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a b s t r a c t

Near a quantum-critical point, a metal reveals two competing
tendencies: destruction of fermionic coherence and attraction
in one or more pairing channels. We analyze the competition
within Eliashberg theory for a class of quantum-critical mod-
els with an effective dynamical electron–electron interaction
V (Ωm) ∝ 1/|Ωm|

γ (the γ -model) for 0 < γ < 1. We argue
that the two tendencies are comparable in strength, yet the one
towards pairing is stronger, and the ground state is a supercon-
ductor. We show, however, that there exist two distinct regimes
of system behavior below the onset temperature of the pairing
Tp. In the range Tcross < T < Tp fermions remain incoherent
and the spectral function A(k, ω) and the density of states N(ω)
both display ‘‘gap filling" behavior in which, i.e., the position
of the maximum in N(ω) is set by temperature rather than the
pairing gap. At lower T < Tcross, fermions acquire coherence, and
A(k, ω) and N(ω) display conventional "gap closing" behavior,
when the peak position in N(ω) scales with the gap and shifts
to a smaller value as T increases. We argue that the existence
of the two regimes comes about because of special behavior
of fermions with frequencies ω = ±πT along the Matsubara
axis. Specifically, for these fermions, the component of the self-
energy, which competes with the pairing, vanishes in the normal
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state. We further argue that the crossover at T ∼ Tcross comes
about because Eliashberg equations allow an infinite number
of topologically distinct solutions for the onset temperature of
the pairing within the same gap symmetry. Only one solution,
with the highest Tp, actually emerges, but other solutions are
generated and modify the form of the gap function at T ≤ Tcross.
Finally, we argue that the actual Tc is comparable to Tcross, while
at Tcross < T < Tp phase fluctuations destroy superconducting
long-range order, and the system displays a pseudogap behavior.

© 2020 Elsevier Inc. All rights reserved.

1. Preface

It is our great pleasure to present this mini-review for the special issue of Annals of Physics
devoted to 90th birthday of Gerasim Matveevich Eliashberg. His works, particularly on electron-
phonon superconductivity outside the weak coupling limit, are of the highest scientific quality.
The Eliashberg theory of superconductivity is simultaneously a rigorous extension of BCS theory,
controlled by a small parameter, and a tool to compute superconducting Tc and other observables,
such as thermodynamic variables like specific heat and magnetic susceptibility, and dynamic
characteristics, like the spectral function and the density of states. In ‘‘high -Tc era’’ Eliashberg theory
has been extended to the cases when the pairing is of electronic origin, mediated by collective
excitations in spin or charge channel. Eliashberg theory of spin-fluctuation superconductivity is a
‘‘canonical’’ topic in the studies of Cu, and Fe-based superconductors, heavy fermion superconduc-
tors, organic superconductors, and other classes of systems. In this mini-review we summarize the
efforts by several groups, including ours, to extend Eliashberg theory to the new regime when the
pairing boson becomes massless. This happens, most naturally, when the system approaches an
instability towards a spin or charge order. Amazingly, Eliashberg equations in this critical regime
reveal qualitatively new physics, not seen in the cases when the pairing boson has a finite mass.
Still, the works by Gerasim Matveevich were the ones which established the solid base for all today’s
studies of quantum-critical metals.

We hope that this work will show our profound admiration of Gerasim Matveevich Eliashberg.
We wish him the very best.

2. Introduction

Pairing near a quantum-critical point (QCP) in a metal is a fascinating subject, which attracted
quite substantial attention in the correlated electron community after the discovery of superconduc-
tivity in heavy fermion and organic materials, in the cuprates, and, more recently, in Fe-pnictides
and Fe-chalcogenides [1–76]. QC itinerant models, analyzed in recent years, include fermions in
spatial dimensions D ≤ 3 at the verge of either spin-density-wave (SDW) or charge-density-wave
instability, near an instability towards q = 0 Pomeranchuk order in spin-or charge channel (a
nematic QCP), 2D fermions on a half-filled Landau level, and color superconductivity of quarks,
mediated by gluon exchange. Very recently, the list has been extended to several SYK-type models
with either electron–electron or electron–phonon interaction (see the article by Daniel Hauck,
Markus Klug, Ilya Esterlis, and Jörg Schmalian for this issue).

From the theoretical perspective, the key interest in the pairing near a QCP is due to the fact that
an effective electron–electron interaction, mediated by a critical collective boson, which condenses
on one side of a QCP, provides strong attraction in one or more pairing channels and therefore
acts as a stronger glue for superconductivity (SC) than electron–phonon interaction. The same
effective interaction, however, also gives a singular contribution to the fermionic self-energy and
thus tends to make fermions incoherent and gives rise to non-Fermi liquid (NFL) physics. The two



A.V. Chubukov, A. Abanov, Y. Wang et al. / Annals of Physics 417 (2020) 168142 3

tendencies compete with each other: fermionic incoherence destroys Cooper logarithm and reduces
the tendency to pairing, while the opening of a superconducting gap eliminates the scattering at low
energies and reduces the tendency to NFL behavior. To find the outcome of the interplay between SC
and NFL, one needs to analyze the set of coupled integral equations for the fermionic self-energy on
the FS Σ(k, ω) and the pairing vertex Φ(k, ω) for fermions with (k, ω) and (−k, −ω). Equivalently,
one can analyze the equations for the inverse quasiparticle residue Z(k, ω) = 1 + Σ(k, ω)/ω and
the gap function ∆(k, ω) = Φ(k, ω)/Z(k, ω).

We consider the subset of models in which collective bosons are slow modes compared to
dressed fermions. In this situation, one can analyze the interplay between NFL and SC by extending
the Eliashberg theory for electron–phonon interaction to the case of pairing due to electron–electron
interaction. Within Eliashberg theory, the self-energy and the pairing vertex can be approximated by
their values at the Fermi surface (FS). The self-energy on the FS, Σ(k, ω) is invariant under rotations
from the point group of the underlying lattice. The angular variation of the gap function ∆(kF , ω)
and relative phases of ∆(kF , ω) on different FS’s in multi-band systems are model specific. Near
a ferromagnetic QCP, the strongest attraction is in the p-wave channel. Near an antiferromagnetic
QCP, the strongest is in d−wave channel in the case when there is a single FS, and the largest
density of states (DOS) is around (0, π ) and symmetry related points, as in the cuprates. In the
same geometry, near a QCP towards a CDW order with a small q, superconductivity can be either
s−wave or d−wave. For nearly compensated metal with hole and electron pockets, as in Fe-
based superconductors, the two attractive channels near a SDW QCP are s+− and d−wave. Near
a q = 0 nematic QCP, the pairing vertex is peaked at the FS points, where the form-factor
in the corresponding particle-hole channel is at maximum, and superconductivity mediated by
nematic fluctuations can be s−wave, p−wave, d−wave, etc. In each case one has to project the
pairing interaction into the proper irreducible channel and solve for the pairing vertex with a given
symmetry. In principle, even after projection one has to solve integral equation in momentum space
as in a lattice system each irreducible representation contains an infinite set of eigenfunctions.
However, in the two limiting cases when either one of these eigenfunctions gives the dominant
contribution to the gap (e.g., cos kx − cos ky for d−wave pairing in the cuprates, compared to
cos (2m + 1)kx−cos (2m + 1)ky with all otherm’s), or all eigenfunctions are relevant (but the pairing
is confined to a narrow range on the FS around ‘‘hot spots’’), the momentum integration can be
carried out exactly for the pairing vertex and the self-energy. In this situation, the original set of
coupled equations for the self-energy and the pairing vertex in D spatial dimension and one time
dimension reduces to the set of coupled 1D equations for frequency-dependent Σ(ω) and Φ(ω),
with frequency-dependent interaction V (Ω).

Away from a QCP, V (Ω) tends to a finite value at Ω = 0. Then fermionic self-energy has a FL form
at the smallest frequencies, and the pairing kernel is logarithmically singular, as in BCS theory. Then
already an infinitesimally small attraction gives rise to superconductivity. At larger Ω , the pairing
interaction decreases, which implies that the frequency integrals for the self-energy and the pairing
vertex are ultra-violet convergent. The same behavior at small and large Ω holds for V (Ω) due to
phonon scattering, and the analysis of electronically-mediated superconductivity away from a QCP
is almost identical to Eliashberg theory for phonon-mediated superconductivity, the only distinction
is that for electronically-mediated pairing, V (Ω) by itself changes below Tc . At a QCP, the situation
is qualitatively different as the interaction V (Ω), mediated by a critical boson, diverges at Ω = 0
as V (Ωm) ∝ 1/Ωγ . The exponent γ > 0 depends on the model, ranging from small γ = O(ϵ)
in models in D = 3 − ϵ to γ ≤ 1 in 2D models at SDW, CDW, and nematic QCP. Besides these
examples of electronically-mediated pairing, the case γ = 2 corresponds to fermions interacting
with an Einstein phonon, in the (properly defined) limit of vanishing Debye frequency. The model
with V (Ω) ∝ 1/Ωγ has been nicknamed the γ− model, and we will use this terminology.

2.1. Brief summary of the results and the structure of the paper

In this paper we consider the system behavior for 0 < γ < 1. The analysis for larger γ > 1 is
more involved and requires separate consideration. We show that a NFL self-energy in the normal
state does not prevent the formation of bound states of fermions with opposite momenta and
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frequency. We argue, however, that there exist two distinct regimes of system behavior below the
onset temperature of the pairing Tp. Immediately below Tp, down to some finite temperature Tcross,
the pairing does not change qualitatively the fermionic self-energy, which retains its non-Fermi
liquid form. As the consequence, fermions remain incoherent. We show that in this T range the DOS
N(ω) displays ω/T scaling and ‘‘gap filling’’ behavior, meaning that the position of the maximum
in N(ω) is set by temperature rather than the pairing gap. The spectral function A(k, ω) displays
either the same ‘‘gap filling’’ behavior as N(ω) or ‘‘Fermi arc’’ behavior, depending on the type of
the pairing and the position of k along the FS. At lower T < Tcross fermions acquire coherence due to
feedback from gap opening, and N(ω) displays a BCS-like ‘‘gap closing’’ behavior, in which the peak
position in N(ω) scales with the gap ∆(T ) and shifts to smaller value as T increases and the gap
gets smaller. The spectral function also behaves as expected for a BCS superconductor. The crossover
temperature Tcross roughly corresponds to ∆(Tcross) = Tcross.

We show that the existence of the two regimes comes about because of special behavior of
fermions with Matsubara frequencies ω = ±πT . Specifically, for these fermions, the component
of the self-energy, which competes with the pairing, vanishes in the normal state [44]. As the
consequence, strong pairing interaction between fermions with ω = πT and ω = −πT is not
counter-weighted by NFL self-energy. We show that, immediately below Tp, the pairing gap for
fermions with all other Matsubara frequencies does not develop on its own, but rather is induced by
the opening of the gap for fermions with ωm = ±πT . In this situation, ∆(ωm) is strongly peaked at
ωm = ±πT . This gives rise to ω/T scaling in real frequencies and to ‘‘gap filling’’ behavior (Ref. [70]).

We show that the crossover to BCS-like behavior at T ∼ Tcross comes about because Eliashberg
equations at a QCP allow an infinite number of topologically distinct solutions for the onset
temperature of the pairing within the same gap symmetry [77]. Only one solution, with the highest
Tp, actually emerges (the one induced at Tp by fermions with ωm = ±πT ). However, below Tp,
when the actual ∆(ωm) is the solution of the non-linear Eliashberg equation, other gap components
get generated due to non-linear coupling between different solutions within the same pairing
symmetry. This gives rise to a modification of the form of ∆(ωm), which becomes less peaked at
ωm = ±πT . The modification becomes strong at around Tcross, and at smaller T fermions with all
Matsubara frequencies equally contribute to pairing. This, we argue, gives rise to BCS-like behavior.

Finally, we argue that in the range Tcross < T < Tp superfluid stiffness ρs is smaller than T
(Ref. [71]). In this situation, phase fluctuations likely destroy superconducting long-range order. At
smaller T < Tcross, the stiffness is much larger, of order ∆ (it would be of order EF if a pairing boson
was massive, with sufficiently large mass). In this situation, it is natural to expect that the actual
Tc is comparable to Tcross, while in between Tcross and Tp the system displays a pseudogap behavior.

The paper is organized as follows. In Section 3 we briefly review the γ model with effective
fermion–fermion interaction mediated by a gapless boson with V (Ωm) = (g/|Ωm|)γ and present
Eliashberg equations for our case. In Section 4 we show the results of numerical solution of
the linearized equation for the pairing vertex (or the gap function), which determines the onset
temperature for the pairing Tp = Tp(γ ). In Section 5 we extend the γ model to make the interaction
in the particle–particle channel relatively smaller by the factor 1/N , where N > 1. In Section 6 we
discuss the solution of the full non-linear Eliashberg equations at a finite T below Tp, identify two
different types of system behavior at larger and smaller N , and show that the crossover temperature
between the two regimes, Tcross(N) terminates at some Ncr > 1 In Section 7 we present the results
of the analytical study of Eliashberg equations at T = 0, which show that Ncr indeed exists and
separates the NFL ground state at N > Ncr and the SC state at N < Ncr . Here we argue that at
N < Ncr there is an infinite discrete set of solutions for the pairing gap, ∆n(ω), ranging from the
BCS-type solution to the solution with infinitesimally small gap. In Section 8 we show that each
solution from the set at T = 0 evolves with T and disappears at its own critical temperature Tp,n.
The BCS-like solution (n = 0) ends at Tp,0 = Tp, which we found before. Other solutions end at
smaller Tp,n. In Section 9 we combine our results and present our understanding of the crossover at
T = Tcross. In Section 10 we present the results for the superfluid stiffness ρs(T ) and argue that the
actual Tc ∼ Tcross, while at Tcross < T < Tp the system displays pseudogap behavior. In Section 11 we
briefly compare our results for the spectral function with ARPES data for the cuprates. We present
the summary of our results in Section 12.
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3. The model

We consider a model of itinerant fermions at the onset of a long-range order in either spin or
charge channel. At the critical point the propagator of a soft boson becomes massless and mediates
singular interaction between fermions. We follow earlier works [6,7,23,24,26,27,33,40,43,44,68,70,
71,78] and assume that this interaction is attractive in at least one pairing channel and that a
pairing boson can be treated as a slow mode compared to a fermion, i.e., at a given momentum
q, typical fermionic frequency is much larger than typical bosonic frequency. This is the case for a
conventional phonon-mediated superconductor, where for q ∼ kF a typical fermionic frequency is
of order EF , while typical bosonic frequency is of order Debye frequency ωD. The ratio δE = ωD/EF
is the small parameter for Eliashberg theory of phonon-mediated superconductivity. This theory
allows one to obtain a set of coupled integral equations for frequency dependent fermionic self-
energy and the pairing vertex. By analogy, the theory of electronic superconductivity, mediated by
soft collective bosonic excitations in spin or charge channel, is also often called Eliashberg theory.
We will adopt this terminology.

Justification of Eliashberg theory for electronically mediated superconductivity is case specific
and sometimes a small parameter for Eliashberg approximation can be found only by extending
a model e.g., to a large number of fermionic flavors. Furthermore, for several 2D models, the
corrections to Eliashberg approximation for the self-energy in the normal state are logarithmically
singular and in the absence of the pairing would change the system behavior at the smallest
frequencies. Here we assume that the onset temperature for the pairing, Tp, is larger, at least
numerically, than the scale at which corrections to Eliashberg approximation become relevant, and
stick with the Eliashberg theory.

Within the Eliashberg approximation, one can explicitly integrate over the momentum com-
ponent perpendicular to the Fermi surface (for a given pairing symmetry) and reduce the pairing
problem to a set of coupled integral equations for frequency dependent self-energy Σ(ωm) and
the pairing vertex Φ(ωm) with effective frequency-dependent dimensionless interaction χ (Ω) =

(g/|Ω|)γ . This interaction gives rise to NFL form of the self-energy in the normal state and,
simultaneously, gives rise to the pairing.

The Eliashberg equations are

Φ(ωm) = πTgγ
∑
m′

Φ(ωm′ )√
Σ̃2(ωm′ ) + Φ2(ωm′ )

1
|ωm − ωm′ |

γ
,

Σ̃(ωm) = ωm

+ gγ πT
∑
m′

Σ̃(ωm′ )√
Σ̃2(ωm′ ) + Φ2(ωm′ )

1
|ωm − ωm′ |

γ
(1)

where here and below Σ̃(ωm) = ωm + Σ(ωm). Note that we define Σ(ωm) as a real function of
frequency, i.e., we extract an overall factor of i.

The superconducting gap ∆(ωm) is defined as a real variable

∆(ωm) = ωm
Φ(ωm)

Σ̃(ωm)
(2)

The equation for ∆(ω) is readily obtained from (1):

∆(ωm) = πTgγ
∑
m′

∆(ωm′ ) − ∆(ωm)
ωm′

ωm√
ω2

m′ + ∆2(ωm′ )

1
|ωm − ωm′ |

γ
. (3)

This equation contains a single function ∆(ω), but for the price that ∆(ωm) appears on both sides
of the equation, which makes (3) less convenient for the analysis than Eqs. (1).

The full set of Eliashberg equations for electron-mediated pairing contains also the equation
describing the feedback from the pairing on χ (Ω), e.g., the emergence of a propagating mode (often
called a resonance mode) in the dynamical spin susceptibility for d−wave pairing mediated by
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antiferromagnetic spin fluctuations [79,80]. To avoid additional complications, we do not include
this feedback into our consideration. In general terms, the feedback from the pairing makes bosons
less incoherent and can be modeled by assuming that the exponent γ moves towards larger value
as T moves down from Tp.

The two equations in (1) describe the interplay between two competing tendencies — the
tendency towards superconductivity, specified by Φ , and the tendency towards incoherent NFL
behavior, specified by Σ . The competition between the two tendencies is encoded in the fact that
Σ appears in the denominator of the equation for Φ and Φ appears in the denominator of the
equation for Σ . Accordingly, a large, non-FL self-energy is an obstacle to Cooper pairing, while once
Φ develops, it reduces the strength of the self-energy, i.e., moves a system back into a FL regime.

As we said in the Introduction, Eqs. (1)–(3) describe color superconductivity [17,18] and pairing
in 3D (γ = 0+, χ (Ωm) ∝ log |ωm|), spin- and charge-mediated pairing in D = 3 − ϵ dimension
[26,27,43] and superconductivity in graphene [81] (γ = O(ϵ) ≪ 1), a 2D pairing [14] with
interaction peaked at 2kF (γ = 1/4), pairing at a 2D nematic/Ising-ferromagnetic QCP [5,45,82]
(γ = 1/3), pairing at a 2D (π, π ) SDW QCP [6,7,41,83] and an incommensurate CDW QCP [84,85]
(γ = 1/2), dispersionless fermions randomly interacting with an Einstein phonon [74–76] and
a spin–liquid model for the cuprates [46] (γ = 0.7) a 2D pairing mediated by an undamped
propagating boson (γ = 1), pairing in several Fe-based superconductors [62] (γ = 1.2) and even
the strong coupling limit of phonon-mediated superconductivity for either dispersion-full [1–4] or
dispersion-less [74] fermions (γ = 2). The pairing models with parameter-dependent γ have been
analyzed as well (Refs. [21,23]). The case γ = 0 describes a BCS superconductor. Here we consider
the set of γ -models with γ < 1.

The r.h.s. of the equations for Φ(ωm) and Σ(ωm) contain divergent contributions from the terms
with m′

= m, i.e., from χ (0). The divergence can be regularized by moving slightly away from a QCP,
in which case χ (0) is large but finite. This term mimics the effect of non-magnetic impurities and by
Anderson theorem should not affect Tp. To get rid of this thermal contribution in the equations for
Φ(ω) and Σ(ω), we follow Refs. [10,86] and use the same trick as in the derivation of the Anderson
theorem [87]. Namely, in each equation in (1) we pull out the term with m′

= m from the summand
and move it to the l.h.s. We then introduce new variables Φ∗(ωm) and Σ∗(ωm) as

Φ∗(ωm) = Φ(ωm) (1 − Q (ωm)) ,

Σ̃∗(ωm) = Σ̃(ωm) (1 − Q (ωm)) (4)

where

Q (ωm) =
πTχ (0)√

Σ̃2(ωm) + Φ2(ωm)
(5)

The ratio Φ(ωm)/Σ̃(ωm) = Φ∗(ωm)/Σ̃∗(ωm), hence ∆(ωm), defined in (2), is invariant under
Φ(ωm) → Φ∗(ωm) and Σ̃(ωm) → Σ̃∗(ωm). Using (4), one can easily verify that the equations on
Φ∗(ωm) and Σ̃∗(ωm) are the same as in (1), but without the thermal contribution, i.e., the summation
over m′ now excludes the divergent term with m′

= m. In the gap equation, the term with m = m′

vanishes because the vanishing of the numerator in the r.h.s. of (3).
The equations for Φ∗(ωm) and Σ̃∗(ωm) are

Φ∗(ωm) =

πTgγ
∑
m′ ̸=n

Φ∗(ωm′ )√
(Σ̃∗(ωm′ ))2 + (Φ∗(ωm′ ))2

1
|ωm − ωm′ |

γ
,

Σ̃∗(ωm) = ωm +

gγ πT
∑
m′ ̸=m

Σ̃∗(ωm′ )√
(Σ̃∗(ωm′ ))2 + (Φ∗(ωm′ ))2

1
|ωm − ωm′ |

γ
, (6)

and the equation for ∆(ωm) remains intact.
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Fig. 1. The onset temperature of the pairing, Tp , obtained by solving the linearized equation for the pairing vertex.(a) Tp
as a function of γ for N = 1 (the original γ model). (b) Tp as a function of N for chosen γ = 0.5. The inset shows a
good agreement between the numerical results at large N and the scaling behavior Tp =

g
2π

1
N1/γ obtained by considering

only the pairing between fermions with first Matsubara frequencies ωm = ±πT .

4. The onset temperature for the pairing

To obtain Tp, it is sufficient to consider the linearized gap equation. It is obtained from (13) by
setting Φ∗ to be infinitesimally small. Then Φ∗(ωm′ ) in the denominators of (13) can be ignored,
and the self energy Σ∗(ωm) can be approximated by its normal state form. The resulting equations
are:

Φ∗(ωm) = gγ πT
∑
m′ ̸=m

Φ∗(ωm′ )
|ωm′ + Σ∗(ωm′ )|

1
|ωm − ωm′ |

γ
,

Σ∗(ωm) = gγ πT
∑
m′ ̸=m

sgn(ωm′ )
|ωm − ωm′ |

γ
.

(7)

by power counting, Σ∗(ωm) ∝ gγ ω
1−γ
m . Substituting this into the equation for Φ in (7), we obtain

that the pairing kernel Km,m′ ≡ gγ /(|ωm′ + Σ∗(ωm′ )|)/|ωm − ωm′ |
γ is marginal at g > |ωm′ | > |ωm|

(Km,m′ ∝ 1/|ω′
m|), and decays as Km,m′ ∝ gγ /|ωm′ |

1+γ at |ωm′ | > g, ωm. This implies that Tp, if
it exists, should be generally of order g . The marginal form of the kernel is similar to that in the
BCS case, and within the perturbation theory gives rise to the logarithmical growth of the pairing
susceptibility. However, in distinction to BCS, the marginal form of Km,m′ holds only if |ωm′ | > |ωm|,
i.e., at each order of perturbation, the logarithm is cut by the running frequency in the next cross-
section in the Cooper ladder. As the consequence, the summation of the logarithms alone does not
lead to the divergence of the pairing susceptibility [44]. In this situation, it would be natural to
expect that the pairing becomes a threshold phenomenon, i.e., it only develops when the effective
coupling constant (defined in the next Section) exceeds some finite value.

In Fig. 1(a) we show the solution of (7). We see that the onset temperature of the pairing Tp(γ )
is finite for all γ < 1. The divergence of Tp(γ ) at vanishing γ is just the consequence of the fact
that in this limit the interaction decays very slowly (γ = 0 corresponds to BCS limit without upper
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cutoff). Still, observe that for γ ≤ 1, Tp ≥ g , i.e., the pairing instability emerges at T above the
upper edge of NFL behavior. From this perspective, the pairing does not allow NFL behavior to even
develop.

5. Extension to large N

We now analyze whether the existence of a finite Tp is because the tendency to pairing is just
numerically stronger than the one to NFL ground state, or there is a more fundamental reason
why the pairing wins. We recall that the tendency towards NFL is determined by the strength
of the interaction in the particle-hole channel, while the tendency towards superconductivity is
determined by the strength of the interaction in the particle–particle channel. It would naturally be
beneficial to have a parameter, which would allow us to distinguish between the two interactions.
In the original model, the interactions in the particle-hole and the particle–particle channel are
determined by the same g and differ only by a number. We now extend the model and separate
the couplings in the two channels. Specifically, we multiply the coupling in the particle–particle
channel by a factor 1/N , i.e., set it to be gγ /N instead of gγ , and keep the coupling in the particle-
hole channel intact. We will treat N as a free parameter which can be either larger or smaller than
one, but keep in mind that we do this solely for the purpose to better understand the interplay
between NFL and superconductivity. In the end, we are interested in the system behavior in the
physical case of N = 1.

The extension to discrete N > 1 can be formalized by extending the original model to matrix
SU(N) model [43,88]. We will not follow this route and use N as just an artificial parameter which
allows us to amplify one of the two tendencies and study the consequences.

The modified equations for Φ∗(ωm) and Σ̃∗(ωm) are

Φ∗(ωm) =

πT
N

gγ
∑
m′ ̸=n

Φ∗(ωm′ )√
(Σ̃∗(ωm′ ))2 + (Φ∗(ωm′ ))2

1
|ωm − ωm′ |

γ
,

Σ̃∗(ωm) = ωm +

gγ πT
∑
m′ ̸=m

Σ̃∗(ωm′ )√
(Σ̃∗(ωm′ ))2 + (Φ∗(ωm′ ))2

1
|ωm − ωm′ |

γ
,

and the equation for ∆(ωm) becomes

∆(ωm) =

πT
N

gγ
∑
m′ ̸=m

∆(ωm′ ) − N∆(ωm)
ωm′

ωm√
ω2

m′ + ∆2(ωm′ )

1
|ωm − ωm′ |

γ
. (8)

Below we will occasionally refer to the equation on Φ∗(ωm) as the gap equation, notwithstanding
that the true gap equation is given by Eq. (8). Indeed, once we know Φ∗(ωm) and Σ̃∗(ωm), we also
know ∆(ωm) = Φ∗(ωm)ωm/Σ̃∗(ωm).

In Fig. 1(b) we show Tp(N) at a fixed γ = 0.5. We see that Tp(N) remains finite for all N , i.e., for
arbitrary weak strength of the pairing interaction. This result is in clear contradiction with the
reasoning above that the pairing at a QCP is a threshold phenomenon.

On a more careful look at the Eliashberg equations we see the reason — the power-counting
argument that Σ∗(ωm) ∝ ω

1−γ
m does not work for the first two Matsubara frequencies ωm = ±πT .

For these frequencies, Eq. (7) yields Σ∗(±πT ) = 0 because contributions from positive and negative
ωm′ exactly cancel out. To see the consequence of Σ∗(±πT ) = 0, consider the equation for
Φ(ωm) in the limit N ≫ 1 and set external ωm = πT (2m + 1) to πT (i.e., set m = 0). For
m′

= O(1), but m′
̸= −1, the product πTK0,m′ is independent of T and is of order 1/N . However,

for m′
= −1 (ωm′ = −πT ), πTK0,−1 = (1/N)(g/(2πT ))γ becomes large at small enough T . A simple
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experimentation shows [44] that in this situation the Eliashberg equation for Φ(ωm) for different
ωm reduces to

Φ∗(πT ) ≈
1
N

( g
2πT

)γ

Φ∗(−πT )

Φ∗(ωm>0) =
1
N

( g
2πT

)γ

[
Φ∗(πT )

|
1
2 −

ωm′

2πT |
γ +

Φ∗(−πT )

|
1
2 +

ωm′

2πT |
γ

]
. (9)

We will be searching for even-frequency solution Φ∗(ωm) = Φ∗(−ωm). Then the first equation in
(9) sets Tp = (g/2π )1/N1/γ , and the second shows that a non-zero Φ∗(ωm) is induced by Φ∗(±πT )
and is suppressed by N1/γ for T → Tp.

In the inset for Fig. 1(b) we show the actual Tp vs. Tp = (g/2π )1/N1/γ . We see that the agreement
is perfect at large N .

6. Solution of the full eliashberg equations below Tp(N )

We now study the consequences of the fact that the pairing, at least for large N , is fully induced
by fermions with Matsubara frequencies ωm = ±πT . For this we solve non-linear gap equation
below Tp and found Φ∗(ωm), Σ̃∗(ωm) and ∆(ωm). We then use these solutions as inputs and obtain
Φ∗(ω), Σ̃∗(ω) and ∆(ω) in real frequencies. The full analysis is presented in Ref. [70,71] Here we
briefly describe the main results.

6.1. Large N ≫ 1

Because the pairing is induced by fermions with ωm = ±πT , it is natural to expect that the
pairing gap below Tp is much larger at ωm = ±πT than at other frequencies. The solution of the
non-linear Eliashberg equation confirms this: at ωm > 0

∆(πT ) = πT
(

2
N

)1/2 (
1 −

(
T
Tp

)γ)1/2

∆(ωm > πT ) =
1
N

∆(πT )
H(m, γ )

(
1
mγ

+
1

(m + 1)γ

)
∝

T
(

2
N

)3/2 (
1 −

(
T
Tp

)γ)1/2

. (10)

where H(a, b) =
∑a

1 n
−b is a harmonic number. We plot ∆(ωm) in Fig. 2. In the inset to this Figure

we plot ∆(πT ) vs. T . We see that ∆(πT ) has a re-entrant behavior and vanishes at T = 0. We
verified that this holds for all ωm, i.e., the normal state is a naked NFL. This agrees with Eq. (10). The
reentrant behavior of ∆(ωm) with T is the direct consequence of the fact that the pairing is induced
by fermions with ωm = ±πT because at T = 0 a Matsubara frequency becomes a continuous
variable and fermions with ωm = ±πT cannot play any special role.

Using the solution along the Matsubara axis, one can obtain the gap function along the real axis
∆(ω). This requires one to solve the set of integral equations for Φ∗(ω) and Σ̃∗(ω) with the solution
along the Matsubara axis as an input. We skip the details (see Ref. [70]) and present the results.
The vertex function Φ∗(ω), the self-energy Σ∗(ω), and the gap function ∆(ω) are given by

Φ∗(ω) =

(
2
N

)3/2

πT
( g

πT

)γ
(
1 −

(
T
Tp

)γ)1/2

FΦ

( ω

πT

)
,

Σ∗(ω) = πT
( g

πT

)γ

FΣ

( ω

πT

)
,

∆(ω) =

(
2
N

)3/2

πT
(
1 −

(
T
Tp

)γ)1/2

F∆

( ω

πT

)
, (11)
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Fig. 2. The frequency dependence of the gap function ∆(ωm) at large N (N > Ncr ). Only positive ωm are shown. We
consider even frequency solution, ∆(−ωm) = ∆(ωm). For definiteness, we set γ = 0.9, N = 10 and T = 0.01Tp . Observe
that the value of the gap at first fermionic Matsubara frequency, ∆(πT ), is much larger than at all other ωm . Inset: The
temperature dependence of ∆(πT ) for γ = 0.9 and two different N > Ncr . The gap is non-monotonic: it emerges at
T = Tp and vanishes at T = 0. The same holds for the gap at all other Matsubara frequencies.

Fig. 3. (a)–(b) The scaling functions FΦ ( ω
πT ) for the pairing vertex, FΣ ( ω

πT ) for the fermionic self-energy, and F∆( ω
πT ) for

the gap function (see Eq. (11)) for representative γ = 0.3 and γ = 0.9; (c) The DOS N(ω) for the same γ and N = 6.
The DOS have been obtained by solving Eliashberg equations on the real axis, using the solution on Matsubara axis as
an input. (d) The scaling function for the DOS, Re[FN ( ω

πT )], see Eq. (12).

where FΦ , FΣ and F∆ are scaling functions of ω/πT . We remind that Σ̃∗(ω) = ω + Σ∗(ω). We
plot these functions in Fig. 3. Because Φ∗(ω) ∝ 1/N3/2 is small, the self-energy in (11) retains, to
order 1/N3, the same NFL form as in the normal state, i.e., there is essentially no feedback effect on
fermions from the pairing. At large argument, FΣ (x) ∝ x1−γ eiπγ /2, i.e., Σ∗(ω) ∝ ω1−γ . We also note
that at small ω, Re ∆(ω) ∝ ω2 and Im ∆(ω) ∝ ω. This behavior is a signature of a gapless SC. The
DOS is

N(ω) = N0 Re
[

ω

(ω2 − ∆2(ω))1/2

]
(12)

≈ N0

(
1 +

1
2

(
2
N

)3 (
1 −

(
T
Tp

)γ)
Re
[
FN
( ω

πT

)])
.

where N0 is the DOS in the normal state. We see that the magnitude of N(ω)/N0−1 depends on T/Tp.
However, the frequency dependence of the DOS is determined by FN (ω/(πT )), which for any given
γ is a universal function of ω/T and does not depend on T/Tp. This implies that the characteristic
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Fig. 4. Smaller N < Ncr . (a) The gap function ∆(ωm) along Matsubara frequency axis. We set γ = 0.9, N = 1 and
T = 0.18Tp . Observe that ∆(ωm) is no longer strongly peaked at ω = ±πT ; (b) The gap function at ωm = πT as a
function of temperature for γ = 0.9. The gap now tends to a finite value at T → 0; (c) Real and imaginary parts of the
gap function ∆(ω) along real frequency axis for T < Tcross and T > Tcross . At T < Tcross the gap function resembles that of
a non-critical BCS/Eliashberg superconductor, i.e. at small ω it is real and weakly dependent on ω. At higher T < Tcross ,
the functional form of ∆(ω) is similar to the one obtained in at N > Ncr , see Fig. 3. (d) The DOS N(ω) for various T . At
low T < Tcross the DOS has a sharp peak at ω = ∆0 and nearly vanishes for ω < ∆0 . At higher T > Tcross the behavior
of the DOS is similar to the one at N > Ncr , i.e., the position of the maximum of N(ω) shifts to a higher frequency with
increasing temperature. The insets show the position of the maximum, ωp , as a function of T/Tp .

frequency, at which N(ω) deviates from N0, is determined by the temperature rather than by the
magnitude of the superconducting gap. We show the plot of FN for DOS in Fig. 3(d)

6.2. Smaller N ≥ 1

To avoid a lengthy discussion, here we present only the numerical results. In Fig. 4(a) we
show the gap function along the Matsubara axis. We see that now ∆(ωm) is a smooth function
of frequency, i.e., fermions with ωm = ±πT are no longer special. In Fig. 4(b) we show ∆(πT ) as a
function of T/Tp. We clearly see that the gap now reaches a finite value ∆ at T = 0. This implies
that the ground state is now a superconductor. We show Φ∗(ω), Σ∗(ω) and ∆(ω) in Fig. 4(c) and
the DOS in Fig. 4(d) At low T the system now displays BCS-type behavior. Namely, Σ∗(ω) acquires
a FL form due to feedback from the pairing (Σ∗(ω) is linear in ω at small frequencies), the gap ∆(ω)
is predominantly real and reaches ∆ at ω = 0, and DOS has a sharp peak at ω = ∆, which initially
moves to a smaller ω as T increases, consistent with the ‘‘gap closing’’ behavior.

At higher T , above some Tcross < Tp, the system behavior changes — the self-energy recovers
its NFL, normal state form, the gap function becomes predominantly imaginary at small ω, and the
DOS N(ω) displays ω/T scaling, instead of ω/∆ one, and shows ‘‘gap filling’’ behavior. This is the
same behavior that we found at large N .

These results show that at N ≥ 1, the system undergoes a crossover between BCS-like behavior
at small T and non-BCS, ‘‘gap filling’’ behavior at higher T . In Fig. 5 we show the phase diagram,
extracted from the numerical data. For a given γ , the crossover temperature Tcross is finite for N = 1,
gets smaller with increasing N , and vanishes at some Ncr , whose value depends on γ . In the rest of
this paper we analyze what determines the crossover line Tcross(N) and why it disappears at a finite
N = Ncr . For this we first consider the case T = 0.

7. Solution of Eliashberg equations at T = 0

In this section we present the reasoning for the existence of critical N = Ncr , separating NFL
ground state at N > Ncr and a SC state at N < Ncr . We present semi-quantitative reasoning, which
works best at small γ . For detailed analysis see Ref. [89].
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Fig. 5. The phase diagram constructed from the numerical results in Section 6. The red solid line is Tp(N). The dashed
red line makes the crossover between BCS-like ‘‘gap closing’’ behavior in region I and non-BCS ‘‘gap filling’’ behavior in
region II.

At T = 0 the Eliashberg equations for Φ∗
= Φ and Σ̃∗

= Σ̃ are

Φ(ωm) =

gγ

2N

∫
dω′

m
Φ(ω′

m)√
Σ̃2(ω′

m) + Φ2(ω′
m)

1
|ωm − ω′

m|
γ
, (13)

Σ̃(ωm) = ωm

+
gγ

2

∫
dω′

m
Σ̃(ω′

m)√
Σ̃2(ω′

m) + Φ2(ω′
m)

1
|ωm − ω′

m|
γ
, (14)

In the normal state,

Σ̃(ωm) = ωm + ω
γ

0 |ωm|
1−γ sgnωm (15)

where ω0 = g/(1 − γ )1/γ . At small γ , ω0 = g/e. In the limit of infinitesimally small Φ(ωm) we
obtain, using (15)

Φ(ωm) =
1 − γ

2N

∫
dω′

m
Φ(ω′

m)
|ω′

m|
1−γ

|ωm − ω′
m|

γ

1

1 +

(
|ω′

m|

ω0

)γ (16)

After rescaling ω̄m = ωm/ω0, this equation becomes completely universal, with N as the only
parameter:

Φ(ω̄m) =
1 − γ

2N

∫
dω̄′

m
Φ(ω̄′

m)
|ω̄′

m|
1−γ

|ω̄m − ω̄′
m|

γ

1
1 + |ω̄′

m|
γ

(17)

7.1. Large N

Here we consider large N . The effective coupling constant in (16) scales as 1/N , hence the
solution with a non-zero Φ(ωm) emerges only if the smallness of the coupling is compensated
by a large value of the frequency integral in the r.h.s. of (17). This is indeed what happens in
a BCS superconductor (the case γ = 0), where the pairing kernel scales as 1/|ωm|, Φ(ω) = Φ

is independent on the running fermionic frequency, and the integral
∫ ωD
0 dωmΦ/|ωm|, with some

upper cutoff at ωD, is logarithmically singular. This gives rise to a divergence of Φ at some non-zero
total incoming frequency Ωtot .

For a non-zero γ , the pairing kernel is the function of both internal ω′
m and external ωm:

K (ω,ω
′

m) =
1

|ω′
m|

1−γ
|ωm − ω′

m|
γ (1 +

(
|ω′

m|

ω0

)γ

)
, (18)
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If we set the external ωm to zero, we find that K (0, ω′
m) =

[
|ω′

m|(1 + |ω′
m|/ω0)γ

]
−1 is marginal

at |ω′
m| < ω0, like in BCS theory. This implies that if we again add Φ0 and compute Φ(Ωm)

perturbatively, the series are logarithmical, like in BCS case. In distinction to BCS, however, each
logarithmical integral

∫
dω′

m/|ω′
m| runs between |ω′

m| ∼ ω0, which sets the upper limit, and
|ω′

m| ∼ |ωm|, which sets the lower limit. We can then safely set Ωtot = 0. Summing up logarithmical
series we then obtain

Φ(ωm) = Φ0

∞∑
k=0

1
k!

[
1 − γ

N
log

ω0

|ωm|

]k
= Φ0

[
ω0

|ωm|

] 1−γ
N

(19)

We see that Φ(ωm) does not diverge at any non-zero ωm. The implication is that, at a finite γ ,
summation of the logarithms does not give rise to pairing instability.

We now go beyond perturbation theory and analyze the linearized equation for Φ(ωm), Eq. (16),
without the Φ0 term. Our first observation is that the power-law solution Φ(ωm) ∝ (ω0/|ωm|)(1−γ )/N ,
which we found by summing up logarithms, does satisfy Eq. (16) at small frequencies |ωm| ≪ ω0,
when one can neglect (|ωm|/ω0)γ term in the denominator in (16). To see this, we note that
Φ(ωm) ∝ (ω0/|ωm|)(1−γ )/N does satisfy the truncated version of Eq. (16) if

1 =
(1 − γ )

2N

∫
dx

|x|(1−γ )(N+1)/N

1
|1 − x|γ

(20)

One can verify that this condition is satisfied to order O(1/N) – the compensating factor N comes
from large |x| ≫ 1 in the integral.

We now argue that there is another possibility to compensate for the 1/N smallness of the
coupling constant in (16), by choosing Φ(ωm) ∝ (ω0/|ωm|)γ−(1−γ )/N , such that the integral over
ω′

m in the r.h.s. of (16) almost diverges at small ω′. Indeed, substituting this form into the truncated
version of (16) and rescaling, we find that the equation is satisfied if

1 =
(1 − γ )

2N

∫
dx

|x|1−(1−γ )/N

1
|1 − x|γ

(21)

One can verify that this condition is again satisfied to order O(1/N) – the compensating factor N
now comes from small |x| ≪ 1 in the integral. Note that this solution could not be obtained within
a conventional logarithmic approximation (or, equivalently, RG scheme) as the latter assumes that
the logarithms, which sum up into anomalous power-law form, come from internal frequencies
larger than the external one.

The full solution for Φ(ωm) at |ωm| ≪ ω0 is the combination of the two power-law forms:

Φ(ωm) =
C1

|ωm|
γ (1/2−b) +

C2

|ωm|
γ (1/2+b) (22)

where at large N , b2 ≈ 1/4 − (1 − γ )/(Nγ ). The overall factor does not matter because Φ(ωm) is
defined up to a constant multiplier, but the ratio C2/C1 is a free parameter at this moment.

We now verify whether by properly choosing C2/C1 one can extend the solution to larger ωm,
when (|ωm|/ω0)γ term in the denominator of (16) cannot be neglected. For this we fist note that
at large |ωm| ≫ ω0, Φ(ωm) ∝ 1/|ωm|

γ because in this limit the external ωm can be pulled out from
the integral in the r.h.s. of (16) and the remaining integral converges at |ω′

m| = O(ω0). To study the
crossover from small to large frequencies we consider γ ≪ 1.

For these γ , the compensation of 1/N in the integral in the r.h.s. of (16) comes from internal ω′
m

either much larger or much smaller than external ωm. Accordingly, we split the integral over ω′
m

into two contributions and approximate |ωm − ω′
m| by |ω′

m| in the one and by |ωm| in the other. A
simple experimentation and rescaling shows that the integral equation for the pairing vertex then
reduces to

Φ(x) = (1/4 − b2)
[∫

∞

x
dy

Φ(y)
y(1 + y)

+
1
x

∫ x

0
dy

Φ(y)
1 + y

]
(23)
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where we introduced x = (|ωm|/ω0)γ . Differentiating twice over x, we obtain second order
differential equation

(Φ(x)x)′′ = −(1/4 − b2)
Φ(x)

x(x + 1)
, (24)

where (...)′′ = d2(...)/dx2. The solution of (24) is a linear combination of the two hypergeometric
functions:

Φ(x) =
1 + x
x1/2

(
C1

xb 2F 1 [1/2 − b, 3/2 − b, 1 − 2b; −x]

+
C2

x−b 2F 1 [1/2 + b, 3/2 + b, 1 + 2b; −x]
)

(25)

where, we remind, x = (|ωm|/ω0)γ . At small x this reproduces the power-law form of Eq. (22). At
large x we should have Φ(x) ∝ 1/x. Using the asymptotic form of the Hypergeometric function,
we obtain from (25), Φ(x) = A1/x + A2, where A1 and A2 are linear combinations of C1 and C2. To
match with high-frequency behavior we need to set A2 = 0. This determines the ratio C2/C1. For
this given C2/C1, Φ(x) in (25) is the true solution of the linearized gap equation, which smoothly
interpolates between the two limits. We emphasize that one need to fix just one free parameter
to obtain the analytic solution of the original integral equation. This would not be possible if one
would artificially set the upper cutoff in (17) at some x0 and use (22) for x < x0. Then one had
to satisfy an infinite number of boundary conditions on Φ(x) and its derivatives at x = x0, which
would be impossible as C2/C1 is the only parameter.

We next analyze whether there exists a solution with a finite (i.e., not infinitesimally small)
Φ(ωm) and, hence, a finite condensation energy. A way to check this is to take the solution of
the linearized gap equation at some large N = N0 as an input, reduce N a bit (i.e., increase the
interaction in the particle–particle channel) and check whether there appears a finite Φ(ωm). We
argue that this does not happen because a finite Φ would give rise to a divergent condensation
energy Ec = Fsc−Fn. Indeed, using the Eliashberg formula for the Free energy for the γ -model [70,90]
and expanding it in powers of Φ , we find

Ec = D(N0 − N)
∫

dωm
Φ2(ωm)
|ωm|

1−γ
+ O(Φ4) (26)

where D is a numerical prefactor. Substituting the small-frequency form of Φ(ωm) from (22) we
find that the C2 term gives infra-red divergent contribution to the integral in (26) in the form∫
dωm/|ωm|

1+b. The only option to avoid the divergence is to set C2 = 0. However, then one would
not be able to match low-frequency and high-frequency behavior of Φ(ωm). The same result is
obtained if we directly solve the non-linear gap equation using the solution of the linearized gap
equation as the source — the frequency integral in the source term diverges if we keep C2 finite. This
implies that the solution for Φ in (25) is not normalizable and only holds if Φ(ω) is infinitesimally
small.

We see therefore that for large N the system at T = 0 is ‘‘frozen’’ at the transition towards
pairing: the solution of the linearized equation for Φ exists, but the non-linear equation has no
solutions. This is fully consistent with our analysis in the previous section, where we found that, at
large N , the pairing gap vanishes at T = 0.

We next observe that the above analysis is valid as long as b2 = 1/4−1/(Nγ ) > 0 (b in (22) and
(25) is real), i.e., as long as N > Ncr = 4/γ . For smaller N the analysis has to be done differently.

7.2. N = Ncr

At N = Ncr the two exponents γ (1/2 ± b) in (22) merge into the single one, equal to γ /2. At a
first glance, this implies that there is no parameter analogous to C2/C1, which could be adjusted to
match Φ(ωm) at large ωm. On a more careful look, however, we find that there are fact two solutions
at small x, when b = 0

Φ(ωm) =
1

|ωm|
γ /2 (C1 + C2 log |ωm|) (27)
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The full solution for b = 0 is expressed via Hypergeometric and MejerG functions. Like for larger
N , one can interpolate smoothly between small and large x limits by adjusting C2/C1 ratio. There is
no solution of the non-linear equation.

7.3. N < Ncr

Consider first the linearized equation for the pairing vertex, Eq. (16). Let us focus on small ωm,
neglect ωm compared to the self-energy Σ(ωm) (i.e., neglect the last term in (16)) and search for
the same power-law solutions Φ(ωm) ∝ 1/|ωm|

γ (1/2±b) as before. Now b2 = (1 − Ncr/N)/4 < 0,
i.e., the two exponents are complex conjugated [6,43,44]. Substituting into (16) we find that the
solution with the complex exponents exists, despite that all coefficients in (16) are real numbers.
It is convenient to define the exponents as γ (1/2 ± iβ) where now 2β =

√
Ncr/N − 1 > 0. Then

the power-law solution is, in terms of dimensionless x = (|ωm|/ω0)γ :

Φ(x) =
C

x1/2
cos (β log x + φ) (28)

where C is an irrelevant overall factor. The role formerly played by C2/C1 is now played by a phase
factor φ, which at this stage is a free parameter. This Φ(x) is now oscillating on a logarithmical scale
down to the lowest x, i.e., the lowest ω. We note in passing that complex exponents have been
detected in other sets of problems, including holographic description of Fermi surfaces [91,92] and
recent studies of scaling dimensions of operators in interacting SYK-type models [93].

At large |ωm| ≫ ω0, i.e., at x ≫ 1, we still can pull ωm from the integral in the r.h.s. of Eq. (16)
and obtain Φ(ωm) ∝ 1/|ωm|

γ , i.e., Φ(x) ∝ 1/x. Like before, we need to verify whether this behavior
and the one at small |ωm| ≪ ω0 can be matched by choosing a proper φ in (28). For this we again
assume that γ is small and keep in the integral over ω′

m in (16) the contributions from ωm ≫ ω′
m

and ωm ≪ ω′
m, and reduce integral equation for Φ(x) to the same differential equation as in (24).

Solving this equation for N < Ncr , we obtain

Φ(x) = C̄
1 + x
√
x

× Re
(
e−iφxiβ2F 1

[
1
2

+ iβ,
3
2

+ iβ, 1 + 2iβ; −x
])

(29)

where C̄ ∼ C . We plot Φ(x) in Fig. 6. At x ≪ 1, this Φ(x) reduces to the one in (28). At x ≫ 1,
solution can be expressed in terms of Bessel and Neumann functions as

Φ(x) =
C

√
x

[
aJ J1

(√
Ncr

Nx

)
+ aYY1

(√
Ncr

Nx

)]
(30)

where the aJ , aY are expressed in terms of the phase factor φ in (29). Using that J1(z ≪ 1) ∼ z and
Y1(z ≪ 1) ∝ 1/z, we find that the required form Φ(x) ∝ 1/x at large x is reproduced if we choose
the phase such that aY = 0.

This consideration shows that the solution of the linearized equation for the pairing vertex exists
also for all N < Ncr . Combined with earlier analysis, we see that it exists for all values of N , including
physical N = 1. There is however, an essential difference between the form of Φ(ωm): at N > Ncr
it is a sign-preserving function of ω, while at N < Ncr it oscillates down to the lowest ω.

We now argue that there is a crucial difference between the cases N < Ncr and N = Ncr . Namely,
for N < Ncr , the quadratic in Φ term in the Free energy does not diverge. Indeed, in logarithmical
variables the integral in (26) now reduces to

∫ 1
−∞

dy cos2(βy + φ). This integral converges at the
lower limit if we add infinitesimally small damping term to the argument of cos. Because of
convergence, the solutions of the non-linear gap equation are now possible.

Below we present a self-consistent reasoning how one can find a solution of the non-linear gap
equation. Namely, we assume at small x that Φ(x) can be approximated by a constant Φ0 up to
some x = x∗, and at larger x reduces to the solution of the linearized gap equation. This sets up
three conditions: (i) cos(β log x∗

+ φ) =
√
x∗, (ii) Σ(x∗) = Φ0, i.e., Φ0 = ω0(x∗)(1−γ )/γ , and (iii)

x∗
= 0 for β = 0. The first equation determines x∗, the second relates the magnitude of Φ0 to x∗,

and the third implies that a non-zero Φ0 is only possible at N < Ncr , when β > 0. We remind
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Fig. 6. The solution of Eq. (29) for the pairing gap in the case N < Ncr . The horizontal axis is x = (ω/ω0)γ , the vertical axis
is x1/2Φ(x). The plots are for two different β ∝ (Ncr −N)1/2 . Observe that the gap function oscillates at small frequencies
and vanishes at high frequencies. Oscillations are on logarithmical scale, and to clearly see them one needs to go to truly
small x.

Fig. 7. The values of the gap function at zero frequency, ∆n for solutions with different n = 0, 1, ..4 for representative
γ = 0.3. Observe that all ∆n vanish at N = Ncr .

that the phase φ is already fixed at some certain value in the interval [0, π/2], i.e., x∗ is the only
unknown. Solving the first equation at small β (i.e., at N ≤ Ncr ) we find an infinite discrete set of
solutions x∗

n = Qe−nπ/β , where Q ≈ e(π/2−φ)/β and n = 1, 2, 3.... Accordingly, there is discrete set
of the gap magnitudes ∆0,n = ∆n ∝ ω0e−nπβ(1−γ )/γ . We show different ∆n in Fig. 7.

The implication is that N = Ncr is a very special critical point: on one side of this point, at
N > Ncr , the system is frozen at the onset of gap opening, on the other side, at N < Ncr , the system
develops an infinite set of solutions of the non-linear gap equation. The end point of the set is the
solution of the linearized gap equation. These solutions are topologically distinct in the sense that
Φn(ω) changes sign n times as a function of frequency before saturating at the value Φ0,n at the
smallest ωm. The largest gap magnitude is for the solution with n = 0, for which Φ0(ωm) does not
change sign.

A numerical verification of the existence of an infinite set of solutions at T = 0 requires extra
efforts, because numerical calculations are normally done for a finite number of discrete Matsubara
frequencies. However, by a simple logics, each solution Φn(ωm) should vanish at its own Tp,n, whose
existence can be verified by solving the linearized gap equation in different topological sectors. This
is what we do in the next section.



A.V. Chubukov, A. Abanov, Y. Wang et al. / Annals of Physics 417 (2020) 168142 17

Fig. 8. The critical value of N at T = 0 – Ncr , as a function of γ (see Eq. (31)). The system is a critical NFL at N > Ncr
and a superconductor at N < Ncr .

Before we go to finite T , a few remarks about T = 0. First, our argument that the solutions
of the linearized gap equation exists for all N is appealing, but still approximate because we
converted the original integral equation into a second order differential equation. As the full proof,
we obtained [89] the exact solution of the linearized gap equation, valid for all γ < 1 and all N .
At small γ the exact solution is quite similar to the one we presented above, at larger γ there are
qualitative differences.

Second, Ncr can be obtained for any γ , not necessary small, by analyzing the power-law solution
of the linearized gap equation at small ω and checking when the exponents change from real to
complex. For arbitrary γ < 1 we obtain

Ncr =

π
2 (1 − γ )

sin π
2 (1 − γ )

π

Γ (γ )

(
1 − cos πγ

2

)−1

Γ 2 (1 − γ /2)
(31)

We plot Ncr vs. γ in Fig. 8. Eq. (31) has been obtained in Ref. [6] for γ = 1/2, Ref. [43] for small γ ,
and Ref. [44] for arbitrary γ . A similar result has been recently found in the study of the pairing in
the SYK-type model [74–76] (see the article by Daniel Hauck, Markus Klug, Ilya Esterlis, and Jörg
Schmalian for this issue).

8. Multiple solutions for the onset temperature of the pairing

In Section 4 we found numerically the onset temperature of the pairing Tp. We now show that
this is the largest temperature of the set Tp,n of onset temperatures for topologically different
solutions. In this set Tp,0 = Tp and Tp,n at n → ∞ tends to zero. To shorten the presentation
we show the numerical evidence (Ref. [77]).

In Fig. 9(a) we show Tp,n obtained by analyzing the eigenvalues of the linearized equation for
Φ(ωm) for a certain γ . We clearly see that there is infinite set of non-zero Tp,n. The largest Tp,0 = Tp
is different from all other Tp,n in that it remains finite for all N . All other Tp,n vanish at N = Ncr ,
as evidenced from Fig. 9(a) Because both Φn(ω) and Tp,n for n ≥ 1 vanish at N = Ncr , it is natural
to expect that they are of the same order. By this argument, Tp,n ∝ ω0e−βn(1−γ )/γ , i.e., log Tp,n/ω0
scales linearly with the number of the solution, n. In Fig. 9(b) we plot Tp,n in a logarithmic scale.
We clearly see that log Tp,n/ω0 is a linear function of n, as we anticipated.

In Fig. 9(c) we show Φn(ωm) for different solutions. Each solution is plotted vs. a discrete
frequency ωm = πTp,n(2m+1). The smallest ω0 = πTp,n gets progressively smaller with increasing n.
We see that, as we expected, Φn(ωm) changes sign n times. This is fully consistent with the solution
for a finite Φn(ω) at T = 0.

The outcome of this analysis is shown in Fig. 10 - there exists an infinite set of the lines Tp,n(N)
for n > 0, which all terminate at T = 0,N = Ncr , and a line Tp,0(N) = Tp(N), which does not
terminate at any N .
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Fig. 9. Multiple solutions for the onset temperature of the pairing, Tp,n (n = 0, 1, 2, 3..) (a) Tp,n for n = 0, 1..4 for γ = 0.3
and γ = 0.5. Observe that all Np,n vanish at N = Ncr (red dots in (a)). The largest Tp,0 = Tp bypasses Ncr ; (b) Plots of
log(Tp,n) vs.. the index n. The linear dependence with a negative slope indicates that Tp,n decay exponentially with n. For
definiteness we set N = 1; (c) Plots of Φn(ωm) at T = Tp,n for solutions with n = 0, 1, 2, 16, 17. We set γ = 0.5 and
N = 1. We see that Φ(ωm) oscillates on a logarithmic scale, and the nth solution changes sign n times as function of
Matsubara frequency ωm . The solution with n → ∞, for which Tp,n → 0, changes sign infinite number of times, like the
T = 0 solutions in Fig. 6.

Fig. 10. Cartoon of the behavior of Tp,n(N) vs. N for arbitrary γ < 1. All Tp,n with n > 0 terminate at N = Ncr , while
Tp,0 = Tp remains non-zero for any N .

9. The origin of Tcross(N )

We now relate the existence of multiple lines Tp,n(N) representing different solutions of the
linearized Eliashberg equation and the crossover line T = Tcross, which we observed in Section 6.2
by solving numerically the non-linear gap equation for larger and smaller N . First, we naturally
identify the end point of Tcross(N) in Fig. 5 with Ncr , which we found in the T = 0 analysis. Second,
the largest condensation energy at T = 0 corresponds to the solution with n = 0. This solution is the
only global minimum of the Free energy. Other solutions are local minima. This also holds at a finite
T . In this respect, Tp,0 = T0 is the only onset temperature for the pairing. However, the functional
form of the gap function ∆0(ωm, T ) evolves with decreasing T because other gap components also
get generated below Tp because of non-linear coupling in the Free energy between ∆0(ωm, Tp) and
∆n(ωm, Tp,n) with n > 0 (Refs. [72,94]) As a result, as T decreases, not only the magnitude of
the actual gap function ∆0(ωm) get larger, but its frequency dependence also changes. Near Tp,
the relative weight of n > 0 components is small and ∆0(ωm, T ) ∝ (Tp − T )1/2∆0(ωm, Tp). This
is the regime of ‘‘gap filling’’ behavior. At smaller T , the weight of n > 0 components in ∆0(ωm, T )
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increases, and eventually ∆0(ωm, T ) becomes a smooth function of ωm, as, we found, it is at T = 0.
As we found in Section 6.2, for such form of ∆0(ωm, T ) the system displays BCS-type ‘‘gap closing’’
behavior.

These reasoning show that the existence of multiple Tp,0(N) for the solution of the linearized
gap equation is crucial for the existence of the crossover from non-BCS ‘‘gap filling’’ to BCS-like
‘‘gap closing’’ behavior. The functional form of Tcross(N) is a more subtle issue, which we do not
address here. Our reasoning is valid for N ≤ Ncr , where Tcross and Tp,n for n > 0 are all small (they
all vanish at N = Ncr ). Numerical results show that at smaller N , Tcross(N) becomes numerically
larger than the largest of Tp,n.

10. Superfluid stiffness

So far we found that at Tcross < T < Tp, the feedback from the pairing on fermions is weak,
i.e., fermionic self-energy retains its NFL form and the system displays ‘‘gap filling’’ behavior. This
result does not address whether or not the system has long-range phase coherence. It is natural to
ask how strong phase fluctuations are in the range Tcross < T < Tp.

Superfluid stiffness has been computed in Ref. [71] by expressing the coordinate-dependent gap
function as ∆(ωm, r) = ∆(ωm)eiφ(r) and evaluating the term in the effective action

∫
dr(∇φ(r))2. The

stiffness ρs(T ) is the prefactor in this term. For a BCS superconductor ρs(T = 0) ≈ EF/(4π ). Because
EF is assumed to be much larger than mean-field transition temperature Tp, phase fluctuations are
weak and mean-field Tp almost coincides with the actual Tc . In our case we found at large N , when
Tcross = 0,

ρs(T ) ≈
T
N

(
1 −

(
T
Tp

)γ) EF
πTχ (0)

(
1 + O

(
1
N

))
, (32)

where χ (0) is a static susceptibility of a critical bosonic field. Formally, χ (0) diverges at a QCP.
However, setting χ (0)−1 to zero would invalidate Eliashberg theory, which is built on the notion that
there is a small parameter, which makes vertex corrections small and simultaneously allows one to
factorize momentum integration by separating fast electrons and slow bosons. One can verify that in
our case this Eliashberg parameter is EF/πTχ (0). The consideration, based on Eliashberg equations,
is valid when, at most, πTχ (0) ≤ EF . This bounds ρs(T ) from above by (T/N)

(
1 −

(
T/Tp

)γ ). We
see that ρs(T ) is at most of order T/N , i.e., ρs < T . In this situation, phase fluctuations are strong,
⟨φ2

⟩ ≥ 1, and long range phase coherence is likely destroyed [95,96]. Applying this reasoning to
smaller N , we find that ρs ≤ T at T where the pairing is induced by fermions with ωm = ±πT , i.e., in
the range Tcross < T < Tp. Then, at least a portion of this range is actually phase-disordered, i.e., the
actual Tc is of order Tcross. At smaller 0 < T < Tcross the same calculation yields, ρs ≥ ∆(T → 0) ≥

Tcross, i.e., phase fluctuations are weak and phase coherence survives. The outcome of this analysis
is that the region below Tcross corresponds to a true SC state, while in the range Tcross < T < Tp
the system displays pseudogap behavior, meaning that the amplitudes of the pairing vertex and the
gap function are given by Eq. (11) and the DOS is given by Eq. (12), but there is no true long-range
order.

We show the resulting phase diagram in Fig. 11. It is similar to Fig. 5, but the former crossover
line Tcross is the actual Tc line (the solid line in the figure), while Tp is the crossover temperature,
below which the behavior of the gap function and the DOS is the same as of our ∆(ωm) and N(ωm),
but there is no true superconducting order. The region between Tp and Tc is called pseudogap phase,
or, in our case, a precursor to superconductivity.

11. Application to the d-wave case

Finally, we briefly discuss the relation between our results and ARPES data for cuprate supercon-
ductors. To quantitatively apply our results to the cuprates, we (i) assumed that the critical boson is
a (π, π ) spin fluctuation, (ii) modeled the d−wave symmetry of the gap function by adding cos 2θ
factor to Φ∗(ω), and (iii) used as an input the fact that spin fluctuations become nearly propagating
modes below Tp due to the feedback from the pair formation on bosonic self-energy [9], in which
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Fig. 11. Phase diagram of the γ model with 0 < γ < 1, emerging from our analysis. The red solid line is the actual
transition temperature Tc (N). Below Tc (N) the system has long-range superconducting order, and the observables display
BCS-like behavior. The dashed red line marks the crossover temperature Tp(N). Below this temperature the system displays
‘‘gap filling’’ behavior, which we described in Section 6, but there is no true long-range order. The range between Tc (N)
and Tp(N) is a portion of the pseudogap phase, where pairing fluctuations are strong. In the cuprates, pseudogap behavior
likely persists above Tp(N) due to other effects, which we did not consider here.

Fig. 12. The spectral function for a d−wave superconductor, Ak(ω), along the Fermi surface at T < Tcross and T > Tcross .
The nodal and anti-nodal regions are denoted by red and green colors, respectively. At low T , Ak(ω) has two peaks, which
merge at the nodal point. At higher T , Ak(ω) in the nodal region develops a single peak at ω = 0. The region where this
happens is called a Fermi arc. In the antinodal region the peaks persist get ‘‘filled in’’ when the temperature increases
towards Tp .

case the exponent γ ≤ 1. In Fig. 12 we show the results for the spectral function AkF (ω) for kF in
near-nodal and anti-nodal regions. The difference between the two is partly due to d−wave gap
symmetry and partly due to the difference in the contribution from thermal fluctuations, which
are much stronger in the antinodal region. We see that at T < Tcross, AkF (ω) has two peaks,
more strongly separated in the antinodal region. This is an expected result for a d-wave BCS-like
superconductor. At higher T > Tcross, AkF (ω) near the nodes has a single maximum at ω = 0, while
in the antinodal region AkF (ω) has a dip at ω = 0 and a shallow maximum, whose frequency scales
with T (the ‘‘gap filling’’). This nodal–antinodal dichotomy reproduces the key features of ARPES
data detected in Refs. [97–104] known as the ‘‘Fermi arc’’ behavior. The behavior of N(ω) is quite
similar to that of A(ω) in the antinodal region. This is fully consistent with the STM data [103,105].

We emphasize that in our analysis we only considered fluctuations in the particle–particle chan-
nel and ignored another aspects of pseudogap phase, such as precursor to Mott/antiferromagnetic
phase, or a development of a competing order in the particle-hole channel. In this respect, our
reasoning is applicable only to a portion of a pseudogap phase, where pairing correlations are
strong [106].
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12. Summary

In this mini-review, we used Eliashberg theory to analyze the interplay between NFL and SC
near a quantum-critical point in a metal. We considered a class of quantum-critical models with an
effective dynamical electron–electron interaction V (Ωm) ∝ 1/|Ωm|

γ (the γ -model) for 0 < γ < 1.
We argue that the tendency towards pairing is stronger, and the ground state is a superconductor.
We argue, however, that there exist two distinct regimes of system behavior below the onset
temperature of the pairing Tp. In the range Tcross < T < Tp fermions remain incoherent, and
the spectral function A(k, ω) and the DOS N(ω) both display ‘‘gap filling’’ behavior, meaning that,
e.g., the position of the maximum in N(ω) is set by temperature rather than the pairing gap. At
lower T < Tcross, fermions acquire coherence, and A(k, ω) and N(ω) display BCS-like ‘‘gap closing’’
behavior. We argue that the existence of the two regimes comes about because of special behavior
of fermions with frequencies ω = ±πT along the Matsubara axis. Specifically, for these fermions,
the component of the self-energy, which competes with the pairing, vanishes in the normal state.
We further argue that the crossover at T ∼ Tcross comes about because Eliashberg equations allow
an infinite number of topologically distinct solutions for the onset temperature of the pairing
within the same gap symmetry. Only one solution, with the highest Tp, actually emerges, but other
solutions are generated and modify the functional form of the gap function at around Tcross. Finally,
we argue that the actual Tc is comparable to Tcross, while at Tcross < T < Tp phase fluctuations
destroy superconducting long-range order.
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