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1. Introduction

Our microscopic knowledge of superconductivity relies on the monumental theory laid down
between the end of the Fifties and the beginning of the Sixties by Migdal and Eliashberg [1-7], in a
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period where significant progress in the theoretical understanding of electron-phonon interactions
(EPIs) [8-15] was made.

Interest in the Migdal-Eliashberg theory, which represents one of the first applications of
quantum field theory to condensed matter physics, arose out of the need to transcend the Bardeen-
Cooper-Schrieffer (BCS) mean-field theory [16]. In brief, BCS theory relies on a quasiparticle reduced
Hamiltonian approach, which is inadequate to describe at least three situations [6]: (1) when
the quasiparticle damping rate due to EPIs becomes comparable with the excitation energy; (2)
when the BCS assumption of an effective two-body instantaneous attractive interaction between
quasiparticles does not provide an adequate representation of the retarded nature of electron-
phonon interactions; or (3) when normal and pairing correlations must be treated on equal
footing.

From the Sixties to the present days, many researchers have invested a truly considerable energy
in studying superconductivity in an extremely large number of situations and materials. In what
follows we provide a largely incomplete list of past and contemporary research subfields in the
realm of superconductivity:

(i) Unconventional superconductors. Huge efforts have been devoted to investigate unconventional
superconductivity [17-25], i.e. superconductivity unrelated to EPIs but arising from other
pairing glues, originating microscopically solely from repulsive electron-electron interactions
(EEIs). These studies were motivated by the discovery of high-temperature superconductivity
in the cuprates [26], which still pose tremendous challenges to theoretical condensed matter
physics.

(ii) Non-adiabatic effects in the theory of superconductivity. Since the theory by Eliashberg [2,3] relies
on the Migdal theorem [1], many researchers have studied the importance of non-adiabatic
corrections [27-36], which become important when the Migdal parameter fiwp/Er ceases to
be « 1. Here, wp is the Debye frequency and Er is the Fermi energy.

(iii) The Migdal-Eliashberg theory for real materials. For understanding phonon-mediated supercon-
ductivity in real materials, the Eliashberg equations need to be supplemented by first principles
calculations of the electronic band structure and EPIs. For a recent review of this vast research
field, we invite the reader to consult Ref. [37]. In passing, we note that an ab initio theory
of phonon-mediated superconductivity (SCDFT)-constructed by generalizing the Hohenberg-
Kohn theorem [38] of density functional theory to include the order parameter as an additional
“density”-has been recently laid down and applied to a number of materials [39].

(iv) High-temperature superconductivity in hydrates. The discovery of high-temperature supercon-
ductivity at high pressures in hydrogen-rich compounds (at 203 K in H3S [40] and at ~
250 K in LaHqo [41,42]) has re-attracted a great deal of attention to conventional phonon-
mediated superconductors. Despite the underlying pairing mechanism in these compounds
is conventional, several unconventional processes [43-49] compete in them, such as high
phonon frequencies, quantum zero-point motion of H, strong anharmonic effects, and van
Hove singularities. In this latter respect, for example, HsS displays [46-49] a pair of closely
spaced van Hove singularities at Eg. As a result, in a significant portion of the Brillouin zone, the
quasiparticle velocity vanishes, technically invalidating the applicability of the Migdal theorem
- see point (ii) above - and, at the same time, greatly enhancing the role of EEIs.

(v) Superconductivity in magic-angle twisted bilayer graphene. The discovery of superconductivity
and correlated insulating states in magic-angle twisted bilayer graphene (MATBG) [50,51] has
proven this system to be a rich playground for exploring strong correlations [52-58]. While the
mechanism of superconductivity is still debated, several theoretical and experimental works
point to the importance of electron-phonon interactions [59-63]. On top of this, the electronic
structure of MATBG displays nearly flat bands near the charge neutrality point [64-68].
Similarly to the case of the hydrates, these undermine, at least in principle, the applicability
of the Migdal-Eliashberg theory and are believed to be responsible for strong EEIs.

This work is mainly motivated by the experimental systems mentioned at points (iv) and (v)
above. We pose the following simple question: What is the fate of the Migdal-Eliashberg theory
in materials where EEIs play a dominant role? More precisely: Is it possible to construct a theory
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of conventional, phonon-mediated superconductivity in materials where EEIs require a nonpertur-
bative treatment? In this work we answer this question affirmatively and present such theory.
Our main result is that, in order to produce a consistent theory of EEIs to all orders, a building
block which has so far been overlooked needs to be taken into account: the irreducible six-leg
vertex related to EEIs. Under certain approximations discussed below, we derive a set of extended
Eliashberg equations.

2. Outline, approximations, and applicability

We here summarize the key features of our theory, which will be detailed in the remainder of
this work.

We consider an electron-phonon Hamiltonian (written for an arbitrary set of basis states) where
EEIs are included in all generality, while EPIs are assumed to be linear in the ion displacements from
their equilibrium positions, as in the Frohlich EPI Hamiltonian (Section 3). By using Matsubara path
integrals, in Section 4 we derive the general form of the Luttinger-Ward functional (LWF) [69,70]
corresponding to this Hamiltonian, using an exact procedure that is nonperturbative in the EEIL
We then make the first approximation, which consists in expanding the LWF in powers of the EPI
matrix elements, up to the second order (Section 5). As in any other LWF, the coefficients of such
expansion are fully interacting many-body quantities, namely Green'’s functions (GFs) and interaction
vertices. From this approximate LWF, in Section 6 (Section 7) we derive the electronic (phononic)
self-energy. In particular, the electronic self-energy consists of the EEI self-energy functional, plus
two EPI self-energy functionals (Hartree and Fock contributions). Up to this point, our treatment is
very general and can be applied to study the combined effects of EEIs and EPIs in any solid-state
system. No approximations are made, except for the truncation of the LWF (such a truncation is
necessary to develop any practical theory). Our main general results can be found in Egs. (87)-(89),
(92), and (93).

Section 8 is specific to the problem of phonon-mediated superconductivity. Here, we apply the
previously developed general formalism to derive a set of extended Eliashberg equations. Our aim is
to provide a way to compute the anomalous components of the electronic self-energy, accounting as
much as possible for the EEI effects derived in Sections 3-6. This task requires some approximations.
Most importantly, we need to adopt a tractable, explicit expression for the electronic self-energy
functional; this cannot be done exactly, because the functional corresponding to the EEI self-
energy is not known analytically (and even if it were, it would be overwhelmingly complicated).
In Section 8 we therefore: (1) neglect the EEI vertices appearing in the EPI self-energy functionals
and (2) confine ourselves to the regime of temperatures close to the critical temperature, where
the expressions can be linearized in the anomalous self-energy. We then assume that the EEI self-
energy functional in the normal state can be obtained via other theoretical/computational means
[71-73], and plugged into the resulting extended Eliashberg Eqs, (135)-(140). These equations
include the vertex corrections arising from the EEI self-energy functional, which are not captured by
the Tolmachev-Morel-Anderson pseudopotential method [74,75] and the McMillan formula [76].

A brief set of conclusions and future perspectives are reported in Section 9. Numerous technical
details are reported in Appendices A-G.

3. Model Hamiltonian

We consider a system of electrons and phonons, in the presence of EEIs and EPIs. The Hamilto-
nian has the following general form
H=Ht U f,M)=Hg(t)+ Her(U) + Awp(f) + Hem(M. f) , (1)
where the independent-electron (IE) term is

Hp(t) =Y taptles (2)
a.p
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the electron-electron interaction (EEI) is

o 1 Atata A
Her(U) = 5 Z Ua.p.5,y CJ(C;C;/C(S ) (3)
o,B,y.8
the independent-phonon (IP) term is
An(f) =Y _ fesbibs (4)
KA
and the electron-phonon interaction (EPI) is
Hep(M, f) = Z Mx;aé}»AotAﬂ : )
o,B,A

In the above equations, we have denoted electron and phonon creation operators by 6]; and BI,
respectively. Greek indices denote sets of quantum numbers for both electron and phonon single-
particle basis functions. For the sake of concreteness, electronic indices are given explicitly by
a = (iy, 0y ) in a lattice representation, where i, is the lattice site and o, is the spin-orbital index.
The latter accounts for the component of the spin along a given direction, as well as for an orbital
index in the case where two or more orbitals reside on a given lattice site (this also includes the
case where the unit cell contains two or more atoms). For phonons, we have « = (i, s, ), where
i, is, again, a lattice site, while s, is a branch index. The full derivation of the EPI Hamiltonian,
including the microscopic deﬁmtlon of the coefficients, is given in Appendix A. Without loss of
generality, we assume that M - This condition, together with t, g = tﬂ w s =f, and
Us,p5.y = U5, o g BUarantees that the Hamlltoman is Hermitian.

Egs. (1), (2), (3), (4), and (5) explicitly display thelr dependence on the sets of parameters
t = {tup}, U = {Uspysh f = {fcr),and M = (M, ﬂ} The phonon displacement operator QJ\
in (5) is defined as

0 = Zf‘l/f i (bT +b,) . (6)
where —« is the composite index that results after applying spatial inversion to the position index
i, of the composite index « (see Appendix B). )

The parameters t, U, and f have dimensions of energy, [E]. The field operators ¢ and b are
dimensionless. The operators Q have dimensions of [E~'/?], and therefore the M parameters have
dimensions of [E3/2].

Although Eq. (5) makes use of the widely used definition of the M parameters, for the present
derivation of the LWF it is convenient to rewrite it as

Hen (1) Z I(K})g accics (7)
o, B,k

where we have introduced a dimensionless displacement operator
o 1 /a A
de=—= (Bl +b.) . (8)
NZA
as well as the renormalized EPI parameters I = {Ié’f;;} given by

= LM )

with dimensions of energy, [E]. In this way, the operators have no hidden dependence on the
parameters f. We will revert to the use of the M parameters starting from Section 5.3.

We carry out our formal derivations for a general basis of single-particle states. The position
(lattice) representation may be particularly useful, e.g., to study the Hubbard model, or any strongly
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correlated system. However, in some cases it is useful to switch to the Bloch state representation,
which diagonalizes the independent-particle Hamiltonians. We then denote the lattice coordinates
by R; (while the equilibrium position of a nucleus is, in general, R; , = R; + B,, where B, is a vector
of the unit cell basis), and we introduce the Fourier transform matrix elements,

1 R

Frei= ﬁelk'R' , (10)
where N is the number of lattice sites; then

Y FReiFy =8k Y FriFej=08ij. (11)

i k

We assume that the matrices t and f are diagonal in the spin-orbital or branch indices, respectively:

ta,ﬂ = (S(ra,(rlg tia,iﬂ(aa) > fk,k = 6SK,S;LﬁK,i;L(SK) . (12)
They are diagonalized with respect to the lattice index by the Fourier transform matrix,

ZFkltU Fk’ = Ok’ €0 tlj ZFkiekaija

ZFk,f: VR j = bkw wks < fij(s Zszwkstj, (13)

where ¢, is the electronic spectrum and wy s is the phonon dispersion. The operators are then
transformed according to

= Z Fiitio s o= Feilio
k
Zsz ho s bis = Fuibis . (14)
k

Because of the complete generality of the notation introduced in Egs. (1), (2), (3), (4), and (5),
the present formalism can be directly applied to both normal and superconducting systems; in the
latter case, it is convenient to use the Gor’kov-Nambu representation of the electronic basis set [77],
as we will see in Section 8.

4. Derivation of the LWF

The LWF for a purely electronic system was derived in Ref. [78] in a way that is nonperturbative
in the EEL Hence, it is suitable for applications to strongly correlated electronic systems, where
the skeleton-diagram expansion [69,70], which is typically used in the weakly-interacting regime,
may fail to converge. Here, we extend the derivation of Ref. [78] by including the phonon terms
Hp(f) and Hgp(I) in the Hamiltonian. In our notation, Ref. [78] only treats the electronic subsystem
described by #e(t) and Heg(U).

4.1. Definitions
We start by introducing a number of useful quantities, and the corresponding notations. The
grand potential of the system at temperature T is
2ty g1 =-TIn(Z vy s1), (15)

where the partition function is

H(t”f’)—ﬂ’q , (16)

Zt,U,fJ =1r exp |:— T
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i being the electron chemical potential and N the total electron number operator; the symbol
“tr” denotes the trace over the Fock space associated with the Hamiltonian #(t, U, f,I). In the
framework of a path—integral formulation, we introduce the action

b,b*) .
tcljf 1= Z Z Ca(lwn) ion + ()8, — ta,ﬂ] cp(iwn)

+ ? Z Z b:(lgn) (iQn(SK,A _fK.)») bk(lgn)

1T
D> ua,m/ dr €l T4 (0)c (T)es(7)

wﬁys
ZI(K)/ dt g (T)ea(T)cp(T) (17)
o,pB.k

where the fermionic and bosonic field operators appearing in the Hamiltonian #(t, U, f, I) have
been replaced by the corresponding Grassmann numbers (¢, ¢) and complex numbers (b*, b, q),
respectively. Moreover, w, = (2n + 1)nT is a fermionic Matsubara frequency, 2, = 2nnT is a
bosonic Matsubara frequency, and [79]

1T 1T
Coiwy) = Tf dr e“nc,(t) , Coliwy) = T/ dr e "¢, (1) ,
0 0

1T ) 1T )
bK(i.(Zn)zT/ dr e*nTh (1), b:(ign)zrf dre nThi (7). (18)
0 0
Finally,
i2nt
q(7) = % [bi(r) + be(1)] = ; eﬁ [DE(i820) + be(—i820)] (19)

where we have used Eq. (8).
The partition-function path integral is written as

(ccbb*)

Zt,U,f,I = /D(E, C)D( b)e tufr (20)

The fully-interacting one-electron and one-phonon Green’s functions (GFs) are given, respectively,
by

_Tfl (c,C.b,b*)
Ge,u.f.1.a.p(ion) = /D(c c)D(b*, b) ca(lwn)cﬂ(lwn)eAt U.flI (21)
' Ztu.fiI
and
) —T! _ ) ) AlCTbb%)
Pey g1 (i82:) = fD(C,C)D(b*,b)bK(l-Qn)b,’{(l-Qn)e LUSL (22)
Ztu.f
We also introduce the free one-electron GF,
1
Geofoapliong = — ) 23
t,0,f,0;a, 8 (i) <1a)n1+ e t)a,ﬁ (23)

and the free one-phonon GF,

1
Pt,O,f,O;K,A(iQn) = (m) s (24)
n K,

which are obtained from Eqs. (21) and (22), respectively, by setting U = 0 and I = 0. In Eq. (23),
we introduced the identity matrix 1 and allowed the chemical potential u to be a diagonal matrix
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in the spin indices. This allows us to describe spin-polarized systems, and/or do calculations in the
Nambu-Gor’kov representation.

All GFs are matrices in the particle Greek indices. To denote the full matrices (as opposed to
their elements), we use notations such as Gy 5 1(iw,) and Py y 5 1(i$2,). When the dependence on
the frequency is not made explicit, e.g., as in G¢ y 5 ; and P y 5, Wwe mean that the matrix symbols
include the dependence on the Matsubara frequencies as well.

The following important identity holds:

R¢0.50=TTrIn (=TGeo50) — TTrIn (=TPt o 50) . (25)

where the notation TrX = > ei")"(’*Xa,a(iwn) was used. The property (25) is proven in
Appendix C.
The electronic/phononic self-energy matrices are defined, respectively, as

St palion) = Gpg ; olion) — Gy p (ion) , (26)
and
Avu.fa(i20) = Ppg 5 o(i20) — Pry 1 (i820) . (27)

4.2, Auxiliary functionals

We introduce the following functionals:
Rui[6y Py =-TInZy,; [Gy": Py'] . (28)

N HEEbB ) =1, p1
Zua[63'ipy"] = [ oo by L] 29)

and

i~ ,7,b.b* _ _ ] p— . — . .
ASeh 651 Py'] = - ZZCa(la)n)Go;l’ﬁ(lwn)cﬂ(lwn)

n ap

1 : — . .
tr DD bi(if20)Pg)  (1824)ba(is2,)

no ok

1 1/T
-5 Z Ua’ﬂ,g,yv/ dr co(T)Cp(T)C, (T)es(T)
o,B,y.8 0
(») v —
=3I dr g (nEa(T)es(n) - (30)
0

o,B,A

The above quantities are functionals of the matrices G, !and Py ! which ought to be considered as
free variables. They should not be confused with the quantities G;&f’o(iwn) and Pt’.(l,qfqo(i.Qn), which

have a precise physical meaning. If the substitution [G,'; Py'] — I:Gt_,tl),f,o; Pt_,(l,qf_o] is made, then

Qu [Gt_}),f,o; P;(l)_f_o] = £t u.f1 (31)

follows by construction (this explains the adopted notation).
We now define the following functional,
~ 1 5§U’[G_1;P_l]
Gui Gyl Py (iwy) = —— ———= 0 -0 1 32
U,I[ 0 0 ]( n) T SGng(lwn) ( )
where G, ' denotes the transpose [80] of the matrix G, . The functional Gy has the following
property:

Cut [Gia st Pio.s0] (ion) = G, palion) (33)
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Analogously, we introduce the functional

1 5.5[],1 [Gal; Pal]

Pui[G P (i2,) = = 34
U.I[ 0 0 ]( 11) T 5P61T(1.Qn) ( )

with the property
Put [624 1.0t Pro.so] (i20) = Prosolifn) (35)

Importantly, the functionals Eu,, and I’;U,, do not depend on the parameters t and f, characterizing
the independent-particle system.

4.3. Variable substitutions

The functionals introduced above depend on the variables G, ', P, '. We now make two variable
substitutions, choosing G, =, P, and A in such a way that
Gui [+ = P71 + A (iwn) = Gliwn) (36)
and
Py [G'+ = P71+ A](iR20) = P(iS2,) . (37)

These two relations can be used to define the following functionals of the new independent variables
> and A,

Cui[Z; Alliwy) = Gu g [E,‘,f,[z; Al+3; Py (3 Al + A] (iwn) , (38)

Pual: Alli2a) = Pua [Cy 1% A+ 3 B2 AL+ A (i22) (39)
When the substitution [S; A] — [S¢.u,5.15 Ac,u.s.1] is made, the relations

EU.I[Zt,U,f,H Aru g1llion) = Gy, g 1(iwy) (40)
and

PuilSeu.s.ii Aeu ali2) = Py 5.a(i20) (41)

follow by construction.
4.4, Functional of the self-energies

We now introduce the functional
Fu,1[§3§ Al = éu.l[au,l[x; AT 43 I;U,I[E; A7+ A]
— TTrIn (=TGy 1[3: Al) + TTrIn (~=TPy 4[S: A]) | (42)

which is written in terms of the other functionals introduced above.
The following important properties hold:

16Fu (A =
—TW = Gy 1[Z; Al(iwy) (43)
and
16Fu (A =~
?m = Py [3; Al(i$2,) . (44)

The proof of Egs. (43) and (44) is given in Appendix D.



A. Secchi, M. Polini and M.I. Katsnelson / Annals of Physics 417 (2020) 168100 9
4.5. Generalized LWF

We assume that the pair of functionals (Gu 1[Z: Al Py [=; A]) can be inverted, yielding the

pair (EU 1lG; P], Au 1lG; P]) We then define the generalized LWF as the Legendre transform ofF
ie.

By 1[G; P = Fy s [Eu.[G; P; Ay ,[G; P1] + TTr (Su,4(G; P1G) — TTr (K [G; P1P) . (45)
Taking Eq. (42) into account, we write 51“[(;; P] as
@y [G: Pl = 2yt [6" + By 1[G; PI; P~' + Ky 4[G; P]] — TTrIn (—TG)
+ TTr (£y 1[G; P1G) + TTrIn (—TP) — TTr (Ay,[G; P]P) . (46)
By construction, q~§u,,[G; P] is independent of t and f. It has the following properties:

(1) When the replacement [G;P] — [Gyu s1;Ptu g1l is made, the grand potential of the
electron-phonon system is obtained as

Qv g1 =PutlGeusr; Peugil +TTrin (=TGey. 1) — TTr (Zeu.1 Geuf)
—TTrin (=TPeu.51) + TTr (Acu.sa Peusi) - (47)

(2) The functionals corresponding to the self-energies are obtained from the LWF via functional
differentiation, i.e.

152u.4[G; P]

=3y.lG; P 48
T scT u1[G; P] (48)
and
15®y,4[G; P] ~
— 0 RuilG:P]. 49
T sp u1lG; P] (49)

The proof of Egs. (48) and (49) is given in Appendix E. These properties are often referred to
as the @-derivability of the self-energies. Any approximation on 51,.,[6; P] that preserves its
symmetry properties (such as invariance under gauge transformations and time translations)
yields a conserving approximation for the self-energy [70,81,82].

(3) From the definitions of = and A, we have ;o = 0 and Ao o = 0. Therefore, in the
non-interacting case we have

.Qt,of’o = 50,0[(;,3,0,}"0; Pt’o’f,o] + TTrln (—Tct,o,f,o) — TTrln (_TPt,O,f,O) . (50)
Substituting Eq. (25) into (50), we find that the LWF vanishes for a non-interacting system:
Po.0[Gr.0.5.0: Prosol =0. (51)

5. Expansion of the LWF

We now study the dependence of the LWF on the parameters I, by means of a perturbative
expansion in the EPI, close to I = 0. We expand the LWF in powers of I, up to second order:

By [G; P) ~ By o[G: P] + B)[G; P] + & [G; P] | (52)
where
3@5 G; P
G P = Zl(x) Ul[)\) ] 7 (53)
= ol
a, 1=0
and
n 92®y [G; P]
(2) ()») ) ul
l [G: P] Z Z a ﬂIa "B FYQ) BIW) (54)
Aaﬂx/ o B a7 B =g
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It should be noted that the LWF depends on I via the parametric dependences of ’f:u,,, Xu,,, and
2y 1-see Eq. (46).

In the following, we derive the three terms of Eq. (52). We first note that, in the absence of EPIs
(i.e. for I = 0), the electronic system is totally decoupled from the phonons. It follows that

AyolG;P]=0, Sy 0lG; P] = 5y[G], (55)
where Sy[G] is the universal self-energy functional for a system of electrons interacting via the
Hamiltonian defined in (3).

5.1. Zeroth-order term

The zeroth-order term is
@y olG; Pl = —TInZy, [6™' + Sy o[G; P1; P~ + Ay 0[G; P]]
+ TTr (Sy 0[G; PIG) — TTrIn (—TG) — TTr (Ay o[G; PIP) + TTrIn (—TP) .

(56)
At I = 0, we have
Zuo [Ggl; Pal] _ /D(E, Db, b)eiﬁfiﬁ«bﬁb )[GEM’E]]
1 ~
= G,'l. 57
T, dec [ 1p, 2] 0 o7
where
z, (65" = f D, e (%" ) (58)

is the partition-function functional for the system of interacting electrons alone. We now apply the
identity Indet = trln, as well as Eq. (55), and we obtain

Dy olG: P1 = —TInZy [6" + Sy[G]] + TTr (£y[G]G) — TTrIn (—TG)
=361, (59)

which is the LWF for the system of interacting electrons, completely decoupled from the phonon
system. This is equivalent to the LWF for the electronic system derived in Ref. [78]. In this limit,
where the EPI is absent, the properties of the non-interacting phonon system still enter the physical
grand potential via the term —TTrIn (—TP,’O.“,), as can be seen from Eq. (50).

5.2. First-order term

We observe that
32y 1[G + y4[G; P1; P~ + Ay [G; P

™
BIQ’/S
35y 1[G, P dAy 1[G, P
__rrle U,I([M I U,l([)\) ]
Bla,ﬁ alo(,ﬁ

1

T — S
Zy4 [67' 4 Bu,lG: P1; P~ + Ay, [G: P]]

1T FleTb.b%)
X /D(E,C)D(b*, b)/ drq(t)ca(T)cg(T)e vt
0

[61+Ey 116:PLP~ "+ Ky 16:P1] (60)
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Therefore, the first derivative of Eq. (46) is
9Py 1[G; P] . 1
81153/)3 Zua[67" + Sy 4lG: P1: P' + Ay ,[G; P]]

YT
X /D(E, C)D(b*,b)/ dzq,(t)ca(T)cp(T)
0

z(c,?.b.b*) G145 G:PI.P-14A G:P
x e Ul (67 +SuaiGprp~ Ry sicip] . (61)

At I = 0, this functional vanishes. In fact, it is proportional to the ensemble average of g, (t), which
is linear in the bosonic fields [see Eq. (8)], evaluated with an action that is quadratic in the boson
fields. Therefore,

®y,(G:P|=0. (62)
5.3. Second-order term

Starting from Eq. (61), we directly evaluate the second derivative of the LWF at I = 0, using
the fact that the average of an odd-power combination of bosonic operators vanishes if the bosonic
action is quadratic. We obtain

325&1[6: P]

(&) 47()
(')Ia,ﬂala,’ﬂ,

1
Zyo 6+ Zy[Gl; P7]

1=0
YT
X /D(E,C)D(b*,b)f dt q;(t)cq(T)cp(T)
0

T N | P SO
x/ dr/qw(r/)fa/(r/)Cﬂ/(t/)EA""’ [G +EylGLP ]’ (63)
0

where the partition-function functional at I = 0 can be factorized as shown in Eq. (57) as
~ - Zy[67! + SylG]
Zuo[61 + Sul6l P ] = = [ e |
[T, det[—7P~'(i82,)]
We now perform the functional integration over the bosonic fields in Eq. (63):

1 / 1 o b (i20)P 7 L (i820)b (i52n)
; D(b*, b)qs(t) g (t")eT Yoo X be(i820)P,; (182003, (182
[Ta, det [~ 2P~ 1(i2,)]

1 eiQn(rfr’)
", det[— 1P G20] 57 2

1 //~//*Am 7//1//‘m //Am
x [ D(b*, b) [b5 (12003 (1920) + by (—i820 )b (—is2,)] @7 Zom 2o P (60m 0 (0m) (62}

ion(1—7") 1 . .
=-T Z el (@ )5 [Py 5.(i2) + Py o (—i82,)] - (65)
i2n
Replacing this result into Eq. (63), transforming the fermionic fields to the Matsubara frequency
representation, and performing the integrals over the time variables t and 1/, we arrive at the
following result:
*®y 4[G; P

o101l

1 _ . : .
-5 CRESAT] ZZ/D(C,C)Cﬂ(lwm)Cﬁ/(la)nr — i$2,)

1=0 i2n n',m

A [G—1+iu [GJ]

o ; 7 1 . ;
X Co'(iwn )Co (i — 827) €Y 2 [P)J.A(I-Qn) + P)»JJ(_I-Qn)] )

(66)
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where we have introduced the electronic action functional in the absence of phonons,

A”)[G +z[c]] “00)[6 + Sy(G1; 0]

= Z Z Calion) {G, j(iwn) + Zu.a,p[C1liwn)} cylion)

YT
—2 Y Uapa / 4, (1 Va1 )y ()07 - (67)
o,B,y.8

Eq. (66) requires the evaluation of a two-particle correlator, in the presence of a non-Gaussian
weight. Due to the form of the action, this correlator is equivalent to a two-electron GF. More
precisely, its functional dependence on G (here an independent variable of arbitrary value) is the
same as the functional dependence of the two-electron GF on the one-electron GF. We can then
apply the usual concepts of many-body perturbation theory, provided that the GF is replaced by
the independent variable G. Only at the end of the derivation, G will be identified with the physical

one-electron GF. Using a compact notation, we write

T (cp(iom) cp (iow — i82n) Cor (i ) Coliom — i82,))
= 6n,0 Gﬁ,a(iwm)cﬂ/,a/(iwn/) — 8w Gﬂ,a’(iwm)cﬂ/,a(iwm —i82,)
=+ On,0 Z Gﬂ,u(ia)m)cp.’,a’(iwn’) Gu,a(ia)m) Gﬁ’.v’(iwn’)’I:U;(v,u;v’,u’)[c](iwm» iy )

v,
— S Y Gpuliom) Galiom — i20) Gy o (iom) Gy v (iom — iS20)
VA,IJYV/,M/
X Ty, usv ) Gl(iwm, iom — i$2y) (68)

where I:U;(,,,M;U/,#/)[G](iwm, iwy ) is the reducible four-leg vertex, a functional of G, which depends
parametrically on U. By inserting this expansion into Eq. (66), and inserting the result into Eq. (54),
we finally obtain

B7)[G; P = ZZZIQK;IJ ;,] P o (i920) + Pe o (—i824)]

a.B o B k!

X Z Z { n,0 Gﬂ a lwm)Gﬂ’ (i) — S, Gﬂ,a’(iwm)cﬂ’,a(iwm —i82,)

i2n m) 7 iwom

+80 Y Gpuliom) Gy aliow) Gyalion) Gy v (ion)
VvHvV/vH/
X FU;(v,u;v’,p.’)[G](iwm7 iwn/)

—Smw Y Gpuliom)Galiom — i2) Gy o (iom) Gy v (iom — iS25)

TR
X fU;(V.M’;U’,M)[G](inV iwm — iQn)} . (69)

It is now convenient to make a change of variables: from now on, instead of (I, P), we will use
(M, D), where

Dy (iS20) fo l/Zfﬂ2 [Per (i20) + Pe o (—i524)] (70)

—K’!

and the M parameters are the EPI parameters introduced in Section 3. The following property holds,

Dy (i82n) = Dy 3 (—i82y) . (71)
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The quantity in the first line of Eq. (69) transforms as

Zza MY 39, Per e (i20) + P (—i820)] = Y M UMS L D, 50(i82,) - (72)
A0

When evaluated at the physical non-interacting phonon GF [see Eq. (24)], Eq. (70) yields

_ 12 1 .
Zf UZZf 1,/52 PtOfOK K(IQH)+Pt0f0KK( lgn)]

_ 1/2 1/21

ka Zf”*”’iKlm f) (—zsznl f) }
- 1

D ERLD WAL ) S )

q
A\ —i82y — wg,

_ ¥ o 12px p —1/2 1 s -
= S50 D D Fary g U Fa 0 U o7t o FaiFas
i,j q’q/.q// n q,s)

1
S/» S)JZ q.iy qz)\/ 92+CL)2 ’ (73)

q.55.

where we have used the Fourier coefficients defined in Egs. (10), (13), and the property wgs, =
w_g s, - In the last line, we recognize the bare phonon GF associated with the displacement operator,

©) _ ig R, R;,) 1 _ .
D ;/(i82y) = =65, 5, VN Ze o m = Dt.0,5,0,3.(152n) (74)

which motivates our notation.
The second-order term of the LWF is finally written as

B lG; D] = &, [G: D] + &', [G; D] , (75)

where we have separated a Fock term,

~ 12 . . o
BP0 === > > MM, S Duadin ) [cﬁ,a,(zwm)cﬂga(lwm — i)

BN ol B i2n iwm
+ Y Gpulion) Gy alion — i2) Gy o im) Gy v (iom — i82,)
TR
X FU;(v,p’:u’,p)[G](iwm» o, — iQn)} , (76)
and a Hartree term,
~ T2 . .
FylG: D1 = — 3" 3 MUME D0 Y {Gaalion) Garation)
ra,B A o B iwn,iwm
> Gpuliom) G w(ion) Gpualiom) Gy v (ion)
TRV
X FU;(v,u;v’,ﬂ’)[G](iwm7 lwn)} . (77)

Functionals analogous to (76) and (77) were first derived in Ref. [77] for the problem of phonon-
mediated superconductivity in a non-interacting but disordered electron system. The most profound
difference between our results (76) and (77) and those of Ref. [77] is in the nature of the reducible
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four-leg vertex FU;(\). wv' 1) [Gl(iwm, iwy). In our case, this is the universal reducible four-leg vertex
for a system of electrons interacting via the Hamiltonian defined in (3). In the case of Ref. [77], the
analogous four-leg vertex refers to a system of non-interacting disordered electrons. The four-leg
vertex functional introduced in our work is therefore fundamentally different from that introduced
in Ref. [77]. Evident implications of this difference will be discussed below when we calculate the
electronic self-energies—see below Section 6.1. One minor difference between our formulas and the
corresponding ones in Ref. [77] lies in the temperature prefactors in Egs. (76) and (77), which stem
from the use of a different convention. (In this work we have followed the convention of Ref. [78].)
In summary, in this Section we have been able to prove that the LWF for the fully interacting
electron-phonon system is given, up to the second order in the EPI matrix elements, by

@y mlG: D] ~ &[Gl + By, [G: D] + &, [G: D] . (78)
6. Electronic self-energy from the expansion of the LWF
We now derive the electronic self-energy by applying Eq. (48) to the terms of the LWF listed in
Eq. (78). We obtain

Sumis.s1G: Dliwn) ~ E, J1G1(in) + E by 5 416: Dlliwn) + Egy )16 D(iwn) . (79)
where
~@) , 1 685G
EU;dJ,Q[G](lwn) = ?m ) (80)
18(15 ulG; D]

) G; D](i = —
UM¢9[ ]( (Un) T 8694,(16{)“)

=-TY > Dyul(i2) { > MUIMS) Go glicon — i82)

A i

+ 3 MOME) S Galion) Gy ion — i2) Gy (iwn — iR2)

a, B0’ RN
X Fu;(,p i ) [G](la)n, ia)n - I.Q)
+ > MyMY ﬁ, > Gpwlion — i) G, o lion — i82) Gy (ioon)

ﬂ,a’.ﬂ’ V‘)/ ’
X FU;(/L/,v;u’,H)[G](lwn —i82, lwn)

1 . . . . . .
+35 SN IMEMED ST G uliom) G alion — i82) Gy (iwom) Gy v (iom — iR2)

iom o,B o, IR

(81)

« SFU;(M.V;V/,}L/)[G](iwmi lwm - IQ)
8G94¢(ia)n) ’

and

G
- 15841G: D]
EW 4 o[G: Dl(iwy) = — —2M 2

m:.0[G: Dlliwn) = 7 5Go. o (icon)

=T ZDLV(O Z { Z ()\ M()L Gﬁ c((lwm)

vy iwm B
+ 3 MOMYE) S Gpoliom) Gy (in) Gy aliom) Tupr | Gl(icon, ieom)

a0, B TN

+ Z M(M / /3/ Z Gﬂ’ la)m)Gp, o (lwm)Gﬁ v(iown) FU (G H)[G](iwma iwy)
B.a' B v, v’
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1
+ 5 Z Z M(A) Mgﬁ/ Z Gﬁu la)m)Gu o (lws)Gv a(lwm)Gﬁ’ v (i)

iws o,B,a',p PRTRVYS
(SFU;(/L,v;u’,u’)[c](iwmv iw;)
869’¢(iwn)

6.1. Hartree and Fock terms: simplifications

Egs. (81) and (82) require the evaluation of the functional derivative of the reducible four-leg
vertex, i.e.
SFU;(;L,U;U/.;/,/)[G](iwms iws)
8G9,¢(iwn)

761
FU(;LV(Z)(? v

,)[G](ia)m, iy, lwsg) = (83)
We hasten to emphasize that the quantity 1"[6J v 0 ) [Gl(iwm, iwn, iws) introduced in Eq. (83),
which is the reducible six-leg vertex, contains three dlstlnct frequency arguments, in contrast to the
analogous quantity for a system of non-interacting disordered electrons [77]. Its expression can be
simplified by means of the Bethe-Salpeter equation, which connects the four-leg reducible (I") and
four-leg irreducible (U™1) kernels of the two-particle GFs [70,83,84]:

T uvsr ) [Gliom, i) = UL [G)ieom, ieos)
+ Y UG ey [Glliom, i5) Ge y(iwn) Gy (i)
&8 na
X Ty ) [Gl(iwm, i) . (84)
By applying the functional derivative in Egs. (83) to (84), and carrying out a few algebraic steps

detailed in Appendix F, we can express Eq. (83) in terms of I" and the irreducible quantities U™
and U'®! only, where

su™ G (i@, i)
r7l6] ; : Loy Uy ) m> S
UU (30,050 10 )[G](w)m» iwy, iws) = 569,(15(1'60”) . (85)

The result is given in Appendix F. Applying it to Eq. (81), and using the property
fU:(u,v:u’,ﬂ’)[G](iwm7 lws) = T_'U;(v’,w;u,u)[c](iws, lwm) (86)
of the two-particle reducible vertex, we obtain the Fock self-energy

5 u.61G: D)(in)

=-T Z > Dy (i) i D My o [G)ieon, wn — i2) Ga plion — i52)

AN 082

X MY, )y ¢)[G)(iewn — 182, icoy)

+ Z YN MG ) [Clliom — iR2. iom) MY, ), o [CNiwm, ion — i52)
iom «.f o B

XY Gpulion) Gy alion — i2) Gy o (ion) Gy v (ion — i82)

INTRINTS

X Uity (G0, i, icom —in)} , (87)
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where we have introduced the renormalized EPI vertex,

Mty p)[CNiom, i) = MUy + > Toaw plGlliwm, iws) Gy u(ion) G v (iw) ML,
ERUNTNTY

(88)
The same treatment, applied to Eq. (82), yields the Hartree self-energy

Z‘u M;o, (.)[G D](lwn)

=TY D0 { > MGIMY ) Gp aliom)
v iom a,B
+ 3 MEME) S Gpuliom) Gy (ion) Goalieom) Tusgp. sy [61(icon. ieom)
a.a'.p wov,p!
+ Z M(M / /3/ Z Gﬂ’ (iwm) Gy a (lwm)Gﬁ v(iwn) FU (V.03 8,v )[G](lwn, iwm)
BB v, v’
Z ML)L;; o ﬂ’ Z Gﬁu lwn)Gﬂ a(lwm)cv a(lwn)Gﬁ’ ’(lwm)
o, B0, B v, w1
X Y Tuiuoer ) [Glliwn, i0m)Gy &/ (iom) T g, vivr ) [€(ie0n, iom)
&
1 ) ) ) )
+ E Z Z M(A MSL g Z Gﬁ,u(lwm)G;//,a’(lws)cu,a(lwm)Gﬂ’,u’(lws)
iws a,B,a’,8 PNTRVNTI
Ul G(iwm, iwn, iws) Ge ,(iwm) Gy er(iws) Ty Gl(iwm, i
X U:(u6:6.0:8, lt/)[ 1(iwm, iwn, iws) E,n(lwm) n’,s’(lws) U;(n,v;v’,n’)[ 1(iwm., iws)
&8
1 . . . .
300 D0 MEMIL Y Gpulion) G (iox) Gu.alion) Gy (i)
iws o,B,0',p DNTRVNTI

X Z Ty .67 ) Gliwm, iws) Gg y(iom) Gn"é/(iws) Ul[] (7,v:6,6:0 )[G](iwma iy, iws)
£.E .

1
+5 00 D MEMEL DT Galion) Gura(ies) Gualion) Gy, (iex)

ios o,B,a,p TRV

X Z FU:(u,E;E’,;L’)[G](iU)ma iws)cs,n(iwm)cn/,é/(ia)s)
&8 0.8 x.x

U[6],] 30,07, ,7/)[6](1(Um7 iwy, iws)Gg,X(iwm)Gx’.g’(iws) T-'U;()(,u;v’,x’)[c](iwmv iws)

+52 3 MOMEL 3" Gpuliom) Gy a(iws) Gy aliom) Gy v (i)

i ’ ! / ’
iws a,B,a',p v,u, v

77161
XU U;(p,v;0,050" 1/

)[G](iwm, iwn, iws)} . (89)
It is useful to look at the diagrammatic representation of the quantities that we have just derived. In
Fig. 1, we represent the renormalized EPI vertex as a triangle with two oriented sides (corresponding
to two distinct fermionic frequencies), and we give its diagrammatic equation. In Fig. 2, we represent
the two terms contributing to the Fock self-energy in Eq. (87). We want to stress the representation
of the U™ term as a hexagon with three oriented sides and three distinct fermionic frequencies. This is
different from the analogous term derived in Ref. [77] for the case of a disordered electron system in
the absence of EEIs. In the latter, two sides of the hexagon have the same fermionic frequency [77].
In the case of EEIs, which we are treating here, we cannot make such an assumption, and the
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A
’
nRp

Wi W

A v v

iw iw . iwnW T A
m s — ° + W Y Wg

a B
a B a B

Fig. 1. Diagrammatic representation of the renormalized EPI vertex, Eq. (88). The dot with three Greek indices in the right-
hand side represents the bare EPI vertex Mfy’jg Oriented lines connecting two Greek indices and carrying a frequency label
represent fully-dressed (interacting) fermionic propagators; for example, in the second term on the right-hand side, the
line connecting u to v with frequency label iwy, represents the GF G, ,(iw,) [compare with Eq. (88)]. These oriented lines
are also features of vertex functionals with fermionic character (i.e. that should be connected to fermionic propagators),

such as Mff;)(u_ﬁ)[c](iwm, iws) and FU:(a,v;v’,[f)[G](inv iws). For simplicity, in all diagrams we remove the . symbols over
the functionals, so we write, e.g., M for M and I for T.

TWm M W — 182

TWom TWym — 182

(z)iwn 0

W i — i€
w

iwm Y Aiwy, —iQ

TWm W — 182

Fig. 2. Diagrammatic representation of the Fock self-energy, Eé:?,(iwn)—see Eq. (87). The wavy line appearing in both
diagrams corresponds to a fully-dressed (interacting) phonon propagator, namely, D, ;/(if2) [compare with Eq. (87)]. In
order to recover the algebraic expression for the Fock self-energy, Eq. (87), the diagram in this figure must be intended
to be multiplied by a factor —T.

three frequencies can, in principle, be all different [recall the definition in Eq. (85)]. For this reason,
we need a different diagrammatic representation of the six-leg vertex, which produces Feynman
diagrams with distinct topological features with respect to those of Ref. [77]. This is evident also in
the representation of the Hartree self-energy terms, Figs. 3 and 4. In Fig. 3, we represent the first
four terms of Eq. (89): these are topologically equivalent to the analogous ones derived in Ref. [77],
since they do not involve U®!, The last four terms of Eq. (89), represented in Fig. 4, are instead
topologically different from their counterparts in Ref. [77]. Their structure is a peculiar effect of
EEIs.

It should be emphasized that the expansion of the LWF and self-energy functionals up to the
second order in the EPI matrix elements effectively produces infinite-order approximations for the
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Fig. 3. Diagrammatic representation of the first four terms of the Hartree self-energy, Eéflg(iwn)—see Eq. (89). In order to

recover the algebraic expression for the Hartree self-energy, Eq. (89), the diagram in this figure must be intended to be
multiplied by a factor T. The different sign with respect to the Fock case is due to the presence of an additional fermionic
loop. This remark applies to the diagrams of Fig. 4 as well.

corresponding physical quantities. In fact, the physical self-energy depends on the physical GF, which
should be inserted in the place of the independent variable G into Egs. (80), (87), and (89). As
the physical GF depends on the EPI matrix elements up to all orders, so does the physical self-
energy. This is a common feature of many-body perturbation theory schemes based on the LWF,
which when used with the physical GFs yields self-consistent equations that lead formally to all-
order results. An example in the context of electron systems interacting via long-range Coulomb
interactions is the so-called GW self-consistent scheme.

Before concluding this Section, we note that our treatment of the electronic self-energy is
different from the one presented in Ref. [37]. It is worthwhile to comment on the differences
between the two approaches. The author of Ref. [37] introduces the electronic self-energy evaluated
at clamped nuclei ("), which leads to the definition of the electronic GF at clamped nuclei (G").
The two are connected via the corresponding Dyson equation. These quantities are evaluated within
the context of the most general (Hedin-Baym) formalism, by setting to zero all the GFs associated
with the phonon displacement D. This procedure corresponds to switching off the EPI completely.
As a second step, a higher-level Dyson equation is written for the full problem (in the presence of
EPIs), by considering G as the “non-interacting” GF, and introducing a self-energy that connects
it to the fully interacting GF.

Our approach is different, as we write a single electronic GF (and the corresponding Dyson
equation) for the fully interacting problem, and our partition of the self-energy results from an
expansion of the LWF in powers of the EPI matrix elements. Therefore, our electronic self-energy
term =), given by Eq. (80), does not coincide with the quantity = introduced in Ref. [37], since
the former—as well as the other terms that we have derived, ™ and =-is a functional of the
fully interacting GF, while the latter is a functional of G". The complicated structure of our Hartree
and Fock self-energy terms does not appear in Ref. [37]. It would probably appear in a treatment
of the explicit form of the quantity ") introduced in Ref. [37] (which is not discussed there).
Establishing the exact correspondence between the partition introduced in Ref. [37] and ours is well
beyond the scope of this work.
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Fig. 4. Diagrammatic representation of the last four terms of the Hartree self-energy, Zé:{g(iw,,)—see Eq. (89).
7. Phononic self-energy from the expansion of the LWF

We now derive the phononic self-energy, by applying Eq. (49) to the terms of the LWF listed in
Eq. (78). We first restore the (I, P) representation, by rewriting Eq. (78) as

By.lG: P) ~ &[G] + &) [G: P] + &[G P] . (90)
The corresponding phononic self-energy functionals are given by

Ay 196G PYiS2) ~ AG), o[GN(i820) + AT, o [G1(i82y) . (91)
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where
~® _ 158G P)
AU,I;¢Y9[G](lQn) = _T SP - i
9,(1)(1 )
T 1 . : ,
= 5 Z Z Z E <5n’,n1§(¢,’;ﬂfx’)ﬂr + 5n/,7nlgi)glé?,)ﬂr) Z {Gﬂ.a’(lwm) Gﬁ’.a(lwm - lQn’)
a,B o, p iQ”/ iwm
+ Y Gpulion) Gualion — i2w) Ty prw w€Nin, iom — i2y)
v.p,,v’,,u’
X G (ieom G (iom — 120} (92)
and

1881G; P]
T 8Pp.o(if2n)
T 1 . .
= oz 22 5 (00 + K90) 3 {Ghation) Gurwtion)
a,B o, p iwn,iom

+ D" Gpalion) Guralion) Tt ) [61iom, 00) Gy aliom) Gy ion) | (93)

NTRUNTH

A, »6[G1(i82,) =

The following properties hold:

o oLGNi20) = AGYY LIG1(—is2,) . (94)

~(F
AU,I;¢

8. Extended Eliashberg equations

We now derive the extended Eliashberg equations for the anomalous components of the
electronic GF and self-energy. We consider the particular case of a crystal with a single orbital per
unit cell. In this case the spin-orbital index ¢ introduced for fermions reduces to the spin index,
o = £1. We neglect magnetic impurities and relativistic effects (such as spin-orbit and magnetic
anisotropies). We then choose a basis of real single-electron wave functions for the definition of
the Hamiltonian parameters.

For the sake of simplicity, in this Section we drop the functional notation that we have adopted
in the previous Sections. It is intended that self-energies and vertex functions are functionals of the
GFs.

For the derivation of extended Eliashberg equations, we use the Gor’kov-Nambu (G-N) represen-
tation for the fermionic sector of the Hamiltonian. As discussed in detail in Appendix G, the G-N
Hamiltonian can be directly obtained from our general formulation provided that the following
choices are made:

Ua,ﬁ,é,y - Uia,iﬂ,ig,iySﬁa,ﬁgsﬂﬁ,ﬁyaaaﬁ ) (95)

M‘i):l)‘f g Mi(;):i)ﬂ(sk)saa,aﬁo'a s (96)
and

ta,p = |:tia,iﬁ + Z Uiy kg k — Zl,ik,)iﬁ(s) ka,_,;(s) ZII(,T)(S):| 804,050
k m 1

k,s
= hia,iﬁ(S(,a,(,ﬂaa . (97)
Therefore, our derivation of the LWF and related self-energies holds in the G-N representation as

well. GFs and self-energies acquire a 2 x 2 matrix structure in spin space; the non-zero solutions of
the equations for the non-diagonal matrix elements signal the onset of the superconducting phase.
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Although we will keep using, for the sake of brevity, the word electrons (as well as terms such as
EEI and EPI), it should be kept in mind that the fermions appearing in this derivation are actually
Nambu fermions.

In the G-N formalism, it is natural to introduce a 2 x 2 matrix representation for the spin sector.
We denote such matrices by means of double-underlined symbols, i.e.,

oy = (Gan.anion) G gy(ion)
G, (iwy) = . . ,
=ij G0 (iwn) Gy, (iwn)
T (iwy) = [ ZED6nlen)  Zingplien)) (98)
=i X .6.00n) X ),6.4)(i@n)
where the matrix elements G o) j,o/)(iwp) and X o) o/)(iw,) are shorthands for the quantities
Gtu, Sl pliwn) and Xy y g 1.0, p(iwy) introduced earlier, respectively, where o = (i,0) and 8 =
g, o)
We switch to the reciprocal lattice representation, by applying various Fourier transforms

(see Section 3). Namely, the transformations from direct to reciprocal lattice for the GF and the
self-energy read, respectively, as

lwn ZF" ,F,” (iwy) ,
(iwn) ZFk iFiej 2 ion) . (99)

We expand the matrices in Eq. (99) over the set of standard spin-1/2 Pauli matrices:

10 0 1 0 —i 1 0
TO:(O 1)’ “=(1 0)’ 2=(i 0)’ ”z(o —1)' (100)

The electronic Dyson equation reads as

G, (iwn) = iwnTo — &kt — X (ion) . (101)

where & = h,—u, and hy is an eigenvalue of the matrix h; ; introduced in Eq. (97). For the electronic
self-energy, we take Eq. (79), which we rewrite in the Nambu representation as

Z (o) = Z8(iwy) + ZW(i0n) + Z0i0n) = ZPliwn) + ZE(iwn) , (102)

where “E” refers to the purely electronic contribution in Eq. (80), while “H” and “F” label the Hartree
and Fock terms due to the EPI, respectively. Finally, “EP” labels the total term due to the EPI.

The self-energy terms are decomposed similarly to what is done in Ref. [77], except that we are
here considering the case of EEIs rather than disorder. With respect to their derivation, we also
include the terms « - We write

EBion) = ion [1 = ylion)] 1o + 9 (ion) 1 + dy (ion) T2 + 1 lion) T3 (103)

and

—(EP)

ZEiwn) = ionyiion) [1 = Zulion) T + ¢ (i) T1 + G (i0n) T2 + x50 (i0n) T3 . (104)

The total self-energy therefore reads as follows:

2 (i) = ion [1 = ye(ion)Zi(ion)] To + Prlion) T1 + Gulion) T2 + xulion) T3 . (105)
where

uion) = ¢ i) + ¢y (ieon) ,

Bulion) = By (ion) + By (ion)

xielion) = 2 (iwn) + x5 (o) . (106)
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The quantities introduced above can be expressed in terms of the self-energy components as
follows:

E E .
Zicp.plion) + Zic, lien)
2iwy,
(EP)
ZE) (iwn) + Z (iwon)
) = 1 - T i oy

Yie(iwn) =1 —

)

’

2iwn yi(iwy)
(E/EP) (E/EP), .
(E/EP)( ) _ Ek 1 ( ) 2’(;¢,¢ (lw”)
Xk Wn) = B s
(E/EP) (E/EP)
(E/EP) ;) — Sty (on) + 2 4 (in)
k n) — 2 s
(E/EP) (E/EP)
X (iwg) — X (iwn)
E‘E/EP)( wn) = kit — kiy, 4 \'®n _ (107)

We now insert Eq. (105) into Eq. (101), and solve for the GF via matrix inversion. This yields the
expression for the GF as a function of the self-energy components,

1
gk(iwn) = m {lwn)/k(lwn)zk(lwn) To+ ¢k(lwn)fl + (pk(lwn)TZ + [§k + xx(iown) :3}
(108)
where
O(iwy) = [iwnyk(iwn)zk(iwn)]z — [& + Xk(iwn)]2 - ¢1%(iwn) - ﬁ(iwn) . (109)

The quantity in Eq. (105) must be identified with the total electronic self-energy, which we have
derived as a functional of the GF, see Eq. (79).

The Eliashberg equations are obtained by inserting the expansion (108) into Eq. (79). In principle,
this procedure yields a self-consistent set of eight equations that determine the eight unknown
quantities listed in Eq. (107).

8.1. Explicit form of the EPI self-energy functional

To make further progress, we need to adopt an explicit expression for the self-energy X~ (1wn)
as a functional of the (fully interacting) electronic GF. Historically, the work of Scalapino, Schrleffer
and Wilkins [5] has been a fundamental milestone with respect to the inclusion of EEIs in the
Eliashberg equations. However, the self-energy that we have derived here from the LWF has a much
more complicated form than the simple one that they postulated in their work. As we will see
momentarily, this leads to several difficulties in our case. In brief, if the self-energy functional is
too complicated, it is impossible to derive a set of self-consistent equations that can be used in
practice, unless further approximations are adopted.

We start by separating the self-energy according to Eq. (102). We deal with the EPI self-energy
first: in our derivation, this is given by the sum of Fock and Hartree contributions. As we have seen
in Section 6.1, our derivation based on the LWF produces (1) a Hartree self-energy that includes
various terms depending on the reducible four-leg and irreducible six-leg vertices related to EEIs
(see Figs. 3 and 4), and (2) a Fock self-energy that contains both EEI-renormalized EPI vertices and
a new term that depends on the six-leg irreducible vertex related to EEIs (see Fig. 2). We note
that the expression that is usually assumed for the EPI self-energy functional [5,6] is of the Fock
type but does not include the second term, i.e. the one that depends on the six-leg irreducible
vertex. Furthermore, usual theories [5,6] neglect all Hartree-type contributions and rely on a static
approximation for the renormalized vertex (analogous to the approximation made on the screened
potential) [6], without taking into account explicitly the full functional dependence of the vertex
on the electronic GFs. On the other hand, all the new features we have discovered in the electronic
self-energy cannot be taken into account in a derivation of extended Eliashberg equations, as there
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is no closed-form expression for the four-leg reducible and six-leg irreducible EEI vertices. Further
progress could be made, for example, by adopting an explicit expression — based e.g. on Dynamical
Mean-Field Theory (DMFT) [71] — for the EEI self-energy functional E(E)(lwn) and, consequently, for
the EEI vertices. This is well beyond the scope of this work.

In this work, in order to derive Eliashberg-type equations, we make the simplest approximation:
we neglect all the EEI vertices terms appearing in the Hartree and Fock self-energy terms. (This is
analogous to the approximation made in Ref. [77] for the case of non-interacting electrons in the
presence of disorder.) The Hartree and Fock self-energies reduce, respectively, to

Zion) ~ T ) M Dos0) 3 My [Gue.11im) = Gy y(ieom) |

k' iom
=1 2}“) (110)
and
ZWion) > ~T) Y M " IMEIDe(i2) 73 G, lion—i2) 1. (111)

i2 qs

where we have used the Fourier representation of the EPI matrix elements, as discussed in
detail in Appendix A [see, in particular, Eq. (A.20)]. In the approximation we made, the Hartree
self-energy (110) retains its non-local nature in space, but loses its non-locality in time.

Egs. (110) and (111) are sufficient to carry out the derivation of four out of the eight Eliashberg
equations, which connect the unknown quantities listed in Eq. (107). We proceed with this first
part of the derivation in Section 8.2, and defer the discussion of the EEI self-energy to the second
part of the derivation, reported in Section 8.3.

8.2. Derivation of extended Eliashberg equations: first part
We now substitute Eq. (108) into Eqgs. (110) and (111), sum the resulting expressions, and set

the result equal to the right-hand side of Eq. (104). This gives a 2 x 2 matrix equation, equivalent
to the following set of four equations:

ionyi(ion) [1 = Ziion)] = =T > Y " MIIMEEIDy_y (iwn — iwn)

iom 4.8
i iwm ) Zq(i
fonyq(ion)Zg(ion) (112)
Oqliovy)
(EP) (H) (q—k.s)p r(k—q, . . Sq + Xq(iwm)
X iwg) = ) — 1 Z 3 MEEIMEAID, (i, — ion) otion) (113)
iom 4.5
(El’ _ (@—k.s) p 1(k—q.s) . . Pglion)
(iwg) =T M, M Dy_q s(iwp — iwp) ——— 114
n) ZZ ( n m) @q(iwm) ( )
iom  q,S
and
—(EP) _ (q—k.s)p r(k—q.s) . s aq(lwm)
b (iwn)=T Z D O MITEIMEEID, g (i lw’")r,(iwm) , (115)
iom  q,S
where the term
(H) _ 0,5 1(0, §q + Xqliwm)
X, =2T M, >’M 116
‘ Xs: “ ! q%: Og(iwn) (116)

appears only in Eq. (113). We note that Eqs. (113), (114) and (115) relate EP self-energy terms (on
the left-hand sides) to the respective total self-energy terms (on the right-hand sides). Therefore,
these are not yet self-consistent equations. To complete the derivation, we need to take into account
the EEI self-energy. This is done in the next Section.
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8.3. Derivation of extended Eliashberg equations: second part

For temperatures larger than the critical temperature, T > T, the anomalous terms of the
self-energy and GF vanish. For T — T, the anomalous terms are very small, and the Eliashberg
equations can be linearized in the quantities ¢y(iw,) and ¢,(iw,). Namely, we put

Z (o) = ZW(iwn) + 82 (ion) , (117)
where
EWion) = ion [1 -y w2 ion)] 70 + 1 ion) T3 - (118)

The superscript “N” denotes quantities that are evaluated in the normal state. The anomalous
correction § X k(iwn) vanishes for T > T.; for T < T, it includes, in general, both finite off-diagonal
and diagonal terms. For T — T_, the change in the self-energy in going from the superconducting
to the normal phase can be approximated as

za)n

lien) ZZ 5(;,,“, iwm)

q.iom 0,0’

SGq;a,a/(iwm) s (119)
—G(N)

where §Gg., o(iwr) denotes the term of the GF which is linear in the anomalous components of the
self-energy. We now express this quantity in terms of § X, by using the following relations, which
are consequences of the Dyson equation:

C'=G'-¥Y=68r=-5G"
G1.6=1=861-G+G'-866=0=8G"=—-G'-8G-G!
=8X=G6G1.86-G'=86=G-8¥-G, (120)

where we have used a compact notation. We obtain

P (1wn)
(i i) - 8E (iwm) - GV ]
38X (iwy)
= G lwm (lwm) $ azq;a,—n(iwm)
q% qVL v Xa: SGq;U.—J(lwm) G=GN)
2 83 (iwp)
(N) — /4 .
+ (640 oliom)] <= 55 (iom) (121)
q%; = ! 8Gg:o.0(iwm) | v ! "

where we have used the fact that G(N)(iwm) is diagonal.

We should now derive an expression for § X (la)n)/(SGq +.0(iom). Referring to the partition of the
self-energy given in Eq. (102), and using the approx1mat10ns (110) and (111), we obtain

8y (i)

oo i) |~ Droite 0T 2 MM D0 (122)
e G=G(N) s
and
‘SEI(rF-L.u/(iw") , (@—k.) p g (k— N) )
e 7 N =85 ubyr o0’ T Y MITIMYE) DY, s(iwn — iwm) . (123)

(SGq;a,o’(iU)m) CeclV)

Next, we consider the EEI self-energy functional, for which we write the Ward identity

®
8 X1 (i0n) _ gl

i k.q;p,00" 1/
8GaoorliOm) |

iy, iwn) , (124)
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where U,[f;(t?g o' ,(iwp, iwy) is the irreducible four-leg vertex related to EEIs [see Eq. (84)]. In this

case, it must be evaluated in the normal state, at G = G™). By comparison, in Ref. [5] the EEI self-
energy was taken in the GW approximation [84], with a statically screened interaction potential.
Such potential is itself, in principle, a functional of the electronic GF through the dielectric function;
however, in order to obtain tractable equations, in Ref. [5] this dependence is neglected, and the
effect of the screened potential is finally embedded in a “pseudopotential” that does not depend
on energy and momentum. By contrast, we keep the more general four-leg irreducible vertex
in our derivation. Our procedure leads to a tractable system of equations if the EEI self-energy
functional (and the related EEI vertices) can be determined in the normal state via independent
means appropriate e.g. to strongly correlated electron systems, such as DMFT [71].
Substituting all these expressions back into (121), and using the identity

GO L (iom) GY, | (iwom) = 1/OMNiwm) . (125)

we obtain

82’( i (lwn)

4IN . . .
=3 o(N) o Zu,ﬁy}m,aﬂ#,(lwn,lwm)az.,;g,_g(zwm)
m

q,iom o

£ Y [6) Gom)] UL, . o, i0n)8 5 g ion)

q.iom ©

2
+8n 33 [cﬂfo U(lwm)] o TS MEIMOID)0)85 g0 o i0m)
S

q.iom ©

+ 8w Y (N) TZM“’ “IME4IDR (iwn — i0m) 8 g0~y (icom)
a.iom @4 (iom)

—Suu Y G ulion ] TZM,(‘qf"’s)Mf,"‘q'S)Ds‘N_)qqs(ia)n — ion)8 D guulion) . (126)
q.iom

Regarding the four-leg EEI vertex, it holds that

41(N . . N .
U ion, 10m) = 86 1807 Up i) (ieon, ieom) - (127)

The previous result stems from the fact that in the normal state all interaction vertices conserve
spin and, therefore, the spin indices along the same propagator line must be equal. The self-energy
corrections § Xg.,, ,(iwm) and 8 X, ,, . (iwn) are then decoupled: the diagonal terms satisfy

8 Zicpalion) = Y [Go. M(zwm)] [UEa ion, iom)
q.iom

—k, — . . .
-7 ZM,&" MEaIDN (i, - zwm)]azq;ﬂ,u(zwm)

2
Yy Z[ . lwm)] o TS MOIMOIDIN0)8 5 g0 olion) . (128)
N

qiom ©
while the nondiagonal terms satisfy
- 1 [4IN
lec;u._ﬂ(lwn) = Z M{UR,QZH’*M(MO"’ iwm)

q,iom

+TZM" kM99 (ia, —iwm)}azqm_,ﬂ(iwm). (129)

Note that the normal solution, corresponding to 8 Xy., ,/(iw,) = O for every choice of u, i/, is
always possible. Moreover, we can choose § X, ,(iw,) = 0, while the off-diagonal components
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must be non-zero. These choices correspond to setting
Sék(iwn) (/J)k(lwn)fl + ¢k(la)n ):2 (130)

which conveniently allows to identify the full correction X k(ia)n) with the anomalous (off-

diagonal) components of the self-energy. We adopt Eq. (130) in the rest of the derivation.
Applying Eqs. (130) to (129), we obtain the following Eliashberg-type equations for the total
anomalous components of the self-energy:

¢q 'wm [4N) /. 1wy . .
(i) Z la) Uk Py i(la)n, iwm) + ZU" @l T(lw”’ iwn)
m

q,iom

k—q.s

+T Z MIIMEEIDY (i — ia)m):|

@, (iw . .
) Z @& lm [U:[cfla]f,%('wn"wm) Ul[¢4¢]1(]i)¢(lwnslwm):| (131)
ql(u q m

and

— . Pqliom) [41(N) ) 1 v .
P iwn) = Z W 2quT¢(lwnsla)m)+ 2qu¢¢(lwn7w)m)
q m

q.iom

+T2Mq ks)M(k q.s D;:N)qs(lw" _ la’m)i|

Pglio,
Z<%m[mwwm>%meM- (132)

q:w

Egs. (131) and (132), together with (114) and (115), completely determine the anomalous com-
~ [41(N) (- ; _
ponents of the self-energy, for temperatures T =~ T.. If we assume that Uk‘q:T,L(lw“’ ion) =

U}f;“i)T(lwn, iwm), Egs. (131) and (132) achieve a simplification that effectively decouples the

equation for ¢y(iw,) from that for ¢, (iw,). Combining these simplified equations with (114) and

(115) evaluated at Oy(iwm) ~ OF(iwm) and Dy_gs(iwn — iwm) ~ D", (iwn — iwm), we obtain

¢q(iwm)

133
O (iwm) (133)

E 4](N . .
i) = 3 U o, i)
q.iom

and

i
¢ ion) =T Y > MIEIMEAIDY (iw, —iwm)% , (134)
Oq (iwm)

iom 4.5

which connect ¢k (la)n) and ¢ EP)(zwn), respectively, to their sum ¢ (iw,) = (E)(lwn) + & EP)(lwn),

thus forming a system of two coupled matrix equations in two unknown functlons An 1dentical

. . . E
system is obtained for the z; components of the self-energy, with the replacements ¢ — 5( ),

P E(EP), and ¢ — ¢. Therefore, the 71 components of the self-energy are equal to the z,
7 (E

components up to a constant, which can also be zero. It is possible to set a( =¢ 0 _ o= 0,
while retaining a nonzero solution for ¢ [77].

In the present framework, the remaining ingredients for the total determination of the self-
energy are Eqgs. (112) and (113) evaluated in the normal state, plus the two equations for yy(iw,)
and X,((E)(iw,,) taken from (107), also evaluated in the normal state. In fact, we recall that our
working hypothesis is that the EEI self-energy is known in the normal state; therefore, the latter
two equations are to be considered as solved.
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To summarize, we put together all the above results, and present a set of six equations - not eight,

. EP . .
because of the gauge choice 5( d)( ) = 0 - that allow to determine the anomalous corrections
to the self-energy in the linearized regime that applies for T ~ T¢:

(E) (EP)
iwm) + i
3 i) Z Ul[(4¢]1(I\TI)¢ ity o) 28 (wm()N) ¢q (iom) 7 (135)
@.iom B4 (iwom)
(E) (EP)
1 + 1
6 i) —TZZMq ks)M(k qs)D(N) (ion — i) 28 (wm()N) bq (wm)’ (136)
iom 4.8 @(I (lwm)
(EN) (EN)
Do aliog) + 2007 (iwg)
yulioon) = 1 — LI 2 (137)
2iwy,
(EN) (EN)
) X qliog) — X7 (iwn)
i eon) =~ R (138)
i iwm ) Zq(i
iwnyie(ion) [1 — Z(iog)] = —TZZM 1~ kS)M(" a5 DS‘N)q S(iwg — iwm)—wmyq((ﬁjni) alion) )
iom 4.8 @q (i)
(139)
X,(‘ )(la)n) =_T Z Z I:M,(;I*’s'A,S)M‘(Ik—q,S)D;‘Ni)qYS(iwn — i) — ZM’(‘OA,S)M‘(IO,S)DO!S(O):I
iom 4.8
&q + Xq(iom) (140)

O (ioom)
In all of the above,
0N (iwn) = [iwnyilion)Zilion) — (& + xilion)] . (141)

The equation for the total anomalous component of the electronic self-energy is obtained by
summing Eqs. (135) and (136):

¢q(iwm)

. (142
O (iwm) (142)

dr(ion) = Z |:Z TMI({q_k,S)Mz(lkiq ’ DS"N q, s(lwn —iwm)+ U}f},ﬂ\; l(lwnv iwm )i|

q,iom s

The inclusion of the four-leg irreducible vertex U formally allows for a part of the EEI effects that
are not captured in widely used approximation schemes, such as the Tolmachev-Morel-Anderson
method [74,75], where the Coulomb potential entering the self-energy equations is approximated as
a momentum- and frequency-independent pseudopotential. While the Tolmachev-Morel-Anderson
method has allowed for great progress in the history of superconductivity (in particular, it laid the
foundation for the derivation of the McMillan formula for T, [76]), it is based on an uncontrolled
approximation that neglects Coulomb vertex corrections and the associated retardation effects [85].
Within the stated approximations (i.e. linearization of the self-energy functional for T close to T,
Eq. (119)), our formulas include the formally exact contributions from the EEI self-energy functional;
we remind the reader that the rest of our approximations affects the EPI self-energy functional only,
see Egs. (110) and (111).

9. Summary and conclusions

In summary, in this work we have derived the Luttinger-Ward functional for a system of
electrons in the presence of both electron-electron and electron-phonon interactions - see Eqgs. (76)
- (78). Without relying on a weak-coupling skeleton-diagram expansion, we have demonstrated
that this functional generates two types of contributions to the electronic self-energy: (i) a Fock-type
contribution, which is reported in Eq. (87) and, diagrammatically, in Fig. 2; and (ii) a Hartree-type
contribution, which can be found in Eq. (89) and Figs. 3-4. In both classes of contributions, which are
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due to electron-phonon interactions, entirely new terms appear, containing the irreducible six-leg
vertex related to electron-electron interactions. To the best of our knowledge, these contributions
have never been discussed in the literature on electron-phonon interactions and related phonon-
mediated superconductivity. Under certain approximations, we have used these results to derive
extended Eliashberg equations—see Eqs. (135)-(140). These include vertex corrections due to
electron-electron interactions, which are not accounted for by the Tolmachev-Morel-Anderson
pseudopotential [74,75].

As emphasized throughout this work, much more work is needed to shed light on the phys-
ical implications of our theory, especially in the realm of phonon-mediated superconductivity in
strongly correlated electron systems (SCESs). In this case, approximations such as DMFT [71] and
beyond-DMFT approaches [72], such as dual fermion/bosons [73], which have been proven to be
very useful in dealing with SCESs, may also be used in this context to examine U®!, as well as the
functionals X® and U'¥ which are needed as inputs in our extended Eliashberg equations. Another
possibility is to rely on a large-N approximation, using 1/N as small parameter to select leading
diagrams contributing to U'®!, (® and U™ where N is the number of fermion flavors.

We believe that the theory presented in this work could provide tools for the study of EPIs
and phonon-mediated superconductivity in materials where the applicability of Migdal theorem
is disputed because of features such as, e.g., large phonon frequencies, van Hove singularities, and
strong EEIs. Relevant modern examples of these materials include hydrates [40-49] and magic-angle
twisted bilayer graphene [50-68]. We mention, in passing, that our theory can be generalized to
systems of electrons interacting with cavity photons [86], paying particular attention to the A® term
and gauge invariance [87].
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Appendix A. Derivation of the Hamiltonian

Since the conventions used for the definition of the EPI parameters are not universal in the
literature, we present here a full derivation of the electron-phonon Hamiltonian that we have used
in this work. This allows to identify the physical definition of the parameters {Mt%}, and to put
them in correspondence with the parameters used by other authors.

We use some concepts borrowed from the derivations given in Refs. [33,88,89]. We write the
Hamiltonian for a general system of electrons and nuclei in first quantization, in the position
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representation, as
HZTe+Vee+VeN+TN+VNN

_H2y2 522
Z h°v; +- Zveer—r —i—ZVeNr_ )_‘_? Zﬁm:R

rr;ﬁr

/
+5 > Vm(R—R), (A1)
R.R'#R

where r is an electron coordinate, and R is a nucleus coordinate; m (without subscript) is the
electron mass, while mg is the mass of the nucleus at position R.

The standard Born-Oppenheimer derivation goes as follows. We introduce the set of nuclear
equilibrium position vectors R; , = R; + B, where R; is a lattice vector and B, is a basis vector that
distinguishes the atoms inside a given unit cell. The equilibrium positions satisfy the following set
of equations,

Z VeVan(R—R)=0, VR. (A.2)
R'#R

Displacements of the nuclei with respect to the equilibrium positions are denoted as Q; , = R—R; ;..
If they are assumed to be small, then the Hamiltonian can be expanded in powers of Q; , up to the
second order. Denoting with u, v the Cartesian coordinates, we obtain

—h?V? 1
H~ Z om L + Z VeN(r _Ri,n)+ 5 Z Vee(r
r r.(i,n)

r.r'#r

IVen(R) 1 3*Ven(R)
- ZZQ('")H |: . _ZXU:Q“’")’VBRPLZRU}

r(in) w

" Z |: Qx n % Z Z (Q(i,n),u - Q(i’,n’),ll)
(",n")#n) wov

R=R; n—Ry v }

1
+3 Z ~ VilRin = Riat) (A3)
(i,n),(7',n")#(i,n)

R=r—R;,

3?Van(R)

X (Q(i,n),v - Q(i’,n’).u) 3R, R,
m

where m,, is the mass of the nucleus at position B, within a unit cell (due to the lattice periodicity,
it does not depend on the unit cell i). On the right-hand side of Eq. (A.3): (1) the first line is the
Hamiltonian for the electronic subsystem alone, including the kinetic energy, a spatially-periodic
external potential given by the interaction with the lattice, and the EEI; (2) the second line is the
EPI, including a linear and a quadratic term in the nuclear displacements (we neglect the latter, as is
usually done); (3) the third and fourth lines constitute the Hamiltonian for the phonon subsystem
alone, in the harmonic approximation; (4) the fifth line is a constant with respect to the dynamical
coordinates associated with the fixed equilibrium configuration.

The first line can be written in second quantization as the sum of the terms (2) and (3) of the
main text, for a general single-electron basis set of wave functions labeled by the index o = (i, 0y,).

The displacement operators are quantized as [89]

A . h Ngsn (1 ot iq-R; AT
Q=i S (b, +b_,)e""l:Q. , (A4)
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where s is the branch index, and the polarization vectors satisfy 74, = —1_g s ,- The polarization
vectors and the mass, in general, depend on n, as they might be different for different atoms within
the same unit cell (so, they depend on the basis vector B,, although not on the lattice vector R;). The
quantity wgs = w_g; IS, at this stage, introduced as a mere parameter. When Eq. (A.4) is replaced
into Eq. (A.3), the third and fourth lines of the latter are transformed into the second-quantized IP
Hamiltonian given in Eq. (4) of the main text, and wg s acquires the meaning of a phonon (vibrational
mode) frequency; it is related to the direct-space matrix f; j(s) via Egs. (13).
The linear term of the EPI [second line of Eq. (A.3)] becomes:

_ Z 8VeN )

r.(j.n) R=r—R;,
—iq- RJ ) .
=i Z Zqu - Tasn Z VVen(R)lr=r—;,, (bfq,s + b;s) . (A5)
q.s,3j,n) r

We now write the EPI Hamiltonian in second quantization. Let ¢ = (n, t), where n denotes
the orbital within a unit cell, and r denotes the electron spin. Let ;, n,(r) be the spatial part of
the single-electron basis wave function corresponding to the composite index «. We introduce the
quantity

. [ h
M((yq;) = (Sra rﬁl Z F;J min nq,s,n : / drl[fiz,na (r) I:VVEN(R”R:)‘—RJ'.":I wiﬁ,ﬂ/g(r) 5 (AG)
j.n

and the operator

Qs = (Bf,,s + B—q.s) : (A7)

Wg.s
Using these, we turn Eq. (A.5) into its second-quantized expression,
Hep = Z Z M(qﬁ QqsCics . (A.8)
qs ap

We turn to the position representation by applying the Fourier transformation, with the coefficients
defined in Eq. (10), and we obtain

Hem =Dy MU0 Eles . (A9)
(.s) a.p
where
h
U.8) — (q.5)
ML = T ham) =t T e (S aisnea)
jn n q
: / dr 0 (1) [VeVen(r — Ry )] Wiy (1) (A10)

and
O = F0gs = Z (b b, ) (A11)

Switching to the Greek-indices notation, we immediately turn Eq. (A.9) into Eq. (5) of the main text.
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Let us investigate Eq. (A.10) further. We write the Fourier representation of Ven(r — Ry — By) as

Z Z efi(q’+K)-(r7ijan)
Ven(r — Ry — By) =
K NVN

= Z Z Fy e~ OB VeN(‘II/V-F K) , (A12)

VeN(q, + K)

where q' belongs to the first Brillouin zone, while K is a reciprocal lattice vector. Substituting this
into Eq. (A.10), we obtain

Ven(q + K) .
) eN -By,
M3 =6, rﬁZFqJZ\/ Masn - ;(HK)T@(‘”K)B

/ dr i, (1)e Ty () (A.13)
We now represent the single-electron wave functions as

Vin(r) = Z eVien(r) = D Fe Ty @S a(6) (A.14)
k G

where v, (1) is a Bloch state, whose Fourier decomposition is written explicitly in the last equality
(G is a reciprocal lattice vector). This allows us to perform the integration over r, which yields a
factor

/ dr 7! (KH =T NVeendi+q-k',6'~6-k (A.15)

where Vg is the volume of a unit cell. We obtain

h i .
MUY =805 Y Faj ) ./ o Tasn > (@ + K)Ven(q + K)el@ O
q n K

X Z Z Fio 1F, 1 Vi, (G g (G WeetiBiesq—te .6/ ~6—k - (A.16)

k. k' GG

The Kronecker delta allows to eliminate k’ as k' = k+q — G’ + G + K. Since the vector —G' +G +K
belongs to the reciprocal lattice, we have F? k-G GAK = Fi’;qk e We end up with the following
(exact) expression:

; [ h
Mg:fg) = Sr(,,rfg Veell Z Fq,j Z mi nq,s,n : Z(q + K) VeN(q + I()
q n n K

x @@ HiO)Bn Z ZFia,kFi;,kJrq%k,na(G)lﬁk+q—c’+c+l(.nﬁ(c/) . (A17)
k GG

We briefly mention two approximations which are often applied to the expression for the EPI
matrix elements. The first possible approximation consists in neglecting the Umklapp processes,
i.e. in keeping only the term with K = 0-an approximation which relies on the fact that V.y(q + K)
decays quickly with increasing |K|. The resulting expression depends on the scalar product 7, , - 4.
Therefore, in this approximation, only longitudinal phonon modes couple with the electrons (see
also the discussion in Ref. [37]). Another possible approximation, which can be dubbed “strong
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tight-binding” assumption, consists in putting

2
io.m, r ig,n r)~x iq,igOng,n [P r ™~ Ojy,igOny,n r— io — Dngy .
V() Wiy (1)~ 81 iy [ Wi (0] A 8i.iy Oy 81 — Ri, — By, ) (A.18)
in Eq. (A.13). This yields

i h Ven(g + K) (B
ngg) N Sup ZFquia Z,/ o Masn Z(q + K)-————= N i@+ (Bn—Bny )
n n K

= da, ,sM (A.19)

(o, ‘Ta)

For the purposes of our derivation, we do not need to apply these approximations, and we can
just use Eq. (A.17). We wrrite it as

G.s) — (q.5)
Mot,ﬁ = 8101 3B Z ZFqJ i, KF ig, k+qu Ng,ng ° (AZO)

emphasizing its Fourier representation. The definition of M,(:’nS ) n, €N be determined by comparison

with Eq. (A.17); in the case of a single orbital at each lattice site, it bears no dependence on n, and
ng, and we write it as M\"*, as we have done in Section 8.

Appendix B. Phonon displacement operator in the position representation
From Eq. (13), it follows that
1
_ ZF*' 1/2(S = Z 1/2 _ (B.1)
q.1 'IJ q‘] . .
or: y

Also, using

= ZFq*i/B},S N B_q,s = ZFq,i/l’;i/,S s (B'Z)
i i’

we obtain
Qs ZFMZ 1/2(5 ) FqjFqi (b +by S)
f ij,i
R TR O (B, + brs) - (B3)
N i V2
It is convenient to abbreviate R; — R; as i — j. Since f; j(s) = fi_;(s), we also havef 1/2( )= _jl/z(s),

and we obtain:

Zf,_l/z (b* +bys) - (B.4)

-1/2

Using Greek indices, this can be rewritten as in Eq. (6), with fA 2 = 85A,5Kfiﬁik .

Appendix C. Proof - non-interacting grand potential as a function of the non-interacting GFs

In the absence of EEIs and EPIs, the action reduces to

= pp* 1
(c,c,b,b*) — . 1 . A
At,O,f,O - ? Xn: Xﬂ; Cm(lwn)Gt,O,f,O:a,ﬂ(lwn) Cﬁ(lCL)n)
o

+ - ZZb (i820)P; g ... (1820) ba(i820) - (C.1)

n
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The partition function can therefore be evaluated analytically:
(c c.b,b*)

Zrogo = f D(c, O)D(b", b) e

_ 1 . _ . .
= /D(c, c) exp T ZZCa(lwﬂ)ct,t]),f,o;a,ﬁ(lw”)Cﬂ(lw”)
n ap

X/D(b* exp|: ZZb* i2,) tofom(l.Qn)b,\(iQn):|

L, det [—lc;}, N o(iwn)]

— (C2)
[1o, det [_ 1P t, o0 £.0(i$2n )]
From Eq. (C.2), we evaluate the non-interacting grand potential as
2¢0f0=-TINZt 050
1 _

= —TZlndet[ 1.oli@n } —I—TZIndet[ TPtéfo(IQn)]

=T Indet[~TGeosoliwn)] —T Y Indet[~TP; g s0(if20)]

=TTrIn (—TGeo.f0) — TTrIn (=TP¢ 0 50) . (C3)

which is Eq. (25). This is used in the main text to derive Eq. (51).
Appendix D. Proof - GF functionals as functional derivatives
In this Appendix we prove Egs. (43) and (44).
Denoting by §Fy m[=; A] the variation of the functional Fu m[Z; A] with respect to variations of

> and A (while keeping fixed the parameters U and M), we have

1 ~

— ¥8FU,M[2; A]

= —%sfzu,m[ﬁu,m[z; Al 4 3 Py mls; AT + A
+5ZZelwn {In (TGy m[=; Alliwn))},
=6 Y e {in (TPy ml=; Al(i20)},,

= > GumaplS; Al(icon) [56,,;, 535 Allion) + szﬂ,a(iwn)]
-3 fou,m;a,ﬂ[z; AI(i20) {37 g o[ 25 ANIS22) + 84 ais20)]

+ ZZG,,M o515 Allion) {8Gu . a[=; Allion))

n

-> ZP,, Mo p 5 AL20) {8Py . o[ 5 AL(iS20))

n
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=Y > {CumaslS: Alliwn) 8 alion) — Pumias[5: AlliS20) 8 Apolis20)} (D.1)
n ap

where we have used that (in condensed notation)
Tr[X - (8X) 4+ (8X™1) - X] =Tré(X ' -X)=Tré(1)=0. (D.2)
The result in the last line of (D.1) is equivalent to Eqs. (43)—(44).

Appendix E. Proof - self-energy functionals as functional derivatives

In this Appendix, we prove Eqgs. (48) and (49) by using Eg. (45) together with (43) and (44).
Denoting by Sq),, 1[G; P] the variation of the functional @y [G; P] with respect to variations of
G and P (while keepmg fixed the parameters U and I), we have

1 ~ ~ ~
70®ulG: Pl = Z ;{—Gm(iwn) 82y 1.0.[G; Pliwn) + Pg o(i24) 8 Ay 1.0, 5[G; P1(i82,)

+ 8 Zu.1.416: Plion) Gpalioon) | = 8 Au.raplG: PYiS20) Paalis2e)| ]
=3 {Zvra plG: Pliwn) 8Gp alion) — Ay 1:a p[G: PN(i820) 8Pp o(i820)} .

n ap
(E.1)
which leads directly to Egs. (48) and (49).
Appendix F. Simplification of the functional derivative of the four-leg reducible vertex
By applying the functional derivative to Eq. (84), we obtain
Tt g vy |G, o, )
= Uil ov:g.0:r ) [GN(i0m, ieon, i)
+8um YUt gier o [Glin, i05) Gy (i05) Ty, vz [G(ion, ievs)
¥’~'7/
+ Ons Z E{:](M,E@’M/)[G](iwmv iwp) Gs.n(iwm) FU;(n,v;v’,G)[G](iwm’ iwy)
+ Z U:[f]ws po:er ) [GNi0m, ion, i) Ge y(iom) Gy ¢/ (i05) Ty, vovr ) [G (i, i)
§.8
+ Y UG e o [Glliwm, ie5) Ge y(iwom) Gy e (i0s) Tl g iy [GNi0m, o, i)
£.8
(F.1)

where we have introduced the functional derivative of the irreducible four-leg vertex as in Eq. (85).

We proceed to simplify Eq. (F.1), with the aim of expressing its right-hand side in terms of the
irreducible functionals U™ and U'®, and the reducible functional I", analogously to what was done
in Ref. [77] (i.e. we eliminate the reducible six-leg vertex I"[®!). It should be noted that Ref. [77]
considered quenched disorder, while here we are considering EEIs in clean systems as the source
of the electronic self-energy in the absence of EPL Because of this difference, although our final
expression is similar to their Eq. (40), some important details are different. Here, in particular, the
six-leg vertices depend on three distinct fermionic frequencies, while, in their case, two of the three
frequencies coincide, in all vertices. This produces some topologically distinct structures in the final
expressions.

We now go through the derivation by employing Feynman diagrams. First, we represent Eq. (F.1)
by means of Feynman diagrams, obtaining Fig. F.5, where we explicitly label the internal vertices as
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Fig. F.5. Diagrammatic representation of Eq. (F.1).

well as the external vertices (it is intended that internal indices are summed over). In the following
steps, we will omit the dummy labels of the internal vertices. Moreover, to avoid cluttering
the figures with redundant information, we will indicate only one frequency argument for each
fermionic oriented line, with the understanding that it applies to all the connected segments that
form that line.

The first step of the derivation consists in applying a I" diagram from the left, by attaching it (via
two GFs) to the u and u’ vertices in Fig. F.5. After renaming the vertices so that x and x’ remain
the labels of the external vertices on the left of the diagrams, we obtain Fig. F.6.

We then use the Bethe-Salpeter equation, Eq. (84), which relates the reducible four-leg vertex
I’ to the irreducible four-leg vertex U™, In our diagrammatic notation, Eq. (84) is translated into
Fig. F.7. By substituting it into Fig. F.6, we obtain Fig. F.8.

We now observe that the last line of Fig. F.8 contains a term which is identical to the quantity
on the left-hand side of the same diagrammatic equation (so they cancel out), and another term,
which depends on U™ and "™, which appears in the last line of Fig. F.5. We then solve Fig. F.8 for
this quantity, substitute into Fig. F.5, and we obtain the result, Fig. F.9.

Finally, we convert the result displayed in Fig. F.9 into the following algebraic expression:

(6 . . .
F&glw;qj,e;V/ﬂﬂ,)[G](la)m, iy, iws)
7716 . . .
= Uliyv:.0: ) |G N(iom, icon, o)
~+ On,m Z FU;(M.G;E’A,M’)[G](iwmv iws) Gn’,é’(ia)s) FU:((b,u;v’,rz’)[G](iwms iws)
&
+ (Sn,s Z FU;(//,,E;d),/L’)[G](iwmv lws) Gé,ﬂ(iwm) FU:(r],u;U’,Q)[G](iwmv lws)
&
~16] . . . . N . .
+ Z UU;(/L,E;¢,9:$’,/L’)[G](lwm’ iwy, iws) Gé,n(lwm) Gn’,s’(lws)FU;(n,v;v’,n’)[G](m)m» iws)
&8 .

~ . . . . ~I6 . . .
+ Y Toes lGllion, ios) Ge y(ion) Gy g (@) U, .y g1 ) [ Giom, ion, i)
£.8
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Fig. F.7. Diagrammatic representation of the Bethe-Salpeter equation, Eq. (84). The connected blocks I" and Ul on the
right-hand side can be interchanged.
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Fig. F.8. Second step of the derivation that leads from Egs. (F.1) to (F.2).

Appendix G. G-N transformation

Under the assumptions stated at the beginning of Section 8, the total Hamiltonian becomes

1
N » At oA 1 - At At oA ~
H= E tz,] E Ci,gC],(r + 2 E Ul,j,l,k E Ci’ocj.arclcn’cl,rr
ij o o0’

ij.k,1

Y S IS ds Y &G0 + Y Y fis()bl by - (G.1)
o ij s

ijk s
We perform the G-N transformation on the fermions,

Gy = ai,T . Gy = ah ) (G.2)
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Fig. F.9. Result of the derivation. This is the diagrammatic representation of Eq. (F.2).
and we normal-order the result. Neglecting constant terms, we obtain
o o apon
A=) tij ) od dio+ Y > fifs)b] by
ij o ij s
N TN
+ - E Uzjlk E oo d,(7 o dk.a’dl,(r + E E Ui,k.j.k § iadi,adjvlf
l] k.1 ij o
(k) (k)
I O™ §:ad,gd]o+§ § qs§:1 ). (G3)
ijk s

Let us examine Eq. (G.3). Notice, in particular, the last term in the second line, which results
from the normal-ordering of the transformed EEI Hamiltonian, and the last term in the third line,
which results from the normal-ordering of the transformed EPI Hamiltonian. The first of these
terms (purely fermionic) can be directly incorporated into a renormalization of the electronic
hopping parameters. The second term, instead, which is purely phononic, apparently differs from
the other phononic terms. In order to recover the form of the Hamiltonian, we make the bosonic
transformation

bis=ais+Ks, bl,=al +K, (G.4)
where the quantities K; s are constants that will be determined shortly, and the fields d; ; are bosons.
When this transformation is done, the first term in the third line of Eq. (G.3) generates an additional
purely electronic term, while the second term in the first line generates both quadratic and linear
terms in the new bosonic fields. By imposing that the terms which are linear in the bosons (and do
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not involve fermionic fields) cancel out, we determine the values of the parameters K; s:
1 B .
Kis =Kiy=——=>_f7'(5) D_17s) . (G.5)
V25 1

where we have exploited that fi ;(s) = f; k(s). Neglecting further constants, the Hamiltonian becomes

= Z t,,+ZU1k,]k ZI.(k) Zf,”;(s Zl,ﬁ’,")(s) Za&{a&j,(,
—|—qu alsa]s—i-ZZI s)—(ak5+ak$>20d a

ij ks

+ - ZUz,]szGG df d! i e P T (G.6)

ij,k,1

This is mathematically equivalent to the initial Hamiltonian (1) of the main text, provided that the
fields are renamed and the parameters are specified as in Eqs. (97), (96), and (95).

The transformation (G.4) is equivalent to a fixed displacement of the lattice ions, dependent on
the lattice position and on the phonon mode. It can be interpreted as an effect of the interaction
between the phonon system and the vacuum of the Nambu fields: when the state of the system
contains zero Nambu fermions, the equilibrium positions of the ions are different with respect to
those characterizing the state with zero electrons (i.e., the lattice sites). An analogous transformation
was discussed in Ref. [90].
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