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We develop a theory of quantum T = 0 phase transition
(q-SMT) between metal and superconducting ground states in a
two-dimensional metal with frozen-in spatial fluctuations SA(r)
of the Cooper attraction constant. When strength of fluctuations
8A(r) exceeds some critical magnitude, usual mean-field-like
scenario of the g-SMT breaks down due to spontaneous forma-
tion of local droplets of superconducting phase. The density of
these droplets grows exponentially with the increase of average
attraction constant A. Interaction between the droplet’s order
parameters is due to proximity effect via normal metal and
scales with distance oc 1/rf , with 2 < B < 3. We account
for this interaction by means of a real-space strong-disorder
renormalization group (RG). Near the q-SMT the RG flow is,
formally, a dual equivalent of the Kosterlitz-Thouless RG. The
corresponding line of fixed points describes a Griffiths phase of
a metal with large fractal clusters of superconducting islands.
Typical number of islands in a cluster grows as Ns ~ 1/8, where
0 < § < 1 is the distance to the critical point. Superconducting
side is described by a runaway of RG trajectories into the strong-
coupling region. Close to the transition point on the SC side,
0 < —§ < 1, RG trajectories possess an extremum as function of
the RG parameter |5|"/? In(1/Tt). It results in a wide temperature
range where physical properties are nearly T-independent. This
observation may be relevant to the understanding of a strange
metal state frequently observed near q-SMT.
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1. Introduction

A number of potentially superconducting materials and alloys lose their superconducting proper-
ties upon increase of disorder-induced electron scattering, suppressing superconducting transition
temperature T, to zero. The resulting state may be either insulating, with a metallic state right at the
quantum critical point, or metal-like in the whole range of parameters. The first situation is referred
to as Superconductor-Insulator Transition (SIT) [1,2], while the second one as Superconductor-Metal
Transition (SMT). In this paper we will study SMT in two-dimensional (2D) or quasi-2D disordered
materials.

It is usually assumed that a genuine metallic state cannot exist in 2D due to Anderson local-
ization. However, the corresponding localization length is exponentially long for not too strong
disorder: [?? ~ [e™¢/2 where g = h/e’R5 is the dimensionless conductance of the film at high
temperatures (when semiclassical Drude law is applicable) and [ is the elastic mean free path for
electrons. The corresponding energy (and temperature) scale where localization becomes relevant
equals Ty, ~ 7~ ! exp(—mg), where 7 stays for elastic scattering time. Below we consider situations
when g > 1 is sufficiently large and thus exponentially low Ty, can be treated as zero, since all
temperatures in our problem will be much higher. Under such an assumption, it is legitimate to
consider T = 0 metal state and quantum phase transition of the SMT type in 2D (which may become
SIT transition if the temperature is reduced below Tyc[3]).

A natural mechanism of SMT transition upon increase of potential disorder is due to increase
of effective Coulomb repulsion between slowly diffusing electrons [4,5]. The corresponding critical
value g, of the Drude conductance g equals g. = % In? T:? (with T for the superconducting
transition temperature of the same material in the clean limit), and can be rather large, g. =~ 10.
This mechanism is known to describe quite well the major features of the SMT in a number of
materials with high electron density and high disorder, like amorphous MoyGe;_y, Nb,Si;_, and
many other. An extension of the Finkel'stein theory [4,5] was developed to treat inhomogeneous
systems composed of small superconducting islands in contact with dirty metal [6-8]. Such an
approach allows to locate the SMT position depending on the system parameters (conductance g,
fraction of superconducting regions x < 1, etc.)

However, the nature of the ensuing metal phase realized at g < g. at very low temperatures
is not understood yet. Strong enhancement of conductance (compared to its magnitude in the
normal state g) is frequently observed [9] in the vicinity of a quantum transition to superconducting
state. Surprisingly, conductance is weakly T-dependent in this phase dubbed therefore ‘strange
metal’. In some cases [10], strange metal state has been shown to have extrinsic origin (insufficient
filtering of high-frequency noise in the measuring system). However, it is not clear if all numerous
observations of a ‘strange metal’ state are of the same origin. In the present paper we discuss
another possible origin of the strange metal behavior: a T = 0 Griffiths phase dominated by large
statistical fluctuations due to frozen-in fluctuations of the Cooper interaction amplitude.

To derive these new results, we employ a model of a diffusive metal with relatively large
conductance g and spatially fluctuating Cooper interaction A(r) = A + SA(r) (A > O corresponds to
attraction). We find that at sufficiently strong fluctuations §A(r) characterized by “disorder strength”
w (to be defined precisely below) an unusual type of quantum SMT occurs upon increase of the
mean value of the Cooper interaction A.

The rest of the paper is organized as follows. In Section 2 we formulate and study a special
kind of Anderson localization problem that describes eigenvalue spectrum and eigenfunctions of
the propagator of superconducting fluctuations L(r, r’) within the random-A model. We present
numerical results for the spectrum density p(E) and statistical properties of the eigenfunctions ¥g(r)
related to the L(r,r’). It will be shown that eigenfunctions near the lower edge of the spectrum
Eo (defined as p(E) = 0 at E < Eg) are extended at relatively small strength of disorder, w,
but localized at large enough w; these qualitatively different regimes are separated by the critical
disorder strength w.

Thus the nature of q-SMT is determined by emergent superconducting granularity. Note the
difference between this phenomenon and previously studied superconducting granularity that is
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due to strong random potential scattering of electrons [11-15] and occurs near SIT. In the model
we discuss in the present paper superconducting islands occur within a ‘sea’ of a normal metal.

In Section 3 we extend our analysis to non-linear and non-local terms of the dynamic Ginzburg-
Landau action. We study phase dynamics of individual superconducting islands and derive an
effective interaction between phases of different localized islands. We show that this interaction
is of the same functional form that is known for proximity-induced Josephson coupling between
artificially prepared superconducting islands on top of diffusive 2D metal, analyzed previously in
Refs. [6-8,16]. Upon increase of mean Cooper attraction A, this interaction becomes strong enough to
produce correlations between phases of different islands. At this stage, a macroscopic description of
superconducting correlations on a length scale containing many original islands becomes necessary.

To treat these correlations quantitatively, in Section 4 we use a version of Strong-Disorder
Renormalization Group (SDRG), originally due to D. S. Fisher [17,18], and extensively reviewed
in [19-21]. We find our problem to be formally similar to the one studied in Ref. [22] and identify
disordered Griffiths phase with a line of fixed points of the SDRG transformations. Long-range
interaction between localized islands of superconductivity leads to formation of strongly coupled
fractal clusters of islands with a slow collective dynamics. Superconducting phase is then identified
with a runaway of the SDRG solution into the strong-coupling regime and generation of a long-but-
finite spacial scale where macroscopic superconducting coherence sets in. In Section 5 we discuss
low-temperature physics of the strange metal and superconducting phases. Finally, Section 6 is
devoted to the discussion of results and conclusions. Supplemental material Sections (S1 and S2)
contain a number of technical details of our theory.

2. Anderson localization of superconducting modes
2.1. Model

We consider a model of normal metal with moderately large dimensionless conductance g >
1, with phonon-mediated Cooper attraction characterized by BCS coupling strength A,. Coulomb
interaction between electrons is considered to be in the ‘universal limit’, i.e. screened static Coulomb
potential is equal to v, where v is the electron density of states (per single spin projection).
The effect of Coulomb interaction and disorder upon superconducting instability threshold [4,5]
can be represented [7,23] via effective repulsion constant A; = 1/4/2rg <« 1. It is important
to notice that effective repulsion A, cannot be simply subtracted from the attraction constant A,.
Indeed, superconducting instability due to the presence of A, can be described by summation of
ladder diagrams within Cooper channel only (electron processes with a small total momentum of
electron pair). On the other hand, Coulomb interaction enters via the density-density channel, and it
is necessary to take into account non-ladder diagrams of ‘parquet’ type. In the mean-field scenario,
quantum phase transition from metal to superconducting state occurs upon increase of the average
attraction (1) against the background of repulsion those strength is determined by A,.

The stability of the normal state with respect to the effect of superconducting inclusions is
determined by the properties of superconducting propagator L(w, q). The quadratic part of the
Ginzburg-Landau (GL) functional reads

2—/ /drldrzA )0, 1 — £2)A(r2). (1)

We start with expression for I7T(w, q) at « = 0 and in homogeneous system. Technically it
is convenient to account for the effect of Coulomb repulsion on the Cooper channel in the way
it was done in Refs. [24,25]. Namely, we introduce the Cooperon screening factor wq(e) which
modifies usual expression for the Cooperon amplitude Cy(e) = v /(Dg? + 2|e|) multiplicatively:
Cq(e) — Cy(€)wg(e). In the limit of T — 0, the screening factor wg(e) obeys then the following
equation:

deq 20(e€q) 1 wq(ﬂ)
wq(f) =1—- — In s
2r g € + €1t Dg* + |eq]

(2)
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where 60(x) is the Heaviside step function. Eq. (2) for the function wq(€) = wq(¢), with ¢ = In(1/e7),
can be rewritten (within the logarithmic accuracy) in the following form:

&q
wile) = 1= 32 [ deymintc. cougteo) 3)
0
where {; = —2In(ql). Solution of Eq. (3) with initial condition wq(0) = 1 is
wy(¢ < &q) = cosh(Ag¢) — tanh(Aggy) sinh(Ag ¢ ), (4)
1
> = —
wel§ = &) cosh(Ag¢q)
The Cooperon screening factor modifies I7(0, q) as follows:
v v
10,q)= — — | de— . 5
o= / € a3 (5)
Substitution of Eq. (4) into Eq. (5) and integration leads to (we also account for finite frequency w)
N(0.q)= - — - + — e, q) (6)
a),CI—)L* e Mg olw, q),
with
I1, = 2 7
O(wa q) - 25 ) ( )

1+ [(ql)? + 201]

which at gl < 1, wt < 1 becomes ITy(w, q) ~ 2 [(ql)2 + Za)r]ug. Now we account for spatial

fluctuations of the bare Cooper attraction constant A, and replace the function I7(w, q) by the
operator

. A
(o, q;1) = % [A fr) — 1+ My(w, Q)] (8)
g *

It is more convenient to parametrize the disorder as
Ag

_ ] = 8 . 9
) o+ u(r) 9)
assuming that random field u(r) has zero mean and
A
So=(—2-)—-1 (10)
A1)

is the bare distance to superconductor-metal transition at T = 0. We will assume u(r) to be Gaussian
with correlation function u(r)u(r’) = Af(|r|/b) (although by definition u(r) > —1—4§y, this constraint
is not problematic, as we discuss below). Here A is the dimensionless fluctuation strength and b is
the correlation length, while function f(x) is assumed to be fast decaying at x > 1 and normalized
according to f f(x)d?>x = 1. It turns out the properties of L(r) depend crucially on the value of
dimensionless parameter w = Ab?/I?, which is determined by both the fluctuations of A,(r) and
the electronic mean free path [. Disorder correlation length b can be larger than I, but b is always
smaller than localization length of eigenstates discussed below.

The superconducting propagator L(w, q) is given by the Fourier transform of the average solution
L(w; 1, 1) of the equation

(80 + u(r)) Llw: 1. ¢) + / e Moo, 1 — 11)C(@: 11, )

= )L—gS(r—r’). (11)
v
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Fig. 1. Characterization of the eigenstates of Eq. (13) at A, = 0.2 and several values of disorder w. a: DoS p(E) found
from ED (dots), disorder w is indicated on the legend. Solid lines: p(E) as found from SCBA, Eqs. (14) and (15). In the tail:
dashed lines are fits by Eq. (18). b: w-dependence of the coefficient C; in Eq. (18); we expect w, to be in the interval
(0.4 —0.5). c: Inverse participation ratio P, at w = 1.2 for several energies E = —0.8, —0.6, —0.4, —0.2, 0.0, 0.2, 0.4 from
cyan to magenta. Observe that states become less localized upon increasing the energy E from the tail to the bulk of the
spectrum. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

As a result,

R r’
L(r—1)=L(w,r,1) = Z E+ 8% o (12)
o —

where ¥,(r) and E,, are determined by the following equation:

f @0 o, T — 1) + U(DS(E — 11 )1Wn(E1: @) = Extnr: ) (13)

To avoid confusion, we emphasize that variable E in the above equation (and below) has nothing
to do with single-electron energies.

The critical point of the mean-field transition is determined by the divergence of L(w — 0, q
— 0). In the absence of Cooper constant fluctuations, w = 0, it occurs at §; = 0. Relatively weak
fluctuations u(r) shift it to some nonzero §., as long as eigenfunctions ¥,(r) remain delocalized
near the band edge, i.e. for smallest values of eigenvalues E, of the operator (13) at w = 0. In this
case §. = — min(E,). Below we find, at sufficient increase of w, localization of eigenfunctions with
eigenvalues close to the spectral edge, invalidating this simplest mean-field scenario.

2.2. Numerical analysis

We start from evaluation of the Density of States (DoS) of the operator defined by Eq. (13), in the
self-consistent Born approximation (SCBA). DoS p(E) is then determined by the following equation:

1
P(E) = —ImE(E + o (E)), (14)
4
where o (E) can be found from nonlinear self-consistency equations
o(E) = w?X(E + o(E)), (15)
1 ! !
S(E) = 7/ (ghd(ql) .
27 —E + IT,(0, q)

Notice that disorder enters Eq. (15) via the parameter w = Ab?/I?, where factor 1/I? appears due to
the high-momentum cutoff gn,.x = 1/1 in the integral. Solving Eq. (15) numerically and evaluating
the DoS in Eq. (14), we find the results, presented in Fig. 1a by solid lines for several values of
disorder. According to these results, the sharp edge of the eigenvalue spectrum survives within
SCBA approximation, and the position of this edge is —6.(w). For Ay = 0.2, the function §.(w) was
determined numerically to be §.(w) = 0.34w in the range of w < 1.6; in general, the slope d§./dw
depends on the value of 2.
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Thus the SCBA result for the average superconducting propagator reads, in the infrared limit
ql, vt K 1:
Ag 1
v Sscea + 2[(qD)? + 2|o|T]?s’
where 8scga = 8o — ¢ is the distance to the critical point determined within SCBA. Note that the
primary effect of fluctuations in 1/A,(r) is to strengthen a tendency to superconducting instability,
which occurs now at some positive 8o = §.(w).

To check the above results, we evaluate the same DoS via exact diagonalization (ED) of the

discretized operator in Eq. (13), with the lattice constant equal to the mean free path I. For disorder,
we choose correlated Gaussian distribution with correlation function

(16)

Lu)(q) =

(u(r)u(0)) = %Ko(r/b) (17)

at long distances r > L.

We discuss here the case of short-range correlations, b = 0.25. The resulting v(¢) in a broad
energy range is shown in Fig. 1a. We are mainly interested in the properties of the spectrum at
energies at and below the spectrum edge of an ideal (w = 0) system. The results for p(E) found
from ED are shown in the main panel of Fig. 1a with dots for several values of disorder for square
lattice of linear size L = 161 with periodic boundary conditions. Apparently, the SCBA describes the
exact DoS well for large enough energy E > E,(w) for all disorder strengths w. The same is true for
smallest disorder w = 0.4 in the whole range of energies: the effect of disorder reduces to the shift
of the spectrum edge by —4., see Fig. 1a.

However, at slightly stronger disorder, w = 0.8, an enhancement (with respect to SCBA result)
of the DoS at negative E is already seen; the same feature becomes more evident at larger disorder,
w = 1.2 — 1.6. Functional form of this tail fits well by simple exponential dependence

In p(E) = Cy(w)E — Co(w). (18)

Parameter C; as function of disorder strength w is shown in Fig. 1b. Exponential form (18) of the
DoS will play a crucial role in our analysis below. Before proceeding, let us stress that the fact that
the left tail of the DoS p(E) extends to arbitrary large negative E is related to the assumption of
Gaussianity of u(r). Due to the constraint, mentioned after Eq. (10), the Gaussian approximation fails
for E &~ Epin = —1 — 8¢ and a sharp band edge should be present at E = E;, in any realistic model
for u(r). This is not a problem as there are still plenty of states for which the Gaussian approximation
is valid.

In order to characterize the wavefunctions in various parts of the spectrum, we calculate the
inverse participation ratio P, = (Zr w“(r)) (averaging over disorder realizations is implied) as
function of the system area S = L? and energy E at several w. Generally, one expects this scaling
to be of the power-law form P,(S — oo) = S™* with u distinguishing between metallic (u = 1),
insulating (u = 0) or fractal (anything in between) behavior of the wavefunctions. Fig. 1c illustrates
that the states become much less localized with increase of E.

Our problem belongs to a class of problems with deterministic power-law hopping and on-site
disorder [26-28], see a recent review [29]. The data discussed above indicate that the eigenfunction,
corresponding to the lowest eigenvalue of the operator defined in Eq. (13), undergoes a localization
transition that happens with increase of the disorder. Similar transition was studied earlier in
[30-33] for other power-law-tunneling models with long-range tunneling amplitude decaying as
r~# and on-site disorder in 1D and 2D cases; see also recent papers [34-36]. Although it is expected
that all states (that is, bulk states together with the edge one) are localized in thermodynamic limit
at w > w, and d = 2 in such a system [36], we will make use of the fact that localization length of
the excited states with sufficiently large E becomes long, as demonstrated in Fig. 1c.

Perturbative result about the absence of localization of the edge modes at weak disorder follows
then from simple power-counting arguments provided in Ref. [31]. In our model real-space hopping
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~ r~# originates from non-analytic behavior of the kernel given in Eq. (7), thus 8 = 2 + 4 in our
case. More precisely, in Eq. (13) we have (at small A,):

4
(0, 1) ~ —ﬂ—;’wlrﬂ (19)

at |r| > L For 2D space, the arguments of Ref. [31] are valid under the condition 2 < 8 < 3, thus
the above inequality translates to 0 < A, < 1/4.

With increase of disorder w the edge localization transition occurs, leading to appearance of
localized eigenstates in the Lifschitz tail. In the present paper, we do not aim to study this specific
transition in details. Our analysis in what follows will rely on the appearance of the well-defined
exponential tail of the spectrum, with localized eigenstates, at super-critical disorder w > w¢(Ag).
For A; > 1/4, localized states in the tail appear at any disorder and w, = 0. At A, — 1/4 — 0,
critical disorder strength w. vanishes continuously, see Ref. [31,33].

The papers [37,38] predict for this type of problems (where usual smooth solution for Lifschitz
tail does not exist) existence of a Gaussian tail in the DoS, In p(E) o« —E?, for arbitrary weak disorder.
This refers to the usual Schrédinger equation with random potential in high dimensions d > 4 [37],
and to systems with a power-law quasiparticle dispersion [38] of the type we consider at A; < d/8.
Our numerical data (not shown) provide signatures of existence of this kind of states at weak
disorder, although with extremely low values of DoS, much smaller than in a simple exponential
tail shown in Fig. 1a for a super-critical disorder.

To conclude this Section, we emphasize again the dependence of the key parameter w = Ab?/I?
on both spatial fluctuations of Cooper constant (parameters A and b) and on electronic mean free
path L In brief, §A(r) fluctuations are more efficient when elastic scattering is strong.

3. Localized superconducting islands

We have found in Section 2 that eigenvalue spectrum for static superconducting fluctuations
A(r), as determined by Eq. (11) at o = 0, is unbounded from below once disorder parameter
is super-critical, w > w,. According to Eq. (12), it leads to instability of all fluctuation modes
with eigenvalues E;, < —&p. Number of these (linearly) unstable modes grows fast upon increase
of average Cooper attraction A. The amplitudes of these modes become finite upon account of
nonlinear terms in the action, so one finds emergent superconducting ‘islands’ immersed in a normal
metal.

Thus our strategy is, first, to study the properties of localized islands of superconductivity, and in
particular dynamics of the order parameter phases ¢;(t) associated with those islands. Second, we
will account for the interaction between phases of different islands. Such interaction comes about
due to nonlinear coupling between localized and delocalized eigenmodes of the linear problem,
which are defined by Eq. (13). Then the coupling between phases ¢, and ¢, of different localized
modes is mediated by the propagator of delocalized modes, Eq. (16).

3.1. Effective single-island action and its parameters

Individual localized modes are described by order parameters A;(r, t) = a;(t)y;(r) where v;(r)
are normalized eigenfunctions of the linear problem (11), and a;(t) are time-dependent complex
amplitudes. The imaginary-time action S [a(t)] in terms of the amplitude a;(t) is:

o B; dw ()2
S=v [/ dt (kgl|a,-|2+ ;wr‘) + [ 32 rild®) ] (20)

(@

where @; )is the Fourier-transformed ai(t). Here o; = E; 4+ §p, so all modes with negative «; are
linearly unstable and the account of quartic term is mandatory; we discuss the vertex B; a bit
later. Last term in S [a(t)] accounts for damping of superconducting fluctuations in spirit of time-
dependent Ginzburg-Landau (TDGL) theory. It is non-local in the imaginary-time representation,
so we prefer to present it in the frequency domain. Note that under the assumed condition that
superconducting islands cover small portion of system area, such a dissipative term is natural,



8 K.S. Tikhonov and M.V. Feigel'man / Annals of Physics 417 (2020) 168138

0.8
e 08
° 1.2
°
.
SN T
— ' e o
.
° o
e ® o
°
o ° e ®
0.4 w : ‘
—1.2 —1.0 —0.8 —0.6 —0.4
FE

Fig. 2. The coefficient I'(E) in Eq. (21) for two disorder values w = 0.8 and w = 1.2, as shown in legend.

as dissipation is provided by gapless electrons in surrounding metal. Within usual TDGL theory
operating at T > 0, the coefficient I" ~ 1/T and seems to diverge in the T = 0 limit. Indeed it is
the case in the standard scaling theory, Ref. [39]. The crucial point of our present analysis is that we
deal here with localized superconducting fluctuations, and the presence of finite localization length
L; corresponding to an eigenmode v;(r), leads also to a finite value of the kinetic constant I ~ Li2 /D,
i.e. it is given by electron diffusion time through the size of the corresponding superconducting
eigenmode. The same estimate was obtained in Ref. [8] by a different method and for somewhat
different formulation of the problem.

Quantitatively, the value of I can be found by the analysis of the w - dependence of an
eigenvalue Ej(w) of the general linear operator defined by Eqgs. (7), (11) in the range of small
w <KL D/Lf. Indeed, at small w the major part of this w- dependence can be obtained by a first-order
perturbation theory over w, without modification of the eigenstate ;(r). It leads then to linear in
|w| correction to the eigenvalues

Ei(w) = Ei(0) + Ii|o| (21)

which leads to the last term of the action (20). The coefficient I'; depends on energy E; and disorder
w. Illustrative examples of such a dependence are shown in Fig. 2 for two different strengths of
disorder.

Now we turn to the estimates for the quartic vertex B;. Again, finite localization length L; leads
to a finite value of B; even in the T = 0 limit, contrary to usual results [39]. Simple dimension
estimates indicate that B; ~ Ll.2 /D?. For accurate derivation of B;, we start from general expression
for the quartic term in the action as functional of slowly varying order parameter field A(r, t),

sitate, 01 = [ deriae, o) (22)
where quartic part of the free energy F4(A) acquires the form (for time-independent A(r)):

Fy(A) = g / ML driA(ry)A%(15) Ar3) A*(ra)Ba({r:}) (23)
with (compare with Eq. (15) in Ref. [40]):

wi(€) ) ) ) .
By({r;}) = #T Z mr?(n —12)8(r1 —13)8(r1 — r4)H(—101, —i07, —id3, —ids)

(d?
”TZ”k 1/ LU E) 8(P1 + P3 — P2 — P4)ePIIPIBTIRTRATAY (py ) p3, py), (24)
le| + Dp}/2
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where ‘screening factors’ wy(e) = wp,(€) are given by Egs. (4) and Hikami box reads

D
He({pi) = lel + 2 [(p1 — p3)* + (P2 — pa)’] . (25)

The order parameter A(r) in this expression should be written in terms of the eigenstates
Va(r) of quadratic part of the action Sy: A(r) = ), ann(r). As a result, a quartic mode-coupling
between a, arises. We will first discuss the contributions where all eigenstate indices are equal:
Ffll) =z dou |a,|*By. It is optimal to rewrite B, as follows:

Bu=7T) / & [l€]|Gn.e|*(r)+ (26)
g (IGn.cl*(r)Re Gy e(r)F; (1) + Re Hﬁ,e(rxcz,e)z(r))]
with
Gre(r) = ij lelszpzwp(e)wn(p), (27)
Hy (1) = ij lelfr?’wu}p(e)%(p),
Fre(r) = ; lél‘fg’zwwp(e)wn(p).

where factors wq(€) are defined in Eq. (4) and ¥,(p) stay for Fourier-transform of eigenstates
Ya(r). Below we evaluate integrals in Eqs. (27) at T = 0 for eigenfunctions v,(r) localized at
relatively short L,. These integrals are dominated by ¢ ~ D/Lﬁ and p ~ 1/L,, thus the factor
wq(€) &~ 1/cosh(2A¢ In(L,/1)). For the final result of integration in Eq. (26) we find an estimate
LZ
Bn ~ —n’ (28)
D? cosh*(2Ag In )

which differs from the dimensional estimate B, ~ Lﬁ /D? (provided originally in Ref. [8]) by

cosh?(...) factor only. We do not expect this modification to be significant due to smallness of Ag
and not very large ratio L,/I for relevant localized eigenstates y,(r).

3.2. Relevant time-scales of localized superconducting modes

At large positive o; = E; + §p typical frequency of eigenmode is
wi ~ i/ g} ~ aiD/AgL?. (29)

This estimate comes from the comparison between 1st and 3rd terms in the action (20). At large
negative o; the energy is minimized by |a;|*> = —oi/AgB; ~ |i|D?/Agl? and two different
fluctuation modes appear. Longitudinal mode corresponds to variation of |g;|, and its frequency
is wj ~ |ailD/Agl? = DIE; + 8o|/AgL?. We will see now that at large enough |e;|, the typical
timescale of the transverse (phase rotation) mode become much longer. We define local phase ¢;(t)
via relation a; = |a;|e?") and obtain phase-dependent action in the frequency domain

Slgl = - f dolo| Tl explip)),, xp(—ig)) (30)
g

g
4 Ag

=C

/ dolol(7 — E) (exp(ip)),, (exp(—ip))_, (31)
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In Eq. (31) we substituted the estimates for I'; and B; together with the relation 47vD = g and C is
some factor ~ 1. Equivalent action in the time domain is

G sin®[(¢(t1) — ¢(t2))/2]
Sle(t)] = 2 f dtdt, 6 — ) , (32)
where
8 s &
Gl - )&g |El + 80| - )‘«g (El + 80)- (33)

The action (32) is similar to the one defined in Eq. (3) of Ref. [6], where phase dynamics of
artificially prepared superconducting islands was studied; the constant G; plays the role of the
effective Andreev conductance measured in units of 4e?/2mh.

Below we consider islands with large values of G;, which definitely exist due to large parameter
g > 1. For such islands, autocorrelation function G(t) = (cos(¢(0) — ¢(t))) decreases logarith-
mically [6] at moderate times t < t;, while at the longest time scales C(t) o Gi‘l(ti/t)z, where
correlation time of the ith island

ti ~ a)i_l exp(Gi/2). (34)

Below we focus on exponential dependence of t; on the parameters of islands entering (34) via G;,
and neglect variations of prefactors w; = |«;|D/ kgLiz, replacing them by some typical frequency scale

atpr
Agl?

loc

a)typ = (35)

Here oy, is the typical value of |E; 4 8| for relevant islands, and Lio. is their typical localization
length. Exponential relation (34) together with exponential form of the DoS of localized states,
Eq. (18), lead to the power-law tail in the probability distribution for the phase relaxation rates
y; = 1/t;. Normalizing this probability distribution per unit area, and making use of Eqgs. (18), (33),
(34), (35) we find, in the range y; < wyyp:

no d A no
Po(y)dy ~ Po <y> a4y _ Porg (y> dy, (36)

leoc Wtyp wyp  Dayp \ wyp
using leoc for typical area of relevant islands. Here
2C1(w)A
no = 2Whs g (37)
cg
Po(do) = 25 e Cot-Civo (38)
cg

with pg < 1 for the probability to find a superconducting island with phase relaxation rate y ~
within an area ~ leoc' This probability is exponentially low in the normal metal state, where
Ci(w)dp > 1. Let us discuss how it is affected by variations in the main quantities describing the
system. (i) Growth of average attraction A leads to decrease of §, (see Eq. (10)) and thus to sharp
increase of the density of islands with slow relaxation rates. (ii) Increase of the disorder parameter
w diminishes the power-law exponent 1, see Fig. 1c. (iii) Increase of the film conductance g at fixed
value of w would result in decrease if 1y. However, since w o« 1/I> o< 1/g? (see discussion in the end
of Section 2) and C;(w) grows fast with decrease of w, the increase of g translates to increase of 7.

Exponent 7q plays crucial role in the further analysis. The (extended) critical domain near g-SMT
is characterized by no < 1, while at g > 1 superconducting islands are of little importance for the
macroscopic properties of the film. Note that average correlation time (1/y) is finite for ng > O,
while its variance diverges for all ny < 1. We will now consider the interaction between different
islands and show that this interaction leads to renormalization of ny downwards.
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(a) AL (b) Al AL
An%b A“%%:/\%%AL
AL A,
Fig. 3. First-order (a) and second-order (b) diagrams for the coupling between phases ¢, of distant islands. Wavy lines
stay for the propagator L,(q).

3.3. Inter-island coupling

Now we proceed with the calculation of the interaction between order parameters of distant
localized islands m and n, both unstable with respect to appearance of nonzero amplitudes of
the order parameter, a, = |a,|e®" and a, = |an,|e¥". Within the quadratic approximation
defined by the action S,(A), Eq. (1), these islands do not interact by construction: ,(r) are the
eigenfunctions of the corresponding linear operator, Egs. (11), (13). To derive the Josephson-type
coupling Fine(¢n — ¢m) we need to account for non-Gaussian contributions to the action, so our
starting point is given by Eqgs. (23), (24).

The simplest relevant diagram is shown in Fig. 3a, it contains one nonlinear vertex B4 and one
loop with dynamic superconducting propagator L,(q), see Eq. (16). We choose here A, = a,y,(r)
and A, = any¥m(r) describing nth and mth localized islands, while summation over two extended
modes is expressed via their propagator L,(q). For time-independent phases ¢, n, the result of
integration over frequency and momenta in the loop shown in Fig. 3a can be written in the form
of the interaction energy:

E = —Jam COS(@m — @n), (39)

where matrix elements jnm = ](an) depend on the distance R, between centers of localized
eigenstates v, ,(r); this distance is well defined as long as Rnm > Ligc. An iqlportant result of the
calculation is that zero Fourier-harmonic of this interaction, J(Q = 0) = ) ' J(R), does not contain
any singularity when the parameter dscga entering Eq. (16) approaches zero. In other terms, the
integral defining J(Q = 0) is determined by the ultraviolet region (large g, w) insensitive to the
proximity to a bulk superconductor-metal transition.

Below we consider another source of long-range interaction, which does contain singular
enhancement at §scga — 0 and thus is the key driving force which establishes long-range coherence
between well-separated islands.

The most long-range contribution to the pair-wise interaction energy between phases ¢, and
¢n appears in the second order of perturbation theory over nonlinear vertex B, and contain one
superconducting propagator L,(R), with its Fourier representation in Eq. (16), see Fig. 3b. In terms
of the interaction contribution to the action S;,; we find, using Eqs. (22), (23), (24):

vz ! !/
S = =2 / dtdt / T2 T dPriB () Ay, ) A%(E, ) A(Es. 1) (40)
xBy({t'i AR (X, ) Am(ry, ) AR (K5, ') X L(rg — ¥y, t — 1),

where propagator L(ry — 1, t — t') = (A(ry, t)A*(r), t')) describes quantum fluctuations of
delocalized modes. A,(r) = a,¥,(r) and A, (r') = an¥m(r’) correspond to the order parameters of
superconducting islands n, m. We assume the islands to be localized around their centers located
at R, and Ry, and define v,,(r) = ¥,;(r — Ry) and ¥, (r') = ¥n(r’ — Ry,). Here v(r) functions are
localized around zeros of their arguments within small lengths L, , < |R, — Rpy|. It is convenient
now to use space-time Fourier representation in terms of L,(q) for the propagator L(ry — 1, t —t’),
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in order to split the whole multiple integral in Eq. (40) into two factorized parts:
2

Vv
—Sint[@n(t), em(t)] = x |an|3|am|3 (41)
do d? )
x / Z# Re [51()s()ArA% | Lo(q) e4Rn—Rm),

where s, () stay for the Fourier-transforms of the time-domain functions ei#»n(*), Coefficients A,
(Ap) contain 4 integrals over space coordinates ry (r;). Consider the structure of A, more closely
(A is completely analogous):

Ay =T, f riBa({ri) ) Pn(r1) s (£2)Pn(r3)e' "™, (42)
The major dependence on q in the final expression (41) comes from L,(q), and factors A, A, can

be considered as g-independent. Then the representation (24) for B4({r;}) can be used to rewrite A,
in the form similar to Eq. (26) for B,. At zero temperature:

1/t A _ _ . " _ " ~
po= [ e[ o)+ 56080+ (2o 0 )+ G0 0) | (43)
0 € ' 4" , 8 e
where functions @, f, H are defined like functions G, F,H in Egs. (27), but with the replacements
W,(p) — Wy(p). Screening factors wp(e) = 1/cosh (21, In(pl)), entering integrals in (27), will be
set to unity, since relevant p ~ 1/L, are relatively large ~an~d Ag < 1. The largest~ contribu~tior1 to
A, comes from the last two terms in (43), which contain G*F products. Functions G(r) and F(r) are
localized within the range about L, around their maxima, while their amplitudes at maximum can

be estimated as L,/D and 1/(L,D) correspondingly. The esnergy integral in Eq. (43) produces extra

factor 1/A4. As a result, we come to the estimate A, ~ ALZz-
4

Taking also into account |a,| & \/|oa|/AgD /Ly, we find eventually

d
Sl @m] = — / (@)@ ) Ran) (44)

where (see Eq. (16))

g
)~ Sl o P2 f
g

D(d*q/ (2 )"

45
Sscea + 2[(ql? + 2|w|T]*e 43)

Note that localization lengths L, ,, cancel out from Eq. (45), once we put cosh(2A, In(L,/I)) ~ 1.
Eqgs. (44), (45) define interaction action for two superconducting islands.

Generally, this action cannot be reduced to the interaction Hamiltonian, due to frequency
dispersion entering ],(1‘,",,)(r). However, if one is interested in relatively slow fluctuations of phases
@n.m(t), then s, m(w) = e%nm§(w) and one may use, instead of the action (44), the Hamiltonian of
the form of Eq. (39), but with matrix elements

d2q eianm
R =A s 46
]nm( nm) nm/ (27_[)2 85C3A+2(ql)4)‘g ( )
with
vD?
Anm ?|an|3/2|am|3/2, (47)

g

where we omitted numerical factor of the order of unity. Below we will assume that reduction of the
full dynamic problem (44) to the Hamiltonian with matrix elements (46) is a good approximation.
We checked this assumption in the Supplement S1, where analysis of the two-island dynamics with
full interaction ]ﬁ“nﬁ)(r) was performed.
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For the interaction strength in real space we obtain, after integration in Eq. (46):

A Ag(r/D*e
Jum(r) =2 — . — (48)
7 r2[1+ (8scea/2)(r/D)*¢]
Note the presence of long (at small 8scga) spatial scale r* = IS;CL/:Ag. Function Juu(r) ~ 1/r2 %

does not depend on 8scga for r < r*, and it scales as Jym(r) ~ S;CZBA x 1/r7¥¢ at r > r*. Major

contribution to the integral 7,,(0) = f](r)dzr ~ Anm/8scea comes from r ~ r*.
Below we assume that typical interacting pairs of islands are separated by a large distance
ram > 1*. In result, the total interaction Hamiltonian reads

Hint = =) Jam €OS(¢n — @), (49)

nm

where coupling matrix elements

Cnm
Jom = ——— (50)
" Ry — R/
and the coefficients C,,;, are:
40, A V2
nm — L d |an|3/2|am|3/2’ (51)

2 1 32
71 85cpal Ag85cpa

where we omitted numerical factor of order unity. To obtain last form of C,;,, we used relation
D = vel/2; for isotropic model of 2D metal, vvg = ¢p/m. The constants G, contain product of large
factors e€r and 55_53;\ by small ~ aﬁ,m. It is assumed that typical distance R,;, = |R, — Ry| is much
longer than [.

Our analysis below is based upon the single-island action (32) and the interaction Hamiltonian
(49).

4. Effect of interaction between islands at T = 0: strong disorder RG
4.1. General approach and RG equations

Results of Section 2 demonstrate crucial property of the q-SMT in presence of sufficiently strong
fluctuations §A(r): locally superconducting regions (islands) appears at random locations and are
localized on typical length Li,c which is much shorter than typical distance between islands

Lloc
Ly ~ L 52

0 \/FTO > Lioc, ( )
where pg is defined in Eq. (38). Far from the SMT, in the normal state, the density nj; = 1/L§
is too low for interaction terms, Eq. (49) to be relevant, thus phases of individual islands fluctuate
independently. With increase of average attraction and decrease of &y, the density nj grows, as well
as the probability that some islands occur to be close enough to interact strongly. For each pair of
islands, n and m, the strength of this interaction J,n, defined in Eq. (50), is to be compared to the
relaxation rates of the same islands y,, y,. We are interested especially in the range of parameters
where the key exponent 7, satisfies 0 < no < 1, thus individual decay rates y, are distributed
widely in the small-y domain.

Quantum fluctuations of phases ¢,(t) and ¢,,(t) are mutually independent if at least one of the
rates y,, ym is much larger than the coupling energy Jum. If, however, min(y;, ym) < Jum, then
dynamics of phases ¢,(t), om(t) becomes correlated at the time scales longer than 1/J,, and phase
difference ¢,(t)—@mn(t) ceases to grow with time. In result (see Sec. S1 of the Supplemental Material
for details), the joint two-island decay rate y;,,, becomes much smaller than the individual rates y,
and yp:

Yn¥m

nm

for  min(In(yx), In(ym)) < In(Jam)- (53)

VYnm =
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To understand Eq. (53) it is enough to notice that lowest-frequency Andreev conductance of the
two-island system G, = G, + G, while the relevant pre-exponential factor in the expression like
Eq. (34) is given now by the timescale 1/J,, where interaction between islands sets in; see Eq. (94)
for details.

‘Fusion rule’ (53) shows that interaction between different islands slows down dynamics of their
phases. Eventually, under many such fusions, it can lead to the complete freezing of this dynam-
ics, leading to macroscopic phase coherence and superconductivity. An appropriate quantitative
method to describe this phenomenon is known as Strong Disorder Renormalization Group (SDRG)
developed originally for one-dimensional quantum Ising model in random transverse field [17,18]
and employed later on for numerous different problems, see reviews [19-21]. The SDRG method is
useful when the Hamiltonian contains competing terms with random amplitudes, and one (or more)
of these amplitudes is characterized by a very broad probability distribution. Precisely this property
invalidates the use of mean-field approach [6,7], even in the case of long-range interactions, like
proximity coupling (50). The idea of SDRG is to integrate out quantum degrees of freedom of
large system sequentially, starting from the highest energy scale, and to derive stochastic evolution
equations for the remaining amplitudes entering the Hamiltonian.

The most similar physical problem treated by this kind of approach [41-44], refers to the
g-SMT in quasi-one-dimensional wires with strong pair-breaking. Dynamics of individual islands
was considered to be of the same kind as we described above, see Egs. (34), (53). However, in
these references the proximity coupling was considered to be short-ranged (due to strong pair-
breaking), and the problem was thus reduced to a nearest-neighbor coupling model. It results [41]
in a multiplicative recursion relations for renormalized couplings J;, similar in its structure to the
one for individual decay rates, Eq. (53). Then the whole SDRG belongs to the same universality
class as random-field Ising model [17,18]. This is not the case for our problem with long-range
proximity coupling (50), with 2 < B < 3. However, SDRG scheme appropriate for our model was
also developed and studied, although in somewhat different contexts [22,45]. Below we adapt to
our problem the method of Ref. [22] which is a dual alternative of the one developed in Ref. [45].

We employ a 2D version of the ‘primary model’ defined in Ref. [22], where a problem of a
quantum transverse-field Ising model with power-law exchange coupling of the type (50) was
studied. Interaction between islands starts to become relevant when the magnitude of J,,;, Egs. (50),
(51), for typical nearest-neighbor distance R,, ~ Lo becomes comparable to the typical value of
island’s relaxation rates wy, defined in Eq. (35). The corresponding condition can be written, with
the use of Eqgs. (35), (50), (51), in the form

5 2
[Po(80)1/? o (ﬂ) : (54)
Qtyp8

where we omitted numerical factor of order unity. Here ay, is the magnitude of |E; 4 &y for typical
relevant islands. In the further analysis we put ayy, ~ 1/g, in order to get moderately large G; for
relevant islands, see Eq. (33). While deriving Eq. (54) we put (Li,c/I)**¢ & 1, as it was already done
earlier.

In order to find the value of 8y entering Eq. (54), we need to solve Eqs. (38), (54) together. As a
result, we find:

1 B
dscea X 28 exp [_Z(CO + C15c)] <1, (55)
where we omitted numerical factor of order unity. The corresponding length-scale Ly is given by
3/4 1
Lo ~ Lioc &g exp E(CO + Clac) > Ligc. (56)
The relation (56) determines the spatial length scale Ly, where the SDRG procedure starts in. The
corresponding energy scale §2o = wyy, is defined in Eq. (35).
We now describe briefly the SDRG approach. Starting from the upper energy cutoff £y ~ wy

(see Eq. (35)), at any value of running RG energy scale 2 < £2o, we look for the largest energy
parameter in the system, it is equal to £2 by definition. It can be either the rate y; of the ith island, or
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the coupling J,, between n, m pair of them. In the first case, ith island is decimated, while couplings
between remaining islands are left unchanged. As a result, typical area corresponding to distance
between nearest remaining islands grows linearly: S,,, = S;; 4+ Sim. The same relation can be written
in the form J,,2/ = J.2/" +]~*/° . Now we introduce dimensionless variable y = (£2/])%/# — 1, so

it vanishes at | = £2. The above recursion relation for J,;, reads then as

Ynm :yni+yim+1c (57)

Below we will see that actual probability distribution Q(y) becomes very broad near the q-SMT,
thus the term 1 in the R.H.S. of Eq. (57) can be neglected.

If the largest energy parameter in the Hamiltonian close in its value to §2 is some coupling J,, its
decimation leads to modification of the rates y;, , according to Eq. (53). It is convenient to introduce
logarithmic variables x, = (2/8)In(£2/yy), then the recursion relation equivalent to (53) reads as

Xnm = Xn + Xm. (58)

Factor 2/ in the definition of x, variable is introduced in order to simplify the following equations,
since the same factor enters the definition of y;,.

Derivation of the functional RG equations for probability densities P(x) and Q(y) corresponding
to stochastic equations Eqs. (57), (58) is provided in Refs. [21,45]. We reproduce it in Supplement S2
together with some extension. The RG evolution parameter is defined by the logarithmic variable
T = (2/8)In(£2/82) which counts logarithm of average area per a cluster in the system of
interacting islands with a largest energy scale §2. The functional RG equations allow quasi-stationary
solutions of exponential form:

P(x,7)=p(r)e™™*  Qy.1)=q(r)e " (59)
if the functions p(t) and q(t) obey the system of equations

dp

i 60

aw P (60)

dq

L= Pata (61)
T

Egs. (60), (61) are formally equivalent to the Kosterlitz RG equations [46] for 2D XY model. They
differ from similar equations of the Fisher’s SDRG by the presence of the last term q in (61). This
term is due to trivial scaling dimension 1 of the variable y, while variable x is dimensionless.

The system of Egs. (60), (61) possesses the first integral q(t) — p(t) + Inp(r) = Const which
allows to reduce it to a single equation for p(t). Below we will be most interested in the vicinity of
the critical point where p(7) is close to unity. Thus we denote p(t) = 1 + £(t), keep major terms
of expansion over £(t) < 1 (we will find that &€ ~ +/3) and obtain single RG equation

dé £

= =245, 62

e~ 2" (62)
where § « 1 parametrizes the distance to the critical point. Within the same accuracy, q(t) =
£2/2 — 6.

During the RG transformation, SC islands continuously merge, so the areal density n(t) of
survived islands decreases according to the equation
dn
Pl (p() + q(z)) n(z), (63)
which follows from the fact that at each decimation (island or bond) the number of surviving islands
decreases by one. Its solution is

n(te) = ng exp (—/ (p(7) + q(f))) dr, (64)
0

where ng ~ Ly 2 is the initial density of islands at the starting energy scale of RG, £2o.
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Another important characteristic of the inhomogeneous state formed due to RG procedure is
average number of islands N(t,) which constitute a cluster formed at the scale

te = (2/B)In(£20/52). (65)

Contrary to n(tg), this quantity is determined by the integration over the whole RG trajectory. We
present necessary calculations in the Section S2 of the Supplemental Material (see also Ref. [47]).
The result is given by

N(rg) = / p(e)dr, (66)
0

here function pi(r) = pi(&(t)), where p(£) solves Eq. (103). Explicit solutions following from
Egs. (64) and (66) will be presented below, separately for § > 0 and § < 0.

4.2. Metal phase: line of RG fixed points

At small § > 0, full solution to Egs. (60), (61) reads:

p(t) = 1+ /28 coth (\/j(r +r+)>, (67)

8

sinh? <\/§(‘E + r+)) .

Integration constant t, and key parameter § should be determined by the matching of quasi-
stationary distributions (59) to the bare distributions Py(y ) (see Eq. (36)) and Qu(J):

q(z) = (68)

14 /25 coth (q\/j) = g(l + 10), (69)
8
= QU ~ o). (70)

sinh? (1:+ %)

To derive Eq. (69), we employed the relation y oc exp(—px/2). Right-hand sides of both Egs. (69),

(70) are of the order of unity; thus we need 7, ~ 1 in order that § <« 1 cancels out from the LHS’s

of these equations. Then we see that at § < 1 the integration constant 7, is not important for the
asymptotic solutions and will be ignored below.

The solution provided by Egs. (67), (68) defines a line of fixed points parametrized by § > 0. In

the infrared limit T — oo, we find p(co) = 1+ /8/2, and q(t) = 45e~V257_ The scale 5= 1/4/28
marks the end of renormalization process. The corresponding energy and spatial scales read:

__B 1
25 = 29e 2V | Ly = Lge2vas | (71)

At L > L; interaction between islands is too weak to change the distribution of the relaxation rates,
while the ratio of the decimation rates q(t)/p(t) starts to drop fast with L. Density of surviving
islands drops with decrease of £2, according to Eqs. (64), (68) as (see Eq. (65)):

ey =no (2)" i (72)
ny(te)=np 2 sinhz(%ln%)'

For the average number of islands inside a cluster, N(t), we use Eqs. (106) to obtain

Ni(to) = % |:TQ\/§COth <t9\/§> - ]:| ~ (73)

{ 1T Te <82
3 —-1/2
wme  Te>?d
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First line above corresponds to the close vicinity of the critical line, and the result N, (t) o 72

coincides with the one present in Ref. [22]. The second line demonstrates that logarithmic growth
of N, (7 ) continues even at arbitrary low energy scales, where &(t;) saturates and both q(z;) and
n4(tg) vanish.

We do not determine here the dependence of the key RG parameter § on the original parameters
like 8o and g. This dependence may occur to be nontrivial, and we leave this question for future
studies.

4.3. Superconducting phase: slow runaway of the RG flow

At negative values of §, the RG equation (62) has qualitatively different solution

&(t) = +/2]8| cot (@(r—i—r_)) , (74)

|81

sin? (@(r + r_)> .

Integration constant 7_ ~ 1 can be ignored at |§] < 1 for the same reason as described above
for 7,. The solution (74) for &£(t) changes sign at t = 1y &~ 7 /+/2|3|, while g(t), has a minimum
at the same t. In a broad vicinity of 7y, the function g(t) is nearly constant, which translates to a
weak temperature dependence of gr in a broad range of low temperatures.

Density of surviving islands behaves now as

n_(rg)=n (9 )2/’3 5 (76)
\Te)=No |\ — —_— Y
0/ sin* (Y2 In )

q(r) =

For the average number of islands N_(ty) in a typical cluster, we use Eq. (108):

8 )
N_(T_Q) = % |:1 — r_q\/lzjcot ('L'Q |2|>} . (77)

At large T > 7 superconducting correlations (measured by g(t)) start to grow, and p(t) = 14+ &(1)
decreases. Near the point T = 21y the solution (74), (75) develops a singularity. Average number of
islands in a typical cluster, N_(7), also diverges as t — 21.

Physically, this solution corresponds to emergence of a globally coherent superconducting state
with typical value of the zero-temperature order parameter

27
_ B ,Qa
A(g(o) =$e V2 = 20 | — . (78)
§20

Note that A; is parametrically smaller than 25 defined by Eq. (71) at the same value of |§|, due to
the presence of extra 27 in the exponent in Eq. (78). Such a state is very fragile, with extremely
low transition temperature, T.(8) ~ As.

Upon approach to the point 7, = 21p, the RG equations (60), (61) and their consequences (76)
and (77) lose their applicability. It happens when the inequality £(7) < 1 is not valid anymore. For
very small |§] < 1 it corresponds to 7 rather close to 21y, see Eq. (74).

5. Strange metal: qualitative discussion

The range of initial parameters leading to the solution, Egs. (67), (68), of the strong-disorder RG
equation, corresponds to the ground-state of the Griffiths type, which is not globally superconduct-
ing. It contains clusters of superconducting islands those phases are locked in together by proximity
couplings. Sizes of these clusters vary in a broad range, up to the correlation length Ls given by
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q(T)

0.

: InT/Q
-3 —6 4 9 T/

Fig. 4. Function q(T) as found from Egs. (60), (61) in the normal phase: § = 0.05,0.1,0.2 from red to blue. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Eq. (71). Typical number of original superconducting islands in the largest clusters is Ns ~ 1/, see
Eq. (73) (see Fig. 4).

At any T > 0, strong-disorder RG flow of Section 4 should be stopped at the lowest energy
scale 27 = T, corresponding to r = (2/8)In(§2¢/T). Interactions of smaller magnitudes, ] < T, do
not lead to any noticeable phase correlations between clusters which were formed at higher energy
scales, i.e. at T < t7. At the final stage of RG, distribution functions (59) which are formed at t = 7,
can be rewritten in terms of energy variables | and y as follows:

gg;<y>%L4dy

P(y; T)dy = s \1 T (79)
. 2qr (T\F (1))
Ty = — (= o=, 80
oU; Td 5 (j> e ] (80)

where (y,]) < T. Close to the critical point pr ~ 14++/28 and g7 « 1 is determined by Eq. (68) with
T = 77. Egs. (79), (80) demonstrate that typical value of phase relaxation rate y(T) ~ T. Typical
inter-cluster coupling energy J(T) ~ qu/ ?« T, demonstrating weakness of interaction between
largest clusters.

Observe that Eq. (79) shows that for any 8 > 2, the exponent 2 always becomes smaller than
unity for small enough §, i.e. close enough to the q—-SMT critical point (but before the transition point
is reached). As soon as Br _ 1, the average correlation time (1/y) = fOT P(y; T)dy/y diverges,
while (y) ~ T. This divergence does not imply global phase coherence, but rather indicates strong
fluctuations of relaxation rates between different clusters. Indeed, correlation time t® of any ath
cluster is bounded from above by its classical value

Ggh

cl a

= N 81
¢ 2aT (81)

which can be found from the action (32) estimating phase diffusion at T > 0:

1 2w T|t|
—((¢a(0) — u(t))?) ~ == ——. 82
5 ((9a(0) — ¢a(t))") G h (82)

Here G, stands for the total Andreev conductance (in units of 4e?/h) between the ath cluster of
strongly coupled superconducting islands and surrounding normal metal. Since we found previously
that Andreev conductances of individual islands G; sum up during their ‘merging’ under RG
procedure, we expect G, to be proportional to the number of islands N, constituting ath cluster.
Therefore GJ'™ ~ 1/6, as follows from Eq. (73) at §£2 ~ £25. In result, the longest phase correlation
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q(T)

1.5¢

‘ ‘ ‘ ‘ In 7T/

Fig. 5. Function q(T) as found from Egs. (60), (61) in the superconducting phase: —§ = 0.05,0.1,0.2 from red to blue.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

time of largest coupled clusters is estimated as

h 1

27T 8
Note that Ttnax(T) is singular as é goes to zero, while typical relaxation times ty, ~ h/T. This is one
of the specific feature of the Griffiths phase characterized by the presence of arbitrary large fractal
clusters.

The presence of very large but mutually uncorrelated clusters, leads to an important contribution
to the electron dephasing rate T, 1, Contribution of individual islands to dephasing rate was analyzed
in Ref. [48]. Crucial feature of its main result, Eq. (3), is as follows: Andreev reflection contribution
to 7, 1 is nearly T-independent at T much above macroscopic T.. The same feature is expected to

hold for the Griffiths state with large mutually incoherent clusters.

‘Superconducting’ side of the quantum phase transition is described by Egs. (74), (75) and
demonstrates a very unusual feature: due to the presence of extremum of q(t) at tt = 1p(8) =
7 /+/2|5], temperature dependencies of physical quantities are expected to be very weak in a broad
temperature range

__nB __B
T, = 26 V20 « T &K 20e V201, (84)

The relative extension of this range grows enormously as |§| decreases, see Fig. 5. Typical number
of islands within largest clusters N, > 1/|3]| is the same or larger (see Eq. (77)) than in the Griffiths
metal phase, and the above conclusion about nearly-T-independent contribution to the dephasing
rate is applicable in the whole interval (84).

We believe that region of phase diagram with small negative §, while being formally supercon-
ducting, is a good candidate for the description of a ‘strange metal’ state, for the reasons described
in the above paragraph. Note that approximate T-independence (in the sense described above)
comes together with a strong sensitivity to magnetic field: typical scale of magnetic field, which

corresponds to a single flux quantum per relevant area, L§0 = Léefo, is
@0 T
Hs = — exp (—7> . (85)
2 V2168]
At B > H;s renormalization flow is modified as 7 reaches t(B) = ln(dio/BLﬁ) < 19(6), since

proximity coupling becomes frustrated at longer length-scales. In the close vicinity of the critical
point § = O relevant range of magnetic field becomes unexpectedly small. The magnetic field-
controlled quantum transition has been studied before [41-43] in the assumption that proximity
coupling is short-ranged due to random magnetic frustration. However, at T = 0 exponential decay



20 K.S. Tikhonov and M.V. Feigel'man / Annals of Physics 417 (2020) 168138

of proximity coupling refers to the disorder-averaged (E;(r)) only, while its second moment is still
described [49] by a power-law function of distance r.

We note that large spatial dimensions of weakly-coupled superconducting clusters makes the
system near the critical point unusually susceptible to a weak rf-frequency noise, like the one
demonstrated in Ref. [10].

6. Conclusions

We demonstrated breakdown of scaling theory [39] of quantum Superconductor-Metal transition
in thin films, due to spontaneous formation of localized islands of superconductivity. The latter
is shown to be a generic consequence of sufficiently strong spatial fluctuations of the Cooper
attraction strength 8A(r) (these fluctuations always become strong [25] close to the mean-field
q-SMT via Finkel'stein mechanism [4,5]). This unusual scenario, with a disorder threshold for an
appearance of localized Lifschitz tail in the density of locally superconducting regions, is realized
when effective Cooper-channel repulsion constant A; = 1/4/2mg < 1/4, corresponding to a
normal-state resistivity of a film R; < 10 KOhm. We have also found that the effective strength
of fluctuations 8A(r) increases with decrease of the electronic mean-free-path L

Power-law interaction, see Eq. (50), between phases of different emergent islands, together
with power-law distribution of their individual relaxation rates, Eq. (36), lead to formation of a
Griffiths-type phase in the vicinity of a genuine transition to superconducting state. This transition
is described by a version of Strong-Disorder Renormalization Group, formally similar to the one
employed in Refs. [22,45]. Metallic Griffiths phase is described as a line of fixed points of this RG.
Physically this phase consists of large fractal clusters of superconducting islands, strongly coupled to
each other. The largest size of such clusters is given by Ls in Eq. (71), while the number of individual
islands in large clusters scales as 1/3, where § is the renormalized distance to the quantum critical
point. Note an important feature of these large fractal clusters: Andreev conductance between such
a cluster and surrounding metal is proportional to the number of islands Ny it consists of, due to
parallel nature of Andreev reflection processes which occur at different islands.

The relation between renormalized parameter § and bare distance to the critical point dscga iS not
yet established; it can be nonlinear. In order to find this relation, one needs to find exact relations
between microscopic parameters 8o and g, and initial conditions p(0), g(0) for the SDRG equations
(60), (61). We leave this interesting problem for future studies.

The most unusual observation of this paper is related to the superconducting phase realized at
8 < 0. Namely, non-monotonic character of the RG flow in this region of the phase diagram leads to
a very weak temperature-dependence of physical properties (including dephasing rate) in a broad
range of temperatures, see Eq. (84) and Fig. 5. It might provide a clue to understanding a ‘strange
metal’ phase near q-SMT transition. Below T, a superconducting state occurs. Due to its strong
spatial inhomogeneity, we expect it to be gapless, for the reasons understood originally in Ref. [50].
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Appendix A. Time-resolved slow dynamics of the two-island system; Appendix B. Strong-
disorder renormalization group equations
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