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We present a comparison of behavioral equivalences for nondeterministic and probabilistic
processes whose activities are all observable. In particular, we consider trace-based, testing,
and bisimulation-based equivalences. For each of them, we examine the discriminating
power of three variants stemming from three approaches that differ for the way
probabilities of events are compared when nondeterministic choices are resolved via
schedulers. The first approach compares two resolutions with respect to the probability
distributions of all considered events. The second approach requires that the probabilities
of the set of events of a resolution be individually matched by the probabilities of the same
events in possibly different resolutions. The third approach only compares the extremal
probabilities of each event stemming from the different resolutions. The three approaches
have very reasonable motivations and, when applied to fully nondeterministic processes
or fully probabilistic processes, give rise to the classical well studied relations. We shall
see that, for processes with nondeterminism and probability, they instead give rise to
a much wider variety of behavioral relations, whose discriminating power is thoroughly
investigated here in the case of deterministic schedulers.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Process algebras (see [3] and the references therein) are mathematically rigorous languages that have been widely used
to model and analyze the behavior of interacting systems. Their structural operational semantics associates with each pro-
cess term a labeled transition system (LTS) [27], whose states are the terms themselves and whose labels are the actions
that each term can perform. In order to abstract from unwanted details, the operational semantics is often coupled with
observational mechanisms that permit equating those systems that cannot be distinguished by external entities. The result-
ing behavioral equivalences heavily depend on how the specified systems are expected to be used. Indeed, there is still
disagreement on which are the “reasonable” observations and how their outcomes can be used to distinguish or identify
systems. Thus, many equivalences have been proposed and much work has been done to assess their discriminating power
and mutual relationships.

The first study in this direction was presented in [13]. There, most of the then known equivalences over LTS models were
“ordered” and it was shown that trace equivalence (equating systems performing the same sequences of actions) is strictly
coarser than failure equivalence (equating systems performing the same sequences of actions and refusing the same sets of
actions after them), which in turn is strictly coarser than bisimulation equivalence (equating systems performing the same
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sequences of actions and recursively exhibiting the same behavior). It was also shown that the equivalence obtained by
testing processes with external observers was coincident with failure equivalence. Afterwards, [39] built the first spectrum
that relates twelve different equivalences defined in the literature over LTS models and set up a general testing scenario
that could be used to generate many more equivalences.

When process algebras have been enriched with additional dimensions to deal with probabilistic, stochastic, and timed
systems, new behavioral equivalences have been defined and possible classifications have been proposed. Here, we would
like to concentrate on equivalences for probabilistic systems. For this class of systems, comparative results have been ob-
tained only for so-called fully probabilistic systems [26,22,2] or only for bisimulation-based and testing-based relations [2,
29,35,43].

In this paper, we aim at a systematic account of the known probabilistic equivalences for nondeterministic and prob-
abilistic systems. We shall consider an extension of the LTS model combining nondeterminism and probability that we
call nondeterministic and probabilistic LTS (NPLTS), in which every action-labeled transition goes from a source state to a
probability distribution over target states rather than to a single target state [28,31]. Like in [31], we shall resort to the
notion of scheduler (or adversary) to resolve nondeterminism. A scheduler can be viewed as an external entity that selects
the next action to perform according to the current state and the past history. When a scheduler is applied to a system,
a fully probabilistic model, called resolution, is obtained. Actions will be assumed to be visible (i.e., τ -actions will not be
considered) and, when defining the various strong equivalences, resolutions of nondeterminism will be obtained by applying
memoryless deterministic schedulers.

Even once one has decided to have only visible actions and only certain classes of schedulers, the number of possibil-
ities for defining behavioral equivalences over NPLTS models is very high if compared with the one for LTS models. These
possibilities are determined by the combination of:

• the equivalence-specific events that have to be measured and
• the paths within resolutions that have to be compared.

Indeed, when checking probabilistic systems for equivalence, the mainly used measure is the probability that equivalence-
specific events take place. Some of the options exploited in the literature are:

• performing specific sequences of actions, to obtain trace semantics;
• exhibiting specific traces decorated with additional information, to obtain failure or testing semantics;
• reaching certain sets of equivalent states via given actions, to obtain bisimulation semantics.

Instead, the alternatives one has in establishing a correspondence between paths of resolutions are: to look for a direct
correspondence between all the paths of the considered resolutions; or rather to permit that sets of paths of one resolution
could be matched by putting together paths of different resolutions. In this respect, three main approaches can be singled
out:

1. The typical approach followed in the literature (see, e.g., [34,32,33]) consists of comparing the probability distributions of
all equivalence-specific events of two resolutions. Two processes are considered equivalent if, for each resolution of any of
the two processes, there exists a resolution of the other process such that the probability of each equivalence-specific
event is the same in the two resolutions (fully matching resolutions). For the known relations based on this approach,
we have that the probabilistic bisimilarity in [34] implies the probabilistic failure equivalence in [33] that in turn
implies the probabilistic trace equivalence in [32]. All these relations are conservative extensions of the corresponding
behavioral relations defined over fully nondeterministic models [21,9] and fully probabilistic models [19,26,22], but in
many situations they turn out to have a high discriminating power.

2. A different approach has been followed in the literature for defining testing equivalences (see, e.g., [44,25,33,15]).
Instead of comparing individual resolutions of the parallel composition of processes and tests, the comparison is per-
formed between the extremal probabilities of reaching success over all resolutions generated by the experiments on pro-
cesses under test (max–min-matching resolution sets). In this case, it holds that the resulting probabilistic testing equiva-
lence is implied by the probabilistic bisimilarity in [34], but it is related neither to the probabilistic failure equivalence
in [33] nor to the probabilistic trace equivalence in [32] when attention is restricted to deterministic schedulers. More-
over, the resulting probabilistic testing equivalence is neither a conservative extension of testing equivalence for fully
nondeterministic processes [14] nor a conservative extension of testing equivalence for fully probabilistic processes [10].

3. Recently, in [12,38,37,4,8] a further approach has been proposed that compares resolutions on the basis of the prob-
abilities of individual equivalence-specific events. A resolution of any of the two processes can be matched, with respect
to different equivalence-specific events, by different resolutions of the other process (partially matching resolutions). For the
behavioral relations resulting from this approach, which weakens the impact of schedulers, we have that probabilis-
tic bisimilarity implies probabilistic failure equivalence, which in turn implies probabilistic testing equivalence, which
finally implies probabilistic trace equivalence. This approach has contributed to the development of new probabilistic
bisimilarities in [12,38,8,37] that, unlike the one in [34], are characterized by standard probabilistic logics such as quan-
titative μ-calculus, PML, and PCTL/PCTL*, respectively. Moreover, in the case of testing equivalence this approach has the
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Fig. 1. Two NPLTS models distinguished by the first approach and identified by the third approach.

Fig. 2. Two NPLTS models distinguished by the third approach and identified by the second approach.

advantage of being conservative for fully nondeterministic models and fully probabilistic models, while in the case of
trace equivalence it surprisingly results in a congruence with respect to parallel composition (see the full version of [4]).

In order to appreciate the differences among the three approaches outlined above, let us consider the NPLTS models in
Figs. 1 and 2 and analyze the impact on them of probabilistic bisimilarities (similar considerations do apply to the other
probabilistic equivalences). The two models in Fig. 1 describe two scenarios representing the offer to Player1 and Player2
of three differently biased dice. The game is conceived in such a way that if the outcome of a throw gives 1 or 2 then
Player1 wins, while if the outcome is 5 or 6 then Player2 wins. In case of 3 or 4, the result is a draw. Differently, in the first
scenario of Fig. 2 the two players are offered a choice among a fair coin and two biased ones, while in the second scenario
the players can simply choose between the two biased coins of the former scenario. In both scenarios of Fig. 2, Player1 wins
with head while Player2 wins with tail.

The basic idea behind the first approach is deeming equivalent two processes if and only if for each resolution of one
process (the challenger) there exists a resolution of the other process (the defender) such that the two resolutions are
probabilistic bisimilar in the sense of [19]. This leads to distinguishing both the pair of processes in Fig. 1 and that in Fig. 2,
as ensured by the probabilistic bisimilarity (based on deterministic schedulers) in [34].

In some cases, the first approach might end up being too demanding. Indeed, if one is interested in the set of probabilities
of winning/drawing/losing, which is {0.6,0.4,0} for both players, it is conceivable to consider equivalent the two processes
in Fig. 1. In fact, these two processes are identified by equivalences defined according to the third approach, as ensured by
one of the two probabilistic bisimilarities in [8]. Similarly, if what matters is the extremal – i.e., minimal and maximal –
probabilities of winning (0.3 and 0.7), it is conceivable that the two processes in Fig. 2 be identified. This is indeed the case
for equivalences defined according to the second approach, like the other probabilistic bisimilarity in [8].

To obtain equivalences that identify the processes in Fig. 1 and those in Fig. 2, it is necessary to weaken the role of
schedulers. While in [34] the challenger and the defender must stepwise behave the same along two matching resolutions
of nondeterminism, one might offer the defender the possibility of choosing different resolutions in response to different
directions taken by the challenger. In other words, instead of requiring, as in [34], that for each resolution of the chal-
lenger there is a fully matching resolution of the defender, one could consider bisimulation games with partially matching
resolutions as in [12,38,37,8]. The new equivalences can then be obtained by comparing processes according to all sets of
probabilities or only to the extremal probabilities.

In our view, the motivations behind the three approaches are all very reasonable. Indeed, when applied to fully nondeter-
ministic processes or fully probabilistic processes, they give rise to well-studied relations that for the fully nondeterministic
setting fit into the spectra in [13,39] and for the fully probabilistic setting fit into the spectra in [26,22]. The situation is
significantly different when the three approaches are instantiated for nondeterministic and probabilistic processes; in this
case, they give rise to a much wider variety of relations.

In the paper, for each of the three approaches we shall first consider trace, failure, testing, and bisimulation equivalences
over NPLTS models, then, to complete the picture, we shall discuss also other variants such as completed-trace equivalence,
other decorated-trace equivalences (failure trace, readiness, and ready trace), and the kernels of simulation-based preorders.
In the case of deterministic schedulers, we shall see that the family of equivalences that assign a central role to schedulers
by requiring that the result of a specific choice in one process be fully matched by the other one (fully matching resolutions),
yields a hierarchy that is in accordance with the one for fully probabilistic processes in [26,22]. Conversely, the family
of equivalences that assign a weaker role to schedulers in resolving nondeterminism (partially matching resolutions), gives
rise to relations that are coarser than the previous ones and yields a hierarchy that is in accordance with the one for
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Fig. 3. Graphical representation of NPLTS models: two examples.

fully nondeterministic processes in [13,39]. Finally, the family of equivalences that only consider extremal probabilities
(max–min-matching resolution sets), has again several analogies with the fully nondeterministic spectrum and yields even
coarser relations. There are however some noticeable anomalies in the last two families, evidenced by a few equivalences
that are incomparable with most of the others.

The rest of the paper, which is a revised and extended version of [6], is organized as follows. In Section 2, we introduce
some basic notions about the NPLTS model. In Sections 3 to 6, we define and compare the trace, failure, testing, and
bisimulation equivalences, respectively, that arise from the three approaches outlined above in the case of deterministic
schedulers. In Section 7, we graphically summarize the results by depicting the spectrum of the considered equivalences,
somehow in analogy with the reduced spectrum in [13]. In the same section, additional equivalences are considered and
a fuller spectrum, analogous to that in [39], is presented. Finally, in Section 8 we draw some conclusions, discuss how the
spectrum changes in the case of randomized schedulers, and indicate directions for future work.

2. Nondeterministic and probabilistic processes

Processes combining nondeterminism and probability are typically described by means of extensions of the LTS model,
in which every action-labeled transition goes from a source state to a probability distribution over target states rather than
to a single target state. They are essentially Markov decision processes [16] and are representative of a number of slightly
different probabilistic computational models including internal nondeterminism such as, e.g., concurrent Markov chains [42],
alternating probabilistic models [20,44,30], probabilistic automata in the sense of [31], and the denotational probabilistic
models in [23] (see [36] for an overview). We formalize them as a variant of simple probabilistic automata [31].

Definition 2.1. A nondeterministic and probabilistic labeled transition system, NPLTS for short, is a triple (S, A,−→) where:

• S is an at most countable set of states.
• A is a countable set of transition-labeling actions.
• −→ ⊆ S × A × Distr(S) is a transition relation, where Distr(S) is the set of discrete probability distributions over S . �

A transition (s,a,D) is written s a−→ D. We say that s′ ∈ S is not reachable from s via that a-transition if D(s′) = 0,
otherwise we say that it is reachable with probability p =D(s′). The reachable states form the support of D, i.e., supp(D) =
{s′ ∈ S |D(s′) > 0}. We write s a−→ to indicate that s has an a-transition. The choice among all the transitions departing from
s is external and nondeterministic, while the choice of the target state for a specific transition is internal and probabilistic.
An NPLTS represents (i) a fully nondeterministic process when every transition leads to a distribution that concentrates all
the probability mass into a single target state or (ii) a fully probabilistic process when every state has at most one outgoing
transition.

An NPLTS can be depicted as a directed graph-like structure in which vertices represent states and action-labeled edges
represent action-labeled transitions. Given a transition s a−→ D, the corresponding a-labeled edge goes from the vertex
representing state s to a set of vertices linked by a dashed line, each of which represents a state s′ ∈ supp(D) and is labeled
with D(s′) – label omitted if D(s′) = 1. Fig. 3 shows two NPLTS models: the one on the left mixes internal nondeterminism
and probability, while the one on the right does not.

In this setting, a computation is a sequence of state-to-state steps, each denoted by s
a−�→ s′ and derived from a state-to-

distribution transition s a−→D.

Definition 2.2. Let L= (S, A,−→) be an NPLTS and s, s′ ∈ S . We say that:

c ≡ s0
a1−�→ s1

a2−�→ s2 · · · sn−1
an−�→ sn

is a computation of L of length n from s = s0 to s′ = sn iff for all i = 1, . . . ,n there exists a transition si−1
ai−→ Di such

that si ∈ supp(Di), with Di(si) being the execution probability of step si−1
ai−�→ si conditioned on the selection of transition

si−1
ai−→Di of L at state si−1. We say that c is maximal iff it is not a proper prefix of any other computation. We denote by



M. Bernardo et al. / Theoretical Computer Science 546 (2014) 63–92 67
first(c) and last(c) the initial state and the final state of c, respectively, and by Cfin(s) the set of finite-length computations
from s. �

A resolution of a state s of an NPLTS L is the result of a possible way of resolving nondeterminism starting from s.
A resolution is a tree-like structure whose branching points represent probabilistic choices. This is obtained by unfolding
from s the graph structure underlying L and by selecting at each state a single transition of L (deterministic scheduler) or
a convex combination of equally labeled transitions of L (randomized scheduler) among all the outgoing transitions of that
state. Below, we introduce the notion of resolution arising from a deterministic scheduler as a fully probabilistic NPLTS
(randomized schedulers are discussed in Section 8). Notice that, when L is fully nondeterministic, resolutions boil down to
computations.

Definition 2.3. Let L = (S, A,−→) be an NPLTS and s ∈ S . We say that an NPLTS Z = (Z , A,−→Z ) is a resolution of s
obtained via a deterministic scheduler iff there exists a state correspondence function corrZ : Z → S such that s = corrZ (zs),
for some zs ∈ Z , and for all z ∈ Z it holds that:

• If z a−→Z D, then corrZ (z) a−→D′ with D(z′) =D′(corrZ (z′)) for all z′ ∈ Z .
• If z

a1−−→Z D1 and z
a2−−→Z D2, then a1 = a2 and D1 =D2.

We say that Z is maximal iff it cannot be further extended in accordance with the graph structure of L and the constraints
above. We denote by Res(s) the set of resolutions of s obtained via a deterministic scheduler and by Resmax(s) the set of
maximal resolutions of s obtained via a deterministic scheduler. �

Since Z ∈ Res(s) is fully probabilistic, the probability prob(c) of executing c ∈ Cfin(zs) can be defined as the product of the
(no longer conditional) execution probabilities of the individual steps of c, with prob(c) being always equal to 1 if L is fully
nondeterministic. This notion is lifted to C ⊆ Cfin(zs) by letting prob(C) = ∑

c∈C prob(c) whenever none of the computations
in C is a proper prefix of one of the others.

We finally introduce a notion of fully synchronous parallel composition for NPLTS models, borrowed from [25], that is
instrumental to the definition of testing equivalences.

Definition 2.4. Let Li = (Si, A,−→i) be an NPLTS for i = 1,2. The parallel composition of L1 and L2 is the NPLTS L1 ‖L2 =
(S1 × S2, A,−→) where −→ ⊆ (S1 × S2) × A × Distr(S1 × S2) is such that (s1, s2)

a−→ D iff s1
a−→1 D1 and s2

a−→2 D2 with
D(s′

1, s′
2) =D1(s′

1) ·D2(s′
2) for each (s′

1, s′
2) ∈ S1 × S2. �

3. Trace equivalences for NPLTS models

Trace equivalences examine the probability with which two states perform computations labeled with the same traces
for each possible way of resolving nondeterminism. As outlined in Section 1, there are three different approaches to defining
them. The first approach is to match resolutions according to trace distributions, which means that for each resolution of one
of the two states there must exist a resolution of the other state such that, for every trace, the two resolutions have the same
probability of performing a computation labeled with that trace. In other words, matching resolutions of the two states
are related by the fully probabilistic version of the trace equivalence (fully matching resolutions). The second approach is
to consider a single trace at a time, i.e., to anticipate the quantification over traces with respect to the quantification over
resolutions. In this way, differently labeled computations of a resolution of one of the two states are allowed to be matched
by computations of several different resolutions of the other state (partially matching resolutions). The third approach is to
compare only the extremal probabilities of performing each trace over the various resolutions (max–min-matching resolution
sets).

Given an NPLTS L = (S, A,−→), we call trace a finite sequence of actions of A. We say that a finite-length computation
c is compatible with a trace α ∈ A∗ , or equivalently that c is an α-computation, iff the sequence of actions labeling the
steps of c is equal to α. Given s ∈ S and Z ∈ Res(s), we denote by CC(zs,α) the set of α-compatible computations from
zs and by Resα(s) the set of resolutions in Res(s) having no maximal computations corresponding to proper prefixes of
α-computations of L.

In the following equivalence definitions, as well as in those of the next sections, we assume s1, s2 ∈ S and we explic-
itly add a reference whenever the defined equivalence has already appeared in the literature. Moreover, 
/� denote the
supremum/infimum of a set of numbers in R[0,1] , which is assumed to be 0 when the set is empty.

Definition 3.1 (Probabilistic trace-distribution equivalence – ∼PTr,dis). (See [32].) s1 ∼PTr,dis s2 iff for each Z1 ∈ Res(s1) there
exists Z2 ∈ Res(s2) such that for all α ∈ A∗:

prob
(
CC(zs1 ,α)

) = prob
(
CC(zs2 ,α)

)
and symmetrically for each Z2 ∈ Res(s2). �
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Fig. 4. Two NPLTS models distinguished by ∼PTr,
� if only resolutions having α-computations were considered.

Definition 3.2 (Probabilistic trace equivalence – ∼PTr). (See [4].) s1 ∼PTr s2 iff for all α ∈ A∗ it holds that for each Z1 ∈ Res(s1)

there exists Z2 ∈ Res(s2) such that:

prob
(
CC(zs1 ,α)

) = prob
(
CC(zs2 ,α)

)
and symmetrically for each Z2 ∈ Res(s2). �
Definition 3.3 (Probabilistic 
 � -trace equivalence – ∼PTr,
�). s1 ∼PTr,
� s2 iff for all α ∈ A∗:

⊔
Z1∈Resα(s1)

prob
(
CC(zs1 ,α)

) =
⊔

Z2∈Resα(s2)

prob
(
CC(zs2 ,α)

)

�

Z1∈Resα(s1)

prob
(
CC(zs1 ,α)

) =
�

Z2∈Resα(s2)

prob
(
CC(zs2 ,α)

) �

The three trace equivalences defined above are all backward compatible with the trace equivalences respectively defined
in [9] for fully nondeterministic processes – which we denote by ∼Tr,fnd – and in [26,22] for fully probabilistic processes –
which we denote by ∼Tr,fpr.

Theorem 3.4. It holds that:

1. ∼PTr,dis = ∼PTr = ∼PTr,
� = ∼Tr,fnd over fully nondeterministic NPLTS models.
2. ∼PTr,dis = ∼PTr = ∼PTr,
� = ∼Tr,fpr over fully probabilistic NPLTS models.

Proof.

1. The result over fully nondeterministic NPLTS models is a straightforward consequence of the fact that the resolutions of
these models correspond to the computations of the models themselves, hence the probability of performing within a
resolution of one of these models a computation compatible with a trace can only be either 1 or 0.

2. The result over fully probabilistic NPLTS models is a straightforward consequence of the fact that each of these models
has a single maximal resolution, which corresponds to the model itself. �

It is worth observing that in Definition 3.3 we consider only resolutions having no maximal computations corresponding
to proper prefixes of computations that are labeled with the trace under examination in the two processes. While this
restriction is negligible for the computation of suprema, it avoids infima to be trivially equal to 0. In fact, apart from the
empty trace ε that does not have any proper prefix and results in a maximum probability and a minimum probability both
equal to 1, for an arbitrary trace α = ε it holds that the probability of performing a computation compatible with α is 0
along every resolution in which all computations have length less than the length of α, and hence the infimum of such
probabilities is 0. Thus, for a meaningful comparison of infima, we have at least to restrict attention to resolutions having
no maximal computations corresponding to proper prefixes of α-computations of the two processes, so that the infimum
on either side is 0 only if there is a sufficiently extended resolution along which α cannot be performed.

This restriction is weaker than considering only resolutions having at least one α-computation. Such a stronger restriction
leads however to counterintuitive facts, such as getting an infimum equal to 0 only if α cannot be performed along any
resolution. As a consequence, the resulting ∼PTr,
� would distinguish the two processes in Fig. 4 because, for α = a b, in s1
only the leftmost maximal resolution and the central maximal resolution would be considered – with minimum probability
equal to 0.5 – and in s2 only the leftmost maximal resolution would be considered – with minimum probability equal
to 1. The rightmost maximal resolution of s1 and that of s2 would not be considered as they have no α-computation, thus
excluding a minimum probability of performing α equal to 0 for both processes.

One may be tempted to impose a restriction independent of a specific trace such as considering only maximal resolutions,
which works well for testing equivalences as we shall see in Section 5. With this restriction, the two fully nondeterministic
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Fig. 5. Two NPLTS models distinguished by ∼PTr,
� if only maximal resolutions were considered.

processes depicted in Fig. 5 would be distinguished by ∼PTr,
� because, for trace α = ab, the minimum probability of
performing an α-computation is 0 over the two maximal resolutions of s1 and 1 over the only maximal resolution of s2.
But then ∼PTr,
� would not be backward compatible with ∼Tr,fnd because the two processes in Fig. 5 are identified by
∼Tr,fnd.

We now investigate the relationships among the three trace equivalences. As expected, the equivalence relying on trace
distributions is finer than the equivalence considering a single trace at a time, which in turn is finer than the equivalence
based on extremal probabilities of traces.

Theorem 3.5. It holds that ∼PTr,dis ⊆ ∼PTr ⊆ ∼PTr,
� .

Proof. Let (S, A,−→) be an NPLTS and s1, s2 ∈ S . The fact that s1 ∼PTr,dis s2 implies s1 ∼PTr s2 is easily seen by taking the
same fully matching resolutions considered in ∼PTr,dis.

Suppose now that s1 ∼PTr s2. This implies that for all α ∈ A∗ it holds that:

• For each Z1 ∈ Resα(s1) there exists Z2 ∈ Resα(s2) such that:

prob
(
CC(zs1 ,α)

) = prob
(
CC(zs2 ,α)

)
• For each Z2 ∈ Resα(s2) there exists Z1 ∈ Resα(s1) such that:

prob
(
CC(zs2 ,α)

) = prob
(
CC(zs1 ,α)

)

This is to say that:
⋃

Z1∈Resα(s1)

{
prob

(
CC(zs1 ,α)

)} ⊆
⋃

Z2∈Resα(s2)

{
prob

(
CC(zs2 ,α)

)}

⋃
Z2∈Resα(s2)

{
prob

(
CC(zs2 ,α)

)} ⊆
⋃

Z1∈Resα(s1)

{
prob

(
CC(zs1 ,α)

)}

Equivalently:
⋃

Z1∈Resα(s1)

{
prob

(
CC(zs1 ,α)

)} =
⋃

Z2∈Resα(s2)

{
prob

(
CC(zs2 ,α)

)}

which implies:
⊔

Z1∈Resα(s1)

prob
(
CC(zs1 ,α)

) =
⊔

Z2∈Resα(s2)

prob
(
CC(zs2 ,α)

)

�

Z1∈Resα(s1)

prob
(
CC(zs1 ,α)

) =
�

Z2∈Resα(s2)

prob
(
CC(zs2 ,α)

)

This means that s1 ∼PTr,
� s2. �
Both inclusions in Theorem 3.5 are strict:

• Fig. 1 shows that ∼PTr,dis is strictly finer than ∼PTr. It holds that s1 �PTr,dis s2 because for instance the trace distribution
of the leftmost maximal resolution of s1 – which assigns probability 1 to trace ε and trace offer, probability 0.4 to
trace offer draw, probability 0.6 to trace offer win1, and probability 0 to any other trace – is not matched by the trace
distribution of any of the three maximal resolutions of s2. In contrast, s1 ∼PTr s2 because, given an arbitrary trace α, for
each resolution of s1 (resp. s2) there exists a resolution of s2 (resp. s1) such that an α-compatible computation has the
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same probability of being executed in both resolutions. For example, the leftmost maximal resolution of s1 is matched
by the central maximal resolution of s2 with respect to trace offer draw and by the rightmost maximal resolution of s2
with respect to trace offer win1.

• Fig. 2 shows that ∼PTr is strictly finer than ∼PTr,
� . It holds that s1 �PTr s2 because for instance the probability 0.5
of executing the trace offer win1 in the central maximal resolution of s1 is not matched by the probability of execut-
ing the same trace in any of the two maximal resolutions of s2. In contrast, s1 ∼PTr,
� s2 because, given an arbitrary
trace α, the maximum probability and the minimum probability of performing α over all resolutions having no maxi-
mal computations corresponding to proper prefixes of α-computations of the two processes are respectively the same
in both processes. For example, trace offer win1 has maximum probability 0.7 and minimum probability 0.3 in both
processes.

4. Failure equivalences for NPLTS models

Failure equivalences generalize trace equivalences by considering the actions that can be refused after performing a trace.
Given an NPLTS L= (S, A,−→), we call failure pair an element ϕ of A∗ × 2A formed by a trace α and a decoration F called
failure set. Given s ∈ S and Z ∈ Res(s), we say that c ∈ Cfin(zs) is compatible with ϕ iff c ∈ CC(zs,α) and corrZ (last(c)) has
no outgoing transitions in L labeled with an action in F . We denote by FCC(zs,ϕ) the set of ϕ-compatible computations
from zs .

Definition 4.1 (Probabilistic failure-distribution equivalence – ∼PF,dis). (See [33].) s1 ∼PF,dis s2 iff for each Z1 ∈ Res(s1) there
exists Z2 ∈ Res(s2) such that for all ϕ ∈ A∗ × 2A :

prob
(
FCC(zs1 ,ϕ)

) = prob
(
FCC(zs2 ,ϕ)

)
and symmetrically for each Z2 ∈ Res(s2). �
Definition 4.2 (Probabilistic failure equivalence – ∼PF). (See [4].) s1 ∼PF s2 iff for all ϕ ∈ A∗ × 2A it holds that for each Z1 ∈
Res(s1) there exists Z2 ∈ Res(s2) such that:

prob
(
FCC(zs1 ,ϕ)

) = prob
(
FCC(zs2 ,ϕ)

)
and symmetrically for each Z2 ∈ Res(s2). �
Definition 4.3 (Probabilistic 
 � -failure equivalence – ∼PF,
�). s1 ∼PF,
� s2 iff for all ϕ = (α, F ) ∈ A∗ × 2A :⊔

Z1∈Resα(s1)

prob
(
FCC(zs1 ,ϕ)

) =
⊔

Z2∈Resα(s2)

prob
(
FCC(zs2 ,ϕ)

)
�

Z1∈Resα(s1)

prob
(
FCC(zs1 ,ϕ)

) =
�

Z2∈Resα(s2)

prob
(
FCC(zs2 ,ϕ)

) �

The three failure equivalences defined above are all backward compatible with the failure equivalences respectively
defined in [9] for fully nondeterministic processes – which we denote by ∼F,fnd – and in [26,22] for fully probabilistic
processes – which we denote by ∼F,fpr.

Theorem 4.4. It holds that:

1. ∼PF,dis = ∼PF = ∼PF,
� = ∼F,fnd over fully nondeterministic NPLTS models.
2. ∼PF,dis = ∼PF = ∼PF,
� = ∼F,fpr over fully probabilistic NPLTS models.

Proof. Similar to the proof of Theorem 3.4. �
We point out that in Definition 4.3 the considered resolutions are the same as those considered in Definition 3.3. Note

that the failure set F is not taken into account when selecting resolutions. For example, this is not necessary to distinguish
the two fully nondeterministic processes depicted in Fig. 5. Given the failure pair ϕ = (a, A), state s1 has three resolutions
each having no maximal computations corresponding to proper prefixes of a-computations in the original process, and along
the one formed by the rightmost a-transition a state is reached after performing a that refuses all actions (in the original
process). In contrast, state s2 has two such resolutions, but in both of them the state reached after performing a cannot
refuse all actions (in the original process). Therefore, the two processes have different maximum probabilities of getting to
a deadlock state after performing a.

We now investigate the relationships of the three failure equivalences among themselves (first property below) and
with the three trace equivalences defined in Section 3 (last three properties below). As expected, each of the three failure
equivalences is finer than the corresponding trace equivalence.
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Fig. 6. Two NPLTS models distinguished by ∼PF,dis/∼PF/∼PF,
� and identified by ∼PTr,dis/∼PTr/∼PTr,
� .

Theorem 4.5. It holds that:

1. ∼PF,dis ⊆ ∼PF ⊆ ∼PF,
� .
2. ∼PF,dis ⊆ ∼PTr,dis .
3. ∼PF ⊆ ∼PTr .
4. ∼PF,
� ⊆ ∼PTr,
� .

Proof. Let (S, A,−→) be an NPLTS and s1, s2 ∈ S:

1. Similar to the proof of Theorem 3.5.
2. Suppose that s1 ∼PF,dis s2. Then we immediately derive that:

• For each Z1 ∈ Res(s1) there exists Z2 ∈ Res(s2) such that for all α ∈ A∗:

prob
(
CC(zs1 ,α)

) = prob
(
FCC

(
zs1 , (α,∅)

)) = prob
(
FCC

(
zs2 , (α,∅)

)) = prob
(
CC(zs2 ,α)

)
• Symmetrically for each Z2 ∈ Res(s2).
This means that s1 ∼PTr,dis s2.

3. Suppose that s1 ∼PF s2. Then we immediately derive that for all α ∈ A∗:
• For each Z1 ∈ Res(s1) there exist Z2 ∈ Res(s2) such that:

prob
(
CC(zs1 ,α)

) = prob
(
FCC

(
zs1 , (α,∅)

)) = prob
(
FCC

(
zs2 , (α,∅)

)) = prob
(
CC(zs2 ,α)

)
• Symmetrically for each Z2 ∈ Res(s2).
This means that s1 ∼PTr s2.

4. Suppose that s1 ∼PF,
� s2. Then we immediately derive that for all α ∈ A∗:⊔
Z1∈Resα(s1)

prob
(
CC(zs1 ,α)

) =
⊔

Z1∈Resα(s1)

prob
(
FCC

(
zs1 , (α,∅)

))

=
⊔

Z2∈Resα(s2)

prob
(
FCC

(
zs2 , (α,∅)

)) =
⊔

Z2∈Resα(s2)

prob
(
CC(zs2 ,α)

)
�

Z1∈Resα(s1)

prob
(
CC(zs1 ,α)

) =
�

Z1∈Resα(s1)

prob
(
FCC

(
zs1 , (α,∅)

))

=
�

Z2∈Resα(s2)

prob
(
FCC

(
zs2 , (α,∅)

)) =
�

Z2∈Resα(s2)

prob
(
CC(zs2 ,α)

)

This means that s1 ∼PTr,
� s2. �
All the inclusions in Theorem 4.5 are strict:

• Figs. 1 and 2 respectively show that ∼PF,dis is strictly finer than ∼PF and ∼PF is strictly finer than ∼PF,
� .
• Fig. 6 shows that ∼PF,dis, ∼PF, and ∼PF,
� are strictly finer than ∼PTr,dis, ∼PTr, and ∼PTr,
� , respectively. Indeed, for each

resolution of s1 (resp. s2) there exists a resolution of s2 (resp. s1) such that both resolutions have precisely the same
trace distribution, thus s1 and s2 are identified by ∼PTr,dis (and hence by ∼PTr and ∼PTr,
�). In contrast, the leftmost
a-computation of s1 is compatible with the failure pair (a, {c}) while s2 has no computation compatible with that failure
pair, hence s1 and s2 are distinguished by ∼PF,
� (and hence by ∼PF and ∼PF,dis).

Moreover:

• ∼PF and ∼PF,
� are incomparable with ∼PTr,dis, because in Fig. 1 it holds that s1 ∼PF s2 (and hence s1 ∼PF,
� s2) and
s1 �PTr,dis s2, while in Fig. 6 it holds that s1 �PF,
� s2 (and hence s1 �PF s2) and s1 ∼PTr,dis s2.
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• ∼PF,
� is incomparable with ∼PTr, because in Fig. 2 it holds that s1 ∼PF,
� s2 and s1 �PTr s2, while in Fig. 6 it holds that
s1 �PF,
� s2 and s1 ∼PTr s2.

5. Testing equivalences for NPLTS models

Testing equivalences consider the probability of two processes of performing computations along which the same tests
are passed. Tests specify the actions a process can perform and are formalized as NPLTS models equipped with a success
state. For the sake of simplicity, we restrict ourselves to finite tests. Each of them has finitely many states, finitely many
outgoing transitions from each state, an acyclic graph structure, and hence finitely many computations leading to success
each having finite length.

Definition 5.1. A nondeterministic and probabilistic test, NPT for short, is a finite NPLTS T = (O , A,−→) where O contains a
distinguished success state denoted by ω that has no outgoing transitions. We say that a computation of T is successful iff
its last state is ω. �
Definition 5.2. Let L = (S, A,−→) be an NPLTS and T = (O , A,−→T ) be an NPT. The interaction system of L and T is the
NPLTS I(L,T ) =L ‖ T where:

• Every element (s,o) ∈ S × O is called a configuration and is said to be successful iff o = ω.
• A computation of I(L,T ) is said to be successful iff its last configuration is successful. Given s ∈ S , o ∈ O , and Z ∈

Res(s,o), we denote by SC(zs,o) the set of successful computations from the state zs,o of Z corresponding to the
configuration (s,o) of I(L,T ). �

Due to the possible presence of equally labeled transitions departing from the same state, there is not necessarily a single
probability value with which an NPLTS passes a test. Thus, to compare two states s1 and s2 of an NPLTS via a test with initial
state o, we need to compute the probability of performing a successful computation from the two configurations (s1,o) and
(s2,o) in every resolution of the interaction system. We can restrict our attention to maximal resolutions because they
contain all successful computations. One option is comparing, for the two configurations, only the extremal values of these
success probabilities over all maximal resolutions of the interaction system – considering non-maximal resolutions would
lead to obtain always 0 as infimum. An alternative option is comparing all the success probabilities and requiring that for
each maximal resolution of either configuration there is a matching maximal resolution of the other configuration.

Definition 5.3 (Probabilistic 
 � -testing equivalence – ∼PTe-
�). (See [44,25,33,15].) s1 ∼PTe-
� s2 iff for every NPT T =
(O , A,−→T ) with initial state o ∈ O :⊔

Z1∈Resmax(s1,o)

prob
(
SC(zs1,o)

) =
⊔

Z2∈Resmax(s2,o)

prob
(
SC(zs2,o)

)
�

Z1∈Resmax(s1,o)

prob
(
SC(zs1,o)

) =
�

Z2∈Resmax(s2,o)

prob
(
SC(zs2,o)

) �

Definition 5.4 (Probabilistic ∀∃-testing equivalence – ∼PTe-∀∃). (See [4].) s1 ∼PTe-∀∃ s2 iff for every NPT T = (O , A,−→T ) with
initial state o ∈ O it holds that for each Z1 ∈ Resmax(s1,o) there exists Z2 ∈ Resmax(s2,o) such that:

prob
(
SC(zs1,o)

) = prob
(
SC(zs2,o)

)
and symmetrically for each Z2 ∈ Resmax(s2,o). �

Neither ∼PTe-
� nor ∼PTe-∀∃ is backward compatible with the testing equivalence defined in [14] for fully nondeter-
ministic processes. For instance, Fig. 7 shows two such processes identified by the classical testing equivalence, which are
distinguished by ∼PTe-
� and ∼PTe-∀∃ as can be seen by taking the test in the same figure. Indeed, the two maximal reso-
lutions of the interaction system of the second process and the test reach success with probability p1 and p2, respectively.
In contrast, the interaction system of the first process and the test results in four maximal resolutions in which success is
respectively reached with probability 1, p1, p2, and 0. Likewise, ∼PTe-
� and ∼PTe-∀∃ are not backward compatible with the
testing equivalence defined in [10] for fully probabilistic processes (see the full version of [4] for a counterexample).

The reason of the higher discriminating power of ∼PTe-
� and ∼PTe-∀∃ arises from the presence of probabilistic choices
within tests, which results in the capability of making copies of intermediate states of the process under test [1] and hence
in a questionable estimation of success probabilities [18]. In order to counterbalance this strong discriminating power, as
illustrated in [4] the idea is to consider success probabilities in a trace-by-trace fashion rather than on entire resolutions. Since
traces come again into play, the idea can be implemented in three different ways according to the three approaches used in
Sections 3 and 4.
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Fig. 7. Two NPLTS models distinguished by ∼PTe-
�/∼PTe-∀∃ and identified by classical testing equivalence.

In the following, given an NPLTS L = (S, A,−→), s ∈ S , an NPT T = (O , A,−→T ) with initial state o ∈ O , Z ∈ Res(s,o),
and α ∈ A∗ , we denote by CCC(zs,o,α) the set of α-compatible computations from zs,o that are completed, i.e., that do not
correspond to proper prefixes of computations from (s,o). Moreover, we denote by Resmax,C,α(s,o) the set of resolutions
Z ∈ Resmax(s,o) such that CCC(zs,o,α) = ∅ and, for each such resolution, we denote by SCC(zs,o,α) the set of successful
α-compatible computations from zs,o .

Definition 5.5 (Probabilistic trace-by-trace-distribution testing equivalence – ∼PTe-tbt,dis). s1 ∼PTe-tbt,dis s2 iff for every NPT T =
(O , A,−→T ) with initial state o ∈ O it holds that for each Z1 ∈ Resmax(s1,o) there exists Z2 ∈ Resmax(s2,o) such that
for all α ∈ A∗ it holds that CCC(zs1,o,α) = ∅ implies CCC(zs2,o,α) = ∅ and:

prob
(
SCC(zs1,o,α)

) = prob
(
SCC(zs2,o,α)

)
and symmetrically for each Z2 ∈ Resmax(s2,o). �
Definition 5.6 (Probabilistic trace-by-trace testing equivalence – ∼PTe-tbt). (See [4].) s1 ∼PTe-tbt s2 iff for every NPT T =
(O , A,−→T ) with initial state o ∈ O and for all α ∈ A∗ it holds that for each Z1 ∈ Resmax,C,α(s1,o) there exists Z2 ∈
Resmax,C,α(s2,o) such that:

prob
(
SCC(zs1,o,α)

) = prob
(
SCC(zs2,o,α)

)
and symmetrically for each Z2 ∈ Resmax,C,α(s2,o). �
Definition 5.7 (Probabilistic 
�-trace-by-trace testing equivalence – ∼PTe-tbt,
�). s1 ∼PTe-tbt,
� s2 iff for every NPT T =
(O , A,−→T ) with initial state o ∈ O and for all α ∈ A∗ it holds that Resmax,C,α(s1,o) = ∅ iff Resmax,C,α(s2,o) = ∅ and:

⊔
Z1∈Resmax,C,α(s1,o)

prob
(
SCC(zs1,o,α)

) =
⊔

Z2∈Resmax,C,α(s2,o)

prob
(
SCC(zs2,o,α)

)
�

Z1∈Resmax,C,α(s1,o)

prob
(
SCC(zs1,o,α)

) =
�

Z2∈Resmax,C,α(s2,o)

prob
(
SCC(zs2,o,α)

) �

While ∼PTe-
� , ∼PTe-∀∃ , and ∼PTe-tbt,dis are not conservative extensions of the testing equivalence defined in [14] for fully
nondeterministic processes – which we denote by ∼Te,fnd – and the testing equivalence defined in [10] for fully probabilistic
processes – which we denote by ∼Te,fpr – the other two testing equivalences are backward compatible with them.

Theorem 5.8. It holds that:

1. ∼PTe-tbt = ∼PTe-tbt,
� = ∼Te,fnd over fully nondeterministic NPLTS models.
2. ∼PTe-tbt = ∼PTe-tbt,
� = ∼Te,fpr over fully probabilistic NPLTS models.

Proof. Let (S, A,−→) be an NPLTS and s1, s2 ∈ S:

1. Suppose that the NPLTS is fully nondeterministic. We preliminarily recall from [14] that s1 ∼Te,fnd s2 means that for
every fully nondeterministic test T = (O , A,−→T ) with initial state o ∈ O :
• There exists a successful computation from (s1,o) iff there exists a successful computation from (s2,o).
• All completed computations from (s1,o) are successful iff all completed computations from (s2,o) are successful.
The proof is divided into two parts:
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(a) Suppose that s1 ∼PTe-tbt s2. Then, in particular, for every fully nondeterministic test T = (O , A,−→T ) with initial
state o ∈ O and for all α ∈ A∗:
• For each Z1 ∈ Resmax,C,α(s1,o) there exists Z2 ∈ Resmax,C,α(s2,o) such that:

prob
(
SCC(zs1,o,α)

) = prob
(
SCC(zs2,o,α)

)
• For each Z2 ∈ Resmax,C,α(s2,o) there exists Z1 ∈ Resmax,C,α(s1,o) such that:

prob
(
SCC(zs2,o,α)

) = prob
(
SCC(zs1,o,α)

)
Since the NPLTS under test and the considered tests are all fully nondeterministic, the resulting interaction systems
are fully nondeterministic too, and hence their resolutions correspond to their computations and each of the prob-
ability values above is either 1 or 0. As a consequence, the previous relationships among maximal resolutions can
be rephrased as follows:
• For each completed α-compatible computation from (s1,o) there exists a completed α-compatible computation

from (s2,o) such that the two computations are both successful or both unsuccessful.
• For each completed α-compatible computation from (s2,o) there exists a completed α-compatible computation

from (s1,o) such that the two computations are both successful or both unsuccessful.
From this, we immediately derive that:
• There exists a successful computation from (s1,o) iff there exists a successful computation from (s2,o).
• All completed computations from (s1,o) are successful iff all completed computations from (s2,o) are successful.

In fact, assume that all completed computations from, e.g., (s1,o) are successful. Then at least one completed
computation from (s2,o) is successful. Assume that (s2,o) has at least two completed computations and that one
of them is not successful. Then at least one completed computation from (s1,o) would not be successful, thus
contradicting the assumption that all completed computations from (s1,o) are successful. Therefore, whenever all
completed computations from (s1,o) are successful, then all completed computations from (s2,o) are successful.
Likewise, whenever all completed computations from (s2,o) are successful, then all completed computations from
(s1,o) are successful.

This means that s1 ∼Te,fnd s2.
Suppose now that s1 ∼Te,fnd s2 and consider an arbitrary NPT T = (O , A,−→T ) with initial state o ∈ O , an arbitrary
trace α ∈ A∗ such that Resmax,C,α(s1,o) = ∅, and an arbitrary resolution Z1 ∈ Resmax,C,α(s1,o).
Assume that Resmax,C,α(s2,o) = ∅, i.e., assume that for all Z2 ∈ Resmax(s2,o) it holds that CCC(zs2,o,α) = ∅. Let
Tα = (O , A,−→Tα ) be a fully nondeterministic test obtained from T in which (i) only the completed α-compatible
computations reach ω and (ii) each transition o′ a−→T D such that the set O ′ = {o′′ ∈ O | D(o′′) > 0} has cardinality
greater than 1 is transformed into |O ′| transitions o′ a−→Tα Do′′ , o′′ ∈ O ′ , where Do′′ (o′′) = 1 and Do′′ (o′′′) = 0 for all
o′′′ ∈ O \ {o′′}. Observing that Tα yields the same α-compatible computations as T in the interaction systems, the
test Tα would violate s1 ∼Te,fnd s2 because at least one completed computation from (s1,o) is successful whilst there
are no completed computations from (s2,o) that are successful. We have thus deduced that, whenever s1 ∼Te,fnd s2,
then the existence of Z1 ∈ Resmax,C,α(s1,o) implies the existence of Z2 ∈ Resmax,C,α(s2,o).
Assume now that for all Z2 ∈ Resmax,C,α(s2,o) it holds that:

prob
(
SCC(zs1,o,α)

) = prob
(
SCC(zs2,o,α)

)
Observing that T must have a successful α-compatible computation – otherwise it would hold that
prob(SCC(zs1,o,α)) = 0 = prob(SCC(zs2,o,α)) for all Z2 ∈ Resmax,C,α(s2,o) – from CCC(zs1,o,α) = ∅ and
CCC(zs2,o,α) = ∅ we derive that prob(SCC(zs1,o,α)) > 0 and prob(SCC(zs2,o,α)) > 0. Denoting by Z ′

1 the element
of Resmax(s1) that originates Z1, we would then have that for each Z ′

2 ∈ Resmax(s2) originating Z2:

prob
(
CC

(
z′

s1
,α

)) = prob
(
SCC(zs1,o,α)

)
/p

= prob
(
SCC(zs2,o,α)

)
/p = prob

(
CC

(
z′

s2
,α

))
where p is the probability of performing a successful α-compatible computation in the element Z of Resmax(o)

that originates Z1. However, since the NPLTS under test is fully nondeterministic, Z ′
1 and Z ′

2 boil down to two
α-compatible computations and it holds that:

prob
(
CC

(
z′

s1
,α

)) = 1 = prob
(
CC

(
z′

s2
,α

))
which contradicts what established before.
In conclusion, whenever s1 ∼Te,fnd s2, then for each Z1 ∈ Resmax,C,α(s1,o) there exists Z2 ∈ Resmax,C,α(s2,o) such
that:

prob
(
SCC(zs1,o,α)

) = prob
(
SCC(zs2,o,α)

)
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With a similar argument, we can prove that, whenever s1 ∼Te,fnd s2, then for each Z2 ∈ Resmax,C,α(s2,o) there exists
Z1 ∈ Resmax,C,α(s1,o) such that:

prob
(
SCC(zs2,o,α)

) = prob
(
SCC(zs1,o,α)

)
This means that s1 ∼PTe-tbt s2.

(b) Suppose that s1 ∼PTe-tbt,
� s2. Then, in particular, for every fully nondeterministic test T = (O , A,−→T ) with initial
state o ∈ O and for all α ∈ A∗ it holds that Resmax,C,α(s1,o) = ∅ iff Resmax,C,α(s2,o) = ∅ and:

⊔
Z1∈Resmax,C,α(s1,o)

prob
(
SCC(zs1,o,α)

) =
⊔

Z2∈Resmax,C,α(s2,o)

prob
(
SCC(zs2,o,α)

)

�

Z1∈Resmax,C,α(s1,o)

prob
(
SCC(zs1,o,α)

) =
�

Z2∈Resmax,C,α(s2,o)

prob
(
SCC(zs2,o,α)

)

Since the NPLTS under test and the considered tests are all fully nondeterministic, the resulting interaction sys-
tems are fully nondeterministic too, and hence their resolutions correspond to their computations and each of the
extremal probability values above is either 1 or 0. As a consequence, the previous relationships among extremal
probability values over maximal resolutions can be rephrased as follows:
(
⊔

) There exists a successful α-compatible computation from (s1,o) iff there exists a successful α-compatible
computation from (s2,o).

(
�

) All completed α-compatible computations from (s1,o) are successful iff all completed α-compatible computa-
tions from (s2,o) are successful.

From this, we immediately derive that:
(
⊔

) There exists a successful computation from (s1,o) iff there exists a successful computation from (s2,o).
(

�
) All completed computations from (s1,o) are successful iff all completed computations from (s2,o) are success-

ful.
This means that s1 ∼Te,fnd s2.
Suppose now that s1 ∼Te,fnd s2. Then s1 ∼PTe-tbt s2 – as we have proved in the first part – and hence s1 ∼PTe-tbt,
� s2
– as a consequence of Theorem 5.9.

2. Suppose that L is fully probabilistic. We preliminarily recall from [10] that s1 ∼Te,fpr s2 means that for every fully
probabilistic test T = (O , A,−→T ) with initial state o ∈ O :

prob
(
SC(s1,o)

) = prob
(
SC(s2,o)

)
The proof is divided into two parts:
(a) Suppose that s1 ∼PTe-tbt s2. Then, in particular, for every fully probabilistic test T = (O , A,−→T ) with initial state

o ∈ O and for all α ∈ A∗:
• For each Z1 ∈ Resmax,C,α(s1,o) there exists Z2 ∈ Resmax,C,α(s2,o) such that:

prob
(
SCC(zs1,o,α)

) = prob
(
SCC(zs2,o,α)

)
• For each Z2 ∈ Resmax,C,α(s2,o) there exists Z1 ∈ Resmax,C,α(s1,o) such that:

prob
(
SCC(zs2,o,α)

) = prob
(
SCC(zs1,o,α)

)
Since the NPLTS under test and the considered tests are all fully probabilistic, the resulting interaction systems are
fully probabilistic too, and hence each of them has a single maximal resolution that coincides with the interaction
system itself. As a consequence, the previous relationships among maximal resolutions can be rephrased by saying
that for all α ∈ A∗:

prob
(
SCC

(
(s1,o),α

)) = prob
(
SCC

(
(s2,o),α

))
From this, we immediately derive that:

prob
(
SC(s1,o)

) =
∑
α∈A∗

prob
(
SCC

(
(s1,o),α

))

=
∑
α∈A∗

prob
(
SCC

(
(s2,o),α

)) = prob
(
SC(s2,o)

)

which means that s1 ∼Te,fpr s2.
Suppose now that s1 ∼Te,fpr s2 and consider an arbitrary NPT T = (O , A,−→T ) with initial state o ∈ O , an arbitrary
trace α ∈ A∗ such that Resmax,C,α(s1,o) = ∅, and an arbitrary resolution Z1 ∈ Resmax,C,α(s1,o).
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Assume that Resmax,C,α(s2,o) = ∅, i.e., assume that for all Z2 ∈ Resmax(s2,o) it holds that CCC(zs2,o,α) = ∅. Let
Tα = (O , A,−→Tα ) be a fully probabilistic test obtained from T in which (i) only the completed α-compatible
computations reach ω, (ii) each state o′ ∈ O having at most one outgoing transition o′ a−→T D retains all of its
transitions, and (iii) any other state in O retains among its transitions only one of those that are instrumental to
preserve the original α-compatible computations of T . Observing that Tα yields at least one of the α-compatible
computations of T in the interaction systems, the test Tα would violate s1 ∼Te,fpr s2 because at least one completed
computation from (s1,o) is successful whilst there are no completed computations from (s2,o) that are successful.
We have thus deduced that, whenever s1 ∼Te,fpr s2, then the existence of Z1 ∈ Resmax,C,α(s1,o) implies the existence
of Z2 ∈ Resmax,C,α(s2,o).
Assume now that for all Z2 ∈ Resmax,C,α(s2,o) it holds that:

prob
(
SCC(zs1,o,α)

) = prob
(
SCC(zs2,o,α)

)
Observing that T must have a successful α-compatible computation – otherwise it would hold that
prob(SCC(zs1,o,α)) = 0 = prob(SCC(zs2,o,α)) for all Z2 ∈ Resmax,C,α(s2,o) – from CCC(zs1,o,α) = ∅ and
CCC(zs2,o,α) = ∅ we derive that prob(SCC(zs1,o,α)) > 0 and prob(SCC(zs2,o,α)) > 0. Denoting by Z ′

1 the element
of Resmax(s1) that originates Z1, we would then have that for each Z ′

2 ∈ Resmax(s2) originating Z2:

prob
(
CC

(
z′

s1
,α

)) = prob
(
SCC(zs1,o,α)

)
/p

= prob
(
SCC(zs2,o,α)

)
/p = prob

(
CC

(
z′

s2
,α

))
where p is the probability of performing a successful α-compatible computation in the element Z of Resmax(o) that
originates Z1. However, since the NPLTS under test is fully probabilistic, it holds that:

prob
(
CC

(
z′

s1
,α

)) = prob
(
CC(s1,α)

)

prob
(
CC

(
z′

s2
,α

)) = prob
(
CC(s2,α)

)
where:

prob
(
CC(s1,α)

) = prob
(
CC(s2,α)

)
because otherwise s1 ∼Te,fpr s2 would be violated by a test having a single maximal computation that is labeled
with α and reaches ω. Thus:

prob
(
CC

(
z′

s1
,α

)) = prob
(
CC

(
z′

s2
,α

))
which contradicts what established before.
In conclusion, whenever s1 ∼Te,fpr s2, then for each Z1 ∈ Resmax,C,α(s1,o) there exists Z2 ∈ Resmax,C,α(s2,o) such
that:

prob
(
SCC(zs1,o,α)

) = prob
(
SCC(zs2,o,α)

)
With a similar argument, we can prove that, whenever s1 ∼Te,fpr s2, then for each Z2 ∈ Resmax,C,α(s2,o) there exists
Z1 ∈ Resmax,C,α(s1,o) such that:

prob
(
SCC(zs2,o,α)

) = prob
(
SCC(zs1,o,α)

)
This means that s1 ∼PTe-tbt s2.

(b) Suppose that s1 ∼PTe-tbt,
� s2. Then, in particular, for every fully probabilistic test T = (O , A,−→T ) with initial
state o ∈ O and for all α ∈ A∗ it holds that Resmax,C,α(s1,o) = ∅ iff Resmax,C,α(s2,o) = ∅ and:

⊔
Z1∈Resmax,C,α(s1,o)

prob
(
SCC(zs1,o,α)

) =
⊔

Z2∈Resmax,C,α(s2,o)

prob
(
SCC(zs2,o,α)

)

�

Z1∈Resmax,C,α(s1,o)

prob
(
SCC(zs1,o,α)

) =
�

Z2∈Resmax,C,α(s2,o)

prob
(
SCC(zs2,o,α)

)

Since the NPLTS under test and the considered tests are all fully probabilistic, the resulting interaction systems are
fully probabilistic too, and hence each of them has a single maximal resolution that coincides with the interac-
tion system itself. As a consequence, the previous relationships among extremal probability values over maximal
resolutions can be rephrased by saying that for all α ∈ A∗:

prob
(
SCC

(
(s1,o),α

)) = prob
(
SCC

(
(s2,o),α

))
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Fig. 8. Two NPLTS models not distinguishable by ∼PTe-tbt/∼PTe-tbt,
� through fully nondeterministic tests if all maximal resolutions were considered.

From this, we immediately derive that:

prob
(
SC(s1,o)

) =
∑
α∈A∗

prob
(
SCC

(
(s1,o),α

))

=
∑
α∈A∗

prob
(
SCC

(
(s2,o),α

)) = prob
(
SC(s2,o)

)

which means that s1 ∼Te,fpr s2.
Suppose now that s1 ∼Te,fpr s2. Then s1 ∼PTe-tbt s2 – as we have proved in the first part – and hence s1 ∼PTe-tbt,
� s2
– as a consequence of Theorem 5.9. �

We remark that in Definitions 5.5–5.7 the considered maximal resolutions are those having at least one α-computation
that corresponds to a completed α-computation in the interaction system. The motivation behind this restriction is that it is
not appropriate to match the 0 success probability of unsuccessful completed α-computations with the 0 success probability
of α-computations that are not completed, as may happen when considering Resmax instead of Resmax,C,α . Admitting all
maximal resolutions would cause ∼PTe-tbt and ∼PTe-tbt,
� not to be backward compatible with ∼Te,fnd when restricting
attention to fully nondeterministic tests. For example, consider the two fully nondeterministic processes in Fig. 8. They are
distinguished by the fully nondeterministic test in the same figure. Following the terminology of [14], the second process
must pass the test, while the first one is not able to do so because the interaction system has a completed a-computation
not reaching success. In the setting of ∼PTe-tbt and ∼PTe-tbt,
� , that completed a-computation in the first interaction system is
not matched by any a-computation in the second interaction system because of the restriction to Resmax,C,a – thus correctly
distinguishing the two processes – but would be matched by a non-completed a-computation in the second interaction
system under Resmax.

We now investigate the relationships of the five testing equivalences among themselves (first two properties below) and
of the three trace-by-trace testing equivalences with the three failure equivalences defined in Section 4 and the three trace
equivalences defined in Section 3 (last three properties below). It turns out that ∼PTe-∀∃ and ∼PTe-tbt,dis perform exactly the
same identifications. Unlike the fully nondeterministic spectrum – where the testing semantics coincides with the failure
semantics when all actions are visible [13] – here ∼PTe-tbt,dis is finer than ∼PF,dis while ∼PTe-tbt and ∼PTe-tbt,
� are coarser
than ∼PF and ∼PF,
� , respectively. It also turns out that ∼PTe-
� is incomparable with most of the other equivalences.

Theorem 5.9. It holds that:

1. ∼PTe-∀∃ ⊆ ∼PTe-
� ⊆ ∼PTr,
� .
2. ∼PTe-∀∃ = ∼PTe-tbt,dis ⊆ ∼PTe-tbt ⊆ ∼PTe-tbt,
� .
3. ∼PTe-tbt,dis ⊆ ∼PF,dis .
4. ∼PF ⊆ ∼PTe-tbt ⊆ ∼PTr .
5. ∼PF,
� ⊆ ∼PTe-tbt,
� ⊆ ∼PTr,
� .

Proof. Let (S, A,−→) be an NPLTS and s1, s2 ∈ S:

1. Suppose that s1 ∼PTe-∀∃ s2. Then we immediately derive that for every NPT T = (O , A,−→T ) with initial state o ∈ O :

{
prob

(
SC(zs1,o)

) | Z1 ∈ Resmax(s1,o)
} ⊆ {

prob
(
SC(zs2,o)

) | Z2 ∈ Resmax(s2,o)
}

and:

{
prob

(
SC(zs2,o)

) | Z2 ∈ Resmax(s2,o)
} ⊆ {

prob
(
SC(zs1,o)

) | Z1 ∈ Resmax(s1,o)
}

As a consequence:
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{
prob

(
SC(zs1,o)

) | Z1 ∈ Resmax(s1,o)
} = {

prob
(
SC(zs2,o)

) | Z2 ∈ Resmax(s2,o)
}

and hence: ⊔
Z1∈Resmax(s1,o)

prob
(
SC(zs1,o)

) =
⊔

Z2∈Resmax(s2,o)

prob
(
SC(zs2,o)

)
�

Z1∈Resmax(s1,o)

prob
(
SC(zs1,o)

) =
�

Z2∈Resmax(s2,o)

prob
(
SC(zs2,o)

)

This means that s1 ∼PTe-
� s2.
Suppose now that s1 ∼PTe-
� s2 and consider an arbitrary trace α ∈ A∗ and an NPT Tα = (O , A,−→Tα ) with initial state
o ∈ O having a single maximal computation that is labeled with α and reaches ω. Given s ∈ S and Z ∈ Resmax(s,o), due
to the structure of Tα it holds that:

prob
(
SC(zs,o)

) = prob
(
SCC(zs,o,α)

) = prob
(
CC

(
z′

s,α
))

where Z ′ is the element of Resα(s) that generates Z . Therefore, from s1 ∼PTe-
� s2 it follows that:⊔
Z ′

1∈Resα(s1)

prob
(
CC

(
z′

s1
,α

)) =
⊔

Z ′
2∈Resα(s2)

prob
(
CC

(
z′

s2
,α

))

�

Z ′
1∈Resα(s1)

prob
(
CC

(
z′

s1
,α

)) =
�

Z ′
2∈Resα(s2)

prob
(
CC

(
z′

s2
,α

))

which means that s1 ∼PTr,
� s2.
2. Let us prove the contrapositive of s1 ∼PTe-∀∃ s2 �⇒ s1 ∼PTe-tbt,dis s2. Suppose that s1 �PTe-tbt,dis s2. Then there ex-

ist an NPT T = (O , A,−→T ) with initial state o ∈ O and, say, a resolution Z1 ∈ Resmax(s1,o) such that for each
Z2 ∈ Resmax(s2,o) there is α2 ∈ A∗ such that CCC(zs1,o,α2) = ∅ and (i) CCC(zs2,o,α2) = ∅ or (ii) prob(SCC(zs1,o,α2)) =
prob(SCC(zs2,o,α2)). We show that from this fact it follows that s1 �PTe-∀∃ s2 by proceeding by induction on the num-
ber n of traces labeling the successful computations from o (note that n is finite – because T is finite state, finitely
branching, and acyclic – and greater than 0 – otherwise T cannot distinguish s1 from s2 with respect to ∼PTe-tbt,dis):
• Let n = 1 and denote by α the only trace labeling the successful computations from o. Then CCC(zs1,o,α) = ∅ and

(i) CCC(zs2,o,α) = ∅ in which case:

prob
(
SC(zs1,o)

)
> 0 = prob

(
SC(zs2,o)

)
or (ii) it holds that:

prob
(
SC(zs1,o)

) = prob
(
SCC(zs1,o,α)

)
= prob

(
SCC(zs2,o,α)

) = prob
(
SC(zs2,o)

)
As a consequence, in both cases s1 �PTe-∀∃ s2.

• Let n ∈ N>1 and suppose that the result holds for all m = 1, . . . ,n − 1. Given a trace α labeling some of the successful
computations from o, we denote by T↓α the NPT obtained from T by transforming into a normal terminal state
every success state reached by a completed α-compatible computation and by T↑α the NPT obtained from T by
transforming into a normal terminal state every success state reached by a completed computation not compatible
with α. Since T distinguishes s1 from s2 with respect to ∼PTe-tbt,dis, T↓α and T↑α have the same structure as T ,
and α labels some of the successful computations of T , either T↓α or T↑α still distinguishes s1 from s2 with respect
to ∼PTe-tbt,dis. Since T↓α has n − 1 traces labeling its successful computations and T↑α has a single trace labeling its
successful computations, by the induction hypothesis it follows that s1 �PTe-∀∃ s2.

Suppose now that s1 ∼PTe-tbt,dis s2 and consider an arbitrary NPT T = (O , A,−→T ) with initial state o ∈ O . Since for
all s ∈ S and Z ∈ Resmax(s,o) it holds that:

prob
(
SC(zs,o)

) =
∑

α∈A∗ s.t. CCC(zs,o,α) =∅
prob

(
SCC(zs,o,α)

)

from s1 ∼PTe-tbt,dis s2 it follows that:
• For each Z1 ∈ Resmax(s1,o) there exists Z2 ∈ Resmax(s2,o) such that:

prob
(
SC(zs1,o)

) =
∑

α∈A∗ s.t. CCC(zs1,o,α) =∅
prob

(
SCC(zs1,o,α)

)

=
∑

α∈A∗ s.t. CCC(zs2,o,α) =∅
prob

(
SCC(zs2,o,α)

) = prob
(
SC(zs2,o)

)
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• For each Z2 ∈ Resmax(s2,o) there exists Z1 ∈ Resmax(s1,o) such that:

prob
(
SC(zs2,o)

) =
∑

α∈A∗ s.t. CCC(zs2,o,α) =∅
prob

(
SCC(zs2,o,α)

)

=
∑

α∈A∗ s.t. CCC(zs1,o,α) =∅
prob

(
SCC(zs1,o,α)

) = prob
(
SC(zs1,o)

)

This means that s1 ∼PTe-∀∃ s2. In conclusion, ∼PTe-∀∃ = ∼PTe-tbt,dis.
The fact that s1 ∼PTe-tbt,dis s2 implies s1 ∼PTe-tbt s2 is easily seen by taking the same fully matching resolutions consid-
ered in ∼PTe-tbt,dis.
Suppose now that s1 ∼PTe-tbt s2. This means that for every NPT T = (O , A,−→T ) with initial state o ∈ O and for all
α ∈ A∗ it holds that:
• For each Z1 ∈ Resmax,C,α(s1,o) there exists Z2 ∈ Resmax,C,α(s2,o) such that:

prob
(
SCC(zs1,o,α)

) = prob
(
SCC(zs2,o,α)

)
• For each Z2 ∈ Resmax,C,α(s2,o) there exists Z1 ∈ Resmax,C,α(s1,o) such that:

prob
(
SCC(zs2,o,α)

) = prob
(
SCC(zs1,o,α)

)
This is to say that:
• Resmax,C,α(s1,o) = ∅ implies Resmax,C,α(s2,o) = ∅ and:⋃

Z1∈Resmax,C,α(s1,o)

{
prob

(
SCC(zs1,o,α)

)} ⊆
⋃

Z2∈Resmax,C,α(s2,o)

{
prob

(
SCC(zs2,o,α)

)}

• Resmax,C,α(s2,o) = ∅ implies Resmax,C,α(s1,o) = ∅ and:⋃
Z2∈Resmax,C,α(s2,o)

{
prob

(
SCC(zs2,o,α)

)} ⊆
⋃

Z1∈Resmax,C,α(s1,o)

{
prob

(
SCC(zs1,o,α)

)}

Equivalently, Resmax,C,α(s1,o) = ∅ iff Resmax,C,α(s2,o) = ∅ and:⋃
Z1∈Resmax,C,α(s1,o)

{
prob

(
SCC(zs1,o,α)

)} =
⋃

Z2∈Resmax,C,α(s2,o)

{
prob

(
SCC(zs2,o,α)

)}

which implies:⊔
Z1∈Resmax,C,α(s1,o)

prob
(
SCC(zs1,o,α)

) =
⊔

Z2∈Resmax,C,α(s2,o)

prob
(
SCC(zs2,o,α)

)
�

Z1∈Resmax,C,α(s1,o)

prob
(
SCC(zs1,o,α)

) =
�

Z2∈Resmax,C,α(s2,o)

prob
(
SCC(zs2,o,α)

)

This means that s1 ∼PTe-tbt,
� s2.
3. The proof of ∼PTe-tbt,dis⊆∼PF,dis is divided into three steps and requires the introduction of some auxiliary definitions

and notations.
We call ready trace an element ρ ∈ (A × 2A)∗ given by a sequence of n ∈ N pairs of the form (ai, Ri). We say that
c ∈ Cfin(zs) is compatible with ρ iff c ∈ CC(zs,a1 . . .an) and, denoting by zi the state reached by c after the i-th step
for all i = 1, . . . ,n, the set of actions labeling the transitions in the NPLTS departing from corrZ (zi) is precisely Ri . We
denote by RT CC(zs,ρ) the set of ρ-compatible computations from zs .
We let s1 ∼PRTr,dis s2 iff for each resolution Z1 ∈ Res(s1) there exists a resolution Z2 ∈ Res(s2) such that for all ρ ∈
(A × 2A)∗:

prob
(
RT CC(zs1 ,ρ)

) = prob
(
RT CC(zs2 ,ρ)

)
and symmetrically for each Z2 ∈ Res(s2).
In the first step of this proof, we show that s1 ∼PTe-tbt,dis s2 implies s1 ∼PRTr,dis s2 by building a test that permits to
reason about all ready traces at once for each resolution of s1 and s2.
We start by deriving a new NPLTS (Sr, Ar,−→r) that is isomorphic to the given one up to transition labels and
terminal states. A transition s a−→ D becomes sr

a�R−−−→r Dr where R ⊆ A is the set of actions labeling the outgo-
ing transitions of s and Dr(sr) = D(s) for all s ∈ S . If s is a terminal state, i.e., it has no outgoing transitions, then
we add a transition sr

◦�∅−−−→r δsr where δsr (sr) = 1 and δsr (s′
r) = 0 for all s′ ∈ S \ {s}. Transition relabeling preserves

∼PTe-tbt,dis, i.e., s1 ∼PTe-tbt,dis s2 implies s1,r ∼PTe-tbt,dis s2,r, because ∼PTe-tbt,dis is able to distinguish a state that has a



80 M. Bernardo et al. / Theoretical Computer Science 546 (2014) 63–92
single α-compatible computation reaching a state with a nondeterministic branching formed by a b-transition and a
c-transition, from a state that has two α-compatible computations such that one of them reaches a state with only one
outgoing transition labeled with b and the other one reaches a state with only one outgoing transition labeled with c
(e.g., use a test that has a single α-compatible computation whose last step leads to a distribution whose support
contains only a state with only one outgoing transition labeled with b that reaches success and a state with only one
outgoing transition labeled with c that reaches success).
For each αr ∈ (Ar)

∗ and R ⊆ A, we build an NPT Tαr,R = (Oαr,R , Ar,−→αr,R) having a single αr-compatible computation
that goes from the initial state oαr,R to a state having a single transition to ω labeled with (i) ◦ � ∅ if R = ∅ or (ii) _ � R
if R = ∅. Since we compare individual states (like s1 and s2) rather than state distributions, the distinguishing power of
∼PTe-tbt,dis does not change if we additionally consider tests starting with a single τ -transition that can initially evolve
autonomously in any interaction system. We thus build a further NPT T = (O , Ar,−→T ) that has an initial τ -transition
and then behaves as one of the tests Tαr,R , i.e., its initial τ -transition goes from the initial state o to a state distribution
whose support is the set {oαr,R | αr ∈ (Ar)

∗ ∧ R ⊆ A}, with the probability pαr,R associated with oαr,R being taken from
the distribution whose values are of the form 1/2i , i ∈ N>0. Note that T is not finite state, but this affects only the
initial step, whose only purpose is to internally select a specific ready trace.
After this step, T interacts with the process under test. Let ρ ∈ (A × 2A)∗ be a ready trace of the form
(a1, R1) . . . (an, Rn), where n ∈ N. Given s ∈ S , consider the trace αρ,r ∈ (Ar)

∗ of length n + 1 in which the first ele-
ment is a1 � R , with R ⊆ A being the set of actions labeling the outgoing transitions of s, the subsequent elements are
of the form ai � Ri−1 for i = 2, . . . ,n, and the last element is (i) ◦ � ∅ if Rn = ∅ or (ii) _ � Rn if Rn = ∅. Then for all
Z ∈ Res(s) it holds that:

prob
(
RT CC(zs,ρ)

) = 0

if there is no a1 . . .an-compatible computation from zs , otherwise:

prob
(
RT CC(zs,ρ)

) = prob
(
SCC(zsr,o,αρ,r)

)
/pα′

ρ,r,Rn

where α′
ρ,r is αρ,r without its last element.

Suppose that s1 ∼PTe-tbt,dis s2, which implies that s1 and s2 have the same set R of actions labeling their outgoing
transitions and s1,r ∼PTe-tbt,dis s2,r. Then:
• For each Z1 ∈ Res(s1) there exists Z2 ∈ Res(s2) such that for all ready traces ρ = (a1, R1) . . . (an, Rn) ∈ (A × 2A)∗

either:

prob
(
RT CC(zs1 ,ρ)

) = 0 = prob
(
RT CC(zs2 ,ρ)

)
or:

prob
(
RT CC(zs1 ,ρ)

) = prob
(
SCC(zs1,r,o,αρ,r)

)
/pα′

ρ,r,Rn

= prob
(
SCC(zs2,r,o,αρ,r)

)
/pα′

ρ,r,Rn
= prob

(
RT CC(zs2 ,ρ)

)
• Symmetrically for each Z2 ∈ Res(s2).
This means that s1 ∼PRTr,dis s2.
We can now start the second step of this proof. We call failure trace an element φ ∈ (A × 2A)∗ given by a sequence of
n ∈ N pairs of the form (ai, Fi). We say that c ∈ Cfin(zs) is compatible with φ iff c ∈ CC(zs,a1 . . .an) and, denoting by zi
the state reached by c after the i-th step for all i = 1, . . . ,n, corrZ (zi) has no outgoing transitions in the NPLTS labeled
with an action in Fi . We denote by FT CC(zs, φ) the set of φ-compatible computations from zs .
We let s1 ∼PFTr,dis s2 iff for each resolution Z1 ∈ Res(s1) there exists a resolution Z2 ∈ Res(s2) such that for all φ ∈
(A × 2A)∗:

prob
(
FT CC(zs1 ,ϕ)

) = prob
(
FT CC(zs2 ,ϕ)

)
and symmetrically for each Z2 ∈ Res(s2).
In this second step, we prove that s1 ∼PRTr,dis s2 implies s1 ∼PFTr,dis s2. Suppose that s1 ∼PRTr,dis s2. Then we immediately
derive that:
• For each Z1 ∈ Res(s1) there exists Z2 ∈ Res(s2) such that for all (a1, F1) . . . (an, Fn) ∈ (A × 2A)∗:

prob
(
FT CC

(
zs1 , (a1, F1) . . . (an, Fn)

))
=

∑
R ′

1,...,R ′
n∈2A s.t. R ′

i∩Fi=∅ for all i=1,...,n

prob
(
RT CC

(
zs1 ,

(
a1, R ′

1

)
. . .

(
an, R ′

n

)))

=
∑

R ′
1,...,R ′

n∈2A s.t. R ′
i∩Fi=∅ for all i=1,...,n

prob
(
RT CC

(
zs2 ,

(
a1, R ′

1

)
. . .

(
an, R ′

n

)))

= prob
(
FT CC

(
zs2 , (a1, F1) . . . (an, Fn)

))



M. Bernardo et al. / Theoretical Computer Science 546 (2014) 63–92 81
• Symmetrically for each Z2 ∈ Res(s2).
This means that s1 ∼PFTr,dis s2.
The third and final step of this proof shows that s1 ∼PFTr,dis s2 implies s1 ∼PF,dis s2. Suppose that s1 ∼PFTr,dis s2. Then we
immediately derive that:
• For each Z1 ∈ Res(s1) there exists Z2 ∈ Res(s2) such that for all (a1 . . .an, F ) ∈ A∗ × 2A :

prob
(
FCC

(
zs1 , (a1 . . .an, F )

)) = prob
(
FT CC

(
zs1 , (a1,∅) . . . (an−1,∅)(an, F )

))
= prob

(
FT CC

(
zs2 , (a1,∅) . . . (an−1,∅)(an, F )

))
= prob

(
FCC

(
zs2 , (a1 . . .an, F )

))
• Symmetrically for each Z2 ∈ Res(s2).
This means that s1 ∼PF,dis s2.

4. Let us prove the contrapositive of s1 ∼PF s2 �⇒ s1 ∼PTe-tbt s2. Suppose that s1 �PTe-tbt s2. This means that there exist an
NPT T = (O , A,−→T ) with initial state o ∈ O , a trace α ∈ A∗ , and, say, a resolution Z1 ∈ Resmax,C,α(s1,o) such that
Resmax,C,α(s2,o) = ∅ or for all Z2 ∈ Resmax,C,α(s2,o) it holds that:

prob
(
SCC(zs1,o,α)

) = prob
(
SCC(zs2,o,α)

)
Observing that Resmax,C,α(s1,o) = ∅, in the case that Resmax,C,α(s2,o) = ∅ either s2 cannot perform α at all – let ϕ =
(α,∅) – or, after performing α, the states reached by s2 can always synchronize with the states reached by o on a set
F of actions whereas the states reached by s1 cannot – let ϕ = (α, F ). The failure pair ϕ shows that s1 �PF s2 in this
case because, denoting by Z ′

1 the element of Res(s1) that originates Z1, we have that for all Z ′
2 ∈ Res(s2):

prob
(
FCC

(
z′

s1
,ϕ

))
> 0 = prob

(
FCC

(
z′

s2
,ϕ

))
In the case that Resmax,C,α(s2,o) = ∅, the failure pair ϕ = (α,∅) shows that s1 �PF s2. In fact, without loss of generality
we can assume that the only α-compatible computations in T are the ones exercised by Z1 – note that they must
belong to the same element Z of Res(o) – as the only effect of this assumption is that of possibly reducing the number
of resolutions in Resmax,C,α(s2,o). At least one of these computations must be successful – and hence maximal – in T
because otherwise the success probabilities of the considered resolutions would all be equal to 0. Denoting by Z ′

1 the
element of Res(s1) that originates Z1, we then have that for all Z ′

2 ∈ Res(s2) originating some Z2 ∈ Resmax,C,α(s2,o):

prob
(
FCC

(
z′

s1
,ϕ

)) = prob
(
SCC(zs1,o,α)

)
/p

= prob
(
SCC(zs2,o,α)

)
/p = prob

(
FCC

(
z′

s2
,ϕ

))
where p is the probability of performing the α-compatible computations in the only element Z of Res(o) that originates
Z1 and all the resolutions Z2.
Suppose now that s1 ∼PTe-tbt s2. Then, in particular, for every α ∈ A∗ and NPT Tα = (O , A,−→Tα ) with initial state
o ∈ O having a single maximal α-compatible computation that reaches success, it holds that:
• For each Z1 ∈ Resmax,C,α(s1,o) there exists Z2 ∈ Resmax,C,α(s2,o) such that:

prob
(
SCC(zs1,o,α)

) = prob
(
SCC(zs2,o,α)

)
• Symmetrically for each Z2 ∈ Resmax,C,α(s2,o).
Since for all s ∈ S , Z ∈ Resmax,C,α(s,o), and Z ′ ∈ Res(s) originating Z in the interaction with Tα it holds that:

prob
(
SCC(zs,o,α)

) = prob
(
CC

(
z′

s,α
))

due to the structure of Tα , we immediately derive that for all α ∈ A∗:
• For each Z ′

1 ∈ Res(s1) there exists Z ′
2 ∈ Res(s2) such that:

prob
(
CC

(
z′

s1
,α

)) = prob
(
CC

(
z′

s2
,α

))
• For each Z ′

2 ∈ Res(s2) there exists Z ′
1 ∈ Res(s1) such that:

prob
(
CC

(
z′

s2
,α

)) = prob
(
CC

(
z′

s1
,α

))
This means that s1 ∼PTr s2.

5. Let us prove the contrapositive of s1 ∼PF,
� s2 �⇒ s1 ∼PTe-tbt,
� s2. Suppose that s1 �PTe-tbt,
� s2. This means that there
exist an NPT T = (O , A,−→T ) with initial state o ∈ O and a trace α ∈ A∗ such that, for instance, Resmax,C,α(s1,o) = ∅
and: ⊔

Z ∈Res (s ,o)

prob
(
SCC(zs1,o,α)

)
>

⊔
Z ∈Res (s ,o)

prob
(
SCC(zs2,o,α)

)

1 max,C,α 1 2 max,C,α 2
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Fig. 9. Two NPLTS models distinguished by ∼PF/∼PF,
� and identified by ∼PTe-tbt/∼PTe-tbt,
� .

Since Resmax,C,α(s1,o) = ∅, in the case that Resmax,C,α(s2,o) = ∅ either s2 cannot perform α at all – let ϕ = (α,∅) –
or, after performing α, the states reached by s2 can always synchronize with the states reached by o on a set F of
actions whereas the states reached by s1 cannot – let ϕ = (α, F ). The failure pair ϕ shows that s1 �PF,
� s2 in this case
because, denoting by Z ′

1 the element of Resα(s1) that originates some Z1 ∈ Resmax,C,α(s1,o), we have that:

⊔
Z ′

1∈Resα(s1)

prob
(
FCC

(
z′

s1
,ϕ

))
> 0 =

⊔
Z ′

2∈Resα(s2)

prob
(
FCC

(
z′

s2
,ϕ

))

In the case that Resmax,C,α(s2,o) = ∅, the failure pair ϕ = (α,∅) shows that s1 �PF,
� s2. In fact, without loss of gen-
erality we can assume that the only α-compatible computations in T are the ones resulting in the supremum of the
success probabilities of the α-compatible computations from (s1,o) – note that they must belong to the same element
Z of Res(o) – as this assumption has no effect on the relationship between the two suprema. At least one of these com-
putations must be successful – and hence maximal – in T because otherwise the success probabilities of the considered
resolutions would all be equal to 0. Denoting by Z ′

1 the element of Resα(s1) that originates some Z1 ∈ Resmax,C,α(s1,o)

and by Z ′
2 the element of Resα(s2) that originates some Z2 ∈ Resmax,C,α(s2,o), we then have that:

⊔
Z ′

1∈Resα(s1)

prob
(
FCC

(
z′

s1
,ϕ

)) =
⊔

Z1∈Resmax,C,α(s1,o)

prob
(
SCC(zs1,o,α)

)
/p

>
⊔

Z2∈Resmax,C,α(s2,o)

prob
(
SCC(zs2,o,α)

)
/p

=
⊔

Z ′
2∈Resα(s2)

prob
(
FCC

(
z′

s2
,ϕ

))

where p is the probability of performing the α-compatible computations in the only element Z of Res(o) that originates
all the resolutions Z1 and Z2.
Suppose now that s1 ∼PTe-tbt,
� s2. Then, in particular, for every α ∈ A∗ and NPT Tα = (O , A,−→Tα ) with initial state
o ∈ O having a single maximal α-compatible computation that reaches success, it holds that Resmax,C,α(s1,o) = ∅ iff
Resmax,C,α(s2,o) = ∅ and:

⊔
Z1∈Resmax,C,α(s1,o)

prob
(
SCC(zs1,o,α)

) =
⊔

Z2∈Resmax,C,α(s2,o)

prob
(
SCC(zs2,o,α)

)

�

Z1∈Resmax,C,α(s1,o)

prob
(
SCC(zs1,o,α)

) =
�

Z2∈Resmax,C,α(s2,o)

prob
(
SCC(zs2,o,α)

)

Since for all s ∈ S , Z ∈ Resmax,C,α(s,o), and Z ′ ∈ Resα(s) originating Z in the interaction with Tα it holds that:

prob
(
SCC(zs,o,α)

) = prob
(
CC

(
z′

s,α
))

due to the structure of Tα , we immediately derive that for all α ∈ A∗:

⊔
Z ′

1∈Resα(s1)

prob
(
CC

(
z′

s1
,α

)) =
⊔

Z ′
2∈Resα(s2)

prob
(
CC

(
z′

s2
,α

))

�

Z ′
1∈Resα(s1)

prob
(
CC

(
z′

s1
,α

)) =
�

Z ′
2∈Resα(s2)

prob
(
CC

(
z′

s2
,α

))

This means that s1 ∼PTr,
� s2. �



M. Bernardo et al. / Theoretical Computer Science 546 (2014) 63–92 83
Fig. 10. Two NPLTS models distinguished by ∼PTe-tbt/∼PTe-tbt,
� and identified by ∼PTr/∼PTr,
� .

All the inclusions in Theorem 5.9 are strict:

• Fig. 2 shows that ∼PTe-∀∃ is strictly finer than ∼PTe-
� . It holds that s1 �PTe-∀∃ s2 because the test whose initial state
o has an offer-transition followed by a win1-transition reaching success, results in a 0.5 success probability for the
central maximal resolution of (s1,o) that is not matched by any maximal resolution of (s2,o). In contrast, s1 ∼PTe-
� s2
because no test can make the central maximal resolution of s1 come into play when the emphasis is on the maximal
and minimal success probabilities.

• Fig. 1 shows that ∼PTe-
� is strictly finer than ∼PTr,
� . It holds that s1 �PTe-
� s2 because the test whose initial state o
has an offer-transition leading (i) with probability 0.9 to a state that has a draw-transition reaching success and (ii) with
probability 0.1 to a state that has a win1-transition reaching success, results in the 0.54 maximum success probability
obtained in the central maximal resolution of (s1,o) that is different from the 0.58 maximum success probability
obtained in the leftmost maximal resolution of (s2,o). In contrast, s1 ∼PTr,
� s2 because each of the various traces has
the same maximum and minimum probabilities in both processes.

• Figs. 1 and 2 respectively show that ∼PTe-tbt,dis is strictly finer than ∼PTe-tbt and ∼PTe-tbt is strictly finer than ∼PTe-tbt,
� .
• Fig. 7 shows that ∼PTe-tbt,dis is strictly finer than ∼PF,dis. It holds that s1 �PTe-tbt,dis s2 because ∼PTe-tbt,dis coincides

with ∼PTe-∀∃ and we have already exhibited a test distinguishing the two processes with respect to ∼PTe-∀∃ . In contrast,
s1 ∼PF,dis s2 because for each resolution of s1 (resp. s2) there exists a resolution of s2 (resp. s1) having precisely the
same failure distribution.

• Fig. 9 shows that ∼PF and ∼PF,
� are strictly finer than ∼PTe-tbt and ∼PTe-tbt,
� , respectively. It holds that s1 �PF,
� s2
(and hence s1 �PF s2) because the failure pair (a, A) has maximum probability 1 in the first process and 0.5 in the
second process. In contrast, s1 ∼PTe-tbt s2 (and hence s1 ∼PTe-tbt,
� s2) because no test is able to distinguish the two
processes due to the fact that success probabilities are computed in a trace-by-trace fashion.

• Fig. 10 shows that ∼PTe-tbt and ∼PTe-tbt,
� are strictly finer than ∼PTr and ∼PTr,
� , respectively. It holds that
s1 �PTe-tbt,
� s2 (and hence s1 �PTe-tbt s2) because the test in the same figure results in a situation in which
Resmax,C,a(s1,o) = ∅ while Resmax,C,a(s2,o) = ∅. In contrast, s1 ∼PTr s2 (and hence s1 ∼PTr,
� s2) because for each reso-
lution of s1 (resp. s2) there exists a resolution of s2 (resp. s1) having precisely the same trace distribution.

Moreover:

• ∼PTe-
� is incomparable with ∼PF,dis, ∼PTr,dis, ∼PF, ∼PTe-tbt, and ∼PTr, because in Fig. 2 it holds that s1 ∼PTe-
� s2 and
s1 �PTr s2 (and hence s1 �PTe-tbt s2, s1 �PF s2, s1 �PTr,dis s2, and s1 �PF,dis s2), while in Fig. 7 it holds that s1 �PTe-
� s2
and s1 ∼PF,dis s2 (and hence s1 ∼PTr,dis s2, s1 ∼PF s2, s1 ∼PTe-tbt s2, and s1 ∼PTr s2).

• ∼PTe-
� is incomparable with ∼PF,
� and ∼PTe-tbt,
� too. Indeed, in Fig. 11 it holds that s1 ∼PTe-
� s2 while s1 �PTe-tbt,
�
s2 (and hence s1 �PF,
� s2) due to the test shown in the figure, which yields different minimum success probabilities
for trace a b over the maximal resolutions of the two interaction systems having completed computations compatible
with that trace. In contrast, in Fig. 1 it holds that s1 �PTe-
� s2 and s1 ∼PF,
� s2 (and hence s1 ∼PTe-tbt,
� s2).

• ∼PTe-tbt and ∼PTe-tbt,
� are incomparable with ∼PTr,dis, because in Fig. 9 it holds that s1 ∼PTe-tbt s2 (and hence
s1 ∼PTe-tbt,
� s2) and s1 �PTr,dis s2, while in Fig. 10 it holds that s1 �PTe-tbt,
� s2 (and hence s1 �PTe-tbt s2) and
s1 ∼PTr,dis s2.

• ∼PTe-tbt is incomparable with ∼PF,
� , because in Fig. 9 it holds that s1 ∼PTe-tbt s2 and s1 �PF,
� s2, while in Fig. 2 it
holds that s1 �PTe-tbt s2 and s1 ∼PF,
� s2.

6. Bisimulation equivalences for NPLTS models

Bisimulation equivalences capture the ability of two processes of mimicking each other’s behavior stepwise. Similar to
the trace and failure cases, given two states there are three different approaches to the definition of these bisimilarities,
each following the style of [28] based on equivalence relations. The first approach is to match transitions on the basis of
class distributions, which means that for each transition of one of the two states there must exist an equally labeled transi-
tion of the other state such that, for every equivalence class, the two transitions have the same probability of reaching a state
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Fig. 11. Two NPLTS models distinguished by ∼PF,
�/∼PTe-tbt,
� and identified by ∼PTe-
� .

in that class. In other words, matching transitions of the two states are related by the fully probabilistic version of bisimi-
larity (fully matching transitions). The second approach is to consider a single equivalence class at a time, i.e., to anticipate the
quantification over classes with respect to the quantification over transitions. In this way, a transition departing from one
of the two states is allowed to be matched, with respect to the probabilities of reaching different classes, by several differ-
ent transitions departing from the other state (partially matching transitions). The third approach is to compare only the
extremal probabilities of reaching each class over all possible transitions labeled with a certain action (max–min-matching
transition sets).

Unlike [28], we shall consider groups of equivalence classes rather than individual equivalence classes. This does not change
the discriminating power in the case of the first approach, while it increases the discriminating power thereby resulting in
desirable logical characterizations in the case of the other two approaches [12,38,37,8]. Given an NPLTS (S, A,−→) and a
distribution D ∈ Distr(S), in the following we let D(S ′) = ∑

s∈S ′ D(s) for S ′ ⊆ S . Moreover, given an equivalence relation B
over S and a group of equivalence classes G ∈ 2S/B , we also let

⋃
G = ⋃

C∈G C .

Definition 6.1 (Probabilistic group-distribution bisimilarity – ∼PB,dis). (See [34].) s1 ∼PB,dis s2 iff (s1, s2) belongs to the largest
probabilistic group-distribution bisimulation. An equivalence relation B over S is a probabilistic group-distribution bisimulation
iff, whenever (s1, s2) ∈ B, then for each s1

a−→ D1 there exists s2
a−→ D2 such that for all G ∈ 2S/B it holds that D1(

⋃
G) =

D2(
⋃

G). �
Definition 6.2 (Probabilistic bisimilarity – ∼PB). (See [8].) s1 ∼PB s2 iff (s1, s2) belongs to the largest probabilistic bisimulation.
An equivalence relation B over S is a probabilistic bisimulation iff, whenever (s1, s2) ∈ B, then for all G ∈ 2S/B it holds that
for each s1

a−→D1 there exists s2
a−→D2 such that D1(

⋃
G) =D2(

⋃
G). �

Definition 6.3 (Probabilistic 
�-bisimilarity – ∼PB,
�). (See [8].) s1 ∼PB,
� s2 iff (s1, s2) belongs to the largest probabilistic

�-bisimulation. An equivalence relation B over S is a probabilistic 
�-bisimulation iff, whenever (s1, s2) ∈ B, then for all
G ∈ 2S/B and a ∈ A it holds that s1

a−→ iff s2
a−→ and:

⊔
s1

a−→D1

D1

(⋃
G
)

=
⊔

s2
a−→D2

D2

(⋃
G
)

�

s1
a−→D1

D1

(⋃
G
)

=
�

s2
a−→D2

D2

(⋃
G
) �

The three bisimulation equivalences defined above are all backward compatible with the bisimulation equivalences
respectively defined in [21] for fully nondeterministic processes – which we denote by ∼B,fnd – and in [19] for fully proba-
bilistic processes – which we denote by ∼B,fpr.

Theorem 6.4. It holds that:

1. ∼PB,dis = ∼PB = ∼PB,
� = ∼B,fnd over fully nondeterministic NPLTS models.
2. ∼PB,dis = ∼PB = ∼PB,
� = ∼B,fpr over fully probabilistic NPLTS models.

Proof. Let (S, A,−→) be an NPLTS and s1, s2 ∈ S:

1. Suppose that the NPLTS is fully nondeterministic. We preliminarily recall from [21] (and adapt to the NPLTS setting)
that s1 ∼B,fnd s2 means that there exists an fnd-bisimulation B over S such that (s1, s2) ∈ B. Let us denote by δs the
Dirac distribution for s ∈ S , i.e., let δs(s) = 1 and δs(s′) = 0 for all s′ ∈ S \ {s}. A relation B over S is an fnd-bisimulation
iff, whenever (s′

1, s′
2) ∈ B, then:

• For each s′
1

a−→ δs′′1 there exists s′
2

a−→ δs′′2 such that (s′′
1, s′′

2) ∈ B.

• For each s′ a−→ δs′′ there exists s′ a−→ δs′′ such that (s′′, s′′) ∈ B.
2 2 1 1 1 2
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The property ∼PB,dis = ∼PB = ∼PB,
� = ∼B,fnd over the considered fully nondeterministic NPLTS is a straightforward
consequence of the fact that, since in this model every transition can reach with probability greater than 0 only one
state and hence only one class of any equivalence relation – which are thus reached with probability 1 – the reflexive,
symmetric, and transitive closure of an fnd-bisimulation is trivially a probabilistic group-distribution bisimulation, a
probabilistic bisimulation, and a probabilistic 
�-bisimulation.

2. Suppose that the NPLTS is fully probabilistic. We preliminarily recall from [19] (and adapt to the NPLTS setting) that
s1 ∼B,fpr s2 means that there exists an fpr-bisimulation B over S such that (s1, s2) ∈ B. An equivalence relation B over S
is an fpr-bisimulation iff, whenever (s′

1, s′
2) ∈ B, then for all equivalence classes C ∈ S/B it holds for each s′

1
a−→D1 there

exists s′
2

a−→D2 such that D1(C) =D2(C).
The property ∼PB,dis = ∼PB = ∼PB,
� = ∼B,fpr over the considered fully probabilistic NPLTS is a straightforward conse-
quence of the fact that, since in this model every state has at most one outgoing transition, an fpr-bisimulation is triv-
ially a probabilistic group-distribution bisimulation, a probabilistic bisimulation, and a probabilistic 
�-bisimulation. �

We now investigate the relationships of the three bisimulation equivalences among themselves (first property below)
and with the five testing equivalences defined in Section 5, the three failure equivalences defined in Section 4, and the
three trace equivalences defined in Section 3 (second property below). It turns out that only ∼PB,dis is related to the other
equivalences, while ∼PB and ∼PB,
� are incomparable with them.

Theorem 6.5. It holds that:

1. ∼PB,dis ⊆ ∼PB ⊆ ∼PB,
� .
2. ∼PB,dis ⊆ ∼PTe-tbt,dis .

Proof. Let (S, A,−→) be an NPLTS and s1, s2 ∈ S:

1. The fact that s1 ∼PB,dis s2 implies s1 ∼PB s2 is a straightforward consequence of the fact that a probabilistic group-
distribution bisimulation is a probabilistic bisimulation, as can be easily seen by taking the same fully matching
transitions considered in the group-distribution bisimulation.
Suppose now that s1 ∼PB s2. This means that there exists a probabilistic bisimulation B over S such that (s1, s2) ∈ B. In
other words, whenever (s′

1, s′
2) ∈ B, then for all G ∈ 2S/B it holds that:

• For each s′
1

a−→D1 there exists s′
2

a−→D2 such that D1(
⋃

G) =D2(
⋃

G).
• For each s′

2
a−→D2 there exists s′

1
a−→D1 such that D2(

⋃
G) =D1(

⋃
G).

This is to say that, whenever (s′
1, s′

2) ∈ B, then for all G ∈ 2S/B and a ∈ A it holds that:
• If s′

1
a−→, then s′

2
a−→ and

⋃
s′1

a−→D1
{D1(

⋃
G)} ⊆ ⋃

s′2
a−→D2

{D2(
⋃

G)}.

• If s′
2

a−→, then s′
1

a−→ and
⋃

s′2
a−→D2

{D2(
⋃

G)} ⊆ ⋃
s′1

a−→D1
{D1(

⋃
G)}.

Equivalently, s′
1

a−→ iff s′
2

a−→ and:

⋃
s′1

a−→D1

{
D1

(⋃
G
)}

=
⋃

s′2
a−→D2

{
D2

(⋃
G
)}

which implies:
⊔

s′1
a−→D1

D1

(⋃
G
)

=
⊔

s′2
a−→D2

D2

(⋃
G
)

�

s′1
a−→D1

D1

(⋃
G
)

=
�

s′2
a−→D2

D2

(⋃
G
)

Therefore, B is also a probabilistic 
�-bisimulation, i.e., s1 ∼PB,
� s2.
2. Suppose that s1 ∼PB,dis s2. Notice that states related by ∼PB,dis have the same set of actions labeling their outgoing

transitions, and that states not enjoying this property are trivially distinguished by ∼PTe-tbt,dis. Consider an arbitrary NPT
T = (O , A,−→T ). Since ∼PB,dis is a congruence with respect to parallel composition [34], for all s′

1, s′
2 ∈ S such that

s′
1 ∼PB,dis s′

2 and for all o ∈ O it holds that (s′
1,o) ∼PB,dis (s′

2,o) due to some probabilistic group-distribution bisimulation
B over S × O . Since configurations related by ∼PB,dis have the same set of actions labeling their outgoing transitions,
this induces projections of B that are fpr-bisimulations [19] over pairs of matching resolutions of the interaction system
that are both maximal. As a consequence, whenever ((s′

1,o), (s′
2,o)) ∈ B, then:

• For each Z1 ∈ Resmax(s′
1,o) there exists Z2 ∈ Resmax(s′

2,o) such that the equivalence relation B1,2 over Z = Z1 ∪ Z2
corresponding to B projected onto Z × Z is an fpr-bisimulation, i.e., whenever (zs′′1,o′ , zs′′2,o′ ) ∈ B1,2, then for each

zs′′,o′ a−→D1 there exists zs′′,o′ a−→D2 such that for all equivalence classes C ∈ Z/B1,2 it holds that D1(C) =D2(C).

1 2
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• Symmetrically for each Z2 ∈ Resmax(s′
2,o).

In particular, it holds that:
• For each Z1 ∈ Resmax(s′

1,o) there exists Z2 ∈ Resmax(s′
2,o) such that for all α ∈ A∗ it holds that CCC(zs′1,o,α) = ∅

implies CCC(zs′2,o,α) = ∅.
• Symmetrically for each Z2 ∈ Resmax(s′

2,o).
Given s′

1, s′
2 ∈ S and o ∈ O such that ((s′

1,o), (s′
2,o)) ∈ B, and given Z1 ∈ Resmax(s′

1,o) and Z2 ∈ Resmax(s′
2,o) such that

zs′1,o and zs′2,o are related by one of the projections of B, we prove that for all α ∈ A∗ such that CCC(zs′1,o,α) = ∅ =
CCC(zs′2,o,α) it holds that:

prob
(
SCC(zs′1,o,α)

) = prob
(
SCC(zs′2,o,α)

)
by proceeding by induction on the length n of α:
• If n = 0, i.e., α = ε, then:

prob
(
SCC(zs′1,o,α)

) = prob
(
SCC(zs′2,o,α)

) =
{

1 if o = ω

0 if o = ω

• Let n ∈ N>0 and suppose that the result holds for all traces of length m = 0, . . . ,n − 1 that label completed computa-
tions starting from pairs of states of Z related by one of the projections of B. Assume that α = a α′ . Given s ∈ S and
Z ∈ Resmax(s,o) such that CCC(zs,o,α) = ∅, it holds that, whenever zs,o

a−→D, then:

prob
(
SCC(zs,o,α)

) =
∑

zs′,o′ ∈Z

D(zs′,o′) · prob
(
SCC

(
zs′,o′ ,α′))

=
∑

[zs′,o′ ]∈Z/B′
D

([zs′,o′ ]) · prob
(
SCC

(
zs′,o′ ,α′))

where B′ is a projection of B and the factorization of prob(SCC(zs′,o′ ,α′)) with respect to the specific representative
zs′,o′ of the equivalence class [zs′,o′ ] stems from the application of the induction hypothesis on α′ to all states of that
equivalence class. Since zs′1,o and zs′2,o are related by a projection B1,2 of B, it follows that, whenever zs′1,o

a−→ D1,

then zs′2,o
a−→D2 and:

prob
(
SCC(zs′1,o,α)

) =
∑

[zs′,o′ ]∈Z/B1,2

D1
([zs′,o′ ]) · prob

(
SCC

(
zs′,o′ ,α′))

=
∑

[zs′,o′ ]∈Z/B1,2

D2
([zs′,o′ ]) · prob

(
SCC

(
zs′,o′ ,α′)) = prob

(
SCC(zs′2,o,α)

)

Therefore s1 ∼PTe-tbt,dis s2. �
All the inclusions in Theorem 6.5 are strict:

• Fig. 1 shows that ∼PB,dis is strictly finer than ∼PB. It holds that s1 �PB,dis s2 because for instance the group distribution
of the leftmost offer-transition of s1 – which assigns probability 1 to each group containing both the state with the
outgoing draw-transition and the state with the outgoing win1-transition, probability 0.4 to each group containing the
state with the outgoing draw-transition but not the state with the outgoing win1-transition, probability 0.6 to each
group containing the state with the outgoing win1-transition but not the state with the outgoing draw-transition, and
probability 0 to any other group – is not matched by the group distribution of any of the three offer-transitions of
s2. In contrast, s1 ∼PB s2 because, given an arbitrary group G , for each offer-transition of s1 (resp. s2) there exists an
offer-transition of s2 (resp. s1) such that G has the same probability of being reached by both transitions. For example,
the leftmost offer-transition of s1 is matched by (i) the leftmost offer-transition of s2 with respect to every group
containing both the state with the outgoing draw-transition and the state with the outgoing win1-transition, (ii) the
central offer-transition of s2 with respect to every group containing the state with the outgoing draw-transition but not
the state with the outgoing win1-transition, and (iii) the rightmost offer-transition on the side of s2 with respect to
every group containing the state with the outgoing win1-transition but not the state with the outgoing draw-transition.

• Fig. 2 shows that ∼PB is strictly finer than ∼PB,
� . It holds that s1 �PB s2 because for instance the probability 0.5
of reaching the group containing the state with the outgoing win1-transition but not the state with the outgoing
win2-transition after the central offer-transition of s1 is not matched by the probability of reaching the same group
after any of the two offer-transitions of s2. In contrast, s1 ∼PB,
� s2 because, given an arbitrary group G , the maximum
probability and the minimum probability of reaching G over all offer-transitions of the two processes are respectively
the same in both processes. For example, the group containing the state with the outgoing win1-transition but not the
state with the outgoing win2-transition has maximum probability 0.7 and minimum probability 0.3 in both processes.
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Fig. 12. Two NPLTS models distinguished by ∼PB,dis/∼PB/∼PB,
� and identified by testing/failure/trace equivalences.

Fig. 13. Two NPLTS models distinguished by testing/failure/trace equivalences and identified by ∼PB/∼PB,
� .

• Fig. 12 shows that ∼PB,dis is strictly finer than ∼PTe-tbt,dis. It holds that s1 �PB,dis s2 because the leftmost state with
outgoing b-transitions reachable from s2 is not group-distribution bisimilar to the two states with outgoing b-transitions
reachable from s1. In contrast, s1 ∼PTe-tbt,dis s2 because success probabilities are computed in a trace-by-trace fashion
without adding up over different traces.

Moreover:

• ∼PB and ∼PB,
� are incomparable with the five testing equivalences, the three failure equivalences, and the three
trace equivalences. Indeed, in Fig. 13 it holds that s1 ∼PB s2 (and hence s1 ∼PB,
� s2) – as can be seen by taking the
equivalence relation that pairs states having equally labeled transitions leading to the same distribution – and s1 �PTr,
�
s2 (and hence s1 and s2 are also distinguished by the other two trace equivalences, the three failure equivalences, and
the five testing equivalences) – due to trace abc having maximum probability 0.68 in the first process and 0.61 in
the second process. In contrast, in Fig. 12 it holds that s1 �PB,
� s2 (and hence s1 �PB s2) – as the leftmost state with
outgoing b-transitions reachable from s2 is not 
�-bisimilar to the two states with outgoing b-transitions reachable
from s1 – and s1 ∼PTe-tbt,dis s2 (and hence s1 and s2 are also identified by the other four testing equivalences, the three
failure equivalences, and the three trace equivalences).

7. A spectrum of strong behavioral equivalences

The relationships among the different equivalences that we have considered in the previous sections are summarized
in Fig. 14. In the so-called spectrum, following the terminology of [39], the absence of (chains of) arrows represents
incomparability, bidirectional arrows connecting boxes indicate coincidence, and ordinary arrows stand for the strictly-
more-discriminating-than relation. Continuous hexagonal boxes contain well known equivalences that compare probability
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Fig. 14. A spectrum of strong behavioral equivalences for NPLTS models (deterministic schedulers).

distributions of all equivalence-specific events. In contrast, continuous rounded boxes contain more recent equivalences
assigning a weaker role to schedulers that compare separately the probabilities of individual equivalence-specific events.
Continuous rectangular boxes instead contain old and new equivalences based on extremal probabilities. The only hybrid
box is the one containing ∼PTe-∀∃ , as this equivalence is half way between the first two definitional approaches. Dashed
boxes contain equivalences that we have introduced in this paper to better assess the different impact of the approaches
themselves.

The informed reader would have certainly noticed that the equivalences we considered are only a small subset of those
considered in [39] (4 vs. 12). It is obviously tempting to take the challenge and study also the probabilistic variants of all
the other equivalences in [39]. Indeed, while this paper was in print, we enlarged the spectrum by considering variants
of trace equivalences (completed-trace equivalences), additional decorated-trace equivalences (failure-trace, readiness, and
ready-trace equivalences), and variants of bisimulation equivalences (kernels of simulation, completed-simulation, failure-
simulation, and ready-simulation preorders). Moreover, we studied how the spectrum changes when randomized schedulers
are used instead of deterministic ones. The outcome of our studies are reported in a companion paper [7]. There definitions,
theorems, proofs, and counterexamples are spelt in full detail. For the sake of completeness, in this section we summarize
the new results for the additional equivalences, while in the final section we briefly discuss the impact on the spectra of
randomized schedulers.

7.1. Completed-trace equivalences

Completed-trace equivalence is a variant of trace equivalence that additionally considers completed computations. It was
introduced in the literature of fully nondeterministic models to guarantee that trace equivalence be deadlock sensitive. We
have studied the following probabilistic variants of completed-trace equivalence:

• Probabilistic completed-trace-distribution equivalence – ∼PCTr,dis
• Probabilistic completed-trace equivalence – ∼PCTr
• Probabilistic 
�-completed-trace equivalence – ∼PCTr,
�

It turns out that, like in the fully nondeterministic spectrum [39], completed-trace semantics is comprised between
failure semantics and trace semantics. This holds in particular for the completed-trace equivalence based on fully matching
resolutions, although completed-trace semantics coincides with trace semantics in the fully probabilistic spectrum [26,22].

7.2. Additional decorated-trace equivalences

Failure semantics generalizes completed-trace equivalence towards arbitrary safety properties. An extension of failure
semantics is failure-trace semantics, which takes into account failure traces. A failure trace is an element φ ∈ (A × 2A)∗ .
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A computation c is compatible with a given failure trace φ = (a1, F1) . . . (an, Fn) if and only if c is an (a1 . . .an)-compatible
computation and the state reached by c after the i-th step has no outgoing transitions labeled with an action in Fi . For this
semantics, we have studied the following probabilistic variants:

• Probabilistic failure-trace-distribution equivalence – ∼PFTr,dis
• Probabilistic failure-trace equivalence – ∼PFTr
• Probabilistic 
�-failure-trace equivalence – ∼PFTr,
�

A different generalization of completed-trace semantics to capture liveness properties is readiness semantics, which
considers the set of actions that can be accepted after performing a trace. We call ready pair an element 
 ∈ A∗ × 2A formed
by a trace α and a decoration R called ready set. A computation c is compatible with 
 = (α, A) iff c is an α-compatible
computation and the set of actions labeling the transitions departing from the last state in c is precisely R . For readiness
semantics, we have studied the following probabilistic variants:

• Probabilistic readiness-distribution equivalence – ∼PR,dis
• Probabilistic readiness equivalence – ∼PR
• Probabilistic 
�-readiness equivalence – ∼PR,
�

A generalization of readiness equivalences is the one based on ready traces that considers sequences of ready pairs rather
than just ready pairs. A ready trace is an element ρ ∈ (A × 2A)∗ . A computation c is compatible with a given ready trace
ρ = (ai, R1) . . . (an, Rn) if and only if c is an (a1 . . .an)-compatible computation and the transitions departing from the i-th
state in c is precisely Ri . For ready trace semantics, we have studied the following probabilistic variants:

• Probabilistic ready-trace-distribution equivalence – ∼PRTr,dis
• Probabilistic ready-trace equivalence – ∼PRTr
• Probabilistic 
�-ready-trace equivalence – ∼PRTr,
�

As in the fully probabilistic spectrum [26,22], for the decorated-trace equivalences based on fully matching resolutions it
holds that readiness semantics coincides with failure semantics, and this extends to ready-trace semantics and failure-trace
semantics. In contrast, for the other decorated-trace equivalences based on partially matching resolutions or extremal prob-
abilities, unlike the fully nondeterministic spectrum [39] it turns out that ready-trace equivalence and readiness equivalence
are incomparable with most of the other equivalences.

7.3. Simulation-based equivalences

The variant of bisimulation equivalence in which only one direction is considered is called simulation preorder, which
is a refinement of trace inclusion. Simulation equivalence can be defined as the kernel of the simulation preorder. In the
probabilistic setting, simulation equivalence was defined by means of weight functions [24]. Instead, we have followed an
alternative characterization introduced in [17], which relies on preorders as well as on closed sets, and studied the following
probabilistic variants:

• Probabilistic set-distribution similarity – ∼PS,dis – [34]
• Probabilistic similarity – ∼PS – [38]
• Probabilistic 
-similarity – ∼PS,


Similar to trace semantics, a number of variants of simulation semantics can be defined in which the sets of actions
that can be refused or accepted by states are also considered. Given s ∈ S , in the following we let init(s) = {a ∈ A | s a−→}.
Observing that init(s1) ⊆ init(s2) whenever s1 and s2 are related by a simulation semantics, the additional constraints are
the following, where the names of the obtained variants are reported in parentheses:

• init(s1) = ∅ �⇒ init(s2) = ∅, for completed simulation (∼PCS,dis, ∼PCS, ∼PCS,
).
• init(s1) ∩ F = ∅ �⇒ init(s2) ∩ F = ∅ for all F ∈ 2A , for failure simulation (∼PFS,dis, ∼PFS, ∼PFS,
).
• init(s1) = init(s2), for ready simulation (∼PRS,dis, ∼PRS, ∼PRS,
).

Of those variants, only ∼PFS,dis has been already considered in the literature concerned with nondeterministic and proba-
bilistic processes [15,11].

Every simulation-based equivalence relying on partially matching transitions coincides with the corresponding simulation-
based equivalence relying on extremal probabilities. Moreover, ready-simulation semantics coincides with failure-simulation
semantics, but the various simulation-based semantics do not collapse to bisimulation semantics as in the case of fully
probabilistic processes [24]. Each of the simulation-based equivalences relying on fully matching transitions is comprised
between bisimilarity and the corresponding trace equivalence, as in the fully nondeterministic spectrum [39]. In contrast,
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Fig. 15. Full spectrum of strong behavioral equivalences for finitely-branching NPLTS models (deterministic schedulers).

the simulation-based equivalences relying on partially matching transitions or extremal probabilities are incomparable with
most of the other equivalences.

7.4. A full spectrum

The full spectrum that considers the variants listed in this section together with those already studied in the previous
ones is presented in Fig. 15. There, we follow the same graphical conventions mentioned at the beginning of this section
when commenting the reduced spectrum of Fig. 14. As additional notation, we use adjacency of boxes within the same
fragment with the same meaning as bidirectional arrows connecting boxes of different fragments, i.e., coincidence. It is, per-
haps, worth noticing that there are many more dashed boxes than in Fig. 14; indeed, many relations have been introduced
for the first time in this paper and in its companion [7].

The top fragment of the spectrum in Fig. 15 refers to equivalences that are based on fully matching resolutions. Similar
to the spectrum for fully probabilistic processes in [26,22], many equivalences collapse into a single one; in particular,
ready-simulation semantics coincides with failure-simulation semantics, ready-trace semantics coincides with failure-trace
semantics, and readiness semantics coincides with failure semantics. Different from the fully probabilistic spectrum, in the
top fragment we have that the various simulation-based semantics do not coincide with bisimulation semantics [24] and
that completed-trace semantics does not coincide with trace semantics [26,22]. Moreover, testing semantics turns out to be
finer than failure semantics.

The central and the bottom fragments of the spectrum in Fig. 15 instead refer to equivalences that are based on partially
matching resolutions and extremal probabilities, respectively. These equivalences are coarser than those in the top fragment
and do not flatten the specificity of the intuition behind the original definition of the behavioral equivalences for LTS models.
Therefore, these two fragments preserve much of the original spectrum for fully nondeterministic processes in [39], with
testing semantics being coarser than failure semantics. It is worth noting the coincidence of corresponding simulation-based
equivalences in the two fragments (due to the fact that the comparison operator � is used in their definitions), whereas this
is not the case for the two bisimulation equivalences (as the comparison operator = is used instead in their definitions). We
finally stress the isolation of bisimulation semantics, simulation semantics, ready-trace semantics, and readiness semantics
in the two fragments, as well as the partial isolation of ∼PTe-
� .

8. Concluding remarks

We have studied the relationships among the strong equivalences that stem from three significantly different ap-
proaches to the definition of behavioral relations for NPLTS models. The specificity of the three approaches is determined
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by the way they deal with the probabilities associated with the resolutions of nondeterminism. For each approach, we
have first considered trace, failure, testing, and bisimulation semantics, then following the work in [39] we have also
addressed completed-trace, failure-trace, readiness, ready-trace, simulation, completed-simulation, failure-simulation, and
ready-simulation semantics. The resulting spectrum in Fig. 15 obtained by assuming deterministic schedulers shows a much
wider variety of options, together with certain resemblances in some of its three fragments, with respect to the fully non-
deterministic spectra in [13,39] and the fully probabilistic spectra in [26,22]. The spectrum also presents some peculiarities,
due to a number of equivalences that are incomparable with most of the others.

Randomized schedulers In the paper, we have considered strong equivalences that, for resolving nondeterminism, rely on
deterministic schedulers. More recently, we have however examined also the impact on the equivalences of randomized
schedulers and we would like to sum up here our findings.

Randomized schedulers are defined in such a way that each of them selects at each state a convex combination of
equally labeled transitions, called a combined transition [31]. The reader is referred to [7] for their formal definition in the
NPLTS setting; we would only like to remark that a deterministic scheduler is a special case of randomized one in which
every selected combination involves a single ordinary transition.

For each strong behavioral equivalence, say ∼ , introduced so far, we denote by ∼ct the corresponding equivalence based
on combined transitions (ct-equivalence for short), i.e., in which nondeterminism is resolved by means of randomized sched-
ulers. For the eighteen trace-based equivalences and the five testing equivalences, the only modification in their definitions
is the use of Resct in place of Res, where Resct is the set of resolutions of a state obtained via a randomized scheduler.
For the fifteen (bi)simulation-based equivalences, the only modification in their definitions is the direct use of combined
transitions (denoted by −→c) instead of ordinary transitions.

All the results connecting the various equivalences and the counterexamples showing strict inclusion or incomparability
are still valid for the ct-equivalences. A notable exception is given by the counterexamples based on Fig. 2, as the central
offer-transition of s1 can now be obtained as a convex combination of the two offer-transitions of s2 with both coeffi-
cients equal to 0.5. Indeed, no ct-equivalence can be finer than the corresponding equivalence arising from deterministic
schedulers, as matching ordinary transitions implies matching combined transitions.

While every ct-equivalence based on fully matching resolutions is still strictly finer than the corresponding ct-
equivalences based on partially matching resolutions or extremal probabilities (the counterexample provided by Fig. 1 is
still valid), it turns out that every ct-equivalence based on partially matching resolutions coincides with the correspond-
ing ct-equivalence based on extremal probabilities. As far as ∼PTe-
� and ∼PTe-∀∃ are concerned, their ct-variants coincide
as well. In other words, when moving to randomized schedulers, the central fragment and the bottom fragment of the
spectrum in Fig. 15 collapse. Pictorially, all the ordinary arrows in Fig. 15 going from the central fragment to the bottom
one become bidirectional in the presence of randomized schedulers. Moreover, it holds that every ct-equivalence based on
extremal probabilities coincides with the corresponding equivalence in the bottom fragment of the spectrum in Fig. 15.

Future work We plan to investigate also the spectrum of weak behavioral equivalences, for which the choice of randomized
schedulers has been shown to be more appropriate.

In addition, we would like to study the impact of the different equivalences on a simple process description language
with operators for probabilistic and nondeterministic choice. Indeed, as motivated in [41] and [40], mutual distributivity
of these operators has a key role in the definition of denotational models of nondeterministic and probabilistic systems.
Thus, it would be interesting to see which of the many equivalences that we have considered guarantees distributivity. This
should also enable us to better understand the correspondence between abstract denotational models and more concrete
operational ones.

Finally, it would be interesting to compare the discriminating power of the various equivalences on a model richer
than NPLTS, in which – similar to the general model of [31] – transitions are elements of S × Distr(A × S) instead of
S × A × Distr(S). The formalization of the equivalences on this more expressive model may be made less intricate by
resorting to coalgebraic reasoning like in [36]. An even more general framework in which to perform comparisons is that of
ULTraS [5], as it has been shown to encompass many behavioral equivalences for models such as labeled transition systems,
discrete-/continuous-time Markov chains, and discrete-/continuous-time Markov decision processes without/with internal
nondeterminism.
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