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Traditional process calculi usually abstract away from network details, modeling only
communication over shared channels. They, however, seem inadequate to describe new
network architectures, such as Software Defined Networks, where programs are allowed to
manipulate the infrastructure. In this paper we present the Network Conscious π -calculus
(NCPi), a proper extension of the π-calculus with an explicit notion of network: network
links and nodes are represented as names, in full analogy with ordinary π-calculus names,
and observations are routing paths through which data is transported. However, restricted
links do not appear in the observations, which thus can possibly be as abstract as in the
π-calculus. Then we construct a presheaf-based coalgebraic semantics for NCPi along the
lines of Turi–Plotkin’s approach, by indexing processes with the network resources they
use: we give a model for observational equivalence in this context, and we prove that it
admits an equivalent nominal automaton (HD-automaton), suitable for verification. Finally,
we give a concurrent semantics for NCPi where observations are multisets of routing paths.
We show that bisimilarity for this semantics is a congruence, and this property holds also
for the concurrent version of the π-calculus.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The trend in networking is going towards more “open” architectures, where the infrastructure can be manipulated in
software. This trend started in the nineties, when OpenSig [1] and Active Networks [2] were presented, but neither gained
wide acceptance due to security and performance problems. More recently, OpenFlow [3,4] or, more broadly, Software De-
fined Networking has become the leading approach, supported by Google, Facebook, Microsoft and others. Software defined
networks (SDNs) are networks in which a programmable controller machine manages a group of switches, by instructing
them to install or uninstall forwarding rules and report traffic statistics.

Traditional process calculi, such as π -calculus [5], CCS [6] and others, seem inadequate to describe these kinds of net-
works, because they abstract away from network details. In fact, two processes are allowed to communicate only through
shared channels and it is not possible to express explicitly the fact that there is some complex connector between them.
To give better visibility to the network architecture, in recent years network-aware extensions of known calculi have been
devised [7,8].
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Fig. 1. Example system.

A network-aware π -calculus The first contribution of this paper is the Network Conscious π -calculus (NCPi), a seamless ex-
tension of the π -calculus with a natural notion of network: nodes and links are regarded as computational resources that
can be created, passed and used to transmit, so they are represented as names, following the π -calculus methodology. The
main features of NCPi are the following:

• There are two types of names: sites, which are the nodes of the network, and links, named connectors between pairs of
sites. Sites are just atoms, e.g. a, links have the form lab , denoting a link named l from site a to site b.

• The syntax can express the creation of a link through the restriction operator, and the activation of a transportation
service over a link through a dedicated prefix. Separating these operations agrees with the π -calculus, where creating
and using a channel as subject are two distinct operations. This is different from [7,8], where pieces of network, once
created, are always available.

• Observations of the labeled semantics represent transmissions in the form of routing paths.

We choose to have named connectors, instead of anonymous ones as in [7] and [8], for two main reasons. First of all, they
are intended to model transportation services with distinct features (cost, bandwidth . . . ), which could be encoded in the
label type, as we already do for the connectors’ source and target. Second, this enables reusing most of the notions of the
π -calculus (renaming, α-conversion, extrusion . . . ), suitably extended. In any case, NCPi allows one to recover anonymous
connectors through the restriction operator.

One of the non-trivial aspects of NCPi is the presence of parametric names: links, in fact, are parametrized by other
names, i.e. their endpoints. While this is a natural choice, it requires some care. Consider in fact a process p with a free
occurrence of a link lab . If we render a unobservable, as in (a)p, such link would appear “dangling” to an external observer.
A first solution is establishing that the link is private as well. A more elegant solution is identifying a class of well-behaved
processes, where only private links can have private endpoints, i.e. (a)(lab)p is correct. Notice, however, that (lab)p is also
correct: it means that the link is private, but it still can be used to connect public sites. This is analogous to what happens
for free processes in a well-formed state of a CHARM [9]: their variables must belong to the global part. Another interesting
aspect, unusual for π -calculus extensions, is that bisimilarity is not closed under both input prefix and parallel composition.
We discuss this issue in the note added in proof.

In order to have a closer look at the calculus, consider the system in Fig. 1. Its aim is modeling a network where the
routing structure is determined at run-time, like in SDNs. We have a network manager M , capable of creating new links
and granting access to them, and two processes p and q, which access the network through a and b respectively; they are
willing to communicate, but no links exist between a and b, so p will ask M to create such link.

The formal definition says that M can receive two sites at m, create a new link between them and send it from m. The
process p can send a and b from a, wait for a link at a and then become the parallel composition of two components:
the first one can send c from a; the second one can activate a transportation service over the received link, to be used by
the other component. This activation is expressed as a prefix in the definition of L, which is recursive in order to simulate
a persistent connection: the link prefix, in fact, expresses a single activation of the service, as input/output prefixes in the
π -calculus express a single usage of their subject channel. The process q simply waits for a datum at b. Finally, the whole
system S is the parallel composition of p, q, M and two processes modeling a bidirectional persistent connection between
a and m.

The whole system can perform the following consecutive steps:

1. p communicates to M the endpoints a and b of the link to be created: this is the result of the (pairwise) synchronization
of p, L(lam) and M . Observations are paths, represented as lists of links plus additional information. For the involved
processes we have
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p
•;aa−−→ . . . L(lam)

a;lam;m−−−−→ . . . M
am;•−−−→ . . .

p | L(lam) | M
•;lam;•−−−−→ . . .

Here •;aa and am; • express, respectively, the beginning and the end of a transmission as paths of length zero: a is
the emission site, m is the reception site, and a is the datum being sent/received. a; lam;m represents a transportation
service from a to m, consisting of the only lam . The concatenation of these paths yields •; lam; •, a complete transmission
over lam . As in the π -calculus, the transmitted datum, namely a, is not observable.
The state of the system after this interaction is

a(lxy).(L(lxy) |ac.p′) | (lab)(mlab.M) |q | L(lam) | L(l′ma).

2. M communicates lab to p: this happens after lab is scope extended via a suitable axiom. The resulting observation is
•; l′ma; • and the continuation is

(lab)(L(lab) |ac.p′ | M |q) | L(lam) | L(l′ma).

3. p communicates c to q: in this case, despite lab is used for the transmission, only •;• can be observed, because such
link is restricted. This is analogous to the π -calculus τ -action. The continuation is

(lab)(L(lab) | p′ | M |q′[c/x]) | L(lam) | L(l′ma).

NCPi categorical operational semantics Processes of nominal calculi can be typed by their free names, which represent avail-
able resources for communicating with the environment. Free names can be generated, shared, transmitted and forgotten.
Name constructs are very expressive, but they come with additional notions, such as α-conversion and capture avoiding
substitutions, and require ad-hoc SOS rules and bisimulations that enforce name freshness. Moreover, the transition system
can be infinite branching and have an infinite number of states, because names can be instantiated and allocated along
transitions.

A convenient way of modeling nominal calculi, which partly solves these issues, has been presented in [10] for the
paradigmatic case of the π -calculus. The basic idea is having a model where we distinguish a domain of resources, a domain
of programs and a domain of “maps” between resources and programs. This kind of structure gives modularity to the model:
it could allow different languages to use the same kind of resource, or the same language to use different kinds of resources.
In formal terms, the domain of resources is characterized as a category C, the domain of programs as Set, regarded as sets
of programs, and their relationships as functors C → Set (presheaves on C). The operational semantics, then, is modeled as
a coalgebra [11] with states in a presheaf, thus decorated with the amount of resources they use: this enables the explicit
representation of resource allocation along transitions. Unfortunately, the state space explosion issue still exists, because
resources may grow indefinitely, e.g. in recursive processes performing extrusions. However, if the presheaf of states is
“well-behaved”, according to [12], it is always possible to recover the minimal amount of resources a process uses, so
we have a notion of deallocation. This is the key condition for the equivalence between presheaf-based coalgebras and
History Dependent (HD) automata [13], that are automata with allocation and deallocation along transitions. HD automata
admit minimal representatives, where all bisimilar states are identified, which can be computed as shown and implemented
in [14].

The second contribution of this paper is the construction of two presheaf-based coalgebraic operational models for NCPi:
one for observational equivalence and one for the greatest bisimulation closed under all renamings (but still not preserved
by parallel composition), following and generalizing the approach of [10]. Moreover, we show that the former admits an
equivalent HD-automaton. The novelty w.r.t. [10] is the treatment of complex resources, namely communication networks,
where some names (links) are parametrized by other names (sites).

A concurrent semantics Interleaving semantics can be considered inadequate for distributed systems with partially asyn-
chronous behavior, since it implicitly assumes the existence of a central arbiter who grants access to resources. This criticism
is particularly relevant for NCPi.

The third contribution of this paper is a concurrent version of NCPi (κNCPi), where observations are multisets of routing
paths. The main result is that bisimilarity on this concurrent semantics is a congruence. This is a desirable property for
a process calculus, because it allows for the compositional analysis of systems. The authors of [8,7] treat bisimilarity and
achieve compositionality as well, but they take a different approach than ours: they start from a reduction semantics, guess
a suitable notion of barb, define barbed congruence by closing w.r.t. all the contexts, and then characterize it as a bisimu-
lation equivalence on a labeled version of the transition system. In general, this approach yields labeled transition systems
with succinct observations, but may resort to non-standard notions of bisimilarity, where the closure under contexts is
“hardwired”. We show that we can gain the congruence property through a concurrent semantics, while keeping the notion
of bisimilarity as standard as possible. We exploit this result to equip the π -calculus with a concurrent and compositional
semantics. The π -calculus, in fact, can be easily characterized as a syntactic restriction of κNCPi. This shows that bisimi-
larity not being a congruence for the ordinary π -calculus depends on the interleaving nature of the semantics, and not on
the language itself. An analogous result is [15,16], but the semantics presented there allows observing the channel where a
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synchronization is performed, whereas our concurrent semantics is closer to the π -calculus, in the sense that we adopt a
synchronization mechanism that hides such a channel.

This work includes [17], where only the concurrent semantics is presented, and will be part of one of the author’s Ph.D.
thesis [18].

2. Preliminaries

2.1. Functor categories

Definition 2.1 (Functor category). Let C and D be two categories. The functor category DC has functors C → D as objects and
natural transformations between them as morphisms.

Functors from any category C to Set are called (covariant) presheaves. A presheaf P can be intuitively seen as a family of
sets indexed over the objects of C plus, for each σ : c → c′ , an action of σ on Pc, which we write

p[σ ]P := Pσ(p) (p ∈ Pc),

omitting the subscript P in [σ ]P when clear from the context. This notation intentionally resembles the application of a
renaming σ to a process p, namely pσ : it will, in fact, have this meaning in later chapters. The set

∫
P of elements of a

presheaf P is∫
P :=

∑
c∈|C|

Pc

and we denote by c � p a pair belonging to
∫

P . Presheaf categories have the following nice property.

Property 2.2. For any C, SetC has all limits and colimits, both computed pointwise.

An important operation on functor categories is right Kan extension. Consider three categories A, B and C and a functor
J : A → B. There is an obvious functor that turns a functor B → C into a functor A → C

R := (−) ◦ J : CB → CA.

When A is a subcategory of B, then R simply restricts the domain of functors B → C. Its right adjoint, which we denote
by E , performs the opposite operation: it extends the domain of a functor A → C to the whole B. Conditions for its existence
are given by the following statement.

Theorem 2.3. (See [19, Corollary 2,X.3].) If A is small and C has all limits, any functor G : A → C has a right Kan extension along any
J : A → B.

The right Kan extension of G along J can be computed, as shown in [19, X.3], as a pointwise limit. This limit, for each
b ∈ |B|, is constructed as follows. One considers the category whose objects are morphisms Ja → b in B, with a ∈ |A|, and
whose morphisms between f : Ja → b and g : Ja′ → b are morphisms h : a → a′ in A such that Jh commutes with f and g .
This is the comma category b ↓ J . Then, one takes the diagram in C constructed as follows: objects are Ga, for every a such
that Ja → b ∈ |b ↓ J |; morphisms are G f such that f is a morphism of b ↓ J . Notice that, in this diagram, we may have
many replica of Ga, but they correspond to different morphisms Ja → b, and thus have different ingoing and outgoing
morphisms. Finally, E G(b) is obtained as the limit of such diagram and, given g : b → b′ in B, E G(g) : E G(b) → E G(b′) is
uniquely induced by the universal property of limits.

2.2. Coalgebras

The behavior of systems can be modeled in a categorical setting through coalgebras [11,20]. Given a behavioral endofunctor
B : C → C, describing the “shape” of a class of systems, we have a corresponding category of coalgebras.

Definition 2.4 (B-Coalg). The category B-Coalg is defined as follows: objects are B-coalgebras, i.e. pairs (X,h) of an object
X ∈ |C|, called carrier, and a morphism h : X → B X , called structure map; B-coalgebra homomorphisms f : (X,h) → (Y , g) are
morphisms f : X → Y in C making the following diagram commute

X h

f

B X

B f

Y g BY
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For instance, consider the functor

Bclts := Pc(L × −)

where Pc : Set → Set is the countable powerset functor, given by

Pc A := {B ⊆ A | B countable} Pc f (B) := { f (b) | b ∈ B} ( f : A → A′, B ∈ Pc A)

Bclts-coalgebras are countably-branching labeled transition systems, with labels in L, and their homomorphisms are functions
that preserve and reflect transitions.

In this category many notions of behavioral equivalence can be defined [21]. We adopt the following one.

Definition 2.5 (B-bisimulation). Given a B-coalgebra (X,h), a B-bisimulation on it is an object R of C such that R ↪→ X × X
and there is r : R → B R making the following diagram commute

X

h

R
π1 π2

r

X

h

B X B R
Bπ1 Bπ2

B X

A Bclts-bisimulation R on a Bclts-coalgebra is an ordinary bisimulation on the corresponding transition system: the di-
agram means that x, x′ ∈ X such that (x, x′) ∈ R must be able to perform transitions with the same label l, and these
transitions are represented as a single one (x, x′) l−→ (y, y′) in (R, r); by definition of Bclts , y and y′ must again be related
by R .

An important property of categories of coalgebras is the existence of the terminal object; the unique morphism from
each coalgebra to it assigns to each state its abstract semantics. If B preserves weak pullbacks, i.e. pullbacks such that the
mediating morphism need not be unique, then B-bisimilarity and the terminal coalgebra agree.

The requirement for the existence of the final coalgebra is that B is an accessible functor on a locally presentable category
(see [22,23,20] for details). We just recall the main results. Given a regular cardinal λ, a category C is λ-filtered if each
diagram of cardinality less than λ is the base of a cocone in C. λ-filtered categories generalize the notion of directed
preorders, that are sets such that every finite subset has an upper bound. For any category D, a λ-filtered colimit in D is the
colimit of a diagram of shape C, i.e. a functor C → D, such that C is a λ-filtered category.

Definition 2.6 (Locally λ-presentable category). An object c of a category C is λ-presentable if the functor HomC(c,−) : C → Set
preserves λ-filtered colimits. A category C is locally λ-presentable if it has all colimits and there is a set of λ-presentable
objects X ⊆ |C| such that every object is a λ-filtered colimit of objects from X . We say that a category is locally presentable
if it is locally λ-presentable for some λ.

For instance, locally λ-presentable objects in Set are precisely the finite sets with cardinality less than λ. Set is locally
ω-presentable: every set is the ω-filtered colimit of its finite subsets and the whole Set is generated by the set containing
one finite set of cardinality n for all n ∈ N.

For functor categories we have the following.

Proposition 2.7. For each locally λ-presentable category C and small category D, the functor category CD is λ-presentable.

In particular, since Set is ω-presentable, we have that the presheaf category SetD is ω-presentable as well.

Definition 2.8 (Accessible functor). Let C and D be locally λ-presentable categories. A functor F : C → D is λ-accessible if it
preserves λ-filtered colimits. We just say F is accessible if it is λ-accessible for some λ.

Products, coproducts and composition of accessible functors are accessible as well.

2.3. Coalgebras over presheaves

Coalgebras for functors B : SetC → SetC have some additional structure: they are pairs (P ,ρ) of a presheaf P : C → Set
and a natural transformation ρ : P → B P . The naturality of ρ imposes a constraint on behavior

c

f

p ∈ Pc

[ f ]P

ρc beh(p)

[ f ]B P

c′ p[ f ]P ∈ P (c′) ρ ′ beh(p)[σ ]B P

c
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p ::= 0 | π.p | p + p | p | p | (r)p | A(r1, r2, . . . , rn)

π ::= ar | a(r) | lab | τ
r ::= a | lab

A(r1, r2, . . . , rn)
def= p i 
= j �⇒ n(ri) ∩ n(r j) =∅

Fig. 2. NCPi syntax.

Intuitively, this diagram means that, if we take a state, apply a function to it and then compute its behavior, we should
get the same thing as first computing the behavior and then applying the function to it. In other words, behavior must be
preserved and reflected by the index category morphisms.

Also bisimulations have more structure. A B-bisimulation R is a presheaf in SetC and all the legs of the bisimulation
diagram in Definition 2.5 are natural transformations. In particular, the naturality of projections implies that, given (p,q) ∈
Rc and f : c → c′ in C, (p[ f ],q[ f ]) ∈ R(c′), i.e. B-bisimulations are closed under the index category morphisms.

In order to establish a correspondence between coalgebras over presheaves and transition systems, and between coal-
gebraic and ordinary bisimulations, in [24] transition systems and bisimulations over indexed states are introduced. The
original definition is tailored for the π -calculus, but we give a more general one.

Definition 2.9 (C-indexed labeled transition system). Given a set of labels L, a C-indexed labeled transition system (C-ILTS) is a
pair (P ,−→) of a presheaf P : C → Set and a transition relation −→⊆ ∫

P × L × ∫
P .

Definition 2.10 (C-indexed bisimulation). A C-indexed bisimulation on a C-ILTS (P ,−→) is an indexed family of relations
{Rc ⊆ Pc × Pc}c∈|C| such that, for all (p,q) ∈ Rc

(i) if c � p l−→ c′ � p′ then there is c′ � q′ such that c � q l−→ c′ � q′ and (p′,q′) ∈ Rc′ ;
(ii) for all f : c → c′ , (p[ f ],q[ f ]) ∈ Rc′ .

3. NCPi

3.1. Syntax

We assume an enumerable set of site names S (or just sites) and an enumerable set of link names L (or just links),
equipped with two functions s, t : L → S , telling source and target of each link. We denote by lab a link l such that s(l) = a
and t(l) = b. We write Lab for the set of links of the form lab and La for the union of all Lab and Lba , for all b.

The syntax of NCPi is given in Fig. 2: n(r) denotes the names in r, including a and b if r is lab . We have the usual inert
process, sum and parallel composition. Prefixes can have the following forms:

• The output prefix ar: ar.p can emit the datum r at a and continue as p.
• The input prefix a(r): a(r).p can receive at a a datum to be bound to r and becomes p.
• The link prefix lab: lab.p can offer to the environment the service of transporting a datum from a to b through l and then

continue as p.
• The τ prefix: τ .p can perform an internal action and continue as p.

We require that formal parameters in definitions do not have names in common, because otherwise we might have type
dependencies between parameters, e.g. in A(a, lab) one of the second parameter’s endpoints depends on the first parameter.

The free names fn(p) of a process p are

fn(0) := ∅ fn(τ .p) := fn(p)

fn(ar.p) := {a} ∪ n(r) ∪ fn(p) fn(lab.p) := {lab,a,b} ∪ fn(p)

fn(b(a).p) := {b} ∪ (fn(p) \ ({a} ∪La)) fn(a(lbc).p) := {a,b, c} ∪ fn(p) \ {lbc}
fn((a)p) := fn(p) \ ({a} ∪La) fn((lab)p) := {a,b} ∪ fn(p) \ {lab}

fn(p + q) := fn(p |q) := fn(p) ∪ fn(q) fn(A(r1, . . . , rn)) := n(r1) ∪ · · · ∪ n(rn)

where we must have fn(p) ⊆ fn(A(r1, . . . , rn)) whenever A(r1, r2, . . . , rn)
def= p. Notice the cases (a)p and b(a).p: a free link

in p having a as endpoint is considered bound in (a)p and b(a).p. This intuitively means that a global link cannot have
private endpoints. Given a name r, we shall write r # p to indicate that r is fresh w.r.t. p, i.e. r /∈ fn(p); N # p, with N a set
of names, has the expected meaning.

Now we define renamings. In the following, we shall use the usual notation [r′
1/r1, r′

2/r2, . . . , r′
n/rn] to indicate the

substitution mapping r1 to r′
1, r2 to r′

2 . . . rn to r′
n . In our case, we call renaming a substitution that is “well-behaved” with

respect to the graph-structure described by names. In other words, it should be a graph homomorphism, i.e. each link should
be mapped to one whose endpoints are the image through the substitution of the original link’s endpoints.
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α-equivalence

(a)p ≡ (a′)p[a′/a] b(a).p ≡ b(a′).p[a′/a] a′ # (a)p
(lab)p ≡ (l′ab)p[l′ab/lab] c(lab).p ≡ c(l′ab).p[l′ab/lab] l′ab # (lab)p

Commutative monoid laws for | and +

p1 | p2 ≡ p2 | p1 p1 | (p2 | p3) ≡ (p1 | p2) | p3 p | 0 ≡ p (similarly for +)

Scope extension laws

p1 | (r)p2 ≡ (r)(p1 | p2) r # p1

(r)(r′)p ≡ (r′)(r)p r /∈ n(r′)

Unfolding law

A
(
r′

1, . . . , r′
n

) ≡ p[n(
r′

1

)
/n(r1), . . . ,n

(
r′

n

)
/n(rn)] if A(r1, . . . , rn)

def= p

Fig. 3. Structural congruence axioms for well-formed processes.

α ::= a; W ;b | •; W ; • | ar; • | •; W ;ar | •; W ;a(r′) r′ /∈ n(W ) ∪ {a}
r, r′ ::= a | lab

W ::= lab | W ; W | ε

structural congruence ≡α is given by the monoidal axioms for strings, where ; is the multiplication and ε the identity

Fig. 4. Syntax of paths.

Definition 3.1 (Renaming). A renaming σ is a pair of functions 〈σS : S → S, σL :L→L〉 such that

σL(lab) = l′a′b′ �⇒ σS(a) = a′ ∧ σS(b) = b′.

In order to define the extension of renamings to processes, we need a notion of α-conversion that establishes how to
avoid captures. Such notion will rely on substitutions of the form [a′/a] in order to α-convert w.r.t. sites. However, such a
substitution does not uniquely characterize a renaming. In fact, while surely ac[a′/a] = a′c, for lab[a′/a] we only know that
it must belong to La′b . If, however, lab is bound, the choice of lab[a′/a] is immaterial, provided that we remain in the same
α-equivalence class. This motivates the introduction of well-formed processes. Informally, a process is well-formed if, in any
of its subprocesses, bound links are bound explicitly, and not as a side-effect of binding a site. For instance, a(b).lbc .p is not
well-formed because lbc is implicitly bound by a(b).

Definition 3.2 (Well-formed process). A NCPi process p is well-formed if for every subterm q:

(i) q = (a)p′ implies fn(q) = fn(p′) \ {a};
(ii) q = b(a).p′ implies fn(q) = {b} ∪ fn(p′) \ {a};

Notice that, as a consequence of this definition, we do not need to subtract La when computing the free names of b(a).p
and (a)p, if these processes are well-formed. In the following we assume that processes are always well-formed. This allows
us to define the extension of renamings to processes, which is in some sense “mutually recursive” with α-conversion.

Definition 3.3 (Process renamings). Given a renaming σ and a well-formed process p, we denote by pσ the result of applying
σ to fn(p) with α-conversion of bound names to avoid captures of sites and links.

Finally, structural congruence axioms for well-formed processes are listed in Fig. 3. Here we write n(r′)/n(r) for the
substitutions a′/a,b′/b, l′a′b′/lab (resp. a′/a) whenever r = lab and r′ = l′a′b′ (resp. r = a and r′ = a′). The interesting case is
α-conversion w.r.t. a site: when α-converting (a)p, [a′/a] is never applied to a link lab , since such link cannot be free in
p by well-formedness; if it is bound, i.e. if (lab)p′ is a subprocess of p, then we simply have inductively ((lab)p′)[a′/a] ≡
(l′a′b)p′[l′a′b/lab][a′/a], for any l′a′b fresh w.r.t. p. The axioms’ side conditions guarantee preservation of well-formedness.

3.2. Semantics

Observations of the operational semantics are routing paths, whose syntax is given in Fig. 4.
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Table 1
Free names, bound names, objects, input objects and interaction sites of a path α.

path α fn bn obj objin is

a; W ;b n(α) ∅ ∅ ∅ {a,b}
•; W ; • n(α) ∅ ∅ ∅ ∅

•; W ;ar n(α) ∅ n(r) ∅ {a}
•; W ;a(r) n(α) \ {r} {r} n(r) \ {r} ∅ {a}
ar; • n(α) ∅ n(r) n(r) {a}

A path α can be of two general forms. It can be a service path a; W ;b, representing a transportation service from a to b
that employs the links listed in W and possibly other private, unobservable ones. Alternatively, it can be a string starting
and/or ending with •, which represents an actual transmission. More specifically, in this case α can be:

• an output path, if ar or a(r) occurs on the right, after a (possibly empty) sequence of links W : in both cases α represents
r being emitted at a after traveling along W ; if r is free then α is called free output path, otherwise α is called bound
output path and represents an extrusion.

• an input path, if ar is on the left, representing the reception of r at a.
• a complete path, if • is on both sides of W , meaning that a transmission over the links in W has been completed.

Notice that input and output paths are not symmetrical: only output paths exhibit a list W of employed links. This is mainly
for simplicity of presentation, and follows the intuition that a datum travels from the sender to its destination.

We call interaction sites of α, written is(α) and defined in Table 1, those sites where the interaction with another process
may happen. These correspond to subjects of the π -calculus. Table 1 also defines the free names fn(), bound names bn(),
objects obj(), input objects objin() of α. Given a list of links W , we write W /r for W after removing each occurrence of
r ∈L, and α/r for α with /r applied to its list of links.

Definition 3.4 (NCPi transition system). The NCPi transition system is the smallest transition system generated from the rules
in Fig. 5, where observations are up to ≡α and transitions are closed under ≡, i.e. if p α−→ q, p ≡ p′ , q ≡ q′ and α′ ≡α α

then p′ α′−−→ q′ .

Now we briefly explain the rules. (out) and (in) infer a zero-length path representing, respectively, the beginning and
the end of a transmission. As in the early π -calculus, a renaming must be applied to the continuation in the free input
case; if the input object is a site a, then we have a substitution between sites, which can be turned into a proper renaming
by well-formedness. (link) infers a service path made of one link. (int) infers an internal action, represented as a complete
path where everything is unobservable. (res) computes the paths of a process with an additional restriction (r) from those
of the unrestricted process, provided that r is not already bound and is not an object or an interaction site. This side
condition reflects that of the corresponding π -calculus rule, where r must not be the subject or the object of the premise’s
action, and its purpose is to avoid captures. In fact, suppose b(c).p can perform ba; • and c ∈ fn(p): if (a)b(c).p is allowed
to perform the same path then a would be captured in its continuation (a)p[a/c]. As a result of the restriction, r becomes
unobservable, so it is removed from the list of employed links in the inferred path. (open) treats the case, excluded by (res),
when r is the object of a free output path: such path is turned into a bound output path, again rendering r unobservable
when needed. (sum) and (par) are as expected. (route), (compose) and (com) concatenate paths that meet at an interaction
site: (route) extends an output path, provided that the transported name, whenever bound, is fresh w.r.t. the process that
offers the transportation service; (compose) composes two service paths; (com) completes a communication.

Remark 3.5. For the sake of symmetry, we could have input paths that include a W component, like output paths, listing
the links that a datum can traverse in order to reach the site where an input is performed. Moreover, we could have
an additional inference rule, dual to (route), for adding links to such paths. However, this would not yield additional
observations. In fact, any complete path can be derived starting with (out), then using (route) to attach transportation
services provided by parallel processes and finally (com) to finalize the communication.

We have that the transition system generated by these rules behaves well w.r.t. well-formedness.

Proposition 3.6. If p is well-formed and p α−→ q then q is well-formed.

The notion of behavioral equivalence is the following one, called network conscious bisimulation.

Definition 3.7 (Network conscious bisimulation). A binary, symmetric and reflexive relation R is a network conscious bisimula-
tion if (p,q) ∈ R and p α−→ p′ , with bn(α)# q, implies that there is q′ such that q α−→ q′ and (p′,q′) ∈ R . The bisimilarity is
the largest such relation and is denoted by ∼NC .
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(out) ar.p
•;ar−−→ p (open)

p
•;W ;ar−−−−→ q

(r)p
•;W /r;a(r)−−−−−−→ q

r 
=a

(in) a(r).p
ar′;•−−→ p[r′/r] (par)

p1
α−→ q1

p1 | p2
α−→ q1 | p2

bn(α) # p2

(link) lab .p
a;lab;b−−−−→ p (route)

p1
•;W ;ax−−−−→ q1 p2

a;W ;b−−−−→ q2

p1 | p2
•;W ;W ′ ;bx−−−−−−−→ q1 |q2

bn(x) # p2

(int) τ .p
•;•−−→ p (compose)

p1
a;W ;b−−−−→ q1 p2

b;W ′ ;c−−−−→ q2

p1 | p2
a;W ;W ′ ;c−−−−−−→ q1 |q2

(sum)

p α−→ p′

p + q α−→ p′ (com)

p1
•;W ;ar−−−−→ q1 p2

ar;•−−→ q2

p1 | p2
•;W ;•−−−−→ q1 |q2

(res)

p α−→ q

(r)p
α/r−−→ (r)q

r /∈bn(α)∪obj(α)∪is(α)

Fig. 5. NCPi SOS rules.

Notice that a consequence of defining the semantics up to structural congruence is that ≡⊆∼NC .
It is easy to see that the π -calculus is included in NCPi.

Definition 3.8 (Linkless NCPi). We call linkless NCPi (NCPi-�) the subcalculus of NCPi such that no links appear in processes.

Clearly, NCPi-� processes are π -calculus processes. The induced restriction on SOS rules in Fig. 5, together with the
following encoding of π -calculus actions

ax �−→ •;ax x ∈ {b, (b)}
ab �−→ ab; •
τ �−→ •;•

give the following.

Proposition 3.9. NCPi-� transitions are in bijective correspondence with π -calculus early transitions.

3.3. Closure properties

Here we list some properties of the transition system and its bisimulations, namely closure under some classes of re-
namings and contexts. Their proofs are standard.

We say that a renaming σ is injective if so are σS and σL . We have that the transition system is closed under injective
renamings.

Proposition 3.10. Let p be a process and σ an injective renaming, then:

(i) if p α−→ p′ then pσ ασ−−→ p′σ (transitions are preserved by σ );

(ii) if pσ α−→ p′ then there is p α′−→ p′′ such that α′σ ≡α α and p′′σ ≡ p′ (transition are reflected by σ ).

Remark 3.11. Transitions are not reflected by generic renamings. In fact, consider the process p
def= ar.0 | lab.0 |b′(x).0 and the

renaming σ that maps b′ to b and acts as the identity elsewhere. Then we have pσ
•;lab;•−−−−→ 0 but there is no α′ such that

p α′−−→ 0 and α′σ ≡α •; lab; •.

Proposition 3.12. ∼NC is closed under injective renamings, i.e. p ∼NC q implies pσ ∼NC qσ , for all injective σ .

Theorem 3.13. ∼NC is closed under all operators except the input prefix and parallel composition.
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Example 3.14. Consider the two processes

p
def= (lcb)lcb.0 | l′b′d.0 q

def= (lcb)lcb.l
′
b′d.0 + l′b′d.(lcb)lcb.0

We have p ∼NC q but

a(b).p
ab′;•−−−→ (lcb′)lcb′ .0 | l′b′d.0

c;l′
b′d;d−−−−→ 0

a(b).q
ab′;•−−−→ (lcb′)lcb′ .l′b′d.0 + l′b′d.(lcb′)lcb′ .0����c;l′

b′d;d−−−−→
which implies a(b).p 
∼NC a(b).q.

Theorem 3.15. The greatest network conscious bisimulation that is closed under all renamings is a congruence for all operators except
parallel composition. Closure under this operator is discussed in the note added in the proof.

4. Coalgebraic semantics of NCPi

In this section we characterize the NCPi syntax and semantics in a categorical context. Our main reference is [10], which
concerns the π -calculus, but we will suitably adapt it for our calculus. We start with an overview of the approach.

4.1. The approach

The high-level steps of the approach are:

(i) select a category C of indices representing resources and their operations, together with endofunctors δ : C → C that
model resource generation;

(ii) model processes and renamings as a syntactic presheaf in SetC , freely generated from a signature endofunctor which
employs each δ to represent resource allocation primitives;

(iii) model the transition system as a coalgebra over the syntactic functor, for a behavioral endofunctor where each δ is
used to represent a way of allocating resources along transitions.

For instance, in the case of the π -calculus, C is the category F of finite ordinals and functions, representing finite sets of
names and renamings. It is equipped with an endofunctor δ : F → F that adds a fresh name to its argument. The syntactic
functor maps each set of names to processes where (at most) such names occur free, and it is computed as the initial
algebra for a signature endofunctor where δ is used to model binding operators, namely restriction and input prefix.

However, there is a difficulty in step (iii): while syntax can be modeled in SetF , the transition system cannot, because
transitions are not reflected by all renamings, and neither can its bisimilarity, because it is not closed under the input prefix
or, equivalently, under all renamings. The solution is splitting step (iii) in two substeps:

(iii.a) identify a subcategory C′ of C such that the transition system is closed under its morphisms, and construct a coalgebra
in SetC′

by suitably restricting the syntactic presheaf;
(iii.b) recover a coalgebra in SetC via right Kan extension (see Section 2.1 and [19]) along the embedding C′ ↪→ C.

The category C′ , for the π -calculus, is I, the subcategory of F with only injections. A faithful coalgebraic representation
of the π -calculus transition and of (early/late) observational equivalence is then feasible, because they are known to be
closed under injective renamings. Step (iii.b) is accomplished by enriching the behavioral functor of step (iii.a), so that each
transitions also expresses the application of a renaming. This is a form of saturation [25], as shown in [26]. In the resulting
category of coalgebras the greatest bisimulation characterizes observational (early/late) congruence, because behavior is
always closed under all renamings. In our case, we do not get a full congruence (see note added in proof).

Besides the steps of [10], we will also consider the construction of a finite-state representation of our coalgebraic se-
mantics, in the form of a HD-automaton. Such semantics, in fact, will have an infinite number of states, due to lack of
deallocation along transitions. For the π -calculus, this has been done by exploiting the equivalence between coalgebras on
pullback-preserving presheaves in SetI and HD-automata [27,24]. A recent generalization [12] characterizes a spectrum of
presheaf categories that admit HD-automata. We will employ this result to show the existence of a HD-automaton cor-
responding to the NCPi coalgebra with ordinary bisimulation. Unfortunately, as in the π -calculus case, the category of
saturated coalgebras is based on presheaves that are not covered by the result of [12].

4.2. Categorical environment

Resources of NCPi processes, namely communication networks, can be formally seen as finite, directed multigraphs, so
we define a category made of this kind of graphs and their homomorphisms. We adopt the presentation of such graphs as
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functors from the category ⇒ with two objects, representing vertices and edges, and two parallel morphisms, representing
source and target operations, to the category of finite sets and functions FinSet. However, we just take a skeletal category
of FinSet⇒ , analogously to what Fiore and Turi do for finite sets in [10].

Definition 4.1 (Category G). We denote by G the skeletal category of FinSet⇒ .

We don’t give an explicit construction for G: all choices are consistent, since they are all isomorphic. This is why we
refer to G as “the” skeletal category.

Concretely, we can regard each g ∈ |G| as a tuple (v g, eg, sg, tg), where v g, eg are the sets of vertices and edges of g , and
sg, tg : eg → v g tell the source sg(e) and target tg(e) of each e ∈ eg . A morphism σ : g → g′ is a natural transformation, i.e.
a pair of functions (σv , σe) that commute with the source and target functions of g and g′ , which is exactly the definition
of graph homomorphism. We state some properties of G that will be important in the following.

Proposition 4.2. The category G is small, has finite colimits and pullbacks.

FinSet⇒ is locally small, but not small: this is why we consider a skeletal version of it. Some notation: we write [n] for
the discrete graph with n vertices, and kn for the graph with n vertices and with one edge between every (ordered) pair of
vertices.

Thanks to Proposition 4.2, we can exploit colimits to implement allocation of fresh resources.

Allocation of vertices Given g ∈ |G|, we can express the allocation of a fresh, disconnected vertex � as a coproduct

[1] new•
g

g + [1] g
old•

g

This induces the endofunctor δ• : G → G given by

δ•g := g + [1] δ•σ := σ + id[1].

Allocation of edges Given g ∈ |G| with n vertices, we can add a new edge �i j between each ordered pair of vertices i and j
through a pushout

[n] g

old•→•
g

kn new•→•
g

g∗

that makes the disjoint union of the items of kn and g , and then identifies the vertices that are image of the same vertex
in [n] through the embeddings. Given g1 and g2 in G, with n1 and n2 vertices respectively, every σ : g1 → g2 in G can be
canonically extended to a morphism σ ∗ : g∗

1 → g∗
2 via the universal property of pushouts as follows

[n1] g1
σ g2

kn1

σ̂

g∗
1

σ ∗

kn2 g∗
2

where σ̂ is the (unique) morphism between kn1 and kn2 that acts on vertices like σ (the action on edges is obvious). This
construction can be turned into a functor δ•→• : G → G

δ•→•g := g∗ δ•→•σ := σ ∗.

Example 4.3. Consider the following graph

g := •a l

•b •c

δ•g and δ•→• g are (isomorphic to)
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•a′ l′

•b′ •c′

•d

•a′′

�6

�
l′′

�2

•b′′

�7

�1

�5

•c′′

�8

�3

�4

where a′,b′, c′ and l′ (resp. a′′,b′′, c′′, l′′) are the images of a,b, c and l via old• (resp. old•→•), d is the image of • via new•
and �, �1, . . . , �8 are the images of the edges in k3 via new•→• .

We denote by GI the subcategory of G with only monos. We remark that GI lacks pushouts, but we can compute them
in G, since monos are stable under pushouts in G. Consequently, δ• and δ•→• are well-defined also in GI .

Now we look at the category SetG of presheaves on graphs. As mentioned, it is locally presentable and has all limits and
colimits, in particular products and coproducts. The following constructs are relevant for us.

Name functors S,L : G → Set giving, for each g ∈ |G|, the set of sites and links corresponding to the vertices and edges
of g . Formally, let • be the graph with one vertex and no edges, and • → • be the graph with two vertices and an edge
between then. We define

S := HomG(•,−) L := HomG(• → •,−) N := S +L
Explicitly, S sends g ∈ |G| to G[•, g], which is isomorphic to the set of vertices of g , and σ : g → g′ in G to the function
λs ∈ HomG(•, g).σ ◦ s, which renames the site s according to σ ; similarly for L. In order to keep the same notation for
names given in Section 3, given an edge l in g with endpoints a,b, the homomorphism • → g in S g that maps • to a
will be simply denoted by a; and the homomorphism (• → •) → g in Lg that maps the edge in the domain to l, and
consequently its endpoints to a and b, will be denoted by lab .

Countable powerset Pc : SetG → SetG , defined as Pc ◦ (−).

Allocation functors �•,�•→• : SetG → SetG , defined as (−) ◦ δ• and (−) ◦ δ•→• , respectively.

4.3. Coalgebraic semantics

Our aim now is to construct a coalgebra that models the NCPi transition system. Its carrier will be a suitable presheaf
modeling processes and renamings. However, since transitions are not reflected by generic renamings (Remark 3.11), but
only by injective ones (Proposition 3.10), according to step (iii.a) of Section 4.1 we first give a semantics in SetGI .

Definition 4.4 (Behavioral endofunctor). Let L� = ∑
i∈ω Li . The behavioral endofunctor B : SetGI → SetGI is

B P = Pc(S ×L� × S × P (Service Path)
+ L� × P (Complete Path)
+ S ×N × P (Known Name Input Path)
+ S × �• P (Fresh Site Input Path)
+ S × S × S × �•→• P (Fresh Link Input Path)
+ L� × S ×N × P (Free Output Path)
+ L� × S × �• P (Bound Site Output Path)

+ L� × S × S × S × �•→• P ) (Bound Link Output Path)

To understand this definition, consider a B-coalgebra (P ,ρ). Given g ∈ GI and p ∈ P g , ρg(p) is a countable set of tuples.
These tuples can be seen as pairs (α, p′) of a path α and of a continuation from p after observing α, both built using the
names corresponding to the items of g and possibly some fresh ones. We use the countable powerset because p might
have recursive subprocesses that generate a countable number of looping paths. This does not affect the formal properties
of B-coalgebras.

Notice the bound output cases: the continuation is drawn from �• P (g) or �•→• P (g), i.e. its index is δ• g or δ•→• g; the
extruded name, which corresponds to the new vertex or one of the new edges added to g by these functors, does not appear
in α, because its identity is known. In the bound link output case the endpoints of the extruded link must be included in α,
in order to allow processes that extrude links with different endpoints through the same path to be distinguished. The W
component in Definition 4 is modeled through the functor L∗ , which returns the set of finite strings on the alphabet Lg .
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Input transitions are modeled similarly to free and bound output ones, even if there is no explicit binding: we distinguish
between the reception of a known name, i.e. a name already in N g , and of a fresh one; in the latter case, the index is
augmented. This allows us to give a finite representation of an infinite number of transitions.

Theorem 4.5. B is accessible and preserves weak pullbacks.

In order to establish a correspondence between the set-theoretical notions of Section 3 and the world of coalgebras, we
show that B-coalgebras can be represented as particular indexed labeled transition systems.

Definition 4.6 (Network conscious GI-ILTS). Given the following presheaf of labels

Lab := S ×L� × S +L� + S ×N + S + S × S × S +L� × S ×N +L� × S +L� × S × S × S

a network conscious GI-ILTS (GI-ILncTS) is a GI-ILTS (P ,−→) with labels in
∫

Lab, such that:

(i) Transitions have the following forms (the indices of labels, being the same as those of the source processes, are omit-
ted):
• g � p α−→ δ• g � p′ , with α = •; W ;a(�) (bound site output) or α = a�; • (fresh site input);
• g � p α−→ δ•→• g � p′ , with α = •; W ;a(�bc) (bound link output) or α = a�bc; • (fresh link input);
• g � p α−→ g � p′ for all the other α ∈ Lab(g).

(ii) For each morphism σ : g → g′ in GI and each ϕ ∈ {Id, δ•, δ•→•}: g � p α−→ ϕg � p′ if and only if g′ � p[σ ] α[σ ]−−−→ ϕ(g′) �
p′[ϕσ ] (transition are preserved and reflected by morphisms).

Proposition 4.7. B-coalgebras are in bijective correspondence with GI-ILncTSs.

For behavioral equivalences on GI-ILncTSs, namely GI-indexed bisimulations (Definition 2.9 instantiated with C = GI), we
have the following correspondence.

Proposition 4.8. Let (P ,ρ) be a B-coalgebra. Then every B-bisimulation is equivalent to a GI-indexed bisimulation on the induced
GI-ILncTS.

Unfortunately, the converse is not true: there are bisimulations on some GI-ILncTSs that cannot be turned into
B-bisimulations. This has been pointed out in [24, 3.3.3, Anomaly] for the case of the π -calculus. The solution given there is
to narrow the class of presheaves under consideration to sheaves in the Schanuel topos, that are sheaves I → Set for the cov-
erage made of singleton families. These are exactly pullback-preserving presheaves [28, A.2, Example 2.1.1(h)]. Analogously,
we can consider sheaves GI → Set for the same kind of coverage, since GI has pullbacks, and these again are presheaves
that preserve pullbacks. As shown in [24, 4.2.1], for such sheaves we have notions such as minimal supports and seeds: given
a sheaf P , p ∈ P g and g′ ↪→ g , there is a unique seed p′ ∈ P (g′) such that P (g′ ↪→ g)(p′) = p; moreover, there exists the
smallest such graph g′ where a seed of p can be found. In other words, we can always recover the minimal network a
process uses. We recall Theorem 4.2.5 of [24], adapted to our context: it’s easy to see that GI-ILncTSs satisfy the relevant
axioms characterizing the class of I-ILTSs treated in [24].

Theorem 4.9. Let (P ,ρ) a B-coalgebra. If P is a sheaf then every GI-indexed bisimulation on the induced GI-ILncTS is also a
B-bisimulation on (P ,ρ).

Now we manufacture a sheaf out of the collections of well-formed processes. For the sake of simplicity we do not follow
[10], where such a functor is obtained as the carrier of the initial algebra for a signature endofunctor, but we give an explicit
definition. Our syntactic endofunctor N : G → Set is given by

Ng := {p well-formed | fn(p) ⊆ N g}/ ≡ N(σ : g → g′) := λp ∈ Ng.pσ̃

where σ̃ is the extension of Nσ to processes. For the purpose of defining the NCPi GI-ILncTS, we just need the functor

NI := RN where R := (−) ◦ (GI ↪→ G) : SetG → SetGI ,

which only applies injective renamings. This functor is indeed a sheaf, as stated by the following theorem.

Theorem 4.10. NI preserves pullbacks.
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p
ar;•−−−→ p′

g � p
ar;•−−−→ν g � p′ r∈N g

p
ab;•−−−→ p′

g � p
a�;•−−−→ν δ• g � p′[�/b,old•

g ]
b /∈N g

p
albc ;•−−−−→ p′

g � p
a�bc ;•−−−−→ν δ•→• g � p′[�bc/lbc,old•→•

g ]
lbc /∈N g

p
•;W ;a(b)−−−−−−→ p′

g � p
•;W ;a(�)−−−−−−→ν δ• g � p′[�/b,old•

g ]
p

•;W ;a(lbc )−−−−−−−→ p′

g � p
•;W ;a(�bc )−−−−−−−→ν δ•→• g � p′[�bc/lbc,old•→•

g ]

p
•;W ;ar−−−−−→ p′

g � p
•;W ;ar−−−−−→ν g � p′

p
a;W ;b−−−−→ p′

g � p
a;W ;b−−−−→ν g � p′

p
•;W ;•−−−−→ p′

g � p
•;W ;•−−−−→ν g � p′

Fig. 6. Rules generating the transitions of p ∈ NI g in the NCPi GI-ILnc TS.

The transition relation −→ν for our GI-ILncTS is the smallest one generated by the rules in Fig. 6, which associate indices
to ordinary NCPi transitions. Actually, since there are infinitely many g ∈ |GI| such that p ∈ NI g , each untyped transition
has many typed counterparts. Notice the first five rules, inferring input and output paths: they collapse transitions that
differ only for the fresh sent/received name to a single one exhibiting the generic fresh name � (or �bc). This is because
the inferred transition must match the behavioral functor definition. Consequently, in the continuation the fresh name is
replaced by � or �bc , and the names that were free in p are replaced using the colimit maps involved in the definition of δ•
and δ•→• , so that the resulting process has the correct index. This ensures that (i) of Definition 4.6 is satisfied. As for (ii),
this comes directly from the transition system being closed under injective renamings (Proposition 3.10).

Example 4.11. Consider the transition

(xab)(lac .ac.0 |axab.xab.0)
•;lac;c(xab)−−−−−−→ ac.0 | xab.0;

The source process can be indexed by g of Example 4.3. Now, according to Fig. 6, the continuation should be indexed by
δ•→• g , but we have to rename it via [a′′/a,b′′/b, c′′/c, l′′a′′c′′/lac, �a′′b′′/xab]. The resulting transition in the NCPi GI-ILncTS is

g � (xab)(lac .ac.0 |axab.xab.0)
•;lac;c(�ab)−−−−−−→ δ•→•g � a′′c′′.0 | �a′′b′′ .0.

Finally, we have the following result, which relates B-bisimulations on the NCPi B-coalgebra and a class of network
conscious bisimulations.

Theorem 4.12. GI-indexed bisimulations on (NI,−→ν) are in bijection with:

(i) B-bisimulations on the corresponding B-coalgebra;
(ii) network conscious bisimulations closed under injective renamings.

In particular, we have that the greatest GI-indexed bisimulation, the B-bisimilarity and ∼NC are all equivalent, thanks to
Proposition 3.12.

4.4. History dependent automata

Now we prove the existence of an efficient operational model for our calculus, in the form of a HD-automaton. In order to
do this, we exploit the result of [12], which tells that some classes of presheaves are equivalent to coproducts of symmetrized
representables, i.e. representables quotiented by composition with groups of automorphisms. They generalize named sets,
which are the basic building blocks of HD-automata.

Theorem 4.13. Let C be a category that is small, has pullbacks, and such that all its morphisms are monic and those in C[c, c] are
isomorphisms, for every c ∈ |C |. Then every pullback-preserving P ∈ |SetC | is isomorphic to a coproduct of symmetrized representables.

In our case C = GI , which satisfies the hypothesis of Theorem 4.13. In fact, by Proposition 4.2, GI is small and has pull-
backs, since pullbacks are preserved by monos; moreover, it has only monos, by definition, and it is easy to see that GI[g, g]
has only isomorphisms, for each g ∈ |GI|. Our presheaf of processes NI preserves pullbacks, so we have a representation for
it as a coproduct of symmetrized representables.

Notice that G does not satisfy Theorem 4.13, due to the presence of non-monic morphisms. Therefore we cannot apply
the theory of [12] to the extended coalgebra we will give in Section 4.5.
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4.5. Saturated semantics

Right Kan extensions provide a canonical way of translating the NCPi transition systems from SetGI to SetG , as shown for
other presheaf categories in [10,26]. The fundamental construction is the following adjunction

SetG
R

⊥ SetGI

E

(1)

which exists because GI is small and Set has all limits (Theorem 2.3). According to Section 2.1, E : SetGI → SetG can be
computed pointwise as a limit in Set:

E P (g) =
⎧⎨
⎩t ∈

∏
σ :g→g′∈‖G‖

P
(

g′)∣∣∣∣∣
∀σ1 : g → g1,

σ2 : g1 � g2 ∈ ‖G‖ :
tσ1 [σ2] = tσ2◦σ1

⎫⎬
⎭

E P (σ ) = λt ∈ R P (g).{(tσ◦σ ′)σ ′ }σ ′:g′→g′′ (σ : g → g′)
In words, E P (g) is a set of tuples with one component for each morphism from g in G. The tuples’ components are taken
from P according to the corresponding morphism’s codomain, and must satisfy a “closure under monos” condition, namely:
selecting the σ1-component of a tuple and applying Pσ2 to it, where σ2 is any applicable morphism (i.e. σ1 and σ2 must
be composable), must yield the same result as selecting the (σ2 ◦ σ1)-component of the same tuple. As for E P (σ ), it takes
a tuple and builds another tuple out of it, whose σ ′-component is the (σ ◦ σ ′)-component of the original tuple.

Unit and counit of (1) are natural transformations η : IdSetG → E R and ε : RE → IdSetGI . For P : G → Set, Q : GI → Set
and g ∈ |G|, they are given by

(ηP )g = λp ∈ P g.{(p[σ ])σ }σ :g→g′ (εQ )g = λt ∈ RE Q (g).tidg

The intuition, in terms of processes, is that (ηP )g maps a process p ∈ P g to a tuple obtained by applying every possible
renaming σ : g → g′ to p. Viceversa, (εQ )g takes a tuple of processes in RE Q (g) and extracts the one with identity index.
The well-known equations relating unit and counit ensure that the operations they perform are consistent with each other:
producing the tuple of all possible renamings of p and picking the identity component just yields p.

This adjunction can be exploited to define an extended behavioral functor.

Theorem 4.14. The functor B̂ := E BR is accessible and preserves weak pullbacks.

Moreover, (1) yields the following correspondence.

Proposition 4.15. For every P : G → Set, there is a bijection between B̂-coalgebras having P as carrier and B-coalgebras having R P
as carrier.

The idea is the following. Given a B-coalgebra (R P ,ρ), the structure map of the corresponding B̂-coalgebra, when
applied to p ∈ P g , builds a tuple whose σ -component is the set of transitions of p[σ ] according to ρ . Viceversa, given a
B̂-coalgebra (P , φ), one can recover a B-coalgebra whose structure map gives, for each p ∈ R P (g), only the idg -component
of the tuple φ(p).

B̂-coalgebras can be characterized as indexed transition systems with richer labels than those of GI-ILncTSs, similarly to
what was done in [26]. We call such transition systems saturated; this term is borrowed from [25].

Definition 4.16 (Saturated GI-ILncTS). Given the following presheaf of labels

LabS AT :=
∑
g′∈G

HomG(−, g′) × Lab(g′)

a saturated GI-ILncTS (GI-ILncTSSAT ) is a G-ILTS (P ,−→) with labels in
∫

LabS AT , such that:

(i) Transitions are of the form g � p
(σ ,α)−−−−→ g′′ � p′ , where σ ∈ G[g, g′],α ∈ Lab(g′) and g′′ � p′ is a valid continuation for

α according to (ii) of Definition 4.6;
(ii) Transitions are such that, for all σ : g → g′ in G:

(a) for all σ ′ : g′ � g′′ and ϕ ∈ {Id, δ•, δ•→•}, g � p
(σ ,α)−−−−→ ϕ(g′) � p′ if and only if g � p

(σ ′◦σ ,α[σ ′]Lab)−−−−−−−−−−→ ϕ(g′′) �
p′[ϕ(σ ′)] (closure under monos);

(b) g � p
(σ ′◦σ ,α)−−−−−−→ g′′ � p′ if and only if g′ � p[σ ] (σ ′,α)−−−−→ g′′ � p′ (transitions are preserved and reflected by mor-

phisms);
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p ::= 0 | π.p | p + p | p | p | (r)p | A(r1, r2, . . . , rn)

π ::= abr | a(s) | lab | τ
r ::= a | lab

s ::= a | l(ab)

A(s1, s2, . . . , sn)
def= p i 
= j �⇒ n(si) ∩ n(s j) = ∅

Fig. 7. Syntax of κNCPi processes.

Proposition 4.17. B̂-coalgebras are in bijection with GI-ILncTSSAT s.

Behavioral equivalences for GI-ILncTSSAT s, according to Definition 2.10, now are indexed over G: condition (ii), for every
such a relation R , requires that, whenever (p,q) ∈ R g , then (p[σ ],q[σ ]) ∈ R g′ , for all σ : g → g′ in G. In other words, we
have closure under all renamings.

Now, consider the NCPi GI-ILncTS. Proposition 4.15 can be equivalently restated on indexed transitions systems: it allows
us to derive a GI-ILncTSSAT (N,−−→ν-SAT) as follows

σ : g → g′ p ∈ P g g′ � p[σ ] α−→ν g′′ � p′

g � p
(σ ,α)−−−→ν-SAT g′′ � p′

Now it is clear why we use the term “saturated”: GI-ILncTSSAT s are the saturated (according to [29]), but equivalent, version
of the corresponding GI-ILncTSs, with contexts being the morphisms of G. To the best of our knowledge, the fact that
right-Kan-extending amounts to saturating has been first observed in [26].

As discussed in Section 4.3, in general G-indexed bisimulations and B̂-bisimulations do not fully correspond, unless the
presheaf of states is indeed a sheaf. As stated in [24, Proposition 4.1.3], it is enough to check that RN , i.e. NI , is a sheaf.
This is indeed the case (Theorem 4.10), so we have the following.

Theorem 4.18. G-indexed bisimulations on (N,−→ν-SAT) are in bijection with:

(i) B̂-bisimulations on the corresponding B̂-coalgebra;
(ii) network conscious bisimulations closed under all renamings.

In particular, we have that the B̂-bisimilarity characterizes the greatest network conscious bisimulation that is closed
under all renamings. This, by Theorem 3.15, is a congruence w.r.t. input prefix, but not parallel composition. See note added
in proof for a discussion.

5. Concurrent NCPi

In this section we present an “enhanced” version of NCPi, called concurrent NCPi (κNCPi), where

• the input primitive is more flexible: it can express the reception of a link together with its endpoints;
• the output primitive is closer to actual routing protocols: it also specifies the destination site;
• observations represent concurrent transmissions in the form of multisets of routing paths.

The main result is that bisimilarity for the new semantics is a congruence. This is due to the richer observations that make
the bisimilarity finer and compositional.

5.1. Syntax

The syntax of κNCPi processes is given in Fig. 7. For convenience, we distinguish names that can be output or restricted
(syntactic category r) and those that can be input or can be formal parameters of process definitions (syntactic category s);
l(ab) , belonging to the latter category, denotes a link whose endpoints are both bound and we let n(l(ab)) := {lab,a,b}.

Input and output prefixes have the following forms: abr means that abr.p can emit the datum r, having destination b,
at a and continue as p; a(s) means that a(s).p can receive at a a datum to be bound to s and continue as p. The intended
meaning of c(l(ab)).p is an atomic, polyadic version of c(a).c(b).c(lab).p.

The definition of fn(p) for the new constructs is

fn(abr.p) := {a,b} ∪ n(r) ∪ fn(p)

fn(a(l(bc)).p) := {a} ∪ fn(p) \ ({b, c} ∪Lb ∪Lc)

Now we introduce the notion of well-formedness for κNCPi processes. The only additional condition w.r.t. Definition 3.2
concerns the input prefix.
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α-equivalence:

(a)p ≡ (
a′)p[a′/a] b(a).p ≡ b

(
a′).p[a′/a] a′ # (a)p

(lab)p ≡ (l′ab)p[l′ab/lab] l′ab # (lab)p

a(l(bc)).p ≡ a(l′
(b′c′)).p[l′b′c′/l(bc)] b′, c′, l′b′c′ # a(l(bc)).p

Unfolding law:

A(r1, . . . , rn) ≡ p[r1/s1, . . . , rn/sn] if A(s1, . . . , sn)
def= p

Fig. 8. Structural congruence for well-formed κNCPi processes.

Paths

α ::= a; W ;b | •; W ; • | •; W ;abr | abr; W ; •
| ab(s); W ; • n(s) ∩ (

n(W ) ∪ {a,b}) = ∅

W ::= lab | W ; W | ε

r ::= a | lab s ::= a | l(ab)

Concurrent paths

Λ ::= 1 | α | Λ1|Λ2 | (r)Λ

Fig. 9. Syntax of concurrent paths.

Definition 5.1 (Well-formed κNCPi process). A κNCPi process p is well-formed if every subterm q satisfies requirements (i)
and (ii) of Definition 3.2 and, moreover, (iii) q = c(l(ab)).p′ implies fn(q) = {c} ∪ fn(p′) \ {a,b, lab}.

Structural congruence, shown in Fig. 8, is minimal: we only have α-conversion and unfolding. Other axioms, such as the
monoidality of | , will be replaced by a suitable structural congruence on observations or, in the case of scope extension, by
an explicit scope closure rule.

5.2. Concurrent semantics

Observations for the concurrent semantics, defined in Fig. 9, are multisets of paths, called concurrent paths. For the
purpose of describing a more realistic network behavior, we equip paths α with some additional information:

• paths always specify a destination site;
• both input and output paths exhibit a list of links; in the case of input paths, they are the links that can be potentially

traversed in order to reach the destination;
• there is a bound input path, which represents the reception of a bound name; this is needed because the concurrent

semantics has an explicit scope closure rule;
• there is no extrusion path, because extrusions will be represented via concurrent paths, as we allow many paths to

extrude the same name.

Concurrent paths can have the following forms:

• the empty concurrent path 1 indicates that no activity is performed;
• the singleton concurrent path α is a concurrent path made of a single path;
• the union Λ1 |Λ2 means that the paths in Λ1 and Λ2 are being traversed at the same time;
• the extrusion restriction (r)Λ indicates that r is being extruded through one or more paths in Λ.

We shall use Wα to denote the sequence of links of α and |Wα | to denote the set of links appearing in Wα . The set fn(α)

is redefined to include the destination site of α; if α is a bound input path, then bn(α) is n(s), otherwise it’s the empty
set. We also define

obj(•; W ;abr) := obj(abr; W ; •) := {b} ∪ n(r) obj(ab(s); W ; •) := {b}
This is analogous to actual routing, where a payload and its destination address travel together within a packet.

Given a concurrent path Λ, the functions Is(Λ), Fn(Λ), Bn(Λ), Obj(Λ) and Objin(Λ) are the extensions to multisets of
the corresponding functions on single paths. They are defined as expected, but we have to be careful with the following
cases:
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• Monoidal axioms for “;”, with ε as identity, and for | (plus commutativity), with 1 as identity;
• Scope extension axioms:

(r)(r′)Λ ≡Λ (r′)(r)Λ r /∈ n(r′)
Λ1 | (r)Λ2 ≡Λ (r)(Λ1 |Λ2) r #Λ1

Fig. 10. Structural congruence ≡Λ for well-formed concurrent paths.

Fn((a)Λ) = Fn(Λ) \ ({a} ∪La) Bn((a)Λ) = Bn(Λ) ∪ {a} ∪ (La ∩ n(Λ))

that are treated analogously for the other functions.
Observations here have a more complicated binding structure than those of NCPi, so we introduce a notion of well-

formedness for them. Moreover, in order to be closer to actual routing protocol, we only admit simple paths, i.e. those that
do not go through the same link twice.

Definition 5.2 (Well-formed, canonical, simple concurrent paths). Let Λ be a concurrent path. Then it is:

• well-formed if for every subterm Λ′ of the form (a)Λ′′ we have Fn(Λ′) = Fn(Λ′′) \ {a};
• in canonical form if it has the form (R)Θ , where R is a sequence of restrictions and Θ does not contain extrusion

restrictions (binders of the form ab(s) are still allowed in Θ);
• simple if, for all α ∈ Λ, each lab ∈ |Wα | appears in Wα once.

An example of non-well-formed, non-simple concurrent path is (d)(•; lab; l′ba; lab;bcd |a; l′′ad;d), because (d) implicitly
binds l′′ad and there are two occurrences of lab in the first path.

Simplicity is just one of the possible conditions. In general, one might want to express more complex requirements
and apply static analysis methods to check them. This can be achieved through suitable type systems. For instance, QoS
requirements could be expressed by associating quantitative information to links.

Well-formed paths are subject to some structural congruence axioms, shown in Fig. 10. They establish that paths are
strings and concurrent paths are multisets, and that extrusion restrictions can be swapped and grouped at the outest
level. Scope extension requires some side conditions in order to avoid captures and enforce well-formedness. Clearly, any
concurrent path satisfying these conditions can be converted to canonical form.

We write Λ//r for the operation that applies /r to each α ∈ Λ if r /∈ bn(Λ), yields Λ otherwise. We use the symbols
r #Λ Λ, extended to sets of names as expected, to mean r /∈ n(Λ).

Definition 5.3 (κNCPi transition system). The κNCPi transition system is the smallest transition system generated by the rules

in Fig. 11, where observations are up to ≡Λ and transitions are closed under ≡, i.e. if p
Λ�⇒ q, p ≡ p′ , q ≡ q′ and Λ ≡Λ Λ′ ,

then p′ Λ′�⇒ q′ .

Axioms (in) and (out) are similar to those of Fig. 5, but they infer a path with an explicit destination; this site is the
same as the reception one for (in), because the paths it infers have length 0. We also have (bin), which infers an input with
bound placeholder. Axioms (int) and (link) are the same as the interleaving case, so they are omitted. The axiom (idle)

infers a “no-op” transition, enabling the parallel composition of processes to behave in an interleaving style.
The rule (sum-l) is obvious. It has a right counterpart, because + is not commutative for κNCPi. This rule is omitted in

Fig. 11.
The rule (res) and (open) are an obvious extension of those in Fig. 5. Notice that (open) allows one to “extrude” the

destination site: the intuition is that we can use global resources to send or receive a datum to/from a local site, which
becomes global if the communication is not complete.

The rule (par) makes the union of two concurrent paths, but only if bound names of each concurrent path are fresh w.r.t.
the other process and do not occur in the other path. This last condition avoids inferring transitions where the extruded
name is free in the receiving process’s continuation even if it has not been actually received, which might cause incorrect
behaviors. For instance, consider the processes

p
def= (b)aab.b(c).p′ q

def= a(d).dde.q′

and suppose the following transition is allowed

p |q
(b)•;aab | aab;•���������⇒ b(c).p′ |bbe.q′[b/d].

Now the two components of the continuation can synchronize on b even if its scope extension has not actually been
accomplished, which is clearly incorrect.

The remaining rules are used to synchronize processes. The synchronization is performed in two steps:
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Fig. 11. κNCPi SOS rules: (a) shows the SOS rules; (b) and (c) are the possible configurations for (com). Any pair of configurations, one from (b) and one
from (c), is valid (four possibilities).

(i) paths of parallel processes are collected through the rule (par);
(ii) (com), (srv-in), (srv-out) and (srv-srv) take two compatible paths out of the resulting multiset and replace them with

their concatenation, without modifying the source process; in other words, these rules synchronize two subprocesses of
the source process.

The rule (com) covers all kinds of communications, yielding a complete path. In the case of extrusions, input placeholders in
the continuation are replaced with extruded names; these are removed from the resulting transition’s label, provided that
there are no other paths extruding them. For instance, consider the process
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p
def= (c)(abc.p1 |a′b′c.p2 | lab.p3) |b(x).p4;

its behavior can be the extrusion of c

p
•;lab;•����⇒ (c)(p1 |a′b′c.p2 | p3 | p4[c/x])

but also a transition where the scope of c remains open

p
(c)(•;lab;• | •;a′b′c)�����������⇒ p1 | p2 | p3 | p4[c/x]

due to the presence of •;a′b′c in the label.
The rules (srv-in), (srv-out) and (srv-srv) allow extending a path with a service path.
The premises of (com), (srv-in) and (srv-out) must have their concurrent paths in canonical form: this is always possible,

thanks to (par) side conditions.
The following proposition states that the transition system generated by these rules is well-behaved.

Proposition 5.4. If p
Λ�⇒ q then Λ is simple and well-formed, and q is well-formed.

The behavioral equivalence for κNCPi processes is called concurrent network conscious bisimilarity, and is an obvious
extension of Definition 3.7.

Definition 5.5 (Concurrent network conscious bisimulation). A binary, symmetric and reflexive relation R is a concurrent

network conscious bisimulation if (p,q) ∈ R and p
Λ�⇒ p′ , with Bn(Λ)# q, implies that there is q′ such that q

Λ�⇒ q′ and
(p′,q′) ∈R. The bisimilarity is the largest such relation and is denoted by ∼NC

κ .

Theorem 5.6. ∼NC
κ is a congruence with respect to all κNCPi operators.

Proof sketch. We have to prove that ∼NC
κ is closed under each operator. The difficult case is the input prefix, since a

renaming, possibly not injective, is involved. The idea behind the proof is that, even though a renaming σ may enable some
(com), (srv-in), (srv-out) or (srv-srv) rules in the proof of a transition of pσ , the collection of paths they concatenate is
the renamed version of an observation of p, and thus of every q bisimilar to p. This is an overview of the proof steps:

(i) First, we prove that, given any transition p
Λ�⇒ q and renaming σ such that Λσ is simple, we have pσ

Λσ��⇒ qσ .

(ii) Consider a transition p
Λ�⇒ q and let Π be its proof. We prove that we can always bring towards the root the rule

instances in Π that, in their consequences, concatenate paths α1 and α2 whose common interaction sites are free
in p. This is done by permuting such rules with their parents in the proof tree: whenever the parent rule regard
binding operators, the requirements about interaction sites ensure that these names are not involved in the rule’s side
conditions, so swapping the order of restriction and concatenation is allowed. The resulting proof Π ′ infers a transition

p′ Λ�⇒ q′ , where p′ ≡ p and q′ is q with some unguarded restrictions at the outest level (this may happen when an
application of (com), used in Π to close the scope of some restrictions, is delayed in Π ′).

(iii) Next we prove that, for any σ and p, if pσ
Λ�⇒ q has proof Π , and σ does not map any name to interaction sites or

objects of paths concatenated throughout Π , then we can recover a transition p
Λ′�⇒ q′ such that Λ′σ = Λ and q′σ = q.

In other words, if σ did not enable any rule in Π , then Π infers a transition that is the renamed version of one of p.

(iv) Given a transition pσ
Λ�⇒ q, we can always recover a transition p

Λ′�⇒ q′ from which, after applying some rules that

concatenate paths in Λ′ , we get pσ
Λ�⇒ q∗ , where q∗ is q with some unguarded restrictions at the outest level. The idea

is to bring all the rule instances enabled by σ towards the root via (ii); the remaining ones satisfy the requirements of
(iii), hence we can find the required transition of p.

(v) Finally, we prove that we can construct a bisimulation R containing all the pairs (pσ ,qσ), with p ∼NC
κ q, which is also

closed under restrictions (i.e. ((r)p, (r)q) ∈ R whenever (p,q) ∈ R) and contains scope extension (i.e. if q is p with

some restrictions brought at the top level, then (p,q) ∈ R). In fact, given pσ
Λ�⇒ p′ , we use (iv) to get a transition

p
Λ′�⇒ p′′ and a sequence Ω of rule instances that concatenate pairs of paths. Such transition can be simulated by

q
Λ′�⇒ q′ . Using (i) we get qσ

Λ′σ��⇒ q′σ and, applying a suitably adapted version of Ω , we get qσ
Λ�⇒ (R)(q′σ)σ ′ , where

R and σ ′ are added by instances of (com) treating extrusions. Since Ω has the same effect on p′′σ , i.e. it binds R
and applies σ ′ , we have that (R)(p′′σ)σ ′ is p′ with some restrictions at the topmost level. Now, since p′′ ∼NC

κ q′ , by
definition of R, and by closure under scope extension and restrictions, we can conclude (p′, (R)(q′σ)σ ′) ∈R. �

This result allows us to equip the π -calculus with a concurrent semantics. In fact, we can characterize π -calculus pro-
cesses via a syntactic restriction, as done in Definition 3.8.
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Definition 5.7 (Concurrent linkless NCPi). We call concurrent linkless NCPi (κNCPi-�) the subcalculus of κNCPi where:

• no links appear in processes;
• every occurrence of the output prefix is of the form aar.

In this calculus the usual synchronization mechanism is emulated by two steps of derivation, for instance

(com)

p ab−→ p′ q ab−→ q′

p | p′ τ−→ q |q′ �−→
(com)

(par)

p
•;aab���⇒ p′ q

aab;•���⇒ q′

p |q
•;aab | aab;•�������⇒ p′ |q′

p | p′ •;•��⇒ q |q′

but we also have additional concurrent observations, which lead to the following result.

Corollary 5.8 (of Theorem 5.6). The bisimilarity on the concurrent π -calculus transition system is a congruence.

Another evidence of this result is the classical counterexample not applying: we have aar |a(x) 
∼NC
κ aar.a(x) + a(x).aar,

because

aar |a(x)
•;aar | aar;•�������⇒ 0 aar.a(x) + a(x).aar�����•;aar | aar;•�������⇒

This result is analogous to that in [16] but, as already mentioned, there the synchronization mechanism is not faithful to the
π -calculus: in [16] the synchronization channel is observed unless restricted, for instance a |a

τa�⇒ 0, while for our calculus

a |a
•;•��⇒ 0, which corresponds to τ .

6. Case study: a routing protocol

Here we give a non-trivial example of how κNCPi can be used to model a routing protocol, similar to BGP [30]. This
protocol assumes that the network is composed of disjoint groups of networks, each referring to a single administrative
authority, called Autonomous Systems (AS). Some of the ASs’ routers act as gateways between the AS they belong to and
other networks. The protocol takes care of the routing mechanism between ASs in a distributed manner: each gateway
has a routing table, filled by the protocol, whose entries specify which is the next hop along the “best” path towards some
destination; this information will be used to forward the incoming data.

In our model, both routers and hosts are represented as sites, and network connections are represented as links. The
whole network is modeled as the parallel composition of some autonomous systems plus the connections among them
(parameters of a recursive definition are omitted when obvious)

Net
def= A S1 | . . . | A Sk |Overlay Overlay

def= . . . | L(li
gihi

) | . . .

L(l(xy))
def= lxy .L(lxy)

Here L(li
gh) is a process that recursively offers a transportation service li

gh from gateway g to h. We denote by G the set
fn(Overlay) ∩ S , which contains the gateways. Notice that gateways are sites, not processes, in the style of the π -calculus;
alternatively, they may be modeled as dedicated processes.

An autonomous system A Sk is

A Sk
def= (Lk)Lk | Ak Lk

def= . . . | L(li,k
ab ) | . . .

where Lk = fn(Lk) ∩ L are the local links of A Sk , invisible to any other A S . We have two components: Lk , which keeps
providing the local services, and Ak , which is the parallel composition of generic processes using some sites of A Sk to
send and receive data. We call these sites local sites of Ak , denoted by Loc(Ak): formally they are Loc(a(s).p) = Loc(abr.p) =
{a}, the other cases are obvious. The set Loc(A Sk) of local sites of A Sk is (fn(Lk) ∩ S) ∪ Loc(Ak). For these we require
Loc(A Si) ∩ Loc(A S j) =∅, for all i 
= j. We write Gk for the set Loc(A Sk) ∩ G , i.e. the set of A Sk ’s gateways.

Now we want to model the routing mechanism. The routing tables are modeled as a collection of functions RT g , one
for each gateway g , such that RT g(x) is a link from g to some other gateway h, representing the next hop of the best path
towards x. The forwarding is implemented at the SOS level by the following additional rule for gateways1

p
(R)(•;W ;axr | a;lab;b | Θ)���������������⇒ p′

p
(R)(•;W ;lab;bxr | Θ)������������⇒ p′

ϕ(a,b, x, lab)

1 Roles played by sites, such as “gateway”, are stated informally here, but they could be formalized through a type system.
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Fig. 12. Example network.

where

ϕ(a,b, x, lab) := a ∈ Gk ∧
if x ∈ Loc(A Sk) then b ∈ Loc(A Sk) else lab = RTa(x)

which means that, whenever a is a gateway of A Sk , we have two cases: if x is in A Sk then a local link must be used to
extend the path, otherwise the link of the overlay network specified in a’s routing table. If a is not a gateway, by definition
only local links are available to extend the path. In this case the ordinary SOS rules are used.

Adding a rule to implement forwarding is more convenient than turning the routing tables into processes, which would
complicate the model. In fact, one could have, for each gateway, one site for each reachable destination, and a link between
two gateway sites only if they correspond to the same destination and belong to gateways involved in the optimal path
toward that destination. This would rule out non-optimal complete paths.

Now, consider the network depicted in Fig. 12. We have three ASs: an Italian one, a German one and an English one;
and two processes willing to communicate from A Sit to A Sen . Suppose the routing tables are such that RTit(b) = lit de and
RTde(b) = l′de en . A possible transition is

A Sit | A Sen | A Sde |Overlay
•;lit de;l′de en;•��������⇒ A S ′

it | A S ′
en | A Sde |Overlay.

Notice that only the part of the path between the gateways is observable.

Remark 6.1. The concurrent nature of the semantics here does not play a relevant role. The important element is the
presence of information about destinations, which NCPi observations do not have. We could imagine a version of NCPi
which is still interleaving, but paths are singleton paths of κNCPi. We did not make this choice at the very start in order to
be as closer as possible to the π -calculus.

7. Conclusions

In this paper we presented NCPi, an extension of π -calculus with an explicit notion of network. To achieve this, we
enriched the syntax with named connectors and defined a semantics whose observations are routing paths. Then we gave
operational models for our calculus, in terms of presheaf-based coalgebras: one characterizing the ordinary observational
equivalence, with an equivalent HD-automaton, and a saturated one, also closed under input prefix, but not under parallel
composition (see note added in proof). Finally, we introduced concurrency in our calculus by letting observations be mul-
tisets of paths. Thanks to these additional observations, the bisimilarity becomes a congruence. In [18] concurrent NCPi is
used to model the peer-to-peer architecture Pastry. The advantage is that it is possible to observe a whole routing path
through the overlay as the result of multiple synchronizations among peers.

One critical point was characterizing resource allocation strategies as endofunctors on SetG . This can be done directly, or
by going through endofunctors on G, which then are lifted by precomposition. We chose the latter option, because it allows
us to easily obtain some good properties: the existence of Kan extensions along those functors guarantees that their lifting
to presheaves preserve limits and colimits, which is essential for coalgebras employing these functors. However, in the case
of edge allocation, many unnecessary resources are generated, namely edges between all pairs of vertices not involved in
the allocation. Actually, since one can always recover the minimal support thanks to sheaf property of NI , this is not really
an issue. The other option would be having an endofunctor of the form

�•→• P (g) :=
∑

�:[2]→g

P (g�)

where � picks a pair of vertices in g and g� is g with a new edge between those vertices. On the one hand, this avoids
wasting resources, because it generates processes indexed by graphs with just one additional edge, but on the other hand
it has the conceptual disadvantage of using “implementation details” of resources at the level of syntax and semantics.
Moreover, such operator does not have clear properties.
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Related work The works most closely related to ours are [7] and [8] where network-aware extensions of Dπ [31] and
Klaim[32] are presented, called respectively DπF and tKlaim. Klaim is quite far from the synchronous π -calculus, be-
cause it models a distributed tuple-space modifiable through asynchronous primitives, but an encoding to the asynchronous
π -calculus exists [33]. Both DπF and tKlaim are located process calculi, which means that processes are deployed in lo-
cations, modeling physical network nodes. In κNCPi, instead, processes access the network through sites, possibly more
than one for each process, rather than being inside of it. However, locations can be easily introduced in κNCPi by a typing
mechanism which limits the number of subject names in processes. The network representations are quite different: in
DπF locations are explicitly associated with their connectivity via a type system, tKlaim has a special process to represent
connections, while in our calculus connections are just names, so the available network nodes and connections correspond
to the standard notion of free names. This brings simpler primitives, but also a higher level of dinamicity: connections can
be created and passed among processes, as shown in the introductory example; this example, in our opinion, is not easily
implementable in tKlaim and DπF . Finally, our calculus is more programmable: processes explicitly activate transportation
services over connections via the link prefix, while in the cited calculi the network is always available.

We can also cite [34–36] as examples of calculi where resources carry some extra information: they explicitly associate
costs with π -calculus channels through a type system. In our case, links could also be typed in order to model services
with different features, e.g. performance, costs and access rights.

Besides the π -calculus, other calculi have been equipped with a presheaf-based semantics: the open π -calculus in [37],
where processes are indexed by structured sets of names that represent distinctions; the explicit fusion calculus in [26],
where processes are indexed by fusions in the form of equivalence classes of names; and the fusion calculus in [38], where
the author uses the same presheaf category as [10] and incorporates fusions in the behavioral functor.

Future directions We plan to extend NCPi by adding other pieces of information to sites and links, e.g. access rights, and
study the corresponding presheaf semantics. The idea is that, since the category of resources can be constructed as a
category of algebras, as we did for graphs, associating more information to resources means adding sorts (objects) and
operations (morphisms) to the category describing the algebraic specification. For instance, we could have an operation
re : e → a that associates access rights to edges. Sorts and operations should be interpreted in suitable domains, e.g. we may
want access rights to have a lattice structure.

An idea we plan to investigate is using presheaves to formally express the relation between the architecture and the
detailed design of systems. In fact, one could think of a system as a number of components, deployed in different places,
running in parallel. Forming a category of structures that model possible architectures, e.g. hypergraphs where hyperedges
represent parallel components as in [39], and then use it as index category of presheaves, would give a formal way of
associating the structure “in the large” and the structure “in the small” of systems. Since execution steps may create or
reveal components, there will be allocation operators that refine the architecture, e.g. by replacing a single hyperedge with
a number of hyperedges connecting the same nodes.

Another line of research regards HD-automata: an open issue is how to construct HD-automata for observational con-
gruence; we argue that this can be done, in the style of the saturation construction described in Section 4.5, by explicitly
introducing fusions in the model, for instance as additional transitions labeled by fusions.

8. Note added in proof

Bisimilarity for interleaving NCPi is not closed under parallel composition. This is surprising, as π -calculus extensions
usually retain closure under this operator. The issue is discussed in [18]. Here we summarize this discussion.

The cause of the problem is not the language itself, but its novel synchronization mechanism: it is “transactional”,
meaning that a single observation may be the result of multiple synchronizations. The intuition behind the problem is that,
even if a parallel system is indistinguishable from its interleaving implementation, adding a router may allow the former
to build longer paths. The transactional mechanism does not affect compositionality of the concurrent semantics, because
parallel and interleaving processes can always be distinguished.

Example 8.1. Consider the following processes

p = lab | l′cd q = lab.l
′
cd + l′cd.lab,

the latter being the interleaving unrolling of the former. We have p ∼NC q, but if we put l′′bc in parallel to both processes we
have

p | l′′bc

a;lab;l′′′bcl′′cd;d−−−−−−−→ 0, q | l′′bc�
����a;lab;l′′′bcl′′cd;d−−−−−−−→

so p | l′′bc �
NC q | l′′bc .

However, closure under renamings does help. Let ≈NC denote the greatest network conscious bisimulation closed under
all renamings. Then ≈NC is able to distinguish the processes p and q of Example 8.1. In fact, if we take any renaming σ
that maps b to c, lab to l̃ac and l′ to l̃′ , we have
cd cd
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pσ
a;l̃ac;l̃′cd;d−−−−−→ 0 but qσ����a;l̃ac;l̃′cd;d−−−−−→.

The discriminative power of ≈NC is still not enough, as the following example shows.

Example 8.2. For the following processes

p′ = ār | lab|c(x)

q′ = ār | ((lab | c(x)) + (lab.c(x) + c(x).lab))

we have p′ ≈NC q′ but again p′ | l′bc

•;lab;l′bc ;•−−−−−−→ 0, which q′ | l′bc cannot simulate. This is because lab | c(x) is within a sum in
q′ , so it is forced to interact in an interleaving manner with ār. This example suggests that some combinations of parallel
and sum should be forbidden.

Finding a suitable syntactic restriction for which ≈NC is a congruence remains an open problem. We conjecture that a
good candidate is NCPi with guarded sums, where prefixes and sums are replaced with∑

i=1,...,n

πi .pi (n ∈N).

In fact, we only have processes that are structurally congruent to:

(R)

( ∑
i=1,...,n1

π1
i .p1

i | . . . |
∑

i=1,...,nk

πk
i .pk

i

)

where R is a sequence of restrictions; q′ in Example 8.2 is not of this form, so it is ruled out. This supports the validity of
the following conjecture.

Conjecture 8.3. ≈NC is a congruence for NCPi with guarded sums.
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Appendix A. Proofs

Convention A.1. When considering a collection of renamings and processes, we assume that processes have bound names that are
distinct from their free names and from the names involved in renamings.

Proof of Proposition 3.6. By induction on the inference. The only relevant case is whenever p α−→ q is inferred through (res).
We have p ≡ (r)p′ , α ≡α α′/r, q ≡ (r)q′ and the transition is inferred from p′ α′−−→ q′ . Since ≡ preserves well-formedness,
(r)p′ is well-formed as well and so is p′ . Therefore, by induction hypothesis, q′ is well-formed. Now we have to show that
(r)q′ is well-formed. Suppose it is not, then there must be lab in fn(q′) such that r = a or r = b. Then, since lab must also be
in fn(p′), (r)p′ would not be well-formed, a contradiction. �
Proof of Proposition 4.2. Let F the small category of finite ordinals and functions. Being a skeleton of FinSet, F is equivalent
to it. Let F : F → FinSet be the fully faithful and essentially surjective functor for such equivalence. Then it is easy to check
that the functor F ◦ (−) : F⇒ → FinSet⇒ is fully faithful and essentially surjective as well. This means that F⇒ and FinSet⇒

are equivalent, so FinSet⇒ is essentially small and its skeletal category G is small.
As for finite colimits and pullbacks: the category of finite graphs FinSet⇒ has them (it is a topos [40]), so also G does,

by equivalence. �
Proof of Theorem 4.5. Pc ◦ (−) is known to be accessible and preserve weak pullbacks, because so does Pc ; also S and L
do, because they can be seen as constant functors; sum and products of accessible and weak-pullback-preserving functors
are accessible and preserve weak pullbacks; �• and �•→• have both left and right adjoints, namely functors computing left
and right Kan extensions along δ• and δ•→• , so they preserve limits, in particular weak pullbacks, and (filtered) colimits. �
Proof of Proposition 4.7. Given a coalgebra (P ,ρ), the equivalent GI-ILncTS (P ,−→ρ) is given by

g � p α−→ρ g′ � p′ ⇐⇒ (α, p′ ∈ P g′) ∈ ρg(p)

In fact, (i) of Definition 4.6 reflects the definition of B , (ii) the naturality of ρ . �
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Proof of Proposition 4.8. Given a B-bisimulation (R,ρ), we shall show that {Rg}g∈|GI| is a GI-indexed bisimulation.
Consider any g ∈ |GI| and a pair (p,q) ∈ Rg . Since it is also a B-coalgebra, by Theorem 4.7 there is a GI-ILncTS (R,−→ρ)

which has one transition of the form

g � (p,q)
α−→ρ g′ � (p′,q′), (p′,q′) ∈ Rg′,

for each transition of p. This gives the simulating transition of q required by (i) of Definition 2.10. Condition (ii) just amounts
to saying that R is a presheaf GI → Set. �
Proof of Theorem 4.10. Let

g
ρ1

ρ2

g1

σ1

g2 σ2
g3

be any pullback in GI . It is a pullback also in FinSet⇒ . Therefore there is a unique isomorphism i such that the following
diagram in FinSet⇒ commutes

ĝ π̂1

π̂2

g

i

ρ1

ρ2

g1

σ1

g2 σ2
g3

where

ĝ = { {(e1, e2) ∈ eg1 × eg2 | σ1(e1) = σ2(e2)},
{(v1, v2) ∈ v g1 × v g2 | σ1(v1) = σ2(v2)},
sĝ := λ(e1, e2).(sg1(e1), sg2(e2)),

t ĝ := λ(e1, e2).(tg1(e1), tg2(e2)) }
and π̂1, π̂2 are the restrictions to ĝ of the projections from g1 × g2.

Let ĝ1, ĝ2 and ĝ3 denote π̂1( ĝ ), π̂2( ĝ ) and σ1( ĝ1) (= σ2( ĝ2)), respectively. Then we can decompose each morphism
as an isomorphism followed by an embedding as follows

ĝ π̂1

|π̂1|

|π̂2|

π̂2

g

i

|ρ1|

|ρ2|

ĝ1

|σ1|

g1

σ1ĝ2 |σ2| ĝ3

g2 σ2
g3

(2)

Our goal is showing that the following diagram is a pullback in Set

NI g
[ρ1]

[ρ2]

NI g1

[σ1]

NI g2 [σ2] NI g3

where it is easy to see that all the legs are indeed injections. In fact, they are the homomorphic extension to processes of
Nρi and Nσi , for (i = 1,2), which are injective because covariant hom functors preserve monomorphisms.
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Consider the following pullback

X
π X

1

π X
2

NI g1

[σ1]

NI g2 [σ2] NI g3

where

X = {(p1, p2) ∈ NI g1 × NI g2 | p1[σ1] = p2[σ2]}
and π X

1 ,π X
2 are the restrictions to X of the projections from NI g1 × NI g2. We shall show that the mediating morphism

I : NI g → X for the following diagram

X

(2.1)

(2.2)

π X
1

π X
2

NI g

I

[ρ1]

[ρ2]

NI g1

[σ2]

NI g2 [σ1] NI g3

is bijective.
The idea is “lifting” the decomposition of diagram (2) to Set. First of all, let NF : FinSet⇒ → Set be the functor that act

as N on the whole FinSet⇒ and let

X̂i := {p ∈ NI gi | fn(p) ⊆ NF ĝi} i = 1, . . . ,3

[|ρi |] := [ρi] : NI g → X̂i [|σi|] := λp ∈ X̂i .p[σi] : X̂i → X̂3 i = 1,2

The functions [|ρi|] and [|σi|] are the homomorphic extension to processes of NF |ρi | and NF |σi|, which are bijections, so
are themselves bijective. Their definition ensure the commutativity of

NI g
[|ρ1|]

[|ρ2|]

X̂1

[|σ1|]

X̂2 [|σ2|] X̂3

(3)

Now we aim to prove that all and only the processes in X̂1 and X̂2 appear in X , and each process appears in only one pair.
This will allows us to turn the projections from X into bijective functions by restricting their codomains to X̂1 and X̂2.

Formally, we have to show that:

(i) every (p1, p2) ∈ X is such that p1 ∈ X̂1 and p2 ∈ X̂2;
(ii) for all p1 ∈ X̂1 (resp. p2 ∈ X̂2) there is only one p2 ∈ X̂2 (resp. p1 ∈ X̂1) such that (p1, p2) ∈ X ;

As for (i), let S1 = fn(p1) ∩ (NF g1 \ NF ĝ1) and suppose that S1 is not empty. Let x ∈ S1 and xσ1 = x′ (for the sake of
readability we write σ1 also for the function NF σ1). We have two cases:

1. Every y ∈ fn(p2) is such that yσ2 
= x′: then x cannot be in fn(p1), because otherwise we would have p1[σ1] 
= p2[σ2];
2. There is y ∈ fn(p2) such that yσ2 = x′: then x and y stem from items i of g1 and j of g2, respectively, such that

σ1(i) = σ2( j), so i appears also in ĝ1, which implies x ∈NF ĝ1.

Both cases imply x /∈ S1, which is absurd.
As for (ii), consider the following function

ϕ : X̂1
[|ρ1|]−1−−−−→ NI g

[|ρ2|]−−−→ X̂2;
we can let p2 be ϕ(p1): by commutativity of (3) we have

p2[σ2] = p2[|σ2|] = p1[|σ1|] = p1[σ1],
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so (p1, p2) ∈ X . Now, suppose there is another p′
2 such that (p1, p′

2) ∈ X . By definition of X , p1[σ1] = p′
2[σ2], but also

p1[σ1] = p2[σ2], so p2[σ2] = p′
2[σ2] and, by injectivity of [σ2], p′

2 = p2.
Now, thanks to the above observations, we have that the two functions

|π X
1 | : X → X̂1 |π X

2 | : X → X̂2

are well-defined and bijective. Therefore we have that the following diagram commutes

X
|π X

1 |

|π X
2 |

I:=|π X
1 |−1◦[|ρ1|]

π X
1

π X
2

NI g
[|ρ1||

[|ρ2|]

X̂1

[|σ1|]

NI g1

[σ1]X̂2 [|σ2|] X̂3

NI g2 [σ2] NI g3

�

Proof of Theorem 4.12.

(i) One direction is given by Proposition 4.7, the other one by Theorem 4.9.
(ii) Given a GI-indexed bisimulation {R g}g∈|GI| on (NI,−−→ν), we will show that

R∗ :=
⋃

g∈|GI|
R g

is a network conscious bisimulation that is closed under injective renamings. Consider (p,q) ∈ R∗ and suppose p,q ∈
NI g . Condition (i) of Definition 2.10 says that p and q are able to simulate each other and their continuations are again
in R∗; freshness of bn(α) w.r.t. q is guaranteed due to bn(α) being generated by δ• or δ•→• , thus fresh by construction.
Finally, closure under injective renamings is guaranteed by (ii) of Definition 2.10.
Viceversa, consider a network conscious bisimulation R . Then is easy to see that the following family of relations is a
GI-indexed bisimulation on (NI,−−→ν):

{R g := R ∩ NI g}g∈GI �
Proof of Theorem 4.14. E and R are a pair of adjoint functors between accessible categories, hence are accessible them-
selves (Proposition 2.23 of [22]). Moreover, they are both right adjoints (R is right adjoint to the left Kan extension along
GI ↪→ G), thus preserve limits. Therefore, being B̂ the composition of three accessible and weak-pullback-preserving functors,
it has the same properties. �
Proof of Proposition 4.15. One direction of the mapping is given by

(R P ,ρ) �−→ (P ,ρ ′) ρ ′ : P
ηP

E R P
Eρ

E BR P = B̂ P

the other one by

(P , φ) �−→ (R P , φ′) φ′ : R P
Rφ

R B̂ P = RE BR P
εBRP BR P �

Proof of Proposition 17. Consider a B̂-coalgebra (P ,ρ) and the transition relation −→ρ given by

g � p
(σ ,α)−−−→ρ g′ � p′ ⇐⇒ (α, p′ ∈ P g′) ∈ (ρg(p))σ .

We have that (P ,−→ρ) is a GI-ILncTSSAT . In fact, requirement (i) of Definition 4.16 characterizes transitions according to B̂:
explicitly, we have

ρg(p) ∈
∏

′′
BR P (g′′)
σ :g→g ∈‖G‖
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so each label of a transition of p is of the form (σ : g → g′′,α), where (α, p′) ∈ BR P (g′′), which means that the shape of
the continuation g′ � p′ is given by (ii) of Definition 4.6. Condition (iii.a) amounts to require, for the tuple t = ρg(p)

(α, p′) ∈ tσ ⇐⇒ (α[σ ′], p[ϕ(σ ′)]) ∈ tσ ′◦σ

but the pairs on the right-hand side are exactly the elements of tσ [σ ′]BRP , so the requirement can be rewritten as tσ ′◦σ =
tσ [σ ′]BRP , which is the closure under monos condition characterizing the tuples in B̂ P (g). Finally, condition (iii.b) reflects
the naturality of ρ , explicitly

p ∈ P g
ρg

[σ ]P

t s.t. (α, p′) ∈ tσ ′◦σ
[σ ]B̂ P

p[σ ] ∈ P g′
ρg′ t′ s.t. (α, p′) ∈ t′

σ ′

�

Proof of Theorem 4.18.

(i) Analogous to (i) of Theorem 4.12.
(ii) Each G-indexed bisimulations {R g}g∈|G| on (N,−−→ν-SAT) is equivalent to a B̂-bisimulation R , thanks to (i); R , by Propo-

sition 4.15 (instantiated to those B-coalgebras that are B-bisimulations) is in turn equivalent to a B-bisimulation RR .
By Theorem 4.12, this corresponds to a network conscious bisimulation, and precisely to

⋃
g∈|GI| RR(g), which is clearly

equal to
⋃

g∈|G| R g , thus is closed under all renamings. �

Proof of Proposition 5.4. By induction on the inference of p
Λ�⇒ q. We show the most relevant case, i.e. when this transition

is inferred through (com). We have that p
Λ�⇒ q is inferred from

p
Λ′=(R)(•;W ;abr | ab′x;W ′;• | Θ)�������������������⇒ q′,

so Λ ≡Λ (R ′)(•; W ; W ′; • |Θ) and q ≡ (R ′′)q′(σb ◦ σr). By induction hypothesis Λ′ and q′ are well-formed. Therefore also Λ

is well-formed, because it is obtained from Λ′ by just removing some names, and it is simple, otherwise (com) could not
be applied.

As for (R ′′)q′(σb ◦ σr), q′(σb ◦ σr) is clearly well-formed, because σb and σr avoid captures. Now we show that, if a ∈ R ′′ ,
then lab ∈ fn(q′(σb ◦ σr)) only if lab ∈ R ′′ . Suppose, by absurd, that lab ∈ fn(q′(σb ◦ σr)) but lab /∈ R ′′ . Then we have that lab
must be in fn(p), Bn(Λ) or Objin(Λ):

• lab ∈ fn(p) contradicts a ∈ R ′′ ⊆ bn(p), because we assumed that free and bound names of p are distinct;
• if lab ∈ Bn(Λ) then either lab ∈ R ′ or (l(ab)) is the placeholder of an input path in Λ: in the first case also a must be in

R ′ , because lab ∈ Obj(Θ) and thus a ∈ Obj(Θ), but then a /∈ R ′′ , which is a contradiction; in the second case, a would be
already bound in Λ, but this is not allowed by the inference rules;

• lab ∈ Objin(Λ) contradicts a ∈ R , because otherwise lab would be bound and Λ non-well-formed.

Summarizing, either lab /∈ fn(q′(σb ◦ σr)) or lab ∈ fn(q′(σb ◦ σr)) and lab ∈ R ′′ , so q is well-formed. �
A.1. Proof of Theorem 5.6

We introduce the following notation:

Π,Π ′, . . . ,Π1,Π2, . . . : (forrests of) proof trees
Πσ : proof obtained by applying σ to every process and concurrent path in Π

dom(σ ) : set of names that are not mapped to themselves by σ ;
img(σ ) : image of dom(σ ) through σ ;
ds(α) : destination site of a path α, if any.

xσ ∗ : result of applying σ to both the free and bound names of x

We call non-linear rules those rules that depend on the equality of certain names in the premises, namely (com), (srv-in),
(srv-out), (srv-srv), which require that at least the interaction sites of two paths in the premise are equal; we call linear
rules all the other ones.

We need a plethora of lemmata in order to prove the main result.
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Lemma A.2. Suppose p
Λ�⇒ q and let Ω be a sequence of non-linear rule instances inferring p

Λ′�⇒ q′ from this transition. Then q′ is

of the form (R)qσ , for some R and σ . Moreover, given any other transition p′′ Λ�⇒ q′′ , there is a sequence of non-linear rule instances

that infers p′′ Λ′�⇒ (R)q′′σ from it.

Proof. Non-linear rules, and in particular (com), can only modify the continuation of the premise by adding restrictions and
renaming it. This justifies the first part of the statement. The second part follows from observing that each rule instance in

Ω does not look at the source process, so we can replace p with p′′ and q with q′′ in Ω in order to infer p′′ Λ′�⇒ (R)q′′σ
from p′′ Λ�⇒ q′′ . �
Lemma A.3. We can define three operations on proofs:

(i) renaming: Given p
Λ�⇒ q, with proof Π , and a renaming σ such that Λσ is simple, then pσ

Λσ��⇒ qσ has proof Πσ .

(ii) α-conversion: Given p
Λ�⇒ q, with proof Π , for any σ = [r′/r] such that r ∈ Bn(Λ) and r′ is fresh w.r.t. p and Λ, we have that

pσ ∗ Λσ ∗���⇒ qσ has proof Πσ ∗ .

(iii) Input object restriction: Given p
(R)(abr;W ;• | Θ)����������⇒ q, with proof Π , suppose a(s).p′ aar;•���⇒ p′[r/s] is the axiom for the input path

in Π . Then, for any fresh s′ , there is transition

p[s′/s]∗ (R)(ab(s′);W ;• | Θ)�����������⇒ q′

with proof Π ′ obtained as follows:
(a) r is replaced with (s′) in each input path from which abr; W ; • is constructed;
(b) p′[r/s] is replaced with p′[s′/s] throughout the proof.
Moreover, q′[r/s′] = q.

Proof. All the three statements can be proved by induction on the depth of Π .

(i) By cases on the type of the last rule instance in Π ; we show some relevant ones:

Case (OPEN) Then p = (r′′)p′ , Λ ≡Λ (r′′)(Λ′//r′′) and the transition is inferred from p
Λ′�⇒ q. Suppose this last transition

has proof Π ′ . Λ′σ is simple because, if r′′ is a link, σ does not map any other link to it by Convention A.1,

so the induction hypothesis can be applied, yielding p′σ Λ′σ��⇒ qσ . Using (open) again, whose side condition
holds because σ does not map any other free name to r′′ , we get the thesis.

Case (PAR) Then p = p1 | p2, Λ ≡Λ Λ1 |Λ2 and the transition is inferred from p1
Λ1��⇒ q1 and p2

Λ2��⇒ q2, so q = q1 |q2.
Suppose these transitions have proofs Π1 and Π2. Clearly, if (Λ1 |Λ2)σ is simple, so are Λ1σ and Λ2σ , thus,

by induction hypothesis, p1σ
Λ1σ���⇒ q1σ and p2σ

Λ2σ���⇒ q2σ have proofs Π1σ and Π2σ , respectively. Moreover,
by Convention A.1, σ cannot break (par) side conditions, so, applying (par) again, we get the thesis.

Case (COM) Then the transition is inferred from p
(R)(α1 | α2 | Θ)���������⇒ q, with α1 = •; W ;abr and α2 = ab′x; W ′; •, so Λ ≡Λ

(R ′)(•; W ; W ′; • |Θ) and q = (R ′′)q′σ ′ . Suppose the premise has proof Π ′ . If (R ′)(•; W ; W ′; • |Θ)σ is simple,

thus W σ and W ′σ are simple, so are α1σ and α2σ , hence, by induction hypothesis, pσ
(R)(α1 | α2 | Θ)σ����������⇒ q′σ

has proof Π ′σ . Suppose σ ′ = [r1/r′
1, . . . , rk/r′

k]. Applying (com) to the renamed transition we get

pσ
(R ′)(•;W ;W ′;• | Θ)σ�������������⇒ (R ′′σ)q′([r1σ/r′

1, . . . , rkσ/r′
k] ◦ σ),

but the continuation coincides with (R ′′σ)q′(σ ◦ σ ′). The thesis follows.

(ii) A straightforward adaptation of the proof of (i). The cases (res) and (open) are treated by applying the renaming
operation (i) to the premises with σ = [r′/r] whenever p = (r)p′ . Notice that σ ∗ cannot make paths non-simple, because
r and r′ are both fresh w.r.t. the lists of links appearing in labels.

(iii) By cases on the type of the last rule of Π . We show two cases: the first clarifies the most, the second exemplifies the
inductive step.

Case (IN): Then p = a(s).p′ , Λ is just aar; •, q = p′[r/s] and Π is an axiom. Then Π ′ is

a(s′).p′[s′/s] aa(s);•����⇒ p′[s′/s]
which clearly satisfies (a) and (b). Finally, we have

(p′[s′/s])[r/s′] = p′[r/s] = q.
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Case (OPEN): Then p = (r′)p′ , Λ ≡Λ (r′)(R)(abr; W ; •//r′ |Θ//r′) and the transition is inferred from p′ (R)(abr;W ;• | Θ)����������⇒ q.
Suppose this last transition has proof Π ′′ . Clearly it contains the same input axiom as Π . So, by induction
hypothesis, there is

p′[s′/s]∗ (R)
(
ab

(
s′

);W ;• | Θ)
������������⇒ q′

where q′ is q after (b) is applied, and this transition has proof Π ′′′ , obtained via (a) and (b). We can apply
(open) again and get the thesis. �

Lemma A.4. Suppose p
Λ�⇒ q has a proof with the following structure

Π

non-linear rule ρ1

linear rule ρ2

p
Λ�⇒ q

and let α1 and α2 be the paths concatenated by ρ1 . Suppose is(α1) ∩ is(α2) ∩ bn(p) =∅. Then there is Π ′ , a linear rule instance ρ ′
2 ,

a non-linear rule instance ρ ′
1 , p∗ ≡ p and q∗ , obtained by bringing some restrictions of q to the top level, such that

Π ′
ρ ′

2

ρ ′
1

p∗ Λ�⇒ q∗

Proof. We have to consider all the combinations of ρ1 and ρ2 where the objects of α1 and α2 are involved in the side
conditions of ρ2. If they are not, we can simply put ρ ′

1 = ρ2, ρ ′
2 = ρ1 and Π ′ = Π . The only non-trivial cases are when ρ2

is (res), (open) or (par). We show the proof of the statement for ρ1 being (com), which is the most involved case.

Case ρ2 = (RES): Then p = (r′)p′ and the transition is inferred as follows

Π

p′ (R)(•;W ;abr | ab′x;W ′;• | Θ)�����������������⇒ q′
(com)

p′ (R ′)(•;W ;W ′;• | Θ)������������⇒ (R ′′)q′(σb ◦ σr)
(res)

(r′)p′ Λ≡Λ(R ′)(•;W /r′;W ′/r′;• | Θ/r′)�������������������⇒ (r′)(R ′′)q′(σb ◦ σr)

We want (com) to appear after the rule treating the restriction of r′ . We have two cases:
• r′ ∈ n(r): if x = r then the earlier restriction of r′ should be treated through (open). However, we need to make the

input object in the top transition bound in order to get a proper premise of (open). Let s be the input placeholder in
p′ for ab′x; W ′; • and let s′ be fresh. Then we can apply (iii) of Lemma A.3 and get

p′[s′/s]∗ (R)
(•;W ;abr | ab′(s′

);W ′;• | Θ)
������������������⇒ q′′;

where q′′[r/s′] = q′ . This transition has proof Π ′ , obtained as described in (iii) of Lemma A.3. We can put ρ ′
2 = (open),

because (open) side condition is satisfied due to (res)’s one and r′ 
= a by hypothesis, and ρ ′
1 = (com). So we have

Π ′

p′[s′/s]∗ (R)(•;W ;abr | ab′(s′);W ′;• | Θ)������������������⇒ q′′
(open)

(r′)p′[s′/s]∗ (r′)(R)(•;W /r′;abr | ab′(s′);W ′/r′;• | Θ/r′)�������������������������⇒ q′′
(com)

(r′)p′[s′/s]∗ (R ′)(•;W /r′;W ′/r′;• | Θ/r′)����������������⇒ (r′)(R ′′)q′′([r/s′] ◦ σb) = (r′)(R ′′)q′′σb

Now, since x = r implies σr = id, the continuation of the inferred transition is indeed the one of the original proof.
Finally, the case x = (s) is trivial: we can permute the rules without affecting Π .

• r′ = b /∈ n(r): in this case necessarily b /∈ R , so b = b′ and σb = id. We simply have Π ′ = Π , ρ ′
2 = (com) and ρ ′

1 =
(open).
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Case ρ2 = (OPEN): then p = (r′)p′ and the transition is inferred as follows

Π

p′ (R)(•;W ;abr | ab′x;W ′;• | Θ)�����������������⇒ q′
(com)

p′ (R ′)(•;W ;W ′;• | Θ)������������⇒ (R ′′)q′(σb ◦ σr)
(open)

(r′)p′ Λ≡Λ(r′)(R ′)(•;W /r′;W ′/r′;• | Θ/r′)���������������������⇒ (R ′′)q′(σb ◦ σr)

The proof then is a straightforward adaptation of the previous case.
Case ρ2 = (PAR): Then p = p1 | p2 and the transition is inferred as follows

Π1

p1
(R)(•;W ;abr | ab′x;W ′;• | Θ)�����������������⇒ q1

(com)

p1
(R ′)(•;W ;W ′;• | Θ)������������⇒ (R ′′)q1σ

Π2

p2
Λ2��⇒ q2

(par)

p1 | p2
(R ′)(•;W ;W ′;• | Θ) | Λ2��������������⇒ (R ′′)q1σ |q2

Now, we would like to permute (com) and (par), but there may be some bound names in {a,b,b′} ∪ n(x) ∪ n(r) that
conflict with Λ2, breaking (par) side conditions. So we have to repeatedly apply (ii) of Lemma A.3 to α-convert Π1. Let
σ ∗

α be the α-converting renaming. We can build the following proof

Π1σ
∗
α

p1σ
∗
α

(Rσ ∗
α )(•;W ;aσαbσαrσα | aσαb′σαxσα ;W ′;• | Θ)����������������������������⇒ q1σα

Π2

p2
Λ2��⇒ q2

(par)

p1σ
∗
α | p2

(Rσ ∗
α )(•;W ;aσαbσαrσα | aσαb′σαxσα ;W ′;• | Θ) | Λ2�������������������������������⇒ q1σα |q2

(com)

p1σ
∗
α | p2

(R ′)(•;W ;W ′;• | Θ) | Λ2��������������⇒ (R ′′σ ∗
α)(q1σα |q2)σ

′

where clearly p1σ
∗
α | p2 ≡ p1 | p2 and σ ′ maps the α-converted extruded names to the α-converted input place-

holders, so, since dom(σ ′) is fresh w.r.t. q2, α-conversion allows us to recover the original mapping, namely
(R ′′σα)(q1σα |q2)σ

′ ≡ (R ′′)(q1σ |q2). Notice that the scope of R ′′ now includes both q1σ and q2. �

Lemma A.5. Given a process p and a renaming σ , if pσ
Λ�⇒ q has a proof Π such that every instance of a non-linear rule in Π whose

premise is

pσ
(R)(α1 | α2 | Θ)���������⇒ q′

where α1 and α2 are the paths concatenated in the consequence, is such that

img(σ )

∩
obj(α1) ∪ (is(α1) ∩ is(α2)) =∅,

then p
Λ′�⇒ q′ , where Λ = Λ′σ and q = q′σ .

Proof. By induction on the depth of Π . Suppose Π has depth at least one (the base cases are trivial), the proof proceeds
by cases on the last rule of Π . We show two of them, the other ones are analogous:

Case (OPEN): Then p = (r′′)p′ , Λ ≡Λ (r′′)(Λ′′//r) and the transition is inferred as follows

Π ′

p′σ Λ′′��⇒ q
(open)

(r′′)p′σ (r′′)(Λ′′//r)������⇒ q

By induction hypothesis we have p′ Λ̃�⇒ q̃, where Λ′′ = Λ̃σ and q = q̃σ . We can apply (open) to this transition,

because σ does not affect r′′ and, consequently, the rule’s side condition. This yields (r′′)p′ (r′′)(Λ̃//r′′)������⇒ q̃, which
satisfies the statement.
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Case (COM): Then Λ ≡Λ (R ′) (•; W ; W ′; • |Θ), q = (R ′′)q′σ and the transition is inferred from

Π ′

pσ
(R) (•;W ;abr′′ | ab′x;W ′;• | Θ)������������������⇒ q′

(com)

pσ
(R ′) (•;W ;W ′;• | Θ)������������⇒ (R ′′)q′σ ′

By induction hypothesis we have p
(R̃) (α̃1 | α̃2 | Θ̃)���������⇒ q̃ where α̃1σ = •; W ;abr′′ , α̃2σ = ab′x; W ′; •, R̃σ = R , Θ̃σ =

Θ and q̃σ = q′ . By hypothesis, σ acts as the identity on a,b and r′′ , so we have: is(α̃1) = is(α̃2) = a; obj(α̃1) =
obj(α̃2) whenever r′′ /∈ R; ds(α̃1) = ds(α̃2) = b whenever b /∈ R . Therefore we can apply (com) again and get the
desired transition. The continuation of such transition is indeed renamed through σ ′: if some names among r′′ ,x,
b and b′ are bound in pσ , they are also bound in p, because σ did not affect them by Convention A.1. �

Lemma A.6. Given a process p and a renaming σ , suppose pσ
Λ�⇒ q has proof Π . Then there is a transition p

Λ′�⇒ q′ and a sequence

Ω of non-linear rule instances such that from pσ
Λ′σ��⇒ q′σ , after applying Ω , we get pσ

Λ�⇒ q∗ , where q∗ is q with some unguarded
restrictions brought to the top level.

Proof. Since, by Convention A.1, img(σ ) ∩ bn(p) = ∅, we can repeatedly use Lemma A.4 to push towards the root of the
proof all the instances of non-linear rules in Π that concatenate α1 and α2 such that obj(α1) or is(α1) ∩ is(α2) are in the
image of σ , i.e. those that violate the hypothesis of Lemma A.5. More precisely:

1. Take the deepest subproof Π̃ of Π such that Lemma A.4 can be applied; let p̃
Λ̃�⇒ q̃ be its inferred transition.

2. Permute the last two rule instances in Π̃ using Lemma A.4, let Π̃ ′ the resulting proof and p̃∗ Λ̃�⇒ q̃∗ its inferred
transition.

3. Replace Π̃ with Π̃ ′ in Π and each occurrence of p̃ and q̃ with q̃∗ and q̃∗ , respectively, in the piece of proof below Π̃ .
The resulting proof is indeed valid, because step 1 does not affect the label.

Repeat these steps until obtaining a new proof for p∗σ Λ�⇒ q∗ . This proof has an upper part Π ′′ and a lower part Ω ′ , the
latter containing all the non-linear rules that violate the hypothesis of Lemma A.5 when considering the renaming σ . Now,

suppose Π ′′ infers p∗σ Λ̂�⇒ q̂. We can apply Lemma A.5 to this transition and get the required p∗σ(≡ p)
Λ′�⇒ q′ such that

Λ̂ = Λ′σ and q̂ = qσ . Finally, Lemma A.2 allows us to construct the required Ω out of Ω ′ . �

Lemma A.7. The relation R= ⋃
n∈ω Rn, where

R1 = {((r)p1 | p2, (r)(p1 | p2)) | r /∈ fn(p2)}
R2 = {(p1 | p2, p2 | p1)}

R3
n+1 = {((r)p, (r)q) | (p,q) ∈ Rn}

R4
n+1 = {(pσ ,qσ) | (p,q) ∈ Rn}

R0 =∼NC
κ ∪R1 ∪R2 Rn+1 = R3

n+1 ∪R4
n+1 ∪Rn

is a network conscious bisimulation.

Proof. Given (p,q) ∈ R, we have to prove that p and q can simulate each other’s transitions and that their continuations
are related by R. To do this, we proceed by induction on n, considering any p′ ≡ p and q′ ≡ q such that (p′,q′) ∈ Rn .
For the base case, we treat separately the case of (p′,q′) being in R1 and R2. For the inductive step, we do the same,
considering R3

n+1 and R4
n+1, for n � 0. Considering processes that are structurally congruent to the original ones is harmless,

because ≡⊆∼NC
κ ⊆R, and allows us to ignore transitions that are not inferred directly through the rules.
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p ≡ (r)p1 | p2 , q ≡ (r)(p1 | p2) Suppose ((r)p1 | p2, (r)(p1 | p2)) ∈ R1 and consider a transition (r)p1 | p2
Λ�⇒ p′ . We

prove that (r)(p1 | p2) can simulate this transition by cases on the last rule used to infer it.

Case (PAR): Suppose it is inferred as follows

p1
Λ1��⇒ q1

(open)

(r)p1
(r)(Λ1//r)������⇒ p′

1

.

.

.

Ω

.

.

.

(r)p1
Λ′

1��⇒ (R)p′
1σ

.

.

.

Ω(r)

.

.

.

(r)p1
Λ′′

1��⇒ (R ′)(R)p′
1(σ(r) ◦ σ) p2

Λ2��⇒ p′
2

(par)

(r)p1 | p2
Λ′′

1 | Λ2����⇒ (R ′)(R)p′
1(σ(r) ◦ σ) | p′

2

where Ω and Ω(r) are sequences of non-linear rule instances (the rule on top may be (res): this case is analogous).

In particular, suppose Ω(r) contains those rules that treat the communication of (r), if any.

The idea is to build a new proof where (par) is applied before (open). However, some names in Bn(Λ1)\Bn(Λ′′
1)

and n(r) that are also in Fn(Λ2) may prevent the application of these rules. So we use (i) and (ii) of Lemma A.3

to replace those names with fresh ones. Let σ̂ be the mapping that performs this operation. The new proof is

p1σ̂
∗ Λ1σ̂

∗���⇒ p′
1σ̂ p2

Λ2��⇒ p2
(par)

p1σ̂
∗ | p2

Λ1σ̂
∗ | Λ2������⇒ p′

1σ̂ | p′
2

.

.

.

Ω ′
.
.
.

p1σ̂
∗ | p2

Λ′
1σ̂

∗ | Λ2������⇒ (Rσ̂ )(p′
1σ̂ | p′

2)σ
′

(open)

( r̂ )(p1σ̂
∗ | p2)

( r̂ )(Λ′
1σ̂

∗//̂r | Λ2)����������⇒ (Rσ̂ )(p′
1σ̂ | p′

2)σ
′

.

.

.

Ω ′
(̂r)

.

.

.

( r̂ )(p1σ̂
∗ | p2)

Λ′′
1 | Λ2����⇒ (R ′σ̂ )(Rσ̂ )(p′

1σ̂ | p′
2)σ

′
(̂r) ◦ σ ′

where the rule instances occurring in Ω ′ and Ω ′
(r) are of the same kind of those in Ω and Ω(r) , concatenate the

same pairs of paths (modulo α-conversion of bound names), but involve different processes. This does not affect

the applicability of the rules.

( r̂ )Λ′
1σ̂

∗// r̂ can be thought of as the α-converted version of Λ′
1, but the α-converted bound names, namely

those in R ′σ̂ , are all removed by the subsequent non-linear rules. In particular, r̂ is removed whenever r ∈ Fn(Λ2),

because otherwise (par) could not be applied in the original proof, and is equal to r whenever r /∈ Fn(Λ2). This is

why we have Λ′′ in the bottom transition.
1
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Clearly we have ( r̂ )(p1σ̂
∗ | p2) ≡ (r)(p1 | p2) and

(R ′σ̂ )(Rσ̂ )(p′
1σ̂ | p′

2)σ
′
(r) ◦ σ ′ = (R ′σ̂ )(Rσ̂ )(p′

1(σ
′
(r) ◦ σ ′ ◦ σ̂ ) | p′

2(σ
′
(r) ◦ σ ′))

= (R ′σ̂ )(Rσ̂ )(p′
1(σ

′
(r) ◦ σ ′ ◦ σ̂ ) | p′

2)

≡ (R ′)(R)(p′
1(σ(r) ◦ σ) | p′

2)

where the second equation holds due to freshness of dom(σ ′
(r) ◦σ ′) w.r.t. p′

2 and the last congruence holds because
σ̂ only affects names that are either being extruded or bound input placeholders in Λ1, so σ ′

(r) ◦ σ ′ ◦ σ̂ replaces
the α-converted input placeholders with α-converted extruded names, but these are again bound by (Rσ̂ ) and
(R ′σ̂ ) in the continuation. The overall effect is the α-conversion of (R ′)(R)(p′

1(σ(r) ◦ σ) | p′
2).

Since R is closed under α-conversion and scope extension, we have

( (R ′σ̂ )(Rσ̂ )(p′
1σ̂ | p′

2)σ
′
(r) ◦ σ ′, (R ′)(R)p′

1(σ(r) ◦ σ) | p′
2 ) ∈ R.

Case non-linear rule: The last part of the derivation of (r)p1|p2
Λ�⇒ p′ is a sequence of non-linear rule instances Ω with

an occurrence of (par) on top. By the previous case, the transition of (r)p1 | p2 inferred using (par) can be simu-
lated by (r)(p1 | p2), and the continuations are related by R. By Lemma A.2, there is sequence Ω ′ of non-linear
rule instances such that Ω and Ω ′ add the same restrictions and apply the same renaming to the continuations
of (r)p1 | p2 and (r)(p1 | p2) as inferred by (par). The thesis comes from R being closed under renamings and
addition of restrictions.

Now consider a transition (r)(p1 | p2)
Λ�⇒ p′ . Again, we proceed by cases on the last rule used to infer it:

Case (OPEN): Suppose it is inferred as follows

p1
Λ1��⇒ p′

1 p2
Λ2��⇒ p′

2
(par)

p1 | p2
Λ1 | Λ2����⇒ p′

1 | p′
2

.

.

.

Ω1

.

.

.

p1 | p2
Λ′

1 | Λ2����⇒ (R1)(p′
1 | p′

2)σ1

.

.

.

Ω2

.

.

.

p1 | p2
Λ′�⇒ (R ′)(R1)(p1 | p2)σ ◦ σ1

(open)

(r)(p1 | p2)
(r)(Λ′//r)�����⇒ (R ′)(R1)(p′

1 | p′
2)σ ◦ σ1

where Ω1 contains instances of non-linear rules that only act on Λ1 and Ω2 all the other ones.
Now we want to move (open) before (par), but we have to take care of the following situation: Ω1 and Ω2

may contain some occurrences of (com) concatenating α1 and α2 such that α1 ∈ Λ1, α2 ∈ Λ2 and r ∈ objin(α2).
Since we have to restrict r earlier in the proof, r in each α1 will become bound, so we must turn each α2 into
a bound input path by using (iii) of Lemma A.3 in order for (com) to be applied. Suppose Λ2 contains n such
input paths and s1, . . . , sn are the placeholders of the associated input prefixes. Let s′

1, . . . , s′
n be fresh names

and σ2 := [s′
1/s1, . . . , s′

n/sn]. By repeatedly applying (iii) of Lemma A.3 we get a transition p2σ
∗
2

Λ′
2��⇒ p′′

2 such
that p′′

2[r/s′
1, . . . , r/s′

n] = p′
2, where Λ′

2 is obtained by replacing each aibiri; W i; • ∈ Λ2 with aibi(si); W i; •, for
i = 1, . . . ,n. The new proof is
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p1
Λ1��⇒ p′

1

.

.

.

Ω ′
1

.

.

.

p1
Λ′

1��⇒ (R1)p′
1σ1

(open)

(r)p1
(r)(Λ′

1//r)������⇒ (R1)p′
1σ1 p2

Λ′
2��⇒ p′′

2
(par)

(r)p1 | p2
(r)(Λ′

1//r) | Λ′
2��������⇒ (R1)p′

1σ1 | p′′
2

.

.

.

Ω ′
2

.

.

.

(r)p1 | p2
(r)(Λ′//r)�����⇒ (R ′)((R1)p′

1σ1 | p′′
2)σ ′

where Ω ′
1 and Ω ′

2 contain instances of the same kind of rules, and concatenate the same pairs of paths, as Ω1
and Ω2, with the exception of input paths of the form abr; W ; • in Ω ′

2, which are replaced by bound input paths
of the form ab(s); W ; •. Therefore we have σ ′ = σ ◦ σ2 and

(R ′)((R1)p′
1σ1 | p′′

2)σ ′ = (R ′)((R1)p′
1σ1 | p′′

2)σ ◦ σ2

= (R ′)((R1)p′
1σ1 | p′′

2σ2)σ by freshness of dom(σ2) w.r.t. p1

= (R ′)((R1)p′
1σ1 | p′

2)σ (iii) of Lemma A.3

= (R ′)((R1)p′
1 | p′

2)σ ◦ σ1 by freshness of dom(σ1) w.r.t. p2

and, by closure under scope extension and renamings

((R ′)(R1)(p′
1 | p′

2)σ ◦ σ1, (R ′)((R1)p′
1 | p′

2)σ ◦ σ1) ∈ R.

Case (RES): Analogous.
Non-linear rule: As before.

p ≡ p1 | p2,q ≡ p2 | p1 Suppose (p1 | p2, p2 | p1) ∈ R2 and p1 | p2
Λ�⇒ p′ . This transition can be inferred through (par)

or a non-linear rule. In the first case, p2 | p1 is able to simulate it, by the commutativity of the parallel operator of concurrent
paths. Its continuation is clearly paired with p′ in R. The second case is analogous to the “non-linear rule” cases shown
above.

p ≡ (r)p′,q ≡ (r)q′ Suppose ((r)p′, (r)q′) ∈ R3
n+1 and (r)p′ Λ�⇒ p′′ , with Bn(Λ)# (r)q′ . We have to prove that (r)q′ can

simulate this transition. We proceed by cases on the last rule used to infer it.

Case (OPEN): then the transition is inferred from p′ Λ′�⇒ p′′ and Λ ≡Λ (r)(Λ′/r). Since (p′,q′) ∈ Rn and clearly Bn(Λ′)# q′ ,
by induction hypothesis q′ Λ′�⇒ q′′ , with (p′′,q′′) ∈R, so we can apply (open) to get (r)q′ Λ�⇒ q′′ .

Case (RES): analogous to (open); the main difference is that the two transitions have (r)p′′ and (r)q′′ as continuations,
which are paired in R by its closure under addition of restrictions.

Case non-linear rule: Analogous to the “non-linear rule” cases above.

p ≡ p′σ ,q ≡ q′σ Suppose (p′σ ,q′σ) ∈R4
n+1 and p′σ Λ�⇒ p′′ , with Bn(Λ)# q′σ . We can safely assume that

bn(q′σ) are fresh w.r.t. p′σ and viceversa (4)

(we can obtain this by α-conversion, which is contained in the bisimilarity). By Lemma A.6 and A.2 there is a transition

p′ Λ̃�⇒ p̃ and a sequence Ω of non-linear rule instances such that, if we apply Ω to p′σ Λ̃σ��⇒ p̃σ , we get p′σ Λ�⇒ (R)(̃pσ)σ ′ ,
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for some R and σ ′ according to Lemma A.2, where the continuation is p′′ with some restrictions brought to the top level.

In order to apply the induction hypothesis (i.e. that Rn is a bisimulation) to p′ Λ̃�⇒ p̃, we have to show that Bn(Λ̃)# q′: this
comes by observing that σ does not affect bound names, so we have bn(p′)# q′ by (4), which holds in particular for Bn(Λ̃)

(since Bn(Λ̃) ⊆ bn(p′)).

Therefore q′ Λ̃�⇒ q̃, with (̃p, q̃) ∈ R, which can be renamed to q′σ Λ̃σ��⇒ q̃σ , by (i) of Lemma A.3. By Lemma A.2 there
are non-linear rules that act on this transitions by applying the same renaming and restricting the same names as Ω ,

yielding q′σ Λ�⇒ (R)( q̃σ)σ ′ . By closure under renamings and addition of restrictions we have ((R)(̃pσ)σ ′, (R)( q̃σ)σ ′) ∈ R
and, by closure under scope extension, we also have (p′′, (R)(̃pσ)σ ′) ∈ R. Finally, by transitivity we can conclude
(p′′, (R)( q̃σ)σ ′) ∈R. �
Proof of Theorem 5.6. By cases, considering all the operators. We use the same proof technique for each operator op: we
consider a relation of the form

R = {(op(p),op(q)) | p ∼NC
κ q}∪ ∼NC

κ

and we show that it is a bisimulation.

Case op ∈ {abr._ , τ ._ , lab._}: given a pair of processes in R, both can do the same paths, inferred through an axiom. Their
continuations are just the unprefixed processes, which are bisimilar by definition of R.

Case op = a(s)._: given (a(s).p,a(s).q) ∈ R, both can do the same singleton free or bound input paths. The continuations
are p and q, possibly renamed, which are again paired in R, by Lemma A.7.

Case op = _ + q: consider (p1 + q, p2 + q) ∈R and suppose p1 + q
Λ�⇒ p′

1 is inferred using (sum-l) from p1
Λ�⇒ p′

1. Then, by

definition of R, p2
Λ�⇒ p′

2, with p′
1 ∼NC

κ p′
2, so (p′

1, p′
2) ∈ R. The (sum-r) case is obvious. The cases of non-linear rules,

as usual, are treated by using Lemma A.2 and Lemma A.7. The case q + _ is analogous.
Case op = _ |q: here we actually take the union of all such relations for all possible processes q. Consider (p1 |q, p2 |q) ∈R

and suppose p1 |q
Λ1 | Λ2����⇒ p′

1 |q′ , with Bn(Λ1 |Λ2)# p2 |q, is inferred from p1
Λ1��⇒ p′

1 and q
Λ2��⇒ q′ using (par). Since

p1 ∼NC
κ p2 and Bn(Λ1)# p2, we also have p2

Λ1��⇒ p′
2, so we can apply (par) and get p2 |q

Λ1 | Λ2����⇒ p′
2 |q′ . Finally, from

p′
2 ∼NC

κ p′
1 it follows that (p′

1 |q′, p′
2 |q′) ∈ R. If the transition is inferred through non-linear rules, the usual argument

applies. The case q | _ is analogous.
Case op = (r)_: directly by Lemma A.7. �
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