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a b s t r a c t

Doped SrTiO3, one of the most dilute bulk systems to display
superconductivity, is perhaps the first example of an uncon-
ventional superconductor, as it does not fit into the standard
BCS paradigm. More than five decades of research has revealed
a rich temperature-carrier concentration phase diagram that
showcases a superconducting dome, proximity to a putative
quantum critical point, Lifshitz transitions, a multi-gap pair-
ing state and unusual normal-state transport properties. Re-
search has also extended beyond bulk SrTiO3, ushering the new
field of SrTiO3-based heterostructures. Because many of these
themes are also featured in other quantum materials of con-
temporary interest, recent years have seen renewed interest
in SrTiO3. Here, we review the challenges and recent progress
in elucidating the superconducting state of this model system.
At the same time that its extreme dilution requires to revisit
several of the approximations that constitute the successful
Migdal–Eliashberg description of electron–phonon superconduc-
tivity, including the suppression of the Coulomb repulsion via
the Tolmachev–Anderson–Morel mechanism, it opens interesting
routes for alternative pairing mechanisms whose applicability
remains under debate. For instance, pairing mechanisms involv-
ing longitudinal optical phonons have to overcome the hurdles
created by the anti-adiabatic nature of the pairing interaction,
whereas mechanisms that rely on the soft transverse optical

✩ All authors participated equally in the preparation of this review paper.
✩✩ This article is part of the Special Issue: Eliashberg theory at 60.

∗ Corresponding author.
E-mail address: rfernand@umn.edu (R.M. Fernandes).

https://doi.org/10.1016/j.aop.2020.168107
0003-4916/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.aop.2020.168107
http://www.elsevier.com/locate/aop
http://www.elsevier.com/locate/aop
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aop.2020.168107&domain=pdf
mailto:rfernand@umn.edu
https://doi.org/10.1016/j.aop.2020.168107


2 M.N. Gastiasoro, J. Ruhman and R.M. Fernandes / Annals of Physics 417 (2020) 168107

phonons associated with incipient ferroelectricity face challenges
related to the nature of the electron–phonon coupling. Proposals
in which pairing is mediated by plasmons or promoted locally
by defects are also discussed. We finish by surveying the ex-
isting evidence for multi-band superconductivity and outlining
promising directions that can potentially shed new light on the
rich problem of superconductivity in SrTiO3.

© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

Doped SrTiO3 (STO) was discovered to superconduct in 1964 [1], only 7 years after the BCS
theory and 4 years after the Eliashberg theory [2] were published. This was the first example of
a superconductor that cannot be described by the BCS-Eliashberg paradigm, and may therefore be
identified as the first unconventional superconductor. Its unconventional character does not refer
to a non-trivial gap symmetry, but to the fact that it does not seem to arise from the most standard
electron–phonon pairing mechanism. Motivated by the idea that semiconductors could be useful
systems for studying superconductivity, the theoretical work by Cohen [3,4] prompted the discovery
of superconductivity in STO and other degenerate semiconductors [5,6]. Yet, despite more than
50 years of intense experimental and theoretical activity, the origin of superconductivity in this
material remains an open problem in quantum condensed matter physics.

Recently, several groups have revisited this fascinating problem, applying advanced experimental
and theoretical techniques that were developed over the past decades to study quantum materials.
On the theoretical front, one of the main challenges is on how to extend the very successful Migdal–
Eliashberg theory of electron–phonon superconductors [7] to such a dilute system. Establishing such
a theoretical framework would clearly have an impact on the understanding of dilute supercon-
ductivity that emerges from other lightly-doped semiconductors and semimetals, such as Bi [8],
YPtBi [9], and PbTe [10]. In this regard, we note that the generalization of the Migdal–Eliashberg
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formalism to unconventional superconductors has been a very active area of research, although the
focus has been mostly on pairing mechanisms that do not involve electron–phonon coupling (see,
e.g. [11]).

One of the appeals of studying STO as a model system is that its phase diagram shares
important features with a variety of quantum materials that are at the forefront of research in
superconductivity [12]. This includes the emergence of a superconducting dome as a function of
carrier concentration, the existence of strong quantum fluctuations, the interplay with structural
instabilities, and the correlation with unusual normal-state transport properties. In this paper, we
provide an overview of what we consider to be the most fascinating challenges for the elucidation
of superconductivity in STO, discussing possible paths forward. Our focus will thus be on the
superconducting state of STO, and on why it still defies our understanding. Of course, given the
many decades of research dedicated to this problem, important topics will not be covered here. We
refer the interested reader to other reviews on STO (see e.g. Collignon et al. [13]).

1.1. Brief summary of the essential experimental results

We start with a brief summary of the milestones in the experimental literature that provide
the essential information required to set up the problem of superconductivity in STO. Following
the experimental discovery by Schooley et al. [1], Koonce et al. published an extended data set in
1967 [19] showing that the superconducting Tc exhibits a dome as a function of density, starting
around n ∼ 1018 cm−3 and ending above n ∼ 1021 cm−3. This corresponds to a tiny fraction x
of electrons per unit cell, as shown schematically in Fig. 1(a) (for the actual experimental phase
diagram, see Fig. 2). Strikingly, Tc depends very weakly on the density in this large window and
stands roughly at a few hundreds mili-Kelvin.

Since undoped STO is a semiconductor, it is useful to contrast these numbers with the theory
for superconductivity of doped semiconductors developed by Gurevich, Larkin, and Firsov (GLF
theory) [20]. In this theory, the role of the Debye frequency ωD in the usual BCS theory of
superconductivity is replaced by the longitudinal optical phonon frequency, ωL. In STO, ωL is of
the order of 100 meV [21,22]. In contrast, the Fermi energy varies between 2 and 60 meV in the
density range specified above [14], which clearly violates the conditions of applicability of the
standard Migdal–Eliashberg theory (ωD ≪ ϵF ) [7]. Actually, STO has the highest ωD/ϵF ratio among
all superconductors, including other dilute systems such as Bi [see Fig. 1(b)].

Recently, the interest in the superconducting state of STO has re-emerged and a number of
key results have been obtained. First, the low-density bound on superconductivity was pushed
to even lower densities ∼ 1017 cm−3 [14,23], where quantum oscillations indicate that the Fermi
surface is still sharp [24]. They also indicate multiple Lifshitz transitions, i.e. transitions in which the
number of bands crossing the Fermi level increases [see insets of Fig. 1(a)]. The superconducting
state was shown to be robust against disorder, which was interpreted as a signature of s-wave
pairing [25]. Tunneling experiments at high densities showed that the ratio of kBTc/∆ fits the
prediction of weak-coupling BCS theory, although the coupling to longitudinal optical modes (the
modes considered in GLF theory) is very strong [26]. Finally, the bulk superconducting transition
temperature, as identified from magnetic susceptibility and specific heat measurements, was found
to deviate significantly from the resistive superconducting transition temperature, which is an
indication of filamentary superconductivity [13,27].

In addition to superconductivity, STO also has a huge static dielectric constant ε0 ≈ 2×104 [28].
The large ε0 is a manifestation of a nearby paraelectric–ferroelectric quantum phase transition
[29,30]. Classically, the lowest energy configuration of the crystal, as determined by first-principles,
involves a ferroelectric distortion of the oxygen octahedron [see insets of Fig. 1(c)]. However,
long-range order is prevented by quantum fluctuations. Consequently, there is a low-energy 1
meV optical phonon mode [21,31–33], which remains soft even when the system is doped with
carriers [34–36].

The existence of a soft bosonic mode, and of a putative ferroelectric quantum critical point
(QCP) associated to it, has recently motivated many theoretical and experimental studies [37].
Edge et al. proposed that the pairing interaction in dilute STO is mediated by critical ferroelectric
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Fig. 1. (a) Tc as a function of density in units of electrons per formula unit (schematic, based on Ref. [14]). Dashed
vertical lines mark Lifshitz transition points. Insets are the Fermi surfaces around the Γ -point. (b) The Migdal ratio
ωD/ϵF for different materials. The values for STO, YPtBi and Bi are taken from Refs. [15–18]. The red strip corresponds to
ϵF in the density range of the SC dome [14]. (c) STO naturally lies on the verge of a ferroelectric quantum critical
point (QCP) separating a paraelectric and a ferroelectric phase. The transition is structural, between tetragonal and
non-centrosymmetric structures (see inset). Pristine STO is paraelectric. Doping with Ca or 18O drives STO through the
transition. (d) The cubic-to-tetragonal structural antiferrodistortive transition at 105 K. The order parameter spontaneously
breaks the cubic symmetry, selecting an axis among X, Y and Z. As a result, at low temperatures, STO is heterogeneous
and filled with X, Y and Z domains. Conductivity is enhanced at the domain walls separating these regions (indicated
by the red arrow). Whether these domains play an important role in superconductivity remains an open question. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. The superconducting phase diagram of doped STO, from Ref. [14]. The lower concentrations are achieved via O
reduction and the higher concentrations, via Nb doping. The dashed lines mark the Lifshitz transitions where additional
bands cross the Fermi level. The red superconducting dome refers to the LaAlO3/SrTiO3 interfaces. The original data by
Schooley et al. is shown by the pink circles [1].
Source: Figure reproduced with permission from Ref. [14].
© 2014 by the American Physical Society.

fluctuations [38]. This idea has similarities to proposals that magnetic quantum critical fluctuations
provide the pairing glue in strongly correlated materials [39,40]. As a result, the interplay between
the ferroelectric transition and superconductivity has been intensively studied experimentally by
tuning superconducting STO through the ferroelectric critical point. This has been accomplished
by Ca doping [41], oxygen isotope substitution [42], La doping [43], hydrostatic pressure [44] and
strain [45,46] [see Fig. 1(c)]. In all cases, an enhancement of Tc when approaching the critical point
has been observed. However, more results are needed to establish whether a superconducting dome
is formed around the QCP, as theory predicts.

The softness of the oxygen sublattice in the STO crystal is also manifested in a structural
antiferrodistortive (AFD) transition from cubic to tetragonal as the temperature is lowered below
TAFD = 105 K. The existence of this transition causes another optical phonon branch to become
soft near the zone boundary [31]. More importantly, the spontaneous symmetry breaking below
the transition leads to a noticeable heterogeneous structure [see Fig. 1(d)]. At low temperatures,
different tetragonal domains proliferate in the sample [47], separated by domain walls [48]. Kalisky
et al. found that the conductivity is enhanced along these defects [49], which have also been
associated to the observation of a locally higher Tc [50,51].

In 2004, Othomo and Hwang [52] discovered that a two-dimensional electron gas forms at the
interface between a thin LaAlO3 film and a pristine SrTiO3 substrate. The electronic properties of the
two-dimensional gas resemble those of bulk STO. Importantly, the 2D state is also superconducting,
with a Tc value similar to that of the bulk [53]. A superconducting dome also emerges as a function
of density [54], which can be controlled continuously via gating (see Fig. 2). The similarity between
the transition temperatures of the bulk and of the interface raises the question of whether the two
systems share the same microscopic pairing mechanism.

The normal state of STO is also unusual, as its resistivity displays an unexpected temperature
dependence. At low temperatures, it exhibits a strong T 2 behavior [55–57], which is not expected
due to the tiny Fermi surface [56]. The T 2 coefficient was also argued to violate the Kadawoki–
Woods scaling [58,59]. At higher temperatures, the T 2 behavior switches to a T 3 behavior, and
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the resistivity becomes so large that it cannot be explained by standard Drude theory [60]. An
interesting unresolved question is whether these unconventional transport properties might be
related to the soft modes that have been proposed to provide the pairing interaction at low
temperatures.

1.2. Challenges for a microscopic description of low-density superconductivity

As shown in Fig. 2, STO exhibits superconductivity at very low density n ∼ 1017 cm−3

[1,14,23,24], corresponding to a very small Fermi energy (∼ 1 meV). In conventional Migdal–
Eliashberg theory, the electronic attraction comes from the exchange of longitudinal phonons,
whose typical frequencies are much smaller than the Fermi energy [61]. The electrons and phonons
couple to each other through the retarded, short-ranged deformation potential generated by the
displacement of the atoms in the crystal [62]. Extensions of the standard Migdal–Eliashberg theory
to explain the superconductivity in STO requires addressing several issues, such as:
(i) The Migdal criterion is violated — In contrast to conventional superconductors, where the
ratio between the Fermi energy and the phonon frequency is of the order of ωD/ϵF ∼ 10−2–10−3,
the ratio in STO is ωD/ϵF ∼ 1–102 [see Fig. 1(b)]. The system is said to be in the anti-adiabatic
regime, outside the range where the Migdal approximation can justify the omission of vertex and
other corrections [63–65]. As a result, which Feynman diagrams must be included in a generalized
Migdal–Eliashberg theory remains an open question.
(ii) The Coulomb repulsion may not be efficiently suppressed — In standard Migdal–Eliashberg
theory, the high-energy cutoff is usually set at the Fermi energy, below which the Coulomb
repulsion is short-ranged and essentially independent of frequency (since the plasmon frequency is
much larger than ϵF ). The use of a sharp cutoff is justified by the fact that the interaction is nearly
frequency independent over the wide range of frequencies ωD < ω < ϵF , which makes the end
result depend only logarithmically on the cutoff (the Tolmachev logarithm, see [66]). In this case,
the impact of the Coulomb repulsion on Tc is strongly suppressed by pair excitations in the range
ωD < ω < ϵF , giving rise to the so-called Anderson–Morel Coulomb pseudo-potential [67]. In the
low-density regime, however, the effectiveness of this Tolmachev–Anderson–Morel mechanism in
suppressing the Coulomb repulsion is much less obvious [68], as the pairing interaction is expected
to display a significant frequency-dependence for energies near ϵF . This also causes the value of Tc
to depend strongly on the energy cutoff, making its precise location important [69,70].
(iii) The density of states is very small — In three-dimensional systems such as STO, the density of
states ν vanishes in the limit of zero density. As a result, the BCS coupling strength λ = νV0 arising
from the phonon-mediated interaction V0 is suppressed by the same amount as the density of
states. Given that this coupling goes in the exponent, it makes the predicted Tc ∼ ωD exp [−1/νV0]
immeasurably small. Of course, in the very dilute regime, the BCS logarithm from which the
equation above is derived disappears, and the attractive interaction must overcome a threshold
value to cause pairing. As a result, the standard Migdal–Eliashberg approximation of considering
only states near the Fermi level needs to be revisited, as the gap function may depend substantially
not only on frequency, but also on momentum [71].

1.3. Possible mechanisms for superconductivity

In the previous subsection we have argued that the standard Migdal–Eliashberg approach cannot
be applied in a straightforward way to describe the superconducting state of STO. In this subsection,
we discuss several ideas, some of which attempt to generalize the Eliashberg theory, that have been
put forward to circumvent the issues (i)–(iii) discussed above.

1.3.1. Long-range electron–phonon interaction
We start with issue number (iii), and with the seminal work of Gurevich, Larkin and Firsov

(GLF) [20]. In this paper the authors studied the bounds on superconductivity in semiconductors.
The main premise was to point out that long-range attractive interactions can cause a relatively
high transition temperature in spite of the low density of states. For instance, let us consider
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as a toy model the case of an attractive Coulomb interaction V ≃ −4πe2/εq2. In such a case,
the dimensionless coupling strength characterizing this interaction is the dimensionless density
rs = α/aBkF , where aB is the Bohr radius and α = (9π/4)

1
3 . Thus, the coupling strength is enhanced,

rather than suppressed, in the low-density limit.
GLF pointed out that such an attractive interaction appears naturally in polar crystals through

the exchange of longitudinal optical (LO) phonons (see Section 3 for an extended discussion). The
exchange of these phonons renormalizes the Coulomb repulsion and adds a dynamical contribution
from the lattice in the long-wavelength limit. For example, in the case of a single LO mode we obtain
the screened Coulomb interaction

VC (ω, q) =
4πe2

εc(ω, q → 0)q2
(1)

=
4πe2

ε∞q2

[
1 −

(
1
ε∞

−
1
ε0

)
ω2

L

ω2
L − ω2

]
where ε0 and ε∞ are the low and high frequency dielectric constants and ωL is the LO phonon
frequency. Given that ε0 > ε∞ the second term is attractive. The long-range character of this term,
manifested by its 1/q2 dependence, arises from the absence of electronic screening in the very dilute
regime.

GLF argued that as long as ωL is much smaller than the Fermi energy ϵF , the Migdal criterion is
obeyed and the standard BCS approach can be applied. They obtained a non-negligible Tc in spite of
the small density of states typical of a doped semiconductor. In this analysis the Coulomb repulsion
Eq. (1) is transmuted into attraction via the standard Coulomb pseudo-potential method [67]. Thus,
while this yields a possible solution of issue number (iii), it does not address issues (i) and (ii).

More generally, we may consider the entire dynamics of the dielectric constant, including
contributions from the electronic liquid itself (i.e. the plasmonic modes) in addition to the LO
phonons. This was first studied by Takada in 1978 [72]. The straightforward generalization to in-
clude plasmons raises a few theoretical issues. The main one is that the plasmon resonance typically
occurs at an energy scale comparable to the Fermi energy and, therefore, suffers from issues (i) and
(ii) above [64,73]. Despite these drawbacks, Takada solved the Eliashberg equations [72,74–76] and
found a solution in the large rs limit, which remains an important observation.

Thus, the dynamically screened Coulomb repulsion provides an effective pairing mechanism in
systems with low density of states. It is especially relevant to polar crystals where in addition to the
plasmonic mode there are also the LO modes considered by GLF. Thus, this mechanism seems highly
relevant for STO. However, for the theory to be controllable, a pseudo-potential mechanism must
be invoked to avoid the strong Coulomb repulsion. The usual pseudo-potential mechanism requires
that the polar mode frequencies (LO phonons and plasmons) are smaller than the Fermi scale, which
does not apply to STO across the entire range of concentrations where superconductivity is seen.
We will return to this mechanism in Section 3.

1.3.2. Soft bosonic modes
The most important conclusion from GLF theory is that long-range attractive interactions, intrin-

sic to low-density systems, provide a possible pairing glue. As we saw, however, the dynamically
screened Coulomb repulsion proposed in GLF theory becomes problematic if the density is too
low, because the Fermi energy always becomes smaller than the LO phonon frequency. Thus, it
is important to identify alternative sources for long-range attractive interactions.

On quite general grounds, long-range interactions arise when soft bosonic modes couple to the
states at the Fermi surface with zero momentum transfer. The interaction mediated by such a mode
is given by

V αβγ δS (k, k′
;ω, q) = −Ai

αβ (k; q)Aj
γ δ(k

′
; −q)χij(ω, q) (2)

where Aαβ (k; q) is the coupling matrix element of electronic states at |k, α⟩ and |k + q, β⟩, while
χij(ω, q) is the bosonic propagator. Here, Greek letters (α, etc.) denote spin and Latin letters (i, etc.)
denote the components of the bosonic field. When the bosonic mode is soft, the static susceptibility
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χ diverges, usually according to 1/q2 in the zero-frequency limit. Thus, as long as A remains finite
at vanishing momentum transfer, the resulting interaction (2) is long-range. In some cases, the
attraction may even be in a non s-wave channel.

These conditions are naturally fulfilled in two well known cases: (i) at quantum critical points;
and (ii) inside an ordered phase where a continuous symmetry has been broken and a Goldstone
mode exists. It is important to note that for the second case a sufficient condition for A to remain
finite at q → 0 is that the generators of the symmetry that is being broken do not commute with
the momentum operator [77].

Acoustic phonons are essentially Goldstone modes, and therefore can potentially lead to long-
range interactions of the form (2). However, because they result from the breaking of translational
symmetry, which is generated by the momentum itself, they do not couple to the electronic
density at q → 0. Indeed, the electronic coupling to acoustic phonons is given by the gradient,
i.e. A(q) = −iqD/

√
ρ at small q, where D is the deformation potential and ρ is the mass density.

A natural candidate for a soft mode in STO, as explained above, is the transverse optical phonon
mode associated with quantum ferroelectric fluctuations. Edge et al. [38] have proposed that the
bosonic fluctuations close to the ferroelectric quantum critical point are responsible for the super-
conducting dome in lightly doped STO. The proposal has spurred much interest [44,69,70,78–83]
and experimental activity [41–45,83]. We will discuss more about these ideas in Section 3.

1.3.3. The rise and fall of intervalley phonons
In 1964, Cohen identified an elegant way for electrons to couple strongly to phonons despite the

gradient coupling discussed in Section 1.3.2 [4,19]. In particular, he pointed out that when there are
multiple small Fermi pockets (or valleys) separated by momenta comparable to the Brillouin zone
(BZ) size, then phonon processes involving pair scattering between the pockets can carry a large
momentum transfer. This can lead to a BCS interaction of the form

VS(ω, k − p)c†
k,1c

†
−k,1c−p,2cp,2 (3)

where c1 and c2 denote the electronic states on different pockets. Since the momentum transfer
q = k−p is comparable to the BZ size, even the gradient coupling can be large. Such a soft phonon
mode exists in STO due to the antiferrodistortive transition at 105 K [84].

However, it was later understood that the electronic states in lightly doped STO lie in a single or
in multiple pockets all centered around the Γ -point of the BZ [85,86]. This rules out the option of
intervalley processes as promoting pairing. Later on, Ngai [87] proposed that the gradient coupling
can be avoided also if two-phonon processes are considered. However, this is a higher order term,
which is typically small.

1.3.4. Other possible mechanisms
So far, we have focused on possible pairing mechanisms based on long-range attraction. In this

subsection, we will briefly discuss some alternative ideas to bypass some of the issues (i), (ii) and
(iii), which have not been fully explored yet.

One elegant manner in which the issue of low density of states (iii) can be circumvented is
by reducing the dimensionality. This is because in one and two dimensions the density of states
is not necessarily reduced in the low-density limit. It is interesting to point out that Kalisky
et al. [49] found enhanced conductivity on the domain walls between different tetragonal distortion
orientations [see Fig. 1(d)]. These were later speculated to be the source of lower-dimensional super-
conductivity in STO by Pai et al. [50]. It is not clear if the rich phenomenology of superconductivity
in STO can be explained by two-dimensional superconductivity residing on domain walls, but it is
definitely a promising direction of research.

Another line of reasoning is that of localized modes. Gor’kov has conjectured that the attractive
interactions in STO are instantaneous [88], i.e. the Coulomb repulsion is over-screened, due to
the multiple longitudinal modes present in STO. Such an interaction would avoid the issue of
introducing a Coulomb pseudo-potential to reduce the Coulomb suppression of Tc [66,67] [issue
(ii)]. Under this assumption, the phase diagram of doped STO was reproduced in Ref. [88]. However,
such an over-screening of the Coulomb interaction is not usually possible in a classical dielectric
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Table 1
(a) Frequencies of the polar optical phonons Γ −

15 at room temperature extracted from
infrared [21] and Hyper-Raman [32] experiments. The numbering of the modes is
in order of increasing frequencies. The frequency values for the soft TO1 phonon
appearing in brackets correspond to the frequencies at T = 4 K and T = 300 K,
respectively. (b) Parameters (in meV) of the tight-binding model of Eq. (6), fitted to
the DFT electronic structure. The mass enhancement of 2 is doping independent [58],
see also Fig. 5.
(a) Lattice properties

TO mode ωi [meV] LO mode ωi [meV]

TO1 (1, 11.3) LO1 21.3
TO2 21.7 LO2 58.7
TO3 67.4 LO3 98.1

(b) Electronic properties

t1 t2 ξ ∆

615 35 19.3 −2.2
ϵ0 µ(nc1) µ(nc2) m∗/m∗

th
12.2 4.7 31.8 2

medium [73]. In a follow-up paper [89], Gor’kov proposed that if the contribution from local
polar defects is added, in addition to the screening from the perfect lattice, such an instantaneous
attraction can be generated. While the suitability of this idea to STO remains to be established, it
is interesting to connect it to a recent experiment where the existence of these defects and their
strong interaction with the electrons was demonstrated [90].

A third interesting proposal for instantaneous attraction, that is somewhat related to the previous
one, has been raised by Geballe [10,91]. The idea is that certain dopants that have ‘‘skipping valence’’
naturally produce strong local attractive interactions on the dopant sites. Such a situation may occur
in oxygen vacancies that skip directly between Ti3+−VO−Ti3+ and standard Ti4+−VO−Ti4+. In this
situation, the attraction is generated locally and its strength would thus depend on the fraction of
oxygen vacancies present in the lattice.

2. Normal state properties

2.1. Lattice properties

STO has a cubic perovskite structure (Pm3̄m) at room temperature, as shown in Fig. 3(a). Five
atoms per unit cell (Sr2+, Ti4+ and 3 O2−) give rise to 3 acoustic-phonon branches and 12 optical
branches at a general k point in the Brillouin zone. At the zone center (q = 0), a group theory
analysis finds three polar optical Γ −

15 modes in addition to the acoustic modes at ω = 0 and a triply
degenerate optical nonpolar/normal Γ −

25 mode (see for example Ref. [92]).
The ionic displacement associated with the polar modes produces an electric dipole moment, as

illustrated in Fig. 3(b), due to the relative motion of the cation (either Ti or Sr) with respect to the
anion (oxygen). Due to this coupling between the lattice displacement and the electric polarization,
the polar phonon modes are subject to long-range Coulomb interactions. As a result, each of the
polar modes splits, at the zone center, into one longitudinal optical (LO) mode with frequency ωL,j
and one doubly degenerate transverse optical (TO) mode with frequency ωT ,j. The frequencies of
these three pairs of LO and TO phonons have been extensively studied in the literature [21,32] and
are summarized in Table 1. The large TO/LO splittings indicate the strong polar character of this
material.

The dielectric function of STO can be approximated using a generalized Lyddane–Sachs–Teller
(LST) relation [94,95]

εp(ω, q) = ε∞

3∏
j=1

ω2
L,j − ω2

ω2
T ,j − ω2

. (4)
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Fig. 3. Lattice properties of STO. Panel (a) represents the unit cell of the cubic paraelectric phase. Panel (b) illustrates
the lattice distortion associated with ferroelectricity. Panel (c) shows the unit-cell doubling taking place at the
antiferrodistortive transition (cubic-to-tetragonal) due to staggered rotation of the oxygen octahedra. (d) Inverse dielectric
constant 103/ε(T ) as function of temperature. From Ref. [29]. (e) Softening of the TO mode ωT ,1(T ) associated with
ferroelectricity extracted from hyper-Raman measurements [93]. The splitting of the mode at TAFD = 105 K is due to
the antiferrodistortive transition. Panel (d) reproduced with permission from Ref. [29]. Copyright 1979 by the American
Physical Society. Panel (e) reproduced with permission from Ref. [93]. Copyright 2000 by EDP Sciences.

where the optical frequencies ωT ,j and ωL,j are listed in Table 1. They are approximately constant,
except for the soft mode ωT1, which is very sensitive to perturbations such as temperature T , doping
n, and external electric fields E. We can summarize these dependencies (at low temperatures) in
the phenomenological equation

ω2
T ,1(q, T , E, n) = ω2

0 + (cTq)2 + (γTT )2 + (γEE)2 + γnn (5)

where cT ≈ 5meV nm [31], γT ≈ 6.3 × 10−2 meV/K [30], γE ≈ 10−3 meV cm/V [96] and γn ≈

1.8 × 10−19 meV2 cm3 [34,36]. Here, q is the momentum. To obtain the corresponding dependence
of the dielectric constant, one simply substitutes Eq. (5) in Eq. (4).

Eq. (4) shows that a ferroelectric transition, ε0 → ∞, implies a softening of one of the TO modes.
In STO, as the temperature is lowered, the static dielectric function steadily increases from 300 to
2×104 following a Curie–Weiss behavior ε0(T ) ∝ (T −T0)−1 that signals a ferroelectric instability at
around T0 ∼ 36 K [see Fig. 3(d)]. However, the enhancement levels off below 40 K and the dielectric
constant saturates, such that STO remains paraelectric down to the lowest temperatures. This
behavior has been assigned to a crossover from a classical paraelectric to a quantum paraelectric
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state, in which the ordered state is suppressed by quantum fluctuations [29,30]. In agreement with
the lattice dynamical theory of Cochran [97], the softening of the TO phonon mode related to the in-
cipient ferroelectricity [see Fig. 3(b)] has been extensively reported in infrared spectroscopy [98,99],
neutron scattering [92,100,101], and Raman experiments [32,34,93]. The temperature dependence
of this so-called ferroelectric (FE) soft mode is shown in Fig. 3(e), going from 11 meV at room
temperature down to 1 meV at around 5 K, but never reaching condensation on cooling.

STO can nevertheless be tuned into the ferroelectric phase in various ways, as discussed in
Section 1. The first experiments used uniaxial strain applied along the pseudocubic directions
[100] and [110] to tune STO across the ferroelectric transition [102,103]. More recently, room-
temperature ferroelectricity in STO films was obtained by exploiting the epitaxial strain imposed by
the substrate Ref. [104]. The fact that other Ti-based perovskites display ferroelectricity motivated
the use of chemical substitution on the cation site to tune STO across the FE transition. Substitution
of Sr with very low concentrations of a Z cation Sr1−xZxTiO3 such as Ca (xc = 0.0018) [105], Ba
(xc = 0.035) [106] or Pb (xc = 0.002) [107] was found to induce ferroelectricity at a critical doping
concentration xc . Isotope substitution of oxygen 16O by 18O at xc = 0.33 triggers a finite ferroelectric
transition temperature as well [108,109].

At TAFD = 105 K, STO undergoes a cubic-to-tetragonal structural transition (to space group
I4/mcm), with a small distortion c/a = 1.00056 [110]. The associated zone-corner R-point optical
(nonpolar) phonon R25 becomes soft at the transition [111]. Across it, the positions of the Sr
and Ti atoms remain fixed, while the oxygen octahedra rotate about one of the cubic axes, with
opposite rotation in adjacent cells, as illustrated in Fig. 3(c). For this reason, this is known as an
antiferrodistortive (AFD) transition, and the primitive unit cell is doubled below it. The axis about
which the octahedral rotation happens is elongated in the tetragonal phase. Therefore, in unstrained
samples, there is domain formation with the three possible orientations of the octahedral rotation
about the cubic axes [see Fig. 1(d)]. A polarized Raman study recently mapped these domains in the
tetragonal state [112]. The presence of domain walls may have an impact on superconductivity, as
we discuss in more detail in Section 5.

The symmetry-breaking at the AFD transition also reconstructs the phonon spectrum. In par-
ticular, the symmetry of the FE soft phonon mode is lowered from the three-dimensional T1u
representation to a two-dimensional Eu representation (with displacements perpendicular to [001])
and a one-dimensional A2u representation (with displacements along [001]) below TAFD, with the
corresponding phonon frequencies splitting as ωEu < ωA2u (see Fig. 3(e)). Moreover, new even-
parity phonon modes appear at the zone center due to the doubling of the unit cell. Because of its
finite electron–phonon matrix element, the A1g soft phonon has also been proposed as a source of
attraction for superconductivity [113].

2.2. Electronic structure

In terms of its electronic properties, STO is a band insulator with a 3 eV gap between the occupied
oxygen 2p bands and the unoccupied Ti 3d t2g bands [114]. In the low-temperature tetragonal phase,
DFT band structure calculations [55,85,115] find three electron bands around the zone center with
4 meV and 27 meV energy splittings at k = 0 [see Fig. 4(a)].

The low-energy band structure can be successfully described by a minimal tight-binding model
[55,115,116] H =

∑
k ψ

†
kH(k)ψk , where the spinor ψ†

k is expressed in the t2g basis (yz ↓, xz ↓

, xy ↑). H(k) includes the triply degenerate t2g orbitals, the atomic spin–orbit coupling term Hξ ,
and a tetragonal crystal field term H∆,

H(k) = H0(k) + Hξ + H∆ (6)

=

(
ϵX (k) 0 0
0 ϵY (k) 0
0 0 ϵZ (k)

)
+
ξ

2

(0 −i 1
i 0 i
1 −i 0

)

+∆

(1 0 0
0 1 0
0 0 −2

)
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Fig. 4. (a) Band dispersions for the tight-binding model of Eq. (6) with parameters specified in Table 1. They reproduce
the DFT results very well at low energies [55]. The dashed lines nci indicate the concentrations where Lifshitz transitions
take place. The Fermi surfaces for three chemical potential values µi indicated in (a) (gray lines) are shown in (b) µ1 = 3
meV (one-band), (c) µ2 = 15 meV (two-bands) and (d) µ3 = 40 meV (three-bands). In all panels k is in units of π

a . (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where,

ϵi(k) = ϵ0 + 4t1
∑
j̸=i

sin2
(
kj
2

)
+ 4t2 sin2

(
ki
2

)
− µ. (7)

In the cubic phase, spin–orbit coupling lifts the sixfold degeneracy of the dyz , dxz and dxy orbitals into
a quartet Γ +

8 (j = 3/2) with energy −ξ/2 and a doublet Γ +

7 (j = 1/2) with energy ξ . The tetragonal
crystal field that onsets below TAFD = 105 K further breaks the four-fold degeneracy of the lower
state Γ +

8 into two-fold degenerate states. Fig. 4(a) shows the resulting band dispersion fitted to
the DFT band structure with parameters specified in Table 1. Note the substantial anisotropy of the
lowest band, by comparing its dispersion along the [001] and [100] directions. The strong directional
dependence of this band is also manifested in the shape of the Fermi surface, as shown by the
blue surface in Fig. 4(b)–(d), which correspond to chemical potential values of µ1 = 3 meV (one-
band filled), µ2 = 15 meV (two-bands filled) and µ3 = 40 meV (three-bands filled), respectively.
The middle (orange) and upper (green) bands, on the other hand, are more isotropic and display
quasi-spherical Fermi surfaces.
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Fig. 5. Electronic density dependence of the Sommerfeld coefficient γ measured from specific heat experiments (black
points) and calculated using the tight-binding model in Fig. 4(a) (red points), as reported in Ref. [58]. Note that the
theoretical values must be multiplied by a density-independent mass-enhancement factor of 2 to agree with the data.
Source: Figure reproduced with permission from Ref. [58].
© 2019 by the American Physical Society.

A finite density of mobile electrons can be introduced in STO by n-type doping with Nb, La,
or oxygen vacancies. This leads to a very dilute metallic state with densities as low as 8 × 1015

cm−3 [117], which however displays a sharp Fermi surface as seen by quantum oscillations for
densities of the order of 5×1017 cm−3 [24]. The main features of the DFT electronic band structure
[Fig. 4(a)] agree with detailed Shubnikov–de Haas measurements of O deficient and Nb-doped
STO [14]. In particular, the multiple quantum oscillation frequencies observed experimentally as
the carrier concentration increases signal the onset of two Lifshitz transitions at nc1 = 1.2 × 1018

cm−3 and nc2 = 1.6 × 1020 cm−3. At these Lifshitz transitions, the chemical potential moves up in
energy, such that the closest electron-like band sinks below the Fermi level (see Fig. 4). The impact
of these Lifshitz transitions on the superconducting state will be further discussed in Section 4.

As the carrier concentration increases, quantum oscillations and specific heat measurements
show that the effective electron mass m∗ increases from about 2me at low doping to about 5me
at large doping, where me is the mass of the electron [14,58]. This doping-dependent enhancement
of m∗ is not a consequence of electronic interactions, but rather a result of the anisotropic character
of the bands. Indeed, as shown in Fig. 5, the ratio between the experimentally extracted m∗ and the
theoretical m∗

th determined from the tight-binding model fit to DFT calculations [Eq. (6)] remains
m∗/m∗

th ≈ 2 for the entire range of doping concentrations investigated [35,55,58].

3. Microscopic pairing mechanisms

In Section 1 we discussed why the observation of superconductivity in STO is surprising, and
briefly described the theoretical scenarios that have been proposed to understand this puzzling
observation. In this section we delve deeper into some of these theoretical ideas, focusing on their
technical details and on the remaining issues they raise.

3.1. The dynamically screened Coulomb interaction

The electron–electron interaction in STO is well understood, and is given by the dynamically
screened Coulomb interaction:

VC (ω, q) =
4πe2

ε(ω, q)q2
(8)

The key point is that there are two sources of screening, one arising from the polar phonons
[with corresponding dielectric constant εp(ω, q)] and another one from the electronic liquid [with
corresponding dielectric constant εe(ω, q)]:

ε(ω, q) = εp(ω, q) + εe(ω, q) (9)
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As described in Section 2, the phonon contribution comes from three dynamical modes (correspond-
ing to three pairs of longitudinal and transverse optical phonon branches) and can be approximated
by Eq. (4). The contribution from the electronic subsystem is given, within the random-phase
approximation, by:

εe(ω, q) = −
4πe2

q2
Πe(ω, q) (10)

where Πe(ω, q) is the electronic polarization bubble.
The main question is: can the interaction in Eq. (8) explain the superconducting state of STO? In

the standard case of a longitudinal phonon-mediated interaction with ωL ≪ ϵF , the pairing problem
can be solved via the standard Eliashberg equations [20]. In diagrammatic terms, it corresponds to
neglecting vertex corrections (which is justified by Migdal theorem) and computing the Nambu
self-energy self-consistently via the rainbow diagram. It also neglects the feedback of the fermions
on the phonons mediating the interaction, which is also justified by Migdal theorem. In the STO case,
it is not obvious that these are the only diagrams that must be considered, particularly for energies
larger than ϵF [64]. One possible way to proceed is to write down the Eliashberg-like equations and
then afterwards check how/if the contributions from other diagrams affect the outcome. Assuming
isotropic s-wave pairing within a single band, the Eliashberg equations are given by:

φ(iωn, k) = −
T

ν(2π )3
∑

|n′|<nc

∫ kc

0
dp p2

φ(iωn′ , p)
D(iωn′ , p)

Γ (iωn − iωn′ , k, p) (11)

ξ̃ (iωn, k) = ξk +
T

ν(2π )3
∑

|n′|<nc

∫ kc

0
dp p2

ξ̃ (iωn′ , k′)
D(iωn′ , p)

Γ (iωn − iωn′ , k, p) (12)

Z(iωn, k) = 1 −
T

νωn(2π )3
∑

|n′|<nc

∫ kc

0
dp p2

ωn′Z(iωn′ , p)
D(iωn′ , p)

Γ (iωn − iωn′ , k, p) (13)

with bare pairing vertex:

Γ (iωn, k, p) =
ν

4π

∮
dΩpVC (iωn, k − p) . (14)

Here, Ωk is the solid angle of k, ν is the density of states at the Fermi level for a parabolic
band, T is the temperature, ωn = πT (2n + 1) are Fermionic Matsubara frequencies, D(iωn, k) =

[ωnZ(iωn, k)]2 + ξ̃ 2(iωn, k) + φ2(iωn, k), ξk = ϵk − µ, with µ(T = 0) = ϵF and ϵk denoting
the parabolic dispersion. kc and nc cut off the momentum integral and Matsubara frequency sum,
respectively. In addition to these three equations, the chemical potential µmust also be determined
self consistently to fix the total density [118]. The meaning of the three unknown quantities is
the usual one: Z denotes the imaginary part of the normal component of the self-energy; ξ̃ is the
renormalized dispersion due to the real part of the normal component of the self-energy; and φ,
proportional to the gap, is the anomalous component of the self-energy.

Before attempting to solve Eq. (11), important insight can be gained from the frequency de-
pendence of the pairing vertex in Eq. (14). Indeed, a standard approximation employed in solving
the Eliashberg equations consists of neglecting the dependence of the gap on the momentum k,
reducing the linearized problem to a matrix equation in Matsubara space (the appropriateness of
this approximation will be discussed below). First, we note that the pairing vertex is repulsive at
all Matsubara frequencies, including the static limit ωn → 0.

To understand how pairing can emerge from such a purely repulsive interaction, we quickly
revisit the standard case of electron–phonon superconductivity with ωD ≪ ϵF . The frequency-
dependent pairing vertex in this case can be roughly approximated by a step function, Γ (ωn) =

u − v θ (ωD − ωn), with u > v > 0 and a cutoff of the order of ϵF (see Fig. 6). Here, θ (x) is the
Heaviside step function. In this simplified BCS-like model, the interaction is always repulsive, but
the repulsion u is suppressed due to the contribution from an attractive part −v below the phonon
frequency wD. The gap equation admits a piece-wise solution with the gap changing sign at the
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Fig. 6. Typical pairing interaction vertex in a metal with dimensionless density rs of order 1 and with weak electron–
phonon coupling. The blue curve represents the sum of the dynamically screened Coulomb and longitudinal-phonon
mediated interactions. The red (dashed) curve represents an approximated interaction, see Ref. [67], which consists of a
constant repulsive contribution u that is partially reduced below ωD by an attractive contribution −v. Note that u > v > 0.

Fig. 7. The frequency dependence of the pairing vertex Γ of Eq. (14) for fixed momenta and carrier concentrations
n = 1017 cm−3 (a), n = 1019 cm−3 (b), and n = 1022 cm−3 (c). The plasmon frequency ωp , the Fermi energy ϵF , and the
longitudinal (LO) and transverse (TO) optical phonon frequencies are indicated by red arrows.

frequency ωD, yielding a BCS-like gap of the form ∆ ∼ exp [−1/(v − u∗)] (see, for instance, [119]).
Here, u∗ < u is the so-called Coulomb pseudo-potential, which is nothing but the repulsion u
suppressed by particle–particle excitations, u∗

= u/
(
1 + u ln ϵF

ωD

)
. We refer to this suppression of

the Coulomb repulsion as the Tolmachev–Anderson–Morel mechanism [66,67]. Thus, even though
v < u, a pairing state is possible as long as v > u∗.

Going now back to the pairing vertex in Eq. (14), the infinite frequency limit gives the bare
Coulomb repulsion. As the frequency is reduced, the dynamical modes (plasmons and longitudinal
polar phonons) come into affect and reduce the repulsion, which reflects the screening. In analogy
to the analysis above, each such reduction of the repulsion is essentially an attractive contribution to
the overall pairing interaction. Due to the density dependence of the electronic screening, however,
the frequency profile of the pairing vertex depends strongly on density.

In Fig. 7 we plot the pairing vertex, Eq. (14), in STO, as a function of Matsubara frequency for
three different values of the density: n = 1017 cm−3, n = 1019 cm−3 and n = 1022 cm−3. Important
frequencies are marked by red arrows. Note that here, for simplicity, we have considered a single
parabolic band with effective mass m∗

= 2me [55].
Focusing on Fig. 7(a), corresponding to the very low density limit n = 1017 cm−3, the frequency

dependent pairing vertex clearly displays two distinct steps. The first high-frequency step, starting
near the LO3 frequency (ωL,3 ∼ 100 meV, see Table 1), is the contribution from the longitudinal
optical modes of STO. Although there are essentially three optical modes in this range, their
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frequencies are close to each other, such that they become indistinguishable on this plot and behave
as a single resonance. The reduction is of the order of 102, reflecting a very strong coupling to these
modes (which is essentially a Fröhlich coupling). This is not surprising since, above these modes’
frequencies, the dielectric constant is O(1), whereas below this frequency range, it becomes O(104).
Thus, this reduction reflects the dimensionless gas parameter rs (defined in Section 1.3.1) taken
above the resonances (with ε∞), which is roughly 50. At a lower frequency, a small additional
reduction (of order 0.01) appears at the plasmon frequency ωp. Notice that the Fermi energy is
higher than the plasmon mode but lower than the optical phonons.

In the intermediate regime with n = 1019 cm−3, shown in Fig. 7(b), the plasmon frequency is
higher than the Fermi energy and hybridizes with the optical phonon modes. As a result, there is
essentially a single step of the pairing vertex in which the repulsion is suppressed. The Fermi energy
lies somewhere between the step and zero frequency.

Finally, in the high density regime with n = 1022 cm−3, displayed in Fig. 7(c), the plasmon
frequency reemerges as a well defined mode above the optical modes. As a result, there are again
two distinguishable steps resulting from the attractive contributions of the pairing interaction. Here,
the LO3 mode leads to a reduction of the repulsion of order 0.25, much smaller than the case in
Fig. 7(a). The reduction in the overall pairing interaction as function of doping is clear from the
comparison between the y-axis scales of the figure. This reflects the drop in the bare value of the
dimensionless density parameter rs. Note that the plots in Fig. 7 consider specific values of momenta.
As we will discuss later, the pairing vertex also depends on k and p.

Strictly speaking, the GLF theory [20] discussed in Section 1.3.1 applies to the situation plotted
in panel (c), in which the Fermi energy is clearly higher than the frequency of the optical mode,
where the smaller step in the pairing vertex takes place. The problem with applying the GLF theory
appears as the density is lowered, and the systemmoves to the anti-adiabatic limit of a Fermi energy
smaller than the phonon frequency. Concomitantly, the coupling to the optical modes grows with
decreasing density and eventually becomes much larger than 1.

Notwithstanding these issues, a variant of the Eliashberg equations (11), based on the Kirzhnits–
Maksimov–Khomskii (KMK) approximation [120], was solved in 1980 by Takada [74] using the
entire frequency range of the vertex (14) while ignoring the momentum dependence. The Tc
calculated from this approach agreed well with the experimental data of Ref. [1], as shown in
Fig. 8(a). More recently, in Ref. [121], a somewhat related calculation using the KMK approximation
including the full non-parabolic band structure in Eq. (6) was performed by Klimin et al. to explain
the isotope effect [42]. Rowley et al. [44] also used such an approximation to explain the carrier
concentration and pressure dependence of Tc in Nb-doped STO. The pairing interaction in these
works is mediated by hybrid longitudinal optical modes, which couple free carriers and ions.

Going beyond the KMK approximation, Wölfle and Balatsky solved the frequency-dependent
Eliashberg gap equation, assuming a momentum-independent gap function [70,79]. Their result for
Tc(n), shown in Fig. 8(b), agrees well with the experimental data also. To obtain Tc , Refs. [70,79]
used for the Matsubara frequency cutoff ωc the energy beyond which quasi-particles are no longer
well-defined, i.e. frequencies for which the imaginary part of the normal self-energy exceeds the
quasi-particle energy. This results in a cutoff larger than the Fermi energy. Ref. [79] argued that the
Eliashberg equations remain valid for energies up to the cutoff due to the fact that the coupling
remains weak at this energy scale. If the coupling constant is indeed small, vertex corrections can
be safely neglected and the absence of Migdal theorem – issue (i) in Section 1.2 – is no longer
a problem. A different point of view was put forward by Ruhman and Lee [69], who argued that
additional diagrams beyond those included in the standard Eliashberg equations must be considered
for energies larger than the Fermi energy. They also objected to the value of the cutoff used in
Ref. [79], noting further that due to the strong dependence of the pairing vertex with frequency
in the regime above ϵF , the choice of cutoff crucially affects the value of Tc . This ongoing debate
highlights the richness of the problem, and begs for further investigations in this direction.

A different approach to the Eliashberg equations (11) was taken by Ruhman and Lee in Ref. [73],
focusing specifically on the very low density limit n ∼ 1017 cm−3. They argued that, in this dilute
regime, even though the longitudinal phonon frequency is much larger than ϵF , there is another
bosonic mode whose frequency remains lower than the Fermi energy: the plasmon [see Fig. 7(a)].
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Fig. 8. Comparison between different theoretical predictions for Tc as function of the carrier density n in STO, compared
to experimental data. All calculations involve approximate solutions of the Eliashberg equations (11). Panel (a) refers
to [74]; panel (b), to [79]; and panel (c), to [73]. Panel (a) reproduced with permission from Ref. [74]. Copyright 1980
by the Physical Society of Japan. Panel (b) reproduced with permission from Ref. [79]. Copyright 2018 by the American
Physical Society. Panel (c) reproduced with permission from Ref. [73]. Copyright 2016 by the American Physical Society.

They contended that, because ωp < ϵF , the plasmon mode can provide the pairing mechanism,
and the approximations employed in the standard Eliashberg formalism are well justified. As a
result, the interaction in Eq. (8) was approximated by a single plasmon pole supplemented by a
phenomenological parameter η to reduce the high-frequency repulsion:

VC (iωn, q) =
4πe2

ε0q2

[
η −

ω2
p

ω2
n + ω2

p

]
(15)

Solution of the Eliashberg equations showed that the coupling to this mode is too small to lead to a
sizable transition temperature. To allow for a reasonable Tc , Ref. [73] considered ε0 as an additional
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Fig. 9. Transition temperature Tc of the Bardeen–Pines-like model of Eq. (16), as reported in Ref. [71], as function of
the bare chemical potential µ (evaluated at Tc ) for a fixed phonon frequency ωL . The black (red) curve is the solution
without (with) the momentum dependence of the pairing interaction included. The dashed line is the conventional BCS
expression. Here, Ry is the Rydberg energy. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

fitting parameter. A good agreement with the experimental data was obtained for ε0 ∼ 103, as
shown in Fig. 8(c). The fact that this theory needs two additional adjustable parameters (η and ε0)
to explain the data suggests that the coupling to the plasmon mode alone is likely not sufficient to
account for the superconductivity of STO in the low-density limit. Furthermore, it is not clear that
the feedback effect of the fermions on the plasmon propagator can be neglected.

Leaving aside for a moment the question of whether the diagrams included in the standard
Eliashberg equations (11) are justified in the case of STO, a rather unexplored issue is about the
appropriateness of neglecting the momentum dependence of the gap and self-energy functions, as
it was done in most of the attempted solutions of those equations described above. The fact that
the gap is likely s-wave (more on this in Section 4) only justifies integrating out the dependence on
the momentum coordinates tangential to the Fermi surface. As for the perpendicular momentum
component, the standard approximation within the Migdal–Eliashberg theory is to replace it by the
Fermi momentum. Furthermore, the renormalization of the electronic dispersion by the real part
of the self-energy (ξ̃ in the Eliashberg equations) is also neglected within the standard approach.
While these approximations are very reasonable when ωL ≪ ϵF , in dilute STO this condition is
clearly not satisfied.

In Ref. [71], Gastiasoro, Chubukov, and Fernandes investigated the impact of the momentum
dependence of the pairing interaction in a much simpler model than Eq. (8), solving the full set of
Eliashberg equations (11). In particular, they considered the attractive part of a Bardeen–Pines-like
electron–phonon interaction:

V (iωn, q) = −
4πe2

q2 + κ2

(
ω2

L

ω2
n + ω2

L

)
(16)

where κ is the Thomas–Fermi screening momentum. The authors found that, as the Fermi energy
goes to zero in the extreme dilute limit, contributions from states far away from the Fermi level
become increasingly more important to the pairing problem. As a result, they argued that the
perpendicular momentum component dependence of the Eliashberg equations cannot be neglected
in this limit. Fig. 9 illustrates how Tc is affected by such contributions. In particular, an enhanced Tc
was found in the limit of ϵF → 0, displaying a polynomial dependence on the phonon frequency,
Tc ∼ ωL (Ry/ωL)

1/5, where Ry is the Rydberg energy. It remains an open question how important
these effects are in the case of the more complicated interaction (8).

We finish this section by briefly mentioning a completely different approach for the pairing
mechanism in STO, in which the pairing interaction VC (iωn, q) is attractive in the static limit,
ωn → 0. This contrasts to the pairing interaction in Eq. (8), which remains repulsive for all
frequencies. Mechanisms that could promote a local attractive static interaction have been proposed
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by Gor’kov [88,89] and by Geballe [91]. Gor’kov proposed that localized polar impurities can lead
to overscreening of the Coulomb repulsion, rendering the bare interaction attractive [89]. It is
interesting to point out that such moments have been recently seen in experiments [90]. Geballe’s
proposal is that oxygen vacancies can act as negative-U centers and thus induce local attractive
interaction, via a mechanism that is similar to what was proposed to explain superconductivity in
Tl-doped PbTe [10].

Finally, before moving on to other mechanisms, we note that in the interaction in Eq. (8) we
have considered the bosonic modes (e.g. plasmons and optical phonons) within the random-phase
approximation. In particular, the self-energy renormalization of these bosons was neglected. In the
standard case, where ϵF is much greater than the entire bosonic frequency range and the Migdal
criterion holds, this is a good approximation. However, the effects of this renormalization should
be taken into account when the Fermi energy is comparable to the bosonic mode frequency, which
has not been considered so far in the STO literature.

3.2. Pairing from quantum critical ferroelectric fluctuations

As discussed in Section 2, it is believed that quantum fluctuations are strong in STO, as they
prevent the onset of long-range ferroelectric order while stabilizing a quantum paraelectric state.
The possibility that these ferroelectric quantum fluctuations can be responsible for the pairing
mechanism in STO has led to a considerable amount of experimental [30,41–45,83,90] and the-
oretical [38,69,70,78–82,122] works. Experimentally, it is generally observed that Tc is enhanced
when STO is tuned closer to the putative ferroelectric quantum critical point (i.e. a T = 0 continuous
phase transition) [30], which can be accomplished via 18O substitution [42,43,90], strain [45,46,123],
‘‘negative’’ pressure [44], or Ca doping [41]. Theoretically, the exchange of critical ferroelectric
fluctuations provides an alternative mechanism to the dynamically screened Coulomb interaction
that also promotes long-range attractive interactions in STO. Moreover, it places STO inside a larger
class of unconventional superconductors in which quantum critical fluctuations have been proposed
to be responsible for Cooper pairing (see e.g. [124]).

Although the phenomenological theory of displacive ferroelectricity dates back to many decades
ago, see e.g. [125–128], only more recently the role of quantum fluctuations [129–131] and the
coupling to gapless electronic states in a metal have been considered [79,122,132,133]. Across this
displacive-type structural transition [see Fig. 3(b)], the crystal structure loses inversion symmetry.
Due to the polarity of the ions in the unit cell, the breaking of inversion symmetry also induces a
dipolar electric moment in pristine samples. In doped samples, the free charge carriers screen the
dipolar fields, implying that macroscopic ferroelectricity is absent. Nevertheless, one still uses the
term metallic ferroelectric to refer to a metal that undergoes a phase transition that can locally
induce a dipole moment. Indeed, as we will see, the long-range dipolar fields promote electronic
interactions that have important effects.

The displacive structural transition is characterized by a gapless optical phonon mode described
by the action [69,129]

Su =
1
2

∑
q

χ−1
ij (q, ω)uiuj + O(u4) (17)

where the phonon propagator is given by:

χ−1
ij (q, ω) = Dij(q) − ω2δij (18)

with the static component:

Dij(q) = ω2
T δij + c2T

(
q2δij − qiqj

)
+

[
c2L +

Ω2
I

q2

]
qiqj + αq2i δij (19)

Here c2T and c2L are the transverse and longitudinal velocities, respectively. ωT is the TO frequency,
which controls the distance to the quantum critical point (QCP), such that ωT → 0 at the QCP. α
represents the anisotropic cubic crystal field terms.
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Fig. 10. Schematic plot of polarization waves. (a) The longitudinal polarization wave causes a charge modulation. Similar
to the plasma wave in a charged liquid, the long-range Coulomb force leads to a gap ΩI . Consequently, the LO phonon
mode is gapped at the transition point. (b) The transverse polarization wave, on the other hand, does not induce such a
charge gradient and is therefore free to become soft at the transition.

The term proportional to Ω2
I in Eq. (19) represents the Coulomb energy generated by an LO

deformation [see Fig. 10(a)], where ΩI =
√
4πQ 2ρI/ε∞M is the ionic plasma frequency. Here, ρI ,

M and Q are the ionic density, mass and charge, respectively. The TO deformation, on the other
hand, is decoupled from the ionic charge given by Q∇ · u [see Fig. 10(b)]. In the limit of q → 0,
the ΩI term leads to a finite gap between the LO and TO branches (the LO-TO splitting [134]). As
a result, the LO frequency, which is given by ωL =

√
ω2

T +Ω2
I , remains gapped at the ferroelectric

QCP, where ωT → 0.
The connection to ferroelectricity follows from the fact that a finite displacement vector u

[Fig. 3(b)] generates a finite polarization P , i.e. P ∝ u. Thus, even if a macroscopic polarization
is suppressed by screening in a metal, the coupling of the elastic field u to the electronic degrees of
freedom remains. One could then attempt to use the Eliashberg formalism in Eq. (11) to compute the
pairing instability by replacing Vc(q, ω) in the pairing vertex in Eq. (14) by the bosonic propagator
χij(q, ω) of Eq. (18).

Edge et al. [38] proposed that the coupling between electrons and fluctuations near the ferro-
electric QCP can explain the superconducting dome in STO. Instead of the propagator χij(q, ω), they
used an effective transverse-field Ising model to describe the ferroelectric QCP and found that the
pairing interaction is proportional to 1/ωT . Then, because ωT decreases as doping increases, whereas
the density of states increases, a superconducting dome emerges. Their model also predicted an
enhancement of Tc due to oxygen isotope substitution (16O →

18O), as this would essentially
decrease ωT by moving STO closer to the ferroelectric QCP (see also Ref. [78]). Note that this
prediction contrasts with the conventional isotope effect, by which Tc should be suppressed upon
18O substitution. Such an anomalous isotope effect was later confirmed experimentally [42].

Two important issues that were not addressed in Ref. [38] and remain under debate are (i)
the impact of the dynamics of the critical fluctuations on the superconducting instability, and (ii)
how the electrons couple to the soft TO mode. Point (i) certainly deserves further investigation,
particularly because studies of superconductivity mediated by critical fluctuations associated with
other QCPs suggest that the dynamical part of the pairing interaction plays a key role [11]. In
particular, the feedback of the fermions on the bosonic propagator is known to fundamentally
alter the bosonic dynamics in the cases of antiferromagnetic and ferromagnetic QCPs. As for
point (ii), more recent works have provided further insight into it [69,70,79]. The challenge in
coupling electrons to a transverse phonon mode is apparent when one considers the most common
electron–phonon gradient coupling:

Sph
uc =

∑
kq

λph,q
(
iq · uq

)
c†
sk+qcsk (20)
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Here, csk annihilates an electron with spin projection s and momentum k (summation over spin
indices is left implicit). For example, the Fröhlich coupling [135] falls into this category, with
λph,q =

4πeQ
ε∞q2

. The point is that Eq. (20) allows coupling only to the LO branch [69], which does
not become soft at the transition. As pointed out by Wölfle and Balatsky [79], the cubic crystal-
field anisotropy, denoted by α in Eq. (19), mixes the LO and TO modes away from high-symmetry
directions, resulting in an effective coupling between the electronic density and the ferroelectric
modes. However, this mechanism seems to still give a rather small coupling to the TO mode [69,70].
Note that the dipolar coupling to the electron density in Eq. (20) was also used in other theoretical
works that have considered quantum critical ferroelectricity as a pairing mechanism [80,82].

An alternative way to directly couple the electronic density to the transverse modes is via the
scalar u2, as first pointed out by Ngai [87]. Indeed, the symmetry constraint on the coupling in Eq.
(20) is removed if two-phonon processes are considered. Such a coupling is given by:

S2ph
uc =

∑
kq

λ2ph u2
q c

†
s,k+qcs,k (21)

The microscopic origin of this coupling is virtual p − d transitions between O and Ti ions
(contribution from the Fan–Migdal self-energy term) and the energy shift of the d orbitals of Ti ions
(contribution from the Debye–Waller self-energy term) [136]. This coupling was recently invoked
by van der Marel et al. [83] as a possible mechanism for superconductivity in STO, resurfacing
the original proposal by Ngai [87]. They used optical conductivity measurements to estimate the
coupling, finding an effective BCS-like coupling constant of λBCS2ph ≈ 0.28. It is quite surprising that
the two-phonon processes give such a large BCS-like coupling, but if this is indeed the case, they
certainly provide a viable mechanism.

A third possible coupling mechanism emerges in the presence of spin–orbit coupling. In this
case, the transverse optical modes are allowed to couple to the electronic density to linear order
via [81,122,132,133,137]

SSOC
uc =

∑
kq

λSOC

[
c†
s,k+

q
2
(k × σss′) cs′,k−

q
2

]
· uq (22)

This coupling is unique in the sense that it remains finite in the limit of q → 0. Therefore, it is
potentially a relevant perturbation at the critical point. The impact of the coupling in Eq. (22) on
the ferroelectric QCP has not been studied, and very little has been done in connection to super-
conductivity. Recently, Kanasugi et al. [81,137] studied the interplay between the superconducting
state and ferroelectricity by coupling the electronic states to the polar distortion via the Rashba-like
coupling of Eq. (22). As the source of superconductivity, however, they assumed a phenomenological
momentum-independent intra-orbital attractive pairing interaction that leads to a uniform s-wave
state.

Gastiasoro et al. [138] have explored the weak-coupling superconducting pairing interaction that
arises from the coupling (22) in the vicinity of the ferroelectric instability. They found that the
effective coupling is indeed dominated by the transverse sector, and the leading singlet instability
is in the s-wave channel. Due to the cubic symmetry of the propagator (18), the s-wave solution does
not give an isotropic gap. On the contrary, the gap function found in [138] acquires an anisotropy
that increases as the frequency of the ferroelectric mode goes soft, ωT → 0. Note that previous
works have found that couplings of the form of Eq. (22) can also favor triplet pairing [133].

An important question that deserves further attention is the expected magnitude of the coupling
λSOC in STO. Ruhman and Lee [73] argued that λSOC should be of the same order as the weaker of
the two inter-orbital hoppings in STO, that is, a few hundreds of meV. A more accurate estimate
from first-principle calculations would thus be desirable. However, this may be challenging due to
the dense k-mesh that is needed to project this coupling onto the Fermi surface states.

An interesting related problem in which the impact of quantum critical ferroelectric fluctuations
on a metal can be studied in a more theoretically controlled manner was investigated by Kozii
et al. [122]. In particular, motivated by superconductivity in doped SnxPb1−xTe, they considered the
case of a ferroelectric QCP in a Dirac semimetal at charge neutrality. An important difference with
respect to the standard metal case is that the valley degrees of freedom allow for a direct coupling



22 M.N. Gastiasoro, J. Ruhman and R.M. Fernandes / Annals of Physics 417 (2020) 168107

between the TO mode and the electronic density. Using a renormalization group approach, they
found that the coupling between the TO mode and the electronic density is marginally relevant.
They considered the complete low-energy theory including also the Coulomb repulsion, and found
a strong enhancement of Tc in the vicinity of the ferroelectric QCP.

4. Multi-band superconductivity and gap structure

4.1. The role of inter-band interactions

The fact that multiple bands of STO cross the Fermi level as doping increases, according to the
tight-binding model of Eq. (6) (see also Figs. 1 and 4), suggests that multiple superconducting gaps
can be present. Given the difficulties in establishing a microscopic model, it is useful to resort to
phenomenology to understand the implications of multi-band superconductivity [139–142]. For the
three-band case, the linearized gap equations become:

∆i = − ln
Λ

Tc

3∑
j=1

Vijνj∆j (23)

where ∆i is the gap in band i, νi is the corresponding density of states, Λ is an upper energy cutoff,
and the Vij describe intra-band (i = j) and inter-band (i ̸= j) pairing interactions. Obviously, in view
of all the aforementioned issues that plague a microscopic description of the pairing state in STO,
Eq. (23) should not be taken at face value as a statement for the appropriateness of a BCS-like state
in STO, but rather as a useful framework to model multi-band superconductivity.

A crucial assumption behind Eq. (23) is that the gaps are isotropic, implying an s-wave state. Note
however that, as we explain below, s-wave multi-band superconductivity can be very non-trivial.
Experimentally, the full gaps observed in tunneling and optical spectroscopy measurements are
consistent with an s-wave state [26,143,144], as is the observed ratio of ∆/Tc . Recent thermal con-
ductivity measurements performed below Tc by Lin et al. reported a low-temperature dependence
consistent with the Bardeen–Rickayzen–Tewordt behavior typically seen in conventional s-wave
superconductors, with no linear-in-T behavior observed at very low temperatures [145].

As for direct experimental evidence in favor of multiple superconducting gaps, the seminal work
by Binnig et al. reported two gaps in the tunneling conductance of Nb-doped STO [143], with the
second gap only emerging at sufficiently high doping concentrations. Although surface effects may
complicate the interpretation of this result in terms of two bulk gaps, as pointed out recently by
Eagles [146], this observation is consistent with the doping evolution of the band structure of STO,
as discussed by Fernandes et al. [139]. More recently, measurements of the thermal conductivity κ
and of the critical magnetic field Hc2 have also provided strong support for the existence of multi-
gap superconductivity [145,147]. As shown in Fig. 11, the Hc2(T ) curve of Nd-doped STO obtained
by Ayino et al. in Ref. [147] is convex near Tc , as typically seen in dirty multi-gap superconductors.
This curvature was previously predicted theoretically by Edge and Balatsky [148], and contrasts to
the concave behavior expected for single-gap superconductors.

Theoretically, while the solution of the coupled gap equations (23) requires the knowledge of
nine different parameters (three intra-band interactions Vii, three inter-band interactions Vi̸=j, and
three density of states νi), some general features of three-band superconductivity can be inferred
after considering a few reasonable simplifications. The fact that superconductivity is observed in
the single-band regime [23] indicates that attractive intra-band interactions (Vii < 0) are dominant
over inter-band interactions (which can be repulsive or attractive). We further set all densities
of states to be equal to ν and simplify Eq. (23) by setting all intra-band interactions to be the
same, v ≡ −Viiν > 0, and all inter-band interactions to be close in magnitude, u ≡ V12ν,
u (1 + δ13) ≡ V13ν, and u (1 + δ23) ≡ V23ν. The solution of Eq. (23) is then given by Tc = Λe−1/λ,
where λ is the largest eigenvalue of:

V =

(
v −u −u (1 + δ13)

−u v −u (1 + δ23)
−u (1 + δ13) −u (1 + δ23) v

)
(24)
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Fig. 11. Upper c-axis critical field Hc2 (red dots) as function of temperature for Nd-doped STO. The data is from Ref. [147].
The convex shape of the curve near Tc is the behavior expected for a multi-gap superconductor [148].

The gap structure (i.e. the ratios between the gaps) is given by the eigenvector ∆̂ of the largest
eigenvalue λ of V . While this model is certainly too simplistic to capture the complexity of STO,
it nicely illustrates the non-trivial properties of multi-gap superconducting states when repulsive
interactions are present — even if they are not driving the superconducting instability, i.e. v ≫ |u|.
To see this, consider first the case where all inter-band interactions are identical, δ13 = δ23 = 0.
When u is also attractive (u < 0), the largest eigenvalue is λ+ = v + 2 |u| and the corresponding
eigenvector, ∆̂+ = (1, 1, 1). This means that the gap functions are equal and have the same
sign in all three bands. This state, which we dub s+, is the extension of the standard s-wave
superconducting state to the three-band case.

On the other hand, when u is repulsive (u > 0), the largest eigenvalue is λ− = v + |u|.
Interestingly, it is two-fold degenerate, with eigenvectors ∆̂(1)

− = (1, −1, 0) and ∆̂(2)
− = (1, 0, −1).

This degeneracy is a manifestation of the frustration arising from the fact that the repulsive inter-
band interactions impose that the gaps of every pair of bands should have opposite signs. But
because there are three bands, it is impossible to have a gap configuration in which the signs of the
gaps of every two bands are always opposite. The situation is analogous to antiferromagnetically-
coupled Ising spins on a triangular lattice. Importantly, this frustration happens even though the
inter-band interaction is sub-leading, i.e. v ≫ |u|.

This degeneracy is lifted by the small corrections δ13, δ23 to the inter-band interactions. As shown
in Fig. 12, different gap configurations emerge depending on these parameters (red denotes gap 1;
blue, gap 2; and green, gap 3). For δ23 > 0 (upper panel), the leading eigenvector changes from
∆̂− = (+, +, −) for δ13 > 0 to (+, −,+) for δ13 < 0. For δ23 < 0 (lower panel), it switches
from (+, −, −) for δ13 > δ23 to (+, −,+) for δ13 < δ23. Interestingly, in both cases, there are
parameter regimes in which one of the gaps is much smaller than the other two, which is another
manifestation of the frustration. We dub all these superconducting states where two pairs of gaps
have opposite signs, whereas one pair of gaps have the same sign, as s−.

The richness of the phase diagram of three-band superconductors with repulsive interactions
has been widely discussed in the recent literature, mostly in the context of iron-based supercon-
ductors [149], where inter-band interactions are believed to be the dominant ones (in contrast to the
STO case). Besides suppressing one of the gaps, the frustration can also lead to more exotic effects,
such as the spontaneous breaking of time-reversal symmetry at a temperature below Tc [149].

The key question is whether any of these interesting effects are present in STO. To a certain
extent, this issue remains little explored, and further studies are highly desirable. For instance,
what would be the microscopic mechanism that gives rise to a repulsive inter-band interaction
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Fig. 12. Superconducting gaps ∆i as function of the inter-band interaction parameter δ13 for δ23 = 0.1 (upper panel) and
δ23 = −0.1 (lower panel). The meaning of these parameters is explained in the text. Red denotes the gap of band 1; blue,
the gap of band 2; and green, of band 3. The gaps are normalized such that

∑
i∆

2
i = 1. The gap of band 1 is arbitrarily

set to always be positive. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

but attractive intra-band interaction? The fact that certain experiments seem to observe just one
gap [26,144], or at most two [145,147], could be indicative of the presence of a very small gap that
is difficult to observe, which would be naturally explained by the frustration scenario. Of course, a
more trivial explanation would be that the intra-band interactions are significantly different for the
three bands. Distinguishing between the s+ and s− states is also challenging; a distinct feature of the
latter is the possible existence of a magnetic resonance mode at the wave-vector that connects the
bands whose gaps have opposite signs [40]. Given the small wave-vectors and energies involved,
it would be challenging for neutron scattering experiments to identify such a mode. Collective
modes associated with the relative phase between the gaps – the so-called Legget modes – are
also expected to be present below 2∆0, particularly if the intra-band interactions are the largest
ones [150].

4.2. Impact of disorder

Disorder also has a distinct effect in multi-band s-wave superconductors, as compared to the
single-band case. In the latter, magnetic impurity scattering (with scattering rate τ−1

S ) is pair-
breaking, whereas non-magnetic impurity scattering (with scattering rate τ−1

0 ) does not suppress
Tc globally [151,152]. In the former, the effect depends on the relative sign between the gaps (s+
or s− state). For a two-band superconductor, the suppression of Tc for weak impurity scattering
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Fig. 13. Ratio between the total scattering rate τ−1 and the transition temperature Tc as function of the carrier
concentration n. τ−1 was estimated from the residual resistivity data of Ref. [14].

(τ−1
≪ Tc) is given by [153]:(
∆Tc
Tc

)
s+

= −
π
(
τ−1
S,intra + τ−1

S,inter

)
4Tc

(25)(
∆Tc
Tc

)
s−

= −
π
(
τ−1
S,intra + τ−1

0,inter

)
4Tc

(26)

The key point is that, for both s+ and s− states, non-magnetic intra-band scattering does not affect
Tc , whereas magnetic intra-band scattering suppresses Tc . The difference between these two states
resides on the role of inter-band scattering: in the s+ case, only inter-band magnetic scattering
suppresses Tc , whereas in the s− case, pair-breaking is caused only by inter-band non-magnetic
scattering.

This distinct response of the s+ and s− states to disorder offers a possible way to experimentally
probe the superconducting ground state of STO (see [154] for a similar discussion in the context of
iron-pnictide superconductors). The challenge is on how to experimentally control disorder, since
doped STO is intrinsically close to the dirty regime of superconductivity, as pointed out by Collignon
et al. [27]. Indeed, as illustrated in Fig. 13, τ−1/Tc can be of the order 10.

In Ref. [25], Lin et al. employed electron irradiation to introduce controlled – and presumably
non-magnetic – disorder, and Tc was found to not change in irradiated samples. Ayino et al. reported
superconductivity in Nd-doped STO samples in Ref. [147], with Tc values comparable to that of Nb-
doped STO samples with similar carrier concentration. Because Nd3+ is expected to have a magnetic
moment, this result suggests a weak effect of magnetic impurities on Tc . Taken separately, the
results of [25] and [147] seem to favor an s+ and an s− state, respectively. The crucial obstacle for an
unambiguous interpretation is the difficulty in separating the intra-band and inter-band scattering
contributions. This highlights the need for future studies where both magnetic and non-magnetic
disorder are systematically controlled in STO.

Impurity scattering was also invoked to explain a peculiar feature of the superconducting dome
of O-deficient STO. As shown in Fig. 2, Lin et al. found that Tc is suppressed across the first
Lifshitz transition [14], where the number of bands crossing the Fermi level increases from 1
to 2. Such a behavior is quite unexpected, since BCS theory generally predicts, for both s+ and
s− states, that Tc increases across a Lifshitz transition, because the number of states available to
form the superconducting condensate increases [139,142]. Trevisan et al. [155,156] argued that this
suppression of Tc can be explained if the ground state is s− and the (non-magnetic) inter-band
impurity scattering is significant. This happens because the pair-breaking effect caused by inter-
band impurity scattering is enhanced once the second band crosses the Fermi level, overcoming
the positive effect on Tc caused by the enhancement of the density of states, see Fig. 14. Such a



26 M.N. Gastiasoro, J. Ruhman and R.M. Fernandes / Annals of Physics 417 (2020) 168107

Fig. 14. Theoretical calculation of Tc as function of the carrier concentration N across the first Lifshitz transition at Nc ,
as obtained in Ref. [155]. The dark purple curve shows the case without disorder, and applies for both s− and s+ states.
The red (cyan) curve is the disordered case for the s− (s+) state with large non-magnetic impurity scattering. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

scenario would thus favor an s− state, and could also explain why this Tc suppression is not always
seen in other STO samples [23], as it depends on the disorder strength.

In the case of repulsive inter-band interactions, increasing disorder can also change the two-band
superconducting ground state from s− to s+, particularly in the case of dominant attractive intra-
band pairing [157]. In Ref. [155], Trevisan et al. argued that an s− to s+ change can also be induced
for a fixed disorder potential by changing the carrier concentration, once the Lifshitz transition is
crossed. In general, across this change from s− to s+, one of the gaps vanishes, making the system
behave effectively as a single-band superconductor (except in the more exotic case where a time-
reversal symmetry-breaking state emerges [158–160]). Furthermore, for large enough inter-band
scattering, the two gaps tend to the same value [153,157]. This effect was invoked by Thiemann
et al. to explain why the behavior of the optical conductivity of Nb-doped STO resembles that of
single-band superconductors [144].

5. Perspectives

The topics discussed above are but a few among various interesting issues related to the
superconducting properties of STO. Before finishing this review, we briefly mention other interesting
topics that, in our view, also warrant further investigation.

• Relationship with LAO/STO. The discovery of gate-tunable superconductivity in LaAlO3/SrTiO3
(LAO/STO) interfaces and heterostructures opened a new route to study superconductivity in
the 2D limit [53] (for a recent review, see Ref. [161]). An interesting question is whether
the superconducting state in LAO/STO is related to that of STO, or whether it is a property
of the 2D electron-gas formed at the interface [162]. The existence of a Tc(n) dome in
LAO/STO, with a maximum Tc value similar to that of STO, suggests that these phenomena
are related. Valentinis et al. proposed that the superconducting dome of LAO/STO can be well
modeled assuming that the pairing interaction of STO is subject to quantum confinement [163]
(see also Refs. [164–166]). Within this perspective, LAO/STO would offer another route to
elucidate superconductivity in STO. An interesting similarity in their phase diagrams is that
the superconducting domes of both LAO/STO and STO display a suppression of Tc as a Lifshitz
transition is crossed [167,168]. Despite the similarities, there are important differences: the
explicit breaking of inversion symmetry at the interface in LAO/STO leads to a different order
of bands, and to the removal of the spin-degeneracy of each band. Interestingly, it has been
recently proposed that this effect may result in an enhancement of Tc [169] or in a topologically
non-trivial superconducting state in LAO/STO [170].
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• BEC–BCS crossover. The fact that superconductivity in STO survives down to very small carrier
concentrations, corresponding to doping levels below 0.01% and Fermi energies of a few meV,
raises the question of whether the superconducting properties of STO could be described in
terms of a BEC–BCS crossover. Indeed, an early work by Eagles suggested that the formation of
non-coherent Cooper pairs could onset even above the superconducting transition temperature
in Zr-doped STO [171]. Interestingly, pre-formed pairs were recently reported in certain
LAO/STO heterostructures by Cheng et al. [172] and pseudogap behavior was observed [173];
whether these observations imply a BEC behavior remains under debate [174]. An important
consideration is that while in two dimensions the BEC behavior can appear already for a
weak attractive pairing interaction, a strong interaction is needed in three dimensions, as
relevant for STO [171]. Moreover, the BEC–BCS crossover can be rather different in multi-
band systems [141,175]. In this regard, we note that the superconducting properties of STO
are not the ideal ones for BEC behavior to be observed. For the entire phase diagram, the
zero-temperature gap ∆ ∼ Tc remains much smaller than the Fermi energy ϵF , even when
the latter is very small. Furthermore, the superconducting coherence length is of the order
of 100 nm [27], which would imply the overlap of many Cooper pairs instead of the tightly
bound pairs expected for BEC behavior — as pointed out by van der Marel et al. [55]. Finally,
there are no signatures of pairing above Tc , such as strange metallic behavior [14].

• Antiferrodistortive domain walls. A question that remains unsettled is which impact, if any, the
antiferrodistortive cubic-to-tetragonal transition that STO undergoes at approximately 105 K
has on superconductivity [see Fig. 3(c)]. Lin et al. proposed that filamentary superconductivity
originating from domain walls separating different tetragonal domains is the reason why the
superconducting transition as marked by the onset of zero resistivity was observed above the
bulk Tc of optimally Nb-doped STO [145]. Recent experiments in thin films of Nb-doped STO
using a scanning SQUID susceptometer by Noad et al. revealed a local enhancement of Tc of
about 10% as compared to the bulk Tc [176]. These experiments, however, seem to favor a
scenario in which the enhancement of Tc happens inside the tetragonal domains, rather than
at their boundaries. These STO domains were also observed by Wissberg et al. to modulate the
superconducting properties of films of different types of superconductors grown on STO [177].
Elucidating which of the several local properties (electronic, dielectric, ferroelectric, etc.) that
are changed inside the domains or at the domain walls correlate with the enhancement of Tc is
therefore an important step to understand superconductivity in STO. In this context, we point
out the recent results of Pelc et al. correlating intrinsic structural inhomogeneity to the unusual
temperature dependence of the superconducting fluctuations of STO, as measured by nonlinear
magnetic response [178]. It would be interesting to establish whether this inhomogeneity is
related to the AFD transition.

• Normal-state transport properties. Many unconventional superconductors, such as iron pnic-
tides, cuprates and heavy fermions display unusual normal-state transport properties, chiefly
manifested by a linear-in-T resistivity, which contradicts the expectation of Fermi liquid the-
ory. At first sight, STO may seem to fall outside this category, since its normal-state resistivity
shows T 2 behavior at low temperatures [55,56,179], which is the standard power-law expected
from electron–electron scattering. The problem is that Fermi liquid theory predicts that the
resistivity of dilute STO should not display T 2 behavior [180], one of the reasons being the fact
that, due to the smallness of the Fermi surface surrounding the Γ -point [see Fig. 4(b)], umklapp
scattering is ineffective in relaxing momentum. Moreover, the T 2 behavior is extended to
temperatures higher than the Fermi temperature [56]. This does not mean that the normal
state of STO is not a Fermi liquid. Quite on the contrary, as shown in Fig. 5, specific heat
measurements performed by McCalla et al. over a wide doping range found an excellent
agreement between the measured electronic Sommerfeld coefficient and the predictions from
a tight-binding model fitted to DFT, provided that the effective mass is renormalized by a factor
of 2 [58]. This renormalization factor, indicative of a weakly-correlated system, was found
to be independent of doping (see also Ref. [55]). Such a disconnect between thermodynamic
properties, which suggest a standard Fermi liquid, and transport properties, which suggest a
‘‘non-Fermi liquid’’ mechanism for T 2 resistivity, is also manifested by the fact that STO does



28 M.N. Gastiasoro, J. Ruhman and R.M. Fernandes / Annals of Physics 417 (2020) 168107

not follow the usual Kadawoki–Woods scaling between the Sommerfeld coefficient and the
T 2 coefficient of the resistivity [58]. As shown by Lin et al. however, the T 2 coefficient does
scale with 1/ϵF [56]. Not only is the origin of the T 2 resistivity in STO unsettled, but also what
relevance it has, if any, to the superconductivity of STO.

Thus, even after more than five decades since its discovery, superconductivity in STO remains a
challenging problem in which several contemporary concepts in quantum matter research emerge.
The resulting complex landscape of electronic phenomena include: proximity to a putative quantum
critical point — in this case, a little studied ferroelectric metallic quantum phase transition; multi-
band superconductivity beyond the two-gap regime; pairing in the extreme dilute regime; unusual
normal-state transport properties. In this regard, by applying in STO the powerful experimental
and theoretical techniques developed recently in the studies of other quantum materials, one has a
promising model system to potentially elucidate the connection between these remarkable features,
common to several quantum materials of interest, and superconductivity.
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