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a b s t r a c t

The power spectrum analysis of spectral fluctuations in complex
wave and quantum systems has emerged as a useful tool for
studying their internal dynamics. In this paper, we formulate
a nonperturbative theory of the power spectrum for complex
systems whose eigenspectra – not necessarily of the random-
matrix-theory (RMT) type – possess stationary level spacings.
Motivated by potential applications in quantum chaology, we
apply our formalism to calculate the power spectrum in a tuned
circular ensemble of random N ×N unitary matrices. In the limit
of infinite-dimensional matrices, the exact solution produces a
universal, parameter-free formula for the power spectrum, ex-
pressed in terms of a fifth Painlevé transcendent. The prediction
is expected to hold universally, at not too low frequencies, for
a variety of quantum systems with completely chaotic classical
dynamics and broken time-reversal symmetry. On the mathe-
matical side, our study brings forward a conjecture for a double
integral identity involving a fifth Painlevé transcendent.

© 2020 The Author(s). Published by Elsevier Inc. This is an open
access article under the CC BY license
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1. Introduction

The power spectrum analysis of stochastic spectra [1] had recently emerged as a powerful tool for
studying both system-specific and universal properties of complex wave and quantum systems. In

∗ Corresponding author.
E-mail address: eugene.kanzieper@hit.ac.il (E. Kanzieper).

https://doi.org/10.1016/j.aop.2019.168065
0003-4916/© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.aop.2019.168065
http://www.elsevier.com/locate/aop
http://www.elsevier.com/locate/aop
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aop.2019.168065&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:eugene.kanzieper@hit.ac.il
https://doi.org/10.1016/j.aop.2019.168065
http://creativecommons.org/licenses/by/4.0/


2 R. Riser, V.A. Osipov and E. Kanzieper / Annals of Physics 413 (2020) 168065

the context of quantum systems, it reveals whether the corresponding classical dynamics is regular
or chaotic, or a mixture of both, and encodes a ‘degree of chaoticity’. In combination with other
long- and short-range spectral fluctuation measures, it provides an effective way to identify system
symmetries, determine a degree of incompleteness of experimentally measured spectra, and get
the clues about systems’ internal dynamics. Yet, the theoretical foundations of the power spectrum
analysis of stochastic spectra have not been settled. In this paper, a nonperturbative theory of the
power spectrum will be presented.

To set the stage, we review traditional spectral fluctuation measures (Section 1.1), define the
power spectrum (Definition 1.1) and briefly discuss its early theoretical and numerical studies as
well as the recently reported experimental results (Section 1.2). We then argue (Section 1.3), that
a form-factor approximation routinely used for the power spectrum analysis in quantum chaotic
systems is not flawless and needs to be revisited.

1.1. Short- and long-range measures of spectral fluctuations

Spectral fluctuations of quantum systems reflect the nature – regular or chaotic – of their under-
lying classical dynamics [2–4]. In case of fully chaotic classical dynamics, hyperbolicity (exponential
sensitivity to initial conditions) and ergodicity (typical classical trajectories fill out available phase
space uniformly) make quantum properties of chaotic systems universal [3]. At sufficiently long
times t > T∗, the single particle dynamics is governed by global symmetries of the system and
is accurately described by the random matrix theory (RMT) [5,6]. The emergence of universal
statistical laws, anticipated by Bohigas, Giannoni and Schmit [3], has been advocated within a
field-theoretic [7,8] and a semiclassical approach [9] which links correlations in quantum spectra
to correlations between periodic orbits in the associated classical geodesics. The time scale T∗ of
compromised spectral universality is set by the period T1 of the shortest closed orbit and the
Heisenberg time TH, such that T1 ≪ T∗ ≪ TH.

Several statistical measures of level fluctuations have been devised in quantum chaology. Long-
range correlations of eigenlevels on the unfolded energy scale [5] can be measured by the variance
Σ2(L) = var[N(L)] of number of levels N(L) in the interval of length L. The Σ2(L) statistics probes
the two-level correlations only and exhibit [10] a universal RMT behavior provided the interval L is
not too long, 1 ≪ L ≪ TH/T1. The logarithmic behavior of the number variance,

Σ2
chaos(L) =

2
π2β

ln L + O(1), (1.1)

indicates presence of the long-range repulsion between eigenlevels. Here, β = 1, 2 and 4 denote the
Dyson symmetry index [5,6]. For more distant levels, L ≫ TH/T1, system-specific features show up
in Σ2

chaos(L) in the form of quasi-random oscillations with wavelengths being inversely proportional
to periods of short closed orbits.

Individual features of quantum chaotic systems become less pronounced in spectral measures
that probe the short-range fluctuations as these are largely determined by the long periodic
orbits [9]. The distribution of level spacing between (unfolded) consecutive eigenlevels, P(s) =

⟨δ(s − Ej + Ej+1)⟩, is the most commonly used short-range statistics. Here, the angular brackets
denote averaging over the position j of the reference eigenlevel or, more generally, averaging over
such a narrow energy window that keeps the classical dynamics essentially intact. At small spacings,
s ≪ 1, the distribution of level spacings is mostly contributed by the two-point correlations, showing
the phenomenon of symmetry-driven level repulsion, P(s) ∝ sβ . (In a simple-minded fashion, this
result can be read out from the Wigner surmise [5]). As s grows, the spacing distribution becomes
increasingly influenced by spectral correlation functions of all orders. In the universal regime
(s ≲ TH/T∗), these are best accounted for by the RMT machinery which produces parameter-free
(but β-dependent) representations of level spacing distributions in terms of Fredholm determi-
nants/Pfaffians and Painlevé transcendents. For quantum chaotic systems with broken time-reversal
symmetry (β = 2) – that will be the focus of our study – the level spacing distribution is given by the
famous Gaudin–Mehta formula, which when written in terms of Painlevé transcendents reads [6,11]

Pchaos(s) =
d2

ds2
exp

(∫ 2πs

0

σ0(t)
t

dt
)
. (1.2)
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Here, σ0(t) is the fifth Painlevé transcendent defined as the solution to the nonlinear equation
(ν = 0)

(tσ ′′

ν )
2
+ (tσ ′

ν − σν)
(
tσ ′

ν − σν + 4(σ ′

ν)
2)

− 4ν2(σ ′

ν)
2

= 0 (1.3)

subject to the boundary condition σ0(t) = −t/2π − (t/2π )2 + o(t2) as t → 0.
The universal RMT laws [Eqs. (1.1) and (1.2)] apply to quantum systems with completely chaotic

classical dynamics. Quantum systems whose classical geodesics is completely integrable belong to
a different, Berry–Tabor universality class [12], partially shared by the Poisson point process. In
particular, level spacings in a generic integrable quantum system exhibit statistics of waiting times
between consecutive events in a Poisson process. This leads to the radically different fluctuation
laws: the number variance Σ2

int(L) = L is no longer logarithmic while the level spacing distribution
Pint(s) = e−s becomes exponential [2], with no signatures of level repulsion whatsoever. Such a
selectivity of short- and long-range spectral statistical measures has long been used to uncover
underlying classical dynamics of quantum systems. (For a large class of quantum systems with
mixed regular-chaotic classical dynamics, the reader is referred to Refs. [13–15].)

1.2. Power spectrum: Definition and early results

To obtain a more accurate characterization of the quantum chaos, it is advantageous to use
spectral statistics which probe the correlations between both nearby and distant eigenlevels. Such
a statistical indicator – the power spectrum – has been suggested in Ref. [16].

Definition 1.1. Let {ε1 ≤ · · · ≤ εN} be a sequence of ordered unfolded eigenlevels, N ∈ N,
with the mean level spacing ∆ and let ⟨δεℓδεm⟩ be the covariance matrix of level displacements
δεℓ = εℓ − ⟨εℓ⟩ from their mean ⟨εℓ⟩. A Fourier transform of the covariance matrix

SN (ω) =
1

N∆2

N∑
ℓ=1

N∑
m=1

⟨δεℓδεm⟩ eiω(ℓ−m), ω ∈ R (1.4)

is called the power spectrum of the sequence. Here, the angular brackets stand for an average over
an ensemble of eigenlevel sequences. ■

Since the power spectrum is 2π-periodic, real and even function in ω,

SN (ω + 2π ) = SN (ω), S∗

N (ω) = SN (ω), SN (−ω) = SN (ω), (1.5)

it is sufficient to consider it in the interval 0 ≤ ω ≤ ωNy, where ωNy = π is the Nyquist frequency. In
the spirit of the discrete Fourier analysis, one may restrict dimensionless frequencies ω in Eq. (1.4)
to a finite set

ωk =
2πk
N

(1.6)

with k = {1, 2, . . . ,N/2}, where N is assumed to be an even integer. We shall see that resulting
analytical expressions for SN (ωk) are slightly simpler than those for SN (ω).

Remark 1.2. We notice in passing that similar statistics has previously been used by Odlyzko [17]
who analyzed power spectrum of the spacings between zeros of the Riemann zeta function. ■

Considering Eq. (1.4) through the prism of a semiclassical approach, one readily realizes that, at
low frequencies ω ≪ T∗/TH, the power spectrum is largely affected by system-specific correlations
between very distant eigenlevels (accounted for by short periodic orbits). For higher frequencies,
ω ≳ T∗/TH, the contribution of longer periodic orbits becomes increasingly important and the power
spectrum enters the universal regime. Eventually, in the frequency domain T∗/TH ≪ ω ≤ ωNy, long
periodic orbits win over and the power spectrum gets shaped by correlations between the nearby
levels. Hence, tuning the frequency ω in SN (ω) one may attend to spectral correlation between either
adjacent or distant eigenlevels.
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Numerical simulations [16] have revealed that the average power spectrum SN (ωk) discriminates
sharply between quantum systems with chaotic and integrable classical dynamics. While this was
not completely unexpected, another finding of Ref. [16] came as quite a surprise: numerical data for
SN (ωk), at not too high frequencies, could be fitted by simple power-law curves, SN (ωk) ∼ 1/ωk and
SN (ωk) ∼ 1/ω2

k , for quantum systems with chaotic and integrable classical dynamics, respectively.
In quantum systems with mixed classical dynamics, numerical evidence was presented [18] for
the power-law of the form SN (ωk) ∼ 1/ωαk with the exponent 1 < α < 2 measuring a ‘degree of
chaoticity’. The power spectrum of interface fluctuations in various growth models belonging to the
(1 + 1)-dimensional Kardar–Parisi–Zhang universality class, studied in Ref. [19] both numerically
and experimentally, was found to follow the power law with α = 5/3. The power spectrum
was also measured in Sinai [20] and perturbed rectangular [21] microwave billiards, microwave
networks [22,23] and three-dimensional microwave cavities [24]. For the power spectrum analysis
of Fano–Feshbach resonances in an ultracold gas of Erbium atoms [25], the reader is referred to
Ref. [26].

For quantum chaotic systems, the universal 1/ωk law for the average power spectrum in the
frequency domain T∗/TH ≲ ωk ≪ 1 can be read out from the existing RMT literature. Indeed,
defining a set of discrete Fourier coefficients

ak =
1

√
N

N∑
ℓ=1

δεℓ eiωkℓ (1.7)

of level displacements {δεℓ}, one observes the relation

SN (ωk) = var[ak]. (1.8)

Statistics of the Fourier coefficients {ak} were studied in some detail [27] within the Dyson’s
Brownian motion model [28]. In particular, it is known that, in the limit k ≪ N , they are
independent Gaussian distributed random variables with zero mean and the variance var[ak] =

N/(2π2βk). This immediately implies

SN (ωk ≪ 1) ≈
1

πβωk
(1.9)

in concert with numerical findings. For larger k (in particular, for k ∼ N), fluctuation properties
of the Fourier coefficients {ak} are unknown. In view of the relation Eq. (1.8), a nonperturbative
theory of the power spectrum to be developed in this paper sets up a well-defined framework for
addressing statistical properties of discrete Fourier coefficients {ak} introduced in Ref. [27].

An attempt to determine SN (ωk) for higher frequencies up to ωk = ωNy was undertaken in
Ref. [29] whose authors claimed to express the large-N power spectrum in the entire domain
T∗/TH ≲ ωk ≤ ωNy in terms of the spectral form-factor [5]

KN (τ ) =
1
N

(⟨ N∑
ℓ=1

N∑
m=1

e2iπτ (εℓ−εm)
⟩
−

⟨ N∑
ℓ=1

e2iπτεℓ
⟩⟨ N∑

m=1

e−2iπτεm
⟩)

(1.10)

of a quantum system, τ ≥ 0. Referring interested reader to Eqs. (3), (8) and (10) of the original
paper Ref. [29], here we only quote a small-ωk reduction of their result:

ŜN (ωk ≪ 1) ≈
1
ω2

k
KN

( ωk

2π

)
. (1.11)

(Here, the hat-symbol ( ˆ ) is used to indicate that the power spectrum ŜN (ωk ≪ 1) is the one
furnished by the form-factor approximation.) A similar approach was also used in subsequent
papers [30,31].

Even though numerical simulations seemed to confirm a theoretical curve derived in Ref. [29],
we believe that the status of their heuristic approach needs to be clarified. This will be done in
Section 1.3.
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Fig. 1. Power spectrum SN (ω) as a function of frequency ω for eigenlevel sequences with uncorrelated level spacings. Solid
red line corresponds to the theoretical curve Eq. (1.14) with σ 2

= 1. Blue crosses represent the average power spectrum
simulated for 10 million sequences of N = 2048 random eigenlevels with uncorrelated, exponentially distributed spacings
si ∼ Exp(1). Inset: a log–log plot for the same graphs. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

1.3. Spectra with uncorrelated spacings: Form-factor vs power spectrum

A simple mathematical model of eigenlevel sequences {ε1, . . . , εN} with identically distributed,
uncorrelated spacings {s1, . . . , sN}, where ℓ-th ordered eigenlevel equals

εℓ =

ℓ∑
j=1

sj, (1.12)

provides an excellent playing ground to analyze validity of the form-factor approximation. Defined
by the covariance matrix of spacings of the form cov(si, sj) = σ 2δij, such that ⟨si⟩ = 1, it allows us
to determine exactly both the power spectrum Eq. (1.4) and the form-factor Eq. (1.10).

Power spectrum.—Indeed, realizing that the covariance matrix of ordered eigenlevels equals

⟨δεℓδεm⟩ = σ 2 min(ℓ,m), (1.13)

we derive an exact expression for the power spectrum (N ∈ N)

SN (ω) =
2N + 1
4N

σ 2

sin2(ω/2)

(
1 −

1
2N + 1

sin ((N + 1/2)ω)
sin(ω/2)

)
. (1.14)

Eq. (1.14) stays valid in the entire region of frequencies 0 ≤ ω ≤ π . For a set of discrete frequencies
ωk = 2πk/N , it reduces to

SN (ωk) =
σ 2

2 sin2(ωk/2)
, 0 < ωk ≤ π. (1.15)

Remark 1.3. Notice that Eqs. (1.14) and (1.15) for the power spectrum of eigenlevel sequences with
uncorrelated level spacings hold universally. Indeed, both expressions appear to be independent
of a particular choice of the level spacings distribution; the level spacing variance σ 2 is the only
model-specific parameter. ■

For illustration purposes, in Fig. 1, we compare the theoretical power spectrum SN (ω), Eq. (1.14),
with the average power spectrum simulated for an ensemble of sequences of random eigenlevels



6 R. Riser, V.A. Osipov and E. Kanzieper / Annals of Physics 413 (2020) 168065

with uncorrelated, exponentially distributed level spacings si ∼ Exp(1). Since the unit mean level
spacing ⟨sj⟩ = 1 is intrinsic to the model, the unfolding procedure is redundant. Perfect agreement
between the theoretical and the simulated curves is clearly observed in the entire frequency domain
0 < ω ≤ π .

For further reference, we need to identify three scaling limits of SN (ω) that emerge as N → ∞.
In doing so, the power spectrum will be multiplied by ω2 to get rid of the singularity at ω = 0.

(i) The first – infrared – regime, refers to extremely small frequencies, ω ∼ N−1. It is described
by the double scaling limit

S
(−1)(Ω) = lim

N→∞

ω2SN (ω)
⏐⏐⏐
ω=Ω/N

= 2σ 2
(
1 −

sinΩ
Ω

)
, (1.16)

where Ω = O(N0). One observes:

S
(−1)(Ω) =

{
O(Ω2), Ω → 0;
2σ 2

+ o(1), Ω → ∞. (1.17)

(ii) The second scaling regime describes the power spectrum for intermediately small frequencies
ω ∼ N−α with 0 < α < 1. In this case, a double scaling limit becomes trivial:

S
(−α)(Ω̃) = lim

N→∞

ω2SN (ω)
⏐⏐⏐
ω=Ω̃/Nα

= 2σ 2, (1.18)

where Ω̃ = O(N0). In the forthcoming discussion of a spectral form-factor [Eq. (1.27)], such a scaling
limit will appear with α = 1/2.

(iii) The third scaling regime describes the power spectrum for ω = O(N0) fixed as N → ∞. In
this case, we derive

S
(0)(ω) = lim

N→∞

ω2SN (ω) = σ 2 ω2

2 sin2(ω/2)
, (1.19)

where ω = O(N0). One observes:

S
(0)(ω) =

{
2σ 2

+ O(ω2), ω → 0;
σ 2π2/2, ω = π . (1.20)

Eqs. (1.17), (1.18) and (1.20) imply continuity of S(ω) across the three scaling regimes. We shall
return to the universal formulae Eqs. (1.16), (1.18) and (1.19) later on.

Spectral form-factor.—For eigenlevel sequences with identically distributed, uncorrelated level spac-
ings, the form-factor KN (τ ) defined by Eq. (1.10) can be calculated exactly, too. Defining the
characteristic function of ith level spacing,

Ψs(τ ) = ⟨e2iπτ si⟩ =

∫
∞

0
ds e2iπτ sfsi (s), (1.21)

where fsi (s) is the probability density of the ith level spacing, we reduce Eq. (1.10) to

KN (τ ) = 1 +
2
N
Re
[

Ψs(τ )
1 − Ψs(τ )

(
N −

1 − Ψ N
s (τ )

1 − Ψs(τ )

)]
−

1
N

⏐⏐⏐⏐Ψs(τ )
1 − Ψ N

s (τ )
1 − Ψs(τ )

⏐⏐⏐⏐2 . (1.22)

In Fig. 2, we compare the theoretical form-factor Eq. (1.22) with the average form-factor
simulated for an ensemble of sequences of random eigenlevels with uncorrelated, exponentially
distributed level spacings as explained below Remark 1.3. The simulation was based on Eqs. (1.10)
and (1.12), and involved averaging [32] over ten million realizations. Referring the reader to a figure
caption for detailed explanations, we plainly notice a perfect agreement between the simulations
and the theoretical result Eq. (1.22).

As N → ∞, three different scaling regimes can be identified for the spectral form-factor. Two of
them, arising in specific double scaling limits, appear to be universal.
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Fig. 2. Spectral form-factor KN (τ ) as a function of τ for a model and the data specified in the caption to Fig. 1. Solid red
line corresponds to the theoretical curve Eq. (1.22) with Ψs(τ ) = (1−2iπτ )−1 . Inset: a close-up view of the same graphs;
additional black curves display limiting form-factor in various scaling regimes. Dashed line: regime (I), Eq. (1.24) with
τ = T/N . Solid line: regime (II), Eq. (1.27) with τ = T/N1/2 . Dotted line: regime (III), Eq. (1.29), see discussion there.
Notice that the black dashed curve [(I)] starts to deviate from the red curve (after the fourth blue cross the deviation
exceeds 10%; as τ grows further, the relative deviation approaches the factor 2). For larger τ , the black solid curve [(II)]
becomes a better fit to the red curve. Finally, the red curve approaches unity depicted by the black dotted line [(III)]. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(i) The first – infrared – regime, refers to extremely short times, τ ∼ N−1. Assuming existence
and convergence of the moment-expansion for the characteristic function Ψs(τ ), we expand it up
to the terms of order N−2,

Ψs(τ )
⏐⏐⏐
τ=T/N

= 1 + 2iπ
T
N

− 2π2(σ 2
+ 1)

T 2

N2 + O(N−3) (1.23)

to derive the infrared double scaling limit for the form factor:

K (−1)(T ) = lim
N→∞

KN (τ )
⏐⏐⏐
τ=T/N

= 2σ 2
(
1 −

sin(2πT )
2πT

)
, (1.24)

where T = O(N0). Notice that this formula holds universally as K (−1)(T ) does not depend on
a particular choice of the level spacings distribution; its variance σ 2 is the only model-specific
parameter. One observes:

K (−1)(T ) =

{
O(T 2), T → 0;
2σ 2

+ o(1), T → ∞. (1.25)

(ii) The second – intermediate – regime, refers to intermediately short times, τ ∼ N−1/2.
Expanding the characteristic function Ψs(τ ) up to the terms of order N−1,

Ψs(τ )
⏐⏐⏐
τ=T/N1/2

= 1 + 2iπ
T

N1/2 − 2π2(σ 2
+ 1)

T2

N
+ O(N−3/2), (1.26)

we discover that, for intermediately short times, the double scaling limit of the form factor reads

K (−1/2)(T) = lim
N→∞

KN (τ )
⏐⏐⏐
τ=T/N1/2

= σ 2

(
1 +

1 − e−4π2σ2T2

4π2σ 2T2

)
, (1.27)

where T = O(N0). Hence, in the intermediate double scaling limit, the form-factor exhibits the
universal behavior too, as K (−1/2)(T) depends on a particular choice of the level spacings distribution
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Fig. 3. Limiting curves (N → ∞) for the form-factor across the three scaling regimes [(I)—Eq. (1.24), (II)—Eq. (1.27),
and (III)—Eq. (1.29)], glued together at vertical dotted lines. The functions K (−1)(T ), K (−1/2)(T) and K (0)(τ ), describing the
regimes (I), (II) and (III), correspondingly, are plotted vs variables T = Nτ , T = N1/2τ and τ , each running over the entire
real half-line compactified using the transformation (0,∞) = tan((0, π/2)). Solid red, green and blue curves correspond
to the form-factor in the model of uncorrelated spacings drawn from the Erlang(3, 3) (red), inverse Gaussian IG(1, 3)
(green) and uniform U(0, 2) (blue) distributions, exhibiting identical mean and variance. The dashed black line – to be
discussed in the main text – displays the limiting curve of the function limN→∞ ω2SN (ω) with 0 ≤ ω = 2πτ ≤ π (that
is, 0 ≤ τ ≤

1/2) for all three choices of the level spacing distribution. In the scaling regimes (I), (II) and (III), the curve is
described by Eqs. (1.16) and (1.18) with α = 1/2 and (1.19), respectively. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

only through its variance σ 2. One observes:

K (−1/2)(T) =

{
2σ 2

+ O(T2), T → 0;
σ 2

+ o(1), T → ∞. (1.28)

(iii) The third scaling regime describes the form-factor for τ = O(N0) fixed as N → ∞. Spotting
that in this case the characteristic function Ψ N

s (τ ) vanishes exponentially fast, we derive

K (0)(τ ) = lim
N→∞

KN (τ ) = 1 + 2Re
[

Ψs(τ )
1 − Ψs(τ )

]
. (1.29)

Notably, in the fixed-τ scaling limit, the form-factor is no longer universal as it depends explicitly on
the particular distribution of level spacings1 through its characteristic function Ψs(τ ). One observes:

K (0)(τ ) =

{
σ 2

+ O(τ 2), τ → 0;
1 + o(1), τ → ∞. (1.30)

The three scaling regimes for the form-factor as N → ∞ are illustrated in Fig. 3 . The continuity
of the entire curve is guaranteed by equality of limits limT→∞ K (−1)(T ) = limT→0 K (−1/2)(T) and
limT→∞ K (−1/2)(T) = limτ→0 K (0)(τ ), see Eqs. (1.25), (1.28) and (1.30). To highlight occurrence
of both universal and non-universal τ -domains in the form-factor, the latter is plotted for three
different choices of level spacing distributions, sj ∼ Erlang(3, 3), IG(1, 3) and U(0, 2), characterized

1 For the exponential distribution of level spacings the form-factor in the third scaling regime equals unity, K (0)(τ ) ≡ 1.
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by the same mean ⟨sj⟩ = 1 and the variance σ 2
= 1/3:

fsj (s) = Θ(s) ×

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

27
2

s2 exp(−3s), Erlang(3, 3);(
3

2πs3

)1/2

exp
(

−
3(s − 1)2

2s

)
, IG(1, 3);

1
2
Θ(2 − s), U(0, 2).

(1.31)

The three curves coincide in the universal domains (I) and (II). On the contrary, in the third
regime [(III)], the form-factor behavior is non-universal as the three curves evolve differently
depending on a particular choice of the level spacing distribution. Yet, all three curves approach
unity at infinity.

Implications for the power spectrum.—We now turn to the discussion of a relation between the
power spectrum Eq. (1.4) and the form-factor Eq. (1.10). To this end, we shall compare the
limiting forms, as N → ∞, of the form-factor, studied both analytically and numerically in the
previous subsection, with the limiting behavior of the product ω2SN (ω) |ω=2πτ as prompted by the
form-factor approximation Eq. (1.11). The latter is plotted in Fig. 3 by the black dashed line.

(i) For extremely low frequencies ω = O(N−1) (equivalently, short times τ = O(N−1)) belonging
to the first scaling regime [(I)], the two quantities are seen to coincide

(universal) K (−1)(T ) = (universal) S
(−1)(Ω) |Ω=2πT , (1.32)

see Eqs. (1.16) and (1.24). The universal behavior of both spectral indicators in the domain (I) is
illustrated in Fig. 3 arranged for three different level spacing distributions specified by Eq. (1.31).

(ii) In the second scaling regime [(II)], characterized by intermediately low frequencies ω =

O(N−1/2) (equivalently, τ = O(N−1/2)), the limiting curve for the form-factor starts to deviate from
the one for the product ω2SN (ω) |ω=2πτ , in concert with the analytical analysis,

(universal) K (−1/2)(T) ̸= (universal) S
(−1/2)(Ω̃) |Ω̃=2πT= 2σ 2, (1.33)

compare Eq. (1.18) taken at α = 1/2 with Eq. (1.27). While the product S(−1/2)(Ω̃) is a constant
throughout the entire domain (II), the form-factor is described by the universal function Eq. (1.27)
irrespective of a particular form of the level spacing distribution; the relative deviation between the
two limiting curves reaches its maximum (= 2) at the borderline between the regimes (II) and (III),
in concert with the earlier conclusion of Ref. [33]. How fast this factor of 2 is approached depends
only on the value of σ 2, as described by Eq. (1.27). Hence, the relation Eq. (1.11) is clearly violated
in the second scaling regime, apart from a single point at the border between the regimes (I) and (II)
as stated below Eq. (1.30).

(iii) In the third scaling regime [(III)] emerging for ω = O(N0) (equivalently, τ = O(N0)) the two
limiting curves depart incurably from each other: while the product limN→∞ ω

2SN (ω), shown by
the dashed black line, follows the universal law Eq. (1.19), the form-factor displays a non-universal
behavior strongly depending on the particular form of level spacing distribution as highlighted by
solid red, green and blue curves, see also Eq. (1.29),

(nonuniversal) K (0)(τ ) ̸= (universal) S
(0)(ω) |ω=2πτ . (1.34)

Hence, the two spectral statistics – the form-factor and the power spectrum – cannot be reduced
to each other for any finite frequency 0 < ω < π as N → ∞.

Conclusion.—Detailed analytical and numerical analysis, performed for eigenlevel sequences with
uncorrelated, identically distributed level spacings, leads us to conclude that the spectral form-
factor and the power spectrum are generically two distinct statistical indicators. This motivates us to
revisit the problem of calculating the power spectrum for a variety of physically relevant eigenlevel
sequences beyond the form-factor approximation. In the rest of the paper, this program, initiated
in our previous publication [33], will be pursued for (a) generic eigenlevel sequences possessing
stationary level spacings and (b) eigenlevel sequences drawn from a variant of the circular unitary
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ensemble of random matrices. The latter case is of special interest as its N → ∞ limit belongs to
the spectral universality class shared by a large class of quantum systems with completely chaotic
classical dynamics and broken time-reversal symmetry.

2. Main results and discussion

In this section, we collect and discuss the major concepts and results of our work. Throughout
the paper, we shall deal with eigenlevel sequences possessing stationary level spacings as defined
below.

Definition 2.1. Consider an ordered sequence of (unfolded) eigenlevels {0 ≤ ε1 ≤ · · · ≤ εN}

with N ∈ N. Let {s1, . . . , sN} be the sequence of spacings between consecutive eigenlevels such that
sℓ = εℓ − εℓ−1 with ℓ = 1, . . . ,N and ε0 = 0. The sequence of level spacings is said to be stationary
if (i) the average spacing

⟨sℓ⟩ = ∆ (2.1)

is independent of ℓ = 1, . . . ,N and (ii) the covariance matrix of spacings is of the Toeplitz type:

cov(sℓ, sm) = I|ℓ−m| −∆2 (2.2)

for all ℓ,m = 1, . . . ,N . Here, In is a function defined for non-negative integers n. ■

Remark 2.2. While stationarity of level spacings is believed to emerge after unfolding procedure in
the limit N → ∞, see Ref. [34], it is not uncommon to observe stationarity even for finite eigenlevel
sequences. Two paradigmatic examples of finite-N eigenlevel sequences with stationary spacings
include (i) a set of uncorrelated identically distributed eigenlevels [35] mimicking quantum systems
with integrable classical dynamics and (ii) eigenlevels drawn from the ‘tuned’ circular ensembles
of random matrices appearing in the random matrix theory approach to quantum systems with
completely chaotic classical dynamics, see Section 4. ■

2.1. Main results

First result.—For generic eigenlevel sequences, the power spectrum Eq. (1.4) is determined by both
diagonal and off-diagonal elements of the covariance matrix ⟨δεℓδεm⟩. In the important case of
eigenlevel sequences with stationary level spacings, the power spectrum can solely be expressed in
terms of diagonal elements ⟨δε2ℓ ⟩ of the covariance matrix. Theorem 2.3 establishes an exact relation
between the power spectrum (see Definition 1.1) and a generating function of variances of ordered
eigenvalues.

Theorem 2.3 (First Master Formula). Let N ∈ N and 0 ≤ ω ≤ π . The power spectrum for an eigenlevel
sequence {0 ≤ ε1 ≤ · · · ≤ εN} with stationary spacings equals

SN (ω) =
1

N∆2 Re
(
z
∂

∂z
− N −

1 − z−N

1 − z

) N∑
ℓ=1

var[εℓ] zℓ, (2.3)

where z = eiω , ∆ is the mean level spacing, and

var[εℓ] = ⟨δε2ℓ ⟩. (2.4)

For the proof, the reader is referred to Section 3.2.

Second result.—Yet another useful representation – the second master formula – establishes an
exact representation of the power spectrum in terms of a generating function of probabilities
EN (ℓ; ϵ) to observe exactly ℓ eigenlevels below the energy ε,

EN (ℓ; ε) =
N!

ℓ!(N − ℓ)!

⎛⎝ ℓ∏
j=1

∫ ε

0
dϵj

⎞⎠⎛⎝ N∏
j=ℓ+1

∫
∞

ε

dϵj

⎞⎠ PN (ϵ1, . . . , ϵN ). (2.5)
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Here, PN (ϵ1, . . . , ϵN ) is the joint probability density (JPDF) of N unordered eigenlevels taken from
a positive definite spectrum; it is assumed to be symmetric under a permutation of its arguments.
Such an alternative albeit equivalent representation of the power spectrum will be central to the
spectral analysis of quantum chaotic systems.

Theorem 2.4 (Second Master Formula). Let N ∈ N and 0 ≤ ω ≤ π , and let ΦN (ε; ζ ) be the generating
function

ΦN (ε; ζ ) =

N∑
ℓ=0

(1 − ζ )ℓEN (ℓ; ε) (2.6)

of the probabilities defined in Eq. (2.5). The power spectrum, Definition 1.1, for an eigenlevel sequence
with stationary spacings equals

SN (ω) =
2

N∆2 Re
(
z
∂

∂z
− N −

1 − z−N

1 − z

)
z

1 − z

∫
∞

0
dϵ ϵ

[
ΦN (ϵ; 1 − z) − zN

]
− S̃N (ω), (2.7)

where z = 1 − ζ = eiω , ∆ is the mean level spacing, and

S̃N (ω) =
1
N
Re
(
z
∂

∂z
− N −

1 − z−N

1 − z

) N∑
ℓ=1

ℓ2zℓ

=
1
N

⏐⏐⏐⏐1 − (N + 1)zN + NzN+1

(1 − z)2

⏐⏐⏐⏐2 . (2.8)

For the proof, the reader is referred to Section 3.3.

Remark 2.5. Notably, representations Eqs. (2.6) and (2.7) suggest that the power spectrum is
determined by spectral correlation functions of all orders. Contrary to the spacing distribution, which
is essentially determined by the gap formation probability [5] EN (0; ε), the power spectrum depends
on the entire set of probabilities EN (ℓ; ε) with ℓ = 0, 1, . . . ,N . ■

Third result.—To study the power spectrum in quantum systems with broken time-reversal sym-
metry and completely chaotic classical dynamics, let us consider the tuned circular unitary ensemble
(TCUEN ). Obtained from the traditional circular unitary ensemble CUEN+1 [5] by conditioning its
lowest eigen-angle to stay at zero, the TCUEN is defined by the joint probability density of N
eigen-angles {θ1, . . . , θN} of the form

PN (θ1, . . . , θN ) =
1

(N + 1)!

∏
1≤i<j≤N

⏐⏐eiθi − eiθj
⏐⏐2 N∏

j=1

⏐⏐1 − eiθj
⏐⏐2 (2.9)

whose normalization is fixed by

N∏
j=1

∫ 2π

0

dθj
2π

PN (θ1, . . . , θN ) = 1. (2.10)

Such a seemingly minor tuning of CUEN+1 to TCUEN induces stationarity of level spacings in TCUEN
for any N ∈ N, see Corollary 4.3 for the proof. We note in passing that traditional circular unitary
ensemble lacks the stationarity property.

For the TCUEN , a general Definition 1.1 of the power spectrum can be adjusted as follows.

Definition 2.6. Let {θ1 ≤ · · · ≤ θN} be fluctuating ordered eigen-angles drawn from the TCUEN ,
N ∈ N, with the mean level spacing ∆ and let ⟨δθℓδθm⟩ be the covariance matrix of eigen-angle
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displacements δθℓ = θℓ − ⟨θℓ⟩ from their mean ⟨θℓ⟩. A Fourier transform of the covariance matrix

SN (ω) =
1

N∆2

N∑
ℓ=1

N∑
m=1

⟨δθℓδθm⟩ eiω(ℓ−m), ω ∈ R (2.11)

is called the power spectrum of the TCUEN . Here, the angular brackets denote average with respect
to the JPDF Eq. (2.9). ■

Theorem 2.7 (Power Spectrum in TCUEN ). Let {θ1 ≤ · · · ≤ θN} be fluctuating ordered eigen-angles
drawn from the TCUEN . Then, for any N ∈ N and all 0 ≤ ω ≤ π , the power spectrum admits exact
representation

SN (ω) =
(N + 1)2

πN
Re
(
z
∂

∂z
− N −

1 − z−N

1 − z

)
z

1 − z

∫ 2π

0

dϕ
2π

ϕΦN (ϕ; 1 − z) −
≈

SN (ω), (2.12)

where

≈

SN (ω) =
1
N

⏐⏐⏐⏐1 − (N + 1)zN + NzN+1

(1 − z)2

⏐⏐⏐⏐2 −
(N + 1)2

N
1

|1 − z|2
(2.13)

and

ΦN (ϕ; ζ ) = exp
(

−

∫
∞

cot(ϕ/2)

dt
1 + t2

(σ̃N (t; ζ ) + t)
)
. (2.14)

Here, z = 1 − ζ = eiω whilst the function σ̃N (t; ζ ) is a solution to the σ -Painlevé VI equation(
(1 + t2) σ̃ ′′

N

)2
+ 4σ̃ ′

N (σ̃N − tσ̃ ′

N )
2
+ 4(σ̃ ′

N + 1)2
(
σ̃ ′

N + (N + 1)2
)

= 0 (2.15)

satisfying the boundary condition

σ̃N (t; ζ ) = −t +
N(N + 1)(N + 2)

3π t2
ζ + O(t−4) (2.16)

as t → ∞.

For the proof of Theorem 2.7, the reader is referred to Section 4.2.

Remark 2.8. Theorem 2.7 provides an exact RMT solution for the power spectrum in the TCUEN .
Alternatively, but equivalently, the finite-N power spectrum can be expressed in terms of a
Fredholm determinant (Section 4.3), Toeplitz determinant (Section 4.4) and discrete Painlevé V (dPV)
equations (Appendix B). While the Toeplitz representation is beneficial for performing a large-N
analysis of the power spectrum, the dPV formulation is particularly useful for efficient numerical
evaluation of the power spectrum for relatively large values of N . ■

Fourth (main) result.—The most remarkable feature of the random matrix theory is its ability to
predict universal statistical behavior of quantum systems. In this context, a large-N limit of the
power spectrum in the TCUEN is expected to furnish a universal, parameter-free law, S∞(ω) =

limN→∞ SN (ω), for the power spectrum. Its functional form is given in Theorem 2.9.

Theorem 2.9 (Universal Law). For 0 < ω < π , the limit S∞(ω) = limN→∞ SN (ω) exists and equals

S∞(ω) = A(ω̃)

{
Im
∫

∞

0

dλ
2π

λ1−2ω̃2
eiω̃λ

×

[
exp

(
−

∫
∞

λ

dt
t

(
σ1(t; ω̃) − iω̃t + 2ω̃2))

− 1
]

+ B(ω̃)

}
, (2.17)
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Fig. 4. A graph for the power spectrum as a function of frequency. Red line corresponds to the power spectrum calculated
through the dPV representation (Appendix B) of the exact Painlevé VI solution for N = 104 , see Theorem 2.7. Blue
crosses correspond to the power spectrum calculated for sequences of 256 unfolded CUE eigen-angles averaged over 107

realizations. Inset: a log–log plot for the same graphs. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

where ω̃ = ω/2π is a rescaled frequency, and the functions A(ω̃) and B(ω̃) are defined as

A(ω̃) =
1
2π

∏2
j=1 G(j + ω̃)G(j − ω̃)

sin(πω̃)
, (2.18)

B(ω̃) =
1
2π

sin(πω̃2) ω̃2ω̃2
−2 Γ (2 − 2ω̃2). (2.19)

Here, G is the Barnes’ G-function, Γ is the Gamma function, whilst σ1(t; ω̃) = σ1(t) is the Painlevé V
transcendent satisfying Eq. (1.3) with ν = 1 and fulfilling the boundary conditions

σ1(t) = iω̃t − 2ω̃2
−

itγ (t)
1 + γ (t)

+ O(t−1+2ω̃), t → ∞, (2.20)

σ1(t) = O(t ln t), t → 0, (2.21)

with γ (t) being defined by Eq. (5.6).

Remark 2.10. As a by-product of this theorem, we have formulated a conjecture for a double inte-
gral identity involving a fifth Painlevé transcendent. A mathematically-oriented reader is referred
to Conjecture 5.9. ■

Theorem 2.11 (Small-ω Expansion). In the notation of Theorem 2.9, the following expansion holds as
ω → 0:

S∞(ω) =
1

4π2ω̃
+

1
2π2 ω̃ ln ω̃ +

ω̃

12
+ O(ω̃2). (2.22)

For the proof of Theorems 2.9 and 2.11, the reader is referred to Section 5.

2.2. Discussion

In Figs. 4 and 5, the parameter-free prediction Eq. (2.17) for the power spectrum is confronted
with the results of numerical simulations for the large-N circular unitary ensemble CUEN . Two
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Fig. 5. Difference between the power spectrum and its singular part 1/2πω as described by Eq. (1.9) at β = 2 (see also
the first term in Eq. (2.22)). The singular part of the power spectrum corresponds to δS∞(ω) = 0 as represented by a
gray dotted line. Red solid line: analytical prediction computed as explained in Fig. 4. Blue crosses: simulation for 4×108

sequences of 512 unfolded CUE eigenvalues. Inset: magnified portion of the same graph for 0 ≤ ω ≤ π/4; additional
black dashed line displays the difference δS∞(ω) calculated using the small-ω expansion Eq. (2.22). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

remarks are in order. (i) First, the limiting curve for S∞(ω) was approximated by the exact Painlevé
VI solution computed for sufficiently large N through its dPV representation worked out in detail in
Appendix B. We have verified, by performing numerics for various values of N , that the convergence
of dPV representation of SN (ω) to S∞(ω) is very fast, so that the N = 104 curve provides an excellent
approximation to the universal law for S∞(ω). A good match between the N = 104 curve and the
one plotted for a small-ω expansion Eq. (2.22) of S∞(ω) (see inset in Fig. 5) lends an independent
support to validity of our numerical procedure. (ii) Second, even though the theoretical results used
for comparison refer to the TCUEN – rather than the CUEN – ensemble (which differ from each other
by the weight function and the way the two are intrinsically unfolded2), the agreement between
the TCUEN theory and the CUEN numerics is nearly perfect, which can naturally be attributed to the
universality phenomenon emerging as N → ∞.

The universal formula for S∞(ω), stated in Theorem 2.9, is the central result of the paper. We
expect it to hold universally for a wide class of random matrix models belonging to the β = 2
Dyson’s symmetry class, as the matrix dimension N → ∞. Expressed in terms of a fifth Painlevé
transcendent, the universal law Eq. (2.17) can be viewed as a power spectrum analogue of the
Gaudin–Mehta formula Eq. (1.2) for the level spacing distribution.

Apart from establishing an explicit form of the universal random-matrix-theory law for S∞(ω),
our theory reveals two important general aspects of the power spectrum which hold irrespective
of a particular model of eigenlevel sequences: (i) similarly to the level spacing distribution, the
power spectrum is determined by spectral correlations of all orders; (ii) in distinction to the level
spacing distribution, which can solely be expressed in terms of the gap formation probability, the
power spectrum is contributed by the entire set of probabilities that a spectral interval of a given
length contains exactly ℓ eigenvalues with ℓ ≥ 0. As such, it provides a complementary statistical
description of spectral fluctuations in stochastic spectra of various origins.

2 The spectra in CUEN and TCUEN ensembles are intrinsically unfolded for any N ∈ N, albeit each in its own way.
Indeed, in the CUEN the mean density is a constant [5,6], while in the TCUEN the mean level spacing is a constant, see
Corollary 4.3. In the limit N → ∞, the two types of unfolding are expected to become equivalent.
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Considered through the prism of Bohigas–Giannoni–Schmit conjecture, the universal law
Eq. (2.17) should hold for a variety of quantum systems with completely chaotic classical dynamics
and broken time-reversal symmetry at not too low frequencies T∗/TH ≲ ω ≤ π , when ergodicity
and global symmetries – rather than system specific features – are responsible for shaping system’s
dynamics.

Potential applicability of our results to the non-trivial zeros of the Riemann zeta function de-
serves special mention. Indeed, according to the Montgomery–Odlyzko law (see, e.g., Ref. [36]), the
zeros of the Riemann zeta function located high enough along the critical line are expected to follow
statistical properties of the eigenvalues of large U(N) matrices. This suggests that the universal
law Eq. (2.17) could be detected ‘‘experimentally’’. Extensive, high-precision data accumulated by
A.M. Odlyzko for billions of Riemann zeros [37] provide a unique opportunity for a meticulous test
of the new universal law.

3. Power spectrum for eigenlevel sequences with stationary spacings

In this section, we provide proofs of two master formulae given by Theorems 2.3 and 2.4.

3.1. Stationary spectra

In view of Definition 2.1, we first establish a necessary and sufficient condition for eigenlevel
sequences to possess stationarity of level spacings.

Lemma 3.1. For N ∈ N, let {0 ≤ ε1 ≤ · · · ≤ εN} be an ordered sequence of unfolded eigenlevels such
that ⟨ε1⟩ = ∆. An associated sequence of spacings between consecutive eigenlevels is stationary if and
only if

⟨(εℓ − εm)q⟩ = ⟨ε
q
ℓ−m⟩ (3.1)

for ℓ > m and both q = 1 and q = 2.

Proof. The equivalence of Eq. (2.1) to Eq. (3.1) at q = 1 is self-evident. To prove the equivalence
of Eq. (2.2) to Eq. (3.1) at q = 2, we proceed in two steps.

First, let the covariance matrix of level spacings be of the form Eq. (2.2). Substituting Eq. (1.12)
into the l.h.s. of Eq. (3.1) taken at q = 2, and making use of Eq. (2.2) twice,

⟨(εℓ − εm)2⟩ =

ℓ∑
i=m+1

ℓ∑
j=m+1

⟨sisj⟩ =

ℓ∑
i=m+1

ℓ∑
j=m+1

I|i−j|

=

ℓ−m∑
i′=1

ℓ−m∑
j′=1

I|i′−j′| =

ℓ−m∑
i′=1

ℓ−m∑
j′=1

⟨si′sj′⟩ = ⟨ε2ℓ−m⟩,

we derive the r.h.s. of Eq. (3.1) with q = 2.
Second, let the ordered eigenvalues satisfy Eq. (3.1) at q = 2. Substituting sℓ(m) = εℓ(m) − εℓ(m)−1

into the definition of covariance matrix cov(sℓ, sm) of level spacings and making use of Eq. (3.1), we
observe that Eq. (2.2) indeed holds with I|ℓ−m| of the form

I|ℓ−m| =
1
2
⟨ε2

|ℓ−m|+1⟩ +
1
2
⟨ε2

|ℓ−m|−1⟩ − ⟨ε2
|ℓ−m|

⟩. □ (3.2)

3.2. Proof of Theorem 2.3

It follows from Eq. (3.1) of Lemma 3.1 written in the form

⟨δεℓδεm⟩ =
1
2

(
⟨δε2ℓ ⟩ + ⟨δε2m⟩ − ⟨δε2

|ℓ−m|
⟩
)
, (3.3)

where δεℓ = εℓ − ℓ∆. Substituting Eq. (3.3) into the definition Eq. (1.4) and reducing the number
of summations therein, we derive Eq. (2.3). □
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Remark 3.2. For discrete frequencies ωk = 2πk/N the power spectrum representation Eq. (2.3)
simplifies to

SN (ωk) =
1

N∆2 Re
(
zk
∂

∂zk
− N

) N∑
ℓ=1

var[εℓ] zℓk . (3.4)

Here, zk = eiωk and the derivative with respect to zk should be taken as if zk were a continuous
variable. ■

3.3. Proof of Theorem 2.4

To prove Theorem 2.4, we need the following lemma:

Lemma 3.3. For N ∈ N, let {ε1 ≤ · · · ≤ εN} be an ordered sequence of eigenlevels supported on the
half axis (0,∞), and let EN (ℓ; ε) be the probability to find exactly ℓ eigenvalues below the energy ε,
given by Eq. (2.5), with ℓ = 0, 1, . . . ,N. The following relation holds:

d
dε

EN (ℓ; ε) = pℓ(ε) − pℓ+1(ε). (3.5)

Here, pℓ(ε) is the probability density of ℓ-th ordered eigenlevel where p0(ε) = pN+1(ε) = 0 for ε > 0.
Equivalently,

pℓ(ε) = −

ℓ−1∑
j=0

d
dε

EN (j; ε), ℓ = 1, . . . ,N. (3.6)

Proof. Differentiating Eq. (2.5) and having in mind that the probability density of ℓ-th ordered
eigenvalue equals

pℓ(ε) =
N!

(ℓ− 1)!(N − ℓ)!

⎛⎝ℓ−1∏
j=1

∫ ε

0
dϵj

⎞⎠⎛⎝ N∏
j=ℓ+1

∫
∞

ε

dϵj

⎞⎠
× PN (ϵ1, . . . , ϵℓ−1, ε, ϵℓ+1, . . . , ϵN ), (3.7)

we derive Eqs. (3.5) and (3.6). □

Proof of Theorem 2.4. —Equipped with Lemma 3.3, we are ready to prove Theorem 2.4. First, we
observe that Eqs. (2.6) and Eq. (3.6) induce the relation

N∑
ℓ=1

zℓpℓ(ε) = −
z

1 − z
d
dε

[
ΦN (ε; 1 − z) − zN

]
. (3.8)

Second, we split the variance Eq. (2.3) into var[εℓ] = ⟨ε2ℓ ⟩ − ℓ2∆2. The later term produces the
contribution S̃N (ω) in Eq. (2.7) while the former brings

N∑
ℓ=1

⟨ε2ℓ ⟩z
ℓ

= −
z

1 − z

∫
∞

0
dϵ ϵ2

d
dε

[
ΦN (ε; 1 − z) − zN

]
=

2z
1 − z

∫
∞

0
dϵ ϵ

[
ΦN (ε; 1 − z) − zN

]
. (3.9)

Integration by parts performed in the last line is justified provided an average number of eigenlevels
NN (ε) in the tail region (ε,∞) exhibits sufficiently fast decay NN (ε) ∼ ε−(2+δ) with δ > 0 as



R. Riser, V.A. Osipov and E. Kanzieper / Annals of Physics 413 (2020) 168065 17

ε → ∞.3 Substituting Eq. (3.9) into Eq. (2.3), we derive the first term in Eq. (2.7). This ends the
proof of Theorem 2.4. □

Remark 3.4. For discrete frequencies ωk = 2πk/N the power spectrum representation Eq. (2.7)
simplifies to

SN (ωk) =
2

N∆2 Re
(
zk
∂

∂zk
− N

)
zk

1 − zk

∫
∞

0
dϵ ϵ [ΦN (ϵ; 1 − zk) − 1] −

N
|1 − zk|2

. (3.10)

Here, zk = eiωk and the derivative with respect to zk should be taken as if zk were a continuous
variable. ■

4. Power spectrum in the tuned circular unitary ensemble

In this section, a general framework developed in Section 3 and summed up in Theorem 2.4 will
be utilized to determine the power spectrum in the tuned circular ensemble of random matrices,
TCUEN , for any N ∈ N. For the definition of TCUEN , the reader is referred to Eqs. (2.9) and (2.10).

4.1. Correlations between ordered eigen-angles in TCUEN

The main objective of this subsection is to establish stationarity of spacings between ordered
TCUEN eigen-angles. To this end, we prove Lemmas 4.1 and 4.2. The sought stationarity will then
be established in Corollary 4.3.

Lemma 4.1 (Circular Symmetry). For q = 0, 1, . . . and ℓ = 1, 2, . . . ,N it holds that

⟨θ
q
ℓ ⟩ = ⟨(2π − θN−ℓ+1)q⟩. (4.1)

Proof. The proof is based on the circular-symmetry identity

pℓ(ϕ) = pN−ℓ+1(2π − ϕ) (4.2)

3 Indeed, Eqs. (2.5) and (2.6) imply an integral representation

ΦN (ε; 1 − z) =

N∏
ℓ=1

(
z
∫

∞

0
dϵℓ + (1 − z)

∫
∞

ε

dϵℓ

)
PN (ϵ1, . . . , ϵN ).

Letting ε → ∞, we generate a large-ε expansion of the form

ΦN (ε; 1 − z) = zN +

N∑
ℓ=1

zN−ℓ(1 − z)ℓ

⎛⎝ ℓ∏
j=1

∫
∞

ε

dϵj

⎞⎠ Rℓ,N (ϵ1, . . . , ϵℓ),

where

Rℓ,N (ϵ1, . . . , ϵℓ) =
N!

(N − ℓ)!

⎛⎝ N∏
j=ℓ+1

∫
∞

0
dϵj

⎞⎠ PN (ϵ1, . . . , ϵN )

is the ℓ-point spectral correlation function. To the first order, the expansion brings ΦN (ε; 1−z) = zN +zN−1(1−z)NN (ε)+
. . . , where NN (ε) is the mean spectral density R1,N (ϵ) integrated over the interval (ε,∞). Hence, the required decay of
NN (ε) at infinity readily follows.
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between the probability density functions of ℓ-th and (N − ℓ + 1)-th ordered eigenangles in the
TCUEN . This relation can formally be derived from the representation

pℓ(ϕ) =
1

(N + 1)!
N!

(ℓ− 1)!(N − ℓ)!

⏐⏐1 − eiϕ
⏐⏐2

×

⎛⎝ℓ−1∏
j=1

∫ ϕ

0

dθj
2π

⎞⎠⎛⎝N−1∏
j=ℓ

∫ 2π

ϕ

dθj
2π

⎞⎠
×

∏
1≤i<j≤N−1

⏐⏐eiθi − eiθj
⏐⏐2 N−1∏

j=1

⏐⏐eiϕ − eiθj
⏐⏐2 ⏐⏐1 − eiθj

⏐⏐2 . (4.3)

Indeed, Eq. (4.3) yields

pN−ℓ+1(2π − ϕ) =
1

(N + 1)!
N!

(ℓ− 1)!(N − ℓ)!

⏐⏐1 − ei(2π−ϕ)
⏐⏐2

×

⎛⎝N−ℓ∏
j=1

∫ 2π−ϕ

0

dθj
2π

⎞⎠⎛⎝ N−1∏
j=N−ℓ+1

∫ 2π

2π−ϕ

dθj
2π

⎞⎠
×

∏
1≤i<j≤N−1

⏐⏐eiθi − eiθj
⏐⏐2 N−1∏

j=1

⏐⏐ei(2π−ϕ)
− eiθj

⏐⏐2 ⏐⏐1 − eiθj
⏐⏐2 . (4.4)

The change of variables θj = 2π − θ ′

j reduces the r.h.s. of Eq. (4.4) to Eq. (4.3). Consequently,

⟨θ
q
ℓ ⟩ =

∫ 2π

0

dϕ
2π

ϕqpℓ(ϕ) =

∫ 2π

0

dϕ
2π

ϕqpN−ℓ+1(2π − ϕ)

=

∫ 2π

0

dϕ′

2π
(2π − ϕ′)qpN−ℓ+1(ϕ′) = ⟨(2π − θN−ℓ+1)q⟩. □ (4.5)

Lemma 4.2 (Translational Invariance in the Index Space). For q = 0, 1, . . . and 1 ≤ m < ℓ ≤ N it
holds that

⟨(θℓ − θm)q⟩ = ⟨θ
q
ℓ−m⟩. (4.6)

Proof. It is advantageous to start with the JPDF of ordered eigenangles in the TCUEN ,

P (ord)
N (θ1, . . . , θN ) = N! PN (θ1, . . . , θN ) 10≤θ1≤···≤θN≤2π

=
1

N + 1

∏
1≤i<j≤N

⏐⏐eiθi − eiθj
⏐⏐2 N∏

j=1

⏐⏐1 − eiθj
⏐⏐2 10≤θ1≤···≤θN≤2π , (4.7)

where we have used the notation

10≤θ1≤···≤θN≤2π =

∏
1≤i<j≤N

Θ(θj − θi)

with Θ being the Heaviside step function. Given Eq. (4.7), the qth moment of the difference θℓ− θm
equals

⟨(θℓ − θm)q⟩ =

∫ 2π

0

dθ1
2π

· · ·

∫ 2π

0

dθm
2π

· · ·

∫ 2π

0

dθℓ
2π

· · ·

∫ 2π

0

dθN
2π

× (θℓ − θm)q P
(ord)
N (θ1, . . . , θN ). (4.8)
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Changing the integration variables (θ1, . . . , θN ) → (θ ′

1, . . . , θ
′

N ) according to the map{
θ ′

ℓ−r = θℓ − θr , r = 1, . . . , ℓ− 1;
θ ′
r = θr , r = ℓ;
θ ′

N+1+ℓ−r = 2π + θℓ − θr , r = ℓ+ 1, . . . ,N ,
(4.9)

and observing that both the probability density function P (ord)
N and the integration domain stay

invariant under the map Eq. (4.9),

P (ord)
N (θ ′

1, . . . , θ
′

N ) = P (ord)
N (θ1, . . . , θN ), (4.10)

10≤θ1≤···≤θN≤2π → 10≤θ ′
1≤···≤θ ′

N≤2π , (4.11)

we conclude that

⟨(θℓ − θm)q⟩ =

∫ 2π

0

dθ ′

1

2π
· · ·

∫ 2π

0

dθ ′

N

2π
(θ ′

ℓ−m)
q P (ord)

N (θ ′

1, . . . , θ
′

N ) = ⟨θ
q
ℓ−m⟩. □ (4.12)

Corollary 4.3. A sequence of spacings between consecutive eigenangles in TCUEN is stationary such
that the mean position of the ℓ-th ordered eigen-angle equals

⟨θℓ⟩ = ℓ∆, (4.13)

where ℓ = 1, . . . ,N and

∆ =
2π

N + 1
, (4.14)

is the mean spacing.

Proof. Indeed, combining Lemma 4.1 taken at q = 1 and Lemma 4.2 taken at q = 1 and m = ℓ−1,
one concludes that the mean spacing

∆ = ⟨θℓ − θℓ−1⟩ =
2π

N + 1
is constant everywhere in the eigenspectrum. Now we apply Lemmas 3.1 and 4.2 to complete the
proof.4 □

4.2. Proof of Theorem 2.7

Stationarity of level spacings in the TCUEN established in Corollary 4.3 allows us to use a
‘compactified’ version of Theorem 2.4 in order to claim the representation stated by Eqs. (2.12)
and (2.13), where

ΦN (ϕ; ζ ) =

N∑
ℓ=0

(1 − ζ )ℓEN (ℓ;ϕ) (4.15)

is the generating function of the probabilities

EN (ℓ;ϕ) =
N!

ℓ!(N − ℓ)!

⎛⎝ ℓ∏
j=1

∫ ϕ

0

dθj
2π

⎞⎠⎛⎝ N∏
j=ℓ+1

∫ 2π

ϕ

dθj
2π

⎞⎠ PN (θ1, . . . , θN ) (4.16)

to find exactly ℓ eigen-angles in the interval (0, ϕ) of the TCUEN spectrum. The JPDF PN (θ1, . . . , θN )
is defined in Eq. (2.9).

4 Notice that due to a formal convention p0(ϕ) = 0 stated below Eq. (3.5), one has to set ⟨θ0⟩ = 0 if required.
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Substituting Eqs. (4.16) and (2.9) into Eq. (4.15), one derives a multidimensional-integral repre-
sentation of the generating function ΦN (ϕ; ζ ) in the form

ΦN (ϕ; ζ ) =
1

(N + 1)!

N∏
j=1

(∫ 2π

0
−ζ

∫ ϕ

0

)
dθj
2π

∏
1≤i<j≤N

⏐⏐eiθi − eiθj
⏐⏐2 N∏

j=1

⏐⏐1 − eiθj
⏐⏐2 , (4.17)

satisfying the symmetry relation

ΦN (2π − ϕ; ζ ) = (1 − ζ )NΦN

(
ϕ;

ζ

ζ − 1

)
= (1 − ζ )NΦN (ϕ; ζ̄ ) = (1 − ζ )NΦN (ϕ; ζ ). (4.18)

Multidimensional integrals of the CUE-type akin to Eq. (4.17) have been studied in much detail
in Ref. [38] whose authors employed the τ -function theory [39] of Painlevé equations. To proceed
with evaluation of the generating function of our interest, we introduce a new set of integration
variables

eiθj =
iλj − 1
iλj + 1

(4.19)

to write down the generating function Eq. (4.17) in the form

ΦN (ϕ; ζ ) =
2N(N+1)

πN (N + 1)!

N∏
j=1

(∫
+∞

−∞

−ζ

∫
+∞

cot(ϕ/2)

)
dλj

(1 + λ2j )N+1

∏
1≤i<j≤N

⏐⏐λi − λj
⏐⏐2 . (4.20)

Its Painlevé VI representation can be read off from Ref. [38] to establish Eqs. (2.14), (2.15) and
also (2.16). For a detailed derivation of the boundary condition Eq. (2.16), the reader is referred
to Appendix A. □

Remark 4.4. For a set of discrete frequencies

ω′

k =
2πk
N + 1

the free term in Eq. (2.12) nullifies,
≈

SN (ω′

k) = 0, bringing a somewhat tidier formula

SN (ω′

k) =
(N + 1)2

πN
Re
(
z ′

k
∂

∂z ′

k
− N − 1

)
z ′

k

1 − z ′

k

∫ 2π

0

dϕ
2π

ϕΦN (ϕ; 1 − z ′

k), (4.21)

where z ′

k = eiω
′
k . This is essentially Eq. (17) previously announced in our paper Ref. [33]. ■

4.3. Power spectrum in TCUEN as a Fredholm determinant

To derive a Fredholm determinant representation of the TCUEN power spectrum, a determi-
nantal structure [5,6] of spectral correlation functions in the TCUEN should be established. This is
summarized in Lemma 4.5.

Lemma 4.5. For ℓ = 1, . . . ,N, the ℓ-point correlation function [5,6]

Rℓ,N (θ1, . . . , θℓ) =
N!

(N − ℓ)!

⎛⎝ N∏
j=ℓ+1

∫ 2π

0

dθj
2π

⎞⎠ PN (θ1, . . . , θN ) (4.22)

in the TCUEN ensemble, defined by Eqs. (2.9) and (2.10), admits the determinantal representation

Rℓ,N (θ1, . . . , θℓ) = det1≤i,j≤ℓ
[
κN (θi, θj)

]
, (4.23)

where the TCUEN scalar kernel

κN (θ, θ ′) = SN+1(θ − θ ′) −
1

N + 1
SN+1(θ )SN+1(θ ′) (4.24)
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is expressed in terms of the sine-kernel

SN+1(θ ) =
sin[(N + 1)θ/2]

sin(θ/2)
(4.25)

of the CUEN+1 ensemble.

Proof. While the determinantal form [Eq. (4.23)] of spectral correlation functions is a universal
manifestation of the β = 2 symmetry of the circular ensemble [5,6], a precise form of the two-
point scalar kernel κN (θ, θ ′) depends on peculiarities of the TCUEN probability measure encoded in
the weight function (z = eiθ )

W (z) =
1
2
|1 − z|2 = 1 − cos θ (4.26)

characterizing the TCUEN measure in Eq. (2.9). For aesthetic reasons, it is convenient to compute a
scalar kernel κN (θ, θ ′) in terms of polynomials {ψj(z)} orthonormal on the unit circle |z| = 1

1
2iπ

∮
|z|=1

dz
z

W (z)ψℓ(z)ψm(z) = δℓm (4.27)

with respect to the weight function W (z). In such a case, a scalar kernel is given by either of the
two representations (w = eiθ

′

):

κN (θ, θ ′) =

√
W (z)W (w)

N−1∑
ℓ=0

ψℓ(z)ψℓ(w) (4.28)

=

√
W (z)W (w)

ψN (w)ψN (z) − ψ∗

N (w)ψ∗

N (z)
w̄z − 1

. (4.29)

Eq. (4.29), containing reciprocal polynomials

ψ∗

ℓ (z) = zℓ ψℓ(1/z̄), (4.30)

follows from Eq. (4.28) by virtue of the Christoffel–Darboux identity [40].
Since for the TCUEN weight function Eq. (4.26), the orthonormal polynomials are known as

Szegö–Askey polynomials (see §18 in Ref. [41]),

ψℓ(z) =

√
2

(ℓ+ 1)(ℓ+ 2) 2F1 (−ℓ, 2; −ℓ; z) , (4.31)

the reciprocal Szegö–Askey polynomials are readily available, too:

ψ∗

ℓ (z) =

√
2(ℓ+ 1)
ℓ+ 2 2F1 (−ℓ, 1; −ℓ− 1; z) . (4.32)

Hence, Eqs. (4.29), (4.31) and (4.32) furnish an explicit expression for the TCUEN scalar kernel
κN (θ, θ ′).

This being said, we would like to represent the TCUEN scalar kernel in a more suggestive form.
To do so, we notice that Szegö–Askey polynomials Eq. (4.31) admit yet another representation

ψℓ(z) =

√
2

(ℓ+ 1)(ℓ+ 2)

ℓ+1∑
j=1

jz j−1. (4.33)

Substituting it further into Eq. (4.28), one obtains:

κN (θ, θ ′) =
2i

N + 1
e−i(θ−θ ′)/2 sin[θ/2] sin[θ ′/2]

sin[(θ − θ ′)/2]

N∑
j=0

N∑
k=0

(N − j − k)z jw̄k (4.34)

=
2i

N + 1
e−i(θ−θ ′)/2 sin[θ/2] sin[θ ′/2]

sin[(θ − θ ′)/2]

N∑
j=0

N∑
k=0

(
N − z

∂

∂z
− w̄

∂

∂w̄

)
z jw̄k. (4.35)
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Owing to the representation of the CUEN sine-kernel

SN (θ ) =
sin(Nθ/2)
sin(θ/2)

= e−i(N−1)θ/2
N−1∑
j=0

z j, (4.36)

the above can further be reduced to

κN (θ, θ ′) =
2

N + 1
ei(N−1)(θ−θ ′)/2 sin[θ/2] sin[θ ′/2]

sin[(θ − θ ′)/2]

×

(
∂

∂θ ′
−
∂

∂θ

)
SN+1(θ )SN+1(θ ′). (4.37)

Calculating derivatives therein, we derive

κN (θ, θ ′) = ei(N−1)(θ−θ ′)/2
(
SN+1(θ − θ ′) −

1
N + 1

SN+1(θ )SN+1(θ ′)
)
. (4.38)

Spotting that the phase factor in Eq. (4.38) does not contribute to the determinant in Eq. (4.23)
completes the proof. □

Remark 4.6. An alternative determinantal representation of spectral correlation functions in the
TCUEN can be established if one views the JPDF of the TCUEN as the one of the traditional CUEN+1
ensemble, whose lowest eigenangle is conditioned to stay at zero, as spelled out below. ■

Lemma 4.7. For ℓ = 1, . . . ,N, the ℓ-point correlation function, Eq. (4.22), in the TCUEN ensemble
admits the determinantal representation

Rℓ,N (θ1, . . . , θℓ) =
1

N + 1
det1≤i,j≤ℓ+1

[
SN+1(θi − θj)

] ⏐⏐⏐
θℓ+1=0

, (4.39)

where SN+1(θ ) is the CUEN+1 sine-kernel:

SN+1(θ ) =
sin[(N + 1)θ/2]

sin(θ/2)
. (4.40)

Proof. Eq. (4.39) is self-evident as the determinant therein is the (ℓ+1)-point correlation function
in the CUEN+1 with one of the eigen-angles conditioned to stay at zero whilst the denominator is
the CUEN+1 mean density SN+1(0) = N + 1. □

Proposition 4.8. The generating function ΦN (ϕ; ζ ) in Eq. (2.12) of Theorem 2.7 admits a Fredholm
determinant representation

ΦN (ϕ; ζ ) = det
[
1 − ζ κ̂

(0,ϕ)
N

]
, (4.41)

where κ̂
(0,ϕ)
N is an integral operator defined by[
κ̂
(0,ϕ)
N f

]
(θ1) =

∫ ϕ

0

dθ2
2π
κN (θ1, θ2) f (θ2), (4.42)

whilst κN is the TCUEN two-point scalar kernel specified in Lemma 4.5.

Proof. To derive a Fredholm determinant representation of the power spectrum, we turn to
Eq. (4.15) rewriting it as a sum

ΦN (ϕ; ζ ) =

N∑
ℓ=0

(
N
ℓ

)(
−ζ

∫ ϕ

0

)ℓ (∫ 2π

0

)N−ℓ N∏
j=1

dθj
2π

PN (θ1, . . . , θN ).
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Performing (N − ℓ) integrations, we obtain

ΦN (ϕ; ζ ) =

N∑
ℓ=0

(−ζ )ℓ

ℓ!

⎛⎝ ℓ∏
j=1

∫ ϕ

0

dθj
2π

⎞⎠ Rℓ,N (θ1, . . . , θℓ),

where Rℓ,N (θ1, . . . , θℓ) is the ℓ-point correlation function in TCUEN given by Eq. (4.22). Its determi-
nant representation Eq. (4.23) yields the expansion

ΦN (ϕ; ζ ) =

N∑
ℓ=0

(−ζ )ℓ

ℓ!

⎛⎝ ℓ∏
j=1

∫ ϕ

0

dθj
2π

⎞⎠ det1≤i,j≤ℓ
[
κN (θi, θj)

]
.

Here, κN (θ, θ ′) is the two-point scalar kernel of the TCUEN ensemble, see Lemma 4.5 for its explicit
form. Further, consulting, e.g., Appendix in Ref. [42], one identifies a sought Fredholm determinant
representation given by Eqs. (4.41) and (4.42). □

A Fredholm determinant representation of the power spectrum is particularly useful for asymp-
totic analysis of the power spectrum in the deep ‘infrared’ limit ω ≪ 1 when ζ = 1 − z ≪ 1.

4.4. Power spectrum in TCUEN as a Toeplitz determinant

To analyze the power spectrum in the limit N → ∞ for 0 < ω < π being kept fixed, it is
beneficial to represent the generating function ΦN (ϕ; ζ ) [Eq. (4.17)] entering the exact solution
Eq. (2.12) with ζ = 1 − z in the form of a Toeplitz determinant with Fisher–Hartwig singularities.

Proposition 4.9. The generating function ΦN (ϕ; ζ ) in Eq. (2.12) of Theorem 2.7 admits a Toeplitz
determinant representation

ΦN (ϕ; ζ ) =
eiϕω̃N

N + 1
DN [fω̃(z;ϕ)], (4.43)

where ω̃ = ω/2π , and

DN [fω̃(z;ϕ)] = det
0≤j,ℓ≤N−1

(
1

2iπ

∮
|z|=1

dz
z

zℓ−jfω̃(z;ϕ)
)

(4.44)

is the Toeplitz determinant whose Fisher–Hartwig symbol

fω̃(z;ϕ) = |z − z1|2
(
z2
z1

)ω̃
gz1,ω̃(z) gz2,−ω̃(z) (4.45)

possesses power-type singularity at z = z1 = eiϕ/2 and jump discontinuities

gzj,±ω̃(z) =

{
e±iπω̃, 0 ≤ arg z < arg zj
e∓iπω̃, arg zj ≤ arg z < 2π

(4.46)

at z = z1,2 with z2 = ei(2π−ϕ/2).

Proof. Start with the multiple integral representation Eq. (4.17) and make use of Andréief’s
formula [43,44]⎛⎝ N∏

j=1

∫
L

dθj
2π

⎞⎠ w(θj) det
1≤j,ℓ≤N

[fj−1(θℓ)] det
1≤j,ℓ≤N

[gj−1(θℓ)]

= N! det
1≤j,ℓ≤N

(∫
L

dθ
2π

w(θ )fj−1(θ )gℓ−1(θ )
)

(4.47)
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in which the weight function is set to w(θ ) = (1− ζΘ(θ )Θ(ϕ− θ ))|1 − eiθ |2, integration domain is
chosen to be L = (0, 2π ), and fj−1(θ ) = gj−1(θ ) = ei(j−1)θ , to derive

ΦN (ϕ; ζ ) =
1

N + 1
det

0≤j,ℓ≤N−1

[
Mj−ℓ(ϕ; ζ )

]
, (4.48)

where

Mj−ℓ(ϕ; ζ ) =

(∫ 2π

0
−ζ

∫ ϕ

0

)
dθ
2π

|1 − eiθ |
2
e−i(j−ℓ)θ . (4.49)

Introduce a new integration variable z = eiθ in Eq. (4.49), adopt the standard terminology and
notation of Refs. [45,46] to figure out equivalence of Eqs. (4.48) and (4.49) to the statement of the
proposition. □

5. Power spectrum in quantum chaotic systems: Large-N limit

In the limit N → ∞, the exact solution for the TCUEN power spectrum should converge to a uni-
versal law. To determine it, we shall perform an asymptotic analysis of the exact solution Eqs. (2.12)
and (2.13), stated in Theorem 2.7, with the generating function ΦN (ϕ; ζ ) being represented as a
Toeplitz determinant specified in Proposition 4.9.

5.1. Uniform asymptotics of the Toeplitz determinant

To perform the integral in Eq. (2.12) in the limit N → ∞, uniform asymptotics of the Toeplitz
determinant Eq. (4.44) are required in the subtle regime of two merging singularities. In our case,
one singularity is of a root type while the other one is of both root and jump types. Relevant
uniform asymptotics were recently studied in great detail by Claeys and Krasovsky [46] who used
the Riemann–Hilbert technique.

Two different, albeit partially overlapping, asymptotic regimes in ϕ can be identified.

Asymptotics at the ‘left edge’.—Defining the left edge as the domain 0 ≤ ϕ < ϕ0, where ϕ0 is suffi-
ciently small,5 the following asymptotic expansion holds uniformly as N → ∞ (see Theorems 1.5
and 1.8 in Ref. [46])

lnDN [fω̃(z;ϕ)] = lnN − i(N − 1)ω̃ϕ − 2ω̃2 ln
(
sin(ϕ/2)
ϕ/2

)
+

∫
−iNϕ

0

ds
s
σ (s) + O(N−1+2ω̃), (5.1)

so that

ΦN (ϕ; ζ ) = eiω̃ϕ
(
sin(ϕ/2)
ϕ/2

)−2ω̃2

exp
(∫

−iNϕ

0

ds
s
σ (s)

) (
1 + O(N−1+2ω̃)

)
. (5.2)

Here ω̃ = ω/2π is a rescaled frequency so that z = 1 − ζ = e2iπω̃ . The function σ (s) is the fifth
Painlevé transcendent defined as the solution to the nonlinear equation

s2(σ ′′)2 =
(
σ − sσ ′

+ 2(σ ′)2
)2

− 4(σ ′)2
(
(σ ′)2 − 1

)
(5.3)

subject to the boundary conditions [47]6

σ (s) = −ω̃s − 2ω̃2
+

sγ (s)
1 + γ (s)

+ O
(
e−i|s|

|s|−1+2ω̃)
+ O

(
|s|−1) as s → −i∞ (5.4)

5 In fact, here ϕ0 = 2π − ϵ with ϵ > 0.
6 Notice that, in distinction to Ref. [46], we kept two reminder terms in Eq. (5.4)—oscillatory and non-oscillatory, even

though the latter term is subleading. The reason for this is that the function σ (s) will subsequently appear in the integral
Eq. (5.11) which will make the non-oscillatory reminder term dominant.
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and

σ (s) = O (|s| ln |s|) as s → −i0+. (5.5)

The function γ (s) in Eq. (5.4) equals

γ (s) =
1
4

⏐⏐⏐ s
2

⏐⏐⏐2(−1+2ω̃)
e−i|s|eiπ

Γ (2 − ω̃)Γ (1 − ω̃)
Γ (1 + ω̃)Γ (ω̃)

. (5.6)

The above holds for 0 ≤ ω̃ < 1/2.

Remark 5.1. Following Ref. [46], we notice that in Eqs. (5.1) and (5.2) the path of integration in
the complex s-plane should be chosen to avoid a finite number of poles {sj} of σ (s) corresponding
to zeros {ϕj = isj/N} in the asymptotics of the Toeplitz determinant DN [fω̃(z;ϕ)]. For the specific
Fisher–Hartwig symbol Eq. (4.45) we expect {sj} to be the empty set; numerical analysis of
DN [fω̃(z;ϕ)] suggests that its zeros stay away from the real line. ■

Asymptotics in the ‘bulk’.—Defining the ‘bulk’ as the domain Ω(N)/N ≤ ϕ < ϕ0, where ϕ0 is
sufficiently small, andΩ(x) is a positive smooth function such thatΩ(N) → ∞ whilstΩ(N)/N → 0
as N → ∞, the following asymptotic expansion holds uniformly (see Theorem 1.11 in Ref. [46]):

DN [fω̃(z;ϕ)] = N1−2ω̃2
Gω̃ eiω̃ϕe−iω̃π

⏐⏐⏐2 sin
(ϕ
2

)⏐⏐⏐−2ω̃2 (
1 + O

(
Ω(N)−1+2ω̃)) (5.7)

so that

ΦN (ϕ; ζ ) = N−2ω̃2
Gω̃ eiω̃ϕ(N+1)e−iω̃π

⏐⏐⏐2 sin
(ϕ
2

)⏐⏐⏐−2ω̃2 (
1 + O

(
Ω(N)−1+2ω̃)) . (5.8)

Here, Gω̃ is a known function of ω̃

Gω̃ = G(2 + ω̃)G(2 − ω̃)G(1 + ω̃)G(1 − ω̃) (5.9)

with G(· · ·) being the Barnes’ G-function. The above holds for 0 ≤ ω̃ < 1/2. The leading term in
Eqs. (5.7) and (5.8) is due to Ehrhardt [48].

Remark 5.2. Since both asymptotic expansions [Eq. (5.1) and (5.7)] hold uniformly in the domain
Ω(N)/N ≤ ϕ < ϕ0, the following integral identity for σ (s) should hold:

lim
T→+∞

(∫
−iT

0

ds
s
σ (s) − iω̃T + 2ω̃2 ln T

)
= −iπω̃ + lnGω̃, (5.10)

see Eq. (1.26) in Ref. [46]. Had this global condition been derived independently, it would have
provided an alternative route to producing the ‘bulk’ asymptotics out of those known in the edge
region. Notice that as T → ∞, the boundary condition Eq. (5.4) implies a stronger statement:∫

−iT

0

ds
s
σ (s) − iω̃T + 2ω̃2 ln T = −iπω̃ + lnGω̃ + O(T−1). ■ (5.11)

5.2. Asymptotic analysis of the main integral

In doing the large-N asymptotic analysis of our exact solution for the power spectrum [Eqs. (2.12)
and (2.14)], we shall encounter a set of integrals

IN,k(ζ ) = N
∫ 2π

0

dϕ
2π

ϕkΦN (ϕ; ζ ), (5.12)

where k is a non-negative integer and ΦN (ϕ; ζ ) is given by Eq. (4.17). We shall specifically be
interested in k = 0 and 1.
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Lemma 5.3. In the notation of Eq. (5.12), we have:

IN,0(ζ ) =
N

N + 1
1 − (1 − ζ )N+1

ζ
. (5.13)

Eq. (5.13) is exact for any ζ ∈ C.

Proof. To compute the integral Eq. (5.12) at k = 0, we invoke the expansion Eq. (4.15) of ΦN (ϕ; ζ )
in terms of probabilities EN (ℓ;ϕ) of observing exactly ℓ eigenangles of TCUEN in the interval (0, ϕ),

IN,0(ζ ) = N
n∑
ℓ=0

(1 − ζ )ℓ
∫ 2π

0

dϕ
2π

EN (ℓ;ϕ). (5.14)

The integral above can readily be calculated by performing integration by parts:∫ 2π

0

dϕ
2π

EN (ℓ;ϕ) = δℓ,N −

∫ 2π

0

dϕ
2π

ϕ
d
dϕ

EN (ℓ;ϕ)

= δℓ,N +
1
2π

∫ 2π

0

dϕ
2π

ϕ (pℓ+1(ϕ) − pℓ(ϕ)) . (5.15)

In the second line, we have used the relation Eq. (3.5) which, in the context of TCUEN , acquires the
multiplicative factor 1/2π on its r.h.s.; there, pℓ(ϕ) is the probability density of the ℓ-th ordered
eigenangle. Further, identifying (see Corollary 4.3)∫ 2π

0

dϕ
2π

ϕ pℓ(ϕ) = ⟨θℓ⟩ =

{
ℓ∆, ℓ = 1, . . . ,N;
0, ℓ = 0,N + 1. (5.16)

where ∆ = 2π/(N + 1) is the mean spacing, we conclude that∫ 2π

0

dϕ
2π

EN (ℓ;ϕ) = δℓ,N +
⟨θℓ+1⟩ − ⟨θℓ⟩

2π
=

1
N + 1

(5.17)

for all ℓ = 0, . . . ,N . Substitution of Eq. (5.17) into Eq. (5.14) ends the proof. □

Remark 5.4. The fact that IN,0(ζ ) could be expressed in terms of elementary functions can be traced
back to stationarity of level spacings in the TCUEN . For one, in the CUEN , an analogue of IN,0(ζ ) would
have to be expressed in terms of the six Painlevé function. ■

The integral IN,k.—Unfortunately, exact calculation of the same ilk is not readily available for IN,k
with k = 1. For this reason we would like to gain an insight from Eq. (5.13) as N → ∞, which,
eventually, is the limit we are mostly concerned with. To this end, we extract the leading order
behavior of IN,0(ζ ) on the unit circle |z| = |1 − ζ | = 1,

IN,0(ζ ) =
1
ζ

+ (1 − ζ )N
1
ζ̄

+ O(N−1), (5.18)

and observe that it contains terms of two types. (i) Those bearing a strongly oscillating prefactor
(1 − ζ )N = zN = e2iπω̃N ,

(1 − ζ )N
1
ζ̄

are contributed by a vicinity of ϕ = 2π in the integral Eq. (5.12) with k = 0. (ii) On the contrary,
such a prefactor is missing in the term coming from a vicinity of ϕ = 0,

1
ζ
.

The contribution from the bulk of the integration domain appears to be negligible due to strong
oscillations eiω̃ϕN of the integrand therein, see Eq. (5.8).
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Equipped with these observations, we shall now proceed with an alternative, large-N , analysis
of IN,k(ζ ) for k = 0 and k = 1, where terms of the same structure (with and without strongly
oscillating prefactor) will appear. Aimed at the analysis of the power spectrum [Eq. (2.12)], whose
representation contains a very particular z-operator, we shall only be interested in the leading order
contributions to both terms. Notably, even though for k = 1 a non-oscillating term is subleading as
compared to an oscillating term, we shall argue that its contribution should still be kept.

To proceed with the large-N analysis of IN,k, we first rewrite the integral Eq. (5.12) as a sum of
two

IN,k(ζ ) = I (1)N,k(ζ ) + I (2)N,k(ζ ) (5.19)

such that

I (1)N,k(ζ ) = N
∫ 2π

0

dϕ
2π

ϕk (ΦN (ϕ; ζ ) −ΦE
N (ϕ; ζ )

)
(5.20)

and

I (2)N,k(ζ ) = N
∫ 2π

0

dϕ
2π

ϕkΦE
N (ϕ; ζ ). (5.21)

Here, ΦE
N (ϕ; ζ ) is an arbitrary integrable function; it will be specified later on.

Prompted by the ‘edge’ and ‘bulk’ asymptotic expansions of ΦN (ϕ; ζ ) [Eqs. (5.2) and (5.8)], we
split the integral in Eq. (5.20) into three pieces

I (1)N,k(ζ ) = L(1)N,k(ζ ) + C (1)
N,k(ζ ) + R(1)

N,k(ζ ), (5.22)

where

L(1)N,k(ζ ) = N
∫ Ω(N)/N

0

dϕ
2π

ϕk (ΦN (ϕ; ζ ) −ΦE
N (ϕ; ζ )

)
, (5.23)

C (1)
N,k(ζ ) = N

∫ 2π−Ω(N)/N

Ω(N)/N

dϕ
2π

ϕk (ΦN (ϕ; ζ ) −ΦE
N (ϕ; ζ )

)
, (5.24)

R(1)
N,k(ζ ) = N

∫ 2π

2π−Ω(N)/N

dϕ
2π

ϕk (ΦN (ϕ; ζ ) −ΦE
N (ϕ; ζ )

)
, (5.25)

correspondingly.
To facilitate the asymptotic analysis, we would ideally like to choose ΦE

N (ϕ; ζ ) in such a way that
the contribution of the ‘bulk’ integral C (1)

N,k(ζ ) into I (1)N,k(ζ ) becomes negligible. For the time being, let
us assume that such a function is given by the leading term in Eq. (5.8),

ΦE
N (ϕ; ζ ) = N−2ω̃2

Gω̃ eiω̃ϕ(N+1)e−iω̃π
⏐⏐⏐2 sin

(ϕ
2

)⏐⏐⏐−2ω̃2

. (5.26)

Then, I (1)N,k(ζ ) will be dominated by the contributions coming from the ‘left-edge’ [L(1)N,k(ζ )] and the
‘right-edge’ [R(1)

N,k(ζ )] parts of the integration domain. In fact, the contributions of the left and the
right edges are related to each other; an exact relation between the two will be worked out and
made explicit later on.

The integral I (1)N,k(ζ ).—Restricting ourselves to k = 0 and 1, we first consider the left-edge part L(1)N,k(ζ ).
Substituting Eqs. (5.2) and (5.26) into Eq. (5.23), we find, as N → ∞:

L(1)N,k(ζ ) = N
∫ Ω(N)/N

0

dϕ
2π
ϕkeiω̃ϕ

[ (
sin(ϕ/2)
ϕ/2

)−2ω̃2

exp
(∫

−iNϕ

0

ds
s
σ (s)

)
×
(
1 + O(N−1+2ω̃)

)
− N−2ω̃2

(2 sin(ϕ/2))−2ω̃2
eiω̃ϕNe−iω̃πGω̃

]
. (5.27)
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To get rid of N in the integral over the Painlevé V transcendent, we make the substitution λ = Nϕ
to rewrite L(1)N,k(ζ ) in the form

L(1)N,k(ζ ) =

∫ Ω(N)

0

dλ
2π

λk

Nk e
iω̃λ/N

[ (
sin(λ/(2N))
λ/(2N)

)−2ω̃2

exp
(∫

−iλ

0

ds
s
σ (s)

)

×
(
1 + O(N−1+2ω̃)

)
− N−2ω̃2

(2 sin(λ/(2N)))−2ω̃2
eiω̃λe−iω̃πGω̃

]
. (5.28)

Noting that λ/N = O(Ω(N)/N) tends to zero as N → ∞, we can further approximate L(1)N,k(ζ ) as

L(1)N,k(ζ ) =
1
Nk

∫ Ω(N)

0

dλ
2π
λk−2ω̃2

eiω̃λ
[

exp
(∫

−iλ

0

ds
s
σ (s) − iω̃λ+ 2ω̃2 ln λ

)

− e−iω̃πGω̃

]
+O(Ω(N)k+1N−k−1+2ω̃) + O(Ω(N)k+2N−k−1). (5.29)

Next, one may use Eq. (5.11) to argue that replacing Ω(N) with infinity in Eq. (5.29) produces an
error term of the order O(Ω(N)k−1−2ω̃2

N−k):

L(1)N,k(ζ ) =
1
Nk

∫
∞

0

dλ
2π
λk−2ω̃2

eiω̃λ
[

exp
(∫

−iλ

0

ds
s
σ (s) − iω̃λ+ 2ω̃2 ln λ

)

− e−iω̃πGω̃

]
+O(Ω(N)k+1N−k−1+2ω̃)

+O(Ω(N)k+2N−k−1) + O(Ω(N)k−1−2ω̃2
N−k). (5.30)

Further, choosing Ω(N) to be a slowly growing function, Ω(N) = lnN , one readily verifies that the
third error term in Eq. (5.30) is a dominant one out of the three as 0 < ω̃ < 1/2. Yet, it is smaller
as compared to the integral in Eq. (5.30) by a factor Ω(N)k−1−2ω̃2

that tends to zero as N → ∞.
Thus, in the leading order, we derive:

L(1)N,k(ζ ) =
1
NkL

(1)
k (ζ ) + o(N−k), (5.31)

where

L
(1)
k (ζ ) =

∫
∞

0

dλ
2π
λk−2ω̃2

eiω̃λ
[
exp

(∫
−iλ

0

ds
s
σ (s) − iω̃λ+ 2ω̃2 ln λ

)
− e−iω̃πGω̃

]
, (5.32)

with k = 0 and 1.
Now, let us turn to the ‘right-edge’ integral R(1)

N,k(ζ ). Due to the symmetry relation Eq. (4.18)
shared by ΦE

N (ϕ; ζ ) too, we realize that the contributions of the left and the right edges are related
to each other:

R(1)
N,k(ζ ) = N(1 − ζ̄ )N

∫ Ω(N)/N

0

dϕ
2π

(2π − ϕ)k
(
ΦN (ϕ; ζ ) −ΦE

N (ϕ; ζ )
)
. (5.33)

Considering the integral on the r.h.s. of Eq. (5.33) along the lines of the previous analysis, we
conclude that the following formula holds as N → ∞:

R(1)
N,k(ζ ) = (1 − ζ )NR(1)

k (ζ ) + o(1), (5.34)
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where

R
(1)
k (ζ ) = (2π )k

∫
∞

0

dλ
2π
λ−2ω̃2

eiω̃λ
[

exp
(∫

−iλ

0

ds
s
σ (s) − iω̃λ+ 2ω̃2 ln λ

)

− e−iω̃πGω̃

]
, (5.35)

with k = 0 and 1.
Combining Eqs. (5.31), (5.32), (5.34) and (5.35), we end up with the asymptotic result [Eq. (5.22)]

I (1)N,k(ζ ) ↦→
1
NkL

(1)
k (ζ ) + (1 − ζ )NR(1)

k (ζ ). (5.36)

The notation ↦→ was used here to stress that the r.h.s. contains each leading order contribution of
both terms, the oscillating and the non-oscillating, as discussed in the paragraph prior to Eq. (5.19).

The integral I (2)N,k(ζ ).—As soon as the function ΦE
N (ϕ; ζ ) contains a strongly oscillating factor eiω̃ϕN , the

integral I (2)N,k(ζ ) in Eq. (5.21) can be calculated by the stationary phase method [49]. Since there are
no stationary points within the interval (0, 2π ), the integral is dominated by contributions L(2)N,k(ζ )
and R(2)

N,k(ζ ), coming from the vicinities of ϕ = 0 and ϕ = 2π , respectively.

Lemma 5.5. Let I (2)N,k(ζ ) be defined by Eqs. (5.21) and (5.26), where k is a fixed non-negative integer.
Then, as N → ∞, it can be represented in the following form:

I (2)N,k(ζ ) = L(2)N,k(ζ ) + R(2)
N,k(ζ ) (5.37)

where

L(2)N,k(ζ ) =
1
NkL

(2)
k + o(N−k), (5.38)

R(2)
N,k(ζ ) = (1 − ζ )NR(2)

k + o(1), (5.39)

and

L
(2)
k (ζ ) =

Gω̃
2π

eiπ (k+1−2ω̃−2ω̃2)/2ω̃
−k−1+2ω̃2

Γ (k + 1 − 2ω̃2), (5.40)

R
(2)
k (ζ ) =

Gω̃
2π

eiπ (−1+2ω̃+2ω̃2)/2ω̃
−1+2ω̃2

(2π )kΓ (1 − 2ω̃2). (5.41)

Proof. Apply the stationary phase method [49] to calculate the integral Eq. (5.21). □

Lemma 5.5 brings the following asymptotic result

I (2)N,k(ζ ) ↦→
1
NkL

(2)
k (ζ ) + (1 − ζ )NR(2)

k (ζ ), (5.42)

compare with Eq. (5.36).

The integral IN,k(ζ ).—The calculation above implies that the main integral of our interest admits an
asymptotic representation

IN,k(ζ ) ↦→
1
NkLk(ζ ) + (1 − ζ )NRk(ζ ) (5.43)

with k = 0, 1 and

Lk(ζ ) = L
(1)
k (ζ ) + L

(2)
k (ζ ), (5.44)

Rk(ζ ) = R
(1)
k (ζ ) + R

(2)
k (ζ ). (5.45)

We notice that both Lk(ζ ) = O(1) and Rk(ζ ) = O(1) and the factor (1 − ζ )N = zN = e2iπω̃N in
Eq. (5.43) is a strongly oscillating function of ω̃ as N → ∞, in concert with the discussion in the
paragraph prior to Eq. (5.19).
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Remark 5.6. Our derivation of the main result of this section, Eq. (5.43), was based on the
assumption that the choice of ΦE

N (ϕ; ζ ) in the form Eq. (5.26) makes the contribution of the ‘bulk’
integral C (1)

N,k(ζ ) [Eq. (5.24)] into I (1)N,k(ζ ) negligible. If this is not the case, one should replace ΦE
N with

some Φ̃E
N by adding to ΦE

N the higher-order corrections (up to O(N−2)) that can be obtained from the
full asymptotic expansion of ΦN (ϕ; ζ ), see Remark 1.4 of Ref. [45]. Inclusion of these higher-order
corrections will reduce the contribution of C (1)

N,k(ζ ) to a negligible level as guaranteed by the rough
upper-bound estimate

|C (1)
N,k(ζ )| = N

⏐⏐⏐⏐∫ 2π−Ω(N)/N

Ω(N)/N

dϕ
2π

ϕk (ΦN (ϕ; ζ ) −ΦE
N (ϕ; ζ )

)⏐⏐⏐⏐
≤ N

∫ 2π

0

dϕ
2π

ϕk
⏐⏐ΦN (ϕ; ζ ) − Φ̃E

N (ϕ; ζ )
⏐⏐ = O(N−1). (5.46)

On the other hand, the proposed modification of ΦN (ϕ; ζ ) will produce corrections to the functions
L(1)N,1, R

(1)
N,1, L

(2)
N,1 and R(2)

N,1, which will clearly be subleading to those calculated in the leading order
[see Eqs. (5.31), (5.34), (5.38), (5.39)]. For this reason, they will not affect the large-N analysis of
the power spectrum where only O(1) terms are kept. ■

5.3. Proof of Theorem 2.9

Now we are in position to evaluate the power spectrum as N → ∞. To proceed, we start with
the exact, finite-N , representation

SN (ω) =
(N + 1)2

πN2 Re
{(

z
∂

∂z
− N −

1 − z−N

1 − z

)
z

1 − z
IN,1(ζ )

}
−

≈

SN (ω) (5.47)

following from Eqs. (2.12) and (5.12). Substituting IN,1 given by Eq. (5.43) into Eq. (5.47) and taking
into account the relation R1(ζ ) = 2πR0(ζ ), following from Eqs. (5.45), (5.41) and (5.35), we derive,
as N → ∞:

SN (ω) = −
1
π

Re

{
z

1 − z
L1(ζ )

}
+ 2Re

{
z

1 − z

(
zN+1 d

dz
R0(ζ ) +

R0(ζ )
1 − z

)}

− 2Re

{
(z − 1)(1 + zN )

|1 − z|4

}
+ o(1). (5.48)

Here, the third term originates from the large-N expansion of
≈

SN (ω) [Eq. (2.13)]. Surprisingly, the
last two terms in Eq. (5.48) cancel each other. This follows from the identity

L0(ζ ) = R0(ζ ) =
1
ζ

(5.49)

that can be identified by comparing Eq. (5.18) with Eq. (5.43) taken at k = 0. The cancellation
implies the N → ∞ result

S∞(ω) = −
1
π

Re

{
z

1 − z
L1(ζ )

}
. (5.50)

Substituting Eqs. (5.44), (5.32) and (5.40) into Eq. (5.50), we derive

S∞(ω) =
1
π

Re

{
e2iπω̃

e2iπω̃ − 1

( ∫
∞

0

dλ
2π
λ1−2ω̃2

eiω̃λ
[

exp
(∫ −iλ

0

ds
s
σ (s) − iω̃λ+ 2ω̃2 ln λ

)
− e−iω̃πGω̃

]
−

Gω̃
2π

e−iπ (ω̃+ω̃2)ω̃−2+2ω̃2
Γ (2 − 2ω̃2)

)}
, (5.51)
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where ω̃ = ω/2π is a rescaled frequency, and the function σ (s) is the fifth Painlevé transcendent
defined by Eqs. (5.3)–(5.5). Eq. (5.51) can be simplified down to

S∞(ω) = A(ω̃)

{
Im

(∫
∞

0

dλ
2π
λ1−2ω̃2

eiω̃λ

×

[
exp

(∫
−iλ

−i∞

ds
s

(
σ (s) + sω̃ + 2ω̃2))

− 1
])

+ B(ω̃)

}
, (5.52)

where the functions A(ω̃) and B(ω̃) are defined as in Eqs. (2.18) and (2.19). To derive Eq. (5.52) we
have used the integral identity Eq. (5.10) to transform the exponent

exp
(∫

−iλ

0

σ (s)
s

ds − iω̃λ+ 2ω̃2 ln λ
)

= Gω̃e−iπω̃

× lim
T→∞

exp
[∫

−iλ

−iT

σ (s)
s

ds + iω̃(T − λ) + 2ω̃2 ln(λ/T )
]

= Gω̃e−iπω̃ exp
[∫

−iλ

−i∞

ds
s

(
σ (s) + ω̃s + 2ω̃2)] . (5.53)

Finally, we notice that σ (s = −it) = σ1(t) satisfies Eq. (1.3) with ν = 1 supplemented by
the boundary conditions Eqs. (2.20) and (2.21). With help of this, we recover the statement of
Theorem 2.9 from Eq. (5.52). □

Remark 5.7. Note that the global condition Eq. (5.11) ensures that the expression in the square
brackets in Eq. (5.51) exhibits O(λ−1) behavior as λ → ∞. This guarantees that the external
λ-integral in Eq. (5.51) converges for any ω̃ ∈ (0, 1/2). ■

Remark 5.8. Notice that Eq. (5.49) combined with Eqs. (5.45), (5.41) and (5.35) taken at k = 0,
motivates the following conjecture. ■

Conjecture 5.9. Let 0 < ω̃ < 1/2 and let σ (s) be the solution of the fifth Painlevé transcendent
satisfying Eq. (5.3) and the boundary conditions Eqs. (5.4)–(5.6). Then the following double integral
relation holds∫

∞

0

dλ
2π
λ−2ω̃2

eiω̃λ
[
exp

(∫
−iλ

0

ds
s
σ (s) − iω̃λ+ 2ω̃2 ln λ

)
− e−iω̃πGω̃

]
=

1
1 − e2π iω̃

− i
Gω̃
2π

e−iπ (ω̃+ω̃2)ω̃−1+2ω̃2
Γ (1 − 2ω̃2). ■ (5.54)

Remark 5.10. To extend the proof of Theorem 2.9 for ω = π , one would have to use the
Theorem 1.12 of Ref. [46] instead of Theorems 1.5, 1.8 and 1.11 of the same paper. Since numerical
calculations indicate that the power spectrum is continuous at ω = π , we did not study this case
analytically. ■

5.4. Proof of Theorem 2.11

Below, the universal law S∞(ω) for the power spectrum will be studied in the vicinity of ω = 0.
In the language of SN (ω) this corresponds to performing a small-ω expansion after taking the limit
N → ∞. Eq. (2.17) will be the starting point of our analysis.

Preliminaries.—Being interested in the small-ω̃ behavior of the power spectrum Eq. (2.17), we
observe that the functions A(ω̃) and B(ω̃), defined by Eqs. (2.18) and (2.19), admit the expansions

A(ω̃) =
1

2π2ω̃
+

(
1
6

−
1 + γ

π2

)
ω̃ + O(ω̃3), (5.55)
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B(ω̃) =
1
2

+ ω̃2 ln ω̃ + (γ − 1) ω̃2
+ O(ω̃4 ln2 ω̃), (5.56)

so that the power spectrum, as ω̃ → 0, can be written as

S∞(ω) =
1

4π2ω̃
+

(
1
12

−
1
π2

)
ω̃ +

1
2π2 ω̃ ln ω̃

+

{
1

2π2ω̃
+

(
1
6

−
1 + γ

π2

)
ω̃ + O(ω̃3)

}
Λ̂(ω̃) + O(ω̃3 ln2 ω̃). (5.57)

Here, Λ̂(ω̃) denotes a small-ω expansion of the function

Λ(ω̃) = Im
∫

∞

0

dλ
2π

λ1−2ω̃2
eiω̃λ

[
exp

(
−

∫
∞

λ

dt
t

(
σ1(t) − iω̃t + 2ω̃2))

− 1
]
, (5.58)

such that

Λ(ω̃) = Λ̂(ω̃) + O(ω̃3), (5.59)

see Eqs. (2.17) and (5.57). Notice that convergence of the external λ-integral at infinity is ensured
by the oscillating exponent eiω̃λ.

Small-ω̃ ansatz for the fifth Painlevé transcendent.—To proceed, we postulate the following ansatz for
a small-ω expansion of the fifth Painlevé function σ1(t):

σ1(t) = ω̃f1(t) + ω̃2f2(t) + ω̃3f3(t) + · · · . (5.60)

Here, the functions fk(t) with k = 1, 2, . . . satisfy the equations

t2f ′′′

k + tf ′′

k + (t2 − 4)f ′

k − tfk(t) = Fk(t), (5.61)

where

F1(t) = 0, (5.62)
F2(t) = 4f1(t)f ′

1 − 6t(f ′

1)
2, (5.63)

F3(t) = 4f1(t)f ′

2 + 4f ′

1f2(t) − 12tf ′

1f
′

2, (5.64)

etc. The above can easily be checked by substituting Eq. (5.60) into Chazy form [50,51]

t2σ ′′′

ν + tσ ′′

ν + 6t(σ ′

ν)
2
− 4σνσ ′

ν + (t2 − 4ν2)σ ′

ν − tσν = 0 (5.65)

of the Painlevé V equation (1.3) taken at ν = 1. The boundary conditions are generated by
Eqs. (2.20) and (2.21):

f1(t) → 0 as t → 0, f1(t) = it + o(t) as t → +∞, (5.66)

f2(t) → 0 as t → 0, f2(t) → −2 as t → +∞, (5.67)

f3(t) → 0 as t → 0, f3(t) → 0 as t → +∞. (5.68)

The third order differential equation (5.61) can be solved to bring

fk(t) =

(
t −

2
t

)(
c1,k +

∫ t

0

dx
x3

Fk(x)
)

+
eit

t

(
c2,k +

∫ t

0

dx
2x3

e−ix(−x2 + 2ix + 2) Fk(x)
)

+
e−it

t

(
c3,k +

∫ t

0

dx
2x3

eix(−x2 − 2ix + 2) Fk(x)
)
. (5.69)
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This representation assumes that the integrals are convergent; integration constants have to be
fixed by the boundary conditions Eqs. (5.66), (5.67), (5.68), etc. In particular, we derive:

f1(t) = i
t2 + 2 cos t − 2

t
, (5.70)

f2(t) = −2 −
6
t2

+
2π
t

− π t + 2 cos t + 8
cos t
t2

−
2π
t

cos t

− 2
cos(2t)

t2
+ 8γ

sin t
t

− 8Ci(t)
sin t
t

+ 8 ln t
sin t
t

− 4
Si(t)
t

+ 2tSi(t) + 4 cos t
Si(t)
t
, (5.71)

where

γ = lim
n→∞

(
− ln n +

n∑
k=1

1
k

)
≃ 0.577216 (5.72)

is the Euler’s constant, and

f3(t) =

(
2
t

− t
)∫

∞

t

dx
x3

F3(x) − 2
cos t
t

∫
∞

0

dx
x3

F3(x)

+ iIm
{
eit

t

∫ t

0

dx
x3

e−ix(−x2 + 2ix + 2) F3(x)
}
. (5.73)

Here, the function F3(t) is known explicitly from Eqs. (5.64), (5.70) and (5.71). We notice that

f1(t) ∈ iR, f2(t) ∈ R, f3(t) ∈ iR,

and

F2(t) ∈ R, F3(t) ∈ iR.

Representation of Λ̂(ω̃) as a partial sum.—Having determined the functions f1(t), f2(t) and f3(t), we
now turn to the small-ω analysis of Λ(ω̃) [Eq. (5.58)]. Expanding the expression in square brackets
in small ω, we obtain:

exp
(

−

∫
∞

λ

dt
t

(
σ1(t) − iω̃t + 2ω̃2))

− 1 = −ω̃G1(λ)

− ω̃2
G2(λ) − ω̃3

G3(λ) − · · · . (5.74)

The functions Gk(λ) can be evaluated explicitly in terms of integrals containing fk(λ) defined in
Eq. (5.60). For example,

G1(λ) = F1(λ), (5.75)

G2(λ) = −
1
2
F
2
1(λ) + F2(λ), (5.76)

G3(λ) = F3(λ) − F1(λ)F2(λ) +
1
6
F
3
1(λ). (5.77)

Here,

F1(λ) =

∫
∞

λ

dt
t
(f1(t) − it) = −2i

(
1 − cos λ

λ
+
π

2
− Si(λ)

)
, (5.78)

F2(λ) =

∫
∞

λ

dt
t
(f2(t) + 2), (5.79)

and

F3(λ) =

∫
∞

λ

dt
t

f3(t). (5.80)
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Notice that

F1(λ) ∈ iR, F2(λ) ∈ R, F3(λ) ∈ iR

and, hence,

G1(λ) ∈ iR, G2(λ) ∈ R, G3(λ) ∈ iR.

Substituting Eq. (5.74) into Eq. (5.58), we split Λ(ω̃) into a partial sum

Λ(ω̃) = Λ1(ω̃) +Λ2(ω̃) +Λ3(ω̃) + · · · , (5.81)

where

Λk(ω̃) = −ω̃kIm
∫

∞

0

dλ
2π

λ1−2ω̃2
eiω̃λGk(λ). (5.82)

A small-ω̃ expansion of Λk(ω̃) is of our immediate interest.

Calculation of Λ̂1(ω̃).—Eqs. (5.82), (5.75) and (5.78) yield

Λ1(ω̃) = 2ω̃
∫

∞

0

dλ
2π

λ1−2ω̃2
cos(ω̃λ)

(
1 − cos λ

λ
+
π

2
− Si(λ)

)
. (5.83)

Performing the integral, we obtain:

Λ1(ω̃) =
1
π
ω̃3Γ (−2ω̃2) sin(πω̃2)

{
(1 − ω̃)2ω̃

2
−1

+ (1 + ω̃)2ω̃
2
−1

− 2ω̃2ω̃2
−1

−
1 − 2ω̃2

1 − ω̃2 3F2

(
1 − ω̃2, 1 − ω̃2,

3
2

− ω̃2
;
1
2
, 2 − ω̃2

; ω̃2
) }

. (5.84)

Its small-ω̃ expansion Λ1(ω̃) = ω̃2
+ O(ω̃3) brings

Λ̂1(ω̃) = ω̃2, (5.85)

see Eq. (5.59) for the definition of Λ̂(ω).

Estimate of Λk(ω̃).—To treat Λk(ω̃) for k ≥ 2, we split it into two parts

Λk(ω̃) = Ak(ω̃, T ) + Bk(ω̃, T ), (5.86)

where

Ak(ω̃, T ) = −ω̃kIm
∫ T

0

dλ
2π

λ1−2ω̃2
eiω̃λGk(λ), (5.87)

Bk(ω̃, T ) = −ω̃kIm
∫

∞

T

dλ
2π

λ1−2ω̃2
eiω̃λGk(λ). (5.88)

Here, T is an arbitrary positive number to be taken to infinity in the end.
Since a small-ω̃ expansion of Ak(ω̃, T ) is well justified for any finite T , see e.g. Eq. (5.92), we

conclude that

Ak(ω̃, T ) = O(ω̃k). (5.89)

To estimate Bk(ω̃, T ), we refer to Remark 5.7 which implies that Gk(λ) = O(λ−1) as λ → ∞.
Replacing Gk(λ) with 1/λ in Eq. (5.88), we perform the integration by parts twice in the resulting
integral∫

∞

T

dλ
2π

eiω̃λ

λ2ω̃
2 = −

eiω̃T

2iπω̃
T−2ω̃2

+
1
π
eiω̃TT−1−2ω̃2

− 2(1 + 2ω̃2)
∫

∞

T

dλ
2π

eiω̃λ

λ2+2ω̃2 (5.90)

to conclude that it is of order O(ω̃−1). This entails

Bk(ω̃, T ) = O(ω̃k−1). (5.91)
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Since we are interested in calculatingΛ(ω̃) up to the terms O(ω̃3), see Eq. (5.59), we need to consider
Ak(ω̃, T ) and Bk+1(ω̃, T ) for k ≤ 2 only.

Calculation of Λ̂2(ω̃).— A small-ω̃ expansion of A2(ω̃, T ) brings

A2(ω̃, T ) = −ω̃2Im
∫ T

0

dλ
2π

λ

(
1 + iω̃λ− 2ω̃2 ln λ−

1
2
ω̃2λ2 + O(ω̃3)

)
G2(λ). (5.92)

Since G2(λ) ∈ R, we even conclude that

A2(ω̃, T ) = O(ω̃3). (5.93)

For this reason, A2(ω̃, T ) does not contribute to Λ̂2(ω̃).
Evaluation of B2(ω̃, T ), given by

B2(ω̃, T ) = −ω̃2
∫

∞

T

dλ
2π

λ1−2ω̃2
sin(ω̃λ)G2(λ), (5.94)

is more involved. A simplification comes from the fact that, at some point, we shall let T tend
to infinity. For this reason, it suffices to consider a large-λ expansion of G2(λ) in the integrand.
Straightforward calculations bring

F1(λ) = −
2i
λ

− 2i
sin λ
λ2

+ O

(
cos λ
λ3

)
, (5.95)

F2(λ) = −
6
λ2

+ 8
cos λ ln λ
λ2

+ 2(4γ − 1)
cos λ
λ2

+ O

(
ln λ
λ3

)
. (5.96)

Eq. (5.95) is furnished by the large-λ expansion of Eq. (5.78). To derive Eq. (5.96), we first
calculated the integral Eq. (5.79) replacing an integrand therein with its large-t asymptotics, and
then expanded the resulting expression in parameter λ → ∞. By virtue of Eq. (5.76), this yields

G2(λ) = −
4
λ2

+ 8
cos λ ln λ
λ2

+ 2(4γ − 1)
cos λ
λ2

+ O

(
ln λ
λ3

)
. (5.97)

The expansion Eq. (5.97), being substituted into Eq. (5.94), generates two families of integrals:

Ij(ω̃, T ) =

∫
∞

T

dλ
2π

sin[(ω̃ + j)λ]
λ1+2ω̃2 (5.98)

with j = 0,±1 and

Kj(ω̃, T ) =

∫
∞

T

dλ
2π

ln λ
sin[(ω̃ + j)λ]
λ1+2ω̃2 (5.99)

with j = ±1, such that

B2(ω̃, T ) = ω̃2
{
4I0(ω̃, T ) − (4γ − 1)[I−1(ω̃, T ) + I1(ω̃, T )]

− 4[K−1(ω̃, T ) + K1(ω̃, T )]
}
. (5.100)

To determine a small-ω̃ expansion of B2(ω̃, T ), we shall further concentrate on small-ω̃ expansions
of its constituents, I0(ω̃, T ), I±1(ω̃, T ) and K±1(ω̃, T ).

(a)—The function I0(ω̃, T ) can be evaluated exactly,

I0(ω̃, T ) =
1
4π

sin(πω̃2) ω̃2ω̃2
−2Γ (1 − 2ω̃2)

−
1
2π

T 1−2ω̃2 ω̃

1 − 2ω̃2 1F2

(
1
2

− ω̃2
;
3
2
,
3
2

− ω̃2
; −

T 2

4
ω̃2
)
. (5.101)



36 R. Riser, V.A. Osipov and E. Kanzieper / Annals of Physics 413 (2020) 168065

Expanding this result around ω̃ = 0 we derive

I0(ω̃, T ) =
1
4

+ O(ω̃). (5.102)

(b)—To analyze a small-ω̃ expansion

Ij̸=0(ω̃, T ) = α0(j, T ) + ω̃ α1(j, T ) + O(ω̃2), (5.103)

we proceed in two steps. First, we determine the coefficient α0(j, T ) directly from Eq. (5.98)

α0(j, T ) = Ij̸=0(0, T ) =

∫
∞

T

dλ
2π

sin(jλ)
λ

< ∞, ∀ T > 0, (5.104)

to deduce the relation (j ̸= 0)

α0(−j, T ) = −α0(j, T ). (5.105)

Second, to determine a linear term of a small-ω̃ expansion of Ij̸=0(ω̃, T ), we perform integration by
parts in Eq. (5.98) to derive the representation

Ij̸=0(ω̃, T ) = T−1−2ω̃2 cos[(ω̃ + j)T ]

2π (ω̃ + j)
−

1 + 2ω̃2

ω̃ + j

∫
∞

T

dλ
2π

cos[(ω̃ + j)λ]
λ2+2ω̃2 (5.106)

whose integral term possesses a better convergence when ω̃ approaches zero, as compared to the
one given by Eq. (5.98). Differentiating Eq. (5.106) with respect to ω̃ and setting ω̃ = 0 we derive:

α1(j, T ) =
d Ij̸=0(ω̃, T )

dω̃

⏐⏐⏐⏐⏐
ω̃=0

= −
1

2π j

(
sin(jT ) +

cos(jT )
jT

)
+

1
j

∫
∞

T

dλ
2π

sin(jλ)
λ

+
1
j2

∫
∞

T

dλ
2π

cos(jλ)
λ2

< ∞, ∀ T > 0. (5.107)

This implies the relation (j ̸= 0)

α1(−j, T ) = α1(j, T ). (5.108)

As a consequence, we conclude that

I−1(ω̃, T ) + I1(ω̃, T ) = O(ω̃). (5.109)

(It is this particular combination that appears in Eq. (5.100).)

(c)—To examine a small-ω̃ expansion

Kj̸=0(ω̃, T ) = κ0(j, T ) + ω̃ κ1(j, T ) + O(ω̃2), (5.110)

we follow the same strategy. First, we determine the coefficient κ0(j, T ) directly from Eq. (5.99)

κ0(j, T ) = Kj̸=0(0, T ) =

∫
∞

T

dλ
2π

ln λ
sin(jλ)
λ

< ∞, ∀ T > 0, (5.111)

to observe the relation (j ̸= 0)

κ0(−j, T ) = −κ0(j, T ). (5.112)

Second, to examine a linear term of a small-ω̃ expansion of Kj̸=0(ω̃, T ), we perform integration by
parts in Eq. (5.99) in order to improve integral’s convergence:

Kj̸=0(ω̃, T ) =
ln T

2π (ω̃ + j)
cos[(ω̃ + j)T ]

T 1+2ω̃2 +
1

ω̃ + j

∫
∞

T

dλ
2π

cos[(ω̃ + j)λ]
λ2+2ω̃2

−
1 + 2ω̃2

ω̃ + j

∫
∞

T

dλ
2π

cos[(ω̃ + j)λ]
λ2+2ω̃2 ln λ. (5.113)
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Differentiating Eq. (5.113) with respect to ω̃ and setting ω̃ = 0, we obtain:

κ1(j, T ) =
dKj̸=0(ω̃, T )

dω̃

⏐⏐⏐⏐⏐
ω̃=0

= −
sin(jT )
2π j

ln T −
cos(jT )
2π j2T

ln T

−
1
j

∫
∞

T

dλ
2π

sin(jλ)
λ

(1 − ln λ)

−
1
j2

∫
∞

T

dλ
2π

cos(jλ)
λ2

(1 − ln λ) < ∞, ∀ T > 0. (5.114)

This implies the relation (j ̸= 0)

κ1(−j, T ) = κ1(j, T ). (5.115)

As a consequence, we conclude that

K−1(ω̃, T ) + K1(ω̃, T ) = O(ω̃). (5.116)

(Again, it is this particular combination that appears in Eq. (5.100).)
Collecting the results Eqs. (5.93), (5.100), (5.102), (5.109), and (5.116), we observe that Λ2(ω̃) =

ω̃2
+ O(ω̃3); hence

Λ̂2(ω̃) = Λ̂1(ω̃) = ω̃2, (5.117)

see Eqs. (5.59) and (5.85).

Calculation of Λ̂3(ω̃).—Since A3(ω̃, T ) = O(ω̃3), see Eq. (5.89), we need to deal with B3(ω̃, T ) only:

B3(ω̃, T ) = −ω̃3Im
∫

∞

T

dλ
2π

λ1−2ω̃2
eiω̃λG3(λ), (5.118)

large-λ asymptotics of G3(λ) defined by Eq. (5.77) are required.
To proceed, we need to complement the expansions Eqs. (5.95) and (5.96) with the one for F3

defined by Eq. (5.80). To this end we, first, employ Eqs. (5.64), (5.70), (5.71) to determine a large-t
behavior of F3(t),

F3(t)
t3

= i
{
a1
t3

+ a2
cos t
t3

+ a3
cos t ln t

t3
+ O

(
sin(⋆ t) ln t

t4

)}
, (5.119)

where a1, a2 and a3 are real coefficients whose explicit values are not required for our analysis;
sin(⋆ t) stands to denote sin t and sin(2t), both of which are present in the remainder term. This
expansion combined with Eq. (5.73) implies the following large-t behavior of f3(t):

f3(t) = i
{
a′

1
1
t

+ a′

2
sin t
t

+ a′

3
cos t
t

+ a′

4
cos t
t

ln t + a′

5
cos t
t

ln2 t
}

+O

(
sin t ln t

t2

)
. (5.120)

Here, the coefficients a′

j ∈ R are real.
Now, a large-λ behavior of F3(λ) can be read off from Eq. (5.80):

F3(λ) = i
{
a′′

1
1
λ

+ a′′

2
sin λ
λ2

+ a′′

3
cos λ
λ2

+ a′′

4
sin λ
λ2

ln λ+ a′′

5
sin λ
λ2

ln2 λ

}
+O

(
cos λ
λ3

ln3 λ

)
, (5.121)

where the coefficients a′′

j ∈ R are real, again. Inspection of Eqs. (5.77), (5.95), (5.96) and (5.121)
shows that a large-λ behavior of G3(λ) coincides with that of F3(λ).

Having determined a large-λ asymptotics of G3(λ), we turn to the analysis of the function B3(ω̃, T )
as ω̃ → 0. Since G3(λ) ∈ iR, a substitution of Eq. (5.121) into Eq. (5.118) generates several
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integrals (see below), whose small-ω̃ behavior should be studied in order to figure out if B3(ω̃, T )
contributes to Λ̂3(ω̃) as defined by Eqs. (5.59), (5.81) and (5.86). This knowledge is required to
complete calculation of the small-ω expansion of the power spectrum S∞(ω), see Eq. (5.57).

(a)—The first integral, originating from the a′′

1 term in Eq. (5.121), admits a small-ω̃ expansion

B3,1(ω̃, T ) =

∫
∞

T

dλ
2π

cos(ω̃λ)
λ2ω̃

2 = O(ω̃0). (5.122)

This result is obtained from the real part of the r.h.s. of Eq. (5.90) evaluated at ω̃ = 0. Hence, due
to Eq. (5.118), the contribution of B3,1(ω̃, T ) to B3(ω̃, T ) is of order O(ω̃3).

(b)—The second integral, originating from the a′′

2 term in Eq. (5.121), reads

B3,2(ω̃, T ) =

∫
∞

T

dλ
2π

sin λ
cos(ω̃λ)
λ1+2ω̃2 = O(ω̃0) (5.123)

as can be seen by setting ω̃ = 0 directly in the integrand.

(c)—All other integrals generated by the remaining terms in Eq. (5.121) can be treated analogously.
As a consequence, we conclude that B3(ω̃, T ) is of order O(ω̃3). Taken together with Eqs. (5.86)

and (5.89), this implies that Λ3(ω̃) = O(ω̃3) so that

Λ̂(ω̃) = 2ω̃2
+ O(ω̃3). (5.124)

Substituting Eq. (5.124) into Eq. (5.57), we derive the sought small-ω̃ expansion of the power
spectrum S∞(ω) as stated in Theorem 2.11. □
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Appendix A. Boundary conditions for Painlevé VI function σ̃N (t; ζ) as t→ ∞

To derive the t → ∞ boundary condition for σ̃N (t; ζ ) satisfying Eq. (2.15) of Theorem 2.7, we
make use of Eqs. (4.17) and (2.14) to observe the relation

σ̃N (t; ζ ) = −t − 2
d
dϕ

lnΦN (ϕ; ζ )
⏐⏐⏐
ϕ=2 arctan(1/t)

(A.1)

which holds true for t > 0 and 0 ≤ ϕ < π/2. Since ϕ → 0 as t → ∞, we shall consider a small-ϕ
expansion of the generating function ΦN (ϕ; ζ )

ΦN (ϕ; ζ ) =

N∏
j=1

(∫ 2π

0
−ζ

∫ ϕ

0

)
dθj
2π

PN (θ1, . . . , θN )

= 1 +

N∑
ℓ=1

(−ζ )ℓ

ℓ!

⎛⎝ ℓ∏
j=1

∫ ϕ

0

dθj
2π

⎞⎠ Rℓ,N (θ1, . . . , θℓ), (A.2)
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where the JPDF PN (θ1, . . . , θN ) is that of TCUEN [Eq. (2.9)], and Rℓ,N (θ1, . . . , θℓ) stands for the ℓ-th
correlation function in TCUEN . Due to Lemma 4.7, these admit a determinantal representation

Rℓ,N (θ1, . . . , θℓ) =
1

N + 1
det1≤i,j≤ℓ+1

[
SN+1(θi − θj)

] ⏐⏐⏐
θℓ+1=0

, (A.3)

where SN+1(θ ) is the CUEN+1 sine-kernel:

SN+1(θ ) =
sin[(N + 1)θ/2]

sin(θ/2)
.

For one,

R1,N (θ ) =
1

N + 1
det

(
SN+1(0) SN+1(θ )
SN+1(θ ) SN+1(0)

)
, (A.4)

R2,N (θ1, θ2) =
1

N + 1
det

(
SN+1(0) SN+1(θ1 − θ2) SN+1(θ1)
SN+1(θ1 − θ2) SN+1(0) SN+1(θ2)
SN+1(θ1) SN+1(θ2) SN+1(0)

)
, (A.5)

etc.
A straightforward calculation produces a small-ϕ expansion of ΦN (ϕ; ζ ) whose several initial

terms read:

ΦN (ϕ; ζ ) = 1 −
ζ

2π

(
R1,N (0)ϕ +

1
2!

R′

1,N (0)ϕ
2
+

1
3!

R′′

1,N (0)ϕ
3
)

+
1
2!

(
ζ

2π

)2 (
R2,N (0, 0)ϕ2

+
1
2

[
R[0,1]
2,N (0, 0) + R[1,0]

2,N (0, 0)
]
ϕ3
)

−
1
3!

(
ζ

2π

)3

R3,N (0, 0, 0)ϕ3
+ o(ϕ3). (A.6)

Only one, out of six, coefficients in the expansion is nontrivial,

R′′

1,N (0) =
N(N + 1)(N + 2)

6
yielding

ΦN (ϕ; ζ ) = 1 −
N(N + 1)(N + 2)

72π
ζϕ3

+ o(ϕ3). (A.7)

By virtue of Eq. (A.1), the boundary condition for σ̃N (t; ζ ) as t → ∞ reads

σ̃N (t; ζ ) = −t + ζ
N(N + 1)(N + 2)

3π t2
+ O(t−3). (A.8)

Further terms in the 1/t-expansion Eq. (A.8) can be restored with the help of the Painlevé VI
equation itself [Eq. (2.15)]. Substituting the large-t ansatz

σ̃N (t; ζ ) = −t +

∞∑
j=2

σj(N, ζ )
t j

(A.9)

therein, we deduce:

σ̃N (t; ζ ) = −t +
σ2(N, ζ )

t2
+
σ4(N, ζ )

t4
+
σ5(N, ζ )

t5
+ O(t−6), (A.10)

where

σ2(N, ζ ) = ζ
N(N + 1)(N + 2)

3π
,

σ4(N, ζ ) = −
2N2

+ 4N + 9
15

σ2(N, ζ ),

σ5(N, ζ ) =
σ 2
2 (N, ζ )

3
. (A.11)
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Remark A.1. Since the above procedure is capable of producing the expansion coefficients σj(N, ζ )
of any finite order, it can also be utilized – by virtue of Eq. (2.14) – to generate a small-ϕ expansion
of ΦN (ϕ; ζ ) up to required accuracy. ■

Appendix B. Generating function ΦN (ϕ; ζ) and discrete Painlevé V equations (dPV)

To avoid intricacies [52] of a numerical evaluation of the six Painlevé function σ̃N (t; ζ ) appearing
in the generating function Eq. (2.14), we opt for an alternative representation of ΦN (ϕ; ζ ) in terms
of discrete Painlevé V equations.

To proceed, we follow Ref. [53] (see also Refs. [54–56]), to observe that a sequence of U(N)
integrals

IN (ϕ; ζ ) =
1
N!

N∏
j=1

(∫ π

−π

−ζ

∫ π

π−ϕ

)
dθj
2π

∏
1≤i<j≤N

|eiθi − eiθj |
2

×

N∏
j=1

eω2θj
⏐⏐1 + eiθj

⏐⏐2ω1 t−µe−iµθj
(
1 + teiθj

)2µ
, (B.1)

where t = eiϕ , satisfies a recurrence relation
IN+1IN−1

I2N
= 1 − rN r̄N . (B.2)

Here, rN and r̄N are so-called reflection coefficients appearing in the Szegö theory [57] of orthogonal
polynomials on the unit circle. Remarkably, there exists the N-recurrence for reflection coefficients
{rN , r̄N} as specified in Proposition 4.4 in Ref. [53]; a variation of their proposition is given below.

Proposition B.1. The N-recurrence for the reflection coefficients of polynomials orthogonal on the unit
circle |z| = 1 with respect to the weight

w(z) = t−µz−µ−ω1−iω2 (1 + z)2ω1 (1 + tz)2µ
{

1, θ /∈ (π − φ, π )
1 − ζ , θ ∈ (π − φ, π ). (B.3)

is governed by two systems of coupled first order discrete Painlevé equations (dPV). The first is⎧⎪⎪⎪⎨⎪⎪⎪⎩
gN+1gN = t

(fN + N)(fN + N + µ)
fN (fN − 2ω1)

,

fN + fN+1 = 2ω1 +
N − 1 + µ+ ω

gN − 1
+

t(N + µ+ ω̄)
gN − t

,

(B.4)

subject to the initial conditions

g1 = t
µ+ ω + (1 + µ+ ω̄)r1
µ+ ω + (1 + µ+ ω̄)tr1

, f0 = 0, r1 = −
w−1

w0
. (B.5)

The second system is⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ḡN+1ḡN = t−1 (f̄N + N)(f̄N + N + 2ω1)

f̄N (f̄N − 2µ)
,

f̄N + f̄N+1 = 2µ+
N + µ+ ω

ḡN − 1
+

(N − 1 + µ+ ω̄)t−1

ḡN − t−1 ,

(B.6)

subject to the initial conditions

ḡ1 =
µ+ ω̄ + (1 + µ+ ω)t−1 r̄1
µ+ ω̄ + (1 + µ+ ω)r̄1

, f̄0 = 0, r̄1 = −
w1

w0
. (B.7)
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Here, ω = ω1 + iω2 and ω̄ = ω1 − iω2. The coefficients w0, w∓1 in Eqs. (B.5) and (B.7) are

wℓ =
1

2iπ

∮
dz
zℓ+1 w(z). (B.8)

The transformations relating the variables {gN , ḡN} to the reflection coefficients {rN , r̄N} read:

rN
rN−1

=
1 − t−1gN
gN − 1

N − 1 − µ+ ω

N + µ+ ω̄
(B.9)

and
r̄N

r̄N−1
=

1 − ḡN
ḡN − t−1

N − 1 − µ+ ω̄

N + µ+ ω
, (B.10)

respectively.

The proposition yields a sought dPV representation of the generating function ΦN (ϕ; ζ ), see
Eq. (4.17). Indeed, setting ω = ω1 + iω2 = 1 and µ = 0, one observes the relation

ΦN (ϕ; ζ ) =
IN (ϕ; ζ )
N + 1

so that Eq. (B.2) translates to

ΦN+1ΦN−1

Φ2
N

=
(N + 1)2

N(N + 2)
(1 − rN r̄N) , (B.11)

where the reflection coefficients {rN , r̄N} are determined by equations

rN
rN−1

=
1 − t−1gN
gN − 1

N
N + 1

(B.12)

and
r̄N

r̄N−1
=

1 − ḡN
ḡN − t−1

N
N + 1

, (B.13)

considered in conjunction with two systems of coupled first order discrete Painlevé equations (dPV):⎧⎪⎪⎪⎨⎪⎪⎪⎩
gN+1gN = t

(fN + N)2

fN (fN − 2)
,

fN + fN+1 = 2 +
N

gN − 1
+

t(N + 1)
gN − t

(B.14)

and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ḡN+1ḡN = t−1 (f̄N + N)(f̄N + N + 2)

f̄ 2N
,

f̄N + f̄N+1 =
N + 1
ḡN − 1

+
N

tḡN − 1
.

(B.15)

The initial conditions read

Φ0 = 1, Φ1 = 1 −
ζ

2π
(ϕ − sinϕ), (B.16)

g1 = t
w0 − 2w−1

w0 − 2tw−1
, f0 = 0 (B.17)

and

ḡ1 =
w0 − 2t−1w1

w0 − 2w1
, f̄0 = 0, (B.18)
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respectively. By virtue of Eq. (B.8), a set of parameters {w0, w±1} can be calculated explicitly:

w0 = 2 −
ζ

iπ

(
1 − t2

2t
+ ln t

)
, (B.19)

w±1 = 1 ∓
ζ

iπ

(
1
4
(t±1

− 1)(t±1
− 3) +

1
2
ln(t±1)

)
. (B.20)

Eqs. (B.11)–(B.20) provide the dPV representation of the generating function ΦN (ϕ; ζ ).

Remark B.2. To avoid numerical z-differentiation of ΦN (ϕ; 1 − z) appearing in the formula
Eq. (2.12), it is beneficial to produce a similar system of coupled recurrence equations for (∂/∂z)
ΦN (ϕ; 1−z). Since the resulting recurrences are too cumbersome to state them here, we leave their
(straightforward) derivation to the inquisitive reader. ■

Remark B.3. Away from the endpoints ϕ = 0 and ϕ = 2π , the dPV representation opens a
way for effective numerical evaluation of both ΦN (ϕ; ζ ) and (∂/∂z)ΦN (ϕ; 1 − z) for finite N . Since
the recurrence procedure tends to accumulate numerical errors, we have used quadruple precision
numbers to achieve sufficient precision for very large N (e.g., for N = 104, see Figs. 4 and 5). ■

Remark B.4. In the vicinity of the endpoints ϕ = 0 and ϕ = 2π , numerical precision of the above
recurrence procedure worsens drastically since the recurrence equations start to exhibit a singular
behavior. To circumvent this drawback at ϕ = 0, we have used a small-ϕ expansion of ΦN (ϕ; ζ )
as described in Remark A.1. In the vicinity of ϕ = 2π , the symmetry relation Eq. (4.18) combined
with a small-ϕ expansion makes the job. ■

References

[1] J.M.G. Gómez, K. Kar, V.K.B. Kota, R.A. Molina, A. Relaño, J. Retamosa, Phys. Rep. 499 (2011) 103.
[2] M.V. Berry, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 413 (1987) 183.
[3] O. Bohigas, M.J. Giannoni, C. Schmit, Phys. Rev. Lett. 52 (1984) 1.
[4] K. Richter, Semiclassical Theory of Mesoscopic Quantum Systems, Springer, Berlin, 2000.
[5] M.L. Mehta, Random Matrices, Elsevier, Amsterdam, 2004.
[6] P.J. Forrester, Log-Gases and Random Matrices, Princeton University Press, Princeton NJ, 2010.
[7] A.V. Andreev, O. Agam, B.D. Simons, B.L. Altshuler, Phys. Rev. Lett. 76 (1996) 3947.
[8] O. Agam, A.V. Andreev, B.D. Simons, Chaos Solitons Fractals 8 (1997) 1099.
[9] K. Richter, M. Sieber, Phys. Rev. Lett. 89 (2002) 206801;

S. Müller, S. Heusler, P. Braun, F. Haake, A. Altland, Phys. Rev. Lett. 93 (2004) 014103;
S. Heusler, S. Müller, A. Altland, P. Braun, F. Haake, Phys. Rev. Lett. 98 (2007) 044103;
S. Müller, S. Heusler, A. Altland, P. Braun, F. Haake, New J. Phys. 11 (2009) 103025.

[10] M.V. Berry, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 400 (1985) 229; Nonlinearity 1 (1988) 399.
[11] M. Jimbo, T. Miwa, Y. Môri, M. Sato, Physica D 1 (1980) 80.
[12] M.V. Berry, M. Tabor, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 356 (1977) 375.
[13] M. Tabor, Chaos and Integrability in Nonlinear Dynamics: An Introduction, Wiley, London, 1989;

G.M. Zaslavsky, The Physics of Chaos in Hamiltonian Systems, Imperial College Press, London, 2007.
[14] B. Eckhardt, Phys. Rep. 163 (1988) 205;

O. Bohigas, S. Tomsovic, D. Ullmo, Phys. Rep. 223 (1993) 43;
S. Tomsovic, D. Ullmo, Phys. Rev. E 50 (1994) 145.

[15] M. Robnik, J. Phys. A: Math. Gen. 17 (1984) 1049;
T. Prosen, M. Robnik, J. Phys. A: Math. Gen. 27 (1994) 8059;
M.V. Berry, J.P. Keating, S.D. Prado, J. Phys. A: Math. Gen. 31 (1998) L245;
B. Dietz, T. Friedrich, M. Miski-Oglu, A. Richter, F. Schäfer, Phys. Rev. E 75 (2007) R-035203.

[16] A. Relaño, J.M.G. Gómez, R.A. Molina, J. Retamosa, E. Faleiro, Phys. Rev. Lett. 89 (2002) 244102.
[17] A.M. Odlyzko, Math. Comp. 48 (1987) 273.
[18] J.M.G. Gómez, A. Relaño, J. Retamosa, E. Faleiro, L. Salasnich, M. Vraničar, M. Robnik, Phys. Rev. Lett. 94 (2005)

084101;
A. Relaño, Phys. Rev. Lett. 100 (2008) 224101.

[19] K.A. Takeuchi, J. Phys. A 50 (2017) 264006.
[20] E. Faleiro, U. Kuhl, R.A. Molina, L. Muñoz, A. Relaño, J. Retamosa, Phys. Lett. A 358 (2006) 251.
[21] M. Białous, V. Yunko, S. Bauch, M. Ławniczak, B. Dietz, L. Sirko, Phys. Rev. E 94 (2016) 042211.
[22] M. Białous, V. Yunko, S. Bauch, M. Ławniczak, B. Dietz, L. Sirko, Phys. Rev. Lett. 117 (2016) 144101.
[23] B. Dietz, V. Yunko, M. Białous, S. Bauch, M. Ławniczak, L. Sirko, Phys. Rev. E 95 (2017) 052202.

http://refhub.elsevier.com/S0003-4916(19)30320-3/sb1
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb2
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb3
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb4
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb5
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb6
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb7
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb8
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb9
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb9
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb9
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb9
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb10
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb10
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb11
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb12
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb13
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb13
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb14
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb14
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb14
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb15
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb15
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb15
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb15
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb16
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb17
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb18
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb18
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb18
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb18
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb19
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb20
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb21
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb22
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb23


R. Riser, V.A. Osipov and E. Kanzieper / Annals of Physics 413 (2020) 168065 43

[24] M. Ławniczak, M. Białous, V. Yunko, S. Bauch, L. Sirko, Phys. Rev. E 98 (2018) 012206.
[25] A. Frisch, M. Mark, K. Aikawa, F. Ferlaino, J.L. Bohn, C. Makrides, A. Petrov, S. Kotochigova, Nature 507 (2014) 475.
[26] J. Mur-Petit, R.A. Molina, Phys. Rev. E 92 (2015) 042906.
[27] M. Wilkinson, J. Phys. A 21 (1988) 1173;

B. Mehlig, M. Wilkinson, Phys. Rev. E 63 (2001) 045203.
[28] F.J. Dyson, J. Math. Phys. 3 (1962) 1191.
[29] E. Faleiro, J.M.G. Gómez, R.A. Molina, L. Muñoz, A. Relaño, J. Retamosa, Phys. Rev. Lett. 93 (2004) 244101.
[30] A.M. García-García, Phys. Rev. E 73 (2006) 026213.
[31] A. Relaño, L. Muñoz, J. Retamosa, E. Faleiro, R.A. Molina, Phys. Rev. E 77 (2008) 031103.
[32] R.E. Prange, Phys. Rev. Lett. 78 (1997) 2280.
[33] R. Riser, V. Al. Osipov, E. Kanzieper, Phys. Rev. Lett. 118 (2017) 204101.
[34] O. Bohigas, P. Leboeuf, M.J. Sánchez, Found. Phys. 31 (2001) 489.
[35] R. Riser, E. Kanzieper, (2019) unpublished.
[36] N.M. Katz, P. Sarnak, Bull. Amer. Math. Soc. 36 (1999) 1.
[37] A.M. Odlyzko, Contemp. Math. 290 (2001) 139.
[38] P.J. Forrester, N.S. Witte, Nagoya Math. J. 174 (2004) 29.
[39] K. Okamoto, Ann. Mat. Pura Appl. (4) 146 (1987) 337.
[40] M.E.H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge University Press, 2005.
[41] F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark (Eds.), NIST Handbook of Mathematical Functions, Cambridge

University Press, 2010.
[42] A. Borodin, E. Kanzieper, J. Phys. A 40 (2007) F–849.
[43] C. Andréief, Mém. Soc. Sci., Bordeaux 2 (1886) 1.
[44] N.G. de Bruijn, J. Indian Math. Soc. (N.S.) 19 (1955) 133.
[45] P. Deift, A. Its, I. Krasovsky, Random Matrix Theory, Interacting Particle Systems, and Integrable Systems, Cambridge

University Press, New York, 2014, p. 93.
[46] T. Claeys, I. Krasovsky, Duke Math. J. 164 (2015) 2897.
[47] T. Claeys, private communication.
[48] T. Ehrhardt, Recent Advances in Operator Theory (Groningen, 1998), in: Oper. Theory Adv. Appl., vol. 124, Birkhäuser,

Basel, 2001, p. 217.
[49] N.M. Temme, Asymptotic Methods for Integrals, World Scientific Publishing, Sngapore, 2014.
[50] J. Chazy, Acta Math. 34 (1911) 317.
[51] Cosgrove C.M, Stud. Appl. Math. 104 (2000) 171.
[52] F. Bornemann, Markov Process. Related Fields 16 (2010) 803.
[53] P.J. Forrester, N.S. Witte, Discrete Painlevé equations, orthogonal polynomials on the unit circle and N-recurrences

for averages over U(N) – PVI τ -functions, 2003, arXiv:math-ph/0308036v1.
[54] P.J. Forrester, N.S. Witte, Nonlinearity 16 (2003) 1919.
[55] P.J. Forrester, N.S. Witte, Nonlinearity 18 (2005) 2061.
[56] P.J. Forrester, N.S. Witte, Constr. Approx. 24 (2006) 201.
[57] G. Szegö, Orthogonal Polynomials, Colloquium Publications, vol. 23, American Mathematical Society, Providence,

2003.

http://refhub.elsevier.com/S0003-4916(19)30320-3/sb24
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb25
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb26
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb27
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb27
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb28
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb29
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb30
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb31
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb32
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb33
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb34
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb36
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb37
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb38
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb39
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb40
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb41
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb41
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb41
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb42
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb43
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb44
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb45
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb45
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb45
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb46
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb48
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb48
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb48
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb49
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb50
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb51
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb52
http://arxiv.org/abs/math-ph/0308036v1
http://arxiv.org/abs/math-ph/0308036v1
http://arxiv.org/abs/math-ph/0308036v1
http://arxiv.org/abs/math-ph/0308036v1
http://arxiv.org/abs/math-ph/0308036v1
http://arxiv.org/abs/math-ph/0308036v1
http://arxiv.org/abs/math-ph/0308036v1
http://arxiv.org/abs/math-ph/0308036v1
http://arxiv.org/abs/math-ph/0308036v1
http://arxiv.org/abs/math-ph/0308036v1
http://arxiv.org/abs/math-ph/0308036v1
http://arxiv.org/abs/math-ph/0308036v1
http://arxiv.org/abs/math-ph/0308036v1
http://arxiv.org/abs/math-ph/0308036v1
http://arxiv.org/abs/math-ph/0308036v1
http://arxiv.org/abs/math-ph/0308036v1
http://arxiv.org/abs/math-ph/0308036v1
http://arxiv.org/abs/math-ph/0308036v1
http://arxiv.org/abs/math-ph/0308036v1
http://arxiv.org/abs/math-ph/0308036v1
http://arxiv.org/abs/math-ph/0308036v1
http://arxiv.org/abs/math-ph/0308036v1
http://arxiv.org/abs/math-ph/0308036v1
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb54
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb55
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb56
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb57
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb57
http://refhub.elsevier.com/S0003-4916(19)30320-3/sb57

	Nonperturbative theory of power spectrum in complex systems
	Introduction
	Short- and long-range measures of spectral fluctuations
	Power spectrum: Definition and early results
	Spectra with uncorrelated spacings: Form-factor vs power spectrum

	Main results and discussion
	Main results
	Discussion

	Power spectrum for eigenlevel sequences with stationary spacings
	Stationary spectra
	Proof of PS-stationary-main 
	Proof of Th-2 

	Power spectrum in the tuned circular unitary ensemble
	Correlations between ordered eigen-angles in TCUEN
	Proof of  Th-3 
	Power spectrum in TCUEN as a Fredholm determinant
	Power spectrum in TCUEN as a Toeplitz determinant

	Power spectrum in quantum chaotic systems: Large-N limit
	Uniform asymptotics of the Toeplitz determinant
	Asymptotic analysis of the main integral
	Proof of Th-4 
	Proof of Th-5 

	Declaration of competing interest
	Acknowledgments
	Appendix A. Boundary conditions for Painleve VI function σN (t; ζ) as t →∞
	Appendix B. Generating function ΦN(varphi;ζ) and discrete Painleve V equations (dPV)
	References


