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a b s t r a c t

In Kanazawa (1998) [1], the learnability of several parameterized families of categorial
grammar classes was studied. These classes were shown to be learnable in the technical
sense of identifiability in the limit from positive data. They are defined in terms of bounds
on parameters of the grammars which intuitively correspond to restrictions on linguistic
aspects, such as the amount of lexical ambiguity.

The time complexity of learning these classes has been studied in Costa Florncio
(2003) [2]. It was shown that, for most of these classes, selecting a grammar from the
class that is consistent with given data is NP-hard. In this paper existing complexity results
are sharpened by demonstratingW[2]-hardness. Additionally, parameters are defined that
allow FPT-results; roughly, this implies that if these parameters are fixed, these problems
become tractable.

We also define the new family Gk-sum-val, which is natural from the viewpoints of
Parameterized Complexity, a flourishing area of Complexity Theory (see Downey and
Fellows (1999) [3]) and from Descriptional Complexity, a sub-area of Formal Language
Theory (see Holzer and Kutrib (2010) [4]). We prove its learnability, analyze its relation
to other classes from the literature and prove a hierarchy theorem.

This approach is then generalized to a parameterized family defined in terms of a
bound on the descriptional complexity expressed as a Hölder norm.We show that both the
hierarchy result and the property of finite elasticity (and thus learnability) are preserved
under this generalization.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Weconsider the complexity of consistency problems for some family (Lk) of language classes ordered by inclusion,which
is of the following form: given a finite language sample D and some parameter k, is there some language L ⊇ D contained
in Lk?

This question shows up quite naturally in the context of (consistent) learning from text (details can be found below); the
corresponding learning algorithms are often expressed as starting from a finite set D of input strings, and the very first task
is to find a grammar from the target class that is consistent with D.

For many families of language classes, this type of consistency problem is trivial. Consider for example the class Ak of
languages that can be accepted by a finite automaton with at most k states. In this case we can always answer YES to the
consistency problem, since an automaton exists that accepts Σ∗.1

∗ Corresponding author. Tel.: +31 205255359.
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1 Such an automaton consists of just one state, which is accepting, and a transition for every element in Σ which loops back to this state.
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However, this trivial type of reply is no longer possible if the universal language (i.e.,Σ∗ in the case of string languages) is
not an element of each of the language classes of interest. Examples are provided by classes of classical categorial grammars;
see [1].

The language families Lk are usually defined via grammar families Gk. As a variant of thementioned consistency problem,
wemay be given a finite set of derivation structures and someparameter k and ask if there is a grammarG ∈ Gk that produces
those structures (and possibly more). Note that this can also be seen as a special case of the first problem formulation, if we
consider languages of structures (formally, labeled ordered trees).

We study the computational complexity of consistency problems both from a classical (P vs. NP) perspective, as well as
from the perspective of parameterized complexity. As far as the authors are aware, we have obtained the first such results
for grammar induction problems and, more generally, learning problems in the identification in the limit paradigm.2

Apart from these complexity results, we also introduce a new family of categorial grammars, based on the so-called sum-
value of a categorial grammar (to be defined in the next section) which is interesting in its own right, since it constitutes
a new strict hierarchy of categorial language classes, where each level is learnable from positive examples. We generalize
this and other classes to a parameterized family defined in terms of a bound on the descriptional complexity expressed as a
Hölder norm. Using elementary mathematical properties of Hilbert spaces, we demonstrate that both the hierarchy result
and the property of finite elasticity (and thus learnability) are preserved under this generalization. Such a ‘transfer’ result
has been hitherto unknown for the setting of learning from positive data.

Thus the new results presented in this paper fall within and bridge three areas of research:

• Complexity Theory (more specifically, both classical aspects and aspects of Parameterized Complexity),
• Formal Languages (in particular, touching the sub-areas of Descriptional Complexity and classical questions as hierarchy

theorems and algorithmic questions),
• and Learning Theory (primarily, Inductive Inference and Grammatical Inference).

Moreover, since categorial grammars are mainly studied within computational and mathematical linguistics, our results
may be especially relevant for researchers from these fields.

In order to keep the paper as self-contained as possible, wewill try to provide the necessary background of all the relevant
fields. Readers familiar with this material can of course skip these sections.

Throughout the paper, we use standard notation from Formal Language Theory. For example, Σ∗ is the set of all words
over the alphabet Σ , including the empty word ε. Any element from Σ∗ is called a word or a string. The length of a word w
is denoted by |w|. If D is a finite language, then ∥D∥ denotes the sum of all lengths of all words from D.

Previous paper versions. A part of this paper appeared in [7], covering only parameterized complexity results for the
consistency problem of the family of (structure) languages of categorial grammars of bounded max-value. The hierarchy
result and the results concerning the Hölder norm bound approach were first presented in [8]. Due to space restrictions,
many proofs and claims were omitted in these conference papers.

2. Categorial grammars—definitions and examples

The classes studied in [9,10] which are also the focus of the present paper are based on a formalism for (ε-free) context-
free languages called classical categorial grammar (CCG). In this section the relevant concepts of CCG will be defined.3 We
will use the same notation as found in [1].

In CCG, each symbol (or atom) in some given alphabetΣ is assigned a finite number of types. In the remainder, we assume
Σ to be fixed. This is technically convenient, and makes no difference in the context of learning, since only the subset of
Σ that actually appears in the data is relevant for the learner. Types are constructed from primitive types by the operators
\ and /. We let Pr denote the (countably infinite) set of primitive types. The set of types Tp is defined as the smallest set
satisfying:

1. Pr ⊆ Tp,
2. if A ∈ Tp and B ∈ Tp, then A\B ∈ Tp,
3. if A ∈ Tp and B ∈ Tp, then B/A ∈ Tp.

Onemember t of Pr is called the distinguished type, and is considered a constant. In CCG there are only twomodes of type
combination, backward application, A, A\B⇒ B, and forward application, B/A, A⇒ B. In both cases, type A is the argument,

2 The paper [5] deals strictly with the parameterized complexity of several flavors of exact learning of CNF/DNF formulas and certain types of graph
learning problems.

Another relevant paper, [6], appeared after thepublication of our first results in [7]. Amongother things, it demonstratesW[1]-hardness of the consistency
problem for the non-erasing pattern languages.
3 It is worth mentioning that the first paper on CCG [11] considerably pre-dates those on Chomsky-type grammars which are much better known in

Computer Science.
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Fig. 1. Parsing with categorial grammars.

the complex type is the functor.4 Given an expression of the form A/B (B\A), its main operator is ‘/’ (‘\’). Grammars consist
of type assignments to symbols, i.e., symbol → T , where symbol ∈ Σ and T ∈ Tp. A CCG G can be hence viewed as a
mapping from Σ into finite subsets of types Tp.

Definition 1. A derivation of B from A1, . . . , An is a binary branching, labeled tree that encodes a proof of A1, . . . , An ⇒ B.

Let Tp(G) denote the set of types that occur in a CCG G. A type from Tp(G) is called useless if it does not appear in any
derivation of G. A grammar is called reduced if it contains no useless types, see [1]. The types appearing in the definition of a
CCG are also called the range of the grammar. This should not be confused with the range of a type: the range of A/B (B\A)
is A, its domain is B.

Through the notion of derivation the association between grammar and language is defined. All structures contained in
some given structure language correspond to a derivation of type t based solely on the type assignments contained in a given
grammar. This is the structure language generated by G, denoted FL(G). The string language generated by G, L(G), consists of
the strings corresponding to all the structures in its structure language, where the string corresponding to some derivation
consists just of the leaves of that derivation (also known as the yields).

The symbol FL is an abbreviation of functor-argument language, the derivation language generated by a CCG that is
obtained by suppressing types associated to inner nodes in the derivation (tree). Hence, structures correspond to terms.
More precisely, structures are of the form symbol, fa(s1,s2) or ba(s1,s2), where symbol ∈ Σ , fa stands for forward
application, ba for backward application and s1 and s2 are also structures. The set of all functor-argument structures over
the alphabet Σ is denoted by ΣF .

Note that structure languages as defined above are in fact regular tree languages. Thus the issues discussed in this paper
could be relevant to the topic of learning (regular) tree languages, but we will not pursue this further here.

Example 2. The top left structure in Fig. 1 is a derivation for a proof of

np, np\(t/np), np/n, n/n, n⇒ t.

Note that all tree nodes carry types as labels, and that to inner nodes, in addition, labels BA and FA are associated, which
indicate the operations applied at those points in the derivation.
The top right structure shows a CCG parse, which is a derivation where the leaves are labeled not just with types, but also
with the lexical items (such as John) that these types are assigned to in the grammar used for the parse. At the bottom, the
corresponding functor-argument structure is shown.

Classical categorial grammar can be extended to (various variants of) general combinatory grammars by introducing
additional operators such as Forward Composition (A/B, B/C ⇒ A/C) or Forward Crossing Composition (A/B, C\B⇒ C\A).
These are linguistically motivated, and allow both a more flexible interface between surface structure and semantics, and
extend the expressive power to mild context-sensitivity. Refer to [13,14] for an overview.5

4 According to an alternative convention that is sometimes found in the literature, A\B is used where wewrite B\A. We follow the original notation from
[12].
5 In addition to the classical/combinatorial approach, there also exists a type-logical approach to categorial grammar. This falls outside the scope of this

paper, the interested reader is referred to [15] for a survey, and to [16,17] for learnability results for classes of type-logical categorial grammars.
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All learning functions in [1] are based on the function GF. This function receives a sample of structures D as input
and yields a set of assignments (i.e., a grammar) called the general form as output, which generates exactly D. It is a
homomorphism and runs in linear time. GF assigns t to each root node, assigns distinct variables to the argument nodes,
and computes types for the functor nodes: if it is the case that s1 → A, given ba(s1,s2)⇒ B, then s2 → A\B. If s1 → A,
given fa(s2,s1)⇒ B, then s2 → B/A. When learning from strings, the structure language is not available to the learner,
but given a set of strings there exist only finitely many possible sets of structures for the classes under discussion. These are
then used to produce hypotheses.

Categorial types can be treated as terms, so natural definitions of substitution and unification apply. A substitution over
a grammar is just a substitution over all of the types contained in its assignments. This notion can be used to unify distinct
types assigned to the same word. Consider, for example, the following grammar, which the reader can verify generates just
the words ab, ba and babb:

G = a → t/A, B\t, C/(E/E), (C/D)/D
b → A, B, t/C,D, (E/E)/D.

The types t/A and C/(E/E) can be unified to yield the single type t/(E/E), obtained by applying the most general unifier
σ = {C ← t, A← (E/E)}. The type B\t cannot be unifiedwith any of the other types, since they all have ‘/’ asmain operator,
while B\t has ‘\’ as main operator. The types t/A and (C/D)/D cannot be unified because their functors are a constant and
a complex type, respectively. Finally, C/(E/E) and (C/D)/D cannot be unified because this would fail the so-called occurs
check: it would require that C is unified with C/D, which would result in a cyclic term.

We state without proof that FL(G) ⊆ FL(σ [G]) for each substitution σ , see [1] for details.
A CCG G can be viewed as amapping fromΣ into finite subsets of types Tp. Accordingly, we can associate a value function

vG thatmaps a ∈ Σ onto |G(a)|, i.e., the number of types thatGmaps to a. If clear fromcontext, the indexGwill be suppressed.
As discussed in [18], at least twonatural sizemeasures can be derived from v, depending on the chosenmetric: themax-value
of G is maxa∈Σ v(a), while the sum-value of G is


a∈Σ v(a). A categorial grammar G is called k-max-valued (k-sum-valued,

respectively) if its max-value (sum-value, respectively) is upper-bounded by k. The according grammar classes are denoted
by Gk-max-val and Gk-sum-val, resp. In the literature [2,1], k-max-valued grammars are also known as k-valued grammars, and
1-max-valued grammars are also known as rigid grammars, and denoted as Grigid. This class is known to be learnable from
structures with polynomial update-time, by simply unifying all types assigned to the same symbol in the general form [1].
The other classes originally defined in [9,10] are generalizations of this class. The k-sum-valued class has not been studied
before.

The languages that can be described with k-max-valued (k-sum-valued, resp.) grammars are comprised in the classes
Lk-max-val (Lk-sum-val, resp). The structure languages that can be generated by grammars from Gk-max-val and Gk-sum-val, resp.,
are written FLk-max-val and FLk-sum-val, resp.

One more class discussed in [1] that we need to define is that of the least cardinality grammars, denoted by Gleast-card. A
grammar of least cardinality with respect to L is a partial function fromΣ to Tp+ such that L ⊆ FL(G) and there is no grammar
G′ such that


a∈Σ vG′(a) <


a∈Σ vG(a) and L ⊆ FL(G′).

The following two propositions concern the relations between Gk-sum-val and the other classes. They follow directly from
the definitions:

Proposition 3. In the case that k = |Σ |, Gk-sum-val ⊇ Grigid.

Observe that a grammar that assigns zero types to a and two types to b is 2-sum-valued, but not rigid.

Proposition 4. If a given sample D of a structure language is not a subset of any language in FL(k−1)-sum-val, but is a subset of
some language in FLk-sum-val, then {G | G ∈ Gk-sum-val,D ∈ FL(G)} = {G | G is of least cardinality w.r.t. D}.

For the intuition behind these definitions, we quote Buszkowski and Penn [10]:

Following the general methodological principle of economy, we look for a simplest possible description of the initial
data; simplicity may be interpreted here as minimization of the number of different types assigned to each atom.

3. Learning from positive samples

In [19] the notion of identification in the limit was introduced. In this model a learning function sees an infinite sequence
which enumerates the target language, called a text, and hypothesizes a grammar for the target language at each time-step. A
class of languages is called learnable if and only if there exists a learning function that, after a finite number of presentations,
guesses the right language on every text for every language from that class and does not deviate from this hypothesis.

Research within this framework is known as (formal) Learning Theory. Only those aspects of Learning Theory that are
relevant to our result will be discussed, see [20] for a comprehensive overview of the field.

Many different variants of the paradigm have been studied, amongst them the learning of indexed families of computable
languages, i.e., learning in the presence of a uniform decision procedure for languages in the class (see [21]). This is a natural
assumption when studying grammar induction, and we will assume it in the remainder of this paper.
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Let the setΩ denote the hypothesis space, which can be any class of finitary objects. In the context of this paper,members
ofΩ are called grammars. The set S denotes the sample space, a recursive subset ofΣ∗ or ofΣF for some fixed finite alphabet
Σ . Elements of S are called words in the first case, subsets of S are then called languages. Elements of S are called structures
in the second case, subsets of S are then called structure languages. The naming function L maps elements of Ω to subsets of
S. If G is a grammar in Ω , then L(G) is called the language generated by (associated with) G. The universal membership problem
takes as input a word and a grammar and asks if that word belongs to the language generated by the given grammar.

A triple ⟨Ω, S, L⟩, with Ω , S and L as described above, is called a grammar system.6 A class of grammars is generally
denoted by G, a class of languages is denoted by L.

The class of all categorial grammars is denoted CatG, the grammar systems under discussion are hence ⟨CatG, ΣF, FL⟩
and ⟨CatG, Σ∗, L⟩.

We will adopt notation from [1] and let FL denote a class of structure languages. The corresponding naming function is
FL(G). Learning functions are written as ϕ.

The setting of learning from structures is closely related to learning from meaning, i.e., from strings together with their
semantic types. This is outside the scope of this paper, the interested reader is referred to [23,24].

Identifiability in the limit of a class guarantees the existence of a learning algorithm, but the learning problem is not
necessarily tractable. In order to obtain a usable algorithm, further constraints on the learner need to be specified. Ideally we
would use some notion of polynomial identification in the limit. There are several around, but they are all of a somewhat ad-
hoc nature. Yokomori [25] defines a class as polynomial-time identifiable in the limit from positive data if a learning algorithm
for that class exists such that both the number of explicit errors of prediction and the computation time it needs for any data
sequence are bounded by polynomials over the complexity of the representation.

Obviously, this kind of definition implies that it must be possible to produce a hypothesis that is consistent with the data
(and belongs to a given class) in polynomial time, this property is known as polynomial update-time. There seems to be some
consensus that this is an important property for efficient learnability, but see [26,27]. Given the class C , we will denote this
problem as C-consistency.

Note, however, that NP-completeness of C-consistency does not exclude the existence of a learning algorithm for C
that is in some sense efficient. It is theoretically possible that in such a case there exists a learning algorithm that runs in
polynomial time whenever it converges on the data set, and trades efficiency for consistency before convergence.

A language class L is said to have infinite elasticity (see [28–30]) if there exists an infinite sequence (wn) of words and an
infinite sequence (Ln) of languages in L such that, for all n ∈ N, wn /∈ Ln, but {w1, . . . , wn} ⊆ Ln+1. A language class L has
finite elasticity if it does not possess infinite elasticity. If ⟨Ω, S, L⟩ is a grammar system and G is a recursively enumerable
subset of grammars from Ω , then the family of languages L(G) = {L(G) | G ∈ G} is learnable (identifiable in the limit) if it
has finite elasticity.

The language families that we defined in the preceding section are particularly interesting from the point of view of
Learning Theory. They provide non-trivial examples of language families with finite elasticity, so that we can state:

Theorem 5. Families from both the hierarchies Lk-sum-val and FLk-sum-val have finite elasticity.

Proof. The maximum number of types that can be assigned to any symbol in a k-max-valued grammar is k. Thus,
Gk-sum-val(Σ) ⊂ Gk-max-val(Σ), and Lk-sum-val(Σ) ⊆ Lk-max-val(Σ).

Since Lk-max-val is known to have finite elasticity for every k, every subclass, including Lk-sum-val, has finite elasticity (for
every k), and is thus learnable.

An analogous argument can be given for FLk-sum-val. �

Corollary 6. Both families from the hierarchies Lk-sum-val and FLk-sum-val are identifiable in the limit.

4. Formal language results

The following hierarchy result was demonstrated in [1] (Theorem 5.5):

Theorem 7. For any k ≥ 1, Lk-max-val ( L(k+1)-max-val.

The analogous result for FLk-max-val follows directly from the definition of the class.
We complement this result by showing:

Theorem 8. For any k ≥ 1, Lk-sum-val ( L(k+1)-sum-val.

Note that the proof of this theorem is quite unusual, since it heavily relies on the finite elasticity property that was
originally defined for Learning Theory purposes.

6 This notion should not be confused by that of a grammar system as defined in [22].
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Proof. This proof somewhat resembles the proof of the hierarchy theorem for Lk-max-val. It is possible to provide a simple
proof based on the relationship between Lk-sum-val and Lk-max-val, but we prefer to give a constructive proof since it provides
more insight and proves a hierarchy theorem for the corresponding class of structure languages as well.

By definition, Gk-sum-val ⊂ G(k+1)-sum-val, which immediately implies the inclusion Lk-sum-val ⊆ L(k+1)-sum-val. It remains to
show its strictness, i.e., that L(k+1)-sum-val − Lk-sum-val ≠ ∅.

In the case that k = 2, the grammar a → A, t/A is in Gk-sum-val, and thus the language {aa} is in Lk-sum-val. In the case that
k = 1, only grammars of the forma → t are in the class, so only languages of the form {a} are in Lk-sum-val. This demonstrates
that L(k+1)-sum-val − Lk-sum-val ≠ ∅ for k = 1.

It remains to show that L(k+1)-sum-val − Lk-sum-val ≠ ∅ for k ≥ 2. Let Ln = {ai | 1 ≤ i ≤ n}, and Liac = {Ln | n ∈ N+}. Note
that Liac is an infinite ascending chain, so, since Lk-sum-val has finite elasticity (Theorem 5), for any fixed k, Liac ⊈ Lk-sum-val.
Thus, there exists an n ∈ N such that Ln /∈ Lk-sum-val. We will show that for the least such n, Ln ∈ L(k+1)-sum-val.

Let Gn be a k-sum-valued grammar such that L(Gn) = Ln.7 There must exist a type A ∈ range(Gn)− Pr such that A is not
a proper subtype of any type in range(Gn). Let B = (. . . (t/ A)/ . . .)/A  

n

, and let Gn+1 = Gn ∪ {⟨a, B⟩}. We will now show that

L(Gn) = Ln.
The range of B can only be t . Since B is not the proper subtype of any type in range(Gn+1), the only derivation that can yield

type B consists of just a leaf, and this type is assigned to a in Gn. Therefore, there exists a derivation proving B, A . . . A  
n

⇒ t ,

and Gn+1 allows a CCG parse corresponding to this derivation. The yield of the parse is an+1, and since B is not a proper
subtype of any type in the range of Gn+1, the only other derivations that Gn+1 allows are exactly the derivations that Gn
allows. Thus L(Gn+1) = L(Gn) ∪ {an+1} = Ln. �

From this proof it immediately follows that:

Theorem 9. For any k ≥ 1, FLk-sum-val ( FL(k+1)-sum-val.

5. Hölder norms

The bounds defining the k-max-valued and k-sum-valued classes are in fact special cases of Hölder norms. These are of

the form ∥ x⃗ ∥p= p
n

i=1 |xi|p for x⃗ = (x1, . . . , xn) ∈ Rn and p ≥ 1. For p = 1, this is the sum norm bound, for p→∞ this
is the maximum norm bound, and for p = 2 we obviously obtain the Euclidian distance bound.

Proposition 10 (Folklore). 1. ∥ x⃗ ∥∞≤∥ x⃗ ∥p for any p ≥ 1.
2. For 1-dimensional spaces, ∥ x⃗ ∥∞=∥ x⃗ ∥p for any p ≥ 1.

Thus, a natural question presents itself: do learnability and hierarchy theorems hold for every class of CCGs defined in
terms of Hölder norms? Let GH(k,p) collect those grammars G which satisfy ∥ v⃗(G) ∥p≤ k. We write LH(k,p) and FLH(k,p) for
the corresponding string- and structure languages. Recall that we assume the alphabetΣ to be fixed. By definition, we have:

Lemma 11. For every k, p ≥ 1, GH(k,p) ⊆ GH(k+1,p).

Proposition 10 (1) entails, completely analogous to Theorem 5:

Theorem 12. Let p ≥ 1. Families from both the hierarchies LH(k,p) and FLH(k,p) have finite elasticity.

Theorem 13. For every k, p ≥ 1, LH(k,p) ( LH(k+1,p).

Proof. From Lemma 11, it immediately follows that LH(k,p) ⊆ LH(k+1,p). Since the strictness (for the case p = 1) was shown
in Theorem 8 by a unary example, based on the finite elasticity of that class, Proposition 10 (2), together with Theorem 12
yield the claim. �

From this proof, it immediately follows that:

Theorem 14. For every k, p ≥ 1, FLH(k,p) ( FLH(k+1,p).

More generally, if Lk now denotes any language class that has finite elasticity and whose definition is obtained by
restricting the L∞ norm of some vector v⃗(G) associated to some grammar G for L ∈ Lk, then, for any p ≥ 1, Lk,p is a hierarchy
with finite elasticity, as well, where Lk,p consists of all languages that can be described by grammars G with ∥ G⃗ ∥p≤ k.

This might allow to identify the language class that comes closest to one’s needs for, say, linguistic reasons, as all these
classes enjoy similar positive learnability properties.

7 Note that when we write Gn , n is simply an index, not necessarily the value of k.
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6. Complexity notions

We assume some familiarity with the basic notions of classical complexity on the side of the reader.
There has been recent interest in the development of parameterized complexity results to allow for a more fine-grained

analysis of NP-hard problems. So, a problem (parameterized by k) is in FPT if we can develop an algorithm with running
time O(f (k)p(n)), where n is the overall input size and k is the (size of the) parameter. f is an arbitrary function (depending
on k but independent of n) and p is a polynomial. An algorithm that proves FPT-ness is also called an FPT-algorithm, or a
parameterized algorithm. More details can be found in the monograph [3].

The classical example for a problem in FPT is the vertex cover problem on undirected graphs. So, given a graph G and a
parameter k, the question is whether a vertex cover C exists with |C | ≤ k, where a vertex cover set can be characterized by
the fact that, upon removing it togetherwith all incident edges, no edgeswill remain in the graph. One simple FPT-algorithm
is a branching algorithm that picks an edge {x, y}, as long as this is possible and as long as the parameter value k is bigger
than zero, and branches into the two possibilities of covering that edge. In each of the branches, one more vertex is taken
into the proposed partial cover, the graph is modified by deleting that cover-vertex from the instance (together with its
incident edges), and the parameter value is decremented by one. If this binary search tree arrives at a graph with no edges,
then a cover with at most k vertices was found on that path of the search tree and this can be accordingly reported. If all
branches of the search tree are cut because the parameter value was decreased down to zero and no solution was found so
far, then we face a NO-instance. In that (worst) case, the search tree will have 2k leaves and twice as many nodes in total.
Since all work that arises in the nodes can be done in polynomial time, this is an FPT-algorithm.

It is worthmentioning that the very first analysis that is, to our knowledge, published on the sketched simple search tree
algorithm was in the algorithms textbook of Mehlhorn [31], predating any other publication on parameterized algorithms.
It has become the standard example, including the discussion of several improvements, in all textbooks on Parameterized
Complexity [3,32,33]. The current record-holder has brought the basis of the expression estimating the size of the search
tree (and hence the running time) down to less than 1.28, see [34].

This approach makes sense in particular if the parameter of interest can be assumed to be small. The hierarchy level k in
our formulation of the consistency problemmight be such a small parameter: in linguistics, the amount of lexical ambiguity
for natural language is assumed to be very small in relation to the number of symbols found in any realistic lexicon.We thus
arrive at problems that we call, for instance, Lk-max-val-consistency in order to make the parameter explicit. However, we
cannot always hope to find nice parameterized algorithms. More specifically, we can derive as a corollary from the fact that
L1-valued-consistency is NP-hard ([2, Theorem 5.32] or alternatively, [35])):

Corollary 15. Unless P = NP, there is no FPT algorithm that decides Lk-max-val-consistency.

Proof. If this were not the case, there would be an algorithm that decides the consistency problem in time O(f (k)p(n)).
Setting k = 1, we would arrive at a polynomial-time algorithm that decides if, given a finite set D of strings, there exists a
1-max-valued (rigid) categorial grammar G such that D ⊆ L(G). This problem is known to be NP-hard. �

This corollary is surely disappointing from a parameterized point of view, since it seems to rule out the use of the natural
parameter k as a good choice of a parameter for the consistency problem for k-valued categorial grammars.

The proof of NP-hardness of L1-valued-consistencymakes use of the fact that there is no bound on the size of the alphabet,
so we still might hope for better parameterized results when we restrict our attention to languages over alphabets of size
three, for example.

As we will see, this hope will not be fulfilled. However, in order to formulate and establish the indicated result, we need
some more notions from parameterized complexity.

As with classical complexity, we need an appropriate notion of reduction to prove hardness results, and some knowledge
about classes of parameterized problems that are believed not to possess FPT-algorithms. Actually, there is awhole hierarchy
of parameterized problems that is believed to be strict, the so-called W-hierarchy. Usually, its lowest level, W[0], is called
FPT (which we have already defined).

The W-hierarchy is usually defined in terms of circuits. However, the lowest three levels of this hierarchy are the most
important ones for this paper, and they can be characterized by halting problems of Turing machines.

Namely, if a parameterized problem (with parameter k) is in W[1], then it can be solved by a nondeterministic one-
tape Turing machine within f (k) steps for some function f . A typical W[1]-complete problem is the following one: given a
nondeterministic one-tape Turing machine M and a parameter k, does M halt within k steps (when starting on the empty
tape)? There are also many graph-theoretic problems that belong to this class. For example, recall that C is a minimum
vertex cover in a graph G = (V , E) iff the subgraph induced by V \ C is an independent set (also known as a stable set) of G,
i.e., a set of vertices having no edge between any pair of them. This relation is also known as the Gallai identity, see [36]. So,
the question of finding an independent vertex set I of size k is intimately related to the question of finding a vertex cover C
of size k′. However, while the latter problem is in FPT, the first question is W[1]-complete.

If a parameterized problem (with parameter k) is in W[2], then it can be solved by a nondeterministic multi-tape Turing
machine within f (k) steps for some function f ; it is important that this Turing machine has parallel access to its working
tapes. A typical W[2]-complete problem is the following one: given a nondeterministic multi-tape Turing machine M and
a parameter k, does M halt within k steps (when starting on the empty tape)? Another problem related to vertex cover in



28 C. Costa Florêncio, H. Fernau / Theoretical Computer Science 452 (2012) 21–38

graphs is the analogous question for hypergraphs. This problem is also known as hitting set: given a hypergraph G and a
parameter k, we ask for a vertex set C of size at most k such that each edge e of G is hit, i.e., e∩ C ≠ ∅ (note that a hyperedge
e is simply the set of vertices it connects). hitting set is known to be W[2]-complete.

We still need a satisfying notion of reduction in order to define hardness (and completeness) for parameterized
complexity classes. Given two parameterized problems P and P ′ with parameterizations k and k′, resp., a parameterized
(many-one) reduction translates an instance (I, k) of P in polynomial time into an instance (I ′, k′) such that k′ = f (k) for
some function f . Obviously, if P ′ is inW [i], i = 0, 1, 2, then so is P . So, if P is W[2]-hard and we can provide such a reduction
that translates P into P ′, then P ′ is W[2]-hard, as well. As an example, consider the reductions presented in Sections 5.3–5.5
from [2] that show NP-hardness of several variants of ‘consistency problems’. These reductions use vertex cover, and the
reductions are actually parameterized reductions in the following sense: they show how an instance (G, k) of vertex cover
can be transformed in polynomial time into an instance (F , k) of Lk-max-val-consistency. The fact that the same parameter
appears in both problems is one of the reasons we originally hoped for FPT-ness results for this type of problem.

The hunt for this type of results can be also seen under a broader perspective. For decades, the P-Cognition thesis
held that cognitive capacities are limited to those functions that can be computed in polynomial time. More recently, the
FPT-Cognition thesis has been proposed as an alternative. In short, this means that one would concede more computing
power to the brain and other computational cognitive devices to copewith certain problems, therebywidening the territory
of tractability. Detailed discussions on this matter can be found in [37,38]. Naturally, learning is one of the basic cognitive
tasks and hence fits into these discussions.

7. Complexity results

7.1. k-maximum-value problems

In [2], only hardness results were shown. We first complement these results by demonstrating membership in NP.
This was originally neglected, since the consistency problem was studied as an aspect of learning problems, specifically of
identification in the limit. In this paradigm, the length of the input sequence before convergence is inherently unbounded.
Thus, it makes little sense to consider questions such as membership in NP, which would require a polynomial number of
steps before convergence.

Lemmas 6.1 and 6.2 from [1] (attributed to Buszkowski and Penn) underline the importance of the concept of the general
form GF(D) (as discussed above), a CCG associated to a finite structure language D. Without giving details here, note that
it is further known that any reduced CCG G′ consistent with D can be obtained from GF(D) by unification (implied by Prop
6.35 from [1]). Moreover, the size of GF(D) (and hence the size of G′) is bounded by a polynomial over ∥D∥. If D is a finite
string language, then any finite structure language D′ that yields D is of size polynomial in ∥D∥. Hence, any GF(D′) of interest
is also of size polynomial in ∥D∥.

Theorem 16. FLk-max-val-consistency is NP-complete (for every fixed Σ with |Σ | ≥ 3).

Proof. NP-hardness of FLk-max-val-consistency is shown in [2] (Theorem 5.16, which holds for the case where |Σ | = 3 and
any larger alphabet). To see membership in NP, let (D, k) be an instance of FLk-max-val-consistency. The nondeterministic
procedure we propose first generates some G ∈ Gk-max-val, by unifying types in GF(D) that are assigned to the same symbol.
Then, for each structure s ∈ D, the procedure tests whether s ∈ FL(G) (which can be done in polynomial time). If (and only
if) all these tests are passed, the algorithm returns YES. �

Theorem 17. Lk-max-val-consistency is NP-complete. Here, the alphabet Σ is not fixed.

Proof. NP-hardness of Lk-max-val-consistency is shown in [2] (Theorem 5.32, which holds for the case where k = 1 and |Σ |
is unbounded). To seemembership in NP, let (D, k) be an instance of Lk-max-val-consistency. The nondeterministic procedure
we propose consists of two parts; first, for each string inD, a derivation is chosen. Then, the union of the resulting structures,
D′ (note that ∥D′∥ is obviously polynomial in ∥D∥), is used as a sample for learning from structures, so that someG ∈ Gk-max-val
is generated by unifying types in GF(D′) that are assigned to the same symbol. Then, for each string w ∈ D, the procedure
tests whether w ∈ L(G) (which can be done in polynomial time). If (and only if) all these tests are passed, the algorithm
returns YES. �

We can actually sharpen the hardness assertion in the sense of parameterized complexity, by defining a polynomial-time
transformation fromhitting set to a dataset for a language in FLk-max-val. Deciding that the data is consistentwith a language
in that class, i.e., FLk-max-val-consistency, then corresponds to deciding the existence of a cover of a specified size c . We will
call any grammar that generates a language in the class consistent with the given input a consistent grammar.

Since the construction is somewhat involved, an example is included in Appendix A.
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7.2. Explanation of the construction

The construction makes use of several techniques that we now discuss informally to make things more accessible.

Padding. At certain places in the construction we may want types that are assigned to the same symbol in the general form
to be unified in the consistent grammar. To this end, elements can be added to D such that extra types are assigned to the
same symbol that are pairwise non-unifiable, and not unifiable to the types to be unified. This can be achieved by assigning
the right (in this case, depending on k) number of such types (which we call padding types).

Multiple occurrences of the same primitive type. At other places in the construction we may need multiple occurrences
of the same primitive type. Padding cannot be used directly, since primitive types can often be unified with complex types,
and thus with the padding types, which is undesirable. Instead, for primitive type P assigned to type p, we can replace all
occurrences of p in a given sampleDwith, say, fa(p, x). We thus have (compound) types Pi/Xi assigned to p in GF(D), which
makes the use of padding types possible.

Excluding all but one/Selection gadget. For our construction we need at some points to exclude all types but one that are
assigned to the same symbol to be unified with some other type.

Let n distinct types Ti, some type U , and n padding types be assigned to t. Given a sufficiently small k, at least one type
Ti has to be unified with U in order to obtain a consistent grammar that is in Gk-max-val. Let all types Ti and U be extended as
follows: let {Γ1, . . . , Γn} be a set of pairwise non-unifiable types, and let T ′i = Ti/X1,i/ · · · /Xn,i, 8 where all Xs are primitive
types, except Xi,i = Γi. Let U ′ = U/Y1/ · · · /Yn, where the Yis are multiple occurrences of the same primitive type.

Now, let some T ′i be unified with U ′. This will yield a substitution such that Γi is substituted for Yi and thus for all
Y1, . . . , Yn.

This immediately excludes the unification of any other T ′j with U ′, since that would require unifying Γj with Γi.

Overlapping types. In our construction we use an ‘overlapping types’ approach to exclude exactly one arbitrary step out of
n possible unification steps. Let n types Ti, as well some type U , and k− 2 padding types, be assigned to t.

In the case that n ≥ 2, at least n− 1 of the types Ti have to be unified with U . In the case that we want this to be exactly
n−1 types, i.e., exclude one arbitrary of these types from unificationwithU , we can extend both all Ti andU in the following
way: let T ′i = Ti/X1,i/ · · · /Xn+1,i, where all Xs are pairwise distinct primitive types, except for Xi+1,i and Xi,i, which are the
same primitive type. The fact that these two domain types are the same causes an ‘overlap’. LetU ′ = U/Y1/ · · · /Yn+1, where
all Y s are distinct primitive types, except for Y1 and Yn+1, which should form a non-unifiable pair and thus cannot be both
primitive types. Now, let T ′1 be unified with U ′. Since X2,1 = X1,1, Y2 = Y1. It should be clear that sequentially unifying types
T ′2, T

′

3 . . . will yield a substitution σ such that σ [Y1] = σ [Y2] = · · · = σ [Yn+1]. Since Y1 cannot be unified with Yn+1, it
follows that it is not possible to unify all types T ′1, T

′

2, . . .with U ′. However, unifying all types of this form, save one single T ′i ,
with U ′ is possible, since the resulting substitution σ need not be such that σ [Xi+1,i] = σ [Xi,i], and hence it is not required
that σ [Yi+1,i] = σ [Yi,i], which, by definition, is not possible.

7.3. The construction

We now define a construction that is based on these ideas.

Definition 18. Let hg(HG, c) be the algorithm that maps instances of the vertex cover problem for hypergraphs to samples
of structure languages defined in the following way:

The hypergraph HG = (V , E) consists of a set V of vertices numbered 1, . . . , v and a set E of (hyper)edges numbered
1, . . . , e. It is characterized by the functions d(i), 1 ≤ i ≤ e, which gives the degree (or size) of edge Ei, i.e., the number of
vertices that belong to that edge, and n(i, j), which gives the index of the jth vertex that edge i is incident on. The constant
c specifies the maximal size of the cover.

The sample D output by hg is the smallest set that fulfills the following requirements:
For each i, 1 ≤ i ≤ e, the structures

fa(. . . fa(fa(. . . fa(ei, fa(ci, x)) . . . fa(ci, x))  
d(i) times

, ui), . . . ui)  
d(i)+ 1 times

and

fa(fa(fa(fa(fa(. . . fa(ei, f(i,1)), . . . f(i,d(i))), fa(tt, t)), s(i,1)), . . . s(i,d(i)−1)), fa(ttt, t)) are in D. Additionally, for
each j, 1 ≤ j ≤ d(i),
fa(. . . fa(ei,G(j,1)), . . .G(j,d(i))), T(j,1)), . . . T(j,d(i)+1)) where

G(j,x) =


fa(vn(i,x), x) if x = j and
g(i,x), otherwise

8 Here, we assume left-associativity of / to simplify our formulas.
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G′ :

e1 → t/Υ1,

t/Γn(1,1), . . . , t/Γn(1,d(1)),

t/Σ1,

Padding
. . .

ee → t/Υe,

t/Γn(e,1), . . . , t/Γn(e,d(e)),

t/Σe,

Padding

v1 → ∆1, Padding
. . .

vv → ∆v, Padding

c1 → C1,1/X, . . . , C1,v/X, C1/X, Padding
. . .

ce → Ce,1/X, . . . , Ce,v/X, Ce/X, Padding

c → t/C1, . . . , t/Ce, Padding

x → X

t → t
tt → t/t, Padding
ttt → (t/t)/t, Padding

Fig. 2. The grammar obtained from the general form by unifying all types assigned to x.

where

T(j,x) =


fa(tj,j, x) if x = j ∨ x = j+ 1 and
t(j,x), otherwise.

For each i, 1 ≤ i ≤ e, fa(c, fa(ci, x)) is in D.
If c = 1, the padding structure ba(x, c) is in D.
For each i, 1 ≤ i ≤ c , the padding structure ba(x, ci) is in D.
For each i, 1 ≤ i ≤ v, the padding structure ba(x, vi) is in D.
For each ti,j, the padding structure ba(x, ti,j) is in D.

We add k− 2 padding structures for each ei, and k− 1 such structures for each vi, ci, and for tt and ttt.

In order to make clear why the sample is built up in this way, we now discuss the types as they occur in any grammar in
Gk-max-val that is consistent with this sample. For the sake of readability, we first introduce shorthand notation in the form of
Υ ,Γ andΣ , which represent complex types that will occur in the general form (typeswritten as capital letters are primitive
types, unless otherwise stated). Let 1 ≤ i ≤ e in the following.

Let Υi = Ci,1/ · · · /Ci,v/(Us(1,i,0)/Us(1,i,1))/ · · · /(Us(d(i),i,0)/Us(d(i),i,1)), where the C and U types are primitive types.
Define Σi = Fi,1/ · · · /Fi,v/(Sg(1,i,0)/Sg(1,i,1))/ · · · /(Sg(v,i,0)/Sg(v,i,1)). Here, the F and S types are primitive types.
Let Γn(i,j) = Gi,1/ · · · /Gi,v/ (Tt(1,i,0)/Tt(1,i,1))/ · · · /(Tt(d(i),i,0)/Tt(d(i),i,1)) for 1 ≤ j ≤ d(i), Tt(k,i,0) = Tt(ℓ,i,1) if ℓ = n(i, j),

and the Tt(ℓ,i,j)s are distinct (primitive) types, otherwise.
Every type Gi,j, in the case that i = j, is equal to some type ∆n(i,j).9 The types ∆1, ∆2, . . . are based strictly on alternating

forward- and backward slashes, with the main operator always the backward slash. The type ∆1 is X\t . For any two u, v
such that u ≠ v, ∆u and ∆v are not unifiable. Note that this allows any two Γn(i,x) and Γn(i,y), x ≠ y, to be unifiable, since the
∆-subtypes appear in different positions of these Γ terms.

From GF(D), the grammar shown in Fig. 2 is derived by unifying all types assigned to x. This simplifies the presentation
without affecting the proof of W[2]-hardness in any way. Note that in the interest of clarity we omit type assignments to
symbols fn(x,y), gn(x,y), sx,y, tx,y and ux.

Note that hg runs in time polynomial in the size of the hypergraph. There are bounds on the parameters of the grammar:
given hypergraph HG = (V , E) and stipulated size of the cover c , then k = max(2, c), and

|Σ | = 5+ |V | + 2|E| + 2
|E|
i=1

d(i)+ 2
|E|
i=1

d(i)2.

The construction works just for k ≥ 2, but this does not affect the result in any way. Note that for k = 1, the consistency
problem is known to be solvable in polynomial time. Similarly, hitting set is solvable in polynomial time with parameter
k = 1. So, it would be possible to slightly modify hg as follows to be parameter-preserving for all c ≥ 1. If c ≥ 2, hg(HG, c)
is defined as before, while for c = 1, the transformation would first solve the problem (HG, 1) and then, depending on the
outcome of this first step, output either a fixed YES-instance of FLk-max-val-consistency or a fixed NO-instance of FLk-max-val-
consistency (for k = 1).

9 Recall that function n(i, j) yields the index of the jth vertex that edge i is incident on. Also note that, otherwise, Gi,j is a primitive type.
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Theorem 19. FLk-max-val-consistency is W[2]-hard.

Proof. By modifying the mentioned NP-hardness proofs, we show how to transform an instance (G, k) of hitting set
to FLk-max-val-consistency, preserving the parameter. To be more precise, the hitting set problem can be reduced in
polynomial time to finding a grammar consistent with structures D and in the class Gk-max-val. We achieve this using the
algorithm hg as given in Definition 18 and the following remark. We can assume that k ≥ 2 in the following discussion.

Consider the hypergraph HG = (V , E), G = GF(hg(HG, k)), and k such that a cover of size k exists for HG. Hence, (HG, k)
is a YES-instance of hitting set.

For any symbol ei, unification of all types t/Γn(i,1), . . . , t/Γn(i,d(i)) to t/Σi will lead to a substitution such that Sg(1,i,0) =
Sg(1,i,1) = · · · = Sg(v,i,0) = Sg(v,i,1). This is not possible, since this would require unification of t/t and (t/t)/t , so for each
symbol ei, at most one of the types t/Γn(i,1), . . . t/Γn(i,d(i)) can be unified with t/Υi instead. For each i, only one of these t/Γ
types can be chosen for this, since it will block unification of t/Υi with any of the other t/Γ types: for any given i, the U
types in Υi all have to be of the same type, and such a unification step will result in a substitution such that some ∆ type
will be substituted for all these U types.

For every i, the T types in Γn(i,j), 1 ≤ j ≤ d(i), overlap: Tj,j occurs twice in every Γn(i,j).
Thus, they cannot all be unified with Σi, since the pair of the first and last S type in every Σ-type is not unifiable.
Hence, for each i, exactly one of the t/Γ types has to be unified with the t/Υ type, and the rest with the Σ type. This

implies a substitution such that for each Ci, a ∆ℓ is substituted such that ℓ = n(i, j), 1 ≤ j ≤ d(i). This corresponds to
choosing vertex ℓ in the original hypergraph to cover edge i. Since, for all i, t/Ci is assigned to symbol c, and since zero
padding types are assigned to this symbol (because k ≥ 2), the number of distinct ∆ types that substitute for the C types
can be no more than k. This proves that the answer to FLk-max-val-consistency is YES.

Let k andHG be such that aminimumcover forHG is of size k′ > k, and letG = GF(hg(HG, k)) as before. Hence, (HG, k) is a
NO-instance. Following the same line of reasoning as earlier in this proof, it is clear that for each Ci, a∆ν must be substituted
in order to obtain a consistent grammar that is in the class. Given the definition of hg , these ∆ types correspond to one of
the vertices that edge i is incident on. Given that k′ > k, there are at least k′ distinct such ∆ types, and since for all i, t/Ci
is assigned to c, at least k′ distinct types are assigned to c in a consistent grammar, which thus cannot be in Gk-max-val. Thus
the answer to FLk-max-val-consistency is NO.

This proves that the answer to FLk-max-val-consistency for the sample hg(HG, k) is the same as for hitting set for HG
with k as size of the cover. Since the reduction hg runs in polynomial time, this proves W[2]-hardness. �

As for the problem Lk-max-val-consistency, note that for k ≥ 2, Lk-max-val contains Σ∗, which immediately trivializes the
problem. Furthermore, we refer to [35] for a proof of NP-hardness for the case k = 1. It should be clear that these results
render the parameterization discussed in this section meaningless from the viewpoint of parameterized complexity.

As an aside, let us mention that in the literature (see Corollary 5.13 from [2], for example) also consistency questions
related to the least-k-valued grammars and languages were considered. This means we are looking for the smallest k such
that there is a grammar G ∈ Gk-max-val and D ⊆ FL(G). These problems are also known to be NP-hard, but it is an open
question whether they belong to NP.

8. k-sum-value problems

In parameterized complexity, the sum-variants of problems are often somewhat easier than the max-variants, see [39]
for a nice overview. It is not clear whether this is also the case here, and we were not able to adapt the previous reduction
(using hitting set). We were only able to prove the following, weaker result:

Theorem 20. FLk-sum-val-consistency is NP-complete.

Proof. The relationship between Gk-sum-val and Gleast-card (recall Proposition 4) implies the following: when k has the smallest
value so that, for some given sample, the answer to the consistency problem is YES, FLk-sum-val-consistency is equivalent to
FLleast-card-consistency.

Thus, FLleast-card-consistency for some D can be answered by considering FLk-sum-val-consistency for Dwith increasing
values for k, starting at k = |Σ |. Since FLleast-card-consistency is known to be NP-hard (see [2], Corollaries 5.14 and 5.18),
it is thus NP-hard for FLk-sum-val-consistency. Given a grammar G ∈ Gk-sum-val as a witness, both its consistency with the
sample and membership in Gk-sum-val can be checked in polynomial time, so FLk-sum-val-consistency is NP-complete. �

This leaves open the existence of FPT-algorithms for this problem. Such algorithms are usually based on some
enumeration strategy, but a naive application of such an approach will not work in this case, since it is easy to come up
with constructions such that the search space is of a size exponential in ∥D∥.

A similar question can be asked for Hölder norms other than the max or sum norm, and the corresponding language
families as introduced in Section 5.
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9. Reparameterizations

As already seen with the example of vertex cover versus independent set, basically the same problem can be
parameterized in different ways, possibly leading to positive (FPT) results or to negative (W[1]-, W[2]-hardness) results.
So it might be that other choices of parameterization may lead to FPT-algorithms. This question of finding suitable
parameterizations is both of theoretical and of practical importance, since it allows for a localization of the hard parts in the
input andmay also be helpful in finding practically useful algorithms. Here, not only single parameterizations are interesting,
but also combinations of various parameters, as discussed in recent invited talks of Fellows and Niedermeier, see [40,41].

One other natural choice of a parameter is the number of unification steps u needed to transform the general form of D
into some k-max-valued (or k-sum-valued) grammar G such that D ⊆ L(G). This leads to problems like u-step Lk-sum-val-
consistency. The input to such a problem would be a triple (D, u, k), where D is the finite input sample. A variant could be
uniform u-step Lk-sum-val-consistency, where the input would be (D, k), and the question would be whether there exists
a u such that (D, u, k) is a YES-instance of u-step Lk-sum-val-consistency. Hence, the inputs to uniform u-step Lk-sum-val-
consistency and to Lk-sum-val-consistency are the same.

Theorem 21. (D, k) is a YES-instance to Lk-sum-val-consistency (FLk-sum-val-consistency, resp.) if and only if (D, k) is a
YES-instance to uniform u-step Lk-sum-val-consistency (FLk-sum-val-consistency, resp.).

Proof. Given G = GF(D) and c , where D is a sample of a structure language, a grammar G′ ∈ Gk-sum-val consistent with D has
to be such that G′ ⊇ σ [G] for some substitution σ . This substitution corresponds to a finite number of unification steps over
G.

In the case that D is a sample of a string language, all possible structure language samples consistent with this sample
can be computed. For each of these samples the argument for samples of structure languages holds. �

Along the same line of reasoning we can show:

Theorem 22. (D, k) is a YES-instance to FLk-max-val-consistency if and only if (D, k) is a YES-instance to uniform u-step
FLk-max-val-consistency.

In conclusion, the uniform problem variants do not offer new insights. However, they immediately provide:

Corollary 23. uniform u-step Lk-sum-val-consistency, uniform u-step FLk-sum-val-consistency, and uniform u-step
Lk-max-val-consistency are NP-complete.

uniform u-step FLk-max-val-consistency isW[2]-hard.

Instead of a single parameter, one could also consider two or more parameters. (Formally, this is captured by our
definition by combining those multiple parameters into one single parameter.) So, the FPT-question of u-step Lk-sum-val-
consistency would be whether an algorithm exists that runs in time f (u, k)p(∥D∥) for some function f and some
polynomial p.

Theorem 24. u-step FLk-sum-val-consistency is in FPT.

Proof. Given D, ∥GF(D)∥ is exactly ∥D∥. Hence, in order to obtain a grammar with exactly k type assignments, at most
∥D∥ − k unification steps need to be performed to obtain a grammar in the class. Given that u bounds the number of these
steps, for a sample larger than u+ k the answer to u-step FLk-sum-val-consistency is always NO.

If ∥D∥ ≤ u + k, a grammar might be obtained by unifying types in GF(D). Given GF(D), the number of all possible
unification steps is upper bounded by the number of pairs10 of types in GF(D), i.e., 1

2 · ∥GF(D)∥ · (∥GF(D)∥ − 1), which is
overestimated by 1

2 · (u+ k)2. Out of all these pairs, the learning algorithmmust choose at most u pairs. This puts an upper
bound on the size of the search-space of

f (u, k) :=
u! 1

2 · (u+ k)2

! ·


u− 1

2 · (u+ k)2

!

where u and k are fixed parameters. Since each unification step can be performed in time linear11 in ∥D∥, an answer can be
obtained in time f (u, k) · p(∥D∥) for some polynomial p.

Thus, for a sample larger than u+k, the answer is always NO, and in the case that ∥D∥ ≤ u+k, it takes FPT-time to settle
the question. �

Theorem 25. u-step Lk-sum-val-consistency is in FPT.

10 In the sense of sets with cardinality 2.
11 Provided the terms are represented as DAGs or systems of equations, see [42].



C. Costa Florêncio, H. Fernau / Theoretical Computer Science 452 (2012) 21–38 33

Proof. We can easily extend Theorem 24 to the case of string languages.
Just as is the case for structure languages, in the case that ∥D∥ > u + k, the answer to u-step Lk-sum-val-consistency is

always NO.
In the case that ∥D∥ ≤ u + k, a grammar may exist that is consistent with D and is in the class. It can be obtained

analogously to the procedure defined in the proof of Theorem 17: again, we use a nondeterministic procedure that consists
of two parts; first, for each string in D, a derivation is chosen. Then, the union of the resulting structures, D′ (note that ∥D′∥
is obviously polynomial in ∥D∥), is used as a sample for learning from structures.

The Catalan number Cn =
1

n+1

2n
n


specifies the number of pairwise distinct binary trees with n + 1 leaves. Since these

trees have n internal nodes and, since in the context of CCG, every one of these can be labeled as either forward or backward
application, the number of possible functor-argument structures for a string of length l is 2l−1Cl. The length of the strings in
D is upper bounded by ∥D∥ and thus by u+ k, and the number of strings is |D|, which is upper bounded by u+ k as well.

Thus, given D, the number of possible structure samples D′ is bounded by

g(u, k) :=

2u+k−1 1

u+ k


2(u+ k− 1)
(u+ k− 1)

u+k

where u and k are fixed parameters.
For each of the possible D′, a problem from u-step FLk-sum-val-consistency can be considered, which is in FPT, as shown

above. Thus u-step Lk-sum-val-consistency is in FPT. �

On first sight, it may seem that the similar u-step Lk-max-val-consistency and u-step FLk-max-val-consistency problems
can be approached in the same way. However, by definition, k bounds only the number of types assigned to single symbols,
so the total size of the consistent grammar is not bounded with these parameters. This can be solved by including |Σ | as a
parameter. Thus we obtain the following two results:

Theorem 26. fixed |Σ | u-step FLk-max-val-consistency is in FPT.

Proof. It is easy to see that, given that u bounds the number of unification steps, for a sample larger than u + |Σ | · k, the
answer to fixed |Σ | u-step FLk-max-val-consistency is always NO.

When the sample is smaller than this, we obtain the same bound for pairs of types as in the proof of Theorem 24, namely
1
2 · ∥GF(D)∥ · (∥GF(D)∥ − 1), and thus a bound on the size of the search-space of

u!
(u+ |Σ | · k)!(|Σ | · k)!

.

Thus, fixed |Σ | u-step FLk-max-val-consistency is in FPT. �

Theorem 27. fixed |Σ | u-step Lk-max-val-consistency is in FPT.

Proof. As in the case for structure languages, for a sample larger than u+ |Σ | · k the answer to fixed |Σ | u-step Lk-max-val-
consistency is NO.

For smaller samples a consistent grammar may exist, so analogous to the proof of Theorem 25, we can consider the
number of derivations compatible with the strings in D. Again, the length of the strings in D is upper bounded by ∥D∥, and
thus, in this case, by u+ |Σ | · k, and the number of strings is |D|, which is upper bounded by u+ |Σ | · k as well.

Thus, given D, the number of possible structure samples D′ is bounded by
2u+|Σ |·k−1 1

u+ |Σ | · k


2(u+ |Σ | · k− 1)
(u+ |Σ | · k− 1)

u+|Σ |·k

.

For each of the possible D′, fixed |Σ | u-step FLk-sum-val-consistency can be considered, which is in FPT. Thus fixed |Σ |
u-step Lk-max-val-consistency is in FPT. �

One could also study the step number u as a parameter in isolation. One problem formulation could be the following one:
Given a finite sampleD and a categorial grammarG (and the parameter u), does there exist a sequence of atmost uunification
steps, starting from the general formGF(D) and leading to G? Thismight be an interesting subject for future study. However,
note that the slightlymore general problemof deciding the existence of such a sequence from some arbitrary given grammar
(not necessarily in general form) is already at least as hard as the well-known graph isomorphism problem for u = 0.12 We
can encode a graph into a grammar by assigning to one single symbol the types Ti/Tj for every edge from vertex i to vertex j in
the graph (and assigning Tℓ and t/Tℓ for every vertex ℓ to avoid useless types). Let G1 and G2 be two such grammars encoding
graphs Graph1 and Graph2, then u = 0 (i.e., an empty sequence of unification steps) just if there exists a renaming such that,
when it is applied to G1, G2 is obtained. It is easy to see that this is only the case if Graph1 and Graph2 are isomorphic.

Finally note that similar FPT results can be shown for language families whose definition is based on other Hölder norms,
see Section 5, but this is not so interesting as long as it is still unsettled if the corresponding consistency problems are
NP-hard, see Section 6.

12 Though it is not known if graph isomorphism is NP-complete, this problem is also believed not to be solvable in polynomial time, see [43–45].
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Table 1
Summary of the complexity results demonstrated in this paper.

Problem Complexity

FLk-max-val-consistency W[2]-hard
FLk-sum-val-consistency NP-complete
uniform u-step FLk-max-val-consistency W[2]-hard
uniform u-step Lk-max-val-consistency NP-complete
uniform u-step FLk-sum-val-consistency NP-complete
uniform u-step Lk-sum-val-consistency NP-complete
u-step FLk-sum-val-consistency FPT
u-step Lk-sum-val-consistency FPT
fixed |Σ | u-step FLk-max-val-consistency FPT
fixed |Σ | u-step Lk-max-val-consistency FPT

10. Consequences for the complexity of learning

In [2], the hardness results were phrased in different terminology. To formulate these, we need some more notions.
Fix a grammar system ⟨Ω, S, L⟩. A learning function ϕ learns a grammar class G ⊆ Ω prudently if it learns G and the

range of ϕ is a subset of G. In other words, hypotheses are only drawn from G. A learning function ϕ is responsive on G ⊆ Ω

if it is defined on any finite sequence of words the range of which is a subset of some language L(G), where G ∈ G. Hence,
whenever possible, ϕ should produce a hypothesis. A learning function ϕ is consistent if, for any finite sequence s the range
of which is a subset of some language L(G), where G ∈ G, either ϕ(s) is undefined or the set of words enumerated by s is a
subset of L(ϕ(s)).

Consider nowmore specifically the grammar system ⟨CatG, ΣF, FL⟩, i.e., consider learning from structures. For instance,
[2, Proposition 5.12] reads as follows:

Proposition 28. Let ϕ be a learning function that, given k ∈ N+, can learn any of the classes Gk-max-val from structures, and that,
for each k, is responsive and consistent on this class and learns this class prudently. Deciding whether ϕ is defined for an arbitrary
sample D is an NP-hard problem (given that there is no bound on the size of the alphabet).

More generally, we can phrase the problem Gk-learnability as follows: The input is a uniform learning function ϕ that
learns each family Gk prudently and that is, for each k, responsive and consistent on this class. The problem is to decide if ϕ
is defined for arbitrary inputs (D, k). (A similar problem can be phrased for learning from strings.)

The complexity results obtained in this paper are summarized in Table 1. They can be easily interpreted as results on
learnability. For instance, we could phrase:

Proposition 29. Let ϕ be a learning function that, given k ∈ N+, can learn any of the classes Gk-sum-val from structures, and that,
for each k, is responsive and consistent on this class and learns this class prudently. Deciding whether ϕ is defined for an arbitrary
sample D is an NP-hard problem (given that there is no bound on the size of the alphabet).

11. Conclusions and future research

The main contributions of this paper are the complexity results as summarized in the previous section, in particular, in
Table 1.We have shown that for one natural parameterization, the consistency problem for one of the classes is (most likely)
not in FPT. For a parameterization that includes a bound on the number of unification steps that the learner is allowed to
perform, we have obtained positive results.

Furthermore, we have defined a new (natural) hierarchy of families that we have shown to be learnable from both strings
and structures. We have also generalized this hierarchy to a family of hierarchies defined in terms of Hölder norm bounds
on the descriptional complexity of categorial grammars. In general terms, we believe that there are further quite interesting
connections between the areas of Grammatical Inference and that of Descriptional Complexity that deserve further study.
For example, we could associate to any nondeterministic n-state automaton A an n-dimensional vector v⃗(A), indicating
in component i the amount of lookahead needed to disambiguate any nondeterminism in state si. Then, a deterministic
automaton A is k-reversible [46] iff its reversal Ar satisfies: ∥ v⃗(Ar) ∥∞≤ k. From the viewpoint detailed in this paper, it
appears natural to study the learnability of classes of regular languages defined by the restriction ∥ v⃗(Ar) ∥p≤ k for any
p ≥ 1.

From a technical point of view, it would be nice to complement ourW[2]-hardness result (Theorem19) by demonstrating
membership in W[2]. A natural idea would be to design a multi-tape Turing machine with one tape storing or counting the
rule (applications) for each symbol. However, it is not clear if such a Turing machine would need only f (k) many steps to
decide consistency. Such a question might also be interpreted in the direction of parallelizability of derivations in categorial
grammars. We are not aware of any such study for this type of mechanism, but we would like to point to the fact that
studies in this direction were undertaken for the weakly equivalent mechanism of context-free grammars, see [47,48] and
references therein.
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The obvious interpretation of our positive (FPT) resultswould be that, as long as the parameters k, u, and |Σ | are kept low,
the classes under consideration are efficiently learnable, in the sense of having polynomial update time. Of these parameters,
the last one is the most problematic, since for typical (NLP) applications the lexicon is very large. Thus, our analysis suggests
the approach of choosing as a parameter the total number of distinct types in the grammar, and keeping this number low.
This may also have implications for theories of natural language acquisition.

It would be interesting to study the consistency problem for other language class hierarchies, where each class has finite
elasticity. A natural candidate are the language families based on different Hölder norms as introduced in this paper. One
further example might be families based on elementary formal systems as examined by Moriyama and Sato [28].
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Appendix. Example of the construction

Example 30. Consider the hypergraph HG = (V , E) with V = {1, 2, 3, 4} and
E = {{1, 2, 3}, {2, 3}, {3, 4}}.
Then hg(HG) is defined as in Fig. A.3.

edges:
fa(. . . fa(e1, fa(c1, x)), fa(c1, x)), fa(c1, x)), u1), u1), u1), u1)

fa(. . . fa(e2, fa(c2, x)), fa(c2, x)), u2), u2), u2)

fa(. . . fa(e3, fa(c3, x)), fa(c3, x)), u3), u3), u3)

vertices each edge is incident on:
fa(. . . fa(e1, vertex1), gn(1,2)), gn(1,3)), fa(t1,1, x)), fa(t1,1, x)), t1,3), t1,4)

fa(. . . fa(e1, gn(2,1)), vertex2, gn(2,3)), t2,1), fa(t2,2, x)), fa(t2,2, x)), t2,4)

fa(. . . fa(e1, gn(3,1)), gn(3,2)), vertex3), t3,1), t3,2), fa(t3,3, x)), fa(t3,3, x))

fa(. . . fa(e2, vertex2), gn(4,2)), fa(t4,1, x)), fa(t4,1, x)), fa(t4,3, x))

fa(. . . fa(e2, gn(5,1)), vertex3), fa(t5,1, x)), fa(t5,2, x)), fa(t5,2, x))

fa(. . . fa(e3, vertex3), gn(6,2)), fa(t6,1, x)), fa(t6,1, x)), fa(t6,3, x))

fa(. . . fa(e3, gn(7,1)), vertex4), fa(t7,1, x)), fa(t7,2, x)), fa(t7,2, x))

non-assigned:
fa(. . . fa(e1, fn(1,1)), fn(1,1)), fn(1,2)), fa(tt, t)), s1,1), s1,2), fa(ttt, t))

fa(. . . fa(e2, fn(2,1)), fn(2,1)), fa(tt, t)), s2,1), fa(ttt, t))

fa(. . . fa(e3, fn(3,1)), fn(3,1)), fa(tt, t)), s3,1), fa(ttt, t))

cover :
fa(c, fa(c1, x)), . . . fa(c, fa(ce, x))

incompatible types :
fa(tt, fa(tt, t))

fa(fa(ttt, fa(tt, t)), fa(tt, t))

Padding :
ba(x, c)

ba(x, c1), ba(x, c2), ba(x, c3)

ba(x, v1), ba(x, v2), ba(x, v3), ba(x, v4)

ba(x, t1,1), ba(x, t2,2), ba(x, t3,3)

ba(x, t4,1), ba(x, t5,2), ba(x, t6,1), ba(x, t7,2)

ba(x, tt), ba(x, ttt)

Vertices :
fa(ba(x, v1), x),

fa(ba(x, fa(v2, x)), x),

fa(ba(x, fa(ba(x, v3), x)), x),

fa(ba(x, fa(ba(x, fa(v4, x)), x)), x)

where vertex1 = fa(v1, x), vertex2 = fa(v2, x) etc.

Fig. A.3. Type assignments in hg(HG).
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We define the substitution σ to be such that for every i, all types assigned to ci are unified, and all types assigned to x
are unified to X . This yields the grammar shown in Fig. A.4.

σ [GF(D)] =

e1 → ((((((t/C1)/C1)/C1)/U1)/U1)/U1)/U1,

((((((t/V1)/Gn(1,2))/Gn(1,3))/T1,1,1)/T1,1,2)/T1,3)/T1,4,
((((((t/Gn(2,1))/V2)/Gn(2,3))/T2,1)/T2,2,1)/T2,2,2)/T2,4,
((((((t/Gn(3,1))/Gn(3,2))/V3)/T3,1)/T3,2)/T3,3,1)/T3,3,2,
((((((t/Fn(1,1))/Fn(1,2))/Fn(1,3))/T7)/S1,1)/S1,2)/T9

e2 → ((((t/C2)/C2)/U2)/U2)/U2,

((((t/V2,1)/Gn(4,2))/T4,1,1)/T4,1,2)/T4,3,
((((t/Gn(5,1))/V3,1)/T5,1)/T5,2,1)/T5,2,2,
((((t/Fn(2,1))/Fn(2,2))/T11)/S2,1)/T13

e3 → ((((t/C3)/C3)/U3)/U3)/U3,

((((t/V3,2)/Gn(6,2))/T6,1,1)/T6,1,2)/T6,3,
((((t/Gn(7,1))/V4)/T7,1)/T7,2,1)/T7,2,2,
((((t/Fn(3,1))/Fn(3,2))/T15)/S3,1)/T17

c → t/C1, t/C2, t/C3, X\t

t → T2, T5, T6, T8, T10, T12, T14, T16, T18
tt → t/T1, T1/T2, T3/T5, T4/T6, T7/T8, T11/T12, T15/T16, X\t
ttt → (t/T3)/T4, T9/T10, T13/T14, T17/T18, X\t

c1 → C1/X, X\t
c2 → C2/X, X\t
c3 → C3/X, X\t

x → X

t1,1 → T1,1,1/X, T1,1,2/X, X\t
t2,2 → T2,2,1/X, T2,2,2/X, X\t
t3,3 → T3,3,1/X, T3,3,2/X, X\t
t4,1 → T4,1,1/X, T4,1,2/X, X\t
t5,2 → T5,2,1/X, T5,2,2/X, X\t
t6,1 → T6,1,1/X, T6,1,2/X, X\t
t7,2 → T7,2,1/X, T7,2,2/X, X\t

v1 → V1/X, (X\t)/X, X\t
v2 → V2/X, V2,1/X, (X\(t/X))/X, X\t
v3 → V3/X, V3,1/X, V3,2/X, (X\((X\t)/X))/X, X\t
v4 → V4/X, (X\((X\(t/X))/X))/X, X\t

gn(1,2) → Gn(1,2)

fn(1,1) → Fn(1,1)
s1,2 → S1,2 u1 → U1

s1,3 → S1,3 u2 → U2

. . . u3 → U3

Fig. A.4. Unification of type assignments.

Let G′ be obtained from σ [GF(D)] by unifying the types assigned to c, tt, and all other symbols that have padding
types assigned to them, resp., so that just two type assignments remain for all these symbols (we suppress some irrelevant
assignments here for clarity), see Fig. A.5.

All that remains now to obtain a grammar that is in Gk-max-val, k = 2, is to unify some types assigned to e1, e2, e3, resp.
Given the construction, for every one of these symbols, one of the types that represent vertices has to be unified with the
type that represents a hyperedge, and the rest to the single remaining type.

For e1 this means that the fourth assigned type has to be unified with the first one, for e2 the third type needs to be
unified with the first one, and for e3, the second with the first one. For each of these symbols, the remaining types should
be unified with the last type assigned, yielding G′′, cf. Fig. A.6. This grammar is in Gk-max-val, k = 2.

Apart from the padding, there is now just one single type assigned to c. This is the only grammar with k = 2 obtainable
from D. This type, t/(X\((X\t)/X)), corresponds to vertex 3 in HG and, in the general form of D, is assigned to v3 in the form
of (X\((X\t)/X))/X . This is to be interpreted as a cover consisting of just the vertex 3. As can be verified, this is indeed the
unique solution for the hypergraph HG given at the beginning of this example. Hence, any grammar G in Gk-max-val, k = 2,
consistent with D, is such that there exists a substitution τ , G′′′ ⊇ τ [G′′], and a substitution τ ′ such that G′′′ ⊇ τ ′[G], where
τ ′ is either empty or contains only substitutions that unify (primitive) types assigned to x.
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G′ =

e1 → ((((((t/C1)/C1)/C1)/U1)/U1)/U1)/U1,

((((((t/(X\t))/Gn(1,2))/Gn(1,3))/T1,1)/T1,1)/T1,3)/T1,4,
((((((t/Gn(2,1))/(X\(t/X)))/Gn(2,3))/T2,1)/T2,2)/T2,2)/T2,4,
((((((t/Gn(3,1))/Gn(3,2))/(X\((X\t)/X)))/T3,1)/T3,2)/T3,3)/T3,3,
((((((t/Fn(1,1))/Fn(1,2))/Fn(1,3))/t)/S1,1)/S1,2)/(t/t)

e2 → ((((t/C1)/C1)/U2)/U2)/U2,

((((t/(X\(t/X)))/Gn(4,2))/T4,1)/T4,1)/T4,3,
((((t/Gn(5,1))/(X\((X\t)/X)))/T5,1)/T5,2)/T5,2,
((((t/Fn(2,1))/Fn(2,2))/t)/S2,1)/(t/t)

e3 → ((((t/C1)/C1)/U3)/U3)/U3,

((((t/(X\((X\t)/X)))/Gn(6,2))/T6,1)/T6,1)/T6,3,
((((t/Gn(7,1))/(X\((X\(t/X))/X)))/T7,1)/T7,2)/T7,2,
((((t/Fn(3,1))/Fn(3,2))/t)/S3,1)/(t/t)

c → t/C1, X\t

t → t
tt → t/t, X\t
ttt → (t/t)/t, X\t

c1 → C1/X, X\t
c2 → C1/X, X\t
c3 → C1/X, X\t

t1,1 → T1,1/X, X\t
t2,2 → T2,2/X, X\t
t3,3 → T3,3/X, X\t
t4,1 → T4,1/X, X\t
t5,2 → T5,2/X, X\t
t6,1 → T6,1/X, X\t
t7,2 → T7,2/X, X\t

v1 → (X\t)/X, X\t
v2 → (X\(t/X))/X, X\t
v3 → (X\((X\t)/X))/X, X\t
v4 → (X\((X\(t/X))/X))/X, X\t

Fig. A.5.More unification steps.

G′′ =

e1 → ((((((t/(X\((X\t)/X)))/(X\((X\t)/X)))/

(X\((X\t)/X)))/U1)/U1)/U1)/U1,

((((((t/(X\t))/(X\(t/X)))/Fn(1,3))/t)/t)/t)/(t/t)
e2 → ((((t/(X\((X\t)/X)))/(X\((X\t)/X)))/U2)/U2)/U2,

((((t/(X\(t/X)))/Fn(2,2))/t)/t)/(t/t)
e3 → ((((t/(X\((X\t)/X)))/(X\((X\t)/X)))/U3)/U3)/U3,

((((t/Fn(3,1))/(X\((X\(t/X))/X)))/t)/(t/t))/(t/t)

c → t/(X\((X\t)/X)), X\t

t → t
tt → t/t, X\t
ttt → (t/t)/t, X\t

c1 → (X\((X\t)/X))/X, X\t
c2 → (X\((X\t)/X))/X, X\t
c3 → (X\((X\t)/X))/X, X\t

v1 → (X\t)/X, X\t
v2 → (X\(t/X))/X, X\t
v3 → (X\((X\t)/X))/X, X\t
v4 → (X\((X\(t/X))/X))/X, X\t

Fig. A.6. The final grammar.
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