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a b s t r a c t

The postulational basis of classical thermodynamics has been ex-
panded to incorporate equilibrium fluctuations. The main ad-
ditional elements of the proposed thermodynamic theory are
the concept of quasi-equilibrium states, a definition of non-
equilibrium entropy, a fundamental equation of state in the en-
tropy representation, and a fluctuation postulate describing the
probability distribution of macroscopic parameters of an isolated
system. Although these elements introduce a statistical compo-
nent that does not exist in classical thermodynamics, the logical
structure of the theory is different from that of statistical mechan-
ics and represents an expanded version of thermodynamics. Based
on this theory, we present a regular procedure for calculations of
equilibrium fluctuations of extensive parameters, intensive param-
eters and densities in systems with any number of fluctuating pa-
rameters. The proposed fluctuation formalism is demonstrated by
four applications: (1) derivation of the complete set of fluctua-
tion relations for a simple fluid in three different ensembles; (2)
fluctuations in finite-reservoir systems interpolating between the
canonical andmicro-canonical ensembles; (3) derivation of fluctu-
ation relations for excess properties of grain boundaries in binary
solid solutions, and (4) derivation of the grain boundary width dis-
tribution for pre-melted grain boundaries in alloys. The last two
applications offer an efficient fluctuation-based approach to calcu-
lations of interface excess properties and extraction of the disjoin-
ing potential in pre-melted grain boundaries. Possible future ex-
tensions of the theory are outlined.
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1. Introduction

1.1. Historical background and goal of the work

Fluctuations of thermodynamic properties play a crucial role in many physical phenomena and di-
verse applications. Fluctuations are especially important in nanometer-scale systems where they can
lead to a large variability of mechanical and functional properties and create noises affecting perfor-
mance of devices. Fluctuations are unavoidable in molecular dynamics and Monte Carlo simulations
of materials, where the system dimensions rarely exceed a few nanometers. In fact, in many atom-
istic calculations, equilibrium properties of interest are extracted by analyzing statistical fluctuations
of other properties [1–3]. Examples include the calculations of elastic coefficients of solid materials
from strain and/or stress fluctuations in molecular dynamics [4–7] or Monte Carlo [8,9] simulations;
calculation of partial molar properties of solutions from concentration fluctuations [10,11]; and cal-
culation of the interface free energy of solid–liquid [12,13] and solid–solid [14–24] interfaces from
capillary fluctuations or fluctuations of the interface width.

Presently, fluctuations are primarily discussed in the statistical–mechanical literature and typically
in the context of specific (usually, very simple) models. At the same time, the thermodynamics
community traditionally relies on classical thermodynamics [25–29] which, by the macroscopic and
equilibrium nature of this discipline, disregards fluctuations and operates solely in terms of static
properties. In fact, the very term ‘‘fluctuation’’ has a temporal connotation incompatiblewith the time-
independent character of classical thermodynamics.

There is, however, a third direction in thermal physics that pursues a generalized form of thermo-
dynamics that incorporates fluctuations of thermodynamic parameters around equilibrium. By con-
trast to the statistical–mechanical approach, such theories seek to introduce fluctuations directly into
the thermodynamic framework via additional assumptions, postulates or similar elements of the log-
ical structure. The goal of such theories is to expand the scope of thermodynamics by introducing
statistical elements while preserving the traditional axiomatic approach that distinguishes this disci-
pline. It is this direction in thermal physics that constitutes the subject of the present paper.1

The logical foundations of classical thermodynamics have been the subject of research over the
past hundred or more years, starting with the works of Carathéodory [30] and Ehrenfest [31] and
continuing in modern times [27–29,32–37]. In spite of the fundamental importance of the traditional
three laws of thermodynamics, they are essentially a reflection of the historical development of the
discipline and do not constitute an autonomous and logically complete structure. The four-postulate
structure proposed by Callen [27,28] is detached from the historical context, deeply thought-through,
but still far from complete. The most rigorous and complete postulational basis of classical thermo-
dynamics has been formulated by Tisza [29]. His theory, called the Macroscopic Thermodynamics of
Equilibrium (MTE), presents an elegant logical structure comprising a set of interconnected defini-
tions, postulates and corollaries. This rigor comes at a price: Tisza’s MTE is restricted to a certain class
of rather simple thermodynamic systems. Nevertheless, it demonstrates an approach that can be ap-
plied for the construction of similar postulational structures for other classes of systems.

Unfortunately, attempts to create a similarly rigorous thermodynamic formalism that would in-
clude fluctuations have not been very successful. The thermodynamic fluctuation theory by Greene
and Callen [38,39] and Callen’s Postulate II′ [27]2 (which generalizes his entropy Postulate II to in-
clude fluctuations) turned out to be insufficient. They required additional assumptions, such as the
approximation of average values of thermodynamic properties by their most probable values, and
relied on the assumption that there is no distinction between the ‘‘canonical thermodynamics’’ and

1 Although we do not wish to enter into terminological discussions, we point out that an expanded thermodynamic
theory that incorporates statistical elements such as fluctuations could be called statistical thermodynamics. This term
would distinguish it from both statistical mechanics and classical thermodynamics. Unfortunately, the term statistical
thermodynamics is already usedwith several differentmeanings, most notably as a collective reference to statistical mechanics
and thermodynamics (which we refer to as thermal physics).
2 Callen’s Postulate II′ [27] was abandoned in a later edition of his book [28].
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‘‘microcanonical thermodynamics’’. The latter assumption was later criticized by Tisza and Quay [40]
from the standpoint of statistical mechanics. Tisza and Quay’s [40] own treatment of fluctuations was
an amalgamation of statistical mechanics and thermodynamics, and in this sense, did not achieve the
goal either. In fact, the authors [40] admit that their theory, called the Statistical Thermodynamic of
Equilibrium, is only a stepping stone toward a future more general theory whose development en-
counters major difficulties.

There are twomajor challenges in the development of a thermodynamic theory of fluctuations: (1)
appropriate definition of non-equilibrium entropy that would seamlessly connect with the system of
other definitions and postulates of thermodynamics, and (2) formulation of a general fluctuation law
of thermodynamic parameters. Historically, the first work addressing these issueswas Einstein’s 1910
paper on critical opalescence [41]. In his theory, the point of departure was Boltzmann’s equation

S = k lnW + const, (1)

where k is Boltzmann’s constant andW is the probability associatedwith the entropy S (our notations
are slightly different from Einstein’s). Einstein considered a completely isolated thermodynamic
system with a fixed energy E. He assumed that all equilibrium and non-equilibrium (fluctuated)
thermodynamic states of the system can be described by a set of macroscopic parameters λ1, . . . , λn.
For a discrete set of such parameters, he interpretedW as the fractions of time spent by the fluctuating
system in each of the states compatible with the given energy E. This is consistent with Boltzmann’s
original definition of entropy in whichW is associated with the probability of finding the system in a
given macro-state (see [42–44] for a review). Based on this interpretation, Einstein inverted Eq. (1) to
obtain the probability of a macroscopic state and thus a given set of parameters λ1, . . . , λn:

W = const · exp

S
k


. (2)

For continuous state variables, the probability that the parameters λ1, . . . , λn be found between λ1
and λ1 + dλ1, . . . , λn and λn + dλn is

dW = const · exp

S − S0

k


dλ1 · · · dλn, (3)

where S0 is the maximum entropy. Einstein’s theory does not make any reference to micro-states of
the system. Instead, it relates the entropy directly to the probabilities of macroscopic states. As such,
this theory belongs more to the realm of thermodynamics than statistical mechanics.3

Eqs. (2) and (3) essentially constitute a fluctuation law that can be built into the formalism of
thermodynamics. The fluctuations described by these equations occur in an isolated system, thus the
respective entropy has amicro-canonical meaning. For canonical systems, the distribution function of
macroscopic parameters can be derived by considering a relatively small (butmacroscopic) subsystem
of an isolated system and treating the remaining part (complementary system) as a reservoir.

The situation is complicated by the fact that the most advanced thermodynamic theories of
fluctuations [27,40] postulate the fluctuation law directly in a canonical form and derive properties of
isolated systems as a limiting case of canonical. This approach is different from Einstein’s [41] and is
rooted in statistical–mechanical arguments. The treatment of a canonical system as an asymptotic
case when the complementary system tends to infinity has certain conceptual disadvantages in
rigorous formulations of statistical mechanics. Alternative theories [40,47,48] postulate the canonical
distribution for an infinite reservoir from the outset and derive properties of isolated and finite
systems only later. Thus, postulating thermodynamic fluctuations in a canonical form is more
consistent with the aforementioned statistical–mechanical theories.

3 The first statistical–mechanical theory of fluctuations was developed by Gibbs [45], whose work was apparently unknown
to Einstein at the time. Gibbs’ treatment of fluctuationswas based explicitly on classical dynamics of particles, withmicro-states
defined in the momentum-coordinate phase space. Einstein’s theory [41] is obviously more general, even though Eqs. (2) and
(3) per se do not suggest anymeans of calculating the probabilities or the entropy for any particular system. For amore detailed
comparison of the Gibbs and Einstein approaches see Tisza and Quay [40] and amore recent paper by Rudoi and Sukhanov [46].
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In the present paper,we take the view that, if a thermodynamic fluctuation theory is to be relatively
autonomous, then the simplicity of its internal logical structure is more important than consistency
with all aspects of the formal structure of statistical mechanics. We thus propose to build the theory
on a fluctuation law postulated for an isolated system. The law which will be adopted in this work
will look similar to Eq. (3), except for certain refinements in justification and interpretation.

We emphasize that this paper is focused on equilibrium fluctuations and will not discuss
driven or other strongly non-equilibrium systems. Furthermore, given that our approach is purely
thermodynamic, we are only interested in statistical distributions of fluctuating parameters without
attempting to describe the actual dynamics of the fluctuations [49,50].

1.2. Organization of the paper

The outline of the paper is as follows. In Sections 2–7 we formulate the basic assumptions of
the theory describing equilibrium fluctuations in an isolated system. We then consider the usual
quadratic expansion of the entropy around equilibrium and arrive at the Gaussian law of fluctuations
and a set of relations for mean-square fluctuations and covariances of thermodynamic properties
(Section 8). In Section 9 we derive the fluctuation law for generalized canonical systems, treating
the system of interest and the reservoir as a combined isolated system. We derive the Gaussian
law of canonical fluctuations in two forms, called the entropy scheme and the energy scheme,
and present the fluctuation formalism in both schemes. To illustrate the calculation techniques, we
compute fluctuations of all properties of a simple fluid in three different ensembles. In Section 10
we analyze systems connected to a finite-size reservoir. The finite-reservoir ensemble interpolates
between themicro-canonical and canonical ensembles and has been implemented in recent computer
simulations [21,51–59]. This section demonstrates the ease with which the theory can handle finite-
size systems as opposed to alternate theories [27,40] built directly on the canonical formalism.

Sections 11 and 12 are devoted to applications of the theory to fluctuations in a single-phase
interface, called a grain boundary (GB), in a binary solid solution. This is a non-trivial problem,
which is addressed by conceptually partitioning the system into an imaginary perfect crystal (grain)
and an excess system representing the GB, each described by their own fundamental equation. The
goal is to describe fluctuations in the excess system. In Section 11 we develop a set of equations
linking fluctuations of some interface properties to equilibrium values of other properties, such as
the excess heat capacity, excess elastic moduli and others. An interesting result here is the prediction
of fluctuations of the interface free energy, an important excess quantity that is usually treated as a
static property. Next, we address the problem of width fluctuations of a pre-melted GB represented as
a thin liquid layer subject to a disjoining pressure.We derive the distribution function of the GBwidth
expressed through the disjoining potential describing interactions between the two solid–liquid
interfaces bounding the liquid layer. While the functional form of the width distribution is known for
single-component systems [16–18,20], it has not been previously derived for binarymixtures. Finally,
in Section 13 we summarize the paper and outline future work.

To reach out to a broader audience, each time we open a new topic we briefly review the status of
the field starting fromearly literature and up to themost recent developments. The review component
is especially significant in the first half of the paper, although many of the known results appearing
here are presented in a more rigorous manner and/or under a new angle. Sections 11 and 12 contain
predominantly original material, with only a few paragraphs presenting a brief overview of interface
thermodynamics. These sections create a theoretical framework for future systematic studies on
interface fluctuations in materials.

Although the paper is focused on thermodynamics, in Sections 7 and 9.2 and a fewother parts of the
text we do discuss statistical distributions of micro-states and other aspects of statistical mechanics.
It should be emphasized that these discussions are not part of the proposed fluctuation theory. They
are only included here to provide a statistical–mechanical interpretation of certain thermodynamic
statements or demonstrate their consistency with principles of statistical mechanics. In addition,
we slightly deviate from the traditional macroscopic terminology of classical thermodynamics
and talk about the number of particles (instead of moles) and ensembles (instead of types of
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imposed constraints). Obviously, this is only a matter of terminology that does not compromise the
thermodynamic nature of the theory.

Finally, we generally prefer a smooth development of the logic and do not follow themathematical
style of presentation [29,30,40] in which all statements are broken into definitions, postulates,
corollaries and other deductive steps.

2. Definition of equilibrium fluctuations

Consider an isolated thermodynamic system, i.e., a system incapable of exchanging heat or matter
with its environment or performingwork on the environment. Some physical properties of an isolated
system are strictly fixed by conservation laws (e.g., the total energy, total momentum, total amounts
of chemical elements4), whereas other properties can vary. Thermodynamics postulates that all non-
conserved properties averaged over a certain time scale tTD, which we call the thermodynamic time
scale, eventually stop varying and remain constant for as long as the system remains isolated. The
quiescent state of an isolated system in which all properties remain constant on the tTD time scale is
called the state of thermodynamic equilibrium.

Even after thermodynamic equilibrium has been reached, non-conserved properties continue to
vary on a shorter time scale, tf ≪ tTD, called the fluctuation time scale. Such continual variations of
properties of an equilibrium system are called equilibrium fluctuations.

For any physical property X , let X be its value averaged over the thermodynamic time scale tTD.
During the equilibrium fluctuations, instantaneous values of X randomly deviate from X . The goal of
the fluctuation theory is to predict the probability distribution of any property X around its average
X and compute the moments and other statistical characteristics of this distribution.

3. The fundamental equation

Consider an isolated thermodynamic system whose equilibrium properties averaged over the
tTD time scale are fully defined by a set of n conserved extensive parameters X1, . . . , Xn. (Tisza [29]
refers to such conserved extensive properties as ‘‘additive invariants’’.) For example, all equilibrium
properties of a simple fluid enclosed in an isolated rigid box are fully defined by its energy E, volume
V , and the number of particles N .5 As long as the parameters X1, . . . , Xn remain fixed, the system
remains in a state of equilibrium. One can temporarily break the isolation, change all or some of the
parameters X1, . . . , Xn, and then isolate and re-equilibrate the system to a new state. By repeating
such perturbation/re-equilibration steps, one can vary the parameters X1, . . . , Xn and measure all
equilibrium thermodynamic properties of the system as functions of X1, . . . , Xn.

In particular, the described procedure can be applied tomeasure the system entropy S as a function
of the conserved parameters X1, . . . , Xn. Here, the entropy is treated as a property defined in statistical
mechanics. Namely, for an equilibrium isolated system, S is identified with the micro-canonical
entropy S = k lnΩmax, whereΩmax is themaximumnumber ofmicro-states compatiblewith the given
set of parameters X1, . . . , Xn (see Section 7 for a more detailed statistical–mechanical interpretation
of entropy).6 The entropy S so defined will be referred to as the ‘‘equilibrium entropy’’ in order to
distinguish it from the ‘‘non-equilibrium entropy’’ defined later.

The function

S = S (X1, . . . , Xn) (4)

4 In a system without nuclear reactions.
5 This can be considered a definition of the simple fluid. Physically, it is a homogeneous single-component fluid without

electric, magnetic or other contributions to its thermodynamic properties.
6 Many different definitions of entropy can be found in the literature, some of which are confusing or simply incorrect.

We refer the reader to recent papers by Swendsen [42–44] for a proper definition of entropy in statistical mechanics and
thermodynamics and discussion of inconsistencies in alternate definitions. The definition adopted in this paper is consistent
with Swendsen’s work [42–44].
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is called the fundamental equation of the system in the entropy representation [25,27–29]. More
accurately, Eq. (4) is the fundamental equation of a particular phase of the system. Different phases
are specified by different fundamental equation (4) [60]. For a simple fluid, the fundamental equation
has the form S = S(E, V ,N).

It is important to recognize that, at this point of the development, the entropy S has been defined
only for an equilibrium isolated system. Furthermore, the arguments X1, . . . , Xn of the fundamental
equation (4) are understood as conserved properties that remain fixed (no fluctuations!) in every
given state of the isolated system.

4. The non-equilibrium entropy

When a non-equilibrium isolated system approaches equilibrium, it is often possible to define a
property called the non-equilibrium entropy. Consider two examples.

Example 1. When the system is close enough to equilibrium, it can bementally partitioned into small
but macroscopic subsystems that can be considered as isolated and equilibrium for a period of time
on the order of tq. Such subsystems are called quasi-equilibrium and the entire isolated system is
said to be in a quasi-equilibrium state.7 On the quasi-equilibrium time scale tq, each subsystem α

can be described by a fundamental equation Sα = Sα

Xα1 , . . . , X

α
n


, where Xα1 , . . . , X

α
n are extensive

properties assumed to be fixed. The non-equilibrium entropy Ŝ is defined as the sum of the entropies
of all quasi-equilibrium subsystems:

Ŝ (λ1, . . . , λm, X1, . . . , Xn) ≡


α

Sα

Xα1 , . . . , X

α
n


. (5)

Here, λ1, . . . , λm are so-called internal parameters describing the distribution of the conserved exten-
sive properties X1, . . . , Xn of the entire isolated system over its quasi-equilibrium subsystems.8 As the
system evolves toward equilibrium, these internal parameters vary on the time scale ≫ tq, as do the
local parameters Xα1 , . . . , X

α
n of the subsystems and thus the non-equilibrium entropy Ŝ. Note that the

quasi-equilibrium system as awhole does not have a fundamental equation; its properties depend not
only on the total amounts of the extensive quantities X1, . . . , Xn but also on their distribution among
the subsystems.

As a specific example, consider an isolated cylinder with rigid side walls, rigid top and bottom, and
a movable piston dividing the cylinder in two compartments 1 and 2 (Fig. 1). The compartments are
filledwith different amounts of the same simple fluid obeying a fundamental equation S = S(E, V ,N).
The system is initially not in equilibrium. Heat and particles can diffuse through the piston, but so
slowly that each compartment maintains its own thermodynamic equilibrium at all times. Thus,
as the system drifts toward equilibrium, it always remains in quasi-equilibrium. During this quasi-
equilibrium process, the total energy E = E1 + E2, total volume V = V1 + V2 and the total number of
particles N = N1 + N2 remain fixed. These properties are the additive invariants denoted as Xi. The
non-equilibrium entropy of the system equals

Ŝ(E1, V1,N1  
λ

, E, V ,N) = S (E1, V1,N1)+ S (E − E1, V − V1,N − N1) , (6)

where E1, V1 and N1 play the role of the internal λ-parameters describing the distribution of the fixed
quantities E, V and N between the compartments.

7 On the time scale tq , the quasi-equilibrium system can be treated as if it was an equilibrium system with subsystems
separated by isolating walls.
8 To avoid notational confusion, we note that our parameters λ1, . . . , λm are independent variables describing the

macroscopic states subject to isolation constraints. In Einstein’s work [41], λ1, . . . , λn are not independent variables. His Eq. (3)
is only valid on the (n− 1)-dimensional constant-energy surface E(λ1, . . . , λn) = const in the n-dimensional parameter space
of λ1, . . . , λn .
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Fig. 1. Amodel of an isolated system: a rigid cylinder divided in two compartments containing different amounts of the same
substance separated by a movable piston.

Example 2. Many systems reach equilibrium with respect to some thermodynamic properties while
other properties are still in the process of equilibration. In such cases, we can talk about quasi-
equilibrium as equilibriumwith respect to some properties without equilibriumwith respect to other
properties. For example, chemical reactions usually occur much slower in comparison with thermal
and mechanical equilibration. There is a certain time scale tq on which chemical reactions can be
considered as ‘‘frozen’’ and the system can be treated as if it were in full equilibrium. Accordingly,
the system can be assigned a non-equilibrium entropy Ŝ computed by ignoring the reactions and
treating the amounts of all chemical components as fixed parameters. Of course, on the time scale
much longer than tq, the entropy slowly drifts as the system evolves toward chemical equilibrium. The
non-equilibrium entropy so defined is a function of not only the conserved parameters X1, . . . , Xn but
also some progress variables λ1, . . . , λm describing the extents of the chemical reactions. The latter
thus play the role of the internal parameters specifying the quasi-equilibrium states.

As a simple illustration, consider an isolated box containing amixture of three chemically different
gases A, B and C. In the absence of chemical reactions, this mixture is described by a fundamental
equation S = S(E, V ,NA,NB,NC ). Let the system initially contain the amounts of the componentsN (i)A ,
N (i)B and N (i)C . Now suppose that the components can transform to each other via a chemical reaction
A+ B 
 C . Assuming that the reaction is slow, the system always maintains mechanical and thermal
equilibrium, while its chemical composition gradually changes. Let∆NA be the change in the number
of particles A relative to the initial state. The non-equilibrium entropy is defined by

Ŝ(∆NA
λ

, E, V ,N (i)A ,N
(i)
B ,N

(i)
C ) = S(E, V ,N (i)A −∆NA,N

(i)
B −∆NA,N

(i)
C +∆NA). (7)

Here, ∆NA characterizes the progress of the chemical reaction and plays the role of an internal
parameter λ, whereas E, V ,N (i)A ,N

(i)
B ,N

(i)
C is a set of fixed extensive parameters X1, . . . , Xn.

5. The second law of thermodynamics

In the extended thermodynamics including fluctuations, the second law (entropy postulate) can
be formulated as two statements:

1. The non-equilibrium entropy Ŝ of an isolated system averaged over the thermodynamic time scale
tTD, which we denote S̃, increases with time and reaches a maximum value S when the system
arrives at equilibrium.

2. The individual values of Ŝ fluctuate but can never exceed the equilibrium value S.

Note that this formulation of the second law is stronger than the frequently used weak formulation.
The latter only states that entropy should increase but does not guarantee that an equilibrium state
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Fig. 2. Schematic temperature dependence of entropy of an isolated system. The system is initially in a highly non-equilibrium
state in which the non-equilibrium entropy Ŝ is undefined. As the system evolves toward equilibrium, it eventually reaches
the quasi-equilibrium stage in which the non-equilibrium entropy Ŝ can be defined on a time scale tq . The subsequent time
dependence of Ŝ is shown by a broken line to emphasize that individual values of Ŝ can only be measured within time
intervals on the order of tq . The values of Ŝ can never exceed the maximum (micro-canonical) entropy S. By the second law of
thermodynamics, Ŝ averaged over the thermodynamic time scale tTD (S̃, shownby the dashed blue line)monotonically increases
with time and eventually levels out when the system reaches equilibrium. In the equilibrium state, Ŝ can randomly deviate
down from its maximum value S on the fluctuation time scale tf such that tq ≪ tf ≪ tTD , always returning to the maximum
value when the fluctuation is over. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

will be eventually reached.9 Clearly, to talk about equilibrium fluctuations we must first ensure that
the system actually arrives at equilibrium.

Once equilibrium has been reached, the average X of any thermodynamic property X remains
constant while instantaneous values of X can randomly deviate from X on the fluctuation time scale
tf . This includes fluctuations of the non-equilibrium entropy Ŝ. However, the latter is a special case
because it can only fluctuate down from its maximum value S. As a result, the average entropy S is
always slightly smaller than S.

The time evolution of an isolated system approaching equilibrium is illustrated schematically in
Fig. 2. The plot assumes the existence of three different time scales10 such that

tTD ≫ tf ≫ tq. (8)

It should be remembered that Ŝ is only defined on the quasi-equilibrium time scale tq. The
inequality (8) reflects the important assumption of the fluctuation theory that all states arising
during the fluctuations are quasi-equilibrium states. As such, they can always be assigned a non-
equilibrium entropy Ŝ. The assumption that the approach to equilibrium (relaxation) and equilibrium
fluctuations realize the same, quasi-equilibrium, states of the system bears a certain analogy with the
fluctuation–dissipation theorem in statistical mechanics [61–63].

The non-equilibrium entropy Ŝ reaches its maximum value S for some set of internal parameters
λ01, . . . , λ

0
m called the equilibrium internal parameters. The latter must satisfy the necessary

conditions of extremum,
∂ Ŝ
∂λi


λj≠i,X1,...,Xn

= 0, i = 1, . . . ,m, (9)

9 The weak formulation of the second law of thermodynamics has a ‘‘negative’’ (prohibitive) character stating what cannot
happen—the entropy cannot decrease; whereas the strong formulation makes a ‘‘positive’’ statement predicting what will
happen—the system will reach equilibrium and the entropy a maximum.
10 Generally, the time scales may depend on the observable. For the present discussion, it will suffice to represent each time
scale by one ‘‘characteristic’’ order of magnitude.
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a b

Fig. 3. Schematic diagramof equilibrium fluctuations in an isolated systemwith one internal parameterλ. (a) Non-equilibrium
entropy Ŝ reaches its maximum S at the equilibrium value of the internal parameter λ0 . The arrows symbolize equilibrium
fluctuations of λ on either side of λ0 accompanied by downward deviations of Ŝ from S. (b) The probability density of λ has a
sharp maximum at λ = λ0 of a height Wm .

and the relation

Ŝ

λ01, . . . , λ

0
m, X1, . . . , Xn


= S (X1, . . . , Xn) , (10)

where the right-hand side is the fundamental equation of the substance. This is illustrated
schematically in Fig. 3(a) for a single internal parameter λ.

As an example, consider again the isolated cylinder with two compartments discussed in Section 4
(Fig. 1). We have three internal parameters: λ1 = E1, λ2 = V1 and λ3 = N1. Applying Eq. (9) to Ŝ given
by Eq. (6), we have

∂ Ŝ
∂E1

=
∂S(E1, V1,N1)

∂E1
−
∂S(E2, V2,N2)

∂E2
=

1
T1

−
1
T2

= 0, (11)

∂ Ŝ
∂V1

=
∂S(E1, V1,N1)

∂V1
−
∂S(E2, V2,N2)

∂V2
=

p1
T1

−
p2
T2

= 0, (12)

∂ Ŝ
∂N1

=
∂S(E1, V1,N1)

∂N1
−
∂S(E2, V2,N2)

∂N2
= −

µ1

T1
+
µ2

T2
= 0, (13)

where we used the standard thermodynamic relations [26–28,63] ∂S/∂E = 1/T , ∂S/∂V = p/T and
∂S/∂N = −µ/T (T being temperature, p pressure and µ chemical potential). We thus recover the
well-known thermodynamic equilibrium conditions T1 = T2, p1 = p2 andµ1 = µ2. These conditions
must be satisfied for the equilibrium parameter set (E0

1 , V
0
1 ,N

0
1 ).

As another example, the non-equilibrium entropy of a gas mixture with the chemical reaction
A+ B 
 C is defined by Eq. (7) with a single internal parameter λ = ∆NA. The necessary condition of
equilibrium reads

∂S(E, V ,N (i)A −∆NA,N
(i)
B −∆NA,N

(i)
C +∆NA)

∂∆NA

= −
∂S(E, V ,NA,NB,NC )

∂NA
−
∂S(E, V ,NA,NB,NC )

∂NB
+
∂S(E, V ,NA,NB,NC )

∂NC

= 0. (14)

We obtained the standard chemical equilibrium condition µA + µB = µC , which must be satisfied at
some λ0 = ∆N0

A . The equilibrium amounts of the chemical components are then N0
A = N (i)A − ∆N0

A ,
N0

B = N (i)B −∆N0
A and N0

C = N (i)C +∆N0
A .
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6. The general law of fluctuations

During equilibrium fluctuations, the internal parameters randomly deviate from the equilibrium
values λ01, . . . , λ

0
m on the time scale of tf . These fluctuations of the internal parameters are

accompanied by deviations of the non-equilibrium entropy Ŝ down from its maximum value S
[Fig. 3(a)].

The Fundamental Postulate of the thermodynamic theory of fluctuations states that the probability
density W (λ1, . . . , λm) of internal parameters of an equilibrium isolated system is

W (λ1, . . . , λm) = A exp


Ŝ(λ1, . . . , λm)

k


, (15)

where A is a constant. To simplify the notations, we do not display the fixed parameters X1, . . . , Xn as
arguments ofW and Ŝ.

By definition, W (λ1, . . . , λm)dλ1 · · · dλm is the probability of finding the internal parameters in
the infinitesimal region dλ1 · · · dλm of the parameter space. The constant A can be found from the
normalization condition

W (λ1, . . . , λm)dλ1 · · · dλm = 1, (16)

where the integration extends over the entire parameter space. Since Ŝ reaches its maximum value

S = Ŝ(λ01, . . . , λ
0
m) (17)

at the equilibrium parameter set λ01, . . . , λ
0
m [cf. Eq. (10)],W has a peak of the height

Wm = A exp

S
k


(18)

at λ01, . . . , λ
0
m [Fig. 3(b)]. In other words, λ01, . . . , λ

0
m is themost probable parameter set. Using this fact,

Eq. (15) can be recast as

W (λ1, . . . , λm) = Wm exp


Ŝ(λ1, . . . , λm)− S

k


. (19)

Eq. (19) is the central equation of the thermodynamic fluctuation theory. It is the departure point
for thermodynamic analysis of all statistical properties of equilibrium fluctuations.

The average (expectation) value of any internal parameter λi is obtained by

λi = Wm


λi exp


Ŝ(λ1, . . . , λm)− S

k


dλ1 · · · dλm. (20)

Note that this average does not generally coincidewith themost probable valueλ0i . It is common to use
the symbol∆ to denote deviations of fluctuating properties from their average values. For example,

∆λi ≡ λi − λi. (21)

The covariance (second correlation moment) of any pair of internal parameters can be computed by

∆λi∆λj = Wm


∆λi∆λj exp


Ŝ(λ1, . . . , λm)− S

k


dλ1 · · · dλm, (22)

while the mean-square fluctuation of λi is

(∆λi)2 = Wm


(∆λi)

2 exp


Ŝ(λ1, . . . , λm)− S

k


dλ1 · · · dλm. (23)
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7. Statistical–mechanical interpretation of fluctuations

In this sectionwewill discuss the general law of fluctuations formulated above from the viewpoint
of statistical-mechanics.

As before, we consider an isolated system whose equilibrium state is defined by a set of fixed
parameters X1, . . . , Xn. If multiple observations aremade, the system can be found in differentmacro-
states, each specified by a set of internal parameters λ1, . . . , λm. Let us first consider a system with
discrete λ-parameters. Each parameter set λ1, . . . , λm is implemented by a certain number Ω of
micro-states. The latter number is sometimes called the degeneracy of the macro-state. The macro-
states are analogs of the equilibrium and quasi-equilibrium states introduced in the thermodynamic
theory (Section 4). The degeneracy of a given macro-state is a function of the internal parameters
λ1, . . . , λm and the fixed parameters X1, . . . , Xn:

Ω = Ω (λ1, . . . , λm, X1, . . . , Xn) . (24)

It is postulated that for an isolated equilibrium system, there is one unique macro-state for which
the degeneracy reaches a maximum value Ωmax. Denoting the internal parameters corresponding
to this macro-state λ01, . . . , λ

0
m, the maximum degeneracy depends solely on the fixed parameters

X1, . . . , Xn:

Ωmax (X1, . . . , Xn) ≡ Ω

λ01, . . . , λ

0
m, X1, . . . , Xn


. (25)

For a given set of fixed parameters X1, . . . , Xn, the degeneracy Ω of an equilibrium isolated
system fluctuates with time from its maximum valueΩmax down to smaller values. These equilibrium
fluctuations follow the Fundamental Postulate of Statistical Mechanics stating that the probability P
of a single micro-state is the same for all micro-states and depends only on the fixed parameters
X1, . . . , Xn:

P = P (X1, . . . , Xn) . (26)

This statement is often referred to as the micro-canonical distribution. It immediately follows that
the probability of any macro-state is simply PΩ . Thus, macro-states with a larger degeneracy have
a proportionately higher probability to occur. The macro-state with the largest degeneracy Ωmax is
the most probable one.

Analysis of fluctuations relies solely on the fact that P is the same for all micro-states and does
not require a specific knowledge of P . We note, however, that P can be found from the normalization
condition stating that the sum of probabilities of all possible macro-states of the system be unity. In
the approximation where fluctuations are neglected, only the most probable macro-state with the
highest degeneracyΩmax is considered. Then the normalization condition reads PΩmax = 1, giving

P =
1

Ωmax
. (27)

On the other hand, when fluctuations are significant, all possible degeneracies from Ω = 1 to Ωmax
must be included. From the normalization condition

Ωmax
Ω=1

PΩ = 1 (28)

we obtain

P =
2

Ωmax(Ωmax + 1)
, (29)

which for large systems can be approximated by 2/Ω2
max.

Regardless of the specific value of P , the product PΩ is the probability of a given macro-state and
thus the probability

Wλ1,...,λm = PΩ (λ1, . . . , λm) (30)
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of the corresponding set of internal parameters. Here, as in Section 6, we simplify the notations
by suppressing the fixed parameters X1, . . . , Xn as arguments of P and Ω . The probability Wλ1,...,λm

reaches a maximum value, denotedWm, at the most probable parameter set λ01, . . . , λ
0
m, for which

Wm = PΩ

λ01, . . . , λ

0
m


= PΩmax. (31)

Combining Eqs. (30) and (31),

Wλ1,...,λm = Wm
Ω (λ1, . . . , λm)

Ωmax
. (32)

We now define the non-equilibrium entropy of an isolated system by

Ŝ (λ1, . . . , λm) ≡ k lnΩ (λ1, . . . , λm) (33)

and the equilibrium entropy by

S ≡ k lnΩmax. (34)

It immediately follows that the non-equilibrium entropy can never exceed its equilibrium value S. It
also follows that in equilibrium, Ŝ can occasionally fluctuate down from S but eventually returns to S
as the most probable value.

The probability of any given set of internal parameters given by Eq. (32) can now be rewritten in
the form

Wλ1,...,λm = Wm exp


Ŝ(λ1, . . . , λm)− S

k


. (35)

This equation treats λ1, . . . , λm as discrete parameters. For continuous parameters, Eq. (35) remains
valid but gives the probability density of the internal parameters. The obtained Eq. (35) is identical to
Eq. (19) of the thermodynamic theory of fluctuations (Section 6).

8. The Gaussian law of fluctuations

In macroscopic systems, the peak of W at the equilibrium parameter set λ01, . . . , λ
0
m is extremely

sharp. In most cases, one can safely replace the exponent in Eq. (19) by its Taylor expansion at
λ01, . . . , λ

0
m truncated at quadratic terms:

Ŝ(λ1, . . . , λm)− S =

m
i=1


∂ Ŝ
∂λi


0

(λi − λ0i )+
1
2

m
i,j=1


∂2Ŝ
∂λi∂λj


0

(λi − λ0i )(λj − λ0j ), (36)

where the subscript 0 indicates that the derivatives are taken atλ01, . . . , λ
0
m. The linear terms vanish by

the extremum condition (9). As a result, Eq. (19) reduces to the multi-variable Gaussian distribution

W (λ1, . . . , λm) = Wm exp


−

1
2

m
i,j=1

Λij(λi − λ0i )(λj − λ0j )


(37)

with the symmetrical matrix

Λij ≡ −
1
k


∂2Ŝ
∂λi∂λj


0

(38)

which we call the stability matrix of the system. For normally stable systems this matrix must
be positive-definite.11 Applying the normalization condition (16), the Gaussian distribution can be

11 We follow the classification [29] dividing all systems into normally stable, critically stable, unstable and metastable. In
normally stable systems, all fluctuations are finite.
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rewritten as

W (λ1, . . . , λm) =


|Λ|

(2π)m
exp


−

1
2

m
i,j=1

Λij(λi − λ0i )(λj − λ0j )


, (39)

whereΛ is the determinant ofΛij.12
We can nowmake use of the well-knownmathematical properties of the normal distribution. The

average value of any parameter λi coincides with its most probable value,

λi = λ0i , i = 1, . . . ,m. (40)

For covariances of internal parameters we have

∆λi∆λj = Λ−1
ij , i, j = 1, . . . ,m, (41)

where Λ−1
ij is the inverse of the stability matrix Λij. In particular, the mean-square fluctuation of a

parameter λi equals

(∆λi)2 = Λ−1
ii , i = 1, . . . ,m. (42)

We can also introduce the following linear combinations of internal parameters:

ϕi ≡

m
j=1

Λijλj, i = 1, . . . ,m. (43)

It can be shown that

∆ϕi = 0, i = 1, . . . ,m, (44)

∆ϕi∆λj = δij, i, j = 1, . . . ,m, (45)

∆ϕi∆ϕj = Λij, i, j = 1, . . . ,m, (46)

and therefore

(∆ϕi)2 = Λii, i = 1, . . . ,m. (47)

ThusΛij is the covariance matrix of the parameters ϕi.
An important property of Eqs. (41), (42), (46) and (47) is that their left-hand sides contain

fluctuations, whereas the right-hand sides are computed in the state of equilibrium and can be
obtained by the standard formalism of equilibrium thermodynamics. In other words, these equations
relate fluctuations to equilibrium properties of the system.

As a simple illustration, let us revisit the isolated system divided in two compartments (Fig. 1).
Suppose the system is in equilibrium. Consider a particular type of fluctuations in which the
compartments can only exchange energy at fixed volumes and numbers of particles. Thus, the only
internal parameter is λ1 = E1. The stability matrix (38) reduces to the scalar

Λ = −
1
k


∂2Ŝ
∂E2

1


0

. (48)

From Eq. (11),

∂ Ŝ
∂E1

=
1
T1

−
1
T2

(49)

12 The Gaussian distribution (39) can be interpreted as a consequence of the central limit theorem for a system composed of
many statistically independent subsystems, see for example Chapter V of Khinchin [48].
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and thus

Λ =
1
k


1
T 2
1

∂T1
∂E1

+
1
T 2
2

∂T2
∂E2


0

=
1

kT 2
0 cv


1
N1

+
1
N2


, (50)

where T0 is the equilibrium temperature of both compartments and

cv =
1
N


∂E
∂T


V ,N

(51)

is the specific heat of the substance per particle at the equilibrium temperature T0. Applying Eq. (42)
we obtain the energy fluctuation of compartment 1:

(∆E1)2

V1,N1

=
1
Λ

= kT 2
0 cv

N1N2

N1 + N2
. (52)

When the second compartment is much larger than the first, N2 ≫ N1, this equation reduces to
(∆E1)2


V1,N1

= N1kT 2
0 cv. (53)

In this limit, the second compartment serves as a heat bath (reservoir) for the first. The relative
fluctuation (variance) of E1 becomes

(∆E1)2

V1,N1

1/2
E1

=
T0(cvk)1/2

ε
√
N1

, (54)

where ε = E1/N1 is the equilibrium energy per particle. This relation shows that the relative
fluctuation of energy decreases with the system size as 1/

√
N .

9. Fluctuations in canonical systems

9.1. General relations

We now return to the general fluctuation law formulated in Section 6 and will apply it to a
relatively small (but still macroscopic) subsystem of an equilibrium isolated system. We will adopt
the terminology in which we refer to the selected subsystem as the ‘‘canonical system’’, or simply
‘‘system’’, and to the remaining part of the isolated system as the ‘‘complementary system’’ or
‘‘reservoir’’.

An example of the situation was already given by the system with two compartments (Fig. 1)
when the second compartment is much larger than the first. We will now consider a more general
case in which the entire isolated system is characterized by a set of conserved extensive properties
(additive invariants) X̃1, . . . , X̃n. These properties are partitioned between our system, X1, . . . , Xn,
and the reservoir, X r

1, . . . , X
r
n (Fig. 4). For some of these properties, the partitioning is fixed once and

for all, while m remaining properties can ‘‘flow’’ between the system and the reservoir as a result of
equilibrium fluctuations. Such fluctuations are subject to the conservation constraints

Xi + X r
i = X̃i = const, i = 1, . . . ,m. (55)

We assume that the exchange of the quantities Xi occurs slowly enough that we can consider both
the system and the reservoir as quasi-equilibrium systems. Accordingly, they obey the fundamental
equations

S = S (X1, . . . , Xn) (56)

for the system and

Sr = Sr

X r
1, . . . , X

r
n


(57)
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Fig. 4. A subsystem chosen inside an isolated system characterized by a set extensive properties X̃1, . . . , X̃n . These properties
are partitioned between the subsystem and the complementary system (reservoir). The partitioning is specified by the
parameter sets X1, . . . , Xn and X r

1 , . . . , X
r
n , respectively.

for the reservoir. Note that these two equations are generally different, allowing the system and the
reservoir to be composed of different substances.

In the subsequent analysis, a special role will be played by the entropy derivatives

Fi ≡
∂S
∂Xi

, (58)

called the thermodynamic ‘‘forces’’ conjugate to the extensive variablesXi. Similar derivatives ∂Sr/∂X r
i

define the forces F r
i in the reservoir. For example, for a simple fluid with the fundamental equation

S(E, V ,N), the thermodynamic forces are F1 = 1/T , F2 = p/T and F3 = −µ/T . Note that the
thermodynamic forces are intensive variables.

We define the non-equilibrium entropy of the entire isolated system as

Ŝ(X1, . . . , Xm  
λ

, Xm+1, . . . , Xn, X̃1, . . . , X̃n) ≡ S (X1, . . . , Xn)+ Sr

X̃1 − X1, . . . , X̃n − Xn


, (59)

where X1, . . . , Xm play the role of the fluctuating internal parameters λi, whereas the remaining
parameters Xm+1, . . . , Xn, X̃1, . . . , X̃n remain fixed. The equilibrium value of this entropy is

S̃ = S

X0
1 , . . . , X

0
m, Xm+1, . . . , Xn


+ Sr


X̃1 − X0

1 , . . . , X̃m − X0
m, X̃m+1 − Xm+1, . . . , X̃n − Xn


, (60)

where X0
1 , . . . , X

0
m are the equilibrium values of the fluctuating parameters. To simplify the notations,

from now on we will suppress the fixed parameters in all equations, writing Eqs. (59) and (60) in the
form

Ŝ (X1, . . . , Xm) ≡ S (X1, . . . , Xm)+ Sr

X̃1 − X1, . . . , X̃m − Xm


, (61)

S̃ = S

X0
1 , . . . , X

0
m


+ Sr


X̃1 − X0

1 , . . . , X̃m − X0
m


. (62)

Before analyzing fluctuations, we will apply the equilibrium conditions (9) to the internal
parameters λi = Xi (i = 1, . . . ,m):

∂ Ŝ
∂λi


0

=


∂S
∂Xi


0
−


∂Sr
∂X r

i


0

= F 0
i −


F r
i

0
= 0, i = 1, . . . ,m, (63)
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where, as usual, the symbol 0 indicates that the derivatives are computed for the equilibrium
parametersX0

1 , . . . , X
0
m.We thus conclude that in equilibrium, the systemand the reservoir have equal

values of the thermodynamic forces conjugate to the fluctuating parameters.
We now turn to fluctuations. The probability density of the internal parameters X1, . . . , Xm is given

by Eq. (19), which takes the form

W (X1, . . . , Xm) = Wm exp


Ŝ(X1, . . . , Xm)− S̃

k



= Wm exp

S(X1, . . . , Xm)− S(X0

1 , . . . , X
0
m)

k



× exp


Sr(X̃1 − X1, . . . , X̃m − Xm)− Sr(X̃1 − X0

1 , . . . , X̃m − X0
m)

k


. (64)

In the second exponential factor, we will expand Sr around the equilibrium parameters X0
1 , . . . , X

0
m:

Sr(X̃1 − X1, . . . , X̃m − Xm)− Sr(X̃1 − X0
1 , . . . , X̃m − X0

m) = −

m
i=1

F 0
i (Xi − X0

i )

+
1
2

m
i,j=1


∂2Sr
∂X r

i ∂X
r
j


0

(Xi − X0
i )(Xj − X0

j ). (65)

Aswill be shown later, the secondderivatives appearing in the quadratic terms scale as 1/N r , where
N r is the number of particles in the reservoir. Since the reservoir is assumed to be much larger than
our system, the quadratic terms in Eq. (65) can be neglected in comparison with the linear terms.
Neglecting the quadratic terms constituteswhat can be called the ‘‘reservoir approximation’’, inwhich

Sr(X̃1 − X1, . . . , X̃m − Xm)− Sr(X̃1 − X0
1 , . . . , X̃m − X0

m) = −

m
i=1

F 0
i (Xi − X0

i ). (66)

Inserting this equation in Eq. (64), we obtain

W (X1, . . . , Xm) = Wm exp

S(X1, . . . , Xm)− S(X0
1 , . . . , X

0
m)−

m
i=1

F 0
i (Xi − X0

i )

k

 . (67)

Note that this equation contains only properties of the canonical system and does not depend on
properties of the reservoir. The role of the reservoir is only to impose the thermodynamic forces F 0

i .
Eq. (67) is an important relation that will serve as the starting point for deriving all fluctuation

properties of canonical systems.
In some canonical systems, there can be additional internal parameters, say Y1, Y2, . . . , Yl, that

can fluctuate without affecting the reservoir parameters X r
1, . . . , X

r
n . In such cases, the set of internal

parameters is X1, . . . , Xm, Y1, Y2, . . . , Yl and Eq. (61) is replaced by

Ŝ (X1, . . . , Xm, Y1, Y2, . . . , Yl) ≡ S (X1, . . . , Xm, Y1, Y2, . . . , Yl)

+ Sr

X̃1 − X1, . . . , X̃m − Xm


. (68)

The equilibrium conditions with respect to the parameters decoupled from the reservoir is
∂ Ŝ
∂Yi


0

=


∂S
∂Yi


0

≡ F 0
i+m = 0, (69)
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where i = 1, 2, . . . , l. It is easy to see that the additional parameters can be incorporated into
the parameter list X1, . . . , Xm by simply assigning them zero thermodynamic forces. Accordingly,
Eq. (67) remains valid, except that the sumwith F 0

i excludes the terms corresponding to the decoupled
parameters Y1, Y2, . . . , Yl.

9.2. The generalized canonical distribution

Before proceeding with applications of Eq. (67), we return for a moment to the statisti-
cal–mechanical interpretation of fluctuations discussed in Section 7. For discrete internal parameters
X1, . . . , Xm, Eq. (67) gives the probabilityWX1,...,Xm of a given parameter set X1, . . . , Xm. Recall that on
the quasi-equilibrium time scale tq, our system can be treated as if it were equilibrium and isolated
with fixed values of X1, . . . , Xm. Thus, its fundamental equation S(X1, . . . , Xm) gives the equilibrium
entropy S = k lnΩmax. The probability P of a single micro-state can be obtained from the relation
WX1,...,Xm = PΩmax, which gives

P =
WX1,...,Xm

Ωmax
= WX1,...,Xm exp


−

S(X1, . . . , Xm)

k


. (70)

Combining this relation with Eq. (67) we obtain

P = Wm exp

−

S(X0
1 , . . . , X

0
m)+

m
i=1

F 0
i (Xi − X0

i )

k

 , (71)

which can be rewritten as

P = A exp


−

1
k

m
i=1

F 0
i Xi


, (72)

where

A = Wm exp

−

S(X0
1 , . . . , X

0
m)−

m
i=1

F 0
i X

0
i

k

 (73)

is a constant.
Eq. (72) constitutes the generalized canonical distribution describing several statistical ensembles.13

Assuming that one of the extensive parameters, say X1, is energy, Eq. (72) can be rewritten in the
form

P = A exp

−

E +

m
i=2

T0F 0
i Xi

kT0

 . (74)

As an illustration, suppose our system is a simple fluid. Either one or two of its extensive parameters E,
V andN can fluctuatewith the third parameter fixed (otherwise the system is undefined). For example,

13 The way we arrived at Eq. (72) is not intended to be a rigorous statistical–mechanical derivation of the canonical
distribution. The goal was only to show that the thermodynamic fluctuation relation (67) is consistent with the distribution of
micro-states known from statistical mechanics.
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suppose only energy can fluctuate while V and N remain fixed. From Eq. (74), the probability of a
micro-state is

P = A exp


−
E
kT0


, fixed V ,N, (75)

a relationwhich is known as the canonical, orNVT , distribution. If both energy and volume are allowed
to fluctuate, we have X2 = V with F2 = p/T , giving the NpT distribution

P = A exp


−
E + p0V

kT0


, fixed N. (76)

If the energy and the number of particles can fluctuate at a fixed volume (open system), we have
X2 = N and F2 = −µ/T . Eq. (74) gives the grand-canonical, or µVT , distribution

P = A exp


−
E − µ0N

kT0


, fixed V . (77)

Of course, the pre-exponential factor A is different in all three distributions and is related to the
respective partition functions through the probability normalization condition.

Note that the distributions (75)–(77) contain the temperature T0, pressure p0 and the chemical
potential µ0 corresponding to the exact equilibrium with the reservoir. These properties are fixed
parameters imposed by the reservoir, by contrast to the fluctuating temperature, pressure and
chemical potential inside the system.

We re-emphasize the important difference between Eq. (72) and the previously derived Eq. (67):
Eq. (72) gives the probability of a single micro-state of the system, whereas Eq. (67) is the probability
distribution of the parameters X1, . . . , Xm characterizing differentmacro-states.

9.3. The Gaussian law of canonical fluctuations

We now return to the probability distribution of the fluctuating parameters given by Eq. (67). Let
us expand the entropy of the system around its equilibrium value, keeping only linear and quadratic
terms:

S(X1, . . . , Xm)− S(X0
1 , . . . , X

0
m) =

m
i=1

F 0
i (Xi − X0

i )

+
1
2

m
i,j=1


∂2S
∂Xi∂Xj


0
(Xi − X0

i )(Xj − X0
j ). (78)

Inserting this expansion in Eq. (67), we arrive at the multi-variable Gaussian distribution

W (X1, . . . , Xm) = Wm exp


−

1
2

m
i,j=1

Λij(Xi − X0
i )(Xj − X0

j )


, (79)

with the stability matrix

Λij ≡ −
1
k


∂2S
∂Xi∂Xj


0

= −
1
k


∂Fi
∂Xj


0
. (80)

In this approximation, the average values X i are numerically equal to the most probable values
X0
i . Using the standard properties of the Gaussian distribution (Section 8), we obtain the fluctuation

relations

∆Xi∆Xj = Λ−1
ij , i, j = 1, . . . ,m, (81)



66 Y. Mishin / Annals of Physics 363 (2015) 48–97

and thus

(∆Xi)2 = Λ−1
ii , i = 1, . . . ,m. (82)

We can also introduce the parameters

ϕi ≡

m
j=1

ΛijXj, i = 1, . . . ,m, (83)

for which

ϕi − ϕi = −
1
k

m
j=1


∂Fi
∂Xj


0
(Xj − X0

j ) ≡ −
1
k
∆Fi. (84)

Here, ∆Fi is the deviation of Fi from its equilibrium value evaluated in the quadratic approximation
(78). Using the properties (46) and (47) of the Gaussian distribution, we obtain the fluctuation
relations for thermodynamic forces:

∆Xi∆Fj = −kδij, i, j = 1, . . . ,m, (85)

∆Fi∆Fj = k2Λij, i, j = 1, . . . ,m, (86)

and therefore

(∆Fi)2 = k2Λii, i = 1, . . . ,m. (87)

Eqs. (82) and (87) show that for normally stable states, the derivatives (∂Xi/∂Fi)0 and (∂Fi/∂Xi)0
must be positive. At critical points one of these derivatives tends to infinity and the respective
fluctuation diverges (unless the reservoir has a finite size, see Section 10).

Another form of the foregoing equations is obtained by introducing the thermodynamic potential

Θ(F1, . . . , Fm) ≡ S −

m
i=1

FiXi (88)

as the Legendre transform of the entropy (Massieu function) [26–28]. Then,

Xi = −
∂Θ

∂Fi
(89)

and

Λ−1
ij = k


∂2Θ

∂Fi∂Fj


0
. (90)

For normally stable states (∂2Θ/∂F 2
i )0 > 0 for all i = 1, . . . ,m.

It is interesting to evaluate canonical fluctuations of entropy relative to its equilibrium value
S(X0

1 , . . . , X
0
m). Using the quadratic approximation (78), we have

∆S =

m
i=1

F 0
i ∆Xi −

1
2
k

m
i,j=1

Λij∆Xi∆Xj. (91)

Averaging this equation over the distribution (79) and taking into account Eq. (81), we obtain

∆S =

m
i=1

F 0
i ∆Xi −

1
2
k

m
i,j=1

Λij∆Xi∆Xj = −
1
2
k. (92)

Thus, in the Gaussian approximation the canonical entropy equals

S̄ = S(X0
1 , . . . , X

0
m)−

1
2
k. (93)
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Considering that entropy scales in proportion to the total of number of particles N , the relative
fluctuation ∆S/S̄ ∝ N−1. Using the same Gaussian approximation, the mean-square fluctuation of
entropy scales in proportion to N ,

(∆S)2 =

m
i,j=1

F 0
i F

0
j ∆Xi∆Xj =

m
i,j=1

F 0
i F

0
j Λ

−1
ij ∝ N. (94)

where we neglected higher-order moments of the distribution. Thus, the relative fluctuation
(∆S)2

1/2
/S̄ ∝ N−1/2. Both estimates show that, with increasing size of the system, the canonical

entropy S̄ tends to the micro-canonical entropy S satisfying the fundamental equation (4). While
the two entropies are conceptually different, they converge to the same numerical value in the
thermodynamic limit.

It should be emphasized that the existence of equilibrium fluctuations of intensive parameters in a
canonical system and their correlationswith extensive parameters has long been the subject of debate
in the literature. While for some authors [27,28,38,39,41,63], the canonical fluctuation relations such
as Eqs. (85)–(87) reflect the actual physics and can be subject to experimental verification [64],
others consider such relations meaningless [65] and a mere manipulation of symbols [66]. It is our
opinion that the controversy arises from different definitions of the intensive parameters adopted
by different authors. As argued by Kittel [65], if temperature of a canonical system is only defined
as the temperature of the infinite reservoir with which it has been equilibrated, then of course
it cannot fluctuate. This argument equally applies to pressure, chemical potentials and all other
intensive properties. In response to Kittel, Mandelbrot [67] offered a different approach in which
the temperature of an isolated system is defined by attempts to estimate the temperature of the
thermostat withwhich the systemwas in equilibriumprior to isolation. In this approach, temperature
fluctuations are well-defined while the temperature itself cannot be defined unambiguously. The
present analysis is based on themicro-canonical definition of temperature as the derivative (∂S/∂E)−1

computed by considering different equilibrium isolated states of the same system (Section 3).
Likewise, all other intensive properties are defined through the derivatives Fi = ∂S/∂Xi (or
Pi = ∂E/∂Zi, see below) computed in the same manner. In the sense of this definition, not only
infinite reservoirs but also finite systems have their own temperature, pressure and other intensive
parameters. Accordingly, they continue to fluctuate when the system is equilibrated with an infinite
reservoir. It is in this sense that Eqs. (85)–(87) and similar fluctuation relations should be understood
in this paper.

9.4. Canonical fluctuations in the energy scheme

The treatment of fluctuations based on the fundamental equation (4) is called the entropy scheme.
In practical situations, energy is always one of the extensive parameters fluctuating between the
canonical system and the reservoir.14 Suppose X1 = E and thus F1 = 1/T . Eq. (4) can be inverted
to obtain

E = E (Z1, . . . , Zn) , (95)

where Z1 = S and Zi = Xi, i = 2, . . . , n. This equation is called the fundamental equation in the
energy representation, or the energy scheme [29]. In the energy scheme, the thermodynamic forces
Pi = ∂E/∂Zi conjugate to the extensive arguments Z1, . . . , Zn are P1 = T and Pi = −TFi, i = 2, . . . , n.
For example, for a simple fluid E = E(S, V ,N) and thus P1 = T , P2 = −p and P3 = µ.

In many applications, we are more interested in fluctuations of the P-forces rather than F-
forces. The formalism presented below expresses canonical fluctuations in terms of the variable sets
Z1, . . . , Zn and P1, . . . , Pn corresponding to the energy scheme.

14 While ‘‘adiabatic ensembles’’ in which the system is adiabatically isolated but can still exchange particles with the reservoir
are helpful theoretical constructions, their practical implementation in experiments or atomistic simulations is unfeasible.
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As before, we consider a system coupled to a reservoir and described by n extensive properties
X1, . . . , Xn. Out of them, m properties X1, . . . , Xm can flow between the system and the reservoir
while the remaining properties Xm+1, . . . , Xn are fixed. Assuming X1 = E, we transform the variable
set X1, . . . , Xm to Z1, . . . , Zm and perform a Legendre transformation to obtain the thermodynamic
potential appropriate for the energy scheme:

Φ(P1, . . . , Pm) ≡ E −

m
i=1

PiZi. (96)

This potential has the property

∂Φ

∂Pi
= −Zi. (97)

Returning to the parameter distribution (67), we can now recast it in the form

W = Wm exp

−

E − E0 −

m
i=1

P0
i (Zi − Z0

i )

kT0

 ≡ Wm exp


−
R

kT0


, (98)

where we denote

R ≡ E − E0 −

m
i=1

P0
i (Zi − Z0

i ). (99)

It can be shown that R has the meaning of the reversible work required for the creation of the
fluctuated state of the canonical system at a fixed value of the total entropy of the system and the
reservoir [25,63].

Eq. (98) is the canonical distribution function of the extensive parameters Z1, . . . , Zm. For small
fluctuations, we can expand E − E0 in these parameters and neglect all terms beyond quadratic to
obtain the multi-variable Gaussian distribution

W (Z1, . . . , Zm) = Wm exp


−

1
2

m
i,j=1

Kij(Zi − Z0
i )(Zj − Z0

j )


, (100)

where the matrix

Kij ≡
1
kT0


∂2E
∂Zi∂Zj


0

=
1
kT0


∂Pi
∂Zj


0

(101)

can be called [29] the generalized stiffness matrix. Its inverse

K−1
ij = kT0


∂Zi
∂Pj


0

= −kT0
∂2Φ

∂Pi∂Pj
(102)

can be then called [29] the generalized compliance matrix.
Using the standard properties of the Gaussian distribution (Section 8), we obtain at once the

covariances and mean-square fluctuations of all extensive and intensive properties of the canonical
system in the energy scheme:

∆Zi∆Zj = K−1
ij , i, j = 1, . . . ,m, (103)

(∆Zi)2 = K−1
ii , i = 1, . . . ,m, (104)

∆Zi∆Pj = kT0δij, i, j = 1, . . . ,m, (105)

∆Pi∆Pj = (kT0)2Kij, i, j = 1, . . . ,m, (106)

(∆Pi)2 = (kT0)2Kii, i = 1, . . . ,m. (107)
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Having these fluctuation relations, it is straightforward to find the covariance of any two
thermodynamic properties y = y(Z1, . . . , Zm) and z = z(Z1, . . . , Zm). Indeed, for small fluctuations,

∆y =

m
i=1


∂y
∂Zi


0
∆Zi, (108)

∆z =

m
i=1


∂z
∂Zi


0
∆Zi, (109)

from which

∆y∆z =

m
i,j=1


∂y
∂Zi


0


∂z
∂Zj


0
∆Zi∆Zj =

m
i,j=1


∂y
∂Zi


0


∂z
∂Zj


0
K−1
ij . (110)

Similarly, for any two functions y = y(P1, . . . , Pm) and z = z(P1, . . . , Pm),

∆y∆z =

m
i,j=1


∂y
∂Pi


0


∂z
∂Pj


0
∆Pi∆Pj = (kT0)2

m
i,j=1


∂y
∂Pi


0


∂z
∂Pj


0
Kij. (111)

The same calculation method can be applied when y is a function Z1, . . . , Zm while z is a function of
P1, . . . , Pm, or when both are functions of mixed sets of Z ’s and P ’s.

9.5. Canonical fluctuations in a simple fluid

To demonstrate the foregoing formalism for computing canonical fluctuations, we will apply it to
a simple fluid coupled to a reservoir. We will consider three different ensembles, deriving equations
for the mean-square fluctuations and covariances of all thermodynamic properties in each case. The
calculations will be conducted in the energy scheme, although the entropy scheme could be applied
just as well. We are working with the extensive and intensive parameter sets (Z1, Z2, Z3) = (S, V ,N)
and (P1, P2, P3) = (T ,−p, µ), respectively. To simplify the notations, we will suppress the index 0
but it is implied that all derivatives are taken at the equilibrium state.

While a number of fluctuation relations for fluids can be found in the literature, in this paper
we present a complete set of such relations for each ensemble. For the NVT ensemble, there are 5
fluctuating parameters (E, S, T , p, µ). Out of 25 covariances that can be formed among them, only 15
are distinct due to the symmetry of the covariance. Similarly, in theNpT andµVT ensembles, there are
6 fluctuating parameters (E, S, V , T , p, µ) and (E, S,N, T , p, µ), respectively.15 Taking into account
the symmetry of covariances, 21 distinct fluctuation relations exist for each of these ensembles. All
these fluctuation relations will be derived below in a systematic manner enabled by the proposed
formalism.

The equilibrium properties appearing on right-hand sides of the fluctuation relations will be
presented in simplest possible form. They can be further transformed tomany other forms expressing
them through specific heats, moduli or other experimentally accessible properties. We do not pursue
such transformations as they lie outside the fluctuation topic and depend on the problem at hand.

9.5.1. NVT ensemble
Suppose the volume and number of particles in the system are fixed while the energy and entropy

can fluctuate (canonical ensemble). The stiffness and compliance matrices reduce to the scalars

K11 =
1
kT0


∂T
∂S


V ,N

=
1

Nkcv
(112)

15 Recall that all intensive properties of a canonical system are allowed to fluctuate, including those which are imposed by
the reservoir. For example, in the µVT ensemble, the reservoir imposes a certain temperature T0 and chemical potential µ0;
however, the actual temperature and chemical potential inside the system fluctuate around the imposed values. See the last
paragraph of Section 9.3 for further discussion.



70 Y. Mishin / Annals of Physics 363 (2015) 48–97

and

K−1
11 = Nkcv. (113)

By Eq. (104),

(∆S)2 = K−1
11 = Nkcv. (114)

Applying Eq. (110), we find the energy fluctuation

(∆E)2 =


∂E
∂S

2

V ,N
K−1
11 = NkT 2

0 cv (115)

and the energy-entropy covariance

∆E∆S =


∂E
∂S


V ,N

K−1
11 = NkT0cv, (116)

where we used the relation (∂E/∂S)V ,N = T0. For temperature fluctuations, we follow Eq. (107) to
obtain

(∆T )2 = (kT0)2K11 =
kT 2

0

Ncv
. (117)

We next derive fluctuations of the chemical potential and pressure. Both are dependent variables
that can be expressed as functions of temperature and the number density of particles, ρ ≡ N/V . The
latter is fixed, leaving only T as an independent argument. Applying Eq. (111) we obtain

(∆µ)2 = (kT0)2

∂µ

∂T

2

ρ

K11 =
kT 2

0

Ncv


∂µ

∂T

2

ρ

, (118)

(∆p)2 = (kT0)2

∂p
∂T

2

ρ

K11 =
kT 2

0

Ncv


∂p
∂T

2

ρ

, (119)

∆µ∆p = (kT0)2

∂µ

∂T


ρ


∂p
∂T


ρ

K11 =
kT 2

0

Ncv


∂µ

∂T


ρ


∂p
∂T


ρ

, (120)

∆µ∆T = (kT0)2

∂µ

∂T


ρ

K11 =
kT 2

0

Ncv


∂µ

∂T


ρ

, (121)

∆p∆T = (kT0)2

∂p
∂T


ρ

K11 =
kT 2

0

Ncv


∂p
∂T


ρ

. (122)

For ‘‘cross-fluctuations’’ between extensive and intensive properties, we first apply Eq. (105) to
obtain

∆S∆T = kT0. (123)

The remaining ‘‘cross-fluctuations’’ are easily computed by the method outlined by Eqs. (108)–(111):

∆E∆T =


∂E
∂S


V ,N

∆S∆T = kT 2
0 , (124)

∆S∆p =


∂p
∂T


ρ

∆S∆T = kT0


∂p
∂T


ρ

, (125)

∆E∆p =


∂E
∂S


V ,N


∂p
∂T


ρ

∆S∆T = kT 2
0


∂p
∂T


ρ

, (126)
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Table 1
Complete set of fluctuation relations for a simple fluid in the NVT
ensemble.

(∆E)2 = NkT 2
0 cv ∆µ∆p =

kT20
Ncv


∂µ

∂T


ρ


∂p
∂T


ρ

(∆S)2 = Nkcv ∆S∆T = kT0

(∆E)(∆S) = NkT0cv ∆E∆T = kT 2
0

(∆T )2 =
kT20
Ncv

∆S∆p = kT0

∂p
∂T


ρ

(∆µ)2 =
kT20
Ncv


∂µ

∂T

2
ρ

∆E∆p = kT 2
0


∂p
∂T


ρ

(∆p)2 =
kT20
Ncv


∂p
∂T

2
ρ

∆S∆µ = kT0

∂µ

∂T


ρ

∆T∆p =
kT20
Ncv


∂p
∂T


ρ

∆E∆µ = kT 2
0


∂µ

∂T


ρ

∆µ∆T =
kT20
Ncv


∂µ

∂T


ρ

∆S∆µ =


∂µ

∂T


ρ

∆S∆T = kT0


∂µ

∂T


ρ

, (127)

∆E∆µ =


∂E
∂S


V ,N


∂µ

∂T


ρ

∆S∆T = kT 2
0


∂µ

∂T


ρ

. (128)

Table 1 summarizes all fluctuation relations derived for the NVT ensemble.

9.5.2. NpT ensemble
Now suppose that the volume of the system can also fluctuatewhileN =const. The stiffnessmatrix

is now 2× 2 and its K11 component is still given by Eq. (112). For the remaining components we have

K12 =
1
kT0


∂T
∂V


S,N

= −
1
kT0


∂S
∂V


T ,N

∂S
∂T


V ,N

= −


∂p
∂T


ρ

Nkcv
, (129)

where we used the Maxwell relation
∂S
∂V


T ,N

=


∂p
∂T


V ,N
, (130)

and

K22 = −
1
kT0


∂p
∂V


S,N

=
1

Nkcv


∂p
∂T

2

ρ

−
1
kT0


∂p
∂V


T ,N
, (131)

where we used the identity
∂p
∂V


S,N

=


∂p
∂V


T ,N

−
T
Ncv


∂p
∂T

2

V ,N
. (132)

Note that the derivatives (∂p/∂V )T ,N and (∂p/∂V )S,N are related to the isothermal and adiabatic
moduli, respectively.

Thus, the stiffness matrix of the fluid takes the form

K =
1

Nkcv

 1 −


∂p
∂T


ρ

−


∂p
∂T


ρ


∂p
∂T

2

ρ

−
Ncv
T0


∂p
∂V


T ,N

 (133)
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with the compliance matrix

K−1
= −kT0


∂V
∂p


T ,N



∂p
∂T

2

ρ

−
Ncv
T0


∂p
∂V


T ,N


∂p
∂T


ρ

∂p
∂T


ρ

1

 . (134)

We are ready to calculate the fluctuations. To find the entropy and volume fluctuations, we apply
Eq. (103):

(∆S)2 = K−1
11 = Nkcv − kT0


∂V
∂p


T ,N


∂p
∂T

2

ρ

≡ Nkcp, (135)

(∆V )2 = K−1
22 = −kT0


∂V
∂p


T ,N
, (136)

∆S∆V = K−1
12 = −kT0


∂V
∂p


T ,N


∂p
∂T


ρ

= kT0


∂V
∂T


p,N
, (137)

where cp is the specific heat at constant pressure. Fluctuation relations involving energy are calculated
by Eq. (110):

(∆E)2 =


∂E
∂S

2

V ,N
K−1
11 +


∂E
∂V

2

S,N
K−1
22 + 2


∂E
∂S


V ,N


∂E
∂V


S,N

K−1
12

= NkT 2
0 cv − kT 3

0


∂V
∂p


T ,N


∂p
∂T


ρ

−
p0
T0

2

. (138)

∆E∆S =


∂E
∂S


V ,N

K−1
11 +


∂E
∂V


S,N

K−1
12

= NkT0cv − kT 2
0


∂V
∂p


T ,N


∂p
∂T


ρ


∂p
∂T


ρ

−
p0
T0


. (139)

∆E∆V =


∂E
∂S


V ,N

K−1
12 +


∂E
∂V


S,N

K−1
22

= −kT 2
0


∂V
∂p


T ,N


∂p
∂T


ρ

−
p0
T0


. (140)

Turning to fluctuations of intensive parameters, we use Eqs. (106) and (107) to obtain

(∆T )2 = (kT0)2K11 =
kT 2

0

Ncv
, (141)

(∆p)2 = (kT0)2K22 = −kT0


∂p
∂V


T ,N

−
T0
Ncv


∂p
∂T

2

ρ


, (142)

∆T∆p = −(kT0)2K12 =
kT 2

0

Ncv


∂p
∂T


ρ

. (143)

To derive fluctuation relations involving the chemical potential, we treat it as a function of T and p.
Using Eq. (111),

(∆µ)2 = (kT0)2


∂µ

∂T

2

p
K11 +


∂µ

∂p

2

T
K22 − 2


∂µ

∂T


p


∂µ

∂p


T
K12
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= (kT0)2

s20K11 + v20K22 + 2s0v0K12


=

kT 2
0

Ncv


v0


∂p
∂T


ρ

− s0

2

− kT0v20


∂p
∂V


T ,N
, (144)

where

s0 = −


∂µ

∂T


p

(145)

is the equilibrium entropy per particle and

v0 =


∂µ

∂p


p

(146)

is the equilibrium volume per particle (v0 = 1/ρ0). Similarly,

∆µ∆T = (kT0)2


∂µ

∂T


p
K11 −


∂µ

∂p


T
K12


=

kT 2
0

Ncv


v0


∂p
∂T


ρ

− s0


, (147)

∆µ∆p = (kT0)2

−


∂µ

∂T


p
K12 +


∂µ

∂p


T
K22


(148)

= −kT0v0


∂p
∂V


T ,N

+
kT 2

0

Ncv


∂p
∂T


ρ


v0


∂p
∂T


ρ

− s0


. (149)

Eq. (105) gives the ‘‘cross-fluctuations’’

∆S∆T = −∆V∆p = kT0, (150)

∆S∆p = 0, (151)

∆V∆T = 0. (152)

The remaining ‘‘cross-fluctuations’’ are computed in a manner similar to Eqs. (108)–(111):

∆S∆µ =


∂µ

∂T


p
∆S∆T = −kT0s0, (153)

∆E∆T =


∂E
∂S


V ,N

∆S∆T = kT 2
0 , (154)

∆E∆p =


∂E
∂V


S,N
∆V∆p = kT0p0, (155)

∆E∆µ =


∂E
∂S


V ,N


∂µ

∂T


p
∆S∆T +


∂E
∂V


S,N


∂µ

∂p


T
∆V∆p = kT0 (p0v0 − T0s0) , (156)

∆V∆µ =


∂µ

∂p


T
∆V∆p = −kT0v0. (157)

The fluctuation relations for the NpT ensemble are summarized in Table 2.
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Table 2
Complete set of fluctuation relations for a simple fluid in the NpT ensemble.

(∆S)2 = Nkcv − kT0

∂V
∂p


T ,N


∂p
∂T

2
ρ

∆µ∆p = −kT0v0

∂p
∂V


T ,N

+
kT20
Ncv


∂p
∂T


ρ


v0

∂p
∂T


ρ

− s0


∆S∆V = kT0

∂V
∂T


p,N ∆S∆T = kT0

(∆V )2 = −kT0

∂V
∂p


T ,N

∆V∆p = −kT0

(∆E)2 = NkT 2
0 cv ∆S∆p = 0

−kT 3
0


∂V
∂p


T ,N


∂p
∂T


ρ

−
p0
T0

2
∆E∆S = NkT0cv ∆V∆T = 0
−kT 2

0


∂V
∂p


T ,N


∂p
∂T


ρ


∂p
∂T


ρ

−
p0
T0


∆E∆V = −kT 2

0


∂V
∂p


T ,N


∂p
∂T


ρ

−
p0
T0


∆S∆µ = −kT0s0

(∆T )2 =
kT20
Ncv

∆E∆T = kT 2
0

(∆p)2 = −kT0


∂p
∂V


T ,N −

T0
Ncv


∂p
∂T

2
ρ


∆E∆p = kT0p0

∆T∆p =
kT20
Ncv


∂p
∂T


ρ

∆E∆µ = kT0 (p0v0 − T0s0)

(∆µ)2 =
kT20
Ncv


v0

∂p
∂T


ρ

− s0
2

− kT0v20

∂p
∂V


T ,N ∆V∆µ = −kT0v0

∆µ∆T =
kT20
Ncv


v0

∂p
∂T


ρ

− s0


9.5.3. µVT ensemble
Wenow turn to the grand-canonical ensemble, inwhich the volumeof the system is fixedwhile the

energy and the number of particles can fluctuate. The equilibrium temperature T0 and the chemical
potential µ0 are fixed by the reservoir. The independent fluctuating variables are S and N , with the
conjugate thermodynamic forces P1 = T , and P2 = µ. Energy is a dependent extensive parameter.
The chemical potential and pressure are also dependent parameters treated as functions of T and ρ.

All fluctuation relations can be obtained from those for the NpT ensemble by simply swapping the
variables V → N , p → −µ. In particular, the derivative (∂p/∂T )ρ is replaced by −(∂µ/∂T )ρ and
(∂p/∂V )T ,N by −V−1(∂µ/∂ρ)T . Furthermore, it easy to verify that s0 is replaced by s0/v0 and v0 by
1/v0. The stiffness matrix becomes

K =
1

N0kcv

 1

∂µ

∂T


ρ

∂µ

∂T


ρ


∂µ

∂T

2

ρ

+
ρ0cv
T0


∂µ

∂ρ


T

 (158)

with the inverse

K−1
= kT0V


∂µ

∂ρ

−1

T



∂µ

∂T

2

ρ

+
ρ0cv
T0


∂µ

∂ρ


T

−


∂µ

∂T


ρ

−


∂µ

∂T


ρ

1

 . (159)

The results of the calculations are summarized in Table 3.
The following scaling properties of fluctuations are evident from Tables 1–3:

• Covariances of extensive properties scale in proportion to the system size (N or V ).
• Covariances of intensive properties scale as inverse of the system size (N−1 or V−1).
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Table 3
Complete set of fluctuation relations for a simple fluid in the µVT ensemble.

(∆S)2 = ρ0kcvV + kT0

∂µ

∂ρ

−1

T


∂µ

∂T

2
ρ
V ∆µ∆p =

kT0
ρ0v0V


∂µ

∂ρ


T

+
kT20

ρ0cvv0V


∂µ

∂T


ρ


s0 +


∂µ

∂T


ρ


∆S∆N = −kT0


∂µ

∂ρ

−1

T


∂µ

∂T


ρ
V ∆S∆T = kT0

(∆N)2 = kT0

∂µ

∂ρ

−1

T
V ∆N∆µ = kT0

(∆E)2 = ρ0kT 2
0 cvV ∆S∆µ = 0

+kT 3
0


∂µ

∂ρ

−1

T


∂µ

∂T


ρ

−
µ0
T0

2
V

∆E∆S = ρ0kT0cvV ∆N∆T = 0

−kT 2
0


∂µ

∂ρ

−1

T


∂µ

∂T


ρ


∂µ

∂T


ρ

−
µ0
T0


V

∆E∆N = −kT 2
0


∂µ

∂ρ

−1

T


∂µ

∂T


ρ

−
µ0
T0


V ∆S∆p = kT0

s0
v0

(∆T )2 =
kT20
ρ0cvV

∆E∆T = kT 2
0

(∆µ)2 =
kT0
ρ0V


ρ0


∂µ

∂ρ


T

+
T0
cv


∂µ

∂T

2
ρ


∆E∆µ = kT0µ0

∆T∆µ =
kT20
ρ0cvV


∂µ

∂T


ρ

∆E∆p =
kT0
v0
(µ0 + T0s0)

(∆p)2 =
kT0
v20V


∂µ

∂ρ


T

+
kT20

ρ0cvv20V


s0 +
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∂T


ρ

2
∆N∆p =

kT0
v0

∆p∆T =
kT20

ρ0cvv0V


s0 +


∂µ

∂T
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• ‘‘Cross-fluctuations’’ between extensive and intensive properties are independent of the system
size.

The first of these properties explains why we could neglect the quadratic terms in the expansion for
the reservoir entropy, justifying the reservoir approximation (66) discussed in Section 9.1.

Knowing the fluctuations of the extensive and intensive parameters, density fluctuations can also
be calculated. For example, knowing (∆N)2 in the µVT ensemble, we obtain the density fluctuation

(∆ρ)2 =
kT0
V


∂µ

∂ρ

−1

T
. (160)

10. Finite-reservoir ensembles

10.1. General considerations

We now revisit the system coupled to a reservoir discussed in Section 9.1 (Fig. 4). The system
and the reservoir are described by extensive parameters X1, . . . , Xn and X r

1, . . . , X
r
n , respectively, with

fixed total amounts X̃i = Xi + X r
i . Suppose m of these parameters are allowed to flow back and forth

between the system and the reservoir, whereas the remaining (n − m) parameters are fixed. Both
the system and the reservoir are assumed to be single-phase substances with different fundamental
equations S = S(X1, . . . , Xn) and Sr = Sr(X r

1, . . . , X
r
n), respectively. The probability distribution of the

fluctuating parameters of the system is given by Eq. (64), which is repeated here for convenience:
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W (X1, . . . , Xm) = Wm exp

S(X1, . . . , Xm)− S(X0

1 , . . . , X
0
m)

k



× exp


Sr(X̃1 − X1, . . . , X̃m − Xm)− Sr(X̃1 − X0

1 , . . . , X̃m − X0
m)

k


. (161)

In Section 9.1, the entropy of the reservoir was approximated by the linear expansion (66) at the
equilibrium parameter set X0

1 , . . . , X
0
m. This linear approximation was justified by the large size of the

reservoir in comparison with the system. We will now lift this assumption and adopt a more general
expansion, Eq. (65), which includes quadratic terms:

Sr(X̃1 − X1, . . . , X̃m − Xm)− Sr(X̃1 − X0
1 , . . . , X̃m − X0

m) = −

m
i=1

F 0
i (Xi − X0

i )

−
1
2
k

m
i,j=1

Λr
ij(Xi − X0

i )(Xj − X0
j ), (162)

where

Λr
ij ≡ −

1
k


∂2Sr
∂X r

i ∂X
r
j


0

(163)

is the stabilitymatrix of the reservoir. As usual, the derivatives are taken at the equilibrium parameter
set X0

1 , . . . , X
0
m.

Before analyzing fluctuations, let us examine themicro-state probability distribution P(X1, . . . , Xm).
Recall that the latter is obtained from W (X1, . . . , Xm) by dropping S(X1, . . . , Xm) in the first line of
Eq. (161) [see Eq. (70) in Section 9.2]. Thus,

P = Wm exp


−S(X0

1 , . . . , X
0
m)+ Sr(X̃1 − X1, . . . , X̃m − Xm)− Sr(X̃1 − X0

1 , . . . , X̃m − X0
m)

k



= A exp


−

1
k

m
i=1

F 0
i Xi −

1
2

m
i,j=1

Λr
ij(Xi − X0

i )(Xj − X0
j )


, (164)

where A is a constant that can be found from the probability normalization condition. Thus, in addition
to the usual linear terms F 0

i Xi appearing in the generalized canonical distribution (72), we now have
a quadratic form representing the effect of the finite reservoir on the micro-state probability of the
system.

The matrix elements Λr
ij scale as 1/Nr . When the size of the reservoir increases to infinity, the

quadratic terms in Eq. (164) vanish and we return to the generalized canonical distribution (72). In
the opposite limit when the reservoir becomes extremely small in comparison with our system, the
probability distribution is dominated by the quadratic terms. The distribution becomes a very sharp
Gaussian peak. Accordingly, all micro-states whose Xi are even slightly deviated from X0

i become
extremely improbable. The systembehaves as if isolated andEq. (164) approaches themicro-canonical
distribution. In other words, Eq. (164) interpolates between the generalized canonical and micro-
canonical distributions; we can smoothly transition from one distribution to the other by varying
the reservoir size and thus scaling the reservoir stability matrix (163).

We now return to the parameter distribution function W (X1, . . . , Xm) and expand the entropy of
our system in a manner similar to Eq. (162):

S(X1, . . . , Xm)− S(X0
1 , . . . , X

0
m) =

m
i=1

F 0
i (Xi − X0

i )−
1
2
k

m
i,j=1

Λij(Xi − X0
i )(Xj − X0

j ), (165)
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with the usual stability matrix

Λij ≡ −
1
k


∂2S
∂Xi∂Xj


0
. (166)

Inserting the expansions (162) and (165) in Eq. (161), we obtain the multi-variable Gaussian
distribution

W (X1, . . . , Xm) = Wm exp


−

1
2

m
i,j=1

Λ̃ij(Xi − X0
i )(Xj − X0

j )


, (167)

with the stability matrix

Λ̃ij = Λij +Λr
ij. (168)

We thus arrive at the remarkable result that the finite size of the reservoir does not change the
Gaussian form of the parameter distribution of the system. However, the reservoir does contribute
to the matrix elements of the Gaussian distribution in an additive manner. We can, therefore, easily
compute themean-square fluctuations and covariances of the parametersX1, . . . , Xm using the known
Eqs. (81) and (82) withΛij replaced by the full stability matrix Λ̃ij:

∆Xi∆Xj = Λ̃−1
ij , i, j = 1, . . . ,m, (169)

(∆Xi)2 = Λ̃−1
ii , i = 1, . . . ,m. (170)

A number of other interesting relations can be derived. It follows from Eqs. (162) and (165) that

Fi =
∂S
∂Xi

= F 0
i − k

m
j=1

Λij(Xj − X0
j ), (171)

F r
i =

∂Sr
∂X r

i
= F 0

i + k
m
j=1

Λr
ij(Xj − X0

j ). (172)

Averaging these equations over the distribution and using the fact that for a Gaussian distribution
Xj = X0

j , we obtain

F r
i = Fi = F 0

i . (173)

In other words, not only the most probable but also average values of the thermodynamic forces are
the same in the system and in the reservoir. Furthermore, subtracting Eq. (171) from Eq. (172) we
have

F r
i − Fi = k

m
l=1

Λ̃il(Xl − X0
l ). (174)

Starting from this equation, we can generate a set of fluctuation relations involving the difference
(F r

i − Fi). For example, multiplying Eq. (174) by ∆Xj and averaging over the parameter distribution,
we have

(F r
i − Fi)∆Xj = kδij, i, j = 1, . . . ,m, (175)

where we used Eq. (169). Likewise, multiplying Eq. (174) by (F r
j − Fj) and averaging over the

distribution, we obtain

(F r
i − Fi)(F r

j − Fj) = k2Λ̃ij, i, j = 1, . . . ,m, (176)

where we used Eq. (175). In particular,

(F r
i − Fi)2 = k2Λ̃ii, i = 1, . . . ,m. (177)



78 Y. Mishin / Annals of Physics 363 (2015) 48–97

These equations describe fluctuations of the differences between the values of the intensive
parameters inside our system and in the reservoir.

We can also compute fluctuations inside our system. To this end, we rewrite Eq. (171) as

∆Fi = −k
m

p=1

Λip∆Xp. (178)

Multiplying this equation by∆Xj and averaging over the distribution, we obtain the covariances

∆Fi∆Xj = −k
m

p=1

ΛipΛ̃
−1
pj , i, j = 1, . . . ,m. (179)

Similarly, multiplying Eq. (178) by∆Fj and averaging over the distribution, we have

∆Fi∆Fj = k2
m

p,q=1

ΛipΛpqΛ̃
−1
qj , i, j = 1, . . . ,m, (180)

(∆Fi)2 = k2
m

p,q=1

ΛipΛpqΛ̃
−1
qi , i = 1, . . . ,m. (181)

As expected, in the limit of an infinitely large reservoir when Λ̃ij becomes identical toΛij, Eqs. (179),
(180) and (181) reduce to Eqs. (85), (86) and (87) for the generalized canonical ensemble.

10.2. Application to a simple fluid

To demonstrate the finite-ensemble formalism, consider a fixed volume V of a simple fluid
embedded in another (generally, different) simple fluid serving as a reservoir. This situation was
already discussed in Section 9.5.3 in the context of the grand-canonical ensemble. This time, however,
the reservoir will be treated as an infinite source of heat (thermostat) but a finite source of particles.
We thus have two fluctuating extensive properties, X1 = E and X2 = N , with the conjugate
thermodynamic forces F1 = 1/T and F2 = −µ/T .

Because the reservoir has an infinite heat capacity, we have Λr
11 = 0. Assuming for simplicity

that the chemical potential of the reservoir µr is temperature-independent, we additionally have
Λr

12 = Λr
21 = 0. Thus, the reservoir stability matrix is

Λr
ij =


0 0
0 Λr

22


(182)

with a single nonzero parameterΛr
22.

The micro-state probability distribution for our system can be found from Eq. (164):

P = A exp

−

E − µ0N
kT0

−
1
2
Λr

22(N − N0)
2

. (183)

As a side note, a similar equation can be obtained for a closed system coupled to a thermostat with a
finite heat capacity. In this case, the role of the number of particles is played by the energy, so that the
additional term contributed by the thermostat is quadratic in (E − E0):

P = A exp

−

E
kT0

−
1
2
Λr

11(E − E0)2

. (184)

This situation is known in the literature as the Gaussian ensemble [51,54]. By analogy, formula (183)
can also be referred to as the Gaussian ensemble distribution.

Eq. (183) can be rewritten in the form

P = A exp


−
E − µ̂N

kT0


, (185)
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where

µ̂ ≡ a − bN (186)

with

a = µ0 +Λr
22kT0N0, (187)

b =
1
2
Λr

22kT0. (188)

Eq. (185) looks similar to the grand-canonical distribution, except that the fixed chemical potential
of the reservoir µ0 is replaced an ‘‘effective’’ chemical potential µ̂ linearly dependent on the current
number of particles N . In the limit ofΛr

22 → 0 (infinitely large reservoir), this dependence disappears
and we return to the standard grand-canonical distribution with the chemical potential µ0.

Eq. (185)–(188) can be implemented in Monte Carlo computer simulations using an algorithm
similar to that of the grand-canonical ensemble [1] but with a chemical potential adjustable ‘‘on
the fly’’. For binary mixtures, this approach was implemented in the semi-grand canonical mode as
‘‘variance-constrained’’ Monte Carlo [58,59]. A similar semi-grand canonical Monte Carlo method,
called feedback Monte Carlo, was recently employed for interface free energy calculations by the
capillary fluctuation approach [21]. Related Monte Carlo algorithms were earlier developed for
closed systems coupled to a finite-capacity thermostat. The initially proposed ‘‘dynamical ensemble’’
method [68] developed for such systems later evolved into more sophisticated and computationally
more efficient iterative Monte Carlo schemes based on Eq. (184) [56,57].

We now return to the analysis of fluctuations. To simplify the calculations, we will neglect the
temperature dependence of the chemical potential, treating it solely as a function of the particle
density ρ. Following the calculation methods presented in Section 9.5, it is easy to obtain the stability
matrix of the fluid in the entropy scheme,

Λij =
1

ρ0cvkT 2
0 V

 1 −µ0

−µ0 ρ0cvT0


∂µ

∂ρ


T

+ µ2
0

 (189)

and its inverse

Λ−1
ij = kT0V


∂µ

∂ρ

−1

T

ρ0cvT0 ∂µ∂ρ


T
+ µ2

0 µ0

µ0 1

 . (190)

Accordingly,

Λ̃ij =
1

ρ0cvkT 2
0 V

 1 −µ0

−µ0 ρ0cvT0


∂µ

∂ρ


T

+ µ2
0 + ρ0cvkT 2

0Λ
r
22V

 (191)

and

Λ̃−1
ij =

kT0V
∂µ

∂ρ


T

+ kT0VΛr
22

ρ0cvT0 ∂µ∂ρ


T
+ µ2

0 + ρ0cvkT 2
0Λ

r
22V µ0

µ0 1

 . (192)

We can now compute the mean-square fluctuations of the energy and the number of particles:

(∆E)2 = Λ̃−1
11 =

ρ0cvkT 2
0 V

∂µ

∂ρ


T

+ kT0V

µ2

0 + ρ0cvkT 2
0Λ

r
22V


∂µ

∂ρ


T

+ kT0VΛr
22

, (193)

(∆N)2 = Λ̃−1
22 =

kT0V
∂µ

∂ρ


T

+ kT0VΛr
22

. (194)



80 Y. Mishin / Annals of Physics 363 (2015) 48–97

Similarly, for the covariance∆E∆N we have

∆E∆N = Λ̃−1
12 =

kT0µ0V
∂µ

∂ρ


T

+ kT0VΛr
22

. (195)

Fluctuations of the chemical potential could be found directly from Eq. (181). Instead, we will take
a shortcut by taking advantage of the fact that µ = µ(ρ) and therefore

∆µ =


∂µ

∂ρ


T

∆N
V
. (196)

Taking a square of this equation and averaging over the distribution, we obtain

(∆µ)2 =


∂µ

∂ρ

2

T

(∆N)2

V 2
=

kT0
V


∂µ

∂ρ

2
T

∂µ

∂ρ


T

+ kT0VΛr
22

, (197)

where we used Eq. (194). Applying the same method,

∆µ∆N =


∂µ

∂ρ


T

(∆N)2

V
=

kT0

∂µ

∂ρ


T

∂µ

∂ρ


T

+ kT0VΛr
22

, (198)

∆µ∆E =


∂µ

∂ρ


T

∆E∆N
V

=

µ0kT0

∂µ

∂ρ


T

∂µ

∂ρ


T

+ kT0VΛr
22

. (199)

Continuing along this line, all other covariances can be readily calculated.
Consider limiting cases of the above relations. When Λr

22 → 0 (the reservoir is an infinite source
of particles), we exactly recover all results for the grand-canonical ensemble listed in Table 3. When
Λr

22 → ∞ (the reservoir cannot supply or absorb particles), the system behaves as virtually closed
(NVT ). Accordingly, the energy fluctuation (193) reduces to

(∆E)2 = ρ0kT 2
0 cvV (200)

in agreement with the NVT result (Table 1). All other mean-square fluctuations and covariances
appearing in Eqs. (194)–(199) tend to zero as 1/Λr

22. As evident fromTable 1, in theNVT ensemble they
are proportional to (∂µ/∂T )ρ and thus generally not zero. In the present calculations, they vanished
because we neglected the temperature dependence of µ for the sake of simplicity. More accurate but
rather tedious calculations taking into account the temperature dependence of µ exactly recover the
fluctuation relations from Table 1 whenΛr

22 → ∞.
It is interesting to note that at the limit of normal thermodynamic stability when (∂µ/∂ρ)T → 0,

the canonical fluctuation (∆N)2 diverges to infinity (Table 3). However, when the system is coupled
to a finite-size reservoir with a positive coefficient Λr

22 > 0, the latter stabilizes the fluid and its
compositional fluctuations remain finite and equal to 1/Λr

22, see Eq. (194). The finite size of the
reservoir smooths the singularity.

11. Fluctuations of grain boundary properties

GBs are interfaces separating regions of the same crystalline solid phase (called grains) with
different crystallographic orientations. GBs can strongly impact physical and mechanical properties
of crystalline materials, especially in nano-structured systems. While thermodynamics and kinetics
of GBs has been studied extensively for several decades [69], it is only recently that fluctuations
of GB properties have become the subject of dedicated research, primarily by atomistic computer
simulations [15–22].

In preparation for the discussion of GB fluctuations, we will give a brief account of GB
thermodynamics focusing on a plane GB in a binary substitutional solid solution.
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GB

Fig. 5. Two grains with different crystallographic orientations separated by a plane grain boundary (GB). The shaded areas
bounded by dashed lines mark a region containing the GB and a comparison region inside one of the grains containing the
same total number of atoms. These two regions are selected for calculations of GB excess quantities.

11.1. Grain boundary thermodynamics

Consider a bicrystal (i.e., a system of two grains) enclosed in a rectangular box with rigid
impermeable walls (Fig. 5). Since the system is closed, the total number of particles N is fixed. We
will assume that the grains possess appropriate crystallographic symmetries such that themechanical
stresses existing in the bicrystal do not create a difference in strain energy densities in the grains that
would cause GB migration.

Before discussing GB thermodynamics, we will first specify thermodynamic properties of the
homogeneous single-crystalline solid solution forming the grains. We postulate the following
fundamental equation of this solution in the energy representation16:

Eg = Eg(Sg , Vg ,Ng
s ,N

g
2 ). (201)

Here, the suffix g indicates that the properties refer to a region in one of the grains, such as the shaded
layer shown in Fig. 5, Ng

2 is the number of atoms of species 2 and Ng
s is the number of lattice sites in

the region. Vacancies are neglected, so that the number of atoms of species 1 is Ng
1 = Ng

s − Ng
2 . The

differential of Eq. (201) is

dEg = TdSg − pdVg + ϕdNg
s + MdNg

2 , (202)

where T = ∂Eg/∂Sg is temperature, p = −∂Eg/∂Vg is pressure (negative of the stress component
normal to the GB plane),M = ∂Eg/∂N

g
2 is the diffusion potential of species 2 relative to species 1 [72–

74], and ϕ = ∂Eg/∂N
g
s is a thermodynamic potential conjugate to the number of sitesNg

s . On the other
hand, the energy defined by Eq. (201) is a homogeneous function of first degree in all four arguments.
Using the Euler theorem for homogeneous functions [75] we have

Eg = TEg − pVg + ϕNg
s + MNg

2 . (203)

Combining Eqs. (202) and (203) we obtain the Gibbs–Duhem equation

− SgdT + Vgdp − Ng
s dϕ − Ng

2 dM = 0. (204)

To develop GB thermodynamics, we define the GB excess of any extensive property X by

X̃ ≡ X − Xg , (205)

where X is the value of the property for a bicrystalline layer containing the GB and Xg is the value of the
same property for a homogeneous grain layer containing the same total number of atoms. Examples

16 Generally, the fundamental equation of a stressed solid depends on the deformation gradient relative to a chosen reference
state [25,70,71]. In the particular case considered here, the cross-section of the solid is fixed and only deformation in the normal
direction is permitted. Under such conditions, only the normal component of the deformation gradient is relevant and varies
as a linear function of the volume. It is convenient to represent this component by the volume itself.
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of such layers are shown by shaded regions in Fig. 5. The choice of these layers is totally arbitrary
and does not affect X̃ as long as their boundaries are unaffected by the GB or the walls. According
to this definition of excess, a bicrystalline layer can be thought of as composed of two subsystems:
(1) the reference grain layer containing the same total number of atoms and (2) the excess system
representing the GB and described by the excess properties S̃, Ẽ, Ṽ , etc.

Just as the grain thermodynamics has been formulated above starting from a postulated
fundamental equation (201), we will postulate a fundamental equation of the GB in the form

Ẽ = Ẽ(S̃, Ṽ , Ñ2, A). (206)

Note that Ñ1 is not an independent variable because

Ñ1 + Ñ2 = 0 (207)

by our definition of excesses. The excess energy (206) is a homogeneous function of first degree in all
four arguments. Applying the Euler theorem [75] we have

Ẽ =
∂ Ẽ

∂ S̃
S̃ +

∂ Ẽ

∂ Ṽ
Ṽ +

∂ Ẽ

∂Ñ2
Ñ2 +

∂ Ẽ
∂A

A. (208)

On the other hand, the differential of Eq. (206) is

dẼ =
∂ Ẽ

∂ S̃
dS̃ +

∂ Ẽ

∂ Ṽ
dṼ +

∂ Ẽ

∂Ñ2
dÑ2 +

∂ Ẽ
∂A

dA. (209)

Combining Eqs. (208) and (209) we obtain the GB version of the Gibbs–Duhem equation:

S̃d
∂ Ẽ

∂ S̃
+ Ṽ d

∂ Ẽ

∂ Ṽ
+ Ñ2d

∂ Ẽ

∂Ñ2
+ Ad

∂ Ẽ
∂A

= 0. (210)

Next, we find the conditions of thermodynamic equilibrium between the GB and the grains. To this
end, we consider a variation of the total energy (Ẽ + Eg) of a bicrystalline layer at a fixed composition,
volume and entropy. In equilibrium, this variation (dẼ + dEg)must be zero [25]. Here, dEg is given by
Eq. (202) and dẼ by Eq. (209). The variation is subject to the following constraints:

dÑ1 + dNg
1 = 0, (211)

dÑ2 + dNg
2 = 0, (212)

dṼ + dVg = 0, (213)

dS̃ + dSg = 0, (214)

as well as dA = 0. Furthermore, by adding Eqs. (211) and (212) and taking into account Eq. (207), it
follows that the number of sites in the reference grain region is conserved: dNg

s = dNg
1 + dNg

2 = 0.
Inserting these constraints into the total energy variation, we arrive at the equilibrium condition

∂ Ẽ

∂ S̃
− T


dS̃ +


∂ Ẽ

∂ Ṽ
+ p


dṼ +


∂ Ẽ

∂Ñ2
− M


dÑ2 = 0. (215)

Because the variations dS̃, dṼ and dÑ2 are independent and can be positive or negative, the coefficients
multiplying them must be zero. We thus obtain the equilibrium values of the derivatives of Ẽ:

∂ Ẽ

∂ S̃


0

= T0, (216)
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∂ Ẽ

∂Ñ2


0

= M0, (217)


∂ Ẽ

∂ Ṽ


0

= −p0. (218)

As usual, the subscript 0 labels the equilibrium state.
The remaining derivative

γ0 ≡


∂ Ẽ
∂A


0

(219)

is called the equilibrium GB free energy. The precise thermodynamic meaning of this property will be
discussed later.

11.2. Quasi-equilibrium grain boundary states

So far, we have only specified the derivatives of Ẽ with respect to S̃, Ñ2, Ṽ and A for equilibrium
states of the system. Namely, such derivatives are equal to the equilibrium temperature, diffusion
potential, negative of pressure in the grains and the equilibrium GB free energy, respectively. For
the analysis of GB fluctuations, we must consider these derivatives without assuming equilibrium
between the GB and the grains. Such derivatives form a new set of variables T , p, M and γ defined as
follows:

∂ Ẽ

∂ S̃
≡ T , (220)

∂ Ẽ

∂Ñ2
≡ M, (221)

∂ Ẽ

∂ Ṽ
≡ −p, (222)

∂ Ẽ
∂A

≡ γ . (223)

These new variables can be interpreted as, respectively, the local temperature, negative of local
pressure, local diffusion potential and the GB free energy when the GB is not in equilibrium with
the grains. Indeed, by postulating the fundamental equation (206) we implicitly assumed that the GB
follows this equation even in the absence of equilibrium with the grains. One can think of such GB
states as being disconnected from the actual grains and equilibrated with imaginary grains with a
different set of intensive parameters T ,M and p. In terms of the variables (220)–(223), the differential
form of the fundamental equation (206) becomes

dẼ = TdS̃ − pdṼ + MdÑ2 + γ dA. (224)

The existence of quasi-equilibrium states in which the GB obeys a fundamental equation without
being in equilibrium with the grains is an important supposition of the interface fluctuation theory.
As discussed in Sections 4 and 5, the entire thermodynamic theory of equilibrium fluctuations is built
on the assumption that all fluctuated states are states of quasi-equilibrium. The theory discussed here
is an application of this principle to GBs.

Suppose the bicrystal has been initially equilibrated and then the GB deviates from this initial
equilibrium to a nearby quasi-equilibrium state where it is no longer in equilibrium with the grains.
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Denoting the equilibrium excess entropy, volume and number of atoms S̃0, Ṽ0 and Ñ0
2 , respectively,

the Gibbs–Duhem Eq. (210) for this variations becomes

S̃0d
∂ Ẽ

∂ S̃
+ Ṽ0d

∂ Ẽ

∂ Ṽ
+ Ñ0

2d
∂ Ẽ

∂Ñ2
+ Ad

∂ Ẽ
∂A

= S̃0dT − Ṽ0dp + Ñ0
2dM + Adγ = 0. (225)

This equation can be rewritten in the form

dγ = −
S̃0
A
dT +

Ṽ0

A
dp −

Ñ0
2

A
dM, (226)

which will be used later.
In the particular casewhen the states of the grains also vary in such amanner that the entire system

undergoes an equilibrium process, Eq. (226) becomes

dγ0 = −
S̃0
A
dT0 +

Ṽ0

A
dp0 −

Ñ0
2

A
dM0. (227)

This is one of the forms of the Gibbs adsorption equation for a fixed GB area. This equilibrium
equation should not be confused with Eq. (226) describing fluctuations in which the GB deviates from
equilibrium with the grains.

We can now understand the meaning of the parameter γ . Let us rewrite Eq. (208) in the form

Ẽ = T S̃ − pṼ + MÑ2 + γ A, (228)

from which

γ =
Ẽ − T S̃ + pṼ − MÑ2

A
. (229)

As was shown by Gibbs [25], an expression of the form E − TS + pV − ΣiµiNi is the reversible work
required for the creation of a new system with extensive properties E, S, V and Ni by drawing the
energy andmatter from an infinite reservoir with a temperature T , pressure p and chemical potentials
µi. Thus, the numerator in Eq. (229) can be interpreted as the reversible work of GB formation from
an imaginary infinite reservoir with the intensive parameters T , p andM . In the present case, the term
µ1Ñ1 +µ2Ñ2 reduces toMÑ2 due to the constraint imposed by Eq. (207). In short, γ is the reversible
work of GB formation per unit area. Accordingly, the equilibrium GB free energy γ0 is the reversible
work of GB formation per unit area from a reservoir with the same intensive parameters T0, p0 and
M0 as in the actual grains:

γ0 =
Ẽ − T0S̃ + p0Ṽ − M0Ñ2

A
. (230)

In other words, this is the reversible work of GB formation between two infinitely large grains.

11.3. Grain boundary fluctuations

We are now in a position to analyze GB fluctuations. We will compute generalized canonical
fluctuations of GBproperties treating the grains as an infinite reservoir coupled to theGB. Although the
foregoing discussion utilized the energy scheme, the latter is impractical for GB fluctuations.17Instead,
we will now switch to the entropy scheme in which the independent additive invariants fluctuating
between the GB and the grains are X1 = Ẽ, X2 = Ṽ and X3 = Ñ2. The conjugate thermodynamic forces

17 The energy scheme involves fluctuations of the excess entropy S̃, which is not accessible by experiments or atomistic
simulations. In the entropy scheme, S̃ is replaced by the more accessible excess energy Ẽ.
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are readily found from Eq. (224): F1 = 1/T , F2 = p/T and F3 = −M/T . We can also rewrite Eq. (226)
in terms of the new variables:

dγ =

3
i=1

BidFi, (231)

with the coefficients

B1 ≡
T0(Ẽ0 − γ0A)

A
, (232)

B2 ≡
T0Ṽ0

A
, (233)

B3 ≡ −
T0Ñ0

2

A
. (234)

In the Gaussian approximation to fluctuations, the distribution of the excess parameters Xi is given
by Eq. (79) with the stability matrix

Λij = −
1
k




∂2S̃

∂ Ẽ2


0


∂2S̃

∂ Ẽ∂ Ṽ


0


∂2S̃

∂ Ẽ∂Ñ2


0

∂2S̃

∂ Ẽ∂ Ṽ


0


∂2S̃

∂ Ṽ 2


0


∂2S̃

∂ Ṽ∂Ñ2


0

∂2S̃

∂ Ẽ∂Ñ2


0


∂2S̃

∂ Ṽ∂Ñ2


0


∂2S̃

∂Ñ2
2


0


. (235)

The elements of this matrix represent equilibrium excess properties of the GB. For example,
∂2S̃

∂ Ẽ2


0

=


∂

∂ Ẽ


1
T


0

= −
1

T 2
0 Ac̃v

, (236)

where

c̃v ≡
1
A


∂ Ẽ
∂T


0

(237)

is the GB heat capacity (more accurately, the excess heat capacity per unit GB area computed at fixed
Ṽ/A and Ñ2/A). Similarly,

∂2S̃

∂ Ṽ 2


0

=


∂

∂ Ṽ

 p
T


0

= −
1

T0Ṽ0κ̃T
−

p0
T 2
0 Ṽ0α̃

, (238)

where

κ̃T ≡ −
1

Ṽ0


∂ Ṽ
∂p


0

(239)

is the isothermal compressibility of the GB and

α̃ ≡
1

Ṽ0


∂ Ṽ
∂T


0

(240)

is the GB thermal expansion coefficient.
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Equilibrium GB properties can be computed directly by atomistic simulations. For example, κ̃T
can be found by computing the excess GB volume as a function of pressure at a fixed temperature
followed by numerical differentiation [76]. However, analysis of GB fluctuations offers amore efficient
approach in which the entire set of equilibrium GB properties can be extracted from a single
simulation run using fluctuation relations. Indeed, the excess properties Ẽ, Ṽ and Ñ2 are readily
accessible by atomistic simulations. By computing their covariances, the inverse stability matrix can
be found from the fluctuation relation

∆Xi∆Xj = Λ−1
ij , i, j = 1, 2, 3. (241)

The latter can be then inverted to obtain the stabilitymatrixΛij and thus the equilibriumGBproperties
such as c̃v , κ̃T , α̃, etc. Furthermore, knowing the stabilitymatrix, fluctuations of thermodynamic forces
can be predicted from the fluctuation relations

∆Fi∆Fj = k2Λij, i, j = 1, . . . , 3. (242)

Knowing these covariances, straightforward algebraic manipulations can be applied to find (∆M)2,
(∆T )2 and (∆p)2, as well as the covariances∆M∆T ,∆M∆p and∆p∆T . As a general rule,

∆Pi∆Pj =

3
m,n=1

k2

∂Pi
∂Fm


0


∂Pj
∂Fn


0
Λnm, i, j = 1, . . . , 3, (243)

where the transformation matrix ∂Pi/∂Fm is
∂Pi
∂Fm


0

=

−T 2
0 p0T0 −M0T0

0 −T0 0
0 0 −T0

 . (244)

To our knowledge, the proposed calculation scheme has not been implemented.
As an interesting application, one can predict the equilibrium mean-square fluctuation (∆γ )2 of

the GB free energy, where∆γ ≡ γ − γ0. The fluctuation form of Eq. (231) is

∆γ =

3
i=1

Bi∆Fi. (245)

Taking a square of this equation and averaging over the distribution, we obtain

(∆γ )2 =

3
i,j=1

BiBj∆Fi∆Fj. (246)

Applying Eq. (242) for∆Fi∆Fj, this equation finally becomes

(∆γ )2 = k2
3

i,j=1

BiBjΛij. (247)

This calculation requires the knowledge of Λij and the equilibrium values of the excess GB energy,
volume and segregation as ingredients for the parameters Bi. The GB free energy is usually treated
as a static property. An estimate of its fluctuation (∆γ )2 would provide a critical assessment of this
approximation.

12. Fluctuations in pre-melted grain boundaries

In this section we address another fluctuation topic associated with GBs. At high temperatures
approaching the melting point of the solid, many GBs become atomically disordered and can develop
a liquid-like structure reminiscent of a thin liquid film [69]. Our goal is to describe equilibrium
thermodynamic properties of this film and derive the distribution function of its width. The analysis
is based on the sharp interfacemodel of pre-melting (Fig. 6). The grains are formed by the same binary
solid solution phase as discussed in Section 11.
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Fig. 6. Sharp interface model of GB pre-melting. The pre-melted GB is modeled by a liquid layer of a widthw bounded by two
sharp interfaces endowed with thermodynamic properties of actual solid–liquid interfaces between bulk phases.

12.1. Thermodynamic background

12.1.1. Equilibrium state of pre-melted grain boundary
We will consider the same bicrystal in a rigid box as discussed in Section 11, but this time we will

adopt a particular model of GB structure, namely, a liquid layer of a certain widthw bounded by two
solid–liquid interfaces (Fig. 6). We start by describing equilibrium thermodynamic properties of this
boundary.

As in Section 11, thermodynamic properties of the solid solution forming the grains are fully
described by the fundamental equation (201) in the energy representation. The binary liquid solution
(index L) is described by its own fundamental equation

EL = EL(SL, VL,NL
1,N

L
2) (248)

with the differential form

dEL = TLdSL − pLdVL + µ1dNL
1 + µ2dNL

2. (249)

Here, TL and pL are the temperature and pressure of the liquid and µ1 and µ2 are the chemical
potentials of the components.

To describe thermodynamics of the solid–liquid interfaces bounding the liquid layer, we will first
take a detour and consider a single plane interface between the bulk solid and liquid phases. We can
choose an arbitrary geometric dividing surface partitioning our system in two parts with volumes Vg
and VL. We then compute the excess of any extensive property X by

X̃ = X − Xg − XL, (250)

where X is the value of the property for the solid–liquid system with a volume (Vg + VL) and Xg and
XL are properties of the phases computed as if the volumes Vg and VL remained homogeneous all the
way to the dividing surface [25]. By this definition, Ṽ = 0. Because the densities of all properties are
generally different on either side of the interface, the excess defined by Eq. (250) depends on the exact
position of the dividing surfacewithin the interface region.Wewill adopt the rule bywhichwe always
place the dividing surface in such a manner that the excess of the total number of atoms N vanishes:
Ñ = 0. The fundamental equation of the solid–liquid interface is formulated in the form

Ẽ = Ẽ(S̃, Ñ2, A), (251)

with the differential form

dẼ =
∂ Ẽ

∂ S̃
dS̃ +

∂ Ẽ

∂Ñ2
dÑ2 +

∂ Ẽ
∂A

dA. (252)

Returning to the pre-melted GB modeled by a thin layer of the liquid phase (Fig. 6), we will
assume that the solid–liquid interfaces bounding this layer follow the same fundamental Eq. (251)
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as if they were interfaces between two bulk phases. This is, of course, an approximations. In
reality, the liquid layer width is on the order of a nanometer and its thermodynamic properties in
this narrow confinement are different from properties of bulk liquid. In addition, the solid–liquid
interfaces separated by such a short distance can interact with each other due to their finite thickness
comparable with the width of the layer. The difference between the actual GB structure and this
highly idealized liquid-layer structure is accounted for by introducing an interaction between the
two solid–liquid interfaces called the ‘‘disjoining’’ interaction. The disjoining interaction (index d) is
included in themodel by adding an extra energy term Ed and an associated entropy Sd, and postulating
the following fundamental equation of the disjoining interaction:

Ed = Ed(Sd, VL). (253)

The dependence on VL has been added to make the disjoining interaction a function of the distance
between the solid–liquid interfaces, which for a fixed cross-section considered here, is proportional
to VL. Both Ed and Sd are proportional to the GB area and have the same dimensions as the excess
quantities Ẽ and S̃, respectively. Both Ed and Sd tend to zero if the width of the liquid layer increases
to infinity (bulk solid–liquid system).

To summarize the model, the GB is represented by a homogeneous liquid layer separated from
the grains by two geometrically sharp solid–liquid interfaces to which we assign thermodynamic
properties of actual solid–liquid interfaces between bulk phases (Fig. 6). These sharp interfaces
coincide with the dividing surfaces separated by a distance w and interact with each other by
disjoining forces that follow the fundamental equation (253).

We will next derive the conditions of thermodynamic equilibrium by considering a variation of
state of a bicrystalline layer indicated in Fig. 6 by a shaded region with dashed boundaries. During
this variation, the layer remains isolated from the rest of the system and keeps a constant value of its
entropy. Under these constraints, the variation of the total energy

Ê = Eg + EL + Ẽ + Ed (254)

must be zero [25]. The terms of this equation are represented by the fundamental equations (201),
(248), (251) and (253), respectively. Accordingly,

dÊ = TdSg − pgdVg + ϕdNg
s + MdNg

2 + TLdSL − pLdVL + µ1dNL
1 + µ2dNL

2

+
∂ Ẽ

∂ S̃
dS̃ +

∂ Ẽ

∂Ñ2
dÑ2 +

∂ Ẽ
∂A

dA +
∂Ed
∂Sd

dSd +
∂Ed
∂VL

dVL = 0 (255)

subject to the following constraints:

dSg + dSL + dS̃ + dSd = 0, (256)

dVg + dVL = 0, (257)

dNg
1 + dNL

1 + dÑ1 = 0, (258)

dNg
2 + dNL

2 + dÑ2 = 0, (259)

dÑ1 + dÑ2 = 0, (260)

dNg
1 + dNg

2 − dNg
s = 0, (261)

as well as dA = 0. Here, −pg is the component of the mechanical stress in the grains normal to the
GB.

Out of 14 differentials appearing on the right-hand sides of Eqs. (255)–(261), 7 are eliminated by
the constraints, leaving 7 independent variations:

dÊ = (TL − T ) dSL +


∂ Ẽ

∂ S̃
− T


dS̃ +


∂Ed
∂Sd

− T

dSd
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+


∂Ed
∂VL

− pL + pg


dVL + (ϕ − µ1) dN

g
1

+ (ϕ − µ2 + M) dNg
2 +


∂ Ẽ

∂Ñ2
+ µ1 − µ2


dÑ2 = 0. (262)

Equating the differential coefficients to zero, we obtain the following equilibrium conditions:

T = TL =


∂ Ẽ

∂ S̃


0

=


∂Ed
∂Sd


0

≡ T0, (263)

p0L = p0g +


∂Ed
∂VL


0
, (264)

∂ Ẽ

∂Ñ2


0

= M0 = µ0
2 − µ0

1, (265)

ϕ0 = µ0
1, (266)

where T0 is the uniform temperature throughout the equilibrium system. As usual, the superscript 0
marks the equilibrium state.

Eq. (264) is the mechanical equilibrium condition, which can be written in the form

p0L = p0g + p0d, (267)

where p0d is the equilibrium value of the disjoining pressure defined by

pd ≡
∂Ed
∂VL

. (268)

Thus, the liquid phasewithin the GB layer is subject to an additional pressure pd on top of the pressure
pg existing in the grains.

12.1.2. Calculation of the disjoining pressure
Calculation of the equilibrium disjoining pressure p0d can be simplified by reformulation of the

equilibrium conditions in the density form. The fundamental equation (201) of the solid solution can
be rewritten in the density form

εg = εg(sg , vg , cg), (269)

where εg , sg and vg are, respectively, the energy, entropy and volume per lattice site (which is same
as per atom since we neglect vacancies), and cg is the site (atomic) fraction of species 2. Accordingly,
T = ∂εg/∂sg , pg = −∂εg/∂vg andM = ∂εg/∂cg . From Eq. (203) we have

ϕ = εg − Tsg + pgvg − Mcg , (270)

while the Gibbs–Duhem equation (204) becomes

sgdT − vgdpg + dϕ + cgdM = 0. (271)

It ismore convenient to express all properties of the grain as functions of the variable set (T , pg , cg).
The thermodynamic potential appropriate for these variables is

ω(T , pg , cg) ≡ ϕ + Mcg = εg − Tg sg + pgvg . (272)

Its differential form is

dω = −sgdT + vgdpg + Mdcg , (273)
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which is easily derivable from Eq. (271). Similarly, for the liquid solution we will use the variable set
(TL, pL, cL) and, accordingly, the Gibbs free energy

g(TL, pL, cL) ≡ εL − TLsL + pLvL = (1 − cL)µ1 + cLµ2 (274)

with the differential

dg = −sLdTL + vLdpL + (µ2 − µ1)dcL, (275)

where all densities are counted per atom.
We now reformulate the equilibrium conditions (265) and (266) in the form

M(T0, p0g , c
0
g ) = µ2(T0, p0L , c

0
L )− µ1(T0, p0L , c

0
L ), (276)

ω(T0, p0g , c
0
g ) = g(T0, p0L , c

0
L )+ M(T0, p0g , c

0
g )(c

0
g − c0L ), (277)

respectively. This is a system of two non-linear equations with respect to five equilibrium parameters
(T0, p0g , p

0
L , c

0
g , c

0
L ). It follows that our solid–liquid system has three degrees of freedom. Let us choose

the independent variable set (T0, p0g , c
0
g ). For any given state of the grains defined by these parameters,

we can solve Eqs. (276) and (277) to find the composition c0L and pressure p0L in the liquid layer, and
thus the disjoining pressure p0d = p0L − p0g .

For practical applications,wewill replace this exact calculation scheme by a simple approximation.
At given temperature T0 and pressure p0g , let c∗

g and c∗

L be the solid and liquid compositions
corresponding to the bulk solid–liquid coexistence (p0d = 0). These two compositions must satisfy
the equations18

M(T0, p0g , c
∗

g ) = µ2(T0, p0g , c
∗

L )− µ1(T0, p0g , c
∗

L ), (278)

ω(T0, p0g , c
∗

g ) = g(T0, p0g , c
∗

L )+ M(T0, p0g , c
∗

g )(c
∗

g − c∗

L ). (279)

Note that the pressure continuity condition p0L = p0g valid for a two-phase bulk system with a
plane interface eliminates one degree of freedom, leaving our systemwith two degrees of freedom in
compliance with the Gibbs phase rule. For a fixed pressure p0g , Eqs. (278) and (279) define the solidus
and liquidus lines, c∗

g (T0) and c∗

L (T0), on the phase diagram of the system.
We seek an approximate formof Eqs. (276) and (277) in the vicinity of the solidus line. As ameasure

of proximity of the grains to the solidus line at given T0 and p0g , we choose the diffusion potential
deviation

∆M ≡ M(T0, p0g , c
0
g )− M(T0, p0g , c

∗

g ) (280)

from its solidus value M(T0, p0g , c
∗
g ). All functions appearing in Eqs. (276) and (277) can be then

approximated by linear expansions in the small parameters ∆M , (c0g − c∗
g ), (c

0
L − c∗

L ) and (p
0
L − p0g).

The linearized form of these equations becomes

∆M =


∂(µ2 − µ1)

∂cL


∗

(c0L − c∗

L )+


∂(µ2 − µ1)

∂pL


∗

p0d, (281)
∂ω

∂cg


∗

(c0g − c∗

g ) =


∂g
∂cL


∗

(c0L − c∗

L )+


∂g
∂pL


∗

p0d

+M(T0, p0g , c
∗

g )(c
0
g − c0L − c∗

g + c∗

L )+ (c∗

g − c∗

L )∆M, (282)

18 We will not go into details, but Eqs. (278) and (279) can be given a geometric interpretation of a common tangent
construction, M being the slope of the common tangent to the curves ω(T0, p0g , c) and g(T0, p0g , c) as functions of composition
c at fixed T0 and p0g .
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where the asterisk indicates that the derivatives are taken in the bulk-coexistence state (∆M = 0).
All zero-order terms have canceled out by Eqs. (278) and (279). The equations obtained are simplified
by utilizing the relations

∂ω

∂cg


∗

=


∂g
∂cL


∗

= M(T0, p0g , c
∗

g ), (283)
∂g
∂pL


∗

= v∗

L , (284)
∂(µ2 − µ1)

∂pL


∗

= v̄2∗L − v̄1∗L , (285)

where v̄iL = ∂µi/∂pL are partialmolar volumes of the components in the liquid phase,with the asterisk
indicating that these volumes refer to the bulk-coexistence state. Using these relations, Eqs. (281) and
(282) become, respectively,

∆M =


∂(µ2 − µ1)

∂cL


∗

(c0L − c∗

L )+ (v̄2∗L − v̄1∗L )p
0
d, (286)

0 = v∗

L p
0
d + (c∗

g − c∗

L )∆M. (287)
Eq. (287) immediately gives us the equilibrium disjoining pressure,

p0d =
c∗

L − c∗
g

v∗

L
∆M, (288)

while Eq. (286) can be solved for the deviation of the liquid-layer composition c0L from the liquidus
composition c∗

L :

c0L − c∗

L =
∆M − (v2∗L − v1∗L )p

0
d

∂(µ2−µ1)
∂cL


∗

=

1 −
v2∗L −v1∗L
v∗L

(c∗

L − c∗
g )

∂(µ2−µ1)
∂cL


∗

∆M. (289)

In many systems, the difference between the partial molar volumes of the components is small in
comparison with v∗

L and the latter equation can be simplified to

c0L − c∗

L =
1

∂(µ2−µ1)
∂cL


∗

∆M. (290)

For a single-component system,∆M loses its significance. The appropriatemeasure of proximity of
the system to bulk melting is then the difference (T0 − Tm) between the temperature of the bicrystal
and the bulk melting point Tm at a given pressure p0g . The equilibrium conditions (276) and (277)
reduce to one equation,

ω(T0, p0g , 0) = g(T0, p0L , 0), (291)
which for bulk equilibrium becomes

ω(Tm, p0g , 0) = g(Tm, p0g , 0). (292)

Linearizing Eq. (291) in the small parameters (T0 − Tm) and p0d we have
∂ω

∂T


∗

(T0 − Tm) =


∂g
∂T


∗

(T0 − Tm)+


∂g
∂pL


∗

p0d, (293)

from which

p0d =
s∗L − s∗g
v∗

L
(T0 − Tm) =

Hm

Tmv∗

L
(T0 − Tm), (294)

where Hm = (s∗L − s∗g)Tm is the enthalpy of melting per atom.
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12.2. Analysis of fluctuations

To describe fluctuations in the pre-melted GB, we treat the grains as an infinite reservoir and apply
the canonical fluctuation relation (98). The system coupled to the reservoir is the GB possessing the
energy

EGB ≡ EL + Ẽ + Ed. (295)

We will initially consider the full set of fluctuating parameters, which will later be reduced to a
smaller set. Namely,wewill initially treat all arguments of the fundamental equations (248), (251) and
(253), except for the fixedGB area, as the fluctuating parameters. In the energy scheme, the fluctuating
parameter set is

Z = (SL, S̃, Sd, VL,NL
1,N

L
2, Ñ2). (296)

The thermodynamic forces conjugate to these parameters are

P =


TL,

∂ Ẽ

∂ S̃
,
∂Ed
∂Sd

,−pL +
∂Ed
∂VL

, µ1, µ2,
∂ Ẽ

∂Ñ2


. (297)

The reversible work of GB formation (99) takes the form

R = EGB − E0
GB −

7
i=1

P0
i (Zi − Z0

i ), (298)

where the thermodynamic forces are taken in the state of equilibrium. Using the equilibrium
conditions (263)–(265), we obtain

R = (EL − E0
L )+ (Ẽ − Ẽ0)+ (Ed − E0

d )− T0(SL − S0L )− T0(S̃ − S̃0)− T0(Sd − S0d )

+ p0L (VL − V 0
L )− p0d(VL − V 0

L )− µ0
1(N

L
1 − NL0

1 )− µ0
2(N

L
2 − NL0

2 )− M0(Ñ2 − Ñ0
2 ). (299)

Next, we will make some approximations that will reduce the number of fluctuating parameters.
The difference (EL − E0

L ) appearing in Eq. (299) will be approximated by its linear expansion around
equilibrium:

EL − E0
L = T0(SL − S0L )− p0L (VL − V 0

L )+ µ0
1(N

L
1 − NL0

1 )+ µ0
2(N

L
2 − NL0

2 ). (300)

Likewise, (Ẽ − Ẽ0)will also be evaluated in the linear approximation:

Ẽ − Ẽ0 = T0(S̃ − S̃0)+ M0(Ñ2 − Ñ0
2 ). (301)

The terms related to the disjoining interactionwill remain intact. Inserting the linear expansions (300)
and (301) in Eq. (299), several terms cancel out and we are left with

R = (Ed − E0
d )− T0(Sd − S0d )− p0d(VL − V 0

L ). (302)

Although Eq. (302) contains variations of three variables, only one fluctuating parameter is
independent. To see this, we apply the Legendre transformationwith respect to the disjoining entropy
to obtain the thermodynamic potential

Ψ (T , VL) = Ed(Sd, VL)− TSd. (303)

This thermodynamic potential is called the disjoining potential and its differential form is

dΨ = −SddT + pddVL. (304)

The latter equation suggests another definition of the disjoining pressure:

pd =


∂Ψ

∂VL


T
. (305)
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Thus, Eq. (302) can be rewritten in the form

R = Ψ (T0, VL)− Ψ (T0, V 0
L )− p0d(VL − V 0

L ), (306)

showing that, at a given temperature T0, R is solely a function of VL. In other words, VL is the only
independent fluctuating parameter. By neglecting higher-order terms in Eqs. (300) and (301), we have
suppressed fluctuations of all other independent parameters.

The probability distribution of the liquid volume VL is given by Eq. (98), which becomes

W (VL) = Wm exp


−
R

kT0


= Wm exp


−
Ψ (T0, VL)− Ψ (T0, V 0

L )− p0d(VL − V 0
L )

kT0


. (307)

Remembering that the cross-section of the bicrystal is fixed, we finally arrive at the distribution
function of the liquid-layer widthw:

W (w) = Wm exp

−A

ψ(T0, w)− ψ(T0, w0)− p0d(w − w0)

kT0


, (308)

where w0 = V 0
L /A is the equilibrium width of the layer and ψ = Ψ /A is the disjoining potential per

unit area. Note that this distribution depends on the GB area A: the larger the area, the sharper is the
peak of the distribution around w0. The disjoining pressure can be rewritten as pd = (∂ψ/∂w)T . Its
equilibrium value p0d appearing in Eq. (308) can be found from the bulk thermodynamic properties
using Eq. (288) for a binary alloy and Eq. (294) for a single-component system. Knowing p0d and the
distribution ofw at a given temperature T0, one can invert Eq. (308) and extract the disjoining potential
ψ(T0, w).

The GB width distribution (308) in conjunction with Eqs. (288) and (294) for the equilibrium
disjoining pressure answers the goal of this section. For single-component systems, an equation
similar to (308) was derived in previous work [16–18,77] and utilized for calculations of disjoining
interactions in Ni GBs by atomistic simulations [16–18]. In the present paper, this distribution has
been extended to binary systems.

As a further approximation, we can expand ψ(T0, w) around the equilibrium width keeping only
linear and quadratic terms:

ψ(T0, w) = ψ(T0, w0)+ p0d(w − w0)+
1
2


∂2ψ

∂w2


0
(w − w0)

2, (309)

where the second derivative is taken at equilibrium. This results in the Gaussian distribution

W (w) = Wm exp

−

A
2kT0


∂2ψ

∂w2


0
(w − w0)

2

, (310)

from which the mean-square fluctuation of the GB width is

(w − w0)2 =
kT0

A(∂2ψ/∂w2)0
. (311)

This estimate shows that the root-mean-square fluctuation of the liquid-layer width scales with the
GB area as 1/

√
A.

According to the foregoing derivation, theGBwidthw appearing in the sharp-interfacemodel of GB
premelting (Fig. 6) has the meaning of the distance between two dividing surfaces of the solid–liquid
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interfaces. Such dividing surfaces are characterized by a zero excess of the total number of particles
[Ṽ = 0, Ñ = 0, see excess definition (250)]. It should be, therefore, understood that the alternate
definitions of w adopted in atomistic simulations [16–18] constitute approximations to the strict
definition.

13. Concluding remarks

The thermodynamic theory of fluctuations presented here expands the postulational basis of the
traditional classical thermodynamics by incorporating equilibrium fluctuations. The main additional
element of the expanded theory is the fluctuation postulate expressed by Eq. (15) [or equivalently,
Eq. (19)]. Due to its statistical nature, this postulate signifies a break with the determinism of classical
thermodynamics. The statistical component introduced by this postulate propagates through the en-
tire logical structure of thermodynamics. The equilibrium state of a system is no longer a state but a
distribution over states. Thermodynamic properties become distributions around the average values
which are measured by macroscopic experiments. Similar expansions of classical thermodynamics
were previously discussed by Tisza and Quay [40] and Callen [27,28,39] and can be traced back to
Einstein [41]. The fluctuation postulate formulated in this paper describes fluctuations in an isolated
system and stems from the microcanonical distribution in statistical mechanics. In this sense, our ap-
proach is different from that of Tisza and Quay [40] and Callen [27,28,39] and is more aligned with
Einstein’s proposal [41].

The fluctuation postulate relies on the concept of non-equilibrium entropy. Without a proper def-
inition of non-equilibrium entropy, we cannot talk about its increase during equilibration or behavior
during fluctuations. In some sense, non-equilibrium entropy is defined already in classical thermo-
dynamics. The thermodynamic equilibrium conditions of classical thermodynamics are formulated
through the entropy maximum principle [25,27–29]. In this principle, the actual equilibrium state
of the system is compared with possible virtual states in which the system is imagined to be par-
titioned into isolated equilibrium subsystems; their entropies are then summed up and compared
with the equilibrium entropy of the actual system. The expanded thermodynamics goes one step fur-
ther: it assumes that such states are actually implemented during spontaneous fluctuations away from
the equilibrium state. The term ‘‘quasi-equilibrium’’ introduced in this paper captures three defining
properties of such fluctuated states: (1) non-equilibrium, (2) real (as opposed to virtual states of clas-
sical thermodynamics), and (3) composed of subsystems that can be treated as isolated (on a certain
time scale) and each described by a fundamental equation. The quasi-equilibrium states are charac-
terized by a set of internal parameters λi. The fluctuation postulate specifies the distribution function
of these parameters for an isolated system.

The second law of thermodynamics is re-formulated to include fluctuations. In the refined formu-
lation, it is only the entropy S̄ averaged over the fluctuations thatmonotonically increases and reaches
a maximum at equilibrium. On shorter time scales, the non-equilibrium entropy Ŝ incessantly fluctu-
ates around its average value and can never accede a certain maximum value S (Figs. 2 and 3). Thus,
the average entropy S̄ obtained by macroscopic measurements (performed on the time scale tTD) is
always somewhat smaller than S.

In classical thermodynamics, a central role is played by the fundamental equation which encap-
sulates all equilibrium thermodynamic properties of the system. This equation, first discovered by
Gibbs [25], looks exactly like our Eq. (4) but has a subtly different meaning. In the classical funda-
mental equation, the entropy S is a static property defined through the maximum-entropy princi-
ple (e.g., Callen’s Postulate II [27,28] or Tisza’s Postulate Pb1 [29]) and measured experimentally. In
the expanded theory, S appearing in Eq. (4) has the statistical–mechanical meaning of the maximum
micro-canonical entropy of an isolated system. As noted in the previous paragraph, this entropy is
slightly larger than the measured entropy S̄. In other words, the measured entropy S̄ does not ex-
actly satisfy the fundamental equation (4) of the present theory. This fact, of course, does not create
any problems. It only reflects the possibility of different definitions of the fundamental equation for
a fluctuating system. Since both S and S̄ are well-defined for any given set of conserved parameters
X1, . . . , Xn, S̄(X1, . . . , Xn) could also be taken as the fundamental equation [27,28,38,39]. We would
then have to re-define the temperature, pressure and all other intensities, and to modify many other
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equations of the theory. In the end, taking the fundamental equation S̄(X1, . . . , Xn) as the point of
departure would not lead to a logically consistent thermodynamic fluctuation theory consistent with
statistical mechanics.19 The advantage of our Eq. (4) with the entropy defined as above is that it leads
to a simple and complete logical structure fully consistent with statistical mechanics. In the limit of
an infinite large system, the fluctuations vanish and S and S̄ become numerically equal. Accordingly,
Eq. (4) becomes the fundamental equation in the sense of classical thermodynamics.

Similar considerations apply to canonical fluctuations. If the average values X̄1, . . . , X̄m of the fluc-
tuating extensive parameters X1, . . . , Xm are formally inserted in the fundamental Eq. (4), we do not
obtain the canonical entropy S̄. However, in the limit of a large system, all canonical averages do satisfy
(4) and the latter becomes the classical fundamental equation.

For the sake of simplicity, we have only considered a particular class of thermodynamic systems for
which all arguments of the fundamental equation are additive invariants. In the future, the theory can
be generalized to include pseudo-thermodynamic and quasi-thermodynamic variables [29]. Pseudo-
thermodynamic variables are neither additive nor conserved; an example is furnished by long-range
order parameters in atomically ordered compounds. Quasi-thermodynamic variables can be additive
but need not be conserved. They give rise to additional work terms in the total energy variation. How-
ever, the conjugate thermodynamic forces do not become spatially homogeneous when the system
reaches equilibrium and thus cannot be considered as intensities. Examples include the totalmagnetic
or electric-dipole moment of the system, the conjugate variables for which are, respectively, themag-
netic and electric field. Elastic strains and stresses in inhomogeneously deformed crystalline solids
belong to the same category. All such cases require a separate treatment.

To facilitate practical applications of the theory, we have presented a regular procedure for
calculations of equilibrium fluctuations of extensive parameters, intensive parameters anddensities in
systemswith any number of parameters. The proposed formalism has been demonstrated by deriving
the complete set of fluctuation relations for a simple fluid in three different ensembles. The results
are summarized in Tables 1–3 and may present a reference value. It should be noted that these
calculations treat all fluctuations in the Gaussian approximation. Greene and Callen [27,38] proposed
a more general method that does not rely on the Gaussian approximation and enables calculations of
higher-order correlationmoments such as∆Xi∆Xj∆Xk,∆Xi∆Xj∆Xk∆Xl, etc. Suchmoments are rarely
important and were not discussed in this paper.

The proposed fluctuation formalism has been applied to solve two problems related to GBs in
binary solid solutions. First, we developed a set of equations relating the fluctuations of excess GB
properties, readily accessible by atomistic simulations, to equilibrium GB characteristics such as the
excess elastic modulus, excess heat capacity and others. These equations offer a computationally
efficient approach to computing the entire set of such properties from a single simulation run.
Furthermore, the covariances between the fluctuations generate a set of thermodynamic relations
that can be tested by simulations to verify the fundamental understanding of GB thermodynamics.
Implementation of this program is presently underway.

Second,we have extended the sharp interfacemodel of GB pre-melting to binary alloys and derived
the distribution of the fluctuating liquid-layer widthw. This distribution has recently been applied to
calculate the disjoining potential for several GBs in Cu–Ag alloys [24]. The disjoining potential is a key
GB property allowing predictions of different pre-melting scenaria, such as the continuous melting,
thin-to-thick transitions or abruptmelting after over-heating [78,79]. In the version of the pre-melting
model considered here, we essentially treat the grains, the liquid layer and the solid–liquid interfaces
as parts of the same infinite reservoir.We only account for fluctuations ofw due disjoining interaction.
All thermodynamic relations are in place to develop a more general model that would include
fluctuations of intensive properties of the liquid layer and/or the solid–liquid interface properties.
This generalization could be the subject of future work.

19 As already mentioned, Greene and Callen [38] resolved these difficulties by making an additional approximation that
essentially identifies the canonical andmicro-canonical entropies. This identification is not satisfying for a rigorous fluctuation
theory. The distinction between the two entropies was discussed in Section 9.3.
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Finally, the approach demonstrated here for GBs can be readily extended to other interfaces. It
would be interesting to study the fluctuations of excess properties of solid–liquid and especially
solid–solid interfaces to determine their excess elastic and thermal properties and test some of the
basic equations of interface thermodynamics.
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