. [23,
12]), where one uses the Scott topology to define the Borel sets, and uses the lattice of Scott-open sets to define the partial
order on probability measures. But this construct suffers from two flaws, one irreparable, and the other inscrutable:

• While the probabilistic power domain (as the family of probability measures over a domain is called) forms a monad
on the category of directed complete partial orders, there is no distributive law between this monad and any of the
three nondeterminism monads over domains (cf. [26]), so according to Beck’s Theorem [3] the composition of the
probabilistic power domain and any of the nondeterminism power domains will not be a monad. This means that one
must add new laws to form a monad when combining these two effect models, an approach that has been studied
in [18,16]. The result is a model in which the nondeterministic choice of processes p and q is generated by the set
http://dx.doi.org/10.1016/j.tcs.2014.03.008
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of probabilistic choices p +r q, for r ∈ [0,1] (where p +r q denotes choosing p with probability r and choosing q with
probability 1 − r, for 0 � r � 1).1

• Even though the probabilistic power domain leaves the CCC of directed complete posets (dcpos, for short) and Scott-
continuous maps invariant, there is no Cartesian closed category of domains – dcpos that satisfy the usual approxima-
tion assumption – that is known to be invariant under this construct. The best that is known is that the category of
coherent domains is invariant under the probabilistic choice monad [14], but this category is not Cartesian closed.

In response to the irreparable flaw that there is no distributive law between the probabilistic power domain and any of the
power domains for nondeterminism, Varacca and Winskel [26,27] explored weakening the laws of probabilistic choice, and
discovered three monads for probabilistic choice based on weakened laws – p � p +r p; p � p +r p; and last p and p +r p
are unrelated – which they called indexed valuation monads (because probability measures over domains can be viewed
equally as continuous valuations on the lattice of Scott-open subsets of the underlying domain). Moreover, each of these
monads enjoys a distributive law with respect to the monads for nondeterminism (at least over Set).

This author took this work a bit further, showing in [19] that one could use one of the indexed valuation models to
define a monad of finite random variables over either the domain RB or the domain FS, the latter of which is a maximal
CCC of domains, and both of which are closed under all three nondeterminism monads. More recently, Goubault-Larrecq
and Varacca proposed a monad of continuous random variables over the CCC of bounded complete domains [9]. Bounded
complete domains are more general forms of Scott domains, the category used by Dana Scott in devising the first model of
the untyped lambda calculus [24]. While BCD is a CCC, it is not closed under the convex power domain monad, and it also
is not a maximal CCC. The results of Goubault-Larrecq and Varacca inspired the work we report here.

1.1. The model of Goubault-Larrecq and Varacca

In a nutshell, the model of continuous random variables proposed by Goubault-Larrecq and Varacca is based on a simple
premise: By restricting probability measures to one particular domain C , and then modeling probabilistic choice on an
arbitrary domain D as the family of (Scott) continuous maps f : suppμ → D , where μ ∈ Prob(C) is a probability measure
on C , one could achieve a better behaved model for probabilistic choice. For C , they choose the Cantor tree, which is the
ideal completion of the rooted full binary tree. Then given a bounded complete domain D , they define

RV(D) = {
(μ, f )

∣∣ μ ∈ Prob(C) & f : suppμ → D Scott continuous
}
,

ordered by

(μ, f ) � (ν, g) iff πsupp μ(ν) = μ ∧ f ◦ πsupp μ � g.

They then restrict their attention to

ΘRV(D) = {
(μ, f )

∣∣ (μ, f ) ∈ RV(D) & suppμ a Lawson-compact antichain
}

in the inherited order. This is the family of continuous random variables over D . At the heart of the model is the family of
thin probability measures over C – those probability measures μ ∈ Prob(C) that are supported on Lawson-compact antichains
in C . This is the structure that we focus on in this paper. In another paper [17], we examine the rest of the construction of
continuous random variables over a bounded complete domain D .

1.2. Our contribution

In this and a succeeding paper [17], we elaborate the construction devised by Goubault-Larrecq and Varacca. For example,
the Cantor tree C is the order ideal completion of the full binary tree, from which it follows that Prob(C) is a bounded
complete domain (cf. [14]), but this is not the order that is used in ΘRV(D). Explaining this relies on a fundamental
example of probabilistic computation – the model of trace distributions generated by a probabilistic automaton. The order
induced from this model informs the order on ΘRV(D) for bounded complete domains D .

In their presentation, Goubault-Larrecq and Varacca first include all probability measures on the Cantor tree in their
construction, but then they impose the restriction that the only simple measures – affine combinations of finitely many
point masses – in ΘRV(D) are those supported on antichains. They then define ΘRV(D) to be the least subset of RV(D)

containing these measures in the first component, and also satisfying the property that ΘRV(D) is closed under directed
suprema; in effect, they give a basis for the allowable measures, and capture the rest by taking directed suprema.

Clarifying which probability measures qualify for the family of thin measures requires a completely different presentation
of ΘRV(D) from the one given in [9]. We show that their definition of thin measures is the same thing as defining thin
measures in the model to be those that are supported on Lawson closed antichains, but we need Stone duality to prove this

1 To be more precise, the angelic choice of p and q is the supremum of {p +r q | r ∈ [0,1]}, the demonic choice is the infimum of {p +r q | r ∈ [0,1]}, and
the convex choice of p and q is the closed, order-convex hull of {p +r q | r ∈ [0,1]}.
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result. Further, our results show that the order on the thin measures allows one to show all measures in the model have the
form πX (μ) where X ⊆ C is a Lawson-closed subset and μ is a probability measure that is supported on a Lawson-closed
subset of Max(C), the Cantor set which forms the set of maximal elements of C . To complete the picture, we justify this
order by showing it arises naturally on probabilistic automata.

Our results also are more general than those in [9], since ours hold for A∞ for an arbitrary finite alphabet A, whereas
they restrict themselves to the case A = {0,1}. Our hope is that this may allow researchers in modeling probabilistic process
calculi to use the model being devised here and in [17].

1.3. The plan of the paper

In the next section, we review some background material from domain theory and other areas we need. The latter in-
cludes a version of Stone duality and some results about the monad of probability measures on various categories, including
the category of compact Hausdorff spaces and continuous maps. Section 3 contains some technical results about Lawson-
compact antichains in A∞ for a finite alphabet A. A motivating example that informs the order we use to define our model
of thin probability measures occupies Section 4. This example is one of the most fundamental from computer science, that
of a (probabilistic) automaton: we show the natural order on the so-called trace distributions of a probabilistic automation
that reflects how the computation evolves over time is the same as the order on thin measures. The final Section 5 consti-
tutes the main part of the paper, where we develop the main results, which culminate in a proof that the thin measures
over A∞ form a bounded complete domain. In Section 6 we summarize our results and pose some questions for future
research, most of which will be addressed in the second paper in this series.

2. Background

In this section we present the background material we need for our main results.

2.1. Domains

Our results rely fundamentally on domain theory, an area that arose from Dana Scott’s models of the untyped lambda
calculus. Most of the results that we quote below can be found in [2] or [6]; we give specific references for those that are
not in these references.

To start, a poset is a partially ordered set. Antichains play a major role in our development: a subset A ⊆ P of a poset is
an antichain if any two distinct elements in A are incomparable in the order.

A poset is directed complete if each of its directed subsets has a least upper bound; here a subset S is directed if each
finite subset of S has an upper bound in S . A directed complete partial order is called a dcpo. The relevant maps between
dcpos are the monotone maps that also preserve suprema of directed sets; these maps are usually called Scott continuous.

These notions can be presented from a purely topological perspective: a subset U ⊆ P of a poset is Scott open if (i) U =
↑U ≡ {x ∈ P | (∃u ∈ U ) u � x} is an upper set, and (ii) if sup S ∈ U implies S ∩ U �= ∅ for each directed subset S ⊆ P . It
is routine to show that the family of Scott-open sets forms a topology on any poset; this topology satisfies ↓x ≡ {y ∈ P |
y � x} = {x} is the closure of a point, so the Scott topology is always T0, but it is T1 iff P is a flat poset. In any case,
a mapping between dcpos is Scott continuous in the order-theoretic sense iff it is continuous with respect to the Scott
topologies on its domain and range. We let DCPO denote the category of dcpos and Scott-continuous maps; DCPO is a
Cartesian closed category.

If P is a poset, and x, y ∈ P , then x approximates y iff for every directed set S ⊆ P , if sup S exists and if y � sup S , then
there is some s ∈ S with x � s. In this case, we write x � y and we let ↓↓y = {x ∈ P | x � y}. A basis for a poset P is a family
B ⊆ P satisfying ↓↓y ∩ B is directed and y = sup(↓↓y ∩ B) for each y ∈ P . A continuous poset is one that has a basis, and P is
a domain if P is a continuous dcpo. An element k ∈ P is compact iff x � x, and P is algebraic iff K P = {k ∈ P | k � k} forms
a basis. Domains are sober spaces in the Scott topology.

We let DOM denote the category of domains and Scott continuous maps; this is a full subcategory of DCPO, but it is not
Cartesian closed. Nevertheless, DOM has several Cartesian closed full subcategories. Two of particular interest to us are the
full subcategory SDOM of Scott domains, and BCD its continuous analog. Precisely, a Scott domain is an algebraic domain for
which K P is countable and that also satisfies the property that every non-empty subset of P has a greatest lower bound. An
equivalent statement to the last condition is that every subset of P with an upper bound has a least upper bound. A domain
is bounded complete iff it satisfies this last property that every non-empty subset has a greatest lower bound; BCD denotes
the category of bounded complete domains and Scott-continuous maps.

Example 2.1. A prototypical example of a bounded complete domain is the free monoid A∞ = A∗ ∪ Aω of finite and infinite
words over a finite alphabet A, where we use the prefix order on words: s � t ∈ A∞ iff (∃w ∈ A∞) sw = t . Two words
compare iff one is a prefix of the other, and the infimum of any set of words is their longest common prefix. As a domain,
K A∞ = A∗ , so A∞ is a Scott domain if A is finite.

Note that this same reasoning applies to any Scott-closed subset of A∞ – examples here are the traces from a finite state
automaton, where the “alphabet” is the product S × Act of the set of states and the set of actions.
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Domains also have a Hausdorff refinement of the Scott topology which will play a role in our work. The weak lower
topology on P has the sets of the form O = P \ ↑F as a basis, where F ⊂ P is a finite subset. The Lawson topology on a
domain P is the common refinement of the Scott and weak lower topologies on P . This topology has the family

{U \ ↑F | U Scott open & F ⊆ P finite}
as a basis. The Lawson topology on a domain is always Hausdorff.

A domain is coherent if its Lawson topology is compact. We denote the closure of a subset X ⊆ P of a coherent domain
in the Lawson topology by XΛ .

Example 2.2. A basic example of a coherent domain is A∞ for A finite. If P is an algebraic domain, then the family
{↑k \ ↑F | k ∈ K P & F ⊆ K P finite} is a base for the Lawson topology (cf. Exercise III-1.14 and proof in [6]), so this holds for
the case P = A∞ in particular. The fact that ↑k is clopen in the Lawson topology for each compact element k implies that
the Lawson topology on an algebraic domain is totally disconnected.

A non-algebraic example is the unit interval; here x � y iff x = 0 or x < y. The Scott topology on the [0,1] has basic
open sets [0,1] together with ↑↑x = (x,1] for x ∈ (0,1). Since DOM has finite products, [0,1]n is a domain in the product
order, where x � y iff xi � yi for each i; a basis of Scott-open sets is formed by the sets ↑↑x for x ∈ [0,1]n (this last is true
in any domain).

The Lawson topology on [0,1] has basic open sets (x,1] \ [y,1] for x < y – i.e., sets of the form (x, y) for x < y, which
is the usual topology. Thus, the Lawson topology on [0,1]n is the product topology from the usual topology on [0,1].

Since [0,1] has a least element, the same results apply for any power of [0,1], where x � y in [0,1] J iff x j = 0 for
almost all j ∈ J , and x j � y j for all j ∈ J . Thus, every power of [0,1] is a coherent domain.

While coherent domains having least elements are closed under arbitrary products, the category COH of coherent do-
mains and Scott continuous maps is not Cartesian closed. There is an inclusion of the category of coherent domains and
Lawson continuous monotone maps into the category of compact ordered spaces and continuous monotone maps that is ob-
tained by equipping coherent domains with the Lawson topology. In this case, the Lawson topology on the family of closed
subsets of the domain is the topology the family inherits from the Vietoris topology on the family of compact subsets of
the underlying space. For a compactum X , the Vietoris topology has a subbasis consisting of the sets �U = {C ⊆ X | C ⊆ U }
and �U = {C ⊆ X | C ∩ U �= ∅}; these correspond to the Scott-open and lower-open subsets in case X is a domain. This and
a related adjunction are detailed in Examples VI-3.8 and VI-3.10 of [6].

Finally, we need some results related to power domains, the convex power domain in particular. Details for the following
can be found in [20]. For a coherent domain D , the convex power domain consists of the family

PC (D) = {X ⊆ D | ∅ �= X = ↓X ∩ ↑X is Lawson closed}
under the Egli–Milner order:

X � Y iff X ⊆ ↓Y & Y ⊆ ↑X .

PC (D) is a coherent domain if D is one, and in this case,

X � Y iff (∃F ⊆ D finite) X � 〈F 〉 � Y & Y ⊆ ↑↑F = (↑F )◦, (1)

where 〈F 〉 = ↓F ∩ ↑F .

2.2. Stone duality

In modern parlance, Marshall Stone’s seminal result states that the category of Stone spaces – compact Hausdorff totally
disconnected spaces – and continuous maps is dually equivalent to the category of Boolean algebras and Boolean algebra
maps. The dual equivalence sends a Stone space to the Boolean algebra of its compact-open subsets; dually, a Boolean
algebra is sent to the set of prime ideals, endowed with the hull-kernel topology. This dual equivalence was used to great
effect by Abramsky [1] where he showed how to extract a logic from a domain constructed using Moggi’s monadic approach,
so that the logic was tailor made for the domain used to build it.

Our approach to Stone duality is somewhat unconventional, but one that also has been utilized in recent work by
Gehrke [7,8]. The idea is to realize a Stone space as a projective limit of finite spaces, a result which follows from Stone
duality, as we now demonstrate.

Theorem 2.3 (Stone Duality). Each Stone space X can be represented as a projective limit X � lim←−α∈A Xα , where Xα is a finite space.

In fact, each Xα is a partition of X into a finite cover by clopen subsets, and the projection X � Xα maps each point of X to the element
of Xα containing it.
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Proof. If X is a Stone space, then B(X), the family of compact-open subsets of X is a Boolean algebra. Clearly B(X) �
lim−→α∈ABα is the injective limit of its family {Bα | α ∈ A} of finite Boolean subalgebras. For a given α ∈ A, we let Xα denote

the finite set of atoms of Bα . Then Bα ↪→ B(X) implies Bα is a family of clopen subsets of X , and the set of atoms of
Bα are pairwise disjoint, and their sup – i.e., union – is all of X , so Xα forms a partition of X into clopen subsets. Thus
there is a continuous surmorphism X � Xα sending each element of X to the unique atom in Xα containing it. The family
{Bα | α ∈ A} is an injective system, since given Bα and Bβ , the Boolean subalgebra they generate is again finite. Dually the
family {Xα | α ∈ A} is a projective system, and since B(X) � lim−→α∈ABα , it follows that X � lim←−α∈A Xα . �

We note that a corollary of this result says that it is enough to have a basis for the family of finite Boolean subalgebras
of B(X) in order to realize X as a projective limit of finite spaces, where by a basis, we mean a directed family whose union
generates all of B(X). The following example illustrates this point.

Example 2.4. Let C denote the middle third Cantor set from the unit interval. This is a Stone space, and so it can be realized
as a projective limit of finite spaces C � lim←−α∈A Cα . But since C is second countable, we can define a countable family of

finite spaces Cn for which C � lim←− nCn . Indeed, we can use the construction of C from [0,1] to define these finite spaces:

• C0 = [0,1] is the entire space.
• C1 = {[0, 1

3 ], [ 2
3 ,1]} is the result of deleting the middle third from [0,1].

.

.

.

• Cn = {[0, 1
3n ], . . . , [ 3n−1

3n ,1]}.
.
.
.

Note that Cn has 2n elements – this is the “top down” approach to building C , as opposed the “bottom up” approach
obtained by viewing C as the set of maximal elements of the Cantor tree.

While the example considers the simplest non-degenerate case of a two-element alphabet {0,1} to produce the Cantor
tree, in fact the same argument applies to any finite alphabet A to show the set of infinite words over the alphabet is a
Stone space. In both instances, Stone duality shows that the “bottom-up” co-algebraic view of Aω as the colimit of the finite
sets An also can be realized by taking the (projective) limit of Ans. In categorical parlance, the approach via Stone duality
realizes Aω as an F -algebra, whereas the “bottom-up” approach realizes Aω as a (final) F -coalgebra, where F is the functor
that sends a space X to X ∪̇ · · · ∪̇ X , which takes the disjoint union of |A|-copies of X . We will make use of these ideas in
Section 3 which lay the basis for the main results of the paper.

2.3. The Prob monad on Comp and DCPO

It is well known that the family of probability measures on a compact Hausdorff space is the object level of a functor
which defines a monad on Comp, the category of compact Hausdorff spaces and continuous maps (Theorem 2.13 of [5]). As
outlined in [10], this monad gives rise to several related monads:

• On Comp, it associates to a compact Hausdorff space X the free barycentric algebra over X , the name deriving from the
counit ε : Prob(S) → S which assigns to each measure μ on a probabilistic algebra S its barycenter ε(μ) (cf. Theorem 5.3
of [15], which references [25]).

• A compact affine monoid is a compact monoid S for which there also is a continuous mapping · : [0,1] × S × S → S
satisfying the property that translations by elements of S are affine maps (cf. Section 1.1ff. of [10]). On the category
CompMon of compact monoids and continuous monoid homomorphisms, Prob gives rise to a monad that assigns to a
compact monoid S the free compact affine monoid over S (cf. Corollary 7.4 of [10]).

• On the category CompGrp of compact groups and continuous homomorphisms, Prob assigns to a compact group G the
free compact affine monoid over G; in this case the right adjoint sends a compact affine monoid to its group of units,
as opposed to the inclusion functor, which is the right adjoint in the first two cases (cf. Theorem 7.5 of [10]).

As we have already commented, Prob also defines a monad on DCPO. In this case, probability measures are viewed as
valuations: maps from the lattice of Scott-open sets of the dcpo into the non-negative reals, and the order is then pointwise:
μ� ν iff μ(U ) � ν(U ) (∀U Scott open).

Remark 2.5. Theorem 2.3 gives a powerful tool for the constructions we will devise in Sections 3 and 5. Theorem 2.3 shows
that any Stone space arises as an inverse limit of finite spaces, which allows us to conclude that Aω is a Stone space,
and to apply the constructions in Section 3 to A∞ and its approximation via finite sets. We will see that some standard
domain-theoretic arguments then show that the family of probability measures supported on a Lawson-closed antichain X
in A∞ can be written as the inverse limit of the measures supported on finite subsets πn(X) (cf. Theorem 3.7); this follows
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by showing that X = supn πn(X) and the fact (quoted from [20]) that the Lawson topology on the family of antichains is
the same as the Vietoris topology, which coincides with the topology used to form the inverse limit.

3. Lawson compact antichains in A∞

We now develop some results about Lawson-closed sets and Lawson-closed antichains in coherent domains. We then
use these results to show the family of Lawson-closed antichains in A∞ is a Scott domain for a finite alphabet A, and this
in turn is used in developing the model of thin measures over A∞ .

Lemma 3.1. Let A be a finite alphabet. If X ⊆ A∞ is a Lawson-compact subset, then ↓X is Scott closed. Moreover there is a canonical
map π↓X : A∞ → ↓X that is both Scott- and Lawson continuous.

Proof. The first claim is a corollary of Lemma 6.6.20 of [2], but we include a proof for completeness sake. By definition,
↓X = {y ∈ D | (∃x ∈ X)y � x} is a lower set, so we only need to show ↓X is closed under directed suprema. If S ⊆ ↓X is a
directed set, then ↑s ∩ X �= ∅ for each s ∈ S . Moreover, the set ↑s ∩ X is closed in X , so {↑s ∩ X | s ∈ S} is a filterbasis of
nonempty closed subsets of the compact space X , so the intersection is nonempty. If x ∈ ⋂

s∈S (↑s ∩ X), then clearly s � x
for all s ∈ S , so sup S � x; i.e., sup S ∈ ↓X .

We next show the mapping πC : A∞ → C is Scott- and Lawson continuous for each Scott-closed subset C ⊆ A∞: Indeed,
since C is Scott closed, each s ∈ A∞ has a longest prefix in C , which means πC is well-defined. The map is clearly monotone,
so if S ⊆ A∞ is directed, then πC (sup S) � supπC (S). Conversely, if supπC (S) ∈ Aω , then supπC (S) = sup S since Aω

consists of maximal elements. On the other hand, if supπC (S) ∈ A∗ , then supπC (S) = πC (s) for some s ∈ S , and then
πC (s′) = πC (s) for all s′ � s, whence πC (sup S) = πC (s) as well. Thus πC is Scott continuous.

Since we have just shown that πC is Scott continuous, the proof that πC is Lawson continuous is complete if we show
π−1

C (↑C x) = ↑F for some finite F ⊆ A∞ , for each x ∈ C . But π−1
C (↑C x) = ↑A∞ x.

The first part shows that ↓X is Scott closed if X is Lawson compact, so π↓X is Scott- and Lawson continuous. �
Corollary 3.2. Let A be a finite alphabet. If X ⊆ A∞ is a Lawson-compact antichain, then there is a Lawson compact subset Y ⊆ Aω

(which is necessarily an antichain) for which π↓X (Y ) = X.

Proof. Of course, Aω = ⋂
n ↑An is the intersection of a filterbasis of Scott-compact saturated sets, each of which is therefore

also Lawson compact, so their intersection is as well.
Since π↓X is Lawson continuous, π−1

↓X (X) ⊆ A∞ is Lawson closed, and so the same is true of Y = π−1
↓X (X) ∩ Aω . Now, for

any word x ∈ X , there is an infinite word x′ ∈ Aω satisfying π↓X (x′) = x, and so π↓X (Aω) ⊇ X . Thus π↓X (Y ) = X . �
For the following, we let

AC
(

A∞) = {
X ⊆ A∞ ∣∣ ∅ �= X = XΛ is an antichain

}
denote the family of non-empty Lawson-closed antichain in A∞ , endowed with the Egli–Milner order inherited from
PC (A∞).

Lemma 3.3. AC(A∞) is a dcpo. In fact, if {Xi}i∈I ⊆ AC(A∞) is a directed family of Lawson-compact antichains in the A∞ , then
supi Xi = ⋂

i(Y ∩ ↑Xi), where Y = ⋃
i ↓Xi

σ be the Scott-closure of the union of the lower sets of the Xi ’s.

Proof. Before we begin the proof, we note that we are assuming that the directed family {Xi}i∈I satisfies the property that
I is directed and that the mapping i �→ Xi is monotone.

If we define Z ≡ ⋂
i(Y ∩ ↑Xi), where Y = ⋃

i ↓Xi
σ , then Z = supPC (A∞) Xi by Proposition 4.45 of [20]. To conclude the

proof, we show Z ∈ AC(A∞).
Suppose that x, y ∈ A∞ with y < x. Then y ∈ K A∞ , so ↑y is Scott open. If x ∈ Z , then Proposition 4.47 of [20] implies

that limi Xi = Z , where the limit is taken in the Lawson topology on PC (A∞), which is the Vietoris topology from the
Lawson topology on A∞ . Thus, Xi ∈ �↑y, or equivalently y ∈ ↓Xi , for residually many i.

If y ∈ Z also holds, then y ∈ ↑Xi for residually many i, by definition of Z . So y ∈ ↑Xi ∩ ↓Xi = Xi for residually many i.
Now since y < x, there is some z ∈ A∗ with y < z � x, which implies ↑z is Scott open. Then y < z implies z ∈ ↑Xi ,

since y ∈ Xi , for residually many i. On the other hand x ∈ ↑↑z and x ∈ Z implies z ∈ ↓Xi for residually many i, just as in the
case of y. So z ∈ ↑Xi ∩ ↓Xi = Xi for residually many i. But then we have y < z and y, z ∈ Xi for residually many i, which
contradicts Xi being an antichain.

We conclude that at most one of x and y is in Z = sup Xi . This shows Z ∈ AC(A∞), so AC(A∞) is a subdcpo
of PC (A∞). �
Proposition 3.4. Let A be a finite alphabet. Then X ⊆ A∞ is Scott closed iff Max X is Lawson closed and X = ↓(Max X).
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Proof. We showed in Lemma 3.1 that Max X Lawson closed implies ↓Max X = X is Scott closed. Conversely, suppose that X
is Scott closed. Then ↓Max X = X by Zorn’s Lemma. So we only need to show that Max X is Lawson closed. Since X is
Scott closed, it also is Lawson closed, so Max XΛ ⊆ X . Let y ∈ Max XΛ . If y ∈ X ∩ Aω , then y ∈ Max A∞ , so y ∈ Max X . On
the other hand, if y ∈ X ∩ A∗ , then y ∈ K A∞ , and since A is finite, we have {y} = ↑y \ ↑{ya | a ∈ A} is Lawson open. So,
y ∈ Max XΛ implies Max X ∩ {y} �= ∅, so y ∈ Max X . Thus Max XΛ ⊆ Max X , so they are equal. �
Corollary 3.5. If A is a finite alphabet, then for all X, Y ∈ AC(A∞), if X and Y have an upper bound in AC(A∞), then X ∨ Y =
Max(X ∪ Y ).

Proof. Since X and Y are Lawson-closed antichains, the proposition implies ↓X and ↓Y are Scott-closed sets, so the same
is true of ↓(X ∪ Y ) = ↓X ∪ ↓Y . Then Max ↓(X ∪ Y ) = Max(X ∪ Y ) is also a Lawson-closed antichain.

If X, Y � Z ∈ AC(A∞), then ↓(X ∪ Y ) ⊆ ↓Z , and this implies Max(X ∪ Y ) � Z . So we only have to show that Max(X ∪ Y )

is an upper bound for X and Y in AC(A∞).
It is clear that X, Y ⊆ ↓Max(X ∪ Y ), so we only need to show that Max(X ∪ Y ) ⊆ ↑X ∩ ↑Y . Let m ∈ Max(X ∪ Y ). If

m ∈ X , then clearly m ∈ ↑X . And if m /∈ ↑X , then m ∈ Y ∩ Max(X ∪ Y ). Now m ∈ ↓Z , so there is some z ∈ Z with m � z,
and then X � Z implies there is some x ∈ X with x � z. Then m and x are prefixes of z, so they must compare. But
m � x is impossible, since X is an antichain would then imply m ∈ X . Hence x � m. This shows Y ∩ Max(X ∪ Y ) ⊆ ↑X , so
Max(X ∪ Y ) ⊆ ↑X . The argument for Y is similar, so Max(X ∪ Y ) is an upper bound for the pair {X, Y }, which completes
the proof that Max (X ∪ Y ) = X ∨ Y . �
Theorem 3.6. Let A be a finite alphabet and consider the domain A∞ in the prefix order, and let (AC(A∞),�) denote the family of
Lawson-compact antichains in A∞ endowed with the Egli–Milner order. Then AC(A∞) is a subdomain of PC (A∞) that also is a Scott
domain, and K AC(A∞) = {F ⊆ K (A∞) | F a finite antichain}.

Proof. Lemma 3.3 shows that AC(A∞) is a dcpo. To show AC(A∞) is an algebraic domain, we first show that given X ∈
AC(A∞) and a finite set F satisfying 〈F 〉 � X , there is a finite antichain G ⊆ 〈F 〉 consisting of compact elements from A∞
with G = 〈G〉 � X :

Indeed, Eq. (1) implies 〈F 〉 � X iff F ⊆ ↓X and X ⊆ ↑↑F , which in turn implies that X ⊆ ↑(F ∩ K A∞) since K A∞ is
a lower set. We can then select a subset G0 ⊆ F ∩ K A∞ with X ⊆ ↑G0 and G0 ⊆ ↓X . From this subset G0 we can then
select an antichain G as desired, and then G = 〈G〉 and G � X .

Next, given two finite antichains F , G � X , Corollary 3.5 implies F ∨ G = Max(F ∪ G), which clearly is in AC(A∗), and
obviously F ∨ G � X by the observations above.

Finally, AC(A∞) ⊆PC (A∞) and the latter is a domain, so the results just shown imply that

X = sup
{

F
∣∣ ∅ �= F ⊆ K A∞ a finite antichain & F � X

}
.

Thus {F ∈ AC(A∗) | F � X} is directed and its supremum is X , so K AC(A∞) = {F | F ⊆ A∗ a finite antichain} is a basis for
AC(A∞), which proves AC(A∞) is algebraic.

Since Corollary 3.5 shows AC(A∞) is closed under sups of bounded pairs, AC(A∞) is bounded complete, and since A is
finite, K AC(A∞) is countable, so AC(A∞) is in fact a Scott domain. �

The proof of Lemma 3.3 relies on some results from [20]: Proposition 4.47 of [20] implies that the Lawson topology on
PC (A∞) is the same as the topology PC (A∞) inherits from the Vietoris topology on the family of compact subsets of A∞ ,
when A∞ is endowed with the Lawson topology. Since PC (A∞) is coherent if D is, directed sets in PC (A∞) converge to
their suprema in the Lawson topology. This applies in particular to a directed family of Lawson compact antichains, which
we showed is closed under directed suprema in PC (A∞) for A finite. These results can be applied further to deduce the
following.

Theorem 3.7. Let A be a finite set, and for each n, let πn : A∞ → A�n ≡ {s ∈ A∗ | |s| � n} be the projection onto the set of words of
length at most n. Then πn is continuous for each n, where we endow A∞ and A�n with either the Scott or Lawson topologies. Moreover,

1. Each Lawson-compact antichain X ⊆ A∞ satisfies {πn(X)}n is a directed family of finite antichains satisfying supn πn(X) = X.
2. Conversely, each directed family of finite antichains Fn ⊆ A�n satisfies supn Fn = X is a Lawson-compact antichain in A∞ satis-

fying πn(X) = Fn for each n.

Proof. That πn is Scott- and Lawson continuous follows from Lemma 3.1 by observing that A�n = ↓An is a Scott-closed set.
For (i), we first note that for a word s ∈ A�n and any word t ∈ A∞ , πn(t) = s implies s � t; in fact, s � t iff π|s|(t) = s.

From this it follows that if X is an antichain, then any two words s, t ∈ X are incomparable, so for each n, πn(s) = πn(t) or
else πn(s) and πn(t) are incomparable. Hence πn(X) is an antichain for each n, and since A�n is finite, so is πn(X). If m � n,
there is a projection πmn : A�n → A�m which satisfies πm = πmn ◦πn . It follows that {πn(X)}n is a directed family satisfying
πn(X)� X for each n. In fact supn πn(X) = X since each word w ∈ A∞ satisfies w = supn πn(w). This proves part (i).
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For part (ii), if {Fn}n is a directed sequence of finite antichains with Fn ⊆ A�n for each n, then supn Fn exists and is an
antichain by Theorem 3.6. The arguments in the previous part apply again to show that πm(sup Fn) = Fm for each m. �
Remark 3.8. The gist of the last few results is that Lawson-closed antichains in A∞ are closed under directed suprema,
and that each can be approximated by its projections to the family {A�n | n � 0}. The last result shows further that every
Lawson-closed antichain is the projection of a Lawson-closed subset of A∞ , thus accounting for all such antichains.

Our interest in Lawson-closed antichains will become clear in our construction of the model of thin measures over A∞
– as we shall see, they form the (Lawson) support of such measures.

4. A motivating example

In this section we present an example that provides motivation for how we define the order on the thin measures over
A∞ . The example is one of the most fundamental for computer science – that of a (probabilistic) automaton.

Definition 4.1. A probabilistic automaton is a tuple (S, A,q0, D) where S is a finite set of states, A a finite set of actions,
q0 ∈ S a start state, and D ⊆ S × Prob(A × S) a transition relation that assigns to each state s0 a probability distribution∑

A×S r(s0,(a,s))δ(a,s) on A × S .

Remark 4.2. This is a very restrictive notion of a probabilistic automaton, but it suffices for our purposes. More general
notions include transition relations D that are truly relational, rather than being functional, as our definition requires. There
also is a dichotomy of such automata into generative and reactive automata, which we are eliding. But, our goal simply is
to provide a motivating example for the order on probability measures we define later, and this is accomplished most easily
without the distractions of the many possible nuances of the large variety of probabilistic automata in the literature.

If we start such an automaton in its start state – which amounts to assigning it the starting distribution δq0 , and follow
the automaton as it evolves, then we see a sequence of global trace distributions that describe the step-by-step evolution of
the automaton:

1. δq0 ,
2.

∑
(a1,s1)∈A×S r(q0,(a1,s1))δq0a1s1 ,

3.
∑

(a1,s1)∈A×S r(q0,(a1,s1))(
∑

(a2,s2)∈A×S r(s1,(a2,s2))δq0a1s1a2s2 ),
.
.
.

If we strip away the probabilities, we have a nondeterministic finite state automaton (albeit one without final states), and
the resulting automaton generates a language that is a subset of (S × A)∞ . This automaton generates the sequence

{q0}, {q0s1a1 | r(q0,(s1,a1)) �= 0}, {q0s1a1s2a2 | r(q0,(s1,a1)) �= 0 �= r(s1,(a2,s2))}, . . . .
Note that the sequence of sets of states this automaton generates is a family of finite antichains, which we showed in
Section 2 is a Scott subdomain of PC ((S × A)∞) under the Egli–Milner order. Moreover, the projections πmn : (S × A)�n →
(S × A)�m for m � n map the antichain of possible states at the nth stage to those at the mth stage, by truncation.

Since Prob is a monad on Comp, the mappings πmn lift to mappings Prob(πmn) : Prob((S × A)�n) → Prob((S ×
A)�m). Using the mappings πmm+1, we see that each succeeding distribution is projected onto the previous distri-
bution. For example, the second distribution

∑
(a1,s1)∈A×S r(q0,(a1,s1))δq0a1s1 collapses to δq0 , and the third distribution∑

(a1,s1)∈A×S r(q0,(a1,s1))(
∑

(a2,s2)∈A×S r(s1,(a2,s2))δq0a1s1a2s2 ) collapses to the second. Thus, Prob lifts the order on AC((S × A)∞)

to Prob(AC((S × A)∞)), and it is this order we will use in defining the order on the family of thin probability measures
(and eventually on the domain of continuous random variables over a bounded complete domain). Our next goal is to make
this observation precise.

Remark 4.3. We thank one of the anonymous referees for pointing out that a similar example is given in [27].

5. A bounded complete domain of measures

In this section we develop the main results of the paper, which are a detailed examination of the order used by Goubault-
Larrecq and Varacca on the thin probability measures that are used in their model of continuous random variables over a
bounded complete domain. Their presentation only sketches their model, and here we have more space to develop the
ideas in depth. Throughout this section we assume that the alphabet A which we use to form A∞ is finite. We begin with
a fundamental notion for our approach.
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Definition 5.1. If Y is a compact Hausdorff space, X ⊆ Y is a compact subspace of Y and μ ∈ Prob(Y ), then we say μ has
full support on X if suppμ = X .2 We denote by Prob†(X) the family of μ ∈ Prob(Y ) having full support on X .

Definition 5.2. For a finite alphabet A, we define

ΘProb
(

A∞) ≡
( ⊕

X∈AC(A∞)

Prob†(X),�
)

to be the direct sum of the family of probability measures in Prob†(X) as X ranges over AC(A∞), ordered by μ � ν
iff π↓(supp μ)(ν) = μ. These are the thin probability measures on A∞ , those that are fully supported on Lawson-closed an-
tichains in A∞ .

The next series of results are about the structure of ΘProb(A∞). We begin with a simple result about mapping supports
of measures.

Lemma 5.3. If f : X → Y is a continuous map between compacta, then f (μ) = ν implies f (suppμ) = suppν .

Proof. Indeed, f (suppμ) is a compact, hence closed subset of Y . Let C = suppν ∪ f (suppμ). If y ∈ suppν  f (suppμ)

(the symmetric difference), then there is an open set U containing y and satisfying U ∩ C ⊆ suppν \ supp f (μ) or U ∩ C ⊆
f (suppμ)\ suppν . This means either ν(U ) > 0 and f (μ)(U ) = 0, or ν(U ) = 0 and f (μ)(U ) > 0. In either case, we conclude
f (μ) �= ν if f (suppμ) �= suppν . �
Lemma 5.4. If A is a finite alphabet, then the mapping supp :ΘProb(A∞) → AC(A∞) sending each measure μ to its support in the
Lawson topology is monotone.

Proof. The mapping μ �→ suppμ clearly is well-defined and assigns to each measure a Lawson-closed antichain in AC(A∞),
by definition of ΘProb(A∞).

If μ� ν , then πsupp μ(ν) = μ, and it follows that πsupp μ(suppν) = suppμ by Lemma 5.3. This in turn implies suppμ�
suppν in AC(A∞), so the support map is monotone. �
Proposition 5.5. If A is a finite alphabet, then the family (ΘProb(A∞),�) is a dcpo.

Proof. Recall that μ � ν iff π↓(supp μ)(ν) = μ. It is clear that this relation is reflexive. The relation also is antisymmetric:
Indeed, if μ� ν �μ, then π↓(supp μ)(ν) = μ and π↓(supp ν)(μ) = ν . Then Lemma 5.3 implies that π↓(supp μ)(suppν) = suppμ
and π↓(supp ν)(suppμ) = suppν . But the mappings π↓(supp μ) and π↓(supp ν) are projections, and their composition in either
order must be the identity on suppμ and suppν , respectively. This implies suppμ = suppν , and then both projections are
the identity map on Prob†(suppμ). Hence μ = ν .

For transitivity, suppose that μ � ν � ρ . Then π↓(supp μ)(ν) = μ and π↓(supp ν)(ρ) = ν . Again, Lemma 5.3 implies
π↓ supp μ(suppν) = suppμ and π↓ supp ν(suppρ) = suppν . But suppμ, suppν and suppρ are Lawson-compact antichains,
and π↓ supp μ(suppν) = suppμ is equivalent to suppμ � suppν in AC(A∞). Likewise suppν � suppρ , and so suppμ �
suppρ , which implies π↓ supp μ(suppρ) = suppμ. Recalling that Prob(π↓ supp μ)(ν) = π↓ supp μ(ν) and applying the functori-
ality of Prob shows π↓ supp μ(ρ) = (π↓ supp μ ◦ π↓ supp ν)(ρ) = μ, so the relation is transitive.

This shows (ΘProb(A∞),�) is a partial order. To show it is a dcpo, let {μi}i∈I is a directed family in ΘProb(A∞). Then
Prob(A∞) is a dcpo, so there is a μ ∈ Prob(A∞) with μ = supi μi . To complete the proof, we must show that suppμ ∈
AC(A∞), and for that we apply Lemma 3.3. Indeed, Lemma 5.4 implies ν �→ suppν is a monotone map, so {suppμi}ı∈I ⊆
AC(A∞) is directed and then Lemma 3.3 implies supi suppμi = ⋂

i(Y ∩ ↑ suppμi) ∈ AC(A∞), where Y = ⋃
i ↓ suppμi

σ is
the Scott-closed set generated by {suppμi}i . Now Y is Scott closed and suppμi ⊆ Y for each i, so μi(A∞ \ Y ) = 0 for each i,
from which it follows that μ(A∞ \ Y ) = 0. This implies suppμ ⊆ Y .

Further, given i ∈ I , if j � i, then suppμ j ⊆ Y ∩ ↑(suppμi) ⊆ ↑ suppμi , so μ j(U ) = 1 for each Scott-open subset U
containing suppμi . Since μ = sup j�i μ j , it follows that μ(U ) = 1 as well, and since U is arbitrary we conclude that
suppμ ⊆ ↑ suppμi . Now i is arbitrary, which means suppμ ⊆ ⋂

i ↑ suppμi .
Thus suppμ ⊆ ⋂

i(Y ∩ ↑(suppμi)) = supi suppμi , where the supremum is taken in AC(A∞). Then Lemma 3.3 implies
supi suppμi is an antichain, so the same is true of suppμ, and so suppμ ∈ AC(A∞). Thus μ = supi μi ∈ ΘProb(A∞), so
ΘProb(A∞) is a dcpo. �
Proposition 5.6. If A is a finite alphabet, then the mapping supp :ΘProb(A∞) → AC(A∞) sending each measure μ to its support in
the Lawson topology is Scott continuous.

2 Recall that suppμ is the smallest closed set who complement has μ-measure 0.
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Proof. We showed in Lemma 5.4 that the mapping is well-defined and monotone.
If {μi}i∈I ⊆ ΘProb(A∞) is a directed family, then the previous proposition implies there is μ ∈ ΘRV(A∞) with

supi μi = μ. Moreover, as in its proof, Y = supi suppμi satisfies suppμ ⊆ Y .

Claim: suppμ = Y .

To start, note that Proposition 4.47 of [20] implies the Lawson topology on PC (A∞) is the same as the Vietoris topology.
So, if y ∈ Y , then there is a net {xk}k∈K ⊆ ⋃

i suppμi with limk xk = y in the Lawson topology. But ↓ suppμ is Scott-, hence
Lawson closed, and for each k, xk ∈ ↓ suppμ because πsupp μi (suppμ) = suppμi for each i ∈ I . Since suppμ is compact,
there is some z ∈ suppμ with y � z. But Y is an antichain and suppμ ⊆ Y , so y ∈ Y , so y = z ∈ suppμ. This proves the
claim.

The claim implies that suppμ = Y = supi∈I suppμi ∈ AC(A∞). So supp is Scott continuous. �
Proposition 5.7. If A is a finite alphabet, and if μ ∈ ΘProb(A∞) and F ⊆ A∗ is a finite antichain with πF (suppμ) = F , then
πF (μ) � μ in ΘProb(A∞).

Proof. If F ⊆ A∗ is a finite antichain with πF (suppμ) = F , then we know from Theorem 3.6 that F � suppμ in
AC(A∞). Now, suppose S ⊆ ΘProb(A∞) is directed with μ = sup S . Then suppμ = supσ∈S suppσ by Proposition 5.6, and
πF (suppμ) = F implies suppμ ⊆ ↑↑F . Since ↑↑F is Scott open, (∃σ0 ∈ S) suppσ ⊆ ↑↑F for σ0 � σ .

We next show that F ⊂ ↓ suppσ for residually many σ ∈ S .3 To start, let x ∈ F and consider U = ↑x. Since F ⊆ A∗ is
an antichain, U is a Scott-open set containing only x from F . Since πF (suppμ) = F , (∃y ∈ suppμ)πF (y) = x ∈ U , so y ∈ U .
But limσ∈S suppσ = suppμ then implies suppσ ∩ U �= ∅ for residually many σ ∈ S .4 For these σ , we have x ∈ πF (suppσ).
Iterating this process for the finitely many elements of F implies πF (suppσ) = F , so F ⊆ ↓ suppσ for residually many
σ ∈ S , as we wanted.

The last two results imply that F � suppσ in AC(A∞) for residually many σ ∈ S . To complete the proof, we note that
F � suppσ implies πF (suppσ) = F , and then

πF (σ ) = πF
(
πsupp σ (μ)

) = πF ◦ πsupp σ (μ) = πF (μ)

which implies πF (μ) � σ for residually many σ ∈ S . This implies πF (μ) � μ. �
The main result of the paper is the following:

Theorem 5.8. If A is a finite alphabet, then ΘProb(A∞) is a bounded complete algebraic domain.

Proof. If μ ∈ ΘProb(A∞), then Proposition 5.7 implies that πF (μ) � μ for each finite antichain F ⊆ A∗ satisfying F �
suppμ. According to Theorem 3.6, AC(A∞) is a bounded complete algebraic domain in which F ∨ G = Max(F ∪ G) for any
pair F , G ∈ AC(A∗) of finite antichains with an upper bound. Given F , G � suppμ, we now show how to form πF (μ) ∨
πG(μ) using this result.

In fact, Max(F ∪ G) = F ∨ G in AC(A∞) by the result just cited. Since F and G are finite we can write πF (μ) = ∑
a∈F raδa

and πG(μ) = ∑
b∈G sbδb , where

∑
a∈F ra = 1 = ∑

b∈G sb . If ν ∈ ΘProb(A∞) satisfies πF (μ),πG(μ) � ν , then πF (ν) = πF (μ)

and πG(ν) = πG(μ). Hence πF (ν) = ∑
a∈F raδa and πG(ν) = ∑

b∈G sbδb . If we define H ≡ Max(F ∪ G) and let H F = H ∩ F
and HG = H ∩ G , then by Corollary 3.5, F , G � suppμ implies that

(∀a ∈ F \ H)(∃b ∈ HG)a � b and (∀b ∈ G \ H)(∃a ∈ H F )b � a.

Now, for a ∈ F \ H , we let HG(a) = ↑a ∩ HG , and we note that each b ∈ HG can belong to HG(a) for at most one a ∈ F \ H
since A∗ is a tree and F is an antichain. Similarly, for b ∈ G \ H , we let H F (b) = ↑b ∩ H F .

Next, H is finite, so πH (μ) is a simple measure, which means

πH (μ) =
∑
x∈H

txδx =
∑

a∈H F

raδa +
∑

b∈HG\F

sbδb,

where HG \ F in the second summand avoids double-counting F ∩ G . Since F � H , we have πF = πF ◦ πH , so we conclude
that

∑
a∈F

raδa = πF (μ) = πF ◦ πH (μ)

3 That is, (∃σ0 ∈ S)σ � σ0 ⇒ F ⊆ ↓ suppσ .
4 Recall that �U = {C | C ∩ U �= ∅} is open in the Vietoris, hence also the Lawson topology.
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= πF

( ∑
a∈H F

raδa +
∑

b∈HG \F

sbδb

)

= πF

( ∑
a∈H F

raδa

)
+ πF

( ∑
b∈HG\F

sbδb

)

=
∑
a∈F

raδa + πF

( ∑
b∈HG \F

sbδb

)

=
∑
a∈F

raδa +
∑

b∈HG \F

sbδπF (b)

=
∑
a∈F

raδa +
∑

a∈F\H

( ∑
b∈HG (a)

sbδa

)
,

where the second line follows because πF is a convex map, and the third because πF is a projection. From this, we conclude
that

(∀a ∈ F \ H) ra =
∑

b∈HG (a)

sb and similarly (∀b ∈ G \ H) sb =
∑

a∈H F (b)

ra.

Since πF (ν) = πF (μ) = ∑
a∈F raδa and πG(ν) = πG(μ) = ∑

b∈G sbδb , we can write

πF (ν) =
∑

a∈H F

raδa +
∑

a∈F\H

raδa and πG(ν) =
∑

b∈HG\F

sbδb +
∑

b∈G∩F

sbδb +
∑

b∈G\H

sbδb.

Since F , G � suppν it follows that H � suppν . Then H = H F
·∪ HG \ F , which implies

πH (ν) =
∑

a∈H F

raδa +
∑

b∈HG \F

sbδb = πH (μ)

so πH (μ) � ν . This shows πH (μ) = πF (μ) ∨ πG(μ), which proves the result. �
6. Summary and future work

In this paper we have used domain theory and Stone duality, as well as other components, to give a detailed con-
struction of the bounded complete domain of thin probability measures on A∞ for a finite alphabet A. This family plays
a fundamental role in the domain of continuous random variables over a bounded complete domain, a construction pro-
posed by Goubault-Larrecq and Varacca in [9]. Applying the results we presented here to complete the reconstruction of
Goubault-Larrecq’s and Varacca’s model is the focus of the second paper in this series [17].

Our reconstruction of the thin probability measures over A∞ relies on the Lawson-closed antichains in A∞ . Our main
result is that the family is a bounded complete algebraic domain. While our results require some technical development,
the proofs are fairly straightforward, relying on domain theory to single out the compact elements in the model, and using
them to prove the order is bounded complete. We also clarified how the order on the thin measures is motivated by the
example of trace distributions of a probabilistic automaton.

In addition to completing this line of work elaborating the random variables of Goubault-Larrecq and Varacca, we are also
interested in applying these constructions for other applications. We believe the thin probability measures could be useful to
model probabilistic automata. We also believe the construction could be used to move from finite and totally disconnected
state spaces (e.g., ones that are Stone spaces) to continuous state spaces, including for example the unit interval. Exploring
this line will require understanding the mapping from the Cantor set onto the interval, for example.
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