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Abstract

All researchers have experienced the problem of fishing out the most relevant scientific

papers from an ocean of publications, and some may have wished that their text editor

suggested these papers automatically. This thesis is vertebrated by this task: recom-

mending contextually relevant citations to the author of a scientific paper, which we

call Contextual Citation Recommendation (CCR). Like others before, we frame CCR

as an Information Retrieval task and we evaluate our approach using existing publi-

cations. That is, an existing in-text citation to one or more documents in a corpus

is replaced with a placeholder and the task is to retrieve the cited documents auto-

matically. We carry out a cross-domain study and evaluate our approaches using two

separate document collections in two different domains: computational linguistics and

biomedical science.

This thesis is comprised of three parts, which build cumulatively. Part I establishes

a framework for the task using a standard Information Retrieval setup and explores

different parameters for indexing documents and for extracting the evaluation queries

in order to establish solid baselines for our two corpora in our two domains. We ex-

periment with symmetric windows of words and sentences for both query extraction

and for integrating the anchor text, that is, the text surrounding a citation, which is an

important source of data for building document representations. We show for the first

time that the contribution of anchor text is very domain dependent.

Part II investigates a number of scientific discourse annotation schemes for aca-

demic articles. It has often been suggested that annotating discourse structure could

support Information Retrieval scenarios such as this one, and this is a key hypothesis

of this thesis. We focus on two of these: Argumentative Zoning (AZ, for the domain

of computational linguistics) and Core Scientific Concepts (for the domain of biomed-

ical sciences); both of these sentence-based, scientific discourse annotation schemes

which define classes such as Hypothesis, Method and Result for CoreSC and Back-

ground/Own/Contrast for AZ. By annotating each sentence in every document with
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AZ/CoreSC and indexing them separately by sentence class, we discover that consis-

tent citing patterns exist in each domain, such as that sentences of type Conclusion

in cited papers are consistently cited by other sentences of type Conclusion or Back-

ground in citing biomedical articles.

Finally, Part III moves away from simple windows over terms or over sentences for

extracting the query from a citation’s context, and investigates methods for supervised

query extraction using linguistic information. As part of this, we first explore how

to automatically generate training data in the form of citation contexts paired with an

optimal query to generate. Second, we train supervised machine learning models for

automatically extracting these queries with limited prior knowledge of the document

collection and show important improvements over our baselines in the domain of com-

putational linguistics. We also investigate the contribution of stopwords to each corpus

and we explore the performance of human annotators at this task.



Lay Summary

We could think of a scientific article as a quantum of science: the minimal unit of

progress. Different areas of science have different conventions as to how a scientific

paper should be structured, what style of writing is expected and acceptable, etc. How-

ever, one thing they all have in common: citing other published papers.

The rate of scientific publishing has been growing exponentially, which makes the

job of an academic author more difficult. In spite of the availability of search engines,

discovering, reviewing and understanding the relevant publications to cite takes time

and effort. We aim to ease the discovery of this relevant literature.

This thesis is vertebrated by this task: automatically recommending contextually

relevant citations to the author of a scientific paper, which we call Contextual Citation

Recommendation (CCR). Like others before, we treat CCR as Information Retrieval

(web search), and so each academic paper as a “page” and the citations from one paper

to another as “links” between them. We evaluate how relevant our recommendations

are by taking previously published papers, removing their existing citations, substitut-

ing them with placeholders (e.g. “<insert citation here>”) and then trying to recover

these prior citations from a large collection of papers. The task is to find the most

relevant paper for every place in the text where a citation originally existed.

We evaluate our approaches using two separate document collections in two differ-

ent scientific domains: computational linguistics and biomedical science. This thesis

is comprised of three parts, which build cumulatively. Part I establishes a framework

for the task using a standard Information Retrieval setup. A search engine works in

two major stages: indexing and retrieval (search). During indexing, the documents are

read and processed to create a representation that will make searching possible and

efficient. We explore what parts of a document we should index to obtain the best

results: for example, the title, the abstract, or the whole text and their relative contribu-

tions. At the same time we investigate indexing the “anchor text”, that is, the text that

appears around a web link, or in our case, a few words or sentences that appear around

9
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a citation to a given paper from another paper. We also explore different parameters

for extracting the evaluation queries, which are equivalent to the sort of query a user

would type into a search engine. We show for the first time that the contribution of

anchor text is very domain dependent.

In Part II we investigate how scientific discourse annotation schemes for academic

articles could help for this task. Every document has a purpose, a rhetorical aim,

such as to inform or to persuade, and scientific articles are meant to have a formal

structure based on argumentation that facilitates this. We can thus label each sentence

in an article based on its contribution to the rhetorical aim. We use existing trained

machine learning classifiers to annotate each sentence in every document with its type

(e.g. Hypothesis, Method or Result) and we investigate what types of sentences (in

citing papers) tend to cite what other types of sentences (in cited papers). We discover

that consistent citing patterns exist in each domain, such as that sentences of type

Conclusion in cited papers are consistently cited by other sentences of type Conclusion

or Background in citing biomedical articles.

Finally, in Part III we investigate query extraction. In Parts I and II we used base-

line methods for this, such as taking the words in the text as they appeared, filtering

out grammar words, and treating this as the query. Here we investigate supervised

machine learning methods for extracting better performing queries by using linguisti-

cally inspired features. As part of this, we first explore how to automatically generate

training data in the form of citation contexts paired with an optimal query to generate.

Second, we train different machine learning models for automatically extracting these

queries and we compare their performance in the two domains. We also evaluate how

human annotators fare at extracting these queries.
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Chapter 1

Motivation and task definition

“Research is what I’m doing when I don’t know what

I’m doing."

Wernher von Braun

1.1 Introduction

For many researchers, keeping up with the research in their academic field and finding

the related work they seek is an unsolved problem. Scientific publishing is nowadays

increasingly digital, and yet, with a growing rate of publication, finding the published

research one seeks is still a fragmented and time-consuming task.

In practice, authors have different information needs at different stages of their re-

search (Teufel, 2010). When approaching a new field, one may seek a broad overview

of the common approaches employed, while as the research progresses, one may need

more finely-grained relevance to specific passages in a draft document. As examples,

one may wish to:

• Find out how a particular problem has been solved before and whether those

techniques are applicable to one’s current research.

• Find papers (that is, reports of other research) that have the same research goal

or that employ similar methods.

• Find support for a particular statement that is a common observation.

Search engines for this task do exist, but in spite of their widespread availability and in-

creasing sophistication, they have serious limitations. Still much unnecessary effort is
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left to the author: trying out different queries, scrolling down a long list of results, and,

in the better cases, following links to related literature and filtering by date, citation

count or author. This lengthy process does not guarantee that the information sought

will be found.

Existing software solutions for this task based on keyword and graph search do not

fully solve these problems of scientific discovery, as they cannot specifically suggest

appropriate citations based on a specific information need, and the search cannot be

performed with attention to specific types of statements in the documents to recom-

mend.

This thesis is motivated by one idea: to help researchers carry out their research.

We want to augment human capabilities: help authors discover relevant scientific liter-

ature and more efficiently write a scientific paper.

1.2 Academic literature: searching and publishing

At the time of writing, there exist private academic search engines, citation indexing

services and paywalled collections such as ScienceDirect1 and Web of Science2. How-

ever, open and free multidisciplinary options also exist, perhaps best exemplified, in

order of popularity, by Google Scholar3 and Microsoft Academic Search4.

In addition, other services are worthy of note here. First, CiteSeerX5 has been

run as a not-for-profit service at UPenn since 2007, doing essentially the same task

as Google Scholar: crawling the web, retrieving academic papers, converting them to

machine readable formats, indexing this information and building a large graph of pa-

pers and authors, and providing keyword search, faceted browsing and a recommender

system. Second, SemanticScholar6 seems to have picked up the torch from CiteSeerX

in being the most innovative open academic search engine by adding several import-

ant features. At present, beyond the standard filters for publication date and author

it allows the user to filter results by type of publication (journal article, review and

conference paper) as well as the specific venue name (e.g. LREC, ACL, etc.). At the

same time, when navigating the links to citing papers and cited papers, these links are

1https://www.sciencedirect.com/
2https://login.webofknowledge.com/
3https://scholar.google.co.uk/
4https://academic.microsoft.com/
5http://citeseerx.ist.psu.edu/
6https://www.semanticscholar.org
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ranked by the degree to which the citing publication was influenced by the cited one,

and the citing sentences are shown. CiteSeerX is an example of research in this field

becoming a useful feature of an academic tool (Valenzuela et al., 2015).

In the years since the beginning of this research project, there have been significant

shifts in academic publishing in some fields, with some of them championing Open

Access publishing. Specifically in Artificial Intelligence and related disciplines (e.g.

Natural Language Processing), which are of relevance to the subject matter of this

thesis, the overall rate of publishing has continued to increase. This is consistent with

the overall trend across disciplines (Larsen and Von Ins, 2010). Further, the scientific

community has been especially committed to Open Access, in some cases boycotting

the established publishers to further this cause.7 More and more powerful public ini-

tiatives are pushing for Open Access publishing of all publicly-funded research, such

as Coalition S8, a commitment by the national research funding organisations of 11

European countries (including the UK) that “by 2020 scientific publications that result

from research funded by public grants provided by participating national and European

research councils and funding bodies, must be published in compliant Open Access

Journals or on compliant Open Access Platforms”. Along these lines, a recent gov-

ernment report by Hall and Pesenti (2017) outlines to the UK government the need to

“increase ease of access to data”, including “development of data trusts, to improve

trust and ease around sharing data”, “making more research data machine readable”

and “supporting text and data mining as a standard and essential tool for research”.

The number and size of conferences in Artificial Intelligence and related fields has

been growing exponentially9, which increases the number of venues to publish in in

step with the growth of the community of researchers, but beyond this, publishing has

moved online. ArXiv.org10 is a pre-print server that has become the go-to repository

for the most recent research in computer science and artificial intelligence, and before

that for physics, astronomy, mathematics and statistics. ArXiv is a fully open access

and free repository, which has sparked the community-led development of some integ-

rations and tools. Perhaps the most worthy mention of this is ArXiv Sanity Preserver11,

which integrates a simple recommender system with an innovative user interface (UI)

that presents not just the title and abstract of the paper as is common but also thumb-

7https://retractionwatch.com/2018/05/01/thousands-boycott-new-nature-journal-about-machine-
learning/

8https://www.scienceeurope.org/coalition-s/
9https://nips.cc/Conferences/2017/Press#demo-1853

10https://arxiv.org/
11http://www.arxiv-sanity.com/
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nails of each page. Similar repositories to ArXiv now exist for other fields, such as

bioRxiv12 for the biomedical sciences.

An online repository of all publicly accessible scholarly articles in this latter do-

main of biomedical and life sciences, PubMed Central,13 has existed since the year

2000. This repository is particularly important to our research, as it is the source of

one of our corpora.

Open Access (OA) publishing has grown significantly over the last few years,

partly driven by public initiatives (Björk et al., 2014), and perhaps encouraged by

findings that OA articles are more likely to be cited (Antelman, 2004) – according to

some studies twice as likely on average (Eysenbach, 2006).

While the adoption of OA publishing is far from universal, the current trend sug-

gests that at a point in the not too distant future the majority of scientific publishing

will be available to anyone at no cost to the user. Such a situation is a requirement for

the approach we suggest to be applicable.

So the options for literature discovery are many for many fields of research, and

we can see a trend towards open access publishing, but actually finding the relevant

literature continues to be a task that breaks the research workflow. There seems to

be a large gap to be filled here. User modelling, from the field of Human Computer

Interaction (Fischer, 2001) aims to make use of a user’s current task and backgrounds

to reduce their information overload. One can envision a type of academic literature

discovery system that will integrate with the research process at different stages, pro-

actively providing relevant information about previous work. The research we present

here aims towards this goal.

1.3 Contextual Citation Recommendation

Imagine that as a researcher in the field of computational linguistics you are working

on a draft paper which contains a sentence like the following14:

A variety of coherence theories have been developed over the years ... and
their principles have found application in many symbolic text generation
systems (e.g. [CITATION HERE])

12https://www.biorxiv.org/
13https://www.ncbi.nlm.nih.gov/pmc/about/intro/
14Adapted from the introduction to Regina Barzilay and Mirella Lapata. 2008. Modelling local

coherence: An entity-based approach. Computational Linguistics, 34(1):1–34.
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Wouldn’t it be helpful if your editor automatically suggested some references that

you could cite here? This is what a citation recommendation system ought to do. If

the system is able to take into account the context in which the citation occurs — for

example, that papers relevant to our example above are not only about text generation

systems, but specifically mention applying coherence theories — then this would be

much more informative. So a contextual citation recommendation (CCR) system is one

that assists the author of a draft document by suggesting other documents with content

that is relevant to a particular context in the draft. Our research explores novel ways in

which these recommendations might be improved by attending to the type of citation

one may be seeking, yet abstracting away from the engineering task of integrating CCR

into any specific editing tool.

It is necessary to define some terminology that will be employed throughout this

thesis. In the following passage, the strings ‘Scott and de Souza, 1990’ and ‘Kibble

and Power, 2004’ are both citation tokens:

A variety of coherence theories have been developed over the years... and
their principles have found application in many symbolic text generation
systems (e.g. Scott and de Souza, 1990; Kibble and Power, 2004)

Note that a citation token can use any standard format. Furthermore

• a citation context is the context in which a citation token occurs, with no limit as

to how this context is represented, length or processing involved;

• a collection-internal reference is a reference in the bibliography of the source

document that matches a document in a given corpus;

• a resolvable citation is an in-text citation token (e.g. “Doe et al. (2010)” or

[1]) which resolves to a collection-internal reference. This is important, as we

evaluate our system by trying to recover citations that have been already used

in published work, and for this we need access to the contents of the original

document.

• a target document is the document in the document collection that a collection-

internal reference points to;

• a citation placeholder is a token that substitutes a missing citation token. Con-

tinuing the example above, this would be the span of text “[CITATION HERE]”.
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The ultimate aim of this research is to advance the technology required to build a

CCR System, one that can assist the author of a draft document by suggesting other

documents with content that is relevant to a particular context in the draft, paying

attention to the function of the sought citation in the draft text and attempting to provide

support to claims, comparing methodologies and findings.

1.4 Aims and scope of this thesis

1.4.1 Aim

We want to recommend relevant papers to the author of a draft academic paper. The

relevance should be as fine-grained as possible: to the paragraph, sentence, and ideally

to a sub-span of a sentence. In pursuit of this aim, in this thesis we investigate applying

existing scientific discourse annotation schemes to this task, looking for patterns in

citation between different types of citing and cited sentences.

Some key hypotheses of this research are:

• H1: The rhetorical or argumentative function of sentences in an academic docu-

ment can be classified into a number of discrete classes using shallow semantics.

• H2: The classification of a citation context via H1 helps to identify relevant

content in candidate reference papers in a corpus.

• H3: The identification of fine-grained relevant content via H2 improves the rank-

ing of papers that are relevant with respect to a given citation context.

• H4: The application of linguistically motivated natural language processing

methods to the selection and weighting of terms for a query improves the query’s

performance.

1.4.2 The task

Most literature on the task (He et al., 2010; Huang et al., 2014) so far has framed this

task as an information retrieval (IR) task and we continue this approach in this work.

There are strong reasons for this choice. The main one is practical: the list of poten-

tially relevant papers is large enough that it demands special strategies to deal with

their acquisition, storage, indexing, and with the assessment of relevance of each pa-

per, if we are aiming for a robust, practical system. Another main reason is conceptual:
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the task fits the standard formulation rather well: the user has an information need to

which they seek an answer by writing a query, which in its simplest form is a sequence

of keywords. A similarity function or metric is then applied between the query and

each document in the collection in turn and the list of most relevant papers are then

ranked in descending order according to their score.

Our task does bring some distinct features to the general IR approach. On one

hand, scientific papers have a formal structure that is reasonably well understood and

has been extensively studied (Teufel, 2010), which suggests that it could be employed

to better inform the often somewhat naïve IR approach of treating the document as a

single bag-of-words. On the other hand, IR systems expect a rather short query which

can be ambiguous, can contain misspellings, etc. In our case however, we do not start

from a formed query but from a long span of text that is rich in structure, and from

which we can automatically extract this query.

We evaluate against corpora of existing publications, where the objective is to re-

trieve the citations that were originally employed in an existing publication. Our eval-

uation methodology is explained in detail in Section 2.6.

One important concept that much previous work has employed and so we need

to define is that of anchor text, which is the text surrounding a citation to document

d2 found in d1− dn. This is a key source of information for indexing web pages by

search engines like Google (Brin and Page, 1998), and has a parallel in CCR. The key

difference is that anchor text in web pages is often explicitly marked, while in scientific

publications it needs to be extracted from the context through some processing (Ritchie

et al., 2008).

1.4.3 Requirements

We necessarily need to explore scientific domains for which there are plenty of open

access and machine-readable academic papers available. At the same time, it would

be desirable to explore more than one domain so that we get some indication as to

how well the approaches transfer between different bodies of scientific literature. The

domains explored should ideally be distinct in regards to their object of study, the con-

ventions adopted for document structure, the methods employed and the terminology

employed.

Given the fact that this research is motivated by eminently practical goals, it is

preferable to use existing, industrial grade IR systems rather than experimental, ad-
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hoc or custom built ones. Robust, scalable, well tested and well documented retrieval

engines that are freely available and open source software are keyword-based, so it is

desirable to focus on keyword-based search.

1.5 Roadmap of this thesis

This thesis is comprised of three main parts, separated into seven chapters. These parts

are complementary and aim to progressively build on top of each other. However,

as they span a range of research subtopics, each of them contains its own review of

previous work and description of methodology.

Part I (Chapters 1, 2 and 3) motivates our research, presents the framing of the task,

provides a review of the most relevant related work and establishes our initial baselines

using an information retrieval approach. In essence, it constitutes a first approach to

the problem we are tackling by applying IR techniques that have been commonly used

in previous work, while at the same time examining our two corpora in some detail.

• Chapter 1 presents the motivation for this research and a necessary introduction

to the field of Information Retrieval, as well as the architectures and approaches

we employ. We also discuss potential evaluations and present our chosen evalu-

ation method and metrics.

• Chapter 2 provides an overview of the relevant previous work, which employs

the same conceptual approach to evaluation, based on recovering the citations

that we find in papers that have already been published. For this task, we need a

large amount of machine-readable scientific articles in the same domain that are

densely interlinked by citations, and here we also present the two corpora used

in the experiments: the ACL Anthology Corpus and the PubMed Central Open

Access Subset. These corpora belong to the two markedly different domains of

computational linguistics and biomedical science, so we also offer metrics that

describe their similarities and differences.

• Chapter 3 presents a number of baseline approaches to the task using a standard

Information Retrieval formulation. Specifically, we explore what we should con-

sider to be the context of a citation. From this context we extract an evaluation

query. We also investigate what text we should use to represent a document in the

collection, with an interest on what produces the best results. Our experiments
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combining several query extraction methods with several document representa-

tion methods provide us with strong baselines for the work that follows.

Part II (Chapters 4 and 5) moves beyond standard IR approaches that pay little atten-

tion to the structure of a document. Instead, it explores applying Scientific Discourse

Annotation schemes to this task. Under this formulation, each sentence in a scientific

paper is automatically assigned a label that assigns it one of several mutually exclusive

classes. Each class represents the rhetorical or argumentative function of that sen-

tence with respect to the aim of the document. Our hypothesis is that a relation exists

between types of citing sentences and types of cited sentences and that, if so, we could

exploit these relations to increase the relevance of recommendations.

• Chapter 4 introduces Scientific Discourse Annotation: annotation schemes for

scientific articles that try to classify each sentence according to its function in the

document. We review a number of the schemes defined over the years, and we

motivate our final choice of using Core Scientific Concepts for PubMed Central

and Argumentative Zoning for the ACL Anthology Corpus.

• Chapter 5 presents experiments applying Scientific Discourse Annotation to

the CCR task. We find consistent patterns between types of citing and cited

sentences (e.g. sentences of type Results tend to cite sentences of type Results

in biomedical papers). Interestingly, we also find these patterns in the anchor

text of citations to a document.

Up until here, we have treated a simple window of tokens or sentences around the

citation placeholder as the context of the citation, from which we extracted the query by

simply taking the resulting bag-of-words. Part III (Chapter 6) moves to investigate if

we can extract a better query by applying a measure of linguistically informed analysis.

• Chapter 6 presents a new approach to extracting the query. It moves beyond

simple windows of words or sentences to determining which keywords to select

from an insertion context using linguistically motivated NLP methods. We show

that we can generate the training data for supervised machine learning models

directly from our document collection.

Finally, Chapter 7 summarises the main contributions of this thesis and outlines some

potential avenues for future research.
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1.6 Contributions

The main contributions of this thesis are:

1. We carry out the most exhaustive cross-corpus examination of parameters for ex-

tracting text from a target document and the anchor text of its incoming citations,

as well as for generating the query that will retrieve it. These results were partly

reported in Duma and Klein (2014). We show that different domains cite differ-

ently: what is true of computational linguistics (a document is better described

by the summaries made of it in other papers) does not hold for biomedical sci-

ence (a document is better described by its own textual content).

2. For the very first time, we apply scientific discourse annotation to the task of

CCR. We apply two separate scientific discourse schemes, Argumentative Zon-

ing and Core Scientific Concepts, that were tailored to different domains, to two

large corpora in these two domains. Our results show there are consistent pat-

terns in citation between types of citing sentences and cited sentences, in both

domains (Duma et al., 2016a).

3. We also applied this new approach to the anchor text of a document’s citations

and again found consistent citing patterns, as reported in Duma et al. (2016b).

4. We show that a human annotator can match or defeat a baseline keyword ex-

traction system when documents are indexed by their full textual content (Duma

et al., 2016c). However, when we add the anchor text of other documents to

the document representation, the human is outperformed by the baseline. This

discourages using sentence selection approaches for generating a CCR query.

5. We employ standard approaches to keyphrase extraction and demonstrate that

adding phrases to be matched to a query is of little benefit to the CCR task: what

really counts in our baseline IR formulation is the weighting of the terms.

6. We show that linguistic, morphological, structural and statistical features of the

words in a text can be used as predictors of the weight to assign to a given term

in an extracted query in our computational linguistics corpus. We also show that

this does not hold in our corpus of biomedical science.

7. We contribute a novel approach to the annotation of this ideal per-term boost,

based on finding the weights that will maximise the evaluation score for that

context from the results of the evaluation query.
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8. We publish all the code of our evaluation framework under an open source li-

cense15. At the same time, we make our corpus of manually annotated keywords

in citation contexts freely available 16.

15https://github.com/danduma/minerva
16https://github.com/danduma/keywordcorpus





Chapter 2

Previous work and corpora

“Quotation is a serviceable substitute for wit."

Somerset Maugham

2.1 Introduction

As we proposed in the previous chapter, existing software solutions for scientific dis-

covery may fall short of solving the information need of authors of scientific papers.

In this section, we start by introducing the field of Information Retrieval and standard

techniques in it. We then present common approaches in the related field of Recom-

mender Systems, which overlap with Contextual Citation Recommendation in their

practical aim, and to varying degrees in the techniques employed. We then review

what we consider the most relevant approaches to CCR to date, paying attention to dif-

ferent aspects of the research that have been tackled. We explain common methods for

document representation (that is, which text from the document or other documents

in the collection to index) and query extraction and finally we present and describe

the corpora for our experiments: the ACL Anthology Corpus and the PubMed Central

Open Access Subset.

2.2 Information Retrieval

As mentioned in the previous chapter, previous attempts to develop CCR systems have

typically framed the task as one of Information Retrieval (IR). Consequently, a short

introduction to the field is in order (mostly based on Manning et al. (2008)).
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First of all, IR operates over document collections, which tend to contain quite

a large number of documents, from which text can be retrieved in some machine-

readable format. Every document in the collection is usually treated as a “bag of

words”, that is, a collection of tokens (known in IR as terms) with no linguistic struc-

ture, although the proximity of one term to another is often used as a feature for index-

ing and retrieval. The total set of unique terms in the document collection is known as

the vocabulary. Each term in the vocabulary is represented by a unique integer (i.e. a

scalar), which represents the term’s unique string.

The aim of the system is to retrieve and present to the user the most relevant doc-

uments found in the collection to satisfy the user’s information need, i.e. "the topic

about which the user desires to know more" (Manning et al., 2008). The information

need is expressed through a query, which is typically a relatively short list of terms,

which does not need to manifest a linguistic structure.

Some systems allow the user to perform boolean retrieval, in which the terms may

be connected by logical operators (e.g. "(term1 AND term2) OR term3 AND NOT

term4", where only documents containing terms that satisfy this logical formula will

be retrieved) and often by distance operators (e.g. "term1 NEAR term2", which will

retrieve documents where term1 is within a specified number of terms from term2).

Modern IR systems pay attention not just to the presence or absence of terms but

also to their frequency. This gives rise to term weighting schemes, whereby every word

receives a weight that depends on its frequency across the collection of documents.

One of the most widely used schemes is Term Frequency-Inverse Document Frequency

or tf-idf, that essentially combines the relative term frequency in the document (tf )

with the inverse frequency of the term in the document collection, i.e the number of

documents the term occurs in (idf ). The actual implementation of this formula varies

depending on the task, but the basic formulation is as follows:

t f id f (t) = t f (t)∗ id f (t) (2.2.1)

This simple formula is often very useful for many Natural Language Processing

tasks (Jurafsky, 2000), as it has the effect of offsetting the weight of a term based on

its frequency in a document and in the query against the relative popularity of the term

in the document collection. A term that appears in few documents in the collection is

deemed more relevant in every document where it does appear than a term that appears

in many documents.
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A number of approaches exist to creating document representations and determ-

ining their relevance to a given query, such as the Vector Space Model (VSM). In this

introduction we are going to focus on the VSM, in which each document is converted

into a vector representation, that is, a vector of terms. These vector representations are

generated by situating each document in an n-dimensional space where n is the total

number of terms in the vocabulary. The position of this vector in each dimension is

based on the number of times that a given term (word) occurs in the document that

is being represented, typically weighted by a function such as tf-idf that we presented

above.

A similarity or ranking function is finally required to determine the relevance of

each document to the query. One example is cosine similarity, which simply measures

the distance between vectors in that multidimensional space (see Formula 2.2.2).

sim(q,d) =
V (q) ·V (d)
|V (q)||V (d)|

(2.2.2)

While cosine similarity is at the core of many widely used similarity functions,

these are typically more complex, particularly with respect to the term weighting.

While our experiments do not aim to compare different similarity functions, we would

be remiss not to mention other families of similarity functions, such as those based

on language models and probabilistic similarity functions, of which Okapi BM25

(Robertson et al., 2009) is a reference point for many others.

The evaluation metrics of IR are also relevant to the evaluation of a CCR system.

Two very widely used metrics are:

• Precision: the fraction of retrieved documents that are relevant to the query over

the total number of retrieved items

• Recall: the fraction of relevant documents that are retrieved over the total number

of relevant items that should have been retrieved.

There is typically a tradeoff between these metrics: increasing one tends to decrease

the other. For this reason, they are typically reported together with their harmonic

mean, known as F-score or F1-measure.

Information Retrieval is a very large field with plenty of research literature avail-

able, which goes much beyond the scope of this introduction. Fortunately, a variety of

free, sophisticated, robust and open-source IR systems exist which can be used directly

as the indexing, storage and retrieval modules in a pipeline, thereby eliminating or sig-

nificantly reducing the need for specific development in this area. Two main systems
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are the Apache projects Lucene (Białecki et al., 2012) and Indri (Strohman et al., 2005),

the performance of which has been widely studied and established (Turtle et al., 2012).

Of these two, Lucene is by far the most widely used in commercial applications1.

2.3 Lucene and Elasticsearch

Following the requirements outlined in 1.4.3, we have chosen Apache Lucene2 as the

backend retrieval engine for the experiments reported in this thesis. Further, we use

Elasticsearch (Gormley and Tong, 2015) as a high-level interface to Lucene. One

reason for this is that Elasticsearch provides a REST API over HTTP, allowing us to

decouple storage and retrieval from processing, while at the same making it easy to

parallelise the code.

Another reason is that, while the Lucene retrieval engine provides an expressive

and complex query language, this is made much more accessible and easier to use by

the elasticsearch query DSL3, which represents the query as a nested JSON structure.

This structure aims to be human readable and of theoretically unlimited complexity,

although in practice it is bounded by the available processing capacity, both in terms

of CPU and memory.

Lucene is a field-based retrieval system, which means that each document in an

index can in fact be thought of as several separate documents. For example, let us

consider an index where every document d contains the fields title, abstract and body.

Although the API wil present a single index with multiple documents, each of them

with multiple fields, in practice any global index metrics (e.g. inverse document fre-

quency, idf ) will be per-field: the idf factor of a given term t will depend on the field f

(title, abstract, or body) not the index, so this component is better represented as id ft f .

2.3.1 Query types

Many types of query are provided by the API, which vary in functionality and scope.

Listing all the available options would be beyond the scope of this introduction, but

some examples of query types that are relevant to the approaches presented in this

thesis include:

1https://wiki.apache.org/lucene-java/PoweredBy
2http://lucene.apache.org/
3https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
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Match/term queries: this is the basic matching query. It matches one or more terms

in a document, and it is aware of the analyser applied to the document. That is,

if the document was lemmatised at indexing time, the query will lemmatise the

terms too.

Match_phrase: same as match and term above, but this query matches only when all

the terms are present in the document, in the specified field, and within a given

distance. By default, this distance is zero, i.e. they are adjacent, but it can be

increased to an arbitrarily large distance.

Bool: a boolean operator of the type AND, OR or NOT. By default, all terms or

phrases in the query are treated as optional, and when present, their score gets

added together. This is the approach we take here.

DisjunctionMax (dis_max): a query that generates the union of documents produced

by its subqueries, and that scores each document with the maximum score for

that document as produced by any subquery, plus a tie breaking increment for

any additional matching subqueries. We use this type of query in Chapter 5,

where it becomes key in our experiments.

Figure 2.3.1 includes two simple queries for exemplification. Query a is the DSL ver-

sion of the Lucene query "AND support AND vector AND machines", which means

the document must match the three terms or it will not appear in the results. The doc-

ument’s score will be computed by adding together the individual scores of each term.

Query b is one possible DSL rendition of "support^3 OR vector^3 OR machines^2"

which means that if the document matches any of the terms it will appear in the results.

Again its score will be computed by adding together the individual term scores, but in

this case we are adding manual weights to the terms, thus multiplying their individual

scores. The scores of both “support” and “vector” are multiplied by 3, and the score of

“machines” by 2. The query containing “support” and “vector” is joined by the default

operator, which is OR.

2.3.2 Similarity function

Many standard similarity functions are based on the cosine distance between the query

and the document vectors, typically referred to as cosine similarity, which we have

defined in Formula 2.2.2. Some of these formulas have parameters that can be tuned,

but throughout this work we employ the ClassicSimilarity function as implemented in
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a. b.

Figure 2.3.1: Example Elasticsearch queries.

the Apache Lucene retrieval engine, 4, which allows for no fine tuning. In what follows

we introduce this formula and explain its components.

score(q,d) = coord(q,d)·∑
t∈q

t f (t ∈ d) · id f (t)2 ·norm(t,d)

Figure 2.3.2: The classic Lucene similarity formula (ClassicSimilarity).

In this formula:

• the coord term is an absolute multiplier of the number of terms in the query q

found in the document d. The presence of a term in the query and the document

is enough to add 1 to the multiplier of the overall score.

• t f is the absolute term frequency score of term t in document d. In the practical

implementation, this term is in fact the square root of the absolute term frequency

score, which means that the presence of a term is more important than how many

times it appears.

• id f (t) is the inverse document score. In the practical implementation, id f (t) =

4http://lucene.apache.org/core/7_0_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
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1+ log( numDocs
docFreq+1) , where numDocs is the length of the set of total documents

indexed and docFreq is the number of documents in which the term appears.

• norm is a normalisation factor that divides the overall score by the length of

document d, so that shorter fields contribute more to the score.

As mentioned above, Lucene is a field-based retrieval system, which means that for

each document in the index we can store many fields and each field is indexed separ-

ately. An important thing to note, therefore, is that all these components in the formula,

including norm and id f are per-field, not per-document, so a term’s score is not norm-

alised over how many documents contain it, but how many contain it in a given field.

2.4 Evaluation method

A very important first problem to tackle for the CCR task is that of evaluation. This

system being ultimately intended to help human authors to carry out the specific task

of writing a scientific paper, we believe that its ultimate measure of success must be

task-based. That is, it should be measured by how much time it saves authors, to what

degree it increases productivity or quality of output, or how it impacts user satisfaction.

This would involve user studies (measuring user satisfaction through explicit ratings)

and online evaluation (measuring system performance through implicit metrics, such

as Click-Through-Rates).

However, in order to carry out task-based evaluation, the system must first be built

to a significant level of functionality, which makes this type of evaluation not possible

to implement during its initial development. We should then differentiate between two

main stages of work on the system: development and production-ready. This thesis

focuses on the early development stage, during which it is very useful to have the

ability to automatically assess the impact in efficiency of different algorithms.

For this reason, most previous work in this area has employed offline evaluation,

where the performance of the system is measured as its accuracy based on some ground

truth annotation of the relevance of the recommended papers to the given input.

The ultimate measure of relevance of the recommended papers must still come

from human judgement. Asking humans to directly rate the output or performance of

the system is a common measure of evaluation, which however has a particularly low

utility/cost ratio, as every time evaluation needs to be carried out, the same costly pro-

cess needs to be carried out. Further, it could introduce potential statistical problems,
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when testing with different populations, and lead to unreplicable results.

An approach that is similar in capturing these judgments but more desirable from

a utility-cost perspective is capturing human relevance judgments as annotations to a

corpus. This has the advantage of allowing for repeated automatic testing against this

set of annotations and is the standard way of evaluating IR systems, known as building

a test collection (Sanderson, 2010). This consists in building by hand a corpus of a set

of queries and a set of relevance judgements for each query against which to measure

the performance of the system.

However, annotation is an arduous effort that requires considerable manual input

and very careful preparation, so we wish to avoid it altogether if possible. Mining

existing resources for these human judgements is then highly desirable. Fortunately

there is no lack of data that meets the requirements for this task: every scientific paper

contains human ”judgements” in the form of citations to other papers which are con-

textually appropriate: that is, relevant to specific passages of the document and aligned

with its argumentative structure.

There are many advantages to this type of evaluation: as it only considers papers for

which the full textual content is available in the document collection, we can directly

connect the citation token’s context to the contents of the cited paper. Therefore this

approach provides a set of readily available “gold standard” existing human judgments

of the relevance of a paper to a context.

There are also disadvantages: it is highly likely that other documents exist in the

collection that the original author was unaware of and may have been better matches

than the existing citations.

Also, it is likely the language used in the context around a citation is primed by the

text in the cited document, often copied literally. As we proposed before, the ideal way

to evaluate this task is extrinsically and task-based, therefore directly in a production

system, with user interaction data, which is not an option at this stage.

2.5 The task: Citation resolution

With the aim of removing the need for purpose-specific annotation, we follow a com-

mon approach in the literature and evaluate the performance of our recommendation

against existing scientific publications. We substitute all citations in the text with

citation placeholders and make it our task to match each placeholder with the cor-

rect reference that was originally cited. We call these originally cited documents tar-
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get documents. We only consider resolvable citations, that is, citations to references

that point to a document that is in our collection, which means we have access to its

full machine-readable contents (collection-internal references). We call this evaluation

method citation resolution.

The core criterion of this task is to use existing human judgements that we have

clear evidence for, in the form of contextually relevant citations. We use these judge-

ments for evaluation: our task is to rank all documents in our document collection D

according to their relevance score to the query q which is extracted from the context C.

The algorithm for the task is presented in Figure 2.5.1. First we split our corpus into

a document collection D and a test set T (1) and we create an index of the documents

in D (2). The document collection is the set of potential documents to recommend: we

index these and extract our evaluation queries only from contexts around citations in

the documents in the test set.

For any given test document (3), we first extract all the citation tokens found in

the text that correspond to a collection-internal reference (a). We then create a docu-

ment representation of the referenced document, a vector in a high-dimensional space

where each dimension represents the presence of a unique term in the document. This

representation can be based on any information found in the document collection, ex-

cluding the document d itself, such as the text of the referenced document and the text

of documents that cite it.

For each citation token we then extract its context (see 3.b.i in Figure 2.5.1), from

which we generate the query in IR terms. We then attempt to resolve the citation by

computing a score for the match between each reference representation and the citation

context (3.b.ii). We rank all collection-internal references by this score in decreasing

order, aiming for the target documents to appear at as low a rank as possible (3.b.iii).

In the case where multiple citations share the same context, that is, they are made in

direct succession (e.g. “...compared with previous approaches (Author (2005), Author

and Author (2007))"), the first n elements of the list of suggested documents all count

as the first element. That is, if any of the references in a multiple citation of n elements

appears in the first n positions of the list of suggestions, it counts as a successful res-

olution and receives a score of 1. The final score is averaged over all citation contexts

processed.
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1. Split corpus into document collection D and test set T

2. Create index of all documents in D

3. For test document d ∈ T

(a) For every reference r in its bibliography Rd

i. If r is in document collection D
ii. Add all inline citations Cr in d to list C

(b) For each citation c in C

i. Extract context ctxc of c, and from it generate the query q ∈ Q
ii. Rank all documents in D that match the query q by the similarity

between query and document sim(q,d)
iii. Measure score based on the rank of the original reference rc in the

list of results L

Figure 2.5.1: Algorithm for citation resolution. We measure how well we did at our
task using the rank at which the target document appears in the list of ranked retrieval
results.

2.6 Evaluation metrics

Most evaluation metrics employed for this task are based on the rank at which the ori-

ginally cited collection-internal document (henceforth cited document) appears (Kon-

stan and Riedl, 2012). Different scores are often computed based on this. Some relev-

ant and widely used ones include:

• Top-1 Accuracy: this is a binary measure, that only evaluates whether the cited

document appears at rank 1 (i.e. the highest scoring result). If it does appear at

rank 1, the score for that query is 1, or 0 otherwise.

• Mean Reciprocal Rank (MRR) : This is statistical measure, which is evaluated

as the multiplicative inverse of the rank of the first correct answer. As in our

experiments there is normally one correct answer, this evaluates to one over that

rank. MRR is averaged over all evaluated queries. In Formula 2.6.1, Q is a set

of queries and ranki is the rank of the first relevant document to the query Qi.

MRR =
1
|Q|

|Q|

∑
i=1

1
ranki

(2.6.1)

• Discounted Cumulative Gain (DCG): Similar to MRR, a measure based on the
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rank of the target document in the list of suggested references, where the query

score decreases logarithmically rather than linearly (Wang et al., 2013). In this

formula (2.6.2), p is a particular position in the list of results and reli is the

graded relevance of the result at position i.

DCG =
p

∑
i=1

reli
log2(i+1)

(2.6.2)

• Normalised Discounted Cumulative Gain (NDCG): This measure is computed

by normalising the DCG score by the Ideal Discounted Cumulative Gain (IDCG),

the maximum DCG score possible for that query, where all relevant documents

are retrieved at their ideal ranks. When dealing with a single relevant document

that should always be in first position, the IDCG is 1/log(2). This is the norm-

alising factor for DCG in our setup. As is the case with other IR metrics, given

that a cut-off is applied to the list of retrieved results and only the top-K are con-

sidered, NDCG is most correctly reported at a rank, i.e. NDCG@K. In our case,

K = 200 so all reported results are NDCG@2005. The IDCG at position p is the

maximum possible DCG score at that position. The NDCG at position p is the

actual DCG score normalised by the ideal score (IDCG)

IDCGp =
|REL|

∑
i=1

2reli−1
log(i+1)

(2.6.3)

NDCGp =
DCGp

IDCGp
(2.6.4)

• Recall: While standard to IR, recall is harder to define when we have a single

document as the ground truth for a given query. In related work it is computed

as the presence of the original reference in the list of suggestions generated by

the system, which only returns the top-K scoring documents, and therefore it is

Recall@K.

For our task, our ground truth is a very small set of human-authored citations, typically

a single one. This means that measuring Recall as the one citation appearing within

a rank cut-off adds very little information over the other metrics. Indeed, it has been

shown that metrics used in previous work such as NDCG, Precision, Recall and F-

measure are highly correlated (Beel et al., 2016b). NDCG is a popular IR metric given

5This value is in the range of values previously reported in the liturature (e.g. He et al. (2010)) and
it serves the purpose of making it feasible to implement the experiments we report in Chapter 5).
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its smooth discounting over ranks and so its satisfactory scaling to retrieving large

result sets from large collections. Much of the most relevant previous work employs

it, so we therefore choose NDCG as our main metric too.

2.7 Caveats of our evaluation method

The evaluation method and dataset crucially determines the architecture of the system.

Here we are employing the same evaluation method as most of the literature on this

topic (e.g. He et al. (2010); Huang et al. (2014)), which is based on retrieving the

citations that were originally employed in papers that have already been published.

This offers the advantage of a large corpus with explicit pre-existing human annotation

that we can treat as a gold standard.

However, an important caveat is due here: this task is not truly representative of

the task that the potential future system would be applied to. When authors cite other

papers, it is frequent that they have read them to some depth (even if, say, just the

abstract) and this primes their lexical choice when summarising the merits and relev-

ance of the work being cited. Often full expressions or even sentences are copied from

the work, which makes it rather easy to obtain high scores through ranking by an IR

system.

It is likely that an evaluation carried out on a productised CCR System with live

users would highlight different areas that require improvement. One essential capab-

ility of a search engine such as Google Search6 is to recognise synonyms and retrieve

pages containing them (Manning et al., 2008). For example, the queries “edinburgh

jobs developer”, “edinburgh jobs software engineer” and “edinburgh jobs program-

mer” yield similar top level results and the synonyms are highlighted in the snippets

for each result.

While the limitations of this evaluation method seem to have been largely ignored

in the CCR literature so far, we attempt to mitigate the effect of having a corpus of

already published papers and not of draft papers with relevance judgments by on the

one hand, clearly separating the document collection from test set and on the other,

excluding self citation from resolvable citations. We do not consider finding one’s own

work is a realistic use case to evaluate against.

In all of the experiments reported here we apply a cut-off of k = 200 and retrieve the

top-k results. Therefore, if the originally cited collection-internal document does not

6https://www.google.com/
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figure among the top 200 results, the score for that query will be 0. Applying this cut-

off significantly speeds up evaluation, which will become absolutely necessary in the

experiments reported in Chapter 5. At the same time, this allows us to better compare

the results between sets of experiments.

One more thing to note is that multi-citations (citation sites where several citations

are adjacent in the same sentence) are evaluated in the following way. If a correct pa-

per is retrieved at any rank that is lower than the total number of citation tokens in the

citation site, it is counted as having rank 1, that is, having been retrieved in first posi-

tion and therefore getting maximum NDCG score. This is because the list of citation

tokens in a citation site is typically arbitrary (e.g. alphabetical or chronological) and

no citation token is necessarily more relevant than another one to the given context.

2.8 Recommender systems

There are many avenues for enquiry in this research project, as it is driven by its applic-

ation to recommend contextually relevant literature to academic authors. Plentiful pre-

vious work related to this application exists, particularly in the domain of recommender

systems, which significantly overlaps in aims and scope and often in approaches with

academic search engines.

In a thorough survey of the field until 2013, Beel et al. (2016b) recognise seven

different classes of approaches to academic recommender systems, of which we find

these six relevant to our own research:

• Collaborative filtering (CF): This approach is based on the assumption that like-

minded users like the same items. A model is built of each user, and the simil-

arity between users is established based on the items they have each rated. The

missing entries for items that a user has not rated in the large user-item matrix are

inferred from other users that are deemed similar. The advantage of CF is that

it is independent of content: the similarity between items is established through

the similarity between users and their preferences and interests. As we will see

later, CF can be used as part of a hybrid system, but in essence this approach

is very far from our application, since we deal directly with the contents of a

document.

• Content-based filtering (CBF). Of all of these approaches, CBF is the most sim-

ilar one to the task we undertake here. In CBF, the interests of users are inferred
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from the items they interact with. These items are represented as vectors of

features and weights. When the item is textual in nature, it is common for the

features to be based on the presence and counts of words and n-grams in the doc-

ument. It is common for CBF to employ the Vector Space Model to assess the

similarity of items and users, and it is also common to use tf-idf as a weighting

scheme. This makes it clear that CBF and Information Retrieval overlap hugely

in techniques and application. The main difference is that CBF deals with users

and their histories of interactions with the items in the collections to recommend,

whereas IR in its vanilla form just takes keywords directly from the users.

• Co-occurence: Conceptually and algorithmically this is quite similar to CF, the

differences being that no specific user model is built and similarity between items

is established based on their co-occurences. The common way to establish co-

ocurrence in academic papers is through co-citation. Small (1973) proposed

that the more frequently two papers are cited together, the more related they are

to each other. Relatedness is markedly different from similarity, which again

connects to CF in that no intrinsic document features are required for this com-

parison. More fine-grained approaches may look beyond the metadata of the

paper, and actually measure the proximity of co-citations in running text (Gipp

and Beel, 2009).

• Graph-based: This approach is based on the connections inherent in academic

publishing, particularly the explicit links between papers in the shape of cita-

tions. However, other nodes on a graph can be authors, venues, institutions,

years, and in specific domains they could be objects of study (e.g. genes and pro-

teins), methods, etc. The links between these nodes can be built from citations,

“published in” relations, authorship or relatedness between objects of study.

• Global Relevance: A simple approach to a recommender system is to avoid user

modelling and recommend to every user the items with the highest global relev-

ance. In the case of academic papers, the most immediate and naïve translation

of this is to recommend the papers with the highest citation count. However,

more sophisticated metrics of global relevance exist, including PageRank (Page

et al., 1999) and HITS (Kleinberg, 1999), specific citation counts of venues and

authors, authors’ affiliations, h-index and citation count, as well as recency of

articles or venue type.
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• Hybrid recommendation: Ultimately, it is indisputable that in a practical setting

all of these approaches can contribute towards better recommendations. Hybrid

approaches combine two or more of those presented above.

Our research is firmly based on Information Retrieval techniques, but conceptually,

and because of its application, there is significant overlap with CBF recommender

systems. While our approach most closely aligns with CBF, it is quite likely that a

hybrid system would be desirable. Integrating other approaches such as graph-based

metrics (e.g. “other papers by this author”) or co-occurence (i.e. “people who cited

this also cited...”) would likely improve the relevance of recommendations, or at least

save the author time and increase user satisfaction. However, given time and resource

constraints, we choose to focus on researching the least explored areas where we can

make the most significant contribution and assume that when the time came to imple-

ment and productise a system, a number of other well-studied approaches would be of

use.

2.9 Research aspects

In order to give some structure to the research landscape of our narrow field (IR-based

CCR) and its nearest neighbours, we are presenting previous approaches according

to several aspects of the research. These could be chosen in many ways, but quite a

natural division emerges if we follow the different steps of an information retrieval

application: collecting the text from documents, indexing these documents and using

queries to retrieve documents from this index, for which we use a similarity metric

between query and document.

Documents in the document collection must be indexed for retrieval: an index must

be built according to the presence of terms in documents in the collection. However,

before we do this, we need to choose what parts of the text inside the document or

inside the collection we should index and how. We refer to all the processing done to

the raw document, to the selection of relevant text, and to the processing of this text,

as well as choosing in what fields to index it and how, as document representation.

Once the index has been built from this text, queries can be run against it, where

each document will be measured against the query using a similarity metric, which

can conceptually be framed as a variety of functions. This can include employing

learned models, such as in a learn-to-rank approach (Liu et al., 2009) or using any
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function that can be used for re-ranking, but is commonly a version of tf-idf-weighted

cosine similarity as defined in Section 2.3.2. Very importantly, in our task these queries

do not come pre-formed by the user, but instead we aim to extract the relevant context

automatically from the context of a citation placeholder and from it to generate a query,

which we refer to as query extraction here.

2.9.1 Document representation

Within the document representation step, there are several aspects to consider: what

text from a document should be indexed, what fields this text should be indexed in,

what weighting scheme should be applied, what type of analysis should be applied to

this text, etc.

While all documents are indexed using a bag-of-words approach, deciding what

information from the document to include and how to weight it is a key aspect. As

further detailed in Section 2.10, we distinguish between:

• internal representations (any subset of the text that a document contains, e.g.

full text vs title and abstract),

• external representations (a bag-of-words formed of all contexts of citations to

this document found in other documents in the collection that are not part of the

test set) and

• mixed representations (a concatenation of both internal and external ones).

Some previous work (He et al., 2010) makes use of the text around existing citations

inside a source document to represent this document, so we need to make a distinction

here between:

• The incoming link contexts, which are the collection of contexts around citations

to a document d contained in a set of documents D. Collectively, we refer to

all text extracted from these contexts and concatenated as the inlink context of

document d.

• The outgoing link contexts: the collection of contexts of citations inside a docu-

ment d to a set of documents D. We refer to all of the text extracted from these

contexts, once concatenated, as the outlink context of document d.
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We explore the usefulness of internal, external and mixed representations and their

parameters in Chapter 3. Beyond this, we also carry out experiments with document

representations where different sentences in a document would be indexed in differ-

ent fields based on an automatic classification of those sentences into a number of

rhetorically-motivated classes. This work is detailed in Chapter 4 and Chapter 5.

2.9.2 Similarity metric

Much related work seems to concern itself primarily with the way the similarity between

queries and documents is measured. Several approaches and methodologies for com-

puting the similarities between query and document have been applied and evaluated.

We examine some of these in more detail in section 2.10, but some examples are: Re-

stricted Boltzmann Machines for topic discovery (Tang and Zhang, 2009), topic mod-

els (Kataria et al., 2010), translation models (He et al., 2012), neural methods (Huang

et al., 2015a, 2014), plus of course variants of cosine similarity applied to different

types of vector representations.

In this work we do not aim to define a new similarity metric, but to use existing

algorithms and metrics that are already implemented, and that are already provided

by the Lucene retrieval engine. What we investigate is how to leverage these well-

understood similarity functions to address these objectives:

1. Increase the relevance of recommendations by choosing how to build the bag-

of-words document representation (Chapter 3).

2. Select the optimal context window from which to extract the query (Chapter 3).

3. Improve relevance by applying scientific discourse annotation schemes (see Chapter

4 and Chapter 5).

4. Extract a better performing query (i.e. set of keywords and their weights) from

the insertion context (Chapter 6).

2.9.3 Query extraction

Using already published papers to evaluate the performance of a CCR System during

development requires treating the textual context of an existing citation as the input

query, and the extraction of this query offers many options for experimentation. Gen-

erating a query from the context of a citation placeholder is in fact one of the most
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important tasks. Conceptually we can distinguish two sub-tasks: context extraction

and query generation.

First we need to define what the context of a citation is in order to extract it. In all

related work and in the research presented herein, this context is exclusively textual in

nature. Within this, what spans of text in a document are relevant to a given citation

site has been explored by previous work in the literature.

One option is to use a window of words around the citation: this means up to w

words (tokens) left and right of the place in the text where the citation would appear,

which produces a list of word tokens that is used as the query. This is a frequently

employed technique (He et al., 2010; Bradshaw, 2003; Kataria et al., 2010), although

Ritchie (2009) proposes it may be too simplistic a method. Other methods have been

tested, e.g. full sentence extraction (He et al., 2012), or windows over sentences instead

of words, such as 1 sentence before, the citing sentence and 1 after (Huang et al.,

2015a). Ritchie et al. (2008) compare these window methods for context extraction

but for the purpose of generating external document representations, which we discuss

below in Section 2.10.1.2.

Query generation seems to have been generally overlooked in the literature and

seldom if ever treated as a separate step. Quite often the context is treated as a bag

of words, and converting this into a query is a simple transformation of removing

stopwords and punctuation and removing infrequent words in the corpus (e.g. Kataria

et al. (2010)).

Figure 2.9.1 provides an example of extracting a simple evaluation query from the

context of a citation placeholder using a symmetric window over tokens of 20 before

and 20 after, and filtering stopwords from a basic list of most common 10 stopwords.
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Figure 2.9.1: Simple example of context extraction and query generation. Shaded in
light purple, the tokens within a context window of 20 tokens before and 20 tokens after.
Shaded in orange, the stopwords and punctuation removed from this context.

2.10 Previous work on CCR

A prime example of an IR-based CCR system, which has influenced much other re-

search, and certainly our own, is the line of work best exemplified by He et al. (2010).

In the paper, the authors in the research group behind the academic search engine

CiteSeerX7 detail the design and evaluation of a CCR system that uses the CiteSeerX

dataset (in its state at the time). This system makes use of the information retrieval

techniques outlined above and uses the service’s corpus, which consisted of 456,787

documents. These documents were automatically converted from a print-ready format

(mostly PDF) to a plain-text representation by the production CiteSeerX pipeline at the

time.

In this particular article they do not make use of the standard user-facing Cite-

Seer setup, which employs Lucene as a retrieval backend through the Apache Solr

7http://citeseerx.ist.psu.edu/
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interface8. Instead, they define their own Context-Based Relevance Model (CRM for

short), which is based on comparisons between density matrices of concepts (terms)

and documents. They also implement their own backend for computing the term-

document density matrices in the corpus, also employing tf-idf as a weighting scheme,

but computing their own probability-based similarity metric. The system they present

is hybrid, employing several measures of similarity.

Due to the size of the collection, and so with scalability in mind, the system of

He et al. (2010) proceeds in two stages. The first stage collects a set of candidates

from which to choose the specific suggestions for document d, and the second chooses

the best fit for each local context. They propose and test a number of methods for

retrieving the candidate set, which includes Global Recommendation (finding the top

N documents with Title and Abstract most similar to the query manuscript), Author

(documents that share authors with the query manuscript), CitHop (papers cited by

the papers already in the candidate set), Local Recommendation (top N papers whose

incoming link contexts are most similar to the outgoing link context), papers containing

the top-N most similar outlink contexts to the current context, and hybrid methods

which combine these approaches.

We do not follow this two-step approach and instead aim to directly recommend

the most relevant papers from the full collection, which is enabled by the speed of

execution of a productised and mature retrieval backend. At the same time, we do not

use the context of citation inside a document to describe that document itself, i.e. the

outgoing link contexts.

Other relevant work to ours is reported in Ritchie et al. (2008), although the task

is not framed as CCR but as a standard search task, where queries are provided by

the user, and uses a different evaluation method. While also using a conversion of the

ACL anthology for their experiments, their approach to evaluation was to manually

build a test collection, a small set of 82 queries together with manually annotated

relevance judgements for the documents to be returned (11.4 on average per query).

Much of their work deals with how to build representations of in-collection documents,

with particular attention on extracting anchor text from citing documents: what we

label external methods. They focus on two aspects for comparison and exploration: 1.

different window sizes for extracting the text from incoming link contexts and 2. using

their text collection for evaluating several standard similarity metrics provided by the

Indri retrieval framework (Okapi, Cosine, Indri, KL-divergence and KL-divergence

8http://lucene.apache.org/solr/
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with relevance feedback). The former (1) significantly overlaps with our experiments

in Chapter 3 and Chapter 5, where we explore these different parameters among others

for our own task and for two different corpora. The latter (2) falls outside of the scope

of our own work: while there are differences in the absolute performance of different

standard similarity metrics in different scenarios, this is a parameter we keep fixed

during our experiments.

Going beyond widely used IR similarity functions, the main focus of many ex-

amples of previous work in this area has in fact been on exploring alternative ways of

measuring the similarity between queries and papers in the collection. One example of

a family of approaches employs topic models, which are unsupervised algorithms for

discovering the main themes (topics) that pervade large collections of documents (Blei,

2012). Topic models are generative models that aim to retrieve some latent structure in

an otherwise unorganised collection by modelling the co-occurrence patterns of words

in a collection of documents. Some aim to model the similarity of words based on

their co-occurrence, such as Latent Semantic Analysis (LSA, Landauer (2006)). Oth-

ers aim to learn distribution of words per topic and topics per document, such as Latent

Dirichlet Allocation (LDA, Blei et al. (2003)), and so are often employed for cluster-

ing documents in collections. Kataria et al. (2010), and before them, Nallapati et al.

(2008), use the topic-word and topic-citation multinomial distributions for what they

call link prediction, which differs little if at all from the contextual recommendation

task we undertake. They employ variants of PLSA (Hofmann, 1999) and LDA.

An earlier approach to recommending research papers based on common topics

(Tang and Zhang, 2009) employs a 2-layer Restricted Boltzmann Machine (RBM) in-

stead of LDA for discovering these latent topics. They set the number of topics to

T=200 and compute a topic representation of each citation context, and then compute

KL divergence to measure the relevance between the in-collection paper and the query.

The query extraction they employ is simply to take the citing sentence, removing stop-

words, numbers and infrequent words.

Approaches to document clustering based on topic models have been successfully

applied in several tasks. They are unsupervised or lightly supervised approaches, with

the advantage of a low need for annotation. However, clustering similar documents

is not at the immediate heart of our task and further, the number of topics is a fixed

parameter, which remains a research question and a limitation. While topic modelling

may prove useful as part of a hybrid recommender system, our research is focused on

the IR formulation of this task.
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Another set of related approaches employ translation models. Huang et al. (2012)

consider the textual context of a citation token as the “descriptive language”, which

they want to learn to translate into the “reference language”, which is made of tokens

that represent the IDs of papers in the collection. Before them, Lu et al. (2011) used

a more intuitive approach, where they used a simple phrase-based translation model

trained with expectation-maximisation (EM) to translate between a citation’s context

and the contents of the cited document. They then used this model to estimate the

likelihood of a document given a context and so to rank the documents in the collection.

Corpus Document

representation

Context

extraction

Similarity

Ritchie et al.

(2008)

~9k (ACL) Full text +
Inlink contexts
(Window (50, 75,
100),

Sentences (1,

3))

Manual

annotation

(using a test

collection)

Indri: Okapi, Cosine,

KL divergence, KL +

relevance feedback

Tang and Zhang

(2009)

1.6k NIPS
papers

3.3k

(CiteSeer)

Full text Citing

sentence

2-layer RBM (200
topics)

KL divergence

He et al. (2010) 450k

(CiteSeer)

Title + abstract
Outlink contexts

Inlink contexts

Window (50) Links in graph

(authors, citations) +

co-cited probability +

cosine distance

Kataria et al.

(2010)

~3k
(CiteSeer)

~3k (Webkb)

Full text
Inlink contexts

(Window (30))

Window (30) Topic models

(cite-PLSA-LDA)

He et al. (2012) 30k Passage (500,

1000, 2000,

3000), 4/5

overlapping

Citing

sentence

Translation model

(contexts to

reference IDs)

Huang et al.

(2015a)

> 1 million

(CiteSeer)

In-link contexts

(Sentences (3))

Sentences (3;

1 up, 1 down)

Cosine distance +

neural word

embeddings

Table 2.10.1: A grid comparison of previous work: the corpora and the number of doc-
uments employed, and the methods used for document representation, context extrac-
tion and similarity metrics. The implementation details of each published work are too
complex to summarise here: this table only aims to present an overview and a guide for
comparison with relevant previous work.

In recent years there has been a significant shift in the types of similarity func-

tion employed for many NLP applicatons, with neural approaches taking front stage.
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A major reason for this shift is the emergence of successful algorithms for learning

distributional representations of words, of which word2vec (Mikolov et al., 2013) is

perhaps the most famous instance. This family of approaches aims to represent the

meaning of every word as a vector in a high-dimensional latent space, where the vec-

tors of related words will have a small cosine distance between them. The relation

between words is very loosely defined, as these vectors are learned simply from the

co-occurrence of words in text, using an efficient algorithm that makes training pos-

sible on very large amounts of data. This means that a word stops being treated as

a single number (a scalar) and the “similarity” between words becomes computable

directly from data.

Using these approaches, Huang et al. (2015a) present a neural probabilistic model

for CCR that jointly learns semantic representations for citation contexts and cited

papers, and train it by maximising the likelihood of a paper given a context. They

compare their results to several baselines based on previous approaches, including

Tang and Zhang (2009), Kataria et al. (2010) and Huang et al. (2012) that we have

mentioned above. They report small but statistically significant improvements in scores

over Huang et al. (2012), which also by far outperforms the others. While this is a very

strong line of work, and certainly representative of the types of approaches favoured

in the recent literature, here we aim to investigate more traditional NLP approaches

applied to information retrieval.

Table 2.10.1 presents the previous work we have reviewed above, according to the

corpora used and the research aspects we considered in Section 2.9. As we have seen

in this section, we find the largest variety of research focusing on the similarity metrics

employed, while the methods for extracting the context of a citation placeholder, for

generating the query and for creating a document representation are normally fixed for

each published article, although they are clearly key to the functioning of the system.

As we have seen, previous work has used both the contents of the target document

and the incoming link contexts, which we defined in Section 2.9.1 as internal repres-

entations and external representations. It is now time to have a deeper look at how

these are created.

2.10.1 Building a document representation

In order to judge how similar each document is to the input query, a vector-space

document representation must be created for each document in the collection. There
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are typically two main sources from which to obtain the text from which to create the

document representation: internal, that is, the text of the document itself, and external,

which is the text of other documents that link to it. CCR efforts to date have heavily

focused on external representations of documents, exploiting the context in which an

in-text citation occurs as the equivalence of anchor text in HTML documents.

2.10.1.1 Internal document representations

In previous work it has been reported that when building a document representation for

an IR system for scientific documents, using select chunks or sections of a document

leads to improvements in several tasks. For instance, the experiments of Jimeno-Yepes

et al. (2013) suggest that automatically generated summaries lead to similar recall and

better indexing precision than full-text articles for a keyword-based indexing task.

While those summaries can be automatically generated, a first intuition is that a sci-

entific paper is already expected to contain what is arguably a summary of its contents

in the Abstract. In fact, the Abstract is itself often directly generated as a summary of

the document by the human author.

However, the purpose of an Abstract is manifold; it is also a piece intended to

gain the reader’s attention and persuade them to read on (Hyland, 2009). Also, it is

immediately intuitive that this chunk of the document is unlikely to contain all the

information that a CCR system would require. For instance, Gay et al. (2005) report

that using specific parts of the article text to build a Vector Space Model document

representation improves the results of their indexing task by 7.4% over just using the

title and the abstract. They obtain the best results using a combination of “the sections

Results, Results and Discussion, and Conclusions together with the article’s title and

abstract, the captions of tables and figures, and sections that have no titles” (sic.).

Going beyond purely positional and structural features, the focused summarisation

of a scientific paper could benefit from the classification of different parts of it accord-

ing to their rhetorical function within the article. Argumentative Zoning has already

been applied to content selection for generating user-readable short summaries of sci-

entific articles (Teufel and Moens, 2002), but never before to building a document

representation for indexing for a CCR task. We explore this in Chapters 4 and 5.

One of the representations we use in our experiments is full_text, which is repres-

ented visually in Figure 2.10.1.
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Figure 2.10.1: Illustration of a bag-of-words internal document representation as a word
cloud.

2.10.1.2 External document representations

When citing previous work, it is often the case that an extremely short summary of

it (often one sentence or less) is included along with the citation, focusing on the

relevance of this work to the argument being made or the overall research reported in

the paper.

Previous work in citation recommendation has exploited this as a source of inform-

ation for creating a representation of a scientific document. This is the approach taken

by Ritchie (2009) and He et al. (2010). This is in most ways identical to the equivalent

concept of anchor text used in web search, where the actual text that is shown for a

hyperlink, or surrounds it, is mined as a description of the linked resource or web page.

An external document representation is built from the contexts of citations to this

document found in other documents in the collection by simply extracting a span of

text around those citations and concatenating all these spans into a single bag-of-words

(BOW), which is then indexed in the same way as any other BOW. These BOWs from

the incoming link contexts are also generated using the type of window methods that

we presented in Section 2.9.3 for query extraction.

A visual representation of this approach can be found in Figure 2.10.2. In this

diagram we find some essential ingredients to this approach:
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• Test document: this is the document from which we extract the evaluation quer-

ies. As part of the test collection, this document is not part of the document

collection and therefore not indexed as a candidate for recommendation.

• Target document: this is the document that is cited in a resolvable citation token

that is found in the test document.

• Citing documents: these are other in-collection documents that are also part of

the document collection and which cite the target document.

• Incoming citation links: these are citation tokens found in the document collec-

tion that resolve to the target document.

Figure 2.10.3 illustrates how the bag of words representing the documents is generated

from the anchor text.

Figure 2.10.2: Intuition for external document representations.

2.10.1.3 Mixed document representations

We can combine internal and external document representations to create mixed doc-

ument representations. While there are many ways they could be combined, in our

work we simply concatenate internal and external bag-of-words representations of a

document. We can see a visual example of this approach in Figure 2.10.4. We explore

different parameters for building these representations in Chapter 3.
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Figure 2.10.3: Illustration of a bag-of-words external document representation (word
cloud): it is built by concatenating the bag-of-words contexts (red text) of outgoing cita-
tions to the target document.

Figure 2.10.4: Illustration of a bag-of-words mixed document representation.
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2.11 Corpora

One key issue encountered during the early stages of this project was securing ac-

cess to suitable corpora of research papers. Scientific documents are now normally

made available through digital means in born-digital formats, but these formats are

designed for fidelity in print reproduction and for human consumption; not for being

machine-readable and easily mined. By far the most common publication format of

scientific documents is Adobe Portable Document Format (PDF), standardised as ISO

320009. Unfortunately, extracting machine-readable text, figures, tables, citations and

references from PDFs is a very challenging task with a significant error rate in recon-

structing the original document structure (Alex and Burns, 2014). Even though version

6 of the PDF standard allows including some structural information in the final file, this

is seldom present in PDFs in the wild (Déjean and Meunier, 2006).

In order that a case can be made for the generalisability of the approaches presented

herein, these should be applied to more than one corpus in more than one domain.

Several collections of documents were required that fit a number of requirements; each

collection needs to:

1. Be in a machine-readable format. That is, each file needs to be in a structured text

format like e.g. XML or JSON. Converting PDFs would introduce a significant

error rate and add an unmanageable overhead to the project. From this format it

should be possible to retrieve in text format: separate paragraphs, sections and

section titles, inline citations and references for the document.

2. Have a degree of closure: for at least a few hundred documents, a significant

percentage of their references should be resolvable to documents in the same

collection.

3. Be focused to one domain. We would like to establish to what degree the findings

about one discipline transfer to another, so the documents in the corpus must

all belong to a reasonably clearly defined area of science, e.g. biochemistry,

computational linguistics.

4. Be in a domain for which there exist Functional Annotation Schemes and auto-

mated systems for the tagging of the corpus. This will become important in this

thesis and is presented in depth in Chapter 4.

9https://www.iso.org/standard/51502.html
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5. Come with no legal restrictions to its processing and usage in a test CCR system.

6. Be of sufficient size. The exact measure of sufficiency is hard to define a priori,

but generally we would like as big a collection as possible that fits all of the above

criteria. A survey of research paper recommender systems concluded that minor

variations in datasets lead to strong variations in the reported performance of the

approaches (Beel et al., 2016b). Given the often relatively small corpora used

for these experiments (as we can see in Table 2.10.1), we want to use as large

a corpus as is practical given our experimental setup and available processing

power.

Two such collections of documents stand out as good candidates for this task: the ACL

Anthology Corpus and the Open Access Subset of PubMed Central.

2.11.1 ACL Anthology corpus

The ACL Anthology is a digital archive of conference and journal papers in natural

language processing and computational linguistics since the 1970s (Bird et al., 2008),

published by the Association of Computational Linguistics. The whole collection of

documents is available to access and download in PDF format with practically no re-

strictions. A number of ongoing efforts exist to convert this collection to machine-

readable formats10.

An authoritative conversion of a large chunk of the ACL Anthology to a machine-

readable XML-based format is the ACL Anthology Reference Corpus11 (AAC) by

Bird et al. (2008). The version employed for these experiments is meant to be a com-

prehensive conversion of the ACL Anthology from its origins up to and including the

year 2011.

The AAC collection is based on automatically converted PDF files, many of them

scans of two decades of ACL conference and journal issues. Automated methods for

estimating of the accuracy of OCR conversion that correlate with human judgements

have been proposed (Alex and Burns, 2014), but to our knowledge no such analysis of

this corpus has been carried out yet. However, automated correction employing Neural

Machine Translation has been attempted (Nastase and Hitschler, 2018). From manual

inspection, the text remains full of the typical noise of OCR digitising, so we apply

significant extra preprocessing, using a large number of bespoke heuristics and regular

10https://acl-arc.comp.nus.edu.sg/, https://web.eecs.umich.edu/~lahiri/acl_arc.html
11http://www.delph-in.net/aac/
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expressions, targeted at removing inline XML, piecing together broken paragraphs and

broken sentences, etc. For more details, please see Appendix A.

The initial experiments carried out as part of this research and reported in Duma

and Klein (2014) used a conversion of the ACL Anthology by Ritchie et al. (2006a),

where a complex pipeline including OCR processing and the matching to publication-

specific templates were applied to generate XML representations of the PDF files. This

corpus was significantly smaller (about 9000 documents) and the conversion quality

from PDFs, again from manual examination, was much lower.

Metadata harvesting directly from PDF files is notoriously difficult, but fortunately

the metadata for this collection can be obtained in a clean and manually-curated form

from the ACL Anthology Network (ANN) (Radev et al., 2009b). This is key for match-

ing an in-collection reference to the actual document in the collection and avoiding the

manual annotation other studies needed to apply (Radev et al., 2009a).

2.11.2 PubMed Central Open Access Subset corpus

PubMed Central (PMC) is a repository of scientific articles based at the National

Center for Biotechnology Information (NCBI). PMC was established with the aim

to “provide a comprehensive electronic archive of the peer-reviewed literature relevant

to the biological sciences” (Roberts, 2001). While copyrighted content is hosted in

PMC12, a significant part of the articles are published under an Open Access license,

forming the PubMed Central Open Access Subset (which from now on we refer to

as simply PMC), which allows carrying out the kind of indexing and mining that is

necessary for the experiments reported herein.

Very importantly for our needs, these papers are provided in a hand-authored,

schema-validated XML format (the Journal Article Tag Suite13) that preserves struc-

tural information such as paragraphs, sections, citations and references. This is perhaps

the highest-quality machine-readable corpus of scientific papers that currently exists

that includes not just the metadata (e.g. authors, publication date and venue, etc.) but

also the fully structured textual document content.

12https://www.ncbi.nlm.nih.gov/pmc/about/intro/
13https://jats.nlm.nih.gov/
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2.12 Corpora statistics

Table 2.12.1 shows the statistics for the two corpora as a whole. The values presented

for the test set are the maximal available values – that is, corresponding to the total

amount of documents in this set. In practice, a much smaller set of the documents is

used to generate the evaluation queries from. The values presented in this table include:

Number of documents: total number of machine-readable documents in this subset

of the corpus

Valid documents: these are documents that contain a minimum of two sentences.

Documents containing a single sentence are in fact blank apart from the title.

Total citations: how many in-text citations are recoverable in all the documents

Resolvable citations: of these citations, how many can be matched with a reference

in the paper’s bibliography that can in turn be matched with the relevant paper

in the corpus

In-collection references: how many of the references in the paper’s bibliography are

found in the corpus

Self-references: how many of these references link to papers where the citing paper

and the cited paper share the same first author

Self-references ratio: what ratio this is of the total in-collection references

From Table 2.12.1we can see that most papers in the AAC corpus (98%) contain two

or more sentences, and we deem these valid documents. This proportion is lower for

PMC, at about 86%. We filter out the invalid documents for our test set from which we

extract the queries.

AAC Corpus PMC Corpus

Total number of documents 22,428 1,029,271
Valid documents (> 1 sentence) 22,040 887,535

Total citations 217,732 35,003,708
Total resolvable citations 54,062 1,941,218

In-collection references 37,369 1,165,310
Self-references 1,749 38,426

Self-references ratio 4.68% 3.30%

Table 2.12.1: Statistics for the two corpora: ACL Anthology Corpus and
PubMedCentral-Open Access Subset.
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When examining the distribution over the values summarised in Table 2.12.1, we

observe both similarities and differences between the two corpora. Yet a single number

is a poor descriptor of a distribution. We can see histograms over several metrics

relating to the documents in each collection in Figure 2.12.1 and Figure 2.12.2. Both

collections have significant outliers, so for generating these plots, we have limited

them to the valid papers in the corpus (those that contain more than one sentence)

and filtered out outliers by selecting papers with a maximum of 400 sentences, 100

outgoing citations, 20 resolvable citations, 50 incoming citations (times cited), 20 in-

collection references and 150 paragraphs.

• Number of citations: Even filtering out the blank papers, we still see that a

large number of the papers in our corpora have no valid outgoing citation links

that we could recover from the running text (just under 6k for AAC and over

250k for PMC). For AAC then we see a smooth distribution, where most papers

contain between 1 and 10 valid citation tokens and this then smoothly decreases

until fading into the long tail at around 30. PMC on the other hand has a greater

diversity and no obvious trend, except the frequency continues until well around

the 100 valid citations.

• Number of in-collection references: It is immediately clear that over 12k doc-

uments in AAC (more than half the corpus) have zero references to be found

inside the collection. For PMC, the proportion is similar, at 500k out of just over

a million papers.

• Number of resolvable citations: This is an important aspect of our collections:

as we motivated before, we need a sufficient degree of inter-linking of our col-

lection in order to properly evaluate the different methods. The distributions for

this appear similar for the two corpora, with a sufficient number of documents

containing resolvable citations.

• Times cited: Looking at the linking aspect from the incoming perspective, for

AAC 7,286 papers are cited at least once inside the corpus, and this number is

308,571 for PMC.

• Number of sentences, paragraphs and sections: The median document has a

similar number of sentences in both collections (135 for AAC and 139 for PMC),

but from the plot we can see that while AAC approaches a normal distribution

on this metric, PMC exhibits a bimodal distribution. This is due to many papers
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in PMC being abstract-only. This difference is then mirrored in the distribution

over number of paragraphs, and, less clearly, sections.

Figure 2.12.1: Histograms of AAC corpus statistics.

Figure 2.12.2: Histograms of PMC corpus statistics.
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2.13 Corpus processing

In order to evaluate this task correctly, we need the structure of documents we are

processing to be clearly annotated. Particularly, we need to be able to retrieve:

• in-text citation tokens

• structured data in the paper’s references (at a minimum, title, authors, year)

• individual sentences and paragraphs

In the case of the PMC corpus, retrieving this structured representation requires very

little effort as a majority of the annotation has been carried out and verified and is

immediately retrievable from the XML file. The one notable exception is sentence

splitting, which does not come pre-annotated and must be performed on the document.

For the AAC corpus, much of this annotation is unavailable or very noisy, so it

must be performed on the corpus. This annotation does not require manual effort, but

the automated ways of carrying it out are often non trivial due to OCR conversion

errors, inconsistent XML annotations, or anecdotally variable reference styles, some-

times used inconsistently inside a same document. More on this in Appendix A.

Some of the automated tasks that must be carried out include:

• Identify and annotate citation tokens in the body of the document. This is mostly

carried out by applying several regular expressions.

• Parse text from the References/Bibliography section, trying to recover the names

of the authors, the title of the article and the year of publication. This is import-

ant both to match the reference to its in-text citations and to match it to the

correct document in the corpus. The AAC corpus requires a larger measure of

processing, as the PMC corpus is perfectly structured.

• Match the in-text citation with the reference in the bibliography section.

• Match the reference with the right paper in the corpus.

• Split sentences in the text.

• Parse the XML schema of the corpus.

• Extract position-relevant text from the document, such as:

– Individual sentences and the paragraphs they belong to.
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– The sentence containing a citation token and sentences preceding or fol-

lowing it, within the same paragraph or outside.

– Sections and section headers

All of these are important to the experimental approach presented here, which benefits

from clean and clearly structured data. Beyond extracting a citation’s context for the

purpose of generating a query and selecting different spans of text of a document to

index, being able to retrieve individual sentences, paragraphs and sections is key for

their use as features for the automatic annotation of sentence function, as explained in

Chapter 4.

2.14 Conclusion

We have presented our task: Contextual Citation Recommendation (CCR) and motiv-

ated framing it as an information retrieval (IR) problem, together with a short intro-

duction to the field of IR and the general formulation of its approaches. The basis of

evaluation is to attempt to recover the original document cited in a given context in pub-

lished paper, using information retrieval methods to retrieve it from the indexed docu-

ment collection. We have also defined important concepts used throughout this thesis

and provided a short introduction to the information retrieval methods and frameworks

we employ. In the next chapter, we explore some of the most relevant previous work

on CCR, comparing it with our own approaches, and explore the corpora we will be

evaluating against. We have also motivated and defined our evaluation method, which

we call citation resolution.

There is abundant previous literature belonging to the field of recommender sys-

tems. Of the several classes of methodologies applied, our task aligns most closely

with content-based filtering, yet is not subsumed by the approaches in this field.

Several previous approaches to the task of Contextual Citation Recommendation

exist that frame it as an Information Retrieval task. In order to organise them and

guide our own research, we propose three research aspects: document representation,

which deals with what spans of text are extracted from which documents in order to

then be indexed for retrieval; query extraction, which is the methodology for extracting

the context around a citation placeholder and generating an IR query from this text; and

similarity metric, which is the algorithmic way of measuring the similarity between the

query and each document in the collection.
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For document representation, we have defined the three types of methods we have

identified in previous literature: internal methods (indexing just the text contained in

the document itself), external methods (indexing the anchor text of a citation to the

document) and mixed methods (combining the previous two).

We have selected two corpora of machine readable, open access publications in two

different domains. One is the ACL Anthology Corpus (AAC), a conversion of pub-

lications from conference and journal papers in computational linguistics of roughly

22,000 documents to a custom XML format. The other is the PubMed Central Open

Access Subset (PMC): a collection of over one milllion papers, most of which contain

the full document text. This corpus is the highest quality such resource we have identi-

fied, as it is manually curated, converted and schema-validated to a well documented,

open standard XML format.

In the next chapter, we explore two of the aspects we described: document rep-

resentation and query extraction using standard symmetric methods, exploring each

corpus individually.



Chapter 3

A baseline Information Retrieval

approach

“The journey of a thousand miles begins with a single

step."

Lao Tzu

3.1 Introduction

This chapter presents a baseline approach to the task of Contextual Citation Recom-

mendation, based on the standard formulation of it as an Information Retrieval scen-

ario. As hinted at in Chapter 2, it is not feasible to directly compare with the results

of other similar studies given the variation in corpora and the lack of standard annot-

ated test collections for this task. The lack of a common evaluation framework and

therefore common baselines is a widely recognised problem in the research landscape

of academic recommender systems (Beel et al., 2016a). For example, while plenty of

published research uses the CiteSeer collection for offline evaluation, this dataset is

not fixed: different studies collected CiteSeer data at different times and pruned the

datasets differently.

As pointed out in Section 1.4.3, our aim is to test new approaches to CCR that

involve deeper analysis of scientific documents. Inevitably, such approaches benefit

from the documents being available in a structured format such as XML. This contrasts

with previous IR-based approaches (e.g. He et al. (2010), He et al. (2012), Huang et al.

(2012)) which have treated the documents as unstructured running text, often mined

67
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from converted PDFs. Consequently, this is another factor which makes it infeasible

to draw direct comparisons with previous work on CCR.

However, we can apply previously used, de facto standard techniques for query

extraction and document representation using our fixed corpora and retrieval backend.

We explore in depth a wider range of parameters to the context extraction and docu-

ment representation than has been previously published, which will establish baselines

for all further experiments presented here.

3.2 Methodology

3.2.1 Corpus split

First, the corpus is split into a document collection, which is indexed for retrieval, and

a test set, which we treat as the set of draft papers that we want recommendations for1.

The main division is by year: we want to clearly and unambiguously separate:

1. the documents that we consider the draft documents for which we need to re-

commend relevant citations, from which we will be extracting the queries

2. the documents that we want to recommend, including the documents from which

we build external document representations, as detailed below.

At the same time, we need documents with as many collection-internal references as

possible to generate these queries. Therefore we select the test set from the most recent

documents in both collections and use the remainder as our document collection.

For the ACL Anthology Corpus (AAC), we select documents published in 2011 and

after for our test set and indexed the remaining documents as the document collection.

For PubMed Central (PMC), it is 2014 and onwards. Then for each corpus, documents

are selected for query extraction, ordering them by number of collection-internal ref-

erences, in descending order. From these, a query is extracted from each resolvable

citation, using each query extraction method, which is documented in Section 3.2.3

below.

1This approach was originally presented in Duma and Klein (2014), and while what we present here
is conceptually very similar, there are several differences. The main one is that the evaluation now
considers all documents in the document collection for retrieval as opposed to only those cited within a
single paper. Further to this, experiments are expanded and now cover two larger corpora, none of them
used in the original paper.
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AAC Corpus Document Collection Test Set

Number of documents 22428 20395 1653
Valid documents (> 1 sentence) 22040 20387 1653
Total citations 217732 190460 27272
Resolvable citations 54062 45696 8366
In-collection references 37369 31531 5838
Self-references 1749 1535 214
Self-references ratio 4.68% 4.87% 3.67%

Table 3.2.1: AAC corpus split statistics for experiments.

PMC Corpus Document Collection Test Set
Number of documents 1029271 706814 268039
Valid documents (> 1 sentence) 887535 634788 252747
Total citations 35003708 25766440 9237268
Resolvable citations 1941218 1229883 711335
In-collection references 1165310 729077 436233
Self-references 38426 25272 13154
Self-references ratio 3.30% 3.47% 3.02%

Table 3.2.2: PMC corpus split statistics for experiments.

3.2.2 Indexing

The document collection is indexed using Elasticsearch. While Apache Lucene, the

underlying retrieval engine, is a field-based retrieval engine as detailed in Chapter 2,

we index all text into a single field, i.e. a single bag-of-words for a Vector-Space Model

(VSM) representation. No distinction is made in the index between text coming from

different semantically meaningful parts of a paper, e.g. title, abstract, section headers,

etc.

The two document collections (AAC and PMC) are indexed independently and into

separate indices: it is impossible for a paper from one collection to appear in the results

of a query generated from a paper in the other.

Three different approaches to generating a document’s VSM representation are

tested here: internal representations, which are based on the contents of the document,

external representations, which are built using a document’s incoming link citation

contexts (following Ritchie (2009) and He et al. (2010)) and mixed representations,

which are an attempt to combine the two.

Internal representations: these are generated using two different methods: title plus

abstract and full text. Title plus abstract means only the text contained in the title
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and the abstract of the paper are used to generate the BOW. Full text is unsurpris-

ingly the full plain text of the document, including section headings, footnotes,

etc. but excluding references. Previous work has sometimes employed pas-

sages for generating document representations (e.g. Duma and Klein (2014)).

These consist in splitting the document into half-overlapping passages of a fixed

length of k words and choosing for each document the passage with the highest

similarity score with the query. While in naïve custom implementations of in-

formation retrieval they have been found to sometimes outperform full text as

a document representation, we have found in our experiments that when using

modern similarity metrics and weighting schemes which normalise tf-idf scores

over document length this advantage disappears, so we exclude them from our

evaluation.

External representations (inlink_context): these are based on extracting the context

around citation tokens to the document from other documents in the collection,

excluding the set of test papers. This is the same as using the anchor text of a

hyperlink to improve results in web-based IR (see Davison (2000) for extensive

analysis). This context is extracted in the same way as the query: as a window,

i.e. a list of w tokens surrounding the citation left and right. We present our res-

ults using symmetrical windows of w = {30,40,50,100} before and after, and

windows of sentences using different combinations of “up” and “down” para-

meters, e.g. 2up_2down or 1only (only the citing sentence).

Mixed representations: these are built by simply concatenating the internal and ex-

ternal bags-of-words that represent the documents, from which we then build

the VSM representation. For this, we combine different window sizes for the

inlink_context with full_text and title_abstract.

Once generated, these BOWs are each indexed in an index by type (i.e. all BOWs

inlink_context_10_10 will be added to the same index, separate from all other types).

3.2.3 Query extraction

We want to use the existing text surrounding a citation in a document to generate a

query that will retrieve the paper or papers that were originally cited (the target docu-

ments). For this, we substitute all citations in the text with citation token placeholders

and extract the citation context for each. This context is a list of word tokens and we
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make this list our query in IR terms. A single extra processing step is added here,

where stopwords from a very short list2 are removed in order to speed up the running

of the queries, as well as all punctuation. We observe this increases the average scores:

we will explore motivated stopword selection and removal in depth in Chapter 6. Other

than this, the terms are extracted as they come, including their term frequency in the

context. We use two different types of windows for extraction: windows of tokens and

windows of sentences.

Window of tokens (methods named window): we take a window of up to w1 words

left and w2 words right around the placeholder. For example, window20_10

means extracting a context window of 20 tokens before the citation token and 10

tokens after.

Window of sentences (methods named sentence): we select the sentence containing

the citation and others around it. For example, sentence1up_1down means ex-

tracting the sentence containing the citation, one before it, and one after it, for

a total of 3 sentences. On the other hand, sentence_paragraph means extracting

the whole paragraph where the citation occurs.

3.2.4 Similarity function

Each query is run with default parameters using the Lucene DefaultSimilarity, where

each extracted term is added to the query as an independent term joined with an OR

operator. This has the effect of simply adding up the scores of the query terms that

match the document.

3.3 Results: AAC

Table 3.3.1 presents a selection of the most relevant results, with the best result and

document representation method of each type highlighted. We present results for the

most relevant parameter values, producing the highest scores of all those tested.

2{a, an, and, by, from, not, of, or, the, to, with}. We manually selected the top 10 stopwords from a
number of stopword lists we obtained from open source projects. We then added “an” to this list as a
version of “a”.
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Table 3.3.1: Heatmap of average NDCG score for each document representation
method (rows) and query extraction method, including context window size (columns)
in the AAC experiments, where red represents the lowest scores and green the highest
scores. The methods starting with ilc are those of type inlink_context.

When we look at the maximum average performance of each query extraction

method (Figure 3.3.1), we see that the query with the largest amount of terms is win-

dow100_100 and it is the worst performing one, and generally, the fewer terms ex-

tracted, the higher performing the query. Of the sentence-based methods, 1up_1down
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performs the best, which shows that in the AAC corpus there is often important in-

formation in the sentences both before and after a citation token.

Figure 3.3.1: Maximum average NDCG of the query extraction methods for AAC.

However, it is a closer look at the document representation methods (Figure 3.3.2)

that gives us the most interesting insights. When grouped by type of method (internal

in red, external in green, mixed in blue) we can clearly see that:

• Title + abstract is the worst performing method, which is unsurprising as the

amount of information is necessarily low. Full text very clearly outperforms it.

• All external methods clearly outperform internal ones by a large margin and

with not much difference between them. It has been suggested before that this

is because the descriptions of the cited papers in the contexts of incoming link

citations capture the essence or key relevance of the paper. There may also be an

effect of these descriptions originating in a seminal paper and being then propag-

ated through the literature. We have tried to limit the effect of authors reusing

their work by filtering out self-citations, but examining this effect in more depth

remains an open research question, to be tackled outside of this thesis.

• Mixed methods, which combine internal and external, achieve by far the best

results. This is perhaps the most important finding. Again here we see there may
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be a sweet spot for how much of the text around an incoming citation to extract

in order to concatenate it to the contents of the target document.

Figure 3.3.2: Maximum average NDCG of the document representation methods for
AAC.

3.4 Results: PMC

After running these experiments with the exact same parameters on the PMC corpus,

we notice some differences. Figure 3.4.1 shows the full results.

We can see similar results across query method performance for PMC as we did for

AAC, with window30_20 (30 left, 20 right) being the best performing method (where

for ACL it was the second best), and window100_100 (the largest one) being the second

worst performing one (similar to AAC, where it is the second worst). In the case of

PMC, the stark contrast is that window10_20 is the absolutely worst performing one,

suggesting that in this corpus, the most relevant keywords occur before the citation

token rather than after it.
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Table 3.4.1: Heatmap of maximum average NDCG score for each document repres-
entation method (rows) and query extraction method, including context window size
(columns) in the PMC experiments.
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Figure 3.4.1: Maximum average NDCG (across document representation methods) of
the query extraction methods for PMC.

The most notable differences with the AAC results can be seen in the document

representation methods:

• Once again, full_text vastly outperforms title_abstract, as is entirely expected.

What is noteworthy is how well this performs, approaching the performance of

mixed methods.

• However, perhaps the most notable difference here is how much worse all ex-

ternal methods perform on this corpus. Just indexing the title and abstract of a

document beats any external method. In AAC we see external methods outper-

forming internal ones, perhaps partly because the terms used as in the context of

a citation are not so prominent in the paper itself, but they are consistently used

in contexts of citations to it. However, these results suggest that in the biomed-

ical domain, the incoming link contexts of a document would be less consistent

in vocabulary use. At the same time, it seems likely that different parts of an

article are cited. We will give these citing patterns more attention in Chapter 5.

• And yet we find that mixed methods are still the best performing, so the incoming

link contexts clearly also contain important information that is not found in the
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documents themselves.

Figure 3.4.2: Maximum average NDCG (across query methods) of the document rep-
resentation methods for PMC.

3.5 Statistical significance of results

For each corpus, we select the best performing combination of document represent-

ation method and query extraction method for each type of document representation

method (internal, external and mixed). In order to establish the statistical significance

of these results, a one-way ANOVA was conducted to compare the effect of the type of

document representation method on the NDCG scores of the 1000 evaluation queries.

Table 3.5.1 presents the best performing combination of methods for each corpus.

For both corpora, we observe that the differences in scores between the top per-

forming combination in each of the three categories of methods (internal, external and

mixed) are statistically significant (p < .001). To establish the significant differences

between each pairing of methods, we apply Tukey’s post-hoc test, which also shows
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clear statistical significance (p < .001) between all pairings in both corpora. Table

3.5.2 presents the results for AAC, and those for PMC are shown in Table 3.5.3.

3.6 Discussion of results

From separate experiments with both corpora, we conclude that:

• Indexing the full text of a document leads to better results than only the title
and abstract. This result is intuitive and holds true for both domains: there is

information in the paper that is not captured by the abstract, and citation contexts

are likely to refer to aspects of a paper that are more specific or detailed than

those that appear in the abstract.

• A mixture of internal and external methods beats both individually. Mixed

methods consistently and significantly (p < .001) improve over both using the

document’s text and that of incoming link contexts in isolation. This confirms

results from previous work on anchor text (e.g. Ritchie (2009)) and we find it

holds true for both corpora and therefore both domains.

• External methods contribute very differently to retrieval on different cor-
pora. This is perhaps the main novel finding of these experiments. While for

AAC we observe that external methods unambiguously beat internal methods,

for PMC the text of the document leads to much higher accuracy than the inlink

context, both when taking the full document text and just the title and abstract.

Inlink context text is useful for both domains, but not to the same degree, which

is a strong difference that has not been reported before.

• External representations benefit from a larger context. It is not clear what

the absolute best setting is, as we can see that for ACL it is paragraph and for

PMC it is 2up_2down that obtain the best results, but broadly our results agree

with previous results reported by Ritchie et al. (2008) in that, “the longer the

citation context, the greater the retrieval effectiveness”. In their study, they also

reported that symmetric windows of 3 sentences (1up_1down) outperformend

single sentences (1only), and windows of 100 tokens oupterformed those of 50

tokens.

• A broad query generally performs worse than a narrow one. That is, adding

more terms to the query boosts less relevant papers in the collection and increases
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AAC PMC

Document Query Document Query

Internal full_text_1 window30_30 full_text_1 window30_20

External inlink_context_paragraph sentence_1only inlink_context_100 sentence_1up_1down

Mixed ilc_full_text_1_paragraph window30_30 ilc_full_text_1_2up_2down window30_20

Table 3.5.1: Best performing document representation methods for each corpus, to-
gether with the query extraction methods that yield the highest scores for each of the
document representation methods.

ANOVA - ndcg_score (AAC)

Cases Sum of Squares df Mean Square F p

method 10.94 2 5.469 52.25 < .001

Residual 313.68 2997 0.105

Post hoc comparisons

Mean Difference SE t ptukey

Internal External −0.054 0.014 −3.706 < .001

Mixed −0.146 0.014 −10.104 < .001

External Mixed −0.093 0.014 −6.398 < .001

Table 3.5.2: Results of ANOVA and post-hoc tests for AAC.

ANOVA - ndcg_score (PMC)

Cases Sum of Squares df Mean Square F p

method 22.70 2 11.348 82.13 < .001

Residual 414.14 2997 0.138

Post hoc comparisons

Mean Difference SE t ptukey

Internal External −0.146 0.017 8.775 < .001

Mixed −0.062 0.017 −3.701 < .001

External Mixed −0.207 0.017 −12.477 < .001

Table 3.5.3: Results of ANOVA and post-hoc tests for PMC.
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the rank of the target document, making it appear further down in the list of

results (lower rank = higher score). As far a query extraction is concerned, more

is not better.

3.7 Conclusion

In this chapter we have explored different ways of building a document representa-

tion and of extracting the context around a citation token from which to generate the

evaluation queries. Our aim has been to establish a baseline by implementing and

systematically testing different combinations of standard approaches to document rep-

resentation and query extraction.

We have uncovered notable differences between our two corpora, and so between

the two domains. One of the most interesting is the effect of anchor text: while in the

domain of computational linguistics (AAC corpus) external methods far outperform

internal ones, the exact opposite is true of biomedical science (PMC). This is to our

knowledge a novel finding that had never been investigated for Contextual Citation

Recommendation and that should inform all future approaches to it.

These results also show that the task is far from solved, with the highest NDCG

score of 0.406 for AAC and 0.479 for PMC, where the maximum score is 1, which

leaves clear room for improvement. We are not interested in extremely fine-tuning the

exact parameters for extracting the query and the external document representations

using these symmetric window methods, as these could vary depending on the docu-

ment collection, and tweaking a single parameter for a whole set of different cases that

exhibit high variation is neither intellectually satisfying nor likely to lead to notable

improvement. We also agree with Ritchie et al. (2008) that choosing a fixed window

size over the whole collection is too simplistic, and we believe that a more granu-

lar approach to extracting the context and generating the query from it by using NLP

techniques would highly benefit this task.

So our research branches out in two different directions from here. First, in the next

two chapters we are going to explore a linguistically motivated, resource-intensive ap-

proach to classifying the citing sentences and cited sentences in our document collec-

tions and trying to finding consistent patterns of citation between these sentence types.

Second, in Chapter 6, we will explore more fine-grained approaches to extracting the

query from the citing context.



Chapter 4

Scientific Discourse Annotation

Schemes: AZ and CoreSC

“Artificial Intelligence is almost a humanities discipline.

It’s really an attempt to understand human intelligence

and human cognition."

Sebastian Thrun

4.1 Introduction

In the same way that a sentence is more than the set of words that form it, a written

document is much more than a collection of sentences. Any document is a linguistic

artifact, which holds together as one unit of discourse, exhibiting coherence and co-

hesion (Bublitz, 2011). At the same time, it has a purpose: it serves one or more

rhetorical aims, such as to inform or to persuade. These aims, as well as many char-

acteristics of scientific discourse are formalised as a set of conventions in every field

(Hyland, 2009), which gives scientific publications a formal structure. At the same

time the language of academia requires clear argumentation (Hyland, 2009). This has

led to the creation of discourse annotation schemes that attend to the rhetorical and

argumentative structure of scientific papers.

A number of them have been developed over the years, and it has often been sug-

gested that they could find application in Information Retrieval scenarios such as CCR

(Teufel (2000); Nakov et al. (2004); Nanba et al. (2011)). In this chapter we present

some of these schemes, focusing on the two that we employ in our experiments: Core

81
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Scientific Concepts (CoreSC) and Argumentative Zoning (AZ), both of them sentence-

based scientific discourse annotation schemes for which automatic classifiers exist.

We aim to investigate the utility of incorporating automatic argumentative and rhet-

orical annotation of documents for the task of CCR. By annotating each sentence in

every document with AZ and CoreSC and indexing them separately by sentence class,

we will be able to test and evaluate whether this results in a more useful vector-space

representation of documents in our collection.

4.2 Scientific Discourse Annotation

Several annotation schemes for scientific publications have been suggested at several

levels of granularity, including bio-events and meta-knowledge about them (Nawaz

et al., 2010; Liakata et al., 2012b; Thompson et al., 2011) and clauses: segments of text

that contain a main verb (Waard et al., 2009). However, the most common approach for

schemes that pay attention to the rhetorical and argumentative structure of a publication

as a whole has been to take the sentence as the minimum unit of annotation.

Annotation schemes either specifically designed for abstracts (Hirohata et al., 2008)

or adapted for them have been explored (Guo et al., 2010), but these are of limited ap-

plicability in our scenario, as we are exploring citation behaviour, which occurs almost

exclusively in the full text of articles.

Two of the most prominent sentence-based Scientific Discourse Annotation schemes

for full text documents are Argumentative Zoning (AZ) (Teufel, 2000) and Core Sci-

entific Concepts (CoreSC) (Liakata et al., 2012a). The former focusses on the relation

between current and previous work whereas the latter mostly on the content of a sci-

entific investigation. AZ (Table 4.2.1) frames a publication as an attempt of claiming

ownership of a new piece of knowledge and aims to recover the rhetorical structure

and relevant stages in this argument (Liakata et al., 2010). In contrast, CoreSC (Table

4.2.2) was specifically developed for the domain of biomedical science and treats pa-

pers as “human-readable representations of scientific investigations", aiming to retrieve

the structure of the investigation from the paper (Liakata et al., 2012a), in the form of

high-level concepts.
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These are among the first approaches to incorporate successful automatic classific-

ation of sentences contained in a scientific paper, using a supervised machine learning

approach.

When one scientific paper is cited by another, this citation serves a particular func-

tion in the article, naturally aligning with its argumentative structure. In a seminal

paper, Garfield et al. (1965) suggested 15 reasons for citing other papers, including

“paying homage to pioneers”, “providing background reading” and “giving credit for

related work”. Much attention has since been paid to the analysis of the function of

citations and the argumentative structure of scientific papers from different disciplines,

such as applied linguistics (e.g. discourse analysis), history and sociology of science

and information science (e.g. bibliometrics and information retrieval) (White, 2004).

Given this amount of attention to the matter, a significant number of different cat-

egorisations for sentence classification and citation function have been proposed for

different purposes. This categorisation is often observed to be very domain-specific,

with the purpose and usage of types showing significant variation from one discipline

to another. Integrating all citation functions into a comprehensive classification scheme

therefore may not be a solved problem yet for the task at hand.

The question we are addressing is this: in order to recommend a citation for a

specific textual context, can we classify the citing sentence or context in a way that

aligns with the document’s argumentative structure? If we then apply the same or

another scheme to the contents of a document to be recommended, can we find patterns

of citation between them? In order to find out, we start by exploring the most important

existing scientific discourse annotation schemes and the resources available to us.

4.2.1 Argumentative Zoning

Argumentative Zoning (Teufel et al., 1999) is perhaps the first relevant body of work

that has produced not just a classification and annotation scheme, but also a size-

able strictly annotated corpus based on clear guidelines and the computational means

for automatically classifying sentences in a scientific document. This was developed

specifically for the domain of computational linguistics, examining and annotating a

sample set of 80 Computational Linguistics papers from the CMP-LG corpus1. The

work does not strictly focus on citation function but divides the text into “zones”, of

which the basic building block is the sentence. The classification of these zones is

1http://www.itl.nist.gov/iaui/894.02/related_projects/tipster_summac/cmp_lg.html
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inspired by the notion of a “knowledge claim”, as “the act of writing a paper corres-

ponds to an attempt of claiming ownership for a new piece of knowledge, which is

to be integrated into the repository of scientific knowledge in the authors’ field by the

process of peer review and publication” (Teufel et al., 2009). The original work on

Argumentative Zoning (AZ) (Teufel et al., 1999) defines seven categories into which

each sentence has to be classified, shown in Table 4.2.1.

Zone Description

Background (BKG) General scientific background

Other (OTH) Neutral descriptions of other people’s work

Own (OWN) Neutral descriptions of the own new work

Aim (AIM) Statements of the particular aim of the current paper. The paper’s main knowledge

claim, a rhetorical move which may be repeated in the conclusion and the introduction.

Textual (TXT) Statements of textual organisation of the current paper. Explains the physical location

of information e.g. by giving a section overview or presenting a summary of a

subsection. (e.g. “in chapter 1 we introduce”...)

Contrast (CTR) Contrastive or comparative statements about other work; explicit mention of

weaknesses of other work

Basis (BAS) Statements that own work is based on other work

Table 4.2.1: Original Zones for Argumentative Zoning and their description.

Figure 4.2.1: Argumentative Zoning colour scheme and an example page as annotated
with it.
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As the first annotated corpus was a collection of 80 Computational Linguistics

papers, the annotation scheme was particularly tailored to this domain. Over several

publications, several modifications to the scheme have been proposed.

Mizuta and Collier (2004) adapted the AZ scheme to biomedical text processing,

with an emphasis on Information Extraction of factual information related to experi-

mental results. They modified the original AZ scheme in three ways:

1. expanded the OWN category, adding finer-grained annotation of method, result,

insight and implication

2. added Connection (CNN) and Difference (DFF) classes to cover relations between

findings

3. nested the annotation, to allow for sub-classification like in the case of OWN

While this scheme is relevant, this is an example of a line of work that has produced

neither a sizeable annotated corpus nor an automatic classifier we could employ for

our experiments.

More recently, AZ has also been adapted to the domain of chemistry (Teufel et al.,

2009), and 30 sample chemistry papers were annotated with the new scheme, AZ-

II (Table 4.2.2). The authors consider inter-annotator agreement on the new scheme

acceptable for computational linguistics and high for chemistry.

A comparison was made of CoreSC and AZ-II, where 36 papers were annotated

using both schemes, with CoreSC by expert annotators and with AZ-II by expert-

trained non-experts (Liakata et al., 2010). The overlap in annotation is studied in deep

detail, examining to what degree a sentence receiving a given label in AZ-II predicts

it receiving one in the CoreSC annotation. The conclusion is that the schemes are

complementary but that CoreSC provides a higher level of granularity in content-level

categories (Object, Goal, Hypothesis, Motivation). In contrast, AZ-II are shown to

“cover aspects of knowledge claims that permeate across different CoreSC concepts”

(Liakata et al., 2010). The differences are exemplified by referring to outcomes of

current work versus those of other work, distinguishing methods used in previous work

and in the work reported.

This repeated modification and evolution of the annotation scheme for different

domains and tasks suggests that applying it across different scientific domains may be-

nefit from future adjustments. For our experiments, however, we consider AZ the most

solid starting point for the domain of computational linguistics, and CoreSC clearly

the best suited for biomedical science.
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4.2.2 Automatic classification

For the automatic classification of sentences into one of the categories, the original

work on AZ (Teufel, 2000) reported an F-score of 72 employing a Naive Bayes classi-

fier and a multitude of features, as shown in Table 4.2.3.

Later work by Merity et al. (2009) claims an increase in the classification accuracy

to above 98% F-Score using a Maximum Entropy classifier together with other tech-

niques such as a Gaussian prior distribution over feature weights which "allows many

rare, but informative, features to be used without overfitting". They also modified the

features, using all n-grams from a sentence instead of just those above a threshold,

bucketed the features into smaller sets to reduce sparseness and ignored or simplified

some of the features. Moreover, they used feature cut-off (removing features that occur

less than four times) and treated the task as a sequence labelling task, that is, basing

each prediction on the classification history.

4.2.3 Core Scientific Concepts

Another substantial body of work that interests us is Core Scientific Concepts (CoreSC),

an annotation scheme for scientific papers, particularly tailored to the domain of bio-

medical science. For this annotation scheme, a number of systems were implemen-

ted that allowed for easy manual annotation and then to interface with automatically

trained classifiers (Liakata et al., 2010).

The contrast that is often made between Argumentative Zoning and CoreSC is that

while AZ is concerned with the citations and their function in the aim of the paper, Cor-

eSC treats papers as “humanly-readable representations of scientific investigations”

and aims to retrieve the structure of the investigation from the paper (Liakata et al.,

2010).

Looking at the annotation scheme, it is immediately apparent that there exists a

degree of overlap in categories. This is studied in detail in Liakata et al. (2010). The

categories proposed by CoreSC and their colours are shown in Figure 4.2.2.

Sapienta2, a Java browser-based tool, enables the easy annotation of sentences with

CoreSC, and also the automatic classification of documents by a trained classifier.

2http://www.sapientaproject.com/
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Table 4.2.2: The AZ-II scheme.

Name Description Type

Cont-1 Does the sentence contain “significant terms” as determined

by the tf-idf measure

Yes/No

Cont-2 Does the sentence contain words in the title or heading

(excluding stop words)

Yes/No

TLoc Position of the sentence in relation to 10 segments (A-J)

Struct-1 Position within a section 7 values

Struct-2 Relative position of sentence within a paragraph Initial, Medial, Final

Struct-3 Type of headline of the current section 16 prototypical headlines or Non-prototypical

TLength Is the sentence longer than N words? (N=15) Yes/No

Syn-1 Voice of the first finite verb in the sentence Active or Passive or No Verb

Syn-2 Tense of the first finite verb in the sentence 9 simple and complex tenses or No Verb

Syn-3 Is the first finite verb modified by a modal auxiliary? Modal or no Modal or No Verb

Cit-1 Does the sentence contain a citation or the name of an author

contained in the reference list?

Citation, Author Name or None

Cit-2 Does the sentence contain a self citation? Yes or No or NoCitation

Cit-3 Location of citation in sentence Beginning, Middle, End or NoCitation

Formu Type of formulaic expression occurring in sentence 20 Types of Formulaic Expressions + 13

Types of Agents or None

Ag-1 Type of agent 13 different types or None

Ag-2 Type of action (with or without negation) 20 different Action Types X

Negated/Non-negated, or None

Table 4.2.3: Original features for Argumentative Zoning as proposed in Teufel (2000).



88 Chapter 4. Scientific Discourse Annotation Schemes: AZ and CoreSC

Feature Description

Absolute location

(absloc)

Document divided into 10 unequal segments (larger segments in the

middle of the paper, as in Loc of AZ)

SectionId A sequentially incremented section number (up to 10) is assigned to

each section and inherited at sentence level.

Struct-1 The location of a sentence within seven unequal segments of a section.

Struct-2 Location within a paragraph split in five equal segments.

Struct-3 One of 16 heading types assigned to a sentence by matching its

section heading against a set of regular expressions (a variant on

Struct-3 of AZ).

Location in

section

(sectionloc)

Like Struct-2 but at section level.

Length Sentences are assigned to one of nine bins, representing a word count

range.

Citation Three cases: no citations, one citation, and two or more citations

present.

History The CoreSC category of the previous sentence.

N-grams Binary values for significant unigrams, bigrams and trigrams.

Verb POS

(VPOS)

For each verb within the sentence we determine which of the six binary

POS tags (VBD, VBN, VBG, VBZ, VBP and VB) representing the tense,

aspect and person of a verb are present.

Verbs All verbs in the training data with frequency >1.

Verb Class Ten verb classes, obtained by clustering together all verbs with a

frequency >150.

Grammatical

triples (Grs)

Dependency–head-dependent triples (Briscoe and Carroll format)

generated using C&C tools. Using the supertagger model trained on

biomedical abstracts and applied self-training on the papers in the

corpus. Considered dependencies are subj , dobj , iobj and obj2 with

frequency > 3.

Other GR: Subjects (Subj), direct objects (Dobj), indirect objects (Iobj) and second

objects of ditransitive verbs (Obj2) with frequency >1.

Passive (P) Whether any verbs are in passive voice.

Table 4.2.4: Core Scientific Concepts features for automatic classification, as proposed
in Liakata et al. (2012a), all of them binary in nature.
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Figure 4.2.2: Core Scientific Concepts classes and colour scheme.

4.3 Classification of citation function

The schemes we have seen so far aim to annotate the document at the sentence level,

paying attention to the contribution of the sentence to either an argumentative aim (own

work, contrast in methods) or as a characteristic of a scientific investigation (back-

ground, method, conclusion). Many other scientific discourse annotation schemes have

concerned themselves instead with the function of the citation.

Of all schemes proposed that attend to citation function, perhaps the most relevant

scheme is the Citation Function Classification (CFC) of Teufel et al. (2006), which has

been influential to many others proposed after (e.g. Angrosh et al. (2013); Schäfer and

Kasterka (2010); Jha et al. (2017)). This scheme builds on the Argumentative Zoning

work and defines 12 categories of citation function, which can be seen in Table 4.3.1.

The authors annotated a corpus of 116 articles and 2,829 citation instances and trained

a classifier using a combination of features that significantly overlap with those used by

AZ (Figure 4.2.3) but with the notable difference of new manually defined cue phrases.

Other examples of relevant approaches include:

• Nanba et al. (2011) take inspiration from Garfield’s original 15 categories of cita-

tion function (Garfield et al., 1965), but group them together to create just three

classes of citation: B (citations that show other researchers’ theories or methods

for the theoretical basis), C (citations that point out gaps or problems in related

work) and O (anything else). They then manually define 160 rules for the clas-

sification of citation type, based on cue phrases. What is particularly interesting
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about this research is that they evaluate their automatic classification of citation

function using bibliographic coupling (i.e. whether two given documents cite

the same third one), which they measure using a retrieval approach where they

index different parts of the document. They evaluate full text, title and abstract

and a selection of different sentence types which they identify simply using cue

phrases (e.g. a sentence is considered of type Method if it contains the words

“our methods”). While much simpler than what we attempt in our own exper-

iments and with a different purpose, there are several conceptual similarities in

this prior work.

• Another early attempt at automatic classification is Garzone and Mercer (2000),

where the authors define a very detailed scheme of 34 sub-categories for citation

in the domains of biochemistry and physics (e.g. “Citing work totally disputes

some aspect of cited work”). Their automated classification is also based on POS

tags and manually selected cue words and syntactic patterns.

• Schäfer and Kasterka (2010) define a citation classification scheme for the ACL

Anthology (Agree, PRecycle, Negative, Neutral, Undef) that supports a graph-

ical navigation of the citation network.

• Angrosh et al. (2013) takes inspiration from the AZ and CFC schemes presen-

ted above and redefines another annotation scheme that includes both non-citing

sentences and a taxonomy of citation types. The scheme consists of the sentence

classes Background, Issues, Gaps, Description, Current Work, Outcome and Fu-

ture Work and seven classes of citation, attending to fine grained differentiators

such as using outputs from the cited work and contrasting results with the current

paper. Other formalisations of citation types have been proposed as an ontology

for publishing on the Semantic Web (Shotton, 2010).

• Jha et al. (2017) define a annotation for citation purpose with the explicit aim of

evaluating and summarising the impact of papers in the ACL Anthology Network

corpus, working in the domain of scientometrics. They also draw significant

inspiration from the CFC scheme above and define the categories Criticizing,

Comparison, Use, Substantiating, Basis and Neutral for citation function.

All of these approaches above have endeavoured to produce automatic classifiers of

citation function. As we have seen, linguistic features for these classifiers are common,
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but features that seem to make a difference are the manually defined cue phrases and

grammatical patterns that the authors define for each citation type.

Function Description Percentage

Weak Weakness of cited approach 3.1%

CoCoGM Contrast/Comparison in Goals or Methods (neutral) 3.9%

CoCo- Author’s work is stated to be superior to cited work 1.0%

CoCoR0 Contrast/Comparison in Results (neutral) 0.8%

CoCoXY Contrast between 2 cited methods 2.9%

PBas Author uses cited work as basis or starting point 1.5%

PUse Author uses tools/algorithms/data/definitions 15.8%

PModi Author adapts or modifies tools/algorithms/data 1.6%

PMot This citation is positive about approach used or problem addressed

(used to motivate work in current paper)

2.2%

PSim Author’s work and cited work are similar 3.8%

PSup Author’s work and cited work are compatible/provide support for each

other

1.1%

Neut Neutral description of cited work, or not enough textual evidence for

above categories, or unlisted citation function.

62.7%

Table 4.3.1: Citation Function Classification scheme from Teufel et al. (2006) and per-
centage of instances of each class as manually annotated in the corpus.

4.4 Automatic classifiers

As manual annotation is prohibitively expensive for a practical application, our ap-

proach depends crucially on being able to use an automatic classifier for these annota-

tion schemes which performs with acceptably high accuracy.

Of all the schemes for citation classification we have presented, the one that we

consider the most mature and for which we could obtain the largest annotated corpus

is the Citation Function Classification of Teufel et al. (2006). A classification scheme

that attends to the function of a citation seems a priori promising for the task of CCR.
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However, using the automated classification approach of Teufel et al. (2006) was un-

fortunately not feasible. No canonical implementation of a trained classifier was made

available by the original authors and an initial attempt at an own implementation did

not produce a useful classifier.

This is a difficult task; as originally annotated, 67% of all citations in the corpus

were assigned the Neutral category. On the one hand, two-thirds of all citations be-

ing “neutral” calls into question the usefulness of the scheme for finding any citing

patterns, and on the other, this works to completely drown out all other types in auto-

matic classification. Further, this scheme (like others), while theoretically focussed

on the citation phenomena, in practice is sentence-based: it assigns the same class

to all citations in the same sentence. Given this and in the absence of a purpose-

specific annotation scheme for citation instances, we decide here to use the classes

from sentence-based annotation schemes as proxies for citation function. In our for-

mulation then, we will attempt to find patterns between types of citing sentences and

types of cited sentences.

4.4.1 Argumentative Zoning

For AZ we employ the AZPrime classifier 3. This classifier was written by Dain Ka-

plan, while working as a Research Associate at the University of Cambridge. It is a

reimplementation of Teufel’s original Perl code. In spite of this work being as yet un-

published, is as close to an officially sanctioned classifier as we have obtained access

to. In testing with the original AZ corpus, it yields 69% accuracy over all sentences

(see Table 4.4.1 and Table4.4.2).

Precision Recall F1

OWN 0.806 0.858 0.831

AIM 0.566 0.585 0.575

BKG 0.353 0.350 0.351

OTH 0.414 0.338 0.372

CTR 0.330 0.245 0.281

BAS 0.327 0.277 0.300

Table 4.4.1: AZPrime per-class precision, recall and F1 scores.

3The code is available at https://bitbucket.org/argzone/azprime
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OWN AIM BKG OTH CTR BAS

OWN 7406 88 271 613 186 67

AIM 82 176 17 15 4 7

BKG 304 14 271 149 30 6

OTH 1050 10 149 676 67 46

CTR 276 12 54 99 147 12

BAS 65 11 6 82 11 67

Table 4.4.2: AZPrime (Argumentative Zoning) classifier confusion matrix

Once we have annotated the entire AAC corpus, we can see that a disproportionate

number of sentences end up being labelled as OWN, to the detriment of all other zones,

but most importantly OTH, CTR and importantly TXT which practically disappears.

Manual annotation % Automatic annotation %

BKG 720 5.80 196,057 6.35

OTH 2,013 16.21 114,570 3.71

OWN 8,433 67.89 2,705,401 87.69

AIM 209 1.68 39,040 1.27

TXT 223 1.80 2 0.00

CTR 597 4.81 18,032 0.58

BAS 227 1.83 12,167 0.39

Total 12,422 100 3,085,269 100

Table 4.4.3: Statistics of automatic annotation on AAC as performed by the AZPrime
classifier, compared to the original manual annotation of the training corpus.

4.4.2 Core Scientific Concepts

The Sapienta classifier4 was especially developed for CoreSC annotation of biomedical

papers. It uses an SVM classifier that employs the features presented in Table 4.2.4.

Evaluated using 9-fold cross-validation on the ART corpus (Liakata et al., 2010), it

achieves a per-class precision of 51.6%, broken down by class in Table 4.4.4. The

confusion matrix is presented in Table 4.4.5. Its performance has recently been in-

dependently tested on a different corpus from the originally annotated corpus used to

train it. It yielded 51.9% accuracy over all eleven classes, improving on the 50.4%

9-fold cross-validation accuracy over its training corpus (Ravenscroft et al., 2016).

4http://www.sapientaproject.com
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Table 4.4.4: Sapienta (CoreSC) classifier per-class precision, recall and F1 scores.

Table 4.4.5: Sapienta (CoreSC) classifier confusion matrix

Manual annotation % Automatic annotation %

Hyp 780 1.95 1,774,662 1.36

Mot 541 1.36 376,927 0.29

Bac 7,606 19.06 58,059,805 44.56

Goa 582 1.46 1,652,837 1.27

Obj 1,161 2.91 1,093,018 0.84

Met 4,281 10.73 18,282,904 14.03

Exp 3,858 9.67 14,546,557 11.16

Mod 3,656 9.16 9,967,284 7.65

Obs 5,410 13.55 6,507,400 4.99

Res 8,404 21.05 11,952,711 9.17

Con 3,636 9.11 6,074,544 4.66

Total 39,915 100 130,288,649 100

Table 4.4.6: Statistics of automatic annotation on PMC as performed by the Sapienta
classifier, compared to the original manual annotation of the training corpus.

Annotating the AAC corpus (around 22k documents) is not too computationally de-

manding and can be achieved using AZPrime on a single machine in under a day. How-

ever, applying the Sapienta annotator to every document in the PMC corpus (over one
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million papers) was a very resource-intensive and time consuming endeavour which

was only achieved in collaboration with several other researchers. This annotated cor-

pus is as yet unpublished but has already been provided to other researchers who re-

quested it.

4.5 Summary

This chapter has provided a review of sentence-based scientific discourse annotation

schemes, and has presented in depth the two of them that we apply in our research:

Argumentative Zoning and Core Scientific Concepts. We have also presented the ex-

isting work on training automated classifiers for annotating a scientific document with

AZ and CoreSC, including the features and classifiers employed and statistics on cor-

pus annotation. We present the trained classifiers we will be using to annotate our

corpora and their and their accuracy. The current error rate of these automatic annot-

ators might raise the question of whether enough signal can be found in the noise, and

so whether we can indeed apply them to our CCR task. We investigate this in the

next chapter, where we look for consistent citing patterns between different types of

sentences in each domain.





Chapter 5

Applying Discourse Annotation

Schemes to citation recommendation

“A vital ingredient of success is not knowing that what

you’re attempting can’t be done."

Terry Pratchett

5.1 Introduction

Document structure and markup is often exploited at indexing time in IR scenarios,

even when the document is only semi-structured (Kruschwitz, 2005). Sometimes In-

formation Extraction techniques have been applied to this (Soderland, 1999), in the

hope that indexing information at a higher level of granularity can lead to higher rel-

evance. Other NLP techniques have also commonly found application in this domain,

such as word sense disambiguation, part-of-speech tagging, stemming and lemmatisa-

tion (Lewis and Spärck Jones, 1996).

We can take this one step further. It has sometimes been suggested that scientific

discourse annotation schemes such as Argumentative Zoning (AZ) and Core Scientific

Concepts (CoreSC) could be applied to Information Retrieval as a way of automat-

ically segmenting the document into semantically meaningful classes. Indeed, some

experimental academic retrieval tools have tried applying them to different modes of

document retrieval.

For example, Schäfer and Kasterka (2010) built a tool that enables graphical nav-

igation through the citation graph of a small subset of the ACL Anthology, and each

citation link is automatically classified according to a custom scheme that aims to

97
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capture its function to the paper. Ravenscroft et al. (2013) built another relevant ex-

perimental retrieval tool that enables to restrict the keyword search to specific types

of sentences as automatically classified using CoreSC, which we also employ in our

research and we present in depth below. Angrosh et al. (2013) defined another clas-

sification scheme for both sentences in an academic paper and types of citations, and

applied this to building an experimental Semantic Web service to provide both search

and browsing capabilities. A notable feature is a visualisation of all sentences citing

a given paper presented on a timeline. We are interested in exploring the potential of

more deeply integrating tools like these to provide citation recommendation as part of

the writing process.

These schemes have already been experimentally applied as an adjunct to other

text processing tasks, particularly in the domain of biomedical text mining; for docu-

ment summarisation (see Contractor et al. (2012); Teufel and Moens (2002)), and for

information extraction (see Mizuta et al. (2006)).

As part of this research we explore the potential application of these schemes to

a deeper integration with the writing process. Our aim is to make automatic citation

recommendation as relevant as possible to the author’s needs and to ultimately integ-

rate it into the authoring workflow. Automatically recommending contextually relevant

academic literature can help the author identify relevant previous work and find con-

trasting methods and results.

Following the framework developed in previous chapters, we aim to recommend

a citation for each citation placeholder: a special token inserted in the text of a draft

paper where the citation should appear, which in our case is simply an anonymised

existing citation.

The citing sentence is the sentence in which the prospective citation appears. It

determines the function of this citation and therefore provides information that can be

exploited to increase the relevance of the suggested citations. We use the class of the

citing sentence as the citation type which in turn is the same as the query type.

In this chapter we explore whether the semantic categorisations developed by AZ

and CoreSC can help us discover useful correlations between types of citing sentences

and types of cited sentences in our corpora. We will investigate this both for document

text and for the incoming link contexts, that is, the text surrounding all citations to a

document. Our results show that given types of citing sentences consistently cite given

types of sentences, which suggests scientific discourse annotation schemes could be

exploited for this and other tasks.
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5.2 Methodology

Figure 5.2.1: The intuition behind this approach. From the given citing context , we extract the
keywords that will form the query . We treat the citing sentence class (as automatically labelled)
as the class of citation: for each citation, we search for these keywords in different classes of
sentences. In practice, this is implementing as applying different learned weights to different
fields of the indexed document, having indexed all sentences of a single type into one field. In
this example, we can see that for the citing sentence class Background, we obtain a query that
searches for all keywords in sentences of classes Background, Model, Method (pictured) and
Conclusion, but not in Hypothesis or Goal.

Given that we can classify each sentence according to its type according to AZ

and CoreSC, we aim to find whether for each type of sentence, and so, for each type of

citation, we can find a set of weights, one for each type of sentence in the documents to

recommend, that will be consistent for the collection and will maximise the evaluation

score.

We proceed as follows:

1. First, we automatically label the sentences in each document in our collection

using a pre-trained CoreSC classifier for PMC and an AZ one for AAC. As

we motivated in Chapter 4, each annotation scheme was developed for a given

scientific domain, and we apply each to the corpus that is most in-domain.

2. We then index these documents: for each document in the Lucene index we

create a separate indexing field for each class of sentence. We index all sentences

of the same class into the same field for each document. That is, we index a bag-

of-words for each class (Hypothesis, Background, Method, etc.), which contains
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all the words from all the sentences of that class present inside the document (in

the case of internal methods).

3. We extract the query from the context of a resolvable citation. We label the

insertion context with a rhetorically-motivated class that encodes the citation

function. In our implementation, this is just the class of the sentence as classified

in the previous step, so a citation’s type is the CoreSC/AZ class of the sentence

containing it. See Figure 5.2.2 for an illustration of this.

4. We test different weights for each citation type/query type (as labelled in step

3) and compare the results with the baseline of using all weights equally set

to 1. The evaluation method is described below. We evaluate by performing

K-fold cross-validation and comparing the results over all fold combinations.

What we expect to find is not only improvement on average in the scores for a

particular citation type over the baseline, but consistency across folds in weights

and obtained improvement.

Figure 5.2.2: Illustration of a query being extracted for the context of a resolvable citation in
the PMC corpus.

Our hypothesis is that the relevance of suggested citations can be increased by applying

a set of automatically-trained per-field weights to the similarity function, which depend

on the class of the citing sentence, as automatically classified. That is, we attempt to

find the best combination of weights to set for each class of citing sentence, which we

treat as a proxy for the citation function. For example, we may find that for all citations

of type Method, if we gave higher weight to the content of sentences of type Method in

the documents in the collection, we would achieve a higher accuracy (see Figure 5.2.1

for an illustration).
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5.3 Experimental setup

Corpus split: These experiments employ the exact same corpus split for AAC, with a

with cut-off year of 2010 and so the same documents in the document collection

and in the test set as those found in Chapter 3. However, for PMC we use two

different indices. For testing the internal methods (Section 5.5), we build our

index in the same way as in Chapter 3. However, for testing with incoming link

contexts (Section 5.6), we use 2014 as the year for the split instead of 2013. We

observed that allowing for documents from 2014 instead of 2013 to be indexed

and limiting our queries to documents from 2015 and beyond would be helpful

with increasing the number of sentences in the inlink contexts for each document

and the variety of sentence classes in these contexts.

Set of queries: For both AAC and PMC, we select an entirely different set of resolv-

able citations from which to generate queries for these experiments. We define

severaldistinct sets of queries for each collection:

• AAC Queries A: 1,000 queries used in the Chapter 3 experiments

• PMC Queries A: 1,000 queries used in the Chapter 3 experiments

• AAC Queries B: 3,951 queries used in all Chapter 5 experiments

• PMC Queries B: 1,955 queries used in the Section 5.5 experiments

• PMC Queries C: 6,112 queries used in the Section 5.6 experiments

Resolvable citations: We want to generate sufficient numbers of queries of each type,

but as we saw in the previous chapter, the ratios of different sentence types as

automatically labelled can be very skewed. In order to maximise the number

of queries of the less prevalent types, for the Queries B and C sets we select

a larger and entirely different subset of resolvable citations to generate queries

from. Where before we sorted the test documents by the amount of collection-

internal references in descending order and generated the queries one by one,

here we extract queries until we reach 1,000 queries of each type or exhaust the

test set. While it is not feasible to obtain 1,000 citing sentences of each type, we

do make an effort to balance the classes in the set as much as possible.

Annotation: All documents in each collection are annotated using the relevant auto-

mated classifier: Sapienta for PMC and AZPrime for AAC, as presented in

Chapter 4.
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Context extraction: As a baseline approach, we extract the context of a citation using

a symmetric window of 3 sentences: 1 before the citation, the sentence contain-

ing the citation and 1 after. This is a frequently applied method (Huang et al.,

2015a; Ritchie et al., 2008) and as we saw in Chapter 3 it is roughly equivalent in

performance to the best performing ones, both for AAC (0.403 NDCG vs 0.406

for window30_30) and PMC (0.478 NDCG vs 0.479 for window30_20).

Query generation: The query is then formed of all the terms in the citation’s context,

excluding those found in a short list of stopwords1. Lucene queries take the

basic form field:term, where each combination of field and term form a unique

term in the query. We want to match the set of extracted terms to all fields in the

document, as each field represents one class of CoreSC.

We apply no stemming or lemmatisation in these experiments, as we have observed in

other preliminary experiments that this lowers the overall scores across the board. In

these experiments, we are in a sense “overfitting” by taking advantage of the lexical

priming in effect: authors of the citing document are likely to use the exact terms that

were used in the cited document, which may be infrequent in the collection, therefore

boosting the score of the cited paper. For the experiments we present in this chapter,

this in fact aligns with our objective: where this lexical priming is in effect, it will help

identify the cited sentences in the cited papers, allowing us to better find the patterns

of citation.

Similarity formula: The Lucene DefaultSimilarity formula gives a boost to a term

matching across multiple fields (see Chapter 1), which in our case would be

likely to introduce spurious results. That is, a document could receive a higher

score simply because a term appears in sentences of more classes, and this it-

self is noisy given the noisy automatic annotation. To avoid this, we employ

a type of query called DisjunctionMax, where only the top scoring field:term

match is evaluated out of a number of fields. Therefore, having one query term

for each of the classes of CoreSC for each distinct token (e.g. Bac:“method",

Goa:“method", Hyp:“method", etc.), only the one with the highest score will

be evaluated as a match. This avoids the scores being spuriously increased by a

spread of terms over types of sentences.

1~, the, and, or, not, of, to, from, by, with, a, an
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5.4 Weight training

We want to find the optimal query weight to apply to a term to be found in a document

sentence of type Y given a query of type X. Testing all possible weight combinations

is infeasible due to the combinatorial explosion, so we adopt the greedy heuristic of

trying to maximise the objective function at each step.

Our weight training algorithm can be summarised as “hill climbing with restarts".

For each fold, and for each citation type, we aim to find the best combination of weights

to set on sentence classes that will maximise our metric, in this case the NDCG score

that we compute by trying to recover the original citation. We keep the queries the

same in structure and term content and we only change the weights applied to each

field in a document to recommend. Each field, as explained above, contains only the

terms from the sentences in the document of one CoreSC/AZ class.

The weights are initialised at 1 and they move by −1, 6, and −2 in sequence2,

going through a minimum of 3 iterations. Each time a weight movement is applied, it

is only kept if the score increases. Otherwise the previous weight value is restored.

This simple algorithm is not guaranteed to find a globally optimal combination of

parameters for the very complex function we are optimising, but it is sufficient for our

current objective and its simplicity allows us to work with the huge delay in evaluating

the results every single time.

One more optimisation we include is that we do not re-run the full set of queries3

at every change of weights, as this would make this approach impossible to run in a

reasonable time on our available hardware. These are the steps of our method:

1. Run the set of queries a single time with all weights set to 1, which is our

baseline.

2. Retrieve the top K = 200 documents as usual, and for each document in this set

we then retrieve its explanation. IR engines like Lucene provide explanations of

matches between a query and a document. In the case of Lucene these are very

detailed, listing for each term matched in each field, what its score is due to.

3. Extract from the explanation the formula that the score was computed with in a

structured format, for each of the top 200 results, for each of the queries.

2These specific values were set empirically after a number of experiments.
3In our 4-fold cross-validation setup, this would be 3/4 of all queries of the given type, e.g. 750/1000

in the case of CoreSC type Bac.
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4. Search the space of weights in order to optimise the score by reordering those

200 results, separately from the retrieval engine but simulating the computations

it would perform.

Given that we are only reranking the top 200 results, this is an approximation of the real

scores. However, given that we are reranking the top 200 results for several hundred

citations at each iteration, this is sufficient for our purpose of finding weights that

consistently maximise the score.

We need to test whether our conditional weighting of text spans based on CoreSC

classification is actually reflecting some underlying truth and is not just a random effect

of the dataset. To this end, we perform K-fold cross-validation on the corpus (for

K = 4), where we learn the weights for K−1 folds and test their impact on one fold.

Our main interest in this experiment is consistency across folds.

5.5 Internal methods

As in the experiments in Chapter 3, the document collection is indexed using the Lu-

cene retrieval engine through the interface provided by elasticsearch. For each docu-

ment, we create one field for each sentence class (11 for CoreSC, 7 for AZ), and index

into each field all the words from all sentences in the document that have been labelled

with that class, as represented in Figure 5.5.1.

Figure 5.5.1: Illustration of per-class indexing of sentences in the full text of documents
in the document collection.
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5.5.1 CoresSC and PMC

First we run each query assigning a default weight of 1 to each field that represents

one type of sentence in the target document, and the score we obtain is our baseline.

We can immediately see that these scores (Table 5.5.1) are much lower than those we

obtained with our project-wide baseline in Chapter 3 (0.42 NDCG for full_text and

sentence_1up_1down, which match the current setup), where all document text was

indexed as a single bag-of-words. This shows that we are not taking full advantage of

the weighting scheme when indexing by sentence class.

However, in these experiments we do not aim to improve on the overall scores

obtained in Chapter 3, but rather to discover whether there are relationships to find

between types of citing sentences and types of cited sentences. We believe that if

we find consistent connections between these, we can then exploit this knowledge to

increase the relevance of recommendations as reflected in the evaluation scores.

Query type # queries Avg NDCG Avg top-1 accuracy

Bac 700 0.232 0.113

Con 133 0.248 0.159

Exp 16 0.308 0.188

Goa 44 0.130 0.068

Hyp 31 0.290 0.188

Met 602 0.207 0.100

Mod 161 0.308 0.174

Mot 8 0.000 0.000

Obj 65 0.065 0.031

Obs 17 0.410 0.213

Res 178 0.239 0.107

Table 5.5.1: Baseline scores for CoreSC/PMC queries.

Figure 5.5.2 shows the results of evaluating with 4-fold cross-validation by cita-

tion type, ordered by number of folds improved and standard deviation. The citation

type is the CoreSC class of the sentence containing the citation. We can see that 6 out

of 11 types of citation exhibit improvement across all folds, and there is a relation-

ship between the standard deviation of the improvement in scores and the number of

citations of that type.

Figure 5.5.3 expands on this and shows the best weight values that were found for

each fold, for all 6 citation types for which there was improvement on all folds. On the

right-hand side are the scores obtained after testing and the percentage increase over

the baseline, in which all weights are set to 1.
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Figure 5.5.2: Results of evaluating with 4-fold cross-validation by citation type, ordered by
number of folds showing improvement and by standard deviation. The citation type is the Cor-
eSC class of the sentence containing the citation. In bold, citation types for which there was
improvement across all folds. Percentile improvement is the average across the 4 folds.

Figure 5.5.3: Weight values for the citation types that improved across all folds. The weight
values for the 4 folds are shown, together with test scores and improvement over the baseline.
The weight cells are shaded according to their value, darker is higher. In bold, citation types
that consistently improve across folds. On the right-hand side are the scores obtained through
testing and the percentage increase over the baseline, in which all weights were set to 1. *NDCG
and Accuracy (top-1) are averaged scores over all citations in the test set for that fold.
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As is to be expected, the citations are skewed in numbers towards some CoreSC

classes. A majority of citations occur within sentences that were automatically labelled

Background and Methodology, no doubt due to a pattern in the layout of the content

of articles. This yields many more Background and Methodology citations to evaluate

on, and for this reason we set a hard limit to the number of citations per zone to 700 in

these experiments.

While these are initial results, a number of patterns are immediately evident. For

all citation functions, it seems to be universally useful to know that the candidate doc-

ument matches the query term in sentences from its Background sentences or Method

sentences. It is also possible that this is partly an effect of there being more sentences

of type Background and Method in a candidate paper.

Similarly, it seems it is better to ignore other classes of sentences in candidate

papers, such as Motivation and Observation. An important thing to remind ourselves

here is that when a weight combination was found where the best weight for a CoreSC

class is 0, it does not mean that including information from this zone is not useful but

rather that it is in fact detrimental, as eliminating it actually increased the NDCG score.

Interestingly, for citations of type Result, only Background, Result and, to a lesser

degree Observations sentences in candidate documents seem to contain useful inform-

ation. This is not surprising, and it allows for easy interpretation: when reporting

results, these are often compared with previous results reported in other papers.

The degree of consistency varies across citation types. For Background, Contrast,

Goal, Methodology, Object and Result, improvements are found at each fold and it

seems that some consistency can be found in the trained weights. These are also types

with a larger number of citations available. Experiment, Hypothesis, Model and Ob-

servation are the ones that are inconsistent in improvement: for some folds, the trained

weights actually decrease the score, which suggests that no clear pattern is to be found.

These are generally classes with fewer citations available, which could go some way

towards explaining this. However, the exception here is Model, which, in spite of

a important number of citations (161), still exhibits inconsistency, with the first fold

decreasing in score.

It is important to note that our evaluation pipeline necessarily consists of many

steps, and encounters issues with XML conversion, matching of citations with ref-

erences, matching of references in papers to references in the collection, etc., where

each step in the pipeline introduces a degree of error that we have not estimated here.

Perhaps the single most significant one is that of the automatic sentence classifier.
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Query type # queries Avg NDCG Avg Precision

Bac 700 0.232 0.113

Con 133 0.248 0.159

Exp 16 0.308 0.188

Goa 44 0.130 0.068

Hyp 31 0.290 0.188

Met 602 0.207 0.100

Mod 161 0.308 0.174

Mot 8 0.000 0.000

Obj 65 0.065 0.031

Obs 17 0.410 0.213

Res 178 0.239 0.107

Table 5.5.2: Baseline scores for AZ/AAC queries.

We judge that the consistency of correlations we find confirms that what we can

see in Figure 5.5.3 is not due to random noise, but rather hints at underlying patterns

in the connections between scientific articles in the corpus. This also seems to confirm

our assumption that the CoreSC class of the sentence that a citation appears in can be

used as a proxy for the function of this citation.

5.5.2 Argumentative Zoning and AAC

For AAC and AZ, it is only the queries of type AIM that do not show consistent im-

provement. For all the other types, the results are presented below in Figure 5.5.4.

From these results it can be seen that sufficient consistency can be found in the zones

for which higher weights lead to higher scores, in the same way as for CoreSC-

annotated documents in the previous section. Some noteworthy observations are:

• Sentences of type OWN are universally found to be useful, and in fact consist-

ently converge on very high weights. This is unsurprising given that, as we

saw in Chapter 4, 87.69% of all sentences in AAC are classified as OWN, which

partly goes to explain the huge mass of weight that ends up assigned to sentences

of that type.

• However, representing a much lower ratio of AAC sentences, 6.35% for BKG

and 3.71% for OTH, these two zones receive much of the weight mass across

all zones. We can see the weights going to these zones being sonsistent enough

across query types. Sentences of type AIM are also notable for converging on

consistent weights for all folds of queries of type OTH.
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Figure 5.5.4: Results for AZ-annotated document contents

5.6 External methods

In the previous section we have seen experiments where we tried to find consistent per-

sentence-class weights for the different sentence types in an in-collection document so

as to maximise the retrieval accuracy score given the type of citing sentence. These

weights are applied to the different fields of a document, which are populated with

internal methods, and so with the contents of the paper itself.

Now we can take this one step further and investigate whether we can find simil-

arly consistent weights that apply to the class of sentence found in the incoming link

contexts of citations to a document. Figure 5.6.1 illustrates this approach.

In practical terms, this means that instead of indexing all of these sentences into

a single field as a single bag-of-words, or combine them with the full_text, we index

them by type into a different field for each type, as illustrated in Figure 5.6.2.

5.6.1 Core Scientific Concepts and PMC

Similarly clear yet different patterns are visible for CoreSC-annotated Incoming Link

Contexts below. We show the 7 classes for which we find consistent improvement out

of 11.
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Figure 5.6.1: A high-level illustration of the approach. The citation type, and in turn the
query type determines the set of weights to apply to the classes of sentences in the
anchor paragraphs of links to documents in the collection. In this example, for Bac, only
3 classes have non-zero weights: Bac, Met and Res. The extracts from 3 different citing
papers, exemplify terms matching in different classes of sentences.

Figure 5.6.3: Results for CoreSC-annotated Incoming-Link Contexts

When compared side-by-side in a Sankey diagram, we can more clearly see both
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Figure 5.6.2: Illustration of per-class indexing of sentences in incoming link contexts.

similarities and differences in the best average weights found for internal and external

methods.

Figure 5.6.4: Sankey representation of the best average weights found during weight
training for PMC.

We can examine some of these patterns in detail. First, we can see that Background

would appear to be very widely cited. This is also the most common type of label

assigned by the classifier, so we do not expect to learn much from these results. The

interesting contrast we do see is the lack of consistent weights found for document text
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for sentences of type Hypothesis. When citing while presenting a research hypothesis,

it seems sentences of type Background are not cited often enough.

Figure 5.6.5: Sankey representation: best average weights for target sentences of type
Background.

A more interesting case are sentences of type Model. These are cited by papers

from sentences of type Background, Conclusion and Method. What is remarkable

is that when formulating a research Hypothesis, we find a good match for this text

in sentences of type Model that appear in incoming link contexts to the document we

seek. So, another document cites this one and discusses a Model in the same paragraph

that cites it.

Figure 5.6.6: Sankey representation: best average weights for target sentences of type
Model.

Another interesting pattern emerges for sentences of type Conclusion. A paper’s
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Conclusion is cited in sentences that discuss Background or present the Conclusions of

the citing paper. However, we also find good matches for sentences of type Conclusion

in the vicinity of a citation fo a paper when our citing sentence type (query type) is

Goal, Hypothesis, Methodology or Result.

Figure 5.6.7: Sankey representation: best average weights for target sentences of type
Conclusion.

Finally, we can see a similar pattern emerge for sentences of type Result, where

Bacground, Methodology, Object and Result consistently cite sentences of type Result

in the cited documents and also those of type Result in the anchor text of citations to

these documents.

Figure 5.6.8: Sankey representation: best average weights for target sentences of type
Result.
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5.6.2 Argumentative Zoning and AAC

In comparison with the CoreSC-based results on PMC, we see in Figure 5.6.9 that

the results for AZ are much more skewed, with OWN taking the vast majority of the

weight assigned.

However, some results are still noteworthy. One is the consistency in finding that

zones of type OTH are useful for citations in zones of type BKG. Another one is how

apparently important the very few sentences of type AIM can be for citations found in

CTR zones. Also, it is noteworthy that as compared to the contents of the document,

the sentences around citations to it of type BKG are not as important, and only seem

to add something when the citation itself is in a zone of type BKG.

Figure 5.6.9: Results for AZ-annotated Incoming Link Contexts

5.7 Testing the trained weights

What remains now is to test the weights we found with the queries used in the ex-

periments in Chapter 3 and observe if this leads to an improvement in scores. In the

previous sections we have found notable consitency in the sets of weights that max-

imise the evaluation scores in 4-fold cross-validation. We have presented before the

hypothesis that these weights can be exploited to improve on our task, so our aim here
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is now not to find the most efficient way to take advantage of these findings, but to

explore whether:

1. these findings can indeed be exploited to increase the relevance of recommend-

ations.

2. these findings transfer to completely unseen queries in the same domain.

First we must select, for each corpus, for each query type and for each document rep-

resentation method (internal and external), a single set of weights from those found

across folds. Given the notable amount of noise introduced by the automatic classific-

ation, we decide to allow for some small variation when selecting the final weights:

• All folds must yield some improvement. If any of the 4 folds leads to a decrease

in scores, we discard all weights found for that query type and revert to using a

weight of 1 for every field.

• If 3 out of 4 folds find consistent weights and the variation in standard deviation

is small, we conclude that the weights we have found are sufficiently consistent

and select the weight of the folds which agree.

• If 2 out of 4 folds agree, or two pairings of 2 folds, we take the average.

These criteria lead us to select the final set of weights we will test, which we list in full

in Appendix B. We call these sets of weights trained weights (TW).

We run the Queries A sets for AAC and PMC using these weights, and we find that

they notably underperform versus the baseline. Carefully tuning the query, we are able

to improve very slightly on AAC, but not consequentially and not worth reporting. For

PMC we never manage to even approach the baseline. In conclusion, although we find

enough consistency in the results of our experiments, we are unable to find a way to

use this for our original aim of improving recomendations for CCR.

5.8 Conclusion

As we have seen, we were able to find consistent weights across folds to apply to dif-

ferent sentence types for several types of queries (type of citing sentences), for both

corpora examined. This confirms our hypothesis that consistent relations exist between



116 Chapter 5. Applying Discourse Annotation Schemes to citation recommendation

types of citing sentences and cited sentences, which holds true for both AZ and Cor-

eSC. This also confirms that explicitly modelling the semantics of scientific discourse

is a worthwhile endeavour.

We have not found a way of exploiting these findings to improve on the scores in

our evaluation task, which was our original aim, but we see clear applications of these

patterns in analysing the spread of scientific knowledge and so in automated ways of

measuring the impact of publications.

Beyond this, the future research question remains of how adequate for our needs

any of these schemes may be. Perhaps a purpose-designed one would yield better

results. Ideally we would want to capture these semantics in a more flexible, softer way,

and at the same time learn the semantics from the corpus with less manual annotation

required, as this approach is both expensive and brittle. We discuss this in our Future

Work section in Chapter 7.

In the next chapter we change track and we take a closer look at the extraction of

the contexts of citations we are evaluating against and investigate fine-grained query

extraction and weighting.



Chapter 6

Query generation using keyword

boosting

“Artificial Intelligence is a collection of brittle hacks

that, under very specific circumstances, mimic the

surface appearance of intelligence."

David Mimno

6.1 Introduction

In Chapter 2 we discussed a variety of approaches to CCR when framed as an in-

formation retrieval task, together with the key conceptual dimensions which appear

to underlie this variation, which we proposed as aspects to our research. The main

dimensions we identified were:

• Indexing / document representation: how do we build the index of documents

from which to retrieve our recommendations? What parts of the original papers,

if any, should be included, and what other text?

• Query extraction: what exactly do we mean by the first “C” in CCR, i.e. what

is the “context”, and how do we generate a suitable query from it?

• Similarity: what algorithms or functions do we employ to provide the similarity

metric between the query and each potential document to recommend?

A review of the relevant literature (Section 2.10) suggests that of these, the aspects that

seem to have received the least attention are context extraction and query generation, or

117
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more succinctly, transforming the extracted text into a suitable query. It has often been

assumed that a symmetric window over either words or sentences around the citation

token should contain all the necessary keywords for retrieving the most relevant papers.

However, as we saw in Chapter 3, different types and sizes of windows noticeably

affect performance. Further, the generation of the query from this context has been

limited to either selecting keywords using simple heuristics or thresholding on tf-idf (or

a similar metric). Alternatively query generation has been combined with the similarity

metric by using a fully neural-based approach.

The methodology presented in Chapter 5 maintained the approach of extracting

symmetric windows of sentences in order to compare to the baseline approaches, but in

this chapter we move on to explore whether a more fine-grained approach could yield

better results. Specifically, we examine different methods for selecting the keywords

that should be included in the query and for determining their relative weights, in order

to maximise the relevance of recommendations. We also revisit our approach to query

generation for evaluation and investigate what queries would maximise our evaluation

score, and then examine supervised machine learning approaches for query extraction.

We can break down our hypothesis H4 we defined in Chapter 1 into these sub-

hypotheses:

• H4-1: We can increase the evaluation score of a query by selecting a subset of

the available keywords from an insertion context and assigning a specific weight

to each of them.

• H4-2: A supervised machine learning algorithm can learn the right selection and

weighting of terms using linguistic and morphological features in the citation’s

immediate context. These features include Part-Of-Speech tags and depend-

ency arcs, as well as the type of sentence according to the discourse annotation

schemes we explored in Chapters 4 and 5.

• H4-3: The annotated data for training this algorithm can be automatically gen-

erated, using our existing implicitly annotated data and the indexed document

collections.

In the following, we set out to test each of these.
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6.2 Related work: reference scope resolution

There is a sizeable body of relevant work that deals with automatically determining

which spans of text in a citing document contain information about a given cited doc-

ument. This has received various names, among which reference scope resolution and

citation context identification.

One example of this is Qazvinian and Radev (2010), who aimed to identify sen-

tences in the proximity of a citation that contain information about a specific secondary

source but do not explicitly cite it. They refer to these non-explicit citing sentences as

context sentences, which we adopt for this short review1. They manually annotated

a corpus of 203 citations with sentences relevant to each citation within a 4-sentence

window (2 up, 2 down). Three features inform their approach: 1. whether the sen-

tence is an explicit citing sentence, 2. whether it contains a number of hand-defined

bigrams (e.g. “this work”, “their approach”) and 3. the lexical similarity between the

sentence and the target document. They use a Markov Random Field, which in their

experiments outperforms a discourse-based baseline, a similarity-based baseline and

an SVM. Jha et al. (2017) would later employ the exact same approach to identifying

context sentences, but their application is in the field of scientometrics.

Our task is very different from theirs: they either aim to measure the impact of a

publication or to extract extra background information about a paper. In either case, the

citation is already provided and the task is only to determine which spans of text in the

citing document are relevant to the cited one. This allows them to derive features for

classification that are based on the similarity between the citing paper and cited paper,

which is conceptually similar to the automatic annotation we carry out in Section 6.6

but very different from the posterior extraction of keywords and assignment of weights.

Kaplan et al. (2009) had previously presented an approach to identifying these

context sentences based on following chains of coreference in the text. They manually

annotated a small corpus (50 citations) with sentences relevant to each citation and

trained a coreference resolver using an SVM classifier, for which the task is to determ-

ine whether a given anaphor matches a candidate antecedent. They employ features

such as agreement in number and gender, and features of the anaphor: whether it is a

pronoun, indefinite or demonstrative, etc. Kim and Webber (2006) carried out a similar

study where they examined the coreference of the pronoun they in astronomy papers

and also annotated a small corpus and also trained a supervised classifier.

1Note that this differs from the meaning of context and context sentence outside of this section.
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Abu-Jbara and Radev (2011) also implemented a supervised machine learning

method for reference scope identification, but their aim is multi document summar-

isation. Conceptually, their approach is much closer to our own experiments, as they

use an SVM supervised model that uses as features:

• the similarity of a sentence to the target paper using tf-idf-weighted cosine dis-

tance

• the type of section the sentence is in (out of 10 canonical section headlines)

• the relative position of the sentence in the section and in the paragraph

• whether first person pronouns appear

• tense of the first verb

• relative position of the first determiner present in the sentence (this, that, those,

etc.)

In work partially inspired by this, Athar and Teufel (2012) undertake the manual an-

notation of a corpus consisting of 20 ACL papers and over 1,700 citation contexts to

these papers and train an SVM classifier to detect context sentences using a variety of

binary features. These are based on the sentence containing, for example: the name of

the primary author; the date of publication; an acronym that is also used in an explicit

citation; a determiner followed by a work noun (e.g. “this technique”); a third person

pronoun in initial position (e.g. “they”, “their”); a different citation than the one under

review, etc. This approach yields a best micro-averaged F-score of 0.89 when using a

window of 4 sentences up, 4 down, showing once again (as we saw in Chapter 4) the

importance of these domain-specific manually defined patterns.

While of conceptual relevance to our own work, identifying the context of an ex-

isting citation differs significantly from our CCR task. First, these approaches rely

heavily on the coherence and cohesion of text, as well as specific patterns of scientific

text. This assumes that the text was woven around the citation, which is necessar-

ily true in existing publications, but is an unreasonable assumption in a real-life CCR

application. Second, keywords that will allow us to retrieve a given paper do not ne-

cessarily need to be in sentences that clearly refer to that one citation, which leads us

to investigate keyword extraction, which we will explore later in this chapter.

However, before we look at keyword extraction, we take advantage of their an-

notation efforts in this area for our own experiments below. Before delving into fully
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testing H1 above for our task, we first carry out an experiment where we evaluate ref-

erence scope resolution as presented above in order to gauge the potential gains from

reducing the context window from which the query should be extracted.

6.3 The relevance of sentences in a citation’s context

As discussed in Chapter 3, previous approaches to context extraction fall into two

main groups: windowing approaches and sentence selection approaches. Windowing

approaches use either a window of tokens, where the context is considered to be n

tokens before the citation token and n tokens after it, or a window of sentences, where

the citing sentence is included, plus n sentences before and/or after it.

As we presented in Chapter 2, these have been common approaches: He et al.

(2010) used a symmetric window of words (50 before, 50 after) as did Liu et al. (2014)

(300 before, 300 after). He et al. (2012) used passages (splitting the article into half-

overlapping fixed-size windows of words). Huang et al. (2015a) used a window of

sentences: citing sentence + 1 before + 1 after.

It is unsurprising that always using a fixed window size and not dealing with lin-

guistic structure will add noise to the query, leading to false positives and false negat-

ives in the extracted keywords. Instead of dealing with this noise exclusively by using

weighting schemes based on topic modelling or word embeddings (e.g. Huang et al.

(2015a)), we propose that those approaches could also benefit from an extra processing

step in the pipeline where the potential keywords in the context are explicitly selected

or weighted for their relevance. This follows the suggestion of Ritchie et al. (2006b)

that NLP methods would be superior for selecting terms to index from a citation’s con-

text as “the amount of text that refers to a citation can vary greatly, multiple citations

in close proximity can interact with each other and affect ’ownership’ of surrounding

terms”.

6.3.1 Manual annotation

As first step in this direction we evaluate using a human oracle, namely the corpus of

Athar and Teufel (2012) to select sentences that contain text from the context of a cita-

tion that is relevant to the cited document. In this corpus, 20 papers were selected from

the ACL Anthology, and 1,741 citation contexts to these papers were manually annot-

ated by a single annotator. Within a window of 4 sentences before the citing sentences
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and 4 after (4 up, 4 down), each sentence receives two annotations: a) whether it is

relevant to the citation and b) its sentiment. The sentiment can be one of: p - positive,

n - negative and o - objective/neutral. A visual representation of these different context

extraction methods is presented in Figure 6.3.1.

Figure 6.3.1: A visualisation of corpus annotation. In red, the human oracle: the sen-
tences the annotator chose as relevant to the citation. In green, a window over sen-
tences (2 up, 2 down) and in blue a window over tokens (30 up, 30 down).

6.3.2 Experiments and results

In what follows, we report the results as originally published in Duma et al. (2016c).

We only index the full text of the document (i.e. only use one internal method) and the

following methods for extracting a citation’s context are compared:

• window: a window of n tokens, the same number before and after the citation

token.

• sentence: a window of sentences.

– 1only: only the citing sentence.

– [n]up [m]down: n sentences before (up) and m after the citing sentence

(down). This window always includes the citing sentence.

– paragraph: the full paragraph where the citation appears.

• annotated sentence: sentences that were human-annotated as being relevant to

the citation. Each sentence was annotated with its sentiment polarity: (p)ositive,

(n)egative or (o)bjective. For example, as labeled below, annotated_sentence_po

is the set of sentences selected by the annotator as relevant that had (p)ositive or

(o)bjective polarity, excluding the ones that were labeled as (n)egative.
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Figure 6.3.2: Experiment results. Manually selecting sentences within a 5-sentence
context is superior to symmetric methods, irrespective of sentiment annotation. In red,
the human oracle. In green, window of sentence methods. In blue, window over tokens
methods.

The results are shown in Figure 6.3.2. They indicate that forming the context out

of sentences that were manually annotated to be relevant to the citation leads to gen-

erating superior queries than using any symmetric method. Interestingly, selecting

sentences based on their annotated sentiment polarity produces worse results, leading

us to deduce that sentiment classification, at least as present in this corpus, is not a

useful feature for this task.

In related work, Kang and Kim (2012) manually annotated a corpus of 56 research

articles with “citation units”, which according to their definition can be of five types:

phrase, clause, sentence, multi-sentence, and “other” (which refers to figures, tables

or other non-textual content). While they did not attempt any automated methods to

identify these spans, their analysis of the annotated data is informative: a vast majority

of annotated citation units are sentences (about 75%) and 5.2% are multi-sentence,

but “phrases” account for 10.6% and “clauses” for 7.8%. This suggests that there are

potential gains in investigating sub-sentence resolution of text spans. Our results in this

preliminary exploration, together with those from Chapter 3, encourage us to explore

this further.



124 Chapter 6. Query generation using keyword boosting

6.4 Related work: keyphrase extraction

Perhaps the area of research most conceptually relevant to our task is keyphrase ex-

traction. In a publication that is foundational to the field, (Turney, 1999) describes

this as "the automatic selection of important and topical phrases from the body of a

document". In essence, approaches to keyphrase extraction have largely focussed on

extracting keywords that describe the topics that a document deals with (Hasan and

Ng, 2014). Some examples of keyphrases would be “machine learning” or “statistical

machine translation”.

Many of the most popular approaches to keyphrase extraction are unsupervised,

of which perhaps the best known is TextRank (Mihalcea and Tarau, 2004). TextRank

builds a graph of the document based on co-occurences of words within a sliding win-

dow, and applies some filtering based on POS tags. The potential keyphrases are then

ranked using an algorithm derived from PageRank (Page et al., 1999). While we do

not follow the approach of TextRank and instead opt for a supervised approach, we

do employ it as part of our examination of the contribution of phrases to the query in

Section 6.7.

It is however the fully supervised approaches that we take inspiration from. Prime

early examples of this are GenEx (Turney, 1999) and KEA (Frank et al., 1999). These

systems use two features that can be classified as statistical features (Hasan and Ng,

2014): tf-idf and the normalised position of first occurrence from the beginning of

the document. Later approaches have used structural features such as whether the

phrase appears in the title or abstract of a scientific publication. Nguyen and Kan

(2007) explore this, as well as syntactic and morphological features: sequences of POS

tags and sequences of suffixes. Using domain-specific knowledge, they also employ

heuristics for labelling words as acronyms.

While our task is different, we draw inspiration from these previous approaches

and adapt these previously used features to our supervised prediction task. These early

approaches typically operate in two stages. The first stage collects keyphrase candid-

ates, typically using a number of heuristic filters such as POS tags, NP chunks, n-grams

(Hulth, 2003) or morphological characteristics of the words themselves, such as suf-

fixes or labelling whether the word is an acronym using domain-specific heuristics.

The second stage treats the task as binary classification: given a candidate keyphrase,

should it be extracted? We discuss the potential formulation of our task as classification

or regression in Sections 6.6 and 6.10.
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Some approaches have used information external to the document collection, such

as the frequency of a phrase as a link on Wikipedia (Medelyan et al., 2009). Simil-

arly, KEA uses the frequency of a keyphrase being manually tagged by authors as a

feature, but we have no equivalent human annotation to draw on. We believe using

these external sources of annotation would be highly applicable to our task, but in the

experiments reported here we avoid using any external resources.

A more general case to keyphrase extraction would be keyphrase generation, where

the keyphrases assigned to a given document do not need to appear in it (Turney, 1999).

This can be seen as a more ideal formulation for our task, which would help bridge the

lexical gap between citation context and cited document. While we do not tackle this

here, future work on CCR might benefit from this more general formulation.

The machine learning methods employed over the years for keyword extraction

have varied, including naïve Bayes (KEA), decision trees (GenEx), maximum entropy

(Kim and Kan, 2009), multi-layer perceptrons and support vector machines (Lopez

and Romary, 2010). Promising recent approaches to keyphrase generation use deep

neural networks and specifically the popular sequence-to-sequence encoder-decoder

architecture (Meng et al., 2017). Recent work leads us to believe sequential neural

models are well suited to keyphrase generation, but with our experiments here we aim

to establish a baseline for keyword extraction, for which we employ more traditional

approaches and per-token regressors.

6.5 Context-based keyword extraction

We want to maximise the performance of a system using a standard keyword-based

retrieval backend by focussing on improving the extraction of the query. Here we

focus on testing our hypothesis H4-2, which we can formulate more briefly as: can

we extract a better query by using machine learning models which employ linguistic,

surface and corpus statistics features?

For this, we propose to frame query extraction as a supervised machine learning

problem. The main novelty is that we annotate the relative importance (boost) of a term

in a query based on its scoring by the retrieval backend, relative to other top scoring

documents. We then train machine learning models that use textual and linguistic fea-

tures to recover this ideal boost value. We name the two distinct steps to our approach

keyword annotation and keyword extraction.

1. Keyword annotation: In order to train and evaluate our approach, first we need
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to annotate the ground truth: given a context and a resolvable citation, we need

to annotate the optimal query, which would maximise the score for this citation

placeholder. In our approach, a query consists of keywords together with weights

for each, so we want to annotate which terms should be extracted, and what

weight each of them should receive. The optimisation objective is to maximise

the joint score of all originally cited documents for that context.

2. Keyword extraction: Once we have annotated the contexts of resolvable cita-

tions with the keywords that should be extracted and their weights, we use this

as our ground truth to train and test supervised machine learning models. We

explore and evaluate different approaches to keyword extraction.

6.6 Keyword annotation

Modern information retrieval engines like Elasticsearch provide a convenient way of

obtaining scores for how important a term is to the final similarity score of a document

and a query. This is known in IR as an explanation and provides insight into the

relevance of each query term to a given indexed document. Elasticsearch provides an

API for retrieving detailed explanations, including the successive operations that were

executed in reaching the final score for each document matching the query. We can see

an example of an explanation in Figure 6.6.1.

Figure 6.6.1: Example of an elasticsearch explanation, here rendered in plain text fol-
lowing the Lucene format, but which is delivered as a JSON-serialised version.

In this example we can see in detail all the factors that went into giving the term
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“machine” its ultimate score for a given document. We can use these explanation

scores to inform our choice of which keyphrases we should extract in order to maxim-

ise the evaluation score, and what weight score we should set for each. This weight

parameter as employed by the Lucene retrieval engine is known as the boost.

Two intuitive ways to frame the per-term annotation task are:

• keyword selection: a binary annotation task, where each term in the context is

assigned a label {True, False} which defines whether it should be extracted as

part of the query in order to maximise the evaluation score for the query

• keyword boosting: each term in the context is assigned a boost to be used in the

query

Regarding keyword selection, one option would be to select the minimal set of key-

phrases that yield the highest score in trying to resolve a citation. This, however, leads

to unintended effects due to artefacts of the corpus. That is, the resulting keyword set

can contain terms which are not in any sense important content words for the docu-

ment in question but nevertheless contribute to the maximal score. Authors are often

primed by the language used in the specific paper they cite (or that is employed in the

citation contexts to the same paper, in other articles they have read), and so the context

around the citation will often contain terms that appear in the target paper or in other

citations to it. Although we have not systematically studied this phenomenon, often

these artefacts are words or expressions with discourse functions in a specific context

(e.g. “thus” or “surprisingly”). See Figure 6.6.2 for examples.

This presents a problem for our annotation, as simply selecting the words that only

appear in the target document (in the majority situation where a single paper is cited

per context) will immediately maximise the score for that document but be of little

value in generalising the choice of those keywords.

6.6.1 Keyword selection

We have tested different annotation approaches for solving this. One of them is to

instead select a maximal set of keywords that will still maximise the joint score of all

target documents. Although an improvement, this method still suffers from artefacts.

Another potential improvement is to limit our training set to the contexts where more

than one paper is cited. This again provides an improvement but does not solve the

problem. Our solution to these issues is to focus on keyword boosting: annotating
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every matching term with its adjusted boost value. This does not in itself remove the

artefacts but it minimises their impact.

In Figure 6.6.2 below we show the keywords that are selected for extraction in bold,

with their background colour showing their relative weight (the darker the colour, the

higher the weight), for three different keyword annotation methods. We can already see

that selecting the keywords to extract leads to better performance than just removing

stopwords and setting the appropriate boost to each term. However, we are satisfied to

aim for a lower upper bound but to generate annotated data from which patterns are

easier to extract by a supervised machine learning model.

Figure 6.6.2: Example of a context with its annotated keywords to extract, for each an-
notation method, where the darker the colour, the higher the weight (white represents
boost = 0, dark purple represents boost = 1) On the right hand side, each method’s
evaluation performance, measured as the average rank at which the matched docu-
ments appear. Boost=1 is using a query where each term receives a boost score of 1,
and Adj. boost is employing the annotated adjusted boost for the query. The value of
-1 for rank represents the document did not appear within the top 200 results.

Given the differences between our evaluation task (to retrieve previously used cita-

tions in published documents) and our ultimate aim, which is to find ways of improving

contextual literature recommendation given a citation placeholder in draft document,

we need to strive to avoid these artefacts. We want to find terms that both maximise

the score of the papers originally cited in the citation token and that contain keywords
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that are not artefacts of the particular paper cited. That is, the aim is a set of keywords

with a high chance of matching other papers other than just the target documents.

When setting the boost for every term in a query, these weights are in their ef-

fect relative to the sum total. We have experimentally attested this by multiplying and

dividing, for a set of queries, all term boosts by a constant and obtaining identical eval-

uation scores. This means that scores can be normalised, which is a useful processing

step when training a classification or regression machine learning model.

6.6.2 Keyword boosting

For all experiments in this chapter, we fix our context extraction to be 1up_1down, that

is, one sentence before the sentence containing the citation, this sentence itself, and

one sentence after. For document representation, we use ilc_full_text_1_paragraph,

which means we index a bag of words formed of the full text of the document concat-

enated with the text of each paragraph in our collection that contains a citation to the

document.

Our method for annotating the boost for each term is:

1. Retrieve the explanation for each of the top 200 results for the query. Extract the

term scores from each explanation.

2. Retrieve the explanation for each of the target documents in the citation token.

3. Normalise the score of every term that matches one of the originally cited docu-

ments by dividing by the sum total of the scores of that term over all 200 docu-

ments.

We have tested a number of schemes for normalising the weights, including several tf-

idf inspired variants, and here we report results using the best performing one. We ad-

just the score of each term that matches a match document by dividing it by the one plus

the squared sum of the scores of this term for all top 200 matches. We use the formula

below to adjust the term weight for each match document. In the following definition,

boostt,m is the boost score for term t for original document m; matchscore(m, t) is the

score for term t and document m as retrieved from the IR explanation; docscore(d, t)

is the score for term t in document d which belongs to the set of top 200 retrieved

documents D.
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AAC PMC
System Boost = 1 Adjusted boost Boost = 1 Adjusted boost

Minimal keyword selector 0.904 0.873 0.583 0.552
Maximal keyword selector 0.720 0.879 0.498 0.595

All keywords 0.716 0.808 0.498 0.516

Table 6.6.1: NDCG upper bounds for each keyword annotation method.

boostt,m =
matchscore(m, t)

1+ (∑
d∈D

docscore(d, t))2 (6.6.1)

This approach gives us an approximation of the boost to assign to each term that

matches between the query and the target documents in order to maximise the eval-

uation score of the query. When applying this method to adjusting the boost scores

and annotating our testing contexts with it, the upper bound for evaluation (making the

query of all annotated terms with their corresponding boost) is shown in Table 6.6.1.

For AAC, it is clear that selecting the minimal set of keywords that maximise the

match documents’ score and setting their weight simply to 1 is the highest perform-

ing method. However, this method yields the fewest training examples, which in our

experiments were not sufficient to train an extractor with good performance, so as we

said in the previous section, we choose to annotate all matching terms for the context

as terms to extract and to adjust their boost scores using this normalisation approach.

The results for PMC paint a slightly different picture: if the weight is kept constant,

then the minimal set selector is superior, but when using the boost scores, selecting the

maximal set of keywords still obtains a higher score.

6.7 Keywords or keyphrases?

As we saw earlier, approaches to keyphrase extraction share these two characteristics:

they focus on extracting keyphrases rather than keywords, and they deal with extracting

these that are relevant to the document as a whole rather than a specific passage inside

it.

However, so far we have represented both a citation’s context and a document as

bags-of-words, and as a result, we have only considered individual keywords rather

than keyphrases. Are we losing accuracy in retrieval by ignoring phrases? To find out,

we first need to define a way of identifying and extracting keyphrases in our evaluation
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Method Keyphrases

1. TextRank

(’aforementioned model’, 0.0282), (’standard bag-of-words base model’,
0.0282), (’latent concept retrieval model’, 0.0282), (’latent concept

model base’, 0.0282), (’mixed model’, 0.0282), (’dual-space semantic
model’, 0.0282), (’dual space model’, 0.0282), (’esa model’, 0.0282),

(’bag-of-words model’, 0.0282), (’model’, 0.0282), (’dual-space
re-ranking model’, 0.0282), (’mixture model lda’, 0.0282), (’mixture

model’, 0.0282) [...]

2. Frequency

(’latent model’, 19), (’explicit model’, 16), (’dual-space model’, 11),
(’initial ranker’, 10), (’semantic space’, 8), (’information retrieval’, 6),
(’test collections’, 6), (’space model’, 6), (’statistically significant’, 6),

(’multinomial distribution’, 5), (’explicit semantic’, 5), (’external
knowledge’, 5), (’initial retrieval’, 5), (’mixed model’, 5), (’document

retrieval’, 5), (’vector space’, 4), (’latent concept’, 4), (’latent semantic’,
4) [...]

3. Intersection

[...] (’vector space model’), (’cosine similarity’), (’re-ranking setting’),
(’latent semantic indexing’), (’explicit semantic analysis’), (’re-ranking

score’), (’document retrieval’), (’initial retrieval’), (’generalpurpose
retrieval’), (’information retrieval’), (’semantic relatedness’), (’document

re-ranking’), (’dual-space re-ranking model’), (’final ranking score’),
(’initial ranker’), (’ranking process’), (’re-ranking problem’), (’retrieval

performance’) [...]

Figure 6.7.1: The top row shows a sample of keyphrases generated by TextRank. Row
two shows the top 18 keyphrases according to n-gram frequency. Finally, the bottom
row illustrates the intersection of the sets derived from TextRank and n-gram frequency.
The intersection of sets helps filter out spurious keyphrases.

contexts.

A first step in identifying potential keyphrases in the context to a citation is to first

identify them for the source document as a whole. For this, we can employ the al-

gorithms mentioned in Section 6.4. Specifically, for our experiments we employ the

well known TextRank (Mihalcea and Tarau, 2004) algorithm, with some modifications.

From observation of the output of the algorithm, it was evident that the generated key-

phrases were not of the quality required, and included many spurious keyphrases, such

as “aforementioned model” and standard “bag-of-words base model” in the example

we show in Figure 6.7.1.

Several approaches to filtering keyphrases exist, notably filtering by part-of-speech

patterns, such as ADJ AJD NOUN (matching “Gaussian random variable”) or ADJ

NOUN NOUN (“Statistical machine translation”) (Justeson and Katz, 1995). Others

have used the structure of a document, e.g. extracting n-grams from the title and ab-

stract (HaCohen-Kerner, 2003).
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Here we opt for a lightly structure-aware frequency-based approach: we introduce

restrictions on keyphrase length and impose a threshold on the minimum number of

occurrences of the potential keyphrase in the text. Specifically, we select the top 200

keyphrases identified by the algorithm, and we filter each potential phrase by these

conditions:

• It is either a bigram (two terms) or a trigram (three terms) AND

• It appears in the title or in the abstract OR

• It occurs at least twice in the body text of the article

This allows us to filter out most of the spurious keyphrases normally found by TextRank,

as we can see in Figure 6.7.1. While boosting precision, this approach at the same time

necessarily decreases recall in the extracted keyphrases. This is however not an import-

ant concern given that our task here is simply to determine whether using keyphrases

as part of retrieval would be beneficial, and so, worth pursuing.

We obtain the full set of potential keyphrases for the citing document and we an-

notate the keyphrases from that set that are present in resolvable citation’s context. We

evaluate the following keyphrase testing methods:

Baseline: full set of matching keywords between query and match documents, using

a single match_query for each term and no keyphrases.

Keyphrases_add_sum: we add an optional phrase query to the elasticsearch DSL

query. If this phrase matches, its score is added to the overall score for the

document. The boost of the keyphrase is set to the sum of the boost values of the

individual terms. This is the boost that we obtain using the all keywords method

defined in Section 6.6.2.

Keyphrases_add_avg: same as above, but the boost of the keyphrase is set to the

average of the boost values of the individual terms.

Keyphrases_sub_sum: we substitute individual match_query terms with a match_phrase

term. We take into account the term frequency counts: for example, given a key-

phrase “w1 w2”, if t f (w1) = 3 and t f (w2) = 1, the resulting query will contain

one phrase query for “w1 w2” with boost of 1, a single match query for w1 with

boost of 2 instead of 3, and no match query for w2, as it will have been “used

up” in the phrase query.
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Keyphrases_sub_avg: same as above, but like before, the boost of the keyphrase is

set to the average of the boost values of the individual terms.

Context

To overcome the NP-hard problems that derive from the need to consider all possible

permutations of the source sentence, we make here a radical simplification and

consider training the translation model given a fixed segmentation and reordering.

This idea is not new, and is one of the grounding principle of n-gram-based

approaches [CITATION] in SMT. The novelty here is that we will use this assumption

to recast machine translation ( MT ) in the familiar terms of a sequence labelling

task.

Keyphrases [’machine translation’, ’translation model’, ’source sentence’]

Baseline

{"bool": { "should": [
...
{"term": { "_all_text": { "value": "machine", "boost":
0.024711478337076334 } }, },
{"term": { "_all_text": { "value": "translation", "boost":
0.019476058881485417 } } },
...

] } }

Keyphrases_add_sum

{"bool": { "should": [
...
{ "term": { "_all_text": { "value": "machine", "boost":
0.024711478337076334 } }, },
{ "term": { "_all_text": { "value": "translation", "boost":
0.019476058881485417 } } },
{ "match_phrase": { "_all_text": { "query": "machine
translation", "boost": 0.03444950777781904 } } },
...

] } }

Figure 6.7.2: Example of a context containing identified keyphrases and highlights from
the elasticsearch DSL query for two keyphrase testing methods.

For all of these experiments, we are using the set of 1000 queries from the Chapter 3

experiments, and removing the same minimal set of stopwords. In these experiments,

we are only generating queries made of the terms that we have already established

match one of the original documents cited, which explains the very high scores. In

essence, all terms not matching the match document have already been filtered out.

The Lucene/elasticsearch query language allows for very complex queries to be

formed, but it is not our aim to explore them all here. So, in principle it remains

possible that keyphrase matching could actually be exploited for higher scores using a

different structure of query. However, when restricting ourselves to simple match, term

and phrase queries, and treating all of them as optional elements (that is, logically

linked with OR prefixes), Table 6.7.1 shows that using keyphrases does not lead to
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improved results over simply assigning the right weight to each individual query term.

We conclude then that our focus in what follows should be to find ways of auto-

matically determining the ideal boost to set to each term in the query.

AAC PMC
Term boost = 1 Adjusted boost Term boost = 1 Adjusted boost

No keyphrases 0.680 0.760 0.498 0.516
Keyphrases_add_sum 0.654 0.736 0.493 0.510
Keyphrases_add_avg 0.654 0.753 0.493 0.514

Keyphrases_sub_sum 0.655 0.721 0.487 0.505
Keyphrases_sub_avg 0.655 0.733 0.487 0.508

Table 6.7.1: Results from experiments integrating keyphrases into the evaluation quer-
ies.

6.8 Stopwords

One aspect that became unexpectedly important for the research carried out in this

chapter was the selection of a set of stopwords to be removed from the query. Intuit-

ively one would expect the weighting scheme to meaningfully reduce their contribution

to the point where they would be insignificant, but as we shall see, this is not the case.

We define stopwords as function words that add no semantic value to a query. Some

examples of stopwords are and, if, is and would: all of these are very frequent function

words in English and occur in most if not all documents in the collection. Stopword

removal is a widely used technique in both information retrieval and text categorisation

(Silva and Ribeiro, 2003) and a common approach is to define a stopword as a term

that has a similar likelihood of occurring in documents not relevant to the query as in

those that are (Wilbur and Sirotkin, 1992).

We adopt a mixed approach enriched with a set of heuristics, counting as stopwords

those terms that:

1. Occur in at least 30% of the documents in the collection. If a term cannot be used

to discriminate between a very important portion of the document collection, it

should not be considered for inclusion in a query.

2. Are not nouns or adjectives. Purely because of their frequency in the collection,

adjectives like “higher” and “large” and nouns like “levels” and “group” could

be classed as stopwords. However, to the author of a paper it is evident that they

can still be important signals as part of a query. In practice, any POS tagger
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introduces an error rate, so for each term, we use its most common POS tag as

classified in our evaluation queries as its true tag. The same word form can serve

different syntactic purposes, so this is indeed a simplifying assumption, but one

that works to our benefit given the noise in the data we are dealing with.

3. Are under three characters in length. This filters out not just function words such

as “of” and “in”, but is important particularly for our AAC corpus, given the

notable noise added by the PDF to XML conversion (badly converted formulas,

tables, markup, etc.)

The boolean combination of these criteria is not_noun AND not_adj AND (docu-

ment_ratio >= 0.3 OR term_length < 3). We label the stopwords selected in this

way the collection-specific stopwords. We compare removing these to removing the

same set of basic stopwords used in the experiments in Chapter 3 and to removing no

stopwords at all: the results are reported in Table 6.8.1. We are particularly interested

in the effect of stopword removal once we assign the adjusted boost scores to each

query term.

6.8.1 Basic stopwords vs collection-specific stopwords

AAC PMC
Term boost =

1

Adjusted

boost

Term boost =

1

Adjusted

boost

No stopwords 0.380 - 0.366 -

Basic stopwords 0.405 0.761 0.368 0.516

Collection-specific stopwords 0.404 0.783 0.357 0.535

Table 6.8.1: Average NDCG scores for the test queries for each domain when employing
different stopword lists.

The conclusions are consistent for both domains: stopword removal does increase

average scores, and the collection-specific stopword list does perform slightly worse,

which signals that some information is being lost. This effect is strongest for PMC,

in spite of the fact that the stopwords list is shorter than for AAC. However, once we

assign the adjusted boost scores to each term, we obtain the best overall results. This

effect is much more noticeable for AAC, where we almost double the NDCG score.

It is a common assumption that tf-idf will on its own sufficiently dampen the im-

portance of stopwords to a query. However, from our experiments it emerges that
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tuning the default dampening introduced by the idf term is a promising approach to

improving relevance.

In order to establish the statistical significance of these results, we run four sep-

arate T-Tests, the results of which can be seen in Table 6.8.2. All differences are

statistically significant (p < .001), except that between using the basic stopword list

and the collection-specific stopword list for AAC when keeping the term boost fixed

to 1. The differences become significant when applying the adjusted boost, although

the adjusted Cohen’s d effect size falls within the range considered “small” as defined

by Sawilowsky (2009).

t df p Cohen’s d

Term boost = 1
Basic stopwords - AAC stopwords 0.923 999 0.356 0.029

Basic stopwords - PMC stopwords 3.526 999 < .001 0.111

Adjusted boost
Basic stopwords - AAC stopwords -7.444 999 < .001 -0.235

Basic stopwords - PMC stopwords -6.499 999 < .001 -0.206

Table 6.8.2: Results of a paired samples T-Test in order to establish statistical signific-
ance of differences in stopword results.

6.8.2 Contribution of stopwords to query score

To analyse the importance, individually and as a whole, of the stopwords that we have

identified, we measure their raw and adjusted match scores. We report three measures:

• Score %: the ratio that each term contributes to the total score of all terms over

the first 200 documents returned by the query.

• Match %: same as above, but only taking into account the explanations for the

originally cited documents.

• Adjusted boost %: same as above, once we adjust the ratio that the stopwords

contribute to the weights we select for that query.

We see that for AAC, the total mass of stopwords weight in the scores is very high at

29%, where for PMC it is lower at around 16%. This is partly due to the corpus being

much larger, and so fewer stopwords being chosen using our current frequency-based

method. For the AAC queries, adjusting the term boost reduces the overall ratio of

stopword weight, but for PMC it unexpectedly increases it. This is not of significance

to the posterior evaluation, given that we remove all these stopwords from every query.
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In conclusion, stopwords matter. The methodology for their selection and removal

makes a big impact in evaluation scores.

AAC PMC
Term Score % Match % Boost % Term Score % Match % Boost %
in 5.45 4.07 0.99 in 5.61 2.71 0.69
is 2.9 2.17 0.78 is 1.34 0.7 0.58
for 2.85 2.16 0.93 for 1.19 0.6 0.5
we 2 1.54 0.68 that 0.83 0.33 0.37
as 1.54 1.18 0.83 are 0.61 0.41 0.46
that 1.32 0.99 0.67 on 0.57 0.24 0.35
on 1.14 0.88 0.7 as 0.56 0.28 0.38
are 1.02 0.79 0.58 this 0.5 0.33 0.53
this 0.91 0.73 0.67 was 0.42 0.19 0.3
based 0.68 0.56 0.57 be 0.4 0.21 0.37
be 0.56 0.41 0.44 have 0.31 0.14 0.31
which 0.56 0.41 0.58 were 0.28 0.14 0.17
using 0.51 0.39 0.55 also 0.27 0.17 0.48
used 0.44 0.35 0.48 at 0.26 0.18 0.35
our 0.44 0.33 0.36 been 0.23 0.11 0.3
can 0.34 0.26 0.37 has 0.23 0.16 0.4
have 0.34 0.26 0.42 can 0.2 0.14 0.3
has 0.33 0.25 0.43 it 0.18 0.11 0.29
use 0.31 0.24 0.44 these 0.17 0.08 0.21
it 0.31 0.22 0.3 based 0.16 0.06 0.09
been 0.29 0.21 0.38 used 0.13 0.08 0.2
such 0.27 0.22 0.4 using 0.11 0.06 0.15
these 0.26 0.2 0.35 more 0.11 0.07 0.17
set 0.24 0.19 0.23 found 0.09 0.03 0.1
each 0.23 0.2 0.31 during 0.08 0.06 0.17
TOP 25 25.24 19.21 13.44 TOP 25 14.84 7.59 8.22
TOTAL PCT 29.63 22.54 20.35 TOTAL PCT 16.36 8.45 11.18

Table 6.8.3: Percentage of scores contributed by the top 25 terms that we have identi-
fied as a collection specific stopword, excluding the basic stopwords we were already
filtering and those terms consisting of only one character. For the full list, see Appendix
C.

6.9 Manual annotation

In some previous studies (Turney (1999); Nguyen and Kan (2007); Hulth (2003)),

human annotators were asked to select the keywords relevant to finding articles for

a given context. Building on the approach we followed in Section 6.3, we decide to

follow this to evaluate our automatic approaches to a human oracle and so undertake

manual annotation of a set of evaluation contexts. The task for the human annotator is

defined in summary as “if, using a search engine (e.g. Google Scholar), you are trying

to find the original paper cited where [CITATION HERE] appears, which words from

the text would you select?”.

6.9.1 Inter-Annotator Agreement

Two annotators manually annotated 100 contexts for each domain, selected for di-

versity, from among those used to generate evaluation queries for the previous experi-
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ments. The first annotator (Annotator A), the author of this thesis, is a domain expert

in computational linguistics (AAC corpus) but not in biomedical science (PMC), while

the second annotator (Annotator B) is a researcher in efficient GPU computation, but

not familiar with any of the domains (AAC or PMC). Annotation instructions were

developed and iterated over to align the biases and priors of both annotators, and these

are included in Appendix D.

Following standard practice, we measure inter-annotator agreement using Preci-

sion, Recall and F-score. We take Annotator A as the gold standard for our experiments

and we report the scores of Annotator B’s as the measure of agreement.

For each annotator, we automatically filter both the general and corpus-specific

stopwords we have identified before generating the evaluation queries, and we count

each selected keyword once, which keeps the task as a more realistic and useful overlap

of selected keywords.

AAC PMC

Precision 0.591 0.854
Recall 0.787 0.659

F1 score 0.615 0.710

Table 6.9.1: Inter-annotator agreement for both corpora.

From the results in Table 6.9.1, it is immediatley apparent that the annotators dif-

fer in their choice of keywords to a notable degree, and that this degree is domain-

dependent. The resulting F1 score for PMC is notably higher than that for AAC, which

perhaps shows an influence of Annotator A introducing their own bias as a domain

expert. When looking at precision and recall scores, we see that, while precision is

remarkably higher for PMC (0.854), recall is much lower than AAC (0.659 vs 0.787).

The relatively low inter-annotator agreemen is hardly surprising, as predicting what

keywords are likely to occur in an unknown paper does not have an immediate intu-

itive solution for a human annotator. This shows how widely an author’s criteria for

selecting relevant keywords may vary.

6.9.2 Quantitative evaluation

We compare the results of creating evaluation queries from the manually annotated

keywords of Annotator A with those generated using a simple baseline where we re-

move both the basic stopwords and the collection-specific stopwords identified above.
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With the aim of measuring how external representations affect this task, we run these

queries against two indices built with two different document representation methods:

• Internal: the full text of the document

• Mixed: full text of the document concatenated with all of the text from incoming

link contexts to the document (full text + incoming link contexts paragraph).

AAC PMC

Ann. A Ann. B Baseline Ann. A Ann. B Baseline

Terms selected 1,589 2,008 4,214 3,329 2,609 5,277

Unique terms selected 1,033 1,299 3,488 2,220 1,676 4,301

Percent terms selected 22.17% 28.23% 58.79% 39.60% 30.78% 62.28%

Mixed
Top-1 accuracy 0.157 0.187 0.230 0.350 0.260 0.330

NDCG 0.385 0.394 0.440 0.540 0.481 0.534

Internal
Top-1 accuracy 0.092 0.082 0.069 0.270 0.200 0.250

NDCG 0.260 0.240 0.260 0.459 0.404 0.445

Table 6.9.2: Results of human annotation (Annotator A, Annotator B) versus the
baseline. Average NDCG and top-1 accuracy, as well as percentage of terms selec-
ted, on the small corpus of 100 human-annotated contexts for each domain.

The results are remarkable in two ways: first, a simple baseline outperforms Annotator

A in their expert domain (AAC), and second, Annotator A matches and very slightly

improves over the baseline in the other domain (PMC). At the same time, Annotator B

is consistently outperformed by either Annotator A or the baseline (for AAC) or both

(for PMC). This suggests that an intuition for selecting the best performing keywords

may depend on the degree of expertise in a domain, but also on having an understand-

ing of the inner workings of keyword-based retrieval systems.

These results throw light on our prior findings in Section 6.3 and Chapter 3. On

the one hand, they support the hypothesis that careful selection of the relevant spans

of text to a citation can perform better than a simple baseline. On the other, this result

only holds for both domains when the text we are indexing is the full text of the paper.

For AAC, when we use external methods for building a document representation and

therefore include the anchor text of links to that document, there is value in extract-

ing keywords that the best performing human annotator does not judge to be directly

relevant to the citation token we are concerned with.

As we saw in Chapter 3, external representations are far superior to internal ones for

the AAC corpus, but the opposite is true for PMC. The results of manual annotation
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show that this is because of similarities in citing patterns in the AAC corpus, which

lends support to the popular approach of employing topic models for CCR.

6.9.3 Qualitative analysis of annotation

The manual annotation enables qualitative analysis of the data, from which important

patterns emerge for each corpus.

In spite of extensive cleaning, there is still text conversion noise in the AAC data,

such as broken sentences, extraneous material (table captions and footnotes inside run-

ning paragraph text), plus hyphenated word wrap is not resolved in the corpus. This is

not exclusive to our corpus; converting PDF documents to machine-readable flowing

text is always challenging (Constantin et al., 2013). Manual examination of examples

from the CiteSeerX collection confirms the same situation. We avoided manually an-

notating the examples where the text was judged too noisy.

As we saw in Chapter 4, there exists extensive work in classifying citations in a

research paper. According to one of the aspects of the classification scheme of Swales

(1986), anecdotal evidence suggests that citations in AAC are much more often per-

functory, i.e. “mainly an acknowledgement that some other work in the same general

area has been performed” rather than organic “cited work is needed for the under-

standing of the citing paper”. Figure 6.9.1 shows us an example of this: often, the very

few words preceding the citation token (e.g. “treelet”), together with the most salient

keyphrases preceding it (e.g. “tree-based translation models”) is an ideal query to be

extracted.

Figure 6.9.1: Example of a manually annotated AAC context. In bold, the keywords
selected for extraction by the annotator.

This contrasts with PMC, where often the text around the citation token contains

very specific details of what the document contains, e.g. “the C-terminal ADFH do-

main in twinfilin binds F-actin in addition to G-actin and can interact with the barbed

end of the filament [CITATION HERE]”. As we said above, this is consistent with the

results of Chapter 3, where we saw that for the PMC corpus, indexing a document’s
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contents yields vastly superior results to the incoming link contexts.

There is a strong connection here also with our experiments in Chapter 5, where

we proposed that if we were able to classify the different types of citations in the

document, this could inform the extraction of a better query. We make a first approach

in our experiments in Section 6.10 by adding the labels of the AZ and CoreSC type of

the citing sentence as features.

Another finding is that the heuristics we employed for sentence splitting and token-

isation seem a reasonable fit for AAC text, but PMC text would benefit from applying

techniques tailored to the domain. The example in Figure 6.9.2 offers us a good in-

tuition of how the domains differ. The span of text “Arp2/3-dependent”, marked for

extraction by the human annotator, is split by the standard Elasticsearch tokenizer into

the three tokens “Arp2 3 dependent”. This removes the information that this was a

single token in the original text, and moreover, our heuristic of disregarding terms of

length less than three removes the token “3”. In this instance the query retains the

information about “Arp2”, that is, “Actin-Related Protein 2”, which is one of seven

subunits of the “Arp2/3 complex” that the text is referring to (Pollard, 2007). Whether

this actually affects the relevance of the results or not, it is clear that domain specific

preprocessing techniques would be preferred to treating all text the same.

Figure 6.9.2: Example of a manually annotated PMC context.

Natural Language Processing of biomedical text (BioNLP) is a highly active field

of research that deals with the idiosyncrasies of this domain. Beyond tokenisers custom

to the domain in the early stages of the processing pipeline, Named Entity Recogni-

tion (NER) is one of the most commonly researched tasks in the automatic processing

of biomedical scientific articles (Goulart et al., 2011). The recognised entities are

commonly disambiguated and linked to large databases of genes, proteins, chemical

compounds, etc. We discuss this more in Future Work, Section 7.3.1.

It is clear then that at least in the case of the biomedical domain, applying these

NLP techniques to preprocess the text to be indexed as well as the text from which

to extract the query could greatly help the task, with linking entities in the text and
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substituting their mentions with unique identifiers as a necessary next step. While this

is hardly a surprise, it remains an important consideration for future approaches.

6.10 Keyword extraction

Now that we have generated our annotated data of input contexts and ideal output

queries, we can turn to exploring the performance of different algorithms for extracting

these queries.

In considering the goal of training a supervised machine learning model for query

extraction, we need to make a number of choices. First, we can treat the task as classi-

fication (deciding to extract a term in the context or not) or regression (predicting the

weight that this token should have in the query). Second, we can either train per-token

classifiers that operate independently on each token in the input context, or employ

models that use the whole context as input and make a joint decision on the terms to

include in the query and their relative weights.

Further, we could separate the task into several stages, for example first identifying

promising spans of text to extract, then selecting keywords, and then assigning a weight

to each selected keyword. When considering a sequential input mapped to a sequential

output, we could think of this task as similar to a number of established tasks, such as:

• Machine translation (MT): Map from a source language to a target language.

The input context would here be the source language and the target language,

the terms to extract. There is one important difference in the data here: while

in both source and target language in MT there is structure to the sequence of

tokens, this would not be true in this case for the target side. The keywords to be

extracted would not conform to any language model.

• Part-of-speech (POS) tagging / Named Entity Recognition (NER): These are both

sequence labelling tasks: for each input token, generate an output label. In our

case, those labels are not parts of speech or whether the token is the begin-

ning/middle/end of a recognised entity, or the type of this recognised entity, but

whether a token should be extracted or not. For our boost setting task, we define

a set of labels that represent different bins of boost to assign to the given token.

These formulations are interesting avenues for future work. In what follows, however,

we focus on establishing a baseline using a simpler formulation where extracting and

boosting decisions are made on a per-token basis.
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6.10.1 Experiments

Our hypothesis H4-2 is that there is enough information in the combination of the

context of a citation token, the shape of the words and in statistics about the words in

the collection, to reason how important each context word should be to the extracted

query. To test this, we train machine learning models based on these features, using

the annotated context we generated as gold standard training data.

In these experiments, we make an effort to remove the most obvious artefacts, so we

remove author names from the text using a gazetteer built from the references of each

paper. At the same time, in order to minimise the noise introduced by PDF conversion,

particularly in the conversion of formulas, we increase the minimum length required

for a term to be considered as part of a query to three characters, up from two in

Section 6.8. This is mainly due to the amount of artefacts in AAC introduced by PDF

conversion. Because of this, the scores reported below are necessarily slightly different

from those reported in this chapter so far. All other parameters are kept equal, including

the indexing, document representation, basic stopwords, etc.

We test and compare these systems here:

• Baseline 1: The full citation context, once cleaned of basic stopwords (including

all words of under three characters in length, and the most obvious cues such as

author names). We want to avoid any possible artefacts in this close examination

of the source text.

• Baseline 2: Builds on Baseline 1 by further removing the collection-specific

stopwords we found in Section 6.8.

• Linear Regression: A basic linear regression model.

• Extra Trees Regressor: A standard supervised machine learning model2, em-

ploying an ensemble of decision trees. We employ 10 estimators.

• Multi Layer Perceptron: A feed-forward neural network with shape (300, 200,

100), trained with the Adam optimiser, using ReLU activation functions, adapt-

ive learning rate and an optimisation tolerance of 1e-5.

The features for the supervised models are listed in Table 6.10.1. We avoid using a

unique per-term identifier as a feature, as we are neither interested in overfitting to our

2We use the scikit-learn library version 0.19.2 (http://scikit-learn.org/)
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training data, nor in finding whether particular terms tend to be more important in our

document collection. Instead, we aim to use features that would generalise better and

employ the same set for both domains, in order to see their relative contribution.

Feature Description Type

word_len Word length in characters. String
dist_cit Distance to the citation placeholder, in tokens. Negative if before,

positive if after.
Float

abs_dist_cit Absolute distance to the citation placeholder. Float
tf Term Frequency in the context. Integer
tf_idf TF-IDF score as computed by Lucene from the index. Float
caps_num Number of characters that are uppercase. Integer
caps_ratio Percentage of the word that consists of uppercase letters. Float
az AZ class, for AAC. One of ["AIM", "BAS", "BKG", "CTR", "OTH",

"OWN", "TXT"]
String

csc_type CoreSC type, for PMC. One of ["Hyp", "Mot", "Bac", "Goa", "Obj",
"Met", "Exp", "Mod", "Obs", "Res", "Con"]

String

suffix_2,
suffix_3,
suffix_4

The word’s suffix, if it is one of the top 50 most common suffixes
of the given length. Only added to words that are at least 2
characters longer than the suffix length.

String

pos Part of Speech tag, as annotated with spaCy. String
dep_ Incoming dependency arc as annotated using spaCy. String

Table 6.10.1: Features employed for the per-token regressors. All the continuous (float)
features are normalised for each citation context and all string features are binarised,
i.e. they become one feature for each possible value the feature can take.

For the linguistic features we use spaCy.3 The POS tags use the OntoNotes 5

tagset.4 and the dependency arcs use the ClearLabels scheme. 5

We generate our training data by automatically annotating it with the ideal per-

term boost scores. Our training set is formed of 10,000 annotated contexts for PMC

and 4,836 for AAC. The test data for both of them are the 1,000 annotated contexts

corresponding to the same evaluation queries used in Chapter 3. We employ extrinsic

evaluation: we measure the actual performance of the generated queries on the held-out

test set of queries employed in the experiments in Chapter 3.

We combine the ML approaches with our baselines by applying stopword removal

to the output of the regressor. That is, no matter what the predicted weight may be for

the term, if it is in the list of stopwords it is assigned a weight of 0.
3Using spaCy version 2.0.2 (https://spacy.io/usage/) and the large English model en_core_web_lg-

2.0.0 (https://spacy.io/models/en#en_core_web_lg)
4https://catalog.ldc.upenn.edu/LDC2013T19
5https://github.com/clir/clearnlp-guidelines/blob/master/md/specifications/dependency_labels.md
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6.10.2 Results

The results of the evaluation we can see in Table 6.10.2 tell a clear story about methods

for the AAC corpus and a more nuanced one for PMC. We can see that Baseline 2

outperforms Baseline 1 on both corpora, so removing collection-specific stopwords

clearly has a useful effect. Yet this is where the similarities end. For AAC, we can

see that Linear Regression outperforms this simple baseline, and in turn an Extra Trees

Regressor and finally the Multi Layer Perceptron continue to increase the scores. For

PMC however, the top performing method remains Baseline 2, and none of the trained

models improves on it. This is a clear indication of the differences between the two

domains, where the relevant portions of context to extract can in the case of PMC be

by default the whole paragraph.

AAC PMC
System NDCG Top-1 NDCG Top-1

Baseline 1 0.366 0.160 0.347 0.210
Baseline 2 0.373 0.167 0.349 0.214

Linear Regression 0.383 0.175 0.340 0.195
Extra Trees Regressor 0.391 0.187 0.317 0.178
Multi Layer Perceptron 0.407 0.191 0.344 0.204

Table 6.10.2: Results of the query extraction systems tested. We can see all regression
methods outperforming the baseline for AAC, with the MLP being superior. For PMC,
the highest scoring method cannot even match the baseline.

The training of Random Forest Regressors enables us to recover the relative im-

portance of each feature employed, which we find very informative. Figures 6.10.1

and 6.10.2 show plots of the importance of the top 40 features for AAC and PMC re-

spectively. Simple heuristics like the length of the term in characters, the normalised

distance to the citation token and the term frequency in the context are shown to be

important features, as well as the TF-IDF score as computed from the Lucene index.

From these graphs we can also see that while the per-sentence AZ and CoreSC tags

seem to make some contributions to the regressor, they are nowhere as important as

the more simple features.
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Figure 6.10.1: Top 25 features and their importance for the AAC training set.

Figure 6.10.2: Top 25 features and their importance for the PMC training set.
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We have seen that a relatively simple approach based on surface features can mean-

ingfully improve on our baselines in these experiments for the domain of AAC. Con-

versely, we see the opposite for PMC, where a simple baseline is superior to any of our

trained models.

This shows that different domains will benefit from different techniques, such as

those applied in BioNLP, as we mentioned in Section 6.9.3 and we will further discuss

in the next chapter in Future Work.

6.11 Future work

There are plenty of areas we could improve on in our approach to keyword boosting.

One example is the technique we use to set the boost values in Section 6.6: it is far from

optimal. We could set the boost values in a way that truly maximised the evaluation

score. This data, annotated with a stronger relevance signal, may help improve the

results of the supervised machine learning models.

Another area is stopwords: as we mentioned above, the selection of stopwords

could be further tuned to the domain, and even made relative to the context.

Domain-specific approaches could be of help. The work we reviewed in Section

6.2 which employed manually defined cue phrases for citation scope detection could

offer inspiration for this.

However, we believe the most important improvements to this task can come from

better machine learning models for this task, which take into account the whole con-

text of a citation instead of each individual token. We are particularly optimistic about

recurrent or convolutional deep neural networks that represent terms as word embed-

dings, which we propose in Future Work in Section 7.3.3.

6.12 Conclusion

In this chapter, we have explored whether a more fine-grained approach to query ex-

traction yields better results, and the answer is yes. We have compared the perform-

ance of a human annotator with a simple baseline, and shown the the annotator beats

(PMC) or performs comparably (AAC) to the baseline when the index contains only

the document text, but not so when the text from incoming link contexts is added.
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Let us revisit the hypotheses we set out to explore in this chapter:

• H4-1: We can increase the evaluation score of a query by selecting a subset of

the available keywords from an insertion context and assigning a specific weight

to each of them.

• H4-2: A supervised machine learning algorithm can learn the right selection and

weighting of terms using linguistic and morphological features in the citation’s

immediate context.

• H4-3: The annotated data for training this algorithm can be automatically gen-

erated, using our existing implicitly annotated data and the indexed document

collections.

How did we fare? We examined different methods for annotating the keywords that

should be included in the query and their relative weights, in order to maximise the rel-

evance of recommendations. These do lead to improvements in scores, which confirms

our hypotheses H4-1 and H4-3. We then showed that linguistic and surface features,

including scientific discourse annotation features (AZ and CoreSC) can inform a model

to improve on the baseline approach for one of the two domains, AAC. This means that

our H4-2 is domain-dependent.

A common theme throughout this thesis reappears: treating different scientific do-

mains as the same textual domain is suboptimal. AAC and PMC, in spite of being both

corpora of ‘scientific articles’, are for our practical considerations textual domains with

important differences, as we can see in the different evaluation results in the many ex-

periments so far. It is clear that every domain will benefit from a different set of

approaches to text processing and query extraction, and a one-size-fits-all approach is

bound to be overall less performant. This is an important learning that should inform

any attempt to build a production CCR system.
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Conclusion and future work

“Coming back to where you started is not the same as

never leaving."

Terry Pratchett

“Success is not final, failure is not fatal: it is the courage

to continue that counts."

Winston Churchill

7.1 Summary

In this thesis we have explored a formulation of Contextual Citation Recommendation

as an Information Retrieval task. Our research was from the beginning motivated by

practical aims: to contribute to the development of productisable, usable systems that

would be helpful to researchers and academics. Ultimately the outcome of this thesis

is not a deployed CCR system as we originally envisioned, but a deeper understanding

of the issues to consider.

A parallel motivation to our research was to explore the usefulness of scientific dis-

course annotation schemes like Argumentative Zoning and Core Scientific Contexts to

this task, as a shallow approach to semantics and a first step in the direction of offering

contextually relevant literature suggestions that attend to the rhetorical function of the

citing text. We envisioned that being able to compare methods or results with previous

approaches would be helpful to a researcher, and combining these schemes with an

information retrieval approach would be a useful first approach.

149
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Our findings here are mixed. On the one hand, we have found consistent relations

between types of citing sentences and cited sentences, using both schemes and in both

domains, which confirms that explicitly modelling the semantics of scientific discourse

is a worthwhile endeavour. On the other hand, we have not found a way of exploiting

these findings to improve on the scores in our evaluation task, which was our original

aim. We do however believe this proves their potential for use in other applications,

such as scientometrics or multi-document summarisation.

From the beginning, we set out to explore two different scientific domains, one we

were familiar with (computational linguistics), and an unfamiliar one which receives

plenty of attention from the NLP community (biomedical science), expecting to find

differences between them. In this we have been successful, and we have demonstrated

that the best performing document representation methods and citing patterns are do-

main specific. Not only this, we have also shown this difference in the effectiveness of

a trained classifier at recovering the importance of a term to a citation. While our initial

hypothesis that this was feasible proved correct for computational linguistics, it proved

wrong in biomedical science. The take-away message is that domain-tailored strategies

will be required for any productised CCR system and a one-size-fits-all approach may

not be sufficient.

Our early experiments aimed to find these citing patterns between different types

of sentences, but in our later ones we turned our attention to the citing context and

how to extract a better performing query. Previous annotation of sentences relevant

to a cited document provided us with the starting point: we confirmed that using only

sentences that were manually selected as relevant to a citation led to higher evaluation

scores than using symmetric windows of sentences.

We then started looking at how to extract a more fine-grained query. We confirmed

that for our task, requiring that the query matches a keyphrase does not improve eval-

uation scores over simply setting the right boost or weight to each term in the query.

Next, we considered the contribution of stopwords, and our findings came as a surprise.

Our expectation was that the dampening of the IDF component of TF-IDF would make

their contribution minimal, but in practice, we find that what one considers to be a stop-

word can notably alter the results.

For the final part of Chapter 6, of keyword annotation and keyword extraction, again

we encountered unexpected situations. Our hypothesis was that if we selected, from a

citation context, the minimal set of keywords that would maximise the evaluation score

for that context, we would obtain the set of keywords that most uniquely identified
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the cited paper. We expected that this set of keywords would somehow capture the

essence of the paper that makes it relevant to the citation context. It turns out this is

not so, and the keywords that maximise the score of a given paper to a context are

just oddities: content words that are frequent in that paper (or in other papers citing it)

but infrequent over the collection, or even frequent non-content words that are more

frequent than usual in the paper (or in the contexts citing it). This made us change

our approach from our original aim of identifying keywords to simply treating every

term as a potential keyword and aiming instead to find the right weight to set to each.

This had implications for our original research aims with machine learning approaches:

applying recurrent deep neural networks to this task needed to be left for future work.

Formulating this task as sequence regression instead of sequence labelling needs a

rethinking of the standard architectures employed for RNNs. One option is to convert

it into a classification problem by binning the boost scores to apply, but this requires

further research into how to create this classification, based on the distribution of boost

values in the generated annotated data.

In retrospect, we underestimated the differences between the two domains in terms

of our NLP approaches. Any work which tries to generalise to yet more corpora would

be well advised to do some initial data profiling. As we undertook finer-grained ex-

traction of the query in the final chapter, it became evident that an analysis of domain-

specific stopwords and preprocessing techniques, particularly tokenisation, would have

been a useful first step.

Let us recap our hypotheses, as we defined them in the opening to this thesis:

• H1: The rhetorical or argumentative function of sentences in an academic docu-

ment can be classified into a number of discrete classes using shallow semantics.

• H2: The classification of a citation context via H1 helps to identify relevant

content in candidate reference papers in a corpus.

• H3: The identification of fine-grained relevant content via H2 improves the rank-

ing of papers that are relevant with respect to a given citation context.

• H4: The application of linguistically motivated natural language processing

methods to the selection and weighting of terms for a query improves the query’s

performance.

In terms of these definitions, H1 (we can automatically classify sentences using shal-

low semantics) we knew to be true from previous work, H2 (these classes help us
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identify relevant context) proved correct in our experiments, but H3 (this helps im-

prove the ranking of papers) we could never prove. Finally, H4 (linguistically motiv-

ated NLP methods lead to better query extraction) is broadly proven, if also shown to

be domain-specific.

7.2 Findings

This thesis presents original work on applying scientific discourse annotation to the

task of recommending relevant scientific literature to the author of a draft paper.

Corpus Document
representation

Context
extraction

Similarity

Chapter 3
(Duma and
Klein, 2014)

Title + abstract
Full text
Inlink contexts
(many
parameters)

Window (10, 20,
30, 50, 100)
Sentences (1only,
[1,2] up,
[1,2]down)

Lucene
ClassicSimilarity
(Cosine distance +
length-averaged
tf-idf + coord)

Chapter 5 part I
(Duma et al.,
2016a)

~1 million
(PubMed
Central OAS)
~22k (ACL
Anthology)

Full text: Index
by sentence class
(CoreSC & AZ)

Sentences (3; 1
up, 1 down)

Lucene
ClassicSimilarity+
per-class weighting
based on class of
citing sentence

Chapter 5 part II
(Duma et al.,
2016b)

Inlink contexts:
Index by
sentence class
(automatically
labelled CoreSC
& AZ)

Sentences (3; 1
up, 1 down)

Lucene
ClassicSimilarity+
tf-idf + per-class
weighting based on
class of citing
sentence

Table 7.2.1: A grid comparison of our current work using the same categories as the
previous work presented in Chapter 2: the corpora and the number of documents em-
ployed, and the methods used for document representation, context extaction and sim-
ilarity metrics.

We conclude with a summary of findings of our work:

• First, in Chapter 3 we explored different methods for selecting what spans of

text of a scientific document to index and how to select the span from which to

extract a query in a draft document in order to obtain more relevant results. This

is to our knowledge the most exhaustive cross-corpus examination of parameters

for extracting text from the target document and the anchor text of its incoming

citations, as well as to generate the query that will retrieve it. Table 7.2.1 offers

an overview of our different sets of experiments.
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• Our results show that different domains cite differently: what is true of compu-

tational linguistics (a document is better described by the summaries made of

it in other papers) does not hold for biomedical science. To our knowledge, no

previous work on CCR specifically examines the differences between scientific

domains, instead by default conflating them all by using cross-domain corpora.

• Then, we built on our baseline approaches to explore the application of scientific

discourse annotation to this task. This entirely novel approach uses the class of

a sentence in the draft document, as automatically classified, to determine what

weights should be assigned to different types of sentences in target documents

in order to increase the scores using our evaluation method, citation resolution.

In order to find these weights, we apply a hill climbing approach that required

novel optimisation solutions.

• We applied two separate scientific discourse schemes, Argumentative Zoning

and Core Scientific Concepts, that were tailored to different domains, to two

large corpora in these two domains. We find consistent patterns between types

of citing sentences and types of cited sentences, which are encouraging as to

the application of argumentation schemes to the task of contextual citation re-

commendation. One example is that sentences of type Conclusion in cited bio-

medical papers are consistently cited by other sentences of type Conclusion or

Background in citing articles.

• We then applied this new approach to the anchor text of a document’s citations

and again found consistent citing patterns, which points to promising future

work. At the same time, these results combined suggest that scientific discourse

annotation schemes could find use in the field of scientometrics.

• In Chapter 6, we started by exploring the performance of a human annotator in

selecting the right keywords to retrieve a previously cited paper. First we evalu-

ated context extraction and query generation using a corpus of citation contexts

annotated with the sentences relevant to a citation. Our experiments show that

extracting keywords from the sentences a human annotator selected as relevant

performed better than extracting all keywords within the two sentences window.

Then we performed manual annotation of our own test data, but this time at the

keyword level. Again we saw that a human annotator can match or outperform

a stronger baseline based on removing collection-specific stopwords. However,
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we also saw that this applies when what is indexed per document is the full text

of it (internal methods). When we use information external to the document it-

self, the human annotator can no longer outperform the baseline, which shows

that for the task of CCR, selecting the relevant sentences in a citation’s context

is a less promising approach.

• We investigated two ways of improving query extraction: keyphrases and stop-

words. We employed standard approaches to keyphrase extraction and demon-

strated that adding phrases to be matched to a query is of little to benefit to the

CCR task: what really counts in our formulation given our choice of similarity

function and query type is the boosting / weighting of the terms. Our experi-

ments with stopwords show their contribution to the evaluation scores, and also

how important their careful selection and removal is.

• Perhaps a main contribution is showing that linguistic, morphological, structural

and statistical features of the words in a text can be used as predictors of the

ideal boost to assign to a given term in a query. We contribute a novel approach

to annotation of this ideal per-term boost, based on finding the weights that will

maximise the evaluation score for that context from the results of the evaluation

query.

• We show that simple per-token regressors outperform the baselines of query gen-

eration for CCR in the AAC corpus. Crucially, we also show that the training

data for these supervised models can be automatically generated without any

human input beyond the implicit information in the original publications. This

proves that at least in some domains, the relative importance of a term to a cita-

tion can be estimated purely from these features. For biomedical science, this

approach fails to beat a simple stopword removal baseline, which on the other

hand shows that any approach to CCR will need to be custom tailored to each

domain it operates in.

7.3 Future work

7.3.1 Natural Language Processing

It is common practice in information retrieval applications to preprocess the text to be

indexed, as well as the text of the query. For example, for languages like English with
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inflected word forms, it is common practice to lemmatise or stem terms in order to mit-

igate term sparsity and index all terms that are almost identical in meaning as a single

term (Manning et al., 2008). In the approaches we presented in this thesis, we do not

explicitly address this. We indirectly mitigate the problem of very related words being

indexed separately to some degree by employing mixed document representations, i.e.

concatenating the full document text and the text of incoming link contexts. However,

this issue should be specifically addressed in future work.

Other standard preprocessing techniques that should help for this task involve: 1.

preprocessing the text we index for a given document to annotate synonyms and 2.

applying query expansion. Query expansion would align with the approach of keyword

generation that we introduced in Chapter 6, where the query would contain terms not

found in the original document but that we know are correlated or are synonyms.

However, we see that much higher gains can come from going beyond terms,

keywords and keyphrases and applying Information Extraction and Text Mining tech-

niques to uniquely identify every entity mentioned in the text, as well as statements

about the methodology and findings of the research.

Named Entity Recognition (NER) is one of the most commonly researched tasks

in the automatic processing of biomedical scientific articles (Goulart et al., 2011).

The recognised entities are commonly disambiguated and linked to large databases

of genes, proteins, chemical compounds, etc. Rich annotated resources have been cre-

ated for BioNLP tasks, such as the GENIA corpus1, where MEDLINE abstracts were

manually annotated with POS tags, chunk tags and named entity tags, and more re-

cently biomedical events (Nawaz et al., 2010; Liakata et al., 2012b; Thompson et al.,

2011) which has led to the training of performant taggers2. These biomedical events

are “template-like, structured representations of pieces of knowledge contained within

sentences” (Liakata et al., 2012b). They represent data that can be connected to data-

bases of genes, proteins and chemical compounds and to ontologies of interactions, and

therefore extracted as discrete data and connected to other similar data. Another in-

teresting approach in the biomedical domain is clause annotation (Waard et al., 2009),

which proposes a taxonomy of discourse segment types and sits between sentences and

events in level of granularity. Examples of segment types include “fact” (knowledge

accepted to be true), “hypothesis” (a proposed idea, not supported by evidence) and

“problem” (unresolved, contradictory or unclear issue).

1http://www.geniaproject.org/genia-corpus
2e.g. http://www.nactem.ac.uk/GENIA/tagger/



156 Chapter 7. Conclusion and future work

Not every domain can currently benefit from these sophisticated approaches avail-

able for BioNLP, but work exists which applies similar methods to other domains of

science. One example of this is the work of Gábor et al. (2016), who define a num-

ber of semantic relations such as “affects”, “used_for”, “composed_of”, “propose”,

“yields” and “datasource”. The novelty is that instead of manually defining ontological

and lexical resources for annotating entities in the text, they derived these automatic-

ally using a framework for automatic domain-independent term extraction (Buitelaar

et al., 2013). They annotate a few hundred abstracts from the ACL Anthology with

this scheme but propose it would generalise to other domains. Although the extent to

which they could be applied to other domains remains to be studied, we believe that a

conceptually similar approach could be applied to the CCR task and to extracting more

clearly structured information for retrieval.

7.3.2 Scientific Discourse Annotation

As we have pointed out earlier in this thesis, we have made use of the best classifiers we

could obtain for AZ and CoreSC. However, it is clear that their accuracy leaves room

for improvement and at present they introduce significant amounts of noise. Better

classifiers is one way to go, but a great deal of expert work is required for annotat-

ing a corpus with these semantic categories (zones) so the amount of training data is

necessarily limited, which in turn limits the potential accuracy and coverage.

Work has been done towards fixing this, for example using weak supervision (Guo

et al., 2011) or active learning (Guo et al., 2013) to deal with the sparsity of the an-

notated data. Perhaps these approaches could be combined with less brittle neural

approaches to yield more performant classifiers. However, a more interesting question

is whether we should be treating this as a classification task in the first place.

It is an attractive simplification to categorise the contribution of a sentence to a

document as one of several discrete classes. However, a softer, more nuanced, multidi-

mensional way of capturing semantics at a sub-sentence level is much more powerful

and could significantly contribute to the CCR task. Compositional neural represent-

ations of meaning based on distributional similarity of words offer the way forward

here.
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7.3.3 Deep neural networks

Much has changed in the field since the beginning of this research project. In these

intervening years, we have seen neural approaches progressively outperforming tra-

ditional approaches in all areas of Artificial Intelligence, including Natural Language

Processing (e.g. part-of-speech tagging, named entity recognition, parsing, machine

translation) (Goodfellow et al., 2016). Particularly, symbolic approaches to semantics,

based on expert-built resources with little coverage have given way to distributional

approaches where the meaning of any span of text can be automatically learned and

encoded in a latent space of meaning.

A family of models that has been particularly fruitful for these tasks is the Recur-

rent Neural Network (RNN), particularly when employing Long-Short Term Memory

(LSTM) cells (Hochreiter and Schmidhuber, 1997). While these approaches tend to

lack interpretability, they are now the foundation of the the state-of-the-art in many

NLP tasks. For sequence labelling tasks, these methods are often combined with oth-

ers, like for example Conditional Random Fields (Huang et al., 2015b), which contrib-

ute to capturing sequential dependencies between items.

It is now standard to represent words as vectors in a high-dimensional embedding

space, and not as discrete elements. The line of work that popularised this approach is

known as word2vec (Mikolov et al., 2013). Since word2vec took the world by storm, a

number of competing approaches to multi-dimensional word representation have been

proposed. The current state of the art has been pushed by two recent approaches to

this. One is ELMo word representations (Peters et al., 2018): “deep contextualised

word representations that model both (1) complex characteristics of word use (e.g.,

syntax and semantics), and (2) how these uses vary across linguistic contexts (i.e., to

model polysemy)”. Another is ULMFiT: Universal Language Model Fine-tuning for

Text Classification (Howard and Ruder, 2018), a transfer learning method to adapt-

ing embedding word representations. Both claim very significant reductions in error

rates on tasks such as coreference resolution, named entity recognition, semantic role

labeling and very importantly on the Stanford Question Answering Dataset (SQuAD,

Rajpurkar et al. (2018)).

We envision that either a recurrent or convolutional neural network using these

word representation would significantly outperform the simple baseline token-based

models for keyword extraction and boosting we presented in Chapter 6, particularly

as the boost scores to apply to the terms are relative to each other. However, beyond
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words, these approaches allow for compositionality of sentences and longer spans of

text.

In Chapter 1, we motivated our choice of using existing keyword-based IR backends

based on their maturity and scalability. Indeed, at the time of writing we are unaware

of any open source frameworks available of the level of functionality and maturity of

classical keyword-based IR frameworks such as Elasticsearch.

While backends that enable search over multidimensional representations of words

are now becoming more common, these solutions are either bespoke or proprietary.

However, it seems clear to us that our CCR task can greatly benefit from neural ap-

proaches to semantic modelling.

7.3.4 Evaluation

Given a context c, and a document collection D, we cannot assume that the author of c

knows the whole contents of the document collection well enough to cite all those that

are relevant. So, while we can treat the human relevance judgments (existing citations

in published papers) as gold-standard true positives, we cannot assume they are the full

set of true positives, so in future work we would explore methods for expanding the set

of relevant papers to each citation placeholder and treat this task as lightly supervised.

Ultimately, our evaluation method, which has almost exclusively been used in the

literature, remains a very rough approximation of our ultimate task. User studies would

be an important next step, but the final evaluation would need to be based on usage

metrics of an existing system. It is likely that at this point the task would need to

concern itself with specific use cases in order to keep adding value for its users.

7.3.5 Scientific publishing and Open Access

Although the global push for Open Access publishing has seen significant wins over

the past few years, we are still far from a world where all published science is access-

ible to anyone. This remains a significant obstacle to building a practical CCR system:

only a large corporation of the size, resources and connections of Alphabet, Microsoft

or Apple could at present access and index a wide range of scientific publications, as

significant funds and connections are required to collate the paywalled information

from publishers.

Like all others, the field of scientific publishing is constantly evolving, and there

is much discussion currently not just about the business model of academic publishing
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and the push for open access publications, but also about the format in which those pa-

pers are published3. Perhaps the initiative gathering the most strength is FORCE11, a

“community of scholars, librarians, archivists, publishers and research funders” com-

ing together to “bring about a change in modern scholarly communications”. Their

manifesto4 points out that existing formats used in scientific publication “needlessly

limit, inhibit and undermine effective knowledge transfer” so they aim to “rethink the

unit and form of the scholarly publication”. We strongly believe in this mission and

envisage a future for scientific publishing beyond the academic paper, where the paper

is published together with the data collected in structured machine readable formats

with rich metadata, that could greatly contribute to CCR.

7.4 Final words

We remain convinced that practical Contextual Citation Recommendation systems

would greatly assist researchers in their work by, in the first instance, facilitating the

discovery of relevant literature at every stage of research.

The ultimate aim remains to augment human cognitive capabilities. Our knowledge

of the world is now mediated by the ability of search engines (Google) and virtual

assistants (Alexa, Google Assistant, Siri) to immediately answer our questions; the

memory of our life events is now externalised to the cloud in the photos we capture and

the messages we send; and our spatial knowledge is augmented by GPS-assisted maps

and navigation in our pocket. In the same way, the knowledge and understanding of all

published science should be available to us at the moment that we need it, presented to

us in a contextually useful way.

There is no better time to make this happen than now. In this work we have only

explored some directions this research could follow, but everything remains still to

be done. However, the technology needed to make it happen is finally reaching the

right stage of maturity, and a combination of new Information Extraction and Text

Mining techniques, Open Access publishing and a push for new publishing formats

will be essential. The deep learning revolution in NLP paves the way to a deeper

understanding of the text, and so to ways of better satisfying the information need of

the academic author.

3https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676
4https://www.force11.org/about/manifesto
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Data preprocessing

Normalising and de-noising textual data is complex and very time consuming. A lot

of effort went into first obtaining and then cleaning the machine readable XML-tagged

documents, particularly the ACL Anthology Corpus. A large number of tasks are

needed to connect documents to each other using citations. A significant amount of

noise can be introduced by each of these following tasks, and the way we mitigate it is

by applying a large amount of heuristics in the shape of Regular Expressions (RegEx).

• Sentence splitting. Far from a solved task, splitting text into sentence units is

problematic. Spans of text like “et al.” can break sentences, which often also

happens at page boundaries or when extraneous tags appear in the text, such as

footnotes. An example heuristic is that if a sentence ends in ‘ al.’ and the next

sentence in the document starts with a lowercase letter, we join the two together

and update all references to sentence and citation numbers.

• Incorporating formatting. An academic paper is not just free flowing text. All

kinds of footnotes, tables, figures and captions need to be dealt with, but also

bullet points and inline titles. The conversion of these in the AAC corpus is

inconsistent and required significant preprocessing.

• Recognising a citation in text. There are vary many citation styles in use, and

although a given domain tends towards a given citation style, it is far from ho-

mogeneous. Citations of the type of (Author, 1999) require a double approach:

recognising the pattern using RegEx and building a gazeteer made of the pos-

sible renditions of that reference in text, which in turns requires clean reference

metadata. There are many possible patterns using this citation style, particu-

larly in multi-citation. For example, a citation may mention a method and in

161
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the parentheses that follow offer an acronym for it, followed by a comma, and

the author and year. Given that often sentences are badly split because of page

breaks or extraneous elements conflated with the text (e.g. table captions), false

positives and primarily false negatives are often found. In theory the AAC corpus

has already been annotated with all of this information. In practice, we find that

many citations are not recognised and many references in the bibliography are

broken, so it was necessary to apply these steps again using specifically targeted

RegEx and heuristics. On the other hand, citations of type [1], which on first ap-

proach may look straightforward, also incur in ambiguity and particularly false

positives. Some studies in PMC report numbers surrounding them with square

brackets, so [223] will not be a link to reference number 223, but a quantity.

• Removing inline author names. In ACL author names are typically cited inline

(e.g. “McKeown et al. show that...”). We use the same gazetteer approach

and substitute all inline mentions with a placeholder (“__author”), which gets

tokenized as a single token.

• Matching the citation with its corresponding reference in the paper’s biblio-

graphy. Some citations that were identified as such in running text could not be

matched because their corresponding reference was broken, often hidden at the

end of the string representing the “title” of another paper.

• Matching a reference in document d1 to the corresponding paper d2 in the col-

lection D. This one depends on having clear metadata about all documents in

the collection. Thankfully the ACL Anthology Network (AAN) provides this,

so all that is needed is a simplification of the strings, removing all punctuation

and normalising spaces. Then an exact string matching of the title performs very

satisfactorily.

• Detecting self-citations. To determine whether an author is self-citing, we con-

vert the list of authors of the citing paper and the cited paper into a list of plain

strings, taking the author’s given name followed by the family name, and do ex-

act string matching. This is an approximate method which we have not evaluated

except anecdotally.

Poor quality OCR complicates all the above tasks. As an example, ‘T1’ will be-

come ‘Ti’, beyond more obvious ones, like the letter ‘l’ becoming the number ‘1’
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and viceversa. Converting equations to text consistently leaves stranded tokens such

as j and h and i that appear in running text.

On top of this, the AAC corpus comes with formatting XML in the running text,

including <i> and <b> tags. Often these tags are broken, i.e. do not have a closing one.

No manual data cleaning was performed, so while less, there is still some noise in the

data.
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Final trained weights

Query type ↓ AIM BAS BKG CTR OTH OWN TXT
AIM 1 1 1 1 1 1 1
BAS 0 0 1 0 1 7 0
BKG 0 0 1 0 0 4 0
CTR 0 0 1 0 1 7 0
OTH 1 0 0.5 0 1 4 0
OWN 0 0 1 0 1 7 0
TXT 1 1 1 1 1 1 1

Table B.0.1: Trained weights for Queries B for AAC internal methods.

Query type ↓ ilc_AIM ilc_BAS ilc_BKG ilc_CTR ilc_OTH ilc_OWN ilc_TXT
AIM 1 1 1 1 1 1 1
BAS 0.5 0 0 0 0.5 7 0
BKG 0 0 0.5 0 1 2 0
CTR 3.5 0 0 0 0 7 0
OTH 0 0 0 0 0 7 0
OWN 0 0 0 0 0 7 0
TXT 1 1 1 1 1 1 1

Table B.0.2: Trained weights for Queries B for AAC external methods.
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Query text ↓ ilc_Bac ilc_Con ilc_Exp ilc_Goa ilc_Hyp ilc_Met ilc_Mod ilc_Mot ilc_Obj ilc_Obs ilc_Res

Bac 2 0 0 0 0 1 0 0 0 0 1
Con 4.5 0 0 0 0 1 0 0 0 0 0
Exp 1 1 1 1 1 1 1 1 1 1 1
Goa 7 1 0 1 0 1 0 0 1 0 0
Hyp 7 1 0 0 0 1 1 0 0 0 1
Met 1 0.5 0 0 0 1 0 0 0 0 1
Mod 1 1 1 1 1 1 1 1 1 1 1
Mot 1 1 1 1 1 1 1 1 1 1 1
Obj 1 0 0 0 0 1 0 0 0 0 1
Obs 1 1 1 1 1 1 1 1 1 1 1
Res 2 1 0 0 0 0.5 0 0 0 0 1

Table B.0.4: Trained weights for Queries B for PMC external methods.

Query type ↓ Bac Con Exp Goa Hyp Met Mod Mot Obj Obs Res
Bac 1 1 1 0 0 1 1 0 0 0.5 1
Con 1 1 1 0 0 1 0.5 0 0 0 0
Exp 1 1 1 1 1 1 1 1 1 1 1
Goa 1 0 0 0 0 1 0 0 0 0 0
Hyp 1 1 1 1 1 1 1 1 1 1 1
Met 2 0 0 0 0 0.5 0.5 0 0 0 0.5
Mod 1 1 1 1 1 1 1 1 1 1 1
Mot 1 1 1 1 1 1 1 1 1 1 1
Obj 7 0 1 0.5 0 1 0 0 0 1 2
Obs 1 1 1 1 1 1 1 1 1 1 4
Res 1 0 0 0 0 0 0 0 0 0.5 1

Table B.0.3: Trained weights for Queries B for PMC internal methods.
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Domain-specific stopwords

AAC PMC

Term Score % Match % Boost % Term Score % Match % Boost %

in 5.45 4.07 0.99 in 5.61 2.71 0.69

is 2.90 2.17 0.78 is 1.34 0.70 0.58

for 2.85 2.16 0.93 for 1.19 0.60 0.50

we 2.00 1.54 0.68 that 0.83 0.33 0.37

as 1.54 1.18 0.83 are 0.61 0.41 0.46

that 1.32 0.99 0.67 on 0.57 0.24 0.35

on 1.14 0.88 0.70 as 0.56 0.28 0.38

are 1.02 0.79 0.58 this 0.50 0.33 0.53

this 0.91 0.73 0.67 was 0.42 0.19 0.30

based 0.68 0.56 0.57 be 0.40 0.21 0.37

be 0.56 0.41 0.44 have 0.31 0.14 0.31

which 0.56 0.41 0.58 were 0.28 0.14 0.17

using 0.51 0.39 0.55 also 0.27 0.17 0.48

used 0.44 0.35 0.48 at 0.26 0.18 0.35

our 0.44 0.33 0.36 been 0.23 0.11 0.30

can 0.34 0.26 0.37 has 0.23 0.16 0.40

have 0.34 0.26 0.42 can 0.20 0.14 0.30

has 0.33 0.25 0.43 it 0.18 0.11 0.29

use 0.31 0.24 0.44 these 0.17 0.08 0.21

it 0.31 0.22 0.30 based 0.16 0.06 0.09

been 0.29 0.21 0.38 used 0.13 0.08 0.20

such 0.27 0.22 0.40 using 0.11 0.06 0.15
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these 0.26 0.20 0.35 more 0.11 0.07 0.17

set 0.24 0.19 0.23 found 0.09 0.03 0.10

each 0.23 0.20 0.31 during 0.08 0.06 0.17

two 0.22 0.17 0.31 may 0.07 0.03 0.09

was 0.21 0.15 0.25 than 0.06 0.05 0.13

also 0.21 0.16 0.33 but 0.06 0.03 0.14

other 0.20 0.17 0.33 all 0.06 0.02 0.07

one 0.20 0.15 0.26 only 0.06 0.05 0.16

more 0.15 0.12 0.22 most 0.06 0.04 0.14

different 0.15 0.11 0.21 they 0.05 0.02 0.06

between 0.14 0.12 0.22 each 0.05 0.04 0.09

some 0.14 0.10 0.18 where 0.05 0.03 0.09

at 0.14 0.10 0.19 both 0.04 0.03 0.11

were 0.13 0.10 0.16 al 0.04 0.01 0.03

all 0.13 0.10 0.19 et 0.04 0.01 0.03

into 0.13 0.10 0.21 when 0.04 0.02 0.07

only 0.13 0.09 0.17 well 0.04 0.02 0.10

most 0.13 0.09 0.20 there 0.04 0.02 0.06

where 0.12 0.09 0.21 into 0.03 0.02 0.07

their 0.11 0.09 0.19 those 0.03 0.01 0.04

but 0.11 0.09 0.18 had 0.03 0.02 0.07

they 0.10 0.08 0.17 some 0.03 0.02 0.08

both 0.09 0.08 0.19 within 0.03 0.02 0.06

however 0.09 0.07 0.18 will 0.03 0.02 0.04

first 0.09 0.06 0.15 thus 0.03 0.02 0.10

its 0.09 0.07 0.17 after 0.03 0.02 0.06

than 0.09 0.07 0.13 showed 0.03 0.01 0.02

then 0.08 0.06 0.15 shown 0.03 0.01 0.05

same 0.08 0.06 0.14 due 0.03 0.02 0.07

many 0.08 0.06 0.14 under 0.02 0.01 0.06

given 0.07 0.05 0.12 being 0.02 0.02 0.12

there 0.07 0.05 0.11 would 0.02 0.00 0.02

when 0.07 0.05 0.12 known 0.02 0.01 0.05

well 0.07 0.05 0.13 over 0.02 0.01 0.04

possible 0.05 0.04 0.08 while 0.02 0.01 0.03
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how 0.04 0.03 0.08 could 0.02 0.01 0.03

them 0.04 0.03 0.09 no 0.02 0.01 0.03

three 0.04 0.03 0.08 among 0.02 0.01 0.03

will 0.04 0.03 0.07 even 0.02 0.01 0.05

may 0.04 0.03 0.05 very 0.02 0.00 0.01

if 0.04 0.03 0.05 either 0.01 0.01 0.04

so 0.04 0.03 0.08 we 0.01 0.01 0.02

following 0.04 0.03 0.08 about 0.01 0.01 0.03

new 0.03 0.03 0.07 since 0.01 0.01 0.02

any 0.03 0.02 0.06 made 0.01 0.01 0.05

would 0.03 0.02 0.05 highly 0.01 0.01 0.03

about 0.02 0.02 0.07 show 0.01 0.01 0.04

do 0.02 0.02 0.04 might 0.01 0.00 0.01

no 0.02 0.02 0.05 did 0.01 0.00 0.02

TOTAL PCT 29.63 22.54 20.35 up 0.01 0.00 0.01

before 0.01 0.00 0.01

does 0.01 0.00 0.01

still 0.01 0.00 0.02

above 0.01 0.00 0.02

form 0.01 0.00 0.02

if 0.01 0.00 0.02

per 0.00 0.00 0.01

do 0.00 0.00 0.01

least 0.00 0.00 0.02

so 0.00 0.00 0.01

given 0.00 0.00 0.00

out 0.00 0.00 0.00

should 0.00 0.00 0.00

then 0.00 0.00 0.02

them 0.00 0.00 0.00

lt 0.00 0.00 0.01

any 0.00 0.00 0.00

here 0.00 0.00 0.01

TOTAL PCT 16.36 8.45 11.18
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Appendix D

Keyword annotation task: manual

annotation guidelines

D.1 Purpose

Picture yourself as the author of a scientific paper. In academic writing, it is essential

to support the claims you make, either with evidence or by citing other scientific art-

icles that have already been published. The purpose of this annotation exercise is to

research what keywords found in the text of a draft academic paper are more helpful

for finding the most appropriate references from an existing collection of documents,

using a search engine.

You will be provided with a number of citation contexts, which are paragraphs

of text extracted from scientific articles. These paragraphs originally had citations to

other articles in them, which for the purposes of this annotation have been replaced

with placeholders. These placeholders are of two types:

• [CITATION HERE]: the citation we are interested in finding, based on the text

around it

• [other cit]: another citation that was present in the original text but which we do

not concern ourselves with.

You will also see other placeholders that read __author. In this location, the name of

the author of a paper has been anonymised and you should ignore this token. Keep in

mind that several __author tokens in one context can refer to different author names,

or to the same one: this is not known.
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D.2 Task

The task can be summarised as: if, using a search engine (e.g. Google Scholar), you

are trying to find the original paper cited where [CITATION HERE] appears, which

words from the text would you select?

Think only of the document contents: which words in the citation’s context are

likely to appear in the cited paper?

We are exploring documents in two different domains: computational linguistics

(labeled AAC) and biomedical science (labeled PMC). These domains have their im-

portant differences, which you should be aware of, so to familiarise yourself with these,

please skim read through both files first.

You will receive one file to annotate for each domain, and each contains a total

of 100 different paragraphs (citation contexts) to annotate: keywords_aac.txt and

keywords_pmc.txt.

Please save these files as keywords_aac_annotated.txt and keywords_pmc_annotated.txt
and save your changes in them, as documented below.

D.3 Examples

Each file contains 100 contexts. Figure D.3.1 presents one example context from the

AAC set that you will not need to annotate and is only provided for illustration. Please

avoid modifying the text on the lines that start with #ID, #NUM, and #WORDS.

Simply copy the words or span of text from the line starting with #WORDS and paste

them after #KEYWORDS: leaving a space between “#KEYWORDS” and the text you

paste. Please make sure to only copy and paste full words, not parts of them.

In this example, without knowing anything about the subject matter or which paper

was cited, we can glean that the citation that is missing where [CITATION HERE]

appears is related to “light verb constructions”.
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#ID: 06d161b0-c1b2-471a-80e4-7995137b40eb_cit12

#NUM: 84

#WORDS: This type of error is caused by improper handling of relation
phrases that are expressed by a combination of a verb with a noun, such as
light verb constructions ( LVCs ). An LVC is a multi-word expression
composed of a verb and a noun, with the noun carrying the semantic content
of the predicate [CITATION HERE]. Table 2 illustrates the wide range of
relations expressed this way, which are not captured by existing open
extractors.

#KEYWORDS: <insert keywords here>

Figure D.3.1: Example context from AAC.

One example of a full set of keywords we could extract to reflect this would be:

“light verb constructions LVCs LVC multi-word expression verb noun semantic con-

tent predicate”. Note that we select both “LVCs” and “LVC”, as these are different

words. The word “noun” appears twice, but selecting it once is sufficient. We can also

select it several times, as this does not matter. We would simply copy and paste this

list of words after #KEYWORDS:

#KEYWORDS: light verb constructions LVCs LVC multi-word expression

verb noun semantic content predicate

Another way to do this is to simply copy and paste the whole relevant span of text, for

example:

#KEYWORDS: light verb constructions ( LVCs ). An LVC is a multi-word

expression, verb and a noun, with the noun carrying the semantic content of

the predicate

See how we have omitted the span of text “composed of a” and copied and pasted

what came before and after that. Note that this is merely an example of what we could

annotate, and not an authoritative annotation. For example, we may decide that the

words “relation phrases” found earlier in the text are also relevant to the citation. What

exactly to include is up to you to decide as the annotator.
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The AAC and PMC domains differ substantially in vocabulary and style, as can be

seen in this example from PMC (again, not appearing in the corpus to annotate):

#ID: 3244bfe6-9f77-4628-9cdf-24e446405183_cit36

#NUM: 203

#WORDS: As for HAM/TSP, there were many reports dealing with

HAM/TSP treatment, although they included a limited number of patients

and need further studies. Such examples are listed : safety and efficacy of a

humanized monoclonal anti-IL15Rβ antibody ( CD122 ) __author [other cit]

potential use of BNZ-gamma peptide ( selectively blocking binding and

downstream signaling of IL-2, IL-9 and IL-15 ) as a new drug __author

[other cit] clinical study using Infliximab ( anti-TNF-α monoclonal antibody

) __author [CITATION HERE] efficacy of Methotrexate __author [other cit]

and efficacy of Fampridine ( a selective neuronal potassium channel blocker )

__author [other cit]. One of the problems in these reports is the lack of

standard criteria for treatment efficacy, which makes it difficult to compare

the results from the different clinical research teams.

#KEYWORDS:

Here we see a number of papers cited, all around the same theme: “HAM/TSP

treatment”. The citation we are interested in seems to be about “Infliximab”, so one

potential set of keywords to extract would be:

#KEYWORDS: HAM/TSP treatment clinical study using Infliximab ( anti-

TNF-α monoclonal antibody )

D.4 Instructions

• It is recommended that you first skim read through each of the two files before

starting the annotation task, to familiarise yourself with each textual domain and

acquire an awareness of the differences between them.

• For each citation context (paragraph):

– INCLUDE: all the words as you think are likely to be present in the paper

that was originally cited.
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– EXCLUDE: words that you think are unrelated to the missing citation

and unlikely to appear in that paper, and therefore would add less relev-

ant search results.

– WHEN IN DOUBT: err on the side of selecting more keywords rather

than fewer.

• For consistency, please make sure to copy/paste from the text rather than type.

Only copy full words, not parts of them. In the cases where words are hyphen-

ated, e.g. “multi-word” in the example above, or “anti-TNF-α” in the PMC text,

count this as a single word and copy it including the hyphen.

• For ease of annotation, feel free to copy/paste any length of text directly from

#WORDS, with or without punctuation in it. Stopwords (grammar words) such

as “for”, “and” and “to” will be automatically filtered out later on, as well as all

punctuation such as commas, parentheses and full stops, so you need not worry

about including them or not.

• All the keywords you select will be used as part of a single query. Don’t be

afraid to select a larger query: the more specific the query, the more likely it will

be to find the originally cited paper. But keep in mind the rules above and avoid

including what you think is not relevant.

• Keywords only count once: there is no harm in adding a single word several

times, but it will not count more than once either.

• Be aware of editorial conventions: in the PMC corpus, when you see “, [CITA-

TION HERE]“, the citation refers to the text that precedes the comma.

• Pay attention to the function of the citation. Sometimes a citation backs up a

specific claim, for example:

“The authors studied whether CMR improves outcomes prediction after con-

temporaneous echocardiography in a prospective study of 444 patients clinic-

ally referred for CMR [CITATION HERE].”

– Here, it is likely that the full span of text “CMR improves outcomes pre-

diction after contemporaneous echocardiography in a prospective study of

444 patients clinically referred for CMR” is relevant to finding the origin-

ally cited paper
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– Citing expressions like “The authors studied” or “According to a study by”

should never be included as keywords to extract.

• Other times, a citation simply acknowledges work that has defined or

popularised a technique or approach, for example:

“The raw sentences in all the training and test documents were preprocessed

using MXPOST [CITATION HERE] and the MST dependency parser [other

cit] following __author et al. ( 2010a ).”

– Here, the only intuitively relevant part of text seems to be the unique name

“MXPOST” which refers to a particular system that the cited paper presents

and describes. This paper will be very uniquely identifiable in the whole

collection just through this one word.

• Consider the other citation in this paragraph:

“The raw sentences in all the training and test documents were preprocessed

using MXPOST [other cit] and the MST dependency parser [CITATION
HERE] following __author et al. ( 2010a ).”

– For this other citation, we have a similar situation where “MST dependency

parser” seems to be the only relevant part of the text to extract. But again,

this is only an example and not authoritative. What to ultimately extract is

your decision.

• Once you have chosen the keywords, please have a second read of the paragraph

and the keywords you selected! It is easy to miss out on relevant content.
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