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a b s t r a c t

We develop a general and demonstrably widely applicable technique for determining
the asymptotic conditional diagnosability of interconnection networks prevalent within
parallel computing under the comparison diagnosis model. We apply our technique to
replicate (yet extend) existing results for hypercubes and k-ary n-cubes before going
on to obtain new results as regards folded hypercubes, pancake graphs and augmented
cubes. In particular, we show that the asymptotic conditional diagnosability of: folded
hypercubes {FQn} is 3n − 2, pancake graphs {Pn} is 3n − 7, and augmented cubes {AQn} is
6n−17. We demonstrate how our technique is independent of structural properties of the
interconnection network G in question and essentially only dependent upon the minimal
size of the neighbourhood of a path of length 2 in G, the number of neighbours any two
distinct vertices of G have in common, and the minimal degree of any vertex in G.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The design of interconnection networks is fundamental to parallel computing, for as to how one (directly) connects
processors in somedistributed-memorymultiprocessor (alongwith accompanying design decisions relating to, for example,
routing, flow control, switching and packaging) has a tremendous impact upon the resulting efficiency of the machine
[5,6]. There is no one family of interconnection networks that is better than all of the others, for the quality of a family of
interconnection networks depends upon the properties that happen to be of most relevance to a particular scenario. These
properties include having low degree and high connectivity, being vertex- or edge-transitive, having simple and efficient
routing and broadcast algorithms, being recursively decomposable, and possessing embedded Hamiltonian cycles or paths
and cycles of a whole variety of lengths.

Not only should an interconnection network possess desirable properties such as those above but any distributed-
memory multiprocessor should be able to tolerate a limited number of processor or link failures. This expectation has
provoked much research on not just the sustainability of specific interconnection network properties in the presence of
faults but also the detection of actual faults in a distributed-memory multiprocessor. It is with this latter research direction
that we are concerned in this paper. Imagine the situation. A distributed multiprocessor system is known to possess some
faulty processors but it is not known as to which processors are faulty. The problem is to detect the faulty processors, that
is, to diagnose the set of faulty processors. Crucial to this diagnosis is the observation that we can use the processors of the
system to do this, that is, we can undertake a self-diagnosis. As to how this is done depends upon the model adopted.

A popular model is the comparison diagnosis model (also called the MM model), advocated by Malek and Maeng [23,24].
In this model, a processor can send a message to any two of its neighbours who then send replies back to the processor. On
receipt of these two replies, the processor compares them and proclaims that at least one of the two neighbours is faulty
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if the replies are different or that both neighbours are fault-free if the replies are identical. However, if the processor itself
is faulty then no reliance can be placed on this proclamation. The goal is to use these tests made by various processors in
order to deduce exactly which are the faulty processors. Obviously there are limits as to what can be done. For example,
if all processors are faulty then there is no way that this can be detected (from any collection of tests undertaken). For a
specific interconnection network (forming the underlying topology of some distributed-memory multiprocessor), there is a
bound on the number of faulty processors that can necessarily be detected within this model and a considerable amount of
research has been undertaken on determining this bound, or the diagnosability, for different interconnection networks (see,
for example, [8–11,18–20,28,32] for a selection of results).

The diagnosability of an interconnection network is determined by the topology of the network; so, henceforth, we
equate an interconnection network of processors in some distributed-memory multiprocessor with an undirected graph
and we talk about faulty vertices as opposed to faulty processors. In [17], Lai et al. observed that the diagnosability of many
interconnection networks increases if one rules out the possibility that a set of faulty vertices can contain all neighbours of
some vertex, and they proposed a more refined notion of diagnosability, namely conditional diagnosability, where all of the
above principles apply except that one has the a priori stipulation that a set of faulty vertices can never contain the set of
all neighbours of some vertex (this observation is made in the context of the PMC model in [17] but is equally valid in the
comparison diagnosis model). Alternatively, if one assumes that any processor in a multiprocessor system fails with equal
independent probability then a simple statistical analysis shows that the likelihood that every neighbour of some given
processor is faulty is extremely small in many interconnection networks (with this likelihood decreasing as the parameter
n indexing the family increases). Results on conditional diagnosability in the comparison diagnosis model include those in,
for example, [12–15,22,31,33–36] (we shall revisit some of these results later).

In this paper, we develop a general and demonstrably widely applicable technique for determining the asymptotic
conditional diagnosability of interconnection networks prevalent within parallel computing (that is, the limiting behaviour
of the conditional diagnosability of a family {Xn} of interconnection networks as n increases). We apply our technique
to replicate (yet extend) existing results for hypercubes and k-ary n-cubes before going on to obtain new results as
regards folded hypercubes, pancake graphs and augmented cubes. In particular, we show that the asymptotic conditional
diagnosability of: folded hypercubes {FQn} is 3n− 2; pancake graphs {Pn} is 3n− 7; and augmented cubes {AQn} is 6n− 17.
We demonstrate how our technique is independent of structural properties of the interconnection network G in question
and only dependent upon (essentially) the minimal size of the neighbourhood of a path of length 2 in G, the number of
neighbours any two distinct vertices of G have in common, and the minimal degree of any vertex in G. Whilst our technique
is extremely powerful in that it reduces ascertaining the asymptotic conditional diagnosability to the elucidation of these
three parameters, our application as regards augmented cubes shows that ascertaining these parameters is not always
straightforward.

In the next section, we give basic definitions relating to interconnection networks (when viewed as undirected graphs)
and diagnosability, before outlining related research on conditional diagnosability in Section 3. We detail our general
technique in Section 4beforewe apply this technique to hypercubes and k-aryn-cubes in Section 5 (we startwith hypercubes
and k-ary n-cubes as the application of our technique is particularly straightforward in these cases andwe also have existing
results to compare with; that said, we do establish new results for 3-ary n-cubes). In Section 6, we use our technique to
establish new conditional diagnosability results for folded hypercubes, pancake graphs and augmented cubes, with the
latter application being decidedly non-trivial. We present our conclusions and directions for further research in Section 7.

2. Basic definitions

In parallel computing, an interconnection network consists of a set of processors together with a set of bidirectional
links involving certain pairs of distinct processors. Consequently, throughout we identify an interconnection network with
an undirected graph G = (V , E) with vertex set V and edge set E where there are no multiple edges or self-loops. The
interconnection networks relevant to parallel computing come in families with each interconnection network of a family
parameterised by some non-zero positive integer. For example, the family of hypercubes {Qn} are such that the vertex set
of Qn is {0, 1}n and there is an edge joining two vertices if, and only if, the corresponding bit-strings of length n differ in
exactly one bit. When our domain is {0, 1}, we write x̄ to denote 0 if x is 1 and 1 if x is 0; so, any vertex x1x2 . . . xi . . . xn of Qn
is adjacent to x1x2 . . . x̄i . . . xn, for every i ∈ {1, 2, . . . , n}. We say that a vertex x1x2 . . . xn has weight m if exactly m of the n
bits are 1.

Let G = (V , E) be an arbitrary graph. If (u, v) ∈ E then we say that u (resp. v) is adjacent to v (resp. u) or that u (resp.
v) is a neighbour of v (resp. u). We will be interested in certain aspects of a graph G = (V , E). The degree of a vertex v
is denoted dG(v) and defined as |{u ∈ V : (u, v) ∈ E}|, with ∆(G) being the degree of a vertex of minimum degree.
Given a subset of vertices U ⊆ V , we define the neighbourhood of U , denoted NG(U), as the set of vertices each of which
is adjacent to at least one vertex of U but which is not in U; that is, NG(U) = {v ∈ V \ U : (u, v) ∈ E, for some u ∈ U}.
If H is a sub-graph of G involving the vertices of U ⊆ V then we define NG(H) as NG(U) and G \ U as the subgraph of G
obtained by deleting all vertices of U and any edge that is adjacent with at least one vertex of U . A path ρ of length m − 1
is a sequence of distinct vertices (v1, v2, . . . , vm), for some m ≥ 1, such that (vi, vi+1) ∈ E, for i = 1, 2, . . . ,m − 1.
A connected component of G is a maximal set of vertices with the property that there is a path in G from any vertex of
this set to any other. We define p2(G) to be the minimum size of the neighbourhood of any path in G of length 2; that is,
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p2(G) = min{|NG(ρ)| : ρ is a path of length 2 in G}. A cycle of length m is a path (v1, v2, . . . , vm) of length m ≥ 2 so that
(vm, v1) ∈ E. The girth of G is the length of a shortest cycle in G. A clique of size k in a graph G is a subset of exactly k vertices
each of which is adjacent to all the others. We define c(G) to be the maximum number of vertices any pair of vertices are
both adjacent to; that is, c(G) = max{|NG(u)∩NG(v)| : u, v ∈ V , u ≠ v}. A graph G is vertex-transitive (resp. edge-transitive)
if there is an automorphism of Gmapping any chosen vertex (resp. edge) to any other chosen vertex (resp. edge). Additional
details as regards the definitions above can be found in [16,29].

There are two basic models prevalent as regards fault diagnosis in interconnection networks: the PMC model (proposed
by Preparata et al. [26]) and the comparison diagnosis model (also called the MM model and advocated by Malek and Maeng
[23,24]). It is with the comparison diagnosis model that we are concerned in this paper (or, more precisely, a variant of it
that we will detail in a moment). The comparison diagnosis model is as follows. Given a graph G = (V , E) within which
there may be faulty vertices, from some fault set, every vertex u of V tests every pair v and w of its neighbours by sending a
test message to both neighbours and receiving replies. We assume that: all faults are permanent; and a faulty vertex always
produces an incorrect response to any test message, so that two faulty vertices do not produce identical responses to any
test messages. Suppose that u is a healthy vertex; that is, it is not faulty. If the replies from v andw are identical then the test
result su(v, w) is set at 0 (signalling that both v andw are healthy), otherwise su(v, w) is set at 1 (signalling that at least one
of v and w is faulty). However, if u is a faulty vertex then the test result su(v, w) can be arbitrarily 0 or 1 with no reliance
placed upon this result. The set of all test results for every vertex and its pairs of neighbours is called a syndrome. The general
fault diagnosis problem is: given a graph G = (V , E) and a syndrome, can we use the data therein to obtain exactly the set
of faulty vertices and, if so, to find these faulty vertices?

Note that the same syndrome could arise from different sets of faulty vertices; that is, there might be more than one
set of faulty vertices consistent with the syndrome. Let G = (V , E) be some graph and let F1, F2 ⊆ V be two fault sets.
We say that F1 and F2 and distinguishable if there is no syndrome consistent with both F1 and F2; otherwise, F1 and F2 are
indistinguishable. A graph G = (V , E) is said to be δ-diagnosable if given a syndrome s resulting from a set of at most δ faulty
vertices, there is exactly one set of faulty vertices consistent with s. The maximum number δ for which a graph G = (V , E)
is δ-diagnosable is the diagnosability of G. Sengupta and Dahbura [27] were the first to provide structural conditions upon G
for it to be δ-diagnosable. One remark we have is that the diagnosability of any graph G = (V , E) is bounded above by ∆(G).
To see this, suppose that u is some vertex of minimal degree in G and consider the following two sets of faulty vertices: the
first fault set consists of all u’s neighbours; and the second of all u’s neighbours as well as u. It is not difficult to see that there
is a syndrome that both of these sets of faults are consistent with.

A conditional fault set in G = (V , E) is a set of faults with the property that for every vertex v of V , not all of v’s neighbours
in G are faults. If one assumes that all fault sets are always conditional and works within the framework above then the
concept of conditional diagnosability arises. If there is a function f (n) and an integer n0 so that an interconnection network
Xn from a family of interconnection networks {Xn} has (resp. conditional) diagnosability f (n), for every n ≥ n0, then we say
that the family of interconnection networks has asymptotic (resp. conditional) diagnosability f (n).

3. Related research

The conditional diagnosabilities of a number of families of interconnection networks have been considered, both within
the PMC model (see, for example, [3,17,21,30]) and the comparison diagnosis model. The conditional diagnosabilities of
the following interconnection networks under the comparison diagnosis model have previously been established: the
conditional diagnosability of any BC-Network Xn (also called a hypercube-like network) is 3n − 5 when n ≥ 5 [14,15],
and so this is true when Xn is an n-dimensional hypercube (see also [13,33]), an n-dimensional twisted cube (see also [35]),
an n-dimensional crossed cube and an n-dimensional Möbius cube (see also [34]); the conditional diagnosability of any
Cayley graph generated by transposition trees is 3n−8 except for the case of the n-dimensional star graphwhen it is 3n−7,
under the proviso that n ≥ 4 [22]; the conditional diagnosability of the alternating group network ANn is 3n − 9 when
n ≥ 5 [36]; the conditional diagnosability of the hypermesh Hn,k is 3n(k − 1) − 2k − 1 when n ≥ 3 and k ≥ 4 [31];
and the conditional diagnosability of the k-ary n-cube Q k

n is 6n − 5 when n ≥ 4 and k ≥ 4 [12]. The general technique
used has been to assume that we have two conditional fault sets F1 and F2, of a certain size, in some graph G and to
examine the structure of graphs such as G \ (F1 ∪ F2) and G \ F1 under the assumption that F1 and F2 are indistinguishable.
This analysis has been concerned with the existence of large connected components and tied to specific interconnection
networks. As we see below, we can actually make this technique more generic by concentrating on the existence of
connected components in the form of a K2 (and not on large connected components) and by using some combinatorial
arguments.

4. A general technique

In this section, we establish a general technique for ascertaining the conditional diagnosability of an arbitrary graph.
Our technique is widely applicable, especially amongst graphs prevalent as interconnection networks as we subsequently
demonstrate. Before detailing our technique, we establish some useful lemmas.
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Fig. 1. Sengupta and Dahbura’s classification.

4.1. Some useful lemmas

An extremely useful classification of when two fault sets are distinguishable has been established by Sengupta and
Dahbura. We write A△B to denote the symmetric difference of two sets A and B, and we write A \ B to denote the set
{a ∈ A : a ∉ B}.

Theorem 1 ([27, Theorem 1]). Let G = (V , E) be a graph and let F1, F2 ⊆ V be fault sets where F1 ≠ F2. The fault sets F1 and F2
are distinguishable if, and only if, at least one of the following conditions is satisfied in G:

1. there are u, v ∈ V \ (F1 ∪ F2) and w ∈ F1△F2 such that (u, v, w) is a path;
2. there are u, w ∈ F1 \ F2 and v ∈ V \ (F1 ∪ F2) such that (u, v, w) is a path;
3. there are u, w ∈ F2 \ F1 and v ∈ V \ (F1 ∪ F2) such that (u, v, w) is a path.

We use Theorem 1 throughout. The three conditions in Theorem 1 can be visualised as in Fig. 1
The next lemma gives a simple upper bound on the conditional diagnosability of a graph.

Lemma 2. Let G be a graph and let (v1, u, v2) be a path of length 2 in G such that |NG({v1, u, v2})| = m. The conditional
diagnosability of G is at most m.

Proof. Define Fi = NG({v1, u, v2}) ∪ {vi}, for i = 1, 2. By Theorem 1, F1 and F2 are indistinguishable. �

The next lemma provides useful information about the neighbourhoods of certain vertices lying outside two given
indistinguishable conditional fault sets.

Lemma 3. Let G = (V , E) be a graph and let F1, F2 ⊆ V be conditional fault sets, where F1 ≠ F2. Suppose further that F1 and F2
are indistinguishable. If x ∈ V \ (F1 ∪ F2) is adjacent to some vertex of F1 \ F2 and dG(x) ≥ 2 then x is adjacent to: exactly one
vertex of F1 \ F2; exactly one vertex of F2 \ F1; and dG(x) − 2 vertices of F1 ∩ F2.

Proof. By Theorem 1: all neighbours of x lie in F1∪F2; x has exactly one neighbour in F1\F2; and x has atmost one neighbour
in F2 \ F1. As F1 (resp. F2) is a conditional fault set, xmust have exactly one neighbour in F2 \ F1 (resp. F1 \ F2). �

Our final lemma deals with a trivial condition for two conditional fault sets to be distinguishable.

Lemma 4. Let F1, F2 ⊆ V be conditional fault sets, with F2 ⊂ F1. The sets F1 and F2 are distinguishable.

Proof. Let u ∈ F1 \ F2. As F1 is a conditional fault set, there exists a vertex v ∉ F1 such that u is adjacent to v. Again, as
F1 is a conditional fault set, there exists a vertex w ∉ F1 such that v is adjacent to w. Thus, by Theorem 1, F1 and F2 are
distinguishable. �

4.2. Our general technique

We now describe our general technique to establish the conditional diagnosability of a graph G = (V , E). In the next
section, we demonstrate its efficacy with different classes of interconnection networks.

Let F1, F2 ⊆ V be indistinguishable conditional fault sets so that F1 ≠ F2 and both sets are of size at most p2(G). Our
ultimate aim is to obtain a contradiction and thus, by Lemma 2, to show that the conditional diagnosability of G is exactly
p2(G). By Lemma 4, it is not the case that F1 ⊂ F2 or F2 ⊂ F1. Consequently, there exists some u ∈ F1 \ F2 (and also some
u′

∈ F2 \ F1; thus, |F1 ∩ F2| ≤ p2(G) − 1). As F2 is a conditional fault set, u has a neighbour v that is not in F2 (and similarly
u′ has a neighbour v′ that is not in F1). We call our chosen vertex v u’s corresponding partner vertex (and vice versa). The
general situation can be visualised as in Fig. 2.

4.2.1. Establishing a K2

The crux of our technique is to show that under certain circumstances and with the set-up as described in the previous
paragraph, G \ F1 and G \ F2 both have connected components isomorphic to K2 (we subsequently show how to use this
fact to obtain a lower bound on the conditional diagnosability of G). To this end, suppose that NG({u, v}) ⊈ F2; so, let
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Fig. 2. The general situation.

w ∈ NG({u, v}) \ F2 and let T3 = {u, v, w}. The subgraph of G induced by the vertices of T3 contains a path of length 2 of
which one edge is (u, v).

Assume that there exists b ≥ 3 and a connected subgraph of G \ (F1 ∩ F2) with vertex set Tb such that Tb contains b
vertices including u, v and w and:

b + |NG(Tb)| − (|F2| + |F1| − |F1 ∩ F2|) > 0. (1)

Denote b + |NG(Tb)| − (|F2| + |F1| − |F1 ∩ F2|) by µ. We have that |(Tb ∪ NG(Tb)) \ (F1 ∪ F2)| ≥ µ > 0. Suppose that
x ∈ (Tb ∪ NG(Tb)) \ (F1 ∪ F2) and y ∉ F1 ∪ F2 are such that (x, y) ∈ E and dG(x) ≥ 2. As the subgraph of G (actually, of
G \ (F1 ∩ F2)) induced by Tb is connected and u ∈ Tb ∩ (F1 \ F2), there is a path in G \ (F1 ∩ F2) for which the first two vertices
are x and y (in some order) and for which the last vertex is u. By walking along this pathwe can find a path of length 3 so that
the first two vertices lie outside F1 ∪ F2 and the third vertex lies in F1 \ F2 or F2 \ F1. This yields a contradiction by Theorem 1.
Hence, every vertex of (Tb ∪ NG(Tb)) \ (F1 ∪ F2) is adjacent only to vertices of F1 ∪ F2 in G, with the consequence that every
vertex of (Tb ∪ NG(Tb)) \ (F1 ∪ F2) is adjacent to some vertex of F1△F2 (recall that F1 and F2 are conditional fault sets). Thus,
by Lemma 3, every vertex x of (Tb ∪NG(Tb))\ (F1 ∪F2) is adjacent to: one vertex in F1 \F2; one vertex in F2 \F1; and dG(x)−2
vertices in F1 ∩ F2. So, for every m such that 1 ≤ m ≤ µ, we must have that there are at least m(∆(G) − 2) − c(G)m(m−1)

2
distinct vertices in F1 ∩ F2, and there is also at least 1 vertex in each of F1 \ F2 and F2 \ F1; that is, we must have that:

m(∆(G) − 2) − c(G)
m(m − 1)

2
≤ |F1 ∩ F2| ≤ p2(G) − 1. (2)

If can obtain some Tb, as above, so that inequality (2) is violated, for somem ∈ {1, 2, . . . , µ}, then we obtain a contradiction
and so must have that NG({u, v}) ⊆ F2.

In order to obtain our contradiction (that is, to obtain Tb as required), it is feasible that we can iteratively build connected
subgraphswith vertex sets T4, T5, . . . , Tb inG\(F1∩F2) so that for every i ∈ {4, 5, . . . , b}, Ti−1 ⊂ Ti. To this end, the following
lemma provides a general lower bound on the size of the neighbourhood of Ti in terms of the size of the neighbourhood of
Ti−1.
Lemma 5. Fix i ≥ 4. Let Ti−1 ⊂ Ti be subsets of vertices of some graph G so that Ti−1 has size i − 1 and induces a connected
subgraph of G, Ti has size i and induces a connected subgraph of G, and Ti−1 ∪ {x} = Ti. We have that

|NG(Ti)| ≥ |NG(Ti−1)| + dG(x) − (c(G) + 1)(i − 1).

Proof. Suppose that z ∈ Ti−1 and that (x, z) ∈ E. Let us count the neighbours of x in G. Each neighbour y of x in G has exactly
one of 3 types:

• y lies in Ti−1, and there are at most i − 1 such neighbours (including the vertex z)
• y ∈ NG(Ti−1) (and so y ∉ Ti−1), and there are at most c(G)(i − 1) such neighbours (as any vertex of Ti−1 has at most c(G)

neighbours in common with x)
• y ∈ NG(Ti) \ NG(Ti−1) (trivially, y ∉ Ti−1).

Thus, |NG(Ti)| − |NG(Ti−1)| ≥ dG(x) − (i − 1) − c(G)(i − 1) = dG(x) − (c(G) + 1)(i − 1) and the result follows. �

We emphasise that our arguments above are intended to be as widely applicable as possible. For specific families of
interconnection networks, the derived bounds and inequalities can be significantly tightened.

4.2.2. Having established a K2
Suppose that we have proceeded as above and obtained that NG({u, v}) ⊆ F2 (resp. NG({u′, v′

}) ⊆ F1). Suppose also that
our reasoning is such that our arguments apply equallywell to any other vertex u1 ∈ F1\(F2∪{u}) (resp. u′

1 ∈ F2\(F1∪{u′
}))

and its corresponding partner vertex v1 ∉ F2 (resp. v′

1 ∉ F1). We are now in a position to possibly obtain an upper bound on
|F1 \ F2| (resp. |F2 \ F1|) and a lower bound on |F1 ∪ F2|.

Let us assume that |F1 \ F2| = ν. From above, for any x ∈ F1 \ F2, we have that exactly dG(x) − 1 neighbours of x lie in F2.
Thus, if 1 ≤ m ≤ ν then since p2(G) ≥ |F2|, we have that

p2(G) ≥ m(∆(G) − 1) − c(G)
m(m − 1)

2
. (3)
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Consequently, if somem for which 1 ≤ m ≤ ν violates inequality (3) then we obtain a contradiction and wemust have that
|F1 \ F2| < m. An analogous statement can be made as regards |F2 \ F1|.

Let us assume that |F1△F2| = ν. From above, for any x ∈ F1△F2, we have that at least dG(x) − 1 neighbours of x lie in
F1 ∪ F2. Thus, if 1 ≤ m ≤ ν then

|F1 ∪ F2| ≥ m(∆(G) − 1) − c(G)
m(m − 1)

2
. (4)

5. Applications

We now apply the methodology from the previous section. We begin with the hypercubes and the k-ary n-cubes, in
order to illustrate how this methodology is applied and for which conditional diagnosability results have previously been
obtained, before moving on to a range of other interconnection networks.

5.1. Hypercubes

Recall that it has already been shown independently in [13,33] that Qn has conditional diagnosability 3n− 5 when n ≥ 5
(although this value was only established in [33] for n ≥ 7).

It is easy to see that p2(Qn) = 3n−5. Our basic assumption is that F1 and F2 are indistinguishable conditional fault sets in
Qn of size at most p2(Qn) = 3n− 5 such that u ∈ F1 \ F2 and u′

∈ F2 \ F1; so, in particular and with reference to the previous
section, we have our vertex set T3 = {u, v, w}. Assume further that n ≥ 29 (we shall return to this assumption later). Note
that c(Qn) = 2 and that ∆(Qn) = n.

In the first phase of our reasoning, we apply the argument in Section 4.2.1. We have that |F1 ∩ F2| ≤ 3n − 6.
So, |NQn(T3)| > |F1 ∩ F2| and we can build T4 by augmenting T3 with a vertex of NQn(T3) \ (F1 ∩ F2). By Lemma 5,
|NQn(T4)| ≥ 4n − 14 > 3n − 6 ≥ |F1 ∩ F2| when n > 8. Build T5 by augmenting T4 with a vertex of NQn(T4) \ (F1 ∩ F2).
By Lemma 5, |NQn(T5)| ≥ 5n − 26 > 3n − 6 ≥ |F1 ∩ F2| when n > 10. Continuing in this way yields T10 such that
|NQn(T10)| ≥ 10n − 131 when n > 17. With reference to inequality (1), µ ≥ 4n − 111 > 4 when n ≥ 29 (here, we use the
fact that |F1 ∪ F2| ≤ 2p2(Qn)). Putting m = 4 in inequality (2) yields that n ≤ 14 and so we obtain a contradiction. Thus,
NQn({u, v}) ⊆ F2.

In the second phase, we apply the argument in Section 4.2.2. There is nothing special about starting from the vertex u,
above: if u1 ∈ F1 \ (F2 ∪ {u}) then we can proceed identically. Thus, if such a vertex u1 exists then u1 has some neighbour
v1 that is not in F2 so that NQn({u1, v1}) ⊆ F2. An analogous statement can be made as regards a vertex u′

1 ∈ F2 \ (F1 ∪ {u′
}).

Suppose that |F1\F2| ≥ 4. Consequently, from inequality (3), 3n−5 ≥ 4(n−1)−12 = 4n−16, which yields a contradiction
when n ≥ 12. Thus, wemust have that 1 ≤ |F1\F2| ≤ 3, and similarly that 1 ≤ |F2\F1| ≤ 3; consequently, |F1∪F2| ≤ 3n−2.
Further, if |F1△F2| ≥ 4 then from inequality (4), |F1 ∪ F2| ≥ 4n − 16, which yields a contradiction when n ≥ 15. Hence,
2 ≤ |F1△F2| ≤ 3 with |F1 ∪ F2| ≤ 3n − 4.

In the third phase, we use the bound on |F1 ∪ F2| just established, in conjunction with some simple counting arguments,
to obtain our contradiction. Suppose that {u, v} ∩ {u′, v′

} = ∅. As NQn({u, v}) ⊆ F2, NQn({u
′, v′

}) ⊆ F1 and c(Qn) = 2, we
must have that 4(n − 1) − 8 ≤ |F1 ∪ F2| ≤ 3n − 4 (note that u and v have no neighbours in common, and nor do u′ and
v′, as Qn is bipartite). This yields a contradiction, and so we must have that v = v′. However, NQn({u, v, u′

}) ⊆ F1 ∪ F2 and
in addition u, u′

∈ F1 ∪ F2; thus, |F1 ∪ F2| ≥ (3n − 5) + 2 = 3n − 3, which yields a contradiction. Hence, if n ≥ 29 then
we have that Qn has conditional diagnosability 3n − 5; that is, the family of hypercubes {Qn} has asymptotic conditional
diagnosability 3n − 5.

Remark 6. Let us remark upon our initial assumption that n should be at least 29. We have chosen n to make it as small
as possible yet so that the above arguments hold (essentially, with reference to above, we need µ to be at least 4 in order
to obtain that NQn({u, v}) ⊆ F2). We could have worked with T7, for example, instead of T10, but this would have required
that n ≥ 46. This can be calculated easily by hand but we actually employ a simple computer program to show that forcing
n to be at least 29 is the best we can do (without employing a more detailed analysis than that in Sections 4.2.1 and 4.2.2
that is specific to hypercubes). We use this same computer program in the same way for the interconnection networks we
consider below.

Remark 7. Note that in applying our techniques so as to show that the family of hypercubes has asymptotic conditional
diagnosability 3n − 5, essentially the only structural properties of Qn that we use are that ∆(Qn) = n, c(Qn) = 2 and
p2(Qn) = 3n − 5 (we also use the fact that Qn is bipartite which, as it happens, we need not have used). In particular, if any
other family of interconnection networks {Xn} is such that ∆(Xn) = n, c(Xn) = 2 and p2(Xn) = 3n−5 then we immediately
obtain that {Xn} has asymptotic conditional diagnosability 3n − 5 too.

5.2. k-ary n-cubes

The k-ary n-cube Q k
n , where k ≥ 3 and n ≥ 2, is defined as follows: it has vertex set {0, 1, . . . , k − 1}n; and there is an

edge (u1u2 . . . un, v1v2 . . . vn) if, and only if, there exists i ∈ {1, 2, . . . , n} such that uj = vj, for all j ∈ {1, 2, . . . , n} \ {i},
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and ui − vi ∈ {+1, −1}(mod k). Recall that it has already been shown in [12] that Q k
n has conditional diagnosability 6n − 5

when n ≥ 4 and k ≥ 4.
Suppose that k ≥ 4. It is easy to see that p2(Q k

n ) = 6n − 5. As before, our basic assumption is that F1 and F2 are
indistinguishable conditional fault sets in Q k

n of size at most p2(Q k
n ) = 6n − 5 such that u ∈ F1 \ F2 and u′

∈ F2 \ F1.
Assume further that n ≥ 15. Note that c(Q k

n ) = 2 and that ∆(Q k
n ) = 2n.

Our first phase of reasoning proceeds similarly to as in the case of the hypercubes. We have that |F1 ∩ F2| ≤ 6n − 6;
so, |NQ k

n
(T3)| > |F1 ∩ F2| and we can build T4 by augmenting T3 with a vertex not in F1 ∩ F2. By Lemma 5, |NQ k

n
(T4)| ≥

8n − 14 > 6n − 6 ≥ |F1 ∩ F2| when n > 4. Build T5 by augmenting T4 with a vertex not in F1 ∩ F2. By Lemma 5,
|NQ k

n
(T5)| ≥ 10n−26 > 6n−6 ≥ |F1 ∩ F2|when n > 5. Build T6 by augmenting T5 with a vertex not in F1 ∩ F2. By Lemma 5,

|NQ k
n
(T6)| ≥ 12n − 41 > 6n − 6 ≥ |F1 ∩ F2| when n > 5. Continuing in this way yields T9 such that |NQ k

n
(T9)| ≥ 18n − 104

when n > 8. With reference to inequality (1), µ ≥ 6n − 85 > 4 when n ≥ 15. Putting m = 4 in inequality (2) yields that
8n − 20 ≤ 6n − 6 and so we obtain a contradiction. Thus, NQ k

n
({u, v}) ⊆ F2.

In the second phase, we apply the argument in Section 4.2.2. There is nothing special about starting from the vertex u,
above: if u1 ∈ F1 \ (F2 ∪ {u}) then we can proceed identically. Thus, if such a vertex u1 exists then u1 has some neighbour
v1 that is not in F2 so that NQ k

n
({u1, v1}) ⊆ F2. An analogous statement can be made as regards a vertex u′

1 ∈ F2 \ (F1 ∪ {u′
}).

Suppose that |F1 \ F2| ≥ 4. Consequently, from inequality (3), 6n − 5 ≥ 4(2n − 1) − 12 = 8n − 16, which yields a
contradiction when n ≥ 6. Thus, we must have that 1 ≤ |F1 \ F2| ≤ 3, and similarly that 1 ≤ |F2 \ F1| ≤ 3; consequently,
|F1 ∪ F2| ≤ 6n − 2. Further, if |F1△F2| ≥ 4 then from inequality (4), |F1 ∪ F2| ≥ 8n − 16, which yields a contradiction when
n ≥ 8. Hence, 2 ≤ |F1△F2| ≤ 3 with |F1 ∪ F2| ≤ 6n − 4.

In the third phase, we use the bound on |F1 ∪ F2| to obtain a contradiction. Suppose that {u, v} ∩ {u′, v′
} = ∅. As

NQ k
n
({u, v}) ⊆ F2 and NQ k

n
({u′, v′

}) ⊆ F1, we must have that 4(2n − 1) − 8 ≤ |F1 ∪ F2| ≤ 6n − 4 (note that u and v have no
neighbours in common, and nor do u′ and v′, as Q k

n has no cycles of length 3). This yields a contradiction, and so we must
have that v = v′. However, NQ k

n
({u, v, u′

}) ⊆ F1 ∪ F2 and in addition u, u′
∈ F1 ∪ F2; thus, |F1 ∪ F2| ≥ (6n−5)+2 = 6n−3,

which yields a contradiction. Hence, if n ≥ 15 then we have that Q k
n has conditional diagnosability 6n − 5; that is, if k ≠ 3

then the family of hypercubes {Q k
n } has asymptotic conditional diagnosability 6n − 5.

Our approach as regards {Q 3
n } follows the usual phases of reasoning. Suppose that k = 3.

Lemma 8. When n ≥ 2, p2(Q 3
n ) = 6n − 7.

Proof. Let ρ = (x, z, y) be a path of length 2. As Q 3
n is edge-transitive [2], wemay assume that x = 00 . . . 0 and z = 10 . . . 0.

Consequently, w.l.o.g. we need look only at the cases when y is: 20 . . . 0; 110 . . . 0; and 120 . . . 0. The vertices: x and z
have only 20 . . . 0 as a common neighbour; x and 20 . . . 0 have only z as a common neighbour; x and 110 . . . 0 have z and
010 . . . 0 as common neighbours; x and 120 . . . 0 have z and 020 . . . 0 as common neighbours; z and 20 . . . 0 have x as a
common neighbour; z and 110 . . . 0 have 120 . . . 0 as a common neighbour; and z and 120 . . . 0 have 110 . . . 0 as a common
neighbour. Consequently, p2(Q 3

n ) = 6n − 7 (witnessed by both ρ = (x, z, 110 . . . 0) and ρ = (x, z, 120 . . . 0)). �

So, we have that p2(Q 3
n ) = 6n − 7, c(Q 3

n ) = 2 and ∆(Q 3
n ) = 2n. Proceeding exactly as we did above but with these

parameters and with n ≥ 15, we obtain that T9 is such that |NQ 3
n
(T9)| ≥ 18n − 106 (as n > 8), with the result that

µ ≥ 6n−83 > 4 (as n ≥ 15). Puttingm = 4 in inequality (2) yields that 8n−20 ≤ 6n−8 and so we obtain a contradiction.
Thus, NQ 3

n
({u, v}) ⊆ F2.

Now we apply the argument in Section 4.2.2. There is nothing special about starting from the vertex u, above: if
u1 ∈ F1 \ (F2 ∪ {u}) then we can proceed identically. Thus, if such a vertex u1 exists then u1 has some neighbour v1 that is
not in F2 so that NQ 3

n
({u1, v1}) ⊆ F2. An analogous statement can be made as regards a vertex u′

1 ∈ F2 \ (F1 ∪ {u′
}). Suppose

that |F1 \ F2| ≥ 4. Consequently, from inequality (3), 6n − 7 ≥ 4(2n − 1) − 12 = 8n − 16, which yields a contradiction.
Thus, we must have that 1 ≤ |F1 \ F2| ≤ 3, and similarly that 1 ≤ |F2 \ F1| ≤ 3; consequently, |F1 ∪ F2| ≤ 6n− 4. Further, if
|F1△F2| ≥ 4 then from inequality (4), 6n − 4 ≥ |F1 ∪ F2| ≥ 8n − 16, which yields a contradiction. Hence, 2 ≤ |F1△F2| ≤ 3
with |F1 ∪ F2| ≤ 6n − 6.

Suppose that {u, v} ∩ {u′, v′
} = ∅. As NQ 3

n
({u, v}) ⊆ F2 and NQ 3

n
({u′, v′

}) ⊆ F1, we must have that 4(2n − 1) − 10 ≤

|F1 ∪ F2| ≤ 6n− 6 (note that u and v have only 1 common neighbour, as do u′ and v′). This yields a contradiction, and so we
must have thatv = v′. However,NQ 3

n
({u, v, u′

}) ⊆ F1∪F2 and in additionu, u′
∈ F1∪F2; thus, |F1∪F2| ≥ (6n−7)+2 = 6n−5,

which yields a contradiction. Hence, if n ≥ 15 then we have that Q 3
n has conditional diagnosability 6n−7; that is, the family

of 3-ary n-cubes {Q 3
n } has asymptotic conditional diagnosability 6n− 7 (we remark that this result is new in that the results

from [12] only apply to k-ary n-cubes when k ≥ 4).

6. Some new results

We now use our methodology to establish conditional diagnosability results for some interconnection networks G for
which hitherto no such results were known. We proceed as we did for the hypercubes and the k-ary n-cubes; namely,
our basic assumption is that F1 and F2 are indistinguishable conditional fault sets in G of size at most p2(G) such that
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u ∈ F1 \ F2 and u′
∈ F2 \ F1. So, in particular and with reference to the previous section, we have our graph T3 with

vertex set {u, v, w}. Wemake additional assumptions on n as appropriate. Our analysis is in three phases, as before: we first
prove that NG({u, v}) ⊆ F2; we then obtain a bound on |F1 ∪ F2|; and we then establish a contradiction. Our applications are
repetitive and so we only outline the essential numeric details within each phase.

6.1. Folded hypercubes

The folded hypercube FQn [7] is obtained by adding certain edges toQn: for every vertex x1x2 . . . , xn of Qn, we add the edge
(x1x2 . . . xn, x̄1x̄2 . . . x̄n). Clearly, ∆(FQn) = n + 1.

Lemma 9. When n ≥ 4, c(FQn) = 2 and p2(FQn) = 3n − 2.

Proof. It is easy to show that the folded hypercube FQn is vertex-transitive (see, for example, [29]). Hence, w.l.o.g. in order
to find c(FQn) and p2(FQn) it suffices to look at the paths (x, z, y) where: x = 0 . . . 0, z = 10 . . . 0 and y = 110 . . . 0; and
x = 0 . . . 0, z = 10 . . . 0 and y = 01 . . . 1. The only other path of length 2 from x to y is: (x, w = 010 . . . 0, y) in the first
case; and (x, w = 1 . . . 1, y) in the second case. In both cases: (x, z, y, w) is a cycle of length 4; x and y have z and w as their
only common neighbours; z and w have x and y as their only common neighbours; x and z have no common neighbours;
and z and y have no common neighbours. Hence, c(FQn) = 2 and NFQn({x, y, z}) = 3n − 2. �

We remark that the conditional diagnosability of a folded hypercube has been studied but only under the PMC model
when it was shown to be 4n − 3 when n = 5 or n ≥ 8 [37].

Assume that n ≥ 28. In the first phase,we build T10 so thatNFQn(T10) ≥ 10n−121 andhence so thatµ ≥ 4n−107. Thus, as
n ≥ 28, wemust have thatµ > 4. Puttingµ = 4 in inequality (2) yields that 4n−16 ≤ 3n−3, which yields a contradiction.
Thus,NFQn({u, v}) ⊆ F2. In the second phase, suppose that |F1 \F2| ≥ 4. Consequently, from inequality (3), 3n−2 ≥ 4n−12,
which yields a contradiction. Thus, we must have that 1 ≤ |F1 \ F2| ≤ 3, and similarly that 1 ≤ |F2 \ F1| ≤ 3; consequently,
|F1 ∪ F2| ≤ 3n+1. Further, if |F1△F2| ≥ 4 then from inequality (4), |F1 ∪ F2| ≥ 4n−12, which yields a contradiction. Hence,
2 ≤ |F1△F2| ≤ 3 with |F1 ∪ F2| ≤ 3n − 1. In the third phase, suppose that {u, v} ∩ {u′, v′

} = ∅. As NFQn({u, v}) ⊆ F2 and
NFQn({u

′, v′
}) ⊆ F1, we must have that 4n − 8 ≤ |F1 ∪ F2| ≤ 3n − 2 (note that u and v have no neighbours in common, and

nor do u′ and v′). This yields a contradiction, and so we must have that v = v′. However, NFQn({u, v, u′
}) ⊆ F1 ∪ F2 and in

addition u, u′
∈ F1 ∪ F2; thus, |F1 ∪ F2| ≥ 3n − 2 + 2 = 3n, which yields a contradiction. Hence, if n ≥ 28 then we have

that FQn has conditional diagnosability 3n − 2; that is, the family of folded hypercubes {FQn} has asymptotic conditional
diagnosability 3n − 2.

6.2. Pancake graphs

The pancake graph Pn [1] has vertex set Sn consisting of all permutations of {1, 2, . . . , n} and there is an edge
joining u1u2 . . . un and v1v2 . . . vn if, and only if, there exists some i ∈ {2, 3, . . . , n} such that v1v2 . . . vn =

uiui−1 . . . u1ui+1ui+2 . . . un; that is, v1v2 . . . vn is obtained from u1u2 . . . un by ‘reversing’ a prefix of u1u2 . . . un. Trivially, Pn
is regular of degree n − 1. It is not difficult to prove that when n ≥ 3, the pancake graph Pn has girth 6 (an explicit proof is
given in [25]); consequently, when n ≥ 3 we have that p2(Pn) = 3n − 7 and c(G) = 1.

Assume that n ≥ 20. In the first phase, we build T9 so that NPn(T9) ≥ 9n − 79 and hence so that µ ≥ 3n − 56. Thus, we
must have that µ ≥ 4. Putting µ = 4 in inequality (2) yields that 4n − 18 ≤ 3n − 8, which yields a contradiction. Thus,
NPn({u, v}) ⊆ F2. In the second phase, suppose that |F1 \ F2| ≥ 4. Consequently, from inequality (3), 3n − 7 ≥ 4n − 14,
which yields a contradiction. Thus, we must have that 1 ≤ |F1 \ F2| ≤ 3, and similarly that 1 ≤ |F2 \ F1| ≤ 3; consequently,
|F1 ∪ F2| ≤ 3n − 4. Further, if |F1△F2| ≥ 4 then from inequality (4), |F1 ∪ F2| ≥ 4n − 14, which yields a contradiction.
Hence, 2 ≤ |F1△F2| ≤ 3 with |F1 ∪ F2| ≤ 3n − 6. In the third phase, suppose that {u, v} ∩ {u′, v′

} = ∅. As NPn({u, v}) ⊆ F2
and NPn({u

′, v′
}) ⊆ F1, we must have that 4n − 8 ≤ |F1 ∪ F2| ≤ 3n − 6 (note that u and v have no neighbours in common,

and nor do u′ and v′). This yields a contradiction, and so we must have that v = v′. However, NPn({u, v, u′
}) ⊆ F1 ∪ F2 and

in addition u, u′
∈ F1 ∪ F2; thus, |F1 ∪ F2| ≥ 3n − 7 + 2 = 3n − 5, which yields a contradiction. Hence, if n ≥ 20 then

we have that Pn has conditional diagnosability 3n− 7; that is, the family of pancake graphs {Pn} has asymptotic conditional
diagnosability 3n − 7.

6.3. Augmented cubes

The augmented cube AQn [4] is obtained by adding certain edges to Qn. We call the edges of Qn, within AQn, the b-edges,
to denote that they result from flipping one bit, and we call the additional edges the s-edges, to denote that they result from
flipping a suffix of bits. In more detail, for every vertex x = x1x2 . . . xn of AQn and for every s ∈ {1, 2, . . . , n − 1}, there is an
s-edge (x1x2 . . . xn, x1x2 . . . xs−1x̄s . . . x̄n). In particular, AQn is regular of degree 2n − 1.

In order to apply the techniques of the previous section, we need to ascertain p2(AQn) and c(AQn). As we shall see below,
doing so is not always as straightforward as it has been hitherto. In order to obtain these values, we need to examine the
different types of paths of length 2 that can arisewithinAQn. (We remark that the conditional diagnosability of an augmented
cube has been studied under the PMC model and shown to be 8n − 27 when n ≥ 5 [3].)
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Theorem 10. For the augmented cube AQn, where n ≥ 5, we have that c(AQn) = 4 and p2(AQn) = 6n − 17.

Proof. Letρ = (x, z, y) be an arbitrary path. As the augmented cube AQn is vertex-transitive [4], w.l.o.g. wemay assume that
the vertex x is 00 . . . 0. Our path ρ has one of four types depending upon the types of the two edges involved. We consider
these paths according to their types. For every such path ρ, what we do below is examine this path and see whether there
is also an edge (x, y) and whether there are any other paths of length 2 from x to y (we call such paths 2-paths).

Before we begin, we note that every path ρ = (x, z, y) has a dual path, namely the path obtained by ‘reversing the
operations’ corresponding to the edges (x, z) and (z, y). So, for example, if the operation corresponding to the b-edge (x, z)
is to flip the bth bit and the operation corresponding to the s-edge (z, y) is to flip the bank of bits from the sth up to the nth
then the dual path of ρ is obtained by starting from x and first flipping the bank of bits from the sth up to the nth to get the
vertex z ′ and then flipping the bth bit of z ′ to get y. The dual path is always a different 2-path from the original path.

In what follows, we use subscripts to denote specific bits of vertices; for example, 0 . . . 01s1 . . . 1 denotes the vertex
where the first s − 1 bits are 0 and the last n − (s − 1) bits are 1.
Case (a): Suppose that we have a path ρ = (x, z, y) so that (x, z) is an s-edge and (z, y) is a b-edge; so, z = 0 . . . 01s1 . . . 1,
with 1 ≤ s ≤ n − 1 (if (x, z) is a b-edge and (z, y) is an s-edge then we simply interchange the roles of x and y). Suppose
that y is obtained from z by flipping bit b.
Sub-case (i): b < s, and so the weight of z is (n+ 1)− s+ 1 = n+ 2− s ≥ 3. Every path of length 2 from x to ymust contain
exactly one s-edge (if it consists of two s-edges then we obtain a contradiction as we would have 1 = yn = xn = 0, and if it
contains no s-edge then ywould have weight 2).

1. If b = s− 1 then we have that y = 0 . . . 01s−11 . . . 1 and there is an edge (x, y) (which is an s-edge). Apart from ρ and its
dual path (x, 0 . . . 01s−10 . . . 0, y), there are also 2-paths (x, 0 . . . 01s−20 . . . 0, y) and (x, 0 . . . 01s−21 . . . 1, y) (assuming
that s ≥ 3).

2. If b ≤ s−2 then y = 0 . . . 01b0 . . . 01s1 . . . 1. There is no edge (x, y). Apart from ρ and its dual path (x, 0 . . . 01b0 . . . 0, y),
in the case that b = s − 2 only there are also 2-paths (x, 0 . . . 01s−10 . . . 0, y) and (x, 0 . . . 01s−21 . . . 1, y).

Sub-case (ii): b = s, and so y = 0 . . . 01s+11 . . . 1. There is an edge (x, y), which is an s-edge if s ≤ n − 2 and a b-edge if
s = n − 1.

1. If s ≤ n − 2 then apart from the path ρ and its dual path (x, 0 . . . 01s0 . . . 0, y), there are also 2-paths
(x, 0 . . . 01s+10 . . . 0, y) and (x, 0 . . . 01s+21 . . . 1, y).

2. If s = n − 1 then apart from the dual path (x, 0 . . . 010, y), there are no other 2-paths.

Sub-case (iii): b > s, and so the weight of z is (n + 1) − s − 1 = n − s. We have that y = 0 . . . 01s . . . 10b1 . . . 1.

1. If s ≤ n − 3 then (as above) every path of length 2 from x to y must contain exactly one s-edge. Apart from ρ and
its dual path (x, 0 . . . 01b0 . . . 0, y), in the case that b = s + 1 only (when y = 0 . . . 01s01 . . . 1) are there 2-paths
(x, 0 . . . 01s0 . . . 0, y) and (x, 0 . . . 01s+21 . . . 1, y).

2. If s = n − 2 then y = 0 . . . 0101 or y = 0 . . . 0110. Apart from the path ρ and its dual path (x, 0 . . . 0010, y) or
(x, 0 . . . 0001, y), respectively, when y = 0 . . . 0101 there are 2-paths (x, 0 . . . 0100, y) and (x, 0 . . . 0001, y), and when
y = 0 . . . 0110 there are 2-paths (x, 0 . . . 0100, y) and (x, 0 . . . 0010, y).

3. If s = n − 1 then y = 0 . . . 0010. Apart from ρ and its dual path (x, 0 . . . 0011, y), there are no other 2-paths although
there is an edge (x, y).

Case (b): Suppose that we have a path ρ = (x, z, y) so that (x, z) and (z, y) are both s-edges where z = 0 . . . 01s1 . . . 1 and
y = 0 . . . 01s1 . . . 10t0 . . . 0 (if s > t then we simply interchange the roles of x and y).

1. Suppose that t − s ≥ 3. There are no 2-paths apart from ρ and its dual path (x, 0 . . . 01t . . . 1, y) (if there were a 2-path
then both edges would need to be s-edges and this is impossible).

2. Suppose we have that t = s + 2. Apart from ρ and its dual path (x, 0 . . . 01s+21 . . . 1, y), there are 2-paths
(x, 0 . . . 01s0 . . . 0, y) and (x, 0 . . . 01s+10 . . . 0, y).

3. Suppose that t = s+1. Apart from ρ and its dual path (x, 0 . . . 01s+11 . . . 1, y), there are no other 2-paths although there
is an edge (x, y).

Case (c): Suppose that we have a path ρ = (x, z, y) so that (x, z) and (z, y) are both b-edges where z = 0 . . . 01b0 . . . 0 and
y = 0 . . . 01b0 . . . 01b′0 . . . 0 (if b′ < b then we simply interchange the roles of x and y).

1. Suppose that b′
− b ≥ 2. There are no 2-paths apart from ρ and its dual path (x, 0 . . . 01b′0 . . . 0, y), unless b = n − 2

and b′
= nwhen y = 0 . . . 0101 and there are 2-paths (x, 0 . . . 0010, y) and (x, 0 . . . 0111, y).

2. Suppose that b′
= b + 1 and b′

≤ n − 1. Apart from ρ and its dual path (x, 0 . . . 01b+10 . . . 0, y), there are 2-paths
(x, 0 . . . 01b1 . . . 1, y) and (x, 0 . . . 01b+21 . . . 1, y).

3. Suppose that b′
= b+ 1 and b′

= n, when y = 0 . . . 011. Apart from ρ and its dual path (x, 0 . . . 01, y), there are 2-paths
(x, 0 . . . 0100, y) and (x, 0 . . . 0111, y). There is also an edge (x, y).
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Fig. 3. Case (a)(i)(1) (where b = s − 1).

Fig. 4. The first sub-case of Case (a)(i)(2) where b = s − 2.

By inspecting the different cases above, we see that c(AQn) = 4.
We can now use the above classification to obtain p2(AQn). For each path ρ = (x, z, y) in AQn of length 2, of one of the

types above, we need to consider NAQn({x, y, z}). So, not only do we have to consider the neighbours common to x and y,
which are readily available from above, we also need to consider the neighbours common to x and z and also to z and y
(bearing in mind that some vertex might be a neighbour of each of x, y and z). As it turns out, this means splitting some of
the cases above into sub-cases. Recall that we are looking for a path ρ = (x, z, y) which minimises |NAQn({x, y, z})|.

Consider Case (a)(i)(1) where b = s−1. The common neighbours can be listed as follows, ignoring that x = 0 . . . 0 (resp.
y = 0 . . . 01s−11 . . . 1, z = 0 . . . 01s1 . . . 1) is a common neighbour of y and z (resp. x and z, x and y):

• x, y: 0 . . . 01s−10 . . . 0; 0 . . . 01s−20 . . . 0; 0 . . . 01s−21 . . . 1
• x, z: 0 . . . 01s−10 . . . 0; 0 . . . 01s0 . . . 0; 0 . . . 01s+11 . . . 1
• y, z: 0 . . . 01s−10 . . . 0.

Of course, we are assuming that s ≥ 3 above (if not then there is a reduction in common neighbours and the size of
NAQn({x, y, z}) increases). Note that we are using our classification above, of the neighbours common to x and y, to determine
the neighbours common to x and z and y and z too. There are repetitions above. We can picture the edges involving the
vertices of {x, y, z} and any common neighbours as in Fig. 3. Consequently, we have that |NAQn({x, y, z})| = 6n − 15.

Consider Case (a)(i)(2) where b ≤ s−2.We need to split this case into two sub-cases. The first sub-case is when b = s−2.
The common neighbours can be listed as follows, ignoring that z = 0 . . . 01s1 . . . 1 is a common neighbour of x = 0 . . . 0
and y = 0 . . . 01s−201s1 . . . 1:

• x, y: 0 . . . 01s−10 . . . 0; 0 . . . 01s−20 . . . 0; 0 . . . 01s−21 . . . 1
• x, z: 0 . . . 01s−11 . . . 1; 0 . . . 01s−10 . . . 0; 0 . . . 01s0 . . . 0; 0 . . . 01s+11 . . . 1
• y, z: 0 . . . 01s−10 . . . 0; 0 . . . 01s−210 . . . 0.

We can picture the edges involving the vertices of {x, y, z} and any common neighbours as in Fig. 4. So, we have that
|NAQn({x, y, z})| = 6n − 15.

The second sub-case of Case (a)(i)(2) is when b ≤ s − 3. The common neighbours can be listed as follows, ignoring that
z = 0 . . . 01s1 . . . 1 is a common neighbour of x = 0 . . . 0 and y = 0 . . . 01b0 . . . 01s1 . . . 1:

• x, y: 0 . . . 01b0 . . . 0
• x, z: 0 . . . 01s−11 . . . 1; 0 . . . 01s−10 . . . 0; 0 . . . 01s0 . . . 0; 0 . . . 01s+11 . . . 1
• y, z: 0 . . . 01b1 . . . 10s0 . . . 0; 0 . . . 01b+11 . . . 10s0 . . . 0.
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Fig. 5. The second sub-case of Case (a)(i)(2) where b ≤ s − 3.

Fig. 6. Case (a)(ii)(1) where s ≤ n − 2.

Fig. 7. Case (a)(ii)(2) where s = n − 1.

We can picture the edges involving the vertices of {x, y, z} and any common neighbours as in Fig. 5. So, we have that
|NAQn({x, y, z})| = 6n − 14.

Henceforth, for brevity, we only give the figure corresponding to each of the cases in our classification (or sub-case if
necessary) together with the size of the corresponding NAQn({x, y, z}) (Figs. 6–21).

In consequence, we have that p2(AQn) = 6n − 17 and the result follows. �

Assume that n ≥ 25. In the first phase, we build T9 so thatNAQn(T9) ≥ 18n−188 and hence so thatµ ≥ 6n−145. Thus, as
n ≥ 25,wemust have thatµ > 4. Puttingµ = 4 in inequality (2) yields that 8n−36 ≤ 6n−18,which yields a contradiction.
Thus,NAQn({u, v}) ⊆ F2. In the second phase, suppose that |F1\F2| ≥ 4. Consequently, from inequality (3), 6n−17 ≥ 8n−32,
which yields a contradiction. Thus, we must have that 1 ≤ |F1 \ F2| ≤ 3, and similarly that 1 ≤ |F2 \ F1| ≤ 3; consequently,
|F1 ∪ F2| ≤ 6n − 14. Further, if |F1△F2| ≥ 4 then from inequality (4), |F1 ∪ F2| ≥ 8n − 32, which yields a contradiction.
Hence, 2 ≤ |F1△F2| ≤ 3 with |F1 ∪ F2| ≤ 6n−16. In the third phase, suppose that {u, v}∩ {u′, v′

} = ∅. As NAQn({u, v}) ⊆ F2
and NAQn({u

′, v′
}) ⊆ F1, we must have that 8n− 24 ≤ |F1 ∪ F2| ≤ 6n− 16. This yields a contradiction, and so we must have

that v = v′. However, NAQn({u, v, u′
}) ⊆ F1 ∪ F2 and in addition u, u′

∈ F1 ∪ F2; thus, |F1 ∪ F2| ≥ 6n − 17 + 2 = 6n − 15,
which yields a contradiction. Hence, if n ≥ 25 then we have that AQn has conditional diagnosability 6n − 17; that is, the
family of augmented cubes {AQn} has asymptotic conditional diagnosability 6n − 17.
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Fig. 8. The first sub-case of Case (a)(iii)(1) where s ≤ n − 3 and s + 2 ≤ b ≤ n − 1.

Fig. 9. The second sub-case of Case (a)(iii)(1) where s ≤ n − 3 and b = n.

Fig. 10. The third sub-case of Case (a)(iii)(1) where s ≤ n − 3 and b = s + 1.

7. Conclusions

In this paper we have developed and applied a powerful method for ascertaining the (asymptotic) conditional
diagnosability of interconnection networks under the comparison diagnosis model. Our method only relies upon the
combinatorial content of certain parameters associatedwith an interconnectionnetwork and, to someextent, is independent
of the internal structure of the interconnection network.

We have a number of comments. We have expressly developed and applied our technique so as to make our technique as
widely applicable as possible. As such, the value of n, with regard to some family of interconnection networks {Xn}, at which
a conditional diagnosability result applies can be relatively large (for example, with the hypercubes our method yields that
Qn has conditional diagnosability 3n− 5 when n ≥ 29 whereas it is known from [13] that Qn has conditional diagnosability
3n − 5 when n ≥ 5). If we were to apply our method, and in particular the results from Section 4, specifically to hypercubes,
so as to utilise the internal structure of hypercubes, then we could get this value of n down considerably (probably even
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Fig. 11. The first sub-case of Case (a)(iii)(2) where s = n − 2 and b = n − 1.

Fig. 12. The second sub-case of Case (a)(iii)(2) where s = n − 2 and b = n.

Fig. 13. Case (a)(iii)(3) where s = n − 1 and b = n.

Fig. 14. Case (b)(1) where t − s ≥ 3.
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Fig. 15. Case (b)(2) where t − s = 2.

Fig. 16. Case (b)(3) where t − s = 1.

Fig. 17. The first sub-case of Case (c)(1) where b′
− b ≥ 2 and b′

≠ n.

Fig. 18. The second sub-case of Case (c)(1) where b′
− b ≥ 3 and b′

= n.

to 5). This same comment can be made as regards other interconnection networks to which we apply our methods, and,
naturally, we would like to reduce the values of n for which our conditional diagnosability results apply in the cases of
folded hypercubes, pancake graphs and augmented cubes. We envisage that we will quite easily be able to do this but leave
this to the future, given that the focus in this paper is on establishing our general technique and its efficacy.

We feel that we have just touched the tip of the iceberg as regards the application of our technique, in that we conjecture
that it is much more widely applicable than we have shown here (future research will verify this claim). However, as the
situationwith the augmented cubes denotes, the application of our technique is not always straightforward.What the results
in this paper have shown is that there are combinatorial properties of interconnection networks G that are worthy of more
study, notably p2(G).
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Fig. 19. The third sub-case of Case (c)(1) where b′
− b = 2 and b′

= n.

Fig. 20. Case (c)(2) where b′
− b = 1 and b′

≤ n − 1.

Fig. 21. Case (c)(2) where b′
− b = 1 and b′

= n.

Finally, we also feel that a generalmethod, analogous to that here, can be developed in other diagnostic scenarios, notably
as regards conditional diagnosis in the PMC model and also (non-conditional) diagnosis in both the PMC and comparison
diagnosis models. Again, this claim will be studied in future.
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