An $O(n m)$-time certifying algorithm for recognizing HHD-free graphs

Stavros D. Nikolopoulos*, Leonidas Palios
Department of Computer Science, University of Ioannina, P.O. Box 1186, GR-45110 Ioannina, Greece

ARTICLE INFO

Article history:

Received 19 July 2011
Received in revised form 29 March 2012
Accepted 2 June 2012
Communicated by P. Spirakis

Keywords:

HHD-free graphs
Perfectly orderable graphs
Certifying algorithms
Recognition

Abstract

In this paper, we consider the recognition problem on a class of perfectly orderable graphs, namely, the HHD-free graphs; such graphs do not contain any induced subgraph isomorphic to a house, a hole, or a domino. We prove properties of the HHD-free graphs which enable us to present an $O(n m)$-time and $O(n+m)$-space algorithm for determining whether a graph on n vertices and m edges is HHD-free; currently, this is the fastest algorithm for this problem. We also describe how the algorithm can be augmented to provide a certificate (an induced house, hole, or domino) whenever it decides that the input graph is not HHD-free, thus answering an open question posed by Hoàng and Sritharan (Theoretical Computer Science 259 (2001) 233-244). The certificate computation requires $O(n+m)$ additional time and $O(n)$ space.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A linear order \prec on the vertices of a graph G is perfect if the ordered graph (G, \prec) contains no induced P_{4} abcd (i.e., a chordless path on the 4 vertices a, b, c, d) with $a \prec b$ and $d \prec c$; such a P_{4} is called an obstruction. In the early 1980s, Chvátal [4] defined the class of graphs that admit a perfect order and called them perfectly orderable graphs.

Chvátal proved that if a graph G admits a perfect order \prec, then the greedy coloring algorithm applied to (G, \prec) produces an optimal coloring using only $\omega(G)$ colors, where $\omega(G)$ is the clique number of G. This implies that the perfectly orderable graphs are perfect; a graph G is perfect if for each induced subgraph H of G, the chromatic number $\chi(H)$ equals the clique number $\omega(H)$ of the subgraph H. The class of perfect graphs was introduced in the early 1960s by Berge [1], who also conjectured that a graph is perfect if and only if it contains no induced subgraph isomorphic to an odd cycle of length at least five, or to the complement of such an odd cycle. This conjecture, known as the strong perfect graph conjecture, has been recently established due to the work of Chudnovsky et al. [3].

The interest in perfectly orderable graphs comes from the fact that several problems in graph theory, which are NPcomplete in general graphs, have polynomial-time solutions in graphs that admit a perfect order [2,7]; unfortunately, it is NP-complete to decide whether a graph admits a perfect order [15]. Since the recognition of perfectly orderable graphs is NPcomplete, we are interested in characterizing graphs which form polynomially recognizable subclasses of perfectly orderable graphs. Many such classes of graphs, with very interesting structural and algorithmic properties, have been defined so far and shown to admit polynomial-time recognitions (see [2,7]); note however that not all subclasses of perfectly orderable graphs admit polynomial-time recognition [10].

Several subclasses of the class of perfectly orderable graphs have been extensively studied in the last few decades due to their wide applicability in many fields of computer and engineering sciences; the most notable subclasses include the chordal, co-chordal, comparability, P_{4}-comparability, permutation, chordal bipartite, and distance-hereditary graphs [2,7]. It is worth noting that many optimization problems, such as coloring, max-clique, clique-cover, path-cover, domination set,

[^0]

Fig. 1. (a) The forbidden graphs for the class of HHD-free graphs. (b) The graphs ' P ', ' A ', and the building.
independent set, cliquewidth, treewidth, and also the recognition problem admit polynomial solutions on these classes of graphs.

An algorithm for the recognition problem is one that takes as input a graph G and decides whether G has a certain property; such an algorithm, which we call a recognition algorithm, returns "yes" if the input graph has the property or "no" if it does not. A certifying recognition algorithm is a recognition algorithm that provides a certificate with each answer that it produces $[9,13]$. The certificate is a piece of evidence that proves that the algorithm's answer is correct; in particular, in case of membership (i.e., the input graph G belongs to a given graph class \mathcal{q}) a certifying algorithm usually provides as a certificate a structure for the input graph that characterizes the class \mathcal{q}, while in case of non-membership it provides as a certificate a forbidden induced subgraph of the class \mathscr{q}. For an extensive discussion on certificates, see [13].

In this paper, we study the recognition problem for the class of HHD-free graphs, which properly generalizes the wellknown class of chordal graphs [7]: a graph is HHD-free if it contains no induced subgraph isomorphic to a house, a hole (i.e., a chordless cycle on ≥ 5 vertices), or a domino (see Fig. 1(a)). In [11], Hoàng and Khouzam proved that the HHD-free graphs admit a perfect order, and thus are perfectly orderable. A superclass of the HHD-free graphs, which also properly generalizes the class of chordal graphs, is the class of HH-free graphs: a graph is HH-free if it contains no induced subgraph isomorphic to a house or a hole. Although an HH-free graph is not necessarily perfectly orderable, the complement of any HH-free graph is; this was conjectured by Chvátal and proved by Hayward [8].

Hoàng and Khouzam [11], while studying the class of brittle graphs (a class of perfectly orderable graphs which contains the HHD-free graphs), showed that HHD-free graphs can be recognized in $O\left(n^{4}\right)$ time, where n denotes the number of vertices of the input graph. An improved result was obtained by Hoàng and Sritharan [12] who presented an $O\left(n^{3}\right)$-time algorithm for recognizing HH-free graphs and showed that HHD-free graphs can be recognized in $O\left(n^{3}\right)$ time as well; for each vertex v of the input graph, their algorithm relies on computing the chordal completion of the (ordered) non-neighbors of v, and checking whether the resulting graph is chordal. A further improvement was achieved by Nikolopoulos and Palios [17]: based on properties characterizing the chordal completion of a graph, they were able to avoid performing the chordal completion step, which is the most time-consuming ingredient of the algorithm in [12], and described algorithms for recognizing HHfree and HHD-free graphs that require $O(n \min \{m \alpha(n, n), m+n \log n\})$ time and $O(n+m)$-space, where m is the number of edges of the input graph, and $\alpha($,) denotes the very slowly growing functional inverse of Ackermann's function. On other related classes of perfectly orderable graphs, Eschen et al. [6] recently described recognition algorithms for several of them, among which is a recognition algorithm for HHP-free graphs; a graph is HHP-free if it contains no hole, no house, and no "P" as induced subgraphs (see Fig. 1(b)). Their algorithm is based on the property that every HHP-free graph is HHDA-free graph (a graph with no induced hole, house, domino, or "A"), and thus a graph G is HHP-free graph if and only if G is HHDAfree and contains no "P" as an induced subgraph. The characterization of HHDA-free graphs due to Olariu [19] (a graph G is HHDA-free if and only if every induced subgraph of G either is chordal or contains a non-trivial module) and the use of modular decomposition [14] allowed Eschen et al. to present an $O(n \mathrm{~m})$-time recognition algorithm for HHP-free graphs.

In this paper, we present a new, faster algorithm for recognizing HHD-free graphs. For each vertex v of a given graph G, our algorithm computes the partition of the non-neighbors of v into sets of vertices based on their common neighbors with v, and following that, the connected components of the subgraphs induced by these partition sets. We show that if G is HHDfree, the graph obtained from G by shrinking each of these connected components into a single vertex is "almost chordal". As a result, we obtain an $O(n m)$-time and $O(n+m)$-space algorithm for determining whether a graph on n vertices and m edges is HHD-free. Our approach is different from the approach of [12,17], where the decision is based on properties of the graph obtained by considering the chordal completion of the subgraph induced by the non-neighbors of each vertex v; the chordal completion is explicitly computed in [12] whereas it is implicitly maintained by means of the array NextNeighbor in [17]. Our result improves upon the algorithms in [12,17]: our algorithm is no slower than the $O\left(n^{3}\right)$-time algorithm in [12] and achieves a better time complexity than [17] in the case where $m=o(n \log n)$ while it matches its time complexity of [17] otherwise (recall that the algorithm in [17] requires $O(n \min \{m \alpha(n, n), m+n \log n\})$ time).

An additional advantage of our recognition algorithm is that it is certifying since it provides a certificate in the case of non-membership. In particular, we describe an augmented version of our recognition algorithm which provides a forbidden induced subgraph of the class of HHD-free graphs (an induced house, hole, or domino) whenever it decides that the input graph is not HHD-free; the certificate computation requires $O(n+m)$ additional time and $O(n)$ space. This answers an open question posed by Hoàng and Sritharan [12]. An early version of this work has appeared in [18].

The paper is structured as follows. In Section 2, we review the terminology and the notation that we use throughout the paper. In Section 3, we establish properties that enable us to efficiently determine whether a given graph is HHD-free, describe the algorithm, and give its analysis. Section 4 presents the certificate computation while Section 5 summarizes our results and presents some open problems.

2. Terminology - notation

We consider finite undirected graphs with no loops or multiple edges. Let G be such a graph; then, $V(G)$ and $E(G)$ denote the set of vertices and of edges of G respectively. The subgraph of G induced by a subset S of G 's vertices is denoted by $G[S]$. The neighbors of a vertex x of G, i.e., the vertices adjacent to a x, form the neighborhood $N_{G}(x)$ of x; the cardinality of $N_{G}(x)$ is the degree of x. The closed neighborhood of x is defined as $N_{G}[x]:=N_{G}(x) \cup\{x\}$. For simplicity, we denote the set of non-neighbors of x in G by $M_{G}(x)$, i.e., $M_{G}(x)=V(G)-N_{G}[x]$.

A path in a graph G is a sequence of vertices $v_{0} v_{1} \cdots v_{k}$ such that $v_{i-1} v_{i} \in E(G)$ for $i=1,2, \ldots, k$; we say that this is a path from v_{0} to v_{k} and that its length is k. A path is called simple if none of its vertices occurs more than once; it is called trivial if its length is equal to 0 . A path (simple path) $v_{0} v_{1} \cdots v_{k}$ is a cycle (simple cycle) of length $k+1$ if $v_{0} v_{k} \in E(G)$. An edge connecting two non-consecutive vertices in a simple path (cycle) is called a chord; then, a simple path (cycle) $v_{0} v_{1} \cdots v_{k}$ of a graph G is chordless if G contains no chords of the path (cycle), i.e., $v_{i} v_{j} \notin E(G)$ for any two non-consecutive vertices v_{i}, v_{j} in the path (cycle). The chordless path (chordless cycle, respectively) on n vertices is commonly denoted by $P_{n}\left(C_{n}\right.$, respectively).

A connected component of a graph G is a maximal set $A \subseteq V(G)$ such that the subgraph $G[A]$ is connected, i.e., there exists a path in G connecting any two vertices in A.

3. The algorithm

3.1. Outline of the algorithm

Our algorithm works in a fashion similar to the algorithms in [12,17] in that it processes each vertex v of the input graph G seeking evidence that G contains an induced house, hole, or domino. If no evidence is found, then the algorithm reports that G is HHD-free. Therefore, our algorithm follows the outline shown in Fig. 2.

Algorithm Recognize-HHD-free(graph G)

for each vertex v of G do
Process_Vertex (G, v);
print("The graph G is HHD-free");
Fig. 2. Algorithm recognize-HHD-free.
Again, similarly to the algorithms in [12,17], our Procedure Process_Vertex works on the ordering of the non-neighbors of v in non-decreasing number of common-neighbors with v. From that point on, the three algorithms part ways. The algorithm in [12] performs chordal completion in the subgraph of G induced by the (ordered) non-neighbors of v. The algorithm in [17] maintains this chordal completion implicitly by means of the NextNeighbor array. The present algorithm works on a special shrunk graph G_{v} (in fact, it computes the above mentioned ordering of non-neighbors of v in that graph instead of working on G); the graph G_{v} possesses some very interesting properties: it maintains information on whether the input graph G contains an induced house, hole, or domino, while at the same time ensuring that if G does not contain an induced house, hole, or domino then the subgraph of G_{v} induced by the non-neighbors of v is "nearly" chordal (to become more precise in Section 3.3). For this reason, Procedure Process_Vertex applied on the pair (G, v) is a careful extension of the perfect-elimination-ordering (PEO) testing algorithm $[20,7]$ to handle the special structure of the graph G_{v}; note that the PEO testing algorithm is used to detect whether a graph is chordal if an ordering of its vertices produced by the algorithm LexBFS [20,7] is given. More details on how Procedure Process_Vertex works are given in Section 3.4 after we have formally defined the graph G_{v}, established its properties, and shown how we can take advantage of these properties to be able to detect whether v participates in an induced house, hole, or domino.

3.2. The graph G_{v}

The motivation for the construction of the graph G_{v} comes from the observation that if a vertex v is the top vertex of a house, participates in a hole, or is a corner vertex of a domino, all these subgraphs include a path $y_{1} u v w y_{2}$ where y_{1}, y_{2} are non-neighbors of v having different common neighbors with v. This suggests that it may be a good idea to partition the set of non-neighbors of v based on their common neighbors with v and then to work with the graph that results from shrinking each of the partition sets into a single super-vertex.

Fig. 3. Shrinking each partition set into a single vertex may lead to error.
However, shrinking each of the different partition sets into a single vertex leads to error as the following example indicates: consider the graph G on the left of Fig. 3 which contains no house, hole, or domino; the partition of the nonneighbors of v based on the common neighbors with v yields the sets P, Q, R; shrinking these sets into vertices x, y, z, respectively, yields the graph on the right of Fig. 3, which contains the hole vaxyzc. That is, the shrunk graph cannot be used for the detection of holes in G because it may contain a hole even if G does not contain one.

A closer look at the example reveals that the error is due to the fact that the two connected components of the subgraph $G[Q]$ induced by the partition set Q in Fig. 3 were shrunk into the same vertex. This suggests that if one intends to apply a shrinking mechanism, one needs to treat the connected components of any partition set as separate entities.

Therefore, we do the following:

1. we compute the partition of the non-neighbors $M_{G}(v)$ of vertex v in G based on the common neighbors of the vertices in $M_{G}(v)$ with v;
2. we order the partition sets by non-decreasing number of common neighbors with v (ties are broken arbitrarily); let $\ell_{v}=\left(S_{1}, S_{2}, \ldots, S_{\ell}\right)$ be the resulting ordering;
3. for each set S_{i}, we compute the connected components of the subgraph $G\left[S_{i}\right]$;
4. we construct an auxiliary graph G_{v} by shrinking each of the connected components into a single vertex: namely, for each $i=1,2, \ldots, \ell$, let

$$
\begin{equation*}
Z_{i}=\left\{z_{C_{1}}, z_{C_{2}}, \ldots, z_{C_{t_{i}}} \mid C_{1}, C_{2}, \ldots, C_{t_{i}} \text { are the conn. components of } G\left[S_{i}\right]\right\} ; \tag{1}
\end{equation*}
$$

then

$$
\begin{aligned}
V\left(G_{v}\right)= & \{v\} \cup N_{G}(v) \cup\left(\bigcup_{i=1}^{\ell} z_{i}\right) \\
E\left(G_{v}\right)= & \left\{u w \mid u, w \in\{v\} \cup N_{G}(v): u w \in E(G)\right\} \\
& \cup\left\{u z_{C} \mid u \in N_{G}(v), \exists x \in \text { conn. component } C \text { of } G\left[S_{i}\right]: u x \in E(G)\right\} \\
& \cup\left\{z_{C} z_{C^{\prime}} \mid \exists x, y \in \text { conn. components } C \text { and } C^{\prime} \text { of } G\left[S_{i}\right] \text { and } G\left[S_{j}\right], \text { resp., where } i \neq j: x y \in E(G)\right\} .
\end{aligned}
$$

Note that when a component C is shrunk into a vertex z_{C}, then
(i) z_{C} is adjacent to a vertex $u \in N_{G}(v)$ iff there exists a vertex $x \in C$ such that $u x \in E(G)$, and
(ii) z_{C} is adjacent to vertex $z_{C^{\prime}}$ that resulted from the shrinking of a component $C^{\prime} \neq C$ iff there exist vertices $x \in C$ and $y \in C^{\prime}$ such that $x y \in E(G)$.
As an example, Figs. 4(b) and (c) show the graphs G_{v} and G_{u} for the graph shown (in two different ways) in Fig. 4(a).
Notation. Since for vertex $v, N_{G}(v)=N_{G_{v}}(v)$, for simplicity, in the following we will write $N(v)$ instead.

3.3. Properties of the graph G_{v}

In this subsection, we prove some properties that a graph G_{v} corresponding to vertex v of G possesses.
It follows from the definition of the graph G_{v} and of the sets $Z_{i}(1 \leq i \leq \ell)$, that the ordering $\left(Z_{1}, Z_{2}, \ldots, Z_{\ell}\right)$ contains the sets ordered by non-decreasing number of common neighbors with v. Then, the following lemma holds (the lemma holds for the ordering ℓ_{v} of the given graph g as well):

Lemma 3.1. Let v be a vertex of a graph G and G_{v} the corresponding graph. Consider the partition of the non-neighbors of vertex v in G_{v} based on their common neighbors with v and let $\left(Z_{1}, Z_{2}, \ldots, Z_{\ell}\right)$ be the ordering of the partition sets ordered by nondecreasing number of common neighbors with v (ties are broken arbitrarily). Then, for any two sets Z_{i} and Z_{j} where $i<j$, the following hold:
(i) There exists a neighbor y of v such that y is adjacent to all the vertices in Z_{j} and to no vertex in Z_{i}.

Fig. 4. (a) The same graph shown in two different ways (with respect to vertices v and u); (b) the graph G_{v}; (c) the graph G_{u}.
(ii) Let $z \in Z_{i}$ and $z^{\prime} \in Z_{j}$ such that $z z^{\prime} \in E\left(G_{v}\right)$. If z has a common neighbor with v that is not a neighbor of z^{\prime}, then the graph G_{v} contains an induced house (with v at its top) or C_{5}.

Proof. (i) Let n_{i} and n_{j} be the number of common neighbors of the vertices in Z_{i} and in Z_{j}, respectively, with v. The ordering of the partition sets implies that $n_{i} \leq n_{j}$, since $i<j$. If $n_{i}<n_{j}$, then clearly there exists a vertex y as described in the statement of the lemma. Such a vertex also exists if $n_{i}=n_{j}$, because the sets Z_{i}, Z_{j} are different and hence their sets of common neighbors with v differ.
(ii) Since $i<j$, statement (i) of this lemma holds and hence there exists a neighbor y of v such that y is adjacent to z^{\prime} but is not adjacent to z. Suppose that there exists a vertex x that is a neighbor of both z and v but not of z^{\prime}. Then, the vertices v, x, z, z^{\prime}, y induce a house (with v at its top) if $x y \in E\left(G_{v}\right)$ or a C_{5} if $x y \notin E\left(G_{v}\right)$.

Additionally, the existence of chordless cycles in the graph G_{v} for some vertex v of the given graph G implies that G contains a chordless cycle of at least equal length. In particular:
Lemma 3.2. Let G be a graph. Consider the graph G_{v} as defined above w.r.t. a vertex v of G and let $O_{G_{v}}=z_{A_{1}} z_{A_{2}} \cdots z_{A_{k}}(k \geq 3)$ be a chordless cycle in G_{v}. If $z_{A_{i}}$ is v or a neighbor of v in G_{v}, let $A_{i}=\left\{z_{A_{i}}\right\}$, whereas if $z_{A_{i}}$ is a non-neighbor of v, let A_{i} be the connected component of a subgraph $G\left[S_{t_{i}}\right]$ of G which was shrunk into vertex $z_{A_{i}}$. Then, G contains a chordless cycle

$$
O_{G}=x_{1,1} \cdots x_{1, j_{1}} x_{2,1} \cdots x_{2, j_{2}} \cdots x_{k-1,1} \cdots x_{k-1, j_{k-1}} x_{k, 1} \cdots x_{k, j_{k}}
$$

where $\forall i=1, \ldots, k, x_{i, 1} \cdots x_{i, j_{i}}$ is a (chordless) path in $G\left[A_{i}\right]$ and $j_{i} \geq 1$; the length of O_{G} is equal to $\left(\sum_{i=1}^{k} j_{i}\right)$ which is no less than the length of the cycle $O_{G_{v}}(=k)$.
Proof. Since $z_{A_{i}} z_{A_{i+1}} \in E\left(G_{v}\right)(1 \leq i<k)$ there exist vertices $q_{i} \in A_{i}$ and $p_{i+1} \in A_{i+1}$ such that $q_{i} p_{i+1} \in E(G)$ (note that if $z_{A_{i}}$ is v or a neighbor of v then $q_{i}=z_{A_{i}}$; similarly for p_{i+1}). Then, for $1 \leq i \leq k$, since $p_{i}, q_{i} \in A_{i}$ and since the subgraph $G\left[A_{i}\right]$ is connected (no matter whether $z_{A_{i}}$ is a neighbor of v or not), there exists a (possibly trivial) path, say, ρ_{i}, in $G\left[A_{i}\right]$ from p_{i} to q_{i}. Therefore, the vertices of the paths $\rho_{1}, \rho_{2}, \ldots, \rho_{k}$ in order form a (not necessarily chordless) cycle O_{G}^{\prime} in G, from which we can obtain a chordless cycle O_{G}. Since the cycle $O_{G_{v}}$ is chordless, no vertex in $A_{i}(1 \leq i \leq k)$ is adjacent to vertices of the cycle O_{G}^{\prime} other than vertices in the sets A_{j} preceding and following the set A_{i} around the cycle. Therefore, the chordless cycle O_{G} has to pass from vertices in each of A_{i} and is of the form given in the statement on the lemma; consequently its length is at least equal to the length of the cycle $O_{G_{v}}$.

Fig. 5. For the proof of Corollary 3.1; (a) for the case of a house (x_{i} coincides with b); (b) for the case of a domino.
The above property is crucial in showing the following very important result.
Corollary 3.1. Let G be a graph and consider the graph G_{v} as defined above w.r.t. any vertex v of G. If G_{v} contains a house, hole, or domino then so does G.

Proof. Lemma 3.2 readily implies that the existence of an induced hole in G_{v} implies the existence of an induced hole in G. Now, consider that G_{v} contains a house induced by the vertices $z_{A}, z_{B}, z_{C}, z_{D}, z_{E}$ so that $z_{A} z_{B} z_{C} z_{D} z_{E}$ is a cycle in G_{v} that has the chord $z_{B} z_{E}$, i.e., z_{A} is the top vertex of the house with neighbors and z_{B} and z_{E}. As in the statement of Lemma 3.2, let us associate the vertices $z_{A}, z_{B}, z_{C}, z_{D}, z_{E}$ with the subsets A, B, C, D, E of $V(G)$, respectively, i.e., if z_{X} is a neighbor of v, then $X=\left\{z_{X}\right\} \subseteq V(G)$, otherwise, X is the connected component of G which was shrunk into vertex z_{X} (note that, in either case, $G[X]$ is connected). In accordance with Lemma 3.2, the existence of the chordless cycle $z_{B} z_{C} z_{D} z_{E}$ in G_{v} implies that G contains a chordless cycle O_{G} of length ≥ 4. If the length of O_{G} is ≥ 5 then G contains an induced hole; so, suppose that the length of the cycle O_{G} is 4 . Then, as proved in Lemma 3.2, the cycle is $b^{\prime} c d e^{\prime}$ where $b^{\prime} \in B, c \in C, d \in D$, and $e^{\prime} \in E$ (see Fig. 5(a)). Similarly, the existence of the chordless cycle $z_{A} z_{B} z_{E}$ in G_{v} implies that G contains a chordless cycle O_{G}^{\prime} of length ≥ 3. If the length of O_{G}^{\prime} is ≥ 5 then G contains an induced hole; so, suppose that the length of the cycle O_{G}^{\prime} is 3 or 4 . In either case, the cycle contains an edge be where $b \in B$ and $e \in E$ (see Fig. 5(a)).

Since $b, b^{\prime} \in B$ and since $G[B]$ is connected, let $\rho_{B}=x_{0} x_{1} \cdots x_{k}$ be a (possibly trivial) shortest path in $G[B]$ connecting $b^{\prime}=x_{0}$ to $b=x_{k}$. Similarly, let $\rho_{E}=y_{0} y_{1} \cdots y_{\ell}$ be a (possibly trivial) shortest path in $G[E]$ connecting $e^{\prime}=y_{0}$ to $e=y_{\ell}$. Next, among the vertices of ρ_{B} that are adjacent to both c and e^{\prime} (note that $b^{\prime}=x_{0}$ is such a vertex), select the vertex that is closest to b along ρ_{B}; let x_{i} be that vertex (in Fig. 5(a), $x_{i}=b$). Then, no vertex x_{i+1}, \ldots, x_{k} is adjacent to both c and e^{\prime}. If there exist vertices among x_{i+1}, \ldots, x_{k} that are adjacent to c, let $x_{i^{\prime}}$ be the vertex that is closest to x_{i} along ρ_{B}. Then: if $i^{\prime}=i+1$, then the vertices $v_{i}, v_{i^{\prime}}, c, d, e^{\prime}$ induce a house in G; if $i^{\prime}=i+2$, then the vertices $v_{i}, v_{i+1}, v_{i^{\prime}}, c, d, e^{\prime}$ induce a domino in G; finally, if $i^{\prime} \geq i+3$, then the vertices $v_{i}, v_{i+1}, \ldots, v_{i^{\prime}}$ induce a hole in G. In a similar fashion, if there exist vertices among x_{i+1}, \ldots, x_{k} that are adjacent to e^{\prime}, then G contains an induced house, hole, or domino. So, in the following, we assume that no vertex among x_{i+1}, \ldots, x_{k} is adjacent to c or e^{\prime}.

Let us now work similarly on the path ρ_{E}. More specifically, let y_{j} be the vertex of ρ_{E} that is adjacent to both x_{i} and d, and is closest to e along ρ_{E} (see Fig. 5(a)). If any of the vertices $y_{j+1}, \ldots, y_{\ell}$ is adjacent to x_{i} or d, then, as in the previous paragraph, we conclude that the graph G contains an induced house, hole, or domino. So, in the following, we assume that no vertex among $y_{j+1}, \ldots, y_{\ell}$ is adjacent to x_{i} or d.

If $x_{i}=b$ and $y_{j}=e$, then the subgraph of G induced by the vertices c, d, and the vertices of the cycle O_{G}^{\prime} (of length 3 or 4) contains an induced house or domino: if O_{G}^{\prime} is of length 3, then c, d, and the vertices of O_{G}^{\prime} induce a house. Next, suppose that O_{G}^{\prime} is of length 4 ; in particular, let $O_{G}^{\prime}=$ befg. If $f, g \in A$, then c, d, and the vertices of O_{G}^{\prime} induce a domino. If $f \in E$, then $g \in A$. If vertex f is adjacent to both b and d, then g, b, c, d, f induce a house (with g at its top). If f is adjacent to exactly one of b and d, then f, b, c, d, e induce a house (with f at its top). If f is not adjacent to b or d, then b, c, d, e, f, g induce a domino. Similarly if $g \in B$.

Now, if $x_{i} \neq b$ or $y_{j} \neq e$, consider the shortest path connecting x_{i} to y_{j} in the subgraph of G induced by the vertices $x_{i}, x_{i+1}, \ldots, x_{k-1}, b, e, y_{\ell-1}, \ldots, y_{j+1}, y_{j}$ in which we have removed the edge $x_{i} y_{j}$. If the shortest path is of length ≥ 4, then its vertices induce a hole in G. If its length is 2 or 3 , then its vertices along with c and d induce a house or a domino, respectively.

The proof for a domino is similar to that for the house. Suppose that G_{v} contains a domino induced by the vertices $z_{A}, z_{B}, z_{C}, z_{D}, z_{E}, z_{F}$ so that $z_{A} z_{B} z_{C} z_{D} z_{E} z_{F}$ is a cycle in G_{v} that has the chord $z_{B} z_{E}$. As in the case of the house, we associate the vertices $z_{A}, z_{B}, z_{C}, z_{D}, z_{E}, z_{F}$ with the subsets A, B, C, D, E, F of $V(G)$, respectively (see Fig. $5(\mathrm{~b})$). In accordance with

Lemma 3.2, the existence of the chordless cycles $z_{B} z_{C} z_{D} z_{E}$ and $z_{A} z_{B} z_{E} z_{F}$ in G_{v} implies that G contains corresponding chordless cycles O_{G} and O_{G}^{\prime}, respectively, each of length ≥ 4. If the length of any of these cycles is ≥ 5 then G contains an induced hole; so, suppose that the length of both O_{G} and O_{G}^{\prime} is 4 and let them be $O_{G}=b^{\prime} c d e^{\prime}$ and $O_{G}^{\prime}=b e f g$ where $g \in A, b, b^{\prime} \in B, c \in C$, $d \in D, e, e^{\prime} \in E$, and $f \in F$ (see Fig. 5(b)). From then on, the proof proceeds in the same way as in the case of the house under the conditions that the length of O_{G}^{\prime} is 4 , and that f belongs to a separate set F and thus is not adjacent to b or d.

On the other hand, due to the way the graph G_{v} is defined, if v is a (in some cases, special) vertex in a house, hole, or domino in G then the graph G_{v} contains a house, hole, or domino. More specifically:

Lemma 3.3. If a graph G contains an induced house, hole, or domino then there exists a vertex $v \in V(G)$ such that in the graph G_{v} (as defined in Section 3.2) w.r.t. vertex v :
(i) v is the top vertex of an induced house in G_{v} or
(ii) v belongs to an induced hole in G_{v} or
(iii) v is a corner vertex of an induced domino in G_{v}.

Proof. We assume that G contains an induced house, hole, or domino. We consider the following cases:
(i) Suppose that G contains an induced house. Let v be the vertex at the top of the house and let the remaining vertices be a, b, c, d such that $v a b c d$ is a cycle of G. For the non-neighbors b and c of v, let $b \in S_{i}$ and $c \in S_{j}$. Clearly $i \neq j$ since b and c have different common neighbors with v. Consider the graph G_{v} w.r.t. vertex v. Let $z_{B}\left(z_{C}\right.$, resp.) be the vertex of G_{v} which resulted from the shrinking of the connected component B (C, resp.) of $G\left[S_{i}\right]$ ($G\left[S_{j}\right]$, resp.) containing b (c, resp.). Then, the vertices v, a, z_{B}, z_{C}, d induce a house in G_{v} having v as its top vertex.
(ii) Suppose that G contains an induced hole. Let v be any vertex of the hole and let the hole be $v a b p_{1} p_{2} \cdots p_{k} c d$, i.e., the vertices $b, p_{1}, \ldots, p_{k}, c$ are all non-neighbors of v in G. Consider the graph G_{v} w.r.t. vertex v. The path $b p_{1} \cdots p_{k} c$ in the subgraph of G induced by the non-neighbors of v implies that there exists a non-simple path in the subgraph of G_{v} induced by the non-neighbors of v connecting z_{B} to z_{C}, where z_{B}, z_{C} are the vertices of G_{v} that resulted from the shrinking of the connected components containing b and c, respectively. From this path, we can obtain a chordless path ρ connecting z_{B} to z_{C} (it suffices to apply breadth-first-search on this path starting from z_{B} until z_{c} is reached, and then collect the BFS-tree edges from z_{B} to z_{C}). Then, the vertices v, a, d and the vertices of the path ρ induce a hole in G_{v} containing v (even when the length of ρ is equal to 1).
(iii) Suppose finally that G contains an induced domino. Let v be a corner vertex of such a domino and let vabcde be the Hamilton cycle of the domino. Consider the graph G_{v} w.r.t. vertex v. Let z_{B}, z_{C}, z_{D} be the vertices of G_{v} corresponding to the connected components B, C, and D, respectively, of G containing b, c, and d, respectively; z_{B}, z_{C}, z_{D} are different as b, c, d have different common neighbors with v. Due to the domino, the graph G_{v} contains the cycle $v a z_{B} z_{C} z_{D} e$. Next, if there exist vertices $b^{\prime} \in B$ and $d^{\prime} \in D$ such that $b^{\prime} d^{\prime} \in E(G)$, then the vertices $b^{\prime}, d^{\prime}, e, v, a$ induce a house (with b^{\prime} at its top) in G, and according to case (i) the graph $G_{b^{\prime}}$ corresponding to b^{\prime} would contain an induced house with b^{\prime} at its top. Suppose now that no vertex in B is adjacent to a vertex in D. Then, $z_{B} z_{D} \notin G_{v}$ and the vertices $v, a, z_{B}, z_{C}, z_{D}, e$ induce a domino in G_{v} having v as a corner vertex.

The above result readily implies a way to check if an input graph G is HHD-free: process the graph G_{v} for each vertex v of G checking whether v is the top vertex of a house, or belongs to a hole, or is a corner vertex of a domino in G_{v}; if it is/does so, then G is not HHD-free. Of course, if there exists another induced house, hole, or domino in G_{v}, then, according to Corollary 3.1, again G is not HHD-free.

In this way, we reduced the problem of deciding whether a graph G is HHD-free into the problem of deciding whether any of the graphs G_{v} for the vertices of G is HHD-free. It seems that we are back at the beginning. However, this is not true because a graph G_{v} has the important property that if G is HHD-free then its subgraph induced by the non-neighbors of v is "nearly" chordal, or the contrapositive: if its subgraph induced by the non-neighbors of v is not "nearly" chordal then G is not HHD-free; the latter property is proved in the next lemma and is crucial in achieving a faster algorithm.

Lemma 3.4. Let v be a vertex of a graph G and z_{A}, z_{B}, z_{C} three vertices of the graph G_{v} belonging to the partition sets Z_{i}, Z_{j}, Z_{k}, respectively, and assume that $i<j<k$. Suppose further that $z_{A} z_{B} \in E\left(G_{v}\right)$ and $z_{A} z_{C} \in E\left(G_{v}\right)$. Then if $z_{B} z_{C} \notin E\left(G_{v}\right)$, the graph G contains an induced house, hole, or domino.

Proof. Since $i<j$, in accordance with Lemma 3.1 (statement (i)), there exists a vertex $x \in N(v)$ such that $x z_{B} \in E\left(G_{v}\right)$ and $x z_{A} \notin E\left(G_{v}\right)$. Similarly, since $j<k$, there exists a vertex $y \in N(v)$ such that $y z_{C} \in E\left(G_{v}\right)$ and $y z_{B} \notin E\left(G_{v}\right)$; see Fig. 6(a).

Now, if $y z_{A} \in E(G)$ then the vertices v, x, y, z_{A}, z_{B} induce a house (with v at its top) or a C_{5} in G_{v} depending on whether $x y \in E\left(G_{v}\right)$ or not, respectively. So suppose next that $y z_{A} \notin E\left(G_{v}\right)$. If $x z_{C} \in E(G)$ then the vertices x, z_{B}, z_{A}, z_{C} induce a C_{4}, and thus G_{v} contains a house induced by $x, y, z_{A}, z_{B}, z_{C}$ (with y as its top vertex) if $x y \in E\left(G_{v}\right)$ or a domino induced by $v, x, y, z_{A}, z_{B}, z_{C}$ otherwise; if $x z_{C} \notin E(G)$ then G_{v} contains a C_{5} induced by $x, y, z_{A}, z_{B}, z_{C}$ if $x y \in E\left(G_{v}\right)$ or a C_{6} induced by $v, x, y, z_{A}, z_{B}, z_{C}$ otherwise.

In all cases, the graph G_{v} contains an induced house, hole or domino; then, by Corollary 3.1, G contains an induced house, hole, or domino.

Fig. 6. For the proofs of: (a) Lemmas 3.4 and 3.6 ; (b) Lemmas 3.5 and 3.7 (edges that may or may not exist are shown dashed).
Therefore, in the case in which each non-neighbor of v, belonging to a set Z_{i}, is adjacent to at most 1 element of Z_{j} with $j>i$, this lemma has the following interesting implication: if the subgraph of G_{v} induced by the non-neighbors of v is not chordal then the graph G is not HHD-free. Then, we could apply a (linear-time) chordal recognition algorithm in that subgraph. If the algorithm returned "no", that is, the subgraph was not chordal, then we could safely answer that G is not HHD-free. If the algorithm returned "yes", then we could apply the algorithm of [12] without having to execute the chordal completion step, or the algorithm of [17] without having to compute the array NextNeighbor, and we could answer whether G contains an induced house or building (see Fig. 1(b)) with v at its top. If any graph G_{v} contained a house or a building, we could correctly report that G was not HHD-free; if none of them did, then G would not contain an induced house or hole. Then, all that would be needed, would be to test for an induced domino. By avoiding the chordal completion and the computation of the array NextNeighbor, we would have reduced the time complexity of the overall algorithm, as all the other steps in the algorithms of $[12,17]$ can be done in $O(\mathrm{~nm})$ time.

The above method relies on the assumption that no non-neighbor of v in a set, say, Z_{i}, is adjacent to more than 1 element of sets Z_{j} with $j>i$, which is not true in general. Nevertheless, even if this assumption is not true, we can still detect houses, holes, or dominoes, if there exist in G_{v}, by taking advantage of the following property.
Lemma 3.5. Let v be a vertex of a graph G and z_{A}, z_{B}, z_{C} three vertices of the graph G_{v} belonging to the partition sets Z_{i}, Z_{j}, Z_{k}, respectively, where $i<j<k$, such that $z_{A} z_{B} \in E\left(G_{v}\right)$ and $z_{B} z_{C} \in E\left(G_{v}\right)$. Suppose further that there exists a vertex $z_{B^{\prime}} \in Z_{j}$ such that $z_{A} z_{B^{\prime}} \in E\left(G_{v}\right)$ and $z_{B^{\prime}} z_{C} \notin E\left(G_{v}\right)$. Then, the graph G contains an induced house, hole, or domino.

Proof. Since $i<j$, in accordance with Lemma 3.1 (statement (i)), there exists a vertex $x \in N(v)$ such that $x z_{B} \in E\left(G_{v}\right)$, $x z_{B^{\prime}} \in E\left(G_{v}\right)$, and $x z_{A} \notin E\left(G_{v}\right)$. Additionally, in accordance with Lemma 3.1 (statement (ii)) due to the edges $z_{B} z_{C}$ and $x z_{B}$, if $x \notin N_{G_{v}}\left(z_{c}\right)$ then G_{v} contains an induced house or C_{5}. So, next consider that $x z_{C} \in E\left(G_{v}\right)$; see Fig. 6(b).

If $z_{A} z_{C} \in E(G)$ then the conditions of Lemma 3.4 for $z_{A}, z_{B^{\prime}}$, and z_{C} would be met and then the graph G_{v} would contain an induced house, hole, or domino. If $z_{A} z_{C} \notin E(G)$, the vertices $x, z_{A}, z_{B}, z_{B^{\prime}}, z_{C}$ induce a house with z_{C} at its top; note that $z_{B} z_{B^{\prime}} \notin E\left(G_{v}\right)$ since the vertices $z_{B}, z_{B^{\prime}}$ resulted from shrinking different connected components of the subgraph $G\left[S_{j}\right]$.

In all cases, the graph G_{v} contains an induced house, hole or domino; then, by Corollary 3.1, G contains an induced house, hole, or domino.

The lemma implies that in G_{v} whenever a non-neighbor z of v with $z \in Z_{i}$ is adjacent to two other non-neighbors z^{\prime} and $z^{\prime \prime}$ belonging to the same set, say, Z_{j} with $j>i$, then we check whether z^{\prime} and $z^{\prime \prime}$ have the same neighbors "to the right"; if they don't, then the graph G is not HHD-free.

3.4. Description of the algorithm

Based on the results in Lemmas 3.4 and 3.5, in Fig. 7 we give a detailed description of Procedure Process_Vertex with parameters the input graph G and one of its vertices v. From G, we construct the auxiliary graph G_{v} by shrinking each of the connected components of each of the subgraphs $G\left[S_{i}\right], i=1,2, \ldots, \ell$, into a single vertex; the components in $G\left[S_{i}\right]$ yield the vertices in the set Z_{i} (Step 2). Then, for each $i=1,2, \ldots, \ell$, we process all the vertices in the set Z_{i} together (note that, by construction, in the graph G_{v} there are no edges between any two vertices in Z_{i}).

For any two vertices $z^{\prime}, z^{\prime \prime}$ in each set Z_{i} that are neighbors of a vertex in some set Z_{t} with $t<i$, we intend to check that z^{\prime} and $z^{\prime \prime}$ have the same neighbors "to the right" and, if not, to report that G is not HHD-free in accordance with Lemma 3.5. This checking is delayed until the processing of the set Z_{i} and thus we construct a partition $\mathcal{P}_{Z_{i}}$ of each set Z_{i} into sets of vertices that should have the same neighbors "to the right" if G is HHD-free: initially, each vertex belongs to a separate partition set (Step 3). Whenever, a non-neighbor z of v in G_{v} has more than one immediately next neighbors (i.e., neighbors in the minimum-index set, say, Z_{k}, among all the sets containing neighbors of z "to the right"), then the partition sets containing

```
Procedure Process_Vertex(graph G, vertex v)
```

1. Compute the set $N(v)$ of neighbors and the set of non-neighbors of v in G;
partition the non-neighbors of v based on their common neighbors with v in G, and order the partition sets by nondecreasing number of such common neighbors; let $\ell_{v}=\left(S_{1}, S_{2}, \ldots, S_{\ell}\right)$ be the resulting ordering;
2. Construct the auxiliary graph G_{v} from a copy of G by shrinking each connected component C of the subgraphs $G\left[S_{i}\right]$, $i=1,2, \ldots, \ell$, into a single vertex z_{C}; let $Z_{i}(i=1,2, \ldots, \ell)$ be the set of vertices of G_{v} obtained from shrinking the connected components of $G\left[S_{i}\right]$;
3. for $i \leftarrow 1$ to ℓ do
form a partition $\mathcal{P}_{Z_{i}}$ of the set Z_{i} by placing each element of Z_{i} in a separate partition set;
for each vertex $z_{C} \in Z_{i}$ do associate with z_{C} an initially empty set $A\left(z_{C}\right)$;
4. for $i \leftarrow 1$ to ℓ do
let the partition $\mathcal{P}_{Z_{i}}$ of Z_{i} be $\mathcal{P}_{Z_{i}}=\left\{P_{1}, P_{2}, \ldots, P_{t}\right\} ;$
for $j \leftarrow 1$ to t do
4.1 let z_{R} be any vertex contained in the set P_{j}; $\quad\left\{\right.$ a representative of P_{j} \}
$X^{\prime} \leftarrow N_{G_{v}}\left(z_{R}\right) \cap\left(\bigcup_{r=i+1}^{\ell} Z_{r}\right) ; \quad$ \{neighbors of z_{R} "to the right" $\}$
4.2 if P_{j} is not a singleton set
then \quad \{check that all vertices in P_{j} have the same neighbors "to the right"\}
if there exists a vertex in P_{j} that is not adjacent in G_{v} to a vertex in X^{\prime} or is adjacent to a vertex in $\left(\bigcup_{r=i+1}^{\ell} Z_{r}\right)-X^{\prime}$
then print("The graph G is not HHD-free"); exit;
4.3 if $X^{\prime} \neq \emptyset$
then let Z_{k} be the minimum-index set such that $X^{\prime} \cap Z_{k} \neq \emptyset$;
$W \leftarrow X^{\prime} \cap Z_{k} ; \quad$ \{closest neighbors of z_{R} "to the right" $\}$
if $|W|>1$
then union the sets of the partition $\mathcal{P}_{z_{k}}$ (of Z_{k}) containing the vertices in W;
$X \leftarrow X^{\prime} \cup\left(N_{G_{v}}\left(z_{R}\right) \cap N(v)\right) ; \quad$ include neighbors in $N(v)$ \}
choose any $z_{X} \in W$ and concatenate the set $X-W$ to $A\left(z_{X}\right)$;
4.4 if $\left(\bigcup_{z \in P_{j}} A(z)\right)-N_{G_{v}}\left(z_{R}\right) \neq \emptyset$
then print("The graph G is not HHD-free"); exit;
Fig. 7. Procedure Process_Vertex.
these neighbors are unioned (Step 4.3); in fact, checking only the immediately next neighbors of a representative of each partition set, instead of each vertex z, suffices since this is done after all the vertices in a partition set have been found to have the same neighbors "to the right" (Step 4.2).

The rest of the algorithm is an extension of the linear-time perfect-elimination-ordering test algorithm of Rose et al. [20] and Golumbic [7] applied on the graph G_{v}. With each non-neighbor z of vertex v in the graph G_{v}, we associate an (initially empty) set $A(z)$ (Step 3) which collects all the vertices that will eventually have to be checked for adjacency with z. This checking is also delayed until the partition set, say, P_{j}, containing z gets processed; in fact, the elements of $A(z)$ are checked for adjacency with a representative of the set P_{j} (Step 4.4), which is correct since all the vertices in P_{j} have been checked to have the same neighbors "to the right" (and of course they have the same common neighbors with v).

For example, when applied on the graph G_{v} in Fig. 4(b), we have: the set Z_{1} contains a single vertex z_{1}, whose processing in Step 4.3 produces $W=\left\{z_{2}, z_{3}\right\}$ and thus these two vertices are unioned in a single partition set; when Z_{2} gets processed, the partition set $\left\{z_{2}, z_{3}\right\}$ is processed and in Step 4.2, we find out that the two vertices do not have the same neighbors "to the right" (no matter which one is picked as the representative z_{R}), and the algorithm correctly concludes that the given graph G is not HHD-free. If the algorithm is applied on the graph G_{u} in Fig. 4(c), then we have: the set Z_{1} contains a single vertex z_{1}^{\prime}, whose processing in Step 4.3 produces $W=\left\{z_{3}^{\prime}\right\}$ and $X^{\prime}=\left\{z_{3}^{\prime}, z_{4}^{\prime}\right\}$, and thus the set $A\left(z_{3}^{\prime}\right)$ becomes $\left\{z_{4}^{\prime}\right\}$; next, during the processing of Z_{2} and its element z_{2}^{\prime}, we have that $W=\left\{z_{3}^{\prime}\right\}$ and $X^{\prime}=\left\{z_{3}^{\prime}, v\right\}$, and thus the vertex v is added to $A\left(z_{3}^{\prime}\right)$; finally, when Z_{3} gets processed, in Step 4.4 of the processing of z_{3}^{\prime}, we find that $A\left(z_{3}^{\prime}\right)$ contains v and z_{4}^{\prime}, none of which is a neighbor of z_{3}^{\prime}, and thus the algorithm correctly concludes that the given graph G is not HHD-free.

3.5. Correctness

The correctness of Procedure Process_Vertex, and consequently Algorithm Recognize-HHD-free, is established in Theorem 3.1 with the help of Lemmas 3.6-3.8 through which we establish that Procedure Process_Vertex reports that the given graph is not HHD-free under certain conditions that are often met in Theorem 3.1. In particular, these 3 lemmas prove the aforementioned result for Procedure Process_Vertex if the conditions of Lemmas 3.4, 3.5 and 3.1(ii) respectively, hold.

Lemma 3.6. Let G_{v} be the graph corresponding to a vertex v of a graph G as defined in Section 3.2 and suppose that there exist $z_{A} \in Z_{i}, z_{B} \in Z_{j}$, and $z_{C} \in Z_{k}$ with $i<j<k$ such that $z_{A} z_{B} \in E\left(G_{v}\right), z_{B} z_{C} \in E\left(G_{v}\right)$, and $z_{B} z_{C} \notin E\left(G_{v}\right)$; see Fig. $6(a)$. Then Procedure Process_Vertex, when run on the pair (G, v), reports that the graph G is not HHD-free.
Proof. Among all triples of vertices z_{A}, z_{B}, z_{C} meeting the conditions of the lemma, consider a triple such that $j-i$ is minimum.

Consider the processing of the graph G_{v} and in particular the processing of the partition set containing z_{A}. Clearly, $X^{\prime} \neq \emptyset$, since $z_{B}, z_{C} \in X^{\prime}$; let z_{X} be the vertex chosen at the end of Step 4.3 in order that the set $X-W$ be concatenated to $A\left(z_{X}\right)$. Then, z_{X} belongs to Z_{j} (as does z_{B}). Suppose for contradiction that z_{X} belongs to Z_{q} where $q<j$. Then $z_{X} z_{B} \in E\left(G_{v}\right)$ otherwise the triple z_{A}, z_{X}, z_{B} would contradict the minimality of the triple z_{A}, z_{B}, z_{C}. Similarly, $z_{X} z_{C} \in E\left(G_{v}\right)$. But then again, the triple z_{X}, z_{B}, z_{C} contradicts the minimality of the triple z_{A}, z_{B}, z_{C}. Therefore, $z_{X} \in Z_{j}$ (as does z_{B}) and the vertices z_{X} and z_{B} both end up belonging to the set W in Step 4.3 during the processing of the partition set containing z_{A}; due to that, the partition sets to which z_{X} and z_{B} belong get unioned (if they have not got unioned earlier). Later the vertices in $X-W$ are concatenated to $A\left(z_{X}\right)$ and thus z_{C} is concatenated to $A\left(z_{X}\right)$.

Consider now the processing of the partition set containing z_{X} (and z_{B}) and let z_{R} be the arbitrary vertex selected in Step 4.1. If $z_{C} \in N_{G_{v}}\left(z_{R}\right)$ then Procedure Process_Vertex reports that the graph G is not HHD-free in Step 4.2 because z_{B} is not adjacent to z_{C}. If $z_{C} \notin N_{G_{v}}\left(z_{R}\right)$ then Procedure Process_Vertex again reports that the graph G is not HHD-free; in Step 4.4, the set $\bigcup_{z \in P_{S}} A(z)$ includes $A\left(z_{X}\right)$ which contains z_{C} whereas z_{C} is not adjacent to z_{R}.
Lemma 3.7. Let G_{v} be the graph corresponding to a vertex v of a graph G as defined in Section 3.2 and suppose that there exist $z_{A} \in Z_{i}, z_{B}, z_{B^{\prime}} \in Z_{j}$, and $z_{C} \in Z_{k}$ with $i<j<k$ such that $z_{A} z_{B} \in E\left(G_{v}\right), z_{A} z_{B^{\prime}} \in E\left(G_{v}\right), z_{B} z_{C} \in E\left(G_{v}\right)$, and $z_{B^{\prime}} z_{C} \notin E\left(G_{v}\right)$; see Fig. 6(b). Then, Procedure Process_Vertex, when run on the pair (G, v), reports that the graph G is not HHD-free.
Proof. Fix vertices z_{B} and $z_{B^{\prime}}$; among all possible vertices z_{A} as described in the lemma, select a z_{A} such that $j-i$ is minimum.
Consider the processing of the graph G_{v} and in particular the processing of the partition set containing z_{A}. Clearly, $X^{\prime} \neq \emptyset$, since $z_{B}, z_{B^{\prime}} \in X^{\prime}$; let z_{X} be the vertex chosen at the end of Step 4.3 in order that the set $X-W$ be concatenated to $A\left(z_{X}\right)$. Suppose that $z_{X} \in Z_{q}$ where $q<j$. The minimality of the choice of z_{A} implies that z_{X} is not adjacent to at least one of z_{B} and $z_{B^{\prime}}$ thus, suppose without loss of generality that $z_{X} z_{B} \notin E\left(G_{v}\right)$. Then, the triple z_{A}, z_{X}, z_{B} would satisfy the conditions of Lemma 3.6 and Procedure Process_Vertex reports that the graph G is not HHD-free. Now suppose that $z_{X} \in Z_{j}$ (as do z_{B} and $z_{B^{\prime}}$). Therefore, all three vertices z_{X}, z_{B}, and $z_{B^{\prime}}$ belong to the set W in Step 4.3 during the processing of the partition set containing z_{A}, and the partition sets to which they belong get unioned (if they have not got unioned earlier).

Consider now the processing of the partition set of Z_{j} containing z_{X}, z_{B}, and $z_{B^{\prime}}$, and let z_{R} be the arbitrary vertex selected in Step 4.1. Clearly, the partition set is not a singleton and in Step 4.2 it is checked whether any member of the set has different neighborhood "to the right" from that of z_{R}. Since $z_{C} \in Z_{k}$ (where $k>j$) is adjacent to z_{B} but not to $z_{B^{\prime}}$, and both z_{B} and $z_{B^{\prime}}$ belong to the partition set containing z_{R}, the neighborhood "to the right" of z_{R} will disagree to at least one of the neighborhoods of z_{B} or $z_{B^{\prime}}$, and therefore Procedure Process_Vertex reports that the graph G is not HHD-free.
Lemma 3.8. Let G_{v} be the graph corresponding to a vertex v of a graph G as defined in Section 3.2 and suppose that $z_{A} z_{B} \in E\left(G_{v}\right)$ where $z_{A} \in Z_{i}$ and $z_{B} \in Z_{j}$ are two non-neighbors of v in G_{v} with $i<j$. If there exists a vertex x that is a common neighbor of z_{A} and v in G_{v}, which is not a neighbor of z_{B} (see the left graph in Fig. 8(b)), then Procedure Process_Vertex when run on the pair (G, v) reports that the graph G is not HHD-free.
Proof. Among all pairs of vertices z_{A}, z_{B} meeting the conditions of the lemma, consider a pair such that $j-i$ is minimum.
Consider the processing of the graph G_{v} and in particular the processing of the partition set containing z_{A}; let z_{X} be the vertex chosen at the end of Step 4.3 in order that the set $X-W$ be concatenated to $A\left(z_{X}\right)$. Then, since $x \in N_{G_{v}}\left(z_{A}\right) \cap N(v)$, the vertex x will be concatenated to $A\left(z_{X}\right)$. Suppose that z_{X} belongs to Z_{k}; clearly, $i<k \leq j$.

Consider the case where $k<j$. Since $z_{A} z_{X} \in E\left(G_{v}\right)$, if $x \notin N_{G_{v}}\left(z_{X}\right)$. then the pair z_{X}, z_{B} would contradict the minimality of the pair z_{A}, z_{B}. Thus $x \in N_{G_{v}}\left(z_{X}\right)$; then $z_{X} z_{B} \notin E\left(G_{v}\right)$ otherwise the pair z_{X}, z_{B} would contradict the minimality of the pair z_{A}, z_{B}. Since $z_{A} z_{X} \in E\left(G_{v}\right), z_{A} z_{B} \in E\left(G_{v}\right)$, and $z_{X} z_{B} \notin E\left(G_{v}\right)$, the vertices z_{A}, z_{X}, z_{B} satisfy the conditions of Lemma 3.6 and we have that Procedure Process_Vertex reports that the graph G is not HHD-free.

Consider now the case where $k=j$. Since $k=j$ and since both z_{X} and z_{B} are neighbors of z_{A}, the vertices z_{X} and z_{B} both belong to the set W computed in Step 4.3 while processing the partition set containing z_{A}, and hence the partition sets containing these vertices (if different) are unioned. During the processing of the partition set P_{S} containing z_{X} and z_{B}, in Step 4.1 an arbitrary vertex z_{R} is selected from P_{s}; since $z_{R} \in Z_{j}$ (as does z_{B}), $x \notin N_{G_{v}}\left(z_{R}\right)$ as well. Next, in Step 4.2, the set $\bigcup_{z \in P_{s}} A(z)$ includes $A\left(z_{X}\right)$ which contains x. On the other hand, x is not adjacent to z_{R} and Procedure Process_Vertex reports that the graph G is not HHD-free.

Now we are ready to prove the theorem establishing the correctness of our algorithm.
Theorem 3.1. When Algorithm Recognize-HHD-free is run on a graph G, it reports that G is not HHD-free if and only if G is indeed not HHD-free.

Proof. (\Longrightarrow) Suppose that the algorithm prints that G is not HHD-free while Procedure Process_Vertex runs on the pair (G, v). This may happen either in Step 4.2 or in Step 4.4 while processing a partition set P_{h} of a set Z_{j} of vertices of G_{v}; let z_{R} be the vertex selected in Step 4.1 of the processing of P_{h}. Then:

Fig. 8. For the proof of Theorem 3.1.

- Step 4.2: there exists a vertex in P_{h} whose neighborhood "to the right" differs from that of vertex z_{R}, i.e., there exists a vertex $z_{C} \in\left(\bigcup_{r=i+1}^{\ell} Z_{r}\right)-X^{\prime}$ such that some vertices in P_{j} are adjacent to z in the graph G_{v} while the remaining vertices in P_{h} are not adjacent to z.
The set P_{h} has been formed by unions of disjoint subsets of the set Z_{j}; a union of such subsets is done in Step 4.4 during the processing of a partition set which is a subset of a set Z_{i} (with $i<j$) and contains a vertex adjacent in G_{v} to elements of these subsets that belong to the set W. Thus, in the history of the formation of the set P_{h}, there is a moment when a subset of P_{h} is formed while unioning a subset $P_{q_{1}}$ of vertices of Z_{j}, all of which are adjacent to z_{C} with a subset $P_{q_{2}}$ of vertices of Z_{j} none of which is adjacent to z_{C}. This union has been performed at an earlier iteration of the for-loop in Step 4, i.e., while processing a subset of a set Z_{i} with $i<j$ because the vertex selected in Step 1.4, say, z_{A}, is adjacent to a vertex z_{B} in $P_{q_{1}}$ and to a vertex $z_{B^{\prime}}$ in $P_{q_{2}}$. But then the vertices $z_{A}, z_{B}, z_{B^{\prime}}, z_{C}$ meet the conditions of Lemma 3.5 , and thus G contains an induced house, hole, or domino.
- Step 4.4: there exists a vertex $x \in\left(\bigcup_{z \in P_{h}} A(z)\right)-N_{G_{v}}\left(z_{R}\right)$, where z_{R} is the vertex selected from the set P_{h} in Step 4.1 when processing P_{h}. The vertex x belongs to $\bigcup_{z \in P_{h}} A(z)$ because it has been added to some $A\left(z_{B}\right)$, where $z_{B} \in P_{h}$; this addition was done earlier in Step 4 for a value i of the index of the for-loop (i.e. $i<j$) while processing a subset P of the set $Z_{i^{\prime}}$ of vertices of G_{v}; let z_{A} be the vertex selected from P in Step 4.1 during its processing. Then, $z_{A} z_{B} \in E\left(G_{v}\right)$ and $z_{A} x \in E\left(G_{v}\right)$. Since $\bigcup_{z \in P_{h}} A(z) \subseteq\left(\bigcup_{r=i+1}^{\ell} Z_{r}\right) \cup N(v)$, we distinguish the following two cases:

Suppose that $x \in \bigcup_{r=i+1}^{\ell} Z_{r}$. Let $x \in Z_{q}$ where $q>j$ (see Fig. 8(a)). Since the processing of the set P_{h} did not stop at Step 4.2, then all the vertices in P_{h} have the same neighbors "to the right" as z_{R}; since x is not a neighbor of z_{R}, then x is not a neighbor of z_{B} either (recall $z_{R}, z_{B} \in P_{h}$). But then the vertices z_{A}, z_{B}, x meet the conditions of Lemma 3.4, and thus G contains an induced house, hole, or domino.

Next, suppose that $x \in N(v)$ (see Fig. $8(\mathrm{~b})$). Since $z_{A} \in Z_{i}$ and $z_{B} \in Z_{j}$, there exist connected components A of $G\left[S_{i}\right]$ and B of $G\left[S_{j}\right]$ such that A, B were shrunk into vertices z_{A} and z_{B}, respectively. Since $x z_{A} \in E\left(G_{v}\right)$ and $x z_{B} \notin E\left(G_{v}\right)$, in G, vertex x is adjacent to all the vertices in A and to no vertex in B. Additionally, because $z_{A} z_{B} \in E\left(G_{v}\right)$, there exist vertices $a \in A$ and $b \in B$ such that $a b \in E(G)$. Moreover, since $i<j$, there exists a vertex $w \in N(v)$ such that $w \in N_{G}(b)-N_{G}(a)$. Then, the vertices v, x, w, a, b induce a house or a C_{5} in G.
(\Longleftarrow) Now, suppose that the graph G is not HHD-free; we will show that Algorithm Recognize-HHD-free will report that.
Suppose that G contains a house or a C_{5} induced by the vertices v, x, w, a, b that form a cycle $v x a b w$; in case of a house, let v be its top vertex (see Fig. 8(b)). Without loss of generality suppose that in the partition of the non-neighbors of v, the vertices a, b belong to the connected components A and B of the sets S_{i} and S_{j}, respectively, with $i<j$. Consider the graph G_{v} and let z_{A}, z_{B} be the vertices of G_{v} to which the components A, B shrunk. Then, in $G_{v}, z_{A} \in Z_{i}, z_{B} \in Z_{j}$ with $i<j$, and the neighbor x of v is adjacent to z_{A} but not to z_{B}. Then, from Lemma 3.8, we conclude that Procedure Process_Vertex when run on the pair (G, v) reports that the graph G is not HHD-free.

Suppose that G contains a hole $v u a_{1} a_{2} \cdots a_{h} w$, where $h \geq 3$. Again, if Algorithm Recognize-HHD-free does not stop early (and reports that the graph G is not HHD-free), it eventually executes the body of the for-loop of Step 1 for the vertex v. Note that the vertices $a_{1}, a_{2}, \ldots, a_{h}$ are all non-neighbors of v; let $A_{1}, A_{2}, \ldots, A_{h}$, respectively, be the connected components of the subgraphs of G induced by the sets of the partition δ_{v} to which the vertices $a_{1}, a_{2}, \ldots, a_{h}$ belong (note that the components A_{1} and A_{h} differ from each other and from all other components, whereas $A_{2}, A_{3}, \ldots, A_{h-1}$ are not necessarily distinct). Then, the graph G_{v} contains vertices $z_{A_{1}}, z_{A_{2}}, \ldots, z_{A_{h}}$ corresponding to the above connected components, and because G contains the path $a_{1} a_{2} \cdots a_{h}$, the subgraph $G_{v}\left[\left\{z_{A_{1}}, z_{A_{2}}, \ldots, z_{A_{h}}\right\}\right]$ is connected; let ρ be a chordless path in this subgraph from $z_{A_{1}}$ to $z_{A_{h}}$. If ρ is of length 1 , then as in the case of a house, we show that Procedure Process_Vertex when run on (G, a_{1}) reports that the graph G is not HHD-free. So, let $\rho=z_{A_{1}} z_{B_{2}} \cdots z_{A_{h}}$. Further, without loss of generality suppose that $z_{A_{1}} \in Z_{i}$ and $z_{A_{h}} \in Z_{j}$ where $i<j$. Then, if $z_{B_{2}} \in Z_{p}$ with $p>i$, Lemma 3.8 implies that Procedure Process_Vertex when run on (G, v) reports that the graph G is not HHD-free because of the edge $z_{A_{1}} z_{B_{2}}$ and the fact that u is adjacent to $z_{A_{1}}$ but not to $z_{B_{2}}$. So, suppose that $p<i$, that is, walking from $z_{A_{1}}$ to $z_{B_{2}}$ we walk towards the left in the ordered set of non-neighbors of v (based on the number of their common neighbors with v). From $z_{A_{1}}$ keep walking along the path ρ for as long as you go left.

Since $z_{A_{h}}$ belongs to Z_{j} with $j>i$, eventually we will find a vertex $z_{B_{t}}$ such that both $z_{B_{t-1}}$ (which may be $z_{A_{1}}$) and $z_{B_{t+1}}$ are to the right of $z_{B_{t}}$. If $z_{B_{t-1}}$ and $z_{B_{t+1}}$ do not belong to the same set z_{q}, then the vertices $z_{B_{t}}, z_{B_{t-1}}$, and $z_{B_{t+1}}$ meet the conditions of Lemma 3.6 and therefore Procedure Process_Vertex when run on (G, v) reports that the graph G is not HHD-free. If $z_{B_{t-1}}$ and $z_{B_{t+1}}$ belong to the same set Z_{q} then none of them is $z_{A_{1}}$ since no vertex in ρ other than $z_{A_{1}}$ is adjacent to u. Then $z_{B_{t-2}}$ (which may be $z_{A_{1}}$) belongs to a set $z_{q^{\prime}}$ with $q^{\prime}>q$ and $z_{B_{t-2}} z_{B_{t+1}} \notin E\left(G_{v}\right)$; then the vertices $z_{B_{t}}, z_{B_{t-1}}, z_{B_{t+1}}$, and $z_{B_{t-2}}$, meet the conditions of Lemma 3.7 and therefore Procedure Process_Vertex when run on (G, v) reports that the graph G is not HHD-free.

Finally, suppose that G contains a domino D induced by the cycle $v u d e f w$ with a single chord $u f$ (i.e., v is a corner vertex of D). Again, if Algorithm Recognize-HHD-free does not stop early (in which case it reports that the input graph G is not HHDfree), it will eventually execute the body of the for-loop of Step 4 for the vertex v. The vertex adjacencies in the domino D imply that the vertices d, e, f belong to distinct sets of the partition s_{v}; let D, E, F be the connected components of the subgraphs $G\left[S_{j}\right], G\left[S_{i}\right], G\left[S_{k}\right]$ to which d, e, f belong, respectively, where $i \neq j, i \neq k$, and $j \neq k$. Because $d e \in E(G)$ and ef $\in E(G)$, then $\left\{z_{D} z_{E}, z_{E} z_{F}\right\} \subseteq E\left(G_{v}\right)$. If $z_{D} z_{F} \in E\left(G_{v}\right)$, then there exist vertices $x \in D$ and $y \in E$ such that $x y \in E(G)$; but then, the vertices v, u, x, y, w induce a house in G with x at its top, and as proved earlier for the case of an induced house or C_{5}, Procedure Process_Vertex when run on (G, x) reports that the graph G is not HHD-free. So let us assume that $z_{D} z_{F} \notin E\left(G_{v}\right)$. If $i>j$, Lemma 3.8 applies to the edge $z_{D} z_{E}$ of G_{v}, and because u is adjacent to z_{D} but not to z_{E}, it implies that Procedure Process_Vertex when run on (G, v) reports that G is not HHD-free. Similarly, if $i>k$ due to the edge $z_{E} z_{F}$. So, suppose that $i<\min \{j, k\}$. But then the vertices z_{E}, z_{D}, z_{F} meet the conditions of Lemma 3.6 which again implies that Procedure Process_Vertex when run on (G, v) reports that the graph G is not HHD-free.

Since Algorithm Recognize-HHD-free calls Procedure Process_Vertex for all pairs (G, x), where x is any vertex of G, then in all the above cases Algorithm Recognize-HHD-free reports that the graph G is not HHD-free.

3.6. Time and space complexity

Let n be the number of vertices and m be the number of edges of the graph G. Since each of the forbidden subgraphs that we are looking for (a house, a hole, or a domino) is connected, we may assume that G is connected, otherwise we work on G 's connected components which we can compute in $O(n+m)$ time [5]; thus, $n=O(m)$. Below, we give the time and space complexity of each step of Procedure Process_Vertex when applied on a graph G and a vertex v from which we obtain the time and space complexity of Algorithm Recognize-HHD-free.

The neighbors and non-neighbors of vertex v in the graph G can be stored in $O(n)$-size arrays for constant-time access; this takes $O(n)$ time. The partition of the non-neighbors of v based on their common neighbors with v can be computed in $O(m+n \operatorname{deg}(v))$ time and $O(n)$ space, where $\operatorname{deg}(v)$ denotes the degree of v in G; see [16]. After having computed for a vertex of each of the partition sets the number of its common neighbors with v, which can be done in $O(n+m)$ time, we can form the ordered sequence $\left(S_{1}, S_{2}, \ldots, S_{\ell}\right)$ in $O(\ell+\operatorname{deg}(v))=O(n)$ time and $O(n)$ space using bucket sorting. Thus, Step 1 of Procedure Process_Vertex takes $O(m+n \operatorname{deg}(v))$ time and $O(n)$ space in total.

Adjacency-list representations of the subgraphs $G\left[S_{i}\right], i=1,2, \ldots, \ell$, can be obtained in $O(n+m)$ time and space by appropriate partitioning of a copy of an adjacency-list representation of the graph G and removal of unneeded records; then, computing the connected components of all these subgraphs takes a total of $O(n+m)$ time and space, from which the graph G_{v} can be constructed in $O(n+m)$ additional time and space. Thus, Step 2 of Procedure Process_Vertex takes a total of $O(n+m)$ time and space. It is important to note that the graph G_{v} has $O(n)$ vertices and $O(m)$ edges.

Crucial for Steps 3 and 4 of Procedure Process_Vertex is the construction and processing of the partitions $\mathcal{P}_{z_{i}}, i=$ $1,2, \ldots, \ell$. These are maintained by means of an auxiliary multi-graph H_{v} represented by means of adjacency lists: members of the same partition set belong to the same connected component of H_{v}. The graph H_{v} has one vertex for each non-neighbor of v in G_{v} and, with a slight abuse of notation, we can write that $V\left(H_{v}\right)=\bigcup_{i=1}^{\ell} Z_{i}$; thus, $\left|V\left(H_{v}\right)\right|=O(n)$. Initially, the graph H_{v} has no edges. Then
\triangleright whenever, for a non-neighbor z_{R} of v in G_{v}, we need to union the sets of a partition $\mathcal{P}_{Z_{k}}$ that contain the vertices in a set W in Step 4, we pick a vertex, say, $z \in W$, and add edges (in an adjacency list representation of H_{v}) connecting z to all the other vertices in W; this takes $O(|W|)=O\left(\left|X^{\prime}\right|\right)=O\left(\operatorname{deg}_{G_{v}}\left(z_{R}\right)\right)$ time and space.
Since each non-neighbor of v in G_{v} can be the representative of a partition set at most once, then

$$
\left|E\left(H_{v}\right)\right|=O\left(\sum_{z_{R} \notin N[v]} \operatorname{deg}_{G_{v}}\left(z_{R}\right)\right)=O\left(\left|E\left(G_{v}\right)\right|\right)=O(m)
$$

Then, when the time comes in Step 4 to process the partition $\mathcal{P}_{Z_{i}}$ of the set Z_{i},

[^1]\triangleright we compute the connected component of the graph H_{v} to which each vertex in Z_{i} belongs; graph traversal algorithms, such as, depth-first search and breadth-first search, can be used on H_{v} to yield the connected components in time linear in the number of vertices and edges of $H_{v}\left[Z_{i}\right]$.
In summary, constructing H_{v} without any edges, or equivalently, forming the initial partitions $\mathcal{P}_{Z_{i}}(i=1,2, \ldots, \ell)$ where each vertex in Z_{i} is placed in a separate partition set, takes $O(n)$ time and space; computing the partition $\mathcal{P}_{Z_{i}}$ in Step 4 for all $i=1,2, \ldots, \ell$ takes $O(n+m)$ time; the space required for the multi-graph H_{v} is also $O(n+m)$.

Since initializing the sets $A()$ for all the vertices in $\bigcup_{i=1}^{\ell} Z_{i}$ takes $O(n)$ time and space, Step 3 of Procedure Process_Vertex takes $O(n)$ time and space.

Next, let us consider the processing of a set P_{j} of the partition $\mathcal{P}_{Z_{i}}$ in Step 4. Computing the set X^{\prime} takes $O\left(\operatorname{deg}_{G_{v}}\left(z_{R}\right)\right)$ time and space, where $\operatorname{deg}_{G_{v}}\left(z_{R}\right)$ denotes the degree of vertex z_{R} in the graph G_{v}. Checking if P_{j} is a singleton set takes $O(1)$ time, and checking if all the vertices in P_{j} are adjacent to exactly the vertices in X^{\prime} among the vertices in $\bigcup_{i=i+1}^{\ell} Z_{i}$ takes $O\left(\sum_{z \in P_{j}} \operatorname{deg}_{G_{v}}(z)\right)$ time. Next, checking whether X^{\prime} is non-empty takes $O(1)$ time and doing all the processing if $X^{\prime} \neq \emptyset$ takes $O\left(\operatorname{deg}_{G_{v}}\left(z_{R}\right)\right)$ time and space; note that $|W| \leq\left|X^{\prime}\right| \leq \operatorname{deg}_{G_{v}}\left(z_{c}\right)$. Finally, checking whether $\left(\cup_{z \in P_{j}} A(z)\right)-$ $N_{G_{v}}\left(z_{R}\right) \neq \emptyset$ takes $O\left(\bigcup_{z \in P_{j}}|A(z)|\right)$ time. In summary, processing the set P_{j} takes $O\left(\sum_{z \in P_{j}}\left(\operatorname{deg}_{G_{v}}(z)+|A(z)|\right)\right)$ time and $O\left(\operatorname{deg}_{G_{v}}\left(z_{R}\right)\right)$ space. Since the sets of each partition $\mathscr{P}_{Z_{i}}$ of the set Z_{i} are disjoint and the sets Z_{i} are disjoint, we have that $O\left(\sum_{i=1}^{\ell} \sum_{P_{j} \in \mathcal{P}_{Z_{i}}} \sum_{z \in P_{j}} \operatorname{deg}_{G_{v}}(z)\right)=O\left(\left|V\left(G_{v}\right)\right|+\left|E\left(G_{v}\right)\right|\right)=O(n+m)$. Additionally, since the sets $A()$ are formed by concatenating some of the neighbors in G_{v} of one vertex z_{R} from each set P_{j}, we have that $O\left(\sum_{i=1}^{\ell} \sum_{P_{j} \in \mathcal{P}_{Z_{i}}} \sum_{z \in P_{j}}|A(z)|\right)=$ $O\left(\sum_{i=1}^{\ell} \sum_{P_{j} \in \mathscr{P}_{Z_{i}}} \sum_{z \in P_{j}} \operatorname{deg}_{G_{v}}(z)\right)=O\left(\left|V\left(G_{v}\right)\right|+\left|E\left(G_{v}\right)\right|\right)=O(n+m)$ as well. Thus, in total, Step 4 of Procedure Process_Vertex takes $O(n+m)$ time and space.

Since Steps 1-4 of Procedure Process_Vertex are executed for each vertex v of the input graph G, we have that the overall time complexity of Algorithm Recognize-HHD-free is:

$$
\left[\sum_{v \in V(G)}(O(m+n \operatorname{deg}(v)))+O(n+m)\right]+O(1)=O(n m)
$$

Therefore, we obtain the following result.
Theorem 3.2. Let G be an undirected graph on n vertices and m edges. Then, Algorithm Recognize-HHD-free determines whether G is an HHD-free graph in $O(n m)$ time and $O(n+m)$ space.

4. Providing a certificate

Algorithm Recognize-HHD-free can be made to provide a certificate (a house, a hole, or a domino) whenever it decides that the input graph G is not HHD-free. The algorithm reports that the graph G is not HHD-free in two occasions, in Step 4.2 and in Step 4.4 of Procedure Process_Vertex.

In order to be able to efficiently produce a certificate when Procedure Process_Vertex reports that the input graph G is not HHD-free, we do the following additional work:
W_{1}. Whenever, during the processing of a set P_{j} of a partition $\mathcal{P}_{z_{i}}$, we need to union the sets of a partition $\mathcal{P}_{z_{k}}$ containing the vertices in the set W, which is done by adding edges in the auxiliary multi-graph H_{v} (as explained in Section 3.6), we associate with each such edge the selected vertex z_{R} of P_{j}.
W_{2}. When processing a set P_{j}, we store with each element of the set $X-W$, which is added to $A\left(z_{X}\right)$ for $z_{X} \in W$, a reference to the selected vertex z_{R} of P_{j}; in this way, for each vertex z, each element of the set $A(z)$ carries a reference to a vertex of the set during whose processing this element was added to $A(z)$.

Note that this additional work does not increase asymptotically the time and space complexity of the algorithm.
Next, let us see what we do in order to compute a certificate in the two cases that Procedure Process_Vertex reports that the graph G is not HHD-free:

1. Step 4.2. There exists a vertex in a set P_{h} of a partition $\mathcal{P}_{Z_{j}}$ that is not adjacent to a vertex in X^{\prime} or is adjacent to a vertex in $\left(\bigcup_{r=j+1}^{\ell} Z_{r}\right)-X^{\prime}$. In any case, there exist vertices $z_{A}, z_{B}, z_{B^{\prime}}, z_{C}$ of the graph G_{v} where $z_{A} \in Z_{i}, z_{B}, z_{B^{\prime}} \in P_{h}$ (and thus $z_{B}, z_{B^{\prime}} \in Z_{j}$), and $z_{C} \in Z_{k}$ with $i<j<k$, such that $\left\{z_{A} z_{B}, z_{A} z_{B^{\prime}}, z_{B} z_{C}\right\} \subseteq E\left(G_{v}\right)$, and $z_{B^{\prime}} z_{C} \notin E\left(G_{v}\right)$. Additionally, because $i<j<k$, Lemma 3.1 statement (i) implies that there exist vertices $x, y \in N(v)$ such that x is adjacent to all the vertices in Z_{j} and to no vertex in Z_{i}, and y is adjacent to all the vertices in Z_{k} and to no vertex in Z_{j}; see Fig. 6(b).

We can find the vertices $z_{A}, z_{B}, z_{B^{\prime}}, z_{C}$ by processing the edges of the tree that was traversed when computing the connected component of the graph H_{v} that produced the partition set P_{h} : for each edge in the tree, we test whether its endpoints have the exact same neighbors in $\bigcup_{r=j+1}^{\ell} Z_{r}$; note that (i) if this is true for each edge, then clearly all the vertices in P_{j} have the same neighbors in $\bigcup_{r=j+1}^{\ell} Z_{r}$, and (ii) this test takes $O\left(\sum_{z \in P_{h}} \operatorname{deg}_{G_{v}}(z)\right)$ time as in the algorithm's analysis. In our case, we will be able to find an edge in the tree with endpoints z_{1} and z_{2}, and a vertex $z_{3} \in \bigcup_{r=j+1}^{\ell} Z_{r}$ such that z_{1} is

Fig. 9. For the certificate computation at Step 4.2.
adjacent to z_{3} in G_{v} whereas z_{2} is not; then, $z_{B}=z_{1}, z_{B^{\prime}}=z_{2}, z_{C}=z_{3}$, while z_{A} is the vertex associated with the tree edge $z_{1} z_{2}$ (see W_{1}).

Let A, B, B^{\prime}, C be the connected components whose shrinking produced the vertices $z_{A}, z_{B}, z_{B^{\prime}}, z_{C}$ of the graph G_{v}. We consider the following two cases depending on whether z_{A}, z_{C} are adjacent in G_{v} or not:
1a. $z_{A} z_{C} \notin E\left(G_{v}\right)$. We traverse the adjacency lists of the vertices in B^{\prime} until we find a vertex $b \in B^{\prime}$ which is adjacent to a vertex in A. Next, we run breadth-first search in the subgraph $G[\{b\} \cup A \cup B \cup C]$ starting at b until a vertex $c \in C$ is encountered; let ρ be the path in the breadth-first search tree connecting b to c. Clearly, ρ is chordless and because $z_{A} z_{C} \notin E\left(G_{v}\right)$ and $z_{B} z_{B^{\prime}} \notin E\left(G_{v}\right)$, it is of the form $\rho=b a_{1} \cdots a_{r} b_{1} \cdots b_{s} c$ where $r, s \geq 1, a_{1}, \ldots, a_{r} \in A$, and $b_{1}, \ldots, b_{s} \in B$; see Fig. 9(a). If $r>1$, then the vertices $x, b, a_{1}, \ldots, a_{r}, b_{1}$ induce a hole in G. If $r=1$ and $s>1$, the vertices $x, b, a_{1}, b_{1}, b_{2}$ induce a house in G with b_{2} at its top. Finally, if $r=1$ and $s=1$, then if $x c \in E(G)$, the vertices x, b, a_{1}, b_{1}, c induce a house with c at its top, whereas if $x c \notin E(G)$, the vertices v, x, b_{1}, c, y induce a house (with v at its top) or a C_{5} in G depending on whether $x y \in E(G)$ or not.
1b. $z_{A} z_{C} \in E\left(G_{v}\right)$. See Fig. $8(\mathrm{a})$. As in the previous case, we traverse the adjacency lists of the vertices in B^{\prime} until we find a vertex $b \in B^{\prime}$ that is adjacent to a vertex in A. Next, we run breadth-first search in the subgraph $G[\{b\} \cup A \cup C]$ starting at b until a vertex $c \in C$ is encountered; let ρ be the path in the breadth-first search tree connecting b to c; see Fig. 9(b). Again, ρ is chordless and because $z_{B^{\prime}} z_{C} \notin E\left(G_{v}\right)$, it is of the form $\rho=b a_{1} \cdots a_{r} c$ where $r \geq 1$ and $a_{1}, \ldots, a_{r} \in A$. Consider first that $x c \in E(G)$. If $r>1$, the vertices $x c a_{1} \cdots a_{r} b$ induce a hole in G. If $r=1$, then if $y a_{1} \in E(G)$, the vertices v, x, b, a_{1}, y induce a house or a C_{5} in G depending on whether $x y \in E(G)$ or not, whereas if $y a_{1} \notin E(G), G$ contains a house induced by the vertices x, b, a_{1}, c, y or a domino induced by v, x, b, a_{1}, c, y depending on whether $x y \in E(G)$ or not. Suppose next that $x \subset \notin E(G)$. Then, if $y a_{1} \in E(G)$, the vertices v, x, b, a_{r}, y induce a house or a C_{5} depending on whether $x y \in E(G)$, whereas if $y a_{1} \notin E(G), G$ contains the hole $c a_{1} \cdots a_{r} b x y$ or $v y c a_{1} \cdots a_{r} b x$ depending on whether $x y \in E(G)$.
2. Step 4.4. For a set P_{h} of a partition $\mathcal{P}_{z_{j}}$, we have that $\left(\bigcup_{z \in P_{h}} A(z)\right)-N_{G_{v}}\left(z_{R}\right) \neq \emptyset$, i.e., there exist vertices $z_{B} \in P_{h}\left(z_{B}\right.$ has resulted from the shrinking of a component B of $\left.G\left[S_{j}\right]\right)$ and $z^{\prime} \in\left(\bigcup_{r=j+1}^{\ell} Z_{r}\right) \cup N(v)$ such that $z^{\prime} \in A\left(z_{B}\right)$ and $z^{\prime} \notin N_{G_{v}}\left(z_{R}\right)$; note that since the algorithm has not stopped earlier, z_{B} and z_{R} have the exact same neighbors in $\bigcup_{r=j+1}^{\ell} Z_{r}$, which implies that $z^{\prime} \notin N_{G_{v}}\left(z_{B}\right)$. Since $z^{\prime} \in A\left(z_{B}\right)$, by means of W_{2}, z^{\prime} is associated with a vertex $z_{A} \in \bigcup_{r=1}^{j-1} Z_{r}$ such that $z_{B}, z^{\prime} \in N_{G_{v}}\left(z_{A}\right)$. If $z^{\prime} \in N(v)$, we locate two vertices $a \in A$ and $b \in B$ such that $a b \in E(G)$; because $z^{\prime} \in N_{G_{v}}\left(z_{A}\right)-N_{G_{v}}\left(z_{B}\right), z^{\prime}$ is adjacent to a in G but is not adjacent to b (see Fig. $8(b)$ with $z^{\prime}=x$). Moreover, there exists a neighbor w of v such that $w \in N_{G}(b)-N_{G}(a)$; then, the vertices v, z^{\prime}, w, a, b induce a house or a C_{5} in G depending on whether $z^{\prime} w \in E(G)$ or not. Now, if $z^{\prime} \notin N(v)$, then $z^{\prime}=z_{C}$ corresponding to a component C of a subgraph $G\left[S_{k}\right]$ with $k>j$. This case is identical to Case 1 b above for the vertices z_{A}, z_{B}, z_{C}.

It is not difficult to see that doing the work described above and checking the adjacencies in each of the aforementioned cases can be performed in $O(n+m)$ time using $O(n)$ space. Thus, we have:

Theorem 4.1. Let G be an undirected graph on n vertices and m edges. Then, Procedure Process_Vertex can be augmented so that Algorithm Recognize-HHD-free produces a house, a hole, or a domino whenever it decides that G is not an HHD-free graph in $O(n+m)$ additional time and $O(n)$ additional space.

5. Concluding remarks

We have presented a recognition algorithm for the class of HHD-free graphs that runs in $O(n m)$ time and requires $O(n+m)$ space, where n is the number of vertices and m is the number of edges of the input graph. Moreover, we show
how our algorithm can be augmented to yield, in $O(n+m)$ time and $O(n)$ space, a certificate (a house, a hole, or a domino) whenever it decides that the input graph is not HHD-free.

Despite the close relation between HHD-free and HH-free graphs, our results do not lead to an improvement in the recognition time complexity for HH -free graphs; therefore, we leave as an open problem the design of an $O(\mathrm{~nm})$-time algorithm for recognizing HH-free graphs. Additionally, it would be interesting to obtain faster recognition algorithms for other related classes of graphs, such as the brittle and the semi-simplicial graphs.

Acknowledgments

The authors would like to thank the referees whose suggestions helped improve the readability and presentation of the paper.

References

[1] C. Berge, Färbung von Graphen deren sämtliche bzw deren ungerade Kreisse starr sind, Wiss. Z. Martin-Luther-Univ. Hale-Wittenberg Mathe.-Natur., 114-115, 1961.
[2] A. Brandstädt, V.B. Le, J.P. Spinrad, Graph classes: A survey, SIAM Monographs on Discrete Mathematics and Applications, 1999.
[3] M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas, The strong perfect graph theorem, Ann. of Math. 164 (2006) 51-229.
[4] V. Chvátal, Perfectly ordered graphs, Ann. of Discrete Math. 21 (1984) 63-65.
[5] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 2nd ed., MIT Press, Inc., 2001.
[6] E.M. Eschen, J.L. Johnson, J.P. Spinrad, R. Sritharan, Recognition of some perfectly orderable graph classes, Discrete Appl. Math. 128 (2003) $355-373$.
[7] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, Inc, 1980.
[8] R. Hayward, Meyniel weakly triangulated graphs I: co-perfect orderability, Discrete Appl. Math. 73 (1997) 199-210.
[9] P. Hell, J. Huang, Certifying LexBFS recognition algorithms for proper interval graphs and proper interval bigraphs, SIAM J. Discrete Math. 18 (2004) 554-570.
[10] C.T. Hoàng, On the complexity of recognizing a class of perfectly orderable graphs, Discrete Appl. Math. 66 (1996) 219-226.
[11] C.T. Hoàng, N. Khouzam, On brittle graphs, J. Graph Theory 12 (1988) 391-404.
[12] C.T. Hoàng, R. Sritharan, Finding houses and holes in graphs, Theoret. Comput. Sci. 259 (2001) 233-244.
[13] D. Kratsch, R.M. McConnell, K. Mehlhorn, J. Spinrad, Certifying algorithms for recognizing interval graphs and permutation graphs, SIAM J. Comput. 36 (2006) 326-353.
[14] R.M. McConnell, J. Spinrad, Linear-time modular decomposition and efficient transitive orientation, in: Proc. 5th Annual ACM-SIAM Symp. on Discrete Algorithms, SODA’94, 1994, 536-545.
[15] M. Middendorf, F. Pfeiffer, On the complexity of recognizing perfectly orderable graphs, Discrete Math. 80 (1990) 327-333.
[16] S.D. Nikolopoulos, L. Palios, Algorithms for P_{4}-comparability graph recognition and acyclic P_{4}-transitive orientation, Algorithmica 39 (2004) 95-126.
[17] S.D. Nikolopoulos, L. Palios, Recognizing HH-free, HHD-free, and Welsh-Powell opposition graphs, Discrete Math. and Theoret. Comput. Sci. 8 (2006) 65-82.
[18] S.D. Nikolopoulos, L. Palios, An $O(n m)$-time certifying algorithm for recognizing HHD-free graphs, in: Proc. 1st Annual Frontiers in Algorithmics Workshop, FAW'07, 2007, 281-292.
[19] S. Olariu, Weak bipolarizable graphs, Discrete Math. 74 (1989) 159-171.
[20] D.J. Rose, R.E. Tarjan, G.S. Lueker, Algorithmic aspects of vertex elimination on graphs, SIAM J. Comput. 5 (1976) 266-283.

[^0]: * Corresponding author. Tel.: +30 2651098801.

 E-mail addresses: stavros@cs.uoi.gr (S.D. Nikolopoulos), palios@cs.uoi.gr (L. Palios).

[^1]: 1 An algorithm to construct a partition of a set L_{2} in terms of adjacency to elements of a set L_{1} is given in Section 3.2 of [16] with a stated time complexity of $O\left(m+n\left|L_{2}\right|\right)$; yet, it can be easily seen that the algorithm has a time complexity of $O\left(m+\left|L_{1}\right| \cdot\left|L_{2}\right|\right)$, which in our case gives $O(m+n \operatorname{deg}(v))$ since $\left|L_{1}\right|=\operatorname{deg}(v)$ and $\left|L_{2}\right|=O(n)$.

