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ABSTRACT 

Background. Obesity affects over one-third of the US population, and is a risk factor for various 

chronic conditions, including type 2 diabetes, heart disease, and stroke.  The disease results from 

a combination of behavioral and environmental risk factors and genetic predisposition. To date, 

over 50 genetic polymorphisms have been associated with increased body mass index (BMI), but 

these associations explain only a small percentage of the heritable risk of obesity.  Moreover, the 

majority of these associations have been identified in populations of European ancestry.  We 

sought to identify novel associations with BMI and to evaluate their generalizability across 

ethnic groups, using subjects from the Multi-ethnic Study of Atherosclerosis (MESA).  

Methods.  Ethnic-specific genome-wide association analyses were conducted to identify single 

nucleotide polymorphisms (SNPs) associated with BMI among 1,257 Hispanic, 705 Asian, 1,551 

African American, and 2,416 Caucasian MESA participants.  We compared and contrasted 

findings across ethnic groups, and accounted for potential differences in linkage disequilibrium 

patterns by examining the ± 500kb flanking regions of the top SNPs in all four ethnic groups.   

Results.  We identified one genome-wide significant association with BMI in Hispanic subjects: 

rs12253976 near KLF6 (p=6.88x10-09).  The top SNPs in each of the other ethnic groups—

rs9961691 near GATA6 in Asians (p=1.53x10-06), rs7092615 near LYZL2 in African Americans 

(p=2.26x10-07), and rs6866721 near SEMA6A in Caucasians (p=9.23x10-08)—may also be of 

interest.  Each of these SNPs showed no evidence of an association with BMI in the other ethnic 

groups. 

Conclusion. We present one of the first GWAS to examine BMI-associated variants across 

ethnic groups in the same study. The existence of ethnic-specific associations with BMI 

highlights the need for future investigations in larger multiethnic cohorts.  Discovery of further 

ethnic-specific BMI-associated loci may contribute to personalized obesity interventions.   
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Introduction.  

Obesity is one of the most pressing health problems in the United States (U.S.).  It affects 

over 35.7% of adults [1] and 16.9% of children [2], placing them at higher risk of metabolic 

syndrome, type 2 diabetes, cardiovascular disease, and other chronic conditions [3, 4].  Obesity-

related co-morbidities place a huge financial burden on the healthcare system and consequently 

on the U.S. economy: in 2010, the medical costs of treating people for overweight and obesity 

were estimated to be $72 billion and $198 billion, respectively [5].  Understanding the etiology 

of obesity and developing interventions to prevent obesity-related co-morbidities are therefore 

important public health concerns. 

The etiology of obesity involves multiple interactions among behavioral, environmental, 

and genetic factors [6].  Though the current obesity epidemic is commonly attributed to lifestyle 

and environmental changes[7], it is also recognized that individuals respond differently to 

obesogenic environments and that those differences are driven by genetic variation. In fact, 

family and twin studies have shown that genetic factors explain 40-70% of the variation in 

common obesity [8, 9].   

 In the last few years, genome-wide association studies (GWAS) have increased our 

understanding of the heritable risk of obesity by identifying approximately 50 obesity-

susceptibility loci [10].  However, further investigations are warranted for several reasons.  First, 

the known obesity loci with the largest effect sizes—variants in the FTO and MC4R genes—only 

account for an estimated 2% of the variation in body mass index (BMI) [11].  Second, the 

majority of GWAS conducted to date have primarily focused on populations of European 

ancestry [12].  While GWAS of Asian populations have begun to emerge, African Americans 

and Hispanics continue to be underrepresented in these studies, and it is precisely these 

populations who are disproportionately affected by overweight and obesity in the U.S [1, 13].  
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Finally, most obesity GWAS investigations have focused on one ethnic group in isolation and 

infrequently attempt to compare and contrast findings across ethnic groups.   

 In order to gauge the clinical and public health implications of obesity-associated 

variants, it is not sufficient to simply replicate findings in other Caucasian populations; we need 

to evaluate whether these associations are generalizable to individuals of other ethnicities [14].  

In addition, GWAS in multiethnic populations may reveal additional loci that are not readily 

detectable in Caucasians due to allele frequency and haplotype structure differences [15].  For 

these reasons, in the present study, we examined genetic associations with BMI—a correlate of 

obesity [16]—in the Multi-ethnic Study of Atherosclerosis (MESA), which includes individuals 

of four ethnic groups: Hispanic, Asian, African American, and Caucasian.  We compared and 

contrasted findings across ethnic groups and evaluated whether variants in the FTO gene are 

associated with BMI to a similar extent across ethnic groups.   

 

Methods. 

Study population 

 The MESA study is a multicenter, prospective cohort study of the characteristics of 

subclinical cardiovascular disease and the risk factors that predict progression to clinically overt 

cardiovascular disease or progression of the subclinical disease.  Recruitment has been described 

in detail elsewhere [17].  Briefly, 6,814 men and women aged 45 to 84 years were recruited from 

six U.S. field centers from July 2000 to July 2002.  The study collected self-identified 

racial/ethnic group data via a standard questionnaire.  Each field center recruited an equal 

number of men and women from 2 or more ethnic groups, and there were overlapping ethnic 

groups among field centers to minimize confounding of race/ethnicity by site [17]. Genotype 

information was available for 6,361 of the participants: 1,449 Hispanics, 775 Asians, 1,611 

African Americans, and 2,526 Caucasians.   
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 For the present study, the MESA population was divided into four ethnic-specific 

samples consisting of individuals with both phenotype and genotype information available.  

Genotype and phenotype information were acquired from the National Center for Biotechnology 

Information's database of Genotypes and Phenotypes (NCBI dbGaP study accession: 

phs000209.v7.p2 MESA SNP Health Association Resource (SHARe)).  To be included in the 

GWAS analyses, individuals had to meet our quality control thresholds (described below) and 

had to have complete data for all ethnic-specific regression model covariates.   

 

Genotyping 

 Details of sample preparation and genotyping have been reported previously [17].  

Briefly, DNA was extracted from blood sample buffy coat, and genotyping was conducted by 

Affymetrix Research Services Lab using the Affymetrix 6.0 SNP array. Samples were required 

to have a call rate of at least 95%.   

 

Phenotypic Data 

 All measurements used in this study were obtained at the first MESA study visit.  

The primary outcome was BMI (kg/m2), calculated from objective height and weight 

measurements collected by trained staff at the six field centers.  All genotyped participants of 

each ethnic group had BMI information from this baseline visit.  

 Information regarding demographic and lifestyle characteristics and medical history was 

obtained through standardized questionnaires administered at baseline.  Physical activity levels 

were also assessed at baseline using the MESA Typical Week Physical Activity Survey, adapted 

from the Cross-Cultural Activity Participation Study [18] to determine the time and frequency 

spent in various physical activities during a typical week in the past month. The following 

variables were examined in our study due to their previously reported associations with BMI: 
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sex; age at baseline interview (years); education (categorical: highest level of schooling 

completed, grouped into 9 categories ranging from no schooling to graduate and professional 

schooling) [19]; income (categorical: total gross income earned by all family members, grouped 

into 13 categories ranging from < $5,000 to more than $100,000) [20]; smoking (categorical: 

never, former, current smokers) [21]; arthritis (yes/no) [22]; diabetes (yes/no) [23]; and moderate 

and vigorous physical activity (continuous: met-min/week) [24].   

 

Ethnic specific linear regression models  

 Ethnic-specific bivariate associations between BMI and age, sex, education, income, 

smoking, arthritis, diabetes, and moderate and vigorous physical activity were examined in SAS 

9.3 (SAS Institute, Cary NC).  Ethnic-specific multivariate linear regression models were then 

built, and the most parsimonious models were selected using a backwards selection method, 

eliminating covariates with p-values greater than 0.05 until the model adjusted-R2 values were 

maximized.  Age and sex were retained in the reduced models regardless of the statistical 

significance of their associations with BMI.  Individuals with missing values for any covariate 

included in the final ethnic-specific models were removed from the analysis (n=15 Hispanics, 

n=18 Asians, n=29 African Americans, and n=92 Caucasians). 

 For these analyses, the 9 education categories were collapsed into three: (1) < 12 years of 

schooling, (2) 12-15 years of schooling (high school graduates and some college), and (3) > 16 

years of schooling (college graduates and professional/graduate school graduates).  Income was 

examined as a binary predictor, collapsing the 13 categories into two: high and low income.  For 

this purpose, median household income was averaged over the 2000-2002 recruitment period 

($41,448).  Income categories $40-49,000 and above were defined as high income.  Moderate 

and vigorous physical activity was examined as a categorical predictor since its distribution was 

strongly right-skewed, with possible outliers, and an F-test suggested that its association with 
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BMI is not linear (p<0.05).  Additionally, a Kruskal-Wallis test revealed that the distribution of 

moderate and vigorous physical activity differed significantly across the four ethnic-groups 

(p<0.0001), so ethnic-specific cut points were chosen to divide participants into quartiles.  

Quartiles for moderate and vigorous physical activity were: 0 to 1665, 1666 to 4072.5, 4073 to 

8280, and 8281 to 45060 met-min/week for Hispanics; 0 to 1305, 1306 to 2580, 2581 to 4770, 

and 4771 to 30240 met-min/week for Asians; 0 to 2115, 2116 to 4560, 4561 to 8625, and 8626 to 

103320 met-min/week for African Americans; and 0 to 2280, 2281 to 4207.5, 4208 to 7220, and 

7221 to 56550 met-min/week for Caucasians.  

 

SNP Analysis 

 Ethnic-specific genome-wide SNP analyses were performed using the PLINK software 

package (http://pngu.mgh.harvard.edu/purcell/plink/ [25]) .  A total of 909,622 SNPs were 

genotyped in individuals of each ethnic group.  SNPs were excluded based on low call rate 

(<98%), low minor allele frequency (MAF <0.01), and significant deviation from Hardy-

Weinberg equilibrium (p-value ≤ 5.5x10-8).   

 Genetic quality control procedures included assessments for cryptic relatedness and 

population stratification.  Cryptic relatedness between subjects in each ethnic group was 

examined by pair-wise identity-by-descent (IBD) estimation in PLINK.  Pairs showing 

(estimated proportion of genomic variation shared IBD) > 0.2 were inspected.  One subject from 

each family was included, and 52 Asians, 177 Hispanics, 31 African Americans, and 18 

Caucasians were excluded from downstream SNP analyses.  Population stratification was 

assessed by performing principal components analyses using EIGENSTRAT version 3.0 

(http://genepath.med.harvard.edu/~reich/Software.htm).  

 Linear regression analyses were performed within PLINK to test the association between 

individual SNPs and BMI, with initial adjustment for the top two principal components (PCs) 
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identified from the EIGENSTRAT analyses, additional adjustment for age and sex, and complete 

adjustment for all ethnic-specific model covariates.  Bonferroni-corrected genome-wide 

significance thresholds were applied to each ethnic group to maintain an overall study α of 0.05.  

Because the Bonferroni correction is conservative, only tested markers were included in the 

calculation of the corrected significance thresholds.  Therefore the significance thresholds used 

were: 5.86x10-8 (0.05/853,278) for Hispanics; 7.31x10-8 (0.05/683,998) for Asians; 5.73x10-8 

(0.05/871,948) for African Americans; and 6.67x10-8 (0.05/749,659) for Caucasians.   

 After identifying the top SNP candidates (p < 5.5 x10-6) in each ethnic group, we 

evaluated the generalizability of these associations to other ethnic groups.  To account for 

potential differences in linkage disequilibrium (LD) patterns across ethnic groups, we examined 

the ± 500kb flanking regions of each of the top SNPs in all four ethnic groups.   

 

Results.  

 Our study included 1,257 Hispanics, 705 Asians, 1,551 African Americans, and 2,416 

Caucasian subjects.  The demographic, behavioral, and clinical characteristics of these MESA 

participants according to race/ethnicity are displayed in Table 1.  African Americans had higher 

BMI (mean 30.13kg/m2 ± 5.86) than Hispanics (mean 29.29kg/m2 ± 5.10), Caucasians (mean 

27.74kg/m2 ± 5.07), and Asians (mean 24.03 kg/m2 ± 3.30).  African Americans also reported 

greater physical activity and were more likely to have arthritis than participants of all other 

ethnic groups.  Caucasians were the most likely to have ever smoked cigarettes.  Hispanics were 

the most likely to have low income, not to have graduated high school, and to report having 

diabetes.  
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Ethnic-specific regression models 

 The unadjusted associations between BMI and participant demographic, behavioral, and 

clinical risk factors are summarized in Table 2.  Arthritis and diabetes were positively associated 

with BMI across all ethnic groups.  Education and income were significant predictors of BMI 

only in Caucasians, where the mean BMI difference between participants who completed higher 

education and those who did not finish high school was -1.569kg/m2 (p=0.001), and the mean 

BMI difference between low and high income participants was 0.712 kg/m2 (p=0.001).  Physical 

activity was associated with BMI in Caucasians, with a mean difference in BMI of -0.952 kg/m2 

(p=0.001) between those in the highest and lowest quartile.  Smoking was only a significant 

predictor of BMI in African Americans, and the mean BMI difference between “ever” and 

“never” smokers was -0.641 kg/m2 (p=0.0320).  After adjustment for the independent effects of 

these factors in multivariate models, the effect of smoking became significant in Hispanics and 

Caucasians, and the overall effect of education became significant in Asians and African 

Americans.  The final ethnic specific models are displayed in Table 3.  

 

Population stratification  

 EIGENSTRAT analyses found only minor evidence of population stratification in 

Hispanics, Asians, African Americans, and Caucasians.  PC 1 and PC 2 explained the majority of 

the variation in allelic frequencies within each of these populations and were adjusted for in 

linear regression models.  As shown in Figure 1, across the four ethnic groups, the observed p-

values did not deviate significantly from the expected p-values under the null hypothesis.  

Adjustment for population stratification did not greatly influence the magnitude of our observed 

p-values.   

 

SNP Analysis 
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 Following SNP quality control (Table 4), there were 683,998 SNPs in Asians, 853,278 in 

Hispanics, 871,948 in African Americans, and 749,659 in Caucasians.  The top SNPs (p < 5.5 

x10-6) in each ethnic group are displayed in Table 5.  Following linear regression analyses 

adjusted for all the covariates and assuming an additive mode of inheritance, the most significant 

SNP in Hispanic subjects was rs12253976 near KLF6 (beta=5.542 kg/m2 per allele, 95% CI: 

3.680 to 7.404; p=6.88x10-9).  This SNP was the only variant in the ethnic-specific analyses that 

reached genome-wide significance after Bonferroni adjustment for multiple comparisons.  In 

Asian subjects, the most significant SNP was rs9961691 near GATA6 (beta= -0.994 kg/m2 per 

allele, 95% CI: -1.396 to -0.592; p=1.53x10-6).  In African Americans, the most significant SNP 

was rs7092615 near LYZL2 (beta = 1.077 kg/m2 per allele, 95% CI: 0.671 to 1.483; p=2.41x10-7).  

In Caucasians, the most significant SNP was rs6866721 near SEMA6A (beta=0.764 kg/m2 per 

allele, 95% CI: 0.484 to 1.043; p=9.23x10-8).  As shown in Table 6, the strength of the 

associations and estimated per-allele effect sizes for rs12253976 in Hispanic subjects and 

rs9961691 in Asian subjects were relatively consistent across the unadjusted, minimally 

adjusted, and fully adjusted models.  For rs7092615 in African Americans and rs6866721 in 

Caucasians, the associations were strengthened after adjustment for age and sex and complete 

adjustment for ethnic-specific model covariates.  

 Regional plots visualizing association results for the top SNP in each ethnic group and 

their respective ± 500 kb flanking region SNPs are shown in Figures 2-5.  The chromosome 5 

region of Caucasian subjects contains a set of SNPs with low p-values (<10-5) and in strong 

linkage disequilibrium (R2 > 0.8) with rs6866721.  This region includes top SNP candidates 

rs1672492, rs1672491, and rs7704264 (Table 5).  A similar pattern of association can be seen in 

the chromosome 18 region flanking rs9961691 in Asian subjects.  In contrast, the chromosome 

10 region flanking top SNP candidate rs7092615 in African Americans revealed only one other 

variant (rs156710) with low p-value (<10-5) and in perfect LD with rs7092615 (R2 =1.0).  



Salinas, Y.D. MPH Thesis 14/36 
!

Finally, the plot for top SNP candidate rs12253976 in Hispanics did not show evidence of 

association for SNPs in the chromosome 10 region flanking rs12253976.   

 

Ethnic-specificity of the associations 

  The associations between the top SNP candidates (Table 5) and BMI were generally 

ethnic-specific.  Two notable exceptions were rs12255372 (T/G) and rs7926805 (C/T).   

rs12255372 was associated with lower BMI in both Hispanics and African Americans.  The 

association signal was stronger in Hispanics (p=2.25x10-6) than in African Americans, where it 

was only nominally significant (p = 0.008), but the estimated per-allele effect sizes in each group 

did not differ significantly (beta = -1.117, 95% CI: -1.578 to -0.657 in Hispanics and beta = -

0.594, 95% CI: -1.035 to -0.162 in African Americans).  rs7926805 was associated with lower 

BMI in both Caucasians and African Americans.  The association signal was stronger in 

Caucasians (p = 2.35x10-6) than in African Americans, where it was only nominally significant 

(p = 0.018), but the estimated effect sizes in each group did not differ significantly (beta= -0.766, 

95% CI: -1.084 to -0.450 in Caucasians and beta = -0.477, 95% CI: -0.871 to -0.084 in African 

Americans).   

 

Association with FTO in Caucasians 

 The association between FTO SNP rs9939609 and BMI in our sample of MESA 

Caucasians approached the nominal significance level of 0.05 (p=0.057 in linear regression 

models adjusted for ethnic-specific model covariates).  As shown in Table 7, this SNP did not 

appear to have a significant effect on the BMI of the other ethnic groups.  Our estimated per-

allele effect size of 0.279 kg/m2 (95% CI: -0.008 to 0.566) in Caucasians is within the range of 

what has been reported for this SNP in previous studies of European populations [26].  In ad hoc 

analyses (data not shown), we investigated whether the relatively low association signal was due 
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to the older age of our participants (mean age in Caucasians = 62.54yrs ± 10.22), since a recent 

meta-analysis [27] suggested that rs9939609 might have greater effects on body weight in 

younger adults relative to older adults.  However, we found no significant evidence of 

heterogeneity of the associations between FTO and BMI in our Caucasian population across age 

quartiles (p=0.660).  

 

Discussion. 

 The most significant SNP associated with BMI in our study was rs12253976 (G/T), 

identified in Hispanic subjects.  rs12253976 is a rare SNP whose minor allele frequency (MAF) 

has not yet been reported for Hispanic populations included in the HapMap project.  dbSNP 

reports a MAF of 2.2% for the global 1000 Genome phase I population, and the HapMap project 

reports MAFs ranging from 7.3% to 11.9% in populations of African ancestry.  HapMap also 

reports that the SNP is monomorphic in a Han Chinese population (CHB) and in a Utah 

population of Northern and Western European ancestry (CEU).  This data corroborates what we 

observed in the present study.  In our MESA population, rs12253976 was most common in 

African Americans (MAF = 6.7%), was extremely rare in Caucasians (MAF= 0.1%), and was 

monomorphic in Asians.  In Hispanics, the MAF was 1.1%, and the association between this 

SNP and BMI was driven by only 28 heterozygous individuals with average BMI of 34.70 ± 7.59 

kg/m2 (Table 8).  On average, these heterozygotes were 5.54 BMI units heavier than those 

homozygous for the ancestral “T” allele.  Given the lack of data for rs12253976 in other 

Hispanic populations, we cannot discard the possibility that some of these heterozygotes may be 

a product of genotyping error.   

 Regional association plots in Hispanics did not show evidence of association for SNPs in 

the ± 500kb flanking region of rs12253976 (Figure 2).  While this may be indicative of a 

spurious association with BMI, we cannot abandon the possibility that rs12253976 may be in 
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weak linkage disequilibrium (LD) with nearby genetic markers.  LD plots for this region in a 

HapMap African American population (data not shown) support this hypothesis.  However, we 

cannot confirm whether a similar LD pattern exists in Hispanics, given the absence of data for 

this SNP in the Hispanic HapMap population.   

 The closest gene to rs12253976 is KLF6.  To our knowledge, no GWAS has previously 

reported an association between SNPs in or near KLF6 and any obesity-related trait.  However, 

two family linkage studies have provided evidence for linkage of BMI to this region of 

chromosome 10 (10p15.1).  Chagnon et al. [28] found suggestive evidence (LOD Score = 2.3-

2.7, p<0.001) of linkage to markers D10S1435 and D10S189 in 10p15.3 and 10p15.1, 

respectively, using data from 522 Caucasian subjects (192 parents and 330 offspring from 99 

families) in the HERITAGE Family Study cohort.  Similarly, Lindsay et al. [29] reported 

moderate linkage of BMI to marker D10S189 (LOD Score= 1.7) in a sample of 1,338 Pima 

Indians (consisting of 332 nuclear families and 112 extended pedigrees).  rs12253976 lies 

between markers D10S1435 and D10S189.   

 KLF6 encodes a transcriptional regulator that contains zinc-finger motifs.  KLF6 has 

been shown to accelerate adipocyte differentiation by repressing the expression of adipogenesis 

inhibitors [30].  In addition, it promotes the transcription of adipocyte differentiation regulators, 

such as PPARγ [31].  PPARγ is considered the master regulator of adipogenesis [32], and the 

PPARγ gene has been linked to the development of obesity in numerous studies [33, 34].  

Therefore, there exists a biologically plausible explanation for the association between variants 

near KLF6 and obesity-related traits.  Nevertheless, we cannot rule out a spurious association.  

Though we have employed rigorous QC procedures (see Methods), this is a secondary data 

analysis, so we do not have the ability to re-genotype our subjects.   

 The second most significant association observed in our study was for rs6866721 (C/A), 

identified in Caucasian subjects.  rs6866721 is a relatively common variant, with a MAF of 
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43.7% in our Caucasian population, which approximates what has been reported for the HapMap 

population of European ancestry (CEU; MAF=38.9%).  Regional association plots showed a 

strong association signal for SNPs in the vicinity of rs6866721 (Figure 3), including SNPs 

rs7704264, rs1672492, and rs1672491 (Table 5), which are in strong LD (R2 > 0.8) with 

rs6866721.  The association with rs6866721 was borderline significant at our strict Bonferroni-

adjusted threshold of 6.67x10-8 for Caucasians.  Individuals carrying one copy of the minor “C” 

allele were, on average, 0.764 BMI units heavier than those homozygous for the ancestral “A” 

allele.   

 To our knowledge, no other GWAS has directly implicated rs6866721 in the 

pathogenesis of obesity.  However, the locus containing rs6866721 and its flanking SNPs 

(5q23.1) has been linked to obesity-related traits in family studies.  Chen et al. [35] found 

suggestive linkage (LOD score 1.5-2.3, p= 0.0006-0.0043) of BMI between markers D5S1505 

(5q23.1) and D5S1453 (5q21.1) in a study of 782 Caucasian siblings from 342 Louisiana 

families. A weak linkage of 5q23.1 to BMI (LOD score = 1.5) was also reported in the NHLBI 

Family Heart Study [36]. rs6866721 lies between markers D5S1453 and D5S1505.   

 The closest gene to rs6866721 is SEMA6A, which encodes a trans-membrane domain that 

plays an important role in cellular signaling and axon guidance [37].  This gene has not been 

implicated as a key player in the pathogenesis of obesity.  However, downstream of rs6866721, 

there are also multiple binding sites for nuclear factor (NF)-κB, a primary regulator of 

inflammatory responses [38] whose activity regulates lypolysis in adipose tissue [39].  

Downregulation of NF-κB lypolytic pathways has been associated with obesity in animal models 

[40].  Given the compelling evidence for locus 5q23.1, we hypothesize that our strong 

association signal for rs6866721 and its surrounding SNPs (Figure 3) might be due to variation 

in one of these NF-κB regulatory regions.  Future studies are needed to validate our finding for 

rs6866721 and to further dissect locus 5q23.1 to identify a possible causal variant.   
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 We also observed an association between BMI and rs7092615 (T/C) in African 

Americans.  rs7092615 is a relatively common variant: a MAF of 37.5% in our African 

American population approximates what HapMap reports for its population of African Ancestry 

in the United States (ASW; MAF= 42.1%).  Regional association plots revealed only one other 

variant (rs1567101, see Table 5) associated with BMI in the region containing rs7092615 

(Figure 4).  rs1567101 is in perfect LD with rs7092615 (R2 =1.0), and LD plots for this region in 

the HapMap ASW population revealed that no other SNPs are in moderate to strong LD with 

these two SNPs (data not shown), providing supporting evidence for our findings.   

 The closest gene to rs7092615 is LYZL2, which encodes a lysozyme-like protein that 

plays a role in the immune response.  However, rs7092615 is not in LD with markers within this 

gene.  Therefore, genetic variation in LYZL2 is not likely to be responsible for the association 

observed in this study.  rs7092615 is also unlikely to be regulatory, since there are no predicted 

transcription factor binding sites in the small LD block containing this SNP.  Nonetheless, we 

cannot discard the possibility that this variant may still play an important functional role.  For 

instance, a recent study showed that obesity-associated non-coding sequences within the FTO 

gene are functionally connected, at megabase distances, with the homeobox gene IRX3 [41].  The 

obesity-associated FTO region does not affect FTO expression, but actually interacts directly 

with the promoters of IRX3 to affect IRX3 expression in the human brain [41].  Currently, we 

have no evidence to support that rs7092615 plays such a role in the regulation of any obesity-

related gene.  For this reason, the association in this study must be interpreted with caution. 

 We also observed an association with rs9961691 (C/G) in Asian subjects.  rs9961691 is 

unique among our top 4 SNP candidates because its minor allele appears to decrease BMI, while 

the ancestral allele appears to increase it.  The MAF of 20.3% for this variant in our Asian 

population approximates what HapMap reports for its Chinese Han population (CHB; 

MAF=17.9%).  Regional association plots revealed a moderate association signal for variants 



Salinas, Y.D. MPH Thesis 19/36 
!

flanking rs7092615 (Figure 5).  Of these variants, the most strongly associated with BMI were 

rs7231159 and rs9950004 (Table 5), which are in high LD (R2 > 0.9) with rs7092615.  LD plots 

for this region in the HapMap CHB population (data not shown) revealed a pattern of inheritance 

that closely resembles the association pattern seen in Figure 5, providing strong supporting 

evidence for our findings.   

 To our knowledge, this study is the first to report the association of rs9961691 with BMI.  

The gene closest to rs9961691 is GATA6, which encodes a zinc finger transcription factor that is 

involved in terminal differentiation and cell proliferation [42], and whose function has not been 

directly linked to obesity.  However, we hypothesize that rs9961691 may be a regulatory SNP, as 

it lies in a PAX5 binding site.  PAX5 is a paired box transcription factor that is a key player in 

early development [43].  The PAX5 gene has been previously associated with BMI and total fat 

mass in previous GWAS [44-46], and studies in the PAX5 knockout mouse have suggested an 

important role for PAX5 in driving the phenotypic outcomes of diet-induced obesity, in terms of 

adipose burden, skeletal quality, and the balance of the immune system [47].  Though the 

association with rs9961691 in our study did not reach genome-wide significance, the biologically 

relevant role of PAX5 in the pathogenesis of obesity warrants further investigation in this 

genomic locus.  

 Our study detected a marginal association with the FTO obesity-associated variant 

rs9939609 only in Caucasian subjects.   Though not genome-wide significant, the rs9939609 

association in our Caucasian population is consistent with prior evidence from over 15 GWAS 

conducted in populations of European ancestry [12].  In our study, individuals with one copy of 

the minor “A” allele were, on average, 0.279 BMI units heavier than those homozygous for the 

ancestral “T” allele.   

 The positive relationship between rs9939609 and BMI was not generalizable to subjects 

of other ethnic groups.  In Asians, our data suggests that this SNP may have a reverse effect on 
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BMI, though this effect was not statistically significant (Table 7).  This finding adds to the set of 

inconsistent findings reported in other Asian populations [12]; earlier GWAS in Asian 

populations reported that FTO variants did not have a significant effect on obesity-related traits, 

while at least two newer studies have yielded positive findings [48, 49].   

 We did not observe an effect of FTO on the BMI of either African Americans or 

Hispanics.  In African Americans, this is consistent with data from three previous GWAS [50-

52].   However, our null finding in Hispanics contradicts the evidence available from previous 

candidate-gene studies of rs9939609 [10].   

 The conflicting results for Asians and Hispanics could be due to a number of reasons, 

including differential adjustment for confounders, varying degrees of statistical power across 

studies, and inherent differences in the study populations that may influence BMI and obesity 

risk.  Because the MAFs for rs9939609 in our four MESA ethnic groups approximate those 

reported for Caucasian, Hispanic, Asian, and African American populations in the HapMap 

project (Table 7), we have evidence to suggest that our MESA population is representative of 

these ethnic populations. Therefore, we hypothesized that the null findings in Asians and 

Hispanics, as well as the relatively weak association signal in Caucasian subjects, may be due to 

low statistical power in our study.  Ad hoc power calculations revealed that in Asians, a variant 

like rs9939609 with a MAF of 12.9% needed to have an effect size of 1.60 kg/m2 to be detected 

in our study with 80% power.  In Hispanics, a variant with a MAF of 30.9% needed to have an 

effect size of 1.40 kg/m2 to be detected in our study with 80% power.  In Caucasians, a variant 

with a MAF of 40.8% needed to have an effect size of 0.95 kg/m2 to be detected with 80% 

power.  Therefore, our study was underpowered to detect the effects of FTO rs9939609. 

 As observed for FTO, the associations detected between the top SNP candidate in each 

ethnic group (Table 6) and BMI were ethnic-specific.  To discard the possibility that these 

findings were due to differences in LD patterns across ethnic groups, we examined the ± 500kb 
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flanking regions of each of these SNPs across all four ethnic groups (data not shown). Regional 

association plots confirmed that no variants in the vicinity of these top SNP candidates were 

associated with BMI in other ethnic groups.   

 Our study is not the first to suggest the ethnic specificity of genetic associations with 

obesity-related traits.  For instance, variants in the intronic region of the SIM1 gene have been 

strongly associated with BMI and obesity risk in Pima Indians, but not in a French European 

population [53].  Similarly, a functional coding variant (W64R) in the ADRB3 gene was 

associated with BMI in East Asian subjects but not in European subjects in a large meta-analysis 

of 44,833 subjects [54].  The existence of ethnic-specific genetic associations with obesity 

suggests that parts of a common obesity pathway may be activated differently across ethnic 

groups. 

 Our study is one of the first multi-ethnic GWAS attempting to compare and contrast 

findings across ethnic groups.  Conducting ethnic-specific genome-wide scans allowed us to 

identify four novel associations with BMI.  Stratifying the MESA population by race/ethnicity, 

however, also significantly limited our statistical power to detect variants with small effect sizes.  

Low statistical power may explain why only one of the associations in our study reached 

genome-wide significance, why we detected fewer and weaker associations in Asian subjects, 

and why we were unable to replicate associations with previously identified candidate genes for 

obesity such as MC4R and BDNF.   

 Besides low power, our study had other limitations.  First, we acknowledge that BMI is 

not the most precise measure of obesity [55].  Obesity indicates an excess of adipose tissue, not 

an excess of body weight.  Future analyses will include measures of waist-to-hip ratio, which has 

been shown to more adequately represent excess body fat [56].  Second, the older age of the 

MESA participants may have limited our ability to detect genetic associations with BMI.  The 

distillation of the genetic component of some complex traits is easier in children, where the 
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relative environmental exposure time is far less [12].  It follows that studies focusing on FTO 

obesity-associated variants have suggested that most of the effect of genetic variants on BMI 

gain occurs during childhood, adolescence and young adulthood [57-59].   In ad hoc analyses for 

FTO rs9939609, however, our study found that age did not act as an effect modifier of the 

association between FTO and BMI in our Caucasian population.  Nevertheless, it is possible that 

some other existing associations with BMI were masked in our study population.    

 Notwithstanding these limitations, our study was able to identify four novel ethnic-

specific associations with BMI:  rs12253976 in locus 10p15.1, rs6866721 in locus 5q23.1, 

rs7092615 in locus 10p11.23, and rs9961691 in locus 18q11.2.   The average per-allele effects of 

these variants were greater than those reported for all previously identified BMI-associated 

variants, including those in the FTO gene, even after adjustment for various demographic and 

environmental determinants of BMI.  The validity and functional significance of these novel 

associations needs further investigation.  If replicated in larger multi-ethnic cohorts and meta-

analyses, these top SNP candidates may be useful in improving current obesity-risk prediction 

models and may even encourage the derivation of ethnic-specific risk models for use in 

culturally tailored obesity interventions.   
!
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Figure 1. Quantile-Quantile p-value plots, pre- and post- adjustment for population stratification  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a p-values adjusted only for ethnic-specific model covariates  
b p-values adjusted for ethnic-specific model covariates and for top two principal components  



Salinas, Y.D. MPH Thesis 35/36 

Figure 2.  Regional association plot for top SNP rs12253976 in Hispanic subjects 
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Figure 3.  Regional association plot for top SNP rs6866721 in Caucasian subjects 
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!
!
Figure 4.  Regional Association plot for top SNP rs7092615 in African American subjects 
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Figure 5.  Regional Association plot for top SNP rs9961691 in Asian subjects 
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