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a b s t r a c t

We discuss a new mechanism of microwave absorption in s- and
d-wave superconductors, which arises in the presence of a dc
supercurrent in the system. It produces a contribution to the ac
conductivity that is proportional to the inelastic quasiparticle re-
laxation time. This contribution also determines the supercurrent
dependence of the conductivity. It may significantly exceed the
conventional contribution because in typical superconductors the
inelastic relaxation time is several orders of magnitude longer
than the elastic one. We show that the aforementioned contribu-
tion to the conductivity may be expressed in terms of the single
particle density of states in superconductors in the presence
of a dc supercurrent. Our results may enable determination of
the inelastic relaxation time in superconductors from microwave
absorption measurements.

Published by Elsevier Inc.

1. Introduction

In this article we discuss the theory of microwave absorption in superconductors. In linear
response to the microwave field E(t) = Eω cos(ωt), and in the limit of low frequencies ω, the current
density in a superconductor may be written as

j =
e
m

Ns ps + σE. (1)
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Here Ns is the superfluid density, e and m are, respectively, the charge and the mass of the electron,
and the superfluid momentum is defined by ps =

h̄
2∇χ −

e
cA, with χ being the phase of the order

parameter, and A the vector potential. The second term in Eq. (1), characterized by the conductivity
σ , represents the dissipative part of the current.

The microwave absorption coefficient is controlled by the conductivity σ . The value of σ is
determined by the quasiparticle scattering processes in the superconductor, which are generally
characterized by two relaxation times: elastic, τel, and inelastic, τin, ones. In a typical situation, which
we assume below, τin ≫ τel. The theory of transport phenomena in conventional superconductors
was developed long ago, see for example [1–5]. The conventional result is that the conductivity,
and consequently the microwave absorption coefficient, are proportional to the elastic relaxation
time τel. For example, at temperatures T near the critical temperature Tc , the conductivity of a
superconductor is close to the normal metal Drude conductivity σD = e2νnD. Here D = v2

F τel/3 is
the diffusion coefficient, νn is the normal metal density of states at the Fermi level, and vF is the
Fermi velocity.

In this article we discuss another contribution to the conductivity, σDB, that is proportional
to the inelastic relaxation time τin. Since τin ≫ τel it may significantly exceed the conventional
contribution. This contribution to the linear conductivity exists only in the presence of a dc
supercurrent. Furthermore, this contribution is strongly anisotropic and depends on the relative
orientation between Eω and the supercurrent. Even in situations where this contribution is small in
comparison to the conventional result, it determines the dependence of the conductivity on both the
magnitude and direction of the dc supercurrent. This enables determination of τin from microwave
absorption measurements.

The physical mechanism of this contribution to the conductivity is similar to the Debye mech-
anism of microwave absorption in gases [6], Mandelstam–Leontovich mechanism of the second
viscosity in liquids [7], and Pollak–Geballe mechanism of microwave absorption in the hopping
conductivity regime [8]. It arises from the motion of energy levels of the system in the presence of
the external field. As a result of this motion the system deviates from thermal equilibrium. In this
case the equilibration is caused by energy relaxation processes and the corresponding contribution
to the conductivity is proportional to the energy relaxation time.

The physical origin of this mechanism in superconductors can be qualitatively understood as
follows. Let us separate the superfluid momentum ps(t) = p̄s + δps(t) into a dc part p̄s and an ac
part δps(t), whose time evolution is determined by the microwave field

δṗs(t) = eE(t). (2)

At low frequencies, ω ≪ τ−1
el , the quasiparticle distribution function n(ϵ, t) depends only on the

energy ϵ and time, while the density of states per unit energy, ν(ϵ, ps), depends on the instantaneous
value of the superfluid momentum ps. As the value of ps changes with time, individual quasiparticle
levels move in energy space. At finite temperature the quasiparticles occupying these levels
travel in energy space as well. This motion creates a non-equilibrium quasiparticle distribution,
which relaxes due to inelastic scattering causing entropy production and energy dissipation. The
corresponding contribution to the conductivity is proportional to τin. The reason why the Debye
contribution to the linear conductivity exists only at p̄s ̸= 0 is the following. Being invariant under
time reversal the density of states must be an even function of the condensate momentum, and
thus can depend only on |ps|

2 in an isotropic system. As a result, in the linear in E approximation
ν(ϵ) changes in time proportionally to δps(t) · p̄s.

2. Relation between the Debye contribution to the conductivity and the ps-dependence of the
density of states

In this section we show that the Debye contribution to the conductivity can be expressed in
terms of the quasiparticle density of states in the presence of a supercurrent.

Below we assume the condensate momentum ps to be spatially uniform. This situation is realized
in superconducting films with thickness smaller than the penetration length of the magnetic field
λH. We discuss applicability of our results to the case of bulk samples in Section 4. We also assume
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that the frequency of the microwave radiation satisfies the condition ω ≪ ∆, where ∆ is the pairing
gap in the superconductor. In this regime we can describe the quasiparticles by an instantaneous
energy spectrum, which depends on the value of ps(t). To describe the time evolution of the
instantaneous energy levels we note that the number of levels in the system is conserved. Therefore
the density of states ν(ϵ, ps(t)) is subject to the continuity equation in energy space

∂tν(ϵ, ps) +
∂[vν(ϵ, ps)ν(ϵ, ps)]

∂ϵ
= 0, (3)

where vν(ϵ, ps) is the level ‘‘velocity’’ in energy space. Using the condensate acceleration equation
(2) the latter can be expressed in the form

vν(ϵ, ps) = eE · V (ϵ, ps) (4)

where

V (ϵ, ps) = −
1

ν(ϵ, ps)

∫ ϵ

0
dϵ̃

∂ν(ϵ̃, ps)
∂ps

(5)

characterizes the sensitivity of the energy levels to changes of ps.
In the regime ω, τ−1

in ≪ τ−1
el the quasiparticle distribution function n(ϵ, t), which describes

the occupancy of the quasiparticle energy levels, depends only on the energy. In the absence of
inelastic scattering its time evolution due to the spectral flow is described by the continuity equation
∂t (νn)+ ∂ϵ(vννn) = 0. Combining this with the continuity equation (3) for ν(ϵ, ps) and allowing for
inelastic collisions we obtain the kinetic equation

∂tn(ϵ, t) + eE(t) · V (ϵ, ps) ∂ϵn(ϵ, t) = Iin{n}, (6)

where Iin{n} is the collision integral describing inelastic scattering of quasiparticles.
The power W of microwave radiation absorbed per unit volume of the superconductor may be

obtained by evaluating the rate of work performed by the microwave field on the quasiparticles,
which is given by

W =

∫
∞

0
dϵ

⟨
ν(ϵ, ps(t))n(ϵ, t)eE(t) · V (ϵ, ps(t))

⟩
. (7)

Here ⟨. . .⟩ denotes time averaging. Below we characterize the absorption power by the dissipative
part of the conductivity σDB defined by

σDB

2
E2

ω = W . (8)

In the relaxation time approximation the scattering integral describing the inelastic quasiparticle
scattering can be written as

Iin{n} = −
δn(ϵ, t)

τin
, (9)

where δn(ϵ) = n(ϵ) − nF(ϵ), with nF(ϵ) being the Fermi function, is the nonequilibrium part of the
quasiparticle distribution.

Using the condensate acceleration equation (2) we obtain in the Fourier representation

δn(ϵ) = −
eE · V (ϵ, p̄s)
−iω + τ−1

in

dnF(ϵ)
dϵ

.

Substituting this expression into Eq. (7) we obtain the following expression for the real part of
Debye contribution to the ac conductivity

σDB

σD
=

3τin
4τel

1[
1 + (ωτin)

2] ∫
∞

0

dϵ
T

ν(ϵ, p̄s)V 2(ϵ, p̄s)
νnv

2
F cosh

2(ϵ/2T )
. (10)

Eq. (10) expresses the Debye contribution to the conductivity in terms of the density of states
in a current-carrying superconductor. Both the kinetic scheme based on Eqs. (5), (6) and (7), and
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Eq. (10) for the Debye contribution to the conductivity are general: they apply to superconductors
with arbitrary symmetry of the order parameter. They also account for broadening of the mean field
features of the density of states, which could be due to non-uniformity of the interaction constant,
inelastic scattering and quantum and classical fluctuations of the order parameter.

It follows from Eq. (10) that energy relaxation processes affect the electric conductivity. This
happens because in the presence of dc-supercurrent the energy of a quasiparticle state depends on
the current carried by it. To elucidate this issue in Section 2.1 we rederive Eq. (10) by obtaining an
explicit expression for the electric current. We focus on a particular case of clean superconductors,
where the elastic mean free path is larger than the superconducting coherence length.

2.1. Derivation of Eq. (10) for clean superconductors

In clean superconductors where the mean free path exceeds the superconducting coherence
length the nonequilibrium state of the superconductor may be described by the quasiparticle
distribution function np. In this case the current density is expressed in terms of the quasiparticle
distribution function as

j = eN
ps

m
+ 2e

∫
d3p
(2π )3

v np. (11)

Here N is the electron density and v = p/m is the band velocity of the electron with quasimomen-
tum p.

The time evolution of the distribution function is described by the Boltzmann kinetic equation,
which in the spatially uniform case takes a simple form

∂tnp = Iel + Iin. (12)

Here Iel and Iin are the collision integrals describing, correspondingly, the elastic and inelastic
scattering processes.

The reason the conductivity is affected by the inelastic collisions is that in the presence of
supercurrent the quasiparticle energy spectrum,

ϵ̃p(ps) =

√
|∆(p)|2 + ξ 2

p + ps · v, (13)

contains an odd-in-momentum part described by the second term above. Since we are interested
in the regime τel ≪ τin, ωτel ≪ 1 the quasiparticle distribution function depends only on the
quasiparticle energy np = n

(
ϵ̃p(ps), t

)
. Substituting this form into Eq. (11), noting that v =

d
dps

ϵ̃p(ps),
and using the resolution of identity 1 =

∫
∞

0 dϵδ[ϵ − ϵ̃p(ps)] we can express the current density as

j = eN
ps

m
+ e

∫
∞

0
dϵ n(ϵ, t)ν(ϵ, ps)V (ϵ, ps), (14)

where

ν(ϵ, ps) = 2
∫

d3p
(2π h̄)3

δ[ϵ − ϵ̃p(ps)]. (15)

is the density of states, and

V (ϵ, ps) =
1

ν[ϵ, ps]

∫
d3p

(2π h̄)3
δ[ϵ − ϵ̃p(ps)]

d
dps

ϵ̃p[ps]. (16)

Writing the δ-function in the integrand above as a derivative of the step-function, and integrating by
parts it is easy to show that Eq. (16) reduces to Eq. (5). Thus Eq. (14) expresses the current density
in terms of the energy-dependent distribution function n(ϵ, t) and ps-dependence of the density of
states.

Finally, in order to obtain the time evolution equation for n(ϵ, t) we substitute the distribution
function in the form np = n

(
ϵ̃p(ps), t

)
into Eq. (12), multiply it by δ[ϵ − ϵ̃p(ps)] and integrate over

d3p
(2π )3

. Then, using the fact that ∂tnp = ∂tn
(
ϵ̃p, t

)
+ v · ṗs ∂ϵ̃pn

(
ϵ̃p, t

)
, and noting that the elastic
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collision integral is nullified by an arbitrary distribution function that depends only on ϵ̃p(ps) we
reproduce Eq. (6). Linearizing it and substituting the result for δn into Eq. (11) we get Eq. (10).

3. Microwave conductivity in s- and d-wave superconductors

In this section we use Eq. (10) to obtain expressions for the Debye contribution to the con-
ductivity of s- and d- superconductors. We focus on the case of small values of the supercurrent.
We will show that in this limit the ps-dependence of σDB(ps) is stronger than quadratic, that is
σDB(ps)/p2s → ∞ at ps → 0. Therefore we neglect the ps-dependence of the order parameter, as its
contribution to σDB is quadratic in ps. In Section 3.1 we start with the regime of temperatures close
to the critical temperature, |T − Tc| ≪ Tc. In Section 3.2 we consider the low temperature regime,
T ≪ Tc.

3.1. Regime of temperatures near the critical temperature

At |T − Tc| ≪ Tc the density of states is affected by the condensate momentum in a narrow
energy window |ϵ − ∆| ≪ T . Since the energy transfer in a typical inelastic collision is of order T
the relaxation time approximation for the inelastic collision integral Eq. (9) is asymptotically exact,
while the relaxation time τin(T ) depends only on the temperature T .

3.1.1. s-wave superconductors
We start with a discussion of the Debye contribution to the ac conductivity of s-wave super-

conductors, see Ref. [9]. For an isotropic spectrum, which we assume below, the vector V (ϵ, ps) in
Eq. (5) is parallel to ps. In this case only the longitudinal conductivity, which corresponds to Eω ∥ p̄s,
is affected by inelastic relaxation.

The density of states is most strongly affected by the supercurrent at energies near the gap ∆.
Namely at p̄s ̸= 0 the peak in the BCS density of states, ν(ϵ, 0) → νn

√
∆

2(ϵ−∆) at ϵ → ∆, is broadened.

The width of the broadening and the shape of the peak depend on the magnitude of the condensate
momentum p̄s and the strength of disorder.

Ballistic regime.– In the regime vFp̄sτ 2
el∆ ≫ 1, (which can be realized only in clean superconduc-

tors, ∆τel ≫ 1) the density of states, ν(ϵ, ps), can be found using the standard expression Eq. (13)
for the quasiparticle spectrum. In the relevant energy interval |ϵ − ∆| ≪ ∆ one obtains

ν(ϵ, ps)
νn

=

√
∆

2vFps

[
θ (z + 1)

√
z + 1 − θ (z − 1)

√
z − 1

]
, (17)

where z = (ϵ − ∆)/vFps, and θ (z) is the Heavyside step-function. The width of the broadening of
the BCS peak is δϵ ∼ vFp̄s. Using Eqs. (5) and (10) we obtain for the Debye contribution to the
conductivity in the ballistic regime

σDB

σD
= Ib

τin

τel
[
1 + (ωτin)2

] ∆

T

√
vFp̄s
∆

(18)

where Ib =
8
45 .

Eq. (17) for the density of states is valid as long as the broadening due to elastic scattering τ−1
el (ϵ)

is smaller than the relevant energy interval in the problem |ϵ − ∆| ≲ vFp̄s ≪ ∆. Here τel(ϵ) is the
energy-dependent quasiparticle mean free time, which for |ϵ − ∆| ≪ ∆ is given by the standard
expression

τ−1
el (ϵ) ≈ τ−1

el

√
2(ϵ − ∆)

∆
(19)

(see for example [10]). Therefore the regime of ballistic motion of quasiparticles participating in the
Debye mechanism of microwave absorption is realized at relatively large supercurrent densities,
where

vFp̄sτ 2
el∆ ≫ 1. (20)
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Diffusive regime.– In the opposite limit vFp̄sτ 2
el∆ ≪ 1 the quasiparticles participating in the

Debye absorption mechanism move diffusively, and disorder may no longer be ignored.1 In this case
the Debye contribution to the conductivity can be studied using the standard theoretical methods
developed in the theory of disordered superconductors [3,11,12]. The quasiparticle density of states
can be written as

ν(ϵ) = νnℜ

⟨
ϵ̄ + v · ps√

(ϵ̄ + v · ps)2 − |∆̄(k)|2

⟩
(21)

where ⟨. . .⟩ denotes averaging over the Fermi surface, and ϵ̄ and ∆̄(k) are the disorder-renormalized
energy and order parameter respectively. For example, in the case of a white noise disorder in the
Born approximation they are given by Abrikosov et al. [12] and Maki [11]

ϵ̄ = ϵ +
i

2τel

⟨
ϵ̄ + v · ps√

(ϵ̄ + v · ps)2 − |∆̄(k)|2

⟩
(22a)

∆̄(k) = ∆(k) +
i

2τel

⟨
∆̄(k)√

(ϵ̄ + v · ps)2 − |∆̄(k)|2

⟩
. (22b)

We have shown in Ref. [9] that for isotropic s-wave superconductors the density of states can be
expressed as

ν(ϵ, p̄s)
νn

=
1

√
2
ℑy−1, (23)

where y is determined by the following equation

y
(
y2 + w

)
+

√
2ζ 2

3γ
= 0. (24)

Here ζ = vFp̄s/∆, γ = (τel∆)−1, and w = (ϵ − ∆)/∆. The solutions of this equation can be written
in the scaling form y =

ζ2/3

γ 1/3 ỹ
(

wγ 2/3

ζ4/3

)
. Therefore in this case the width of the broadening of the BCS

peak is δϵ(p̄s) ∼
(
∆D2p̄4s

)1/3. The explicit form of ỹ
(

wγ 2/3

ζ4/3

)
is given by the Cardano formula, (See

Eq. (S.17) in Ref. [9]). Substituting this form into Eq. (23), and using Eqs. (5) and (10), we obtain

σDB

σD
= Id

τin

τel

∆

T
τel

(
∆D2p̄4s

)1/3[
1 + (ωτin)

2] , (25)

where Id ≈ 0.0549. This expression is consistent with the result obtained in Ref. [4] by a different
method.

The nonanalytic dependences of σDB on p̄s in Eqs. (18) and (25) are related to the divergence
of the BCS density of states at ϵ = ∆. In real superconductors this divergence is smeared
by pairbreaking processes and non-uniformity of the electron interaction constant, which are
characterized by a broadening energy scale Γ ≪ |∆|. Consequently, at δϵ(p̄s) ≪ Γ the
p̄s-dependence of the conductivity should become analytic, σDB = c p̄2s . The magnitude of the
coefficient c can be estimated by matching this expression to Eqs. (18) and (25) at the values of p̄s
determined by the condition that the energy broadening of the BCS singularity, δϵ(p̄s) be of order
Γ . This yields

σDB

σD
∼

(
vFp̄s
Γ

)2
∆

T
τin

τel
[
1 + (ωτin)2

] {√
Γ
∆

for vFp̄sτ 2
el∆ ≫ 1,

τ 2
el

√
∆Γ 3 for vFp̄sτ 2

el∆ ≪ 1.
(26)

1 It is worth noting that the diffusive regime can be realized in both clean, ∆τel ≪ 1, and dirty ∆τel ≫ 1,
superconductors.
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3.1.2. d-wave superconductors
Let us now apply the general expression (10) to study the Debye contribution to the conductivity

of d-wave superconductors. The order parameter in d-wave superconductors ∆(p) changes its sign
upon rotation of the momentum by π/2 in the xy plane, and can be modeled by the form

∆(p) = ∆0(sin2 pxa − cos2 pya), (27)

where ∆0(T , τel) is the gap maximum at the antinode, which generally depends on temperature and
τel. In this article we focus on the limit ∆0τel ≫ 1. In this case the density of states in the presence
of supercurrent may be evaluated with the aid of Eqs. (21) and (22). The integral in Eq. (10) for the
Debye contribution to the conductivity is dominated by a narrow energy interval |ϵ − ∆0| ≪ ∆0,
which corresponds to quasiparticles with momenta near the antinodes.

Let us begin with the clean limit, τel → ∞. In this case the density of states may be evaluated
using Eq. (15). For |ϵ − ∆0| ≪ ∆0 we obtain

ν(ϵ, ps) =
νn

π

∑
i

ln
∆0

|(ϵ − ∆0) + vF(ni · ps)|
, (28)

where the summation is performed over all antinodal lines and ni is the unit vector in the direction
of the ith antinodal line.

The energy level sensitivity V (ϵ) in the clean limit may be determined from Eq. (16), and is given
by

V (ϵ) = vF

∑
i(ni · p̂s)ni ln

(
∆0

|(ϵ−∆0)+vF(ni·ps)|

)
∑

i ln
∆0

|(ϵ−∆0)+vF(ni·ps)|

. (29)

Substituting Eqs. (28), and (29) into Eq. (10) and assuming T ≫ vFp̄s within logarithmic accuracy
we obtain the following expression for the Debye contribution to the conductivity,

σDB

σD
=

3
π

τin

τel

1[
1 + (ωτin)2

] (
vFp̄s
T

)
ln

(
∆0

vFp̄s

)
. (30)

To derive this result we neglected the contributions of quasiparticles near the nodal lines to σDB
because they are small in the ratio vF p̄s/∆ as compared to that in Eq. (30).

Eqs. (28) and (30) are valid provided vFp̄s > τ−1
el . In the presence of disorder the non-analyticity

of the density of states as a function of ϵ, Eq. (28), is smeared in the interval of energies of order
τ−1
el . In the limit of small supercurrent, vFp̄s ≪ τ−1

el , the Debye contribution to the conductivity is
expected to be analytic in p̄s, namely σDB ∼ ap̄2s . The value of the coefficient a can be estimated by
matching this expression with Eq. (30) at vFp̄s ∼ τ−1

el . This yields

σDB

σD
∼

τin

T
(vFp̄s)2[

1 + (ωτin)2
] . (31)

In the Born approximation this result can be obtained from Eqs. (21) and (22).

3.2. Low temperature regime, T ≪ ∆0

Low temperature quasiparticle kinetics in s- and d-wave superconductors have common features.
In both cases the low energy density of states is suppressed. Therefore, in both cases the quasiparti-
cle concentration decreases with temperature more rapidly than in normal metals. Consequently the
electron–electron scattering rate is suppressed and the quasiparticle energy relaxation is controlled
by electron–phonon scattering.

Furthermore, one needs to distinguish between two different types of inelastic scattering pro-
cesses in superconductors. The quasiparticle–phonon relaxation processes that conserve the number
of quasiparticles are characterized by the rate 1/τ (st)

in (T ), which is independent of quasiparticle
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concentration.2 The second type of inelastic relaxation processes corresponds to recombination,
which changes the total number of quasiparticles. The rate 1/τr(T ) of such processes is proportional
to the quasiparticle concentration x(T ). Therefore at low temperatures it becomes much smaller
than 1/τ (st)

in (T );

τr(T ) ∝
τ
(0)
r (T )
x(T )

≫ τ
(st)
in (T ). (32)

The Debye contribution to the dissipative kinetic coefficients is proportional to the longest
relaxation time in a system (see for example [7]), which in our case is τr(T ). On the other hand σDB
is also proportional to the density of thermal quasiparticles. We show below that, as a consequence,
the Debye contribution to the conductivity becomes independent of the quasiparticle concentration
x(T ). As a result, its magnitude in the low temperature regime is roughly speaking of the same order
as that near Tc.

In order to obtain an estimate for σDB in this regime we note that since the recombination time is
the longest time scale in the problem, τr ≫ τ

(st)
in , at relatively short time scales of order of τ

(st)
in the

number of quasiparticles is approximately conserved. As a result, at such time scales the system
of quasiparticles reaches a quasi-equilibrium form which is characterized by a nonzero chemical
potential,

n(ϵ) =
1

1 + exp( ϵ−µ

T )
, (33)

while in thermal equilibrium µ = 0. To find the value of µ in the presence of microwave radiation
one has to integrate Eq. (6) over ϵ bearing in mind that the relaxation processes conserve the
number of quasiparticles,

∫
Istdϵ = 0. Doing so, we get the following estimate for the chemical

potential

µ ∼
τr

nF(ϵ∗)

∫
eE(t) · V (ϵ, ps)

dnF(ϵ)
dϵ

dϵ. (34)

Here ϵ∗
= ∆ in the case of s-wave superconductors, and ϵ∗

= 0 for the case of d-wave
superconductors. To get σDB one should substitute δn(ϵ) ∼ µdnF(ϵ)/dϵ into Eqs. (7) and (8). Since
in this regime the relaxation time approximation for the recombination collision integral is only
applicable to accuracy within a factor of order unity, both Eq. (34) and subsequent estimates for
σDB are valid only with the same accuracy.

3.2.1. s-wave superconductors
In s-wave superconductors the dimensionless quasiparticle concentration xs(T ) defined by

xs(T ) = (νn∆)−1
∫

∞

0
dϵν(ϵ)nF(ϵ) ∼

√
T
∆

exp(−∆/T ) (35)

is exponentially small. Consequently, the conventional contribution to the microwave absorption
coefficient is exponentially small as well. On the other hand, since the recombination rate in Eq. (32)
is inversely proportional to the quasiparticle concentration,3 in the low frequency limit, ωτr ≪ 1,
the exponentially small factor exp(−∆/T ) is canceled from the expression for the conductivity.
Below we illustrate this fact in the diffusive regime, and at T ≪ δϵ(p̄s) ≪ ∆. In this case the
magnitude of the level sensitivity in the energy interval |ϵ − ∆| ≲ T is V ∼

1
p̄s

δϵ ∼
(
∆D2p̄s

)1/3.
Thus, we get

σDB

σD
∼

τ
(0)
r

τel

√
∆

T
τel

(
∆D2p̄4s

)1/3
. (36)

2 We note that in d-wave superconductors the value of τ
(st)
in (T ) ∼ Θ2

D/T 3 is of the same order as that in normal metals.
3 The parameter τ

(0)
r in Eq. (32) may be estimated as 1/τ (0)

r ∼ ∆3/θ2
D , where ΘD is the Debye temperature.
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We note that the value of the conductivity at zero superfluid momentum may be estimated
as σ (p̄s = 0) ∼ xs(T )σD, and is exponentially small at T ≪ ∆. Thus, in this regime the
Debye contribution to the conductivity becomes exponentially enhanced at low temperatures in
comparison to the conventional contribution.

3.2.2. d-wave superconductors
The low energy density of states in d-wave superconductors is dominated by momenta in the

vicinity of the nodal lines, and in the clean limit τel → ∞ is given by Volovik [13]

ν(ϵ, ps) = νn

∑
i

|ϵ + vF(mi · ps)|
∆0

, (37)

where mi denotes the unit vector pointing in the direction of the ith nodal line. Using Eq. (5) we
find that at ϵ ≪ ∆0 the level sensitivity V (ϵ) is given by

V (ϵ) = vF

∑
i mi(mi · p̂s)|ϵ + vF(mi · ps)|∑

i |ϵ + vF(mi · ps)|
. (38)

Substituting Eqs. (37) and (38) into Eq. (10) we find

σDB

σD
∼

τr(T )
τel

1[
1 + (ωτr(T ))2

]
⎧⎨⎩

(
vF p̄s
∆0

)2
∆0
T ln

(
T

vF p̄s

)
for T ≫ vFp̄s,

T2
vF p̄s∆0

for T ≪ vFp̄s.
(39)

The recombination time here may be estimated using Eq. (32) by noting that in d-wave supercon-
ductors the dimensionless quasiparticle concentration decreases only as a power law in T

xd(T ) = (νnT )−1
∫

∞

0
dϵν(ϵ)nF(ϵ) ∼

T
∆0

, (40)

while τ
(0)
r in Eq. (32) may be estimated as τ

(0)
r ∼ τst.

In Eqs. (37), (38), and (39) we neglected impurity scattering, which broadens the quasiparticle
energy levels. Consequently the result (39) is valid provided vFp̄s, T ≫ Γel, where Γel is the
characteristic broadening scale of low energy quasiparticle levels. The value of Γel is not universal,
and depends on the details of the scattering potential. For example, for weak impurities Γel ∼

∆2
0τel exp(−∆0τel) [10,14], while in the case of strong impurities whose scattering cross-section

is close to the unitary limit Γel ∼ ∆0/
√

∆0τel, see Refs. [15–17]. In order to estimate σDB in the
presence of disorder we may evaluate the density of states using Eqs. (21) by setting ϵ̃ → ϵ + iΓel.
At relatively large energies, Γel < ϵ < ∆0, the density of states is practically unaffected by disorder
and superfluid momentum,

ν(ϵ > Γel, ps) ∼ νn
ϵ

∆0
. (41)

At lower energies, ϵ ≲ Γel it becomes independent of the energy. In the absence of superfluid current
it may be estimated as

ν(ϵ < Γel, ps = 0) ∼ νn
Γel

∆0
, (42)

while the correction to due to the presence of supercurrent, δν(ϵ, ps) = ν(ϵ, ps) − ν(ϵ, 0) may be
estimated at vFps ≪ Γel as

δν(ϵ < Γel, ps)
ν(ϵ < Γel, ps = 0)

∼

(
vFps
Γel

)2

. (43)

Using Eqs. (41), (42), and (43) we can estimate the level sensitivity V (ϵ, ps) in Eq. (5) as

V (ϵ, ps) ∼ vF

{
ϵ

vFps
Γ 2
el

, for ϵ < Γel

vFps
ϵ

, for ϵ > Γel.
(44)
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Using these estimates, in the temperature interval vFp̄s < Γel < T we get

σDB

σD
∼

τr

τel

1[
1 + (ωτr)2

] ∆0

T

(
vFp̄s
∆0

)2

ln
(

T
Γel

)
. (45)

We note that at ∆0 ≫ T ≫ Γel, the conductivity at zero superfluid momentum, σ (p̄s = 0) ∼ σD, is
of order the Drude conductivity. Lee [14] and Sun and Maki [18].

Finally, in the regime T , vFp̄s ≪ Γel using Eqs. (42) and (43) we get

σDB

σD
∼

τr

τel

1[
1 + (ωτr)2

] Γel

∆0

(
T
Γel

)2 (
vFp̄s
Γel

)2

(46)

We note that in this temperature interval σ (p̄s = 0) ∼ σD/∆0τel ≪ σD Fradkin [19] and Lee [14].

4. Discussion

We have shown that supercurrent dependence of the microwave conductivity of superconduc-
tors is proportional to the inelastic relaxation time. Therefore in the presence of supercurrent
the absorption coefficient can be larger than the conventional contribution, which determines the
conductivity at ps = 0 and is generally proportional to the elastic mean free time. We note
that such mechanism should exist even in the absence of dc supercurrent in superconductors
with broken time-reversal symmetry. For example in topological superconductors with px + ipy
structure of the order parameter where breaking of time reversal symmetry leads to the existence
of edge quasiparticle states [20–22]. In time-reversal symmetric superconductors in the absence
of dc supercurrent, p̄s = 0, the Debye mechanism of microwave absorption manifests itself in the
anomalously strong non-linear microwave absorption.

The situation with a spatially uniform supercurrent density and electric field, which was con-
sidered above, can be realized in sufficiently thin superconducting films. In bulk superconductors
in the presence of a magnetic field H < Hc1 that is parallel to the surface p̄s is nonzero only within
the London penetration depth λH near the surface. In this case the situation is different for s- and
d-wave superconductors.

In the s-wave case the mechanism of microwave absorption discussed above will still apply to
bulk samples and the presented above results still hold up to a numerical factor of order unity. The
reason for this is that the quasiparticles that give the main contribution to microwave absorption
have energies that lie in a narrow interval near the gap, |ϵ − ∆| ≲ δϵ, where δϵ = vFp̄s in the
ballistic regime and δϵ =

(
∆D2p̄4s

)1/3 in the diffusive regime. Roughly half of these quasiparticles
have energies below ∆ and therefore they are trapped near the surface within a distance of order λH.

In bulk samples of gapless d-wave superconductors in the presence of a magnetic field parallel to
the surface the situation is different. The reason is that the quasiparticles in the relevant energy in-
terval can diffuse into the bulk. Therefore in this case the inelastic relaxation time in corresponding
formulas for d-wave superconductors should be substituted by the minimum between the inelastic
relaxation time and the time of diffusion from the surface layer of thickness λH.

Finally we would like to note that the considered above mechanism of the microwave absorption
is closely related to the mechanism of ac conductivity of SNS junctions discussed in Refs. [23–25].
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