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a b s t r a c t

We consider the quantum dynamics of a charged particle evolving
under the action of a constant homogeneous magnetic field, with
emphasis on the discrete subgroups of theHeisenberg group (in the
Euclidean case) and of the SL(2,R) group (in the Hyperbolic case).
We investigate completeness properties of discrete coherent states
associated with higher order Euclidean and hyperbolic Landau
levels, partially extending classic results of Perelomov and of
Bargmann, Butera, Girardello and Klauder. In the Euclidean case,
our results follow from identifying the completeness problemwith
known results from the theory of Gabor frames. The results for the
hyperbolic setting follow by using a combination of methods from
coherent states, time-scale analysis and the theory of Fuchsian
groups and their associated automorphic forms.
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This is an open access article under the CC BY-NC-ND license
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1. Introduction

In this paper we consider the quantum dynamics of a charged particle evolving under the action of
a constant homogeneous magnetic field, first in the Euclidean and then in the hyperbolic setting. The
goal is to construct discrete coherent states associated with the evolution of the particle when higher
Landau levels are formed and to obtain conditions on the completeness of such coherent states. This
extends well known results of Perelomov [1] and of Bargmann et al. [2]. In the first part of the paper,
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we consider a constant magnetic field acting on the Euclidean space realized as the complex plane C,
leading to the formation of a discrete spectrum known as the Euclidean Landau Levels. In the second
part of the paper, we let a constant magnetic field act on the open hyperbolic plane realized as the
Poincaré upper half-plane C+

= {z ∈ C, Imz > 0}, leading to the formation of a mixed spectrum,
with a discrete part corresponding to bound states (hyperbolic Landau levels) and a continuous part
corresponding to scattering states.

The concept of a set of states on a lattice in phase space was first considered by J. von Neumann in
the Euclidean case [3]. It became physically very attractive because it contains the fundamental com-
mutation relations of quantummechanics. Indeed, lattices have an underlying unit cell (fundamental
domain) related to the size of the Planck constant (see Fig. 1).

In his treatment of quantum mechanics [3], J. von Neumann raised the question of completeness
of coherent states indexed by a lattice. The question turned out to be nontrivial from a mathematical
point of view and, so far, it has only been fully understood for some special coherent states. This is
the case of the coherent states associated with the first Landau Level. The situation has been clarified
in [2] and [1], because it can be related to the structure of zeros of analytic functions, where classical
methods from complex analysis can be used. However, in higher Landau Levels, even the case of the
Euclidean Landau levels is not yet fully understood. In both the Euclidean and Hyperbolic setting,
one has to deal with spaces of polyanalytic functions [4–9]. Since polyanalytic functions have a much
more complicated structure of zeros [10], several essential tools from complex analysis cannot be
applied. However, in recent years, important progress has been made by combining analytic function
theory with methods from time–frequency analysis [11,4,12]. The purpose of the first part of this
paper is to translate these results from time–frequency analysis to the setting of coherent states
attached to higher Landau Levels. This has a twofold purpose: to bring the results to the attention
of the physics community and to motivate the results on the hyperbolic setting of the subsequent
section, where time-scale (wavelet) theory replaces time–frequency (Gabor) analysis. Indeed, our
main object of study in the paper is the quantum dynamics of a charged particle evolving on the open
hyperbolic plane under the action of a constant magnetic field. While previous work on this problem
has been concernedwith the spectral properties of the corresponding LandauHamiltonian [13,14] and
their associated continuous coherent states [15], the investigation of the associated discrete coherent
states labeled by discrete subgroups of PSL(2,R) = SL(2,R)/{±I} seems to have been overlooked.
The discrete coherent states are relevant for the understanding of the hyperbolic setting because
the nontrivial dynamics is induced by the tesselation of the Poincaré plane by discrete subgroups of
PSL(2,R), which are called Fuchsian groups. Important examples of Fuchsian groups are provided by
themodular group PSL(2,Z) and by the congruence groups of order n. Somebackground and examples
of Fuchsian groups are given in the last section. This is a remarkable instance of the usefulness of
analytic number theory in a physical problem. The idea of using Fuchsian groups as a replacement for
the Euclidean lattices seems to have first been used by Perelomov, who provides a full analysis of the
first hyperbolic Landau level in [16, Chapter 14], where the analysis is done in the disc. In the present
paper we make the corresponding analysis for the higher hyperbolic Landau levels. As the unit cell of
the model one considers a fundamental domain for the group. For instance, the set

D =


z ∈ C+

: |z| ≥ 1 and |Rez| ≤
1
2


is a fundamental domain for the modular group PSL(2,R).

The shadow area in Fig. 2 represents the fundamental domain D.
The following terminology will be used [17]. A functional Hilbert space H has a system {fg} of

coherent states, labeled by elements g of a locally compact group G if:
(i) There is a representation T : g → Tg of G labeled by unitary operators Tg on H
(ii) There is a vector f0 ∈ H such that for fg = Tg [f0] and for arbitrary f ∈ H we have:

⟨f , f ⟩H =


G

f , fg 2 dν(g),
where dν stands for the left Haar measure of G.
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Fig. 1. An Euclidean lattice and a fundamental domain. See Section 2.3.

Fig. 2. The modular group PSL(2,Z). See Section 3.5.

The core of the paper is organized in two sections and an Appendix with the more technical
proofs. Section 2 deals with Euclidean Landau levels and Section 3 with their hyperbolic analogues.
In each of the sections, after providing some background on the mathematical and physical model,
we first construct the coherent states associated with the higher levels and then investigate their
discrete counterparts.We finishwith a short conclusion including some remarks about the theoretical
methodology, highlighting the interaction between physical and signal analysis which has made
possible the investigations carried out in this paper.

2. Euclidean Landau levels

2.1. Definitions

The Hamiltonian operator describing the dynamics of a particle of charge e and mass m∗ on the
Euclidean xy-plane, while interacting with a perpendicular constant homogeneous magnetic field, is
given by the operator

H :=
1

2m∗


ih̄∇ −

e
c
A
2
, (2.1)

where h̄ denotes Planck’s constant, c is the light speed and i the imaginary unit. Denote by B > 0 the
strength of the magnetic field and select the symmetric gauge

A = −
r
2

× B =


−

B
2
y,

B
2
x

,
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where r = (x, y) ∈ R2. For simplicity, we set m∗ = e = c = h̄ = 1 in (2.1), leading to the Landau
Hamiltonian

HL
B :=

1
2


i
∂

∂x
−

B
2
y
2

+


i
∂

∂y
+

B
2
x
2


(2.2)

acting on the Hilbert space L2

R2, dxdy


. The spectrum of the Hamiltonian HL

B consists of infinite
number of eigenvalues with infinite multiplicity of the form

ϵBn =


n +

1
2


B, n = 0, 1, 2, . . . . (2.3)

These eigenvalues are called Euclidean Landau levels. Denote the eigenspace of HL
B corresponding to

the eigenvalue ϵBn in (2.3) by

AB,n

R2

=

ϕ ∈ L2


R2, dxdy


,HL

B [ϕ] = ϵBnϕ

. (2.4)

The following functions form an orthogonal basis for AB,n (C) [5]:
e1i,n(z) =


n!

(n − i)!
B

i+1
2 z iL(i)n (B |z|2), 0 ≤ i

e2j,n(z) =


j!

(j + n)!
B

n−1
2 znL(n)j (B |z|2), 0 ≤ j,

(2.5)

where the Laguerre polynomial is defined as

L(α)n (t) =

n
k=0

(−1)k

n + α

n − k


tk

k!
, α > −1.

Remark 1. In his book [16, pag. 35], Perelomov points out that the basis (2.5) had been used by
Feynman and Schwinger in a somewhat different form in order to obtain an explicit expression for
the matrix elements of the displacement operator. The functions (2.5) are also related to the complex
Hermite polynomials [18]. They occur naturally in several problems and different representations are
used. For instance, they have recently found applications in quantization [19–21], time–frequency
analysis [4], partial differential equations [22] and planar point processes [5]. In the next section we
recall a characterization theorem of the eigenspace AB,n


R2

as the range of a suitable coherent state

transform of the Hilbert space L2 (R), originally obtained in [23].

2.2. Coherent states for Euclidean Landau levels

Define the Heisenberg group H as the Lie group whose underlying manifold is R3 together with
the group operation

(x, y, r) (x′, y′, r′) =


x + x′, y + y′, r + r′ +

1
2
(xy′ − x′y)


.

The continuous unitary irreducible representations of H are well known [24]. Here we consider the
Schrödinger representation TB of H on the Hilbert space L2 (R, dt) [25] defined as

TB,(x,y,t) [ψ] (t) = exp

i

Bt −

√
Byξ +

B
2
xy


ψ

t −

√
Bx

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for (x, y, r) ∈ H, B > 0, ψ ∈ L2 (R, dt) and t ∈ R. This representation is square integrable modulo
the center R of H and the Borel section σ0 of H over H/R = R2 which is given by σ0 (x, y) = (x, y, 0).
Further, the following identity holds

R2


ψ1, TB,σ0(x,y) [φ1]

 
TB,σ0(x,y) [φ2] , ψ2


dµ (x, y) = ⟨ψ1, ψ2⟩ ⟨φ1, φ2⟩ (2.6)

for all ψ1, ψ2, φ1, φ2 ∈ L2 (R). Displacing the reference state

⟨t | 0⟩B,n =
√
π2nn!

− 1
2 e−

1
2 t

2
Hn (t) , t ∈ R,

where Hn (.) is the Hermite polynomial

Hn (t) =

[n/2]
k=0

n! (−1)k (2t)n−2k

k! (n − 2k)!
,

via the representation operator TB,σ0(x,y), one obtains a set of coherent states denoted by the kets
vectors |(x, y) , B, n⟩, with wave functions

⟨t | (x, y) , B, n⟩ =
√
π2nn!

− 1
2 exp


−i

√
Bty + i

B
2
xy −

1
2


t −

√
Bx
2

Hn


t −

√
Bx

. (2.7)

The following resolution of the identity

1L2(R) =


R2

|(x, y) , B, n⟩ ⟨(x, y) , B, n| dµ (x, y)

holds as a consequence of (2.6). Thus the construction of coherent states is justified by the square
integrability of representation TB modulo the subgroup R and the section σ0. For n = 0 (the lowest
Euclidean Landau level), the states |(x, y) , B, 0⟩ coincide with the canonical coherent states of the
harmonic oscillator. The coherent states (2.7) are associated with the coherent state transform

VB,n : L2 (R) → L2

R2, dxdy


such that, given ϕ ∈ L2 (R),

VB,n [ϕ] (x, y) :=


R

⟨t | (x, y) , B, n⟩ϕ (t) dt.

Thanks to the square integrability of TB, the transform VB,n is an isometrical map. Since VB,n maps the
Hermite functions (an orthogonal basis of L2 (R)) to the basis (2.5) (see [4] for details) its range is
exactly the eigenspace in (2.4):

VB,n

L2 (R)


= AB,n


R2 .

Another realization of this eigenspace can be obtained by intertwining the Landau Hamiltonian (2.2)
as follows

∆B := e
B
2 zz

1
2
HL

2B −
B
2


e−

B
2 zz = −

∂2

∂z∂z
+ Bz

∂

∂z
.

The space AB,n

R2

then becomes

AB,n (C) :=

ϕ ∈ L2


C, e−Bzzdµ


,∆Bϕ = nBϕ


. (2.8)

If B = π and n = 0 the space (2.8) is precisely the Fock–Bargmann space of entire square integrable
functions with respect to the Gaussian measure on C. For n > 0, the characterization takes the formV2π,n


L2 (R)


= Aπ,n (C)

where the coherent state transform is given explicitly byV2π,n [ϕ] (z) = e
1
2πzz ◦ V2π,n [ϕ] (z) = (−1)n Bn [ϕ]

√
πz

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where

Bn [ϕ] (w) = (−1)n cn


R
ϕ (t) exp


−

1
2
t2 +

√
2tw −

1
2
w2

Hn


t −

w + w
√
2


dt.

The transformV2π,n is precisely the true polyanalytic Bargmann transform and the space Aπ,n (C) is
the true-polyanalytic space of index n, see [26,4,5].

2.3. Completeness properties

We want to understand the completeness properties of the coherent states constructed in the
previous section once they are labeled by a lattice Λ ⊂ C. The key observation is the fact that
their completeness and basis properties are equivalent to the completeness and basis properties of
Gabor systems with Hermite functions [11] and to sampling and uniqueness sets in true-polyanalytic
spaces [4]. Consider the lattice

Λ = Λ(ω1, ω2) := {m1ω1 + m2ω2;m1,m2 ∈ Z} ⊂ C

spanned by the periods ω1 and ω2 ∈ C with Im(ω1/ω2) > 0. The size of the lattice Λ is the area
of the parallelogram spanned by ω1 and ω2. Identifying R2 with C we can write Λ = ΩZ2, where
Ω = [ω1, ω2] is an invertible 2×2matrix. The size of the lattice can nowbe defined as s(Λ) = |detΩ|.
We say thatΛ is a set of sampling for the space AB,n (C) if there exist constants C1, C2 > 0 such that
for all F ∈ AB,n (C) ,

C1 ∥F∥
2
AB,n(C) ≤


λ∈Λ

|F (λ)|2 e−B|λ|2
≤ C2 ∥F∥

2
AB,n(C) .

Given a point (q, p) in the phase space R2, the corresponding time–frequency shift is

π(q,p) [f ] (t) = e2π ipt f (t − q) , t ∈ R.

Let hn (t) denote a Hermite function. The set G (hn,Λ) :=

π(q,p)hn, (q, p) ∈ R


is a Gabor frame or a

Weyl–Heisenberg frame in L2 (R)whenever there exist constants C1, C2 > 0 such that

C1 ∥f ∥2
L2(R) ≤


(q,p)∈Λ

f , π(q,p) [hn]

L2(R)

2 ≤ C2 ∥f ∥2
L2(R) .

It follows from the lower inequality that if G (hn,Λ) is a frame then G (hn,Λ) is complete. For
simplicity, we consider the square lattice Λω := ω (Z + iZ), ω ∈ R. In this case s(Λω) = ω2. For
B = π , it was proved that the lattice Λω is a set of sampling for Aπ,n (C) if and only if G (hn,Λω)
is a Gabor frame, see [4]. The following result is a consequence of combining this identification with
relatively recent results from time–frequency analysis.

Theorem 1. Let (|(x, y) , π, n⟩)(x,y)∈R2 be a system of coherent states attached to the nth Landau level
defined in (2.7). Then, the following holds:
(i) If ω2 < 1

n+1 then the system (|(x, y) , π, n⟩)(x,y)∈Λω is complete.

(ii) If ω2 > 1 then the system (|(x, y) , π, n⟩)(x,y)∈Λω is incomplete.

Proof. The completeness property (i) follows from the fact that ifω2 < 1
n+1 , then G (hn,Λ) is a Gabor

frame [11], therefore complete. The property (ii) is a consequence of the fact that, if ω2 > 1, then a
Gabor system cannot be complete [27].

Remark 2. In the case n = 0 it is a classical result [1,2] that the systems are complete if ω2
≤ 1 and

incomplete if ω2 > 1. The above result is an extension of these results to coherent states attached to
higher Euclidean Landau levels ϵπn , n = 1, 2, 3, . . ..
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Remark 3. For n > 0 there is still a considerable gap between conditions (i) and (ii). Finding a whole
description of the completeness and frame properties of Gabor systems indexed by lattices is a highly
non-trivial problem which has been subject of study since [11]. The very recent preprint [28] seems
to answer the question in the case of rational lattices.

Remark 4. The Landau Hamiltonian arises in the two-dimensional quantized Hall effect. A coherent
states formalism for the study of this problemhas beendevelopedbyprojecting the higher order states
in the lowest Landau Level, which can bemodeled by analytic functions [29]. It is reasonable to expect
that the discrete coherent states associated with higher Landau Levels may provide an alternative
formalism.

3. Hyperbolic Landau levels

3.1. Hyperbolic Landau levels

In the hyperbolic setting, the configuration space is now the Poincaré upper half-plane C+
= {z ∈

C, Imz > 0}. It is a complete two-dimensional simply connected Riemannian manifold of constant
negative curvature R = −1, endowed with the metric ds2 = y−2


dx2 + dy2


, where z = x + iy. A

constant homogeneous magnetic field on C+ is given by a 2-form dµB defined as

dµB =
2B
y2

dxdy

where B is the field intensity. The form dµB is exact and any 1-form A such that dµB = dA is called a
vector potential related to dµB. For our purposes it is convenient to choose A = 2By−1dx. In suitable
units and up to an additive constant, the Schrödinger operator describing the dynamics of a charged
particle moving on C+ under the action of the magnetic field B is given by [13]:

HB := y2

∂2

∂x2
+
∂2

∂y2


− 2iBy

∂

∂x
.

Different aspects of the spectral analysis of the operator HB have been studied by many authors,
(see [14,13] or, for a more mathematical approach, [30]). We list here the following important
properties.
(i) HB is an elliptic densely defined operator on the Hilbert space L2


C+, dµB


, with a unique self-

adjoint realization that we denote also by HB.
(ii) The spectrum of HB in L2


C+, dµB


consists of two parts: a continuous part [1/4,+∞[, corre-

sponding to scattering states and a finite number of eigenvalues with infinite degeneracy (hyperbolic
Landau levels) of the form

ϵBn := (B − n) (1 − B + n) , n = 0, 1, 2, . . . ,

B −

1
2


. (3.1)

The finite part of the spectrum exists provided 2B > 1. The notation ⌊a⌋ stands for the greatest integer
not exceeding a.
(iii) For each fixed eigenvalue ϵBn , we denote by

EB
n


C+


=

Φ ∈ L2


C+, dµB


,HBΦ = ϵBnΦ


(3.2)

the corresponding eigenspace. Its reproducing kernel is given by

Kn,B (z, ζ ) =
(−1)n Γ (2B − n)
n!Γ (2B − 2n)

 z − ζ
2

4Imz Imζ

−B+m 
ζ − z

z − ζ

B

×2F1


−2B − m,−m, 2B − 2m,

4Imz Imζz − ζ
2


where 2F1 is the Gauss hypergeometric function.
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Remark 5. The condition 2B > 1 ensuring the existence of the discrete eigenvalues means that the
magnetic field has to be strong enough to capture the particle in a closed orbit. If this condition is
not fulfilled the motion will be unbounded and the particle will escape to infinity. More precisely,
the orbit of the particle will intercept the upper half-plane boundary whose points stand for points
at infinity [13, pg. 189]. To the eigenvalues in (3.1) correspond eigenfunctions which are called bound
states. This terminology is due to the fact that the particle in such a bound state cannot leave the
system without additional energy.

3.2. Bergman spaces

For n = 0, the reproducing kernel of EB
0


C+

reduces to

K0,B (z, ζ ) = eiπB4B (Imz Imζ )B
z − ζ

2B .
This is the reproducing kernel for the (2B − 2)-weighted Bergman space A2B−1


C+

, constituted by

analytic functions f on the upper half-plane with finite norm

∥f ∥A2B−1(C+) =


C+

|f (z)|2 y2B−2dxdy < +∞.

Thus, EB
0


C+

coincides with A2B−2


C+

.

An important fact to be used in the Appendix proof of the main results is the following. Note also
that for a general weight ν, the Bergman space Aν


C+

is connected to the space L2


R+, t−1dt


by

the integral transform defined as

Berν [h] (z) =


+∞

0
t
ν+3
2 h (t) eiztdt (3.3)

see, for instance [31,32]. This provides an isometric isomorphism

Berν : L2

R+, t−1dt


→ Aν


C+

.

The transform is onto because one can deduce from the special function formula
∞

0
tαLαm(t)e

−tudt =
Γ (m + 1 + α)

m!


u − 1
u

m 1
uα+1

(3.4)

that the Laguerre functions are mapped to a basis of Aν

C+

formed by rational functions which

are further mapped to the unit disc by a conformal map. Some details and remarks about these
calculations are given in [33] and [34].

3.3. The affine group acting on the Poincaré half-plane

For our purposes we will recall a characterization theorem of EB
n


C+

as the range under a suit-

able coherent state transform WB,n defined on the Hilbert space H := L2

R+, t−1dt


. We start with

the identification of the Poincaré upper half-plane C+ with the affine group G = R × R+, by setting
z = x+iy ≡ (x, y). The group lawofG is (x, y) . (x′, y′) = (x + yx′, yy′).G is a locally compact nonuni-
modular group with the left Haar measure dµ (x, y) = y−2dxdy and modular function∆ (x, y) = y−1.
By this identification the space L2 (G, dµ) coincideswith the space L2


C+, dµB


.We shall consider one

of the two inequivalent infinite dimensional unitary irreducible representations of the affine group G,
denoted π+, realized on the Hilbert space H as

π+ (x, y) [ϕ] (t) := exp (ixt/2) ϕ (yt) , ϕ ∈ H, t ∈ R+.
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This representation is square integrable since it is easy to find a vector φ0 ∈ H such that the function
(x, y) → ⟨π+ (x, y) [φ0] , φ0⟩H belongs to L2 (G, dµ). This condition can also be expressed by saying
that the self-adjoint operator K : H → H defined as K [ψ] (.) = (.)−

1
2ψ (.) gives

G
dµ (x, y) ⟨ϕ1, π+ (x, y) [ψ1]⟩ ⟨π+ (x, y) ψ2, [ϕ2]⟩ = ⟨ϕ1, ϕ2⟩


K

1
2 [ψ1] , K

1
2 [ψ2]


,

for all ψ1, ψ2, ϕ1, ϕ2 ∈ H . The operator K is unbounded because G is not unimodular [35]. We will
also use the notation

π1
+
(x, y) [ϕ] (t) := y

1
2 exp (ixt/2) ϕ (yt) , ϕ ∈ H, t ∈ R+

such that

π+ (x, y)

(.)

1
2 ϕ (.)


(t) = t

1
2π1

+
(x, y) [ϕ] (t) (3.5)

and also, for functions Φ such that their Fourier transform belongs to L2

R+

(this is essentially the

Hardy space where the wavelet transformation is often defined),

πwav (x, y) [Φ] (t) = y−
1
2Φ


y−1 (t − x)


.

For shortness of notations, in some situations we will represent the point (x, y) by the complex num-
ber z = x + iy, often with no explicit mention.

3.4. Coherent states for higher hyperbolic Landau levels

Now, as in [15], we consider a set of coherent states denoted by the ket vectors |(x, y) , B, n⟩ and
obtained by displacing, via the representation operator π+ (x, y), the reference state vector |0⟩B,n in
the Hilbert space H with wave function given by

⟨t | 0⟩B,n =


Γ (2B − n)

n!

−
1
2

tB−ne−
1
2 tL(2B−2n−1)

n (t) .

Precisely,
|(x, y) , B, n⟩ := π+ (x, y) |0⟩B,n. (3.6)

The wave functions of the coherent states (3.6) are given by

⟨t | (x, y) , B, n⟩ =


Γ (2B − n)

n!

−
1
2

(ty)B−n e−
1
2 t(y−ix)L(2B−2n−1)

n (ty) . (3.7)

These coherent states are completely justified by the square integrability of the unitary irreducible
representation π+ and if follows from the special function formula (3.4) that we have a resolution of
the identity for the space H = L2


R+, t−1dt


:

1H = c−1
B,n


G
dµ (x, y) |(x, y) , B, n⟩ ⟨(x, y) , B, n| ,

where cB,n = (2 (B − n)− 1)−1. The coherent states (3.6) are associated with the coherent state
transform

WB,n [ϕ] (x, y) = c
−

1
2

B,n


R+

⟨t | (x, y) , B, n⟩ϕ (t)
dt
t
. (3.8)

The range of the mapWB,n : L2

R+, t−1dt


→ L2


C+, dµB


is the eigenspace (3.2):

WB,n

L2

R+, t−1dt


= EB

n


C+


for every n ∈ Z+ ∩

0, B −

1
2


provided that 2B > 1.

Remark 6. Note that, for n = 0, the lowest hyperbolic Landau level, the states |(x, y) , B, 0⟩ coincide
with the well known affine coherent states [36].
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3.5. Wavelet transforms with Laguerre functions

In this subsection we write the coherent states of the previous section in terms of wavelet
transforms with analyzing wavelets Φα

n defined via the Fourier transforms in terms of Laguerre
polynomials Lαn as

FΦα
n (t) = t

α+1
2 e−tLαn (2t). (3.9)

Some of the structural properties of Φα
n that will be key in our approach are a consequence of their

explicit formula, which displaysΦα
n as linear combinations of {Φα+2k

n }
n
k=0:

Φα
n (t) =

n
k=0

(−2)k

k!


n + α
n − k


Φα+2k

0 (t).

Now, let ϕ ∈ L2

R+, t−1dt


. Combining (3.8) and (3.7) gives

WB,n [ϕ] (x, y) = c
−

1
2

B,n


Γ (2B − n)

n!

−
1
2


R+

(ty)B−n e−
1
2 t(y+ix)L(2B−2n−1)

n (ty) ϕ (t)
dt
t
.

With z = x + iy, we have that −
1
2 t (y + ix) =

1
2ξ iz. Set γB,n = cB,n (n!)−1 Γ (2B − n) and rewrite the

above as

WB,n [ϕ] (x, y) = γ
−

1
2

B,n


R+

ϕ (t)

(ty)B−n e

1
2 ξ izL(2B−2n−1)

n (ty)
dt

t
. (3.10)

Since π+ (x, y)

(.)

1
2 l2B−2n−1

n (.)

(t) = (ty)B−n e

1
2 tizL(2B−2n−1)

n (ty), then (3.10) becomes

WB,n [ϕ] (x, y) = γ
−

1
2

B,n


R+

ϕ (t)

π+ (x, y)


(.)

1
2 l2B−2n−1

n (.)

(t)

dt
t

= γ
−

1
2

B,n


ϕ, π+ (x, y)


(.)

1
2 l2B−2n−1

n (.)


L2


R+, dtt

 . (3.11)

Since π+ (x, y)

(.)

1
2 φ (.)


(t) = t

1
2π1

+
(x, y) [φ (.)] (t), then (3.11) becomes

WB,n [ϕ] (x, y) = γ
−

1
2

B,n


(.)−

1
2 ϕ(.), π1

+
(z)

l2B−2n−1
n


(.)

L2(R+,dt)

.

If ϕ ∈ L2

R+, t−1dt


, then F −1


t−

1
2 ϕ

is in H2


C+

and the scalar product above may also be

written as
(.)−

1
2 ϕ(.), π+

1 (z)

l2B−2n−1
n


(.)

L2(R+,dt)

= W
Φ

2(B−n)−1
n


F −1


(.)−

1
2 ϕ

(z) ,

where W
Φ

2(B−n)−1
n

stands for the wavelet transformation [31], defined as

WΦ [ϕ] (x, y) = ⟨ϕ, πzΦ⟩L2(R) , z = x + iy, y > 0,

where FΦ ∈ L2

R+, t−1dt


. The two transforms are related as follows

WB,n [ϕ] (x, y) = γ
−

1
2

B,n W
Φ

2(B−n)−1
n


F −1


(.)−

1
2 ϕ(.)


(x, y) . (3.12)

Remark 7. This also means that we have another realization of the bound states space EB
n


C+

in

(3.2) as the image of the Hardy space H

C+

under the wavelet transform W

Φ
2(B−n)−1
n

.
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With the help of the transform Berν in (3.3), we will be able to express the transform WB,n [f ] of
any function f in L2


R+, t−1dt


as a combination of derivatives of an analytic function.

Proposition 1. If f ∈ L2

R+, t−1dt


, then

WB,n [f ] (z) = γ
−

1
2

B,n

n
k=0

(2i)k

k!


2B − n − 1

n − k


yB−n− 1

2 +kF (k) (z) ,

where F (z) = Ber2(B−n)−1 [f ] (z) belongs to the weighted Bergman space A2(B−n)−1

C+

.

Proof. Take f ∈ L2

R+, t−1dt


. Then the function u = F −1


t−

1
2 f


∈ H2

C+

. Write F := Berν [f ],

where ν = 2 (B − n)− 1. In [32, pg. 256], it is shown that the wavelet transform of u decomposes in
terms of derivatives of the analytic function F ∈ A2(B−n)−1


C+

as

W
Φ

2(B−n)−1
n

u (z) =

n
k=0

(2i)k

k!


2B − n − 1

n − k


yB−n− 1

2 +kF (k) (z) . (3.13)

Recalling the relation (3.12) between the two transforms, we may rewrite (3.13) as

WB,nf (x, y) = γ
−

1
2

B,n

n
k=0

(2i)k

k!


2B − n − 1

n − k


yB−n− 1

2 +kF (k) (z) . (3.3.24)

This completes the proof.

3.6. Fuchsian groups and their automorphic forms

Let I2 be the identity matrix. Since one can identify the Poincaré half-plane C+ with the quotient
group

PSL (2,R) := SL (2,R) / {±I2} ,

also known as the group of Möbius transformations, the subgroups of PSL (2,R), known as Fuchsian
groups, describe the isometries of the hyperbolic metric of C+. Since the nontrivial dynamics of
a particle in the upper half-plane is induced by its tesselation by discrete subgroups, we want to
understand the completeness properties of the coherent states introduced in the previous section,
once they are labeled by Fuchsian groups. Thus, we need to recall some basic facts about Fuchsian
groups and their associated automorphic forms. Consider the group SL (2,R) of real 2 × 2 matrices
with determinant one, acting on C+ according to the rule

g.z =
az + b
cz + d

, g =


a b
c d


∈ SL (2,R) .

Notice that g and −g have the same action on C+.
A Fuchsian group G is a discrete subgroup of PSL (2,R). Themost important example is themodular

group PSL (2,Z) = SL (2,Z) / {±I2}, where

SL (2,Z) =


a b
c d


: a, b, c, d ∈ Z, ad − bc = 1


.

An important class is provided by the congruence groups of order n, G(n),

G (n) =


a b
c d


∈ SL (2,Z) :


a b
c d


= ±I(modn)


.

Further terminology will be required. The G-orbit Gz of a point z ∈ C+ under the action of the group
G is

Gz = {gz : g ∈ G}.
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A fundamental domain for a Fuchsian group G is a closed set D ⊂ C+ such that D is the closure of its
interior D0, no two points of D0 lie in the same G-orbit and the images of D under G cover C+. For
instance, a fundamental domain for G = PSL (2,Z) is given by

D =


z ∈ C+

: |z| ≥ 1 and |Rez| ≤
1
2


.

In the hyperbolic model, the orbit of an element z ∈ Dwill replace the role of the latticeΛ (ω1, ω2) in
the Euclidean model of the previous section, while the fundamental domain D replaces the role of
the parallelogram spanned by ω1 and ω2. We will restrict to Fuchsian groups such that D has finite
hyperbolic area. In this case, D can be chosen as a polygon with an even number 2k of sides. The sides,
grouped in pairs, are equivalent with respect to the action of G. The vertices of the polygon are joined
in cycles of verticeswhich are equivalent to each other. If the region is a polygonwith vertices lying on
the boundary ofC+, the cycle is called parabolic (often referred to in the literature as cusps), otherwise
it is called elliptic. Let r be the total number of cycles and e1, . . . , er be the orders of the inequivalent
elliptic points of G. Joining equivalent vertices and cycles, leads to the construction of the Riemann
surface G \ C+, whose genus G is given by 2G = 1 + k − r . The set (G, r, e1, . . . ., er) is called the
signature of the group G. It contains information to compute the area SG of the fundamental domainD:

SG = 2π


2G − 2 +

r
l=1


1 −

1
el


. (3.14)

Now we introduce the notion of an automorphic form associated with G. For all m ∈ Z, z ∈ C+ and
any function f with domain C+, let

f |m g

(z) = (cz + d)−2m f (g.z) , g =


a b
c d


∈ SL (2,R) .

An automorphic form of weight m with respect to a Fuchsian group G is a meromorphic function f on
C+ such that

f |m g


= f ,

for all g ∈ G. The number N of zeros of f inside the fundamental domain D of the group G is given by
Poincaré’s formula

N = m
SG
2π
. (3.15)

The set of all automorphic forms of weightm is denoted byΩm
G


C+

. Consider also HolmG


C+

, the set

of functions f ∈ Ωm
G


C+

holomorphic on C+ (including all cusps of G). We write Cm

G


C+

for the set

of functions f ∈ Ωm
G


C+

which are zero at all cusps of G (the so-called cusp forms). The inclusions

among these spaces are the following:

Cm
G


C+


⊂ HolmG

C+


⊂ Ωm
G


C+

.

The dimension dimHolmG

C+

is known explicitly [37, p. 46, Theorem 2.23] in terms of m, the genus

G of the Riemann surface G \ C+, the orders of the inequivalent elliptic points of G. Assuming that all
cusps of G are equivalent,

dimHolmG

C+


=


(2m − 1) (G − 1)+

r
l=1


m

1 −

1
el


, m > 1

G, m = 1
1, m = 0
0, m < 0.

(3.16)

Here ⌊x⌋ denotes the largest integer less or equal to x.
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3.7. Completeness theorem

The next results (see the Appendix for proofs) provide necessary conditions for the completeness
of the discrete coherent states indexed by Fuchsian groups.

Theorem 2. Let {|z, B, n⟩}z∈C+ be a system of coherent states attached to the nth hyperbolic Landau level.
If the subsystem {|gζ0, B, n⟩}g∈G indexed by the Fuchsian group G associated with the automorphic form
F0 of weight m0, vanishing at one point ζ0 ∈ C+ is complete, then

m0 ≥
1
2
B − n
1 + n

.

If we can choose the automorphic form ofweightm0 =
2π
SG

, where SG is the area of the fundamental
domain the above theorem can be rephrased as a necessary upper bound on SG.

Corollary 1. Let {|z, B, n⟩}z∈C+ be a system of coherent states attached to the nth hyperbolic Landau level.
If the subsystem {|gζ0, B, n⟩}g∈G indexed by the Fuchsian group G vanishing at one point ζ0 ∈ C+ is
complete, then

SG ≤ 4π
1 + n
B − n

.

Let us consider dimHolmG

C+


≥ 2. This guarantees the existence of an automorphic form of
weightm vanishing at a given ζ0, using appropriate linear combinations. When G = 0 andm ≥ 2,m0
can be evaluated explicitly in terms of the signature (0, r, e1, . . . , er) of the group Fuchsian group G.

Corollary 2. Let G be a group of signature (0, r, e1, . . . , er), with dimHolmG

C+


≥ 2 and m ≥ 2. If the
subsystem {|gζ0, B, n⟩}g∈G indexed by the Fuchsian group G is complete, then

r
l=1


1 −

1
el


− 2 ≤ 2

1 + n
B − n

.

In particular, if G = PSL (2,Z), then

1
6

≥ 2
1 + n
B − n

.

Remark 8. If we impose the frame condition on the coherent states, the inequality

m0 ≥
1
2
B − n
1 + n

is an obvious consequence of Theorem1because the frameproperty is stronger than the completeness
property. In the case of the Fuchsian group of dilations, it is possible to use a standard perturbation
argument from wavelet theory [38], which assures that small pseudohyperbolic perturbations of the
index set of a wavelet frame keep the wavelet frame property and obtain a strict inequality (this has
been done in [39] and [32]). However, it is not clear if such a perturbation argument can be adapted
to the case of a general Fuchsian group. We leave the problem as a question for the interested reader.

4. Conclusion

We have constructed discrete coherent states associated with the evolution of a particle under the
action of a constant magnetic field when higher Landau levels are formed, first in the Euclidean and
the in the hyperbolic model. Both in the higher Euclidean and the hyperbolic Landau levels, one can
construct discrete coherent states by indexing the continuous ones by the discrete subgroups that
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reflect the symmetries of the underlying geometry. The main conclusion is that, in both cases, the
completeness of the coherent states depend explicitly on the size of the fundamental domain, on the
order of the Landau Level and on the intensity of the magnetic field. The analysis of the hyperbolic
case is based on the properties of the automorphic form of weight m associated with the Fuchsian
group G of the hyperbolic plane. If G admits an automorphic form of weight with a single zero inside
D, then SG =

2π
m and we can choose the automorphic form of weight m0 =

π
2SG

, where SG is the area
of the fundamental domain. Then, the following restriction must be imposed for the completeness of
the coherent states:

m0 ≥
1
2
B − n
1 + n

.

In terms of the area SG of the fundamental domain

SG ≤ 4π
1 + n
B − n

.

The methods used in this paper have their origins in several areas of mathematics, physics and
signal analysis. It is not surprising that signal analysis and physics are strongly interrelated, since
time–frequency (Gabor) analysis is the counterpart of the standard coherent states and time-scale
(wavelet) analysis is the counterpart of affine coherent states and affine integral quantization [20].
But the arithmetic aspects connected to the hyperbolic geometry seem to have been somehow
overlooked. Among the possible subgroups, only the Fuchsian group of dilations has been used in
signal analysis [39], leading to the standard discretization of the half plane used in wavelet theory.
We speculate that the discrete coherent states introduced in this paper may be useful in the analysis
of signals, due to the variety of the discrete groups of the upper half-plane. Finally, wewould subscribe
to the last sentence of the conclusion of [20], since we believe it also applies to the current research:
(. . . ) mutual irrigations between quantum physics and signal analysis deserve a lot more attention in future
investigations.
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Appendix

Proof of Theorem 2. Let f ∈ L2(R+, t−1dt). Then we can use Proposition 1

WB,n [f ] (z) = γ
−

1
2

B,n

n
k=0

(2i)k

k!


2B − n − 1

n − k


yB−n− 1

2 +kF (k) (z) (A.1)

where

F = Ber2(B−n)−1[u] ∈ A2(B−n)−1

C+

.

The idea of the proof is the following. Using the theory of automorphic forms, we will construct a
function H ∈ A2(B−n)−1


C+

vanishing at a point ζ0 ∈ C+ and such that, for k = 0, . . . , n, H(k)
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vanishes at Gζ0, the orbit of ζ0 under the action of G. Then set F = H in (A.1); the surjectivity of
Ber2(B−n)−1 assures the existence of f ∈ L2(R+, t−1dt) such that

H = Ber2(B−n)−1 [f ]
WB,n [f ] (z) = 0, if z ∈ Gζ0.

(A.2)

The function H is constructed as follows. Let Fm0 be a modular form of weight m0, that is, a function
analytic on the upper-half plane such that

Fm0(z) = (cz + d)−2m0Fm0


az + b
cz + d


. (A.3)

If G admits an automorphic form Fm0(z) vanishing at possible cusps and vanishing at a point ζ0 ∈ C+,
the functional equation (A.3) implies that Fm0(z) vanishes at Gζ0. Since

(Imz)−1
Imaz + b

cz + d

 = |cz + d|−2 ,

we haveFm0(z)
 = (Imz)−m0

Imaz + b
cz + d

m0
Fm0


az + b
cz + d

 .
Thus, the function

(Imz)m0
Fm0(z)

 =

Imaz + b
cz + d

m0
Fm0


az + b
cz + d


is non-negative and continuous in the fundamental region D. Moreover, it tends to 0 as Imz → ∞

(this follows from an argument using q-expansions [40, pg. 94, formula (40)]). Hence, due to its G-
invariance, it is bounded in the whole upper half-plane C+. As a result, the automorphic form Fm0(z)
satisfiesFm0(z)

 . |Imz|−m0 , for every z ∈ C+. (A.4)

The above argument is well known in number theory (for instance, it is an important step in the proof
of Hecke’s bound on Fourier coefficients of cusp forms [40, pg. 94]). Now we argue by contradiction,
supposing that 2m0 <

B−n
1+n . This implies the existence of ϵ > 0 such that m0(n + 1) =

α+1−ϵ
2 ,

α = 2(B − n)− 1. Define

H(z) = (z + i)−ϵ

Fm0(z)

n+1
(z)

and observe that H ≠ 0 and that the derivatives H(k)(z) vanish at Gζ0. The estimate (A.4) then yields

|H(z)| . |z + i|−ϵ (Imz)−(n+1)m0 = |z + i|−ϵ (Imz)−
α+1−ϵ

2 . (A.5)

Now letw ∈ D. With the change of variables z = iw+1
1−w one can write the integral in the unit disk. The

detailed calculation follows

z + i =
2i

1 − w
; Imz =

(1 − |w|
2)

|1 − w|
2 ; (Imz)α dµ+(z) =

(1 − |w|
2)α

|1 − w|
2α+2 dµ

D(w),

where dµD(w = x + iy ∈ D) = dxdy is the area measure in the unit disc and dµ+(z)(z ∈ C+) =

d (Rez) d (Imz) is the area measure in the upper-half plane. Thus (A.5) becomes 1
(1 − w)α+1

H

i
w + 1
1 − w

 . (1 − |w|
2)−

α+1−ϵ
2 .
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Now, in order to show that H ∈ A2(B−n)−1

C+

, the integral can be estimated as follows.

C+

|H(z)|2 (Imz)α dµ+(z) =


D

 1
(1 − w)α+1

H

i
w + 1
1 − w

2 (1 − |w|
2)αdµD(w)

.


D
(1 − |w|

2)−α−1+ϵ(1 − |w|
2)αdµD(w)

=


D
(1 − |w|

2)−1+ϵdµD(w) < ∞.

The last inequality can easily be verified directly by definition of area measure or using the reproduc-
ing kernel equation for Bergman spaces in the unit disc. Thus,H(z) ∈ Aα=2(B−n)−1(C+) vanishes onGζ0
together with its derivatives and H(z) satisfies (A.2). This is enough to finish the proof, since the exis-
tence of a nonzero f ∈ L2(R+, t−1dt) such thatWB,n [f ] (z) vanishes on the whole orbit Gζ0 leads to

c
−

1
2

B,n


R+

⟨t | z, B, n⟩f (t)
dt
t

= WB,n [f ] (z) = 0, z ∈ Gζ0,

and contradicts the hypothesis of {|gζ0, B, n⟩}g∈G being complete. Thus, the condition 2m0 <
B−n
1+n

does not hold. As a result one must havem0 ≥
1
2
B−n
1+n .

Proof of Corollaries 1 and 2. If dimHolmG

C+


≥ 2 one can find an automorphic form of weight m
vanishing at a given ζ0, using appropriate linear combinations. Moreover, if G = 0 andm ≥ 2,

dimHolmG

C+


= 1 − 2m + 2
r

l=1


m

1 −

1
el


. (A.6)

Then, comparing (A.6) with the formula (3.14) for SG and using Poincaré’s formula (3.15), gives:

N ≥ dimHolmG

C+

− 1 ≥ 1,

since dimHolmG

C+


≥ 2. Thus, the quantity

N(m0) =
m0SG
2π

is minimized when N(m0) = 1, leading to the explicit value of the least weightm0:

m0 =
2π
SG

=


r

l=1


1 −

1
el


− 2

−1

.

The statement for G = PSL (2,Z) can be obtained by using its signature (0, 3; 2, 3,∞) or by showing
directly that the area of the fundamental domain is SG =

π
3 .
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