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a b s t r a c t

The theory of triplet superconductivity in ferromagnetic metals
based on electron–electron interaction by spin fluctuation ex-
change is developed. The equations for the upper critical field
temperature dependence are derived. In contrast to the similar
equations for the superconductivity in two band metals they con-
tain the pairing amplitudes and the Fermi velocities depending
on magnetic field. The critical field behaviour near the critical
temperature and at T = 0 is established analytically.

© 2020 Published by Elsevier Inc.

1. Introduction

In the conventional superconductors the pairing interaction arises from the coupling between
electrons and the lattice. The theory of superconductivity based on electron–phonon interaction
formulated first by G.M. Eliashberg [1] more than half century ago has been transformed now in well
developed part of condensed matter physics [2]. The superconductivity in ferromagnetic uranium
compounds UGe2, URhGe and UCoGe apparently does not belong to conventional type (see the
recent review by D. Aoki, K. Ishida and J. Flouquet [3]). The superconducting states in these materials
usually are developed at temperatures much lower than the Curie temperature and characterised by
extremely high upper critical fields what points out that here we are dealing with the Cooper pairing
with parallel electron spins. All three uranium compounds have orthorhombic crystal structure with
an inversion centre. Due to the Pauli principle the spin-triplet superconducting order parameter
in a centre-symmetric medium should be odd function of pairing electrons momenta. The simple
estimation shows that the amplitude of triplet component of electron–phonon pairing interaction
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is by a factor of ∼ (Tsc/ΘD)2 smaller than the singlet pairing amplitude. Here Tsc is the critical
temperature of superconducting transition and ΘD is the Debye temperature. This leaves no hope
for the electron–phonon pairing mechanism of odd parity triplet superconductivity.

There are several theoretical approaches to the description of superconductivity mechanism
in ferromagnetic metals. Some theoretical studies have used pairing interaction induced by the
spin polarisation in itinerant ferromagnetic Fermi liquid similar to the interaction by paramagnon
exchange widely accepted in the theory of superfluid 3He [4]. First it was done for the isotropic
electron liquid in the weak coupling static limit [5]. Dynamics of spin polarisation and the system
anisotropy have been taken into consideration in semi-phenomenological treatments of pairing
interaction in itinerant ferromagnetic Fermi liquid in the papers [6–8]. In the other approaches
there were used a pairing interaction owing to magnetic excitations exchange between conducting
electrons and an artificially introduced ferromagnetic subsystem formed by localised magnetic
moments, first in strong external field perpendicular to spontaneous magnetisation [9], then in
the absence of external field and in neglect of internal magnetic field interaction with electron
charges [10].

The pairing mechanism determined only by transverse dynamics of magnetic degrees of freedom
studied in [10] leads to the absence of pairing in the limit of zero temperature due to freezing out
magnetic excitations with energy gaped by the anisotropy. This statement is in fact too strong. One
can demonstrate that the static limit of frequency dependent equations for the spin-up and the
spin-down component of the order parameter obtained in [10] exactly corresponds to the equations
induced by the static transverse susceptibility components derived in [11]. The latter have the finite
solution for the critical temperature at any constant of pairing interaction. However, due to the
smallness of magnetic susceptibility in the directions perpendicular to the easy axis the critical
temperature is really exponentially low.

Besides the transverse magnetisation dynamics one must take into account the longitudi-
nal fluctuations of magnetisation [12]. The corresponding frequency dependence of longitudinal
susceptibility is [11,13]

χzz(k, ω) =
A

−iω + Γk
, Γk = 2A

[
−2αz + γ z

ij kikj
]
, αz = α0(T − TCurie). (1)

According to the experiments [14,15] the magnitude of Γk→0 at temperatures substantially lower
than TCurie is of the order of several Kelvin. So, in the temperature region where the superconducting
state is realised one can neglect the frequency dependence of longitudinal susceptibility. In the
UCoGe, as well in the other uranium compounds, the static susceptibilities in the transverse
directions χxx(ω = 0), χyy(ω = 0) are much smaller than the longitudinal static susceptibility
χzz(ω = 0) [16,17] . The latter according to the papers [11,18] serves as the main source of
pairing. The theory of triplet pairing developed in the papers [11,18] qualitatively explains the
interplay between the pressure dependence of the Curie temperature and the critical temperature
of the superconducting transition and several other observations, in particular, the peculiar upward
curvature of the upper critical field parallel to spontaneous magnetisation in UCoGe.

Another important property of uranium ferromagnetic superconductors is that the critical
temperature in these materials correlates with electron effective mass changes caused by pressure
or external magnetic field [3]. In the theory of strong coupling superconductivity the amplitude of
electron–phonon pairing interaction and the effective mass renormalisation are determined by the
same parameter λ [19,20]. The knowledge of this parameter allows to find the upper critical field
temperature dependence [21–24]. If λ itself is magnetic field dependent one can try to restore its
value from the experimentally measured Hc2(T ). This has been done in [25] in the assumption that
the upper critical field temperature dependence is determined by the expression identical to the
obtained in the electron–phonon interaction theory. For the magnetic field parallel to spontaneous
magnetisation λ(H) dependence in UCoGe found by this procedure by Beilun Wu and co-authors
[25] occurs in reasonable correspondence with magnetic field dependence of the specific heat
[C(T )/T ] ∼ [1 + λ(H)]. Moreover, the authors of [25] have demonstrated the correspondence of
this quantity and the magnetic field dependence of the constant of pairing interaction derived in
the weak coupling theory [11,18]. The trouble, however, is that in a theory of electron–phonon
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interaction parameter λ is field independent. On the other hand, the static weak coupling approach
says nothing about the field dependence of electron effective mass observed experimentally [3,25].

Obviously, the mass renormalisation and the constant of pairing interaction must be derived
in frame of the same theoretical approach. The corresponding theory of two band ferromagnetic
superconductor with triplet pairing is developed in the present paper. The field dependence of
effective mass and the pairing amplitudes are established in the next two Sections. In the fourth
Section the equations for the upper critical field temperature dependence are derived. They are
similar to the corresponding equations for an usual two band superconductor but differ from
them by the field dependence of the Fermi velocities and the pairing interaction. The critical field
behaviour near the critical temperature and at T = 0 is established analytically. In the conclusion I
list the main results as well the principal simplifications made in the process of its derivation.

2. Electron effective mass field dependence

Effective mass m of an electron in metal differs from the bare electron mass due to static
and dynamic (electron–phonon) interaction with crystal lattice. Here we will be interested in
the additional contribution to electron effective mass arising due to electron–electron interaction
through the spin fluctuations exchange. It can be calculated as

m∗
a

m
− 1 = −

∂ ReΣa(p, ε)
∂ε

|ε=0 , (2)

where Σa(p, ε) is electron self-energy function. In lowest order in interaction with longitudinal spin
fluctuations the frequency dependent one-particle self energy is

Σa(p, ε) = −i
g2

2

∫
dω
2π

d3k
(2π )3

Ga(p − k, ε − ω)χzz(k, ω), (3)

where g is the coupling constant, and χzz(k, ω) is the longitudinal dynamical spin susceptibility
which we will treat using the phenomenological formula (1). In presence of external field H
along the easy axis the function Γk in this formula is expressed [11] through the field dependent
magnetisation Mz(H) and magnetisation in the absence of field Mz0 (spontaneous magnetisation) as
follows

Γk = 2A
[
βz(6M2

z − M2
z0) + γ z

ij kikj
]
. (4)

For simplicity we will work with isotropic dispersion law γ z
ij kikj → γ zk2.

The Green function of non-interacting electrons in spin-up, spin-down bands (a =↑, ↓) split by
the magnetic field is

Ga
0(p, ε) =

1
ω − ξa(p) + iδ sgn ξa(p)

, (5)

where

ξ↑,↓(p) = ε(p) ∓ µB(h + H) − µ (6)

are the electron energy counted from the chemical potential µ, h is the exchange field, H is an
external field parallel to it.

Making use the spectral representation

χzz(k, ω) = −
2
π

∫
∞

0

Imχzz(k, Ω)ΩdΩ
ω2 − Ω2 + iδ

(7)

and performing integration over ω we obtain

Σa(p, ε) = g2
∫

dΩ
2π

∫
d3k

(2π )3
Imχzz(k, Ω)

{
Θ(ξa( p − k))

ε − Ω − ξa(p − k) + iδ

+
Θ(−ξa( p − k))

ε + Ω − ξ+( p − k) − iδ

}
(8)
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To find the self energy part at Fermi surface determined for quadratic electron spectrum by the
equation

(paF )
2

2m
∓ µB(h + H) = µ (9)

we put

ξa(p − k) ≈ −
paFk cos θ

m
+

k2

2m
, (10)

where m is an electron effective mass determined by the crystal lattice effects, electron–phonon
interaction but not by the spin fluctuation exchange. Owing to the condition ξa(p − k) > 0 the
upper limit of integration over cos θ in the first integrand term is k/2paF . The same value serves as
the lower limit in the second term. Performing the integration over solid angle we obtain

ReΣa(p, ε) = g2 m
paF

∫
dΩ
2π

∫
kdk
(2π )2

Imχ (k, Ω)

{
ln
⏐⏐⏐⏐ε − Ω

ε + Ω

⏐⏐⏐⏐+ ln

⏐⏐⏐⏐⏐ε + Ω −
k2
2m +

kpaF
m

ε − Ω −
k2
2m −

kpaF
m

⏐⏐⏐⏐⏐
}

(11)

Main contribution to integral at ε → 0 gives the first term ln
⏐⏐ ε−Ω
ε+Ω

⏐⏐ ≈ −
ε

2Ω . Substituting this
expression one can easily calculate integral over Ω . Then, performing the integration over k from
0 to some cut-off kc we obtain

λa =
m∗

a

m
− 1 =

g2

32π2γ zpaF
ln
{
1 +

γ zk2c
2βz(3M2

z − M2
z0)

}
. (12)

Thus, via paF and Mz field dependence the electron effective mass is the magnetic field dependent
quantity. In similar manner one can calculate the electron effective mass renormalisation due
to transverse spin fluctuations. But they have smaller magnitude due to much smaller value of
susceptibilities in direction perpendicular to the easy magnetisation axis. The low temperature
specific heat of electron gas in two band ferromagnet is also decreased with magnetisations growth
along the easy axis

C(H) − C(H = 0)
C(H = 0)

= λ↑ + λ↓ ≈
g2

16π2γ z
√
2mµ

ln
{
1 +

γ zk2c
2βz(3M2

z − M2
z0)

}
. (13)

Near the Fermi surface the Green functions of interacting electrons are

Ga(p, ω) =
1

ω − ξa(p) − Σa + iδ sgn ω
=

(1 + λa)−1

ω − ξ ∗
a (p) + iγ

, (14)

where ξ ∗
a (p) = (p − paF )v

a
F and

va
F =

paF
m∗

a
(15)

is the Fermi velocity. It depends on magnetic field through the Fermi momentum and through the
electrons effective mass.

The logarithm dependence of the electrons effective mass from magnetisation originates from
our assumptions about isotropy of the electron spectrum and the spin excitations spectrum made
to perform of all calculations analytically. In case of realistic spectra with orthorhombic anisotropy
the conclusion about suppression of electrons effective mass by the external magnetic field directed
along spontaneous magnetisation is still valid.

3. Critical temperature

We will consider so called equal-spin pairing state that is taking into consideration just spin
up–up ∆↑ and spin down–down ∆↓ components of the order parameter and ignoring zero spin
projection component. If pairing occurs due to spin fluctuation exchange all the pairing amplitudes
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expressed through the corresponding components of susceptibility. As, this was already mentioned,
in the temperature region where the superconducting state is realised one can neglect the frequency
dependence of susceptibilities. This case the linear in respect of the order parameter component
equations for determination of critical temperature (upper critical field) are [11]

∆↑(p, q) = −T
∑
n

∑
p′

{
V↑↑(p, p′)G↑G↑∆↑(p′, q) + V↑↓(p, p′)G↓G↓∆↓(p′, q)

}
, (16)

∆↓(p, q) = −T
∑
n

∑
p′

{
V↓↑(p, p′)G↑G↑∆↑(p′, q) + V↓↓(p, p′)G↓G↓∆↓(p′, q)

}
, (17)

where the Green functions products have the following arguments

GaGa
= Ga(p′, ωn)Ga(−p′

+ q, −ωn),

but unlike to the paper [11] here we should take into account the mass renormalisation due to
spin fluctuations and use the Green functions in the form given by Eq. (14) in the Matsubara
representation.

The pairing amplitudes are expressed through the odd part of spin susceptibilities [11]. In the
case of absence of longitudinal spin fluctuations studied by Bulaevskii et al. [10] the amplitudes
V↑↑

= V↓↓
= 0 and the order parameter components ∆↑, ∆↓ cannot exist without each other.

The pairing interaction is supported by the pairing amplitudes V↑↓
= 2ig2χu

xy, V
↓↑

= −2ig2χu
xy not

vanishing even in the case of tetragonal symmetry assumed in the paper [10].
We will work with equal spin pairing B-state [11] with the order parameter

∆
↑

B (p, q) = p̂zη↑(q),
∆

↓

B (p, q) = p̂zη↓(q). (18)

Here, and what follows, p̂z is the z-component of the unit momentum vector p̂ = p/|p|. The
treatment of equal spin pairing A-state is much more cumbersome because its spin-up and
spin-down pairing amplitudes present the linear combinations of kx and ky components and the
system of equations for the critical temperature or the upper critical field determination inevitably
consists of 4 equations. The Ginzburg–Landau theory for the state (18) is developed in the authors
paper [26].

The internal field acting on the electron charges in uranium ferromagnet is small in comparison
with the upper critical field at low enough temperatures. Hence, the formal determination of critical
temperature of transition to the superconducting state in zero external field can be obtained by
ignoring the coordinate (or q) dependence in the Eqs. (16), (17). Then the linear equations for the
order parameter Eq. (18) components are

η↑
=

(
G↑

1 η↑
+ G↓

2 η↓

)
S(T ),

η↓
=

(
G↑

2 η↑
+ G↓

1 η↓

)
S(T ). (19)

For the B-state χu
xy component of susceptibility plays no role, and

Ga
1 =

Na
0g

2

1 + λa
⟨χua

zz (pz, pz)⟩ =
Na

0g
2

1 + λa

γ z
zz(p

a
F )

2
⟨(p̂z)2⟩

4
[
βz(3M2

z − M2
z0) + γ z(paF )2

]2 , (20)

Ga
2 =

Na
0g

2

1 + λa
⟨χua

xx (pz, pz) − χua
yy (pz, pz)⟩ =

Na
0g

2

1 + λa

(
γ z
zz(p

a
F )

2
⟨(p̂z)2⟩[

αx + βxzM2
z + 2γ x(paF )2

]2
−

γ z
zz(p

a
F )

2
⟨(p̂z)2⟩[

αy + βyzM2
z + 2γ y(paF )2

]2
)

. (21)

Unlike the paper [11] these expressions contain in denominator the factors 1 + λa originating
from the effective mass renormalisation. On the other hand in comparison with [11] Eqs. (20),
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(21) are simplified: we work with quadratic electron spectrum and spherical Fermi surface. Thus,
Na

0 = mpaF/2π
2 is the density of electronic states of the band a =↑, ↓ without mass renormalisation

due to spin-fluctuations, the average over Fermi surface ⟨(p̂z)2⟩ = 1/3. The function

S(T ) = 2πT
∑
n≥0

1
ωn

= ln
ϵ

T
, (22)

ϵ =
2γ ε0

π
, ln γ = 0.577 is the Euler constant, and ε0 is an energy cutoff for pairing interaction. We

assume here that it has the same value for both bands.
The zero of determinant of the system (19) yields the BCS-type formula

T = ϵ exp
(

−
1
G

)
, (23)

where

G =
G↑

1 + G↓

1

2
+

√
(G↑

1 − G↓

1 )2

4
+ G↑

2 G
↓

2 (24)

is the function of temperature and magnetic field. Eq. (23) is, in fact, an equation for the determi-
nation of the critical temperature of the transition to the superconducting state. At temperatures
well below the Curie temperature one can neglect the temperature dependence of the cou-
pling constant and Eq. (23) determines the critical temperature of transition to superconducting
state.

In the case of a single-band (say spin-up) superconducting state, when G = G↑

1 , it is

Tsc = ϵ exp

(
−

1 + λ↑

N↑

0 g2⟨χ
u↑
zz ⟩

)
. (25)

This formula reminds the known McMillan [20] expression Tsc = ϵ exp
(
−

1+λ
λ

)
valid for s-wave

pairing in neglect Coulomb repulsion. The expression similar to s-wave case was also obtained
for the transition temperature to p-wave superconducting state in isotropic ferromagnet [5]. In
our model the coefficient λ↑ determining the effective mass renormalisation does not coincide
with the constant of interaction N↑

0 g
2
⟨χ

u↑
zz ⟩. The latter was derived in [11] taking into account the

orthorhombic anisotropy.
We have seen that λ↑ decreases with magnetic field. N↑

0 = mp↑

F /2π
2 increases with magnetic

field. According to Eq. (20) the numerator in the formula for ⟨χ
u↑
zz ⟩ is ∝ (p↑

F )
2, hence, it increases

with magnetic field whereas the denominator increases with field dependent magnetisation. So, the
critical temperature occurs magnetic field dependent quantity. It should be borne in mind, however,
that this dependence is weakened by the Coulomb repulsion which we neglected in our derivation.
The temperature dependence of the upper critical field in UCoGe in direction parallel to spontaneous
magnetisation exhibits the peculiar upward curvature. A natural explanation of this phenomenon
proposed in [11] is that the critical temperature itself is a decreasing function of the magnetic field.

4. Upper critical field

The upper critical field problem for the B-state presents a two-band generalisation of the
corresponding problem for the superconducting polar state [27]. The system of linear integral
equations for determination of the upper critical field along the spontaneous magnetisation h = hẑ
is

η↑(ρ) = L̂↑

1η
↑(ρ) + L̂↓

2η
↓(ρ)

η↓(ρ) = L̂↑

2η
↑(ρ) + L̂↓

1η
↓(ρ). (26)

Here, the operators

L̂ai f (ρ) =
Ga
i

Na
0⟨(p̂z)2⟩

( m
2π

)2
T
∑
n

∫
∞

0
dR exp

(
−

2|ωn|

va
F

R
)
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×

∫ π

0
sin θ cos2 θdθ

∫ 2π

0
dϕ exp

(
i
R

√
2
sin θ

(
e−iϕD+ + eiϕD−

))
f (ρ), (27)

where D± =
1

√
2
(Dx ± iDy), D = −i∇ + (2e/c)A(r), curlA = B = h+H, ρ = ρ(cosϕ, sinϕ). By means

of the standard procedure [27] the system of integral equations is transformed to the system of
algebraic equations

η↑
= G↑

1 I
↑η↑

+ G↓

2 I
↓η↓

η↓
= G↑

2 I
↑η↑

+ G↓

1 I
↓η↓, (28)

where the integrals

Ia =
1

Na
0⟨(p̂z)2⟩

( m
2π

)2
T
∑
n

∫
∞

0
dR exp

(
−

2|ωn|

va
F

R
)∫ π

0
sin θ cos2 θdθ

× exp
(

−
e(h + H)

c
R2 sin2 θ

)
(29)

have the following property

I↑(h + H = 0) = S(T ), I↓(h + H = 0) = S(T ). (30)

Hence, Eqs. (28) can be rewritten in the form eliminating the logarithm divergency in the
integrals Ia

η↑
= G↑

1

[
K↑

+
1
G

+ ln
Tsc
T

]
η↑

+ G↓

2

[
K↓

+
1
G

+ ln
Tsc
T

]
η↓

η↓
= G↑

2

[
K↑

+
1
G

+ ln
Tsc
T

]
η↑

+ G↓

1

[
K↓

+
1
G

+ ln
Tsc
T

]
η↓, (31)

where

K a
= Ia − 2πT

∑
n≥0

1
ωn

. (32)

Equating the determinant of this system to zero we obtain the equation for the determination of
the upper critical field{

G↑

1

[
K↑

+
1
G

+ ln
Tsc
T

]
− 1

}{
G↓

1

[
K↓

+
1
G

+ ln
Tsc
T

]
− 1

}
− G↑

2 G
↓

2

[
K↑

+
1
G

+ ln
Tsc
T

]
×

[
K↓

+
1
G

+ ln
Tsc
T

]
= 0. (33)

The solution of this equation at arbitrary temperature taking into account the field dependence of
all the quantities Ga

i (H) and Tsc(H) can be found only numerically. Here, we will obtain the analytic
expressions at T = 0 and near the critical temperature.

The condition h + H = 0 means that the external field in single-domain specimen completely
compensates the internal field. At h+H = B > 0 the temperature dependence of Bc2(T ) corresponds
to the temperature dependence of the upper critical field in poly-domain specimen at an external
field exceeding the internal magnetisation [26].

At T → 0, according to Ref. [27],

K a
≈ ln

{
T
Tsc

(
e8/3φ0

8πγ (ξ a
0 )2Bc2

)1/2
}

, (34)

where

ξ a
0 =

h̄va
F

2πTsc
(35)
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Fig. 1. (Colour online) The upper critical field Hc2 in UCoGe extracted from the resistivity and the thermal conductivity
measurements. (M. Taupin, unpublished (2016)).

is the coherence length and φ0 =
π h̄c
e is the flux quantum. Hence, in Eq. (33) the divergent term

ln Tsc
T drops out and we obtain the quadratic equation in respect of ln

√
Bc2. The solution of it

looks quite cumbersome. We write here the corresponding expression for the one band (spin-up)
ferromagnet which coincides with the upper critical field for the polar phase [27]

Bc2(T = 0) =
e8/3

4γ
φ0

2π (ξ↑

0 )2
. (36)

The coherence length ξ
↑

0 itself is the magnetic field function.
Near the critical temperature when the H + h = B ≪ h

K a
≈ −DaBc2 = 7πζ (3)

(ξ a
0 )

2

φ0
Bc2. (37)

Hence, we obtain in linear in Tsc−T
Tsc

approximation

Bc2 =
(G↑

1 − G)G↓

1 + (G↓

1 − G)G↑

1 − 2G↑

2 G
↓

2

(G↑

1 − G)G↓

1D↓ + (G↓

1 − G)G↑

1D↑ − G↑

2 G
↓

2 (D↑ + D↓)

Tsc − T
Tsc

. (38)

For single band (say spin-up) ferromagnet the expression for the upper critical field acquires much
simpler form

Bc2 =
φ0

7πζ (3)(ξ↑

0 )2
Tsc − T

Tsc
. (39)

Here, ζ (x) is the Riemann zeta function. The critical temperature Tsc and the Fermi velocity v
↑

F are
magnetic field dependent quantities. Hence, this expression presents an equation for the upper
critical field determination. As it was shown in [11] when the critical temperature given by Eq. (25)
decreases with magnetic field the temperature dependence of the upper critical field acquires
upward curvature. Here we see, that this effect is in fact even stronger due to increasing with field
the Fermi velocity v

↑

F . The corresponding experimental plot is presented in Fig. 1.

5. Conclusion

We have studied the magnetic field dependence of effective mass and derived the equations for
the temperature dependence of the upper critical field in a two band ferromagnetic superconductor
with triplet pairing. It was found that the low temperature specific heat is slowly decreasing
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function of magnetic field along the easy axis. This corresponds to the experimental observations [3].
There was shown that the behaviour of the upper critical field is not the same as in usual two
band superconductor. The fact is that the pairing coupling itself and the bands Fermi velocities
are not constants but proved to be magnetic field dependent quantities. The field dependence
of the interaction constant is determined by the field dependence of Fermi surface radii and the
magnetisation increasing in magnetic field directed along the spontaneous magnetisation. Unlike to
s-wave superconductivity the mass renormalisation coefficient λ does not coincide with the pairing
interaction constant derived taking into account the orthorhombic anisotropy. Due dependencies of
the critical temperature and the Fermi velocity from the magnetic field the upper critical field can
exhibit the upward curvature.

Finally I would like to mention the principal simplifications made in the calculations. The
derivation has been done for two band spin-up spin-down ferromagnetic superconductor with
equal-spin pairing. The effective mass and the pairing coupling constants were derived by the field
theoretical method but making use the phenomenological formulae for the spin susceptibility com-
ponents. I have worked with isotropic electron and spin-fluctuation spectra. The latter assumptions
allowing to perform calculation analytically are obviously inconsistent with orthorhombic structure
of ferromagnetic compounds under consideration. The Coulomb electron–electron interaction has
been neglected. Despite the shortcomings the presented theory allows to establish the qualitative
field dependence of measurable quantities such as the electron effective mass and the upper critical
field in ferromagnetic superconductors.
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