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This paper introduces branching cells as elementary units of independent choices in the
model of Asymmetric Event Structures (AES), extending a previous work on branching cells
for Prime Event Structures. Branching cells consist of subAES of the surrounding AES. Their
maximal configurations are shown to tile any maximal configuration of the surrounding
AES in a dynamic way.
Branching cells for AES are developed in order to allow the analysis of an optimization
procedure in the context of QoS management of web services, presented in a companion
paper. Other applications of branching cells include the ability to add a probabilistic layer
to AES in a natural fashion where concurrency meets probabilistic independence of choices
in distinct and parallel branching cells.
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0. Introduction

Asymmetric Event Structures (AES) introduced in the 1990s [1,2] are a model for computational processes involving
concurrency, which extends the model of Prime Event Structures (PES) [3]. They depart from PES mainly by the fact that
an event has not only a set of mandatory causes, but also some possible causes, modeled by a new type of causality called
asymmetric conflict (see the references in [2] for earlier models with similar aims). The history of an event has a locality
property in AES. Indeed, the actual history of an event will differ according to the given computation that involves it
(configuration, in the event structures language), since the possible causes of the event may or may not be present in the
given computation. AES are shown to unfold so-called contextual nets or nets with read arcs [4,1,2,5–7] in a non-interleaving
semantics, just as PES unfold safe Petri nets. Contexual nets differ from usual safe Petri nets in that the firing of a transition
depends not only on the presence of tokens in resource places, and which are to be consumed, but also on the mere presence
of tokens in a set of contextual places, and which are not to be consumed by the firing of the transition. It is this very feature
that induces the asymmetry of conflict in the unfolding AES.

As for PES, the computational processes associated with an AES are captured by configurations. Since configurations are
conflict free, it is natural to see a configuration as obtained by different choices, consisting in the resolution of conflicts. The
concurrency features of the model, as well as the confusion that might appear in it, as described in [3], make it however
non-trivial to isolate independent choices. Motivated by probabilistic applications, we have introduced branching cells for
PES in this purpose in an earlier work [8]. This paper extends the notion of branching cells to AES, motivated this time by
applications in QoS management and orchestration of composite services; this is the topic of the companion paper [9] in
this issue.
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The results we obtain are quite similar to the previous ones: we show that branching cells decompose in a dynamic
way any maximal configuration of a finite AES, providing a decomposition of the configuration as a partial order of inde-
pendent choices. These independent choices consist precisely in resolving conflicts inside each branching cell in order to
select a maximal configuration of the branching cell. Branching cells attached to a given configuration are a tiling, in the
sense that they are disjoint. However the entire collection of branching cells of the AES are not disjoint in general, excepted
for particular cases such as trees (without concurrency) and confusion free event structures (restricted concurrency). In con-
trast, branching cells of a general AES dynamically tile configurations. The extension of branching cells from PES to AES is
non-trivial mainly for two reasons, that we explain now.

Firstly, the partial order structure on configurations of AES is more subtle than the mere set theoretic subset relation
between configurations. This implies than the simple notion of down-closed subset with respect to the causality relation
is no longer adequate to provide an “initial view” of the computational process. We therefore introduce choice-complete
prefixes (CC-prefix es), which have two keys properties. If C is any configuration, and if U is a CC-prefix, by putting
CU = C ∩ U we have that:

1. CU is indeed an initial sub-configuration of C (which would not hold in general if U was only down closed for the
causality, contrasting with PES); and

2. No more choices are pending at the end of the execution of CU inside U . Informally speaking, the “future” of CU is
entirely disjoint from U .

The above informal mention of the “future” of a configuration is actually made rigorous in the core of the paper, and
proves to be an essential tool for the subsequent analysis.

Secondly, in AES, conflict is asymmetric and not necessarily binary, whereas in PES, conflict is both symmetric and binary.
The fine analysis of choices that we aim at leads us to introduce sources of conflict for AES, generalizing the minimal
conflict relation introduced for PES. Sources of conflict are a non-binary relation, but basically play the same role for AES
than the minimal conflict relation plays for PES. It is mainly a technicality, and the intuition about minimal conflict relation
translates without difficulty into the sources of conflict of AES.

Organization of the paper. Asymmetric Event Structures are presented in Section 1. Our contributions start in Section 2, where
we introduce the sources of conflict for AES and the different kinds of prefixes that will be needed in the sequel. Branching
cells are introduced in Section 3, first informally described on a simple example. The notion of future of a configuration
is introduced afterward; then we state the main result of the paper, which establishes the existence and uniqueness (up
to their order) of the decomposition of a maximal configuration through its covering branching cells. Section 4 is devoted
to examples illustrating the different notions introduced earlier. In particular, the dynamic character of branching cells
is explained on an example. Finally the proof of the main result is the topic of Section 5. After our concluding section
(Section 6), two additional sections form an appendix at the end of the paper. In Appendix A, we investigate the applications
of branching cells theory to infinite AES, and more specifically to the case of so-called locally finite AES. The topic of
Appendix B is to recall through examples the relationship between contextual nets and AES via the unfolding theory. It is
intended to help the reader in view of the applications presented in companion paper [9].

1. Asymmetric event structures

In this section we follow the presentation of Asymmetric Event Structures (AES) from [2]. In view of our application, we
restrict ourselves to finite AES; the extension to a class of infinite AES is discussed in Appendix A.

For any set X , we denote by Pfin(X) the set of finite subsets of X . A relation on finite sets of X is a subset R ⊆Pfin(X),
with the intuition that a finite subset A of elements of X are R-related if A ∈ R .

If (E,�) is a partially ordered set we put �x� = {y ∈ E | y � x} for any element x ∈ E , and more generally �A� = ⋃
x∈A�x�

for A ⊆ E . We say that a subset U ⊆ E is �-left closed if x ∈ U ⇒ �x� ⊆ U , or equivalently if �U� = U .
Let (E,�,↗) be a triple such that (E,�) is a partially ordered set and ↗ is a binary relation on E . A relation R on

finite sets of E is said to be a conflict relation for (E,�,↗) if:

1. (R is �-inherited):

∀A ∈ Pfin(E) ∀x, y ∈ E
(

A ∪ {x} ∈ R
) ∧ (x � y) ⇒ A ∪ {y} ∈ R.

2. (R contains the ↗-cycles) For any integer n � 1 and for any elements x1, . . . , xn ∈ E:

x1 ↗ x2 ↗ · · · ↗ xn ↗ x1 ⇒ {x1, . . . , xn} ∈ R.

If (Ri)i∈I is any nonempty family of conflict relations, then
⋂

i∈I Ri is obviously a conflict relation. Since Pfin(E) is itself
a conflict relation, it follows that there exists a smallest conflict relation, that we call the conflict relation associated to
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(E,�,↗), denoted by �. For a finite set A ∈Pfin(E), we have that A ∈ � if and only if for some integer n � 1:

∃e1, . . . , en ∈ A ∃x1 ∈ �e1�, . . . ,∃xn ∈ �en� x1 ↗ x2 ↗ · · · ↗ xn ↗ x1. (1)

Note that E = ∅ is allowed, and that ∅ /∈ � in all cases.
Asymmetric Event Structures are then defined as follows:

Definition 1.1 (AES). (See [2].) Let G = (E,�,↗) be a triple such that (E,�) is a partially ordered set and ↗ is a binary
relation on E . We say that G is an Asymmetric Event Structure (AES) if it satisfies the following conditions, denoting by � the
conflict relation associated with G:

1. For all e ∈ E , �e� is finite.
2. For all e, e′ ∈ E: e < e′ ⇒ e ↗ e′ , where e < e′ means as usual e � e′ and e �= e′ .
3. For all e ∈ E , ↗ ∩(�e� × �e�) is acyclic.
4. For any e, e′ ∈ E: {e, e′} ∈ � ⇒ e ↗ e′ ↗ e.

Elements of E are called events, � is called the causality relation and ↗ is called the asymmetric conflict relation. If the
context makes the causality and the asymmetric conflict relations clear, we will identify G and the set E .

In Definition 1.1 the relations � and ↗ have the following intuitive meanings. On the one hand, e � e′ means that e is
a mandatory cause of e′: event e′ must be preceded by e in any computation involving e′ . Condition 1 is therefore natural,
and is a copy of the equivalent condition for PES. On the other hand, e ↗ e′ means that e is a possible cause of e′ , the
precise meaning of which will be clarified when considering configurations and their order below. But in the meantime,
we observe that Condition 2 is natural: mandatory causes are some particular cases of possible causes. A cycle of the
form e1 ↗ · · · ↗ en ↗ e1 with all ei ∈ �e� would imply that e1 should precede itself, which prevents e from ever being
reached. This explains Condition 3. Finally, Condition 4 is a technical condition: if G satisfies Conditions 1–3, one can always
complete ↗ while preserving � and � to reach Condition 4 (see [2, §2] for details). It will be justified when considering
configurations of the AES.

Observe that relation ↗ is not reflexive, and actually the relation e ↗ e never holds, otherwise there would be singletons
{e} ∈ �, contradicting Condition 3. Furthermore, note that ↗ is not assumed to be transitive; the presence of cycles together
with the impossibility of having e ↗ e is anyway an obstruction to transitivity. Observe also that one should not think of
asymmetric conflict as a “special case” of conflict as in a PES; since two events in asymmetric conflict might very well be
compatible in an AES; indeed, one is supposed to be a possible cause of the other.

As in PES, the notion of computational process is captured by configurations, defined as follows (since we consider finite
AES, the definition is slightly simpler than in [2]).

Definition 1.2 (Configurations). (See [2].) Let (E,�,↗) be a finite AES. A set of events A ⊆ E is called a configuration of E if:

1. The set A contains all the mandatory causes of all its events; formally: ∀e ∈ A ∀e′ ∈ E e′ � e ⇒ e′ ∈ A;
2. ↗ ∩ (A × A) is acyclic.

We denote by Conf(E) the set of configurations of E .

It is worth to observe that, in presence of Condition 1, Condition 2 is equivalent to saying that no finite subset of A
belongs to the conflict relation �, meeting the usual intuition from PES that configurations are conflict free and �-left
closed subsets of events.

Note also that Conf(E) �= ∅, since ∅ ∈ Conf(E) even if E = ∅, and that {∅} � Conf(E) as soon as E �= ∅. Indeed, pick any
minimal event in (E,�) if E �= ∅, then {e} ∈ Conf(E).

Finally, Condition 4 in Definition 1.1 can now be explained as follows. If e and e′ are two events such that e ↗ e′ and
¬(e′ ↗ e) both hold, then it intuitively means that e is a possible cause of e′; one would then expect that they belong to
some configuration C , representing a computation where both events occur. And indeed, putting C = �e� ∪ �e′�, then C is
�-left closed and conflict free, otherwise one would have {e, e′} ∈ � and thus e ↗ e′ ↗ e according to Condition 4, contrary
to the assumption ¬(e′ ↗ e). Hence Condition 4 reinforces the interpretation of (e ↗ e′) ∧ ¬(e′ ↗ e) as e being a possible
cause of e′ .

In PES, the order on configurations is given by the mere set theoretic inclusion of subsets. This order however does not
capture for AES the distinction between mandatory causes (�) and possible causes (↗) of events. Indeed, the fact that an
event e may have some possible, non-mandatory causes, implies that e may have different histories. However, a natural
requirement is that its “history cannot change after the event has occurred” [2, §3]. In particular, if a configuration A
contains some event e, one cannot accept as an extension of the computation represented by A, a configuration B that
would contain a possible cause e′ of e, and that would not already be present in A. Whence the following definition for the
order �E on configurations—the verification that (Conf(E),�E ) is indeed a partial order is straightforward.
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Definition 1.3 (Extension of configurations). (See [2].) The extension relation �E on configurations of an AES (E,�,↗) is
defined by:

A �E B ⇐⇒
{

A ⊆ B, and

∀e ∈ A ∀e′ ∈ B e′ ↗ e ⇒ e′ ∈ A.

This definition enlightens the role of the asymmetric conflict relation e′ ↗ e. On the one hand, if e′ is not a mandatory
cause of e, then one can find computations of e without e′ in general (�e� for instance, as long as e′ /∈ �e�). But on the other
hand, if in some computation, both events e and ed appear, then this is no coincidence, this is really because e has used
some resource attached with e′ . In particular, a possible cause of e cannot appear after e has occurred. This leads to the
following other interpretation of e′ ↗ e: event e has a preemption action on its possible causes. Since, once e has fired in a
computation represented by a configuration C , all of the possible causes of e not already present in C are definitively ruled
out for the extensions of C . This preemption interpretation is specially relevant when AES are constructed as unfolding of
contextual nets (see Appendix B).

Two configurations A, B are said to be compatible, which is denoted by A ↑ B , if there exists a configuration C such
that A �E C and B �E C . The least upper bound (lub) of two compatible configurations is given as follows, according to
[2, Lemma 3.2]:

A ↑ B ⇒ A ∨ B = A ∪ B. (2)

Note however that A ∪ B ∈ Conf(E) does not imply the compatibility A ↑ B in general, even if A and B are two configu-
rations. We will use several times the following characterization of compatible configurations.

Lemma 1.4. Let A, B ∈ Conf(E). Then A ↑ B if and only if:

∀a ∈ A ∀b ∈ B (a ↗ b ⇒ a ∈ B) ∧ (b ↗ a ⇒ b ∈ A). (3)

Proof. Proof of (3) ⇒ A ↑ B . Let C = A ∪ B . We first show that C is a configuration. Since C is obviously �-left closed, it
suffices to show that C does not contain any ↗-cycle. Assume for the seek of contradiction that a1 ↗ · · · ↗ an ↗ a1 are
events of C . All ai do not belong to B since B is a configuration, hence one of them at least, say a1, belongs to A \ B . Then
it follows from (3), and since a1 ↗ a2, that a2 ∈ B ⇒ a1 ∈ B , which shows that a2 /∈ B , hence a2 ∈ A \ B . We see therefore by
induction that all ai belong to A \ B , yielding a ↗-cycle in A and contradicting that A is a configuration. This shows that C
is a configuration.

We now check that A �E C and B �E C . Indeed the set theoretic inclusions A ⊆ C and B ⊆ C are obvious. Assume that
a ∈ A and c ∈ C are such that c ↗ a. Then c ∈ B ⇒ c ∈ A by (3), and this shows that A �E C . Similarly, if b ∈ B and c ∈ C are
such that c ↗ b, then c ∈ B by (3) and this shows that B �E C .

Proof of A ↑ B ⇒ (3). If A ↑ B , it follows from Eq. (2) that A �E C and B �E C with C = A ∪ B , from which (3) follows. �
2. Different kinds of prefixes for AES

In this section we introduce the notions necessary to the definition of branching cells in Section 3. We first analyze the
sources of conflict in an AES, then we introduce two particular classes of �-left closed subsets of an AES and give some of
their properties.

2.1. Sources of conflict

Since we target a fine analysis of choice within AES, we need some insight on the conflict relation. In view of generalizing
the minimal conflict relation from PES, adapted to binary conflicts, we propose the notion of source of conflict for AES. We
first consider the following pre-order on subsets of E:

∀A ∈ P(E) ∀B ∈ P(E) A � B ⇐⇒ �A� ⊆ �B�.
(Adding the converse relation �B� ⊆ �A� would lead to the so-called Egli-Milner order.)

Definition 2.1 (Source of conflict). A subset X of E is called a source of conflict if:

1. X is a ↗-cycle; and
2. No strict subset of X is a ↗-cycle; and
3. If Y is a ↗-cycle such that Y � X , then X � Y .

We denote by S (E) the collection of sources of conflict of E .
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Fig. 1. Examples of sources of conflict. Single arrow arcs depict the ↗ relation and double arrow arcs depict the immediate successors of relation <.

The relevance of this definition comes form the following result.

Lemma 2.2. For all A ⊆ E, we have:

A ∈ � ⇐⇒ ∃X ∈ S (E) X � A.

Proof. The implication (⇐) is obvious. Conversely, let A ∈ �. According to Eq. (1), there exists a ↗-cycle Y such that Y � A.
Consider the non-empty set Y of all ↗-cycles Z such that Z ⊆ �Y �, and then a minimal element Z0 in the finite pre-order
(Y,�); finally pick in Z0 a minimal ↗-cycle X . Then Condition 2 is fulfilled since X has been chosen minimal in Z0, and
Condition 3 follows from �-minimality of Z0, and hence of X . �

S (E) is a relation in the sense of Section 1. It follows from Lemma 2.2 that a �-left closed subset C is a configuration
if and only if C does not contain any source of conflict.

Fig. 1 depicts by frames examples of sources of conflict. Note that, if X is a source of conflict, there still can be a ↗-cycle
Y such that Y � X and X �= Y ; this is the case in Example (b) of Fig. 1, where X and Y are framed. This is of course due to
the lack of antisymmetry of relation �.

2.2. SubAES and �-left closed subsets of AES

Since we will consider several subsets of AES, it is worth introducing the notion of subAES.

Definition 2.3 (SubAES). An AES (U ,�U ,↗U ) is called a subAES of an AES (E,�,↗) if (a) U ⊆ E; (b) �U = � ∩ (U × U );
and (c) ↗U = ↗ ∩ (U × U ).

Evidently, any subset U of E can be equipped with the relations �U = � ∩ (U × U ) and ↗U = ↗ ∩ (U × U ), making
(U ,�U ,↗U ) a subAES of (E,�,↗). We identify therefore the subAES and the subset U . The conflict relation �U of AES
U is defined as in Section 1 accordingly to �U and ↗U . Obviously, one always has A ∈ �U ⇒ A ∈ � for any A ∈ Pfin(U ).
Therefore, if C is any configuration of E , if we put CU = C ∩ U , no finite subset A ⊆ CU belongs to �U . Since CU is also
�U -left closed, it is actually a configuration of U , whence a mapping:

φU : Conf(E) → Conf(U ), C �→ CU = C ∩ U . (4)

It is immediate to observe that φU : (Conf(E),�E ) → (Conf(U ),�U ) is actually a morphism of partial orders, where �U is
the order on Conf(U ) defined according to Definition 1.3. Observe however that CU �E C does not hold in general, since
there could be some events e ∈ CU and e′ ∈ C \ CU such that e′ ↗ e.

A particular case where �U coincides exactly with the restriction of � to U is when U is �-left closed, as stated in the
following lemma.

Lemma 2.4. If U is a �-left closed subset of E, then for any finite subset A of U one has A ∈ �U ⇐⇒ A ∈ �.

Proof. Let A ∈ Pfin(U ). As already observed, one has A ∈ �U ⇒ A ∈ �. Assume conversely that A ∈ �. Then we pick for
each ai ∈ A some ei ∈ �a� such that e1 ↗ · · · ↗ en ↗ e1. Since U is left closed w.r.t. �, the ei belong to U and therefore
e1 ↗U · · · ↗U en ↗U e1 and ei �U ai , which implies that {e1, . . . , en} ∈ �U and finally that A ∈ �U . �

It follows from Lemma 2.4 that if U is a �-left closed subset of E , and if C is a configuration of U , then C is also �-left
closed in E and conflict free in E , and thus C is a configuration of E . This defines a mapping:

ψU : Conf(U ) → Conf(E), C �→ ψU (C) = C . (5)

One easily checks furthermore that ψU : (Conf(U ),�U ) → (Conf(E),�E) is a morphism of partial orders.
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2.3. Introducing S-prefixes

Left closure w.r.t. � is not enough however to capture the notion of an initial view of the execution of computational
processes. Indeed, even if U is �-left closed, one still does not have CU �E C for C ∈ Conf(E) in general since, as we have
already observed, there could be some events e ∈ CU and e′ ∈ C \ CU such that e′ ↗ e, preventing the relation CU �E C
from holding. Therefore such an event e′ should be included in U . This motivates the introduction of the notion of S-prefix
(Strong prefix) for AES defined as follows.

Definition 2.5 (S-prefix). A S-prefix of an AES E is a subset U ⊆ E such that:

1. ∀x ∈ U ∀y ∈ E (y ↗ x) ∧ ¬(x ↗ y) ⇒ y ∈ U
2. ∀X ∈ S (E) X ∩ U �= ∅ ⇒ X ⊆ U .

The first condition corresponds to the former explanation: if x ∈ U and y ↗ x and ¬(x ↗ y), then y is thought of as
a possible cause of x. If both x ↗ y and y ↗ x hold however, then {x, y} ∈ � and the situation is a bit more delicate. The
purpose of the second condition is to include an element y ∈ U in this case only if it belongs to some source of conflict
involving x; since there is no need to include events y conflicting with elements of U by inheritance of the conflict.

Let us state in a separate proposition that S-prefixes are in particular �-left closed, so that Lemma 2.4 applies to
S-prefixes.

Proposition 2.6. Any S-prefix U is �-left closed. Therefore �U is the restriction of � to U and both morphisms φU and ψU are well
defined:

Conf(U )
ψU

Conf(E)
φU

.

Proof. Let e ∈ U and e′ ∈ E such that e′ < e. Then e′ ↗ e thanks to point 2 of Definition 1.1. The relation e ↗ e′ does not
hold, otherwise �e� would contain the cycle e ↗ e′ ↗ e, contradicting point 3 of Definition 1.1. Therefore e′ ∈ U since U is
a S-prefix. �

We show below in Proposition 2.8 that, if U is a S-prefix of E and if C is any configuration of E , then CU = φU (C) is
an approximation of C , i.e., CU �E C . The proposition is easily derived from the following lemma, which makes use of the
notion of adjunction pair between morphisms of partial orders (the Galois connections of [10, Ch. O-3]).

Lemma 2.7. If U is a S-prefix of an AES E, then (ψU , φU ) is an adjunction pair between morphisms of partial orders. In other words:

∀A ∈ Conf(U ) ∀B ∈ Conf(E) ψU (A) �E B ⇐⇒ A �U φU (B).

Proof. Let A ∈ Conf(U ) and B ∈ Conf(E), and assume that ψU (A) �E B . Then A ⊆ B and since A ⊆ U this implies that
A ⊆ φU (B) on the one hand. On the other hand, assume that e ∈ A and e′ ∈ φU (B) are such that e′ ↗U e. Then e ∈ ψU (A),
e′ ∈ B and e′ ↗ e, and therefore e′ ∈ ψU (A) since ψU (A) �E B , and so e′ ∈ A. This shows that A �U φU (B).

Conversely, assume that A �U φU (B). Then clearly the set inclusion ψU (A) ⊆ B holds. Assume that e ∈ ψU (A) and e′ ∈ B
are such that e′ ↗ e. We distinguish two cases.

1. Case ¬(e ↗ e′). Then, since U is a S-prefix, we derive from Condition 1 in Definition 2.5 that e′ ∈ U , and therefore
e′ ↗U e. But now e ∈ A and e′ ∈ U ∩ B = φU (B), and since A �U φU (B) this implies that e′ ∈ A = ψU (A).

2. Case (e ↗ e′). Then {e, e′} ∈ �. According to Lemma 2.2, there exists a source of conflict, say X , such that X � {e, e′}, or
put differently: X ⊆ �e� ∪ �e′�. Since �e′� is conflict free, we must have X ∩ �e� �= ∅, and since �e� ⊆ U it follows that
X ∩ U �= ∅ and thus X ⊆ U by Condition 2 of Definition 2.5. Write X = {x1, . . . , xn} with x1 ↗ · · · ↗ xn ↗ x1. Without
loss of generality, we may assume that x1 ∈ �e�, hence x1 ∈ A. From xn ↗U x1, x1 ∈ A and A �U φU (B) follow the
implication

xn ∈ φU (B) ⇒ xn ∈ A,

from which we derive xn ∈ A. Proceeding by induction, we obtain in the same way that xn−1 ∈ A, . . . , x2 ∈ A, and thus
A contains the ↗-cycle X entirely, which is a contradiction. Hence this case can actually not occur.

Since we have obtained that e′ ∈ ψU (A), we have shown that ψU (A) �E B , as expected. �
Proposition 2.8. Let U be a S-prefix of an AES E. Then A ∩ U �E A for any configuration A ∈ Conf(E).
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Proof. Since (ψU , φU ) is an adjunction pair according to Lemma 2.7, the following inequality hods: ψU ◦ φU �E IdConf(E) .
Applying it to any A ∈ Conf(E) yields the desired result since ψU ◦ φU (A) = A ∩ U . �

Note that the converse inequality for adjunction pairs, which is IdConf(U ) �U φU ◦ ψU yields here the trivial inequality
A �U A for all A ∈ Conf(U ).

2.4. Introducing CC-prefixes

The decomposition of configurations that we target aims at capturing the elementary choices made during a computa-
tional process. If e, e′ are two events of some AES related by e ↗ e′ , we have already seen that the choice of including e′
in a computation entails the choice regarding e as well. Conversely, the choice of including e in a computation also has
consequences regarding whether e′ should be included in the computation, specifically if e has the status of a possible but
non-mandatory cause of e′ . However such an event e′ may not belong to some S-prefix containing e. Therefore, a S-prefix
does not include in general the complete choices surrounding its events, which motivates the introduction of the stronger
notion of CC-prefix (Choice-Complete prefix).

Definition 2.9 (CC-prefix). A CC-prefix of an AES E is any S-prefix U satisfying the following additional condition:

∀x ∈ U ∀y ∈ E (x ↗ y) ∧ ¬(x � y) ∧ ¬(y ↗ x) ⇒ y ∈ U .

CC-prefixes share several properties with stopping prefixes defined for PES in [8]. They are based on the same idea of
gathering all local choices, so that the evolution of the computational process after the local execution in the CC-prefix
is entirely independent of the rest of the CC-prefix. This intuition is captured by Proposition 2.11 below which analyzes
the action of φU on maximal configurations of E , for U a CC-prefix. It is shown on an example in Section 4.3 that this
smooth property of CC-prefixes on maximal configurations does not hold in general for S-prefixes, justifying a posteriori the
introduction of CC-prefixes.

Lemma 2.10. Let U be a CC-prefix of an AES E. Let C ∈ Conf(E) and let Z ∈ Conf(U ). Assume that Z ↑U φU (C), where ↑U denotes
the compatibility relation between configurations of U . Then ψU (Z) ↑ C.

Proof. Considering Z and C as in the statement, we first show the following claim: Z ∪ C is a configuration. Since Z ∪ C is
clearly �-left closed, it suffices to show that Z ∪ C does not contain any source of conflict. For the seek of contradiction,
assume that X ⊆ Z ∪ C is a source of conflict. Then X ∩ Z �= ∅, otherwise X ⊆ C , contradicting that C is a configuration.
Since U is in particular a S-prefix, and since X is a source of conflict, this implies that X ⊆ U . Write X = {x1, . . . , xn} with
x1 ↗ · · · ↗ xn ↗ x1. We assume without loss of generality that x1 ∈ Z . The compatibility relation Z ↑U φU (C) yields the
following implication:

xn ∈ C ⇒ xn ∈ Z ,

from which we derive that xn ∈ Z . Proceeding inductively, we obtain that all xi belong to Z , and since X is a ↗-cycle this
contradicts that Z is a configuration. We have thus shown the above claim.

Now to show ψU (Z) ↑ C , we prove the two implications stated in Lemma 1.4. For this, pick a ∈ ψU (Z) and b ∈ C , and
keep in mind that a ∈ U in particular.

1. Assume a ↗ b. If a � b then obviously a ∈ C , hence we may assume without loss of generality that ¬(a � b) holds.
Furthermore ¬(b ↗ a) holds, otherwise {a,b} ∈ �, contradicting the above claim. Since a ∈ U , and since U is a CC-prefix,
this implies that b ∈ U and therefore b ∈ φU (C). We now have a ∈ Z , b ∈ φU (C), a ↗U b and Z ↑U φU (C). This implies
according to Lemma 1.4 that a ∈ φU (C) and thus a ∈ C .

2. Assume b ↗ a. Then again ¬(a ↗ b) holds thanks to the above claim, and therefore b ∈ U using this time the S-prefix
property of U . We now have a ∈ Z , b ∈ φU (C), b ↗U a and Z ↑U φU (C). This implies according to Lemma 1.4 that b ∈ Z ,
i.e., b ∈ ψU (Z).

The proof is complete. �
Proposition 2.11. Let U be a CC-prefix of an AES E. Then for any maximal element W of (Conf(E),�E ), φU (W ) is a maximal element
of (Conf(U ),�U ).

Proof. Let Z ∈ Conf(U ) such that φU (W ) �U Z . Then in particular Z ↑U φU (W ) and therefore, applying Lemma 2.10,
ψU (Z) ↑ W . By maximality of W in (Conf(E),�E), this implies that ψU (Z) �E W . Applying morphism φU to both sides
of this inequality, and taking into account φU ◦ψU = IdConf(U ) we obtain Z �U φU (W ) and thus Z = φU (W ). This shows that
φU (W ) is maximal in (Conf(U ),�U ). �
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Fig. 2. An example of AES.

Fig. 3. Illustrating the future of W U = {a2,a4} in AES from Fig. 2. The branching cells α3 and α4 are depicted by frames.

3. Branching cells for AES

Branching cells aim at decomposing a computational processes through its elementary choices. First introduced for PES
in [8,11], we study their counterpart for AES. After having informally described the recursive construction of branching cells
on an example, we introduce the notion of future of a configuration in an AES, and then we give the formal definition
of branching cells. We then state the main theorem of this section which allows to decompose a maximal configuration
through elementary choices, captured by branching cells. We then give small examples illustrating the different notions
introduced so far. The proof of the main theorem is postponed to next section.

3.1. Informal description of branching cells on an example

A first notion of choice is related to the conflict relation of an AES: if some events are in (symmetric) conflict, only one
of them at most shall belong to a configuration. Consider for example the AES E depicted in Fig. 2. Events {a3,a4} are in
conflict, and therefore a choice between a3 and a4 must be made.

A second notion of choice is related to asymmetric conflict. In the same example, consider for instance the events a1
and a2 related by a1 ↗ a2. This time, the choice is between both a1 and a2 on the one hand, and a2 only on the other
hand. Since, if a2 has been chosen at some stage without a1, then a1 cannot belong to any of its later extensions (in the
sense of Definition 1.3). Hence the choice has been made inside the subAES {a1,a2} once and for all. Observe that we do
not consider the possibility of a1 alone, because then nothing will prevent a2 to fire at some later stage, and hence a2 will
eventually fire.

Furthermore, since the two subAES α1 = {a1,a2} and α2 = {a3,a4} are not related with one another neither through
causality nor through asymmetric conflict, it is obvious on this example that the choices made inside α1 and α2 are
independent from one another. The two subAES α1 and α2 are called the initial branching cells of E . We observe that α1
and α2 are the two minimal non-empty CC-prefixes of E . According to Proposition 2.11, if W is any maximal configuration
of E , then Wα1 = α1 ∩ W and Wα2 = α2 ∩ W are two maximal configurations of α1 and α2 respectively, that correspond
to the choices made inside α1 and α2. Therefore Wα1 ranges over {{a2}, {a1,a2}} and Wα2 ranges over {{a3}, {a4}}.

Continuing with this example, assume for instance that Wα1 = {a2} and Wα2 = {a4}. Put U = α1 ∪ α2. Since U is in
particular a S-prefix, we have that W U �E W (Proposition 2.8). Therefore the events of W \ W U range over the events of
E that belong to some continuation of W U . These events form a subAES that we call the future AES of W U . We depict it
in Fig. 3, by removing from E events either in W U or not compatible with W U . It is important to notice that, since W U is
maximal, whatever W will eventually be, we are sure that no new event of W will appear in U ; this expresses that the
choices made in U have been made once and for all, and there is no possible going back. It implies that events of U are
automatically ruled out from the future of W U . This property of CC-prefixes is essential in our construction.

In the future of W U , we find again two initial branching cells, depicted by frames in Fig. 3 and given by α3 = {b3} and
α4 = {b4,b5}. The possible choices correspond to the maximal configurations of subAES α3 and α4, which respectively range
over {{b3}} (there is actually no choice in α3) and over {{b4}, {b4,b5}}. Finally, whatever choice is made in α4, the future
of the obtained configuration is the following AES, that coincides with its only branching cell α5: c3• ←− •c4. The maximal
configurations of E that we have described by this way are the four maximal configurations that contain the events a2, a4
and b3. They also contain either b4 or b4 and b5 on the one hand, and either c3 or c3 and c4 on the other hand. It is part
of the following theory that every maximal configuration can be described by its decomposition through branching cells.

3.2. Initial branching cells

Assume that E �= ∅. It is obvious that CC-prefixes of E are stable by intersection, and that E itself is a non-empty
CC-prefix. In other words, CC-prefixes of an AES E form a non-empty semi-lattice, which is finite since E is assumed to
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be finite. As a consequence, every non-empty CC-prefix of E contains at least a minimal non-empty CC-prefix; whence the
following definition.

Definition 3.1 (Initial branching cells). The initial branching cells of a non-empty AES E are the minimal non-empty
CC-prefixes of E . The empty AES has ∅ as unique branching cell.

Note that any non-empty AES always has initial branching cells, which are non-empty by definition. In the above example
depicted in Fig. 2, the initial branching cells are α1 and α2.

3.3. Future of a configuration

Initial branching cells capture the initial choices made by a process. In order to capture the choices made afterward, we
need to formally define the future of a configuration and to study its properties.

Definition 3.2 (Future of a configuration). If C is a configuration of an AES E , the future of C is the subAES of E defined by:

EC = {
e ∈ E

∣∣ �e� ↑ C
} \ C .

Events of EC can be characterized as follows, which is simply a rephrasing of Lemma 1.4.

Lemma 3.3. Let C ∈ Conf(E). Then an event e belongs to EC if and only if:

(e /∈ C) ∧ ∀(
e′, c

) ∈ �e� × C
(
e′ ↗ c ⇒ e′ ∈ C

) ∧ (
c ↗ e′ ⇒ c ∈ �e�). (6)

Observe that if e ∈ EC , then �e� ↑ C and therefore any e′ ∈ �e� satisfies �e′� ↑ C . Therefore, we have:

∀e ∈ EC ∀e′ ∈ �e� e′ /∈ C ⇒ e′ ∈ EC . (7)

If C ′ ∈ Conf(EC ), we use the special notation � for the concatenation of C and C ′ , simply defined by:

∀C ′ ∈ Conf
(

EC )
C � C ′ = C ∪ C ′.

Note that futures of configurations “compose” in the following sense:

∀C ∈ Conf(E) ∀C ′ ∈ Conf
(

EC )
EC�C ′ = (

EC )C ′
. (8)

We also consider the following sub-partial orders of (Conf(E),�E ):

∀C ∈ Conf(E) Conf(E)C = {
C ′ ∈ Conf(E)

∣∣ C �E C ′}.
Point 2 in the following proposition shows that Conf(EC ) and Conf(E)C are two isomorphic partial orders. In other

words, the extensions of a configuration C identify with the configurations of the future of C . Note also that point 1 in
the proposition is not a consequence of previous Lemma 2.4, since EC is not a �-left closed subset of E in general; and a
similar result concerning the sources of conflict in EC will be given in Section 5.3, Lemma 5.2.

Proposition 3.4. Let C be a configuration of an AES E.

1. The conflict in EC is the restriction of � to EC : for A ⊆ EC , we have A ∈ �EC ⇐⇒ A ∈ �.
2. The formula θC (C ′) = C � C ′ defines a mapping

θC : Conf
(

EC ) → Conf(E)C ,

which is an isomorphism of partial orders. In particular, we have:

∀C ∈ Conf(E) ∀C ′ ∈ Conf
(

EC )
C �E C � C ′. (9)

Proof. 1. As for any subAES, we already have that A ∈ �EC ⇒ A ∈ �. Conversely, assume that A = {a1, . . . ,an} satisfies A ⊆ EC

and A ∈ �. Pick for each ai some event a′
i ∈ �ai� such that a′

1 ↗ · · · ↗ a′
n ↗ a′

1. We show that a′
i ∈ EC for all i. Seeking a

contradiction, assume for instance a′
1 /∈ EC . Then, using the property (7) observed above, since a′

1 ↑ C this implies that
a′

1 ∈ C . We also have �a′
n� ↑ C since �an� ↑ C and a′

n ↗ a′
1 together with a′

1 ∈ C : therefore a′
n ∈ C (Lemma 1.4). Proceeding

inductively, it follows that a′
i ∈ C for all i = 1, . . . ,n, and this contradicts that C is a configuration. This implies that A ∈ �EC ,

as expected.
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2. We show that C � C ′ ∈ Conf(E) for C ∈ Conf(E) and C ′ ∈ Conf(EC ). For this, we first show that C � C ′ is �-left closed.
Let e ∈ C � C ′ and let e′ ∈ E such that e′ � e. If e ∈ C , obviously then e′ ∈ C ⊆ C � C ′ . Otherwise we have e ∈ C ′ . Observe
that �e′� ↑ C and therefore we either have e′ ∈ C or e′ ∈ EC . If e′ ∈ C then e′ ∈ C � C ′ and we are done. And if e′ ∈ EC then
e′ ∈ C ′ since C ′ ∈ Conf(EC ), and we are done. This shows that C � C ′ is �-left closed.

To see that C � C ′ ∈ Conf(E) it now suffices to show that C � C ′ does not contain a ↗-cycle a1 ↗ · · · ↗ an ↗ a1. Assume
for the seek of contradiction that it does, and put A = {a1, . . . ,an}. Since C is conflict free, we do not have A ⊆ C . All
elements of A do not belong to C ′ either, otherwise by the first point of the proposition, C ′ would not be conflict free
for #EC . Therefore there are some elements a,b ∈ A with a ∈ C , b ∈ C ′ and b ↗ a. But then b ∈ EC and therefore b ∈ C by
Lemma 3.3, which is a contradiction. Hence C � C ′ ∈ Conf(E).

It remains to show that C �E C � C ′ . For this, let e ∈ C and e′ ∈ C � C ′ such that e′ ↗ e. Assume that e′ /∈ C . Then
e′ ∈ C ′ ⊆ EC , and since e′ ↗ e with e ∈ C this implies that e′ ∈ C according to Lemma 3.3, which is a contradiction. Hence
θC is well defined Conf(EC ) → Conf(E)C .

It is easy to check that θC is a morphism of partial orders, and that (θC )−1, given by (θC )−1(D) = D \ C is also a
morphism of partial orders, completing the proof. �
3.4. Branching cells

Initial branching cells have been defined above as the minimal non-empty CC-prefixes of an AES. In order to define
branching cells in general, we consider other CC-prefixes and their associated maximal configurations.

Definition 3.5 (CC-configurations). We denote by CC-Conf(E) the class of CC-configurations of an AES E , which is defined
as the smallest class of configurations such that:

1. ∅ ∈ CC-Conf(E); and
2. for every C ∈ CC-Conf(E), for every CC-prefix U ⊆ EC , and for every maximal configuration C ′ of U : C � C ′ ∈

CC-Conf(E).

In other words, CC-configurations are obtained by recursively concatenating maximal configurations of CC-prefixes,
where each CC-prefix is chosen in the future of the configuration already constructed. Hence any CC-configuration C is ob-
tained as the last element in an increasing sequence of configurations ∅ = C0 �E C1 �E · · · �E Cn , where C j+1 = C j � W j+1,
and W j+1 is a maximal configuration of some CC-prefix U j+1 of EC j .

Branching cells are then defined as follows.

Definition 3.6 (Branching cells). Let E be an AES.

1. The branching cells enabled at C , for C ∈ CC-Conf(E), are the initial branching cells of EC .
2. The branching cells of E are the collection of all branching cells enabled at C , for C ranging over CC-Conf(E).
3. Notation: we reserve the symbols α,β to denote branching cells, and we write C �E α to denote that α is a branching

cell of E enabled at C ∈ CC-Conf(E).

By definition, each branching cell is thus an AES. Note that the initial branching cells of E are the branching cells enabled
at ∅ since E∅ = E . If C ∈ CC-Conf(E), we have by definition:

C �E α ⇐⇒ ∅ �EC α.

This generalizes using Eq. (8) to the following:

∀C ∈ CC-Conf(E) ∀C ′ ∈ CC-Conf
(

EC )
C � C ′ �E α ⇐⇒ C ′ �EC α.

This property implies that any branching cell of EC , for C ∈ CC-Conf(E), is also a branching cell of E . Finally, we will see
in Lemma 5.1 that E W = ∅ if W is a maximal configuration of E , and therefore W �E ∅, hence ∅ is always a branching cell
of any AES.

3.5. Covering of a maximal configuration by its branching cells

Before reviewing some examples illustrating the properties of branching cells, we state the main theorem about branch-
ing cells. It will be convenient to adopt a special notation for the set of maximal configurations of an AES.

Notation. If E is an AES, we denote by Conf(E) the set of maximal configurations of E , that is to say, the set of maximal
elements of (Conf(E),�E).
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Fig. 4. All non-empty branching cells of the AES depicted in Fig. 2.

It follows in particular from Definition 3.5 that:

∀C ∈ CC-Conf(E) ∀α ∀W ∈ Conf(α) C �E α ⇒ C � W ∈ CC-Conf(E). (10)

Theorem 3.7. Let E be an AES. For each W ∈ Conf(E), there is an integer n � 0 and a sequence of pairwise distinct and non-empty
branching cells (α1, . . . ,αn) of E, and for each αi some W i ∈ Conf(αi) such that, if (Ci)0�i�n are the configurations of E defined by:

C0 = ∅, Ci+1 = Ci � W i+1 (for i = 0, . . . ,n − 1), (11)

we have:

∀i = 0, . . . ,n − 1 Ci �E αi+1, and ∅ �E C1 �E · · · �E Cn = W .

The integer n is > 0 if and only if E �= ∅. Furthermore, in any such a decomposition, the branching cells αi are pairwise disjoint and
the W i ’s are necessarily given by:

∀i = 1, . . . ,n W i = W ∩ αi .

Finally, the sequence of branching cells that appear in the above decomposition is unique up to their order of appearance, and therefore
so are the W i ’s.

In the above theorem, observe that the configurations Ci are CC-configurations of E . For, proceeding by induction, C0 = ∅
is a CC-configuration, and if Ci−1 ∈ CC-Conf(E), then we deduce from Ci−1 �E αi , W i ∈ Conf(αi) and Ci = Ci−1 � W i that
Ci ∈ CC-Conf(E) as in (10). In other words, Theorem 3.7 says that maximal configurations can be decomposed through
increasing approximations by CC-configurations (the Ci ’s), whose increments (the W i ’s) are elementary at the grain of
branching cells. The theorem also states the uniqueness of such a decomposition up to the order of appearance of the
branching cells.

A note on the trivial case E = ∅: then W = ∅ and n = 0 in Theorem 3.7 and the sequence of non-empty branching cells
is empty; the statement is true.

The statement in the theorem regarding that the distinct branching cells of the decomposition are actually disjoint is
non-trivial: indeed, in general distinct branching cells may not be disjoint, as illustrated below in Section 4.5. Theorem 3.7
states that the branching cells associated to a given maximal configuration, however, are indeed pairwise disjoint.

The proof of Theorem 3.7 is postponed to Section 5, after reviewing some illustrating examples.

4. Illustrating branching cells through examples

In this section we review some properties of branching cells and of CC-configurations through a few examples, which
cover the following topics: determination of branching cells, uniqueness of the decomposition of a maximal configuration through
branching cells (up to the order), need for considering CC-prefixes, need for considering CC-configurations, and finally the dynamic
behavior of branching cells.

4.1. Determining branching cells

We keep exploring the example depicted above in Fig. 2, now equipped with rigorous definitions for branching cells. For
the seek of completeness, we depict all non-empty branching cells in Fig. 4. They are obtained as follows, by feeding point 1
with E as initial data:

1. Data: H an AES. Find and record all initial branching cells αi of H , and consider the CC-prefix U = ⋃
i αi .

2. Compute all maximal configurations of U ; for each W ∈ Conf(U ), go to Step 1 with data H W .

4.2. Uniqueness of the decomposition through branching cells

Let W ∈ Conf(E). The uniqueness property of the decomposition of W through branching cells has as a consequence that
the following non-deterministic algorithm is valid to find the decomposition of W ; note that it exactly follows the steps of
the proof of existence given in Section 5.1.
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Fig. 5. An AES with two non-empty CC-prefixes which are framed. The configuration {a1,a3,b1} is a CC-configuration.

Fig. 6. An AES to illustrate overlapping branching cells.

1. Data: (E, W ) where E is an AES and W ∈ Conf(E).
(a) Pick any initial branching cell α of E .
(b) Compute Wα = α ∩ W , the future E Wα and the queue W ′ = W \ Wα .

2. Go to Step 1 with data (E Wα , W ′).

The branching cells encountered are the branching cells of the decomposition of W . Thanks to the uniqueness property
stated in Theorem 3.7, although the order of branching cells will change because of the non-determinism of the algorithm,
we will always find the same set of branching cells α, and also the same local configurations Wα .

4.3. Need for considering CC-prefixes

We have shown in Proposition 2.11 that CC-prefixes have the following property: W ∈ Conf(E) ⇒ φU (W ) ∈ Conf(U ), for
U a CC-prefix. This property has proved to be essential in the construction of branching cells.

Although there might be other subAES with this property, we show here on an example that S-prefixes for instance do
not have this property in general. Consider the simple AES consisting of two events a and b only related by a ↗ b. Then
U = {a} is a S-prefix of E , and W = {b} is a maximal configuration of E . However φU (W ) = ∅ is not maximal in U .

4.4. Need for considering CC-configurations

Branching cells decompose maximal configurations as a concatenation of configurations maximal in CC-prefixes. There-
fore considering the class of CC-configurations, precisely obtained as concatenations of such configurations, is natural. One
might wander however if it is really necessary. For instance, maybe for each CC-configuration C , isn’t there some CC-prefix
U such that C ∈ Conf(U )? The answer is negative, basically because CC-prefixes may split in the future of configurations.
More precisely, it is shown in Section 5.3, Lemma 5.4 that U ∩ EC is a CC-prefix of EC if U is a CC-prefix of E and if
C ∈ CC-Conf(E); however U ∩ EC might split in EC more than U did in E .

We illustrate the previous discussion on an example. Consider the AES E depicted in Fig. 5. It contains only two non-
empty CC-prefixes, which are pictured by frames. The configuration C = {a1,a3,b1} is thus not a maximal configuration in
any CC-prefix of E , since otherwise it should be maximal in E itself, but C �E C ∪ {b3}. However, C is a CC-configuration
of E , as shown by the decomposition C = W1 � W2, with W1 = {a1,a3} and W2 = {b1}. Indeed, W1 is maximal in the initial
branching cells α1 = {a1,a2,a3}. The future E W1 consists of the two events b1 and b2, not related by any relation. Hence
α2 = {b1} is a branching cell of E , initial in E W1 , and W2 ∈ Conf(α2). This shows that C ∈ CC-Conf(E), whereas it is not
maximal in any CC-prefix of E .

As this example shows, this property is not related to the asymmetric character of the conflict. And in fact, the very
same holds also for PES.

4.5. Branching cells are dynamic

In general, branching cells are not pairwise disjoint. Hence, the fact that the branching cells that tile a maximal configu-
ration are indeed disjoint, as stated in Theorem 3.7, is non-trivial.

This particular feature can be interpreted as a dynamic behavior, caused by concurrency and more specifically by the
confusion in the sense of [3] found in event structures. Since the overlapping feature of branching cells already holds for
PES, it is natural to find it also for AES; indeed any PES can be coded as an AES, and the branching cells for PES correspond
to branching cells for AES.

Consider the AES E depicted in Fig. 6. The unique initial branching cell α consists of events a1 and a2. Therefore both
C1 = {a1} and C2 = {a2} are CC-configurations of E . The future AES of C1 and C2 respectively are given by EC1 = {b1} and
EC2 = {b1,b2}, with unique branching cells respectively β1 = {b1} and β2 = {b1,b2}. Branching cells β1 and β2 are distinct,
yet they overlap.
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5. Proof of Theorem 3.7

We decompose the proof of Theorem 3.7 in four statements, of which the third one requires the longest proof:

1. Existence of the decomposition (Section 5.1): we prove the existence of branching cells (αi)1�i�n and associated W i ∈
Conf(αi) for i = 1, . . . ,n satisfying the statement of the theorem.

2. Characterization of the W i ’s (Section 5.2): in case the branching cells αi and the configurations W i ∈ Conf(αi) exist as in
the statement of the theorem, then we show that W i = W ∩ αi for i = 1, . . . ,n.

3. Uniqueness of the decomposition (Section 5.3): if a sequence of branching cells (α1, . . . ,αn) exists such that the W i given
by W i = αi ∩ W indeed satisfy the statement of the theorem, then any other sequence of branching cells with the same
property can be obtained by switching the order of occurrences of the branching cells in the sequence (α1, . . . ,αn).

4. The branching cells of the decomposition are disjoint (Section 5.3): this is proved directly (Lemma 5.9), and used as an
auxiliary result in the proof of uniqueness.

5.1. Existence of the decomposition

We begin with a lemma.

Lemma 5.1. Let C ∈ Conf(E).

1. Let W ∈ Conf(EC ). Then W ∈ Conf(EC ) ⇐⇒ C � W ∈ Conf(E).
2. EC = ∅ if and only if C ∈ Conf(E).

Proof.

1. Indeed, since θC : Conf(EC ) → Conf(E)C defined by θC (C ′) = C � C ′ is an isomorphism of partial orders according to
Proposition 3.4.

2. Assume that EC = ∅, and let C ′ ∈ Conf(E) such that C �E C ′ . Considering the inverse mapping of θC , we have that
C ′ \ C is a configuration of EC . But EC = ∅, hence C ′ \ C = ∅ and therefore C = C ′ , showing that C is maximal in
Conf(E).
Conversely assume that C is maximal in Conf(E). Let C ′ be a configuration of EC . Then C � C ′ is a configuration of E
that satisfies C �E C � C ′ according to Eq. (9) in Proposition 3.4. Since C is maximal, it implies that C ′ = ∅. Hence EC is
an AES such that Conf(EC ) = {∅}. But ∅ is the only AES with this property, and thus EC = ∅.

The proof of the lemma is complete. �
We now prove the existence part of Theorem 3.7. Let W ∈ Conf(E). We construct by induction on the integer i � 0 a sequence

of branching cells (α j)1� j�i and of subsets (W j)1� j�i of E , with associated CC-configurations (C j)0� j�i , and with the
following four properties:

1. C j−1 �E α j and α j �= ∅ for j = 1, . . . , i;
2. W j ∈ Conf(α j) for j = 1, . . . , i;
3. C0 = ∅, and C j+1 = C j � W j+1 for j = 0, . . . , i − 1;
4. C0 �E · · · �E Ci �E W .

No bound is given a priori on the sequence thus constructed; but actually we will see that the construction eventually
stops.

We put C0 = ∅. If E = ∅, the construction stops and we put a STOP mark. If not, we pick α1 an initial branching cell of E:
C0 �E α1. We also put W1 = α1 ∩ W , and we have W1 ∈ Conf(α1) by Proposition 2.11. Putting finally C1 = C0 � W1 = W1,
we obviously have C0 �E C1, and we furthermore have C1 �E W by Proposition 2.8. Hence, if the construction has not
stopped already, points 1–4 are satisfied for i = 1.

Assume that α1, . . . ,αi and W1, . . . , W i have been constructed satisfying the four items above, together with the asso-
ciated C0, . . . , Ci for some integer i � 1. We put W ′ = W \ Ci and E ′ = ECi . Note that θCi (W ′) = W . If E ′ = ∅, we stop the
construction and we put a STOP mark.

Otherwise we repeat the construction already described for i = 1 with W ′ in place of W and E ′ in place of E . Hence
we pick some initial branching cell αi+1 of E ′ , which is non-empty since E ′ �= ∅. We have thus Ci �E αi+1. Configuration
W ′ is maximal in E ′ thanks to Lemma 5.1, point 1, and therefore by putting W i+1 = αi+1 ∩ W ′ we have W i+1 ∈ Conf(αi+1)

thanks to Proposition 2.11. We put Ci+1 = Ci � W i+1, and we have Ci �E Ci+1 thanks to Eq. (9) in Proposition 3.4. We also
have W i+1 �E ′ W ′ according to Proposition 2.8. Applying the morphism θCi (·) = Ci � · to the later inequality, we obtain
Ci+1 �E W , completing the construction by induction.
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Since each branching cell αi is non-empty, and since W i ∈ Conf(αi), in particular W i �= ∅ and therefore Ci contains
at least i events. But since Ci ⊆ W for all i � 0 until the construction stops, there must exist an integer i where the
construction stops. Let n be the integer i preceding the occurrence of the STOP mark. By construction of n, we have
ECn = ∅. It follows therefore from point 2 of Lemma 5.1 that Cn is a maximal configuration of E . But Cn �E W and thus
Cn = W . This proves the existence of the decomposition as stated in Theorem 3.7. �

Two remarks about the above construction:

1. First, n = 0 if and only if E = ∅.
2. By construction, the branching cells obtained (αi)1�i�n are pairwise disjoint.

5.2. Characterization of the W i ’s in Theorem 3.7

Let W ∈ Conf(E). Assume that for some integer n � 0 there is a sequence (α1, . . . ,αn) of branching cells of E , and a
sequence W1, . . . , Wn with W i ∈ Conf(αi) for all i = 1, . . . ,n, such that, by putting C0 = ∅ and Ci = Ci−1 � W i for i =
1, . . . ,n, we have:

Ci−1 �E αi for i = 1, . . . ,n, and Ci �E W for i = 0, . . . ,n.

Then we claim that:

W i = αi ∩ W , for i = 1, . . . ,n. (12)

Observe that this setting entails the one of Theorem 3.7, and is even a bit weaker since we do not assume here that
Cn = W .

Proof of the claim (12). The case n = 0 is trivial, hence we assume that n � 1. Let i ∈ {1, . . . ,n}. We have W i ∈ Conf(αi) and
Conf(αi) ⊆ Conf(ECi−1 ) since αi is assumed to be an initial branching cell of Ci−1, and thus in particular αi is a CC-prefix
of ECi−1 . Since we have Ci = Ci−1 � W i , it follows from Eq. (9) in Proposition 3.4 that Ci−1 �E Ci , which is equivalent to
Ci ∈ Conf(E)Ci−1 . We also have Ci−1 �E W , and thus W ∈ Conf(E)Ci−1 .

We may thus apply the morphism of partial orders(
θCi−1

)−1 : Conf(E)Ci−1 → Conf
(

ECi−1
)
,

to both sides of the inequality Ci �E W , and we obtain: W i �ECi−1 W \ Ci−1. Since αi is a CC-prefix of ECi−1 , we may
consider the morphism of partial orders φ = φαi : Conf(ECi−1 ) → Conf(αi), and applying it to the later inequality we get:
φ(W i) �αi φ(W \ Ci−1). But φ(W i) = W i since W i is a configuration of αi ; it is moreover a maximal configuration of αi ,
hence the inequality turns into the equality:

W i = αi ∩ (W \ Ci−1). (13)

We also observe that αi ∩ Ci−1 = ∅ since, by definition, αi ⊆ ECi−1 and Ci−1 ∩ ECi−1 = ∅. Therefore Eq. (13) rewrites as
Eq. (12). �
5.3. Uniqueness of branching cells in Theorem 3.7

We begin with a couple of lemmas. The first lemmas (Lemmas 5.2–5.5) are stated in view of the exchange Lemma 5.6,
which is the first key for the uniqueness proved at the end of this subsection. The second key is the fact that branching
cells tiling a maximal configuration are pairwise disjoint; this is stated in a separate lemma (Lemma 5.9).

Lemma 5.2 (Sources of conflict in �-closed left subsets and in the future). We denote by S (E) as in Definition 2.1 the sources of
conflict of E.

1. Let U be a �-closed subset of E, and let X ⊆ U . Then X ∈ S (U ) ⇐⇒ X ∈ S (E).
2. Let C ∈ Conf(E), and let X ⊆ EC . Then X ∈ S (EC ) ⇐⇒ X ∈ S (E).

Proof. 1. Obvious.
2. Obviously, if X ∈ S (E) then X ∈ S (EC ). Conversely, let X be a source of conflict of EC . Then X is a ↗-cycle and it

does not contain any ↗-cycle as a strict subset. Hence to show X ∈ S (E) it suffices to show that X is �-minimal. For this,
let Y be a ↗-cycle such that Y � X . For every y ∈ Y there exists some x ∈ X such that y � x, and since �x� ↑ C we have
�y� ↑ C . Write Y = {y1, . . . , yn} with y1 ↗ · · · ↗ yn ↗ y1. Assume that Y ∩ C �= ∅, say for instance y1 ∈ Y ∩ C . Then the
relation yn ↗ y1 together with the compatibility �yn� ↑ C imply that yn ∈ C . Proceeding inductively, we obtain by this way
that Y ⊆ C , contradicting that C is a configuration. Hence Y ∩ C = ∅, and therefore Y ⊆ EC . By �-minimality of X in EC , we
have thus X � Y , and this shows that X ∈ S (E). �
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Lemma 5.3 (Heredity of S-prefixes and of CC-prefixes). Let U be a S-prefix of E and let V ⊆ U .

1. Then V is a S-prefix of U if and only if V is a S-prefix of E.
2. If furthermore U is a CC-prefix of E, then V is a CC-prefix of U if and only if V is a CC-prefix of E.

Proof. 1. (⇒) Assume that V is a S-prefix of U .

(a) If e ∈ V and e′ ∈ E are such that e′ ↗ e and ¬(e ↗ e′), then e ∈ U since U is a S-prefix of E , and thus e′ ↗U e and
¬(e ↗U e′), from which follows that e′ ∈ V since V is a S-prefix of U .

(b) If X ∈ S (E) and X ∩ V �= ∅, then X ∩ U �= ∅ in particular, and since U is a S-prefix of E this implies that X ⊆ U . But
then X ∈ S (U ) by Lemma 5.2, point 1, and thus X ⊆ V since X ∩ V �= ∅ and since V is assumed to be a S-prefix of U .

This shows that V is a S-prefix of E .
(⇐) Same type of proof.
2. Assume furthermore that U is a CC-prefix of E .
(⇒) If V is a CC-prefix of U , then V is a S-prefix of U , and thus of E by point 1 above. Now if e ∈ V and e′ ∈ E are

such that e ↗ e′ and ¬(e′ ↗ e) and ¬(e � e′), then e′ ∈ U since U is a CC-prefix of E . Hence e ↗U e′ and ¬(e′ ↗U e) and
therefore e′ ∈ V since V is a CC-prefix of U . This shows that V is a CC-prefix of E .

(⇐) Same type of proof. �
Lemma 5.4 (Trace of S-prefixes and of CC-prefixes in a future). Let U be a S-prefix of E, let C ∈ Conf(E) and let V = U ∩ EC .

1. Then V is a S-prefix of EC .
2. Assume furthermore that U is a CC-prefix of E. Then V is a CC-prefix of EC .

Proof. 1. Referring to Definition 2.5 of S-prefixes, we check the two following points regarding V .

(a) Let e ∈ V and e′ ∈ E such that e′ ↗EC e and ¬(e ↗EC e′). Then e′ ↗ e and ¬(e ↗ e′) and therefore e′ ∈ U since U is a
S-prefix of E , and thus e′ ∈ V .

(b) Let X ∈ S (EC ) be such that X ∩ V �= ∅. Then, according to Lemma 5.2, point 2, X is a source of conflict in E . Therefore
X ⊆ U and thus X ⊆ V .

This shows that V is a S-prefix of EC .
2. If U is a CC-prefix of E , then U is in particular a S-prefix of E , and thus V is a S-prefix of EC according to point 1

above. If e ∈ V and e′ ∈ EC are such that e ↗EC e′ and ¬(e′ ↗EC e) and ¬(e � e′) then also e ↗ e′ and ¬(e′ ↗ e) and
therefore e′ ∈ U since U is a CC-prefix of E , and finally e′ ∈ V . Hence V is a CC-prefix of EC . �

We start gathering the fruit of our efforts.

Lemma 5.5 (CC-prefixes back to/back from the future). Let U and V be two disjoint CC-prefixes of E. Let C ∈ Conf(U ), and identify C
with ψU (C) = C ∈ Conf(E).

1. Then V ⊆ EC , and V is a CC-prefix of EC .
2. If V ′ ⊆ V is a CC-prefix of EC then V ′ is a CC-prefix of E.

Proof. 1. We first show that V ⊆ EC . Let e ∈ V . Then e /∈ C since C ⊆ U and U ∩ V = ∅. Let us show that �e� ↑ C . We
have �e� ⊆ V since V is in particular �-left closed (Proposition 2.6). Since U ∩ V = ∅, it follows that φU (�e�) = ∅, hence
φU (�e�) ↑U C . Therefore, applying Lemma 2.10, we have that �e� ↑ ψU (C), which is our claim. Therefore e ∈ EC , and this
shows that V ⊆ EC .

It follows from point 2 of Lemma 5.4 that V ∩ EC is a CC-prefix of EC , and since V ∩ EC = V we are done.
2. Let V ′ ⊆ V be a CC-prefix of EC . Since V is a CC-prefix of EC according to point 1 above, then V ′ is a CC-prefix of V

according to point 2 of Lemma 5.3. Since V is also a CC-prefix of E by assumption, it implies that V ′ is a CC-prefix of E ,
again by point 2 of Lemma 5.3. �
Lemma 5.6 (Exchange lemma). Let α,β be two distinct initial branching cells of E, and let W ∈ Conf(α). Then W �E β .

Proof. By minimality, distinct initial branching cells are disjoint. Therefore α and β are two disjoint CC-prefixes of E . Since
W ⊆ α, it follows from point 1 of Lemma 5.5 that β is a non-empty CC-prefix of E W . Let us show that β is minimal among
non-empty CC-prefixes of E W . For this, let U �= ∅ be a CC-prefix of E W such that U ⊆ β . Then U is also a non-empty
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CC-prefix of E according to point 2 of Lemma 5.5. Since β is minimal among non-empty CC-prefixes of E , it follows that
U = β , and thus β is an initial branching cell of E W , i.e., W �E β . �

Since we are about to manipulate decompositions with the form stated in Theorem 3.7, it is convenient to introduce a
specific terminology.

Definition 5.7 (Adapted sequences of branching cells). Let W ∈ CC-Conf(E). A sequence of branching cells (α1, . . . ,αn) is said
to be adapted to W if, by putting W i = αi ∩ W for i = 1, . . . ,n and C0 = ∅ and Ci+1 = Ci � W i+1 for i = 0, . . . ,n − 1, we
have:

1. Ci−1 �E αi and W i ∈ Conf(αi) for i = 1, . . . ,n;
2. Cn = W .

Note that the above definition applies to CC-configurations of E , which contain in particular the maximal configu-
rations of E . Although the result we target deals with maximal configurations, it could actually be similarly stated for
CC-configurations, and in the remaining of its proof it will be helpful to have a little more flexibility than we would have
by restricting ourselves to maximal configurations only.

Analogously to the composition of futures seen in Eq. (8), adapted sequences of branching cells can be concatenated as
follows.

Lemma 5.8. Let W ∈ CC-Conf(E) and W ′ ∈ CC-Conf(E W ). Assume that (α1, . . . ,αn) is a sequence of branching cells of E adapted
to W , and that (β1, . . . ,βn′) is a sequence of branching cells of E W adapted to W ′ . Then the concatenation (α1, . . . ,αn,β1, . . . ,βn′)
is a sequence of branching cells of E adapted to W � W ′ .

Proof. Obvious. �
We state in a separate lemma that branching cells of an adapted sequence are necessarily disjoint.

Lemma 5.9. If (α1, . . . ,αn) is an adapted sequence of branching cells for W ∈ Conf(E), then i �= j ⇒ αi ∩α j = ∅ for i, j ∈ {1, . . . ,n}.

Proof. Assuming that the sequence is non-empty, we first prove that α1 ∩ α j = ∅ for all j = 2, . . . ,n. Let j ∈ {2, . . . ,n}. We
have α j ⊆ EC j−1 , and EC j−1 ⊆ EC1 since j − 1 � 1. Therefore α1 ∩ α j ⊆ α1 ∩ EC1 . But C1 = W1 is a maximal configuration
of α1, and this implies that α1 ∩ EC1 = ∅, and thus α1 ∩ α j = ∅.

For the general case, we prove that for all i = 1, . . . ,n we have αi ∩ α j = ∅ for j > i, which implies the statement of the
lemma. Indeed, simply apply the previous case to W ′ = θCi−1 (W ). �
Lemma 5.10. Let (α1, . . . ,αn) be a sequence of branching cells of E adapted to W ∈ Conf(E). Assume that E �= ∅ and let α be an
initial branching cell of E. Then there is an integer i ∈ {1, . . . ,n} such that αi = α.

Proof. Reasoning by contradiction, assume that α �= αi for all i = 1, . . . ,n. We consider the sequence of CC-configurations
C0, . . . , Cn given as in Definition 5.7. Then we claim that Ci �E α for i = 0, . . . ,n. Proceeding by induction, we have that
C0 = ∅ �E α since α is an initial branching cell of E . Assume that Ci �E α for some integer 0 � i < n. We also have
Ci �E αi+1. Since αi+1 �= α by assumption, α and αi+1 are two disjoint initial branching cells of ECi . Applying the exchange
Lemma 5.6 in AES ECi and with W i+1 ∈ Conf(αi+1) we have thus that W i+1 �ECi α, hence α is an initial branching cell of
(ECi )W i+1 . As already observed in Eq. (8), we have(

ECi
)W i+1 = ECi�W i+1 = ECi+1 .

Hence Ci+1 �E α, and the induction is complete.
We now derive a contradiction by considering Cn . Indeed, we have Cn �E α thanks to the previous induction, but Cn = W

is maximal, and therefore α = ∅ since EC = ∅ by point 2 of Lemma 5.1, a contradiction. �
Lemma 5.11. Assume that (α1, . . . ,αn) is a sequence of branching cells adapted to W ∈ Conf(E). Assume that for some integer i > 1,
αi is an initial branching cell of E. Then the sequence obtained from (α1, . . . ,αn) by switching αi and αi−1 is adapted to W .

Proof. Thanks to Lemma 5.9, we know that the branching cells in the sequence (α1, . . . ,αn) are pairwise disjoint.
We first prove the result for the case n = i = 2. If (α1,α2) is a sequence of branching cells adapted to W , the exchange

Lemma 5.6 shows that (α2,α1) is also adapted to W . The lemma applies since α1 ∩ α2 = ∅.
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The case where i = 2 and n > 2 follows then from the previous case by considering the concatenation of the two adapted
sequences of branching cells, (α2,α1) on the one hand, adapted to C2 = W1 � W2 = W2 � W1, and (α3, . . . ,αn) on the other
hand, branching cells of EC2 that form a sequence adapted to (θC2 )−1(W ) = W3 � · · · � Wn .

Finally, for the case i > 2, we put W ′ = (θCi−2 )−1(W ). Then (α1, . . . ,αi−2) is a sequence of branching cells of E adapted
to Ci−2, while (αi−1, . . . ,αn) is a sequence of branching cells of ECi−2 adapted to W ′ . Applying (i − 2) times the ex-
change Lemma 5.6, which is legitimate since the α j are pairwise disjoint, yields that αi is an initial branching cell of
EC1 , EC2 , . . . , ECi−2 . Hence the case already seen with i = 2 applies to W ′ , and thus (αi,αi−1,αi+1, . . . ,αn) is a sequence
of branching cells of ECi−2 adapted to W ′ . Since W = Ci−2 � W ′ , we recompose again the two sequences of branching cells
with Lemma 5.8 to obtain that

(α1, . . . ,αi−2,αi,αi−1,αi+1, . . . ,αn)

is a sequence of branching cells of E adapted to W . �
We now prove the uniqueness property of branching cells in Theorem 3.7. We prove by induction on the integer n � 0 the

following claim: if W is a maximal configuration of an AES E, and if (α1, . . . ,αn) and (β1, . . . ,βm) are two sequences of branching
cells of E adapted to W , then m = n and {α1, . . . ,αn} = {β1, . . . ,βm}.

If n = 0, then E = ∅ and therefore m = 0 as well and we are done.
Assume that n = 1. Then it follows from Lemma 5.10 that α1 is the only initial branching cell of E . Hence m = 1 and

β1 = α1.
Assume the result is true for some integer n � 1. Then m � 1, necessarily. Consider the initial branching cell α1. Then it

follows from Lemma 5.10 that there is some integer 1 � i � m such that β i = α1. Since β i is then an initial branching cell
of E , we apply (i − 1) times Lemma 5.11 to obtain that the sequence

(β i,β1, . . . , β̂ i, . . . ,βn) = (α1,β1, . . . , β̂ i, . . . ,βn)

is adapted to W , where the symbol β̂ i means that β i is missing. Putting C1 = W1 = W ∩ α1, and W ′ = (θC1 )−1(W ), we
have thus that (α2, . . . ,αn) and (β1, . . . , β̂ i, . . . ,βm) are two sequences of branching cells of EC1 which are both adapted
to W ′ . The induction hypothesis implies that m−1 = n−1 and that {α2, . . . ,αn} = {β1, . . . ,βm}\{β i}; whence the equalities
m = n and {α1, . . . ,αn} = {β1, . . . ,βm}. �
6. Conclusion

In this paper we have introduced branching cells for AES. For this purpose, several tools were needed on the way:
different kinds of prefixes for AES, and most notably the Choice-Complete prefixes and the future of a configuration as a
subAES of the original one. It is worth noting that adjunction pairs of increasing mappings made an appearance, which
revealed a nice mathematical hidden structure proving to be much useful.

Branching cells for AES extend the previously introduced branching cells for PES mainly by dealing with the asymmetric
conflict, resulting in several technical differences listed in the introduction. Branching cells provide a decomposition of max-
imal configurations through elementary choice units, where parallel choices are independent. The development of branching
cells was motivated by its applications in the orchestration of web services and on-line QoS optimization, presented in a
companion paper.

Appendix A. Extension to locally finite AES

We meet several issues when trying to generalize the previous constructions to infinite AES. However, infinite AES
are natural objects; for instance the unfolding of a contextual net is an infinite AES as soon as the net contains a loop
(see Appendix B for a short review on contextual nets and their unfoldings). Hence it is worth trying to have some insight
on infinite AES.

Although the notion of S-prefix and of CC-prefix have straightforward generalization with the very same definitions, the
existence of minimal non-empty CC-prefix is not always guaranteed. The same phenomenon is observed for infinite PES
in general as noted in [12], where stopping prefixes play the same role as CC-prefixes for AES. The issue here concerns
the possibly infinite concurrency width of the AES. Fortunately, the unfolding of a finite contextual net always has a finite
concurrency width, i.e., there is a bound on the number of pairwise concurrent events.

In other words, when considering an AES obtained as the unfolding of a contextual net, the existence of non-empty
minimal CC-prefixes, that is to say, of initial branching cells, always holds. The remaining issues are the two following:

1. Branching cells might be infinite.
2. The covering of a maximal configuration through branching cells might not be complete. To entirely cover a maximal

configuration by branching cells, one might need to index the covering branching cells by an ordinal still countable of
course, yet greater than ω. In other words, performing the covering of W ∈ Conf(E) through branching cells yields in
general a sub-configuration W ′ �E W ; and one might still needs to complete the covering by additional branching cells
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for the queue W \ W ′ of W . The latter operation might need to be repeated several times, although only finitely many
times for the unfolding of a contextual net.

Nothing special can be done within branching cells theory about the raw fact that brings the first issue. The second issue
is less problematic than it first appears, specifically if one adopts a probabilistic point of view; since then and as shown
in [11], the maximal configurations with a problematic behavior, that is, with an incomplete covering by branching cells,
have a statistical rare occurrence.

There is however a class of infinite PES, with a counterpart in the category of AES, with a smooth behavior where both
difficulties simply vanish, since the possibly pathological behavior is shown to actually not occur. This class is the class of
locally finite AES.

Definition (Locally finite AES). Let E be an AES obtained as the unfolding of a contextual net. Then E is said to be locally
finite if for every event e ∈ E , there is a finite CC-prefix of E that contains e.

As explained above, the assumption in Definition 2 that E is the unfolding of a contextual net guarantees the existence
of branching cells. The same property then necessarily holds for any future EC , where C ranges over finite configurations
of E . The property of local finiteness has the following consequences (where points 3–4 are consequences of Theorem 3.7
applied in finite subAES of E):

1. Every branching cell is finite.
2. Any maximal configuration W ∈ Conf(E) is obtained as the increasing countable union

W =
⋃
U

↑ φU (W ),

where U ranges over finite CC-prefixes of E . Lemma 2.7 could be a basis for interpreting both Conf(E) and Conf(E) as
limits of projective systems of finite sets, as developed for PES in [12] and more generally for bifinite domains in [13].

3. When considering for W ∈ Conf(E) and for U , U ′ two finite CC-prefixes of E the decompositions through branching
cells of φU (W ) and of φU (W ′), as stated in Theorem 3.7 applied in finite AES U and U ′ , then these decomposition are
coherent with one another. In other words, if U ⊆ U ′ , then the covering of φU (W ) by branching cells is a subset of the
covering of φU ′ (W ).

4. Theorem 3.7 extends by considering possibly infinite sequences of non-empty (and finite) branching cells. For W ∈
Conf(E), the �E -increasing sequence (Ci)i�0 of CC-configurations that appears in the statement of the theorem is
possibly infinite, in which case it satisfies:

W =
⋃
i�0

↑ Ci .

Deciding whether a contextual net has a locally finite unfolding is a topic with no settled answer yet.

Appendix B. Contextual nets, unfoldings and AES

Contextual nets or nets with read arcs play for AES the role that safe Petri nets play for prime event structure. In particular,
the unfolding of a contextual net is defined by means of an AES. The unfolding of a contextual net has the universal
property that the partial order semantics attached to the contextual net is retrieved through the poset of configurations
of its unfolding. For the convenience of the reader looking for the applications found in companion paper [9], we quickly
review the definitions for contextual nets and illustrate the procedure for their unfolding on examples.

A contextual net is given by a tuple N = (P , T , F , R, M0) where P is a set of places, T is a set of transitions, F ⊆ (P × T )∪
(T × P ) is the flow relation, R ⊆ P × T is the read relation, and M0 : P → N is the initial marking. It is required that P and
T are two disjoint sets, and that F ∩ R = ∅. For any node x ∈ P ∪ T , the preset of x is •x = {y | (y, x) ∈ F } and the postset of
x is x• = {y | (x, y) ∈ F }. Finally, if t ∈ T is a transition, the context of t is the set of places ◦t = {x | (x, t) ∈ R}. A marking is
any mapping M : P → N. A transition t is enabled by marking M if M(p) > 0 for every p ∈ •t ∪ ◦t . Firing transition t if it is
enabled yields the new marking M ′ defined by

M ′(p) =
⎧⎨
⎩

M(p), if p /∈ •t ∪ t•,
M(p) − 1, if p ∈ •t,

M(p) + 1, if p ∈ t•.

(By convention M ′(p) = M(p) if p ∈ •t ∩t• .) In this case we write M
t−→ M ′ . Note that, although it is required that M(p) > 0

for p ∈ •t and for p ∈ ◦t for t to be enabled, the only resources consumed by the firing of t are those of •t , not those of
◦t . A firing sequence from marking M is a finite sequence t1, . . . , tn of transitions such that, for some markings M1, . . . , Mn ,
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Fig. 7. Illustrating the unfolding of a contextual net: first example (a net, its unfolding and the associated AES). In this example, the read relation is empty,
only the flow relation is nonempty. It is depicted by the arcs. Places are depicted by circles and transitions are depicted by rectangles.

Fig. 8. Illustrating the unfolding of a contextual net: second example (a net, its unfolding and the associated AES). The arrow free arcs depict the read
relation R , so that ◦a = ∅, ◦b = {B} and ◦c = ∅.

the sequence M
t1−→ M1

t2−→ · · · tn−→ Mn holds. The markings M1, . . . , Mn are then uniquely determined, and we write

M
t1·t2···tn−→ Mn . The net is said to be safe if, for any firing sequence t1, . . . , tn starting from the initial marking M0, and for

any marking M , whenever M0
t1·t2···tn−→ M , we have M(p) � 1 for all p ∈ P . This implies that M0(p) � 1 for all p ∈ P , since

M0
∅−→ M0.

Let N = (P , T , F , R, M0) be a contextual net. Define the causality relation � as the reflexive and transitive closure of the
relation on P ∪ T defined by: (a) if s ∈ •t then s ≺ t; (b) if t ∈ s• , then s ≺ t; (c) if t•

1 ∩ ◦t2 �= ∅, then t1 ≺ t2. The set of causes
�x� is defined by �x� = {y ∈ P ∪ T | y � x}. Consider the asymmetric conflict relation defined for t �= t′ by t ↗ t′ if either (i)
t ≺ t′; or (ii) ◦t ∩ •t′ �= ∅; or (iii) •t ∩ •t′ �= ∅. Define then the conflict relation � associated with (T ,�) and ↗ as in Section 1.

Among contextual nets, the class of occurrence nets consists of those nets such that: (i) � is a partial order and �x�
is finite for every x ∈ P ∪ T ; and (ii) for each place p ∈ P , |• p| � 1; and (iii) �t� is conflict free for every t ∈ T ; and (iv)
M0(p) = 1 ⇐⇒ • p = ∅. If N = (P , T , F , R, M0) is an occurrence net, then E = (T ,�,↗), where � and ↗ are defined as
above, is an AES, canonically associated with N .

Consider now a finite net N . Let F denote the set of firing sequences of N . Put t1 ∼ t2 for two transitions t1 and t2
such that (i) •t1 ∩ •t2 = ∅; and (ii) •t1 ∩ ◦t2 = ∅; and (iii) •t2 ∩ ◦t1 = ∅. Observe that, if t1t2 ∼ t2t1, then {t1, t2} forms a step
sequence as defined in [1]. Then consider the smallest congruence on F with respect to the concatenation of sequences,
and that contains all such pairs (t1t2, t2t1). Then the set C = F/ ∼ of equivalence classes is naturally equipped with a
concatenation relation and a partial order inherited from those on F .

The unfolding theory of contextual nets [1,2] states the existence of a universal occurrence net O such that, if E denotes
the AES associated with O , then the partially ordered set C is isomorphic to the poset of configurations of E . The nodes
of the occurrence net are labeled by the nodes of the original net, in such a way that any firing sequence in the original
net can be uniquely lifted to a firing sequence in the unfolding that respects the labels; the lifting commutes with the
congruences defined in the original net and in the unfolding.

The correspondence between a net and its associated AES is moreover functorial, provided the appropriate class of
morphisms is considered. The existence of the unfolding and of the associated AES is established through the construction
of a chain of coreflexions, from nets to occurrence nets and then to AES.

We illustrate the construction of the occurrence net unfolding a given contextual net, and the construction of the asso-
ciated AES, in Figs. 7 and 8. See [1,2] for a technical description.
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