
Theoretical Computer Science 452 (2012) 88–99

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

The checkpoint problem✩

MohammadTaghi Hajiaghayi a, Rohit Khandekar b, Guy Kortsarz c,∗, Julián Mestre d

a University of Maryland, College Park & AT&T Labs – Research, United States
b IBM T.J. Watson Research Center, United States
c Rutgers University-Camden, United States
d The University of Sydney, Australia

a r t i c l e i n f o

Article history:
Received 9 August 2011
Received in revised form 20 March 2012
Accepted 15 May 2012
Communicated by R. Klasing

Keywords:
Cuts
Checkpoint
Algorithms
Approximation

a b s t r a c t

In this paper, we consider the checkpoint problem. The input consists of an undirected
graph G, a set of source–destination pairs {(s1, t1), (s2, t2), . . . , (sk, tk)}, and a collection
P of paths connecting the (si, ti) pairs. A feasible solution is a multicut E ′, namely, a
set of edges whose removal disconnects every source–destination pair. For each p ∈
P we define cpE′ (p) = |p ∩ E ′|. In the sum checkpoint (SCP) problem the goal is to
minimize

p∈P cpE′ (p), while in the maximum checkpoint (MCP) problem the goal is to

minimize maxp∈P cpE′ (p). These problems have several natural applications, e.g., in urban
transportation and network security. In a sense, they combine themulticut problem and the
minimum membership set cover problem.

For the sum objective we show that weighted SCP is equivalent, with respect to
approximability, to undirected multicut. Thus there exists an O(log n) approximation for
SCP in general graphs.

Our current approximability results for the max objective have a wide gap: we provide
an approximation factor of O

√
n log n/opt

for MCP and a hardness of 2 under the

assumption P ≠ NP. The hardness holds for trees. This solves an open problem of
Nelson (2009) [25]. We complement the lower bound by an almost matching upper
bound with an asymptotic approximation factor of 2. On trees with all si, ti having
an ancestor–descendant relation, we give a combinatorial exact algorithm. Besides the
algorithm being combinatorial, its running time improves by many orders of magnitude
the LP algorithm that follows from total unimodularity.

Finally, we show strong hardness for the well-known problem of finding a path with
minimum forbidden pairs, which in a sense can be considered the dual to the checkpoint
problem. Despite various works on this problem, hardness of approximation was not
known prior to this work. We show that the problem cannot be approximated within c n
for some constant c > 0, unless P = NP. This is the strongest type of hardness possible.
It carries over to directed acyclic graphs and is a huge improvement over the plain NP-
hardness of Gabow [H.N. Gabow, Finding paths and cycles of superpolylogarithmic length,
SIAM J. Comput. 36 (6) (2007) 1648–1671].

© 2012 Elsevier B.V. All rights reserved.

✩ A preliminary version of this paper appeared in the Proceedings of the 13th International. Workshop on Approximation Algorithms for Combinatorial
Optimization Problems – APPROX 2010.
∗ Corresponding author. Tel.: +1 8562256678.

E-mail addresses: hajiagha@cs.umd.edu (M. Hajiaghayi), rohitk@us.ibm.com (R. Khandekar), guyk@camden.rutgers.edu (G. Kortsarz),
mestre@it.usyd.edu.au (J. Mestre).

0304-3975/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2012.05.021

http://dx.doi.org/10.1016/j.tcs.2012.05.021
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:hajiagha@cs.umd.edu
mailto:rohitk@us.ibm.com
mailto:guyk@camden.rutgers.edu
mailto:mestre@it.usyd.edu.au
http://dx.doi.org/10.1016/j.tcs.2012.05.021

M. Hajiaghayi et al. / Theoretical Computer Science 452 (2012) 88–99 89

1. Introduction

Inmany countries, trains and urban transport operate largely on the honor systemwith enforcement by roving inspectors
or conductors. The typical transaction consists of a user buying a ticket from a vending machine or a salesperson in advance
and then time stamping it with a validating machine at the station just before use. Inspectors check the tickets at certain
stations (or indeed on the train in between stations) called checkpoints that might vary from day to day and find people
without validated tickets. In these scenarios, the transportation companies generally want to make sure a ticket is checked
at least once, (in all routes, even those that carry a small number of people) but avoid many checkpoints at popular source–
destination travel paths. Due to the inconvenience of checking tickets for passengers many times, potential delays, and lack
of resources, we consider the problem of placing checkpoints to minimize the average or maximum checks of tickets for
some popular source–destination paths.

This problem can be modeled as follows. We are given an undirected graph G(V , E) corresponding to stations and their
connections via the transit system. We are also given a set of source–destination pairs {(s1, t1), (s2, t2), . . . , (sk, tk)} and a
set of fixed paths P between them. The goal is to find a set of checkpoint edges E ′ that forms a multicut, i.e., for every i, si
and ti are in different connected components in G(V , E \E ′) andminimizes the average (equivalently sum) or minimizes the
maximum intersection with each path p ∈ P . In this paper, we consider this problem, which we call the checkpoint problem.
We note that the problem has other potential applications beyond our motivating example in transportation networks; for
instance, in network security, wemaywant to check certainmalicious source–destination pairs without incurring toomuch
delay along certain critical paths.

1.1. Related work

Closely related to the checkpoint problem are the more common multicut problems in which given an edge-weighted
(undirected or directed) graph and a collection of pairs {(si, ti)}ki=1, the goal is to find a subset E ′ ⊆ E of minimum cost so
that in E \ E ′ there is no si–ti path for any i. The only difference between our problems and these is the objective function.

The literature on undirected multicut (UM) problems is extensive. Garg et al. [13] showed that UM is at least as hard to
approximate as thewell-known vertex-cover problem even if the underlying graph is a star. This implies that unless P = NP,
it is hard to approximate the undirectedmulticut problemon starswithin a factor better than 10

√
5−21 [10]. Garg et al. [13]

also gave a 2 approximation for UM in trees via the primal dual approach. The best known approximation for UM in general
undirected graphs is O(log n) [14]. In [15,23,24], the p-UM problem was considered. In this problem, in addition to the UM
input, we are given an additional integer p ≤ k. The problem is to multicut at least p of the pairs; thus, UM is the special
case p = k. Using the scheme of Golovin et al. [15] and a recent result of Räcke [27], one can get an O(log n)-approximation
algorithm for p-UM . Conditional on the Unique Game Conjecture [17], Chawla et al. [5] proved that the UM problem admits
no constant approximation ratio for any constant. A stronger version of the conjecture implies that the UM problem cannot
be approximated within a factor Ω(

√
log log n).

Next we discuss works related to directedmulticut (DM). In [8] it is shown that unless NP ⊆ ZPP the DM problem admits
no 2log1−ε n ratio for any constant ε. The first non-trivial approximation forDM was anO(

√
n log n) ratio by Cheriyan et al. [7].

This ratio was improved to an O(
√
n) by Gupta [16]. Recently, the O(

√
n) barrier was broken by Agarwal et al. [1] to an

Õ(n11/23) ratio approximation.1 In [19], anO(n2/3/opt1/3) approximation algorithm forDM with unit capacities is presented.
In case opt ≥ n0.566, the ratio of [19] is better than the one of [1]. The [19] algorithm is also the only non-trivial combinatorial
approximation algorithm for DM .

The multicut problem can also be viewed as a set cover problem in which we want to cover all paths between specific
source–destination pairs (as elements) by a minimum number of edges (as sets). Set cover problems in which there are
restrictions in the way we can cover elements are also considered. In the minimum membership set-cover problem of
Kuhn et al. [22], we want to cover all elements while minimizing the maximum number of sets covering an element.
Kuhn et al. designed an O(log |U|) approximation for this problem, where U is the ground set of elements that we are
to cover. In the unique coverage problem of Demaine et al. [9], we want to maximize elements which are covered exactly
once. Both these problems have applications concerning interference reduction in cellular networks. Roughly speaking,
our checkpoint problem combines multicut and minimum membership set cover. It is worth noting that the result of
Kuhn et al. [22] does not apply to our setting since the ground set we are to cover (the set of paths connecting all source–sink
pairs) can be exponential in the size of the instance.

Multicut problems are associated with a dual multicommodity flow problem, where instead of disconnecting pairs, the
objective is to connect them.

It might be that the most natural dual problem is finding a collection of si, ti paths which minimizes the sum of length of
the paths or minimizes the maximum length of a path. But then we get a problem that is trivial for a single pair as it is the
shortest path problem.

Since this problem is hardly known, instead we consider the well-known problem of finding a path with minimum
forbidden pairs (PAFP), a problem that has been studied since the seventies [21]. The input consists of a (directed or

1 The notationO(f (n)) ignores the factors polylogarithmic in n.

90 M. Hajiaghayi et al. / Theoretical Computer Science 452 (2012) 88–99

undirected) graph G(V , E), a pair (s, t) of vertices, and a collection of forbidden pairs F = {bib′i}
ℓ
i=1 where the forbidden

pairs are the pairs of vertices that may not appear simultaneously on the solution path. A vertexmay appear inmany forbidden
pairs. The goal is to find an s–t path with the minimum number of pairs bib′i ∈ F such that both bi ∈ p and b′i ∈ p. Unlike
the previously discussed problem, we are able to give a strong hardness result for the path with forbidden pairs problem,
with only one pair s1, t1.

The PAFP problem is particularly important for its relation to automatic software testing and validation [21,29], and its
applications in bioinformatics [6]. In [11] it is proved that PAFP is NP-complete on directed acyclic graphs. Yinnone [32]
studied the problem in directed graphs under the so called skew-symmetry condition constraining the set of edges and the
set of forbidden pairs. Yinnone gives a polynomial algorithm for the problem under that restriction. Chen et al. [6] study
a special case of the problem coming from protein identification via tandem mass spectrometry. Kolman et al. [18] study
PAFP under the so-called halving structure for which they prove the problem remains NP-complete, and also under the
hierarchical structures condition for which they give a polynomial-time algorithm.

Notation and problemdefinitions. In this section, we define useful notations and formally define the problems considered
in this paper. Let OPT be the optimum solution and opt be its value for the problem and instance at hand. For the rest of
the paper we fix a collection H = {(si, ti)}ki=1 of k source–destination pairs. The given set of si–ti paths will throughout be
denoted by P . We require that every (si, ti) pair has at least one path in P . Generally we assume that |P | is polynomial in
n, unless stated otherwise. When working with trees, P is uniquely defined by H because there is a single path connecting
every source–sink pair.

Let pbe a path inP and ebe an edge in p.Wewill say that e stabs or covers p. For a set E ′ ⊆ Ewedenote by cpE′(p) = |p∩E ′|
the number of edges in E ′ that stab p.

Definition 1. The sum checkpoint (SCP) problem is to find a multicut E ′ ⊆ E minimizing

p∈P cpE′(p). The max checkpoint
(MCP) problems is to find a multicut E ′ ⊆ E minimizingmaxp∈P cpE′(p).

The checkpoint value cp treats all edges uniformly since it simply counts the number of checkpoints in the multicut. In
some cases, though, edges may be endowed with weights. In these cases, cp can be defined as the weight of edges chosen
in the multicut that are in the path. We explore this variant for SCP .

Definition 2. Given a (directed or undirected) graph G, a pair (s, t), and a collection F = {bib′i}
ℓ
i=1 of forbidden pairs of vertices,

the path with minimum forbidden pairs (PAFP) problem is to find a path p from s to t minimizing the number of pairs bib′i ∈ F
such that both bi ∈ p and b′i ∈ p.

Note that a forbidden pair bib′i ∈ F such that at most one of bi or b′i lies on p does not contribute towards the PAFP
objective function.

Our results. First, we study MCP on trees. A tree input for MCP is said to have ascending paths if for all (si, ti) ∈ H the
node si is an ancestor of ti.MCP on ascending path tree inputs can be solved in polynomial time by linear programming. This
follows from the well-known fact [31] that the edge-path incident matrix is totally unimodular. However, such a solution
would have a very large running time.

Thereforewe are interested in purely combinatorial it is non-trivial to come upwith purely combinatorial algorithms.We
develop a linear-time algorithm forMCP in treeswith ascending paths, which gives a solutionwith cost atmost opt+1. Then
we build upon this to obtain a combinatorial polynomial-time optimum algorithm, which runs many orders of magnitude
faster than the obvious linear-programming based algorithm.

Beyond this special case, but still on trees, the problem becomes hard. We prove that unless P = NP, MCP in trees does
not admit an approximation ratio better than 2. This solves an open problem of [25]. On the positive side, using standard
techniques one can show a asymptotically matching approximation ratio.

For general graphs, we design an O

n log n
opt

-approximation algorithm for MCP using a more sophisticated approach.

Our algorithm is based on a somewhat unusual application of sphere growing. First the sphere growing is combinatorial,
that is, we grow spheres on the graph itself rather than on the LP solution of Garg et al. [14]. Second, we use an LP solution
to remove some edges in order to ensure that every source-sink pair is ‘‘far apart’’. Combining these two ingredients, we
guarantee thatwhen the neighborhood of a set S of vertices is removed to disconnect a source-sink pair, the set S contains no
‘‘uncut’’ pairs. An interesting aspect of our algorithm is that it performs best when opt is large and worst when opt is small.
This leaves the door open for possible improvements; for example, an O(opt) approximation would immediately imply aO(3
√
n) approximation. At the moment, however, we are not able to provide such a guarantee.

Then we focus our attention on the weighted version of SCP . We show that weighted SCP is equivalent to UM from
the point of view of approximability. In particular, SCP admits an O(log n) approximation ratio in general graphs and a
2 approximation ratio in trees. Even though this equivalence holds true only in the weighted case, we can approximate
unweighted SCP using UM with non-uniform capacities.

Finally, we give a strong hardness of approximation for PAFP for undirected graphs. We show that unless P ≠ NP, PAFP
admits no c · n approximation ratio for some c > 0. Moreover, our construction can be easily modified to give the same

M. Hajiaghayi et al. / Theoretical Computer Science 452 (2012) 88–99 91

hardness of approximation on directed acyclic graphs. This represents a huge improvement over the plain NP-hardness
result of Gabow [12]. In fact, such a linear lower bound is one of the largest that can be found in the literature.

We close the section by mentioning that, independently, Nelson [25] also studied MCP . He designed an exact algorithm
for paths, an asymptotic 2 approximation for trees, and showed 1.5-hardness for general graphs. The algorithm in Section 2
is a generalization of Nelson’s algorithm for paths. We thank him for letting us include his result here. Our 2-approximation
for general trees is slightly different. Our hardness result improves the one of Nelson in two aspects. First, our hardness ratio
is slightly better; second, our proof is for trees and Nelson’s is for general graphs. In fact establishing whether the problem
is hard on trees is stated as an open problem in [25].

2. TheMCP problem in trees with ascending paths

In this subsection we consider MCP in trees with ascending paths. That is, we look at instances where G is a rooted tree
and for each pair (si, ti) we have a unique path connecting them where si is an ancestor of ti. For a given path p ∈ P we
denote with s(p) the starting point (closest vertex to the root) of p and with f (p) the finishing point (furthest vertex from the
root) of p. We call the edge e ∈ p that is incident to f (p) the furthest edge in p. For a given set X of paths, we define

F(X) =

p∈X

{the furthest edge in p}.

For a path p ∈ P and a set of paths A, we define IA(p) to be the number of paths in A that are fully contained in p, that is,

IA(p) = |{q ∈ A : q ⊆ p}| .

Additive one approximation. Ourmain algorithm builds upon the following greedy procedure for computing a set of paths.
First, we show that the set of paths found by greedy can be used to produce a solution for MCP that is close to optimum.
Later, we show how this algorithm can be used to find an optimal solution.

Algorithm greedy(P)

1. A← ∅
2. for p ∈ P in increasing depth of f (p) do
3. if p ∩ F(A) = ∅
4. then A← A ∪ {p}
5. return F(A)

Let A be the set returned by greedy. Notice that taking the furthest edge of each path in A yields a feasible solution: For
any path p ∈ P , if p ∈ A then it is clear that F(A) stabs p; otherwise, by Line 3, we know that F(A) stabs p. The next lemma
shows that the set F(A) is a good approximation of the optimum.

Lemma 2.1. Let A be the set computed by greedy and p be an arbitrary path in P . Then every feasible solution stabs p at least
IA(p) times and F(A) stabs p at most IA(p)+ 1 times.

Proof. We claim that the paths in A contained in p are pairwise disjoint. Suppose, for the sake of contradiction, that there are
paths a, a′ ∈ A contained in p that share an edge. Assume without loss of generality that awas added to A before a′. Because
both paths lie in p and they intersect, it must be the case that the furthest edge of a stabs a′—herewe use the property that all
paths are ascending. Thus, we reach the contradiction that a′ was not added to A. We conclude that the paths in A contained
in p are pairwise disjoint.

Let a be a path in Awhose furthest edge stabs p. Because the paths are ascending, either s(a) is a proper ancestor of s(p),
or s(a) belongs to p (that is, a lies inside p); let us call these paths of type 1 and 2, respectively. The key observation is that
there is at most one path of type 1 (otherwise the furthest edge of one would stab the other and hence would not have
been added). Also, all paths of type 2 are disjoint and lie inside p; that is, IA(p) equals the number of type 2 paths. Therefore,
furthest edges of paths of type 2 stab p exactly IA(p) times and the type 1 path, if any, can stab p one more time.

Notice that any solution must stab type 2 paths using different edges. Therefore, any solution must stab p at least IA(p)
times. �

It follows that F(A) is a feasible solutionwhose value is atmost onemore than the value of an optimal solution. In addition,
greedy can be implemented to run in linear time.

Lemma 2.2. There is an O(n+ k) time additive-1 approximation for MCP in trees with ascending paths.

Proof. It follows from Lemma 2.1 that a lower bound on the cost of the optimum solution is M = maxp∈P IA(p) and that
each path p is stabbed at most IA(p)+ 1 ≤ M + 1.

92 M. Hajiaghayi et al. / Theoretical Computer Science 452 (2012) 88–99

Fig. 1. An instance of MCP . The underlying graph is a path and there are 7 source–sink pairs.

The implementation details to get the claimed running time are as follow. First we find the depth of every vertex in T .
Then we use bucket sort to order the paths in increasing depth of their finishing endpoint. For each vertex u we keep track
of howmany edges in F(A) there are in the path from u to the root. Initially, this information is known only for the root, for
which this quantity equals 0. When processing a path p in the while loop, if this information is not available at t(p) then we
walk up the tree until we find the first vertex, call it v, that has this information and we replicate this value to all vertices
from v to t(p). Using this information we can easily find out how many edges in F(A) stab a given path p. (When adding a
path p to A, we need to update this information for t(p).) The overall time spent is O(n+ k). �

So far we know that opt is either M or M + 1, where M = maxp∈P IA(p). If the above algorithm returns a solution
with cost M then we know it is optimal; otherwise, we need to find out whether or not M + 1 checkpoints are really
necessary. It is instructive to look at an example in order to understand what sort of challenges an optimal algorithm has to
overcome. Consider the example from Fig. 1, where the tree is in fact a path. If we assume the root is the leftmost node then
A = {3, 4, 5, 6} andM = 1, which is attained by {1, 2}. Notice that F(A) has a cost of 2 since path 2 is stabbed twice. In this
case, however, this is the best possible solution: If we insist that paths 1 and 2 are stabbed once then path 7must be stabbed
twice. The example shows that it is not enough to guarantee that paths with IA(p) = M do not get an extra checkpoint, we
also need to enforce, for example, that paths with IA(p) = M − 1 do not get two extra checkpoints.

From approximate to optimal. Our exact algorithm is based on the idea of trying to weed out the structure that forces the
previous algorithm to use an extra checkpoint. We call a ∈ A, p ∈ P a bad pair if IA(p) = M and s(a) is proper ancestor of
s(p), and s(p) is a proper ancestor of t(a), and t(a) is a proper ancestor of t(p); notice that in this case the furthest edge of a
stabs p. From the proof of Lemma 2.1, it immediately follows that the solution F(A) has cost M + 1 if and only if there is a
bad pair because if p is involved in a bad pair, then it will be stabbed by the furthest edge of a.

Algorithm iterative-refinement(P)

1. A← B← greedy(P)
2. M ← maxp∈P IA(p)
3. while maxp∈P IA(p) = M do
4. if ∃ bad pair a ∈ A, p ∈ P
5. then f (a)← s(p) and A← greedy(P)
6. else return F(A) // opt = M
7. return F(B) // opt = M + 1

Lemma 2.3. If a ∈ A, p ∈ P is a bad pair and there is a feasible solution with cost M then the solution is also feasible for the
modified instance where f (a)← s(p). Also, any feasible solution to the modified instance is feasible for the original instance.

Proof. Recall that there are IA(p) = M disjoint paths in A inside of p. These paths together with a form a set of disjoint paths.
Suppose X is solution with costM . Since p is stabbed onlyM times in X then it must be that a is stabbed in a \ p. Therefore,
X remains feasible after we set f (a)← s(p).

The second part is trivial since after the modification, a is a subset of its original self. �

With this observation in hand, an algorithm follows suit. Compute A and iteratively try to find a bad pair. If we cannot
find a bad pair then F(A) has cost M and this is optimal. Otherwise, we modify the instance as described in Lemma 2.3 and
recompute A. If maxp∈P IA(p) becomes M + 1 then the new instance cannot have a solution with cost M and hence our
implicit assumption that the original instance admitted a solution with costM must have been wrong.

Let us see how the algorithm proceeds in the instance from Fig. 1. At the beginning the only bad pair is (5, 2). After path
5 is shortened, (4, 7) become a bad pair since now IA(5) = 1. After path 4 is shortened, IA(1) becomes 2, signaling that the
instance does not admit a solution with cost 1.

Theorem 2.4. There is a polynomial-time algorithm for MCP in trees with ascending paths.

Proof. As mentioned above the correctness follows directly from repeatedly applying Lemma 2.3. To bound the running
time we note that each iteration runs in O(n + k) time and that there could be at most k2 iterations since once a bad pair
(a, p) is fixed, it never again becomes a bad pair.

M. Hajiaghayi et al. / Theoretical Computer Science 452 (2012) 88–99 93

(a) The tree used in the reduction. (b) Paths for clause Cj = ℓ1
j ∨ ℓ2

j ∨ ℓ3
j .

Fig. 2. The reduction from 1-in-3-SAT toMCP .

The number of iterations can be brought down to min{n, k2} if we are more aggressive when handling a bad pair (a, p).
Recall that if opt = M then none of the edges in a ∩ p can be chosen to be checkpoints. Thus when we find a bad pair (a, p)
we can contract the edges a∩ p to a single vertex. Since we reduce the number of edges by at least 1 in each iteration, there
are at most n iterations. �

3. Hardness

In this section we show hardness of approximation for MCP in trees via a gap-introducing reduction from 1-in-3-SAT .
Recall that a 3-CNF formula belongs to 1-in-3-SAT if there exists a satisfying assignment where each clause has exactly one
true literal. Schaefer [28] proved that 1-in-3-SAT is NP-complete.

Reduction. Given a 3-CNF formula φ = C1 ∧ C2 ∧ · · · ∧ Cm on variables x1, x2, . . . , xn, we will construct an MCP instance
consisting of a tree T and pairs {(s1, t1), . . . , (sk, tk)} such that the optimal solution of the MCP instance has value 1 if φ
belongs to 1-in-3-SAT and has value 2 otherwise.

For ease of presentation we divide the paths into two types: A-paths and B-paths. Paths of type A are required to be
stabbed exactly once, paths of type B are required to be stabbed at most once. We say theMCP instance is feasible if there is
set of edges that satisfy all path requirements. It is straightforward to reduce this problem to regularMCP where the goal is
to stab every path exactly once.2

Our tree T has three levels: On level 0 we have r , the root of the tree; on level 1 we have for each variable two vertices xi
and x̄i connected to the root r; on level 2 we have for each clause Ci = ℓ1 ∨ ℓ2 ∨ ℓ3 two vertices y2i and y3i connected to ℓ1.
The set of paths is as follows: For each variable xi we have an A-path (xi, x̄i), and for each clause Cj = ℓ1

j ∨ ℓ2
j ∨ ℓ3

j we have
B-paths (y2j , y

3
j) and (ℓ2

j , ℓ
3
j), and A-paths (ℓ2

j , y
2
j) and (ℓ3

j , y
3
j). The reader is referred to Fig. 2 for a pictorial view of the tree

and the paths.

Theorem 3.1. Unless P = NP, MCP in trees admits no better than ratio 2 approximation.

Proof. Using the reduction above, we show a one-to-one correspondence between solutions to theMCP instance satisfying
the path requirements and truth assignments for φ where every clause is satisfied by exactly one literal. Given a feasible set
S ⊆ T forMCP , we construct a truth assignment xi = ⊤ if and only if (xi, r) ∈ S; notice that this is well defined because we
have an A-path (xi, r, x̄i) for each variable xi. Now consider a clause Cj = ℓ1

j ∨ ℓ2
j ∨ ℓ3

j . Notice that since there is a path going
through every pair of literals in Cj, if S satisfies the path requirements then Cj is satisfied at most once in the assignment. To
see that each clause is indeed satisfied, suppose, for the sake of contradiction that Cj is not satisfied. Because of the A-paths
(y2j , ℓ

2
j) and (y3j , ℓ

3
j), it must be the case that (y2j , ℓ

1
j) and (y3j , ℓ

1
j) belong to S. Thus the B-path (y2j , y

3
j) would be stabbed

twice contradicting the feasibility of S.
For the other direction, given a feasible assignment for φ, it is straightforward to check that the solution {(xi, r) : xi =

⊤} ∪ {(x̄i, r) : xi = ⊥} indeed satisfies all the path requirements. �

Critically, the paths used in the reduction are not ascending. Also, the length of the longest path is three. This is necessary
because if all paths have length 2, then opt ∈ {1, 2} and checking whether opt equals 1 can be reduced to the question of
whether a certain 2-CNF formula is satisfiable, which in turn can be solved in polynomial time [28].

Recall that later in Section 4.1, we give an almost matching upper bound. We give a polynomial time approximation
algorithm that always returns a solution of value at most 2opt+ 1 with opt the value of the best solution. Thus the problem
is nearly resolved on trees.

2 For each s–t path of type B attach a dummy node dst to s and use the path dst–t instead.

94 M. Hajiaghayi et al. / Theoretical Computer Science 452 (2012) 88–99

4. Approximations forMCP

LP formulation In this section we present our approximation results for MCP . Our algorithms are based on the following
linear programming relaxation. Let Q be the full set of paths connecting the source-sink pairs. (Recall that P is just a subset
of Q.)

minimize z (LP1)
subject to

e∈q xe ≥ 1 for all q ∈ Q (1)
e∈p xe ≤ z for all p ∈ P (2)

xe ≥ 0 e ∈ E.

Variable xe indicates whether edge e is chosen in themulticut. Constraint (1) enforces that the set of edges chosen indeed
forms amulticut. The objective is tominimize z, themaximumnumber of edges any one path sees (2). For general graph, the
set Q can be exponentially large. The program (LP1) can be solved in polynomial time by running the Ellipsoid algorithm:
We can design a separation oracle for constraints (1) by giving each edge e in the graph a weight of xe and running an all-
pairs shortest path algorithm to check if there is a path q ∈ Q such that

e∈q xe < 1; the remaining constraints (2) are

polynomially many, so they can be checked individually.

4.1. MCP in trees

In this section we consider MCP in trees with unrestricted paths; that is, a path is allowed to go up and down the tree.
The main idea is to ‘‘round’’ the instance to another related problem whose LP formulation is integral; this is similar to the
approach that Golovin et al. [15] used for the k-multicut problem in trees. Let (x∗, z∗) be an optimal fraction solution for
(LP1). We denote by x∗(a, b) =

e∈(a,b) x

∗(e), the total fractional value of the edges in the unique path connecting a and b
in the tree. The new instance is constructed as follows: For each path p ∈ P going from si to ti let ai be the lowest common
ancestor in the tree. Without loss of generality we assume x∗(ai, si) ≥ x∗(ai, ti). We ask that each (ai, si) path is cut at least
once, that the path (ai, si) is cut at most ⌈2x∗(ai, si)⌉ times, and that the path (ai, ti) is cut at most ⌈2x∗(ai, ti)⌉ times. The LP
formulation for the new problem is given below.

no objective (LP2)
subject to

e∈(ai,si)

ye ≥ 1 ∀ (si, ti) ∈ P (3)
e∈(ai,si)

ye ≤

2x∗(ai, si)

∀ (si, ti) ∈ P (4)

e∈(ai,ti)

ye ≤

2x∗(ai, ti)

∀ (si, ti) ∈ P (5)

ye ≥ 0 ∀ e ∈ T .

In this new program, some of these paths must be cut (3) and each path has an upper bound on the number of edges that
can be chosen in the multicut (4, 5). Notice that all paths in the new instance are ascending.

We claim that this new program is feasible and integral. Furthermore, any solution for (LP2) is feasible for the original
problem and offers a good approximation for the maximum number of checkpoints.

Theorem 4.1. There is a polynomial-time algorithm for MCP in trees that returns a solution with cost no more than 2 · opt+ 1.

Proof. The paths used in (LP2) are ascending. It is well known that the path-edge incident matrix is totally unimodular (see
for example [31]), which in turn implies that the linear program (LP2) is integral. Notice that 2x∗ is a feasible fractional
solution for (LP2). Therefore, an integral solution must exists and we can compute such a solution in polynomial time.

First we show the slightly weaker result that the solution returned has cost nomore than 2 ·opt+2. Let y∗ be the integral
solution for (LP2). Clearly, since y∗ cuts (ai, si) it also must cut (si, ti). Furthermore, for any path (si, ti) we have

y∗(si, ti) ≤

2x∗(ai, si)

+

2x∗(ai, ti)

≤ 2x∗(si, ti)+ 2 ≤ 2z∗ + 2.

Recalling that z∗ ≤ opt finishes the proof of the weaker bound.
Let us finish the proof by arguing that the additive term in the approximation guarantee is in Fact 1. Since opt is an integer,

we have ⌈z∗⌉ ≤ opt and we assume without loss of generality that z∗ is also an integer. Consider a source-sink pair such

M. Hajiaghayi et al. / Theoretical Computer Science 452 (2012) 88–99 95

that x∗(si, ti) = z∗. Suppose that x∗(ai, si) =
k1
2 + δ1 and x∗(ai, ti) =

k2
2 + δ2 where 0 < δ1 ≤ 1/2 and 0 ≤ δ2 < 1/2. It

follows by our assumptions that δ1 + δ2 = 1/2. Our solution stabs (si, ti) at most

k1 + k2 + 2 = 2x∗(si, ti)+ 1 = 2z∗ + 1 ≤ 2 · opt+ 1

times. �

4.2. MCP in general graphs

Throughout this section, Sol will denote the partial solution accumulated by our algorithm. We say that a source si is
uncut, if G(V , E \ Sol) contains an si–ti path. For simplicity, we assume that opt, the value of the optimal solution, is known.
This value can easily be guessed (we run the algorithm on all n − 1 values of opt and return the best solution found), or,
alternatively, we can use the value of the optimal fractional solution instead.

Along the way, we prove the following result: If the minimum distance between every (si, ti) pair is ℓ, then there exists a
vertex cut of size atmostO(n/ℓ)whose deletion disconnects all pairs.We believe this fact is known, but are not aware of any
specific reference. Some results along these lines are known for the directed case; for example, it was shown independently
in [30] and [19] that if every pair in a directed graph has distance at least ℓ, then there is an edge cut separating all pairs
whose size is at mostO(n2/ℓ2).

Given a fractional solution x to (LP1), we denote the fractional checkpoint value of a path p by cpx(p) =

e∈p x(e). Let
dist(u, v) denote the length of the shortest path in G between u and v measured by the number of edges. The following
operators are used by our algorithm:

N(X) = X ∪ {v ∈ V : ∃ u ∈ X s.t. (u, v) ∈ E)},

and

E(X) = {(u, v) ∈ E : u ∈ X ∨ v ∈ X}.

In other words, N(X) equals X and all its neighbors, while E(X) equals the set of edges with at least one endpoint in X . We
note that both operators are definedwith respect to the graph G(V , E). As the algorithm progresses and removes edges from
G, these operators change accordingly.

Algorithm approximating-mcp(G, H)

1. x← fractional optimal solution for (LP1)
2. Sol←

e ∈ E : xe ≥ 1

2

opt

n·(ln n+1)

3. remove the edges Sol from G
4. while Sol is not a multicut do
5. S ← {s}, for some arbitrary uncut source s

6. while |N(S)| ≥

1+

opt·(ln n+1)

n

|S| do

7. S ← N(S)
8. Sol← Sol ∪ E(N(S) \ S)
9. remove E(N(S) \ S) from G

10. return Sol

The algorithm can be thought of as having twomain parts: a filtering step and a region-growing step. The next two lemmas
establish some important properties of the first step.

Lemma 4.2. Consider the value of Sol and G right after Line 3. Then dist(si, ti) > 2

n·(ln n+1)
opt for all (si, ti) ∈ H .

Proof. Let q be an arbitrary path in Q. By Constraint (1) in (LP1), we know there must be an edge e in q such that xe ≥ 1
|q| . If

|q| ≤ 2

n·(ln n+1)
opt , at least one edge of q must belong to Sol. Therefore, after Line 3 the remaining paths connecting source-

sink pairs must be longer than 2

n·(ln n+1)
opt . �

Lemma 4.3. Consider Sol right after Line 2. Then cpSol(p) = cpx(p) · O

n log n
opt

for all p ∈ P .

Proof. Let p be a path in P . Note that each edge of p that belongs to Sol contributes at least 1
2

opt

n·(ln n+1) towards cpx(p).

Therefore, cpSol(p) ≤ cpx(p) · 2

(log n+1)·n
opt . �

96 M. Hajiaghayi et al. / Theoretical Computer Science 452 (2012) 88–99

After the initial filtering step (after the initial Sol is computed in Line 2), the algorithm iteratively finds sets S1, S2, . . .,
using a region-growing procedure out of uncut sources s1, s2, . . ., respectively. We note that our approach is related to that
of Garg et al. [14]. There are, however, two major differences. First, instead of ‘‘growing our regions on the LP solution’’, we
do so in the input graph itself. Second, instead of using edge cuts, we use vertex cuts—indeed, the edges removed in Line 9
correspond to removing the vertices N(X) \ S.

Lemma 4.4. The sets S1, S2, . . . are pair-wise disjoint.

Proof. Consider an arbitrary set Si. Upon exiting the while loop in Line 6, the algorithm adds E(N(Si) \ Si) to Sol. This
effectively disconnects Si from the rest of the graph defined by E \ Sol.

We claim that the number of iterations of the while loop in Line 6 needed to compute Si is at most

n·(ln n+1)
opt . Indeed,

since the size of |S| increases by at least 1+

opt·(ln n+1)
n factor in each iteration, if the while loop were to run for

n·(ln n+1)

opt

iterations then we would reach the contradiction that

|S| >

1+

opt·(ln n+1)

n

n·(ln n+1)

opt

≥ n ≥ |S|.

A corollary of this, is that the diameter of the graph induced by Si is most 2

n·(ln n+1)
opt .

Now consider a set Sj constructed in some subsequent iteration. If sj /∈ Si then clearly Sj and Si must be disjoint. We claim

that this is the only option. Indeed, if sj ∈ Si then, since the diameter of Si is at most 2

n·(ln n+1)
opt , it follows that right after

Si is created dist(sj, tj) ≤ 2

n·(ln n+1)
opt , which contradicts Lemma 4.2. �

Everything is in place to prove the main result of this section.

Theorem 4.5. The MCP problem admits a polynomial-time O

n log n
opt

approximation algorithm.

Proof. Let p be an arbitrary path in P . Notice that when E(N(Si) \ Si) is added to Sol, since p is simple, the value of cpSol(p)
increases by at most |N(Si) \ Si|. Therefore, in order to bound total increase in cpSol(p) due to edges added to Sol after Line 2,
we need to bound

i |N(Si) \ Si|:

i

|N(Si) \ S| <

i

opt·(ln n+1)

n · |Si| =

opt·(ln n+1)
n

i

|Si| ≤

n · opt · (ln n+ 1), (6)

where the first inequality follows from the exit condition of thewhile loop in Line 6, and the second, from Lemma4.4. Putting
(6) and Lemma 4.3 together, we conclude that

cpSol(p) = cpx(p) · O

n ln n
opt

+

n · opt · (ln n+ 1) = opt · O

n ln n
opt

. �

5. Approximation for SCP

For this problem we allow the graph to be weighted, in which case cpE′(p) is the combined weight of edges in E ′ ∩ p.
Recall that w(e) denotes the weight of edge e.

Theorem 5.1. Any ρ approximation for UM gives a ρ approximation for weighted SCP, and vise-versa

Proof. We first show the forward direction. We construct edge capacities c as follows: For every edge e let p(e) be the
number of paths p ∈ P that use e; notice that if for a fixed pair (si, ti) the set Pi contains many paths going through e, each
onewill contribute towards p(e). We give edge e capacity c(e) = p(e)w(e). We show that the capacity of amulticut E ′ equals
the min-sum checkpoint value, that is,

e∈E′ c(e) =

p∈P cpE′(p). Given an edge e ∈ E ′, we charge w(e) to each of the p(e)

paths containing that edge; this exhausts the c(e) term in the cost of theUM objective. Therefore,

e∈E′ c(e) =

p∈P cpE′(p)
and every ratio ρ that applies to UM also applies to SCP .

In the other direction, assume we have a ρ approximation for SCP . We approximate UM by a reduction to SCP as follows.
Create a SCP instance with every e having weight c(e)/p(e). For any multicut E ′, w(e) will be counted p(e) times therefore
the checkpoint cost of E ′ is c(E ′). Thus the best solution is the minimum capacity multicut. We conclude that SCP and UM
are equivalent with respect to approximation. �

M. Hajiaghayi et al. / Theoretical Computer Science 452 (2012) 88–99 97

Corollary 5.2. SCP admits an O(log n) approximation in general graphs and a 2 approximation in trees.

Proof. This follows from Theorem 5.1 and the fact that UM admits a ratio 2 approximation in trees [13] and an O(log n)
approximation in general graphs [14]. �

6. A lower bound for PAFP

Recall that in PAFP we are given a pair (s, t) to connect and a collection of forbidden pairs {(bi, b′i)}
ℓ
i=1 ⊆ V × V . The

goal is to find an s–t path minimizing the number of pairs (bi, b′i) such that both belong to the path. We define the cost of a
solution as the maximum between the number of forbidden pairs in the path and 1. This assures that there are no instances
of value 0. Indeed if a value 0 is possible outcome for a yes instance then even if the no instance has a single forbidden pair
the ratio is infinite. This is despite the fact that the two solutions are very close. Thus, the above definition helps to better
reflects the gap between a yes and a no instance.

We show that the problem cannot be approximated within Θ(n). This gap is perhaps the largest we can hope for and is
rather rare.

Background. We provide hardness by giving a reduction from one-round two-prover interactive proof systems. The
satisfiability problem (SAT) is defined as follows: A CNF Boolean formula φ is given, and the question is whether there
is an assignment satisfying all clauses in φ. In the 3-SAT problem, every clause has three literals. It is an immediate corollary
from the PCP theorem [4] that there is exists some universal constant δ > 0 so that 3-SAT admits no 1− δ approximation,
unless P = NP .

We need a variant of 3-SAT called 3-SAT-5 in which every variable appears in at most 5 clauses (perhaps in negated
form). In [26], an expander argument is used to show that there exists a universal ε > 0 so that 3-SAT-5 admits no 1 − ε
approximation, unless P = NP .

The following a one-round two-prover system was introduced by [2] in order to translate the above theorem into one
round two provers language. We start with the 3-SAT-5 instance above. The verifier chooses at random a clause C and then
chooses a random variable x (or x̄) in that clause. The verifier sends C to the first prover and x (or x̄) to the second prover.
The clause prover assigns values to its three literals in C and in particular to x. The literal prover assigns value to x. The
verifier accepts if the two given values for x by the two provers match. A strategy is an a truth assignment to all variables.
Let k be the number of answers and h be the number of queries. In [3] it is shown that in the case of a yes instance there is
always a strategy (the same strategy for the two provers) that makes the verifier accept with probability 1. However, if the
instance corresponds to a no instance, for any strategy, the probability of acceptance is at most 1− ε/3 with ε the constant
derived from the reduction to 3-SAT-5. In [3] a graph theoretic version of this problem is represented in which answers to
the provers are called labels. The name given to the above problem in [3] is the Labelcover problem.

An even more explicit graph theoretic representation of Labelcover is given in [20]. The problem resulting is called the
MAX-REP problem. We are given a bipartite graph G(V1, V2, E). The sets V1 and V2 are partitioned into a disjoint union of q
sets: V1 =

q
i=1 Ai and V2 =

q
j=1 Bj. Two sets (Ai, Bj) form a superedge if there exists a ∈ Ai and b ∈ Bj so that (ai, bj) ∈ E.

See Fig. 3 for an example. In MAX-REP we are to select a unique representative vertex ai ∈ Ai from each subset Ai, and a
unique representative vertex bj ∈ Bj from each Bj. We say that a super-edge (Ai, Bj) is covered if (ai, bj) ∈ E. The goal is to
select unique representatives so as to maximize the number of super-edges covered.

Remark: The relation to one-round two-provers can be shown as follows. The Ai, Bj are question for the first and second
prover, respectively. The sets Ai, Bj contain all possible answers of the respective questions Ai and Bj for the two provers. A
superedge (Ai, Bj) is a query, namely two question that may be simultaneously sent to the two provers. Say that (Ai, Bj) is
query. Two answers ai ∈ Ai and bj ∈ Bj are joined by an edge in E if and only if they are consistent, namely will cause the
verifier to accept. This gives theMAX-REP graph.

Theorem 6.1 ([4,26]). There is a polynomial time reduction that maps each instance φ of SAT into an instance G of MAX-REP
with n′ vertices and h = Θ(n′) super-edges. If φ is satisfiable then there exists a set of unique representatives of G that covers all
h super-edges. If φ is not satisfiable then every set of unique representatives of G covers at most (1− ε/3) · h super-edges with ε
the universal constant of the PCP theorem.

Reduction. The reduction from MAX-REP to PAFP is as follows: Arbitrarily order the super-vertices from left to right:
X1, X2, . . . , X2q. Join Xi to Xi+1 with a complete bipartite graph for every 1 ≤ i ≤ 2q − 1. Let (A, B) be a super-edge in
ourMAX-REP instance. For each a ∈ A and b ∈ B such that (a, b) /∈ E, we create a forbidden pair (a, b). Thus, forbidden pairs
correspond to vertices that are not connected in theMAX-REP graph andwhose corresponding super-nodes are a super-edge.
Finally, join a vertex s to all the vertices of X1 and join a vertex t to all the vertices of Xh. This defines the PAFP instance.

Theorem 6.2. Unless P = NP, PAFP on undirected graphs admits no (1 − ρ) · n approximation ratio, where n is the number of
vertices and ρ > 0 is a universal constant. The same holds for directed acyclic graphs.

Proof. Consider the reduction above. We show that a solution for the PAFP instance with t forbidden pairs translates into
solution for the MAX-REP instance covering h − t super-edges, and vice-versa. Without loss of generality we restrict our

98 M. Hajiaghayi et al. / Theoretical Computer Science 452 (2012) 88–99

(a) The super graph. (b) A super edge (Ai, Bj).

Fig. 3. An example of aMAX-REP instance.

attention to PAFP solutions that use a single vertex from each super-vertex Xi; indeed, using more vertices can only increase
the number of forbidden pairs. Under this restriction, there is a clear one-to-one correspondence between solutions for
the PAFP instance (s–t paths) and solutions for the MAX-REP instance (unique representative choices). Let X be a unique
representative choice and p its corresponding s–t path. Let (A, B) be an arbitrary super-edge, and let a and b be the
representatives of A and B respectively. If (A, B) is covered by X then none of the forbidden pairs induced by (A, B) appear in
p. Otherwise, if (A, B) is not covered by X , we know that (a, b) is a forbidden pair. It follows that the number of super-edges
covered by X is hminus the number of forbidden pairs in p.

In Theorem 6.1, satisfiable formulas map to instances ofMAX-REP that have a perfect cover, which in turn our reduction
maps to instances of PAFP that have a path with no forbidden pairs, which have value 1 (recall that the cost of a path is the
maximum of 1 and the number of forbidden pairs.) On the other hand, Theorem 6.1 says that unsatisfiable formulas map to
instances ofMAX-REP with value at most c ′ · h, for some c ′ > 0, which in turn map to instances of PAFP having value at least
c ′ ·h. In addition, we are guaranteed that theMAX-REP instance has h = Θ(n), where n is the number of vertices in the PAFP
instance. This finishes the proof for undirected graphs.

Finally, to get the result on directed acyclic graphs, just direct all the edges from s to t . �

7. Discussion and open problems

Can the approximation for SCP be used to approximate MCP? If the optimum for SCP is opts then the optimum for MCP
is at least opts/|P |. Therefore, by approximating the SCP objective, we obtain a lower bound for the MCP objective. The
multicut for the SCP problem, however, cannot be used directly as a solution for the MCP problem since the path with the
largest checkpoint value may be well above the average checkpoint value. One could try to deal with these ‘‘expensive’’
paths in a later stage, but this may increase the checkpoint value of paths previously having low checkpoint value in the SCP
solution. Indeed, theMCP problem seems highly non-separable.

Our hardness result forMCP rules out the possibility of a 2−ε approximation for trees. Is it possible to get a better-than-2
asymptotic approximation ratio?

It would be interesting to study other natural variations of MCP . Consider, for example, the following shortest distance
variant. After selecting a multicut Sol, each (si, tt) computes its shortest checkpoint distance, where edges in Sol have length
1 and others have length 0. The objective is to minimize maximum distance across all s–t pairs. While this variant seems
quite natural, we are unable at themoment to give it any non-trivial ratio. Themain difficulty here is that ameaningful LP for
this problemdoes not seem to exist. Even if we stick to the collectionP of paths, every (si, ti) is chargedwithminp∈Pi{cp(p)},
and then we take the maximum over these values. There does not seem to be a meaningful LP for that variant either. Hence,
at the moment, we do not know how to give a non-trivial approximation for these two natural variants of the checkpoint
problem.

Finally, it would be interesting to know whether MCP admits a polylog(n) approximation, or whether it has a hardness
is similar toMAX-REP .

Acknowledgments

The first author thanks ErikDemaine and Jelani Nelson for several fruitful discussions especially on initiating the problem.
The first author was supported in part by NSF CAREER award 1053605, ONR YIP award N000141110662, DARPA/AFRL

award FA8650-11-1-7162, and a University of Maryland Research and Scholarship Award (RASA). The third author was
partially supported by NSF grant number 0829959.

M. Hajiaghayi et al. / Theoretical Computer Science 452 (2012) 88–99 99

References

[1] A. Agarwal, N. Alon, M. Charikar, Improved approximation for directed cut problems. in: STOC, pp. 671–680, 2007.
[2] S. Arora, L. Babai, J. Stern, Z. Sweedyk, The hardness of approximate optima in lattices, codes, and systems of linear equations, J. Comput. System Sci.

54 (2) (1997) 317–331.
[3] S. Arora, C. Lund, in: D. Hochbaum (Ed.), Approximation Algorithms for NP-hard problems, PWS Publishing, 1996, Chapter10: ‘Hardness on

Approximation’.
[4] S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy, Proof verification and hardness of approximation problems, J. ACM (1998) 501–555.
[5] S. Chawla, R. Krauthgamer, R. Kumar, Y. Rabani, D. Sivakumar, On the hardness of approximating multicut and sparsest-cut, Comput. Complexity 15

(2) (2006) 94–114.
[6] T. Chen, M.Y. Kao, M. Tepel, J. Rush, G. Church, A dynamic programming approach to de novo peptide sequencing via tandem mass spectrometry,

J. Comput. Biol. 8 (3) (2001) 325–337.
[7] J. Cheriyan, H. Karloff, Y. Rabani, Approximating directed multicuts, Combinatorica 25 (3) (2005) 251–269.
[8] J. Chuzhoy, S. Khanna, Polynomial flow-cut gaps and hardness of directed cut problems, J. ACM 56 (2) (2009).
[9] E.D. Demaine, U. Feige, M.T. Hajiaghayi, M. Salavatipour, Combination can be hard: approximability of the unique coverage problem, SIAM J. Comput.

38 (4) (2008) 1464–1483.
[10] I. Dinur, S. Safra, The importance of being biased. in: ACM Symposium on Theory of Computing, STOC, pp. 33–42, 2002.
[11] H. Gabow, S. Maheswari, L. Osterweil, On two problems in the generation of program test paths, IEEE Trans. Software Eng. 2 (3) (1976) 227–231.
[12] H.N. Gabow, Finding paths and cycles of superpolylogarithmic length, SIAM J. Comput. 36 (6) (2007) 1648–1671.
[13] N. Garg, V. Vazirani, M. Yannakakis, Primal–dual approximation algorithms for integral flow and multicut in trees, Algorithmica 18 (1) (1997) 3–20.
[14] N. Garg, V.V. Vazirani, M. Yannakakis, Approximatemax-flowmin-(multi)cut theorems and their applications, SIAM J. Comput. 25 (2) (1996) 235–251.
[15] D. Golovin, V. Nagarajan, M. Singh, Approximating the k-multicut problem. in: ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 621–630,

2006.
[16] A. Gupta, Improved results for directed multicut. in: ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 454–455, 2003.
[17] S. Khot, On the unique games conjecture. in: IEEE Symposium on Foundations of Computer Science, FOCS, pp. 3, 2005.
[18] P. Kolman, O. Pangrac, On the complexity of paths avoiding forbidden pairs, Discrete Appl. Math. 157 (2009) 2867–2871.
[19] Y. Kortsarts, G. Kortsarz, Z. Nutov, Greedy approximation algorithms for directed multicuts, Networks 45 (4) (2005) 214–217.
[20] G. Kortsarz, On the hardness of approximating spanners, Algorithmica 30 (3) (2001) 432–450.
[21] K. Krause, R. Smith, M. Goodwin, Optimal software test planning through authomated search analysis. in: IEEE Symp. Computer Software Reliability,

pp. 18–22, 1973.
[22] F. Kuhn, P. von Rickenbach, R. Wattenhofer, E. Welzl, A. Zollinger, Interference in cellular networks: the minimum membership set cover problem,

in: International Computin and Combinatoics Conference, COCOON, pp. 188–198, 2005.
[23] A. Levin, D. Segev, Partial multicuts in trees, Theoret. Comput. Sci. 369 (1–3) (2006) 384–395.
[24] J.Mestre, Lagrangian relaxation and partial cover (extended abstract). in: Symposiumon Theoretical Aspects of Computer Science, STACS, pp. 539–550,

2008.
[25] J. Nelson, Notes on min–max multicommodity cut on paths and trees. Manuscript, 2009.
[26] C.H. Papadimitriou, M. Yannakakis, The traveling salesman problem with distances one and two, Math. Oper. Res. 18 (1) (1993) 1–11.
[27] H. Räcke, Optimal hierarchical decompositions for congestion minimization in networks. in: ACM Symposium on Theory of Computing, STOC,

pp. 255–264, 2008.
[28] T.J. Schaefer, The complexity of satisfiability problems. in: ACM Symposium on Theory of Computing, STOC, pp. 216–226, 1978.
[29] P. Strimani, B. Sinha, Impossible pair-constrained test path generation in a program, Inform. Sci. 28 (1982) 87–103.
[30] K. Varadarajan, G. Venkataraman, Graph decomposition and a greedy algorithm for edge-disjoint paths. in: ACM-SIAM Symposium on Discrete

Algorithms, SODA, pp. 379–380, 2004.
[31] M. Yannakakis, On a class of totally unimodular matrices. in: IEEE Symposium on Foundations of Computer Science, FOCS, pp. 10–16, 1980.
[32] H. Yinnone, On paths avoiding forbidden pairs of vertices in a graph, Discrete Appl. Math. 74 (1) (1997) 85–92.

	The checkpoint problem
	Introduction
	Related work

	The MCP problem in trees with ascending paths
	Hardness
	Approximations for MCP
	MCP in trees
	MCP in general graphs

	Approximation for SCP
	A lower bound for PAFP
	Discussion and open problems
	Acknowledgments
	References

