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By allowing service calls to be guarded by contexts, Asymmetric Event Structures (AES for
short) and contextual nets are a convenient framework to model composite Web services
or service orchestrations. We equip AES with QoS domains as a framework to capture a
number of QoS metrics and their combination. We use the resulting model to formalize
QoS-based late service binding in composite services. When subject to QoS-based late
service binding, composite services may be non-monotonic with respect to QoS, meaning
that strictly improving the QoS of a service may strictly decrease the end-to-end QoS of
the composite service, an embarrassing feature for QoS-aware management; we study this
issue. Branching cells of AES play a central role in this study.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Workflow nets [1–3] have been advocated as a concurrent model for workflows. Queries submitted to the workflow are
captured by tokens circulating in the workflow net. These tokens are enriched with the data returned by the called services
and, when exiting the workflow net, tokens carry the result of the workflow in response to the submitted query. Formally
speaking, executions of workflow nets are conveniently captured by Prime Event Structures (PES for short) with causality
and symmetric binary conflict [4], capturing the successive choices made between alternative continuations of the workflow
execution.

It is, however, very natural in service orchestrations, to guard service calls by contexts, i.e., conditions on variables, states,
or attributes, that are only checked but not modified or consumed. Indeed, rich workflow, orchestration, or choreography
languages (such as BPEL [5] or Orc [6,7]), use contexts in addition to resources to guard service calls. The basic notions
of causality and conflict offered by safe Petri nets and associated PES, do not encompass the notion of context. The sim-
plest extension of Petri nets to handle contexts is by adding read arcs, giving raise to contextual nets and their associated
framework of Asymmetric Event Structures (AES) [8]. Indeed, Orc concurrent semantics was defined in [9] using AES.

Since the world of services is open, several services often compete at offering equivalent functions, albeit under different
implementations or with different Quality of Service (QoS). QoS metrics typically include timing performance, availability,
security, reliability, vulnerability, cost, and variations thereof. Optimizing orchestrations for QoS has been the subject of
a large literature, see for example [10–13]. Part of this literature is devoted to off-line and static optimal selection of
services among competing alternatives. While this is a relevant approach for a close world of predefined services, it is
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Fig. 1. Top: A simple orchestration, described as a safe contextual Workflow net, where read arcs are depicted as nondirected arcs. Blue labels within brackets
refer to QoS. Bottom: AES of its executions; double arrows arcs depict the causality relation and single arrow arcs depict the additional asymmetric conflict
relations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

not appropriate for an open world where available services may not be known in advance when the composite service is
defined. QoS based late service binding [14,15] was proposed instead, which consists, for an orchestration, in dynamically
selecting at run time, based on QoS, which service will actually be called to provide the due function at a given stage of
the orchestration. This naturally gives raise to complex competitions between multiple threads of services that could share
some services for calling, a typical source of confusion in nets, i.e., situations in which conflicts are not local to a single
place, thus reflecting that choice exists among alternatives involving competing groups of called services.

To address QoS based management of composite services, we developed in previous work a framework of soft proba-
bilistic QoS contracts for service orchestrations [16–18]. In this framework, the QoS of each called service with its different
dimensions is considered probabilistic. A QoS contract thus consists of a probability distribution that each service exposes
(as part of its Service Level Agreement, SLA). The service meets its obligations as long as it behaves at least as good as stated
in its contract—here “at least as good as” refers to stochastic ordering of random variables, as widely used in econometrics.
Statistical tests were proposed in [17] to monitor the possible violation of probabilistic QoS contracts and a probabilistic
contract composition method was proposed in [16,17] for the particular case of latency, and in [18] for the general QoS
case. The issue of monotonicity was first pointed out in [17]. It may be, for an orchestration, that a service improving its
QoS still results in a degradation for the end-to-end QoS of the orchestration, an embarrassing feature when using con-
tracts or performing late service binding. Such orchestrations are called non-monotonic. The first study of monotonicity was
reported in [19], for the particular case of latency and for orchestrations involving no confusion. Besides [19], the above
references targeted Web services audience and, thus, the formal side of this work was not detailed.

In this paper we formally study QoS-based late service binding in service orchestrations, for orchestrations modeled as AES with
arbitrary confusion and for general, possibly multi-dimensional, QoS.

In companion paper [20], choices in AES with confusion are studied. This development serves us in this paper as a
basis for studying QoS aware management of service orchestrations with emphasis on late service binding. To discuss an
example, however, we feel it more comfortable to use safe contextual nets. Companion paper [20] recalls in its appendix
how to systematically construct, for any safe contextual net, the AES of all its executions.

Running Example 1. Fig. 1 shows a toy example that will serve us as a support throughout this paper. For this discussion we
use the example in its net form (top of the figure). For the moment, also, we ignore the blue labels. Each query submitted
to the orchestration is represented by a fresh token entering the input place P0. Responses to this query are collected at
the return store of the orchestration, consisting of the two output places P 1∞ and P 2∞ . The reception of a query triggers the
launching of two parallel threads, beginning at the places P1 and P2.

Thread starting at P2 calls service S2, shown by event a2; the execution of service S2 is not atomic; S2 silently operates
while the token sits in place P21; when terminating, shown by event b2, service S2 outputs a token in place P 2∞ .
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Thread starting at P1 can nondeterministically call service S11; the associated service call is captured by event a11;
service S11 outputs a token in place P∞ when terminated. As an alternative, thread starting at P1 can call service S12;
the associated service call is captured by event a12; the execution of service S12 is not atomic; S12 silently operates while
the token sits in place P12 and outputs a token in place P 1∞ when terminated; S12, however, requires for its completion
to know a context consisting of an attribute (say, an Id) held by the second thread P2. This attribute may be consumed
when terminating service S2, shown by event b2, thus preventing S12 from terminating in this case (event b12 cannot be
produced). Note that the failure of sites to respond is not atypical in the world of services.

This orchestration involves two choices following places P1 and P2 and one synchronization at event b12. The choice
occurring in P1 captures late service binding at run time and we wish to perform it by selecting the alternative offering
best QoS. �

To this end, we develop an algebraic formalization of QoS, modeling how QoS quanta associated with service calls
contribute to the end-to-end QoS of the orchestration. Quite often, several metrics are jointly considered, making QoS
multi-dimensional and, thus, possibly only partially ordered.

Running Example 2. Focus again on Fig. 1 and consider now its blue labels. Each label is a pair [latency, security level], thus
capturing a two-dimensional QoS. Latencies are ordered as usual, where smaller means better. Security levels are ordered
as high < low, where, again, smaller means better. The two-dimensional QoS is ordered by the product order. The execution
of the workflow of Fig. 1 is controlled by this two-dimensional QoS. �

Having done this, we can now explain how QoS-based late service binding is performed for the considered workflow.

Running Example 3. A query enters the orchestration with zero latency and high security level.

• The first transition launches the two threads and we assume it takes no time and has no impact on security level.
Therefore, when entering places P1 and P2, the token keeps the same QoS attributes.

• Once the second thread is launched, a2 fires, which causes a latency d21 while keeping security level high. Then, b2 fires
and outputs at place P 2∞ a response for the orchestration with QoS q2∞ = [d21 + d22,high].

• Focus next on the first thread and the choice occurring at place P1. Event a11 causes an increment in QoS as indicated
on the figure, and similarly for a12.
– Suppose that d12 � d11. Since high is preferred to low regarding security level, QoS-based late service binding fa-

vors S12 over S11, so the latter is not called. Hence, a12 get fired and the token reaches place P12 with latency
0 + d12 = d12 and security level max(high,high) = high. If its context is available (meaning that a token still sits at
P2), service S12 terminates in zero time with no degradation of the security level, which results in a response of the
orchestration with QoS q1∞ = [d12 + d′

12,high]. This occurs if d12 � d21. The response of the orchestration in this case
consists of the two concurrent responses from S12 and S2 and the end-to-end QoS for the orchestration is∨{

q1∞,q2∞
} = [

max
(
d12 + d′

12,d21 + d22
)
,max(high,high)

]
, (1)

i.e., the “worst” QoS of the two responses. If, however, the context of b12 is not available (d12 > d21), then S12 never
terminates (the token is blocked in P12) and then only S2 responds with a resulting end-to-end QoS equal to q2∞ .

– Suppose instead that d12 > d11 and security level of a12 is also low. Then, QoS-based late service binds favors S11
over S12. S11 terminates and outputs a response with QoS [d11, low]. On the other hand, S2 performs as for the other
case, which results in an end-to-end QoS for the orchestration equal to∨{

q1∞,q2∞
} = [

max(d12,d21 + d11),max(high, low)
]

(2)

with max(high, low) = low.
• The situation is less straightforward if a12 has security level high but d12 > d11, making the two QoS incomparable

(with respect to the product order). Two strategies are then possible. One possibility is to select nondeterministically
one of the two alternatives (since no one outperforms the other). The other possibility is to change the order used in
comparing QoS: one could weight and then add the two metrics; or one could give priority, say, to security over latency.
For both cases we get a total order for the two-dimensional QoS.

This gives a picture of how QoS controls executions of this workflow. �
Running Example 4. Let us come back to the original product order with QoS situation [d11, low] for a11 and [d12, low] for
a12, with d11 < d12, so that S11 is preferred over S12. Suppose service S12 improves its latency by reducing d12 below d11
while, still, leaving d11 < d12 + d′

12. Then, due to QoS-based late service binding, S12 gets selected and the end-to-end QoS
is worsened, from [max(d11,d21 + d22), low] to [max(d12 + d′

12,d21 + d22), low]. Thus, an improvement in the QoS of some
service has resulted in a degradation in the end-to-end QoS of the orchestration. �
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E shorthand for AES (E,�,↗) where ↗ denotes the asymmetric conflict

�e� = {x ∈ E | x � e}, with e an event of AES E

Conf(E) the set of configurations of AES E

Conf(E) the set of maximal configurations of AES E

CC-Conf(E) the set of CC-configurations of AES E

α, β notations for branching cells

C 	E α configuration C of E enables the branching cell α

Fig. 2. Notations for Asymmetric Event Structures and branching cells.

Running Example 4 illustrates the lack of monotonicity with respect to QoS, in that a site improving its own QoS may
result in a degradation of the end-to-end QoS of the orchestration. Which counter-measure could be considered to avoid
this? Of course, making choices on the basis of end-to-end global optimization of the QoS is monotonic by definition. It
does not fit the area of composite services, however, where on-line dynamic service binding is preferred.

Running Example 5. For our example, one may argue that deciding between a11 and a12 is questionable; it would rather
make sense to compare S11 with S12 as a whole, whose QoS equals [d12 + d′

12, low]. Monotonicity would be recovered after
this aggregation, but at the price of postponing the decision. �

To allow for an understandable and agreed management of service orchestrations, monotonicity is required when per-
forming QoS based service binding, negotiation and reconfiguration. The failure to be monotonic is not a pathological
situation for an orchestration, however. It is, indeed, often encountered. The more so when orchestrations are specified
using rich languages such as BPEL or Orc. It is not uncommon that a failure to be monotonic is not easy identifying. Despite
the prevalence of on-line decisions and reconfigurations in the area of composite services, the issue of monotonicity has not
been properly acknowledged in the literature. The only exceptions we are aware of are [21,11,22], where global versus local
QoS optimization is studied—local optimization corresponds to our optimal late service binding.

In this paper we address in a general setting the issues discussed in our running example. By encompassing AES (or
contextual nets) with arbitrary confusion, we handle general orchestrations—we, however, require that executions are all
finite; if not so, evaluating the end-to-end QoS makes no sense. We propose an algebraic framework for QoS generalizing
the calculus developed in our running example. We explain how the end-to-end QoS of an orchestration can be defined and
computed. We study monotonicity by providing conditions ensuring it and counter-measures to overcome the lack of it.

We use AES for our mathematical developments. The notion of AES was introduced in the companion paper [20] and
we recall the corresponding notations in Fig. 2. Our running example was presented using contextual nets. The companion
paper [20] recalls how every contextual net defines an associated AES.

2. QoS domains

In this section we formalize QoS domains. The reader is referred to our running example of Fig. 1, where motivations for
the forthcoming definitions were given:

Definition 2.1. A QoS domain is a tuple Q = (Q ,�,⊕) where:

• (Q ,�) is a complete upper semi-lattice; in other words, (Q ,�) is a partially ordered set such that every subset S ⊆ Q
has a least upper bound denoted by

∨
S . For any S ⊆ Q , we respectively denote by min(S) and by max(S) the set of

minimal, respectively of maximal elements of S .
• (Q ,⊕) is a commutative semi-group with neutral element 0 and such that:

(monotonicity)
(
q1 � q′

1

) ∧ (
q2 � q′

2

) ⇒ (q1 ⊕ q2) �
(
q′

1 ⊕ q′
2

)
(3)

∀q,q′ ∈ Q ∃q′′ ∈ Q : q � q′ ⊕ q′′ (4)

Referring to our motivating discussion: Q is the set in which QoS takes its values; q � q′ is interpreted as “q is better
than (or preferred to) q′”; partial order � gives raise to the least upper bound ∨, interpreted as the worst QoS; operator ⊕
is used to accumulate QoS quanta from causally related events. Examples of QoS domains include:

• Latency or response time: the end-to-end QoS of a configuration gives the accumulated latency d, or “delay” of this
configuration. Corresponding QoS domain is Q = R+ , equipped with

⊕
d = +, and �d is the usual order on R+ . This is

the basic example of QoS metric, which was studied in [19].
• Security level: the QoS domain is (Q s,�s,

⊕
s), where Q s = {high, low} with high �s low,

⊕
s = ∨

s reflecting that a low
security service processing a high security data yields a low security response. More complex partially ordered security
domains can be handled similarly.
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We do not claim that this solves security in orchestrations. It only serves a more modest but nevertheless useful
purpose, namely to propagate and combine security levels of the requested services to derive the security level of
the orchestration. How security levels of the requested services is established is a separate and more difficult issue,
addressed, e.g., by relying on reputation or through the negotiation of security contracts. Here we assume that services
expose this information.

• Reliability: the QoS domain is as for Security level, except that high/low is replaced by nominal/faulty. By equipping this
QoS domain with probability distributions (see the discussion in Section 6), we capture reliability in our setting.

Running Example 6. Running Example 2 uses multi-dimensional QoS, namely latency and security level, considered jointly. So,
for our running example, Q = Q s × Q d equipped with the product order. �

Our model of a QoS domain is very close to the approach of Buscemi and Montanari (2011) [15], Buscemi and Montanari
(2007) [23], De Nicola et al. (2005) [24]. In this set of works, generic QoS is supported through a commutative semi-ring
algebra bearing tight similarities with (Q ,�,⊕)—the only difference is the technical “archimedian” condition (4), which is
used in the study of monotonicity. The cc-pi calculus [23] was proposed to model dynamic service binding with QoS-based
selection and its expressiveness is studied.

3. Performance AES and on-line optimal processes

In this section we develop the framework of Performance AES to model composite service execution with QoS-based
dynamic service binding.

3.1. Performance AES and QoS of configurations

The notion of Performance AES introduced below is a natural framework to relate causality processes with asymmetric
conflict with QoS of service calls, captured by QoS domains introduced in the previous section.

Definition 3.1. A Performance AES (P-AES) is a tuple P = (E,Q, λ0, λ), E is a finite AES, Q= (Q ,�,⊕) is a QoS domain,
λ0 ∈ Q is the initial QoS capturing the activation of the P-AES, and the total function λ : E → Q is the QoS label, which
associates, to each event, a QoS quantum.

Our first task is to relate the end-to-end QoS of the composite service to the QoS label λ attached to each individual
service call. This is captured by the notion of end-to-end QoS of a configuration (see (1) and (2) of our running example),
justified by the following theorem:

Theorem 3.2. Let E be an AES, Q a QoS domain and let λ : E → Q be any given function. Then there exists a unique function
Λ : Conf(E) → Q , called the end-to-end configuration QoS, such that, for any configuration C and any event e:

Λ(∅) = λ0

Λ(C) =
∨

e∈L(C)

Λ
(�e�) if C �= ∅

Λ
(�e�) = λ(e) ⊕ Λ

(�e� \ {e}) (5)

where L(C) denotes the set of maximal events of C for the causality order � of E (the “top layer” of C). Moreover this function satisfies
the following monotonicity property, for C, C ′ any two configurations:

C ⊆ C ′ �⇒ Λ(C) � Λ
(
C ′). (6)

We observe that Λ in Theorem 3.2 is given by two coupled definitions. We thus need to prove that such a definition
makes sense and uniquely defines Λ. The proof is found in Appendix A.1.

Thus, for P = (E,Q, λ) a P-AES, Theorem 3.2 uniquely defines the end-to-end QoS of any configuration C , we denote it
by ΛP (C) in the sequel.

Running Example 7. Running Example 3 discusses, for the different executions that can occur in the orchestration of Fig. 1,
how the end-to-end QoS is computed according to formulas (5). �
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3.2. On-line optimization of the QoS

For X any set and any map ϕ : X → Q , the notation

(min,arg min)
{
ϕ(x)

∣∣ x ∈ X
}

(7)

denotes a Pareto minimum, i.e., any pair (x,ϕ(x)) such that no x′ ∈ X exists with ϕ(x′) ≺ ϕ(x). Pareto minima or maxima are
thus not uniquely defined.

QoS-based service selection is a typical operation in composite services. A straightforward policy is the a posteriori best
service selection, which consists in finding:

(
Qopt(P), Copt(P)

) = (min,arg min)
{
ΛP (C)

∣∣ C ∈ Conf(E)
}

(8)

in the sense of (7). Policy (8) is, however, not appropriate in a dynamic world of services. On-line late service binding is
preferred, which consists in on-line selecting, at run time, one service among the enabled ones, based on its QoS. We thus
abandon policy (8) and replace it by an on-line selection policy with no backtrack, in which a selection among competing
services occurs each time the due information is at hand for this selection to be sound.

Choosing among competing alternatives can only be performed at certain stages of the execution, where the due in-
formation for consistently identifying the possible alternative continuations is available. The CC-configurations introduced
in companion paper [20] identifies the subclass of configurations where such a choice can be properly made. Branching
cells, also introduced in [20], identify the minimal sets of events involved in such a choice. A key result of [20] states
that any maximal configuration C is covered by the branching cells capturing the successive choices made when executing
it: C ⊆ ⊎

n αn; furthermore, its prefixes of the form Cn = C ∩ (
⊎

m�n αm) are the CC-configurations converging to C (the
convergence occurs in finitely many steps).

Thus, in our framework, choosing among competing alternatives consists in extending a CC-configuration by means of a
branching cell and then choosing a maximal configuration of the latter. The procedure we develop next formalizes this—we
used it in our running example of Section 1. Recall that L(C) denotes the set of maximal events of C for the causality order
� of E , i.e., the “top layer” of C :

Procedure 1 (Execution with late service binding). Execute the following loop with initial Data := (∅,∅) in order to maintain the set

ΛP ((C)) =def
{
ΛP

(�e�) ∣∣ e ∈ L(C)
}

for C ∈ CC-Conf(E),

from which the end-to-end QoS of C can be computed by ΛP (C) = ∨
ΛP ((C)):

Data: (C,ΛP ((C))) with C ∈ CC-Conf(E).

1. Select a branching cell α enabled at C in E, i.e., C 	E α;
2. Using recursive formula (5), evaluate ΛP ((C �C ′)) for C ′ ranging over Conf(α), starting from C ′ = ∅, and select a Pareto minimum

(
ΛP (C∗), C∗

) = (min,arg min)
{
ΛP

(
C � C ′) ∣∣ C ′ ∈ Conf(α)

}
.

3. If C � C∗ is a maximal configuration, then stop the loop; else compute ΛP ((C � C∗)) and restart from Step 1 with

Data := (
C � C∗,ΛP ((C � C∗))

)
.

The loop eventually stops when reaching some maximal configuration Cmax and we set

(
Qonline(P), Conline(P)

) =def
(
ΛP (Cmax), Cmax

)
. (9)

Procedure 1 with its formula (9) formalizes QoS-based late service binding and evaluates the resulting end-to-end QoS
for the composite service.

Nondeterminism occurs in Procedure 1 in two distinct places at each round of the loop: in Step 1, when selecting a
branching cell among the several branching cells enabled at C ; and in Step 2, since the Pareto minimum is not unique. The
following result shows that the first kind of nondeterminism at least has little influence on the final result of the procedure.
See a situation in Section 4 and in particular in Theorem 4.5 where both sources of nondeterminism are uncorrelated.

Proposition 3.3. Let C be a maximal configuration selected by Procedure 1. Then for any choice of successive branching cells α in Step 1
of the procedure, there is a corresponding choice in Step 2 of the procedure such that the resulting maximal configuration selected is C .

Proof. Let α be any branching cell selected by Step 1 in the first round of Procedure 1. Proceeding inductively, it suffices
to show that there is some optimization choice in Step 2 that precisely picks Cα = α ∩ C as optimum. Since α is selected
at Step 1, α is an initial branching cell of E . of C , and thus is selected at some round, say n, of Step 1 in the loop that
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produces C . By hypothesis, Cα = α ∩ C is selected as a Pareto minimum inside branching cell α in Step 2 of the same
round n of the loop. The local form (5) of the function Λ then shows that the very same Cα is a valid candidate for the
Pareto optimum in Step 2 of the first Round of the original loop, which proves the lemma. �

Despite Proposition 3.3, nondeterminism still arises in formula (9), due to the nonuniqueness of the Pareto minimum
in step 2. Indeed, formula (9) nondeterministically selects a candidate among a subset of QoS values. Remark that the a
posteriori best selection service given by the optimization problem (8) is also nondeterministic, for the same reason that
minimal elements are not uniquely defined.

Running Example 8. The discussion of Running Example 3 illustrates how late service binding according to Procedure 1 is
performed in our running example, when choosing between the two services S11 and S12. �
3.3. Comparing on-line and off-line best services

Since the a posteriori optimization problem (8) contrasts with the on-line selection service given by Procedure 1, we
shall call it in the sequel off-line optimization problem. The comparison between off-line and on-line optimization services is
a natural question.

To compare subsets of QoS values, for X, X ′ ⊆ Q , say that

X ≺ X ′ if ∀q∈X,∃q′∈X ′ such that q � q′

X ≺ X ′ if ∀q′∈X ′,∃q∈X such that q � q′ (10)

(Note the two distinct cases.) Using notation (10) the following holds:

Proposition 3.4. For any P-AES P , Qopt(P) ≺Qonline(P) holds.

Proof. By definition of Qopt(P), we have Qopt(P) ≺ {ΛP (C) | C ∈ Conf(E)}. The result follows by observing that
Qonline(P) ⊆ {ΛP (C) | C ∈ Conf(E)}. �

Finally, the a posteriori worst case end-to-end QoS will also be useful considering (we are not interested in the argument
of the maximum):

Qworst(P) = max
{
ΛP (C)

∣∣ C ∈ Conf(E)
}
. (11)

4. The issue of monotonicity

A basic assumption underpinning the management of composite services is that QoS improvements in the called services
can only be better for the composite service. We refer to this as the monotonicity property. Unfortunately, monotonicity is
by no means a trivial assumption when late service binding is considered. Observe that Procedure 1 differs from Belmann
dynamic programming [25]: the latter is a backward incremental computation of (8), whereas Procedure 1 proceeds forward
by short horizon decisions, which may impair monotonicity. In this section we study conditions by which monotonicity still
holds under on-line service selection in Procedure 1, we call this property on-line monotonicity. This notion was first noticed
in [17,19]. The issue of monotonicity was discussed in Running Example 4.

To formalize this concept we need some further notations. Fix an AES E and a QoS domain Q. For λ,λ′ : E → Q two QoS
labels, write λ� λ′ if and only if, for every e ∈ E , λ(e)� λ′(e) holds. Monotonicity will depend on both structural conditions
on the underlying AES and on the set L of allowed QoS labels λ : E → Q .

Definition 4.1 (On-line monotonicity). Let (E,Q,L) be a triple consisting of an AES E , a QoS domain Q, and a set L of allowed
QoS labels. Using the notation introduced in (10), say that (E,Q) is on-line monotonic if, for any two P-AES P = (E,Q, λ0, λ)

and P ′ = (E,Q, λ′
0, λ

′) such that λ,λ′ ∈ L,

λ0 � λ′
0

λ � λ′
}

�⇒ Qonline(P) ≺ Qonline
(
P ′) (12)

Definition 4.1 expresses that improving the QoS labels of each event improves the end-to-end QoS of the P-AES. The
following result follows directly from the properties of QoS domains:
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Lemma 4.2. Using the notations introduced in Definition 4.1, if λ0 � λ′
0 and λ� λ′ then:

Qopt(P) ≺ Qopt
(
P ′)

Qworst(P) ≺ Qworst
(
P ′) (13)

Proof. By definition of Qopt(P), we have Qopt(P) ≺ {ΛP (C) | C ∈ Conf(E)}. By monotonicity of λ �→ ΛP (C) for any fixed
maximal configuration C and P associated to λ, we get {ΛP (C) | C ∈ Conf(E)} ≺ {ΛP ′ (C) | C ∈ Conf(E)}. On the other
hand, {ΛP (C) | C ∈ Conf(E)} ≺ Qopt(P ′). Chaining these three ≺-inequalities yields the second inequality of (13). Similarly,
by definition of Qworst(P ′), we have {ΛP ′ (C) | C ∈ Conf(E)} ≺ Qworst(P ′), and the rest of the former argument can be
repeated, mutatis mutandis. �

Lemma 4.2 expresses that “off-line monotonicity” always holds. In contrast, due to the short horizon decision, Proce-
dure 1 may not guarantee (12); see Running Example 2 in the introduction for a counterexample. The following theorem
provides a first criterion for on-line monotonicity:

Theorem 4.3. (E,Q,L) is on-line monotonic if, for any initial QoS λ0 and any QoS label λ ∈ L, applying Procedure 1 to the P-AES P
defined by λ, always returns a Pareto optimum for (8).

Proof. A direct consequence of Lemma 4.2. �
The forthcoming Theorem 4.5, has the advantage of stating a structural condition on the AES involved. It is convenient to

introduce first a definition:

Definition 4.4. Let Q be a QoS domain, and let λ : E → Q and λ′ : E ′ → Q be two mappings where E and E ′ are two AES.
A mapping ψ : E → E ′ is an isomorphism of labeled AES between (E, λ) and (E ′, λ′) whenever:

1. ψ is a bijection, and for all e1, e2 ∈ E , one has e1 � e2 ⇐⇒ ψ(e1)� ψ(e2) and e1 ↗ e2 ⇐⇒ ψ(e1) ↗ ψ(e2); and
2. λ′ ◦ ψ = λ.

We say that (E, λ) and (E ′, λ′) are isomorphic labeled AES if there exists such an isomorphism ψ : E → E ′ .

Theorem 4.5. The following condition is sufficient for (E,Q,L) to satisfy the condition of Theorem 4.3, and hence to be on-line
monotonic:

For any labeling function λ ∈ L, for any C ∈ CC-Conf(E),

for any branching cell α enabled by C, and for any two maximal

configurations W , W ′ ∈ Conf(α), the futures EC�W and EC�W ′

equipped with the restrictions of λ to EC�W and to EC�W ′

respectively, are two isomorphic labeled AES. (14)

The proof is found in Appendix A.2.

Remark 1. Structural condition (14) is very natural if AES E is the unfolding of a safe contextual Petri net1 In this case, every
branching cell is folded as a subset of some cluster—recall that clusters are minimal subsets of transitions t and places p of
the net satisfying

∀t ∈ c �⇒ •t ⊆ c

∀p ∈ c �⇒ p• ⊆ c

∀p ∈ c �⇒ {
t ∈ T | ◦t � p

} ⊆ c (15)

where •n and n• are the preset and postset of node n and ◦t is the context of transition t , see [8]. The structural condition
is in particular satisfied if all clusters c of this net are such that, for any two transitions t1 �= t2 belonging to c, t•

1 = t•
2 holds.

For this case of contextual net unfoldings, the condition λ◦ψ = λ from Definition 4.4 expresses that QoS labels are attached
to transitions, a very natural condition. �

1 It is more natural to consider the case of nets when discussing condition (14). The reader is referred to Appendix B of companion paper [20] for an
account on the unfolding of contextual nets.
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It is shown in [19] that, for the particular case where the QoS is the response time (and under a mild condition on L),
the conditions of Theorem 4.5 are also necessary.

5. Enforcing monotonicity

Theorem 4.5 provides guidelines regarding how to enforce monotonicity. We illustrate this using our running example of
Section 1.

One way of enforcing monotonicity is by invoking Theorem 4.5. Aggregate the two successive transitions a12 and b12,
which capture the call and response of service S12, respectively. The resulting P-AES satisfies the condition of Theorem 4.5
and thus is on-line monotonic. This was the counter-measure proposed in Running Example 5.

An alternative to the above procedure consists in not modifying the orchestration but rather changing the QoS evaluation
procedure. Referring again to Fig. 1, isolate the part of the workflow that is a source of non-monotonicity, namely the subnet
collecting the events a11,a12,b12. For this subnet, use pessimistic formula (11) to get a pessimistic but monotonic bound
for the QoS of this subnet. For this example, the pessimistic bound is equal to

[
max

(
d11,d12 + d′

12

)
,max(high, low)

]
.

We then plug the result in the evaluation of the QoS of the overall orchestration, by aggregating the isolated subnet into a
single transition ab12, with this QoS increment.

The above two procedures yield different results. By aggregating service calls performed in sequence, the first procedure
delays the selection of the best branch. The second procedure does not suffer from this drawback. In turn, it results in a
pessimistic evaluation of the end-to-end QoS. Both approaches restore monotonicity.

6. Conclusion

By allowing service calls to be guarded by contexts, Asymmetric Event Structures and contextual nets are a convenient
framework to model composite Web services or service orchestrations. We have proposed to equip AES with QoS domains
as a framework to capture a number of QoS metrics and their combination. We used the resulting model to formalize
QoS-based late service binding in composite services. Branching cells of AES played a central role in this formalization
by localizing choices in a precise way. When subject to QoS-based late service binding, composite services may be non-
monotonic with respect to QoS, meaning that strictly improving the QoS of a service may strictly decrease the end-to-end
QoS of the composite service, an embarrassing feature for QoS-aware management; we provided sufficient conditions en-
suring monotonicity and guidelines for enforcing it.

Now, the QoS offered by services is typically varying and subject to uncertainty. Our framework is prepared for a prob-
abilistic extension dealing with uncertainty, see [17] for an informal presentation of this. By identifying all sources of
nondeterminism and then randomizing them, all results developed here extend to the probabilistic setting. This probabilis-
tic extension is essential to capture reliability as proposed in Section 2.

This theoretical investigation paves the way to provide formal support for the separation of concerns in the management
of composite services. It would be desirable to see function and QoS as two cross-cutting “aspects” of a composite service.
Each aspect should be developed separately using a “minimal” specification of the interaction with the other aspect. Weaving
these two aspects should return the program specifying the QoS-enhanced composite service. Our generic model of QoS
domain should get instantiated for each QoS metric of interest, using a library of predefined QoS classes. A subset of the
authors has started the development of a framework supporting all of this on top of the Orc language developed by the
team of J. Misra [7], this development will be reported elsewhere.

Appendix A. Missing proofs

A.1. Proof of Theorem 3.2

The proof is by induction on the height of a configuration, using the following explicit construction:

1. For C ∈ Conf(E), we define the height τ (C) ∈N of C as the longest length of a causality chain in C .
2. For n � 0 we set Cn = {C ∈ Conf(E) | τ (C) � n}.
3. We define by induction the sequence (Λn)n�0 of mappings Λn : Cn → Q :

∀n � 0: Λn(∅) = λ0

∀n � 0, ∀C ∈ Cn+1: Λn+1(C) =
∨

e∈L(C)

(
λ(e) ⊕ Λn

(�e� \ {e}))

4. Finally we put, for C ∈ Conf(E):

Λ(C) = Λτ(C)(C). (A.1)
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Lemma A.1. Let C ∈ Conf(E) and n = τ (C). Then Λp(C) = Λn(C) for all integer p � n. Thus, we have, for any configuration C and
any integer n:

n � τ (C) �⇒ Λ(C) = Λn(C). (A.2)

Proof. It suffices to prove by induction on integer n � 0 the following property:

(Hn): ∀C ∈ Conf(E) ∀p ∈N τ (C) = n ∧ p � n ⇒ Λp(C) = Λn(C).

The property is obvious for n = 0. Assuming (Hn) holds, let C ∈ Conf(E) and p be an integer such that τ (C) = n + 1 and
p � n + 1. Then for any e ∈ L(C), we have that τ (�e� \ {e}) � n, and since p − 1 � n, it follows from (Hn) that Λp−1(e) =
Λn(e). By definition of Λp and of Λn+1, we calculate thus as follows:

Λp(C) =
∨

e∈L(C)

(
λ(e) ⊕ Λp−1

(�e� \ {e}))

=
∨

e∈L(C)

(
λ(e) ⊕ Λn

(�e� \ {e})) = Λn+1(C),

completing the proof of the induction. �
Lemma A.2. The function Λ defined above by Λ(C) = Λτ(C)(C) satisfies formulas (5).

Proof. Easy using (A.2) and the inductive definition of (Λn)n�0. �
Lemma A.3. The function Λ satisfies, for any two configurations C and C ′:

C ⊆ C ′ �⇒ Λ(C) � Λ
(
C ′). (A.3)

Proof. By induction over τ (C). �
Proof of Theorem 3.2. The existence follows from Lemmas A.2 and A.3. For the uniqueness, prove by induction over τ (C)

that, for any Λ satisfying (5), then Λ(C) = Λn(C) for all C ∈ Conf(E) of height � n. �
A.2. Proof of Theorem 4.5

Proof of Theorem 4.5. We first observe that, if C and C ′ are two maximal configurations of E , their coverings by branch-
ing cells given by Theorem 3.7 of companion paper [20] have the same cardinality, and can be ordered respectively as
{α1, . . . ,αn} and {β1, . . . ,βn}, in such a way that, for all i = 1, . . . ,n, when αi and β i are equipped respectively with the
restrictions λ|αi and λ|β i

, then (αi, λ|αi ) and (β i, λ|β i
) are isomorphic AES.

The proof is thus by induction on the length n of the above coverings:

Induction hypothesis: Theorem 4.5 holds for a covering length � n − 1.

Let C = W C
1 � W C

2 � · · · � W C
n be any maximal configuration of E together with its decomposition according to Theorem 3.7

of companion paper [20], and let {αC
1 , . . . ,αC

n } be the corresponding covering by branching cells. Recalling that L(W C
1 )

denotes the set of maximal events of W1 for the causality order � of E , restrict E to E1,C =def L(W C
1 ) � E W C

1 and then
equip E1,C with λ1

0 = 0 and λ1(e) = λ(e), except for e ∈ L(W C
1 ) for which we set λ1(e) = ΛP (�e�). Denote by P1 the

resulting P-AES.

Lemma A.4. The following hold, for C ∈ Conf(E):

1. By (14), the P-AES (E1,C , λ|E1,C ) are all isomorphic;
2. By Theorem 3.2, ΛP1 (C |E1,C ) = ΛP (C);

3. The induction hypothesis holds for the futures (E W C
1 ,Q,L|

E W C
1
).

Applying Lemma A.4 for C = Cmax a maximal configuration constructed by Procedure 1, we complete the proof by
contradiction. Assume that Cmax is not Pareto optimal for (8). Then, there exists a maximal configuration C of E such that
ΛP (C) ≺ ΛP (Cmax). Hence, at least one of the following two cases must occur:
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1. ΛP (C |αC
1
) ≺ ΛP (Cmax|αCmax

1
), which would contradict step 2 of Procedure 1;

2. Hence, by property 2 of Lemma A.4, ΛP (C |
E W C

1
) ≺ ΛP (Cmax|

E W Cmax
1

) must hold, which would contradict properties 1

and 3 of Lemma A.4.

This completes the proof of Theorem 4.5. �
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