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a b s t r a c t

Recently, superconductivity was discovered at very low densities
in slightly misaligned graphene multilayers. Surprisingly, despite
extremely low electronic density (about 10−4 electrons per unit
cell), these systems realize strong-coupling superconductivity,
with the transition temperature being a large fraction of the
Fermi energy (Tc ∼ 0.1ϵF ). Here we propose a qualitative
explanation for this remarkable phenomenon, highlighting simi-
larities and qualitative differences with the conventional uniform
high-density superconductivity. Most importantly, we find that
periodic superimposed potential generically enhances local inter-
actions relative to nonlocal (for instance, Coulomb) interactions.
In addition, the density of states is enhanced as well, exponen-
tially in modulation strength for low lying bands in some cases.
Combination of these two effects makes moiré systems natural
intermediate or strong-coupled superconductors, with potential
for very high transition temperatures.

Published by Elsevier Inc.

1. Introduction

Search for materials with high superconducting transition temperature (Tc) has been one of the
main quests in physics ever since its discovery in mercury by Kammerlingh Onnes in 1911. The
basic enigma of superconductivity was resolved in Bardeen, Cooper, and Schrieffer in 1958 [1] by
showing that electron–phonon interaction leads to pairing of itinerant electrons, and that the pair
condensation is responsible for superconductivity.

While it would seem that stronger interaction should lead to higher Tc , this is not necessarily the
case, since interactions also can make electrons less coherent, which suppresses superconductivity.
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The proper treatment of intermediate and strong coupling superconductivity, as well as the inclu-
sion of Coulomb repulsion have only become possible after the work of Eliashberg, who, building
upon the previous works of Gor’kov [2] and Migdal [3], constructed now famous Dyson’s equations
for superconductivity [4]. These equations have become de facto the theory superconductivity, used
both to interpret experimental observations and to predict new superconductors.

For a long time, the search for high temperature superconductors (HTSC) has been focused on
bulk materials obtained by chemical synthesis. Currently, the record holder among bulk materials
is LaH10 [5,6], which under megabar pressure becomes a superconductor at 250K.

More recently it has become possible to create a few monolayer 2D materials by MBE [7,8] or
mechanical exfoliation [9]. These methods have opened new ways to control superconductivity that
were not available in bulk materials, including gate doping, tuning strain, dielectric properties, and
modification of electronic and phononic states. In a way, there systems realize the old dream of
designer superconductors of Little [10] and Ginzburg [11].

Perhaps the most unusual method to tune superconductivity to date, demonstrated in 2018,
involves creating large (compared to the atomic scale) periodic superstructures in 2D materials. It
was first discovered upon stacking two graphene layers with a slight misalignment angle, θ ≈ 1◦

(‘‘twisted bilayer graphene’’, or TBG) [9]. The misalignment creates a moiré pattern, that has a spatial
period that is a factor 1/θ larger than the atomic unit cell. Such superstructure leads to Brillouin
zone folding into a Brillouin minizone, into which every microscopic electronic band is folded 1/θ2
times. Remarkably, the observed superconducting Tc can be a few degrees K high, a significant
fraction of the Fermi energy within a miniband; the transition temperature is highly sensitive to
the angle θ . Since the original discovery, superconductivity has been observed in other misaligned
materials as well [12,13]. It should be noted that moiré patterns can form also when different
materials are stacked, with or without angular misalignment [14]. This makes it a versatile new
way to control superconductivity is layered systems, whose full potential has been barely tapped.

In this paper we qualitatively analyze electron–phonon interactions, density of states, and
Coulomb interactions in moiré superstructures and how their interplay affects superconductivity.
Focusing on generic features, our analysis is not limited to graphene moiré structures.

There are several special features that qualitatively distinguish moiré superconductors from their
more conventional counterparts. First, the superconducting order parameter acquires an internal
moiré-scale spatial structure, tracking the spatial modulation of the electronic wave functions.
Second, due to the small width of the minibands, wM , the frequencies of the phonons (or other
bosonic modes) ω0 that mediate electron–electron attraction can exceed minibandwidths. As we
will show, for ω0 > wM , the Migdal’s criterion, which usually allows to neglect vertex corrections
in the Eliashberg equations, is no longer valid. Instead, the ‘‘smallness’’ of the vertex corrections
becomes controlled by the dimensionless strength of the electron phonon coupling, λ (and not
λω0/ϵF ). Therefore, only in the case of weak-to-intermediate coupling, λ < 1, omitting the vertex
corrections can be justified. Finally, when ω0 > ϵF , there is no logarithmic reduction of the Coulomb
repulsion that usually occurs in high-density superconductors [15,16]. Fortunately, we find instead
that long-range Coulomb interaction is suppressed relative to phonon-mediated attraction due to
the spatial moiré modulation of the electronic wavefunctions.

The rest of the paper is organized as follows. In Section 2 we summarize the key results
of classical theory of superconductivity. In Section 3 we show how these results arise in the
Holstein model, highlighting the assumptions made in the standard derivations for high-density
superconductors. We discuss what changes in the case of low density superconductors ω0 > ϵF .
In Section 4 we study spatially modulated moiré superconductivity. We show that starting from
the weak-coupling limit, λ ≪ 1, superconductivity in low density systems is generically enhanced
compared to the unmodulated case. The reasons is that both electronic density of states (DOS) and
phonon-mediated electron–electron attraction are enhanced. We also show how moiré modulation
affects differently short range and long range interactions, enhancing former and leaving the latter
more or less unchanged. In Section 5 we explicitly consider the case of moire twisted graphene
systems. Finally, in Section 6 we discuss results and possible connections between superconductivity
in moiré and some other systems.
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2. The basic principles and results of conventional superconductivity

In this section we summarize the principal results of conventional superconductivity. Even
though the results were obtained with phonon-based superconductors in mind, they can apply to
other pairing mechanism as well, as long as the assumptions (discussed below) are satisfied.

The theory of Bardeen, Cooper and Schrieffer [1] identified the key elements that control
superconductivity: the electronic density of states near the Fermi level, νϵF , the electron–electron
attraction induced by phonons, U , and the typical frequency of the relevant phonons, ω0. Their
expression for the transition temperature is

Tc = ω0e−1/λ. (1)

The interaction parameter λ = νϵFU was assumed to be small in BCS, λ ≪ 1. Tc marks the
temperature below which the nonlinear self consistent gap equation

1 = U
∫ ω0

0
dϵp

N(ϵp)√
ϵ2p +∆2

[
1 − 2nF (

√
ϵ2p +∆2)

]
(2)

acquires a non-trivial solution, ∆ ̸= 0.
Physically, the pairing occurs due to electrons polarizing phonons, without actually exciting them

out of their ground state. In other words, the pairing interaction is due to electrons exchanging
virtual phonons. This is the origin of the upper cut off ω0 in Eq. (2)– only electrons with energies
within the ω0 window around the Fermi level ϵF are paired; at higher energies, phonon-induced
electron–electron interaction is in fact repulsive [17]. This assumes that ω0 < ϵF . In the opposite
case, the upper cut off in the integral, and thus also the prefactor in Eq. (1) has to be replaced by ϵF .

The simplicity and the elegance of the BCS solution is due to the fact that superconductivity is
a weak coupling instability. Thus, it is sufficient to only keep phonon-induced electron–electron
interaction, while neglecting the effect of phonons on electron propagation, and vice versa. This
is no longer accurate for λ ∼ 1 and above, which is clearly the most interesting regime, since it
promises the highest Tc values.

The transition temperature itself is defined only by the normal state properties of electrons
and phonons, and these properties are affected by their mutual interaction [3,18]. For electrons,
interactions with phonons make them heavier (polaronic effect), by a factor 1 + λ, which leads
to an increase in DOS and therefore appears to be good for superconductivity. On the other hand,
the quasiparticle residue is reduced by the same factor, and since two electronic Green functions
enter the gap equation Eq. (2), the combined effect of electronic renormalization turns out to be
equivalent to U → U/(1 + λ), which suppresses Tc . For phonons, the renormalization due to
interaction with electrons reduces their frequency by a factor 1 − λ. Again, this modification has a
negative effect on superconductivity.

Proper account of these renormalizations as well as of the screened Coulomb interaction is
possible within the Eliashberg’s framework [4]. Based on numerical solution of the Eliashberg
equations, McMillan found the following best fit [18], for high-density superconductors

Tc ≈ Θ exp
[
−

1 + λ

λ− µ∗(1 + 0.6λ)

]
. (3)

The characteristic phonon frequencyΘ is an experimentally measurable quantity, and thus includes
interaction renormalizations described above. The apparent reduction of the Coulomb pseudopo-
tential µ∗

= µ/[1 + µ ln(ϵF/ω0)] from the ‘‘bare’’ (high-frequency value) Coulomb strength µ
occurs due to the smaller frequency range of phonon-induced attraction compared to the Fermi
energy [15,16]. In bulk materials typically µ∗ is between 0 and 0.2 [18].

Based on McMillan’s formula, the largest Tc would be expected at values of λ ∼ 1. It should be
kept in mind however that increasing λ softens phonons, which both reduces Θ in Eq (3) as well
as makes structural instabilities more likely [19,20]. Even in the absence of structural instabilities,
in a very strong coupling limit one expects electrons to form spatially bound pairs [21], crossing
over into BEC regime [22]. Empirically, the maximum achievable transition temperature appears to
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be consistent [23,24] with Eq. (3) taken at λ ≈ 1, Tmax
c ∼ 0.1Θ . For instance, in the cases of Hg

and Pb, where λ ≈ 1, Tc/Θ is between 0.05 and 0.07 [18]; similarly high values are reached in Nb
compounds and in Ba1−xKxBiO3. Theoretically, for the Holstein model in the ϵF > ω0 regime, this
relationship between maximum achievable Tc and characteristic phonon frequency has been also
found by numerical methods distinct from Migdal–Eliashberg approach [25,26].

3. The Holstein model

The Holstein model [27] is probably the simplest model that captures the main features of
phonon mediated superconductors. We will use it to illustrate the reduction from the full electron–
phonon model to an effective BCS Hamiltonian. We will carefully examine the differences between
the high-density (ϵF > ω0) and low-density (ϵF < ω0) superconductors. The low density result
will be used in the next section were we will consider the case of superconductivity periodically
modulated on large scale.

The Holstein model assumes local (Einstein) phonons that interact with local electron density.
The full Hamiltonian is

H = He + Hph + α
∑
j,σ

njσ xj, (4)

with the bare electron and phonon Hamiltonians

He =

∑
k

ϵkc
†
kσ ckσ , (5)

Hph =

∑
j

kx2j
2

+
p2j
2M

. (6)

Here, k is the electron quasimomentum vector, xj and pj are displacement and momentum operators
of phonon on site j (frequency ω2

0 = k/M), electron site occupation number njσ = c†
jσ cjσ .

3.1. Effective Hamiltonian

An effective purely electronic Hamiltonian can be obtained for electrons whose energies are
below the phonon energy h̄ω0. For such slow electrons, one can assume that phonons adjust to the
changes in electronic configurations essentially instantaneously. We will demonstrate this reduction
procedure both in the first and second quantization. The former has the advantage of greater
simplicity, while the latter reveals the assumptions as well as allows to go beyond the effective
Hamiltonian description.

3.1.1. First quantized (or classical) treatment of phonons
On a single site the part of the Hamiltonian that involves phonon coordinate is hi = kx2j /2 +

αxjnj. Minimizing over the phonon displacement, we find the phonon-induced electron–electron
interaction term,∆Hee = −(α2/k)n2

j . Since n2
jσ = njσ , this term contains a shift of chemical potential,

which we will ignore and attractive interaction between electrons, which summed over the full
lattice is

Hee = −
α2

k

∑
j

nj↑nj↓. (7)

Note that the coupling constant

U = −
α2

k
= −

α2

Mω2
0

(8)

is the static limit of the more general dynamic interaction mediated by phonons [17],

U(ω) =
α2

M(ω2 − ω2
0)
. (9)
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3.1.2. Second quantized treatment of phonons
We now show how the same result can be obtained in the second-qauntized language. The

phonon Hamiltonian can be expressed in terms of local bosonic operators bi = (xi/ℓ0 + iℓ0pi),
where the zero-point motion amplitude is given by ℓ0 =

√
h̄/Mω0, as

Hph =

∑
j

ω0(b
†
j bj + 1/2), (10)

He−ph =
αℓ0
√
2

∑
j,σ

njσ (b
†
j + bj). (11)

The quantum evolution operator can be expressed in the interaction representation as

U(t) = e−iHt
= e−iH0tT e−i

∫ t
0 dt ′Ĥe−ph(t ′), (12)

where Ĥe−ph(t ′) = eiH0tHe−phe−iH0t and H0 = He + Hph. The effective Hamiltonian can be obtained
by the following steps. First, let us expand the time-ordered exponential up to the second order,

1 − i
∫ t

0
dt ′Ĥe−ph(t ′) −

∫ t

0
dt ′

∫ t ′

0
dt ′Ĥe−ph(t ′)Ĥe−ph(t ′′).

The next step is averaging over the phonon vacuum |0⟩. This eliminates the linear b in terms. In
the second order, only the terms of the form ⟨0| bi(t ′)b

†
i (t

′′) |0⟩ = e−iω0(t ′−t ′′) remain. If electrons are
‘‘slow’’, (reside within the energy window smaller than ω0), then nj(t ′′) can be replaced by nj(t ′)
and integration over t ′′ can be easily performed to give i/ω0. The result is

1 +
iℓ20α

2

2ω0

∑
j

∫ t

0
dt ′[nj(t ′)]2 ≈ T exp

⎡⎣i
∫ t

0
dt ′

iU
2

∑
j

[nj(t ′)]2

⎤⎦ (13)

Undoing now the interaction representation gives the Hamiltonian of Eq. (7).
This derivation highlights how the band-width limited interaction arises from the Holstein

model, and the fact that the BCS Hamiltonian is only accurate to the second order in electron–
phonon interaction. Another assumption seems to be that phonons must remain in their ground
state. In fact, the same interaction would obtain for any temperature of phonons. This follows from∫ 0

−∞
dt ⟨n| b†ger(0)b(t)+b(0)b†ger(t) |n⟩ = i/ω0, regardless of the phonon number state |n⟩. Strictly

speaking, the pairing strength is independent of the phonon temperature, which is a reflection of
the fact that phonons are a linear system and thus their differential response does not depend on
their state. In equilibrium, this is not important since Tc is lower than ω0; out of equilibrium, at
least in principle, it seems possible to have phonons that are significantly hotter than electrons,
and still have pairing. In practice, however, the energy transfer from phonons to electrons would
heat electrons up, suppressing superconductivity.

3.2. Beyond effective Hamiltonian

For the weak coupling case, λ ≪ 1, the effective BCS Hamiltonian derived above provides fully
adequate description of bare electrons experiencing weak mutual attraction within the frequency
window of (bare) ω0.

Our interest in this work, however, is in the low-density (or narrow band) superconductors,
where λ can approach unity. While we will not attempt to describe this regime quantitatively, it
is worthwhile to pause and assess some qualitative differences that arise between the low and
high-density superconductors beyond the weak-coupling description of BCS.

3.2.1. Migdal’s criterion
The Migdal’s criterion provides a justification for dropping vertex corrections in the Eliashberg

equations. In conventional high-density superconductors the vertex corrections are O(λω0/ϵF ). In
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the low-density superconductors with ω0 > ϵF , the original criterion clearly does not apply and
needs to be reexamined.

Following Migdal [3], the lowest order vertex correction for the Holstein interaction (11) is

Γ1(q) = α2ℓ20

∫
p′

D(p − p′)G(p′
+ q)G(p′), (14)

where G = 1/(iω−ϵk⃗) and D = 2ω0/(ω2
+ω2

0) are the bare electronic and phononic Green functions
in imaginary time [28]. In the vertex equation, for brevity, p denotes both momenta and frequency.
Γ1 should be compared with the undressed vertex Γ0 = 1. In order to estimate Γ1, let us recall that
if we omit D, the sum over the internal momenta and frequency is the electronic susceptibility

Π (q) =

∫
p
G(p + q)G(p) =

∫
p⃗

nF (ϵp+q) − nF (ϵp)
ϵp+q − ϵp + iω

. (15)

Both in 2D and 3D, it is typically bounded by the electronic DOS, νϵF , decreasing at large frequencies
and momenta. Now, for the Holstein phonons, D is only a function frequency. In the case ϵF > ω0,
we can approximately replace D ∼ ϵ−1

F . Recalling the definition of the dimensionless coupling
constant, that leads to Γ1 ∼ λ(ω0/ϵF ), the standard Migdal’s criterion. In the opposite limit, phonon
propagator is simply D ∼ ω−1

0 , and thus Γ1 ∼ λ.
This is a natural result that says that the vertex corrections can be justifiably neglected for

weak coupling superconductivity. In the intermediate coupling regime, one can only expect the
Migdal–Eliashberg approach to remain qualitatively valid.

3.2.2. Electron propagator renormalization
Interaction with virtual phonons dresses electronic propagation, transforming electrons into

heavier polarons (see Section 2). The dressing of low-energy electrons only involves virtual exci-
tation of phonons. This is an ‘‘off-shell’’ process that is independent of the ratio between ϵF and ω0.
Thus we expect that the mass renormalization and the quasiparticle residue have the same form
both in low and high-density superconductors, with the renormalization factor 1 + λ. Indeed, the
electron self energy, for temperatures below h̄ω0, is

Σel(q) = α2ℓ20

∫
p
D(p)G(p + q) (16)

= α2ℓ20

∫
p⃗

nF (ϵp⃗)
iω − ϵp⃗ + ω0

+
1 − nF (ϵp⃗)

iω − ϵp⃗ − ω0
. (17)

After analytical continuation, the frequency-dependent real part of self energy is

Σ(ω) = α2ℓ20νϵF log
ω0 − ω

ω0 + ω
, (18)

regardless of the relationship between ϵF and ω0. For small frequencies, |ω| ≪ ω0, Σ(ω) ≈ λω,
which gives both the polaronic propagation slowdown and reduction of the quasiparticle weight.

3.2.3. Phonon frequency renormalization
As mentioned in Section 2, the phonon frequency in high-density metals is reduced due to

electron phonon-interactions, ω0 → ω0(1 − λ). This effect can be obtained by considering the
phonon self-energy [3],

Σph(q) = α2ℓ20

∫
p
G(p + q)G(p) = α2ℓ20Π (q), (19)

with the polarization bubble given by Eq. (15). To obtain phonon frequency renormalization, the
electron bubble Π (q) has to be evaluated near the phonon frequency. For high-density supercon-
ductors, ϵF > ω0, Π (q) ≈ νϵF . From that immediately follows that Σph(q) ≈ λω0, causing the
familiar frequency renormalization [3], ω0 → ω0(1 − λ).

However, in the opposite low-density limit, ϵF < ω0, Π (ω0, q⃗) will be strongly suppressed, by
a factor which we can estimate as ϵF/ω0. Therefore, the frequency renormalization in this case is
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Fig. 1. A schematic of a moiré lattice. Thin gray lines denote microscopic lattice, with the lattice constant a0 . Blue shading
represents superimposed moiré potential with period LMa0 . Orange spots represent the density of the electronic Bloch
functions modulated due to the presence of a strong moiré potential. For large supermodulation strength, the width of
the density peaks can be significantly smaller that the size of the moiré cell, L∗ < LM .

much weaker, ω0 → ω0(1−
ϵF
ω0
λ). This is quite natural, since the low-concentration electrons should

not be able to strongly renormalize phonon frequencies. Note however that this is a welcome change
compared to the dense superconductors, where large λ needed for high Tc , also causes suppression
of phonon frequencies, which opposes the growth of Tc .

4. Enhancement of superconductivity in moiré structures

We now turn to the main subject of this paper — the effect of periodic supercell modulation on
superconducting Tc . The fact that greatly enhanced Tc has been experimentally observed in a variety
of moiré-twisted systems [9,12,13] serves as an indication that there may be a general principle at
work. With these experiments as an inspiration, in this section, we will discuss the case of 2D.
For the same reason we will be referring to supercell as moiré cell. Before we proceed, we would
like to note that the effects that lead to Tc enhancement that we identify are not limited to 2D;
experimentally creating a 3D moire superstructure, however, appears to be more challenging.

We will use again the Holstein model. The simple form of electron phonon interactions in the
Holstein model allows to see particularly easily what happens under coarse-graining to a larger
unit cell. Despite the simplicity, this model in fact describes accurately general interaction between
electrons and longitudinal optical (LO) phonons, which is probably the most common origin of
superconductivity.

We find that periodic moiré patterns generically enhance DOS, enhance local attractive electron–
electron interaction, and leaving the long large Coulomb repulsion either unchanged or enhanced
to a lesser degree. All of these conspire to enhance Tc .

4.1. Coarse-graining interaction in the Holstein model

Superposing a periodic structure on an atomic crystal redefines the unit cell (see Fig. 1). Each
original crystal energy band becomes folded NM = SM/S0 times, where SM = L2Ma20 is the real
space area of the moiré unit cell, and S0 = a20 is the atomic unit cell area. What does that do
to superconductivity? We will address this question using the Holstein model (4) as a framework,
by constructing an effective model, coarse-grained to the moiré cell level.

A low-energy electron within moiré cell J (we use capital indices to distinguish from microscopic
site indices such as j) of the Holstein model resides on N∗ atomic sites and thus interacts with N∗

phonons. For a weak supercell modulation potential N∗ ≈ NM ; however, for a strong modulation
N∗ can be significantly smaller than NM . Only 1/N∗ fraction of the electron interacts with each of
N∗ phonons. Thus, summed within the moiré real space unit cell, the electron–electron interaction
becomes

α2

2k

∑
j∈J

n2
j ≈

α2

2kN∗

n2
J . (20)
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It may appear that coarse-graining to the moiré scale strongly reduces interaction relative to Eq. (7),
in proportion to the number of sites occupied by electrons within the moiré cell,

HM
ee = −

α2

2kN∗

∑
J

n2
J . (21)

However, the coarse-graining is accompanied by an increase of coarse-grained DOS. The di-
mensionless coupling constant λ, which controls superconductivity, is the product of both of
them.

For reference, let us first consider a weak moiré potential. Then, the electronic DOS per moiré unit
cell is increased by the factor NM compared to the DOS per microscopic unit cell, νMϵF ∼ νϵFNM . Thus,
the superconducting temperature for weak modulation, according to the BCS expression Eq. (1)
remains approximately the same. This is of course consistent with the fact that redefining the unit
cell without applying any modulation cannot affect superconductivity.

Instead of referring to the coarse-grained moiré lattice, it is convenient to refer back to the
original microscopic unit cell. Moving moiré factor NM from DOS to interaction, we see that the
interaction is actually enhanced,

Ueff =
NM

N∗

U . (22)

Moreover, the DOS can be also significantly enhanced in the strong modulation case. Thus both
interactions and DOS conspire to increase λ and Tc . Note that this enhancement is not limited
to superconductivity — any other instability, such as spin or charge density wave, driven by this
interaction can be enhanced as well.

4.2. Strong moiré modulation in a parabolic material

As an example, let us consider a 2D material, with lattice constant a0 and isolated conduction
band of width W . Such a band structure corresponds to the DOS per unit cell of νϵF ∼ 1/W . The
effective mass (the curvature near the band bottom) is m∗

∼ h̄2/(a20W ).
Suppose now that a strong periodic potential V (r), varying smoothly between Vmin and Vmax on

scale LMa0, is superimposed on the lattice (we pick Vmin = 0 for convenience). If

Vmax > h̄2/(a20L
2
Mm∗) ∼ WL−2

M , (23)

then the electronic wave functions near the bottom of the original band becomes strongly spatially
modulated, peaked at the minima of V (r). This situation is accounted for by first solving for
the intra-well bound states, and then including their inter-well tunneling, which will lead to
the formation of low energy narrow minibands. The band width of the lowest miniband can be
estimated as [29],

wM ∼

√
VmaxW

1
LM

exp

[
−

√
Vmax

W
LM

]
(24)

The corresponding microscopic DOS (per atomic unit cell) is

νM0 ∼
1

wMNM
∼

1
W

eζ

ζ
(25)

where

ζ =

√
Vmax

W
LM > 1. (26)

In addition, in this regime, due to the wave function concentration near the minima of V (r),
N∗ is significantly smaller than NM ; for the lowest bands it can be estimated as N∗ ∼ NM/ζ , and
therefore, from Eq. (22)

Ueff ≈ ζU . (27)
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Finally, we obtain that in the strong modulation limit, the dimensionless phonon-mediated
electron–electron attraction is enhanced relative to the unmodulated value exponentially,

λ
deep
M ≈ eζλ0. (28)

Neglecting for the moment the electronic Coulomb repulsion, this is the coupling constant that
determines the superconducting transition temperature for deeply modulated moiré structure. For
λM < 1,

TM
c ∼ min(ϵF , ω0)e−1/λdeepM . (29)

The prefactor is modified compared to the standard BCS to allow for large phonon frequencies,
ω0 > ϵF . While in deriving this expression we used the moiré renormalization of interaction derived
within the Holstein model, as we will show in the next section, the result is more general.

4.3. Short range vs. long range interactions in moiré systems

Above we found that deeply modulated superlattices can have strongly enhanced tendency to
superconduct due to the increased values of DOS and phonon-mediated attraction. We have not
addressed however the problem of Coulomb interaction, which opposes phonon attraction, and
also can be expected to become modified under superlattice modulation. In fact, it is obvious
that an onsite Coulomb repulsion (Hubbard type), would transform identically to the purely local
phonon-mediated attraction in the Holstein model. Thus, for local interactions, the balance between
attraction and repulsion will remain unchanged under moiré modulation.

The physical Coulomb repulsion is however not local. How will the nonlocality affect the way
Coulomb transforms in the presence of the moiré modulation? Qualitatively, we can anticipate that
a long-range interaction should be blind to the intra-moiré unit cell charge modulation. In this
section, by carefully deriving the renormalization of interaction potential we find that longer range
interactions are enhanced less than the short range interactions. We therefore generally expect that
supercell modulation suppresses Coulomb interaction relative to the phonon-mediated attraction.

Let us consider a generic interaction Hamiltonian,

Hint =

∑
r,r ′

v(r − r ′)nrnr ′ . (30)

For v(r) ∝ δr,r ′ it corresponds to the Holstein model with phonons integrated out (electron energies
within ω0 from each other). The onsite densities, nr =

∑
σ nrσ =

∑
σ ψ

†
σ (r)ψσ (r), can be expressed

in terms of the Bloch mode functions, ψ†
σ (r) =

∑
q,m eiqruq,m(r)c

†
q,m, where uq,m(r) is the moiré-

periodic part of the single electron wave function, quasimomentum q lies within the moiré (folded)
Brillouin zone, m is moiré miniband index, and operator c†

q,m creates electron in that mode.
Suppose we are only interested in the interactions within one miniband. Dropping the miniband

index, the Hamiltonian becomes

Hint =

∑
r,r ′

v(r − r ′)ei(k−k′)r+i(p−p′)r ′c†
kσ ck′σ c

†
pσ ′cp′σ ′ fkk′ (r)fpp′ (r ′), (31)

where fkk′ (r) = uk(r)u∗

k′ (r) is moiré-periodic. For deep minibandsm, uk(r) will be nearly independent
of k, and thus f mkk′ (r) ≈ |uk=0,m(r)|2 ≡ ρm(r) is the single electron density (scales as 1/N , where N
is the number of sites in the whole system). It is a periodic function, and thus can be expanded in
harmonics

ρ(r) =
1
N

∑
G

eiGrρG,

where G = mG1+nG2 are the lattice points of 2D moiré reciprocal lattice. By construction, ρG=0 = 1.
In the absence of moiré modulation this is the only non-zero ρG. However, if the density ρ(r) is
modulated, as it is for deep moiré lattice, the number of Gs for which ρG ∼ 1 is given by the ratio
of the real space moiré cell to the area of the support of u(r) within the cell. That is NM/N∗ = L2M/L

2
∗
.
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Substituting this into the interaction Hamiltonian, we find,

Hint =
1
N2

∑
r,r ′

v(r − r ′)ei(k−k′+G)r+i(p−p′
+G′)r ′c†

kσ ck′σ c
†
pσ ′cp′σ ′ρGρG′ , (32)

Requiring now that the scattering leaves both electrons in the same moiré Brillouin minizone
implies G + G′

= 0, and keeping only the terms in the Cooper channel we find

HCooper =
1
N

∑
k,p,G,σ ,σ ′

ṽk−p+Gc
†
kσ c

†
−kσ ′c−pσ ′cpσ ρ2

G. (33)

For short range interaction, ṽq is momentum independent and thus we see the moiré enhance-
ment of interaction by the factor

∑
G ρ

2
G ≈ NM/N∗. Note that this result does not require that v(r)

is atomic-scale local: same enhancement applies as long as the range of v(r) is less than L∗
=

√
N∗.

If interaction has a longer range, Lint > L∗, then the amplification factor is reduced to L2M/L
2
int . Truly

long range interaction, such as unscreened Coulomb, is not enhanced by the moiré modulation at
all. This will be critical when we discuss twisted bilayer graphene in the next section.

5. Carbon superconductivity

In this section we present estimates of the key parameters that determine the viability of the
phonon origin of superconductivity in twisted bilayer [9,30] and double bilayer [12] graphene.
The analysis is again qualitative, focusing on absolute and relative strengths of phonon-mediated
attraction and Coulomb repulsion, ignoring the precise details of materials and band structure. The
conclusion that we reach is that the phonon-mediated pairing interaction strength, combined with
the high density of states in these systems are sufficient to make them λ ∼ 1, intermediate coupling
superconductors. As discussed in Section 4.2, under such conditions Tc can reach about 10% of Debye
frequency or Fermi energy, whichever is less. (In twisted graphene structures, the miniband widths
are a few meV, much smaller than the characteristic phonon frequency of about 100 meV).

Following the logic of Section 3, we start from the ‘‘parent’’ untwisted, but highly doped,
graphene and then turn to the twisted moiré system. This allows to contrast clearly how the
low-density moire system is related but different from its highly doped uniform parent.

5.1. Doped graphene

A lot is known about the form of electron phonon interaction in graphene [31]. Qualitatively,
however, the coupling between electrons and LO phonons can be easily estimated by noting
that the primary effect of carbon–carbon bond length on itinerant electrons is to change the
overlap between π orbitals. The local electron–phonon interaction can then be approximated by
the Holstein coupling of Eq. (4), with α ≈ tπ/a0 and the mass of the Einstein phonon by the carbon
mass, M ≈ MC . This leads to the following estimate of the phonon-mediated attraction strength
between electrons

U ∼
(tπ/a0)2

MCω
2
0
. (34)

Here ω0 is a typical LO phonon frequency, which is of the order of 100 meV. An estimate for this
interaction, given that tπ/h̄ω0 ∼ 30, is about an eV. In combination with the band width of several
eV, this gives λ in the intermediate coupling range.

To determine feasibility of superconductivity, we need to compare this attraction strength with
the strength of Coulomb repulsion. In the Fourier space, the phonon-mediated interaction is flat,

V ph
q ∼ −

t2π
MCω

2
0
. (35)
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The Coulomb interaction in stand-alone graphene at charge neutrality point is unscreened,
V (r) = e2/ϵr , where ϵ is the dielectric constant of embedding medium. In doped graphene, the
screening length becomes finite, qsc ∼ kF [32]. In the Fourier space this leads to

V C
q ∼

e2

ϵ(q + qsc)
. (36)

In the presence of a metallic gate distance d away from graphene, qsc ∼ max(1/d, kF ).
Qualitatively, we expect that if phonon mediated attraction dominates, then there is a good

chance for phonon-mediated superconductivity. The ratio of the two interactions is⏐⏐⏐⏐⏐V ph
q

V C
q

⏐⏐⏐⏐⏐ ∼ ϵ

(
tπ
h̄ω0

)2 me

MC
qsca0. (37)

In this estimate we ignored the distinction between the carbon mass and the reduced mass of
the oscillator, lattice constant a0 and the Bohr radius and other order 1 constants, focusing on
the parametric dependencies. In the heavy doping regime, qsca0 ∼ 1. Taking tπ/h̄ω0 ∼ 30 and
ϵ ∼ 10, we find that the two interactions are indeed comparable, even without pseudopotential
renormalization [16].

5.2. Twisted moiré graphene

In the twisted graphene devices, the density of carriers is very low, L−2
M ≈ 10−4 electrons per

atomic unit cell. In some devices, there is also a gate distance d away, which can be comparable
to LMa0. This implies that qsc ∼ 1/(LMa0), which would make the ratio of phonon to Coulomb
interactions in Eq. (37) tiny!

However, with the moiré amplification, as we saw in Section 4.2, the short range interactions
are enhanced by the factor (LM/L∗)2, while Coulomb, screened on distances LM , is not! Thus, the
moiré version of Eq. (37) is⏐⏐⏐⏐⏐V ph

q

V C
q

⏐⏐⏐⏐⏐
moire

∼ ϵ

(
tπ
h̄ω0

)2 me

MC

a0LM
L2
∗

. (38)

This new interaction ratio can become again order 1, e.g. if LM ∼ 100a0 and L∗ ∼ 10a0. This
is sufficiently close to the theoretically expected value of L∗, [33–35] supporting the point that
phonon induced interaction remains competitive and may even overcome Coulomb repulsion in
moiré structures despite very weak screening.

Attractive overall interaction by itself does not guarantee superconductivity at a reasonable tem-
perature. However, at the magic angle, not only the attraction is enhanced, but also the electronic
DOS at low energies is much higher than in pristine graphene. The nearly flat electronic minibands
that appear near the magic angle can have bandwidths wM of a few meV. This corresponds to
DOS∼ 1/(wML2M ) which happens to be of the same order as the DOS in heavily doped graphene,
1/(tπa20).

As we saw in the previous section, for heavily doped graphene λ is in the intermediate
coupling regime. With the enhanced interactions in moiré twisted graphene, λ can easily reach
intermediate or even strong coupling. In this case, as discussed in Section 4.2, Tc can be as high
as 0.1min(ω0, ϵF ) → 0.1ϵF , which is consistent with the experimental observations of a few
Kelvin Tc ’s.

5.3. Caveats

In this section we focused on the energetics in an attempt to see whether electron–phonon
coupling in graphene has enough bare strength and – in the case of moiré – spatial structure
to overcome Coulomb repulsion and yield a reasonable Tc . It appears that it does. This however
does not rule out other types of correlated physics, particularly given the observed proximity to
many commensurate-filling insulating phases, usually attributed to Mott physics [30]. Similar to
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other strongly correlated systems, including cuprates, twisted moiré graphene exhibits linear in
temperature resistivity at elevated temperatures [36]. On the other hand, suppression of Coulomb
interaction by reducing the distance between graphene layers and a metallic gate, suppresses
insulating states while having only small or positive effect on superconductivity [37,38], which
speaks in favor of distinct origins of the insulating and superconducting states.

Even within the phonon scenario, there are many peculiar features that are invisible to the
coarse approach that we took. More careful consideration reveals that superconductivity mediated
by phonons is likely to be in the d-wave channel [34], and can be topologically nontrivial [39]. It
is also interesting to remark that the superconducting order parameter in moiré systems is highly
inhomogeneous, reminiscent of Josephson junction arrays. One should keep in mind however, that
the similarity is superficial, since each grain on average contains at most one Cooper pair, and thus
it is impossible to define a phase associated with the ‘‘island’’. That does not prevent, however, the
possibly having an interesting order parameter structure intra-moiré unit cell.

6. Discussion

In this paper we qualitatively studied how superconductivity is affected by a large-scale periodic
modulation superimposed on top of the periodic atomic potential. This work was inspired by the
recent observation of superconductivity at extremely low electronic densities in twisted multilayers
of graphene [9,12,30] and transition metal dichalcogenides [13].

Small relative twists between layers lead to long period moiré potentials that can have non-
perturbative effect on electronic wavefunctions. Instead of trying to capture detailed physics of
particular systems, we attempted to more broadly examine qualitative effects of such large scale
structures on superconductivity. We have found that quite generally, the effect of supermodulations
on superconductivity is positive: both local attractive interactions and electronic density of states
are enhanced, both leading to an increase in the dimensionless electron phonon coupling constant λ.
Moreover, the phonon softening that usually accompanies strong coupling limit and negatively
affects Tc is reduced in the low density limit.

So it would appear that moiré modulation is an overall excellent way to enhance superconduc-
tivity. There is a trade-off however: low electronic density in moiré systems implies low superfluid
density. This not only entails lower critical current, but also can limit Tc . Indeed, in 2D systems,
superfluid density, and hence the density itself, controls the Berezinsky–Kosterlitz–Thouless (BKT)
transition temperature [40,41]. General analysis of optical sum rules [42] leads to the bound on Tc
for electrons in parabolic band, Tc < ϵF/8: Small ϵF necessarily limits the allowed Tc , even if Tc/ϵF
can be large. The same bound also follows from Eq. (29). In order to optimize the absolute value of
Tc , systems need to be tuned to the regime where λ ∼ 1, while ϵF is still large.

It is interesting to note a parallel between moiré superconductors and cuprates. Based on
experimental [43] evidence and theoretical reasons [44], it is likely that the peak of superconducting
transition temperature as a function of doping in cuprates occurs at the crossover between the
BCS and BKT (phase fluctuations dominated) regimes. The connection between moiré systems and
cuprates may be even closer, than superficial comparison of the phase diagrams of two systems
suggest. In many cuprates, charge stripes [45] may be providing an effective superstructure, similar
to moiré. This supermodulation is also capable of locally increasing pairing interaction at the
expense of reduced superfluid stiffness [46].

There is also a tantalizing connection between moiré superconductivity and the negative-U
center mechanism for pairing proposed by Anderson [47]. This is one of the leading candidate
mechanisms for superconductivity [48] in lightly Tl doped semiconductor PbTe [49]. For strong
moiré supermodulation, due to the suppression of Coulomb repulsion relative to the phonon-
mediated attraction, a single moire-cell can play a role similar to the negative-U center, pairing
electrons within itself. In contrast to the doped semiconductors, where pairing is conjectured
to occur on the randomly distributed valence-skipping dopants, the moiré cells are ordered in
real space, and the minibands are much narrower than the phonon frequency. This alleviates
some of the main concerns [48] that were expressed with regard to the applicability of the
negative-U mechanism to the doped PbTe (and related) systems. It is possible that moiré twisted
superconductors may represent a clean realization of the Anderson’s idea.
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Using moiré twist is one of the most radical new approaches to tune material properties.
Even though there are limitations (e.g., the trade offs between Tc and superfluid density), it is
clear that the ability to accurately impose supercell structure provides a powerful additional knob
that can be added to the existing repertoire of chemical, structural, mechanical and other means
for controlling materials. It is quite likely that this additional flexibility may allow to construct
synthetic material with properties that are hard or impossible to reach otherwise, including room
temperature superconductivity.
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