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a b s t r a c t

In this paper, we consider the recognition problem on a class of perfectly orderable
graphs, namely, the HHD-free graphs; such graphs do not contain any induced subgraph
isomorphic to a house, a hole, or a domino. We prove properties of the HHD-free graphs
which enable us to present an O(nm)-time and O(n+m)-space algorithm for determining
whether a graph on n vertices and m edges is HHD-free; currently, this is the fastest
algorithm for this problem. We also describe how the algorithm can be augmented to
provide a certificate (an induced house, hole, or domino)whenever it decides that the input
graph is not HHD-free, thus answering an open question posed by Hoàng and Sritharan
(Theoretical Computer Science 259 (2001) 233–244). The certificate computation requires
O(n+m) additional time and O(n) space.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A linear order ≺ on the vertices of a graph G is perfect if the ordered graph (G,≺) contains no induced P4 abcd (i.e., a
chordless path on the 4 vertices a, b, c, d) with a ≺ b and d ≺ c; such a P4 is called an obstruction. In the early 1980s, Chvátal
[4] defined the class of graphs that admit a perfect order and called them perfectly orderable graphs.

Chvátal proved that if a graph G admits a perfect order≺, then the greedy coloring algorithm applied to (G,≺) produces
an optimal coloring using only ω(G) colors, where ω(G) is the clique number of G. This implies that the perfectly orderable
graphs are perfect; a graph G is perfect if for each induced subgraph H of G, the chromatic number χ(H) equals the clique
number ω(H) of the subgraph H . The class of perfect graphs was introduced in the early 1960s by Berge [1], who also
conjectured that a graph is perfect if and only if it contains no induced subgraph isomorphic to an odd cycle of length at
least five, or to the complement of such an odd cycle. This conjecture, known as the strong perfect graph conjecture, has been
recently established due to the work of Chudnovsky et al. [3].

The interest in perfectly orderable graphs comes from the fact that several problems in graph theory, which are NP-
complete in general graphs, have polynomial-time solutions in graphs that admit a perfect order [2,7]; unfortunately, it is
NP-complete to decidewhether a graph admits a perfect order [15]. Since the recognition of perfectly orderable graphs is NP-
complete,we are interested in characterizing graphswhich formpolynomially recognizable subclasses of perfectly orderable
graphs. Many such classes of graphs, with very interesting structural and algorithmic properties, have been defined so far
and shown to admit polynomial-time recognitions (see [2,7]); note however that not all subclasses of perfectly orderable
graphs admit polynomial-time recognition [10].

Several subclasses of the class of perfectly orderable graphs have been extensively studied in the last few decades due
to their wide applicability in many fields of computer and engineering sciences; the most notable subclasses include the
chordal, co-chordal, comparability, P4-comparability, permutation, chordal bipartite, and distance-hereditary graphs [2,7].
It is worth noting that many optimization problems, such as coloring, max-clique, clique-cover, path-cover, domination set,
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Fig. 1. (a) The forbidden graphs for the class of HHD-free graphs. (b) The graphs ‘P’, ‘A’, and the building.

independent set, cliquewidth, treewidth, and also the recognition problem admit polynomial solutions on these classes of
graphs.

An algorithm for the recognition problem is one that takes as input a graphG and decideswhetherG has a certain property;
such an algorithm, which we call a recognition algorithm, returns ‘‘yes’’ if the input graph has the property or ‘‘no’’ if it
does not. A certifying recognition algorithm is a recognition algorithm that provides a certificate with each answer that it
produces [9,13]. The certificate is a piece of evidence that proves that the algorithm’s answer is correct; in particular, in
case of membership (i.e., the input graph G belongs to a given graph class G) a certifying algorithm usually provides as a
certificate a structure for the input graph that characterizes the class G, while in case of non-membership it provides as a
certificate a forbidden induced subgraph of the class G. For an extensive discussion on certificates, see [13].

In this paper, we study the recognition problem for the class of HHD-free graphs, which properly generalizes the well-
known class of chordal graphs [7]: a graph is HHD-free if it contains no induced subgraph isomorphic to a house, a hole (i.e.,
a chordless cycle on≥5 vertices), or a domino (see Fig. 1(a)). In [11], Hoàng and Khouzam proved that the HHD-free graphs
admit a perfect order, and thus are perfectly orderable. A superclass of the HHD-free graphs, which also properly generalizes
the class of chordal graphs, is the class of HH-free graphs: a graph is HH-free if it contains no induced subgraph isomorphic
to a house or a hole. Although an HH-free graph is not necessarily perfectly orderable, the complement of any HH-free graph
is; this was conjectured by Chvátal and proved by Hayward [8].

Hoàng and Khouzam [11], while studying the class of brittle graphs (a class of perfectly orderable graphs which contains
theHHD-free graphs), showed thatHHD-free graphs canbe recognized inO(n4) time,wherendenotes thenumber of vertices
of the input graph. An improved result was obtained by Hoàng and Sritharan [12] who presented an O(n3)-time algorithm
for recognizing HH-free graphs and showed that HHD-free graphs can be recognized in O(n3) time as well; for each vertex v
of the input graph, their algorithm relies on computing the chordal completion of the (ordered) non-neighbors of v, and
checkingwhether the resulting graph is chordal. A further improvementwas achievedbyNikolopoulos andPalios [17]: based
on properties characterizing the chordal completion of a graph, they were able to avoid performing the chordal completion
step, which is the most time-consuming ingredient of the algorithm in [12], and described algorithms for recognizing HH-
free and HHD-free graphs that require O(n min{mα(n, n), m+ n log n}) time and O(n+m)-space, wherem is the number
of edges of the input graph, and α( , ) denotes the very slowly growing functional inverse of Ackermann’s function. On other
related classes of perfectly orderable graphs, Eschen et al. [6] recently described recognition algorithms for several of them,
among which is a recognition algorithm for HHP-free graphs; a graph is HHP-free if it contains no hole, no house, and no
‘‘P’’ as induced subgraphs (see Fig. 1(b)). Their algorithm is based on the property that every HHP-free graph is HHDA-free
graph (a graph with no induced hole, house, domino, or ‘‘A’’), and thus a graph G is HHP-free graph if and only if G is HHDA-
free and contains no ‘‘P’’ as an induced subgraph. The characterization of HHDA-free graphs due to Olariu [19] (a graph G
is HHDA-free if and only if every induced subgraph of G either is chordal or contains a non-trivial module) and the use of
modular decomposition [14] allowed Eschen et al. to present an O(nm)-time recognition algorithm for HHP-free graphs.

In this paper, we present a new, faster algorithm for recognizing HHD-free graphs. For each vertex v of a given graph G,
our algorithm computes the partition of the non-neighbors of v into sets of vertices based on their common neighbors with
v, and following that, the connected components of the subgraphs induced by these partition sets.We show that ifG is HHD-
free, the graph obtained from G by shrinking each of these connected components into a single vertex is ‘‘almost chordal’’.
As a result, we obtain an O(nm)-time and O(n+ m)-space algorithm for determining whether a graph on n vertices and m
edges is HHD-free. Our approach is different from the approach of [12,17], where the decision is based on properties of the
graph obtained by considering the chordal completion of the subgraph induced by the non-neighbors of each vertex v; the
chordal completion is explicitly computed in [12] whereas it is implicitly maintained by means of the array NextNeighbor
in [17]. Our result improves upon the algorithms in [12,17]: our algorithm is no slower than the O(n3)-time algorithm in
[12] and achieves a better time complexity than [17] in the case wherem = o(n log n) while it matches its time complexity
of [17] otherwise (recall that the algorithm in [17] requires O(n min{mα(n, n), m+ n log n}) time).

An additional advantage of our recognition algorithm is that it is certifying since it provides a certificate in the case of
non-membership. In particular, we describe an augmented version of our recognition algorithmwhich provides a forbidden
induced subgraph of the class of HHD-free graphs (an induced house, hole, or domino) whenever it decides that the input
graph is not HHD-free; the certificate computation requires O(n+m) additional time and O(n) space. This answers an open
question posed by Hoàng and Sritharan [12]. An early version of this work has appeared in [18].
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The paper is structured as follows. In Section 2, we review the terminology and the notation that we use throughout
the paper. In Section 3, we establish properties that enable us to efficiently determine whether a given graph is HHD-free,
describe the algorithm, and give its analysis. Section 4 presents the certificate computation while Section 5 summarizes our
results and presents some open problems.

2. Terminology – notation

We consider finite undirected graphs with no loops or multiple edges. Let G be such a graph; then, V (G) and E(G) denote
the set of vertices and of edges of G respectively. The subgraph of G induced by a subset S of G’s vertices is denoted by
G[S]. The neighbors of a vertex x of G, i.e., the vertices adjacent to a x, form the neighborhood NG(x) of x; the cardinality of
NG(x) is the degree of x. The closed neighborhood of x is defined as NG[x] := NG(x) ∪ {x}. For simplicity, we denote the set of
non-neighbors of x in G byMG(x), i.e.,MG(x) = V (G)− NG[x].

A path in a graph G is a sequence of vertices v0v1 · · · vk such that vi−1vi ∈ E(G) for i = 1, 2, . . . , k; we say that this is
a path from v0 to vk and that its length is k. A path is called simple if none of its vertices occurs more than once; it is called
trivial if its length is equal to 0. A path (simple path) v0v1 · · · vk is a cycle (simple cycle) of length k+1 if v0vk ∈ E(G). An edge
connecting two non-consecutive vertices in a simple path (cycle) is called a chord; then, a simple path (cycle) v0v1 · · · vk
of a graph G is chordless if G contains no chords of the path (cycle), i.e., vivj ∉ E(G) for any two non-consecutive vertices
vi, vj in the path (cycle). The chordless path (chordless cycle, respectively) on n vertices is commonly denoted by Pn (Cn,
respectively).

A connected component of a graph G is a maximal set A ⊆ V (G) such that the subgraph G[A] is connected, i.e., there exists
a path in G connecting any two vertices in A.

3. The algorithm

3.1. Outline of the algorithm

Our algorithmworks in a fashion similar to the algorithms in [12,17] in that it processes each vertex v of the input graphG
seeking evidence that G contains an induced house, hole, or domino. If no evidence is found, then the algorithm reports that
G is HHD-free. Therefore, our algorithm follows the outline shown in Fig. 2.

Algorithm Recognize-HHD-free(graph G)

for each vertex v of G do
Process_Vertex(G, v);

print(‘‘The graph G is HHD-free’’);

Fig. 2. Algorithm recognize-HHD-free.

Again, similarly to the algorithms in [12,17], our Procedure Process_Vertexworks on the ordering of the non-neighbors of
v in non-decreasing number of common-neighborswith v. From that point on, the three algorithms partways. The algorithm
in [12] performs chordal completion in the subgraph of G induced by the (ordered) non-neighbors of v. The algorithm in
[17] maintains this chordal completion implicitly by means of the NextNeighbor array. The present algorithm works on a
special shrunk graph Gv (in fact, it computes the above mentioned ordering of non-neighbors of v in that graph instead of
working on G); the graph Gv possesses some very interesting properties: it maintains information on whether the input
graph G contains an induced house, hole, or domino, while at the same time ensuring that if G does not contain an induced
house, hole, or domino then the subgraph of Gv induced by the non-neighbors of v is ‘‘nearly’’ chordal (to become more
precise in Section 3.3). For this reason, Procedure Process_Vertex applied on the pair (G, v) is a careful extension of the
perfect-elimination-ordering (PEO) testing algorithm [20,7] to handle the special structure of the graph Gv; note that the
PEO testing algorithm is used to detect whether a graph is chordal if an ordering of its vertices produced by the algorithm
LexBFS [20,7] is given. More details on how Procedure Process_Vertex works are given in Section 3.4 after we have formally
defined the graph Gv , established its properties, and shown how we can take advantage of these properties to be able to
detect whether v participates in an induced house, hole, or domino.

3.2. The graph Gv

The motivation for the construction of the graph Gv comes from the observation that if a vertex v is the top vertex of a
house, participates in a hole, or is a corner vertex of a domino, all these subgraphs include a path y1uvwy2 where y1, y2 are
non-neighbors of v having different common neighbors with v. This suggests that it may be a good idea to partition the set
of non-neighbors of v based on their common neighbors with v and then to work with the graph that results from shrinking
each of the partition sets into a single super-vertex.
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Fig. 3. Shrinking each partition set into a single vertex may lead to error.

However, shrinking each of the different partition sets into a single vertex leads to error as the following example
indicates: consider the graph G on the left of Fig. 3 which contains no house, hole, or domino; the partition of the non-
neighbors of v based on the common neighbors with v yields the sets P,Q , R; shrinking these sets into vertices x, y, z,
respectively, yields the graph on the right of Fig. 3, which contains the hole vaxyzc. That is, the shrunk graph cannot be used
for the detection of holes in G because it may contain a hole even if G does not contain one.

A closer look at the example reveals that the error is due to the fact that the two connected components of the
subgraph G[Q ] induced by the partition set Q in Fig. 3 were shrunk into the same vertex. This suggests that if one intends
to apply a shrinking mechanism, one needs to treat the connected components of any partition set as separate entities.

Therefore, we do the following:

1. we compute the partition of the non-neighborsMG(v) of vertex v in G based on the common neighbors of the vertices in
MG(v) with v;

2. we order the partition sets by non-decreasing number of common neighbors with v (ties are broken arbitrarily); let
Sv = (S1, S2, . . . , Sℓ) be the resulting ordering;

3. for each set Si, we compute the connected components of the subgraph G[Si];
4. we construct an auxiliary graph Gv by shrinking each of the connected components into a single vertex: namely, for each

i = 1, 2, . . . , ℓ, let

Zi = { zC1 , zC2 , . . . , zCti | C1, C2, . . . , Cti are the conn. components of G[Si] }; (1)

then

V (Gv) = {v} ∪ NG(v) ∪


ℓ

i=1

Zi


E(Gv) = { uw | u, w ∈ {v} ∪ NG(v) : uw ∈ E(G) }

∪ { u zC | u ∈ NG(v), ∃ x ∈ conn. component C of G[Si] : ux ∈ E(G) }
∪ { zC zC ′ | ∃ x, y ∈ conn. components C and C ′ of G[Si] and G[Sj], resp., where i ≠ j : xy ∈ E(G) }.

Note that when a component C is shrunk into a vertex zC , then

(i) zC is adjacent to a vertex u ∈ NG(v) iff there exists a vertex x ∈ C such that ux ∈ E(G), and
(ii) zC is adjacent to vertex zC ′ that resulted from the shrinking of a component C ′ ≠ C iff there exist vertices x ∈ C and

y ∈ C ′ such that xy ∈ E(G).

As an example, Figs. 4(b) and (c) show the graphs Gv and Gu for the graph shown (in two different ways) in Fig. 4(a).

Notation. Since for vertex v, NG(v) = NGv (v), for simplicity, in the following we will write N(v) instead.

3.3. Properties of the graph Gv

In this subsection, we prove some properties that a graph Gv corresponding to vertex v of G possesses.
It follows from the definition of the graph Gv and of the sets Zi (1 ≤ i ≤ ℓ), that the ordering (Z1, Z2, . . . , Zℓ) contains the

sets ordered by non-decreasing number of common neighbors with v. Then, the following lemma holds (the lemma holds
for the ordering Sv of the given graph g as well):

Lemma 3.1. Let v be a vertex of a graph G and Gv the corresponding graph. Consider the partition of the non-neighbors of vertex v
in Gv based on their common neighbors with v and let (Z1, Z2, . . . , Zℓ) be the ordering of the partition sets ordered by non-
decreasing number of common neighbors with v (ties are broken arbitrarily). Then, for any two sets Zi and Zj where i < j, the
following hold:

(i) There exists a neighbor y of v such that y is adjacent to all the vertices in Zj and to no vertex in Zi.
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Fig. 4. (a) The same graph shown in two different ways (with respect to vertices v and u); (b) the graph Gv ; (c) the graph Gu .

(ii) Let z ∈ Zi and z ′ ∈ Zj such that zz ′ ∈ E(Gv). If z has a common neighbor with v that is not a neighbor of z ′, then the graph Gv

contains an induced house (with v at its top) or C5.

Proof. (i) Let ni and nj be the number of common neighbors of the vertices in Zi and in Zj, respectively, with v. The ordering
of the partition sets implies that ni ≤ nj, since i < j. If ni < nj, then clearly there exists a vertex y as described in the
statement of the lemma. Such a vertex also exists if ni = nj, because the sets Zi, Zj are different and hence their sets of
common neighbors with v differ.
(ii) Since i < j, statement (i) of this lemma holds and hence there exists a neighbor y of v such that y is adjacent to z ′ but
is not adjacent to z. Suppose that there exists a vertex x that is a neighbor of both z and v but not of z ′. Then, the vertices
v, x, z, z ′, y induce a house (with v at its top) if xy ∈ E(Gv) or a C5 if xy ∉ E(Gv). �

Additionally, the existence of chordless cycles in the graph Gv for some vertex v of the given graph G implies that G
contains a chordless cycle of at least equal length. In particular:
Lemma 3.2. Let G be a graph. Consider the graph Gv as defined above w.r.t. a vertex v of G and let OGv = zA1zA2 · · · zAk (k ≥ 3)
be a chordless cycle in Gv . If zAi is v or a neighbor of v in Gv , let Ai = {zAi}, whereas if zAi is a non-neighbor of v, let Ai be the
connected component of a subgraph G[Sti ] of G which was shrunk into vertex zAi . Then, G contains a chordless cycle

OG = x1,1 · · · x1,j1 x2,1 · · · x2,j2 · · · xk−1,1 · · · xk−1,jk−1 xk,1 · · · xk,jk ,

where ∀ i = 1, . . . , k, xi,1 · · · xi,ji is a (chordless) path in G[Ai] and ji ≥ 1; the length of OG is equal to
k

i=1 ji

which is no less

than the length of the cycle OGv (=k).

Proof. Since zAizAi+1 ∈ E(Gv) (1 ≤ i < k) there exist vertices qi ∈ Ai and pi+1 ∈ Ai+1 such that qipi+1 ∈ E(G) (note that if zAi
is v or a neighbor of v then qi = zAi ; similarly for pi+1). Then, for 1 ≤ i ≤ k, since pi, qi ∈ Ai and since the subgraph G[Ai] is
connected (no matter whether zAi is a neighbor of v or not), there exists a (possibly trivial) path, say, ρi, in G[Ai] from pi to
qi. Therefore, the vertices of the paths ρ1, ρ2, . . . , ρk in order form a (not necessarily chordless) cycle O′G in G, from which
we can obtain a chordless cycle OG. Since the cycle OGv is chordless, no vertex in Ai (1 ≤ i ≤ k) is adjacent to vertices of
the cycle O′G other than vertices in the sets Aj preceding and following the set Ai around the cycle. Therefore, the chordless
cycle OG has to pass from vertices in each of Ai and is of the form given in the statement on the lemma; consequently its
length is at least equal to the length of the cycle OGv . �
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Fig. 5. For the proof of Corollary 3.1; (a) for the case of a house (xi coincides with b); (b) for the case of a domino.

The above property is crucial in showing the following very important result.

Corollary 3.1. Let G be a graph and consider the graph Gv as defined above w.r.t. any vertex v of G. If Gv contains a house, hole,
or domino then so does G.

Proof. Lemma 3.2 readily implies that the existence of an induced hole in Gv implies the existence of an induced hole in G.
Now, consider that Gv contains a house induced by the vertices zA, zB, zC , zD, zE so that zAzBzCzDzE is a cycle in Gv that

has the chord zBzE , i.e., zA is the top vertex of the house with neighbors and zB and zE . As in the statement of Lemma 3.2, let
us associate the vertices zA, zB, zC , zD, zE with the subsets A, B, C,D, E of V (G), respectively, i.e., if zX is a neighbor of v, then
X = {zX } ⊆ V (G), otherwise, X is the connected component of Gwhich was shrunk into vertex zX (note that, in either case,
G[X] is connected). In accordancewith Lemma 3.2, the existence of the chordless cycle zBzCzDzE in Gv implies that G contains
a chordless cycle OG of length ≥ 4. If the length of OG is ≥ 5 then G contains an induced hole; so, suppose that the length
of the cycle OG is 4. Then, as proved in Lemma 3.2, the cycle is b′cde′ where b′ ∈ B, c ∈ C , d ∈ D, and e′ ∈ E (see Fig. 5(a)).
Similarly, the existence of the chordless cycle zAzBzE in Gv implies that G contains a chordless cycle O′G of length ≥ 3. If the
length of O′G is≥ 5 then G contains an induced hole; so, suppose that the length of the cycle O′G is 3 or 4. In either case, the
cycle contains an edge bewhere b ∈ B and e ∈ E (see Fig. 5(a)).

Since b, b′ ∈ B and since G[B] is connected, let ρB = x0x1 · · · xk be a (possibly trivial) shortest path in G[B] connecting
b′ = x0 to b = xk. Similarly, let ρE = y0y1 · · · yℓ be a (possibly trivial) shortest path in G[E] connecting e′ = y0 to e = yℓ.
Next, among the vertices of ρB that are adjacent to both c and e′ (note that b′ = x0 is such a vertex), select the vertex that is
closest to b along ρB; let xi be that vertex (in Fig. 5(a), xi = b). Then, no vertex xi+1, . . . , xk is adjacent to both c and e′. If there
exist vertices among xi+1, . . . , xk that are adjacent to c , let xi′ be the vertex that is closest to xi along ρB. Then: if i′ = i+ 1,
then the vertices vi, vi′ , c, d, e′ induce a house in G; if i′ = i+ 2, then the vertices vi, vi+1, vi′ , c, d, e′ induce a domino in G;
finally, if i′ ≥ i + 3, then the vertices vi, vi+1, . . . , vi′ induce a hole in G. In a similar fashion, if there exist vertices among
xi+1, . . . , xk that are adjacent to e′, then G contains an induced house, hole, or domino. So, in the following, we assume that
no vertex among xi+1, . . . , xk is adjacent to c or e′.

Let us now work similarly on the path ρE . More specifically, let yj be the vertex of ρE that is adjacent to both xi and d,
and is closest to e along ρE (see Fig. 5(a)). If any of the vertices yj+1, . . . , yℓ is adjacent to xi or d, then, as in the previous
paragraph, we conclude that the graph G contains an induced house, hole, or domino. So, in the following, we assume that
no vertex among yj+1, . . . , yℓ is adjacent to xi or d.

If xi = b and yj = e, then the subgraph of G induced by the vertices c , d, and the vertices of the cycle O′G (of length 3 or
4) contains an induced house or domino: if O′G is of length 3, then c , d, and the vertices of O′G induce a house. Next, suppose
that O′G is of length 4; in particular, let O′G = befg . If f , g ∈ A, then c , d, and the vertices of O′G induce a domino. If f ∈ E, then
g ∈ A. If vertex f is adjacent to both b and d, then g, b, c, d, f induce a house (with g at its top). If f is adjacent to exactly
one of b and d, then f , b, c, d, e induce a house (with f at its top). If f is not adjacent to b or d, then b, c, d, e, f , g induce a
domino. Similarly if g ∈ B.

Now, if xi ≠ b or yj ≠ e, consider the shortest path connecting xi to yj in the subgraph of G induced by the vertices
xi, xi+1, . . . , xk−1, b, e, yℓ−1, . . . , yj+1, yj inwhichwehave removed the edge xiyj. If the shortest path is of length≥ 4, then its
vertices induce a hole in G. If its length is 2 or 3, then its vertices alongwith c and d induce a house or a domino, respectively.

The proof for a domino is similar to that for the house. Suppose that Gv contains a domino induced by the vertices
zA, zB, zC , zD, zE, zF so that zAzBzCzDzEzF is a cycle in Gv that has the chord zBzE . As in the case of the house, we associate
the vertices zA, zB, zC , zD, zE, zF with the subsets A, B, C,D, E, F of V (G), respectively (see Fig. 5(b)). In accordance with
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Lemma 3.2, the existence of the chordless cycles zBzCzDzE and zAzBzEzF in Gv implies that G contains corresponding chordless
cycles OG and O′G, respectively, each of length≥ 4. If the length of any of these cycles is≥ 5 then G contains an induced hole;
so, suppose that the length of both OG and O′G is 4 and let them be OG = b′cde′ and O′G = befg where g ∈ A, b, b′ ∈ B, c ∈ C ,
d ∈ D, e, e′ ∈ E, and f ∈ F (see Fig. 5(b)). From then on, the proof proceeds in the sameway as in the case of the house under
the conditions that the length of O′G is 4, and that f belongs to a separate set F and thus is not adjacent to b or d. �

On the other hand, due to the way the graph Gv is defined, if v is a (in some cases, special) vertex in a house, hole, or
domino in G then the graph Gv contains a house, hole, or domino. More specifically:

Lemma 3.3. If a graph G contains an induced house, hole, or domino then there exists a vertex v ∈ V (G) such that in the graph Gv

(as defined in Section 3.2) w.r.t. vertex v:

(i) v is the top vertex of an induced house in Gv or
(ii) v belongs to an induced hole in Gv or
(iii) v is a corner vertex of an induced domino in Gv .

Proof. We assume that G contains an induced house, hole, or domino. We consider the following cases:

(i) Suppose that G contains an induced house. Let v be the vertex at the top of the house and let the remaining vertices be
a, b, c, d such that vabcd is a cycle of G. For the non-neighbors b and c of v, let b ∈ Si and c ∈ Sj. Clearly i ≠ j since b and
c have different common neighbors with v. Consider the graph Gv w.r.t. vertex v. Let zB (zC , resp.) be the vertex of Gv

which resulted from the shrinking of the connected component B (C , resp.) of G[Si] (G[Sj], resp.) containing b (c , resp.).
Then, the vertices v, a, zB, zC , d induce a house in Gv having v as its top vertex.

(ii) Suppose that G contains an induced hole. Let v be any vertex of the hole and let the hole be vabp1p2 · · · pkcd, i.e., the
vertices b, p1, . . . , pk, c are all non-neighbors of v in G. Consider the graph Gv w.r.t. vertex v. The path bp1 · · · pkc in
the subgraph of G induced by the non-neighbors of v implies that there exists a non-simple path in the subgraph of
Gv induced by the non-neighbors of v connecting zB to zC , where zB, zC are the vertices of Gv that resulted from the
shrinking of the connected components containing b and c , respectively. From this path, we can obtain a chordless
path ρ connecting zB to zC (it suffices to apply breadth-first-search on this path starting from zB until zc is reached, and
then collect the BFS-tree edges from zB to zC ). Then, the vertices v, a, d and the vertices of the path ρ induce a hole in Gv

containing v (even when the length of ρ is equal to 1).
(iii) Suppose finally that G contains an induced domino. Let v be a corner vertex of such a domino and let vabcde be the

Hamilton cycle of the domino. Consider the graph Gv w.r.t. vertex v. Let zB, zC , zD be the vertices of Gv corresponding to
the connected components B, C , and D, respectively, of G containing b, c , and d, respectively; zB, zC , zD are different as
b, c, d have different common neighbors with v. Due to the domino, the graph Gv contains the cycle vazBzCzDe. Next, if
there exist vertices b′ ∈ B and d′ ∈ D such that b′d′ ∈ E(G), then the vertices b′, d′, e, v, a induce a house (with b′ at its
top) in G, and according to case (i) the graph Gb′ corresponding to b′ would contain an induced house with b′ at its top.
Suppose now that no vertex in B is adjacent to a vertex in D. Then, zBzD ∉ Gv and the vertices v, a, zB, zC , zD, e induce a
domino in Gv having v as a corner vertex. �

The above result readily implies a way to check if an input graph G is HHD-free: process the graph Gv for each vertex v
of G checking whether v is the top vertex of a house, or belongs to a hole, or is a corner vertex of a domino in Gv; if it
is/does so, then G is not HHD-free. Of course, if there exists another induced house, hole, or domino in Gv , then, according
to Corollary 3.1, again G is not HHD-free.

In this way, we reduced the problem of deciding whether a graph G is HHD-free into the problem of deciding whether
any of the graphs Gv for the vertices of G is HHD-free. It seems that we are back at the beginning. However, this is not true
because a graph Gv has the important property that if G is HHD-free then its subgraph induced by the non-neighbors of v is
‘‘nearly’’ chordal, or the contrapositive: if its subgraph induced by the non-neighbors of v is not ‘‘nearly’’ chordal then G is
not HHD-free; the latter property is proved in the next lemma and is crucial in achieving a faster algorithm.

Lemma 3.4. Let v be a vertex of a graph G and zA, zB, zC three vertices of the graph Gv belonging to the partition sets Zi, Zj, Zk,
respectively, and assume that i < j < k. Suppose further that zAzB ∈ E(Gv) and zAzC ∈ E(Gv). Then if zBzC ∉ E(Gv), the graph G
contains an induced house, hole, or domino.

Proof. Since i < j, in accordance with Lemma 3.1 (statement (i)), there exists a vertex x ∈ N(v) such that xzB ∈ E(Gv) and
xzA ∉ E(Gv). Similarly, since j < k, there exists a vertex y ∈ N(v) such that yzC ∈ E(Gv) and yzB ∉ E(Gv); see Fig. 6(a).

Now, if yzA ∈ E(G) then the vertices v, x, y, zA, zB induce a house (with v at its top) or a C5 in Gv depending on whether
xy ∈ E(Gv) or not, respectively. So suppose next that yzA ∉ E(Gv). If xzC ∈ E(G) then the vertices x, zB, zA, zC induce a
C4, and thus Gv contains a house induced by x, y, zA, zB, zC (with y as its top vertex) if xy ∈ E(Gv) or a domino induced by
v, x, y, zA, zB, zC otherwise; if xzC ∉ E(G) then Gv contains a C5 induced by x, y, zA, zB, zC if xy ∈ E(Gv) or a C6 induced by
v, x, y, zA, zB, zC otherwise.

In all cases, the graph Gv contains an induced house, hole or domino; then, by Corollary 3.1, G contains an induced house,
hole, or domino. �
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Fig. 6. For the proofs of: (a) Lemmas 3.4 and 3.6; (b) Lemmas 3.5 and 3.7 (edges that may or may not exist are shown dashed).

Therefore, in the case in which each non-neighbor of v, belonging to a set Zi, is adjacent to at most 1 element of Zj with
j > i, this lemma has the following interesting implication: if the subgraph of Gv induced by the non-neighbors of v is
not chordal then the graph G is not HHD-free. Then, we could apply a (linear-time) chordal recognition algorithm in that
subgraph. If the algorithm returned ‘‘no’’, that is, the subgraph was not chordal, then we could safely answer that G is not
HHD-free. If the algorithm returned ‘‘yes’’, then we could apply the algorithm of [12] without having to execute the chordal
completion step, or the algorithm of [17] without having to compute the array NextNeighbor, andwe could answer whether
G contains an induced house or building (see Fig. 1(b)) with v at its top. If any graph Gv contained a house or a building, we
could correctly report thatGwas notHHD-free; if none of themdid, thenGwould not contain an induced house or hole. Then,
all that would be needed, would be to test for an induced domino. By avoiding the chordal completion and the computation
of the array NextNeighbor, we would have reduced the time complexity of the overall algorithm, as all the other steps in
the algorithms of [12,17] can be done in O(nm) time.

The above method relies on the assumption that no non-neighbor of v in a set, say, Zi, is adjacent to more than 1 element
of sets Zj with j > i, which is not true in general. Nevertheless, even if this assumption is not true, we can still detect houses,
holes, or dominoes, if there exist in Gv , by taking advantage of the following property.

Lemma 3.5. Let v be a vertex of a graph G and zA, zB, zC three vertices of the graph Gv belonging to the partition sets Zi, Zj, Zk,
respectively, where i < j < k, such that zAzB ∈ E(Gv) and zBzC ∈ E(Gv). Suppose further that there exists a vertex zB′ ∈ Zj such
that zAzB′ ∈ E(Gv) and zB′zC ∉ E(Gv). Then, the graph G contains an induced house, hole, or domino.

Proof. Since i < j, in accordance with Lemma 3.1 (statement (i)), there exists a vertex x ∈ N(v) such that xzB ∈ E(Gv),
xzB′ ∈ E(Gv), and xzA ∉ E(Gv). Additionally, in accordance with Lemma 3.1 (statement (ii)) due to the edges zBzC and xzB, if
x ∉ NGv (zc) then Gv contains an induced house or C5. So, next consider that xzC ∈ E(Gv); see Fig. 6(b).

If zAzC ∈ E(G) then the conditions of Lemma 3.4 for zA, zB′ , and zC would be met and then the graph Gv would contain
an induced house, hole, or domino. If zAzC ∉ E(G), the vertices x, zA, zB, zB′ , zC induce a house with zC at its top; note that
zBzB′ ∉ E(Gv) since the vertices zB, zB′ resulted from shrinking different connected components of the subgraph G[Sj].

In all cases, the graph Gv contains an induced house, hole or domino; then, by Corollary 3.1, G contains an induced house,
hole, or domino. �

The lemma implies that in Gv whenever a non-neighbor z of v with z ∈ Zi is adjacent to two other non-neighbors z ′ and
z ′′ belonging to the same set, say, Zj with j > i, then we check whether z ′ and z ′′ have the same neighbors ‘‘to the right’’; if
they don’t, then the graph G is not HHD-free.

3.4. Description of the algorithm

Based on the results in Lemmas 3.4 and 3.5, in Fig. 7 we give a detailed description of Procedure Process_Vertex with
parameters the input graph G and one of its vertices v. From G, we construct the auxiliary graph Gv by shrinking each of the
connected components of each of the subgraphs G[Si], i = 1, 2, . . . , ℓ, into a single vertex; the components in G[Si] yield
the vertices in the set Zi (Step 2). Then, for each i = 1, 2, . . . , ℓ, we process all the vertices in the set Zi together (note that,
by construction, in the graph Gv there are no edges between any two vertices in Zi).

For any two vertices z ′, z ′′ in each set Zi that are neighbors of a vertex in some set Zt with t < i, we intend to check that z ′
and z ′′ have the same neighbors ‘‘to the right’’ and, if not, to report thatG is not HHD-free in accordancewith Lemma 3.5. This
checking is delayed until the processing of the set Zi and thus we construct a partition PZi of each set Zi into sets of vertices
that should have the same neighbors ‘‘to the right’’ if G is HHD-free: initially, each vertex belongs to a separate partition
set (Step 3). Whenever, a non-neighbor z of v in Gv has more than one immediately next neighbors (i.e., neighbors in the
minimum-index set, say, Zk, among all the sets containing neighbors of z ‘‘to the right’’), then the partition sets containing
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Procedure Process_Vertex(graph G, vertex v)

1. Compute the set N(v) of neighbors and the set of non-neighbors of v in G;
partition the non-neighbors of v based on their common neighbors with v in G, and order the partition sets by non-
decreasing number of such common neighbors; let Sv = (S1, S2, . . . , Sℓ) be the resulting ordering;

2. Construct the auxiliary graph Gv from a copy of G by shrinking each connected component C of the subgraphs G[Si],
i = 1, 2, . . . , ℓ, into a single vertex zC ; let Zi (i = 1, 2, . . . , ℓ) be the set of vertices of Gv obtained from shrinking the
connected components of G[Si];

3. for i← 1 to ℓ do
form a partition PZi of the set Zi by placing each element of Zi in a separate partition set;
for each vertex zC ∈ Zi do

associate with zC an initially empty set A(zC );
4. for i← 1 to ℓ do

let the partition PZi of Zi be PZi = {P1, P2, . . . , Pt};
for j← 1 to t do
4.1 let zR be any vertex contained in the set Pj; {a representative of Pj}

X ′ ← NGv (zR) ∩
ℓ

r=i+1 Zr

; {neighbors of zR ‘‘to the right’’}

4.2 if Pj is not a singleton set
then {check that all vertices in Pj have the same neighbors ‘‘to the right’’}

if there exists a vertex in Pj that is not adjacent in Gv to a vertex in X ′ or
is adjacent to a vertex in

ℓ
r=i+1 Zr


− X ′

then print(‘‘The graph G is not HHD-free’’); exit;
4.3 if X ′ ≠ ∅

then let Zk be the minimum-index set such that X ′ ∩ Zk ≠ ∅;
W ← X ′ ∩ Zk; {closest neighbors of zR ‘‘to the right’’}
if |W | > 1
then union the sets of the partition PZk (of Zk) containing the vertices inW ;
X ← X ′ ∪


NGv (zR) ∩ N(v)


; {include neighbors in N(v)}

choose any zX ∈ W and concatenate the set X −W to A(zX );
4.4 if


z∈Pj

A(z)

− NGv (zR) ≠ ∅

then print(‘‘The graph G is not HHD-free’’); exit;

Fig. 7. Procedure Process_Vertex.

these neighbors are unioned (Step 4.3); in fact, checking only the immediately next neighbors of a representative of each
partition set, instead of each vertex z, suffices since this is done after all the vertices in a partition set have been found to
have the same neighbors ‘‘to the right’’ (Step 4.2).

The rest of the algorithm is an extension of the linear-time perfect-elimination-ordering test algorithm of Rose et al. [20]
and Golumbic [7] applied on the graph Gv . With each non-neighbor z of vertex v in the graph Gv , we associate an (initially
empty) set A(z) (Step 3) which collects all the vertices that will eventually have to be checked for adjacency with z. This
checking is also delayed until the partition set, say, Pj, containing z gets processed; in fact, the elements of A(z) are checked
for adjacency with a representative of the set Pj (Step 4.4), which is correct since all the vertices in Pj have been checked to
have the same neighbors ‘‘to the right’’ (and of course they have the same common neighbors with v).

For example, when applied on the graph Gv in Fig. 4(b), we have: the set Z1 contains a single vertex z1, whose processing
in Step 4.3 producesW = {z2, z3} and thus these two vertices are unioned in a single partition set; when Z2 gets processed,
the partition set {z2, z3} is processed and in Step 4.2, we find out that the two vertices do not have the same neighbors ‘‘to
the right’’ (no matter which one is picked as the representative zR), and the algorithm correctly concludes that the given
graph G is not HHD-free. If the algorithm is applied on the graph Gu in Fig. 4(c), then we have: the set Z1 contains a single
vertex z ′1, whose processing in Step 4.3 produces W = {z ′3} and X ′ = {z ′3, z

′

4}, and thus the set A(z ′3) becomes {z ′4}; next,
during the processing of Z2 and its element z ′2, we have that W = {z ′3} and X ′ = {z ′3, v}, and thus the vertex v is added to
A(z ′3); finally, when Z3 gets processed, in Step 4.4 of the processing of z ′3, we find that A(z ′3) contains v and z ′4, none of which
is a neighbor of z ′3, and thus the algorithm correctly concludes that the given graph G is not HHD-free.

3.5. Correctness

The correctness of Procedure Process_Vertex, and consequently Algorithm Recognize-HHD-free, is established in
Theorem 3.1 with the help of Lemmas 3.6–3.8 through which we establish that Procedure Process_Vertex reports that the
given graph is not HHD-free under certain conditions that are oftenmet in Theorem 3.1. In particular, these 3 lemmas prove
the aforementioned result for Procedure Process_Vertex if the conditions of Lemmas 3.4, 3.5 and 3.1(ii) respectively, hold.
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Lemma 3.6. Let Gv be the graph corresponding to a vertex v of a graph G as defined in Section 3.2 and suppose that there exist
zA ∈ Zi, zB ∈ Zj, and zC ∈ Zk with i < j < k such that zAzB ∈ E(Gv), zBzC ∈ E(Gv), and zBzC ∉ E(Gv); see Fig. 6(a). Then
Procedure Process_Vertex, when run on the pair (G, v), reports that the graph G is not HHD-free.

Proof. Among all triples of vertices zA, zB, zC meeting the conditions of the lemma, consider a triple such that j − i is
minimum.

Consider the processing of the graph Gv and in particular the processing of the partition set containing zA. Clearly, X ′ ≠ ∅,
since zB, zC ∈ X ′; let zX be the vertex chosen at the end of Step 4.3 in order that the set X − W be concatenated to A(zX ).
Then, zX belongs to Zj (as does zB). Suppose for contradiction that zX belongs to Zq where q < j. Then zXzB ∈ E(Gv) otherwise
the triple zA, zX , zB would contradict the minimality of the triple zA, zB, zC . Similarly, zXzC ∈ E(Gv). But then again, the triple
zX , zB, zC contradicts the minimality of the triple zA, zB, zC . Therefore, zX ∈ Zj (as does zB) and the vertices zX and zB both end
up belonging to the setW in Step 4.3 during the processing of the partition set containing zA; due to that, the partition sets
to which zX and zB belong get unioned (if they have not got unioned earlier). Later the vertices in X −W are concatenated
to A(zX ) and thus zC is concatenated to A(zX ).

Consider now the processing of the partition set containing zX (and zB) and let zR be the arbitrary vertex selected in
Step 4.1. If zC ∈ NGv (zR) then Procedure Process_Vertex reports that the graph G is not HHD-free in Step 4.2 because zB is
not adjacent to zC . If zC ∉ NGv (zR) then Procedure Process_Vertex again reports that the graph G is not HHD-free; in Step 4.4,
the set


z∈Ps A(z) includes A(zX ) which contains zC whereas zC is not adjacent to zR. �

Lemma 3.7. Let Gv be the graph corresponding to a vertex v of a graph G as defined in Section 3.2 and suppose that there exist
zA ∈ Zi, zB, zB′ ∈ Zj, and zC ∈ Zk with i < j < k such that zAzB ∈ E(Gv), zAzB′ ∈ E(Gv), zBzC ∈ E(Gv), and zB′zC ∉ E(Gv); see
Fig. 6(b). Then, Procedure Process_Vertex, when run on the pair (G, v), reports that the graph G is not HHD-free.

Proof. Fix vertices zB and zB′ ; among all possible vertices zA as described in the lemma, select a zA such that j− i is minimum.
Consider the processing of the graph Gv and in particular the processing of the partition set containing zA. Clearly, X ′ ≠ ∅,

since zB, zB′ ∈ X ′; let zX be the vertex chosen at the end of Step 4.3 in order that the set X −W be concatenated to A(zX ).
Suppose that zX ∈ Zq where q < j. The minimality of the choice of zA implies that zX is not adjacent to at least one of zB
and zB′ thus, suppose without loss of generality that zXzB ∉ E(Gv). Then, the triple zA, zX , zB would satisfy the conditions
of Lemma 3.6 and Procedure Process_Vertex reports that the graph G is not HHD-free. Now suppose that zX ∈ Zj (as do zB
and zB′ ). Therefore, all three vertices zX , zB, and zB′ belong to the set W in Step 4.3 during the processing of the partition set
containing zA, and the partition sets to which they belong get unioned (if they have not got unioned earlier).

Consider now the processing of the partition set of Zj containing zX , zB, and zB′ , and let zR be the arbitrary vertex selected
in Step 4.1. Clearly, the partition set is not a singleton and in Step 4.2 it is checked whether any member of the set has
different neighborhood ‘‘to the right’’ from that of zR. Since zC ∈ Zk (where k > j) is adjacent to zB but not to zB′ , and both
zB and zB′ belong to the partition set containing zR, the neighborhood ‘‘to the right’’ of zR will disagree to at least one of the
neighborhoods of zB or zB′ , and therefore Procedure Process_Vertex reports that the graph G is not HHD-free. �

Lemma 3.8. Let Gv be the graph corresponding to a vertex v of a graph G as defined in Section 3.2 and suppose that zAzB ∈ E(Gv)
where zA ∈ Zi and zB ∈ Zj are two non-neighbors of v in Gv with i < j. If there exists a vertex x that is a common neighbor of
zA and v in Gv , which is not a neighbor of zB (see the left graph in Fig. 8(b)), then Procedure Process_Vertex when run on the pair
(G, v) reports that the graph G is not HHD-free.

Proof. Among all pairs of vertices zA, zB meeting the conditions of the lemma, consider a pair such that j− i is minimum.
Consider the processing of the graph Gv and in particular the processing of the partition set containing zA; let zX be the

vertex chosen at the end of Step 4.3 in order that the set X −W be concatenated to A(zX ). Then, since x ∈ NGv (zA) ∩ N(v),
the vertex xwill be concatenated to A(zX ). Suppose that zX belongs to Zk; clearly, i < k ≤ j.

Consider the case where k < j. Since zAzX ∈ E(Gv), if x ∉ NGv (zX ). then the pair zX , zB would contradict the minimality
of the pair zA, zB. Thus x ∈ NGv (zX ); then zXzB ∉ E(Gv) otherwise the pair zX , zB would contradict the minimality of the pair
zA, zB. Since zAzX ∈ E(Gv), zAzB ∈ E(Gv), and zXzB ∉ E(Gv), the vertices zA, zX , zB satisfy the conditions of Lemma 3.6 and we
have that Procedure Process_Vertex reports that the graph G is not HHD-free.

Consider now the case where k = j. Since k = j and since both zX and zB are neighbors of zA, the vertices zX and zB
both belong to the set W computed in Step 4.3 while processing the partition set containing zA, and hence the partition
sets containing these vertices (if different) are unioned. During the processing of the partition set Ps containing zX and zB, in
Step 4.1 an arbitrary vertex zR is selected from Ps; since zR ∈ Zj (as does zB), x ∉ NGv (zR) as well. Next, in Step 4.2, the set

z∈Ps A(z) includes A(zX ) which contains x. On the other hand, x is not adjacent to zR and Procedure Process_Vertex reports
that the graph G is not HHD-free. �

Now we are ready to prove the theorem establishing the correctness of our algorithm.

Theorem 3.1. When Algorithm Recognize-HHD-free is run on a graph G, it reports that G is not HHD-free if and only if G is indeed
not HHD-free.

Proof. (H⇒) Suppose that the algorithm prints that G is not HHD-free while Procedure Process_Vertex runs on the pair
(G, v). This may happen either in Step 4.2 or in Step 4.4 while processing a partition set Ph of a set Zj of vertices of Gv; let zR
be the vertex selected in Step 4.1 of the processing of Ph. Then:
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Fig. 8. For the proof of Theorem 3.1.

• Step 4.2: there exists a vertex in Ph whose neighborhood ‘‘to the right’’ differs from that of vertex zR, i.e., there exists a
vertex zC ∈

ℓ
r=i+1 Zr


− X ′ such that some vertices in Pj are adjacent to z in the graph Gv while the remaining vertices

in Ph are not adjacent to z.
The set Ph has been formed by unions of disjoint subsets of the set Zj; a union of such subsets is done in Step 4.4 during
the processing of a partition set which is a subset of a set Zi (with i < j) and contains a vertex adjacent in Gv to elements
of these subsets that belong to the set W . Thus, in the history of the formation of the set Ph, there is a moment when
a subset of Ph is formed while unioning a subset Pq1 of vertices of Zj, all of which are adjacent to zC with a subset Pq2
of vertices of Zj none of which is adjacent to zC . This union has been performed at an earlier iteration of the for-loop in
Step 4, i.e., while processing a subset of a set Zi with i < j because the vertex selected in Step 1.4, say, zA, is adjacent to a
vertex zB in Pq1 and to a vertex zB′ in Pq2 . But then the vertices zA, zB, zB′ , zC meet the conditions of Lemma 3.5, and thus
G contains an induced house, hole, or domino.
• Step 4.4: there exists a vertex x ∈


z∈Ph

A(z)

−NGv (zR), where zR is the vertex selected from the set Ph in Step 4.1when

processing Ph. The vertex x belongs to


z∈Ph
A(z) because it has been added to some A(zB), where zB ∈ Ph; this addition

was done earlier in Step 4 for a value i of the index of the for-loop (i.e. i < j) while processing a subset P of the set Zi′ of
vertices of Gv; let zA be the vertex selected from P in Step 4.1 during its processing. Then, zAzB ∈ E(Gv) and zAx ∈ E(Gv).
Since


z∈Ph

A(z) ⊆
ℓ

r=i+1 Zr

∪ N(v), we distinguish the following two cases:

Suppose that x ∈
ℓ

r=i+1 Zr . Let x ∈ Zq where q > j (see Fig. 8(a)). Since the processing of the set Ph did not stop at
Step 4.2, then all the vertices in Ph have the same neighbors ‘‘to the right’’ as zR; since x is not a neighbor of zR, then x is
not a neighbor of zB either (recall zR, zB ∈ Ph). But then the vertices zA, zB, x meet the conditions of Lemma 3.4, and thus
G contains an induced house, hole, or domino.

Next, suppose that x ∈ N(v) (see Fig. 8(b)). Since zA ∈ Zi and zB ∈ Zj, there exist connected components A of G[Si] and B
of G[Sj] such that A, Bwere shrunk into vertices zA and zB, respectively. Since xzA ∈ E(Gv) and xzB ∉ E(Gv), in G, vertex x
is adjacent to all the vertices in A and to no vertex in B. Additionally, because zAzB ∈ E(Gv), there exist vertices a ∈ A and
b ∈ B such that ab ∈ E(G). Moreover, since i < j, there exists a vertex w ∈ N(v) such that w ∈ NG(b)− NG(a). Then, the
vertices v, x, w, a, b induce a house or a C5 in G.

(⇐H) Now, suppose that the graph G is not HHD-free; we will show that Algorithm Recognize-HHD-free will report that.
Suppose that G contains a house or a C5 induced by the vertices v, x, w, a, b that form a cycle vxabw; in case of a house,

let v be its top vertex (see Fig. 8(b)). Without loss of generality suppose that in the partition of the non-neighbors of v, the
vertices a, b belong to the connected components A and B of the sets Si and Sj, respectively, with i < j. Consider the graph Gv

and let zA, zB be the vertices of Gv to which the components A, B shrunk. Then, in Gv , zA ∈ Zi, zB ∈ Zj with i < j, and the
neighbor x of v is adjacent to zA but not to zB. Then, from Lemma 3.8, we conclude that Procedure Process_Vertex when run
on the pair (G, v) reports that the graph G is not HHD-free.

Suppose that G contains a hole vua1a2 · · · ahw, where h ≥ 3. Again, if Algorithm Recognize-HHD-free does not stop early
(and reports that the graph G is not HHD-free), it eventually executes the body of the for-loop of Step 1 for the vertex v. Note
that the vertices a1, a2, . . . , ah are all non-neighbors of v; let A1, A2, . . . , Ah, respectively, be the connected components
of the subgraphs of G induced by the sets of the partition Sv to which the vertices a1, a2, . . . , ah belong (note that the
components A1 and Ah differ from each other and from all other components, whereas A2, A3, . . . , Ah−1 are not necessarily
distinct). Then, the graph Gv contains vertices zA1 , zA2 , . . . , zAh corresponding to the above connected components, and
because G contains the path a1a2 · · · ah, the subgraph Gv[{zA1 , zA2 , . . . , zAh}] is connected; let ρ be a chordless path in this
subgraph from zA1 to zAh . If ρ is of length 1, then as in the case of a house, we show that Procedure Process_Vertex when run
on (G, a1) reports that the graph G is not HHD-free. So, let ρ = zA1zB2 · · · zAh . Further, without loss of generality suppose that
zA1 ∈ Zi and zAh ∈ Zj where i < j. Then, if zB2 ∈ Zp with p > i, Lemma 3.8 implies that Procedure Process_Vertex when run
on (G, v) reports that the graph G is not HHD-free because of the edge zA1zB2 and the fact that u is adjacent to zA1 but not to
zB2 . So, suppose that p < i, that is, walking from zA1 to zB2 we walk towards the left in the ordered set of non-neighbors of v
(based on the number of their common neighbors with v). From zA1 keep walking along the path ρ for as long as you go left.



128 S.D. Nikolopoulos, L. Palios / Theoretical Computer Science 452 (2012) 117–131

Since zAh belongs to Zj with j > i, eventually we will find a vertex zBt such that both zBt−1 (which may be zA1 ) and zBt+1 are to
the right of zBt . If zBt−1 and zBt+1 do not belong to the same set Zq, then the vertices zBt , zBt−1 , and zBt+1 meet the conditions
of Lemma 3.6 and therefore Procedure Process_Vertex when run on (G, v) reports that the graph G is not HHD-free. If zBt−1
and zBt+1 belong to the same set Zq then none of them is zA1 since no vertex in ρ other than zA1 is adjacent to u. Then zBt−2
(which may be zA1 ) belongs to a set Zq′ with q′ > q and zBt−2zBt+1 ∉ E(Gv); then the vertices zBt , zBt−1 , zBt+1 , and zBt−2 meet
the conditions of Lemma 3.7 and therefore Procedure Process_Vertex when run on (G, v) reports that the graph G is not
HHD-free.

Finally, suppose that G contains a domino D induced by the cycle vudefw with a single chord uf (i.e., v is a corner vertex
ofD). Again, if AlgorithmRecognize-HHD-free does not stop early (inwhich case it reports that the input graphG is not HHD-
free), it will eventually execute the body of the for-loop of Step 4 for the vertex v. The vertex adjacencies in the domino D
imply that the vertices d, e, f belong to distinct sets of the partition Sv; let D, E, F be the connected components of the
subgraphs G[Sj],G[Si],G[Sk] to which d, e, f belong, respectively, where i ≠ j, i ≠ k, and j ≠ k. Because de ∈ E(G) and
ef ∈ E(G), then {zDzE, zEzF } ⊆ E(Gv). If zDzF ∈ E(Gv), then there exist vertices x ∈ D and y ∈ E such that xy ∈ E(G);
but then, the vertices v, u, x, y, w induce a house in G with x at its top, and as proved earlier for the case of an induced
house or C5, Procedure Process_Vertex when run on (G, x) reports that the graph G is not HHD-free. So let us assume that
zDzF ∉ E(Gv). If i > j, Lemma 3.8 applies to the edge zDzE of Gv , and because u is adjacent to zD but not to zE , it implies
that Procedure Process_Vertex when run on (G, v) reports that G is not HHD-free. Similarly, if i > k due to the edge zEzF .
So, suppose that i < min{j, k}. But then the vertices zE, zD, zF meet the conditions of Lemma 3.6 which again implies that
Procedure Process_Vertex when run on (G, v) reports that the graph G is not HHD-free.

Since Algorithm Recognize-HHD-free calls Procedure Process_Vertex for all pairs (G, x), where x is any vertex of G, then
in all the above cases Algorithm Recognize-HHD-free reports that the graph G is not HHD-free. �

3.6. Time and space complexity

Let n be the number of vertices andm be the number of edges of the graph G. Since each of the forbidden subgraphs that
we are looking for (a house, a hole, or a domino) is connected, we may assume that G is connected, otherwise we work on
G’s connected components which we can compute in O(n+m) time [5]; thus, n = O(m). Below, we give the time and space
complexity of each step of Procedure Process_Vertex when applied on a graph G and a vertex v from which we obtain the
time and space complexity of Algorithm Recognize-HHD-free.

The neighbors and non-neighbors of vertex v in the graph G can be stored in O(n)-size arrays for constant-time access;
this takes O(n) time. The partition of the non-neighbors of v based on their common neighbors with v can be computed in
O(m + n deg(v)) time and O(n) space, where deg(v) denotes the degree of v in G; see [16].1 After having computed for a
vertex of each of the partition sets the number of its common neighbors with v, which can be done in O(n + m) time, we
can form the ordered sequence (S1, S2, . . . , Sℓ) in O(ℓ + deg(v)) = O(n) time and O(n) space using bucket sorting. Thus,
Step 1 of Procedure Process_Vertex takes O(m+ n deg(v)) time and O(n) space in total.

Adjacency-list representations of the subgraphs G[Si], i = 1, 2, . . . , ℓ, can be obtained in O(n + m) time and space by
appropriate partitioning of a copy of an adjacency-list representation of the graph G and removal of unneeded records;
then, computing the connected components of all these subgraphs takes a total of O(n+m) time and space, fromwhich the
graph Gv can be constructed in O(n+ m) additional time and space. Thus, Step 2 of Procedure Process_Vertex takes a total
of O(n+m) time and space. It is important to note that the graph Gv has O(n) vertices and O(m) edges.

Crucial for Steps 3 and 4 of Procedure Process_Vertex is the construction and processing of the partitions PZi , i =
1, 2, . . . , ℓ. These aremaintained bymeans of an auxiliarymulti-graphHv represented bymeans of adjacency lists:members
of the same partition set belong to the same connected component ofHv . The graphHv has one vertex for each non-neighbor
of v in Gv and, with a slight abuse of notation, we can write that V (Hv) =

ℓ
i=1 Zi; thus, |V (Hv)| = O(n). Initially, the

graph Hv has no edges. Then

◃ whenever, for a non-neighbor zR of v in Gv , we need to union the sets of a partition PZk that contain the vertices in a
set W in Step 4, we pick a vertex, say, z ∈ W , and add edges (in an adjacency list representation of Hv) connecting z to
all the other vertices inW ; this takes O(|W |) = O(|X ′|) = O(degGv (zR)) time and space.

Since each non-neighbor of v in Gv can be the representative of a partition set at most once, then

|E(Hv)| = O

 
zR∉N[v]

degGv (zR)


= O


|E(Gv)|


= O


m

.

Then, when the time comes in Step 4 to process the partition PZi of the set Zi,

1 An algorithm to construct a partition of a set L2 in terms of adjacency to elements of a set L1 is given in Section 3.2 of [16] with a stated time complexity
of O(m + n |L2|); yet, it can be easily seen that the algorithm has a time complexity of O(m + |L1| · |L2|), which in our case gives O(m + n deg(v)) since
|L1| = deg(v) and |L2| = O(n).
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◃ we compute the connected component of the graph Hv to which each vertex in Zi belongs; graph traversal algorithms,
such as, depth-first search and breadth-first search, can be used on Hv to yield the connected components in time linear
in the number of vertices and edges of Hv[Zi].

In summary, constructing Hv without any edges, or equivalently, forming the initial partitions PZi (i = 1, 2, . . . , ℓ) where
each vertex in Zi is placed in a separate partition set, takes O(n) time and space; computing the partition PZi in Step 4 for all
i = 1, 2, . . . , ℓ takes O(n+m) time; the space required for the multi-graph Hv is also O(n+m).

Since initializing the sets A( ) for all the vertices in
ℓ

i=1 Zi takes O(n) time and space, Step 3 of Procedure Process_Vertex
takes O(n) time and space.

Next, let us consider the processing of a set Pj of the partition PZi in Step 4. Computing the set X ′ takes O(degGv (zR))
time and space, where degGv (zR) denotes the degree of vertex zR in the graph Gv . Checking if Pj is a singleton set takes
O(1) time, and checking if all the vertices in Pj are adjacent to exactly the vertices in X ′ among the vertices in

ℓ
i=i+1 Zi

takes O(


z∈Pj
degGv (z)) time. Next, checking whether X ′ is non-empty takes O(1) time and doing all the processing if

X ′ ≠ ∅ takes O(degGv (zR)) time and space; note that |W | ≤ |X ′| ≤ degGv (zc). Finally, checking whether


z∈Pj
A(z)


−

NGv (zR) ≠ ∅ takes O


z∈Pj
|A(z)|


time. In summary, processing the set Pj takes O


z∈Pj


degGv (z) + |A(z)|


time and

O(degGv (zR)) space. Since the sets of each partition PZi of the set Zi are disjoint and the sets Zi are disjoint, we have that
O
ℓ

i=1


Pj∈PZi


z∈Pj

degGv (z)

= O


|V (Gv)| + |E(Gv)|


= O(n + m). Additionally, since the sets A( ) are formed by

concatenating some of the neighbors in Gv of one vertex zR from each set Pj, we have that O
ℓ

i=1


Pj∈PZi


z∈Pj
|A(z)|


=

O
ℓ

i=1


Pj∈PZi


z∈Pj

degGv (z)

= O


|V (Gv)| + |E(Gv)|


= O(n + m) as well. Thus, in total, Step 4 of Procedure

Process_Vertex takes O(n+m) time and space.
Since Steps 1–4 of Procedure Process_Vertex are executed for each vertex v of the input graph G, we have that the overall

time complexity of Algorithm Recognize-HHD-free is: 
v∈V (G)


O(m+ n deg(v))


+ O(n+m)


+ O(1) = O(nm).

Therefore, we obtain the following result.

Theorem 3.2. Let G be an undirected graph on n vertices and m edges. Then, Algorithm Recognize-HHD-free determines whether
G is an HHD-free graph in O(nm) time and O(n+m) space.

4. Providing a certificate

Algorithm Recognize-HHD-free can be made to provide a certificate (a house, a hole, or a domino) whenever it decides
that the input graph G is not HHD-free. The algorithm reports that the graph G is not HHD-free in two occasions, in Step 4.2
and in Step 4.4 of Procedure Process_Vertex.

In order to be able to efficiently produce a certificate when Procedure Process_Vertex reports that the input graph G is
not HHD-free, we do the following additional work:

W1. Whenever, during the processing of a set Pj of a partition PZi , we need to union the sets of a partition PZk containing
the vertices in the set W , which is done by adding edges in the auxiliary multi-graph Hv (as explained in Section 3.6),
we associate with each such edge the selected vertex zR of Pj.

W2. When processing a set Pj, we store with each element of the set X −W , which is added to A(zX ) for zX ∈ W , a reference
to the selected vertex zR of Pj; in this way, for each vertex z, each element of the set A(z) carries a reference to a vertex
of the set during whose processing this element was added to A(z).

Note that this additional work does not increase asymptotically the time and space complexity of the algorithm.
Next, let us see what we do in order to compute a certificate in the two cases that Procedure Process_Vertex reports that

the graph G is not HHD-free:

1. Step 4.2. There exists a vertex in a set Ph of a partition PZj that is not adjacent to a vertex in X ′ or is adjacent to a vertex
in
ℓ

r=j+1 Zr

− X ′. In any case, there exist vertices zA, zB, zB′ , zC of the graph Gv where zA ∈ Zi, zB, zB′ ∈ Ph (and thus

zB, zB′ ∈ Zj), and zC ∈ Zk with i < j < k, such that {zAzB, zAzB′ , zBzC } ⊆ E(Gv), and zB′zC ∉ E(Gv). Additionally, because
i < j < k, Lemma 3.1 statement (i) implies that there exist vertices x, y ∈ N(v) such that x is adjacent to all the vertices in
Zj and to no vertex in Zi, and y is adjacent to all the vertices in Zk and to no vertex in Zj; see Fig. 6(b).

We can find the vertices zA, zB, zB′ , zC by processing the edges of the tree that was traversed when computing the
connected component of the graph Hv that produced the partition set Ph: for each edge in the tree, we test whether its
endpoints have the exact same neighbors in

ℓ
r=j+1 Zr ; note that (i) if this is true for each edge, then clearly all the vertices

in Pj have the same neighbors in
ℓ

r=j+1 Zr , and (ii) this test takes O


z∈Ph
degGv (z)


time as in the algorithm’s analysis. In

our case, we will be able to find an edge in the tree with endpoints z1 and z2, and a vertex z3 ∈
ℓ

r=j+1 Zr such that z1 is
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Fig. 9. For the certificate computation at Step 4.2.

adjacent to z3 in Gv whereas z2 is not; then, zB = z1, zB′ = z2, zC = z3, while zA is the vertex associated with the tree edge
z1z2 (see W1).

Let A, B, B′, C be the connected components whose shrinking produced the vertices zA, zB, zB′ , zC of the graph Gv . We
consider the following two cases depending on whether zA, zC are adjacent in Gv or not:

1a. zAzC ∉ E(Gv). We traverse the adjacency lists of the vertices in B′ until we find a vertex b ∈ B′ which is adjacent
to a vertex in A. Next, we run breadth-first search in the subgraph G[{b} ∪ A ∪ B ∪ C] starting at b until a vertex
c ∈ C is encountered; let ρ be the path in the breadth-first search tree connecting b to c. Clearly, ρ is chordless and
because zAzC ∉ E(Gv) and zBzB′ ∉ E(Gv), it is of the form ρ = ba1 · · · arb1 · · · bsc where r, s ≥ 1, a1, . . . , ar ∈ A, and
b1, . . . , bs ∈ B; see Fig. 9(a). If r > 1, then the vertices x, b, a1, . . . , ar , b1 induce a hole in G. If r = 1 and s > 1, the
vertices x, b, a1, b1, b2 induce a house in G with b2 at its top. Finally, if r = 1 and s = 1, then if xc ∈ E(G), the vertices
x, b, a1, b1, c induce a house with c at its top, whereas if xc ∉ E(G), the vertices v, x, b1, c, y induce a house (with v at
its top) or a C5 in G depending on whether xy ∈ E(G) or not.

1b. zAzC ∈ E(Gv). See Fig. 8(a). As in the previous case, we traverse the adjacency lists of the vertices in B′ until we find a
vertex b ∈ B′ that is adjacent to a vertex in A. Next, we run breadth-first search in the subgraph G[{b} ∪ A ∪ C] starting
at b until a vertex c ∈ C is encountered; let ρ be the path in the breadth-first search tree connecting b to c; see Fig. 9(b).
Again, ρ is chordless and because zB′zC ∉ E(Gv), it is of the form ρ = ba1 · · · arc where r ≥ 1 and a1, . . . , ar ∈ A.
Consider first that xc ∈ E(G). If r > 1, the vertices xca1 · · · arb induce a hole in G. If r = 1, then if ya1 ∈ E(G), the vertices
v, x, b, a1, y induce a house or a C5 in G depending on whether xy ∈ E(G) or not, whereas if ya1 ∉ E(G), G contains a
house induced by the vertices x, b, a1, c, y or a domino induced by v, x, b, a1, c, y depending on whether xy ∈ E(G) or
not. Suppose next that xc ∉ E(G). Then, if ya1 ∈ E(G), the vertices v, x, b, ar , y induce a house or a C5 depending on
whether xy ∈ E(G), whereas if ya1 ∉ E(G), G contains the hole ca1 · · · arbxy or vyca1 · · · arbx depending on whether
xy ∈ E(G).

2. Step 4.4. For a set Ph of a partition PZj , we have that


z∈Ph
A(z)


− NGv (zR) ≠ ∅, i.e., there exist vertices zB ∈ Ph (zB has

resulted from the shrinking of a component B of G[Sj]) and z ′ ∈
ℓ

r=j+1 Zr

∪ N(v) such that z ′ ∈ A(zB) and z ′ ∉ NGv (zR);

note that since the algorithm has not stopped earlier, zB and zR have the exact same neighbors in
ℓ

r=j+1 Zr , which implies
that z ′ ∉ NGv (zB). Since z ′ ∈ A(zB), by means of W2, z ′ is associated with a vertex zA ∈

j−1
r=1 Zr such that zB, z ′ ∈ NGv (zA). If

z ′ ∈ N(v), we locate two vertices a ∈ A and b ∈ B such that ab ∈ E(G); because z ′ ∈ NGv (zA)− NGv (zB), z
′ is adjacent to a in

G but is not adjacent to b (see Fig. 8(b) with z ′ = x). Moreover, there exists a neighbor w of v such that w ∈ NG(b)− NG(a);
then, the vertices v, z ′, w, a, b induce a house or a C5 in G depending on whether z ′w ∈ E(G) or not. Now, if z ′ ∉ N(v),
then z ′ = zC corresponding to a component C of a subgraph G[Sk]with k > j. This case is identical to Case 1b above for the
vertices zA, zB, zC .

It is not difficult to see that doing the work described above and checking the adjacencies in each of the aforementioned
cases can be performed in O(n+m) time using O(n) space. Thus, we have:

Theorem 4.1. Let G be an undirected graph on n vertices and m edges. Then, Procedure Process_Vertex can be augmented so that
Algorithm Recognize-HHD-free produces a house, a hole, or a domino whenever it decides that G is not an HHD-free graph in
O(n+m) additional time and O(n) additional space.

5. Concluding remarks

We have presented a recognition algorithm for the class of HHD-free graphs that runs in O(nm) time and requires
O(n + m) space, where n is the number of vertices and m is the number of edges of the input graph. Moreover, we show
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how our algorithm can be augmented to yield, in O(n+m) time and O(n) space, a certificate (a house, a hole, or a domino)
whenever it decides that the input graph is not HHD-free.

Despite the close relation between HHD-free and HH-free graphs, our results do not lead to an improvement in the
recognition time complexity for HH-free graphs; therefore, we leave as an open problem the design of an O(nm)-time
algorithm for recognizing HH-free graphs. Additionally, it would be interesting to obtain faster recognition algorithms for
other related classes of graphs, such as the brittle and the semi-simplicial graphs.
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