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Abstract
Statistical parametric speech synthesis (SPSS) has seen improvements over

recent years, especially in terms of intelligibility. Synthetic speech is often clear

and understandable, but it can also be bland and monotonous. Proper generation

of natural speech prosody is still a largely unsolved problem. This is relevant

especially in the context of expressive audiobook speech synthesis, where speech

is expected to be fluid and captivating.

In general, prosody can be seen as a layer that is superimposed on the seg-

mental (phone) sequence. Listeners can perceive the same melody or rhythm

in different utterances, and the same segmental sequence can be uttered with a

different prosodic layer to convey a different message. For this reason, prosody

is commonly accepted to be inherently suprasegmental. It is governed by longer

units within the utterance (e.g. syllables, words, phrases) and beyond the utter-

ance (e.g. discourse). However, common techniques for the modeling of speech

prosody - and speech in general - operate mainly on very short intervals, either at

the state or frame level, in both hidden Markov model (HMM) and deep neural

network (DNN) based speech synthesis.

This thesis presents contributions supporting the claim that stronger repre-

sentations of suprasegmental variation are essential for the natural generation of

fundamental frequency for statistical parametric speech synthesis. We conceptu-

alize the problem by dividing it into three sub-problems: (1) representations of

acoustic signals, (2) representations of linguistic contexts, and (3) the mapping

of one representation to another. The contributions of this thesis provide novel

methods and insights relating to these three sub-problems.

In terms of sub-problem 1, we propose a multi-level representation of f0 us-

ing the continuous wavelet transform and the discrete cosine transform, as well

as a wavelet-based decomposition strategy that is linguistically and perceptu-

ally motivated. In terms of sub-problem 2, we investigate additional linguistic

features such as text-derived word embeddings and syllable bag-of-phones and

we propose a novel method for learning word vector representations based on

acoustic counts. Finally, considering sub-problem 3, insights are given regarding

hierarchical models such as parallel and cascaded deep neural networks.
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The surface of the ocean responds to forces that act upon

it in movements resembling the ups and downs of the hu-

man voice. If our vision could take it all in at once, we

would discern several types of motion, involving a greater

and greater expanse of sea and volume of water: ripples,

waves, swells, and tides. It would be more accurate to

say ripples ‘on’ waves ‘on’ swells ‘on’ tides, because each

larger movement carries the smaller ones on its back (...)

In speech (...) the ripples are the accidental changes in

pitch, the irrelevant quavers. The waves are the peaks and

the valleys that we call ‘accent’. The swells are the sepa-

rations of our discourse into its larger segments. The tides

are the tides of emotion.

(Bolinger (1964), Bolinger (1972))
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Chapter 1

Introduction

1.1 Motivation

Speech synthesis is the automatic conversion of a language’s written form into its

spoken form. Statistical parametric speech synthesis consists of various statistical

approaches for the modeling of parameterized representations of speech signals

(Zen et al., 2007; Tokuda et al., 2013; Zen et al., 2013; Qian et al., 2014; Zen and

Senior, 2014).

Statistical parametric speech synthesis techniques are capable of achieving

high levels of intelligibility (King, 2014). Although synthetic speech can be clear

and understandable, it is often bland and monotonous. Therefore, proper mod-

eling and generation of natural speech prosody is still a largely unsolved problem

(Yu, 2012). This is relevant especially in the context of expressive speech synthe-

sis, where speech is expected to be fluid and captivating.

The study of prosody describes the mechanisms that speakers use to structure

information into meaningful constituents of varying temporal resolution (e.g. syl-

lables, words, or phrases) as well as the mechanisms used to highlight the relative

importance of such units (e.g. through prominence, emphasis). These phenom-

ena are of particular importance for speech synthesis, as good control of prosodic

phenomena leads to more natural synthetic speech.

In general, prosody is concerned with aspects of the speech signal that re-

late to units that are longer than phones (segment) such as vowels or conso-

1



Chapter 1. Introduction 2

nants. Such aspects may be, for example, pitch accenting, distribution of pauses,

boundary tones, among others (see Section 3.1 for further details). Listeners

may perceive the same melody or rhythm in different utterances, and the same

segmental sequence can be spoken with different prosodic properties to convey

a different message. For this reason, prosody is commonly accepted to be in-

herently suprasegmental (Nooteboom, 1997; Ladd, 2008; Yu, 2012; Xu, 2012). It

is manifested above the segment (phone) and governed by longer units within

the utterance (for example, at the syllable, word, or phrase levels), and beyond

the utterance, at the discourse level (Wennerstrom, 2001). In the context of this

thesis, we generalize the term suprasegmental to denote acoustic phenomena as

well as textual units that are above the segment.

In speech synthesis, common techniques for the modeling of speech prosody,

and speech in general, operate mainly on very short intervals, either at the state

or frame levels, which may span several milliseconds of speech. These techniques

allow highly intelligible text-to-speech systems to focus on short-term variation

that is mainly related to the phone-level. Even though wider context is taken into

account, speech still sounds bland and monotonous, with such context having

limited impact on the naturalness of synthetic speech (Cernak et al., 2013).

Recent approaches in statistical parametric speech synthesis have attempted

to explore the hierarchical nature of prosody through the integration of multiple

temporal levels. However, very few approaches focus on signal and/or linguistic

representations. That is, they have tried to learn better prosody, but without a

clear and proper understanding of both linguistic and signal effects.

The main hypothesis I propose to explore in this thesis can be summarized in

the following statement:

More natural synthesis of fundamental frequency can be achieved by

exploring complex interactions of suprasegmental units in terms of

linguistic representations, acoustic representations, and the mapping

between them.

It is the main claim of this thesis that a stronger understanding of supraseg-

mental contexts is essential for the natural modeling and generation of speech
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prosody. This understanding must occur at the level of linguistic inputs, acoustic

outputs, as well as the function mapping one to the other. We may consider a

simplification of this scenario by dividing the main claim into three separate, but

overlapping, sub-problems.

Sub-problem 1: representations of acoustic signals

In statistical parametric speech synthesis, speech frames can be defined

over 5 ms intervals. Within each interval, 40 to 60 parameters might be

used to represent the spectral envelope, and 5 parameters to describe ape-

riodic excitation (King, 2011). Dynamic features are added to these two

acoustic streams, corresponding to the first and second derivatives (termed

frequently delta and delta-deltas). However, fundamental frequency uses

only 1 parameter per speech frame and 2 parameters corresponding to their

dynamic features.

In the case of HMM-based speech synthesis, acoustic models are defined

over states, with each state corresponding to sub-phone acoustic properties.

In the case of DNN-based speech synthesis, acoustic models are normally

defined over states or frames. At synthesis time, generation is done sepa-

rately for each speech frame, essentially being a framework modeling speech

only in very short intervals.1

Work in this sub-problem aims at identifying accurate representations of

acoustic signals that are capable of capturing variation over units of differing

temporal resolution. For the purposes of this thesis, we limit ourselves to

the fundamental frequency (f0 ) of the waveform, which is one of the acoustic

correlates of prosody (see Section 3.1 for details).

1There is, naturally, a large amount of work approaching this problem, using, for example,
recurrences in deep neural networks (e.g. Fernandez et al. (2014)). Sections 2.2.2 and 2.2.3
give an overview of acoustic modeling frameworks for statistical parametric speech synthesis.
Section 3.2.2 overviews hierarchical modeling of fundamental frequency for speech synthesis.
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Sub-problem 2: representation of linguistic contexts

Current methodologies model context-dependent phones, where the context

is defined by a set of shallow segmental and suprasegmental features. An

example from a conventional text-to-speech system can be found in Ap-

pendix A. This approach works well with the spectral envelope, as it is

mostly marked by short-term variation defined over a clear symbolic rep-

resentation (phonetic representation of segments that can be inferred from

the text).

However, prosody does not have a clear symbolic representation that can

be easily inferred from the text. This has been previously termed the lack

of reference problem (Xu, 2012). In current systems, most suprasegmental

features are typically related to the number of segments/syllables/words

within prosodic phrases or utterances, and may add little to the natural-

ness of synthetic speech (Cernak et al., 2013). These representations of

suprasegmental contexts can be inferred directly from the text. For exam-

ple, syllable stress and syllable boundaries may be taken from a lexicon and

phrase boundaries may be predicted by models that are trained on small

out-of-domain datasets (see Section 2.1.1).

One possible reason for the minor impact of these features on the naturalness

of synthetic speech may be the automatic labeling of higher-level phenom-

ena, such as pitch accents or phrase-breaks. Because manual annotation of

large databases such as audiobook recordings tends to be costly, researchers

make use of automatic labeling methods to annotate their databases. These

approaches tend to generate prediction errors, which lead to mismatches be-

tween annotated labels and acoustic events in the training data, generally

leading to poor modeling of the suprasegmental aspects of speech (see Sec-

tion 3.2.3).

This sub-problem is concerned with the task of finding representations of

prosodic contexts that would allow the model to better describe the vari-

ations in the speech signal associated with longer temporal units (such as

syllables or words), while remaining close to the acoustic data used for
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training.

Sub-problem 3: mapping acoustic and context representations

This sub-problem is concerned with the mapping of context and acoustic

representations. This is the most widely explored problem in previous work

and it involves the modeling of prosodic variations at suprasegmental levels.

In this work, we propose to adopt the findings of sub-problems 1 and 2, and

explore methodologies to predict one as a function of the other. For exam-

ple, given representations of the acoustic signal and linguistic contexts, we

propose to explore modeling architectures that could leverage their hierar-

chical structure. Even though a large body of work has been done in this

topic, we still consider sub-problem 3 to be unsolved, as current approaches

either fail to yield improvements at longer temporal domains or were de-

signed with traditional acoustic and context representations in mind. An

overview of these methods and their findings will be given in section 3.2.2.

Each of these three sub-problems is an aspect of the larger question proposed

above. And, as would be expected, each of them contains a great deal of com-

plexity and numerous lines of research. This thesis does not aim to solve them,

but instead, it aims to provide some contributions to their understanding and

begin to provide solutions to more effective ways of modeling prosodic properties

in the context of statistical parametric speech synthesis.

We therefore title this thesis

Suprasegmental representations for the modeling of fundamental frequency

in statistical parametric speech synthesis

The term suprasegmental is chosen to refer to the inherent property of prosody

being governed at temporal intervals longer than the phonetic segment. In the

context of this thesis, it refers to linguistic units at levels higher than the phone

(segment), such as syllables, words, clitic-groups, phrases, and utterances. The

term representations refers to transformations performed on linguistic and acous-

tic contexts in order to capture relevant variation at these suprasegmental levels.
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chapter 4

chapter 5
chapter 6

chapter 7 chapter 8

chapter 9

chapter 10

sub-problem 1
representation of acoustic signals

sub-problem 2
representation of 
linguistic contexts

sub-problem 3
mapping acoustic and

context representations

Figure 1.1: Venn diagram illustrating the organization of this thesis with respect to

the 3 sub-problems of the main problem.

Two of the acoustic properties most commonly associated with prosody are

the fundamental frequency and duration. These are modeled explicitly as acoustic

parameters by typical acoustic models for statistical parametric speech synthesis

(cf. Chapter 2). For the purposes of the proposed investigations, we opt to focus

solely on fundamental frequency. We leave investigations focusing on duration and

other acoustic correlates of prosody for future work, although we do acknowledge

that their interaction should not be disregarded. Finally, most of the work will be

developed for statistical parametric speech synthesis, considering state-of-the-art

techniques in this framework. Chapters 4 and 5 focus on HMM-based speech

synthesis, while the remaining chapters focus on DNN-based speech synthesis.

1.2 Thesis overview

This thesis is based primarily on work published in various papers, with chapters

4-9 covering and/or extending the work of a single paper. Figure 1.1 illustrates

how the contributing chapters of this thesis interact with the main claim and
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its three sub-problems. An alternative representation is shown in Figure 1.2,

illustrating the dependencies between the work presented in each chapter. Below,

we provide a brief summary of the contents and contributions of each chapter, as

well as previous presentations of work that they are based on.

Chapters 2 and 3 provide overall background to the techniques used through-

out this thesis. Chapter 2 gives an overview of common approaches to text-to-

speech synthesis, focusing on Hidden Markov Model and Deep Neural Network

based methods. Chapter 3 provides a brief introduction to speech prosody, cov-

ering the theoretical foundations that motivate the main claim and contributions

of this thesis. The same chapter gives an overview of suprasegmental approaches

to the modeling of f0 for statistical parametric speech synthesis.

Chapters 4, 5, and 6 can be grouped under the topic multi-level acoustic

representations of fundamental frequency. The main theme throughout

these chapters is the hierarchical decomposition of f0 contours and its evalua-

tion under standard text-to-speech systems. This corresponds to sub-problem 1,

representations of acoustic signals. Chapter 4 proposes a multi-level represen-

tation of f0 using the Continuous Wavelet Transform (CWT) and the Discrete

Cosine Transform (DCT). Because this proposed representation allows models to

be defined at suprasegmental levels, we include this chapter at the intersection

of sub-problem 1 and sub-problem 2 in Figure 1.1. The proposed multi-level

representation is governed by two strong assumptions. The first assumption is

investigated with a set of perceptual experiments, presented in Chapter 5. The

second is investigated in Chapter 6, where earlier findings are used to derive a

linguistically and perceptually motivated wavelet-based decomposition of f0. The

work that forms the basis of these chapters was initially presented in the following

three publications:

1. A multi-level representation of f0 using the continuous wavelet

transform and the discrete cosine transform.

Manuel Sam Ribeiro and Robert A. J. Clark

In Proceedings of the IEEE International Conference on Acoustics, Speech,

and Signal Processing (ICASSP). Brisbane, Australia. April, 2015
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2. A perceptual investigation of wavelet-based decomposition of f0

for text-to-speech synthesis.

Manuel Sam Ribeiro, Junichi Yamagishi, and Robert A. J. Clark

In Proceedings of Interspeech. Dresden, Germany. September, 2015

3. Wavelet-based decomposition of f0 as a secondary task for DNN-

based speech synthesis with multi-task learning.

Manuel Sam Ribeiro, Oliver Watts, Junichi Yamagishi, and Robert A. J.

Clark

In IEEE International Conference on Acoustics, Speech, and Signal Pro-

cessing (ICASSP). Shanghai, China. March, 2016

Chapters 7, 8, and 9 group work and contributions under the topic hier-

archical systems and suprasegmental input representations. This work

explores hierarchical models and their ability to leverage information that is de-

fined at higher linguistic levels, such as syllables or words. This corresponds to

work falling under sub-problem 2, representations of linguistic contexts, and sub-

problem 3, mapping acoustic and linguistic representations. Chapter 7 proposes

a top-down hierarchical modeling approach in the form of a cascaded deep neural

network where suprasegmental effects are modeled first at syllable-level and then

channeled to a frame-level model. Additional linguistic representations are evalu-

ated with the proposed hierarchical model, thus falling under sub-problems 2 and

3 in Figure 1.1. The results of this work are further investigated in Chapter 8,

which evaluates the behavior of parallel and cascaded deep neural networks with

different subsets of linguistic features. Finally, in Chapter 9, a simple approach

to learn feature representations at suprasegmental levels (words and syllables)

by taking counts over acoustic signals is presented. Because the linguistic repre-

sentations described in Chapter 9 require a discretized representation of acoustic

signals over textual units, this work falls under sub-problems 1 and 2, as shown

in Figure 1.1.

The work that forms the basis for these chapters was initially presented in the

following three publications:
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chapter 4

chapter 5 chapter 6

chapter 7

chapter 8

chapter 9

chapter 10

sub-problem 1 sub-problem 3sub-problem 2

Figure 1.2: Hierarchical structure of each chapter with respect to other chapters and

to the 3 sub-problems of the main thesis claim.

1. Syllable-level representations of suprasegmental features for

DNN-based text-to-speech synthesis.

Manuel Sam Ribeiro, Oliver Watts, and Junichi Yamagishi

In Proceedings of Interspeech. San Francisco, United States. September,

2016

2. Parallel and cascaded deep neural networks for text-to-speech

synthesis.

Manuel Sam Ribeiro, Oliver Watts, and Junichi Yamagishi

In Proceedings of Speech Synthesis Workshop (SSW). Sunnyvale, United

States. September, 2016

3. Learning word vector representations based on acoustic counts

Manuel Sam Ribeiro, Oliver Watts, and Junichi Yamagishi

In Proceedings of Interspeech. Stockholm, Sweden. August, 2017

Finally, Chapter 10 provides a global discussion of the main contributions of

the thesis, as well as a perceptual evaluation of the main techniques proposed

within a single experiment.



Chapter 2

Statistical parametric speech

synthesis

This chapter presents background material for statistical parametric speech syn-

thesis. The overall architecture of text-to-speech systems is given, covering com-

mon modules found in the front-end and various approaches to the back-end of

such systems. Details are given for speech synthesis based on hidden Markov mod-

els (HMMs) and deep neural networks (DNNs). The chapter ends with a brief

overview of objective and subjective evaluation methodologies used in this thesis

and commonly used in the field of speech synthesis.

2.1 Text-to-speech synthesis

A text-to-speech system is often divided into two large components: the front-end

and the back-end. The front-end is concerned with text processing, converting

raw text input into an intermediate symbolic representation, while the back-end

is concerned with the transformation of that intermediate representation into

a waveform. The remainder of this section elaborates on the details of these

components.

10
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2.1.1 Front-end

The purpose of the front-end, or text processor, of a speech synthesizer is to

narrow the gap between text and speech. That is, given a text input, it is the

goal of the front-end to generate what is often termed a linguistic specification.

Various modules within the front-end, given the input text, generate a symbolic

representation of the speech utterance that identifies details about how it will

be spoken. Typically, the information found in this representation may contain

a phonetic transcription, stress assignment, syllable boundaries, word part of

speech, and intonational phrase breaks. For this reason, the front-end tends to

be heavily language-dependent and its creation often requires linguistic expertise.

Conventional systems mostly rely on knowledge-based features dependent on

annotated linguistic resources. There have been, however, various attempts at

reducing the front-end’s need for expert knowledge. For example, Watts (2012)

proposes several unsupervised approaches to derive front-end modules for low-

resource languages.

Other work has focused on reducing the traditional front-end/back-end mod-

ularity of text-to-speech systems. The work of Oura et al. (2008), still relying

on linguistic features, proposed a method to simultaneously learn front-end and

back-end components. Recently, various approaches have proposed end-to-end

methodologies, in which an acoustic model accepts as input sequences of charac-

ters and outputs the corresponding waveform, thus entirely bypassing the typical

front-end modules (Sotelo et al., 2017; Wang et al., 2017b).

We adopt in this thesis the traditional chained modular front-end. Each mod-

ule is tasked with extracting some information from the input text before passing

it along to the subsequent module in the chain. The output is the linguistic

specification for the input text. We provide here a brief overview of common

components found in this framework.

Given an input string to process, the first task is often text segmentation.

This involves segmenting the input into meaningful units such as words. Text

normalization is concerned with the task of normalizing non-standard words

(NSWs) such as abbreviations, numbers, addresses, contractions, among others.
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front-end

- text segmentation

- lexicon lookup and LTS

- prosodic analysis
- POS tagging

- text normalization

linguistic 
specification

modules:

 

back-end
 

- formant

- parametric
- hybrid

- concatenative

approaches:

 
speech

  

text

"Hello world"

Figure 2.1: Pipeline of a text-to-speech system, including common modules found in

the front-end and various approaches to the back-end.

A lexicon is a dictionary mapping words to their phonetic transcription, syl-

labification, stress, and occasionally, part of speech. The lexicon tends to be a

resource of high value, as it often requires expert knowledge, and needs to be

carefully annotated and reviewed by language experts. However, it is the goal of

text-to-speech synthesis to synthesize any sentence or word. And the lexicon will

not be able to cover all examples in a given language. Therefore, if a word is not

covered by the lexicon, a sequence of phones is predicted by a letter-to-sound

(LTS) module, also called grapheme-to-phoneme (G2P) conversion. Automatic

syllabification and stress assignment is also applied to the phone sequence. Sim-

ilarly, a part of speech tagger can be applied if the word is not found in

the lexicon, if the lexicon does not cover part of speech, or if some type of dis-

ambiguation is necessary for phonetic purposes (e.g. ‘to present a case’ or ‘to

buy a present ’). In some languages, post-lexical rules may be applied to the

phone sequence to account for sandhi phenomena. These cover cases where the

phone sequence of a word changes due to its context. For example, phones at

the boundaries of words may change depending on the phones of the neighboring

word.

The final group of modules is often considered to deal with prosodic analysis.

These involve phrase-break prediction, whereby short pauses and breaks are

inserted in the sentence, based on punctuation or on part of speech tag sequences.

Pitch accent and boundary tone prediction may assign labels describing the

intonational pattern and prosodic structure of the spoken utterance. For example,
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a common labeling convention for the English languages is the ToBI (Tone and

Break Indices) framework (Silverman et al., 1992). This type labeling is often

expensive, as it requires carefully annotated databases. Predictors of ToBI labels

that generalize from small annotated datasets may be used. The Boston Radio

News Corpus (BURN, Ostendorf et al. (1995)) is a commonly used dataset to

train predictors of ToBI labels for the English language.

2.1.2 Back-end

The task of the back-end of a speech synthesizer is to convert the intermediate

linguistic specification into a synthetic speech waveform. For this reason, the

back-end can also be called the waveform generator. Given that most linguistic

processing has been done by the front-end, the back-end tends to be non-language-

specific. To solve the problem of mapping from a linguistic representation to a

waveform, various approaches have been used throughout the years.

Formant synthesis (also rule-based synthesis) is one of the earliest fun-

damental paradigms proposed for the back-end of a text-to-speech system. These

approaches typically define a set of rules to artificially generate a waveform from a

set of acoustic parameters such as formant frequencies, amplitudes, or bandwidths

(Holmes et al., 1964; Klatt, 1980; Balyan et al., 2013). Formant synthesizers have

the advantage of being very compact, thus requiring a low memory footprint. But

because these systems are based on a set of rules, they are language-specific and

typically require the knowledge of experts. Similarly, the technique limits the

quality of synthetic speech, which, although intelligible, often sounds unnatural

(Taylor, 2009, §13.2.7).

Concatenative synthesis (also sample-based synthesis) is perhaps the

most common method for waveform generation in commercial systems. This

approach focuses on the concatenation of pre-recorded units of speech to generate

new waveforms. At one extreme, this class of models includes basic systems in

domain-specific scenarios, whose task is to string together words from a small

closed vocabulary. We might find such systems, for example, in train stations

or customer support phone lines. However, systems aiming for more generic
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synthesis focus on the concatenation of smaller units. Such units may begin, for

example, at the mid-point of a phone and end at the mid-point of the following

phone, thus capturing the co-articulation between the two phones. These units

are often termed diphones. Systems using a minimal database with a single

diphone sample are said to be diphone synthesizers (Moulines and Charpentier,

1990).

Extensions of this idea vary the type and number of units present in the

database. This generalization is referred to as unit selection (Iwahashi et al.,

1992; Hunt and Black, 1996; Campbell and Black, 1997) . Unit selection systems

use a very large database with multiple samples of the same unit. The task of

the waveform generator is then to select the optimal unit sequence given an input

linguistic specification.

Parametric synthesis (also model-based synthesis) uses parametric rep-

resentations of speech waveforms, which are modeled via statistical frameworks.

For this reason, these systems are often grouped under the term statistical para-

metric speech synthesis (SPSS, Black et al. (2007); Zen et al. (2009b)). This thesis

is concerned with this approach to waveform generation. Therefore, Section 2.2

will provide further details on this class of approaches.

Parametric systems offer various advantages over concatenative systems. For

example, it is easy to see how unit selection systems can be limited by their

database: larger databases allow the system to be more flexible, but also increase

the amount of resources needed. Parametric voices are flexible when it comes

to the manipulation and control of acoustic parameters. This flexibility makes

them attractive for various tasks such as speaker adaptation or transformations

of speaking styles and emotion. Additionally, parametric systems tend to benefit

from a very small footprint when compared to standard unit selection systems.

However, parametric voices suffer from various disadvantages. In fact, when

directly compared with unit selection systems, they consistently underperform

(King, 2014). Zen et al. (2009b) list three main causes for this underperformance

in terms of speech quality and speaker similarity: the buzziness caused by pa-

rameterization of the speech signal, the accuracy of the acoustic models, and the

over-smoothing of speech parameters.
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Hybrid synthesis is a term covering various techniques to combine unit

selection and parametric methodologies. The most common hybrid approach uses

a statistical framework to generate a sequence of acoustic parameters that are then

used to guide the selection of units from the database. This is a different approach

from the original unit selection proposal by Hunt and Black (1996), in which the

target unit was selected based on the linguistic specification. Common approaches

use acoustic parameters generated from HMMs (Yan et al., 2010; Qian et al., 2013)

although recently DNNs have also been used (Merritt et al., 2016; Wan et al.,

2017; Capes et al., 2017). A different method allows parametrically synthesized

units to be selected when the speech database does not contain suitable natural

candidates (Okubo et al., 2006; Aylett and Yamagishi, 2008; Pollet and Breen,

2008). Although this idea is still hybrid in principle, these methods have often

been termed multiform synthesis.

2.2 Statistical parametric speech synthesis

2.2.1 Parametric representations of speech

In the context of speech synthesis, a vocoder, or voice encoder, transforms the

speech waveform into a set of parameters that may be modeled statistically.

Common approaches are based on the source-filter model of speech production.

This model makes the assumption that speech is produced by first generating

a source signal, which can be intuitively understood as air exiting the lungs

and passing through the vocal folds. The position of the vocal tract articulators

(tongue, lips, oral, and nasal cavities) then act as a filter on the source signal. The

source-filter model assumes these two components are independent and vocoders

aim to find representations that separate the effects of source and filter.

Vocoders extract parameters over speech windows, referred to as a speech

frame, and may, in common implementations, span 25ms. Each frame is assigned

source (or excitation) parameters such as fundamental frequency and voicing in-

formation. Some vocoders include extra excitation parameters, such as band

aperiodicities: this is the case of STRAIGHT (Kawahara et al., 1999, 2001) or
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the WORLD (Morise et al., 2016) vocoders. For the filter (or spectral enve-

lope) parameters, mel-cepstrum coefficients (Fukada et al., 1992) are often used.

Alternatives use mel-generalized cepstral coefficients (Tokuda et al., 1994) or line-

spectral pairs (LSPs, Itakura (1975)). The speech waveform can be analyzed and

reconstructed with minimal error via these speech parameters. Other approaches

using the source-filter model have been proposed in the GlottHMM (Raitio et al.,

2011) and GlottDNN (Airaksinen et al., 2016) vocoders. Alternative approaches

to the source-filter model use a sinusoidal model of speech (Stylianou et al., 1995;

Shechtman and Sorin, 2010; Degottex and Stylianou, 2012; Erro et al., 2014; Hu,

2016).

2.2.2 Hidden Markov model based speech synthesis

Hidden Markov models (HMMs) are statistical time series models commonly used

in a variety of speech and language processing applications. An N-state HMM is

defined by the set of parameters:

λ = (A,B,Π) (2.1)

where A is a transition probability matrix denoting the probability of moving

from state i to state j, such that
∑N

j=1 aij = 1 for all states i. B is the set of

output probability distributions bi(ot), where bi(ot) ∈ B for all states i. bi(ot)

denotes the probability of state i generating an observation o at time t. Π is

an initial probability distribution over states, where πi denotes the probability of

state i being an initial state.

We assume we are given a collection of T observation vectors O =[
o>1 ,o

>
2 , ...,o

>
T

]>
, corresponding to vocoder parameters extracted from natural

speech, and their corresponding linguistic specifications W . It is the goal of the

training stage of the HMM to find the set of parameters λ that maximize the

likelihood of the training data:

λmax = argmax
λ

P (O|λ,W) (2.2)
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... ... ...

Figure 2.2: Three state left-to-right HMM. State transition probabilities are denoted

by aij and state output probabilities by bi(ot).

Figure 2.2 illustrates a typical left-to-right HMM. In the figure, 3 emitting

states are illustrated: Q = q1, q2, q3, with 2 additional dummy states denoting

beginning and end. State transition probability is modeled via the transition

probability matrix A and state output probabilities by bi(ot).

State output probabilities

For continuous data such as speech parameters, the state output probability

distribution is often modeled by a single multivariate Gaussian distribution. This

can be represented as:

bi(ot) = N (ot,µi,Σi) (2.3)

=
1√

(2π)d |Σi|
exp

{
−1

2
(ot − µt)>Σ−1i (ot − µt)

}
(2.4)

where ot is an observation vector of d vocoder parameters at time frame t, µi is a

d×1 Gaussian mean vector associated with state i and Σi is the d×d covariance

matrix associated with state i.

A Gaussian mixture model (GMM) may be used instead to model the state

output probabilities (Rabiner, 1989). In this case, Equation 2.3 is expressed as a

weighted sum of M Gaussian components, each one given as in Equation 2.4.
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The observation vector ot may be organized into multiple data streams. These

could correspond to the various features extracted by the vocoder. For example, f0

and mel-cepstral coefficients can be treated as separate data streams. If there are

S data streams, then ot =
[
o>t,1,o

>
t,2, ...,o

>
t,S,
]>

and the state output probabilities

are then defined by:

bi(ot) =
S∏
s=1

bis(ots) (2.5)

Training HMMs

In the context of text-to-speech synthesis, HMMs are normally defined at the

phone-level. Observation sequences are frames of speech parameters extracted by

a vocoder. Each state of the model therefore corresponds to a sub-phone sequence

of speech frames. We let O = (o1,o2, ...,oT ) be an observation sequence of T

frames and q∗ = (q∗1, q
∗
2, ..., q

∗
T ) be the optimal state sequence aligned with O.

If this alignment between HMM states and observations were given, deriving

the parameters of the HMM would be trivial. For state i, transition probabilities

can be estimated simply by counting the number of times we move from state

i to state j and then dividing by the total number of transitions out of state i.

Initial state probabilities are not relevant, since, as illustrated in Figure 2.2, left-

to-right HMMs are typically used for text-to-speech synthesis. The state output

probabilities can simply be estimated by taking the mean and covariance of all

observations aligned with state i.

However, for HMM training, the states and observations are not initially

aligned. Common recipes therefore begin with a flat start initialization of the

HMMs. This assumes a uniform segmentation of each observation sequence with

each state of the model. Parameters can then be initialized given this rough

alignment. This generally produces a weak model, given that the observation

sequence is poorly segmented and allocated to HMM states.

With flat-started models, it is possible to find the most likely state se-

quence for observations. The best state sequence involves computing q∗ =

argmaxq P (O, q|λ). This can be achieved efficiently using dynamic programming
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with the Viterbi algorithm. Knowledge of the optimal state sequence allows us to

identify a new alignment between the HMM states and the observations. A new

set of model parameters λ̂ can them be re-estimated using this hard-alignment,

such that P (O|λ̂) ≥ P (O|λ). This training phase is often called Viterbi train-

ing.

Given fully trained HMMs, finding the most likely state sequence can also be

used to align model states with observation sequences. In this case, we do not re-

estimate the parameters of the model, but we use the hard boundaries identified

by the model for further processing. If the observation sequence corresponds to

a speech utterance, the method allows likely boundaries for linguistic units such

as phones or syllables to be estimated. The process is commonly referred to as

forced alignment.

A downside of the Viterbi training stage is that we are forced to make hard

decisions at state boundaries. A particular observation is allocated to a single

state and does not contribute to the parameter estimation of the remaining states.

This is because this approach fails to account for all possible state sequences. A

stronger optimization algorithm therefore considers that an observation can, in

fact, be generated by any state of the HMM.

These constraints can be incorporated in training using an expectation maxi-

mization (EM) algorithm: the Baum-Welch algorithm. In this case, all state and

observation alignments are considered in the re-estimation of the model param-

eters. The hard alignment of the Viterbi phase causes each observation to be

assigned to a single state. In EM training, each observation is assigned to all

states, and it is weighted by the probability of the assigned state having generated

it. This generates a soft alignment between states and observations.

Common training recipes begin with a flat-start initialization of the HMMs.

Several iterations of Viterbi training are then performed until the likelihood of

the training data cannot be further improved. This is then followed by several

iterations of EM training.

The description of the training process for HMMs is given here in passing.

For a complete understanding, a good grasp of Viterbi and the Baum-Welch

algorithms are necessary. These are well-established and well-documented tech-
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vowel?
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noyes yes no

no

round? plosive?

Figure 2.3: Sample decision tree used for state tying. Binary questions are asked

at each node to partition the data. Each leaf node models all clustered observation

vectors with a Gaussian distribution.

niques in the literature. For this reason, we do not cover them in detail and

instead we refer the reader to more detailed descriptions. Taylor (2009) provides

a good example for text-to-speech cases and Rabiner (1989) provides good details

for the general cases.

Context dependency and parameter tying

In speech synthesis, acoustic parameters are affected by a large variety of linguistic

contexts. Although spectral parameters are mostly influenced by the local phone

context, prosodic features such as f0 or duration are mostly affected by prosodic

structure. In the examples above, we have mentioned that HMMs can be defined

at phone level. However, in an ideal scenario, given enough data, a separate HMM

would be trained for each observed unique linguistic context. In reality, however,

there are many contextual factors that are either not relevant for a given acoustic

parameter or are unseen during training. This would also cause the training data

to be too sparse across models to estimate reliable parameters.

To deal with this problem, parameter tying techniques are employed (Odell,
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1995). This approach ties model parameters across states to derive robust dis-

tributions that can generalize to unseen contexts. Parameter tying is performed

automatically by clustering HMM states. This is done in a hierarchical fashion

using stream-dependent multivariate classification and regression trees (CARTs).

Figure 2.3 illustrates this process. Each HMM state is clustered with other states

based on the features occurring in the corresponding linguistic specification. Be-

cause different speech parameters might be affected by different contextual fac-

tors, they are clustered separately. Given S data streams, S stream-dependent

decision trees are learned during the training process (Yoshimura et al., 1999).

Tree size can be determined based on the minimum description length (MDS) cri-

terion (Shinoda and Watanabe, 2001). Approaches using multiple CART models,

such as Random Forests, have also been proposed (Black and Muthukumar, 2015).

Common training recipes, such as the one used in this thesis, first train

context-independent monophone HMMs. After this initial optimization, the mod-

els are decoupled and further optimized as context-dependent HMMs. Each HMM

state i and data stream s is therefore associated with a leaf of a decision tree.

The acoustic parameters that correspond to that state are pooled to derive µi

and Σi used in Equations 2.3 and 2.4. If using multiple data streams, then the

state output probability of state i is computed according to Equation 2.5.

Duration and fundamental frequency modeling

An HMM, as described so far, may model duration via the state transition prob-

ability matrix A. However, in such a framework, as the duration increases, the

state duration probability decays exponentially. This is not an accurate model of

speech duration. An alternative approach models state duration explicitly with

a Gaussian distribution (Yoshimura et al., 1998). Because the Markov assump-

tion is violated if duration is modeled explicitly, such models are properly termed

hidden semi-Markov models (HSMMs, Zen et al. (2004)).

The representation of fundamental frequency used for statistical modeling is

composed of voiced frames and unvoiced frames. Voiced frames are considered to

be samples from a one-dimensional continuous distribution. Unvoiced frames do

not have values associated with them, so they are considered to be samples from
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a zero-dimensional discrete distribution. To account for this property of the f0

signal, multi-space probability distribution HMMs (MSD-HMMs) can be

used (Tokuda et al., 2002).

For the modeling of f0, MSD-HMMs consider two sample spaces, correspond-

ing to voice and unvoiced distributions. Each space is associated a space weight

wg such that
∑2

g=1wg = 1. The one-dimensional space associated with voice

frames is modeled by a normal probability density function, as Equations 2.3 and

2.4. And the zero-dimensional space associated with unvoiced frames contains

only one element.

In HMM-based speech synthesis, duration and f0 are modeled as independent

data streams. An illustration of this process is given in Figure 2.4. Furthermore,

because of the inability to estimate dynamic features at the boundaries of voice

and unvoiced frames, first and second order time derivatives of the f0 signal are

also treated as separate data streams. Alternative approaches that consider the

f0 to be continuous have been explored (Yu and Young, 2011). In the contin-

uous f0 HMM (CF-HMM), the signal is modeled as a single stream, together

with dynamic features. Voicing decision is modeled explicitly as a separate data

stream. A very similar approach was later adopted for deep neural network speech

synthesis (Zen et al., 2013).

Parameter generation and synthesis

At synthesis time, it is our goal to generate acoustic parameters for an unseen test

utterance. For this task, we are given an utterance-level linguistic specification

W . The linguistic specification is used to traverse the decision trees and find

a sequence of context-dependent HMMs with parameters λ. These models are

concatenated to form an utterance-level HMM. AlthoughW tells us which HMMs

to use, it does not tell us which state sequence to follow through the large chain

of models. The generation problem involves selecting the acoustic observation

sequence O that maximizes P (O|λ).1

1The derivation of the parameter generation process presented here closely follows those of
(Zen et al., 2009b; Tokuda et al., 2013). Additional notes and examples were also taken from
(Watts, 2012, §2.1.2) and (Valentini-Botinhao, 2013, §3.2.4).
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s1

...

s2

...

s3

state duration

3 state HMM

model

spectrum decision tree

f0 decision tree

Figure 2.4: Illustration of a three state context-dependent HSMM. State duration is

modeled with a Gaussian distribution and tied with decision trees (not illustrated).

State output probabilities are modeled with Gaussian distributions and tied with de-

cision trees. Spectrum and source parameters are tied separately.

This can be formulated as:

Omax = argmax
O

p(O|λ) (2.6)

= argmax
O

∑
∀q

p(O, q|λ) (2.7)

≈ argmax
O,q

p(O, q|λ) (2.8)

= argmax
O,q

p(O|q, λ)P (q|λ) (2.9)

where q = (q1, ..., qT ) is a state sequence corresponding to the observation se-

quence O =
[
o>1 ,o

>
2 , ...,o

>
T

]>
. This derivation results is two maximization prob-

lems:

qmax = argmax
q

P (q|λ) (2.10)

Omax = argmax
O

p(O|qmax, λ) (2.11)

If using HSMMs, the problem denoted by Equation 2.10 can be solved through

the state duration probability distributions. That is, the most likely state se-

quence for the utterance can be found using the most likely state durations:
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qmax = argmax
q

P (q|λ) (2.12)

= argmax
q

K∏
k=1

pk(dk) (2.13)

where K is the total number of unique states in the utterance-level HSMM and

pk(dk) is the probability that state k generated dk observations. Note that, if

there are T observations in the utterance, then
∑K

k=1 dk = T . If state durations

are modeled with a Gaussian distribution, then:

dk = µk + ρσ2
k (2.14)

where

ρ = (T −
K∑
k=1

µk)/
K∑
k=1

σ2
k (2.15)

and µk and σ2
k are the mean and variance of the distribution associated with

state k, and ρ is a parameter that controls the total duration T and the overall

speaking rate of the utterance (Yoshimura et al., 1998). The parameter ρ can be

set to 0 if there is no intention to manipulate the speaking rate of the utterance.

Given the most likely state sequence qmax, we can now find the most likely

observation sequence:

Omax = argmax
O

p(O|qmax, λ) (2.16)

= argmax
O
N (O;µqmax ,Σqmax) (2.17)

Because each state models observations with a Gaussian distribution, the

most likely generated sample will always be its mean vector. If a given state

generates several samples, then those samples will be constant throughout the

state’s duration. This is caused by the conditional independence assumption in

the HMM’s state output probabilities. That is, at each timestep, the state output

probability is independent of the state output probability at the previous and the
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next timestep. This results is a step-wise trajectory along the utterance with

abrupt transitions at state boundaries. To account for the temporally dynamic

and smooth transitions of natural speech parameters, additional constraints are

imposed on the speech parameter generation algorithm.

Parameters extracted directly from the vocoder are termed static features.

Additional constraints on the speech parameters are placed through the inclusion

of dynamic features. These typically correspond to the first and second order

time derivatives (delta and delta-deltas) of the static speech parameters. The

observation vector is set to be: ot = [c>t ,∆c
>
t ,∆

2c>t ]>, where ct corresponds to

the static parameters. The corresponding dynamic features can be determined

according to:

∆(n)ct =

L(n)∑
τ=−L(n)

w(n)
τ ct 0 ≤ n ≤ 2 (2.18)

where 2L(n) + 1 is the size of window coefficients used to compute the nth order

dynamic features. For the 0th order window, we set L0 = 0 and w
(0)
0 = 1.

Given the window coefficients, we can express the observation vector ot as a

linear transformation of the static parameters:2

ot =


ct

∆ct

∆2ct

 =


0 0 1 0 0

0 −1 0 1 0

1 0 −2 0 1




ct−2

ct−1

ct

ct+1

ct+2


(2.19)

Which can be rewritten as:

ot = Wc∗ (2.20)

where c∗ is a vector denoting a window around the static features ct.

The window coefficient matrix W is determined for the full utterance of T

observations. This results in a 3TxT matrix, where the 3 corresponds to the

2The static parameter ct is here considered to be a scalar, following Tokuda et al. (2013).
In practice, ct is a vector and the window coefficient matrix W is adjusted accordingly.
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order of the acoustic features, which typically are static, delta, and delta-deltas.

In this case, the window around ct spans the full utterance, and this relationship

can be written as:

O = WC (2.21)

Because the relationship between O and C is deterministic via W , maximiza-

tion of Equation 2.17 is equivalent to:

Cmax = argmax
C
N (WC;µqmax ,Σqmax) (2.22)

= (W>Σ−1qmax
W )−1W>Σ−1qmax

µqmax (2.23)

Equation 2.23 can be determined by setting the partial derivative of the log of

Equation 2.22 to 0 (Tokuda et al., 2000). Note that all terms on the right hand

side of Equation 2.23 are known. They correspond to the utterance-level mean

and covariance matrices for the full set of parameters, and W corresponds to the

utterance-level matrix expressing the relationship between static and dynamic

parameters.

This method takes into account how speech parameters vary across time, while

generating the most likely observation sequence given the learned models. This

Maximum Likelihood Parameter Generation (MLPG) algorithm provides

smoother trajectories of speech parameters that result in an increased quality of

synthetic speech (Tokuda et al., 1995, 2000; Tomoki and Tokuda, 2007) . Given

the generated acoustic parameters, the synthesis process can be completed with

a vocoder, as described in Section 2.2.1.

2.2.3 Deep neural network based speech synthesis

Artificial neural networks (ANN) have regained popularity in recent years in a

wide variety of applications, such as computer vision (e.g. Krizhevsky et al.

(2012)), speech recognition (e.g. Hinton et al. (2012)), natural language pro-

cessing (e.g. Collobert and Weston (2008)), among others. These are powerful



Chapter 2. Statistical parametric speech synthesis 27

models that capture the complex interactions between input and output features,

given enough training data.

An artificial neural network can be seen as a collection of small processing

units called nodes. Each node receives a set of inputs and produces an activation,

which is then passed along to other nodes. Typically, nodes can be grouped

into layers, and information is passed along the network through the connections

between the nodes.

A broad distinction of ANN types can be made by considering whether the

network connections are cyclic or acyclic. The group of models that allow cy-

cles in the network are often called recurrent networks. Some examples include

Elman networks (Elman, 1990), Jordan networks (Jordan, 1990), recursive net-

works (Goller and Kuchler, 1996), or long short term memory (LSTM) networks

(Hochreiter and Schmidhuber, 1997). A distinct type of ANNs does not allow

network connections to form cycles. These acyclic models are referred to as

feedforward networks and include, among others, perceptrons (Rosenblatt, 1958),

autoencoders (Hinton and Zemel, 1994), or convolutional neural networks (LeCun

et al., 1995). A very common type of feedforward neural network is the multi-

layer perceptron (MLP, Rumelhart et al. (1985)). Given its wide usage, it is

common in the literature to refer to it simply as a feedforward neural network.

The techniques investigated throughout this thesis rely on MLPs, therefore the

following sections provide further intuition regarding this model.

Forward propagation

An MLP arranges nodes into layers, with connections being made between each

layer in the network. Information is then passed through the network in a feed-

forward manner. Each node receives information from all the nodes in the layer

before and passes its activation to the layer after. A multilayer perceptron can be

seen as a function f(x) mapping input to output vectors. The parameters of the

function are determined by the weights associated with the connections between

nodes. This process is illustrated in Figure 2.5.

We are given an input vector x = [x1, x2, ..., xN ]>. For the k-th node in

the first hidden layer, we have the corresponding connection weights wk =
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Figure 2.5: Multilayer Perceptron (MLP) with three hidden layers. Weight matrices

W are represented by the connections between nodes. The output layer uses a linear

activation function, which is omitted in the illustration. The model parameters λ

correspond to the weight matrices W and bias vectors b. Inputs to the network are

denoted by ~xt and outputs by ŷt

[w1, w2, ..., wN ]> and a bias scalar bk. For that node, we compute its pre-activation

zk and its activation hk as:

zk =
N∑
n=1

wknxn + bk = w>k x+ bk (2.24)

hk = a(zk) (2.25)

where a denotes the activation function associated with the k-th node. In this

thesis the activation function is constant throughout the network. In all cases,

we use the hyperbolic tangent function tanh defined as:

tanh(z) =
e2z − 1

e2z + 1
(2.26)



Chapter 2. Statistical parametric speech synthesis 29

The hyperbolic tangent function has the property of squashing an infinite

domain to the finite range (−1, 1). It is a nonlinear function, which gives the

model the ability to learn nonlinear mappings between inputs and outputs. Other

alternatives for activation functions include the sigmoid, rectifier (with rectified

linear units (ReLUs), Nair and Hinton (2010)), or linear activation functions,

among others.

For all nodes in a hidden layer, we can organize connection weights and biases

as a weight matrix and bias vector, respectively. The pre-activation vector zl and

the activation vector hl of the l-th hidden layer then become:

zl = W lhl−1 + bl (2.27)

hl = a(z) (2.28)

where W l is the connection weight matrix and bl is the bias vector associated

with the l-th hidden layer, and we let h0 = x.

Note that, from Equation 2.27, the pre-activation for the hidden layer is an

affine transformation of the hidden layer’s input. The nonlinear activation func-

tion is then applied element-wise to the transformed input. Stacking multiple

hidden layers allows the model to learn complex nonlinear transformations of the

input vectors.

The output vector ŷ of a multilayer perceptron is given by an output layer,

placed after the hidden layers. The implementation of this layer is dependent on

the type of problem that is being modeled. For regression problems, the output

layer is similar to the hidden layers, but a is defined to be a linear activation

function (e.g. identity). This is the case for all systems trained in the context

of this thesis. Other choices of output layers are also available. For example, a

binary classification problem may use a logistic sigmoid activation function, while

a classification problem with more than two classes uses a softmax activation

function, giving a probability distribution over all possible classes.

Given the output layer, it is now possible to compute the output vector from

the input vector. Forward propagation involves computing the activation vec-

tor for each layer sequentially. We let out be the network’s output layer and



Chapter 2. Statistical parametric speech synthesis 30

we now let hl be a function denoting the activation vector of the l-th hidden

layer. The entire forward pass can then be implemented as a nested function of

L hidden layers and 1 output layer.

ŷ = f(x, λ) = out(hL(· · ·h2(h1(x)))) (2.29)

The model parameters λ are the weight matrices and the bias vectors associ-

ated with each layer:

λ = (W 1, b1,W 2, b2, · · · ,W L, bL,W out, bout) (2.30)

where W out and bout are the weight matrix and bias vector associated with the

output layer.

Parameter initialization and objective function

In the previous section, we assumed we know the model parameters λ. This

section describes how these are learned from a set of data points. We are given T

input and output pairs, which we call the training data: {(xt,yt) : 1 ≤ t ≤ T}.
We define initial values for all parameters λ. Weight matrices W are initialized

by sampling independently from a Gaussian distribution with a mean of 0 and

a standard deviation of 1√
nin

, where nin is the number of nodes connecting to

the current layer. Bias vectors b are initialized to 0. This approach reflects the

implementation of the Merlin Neural Network Toolkit (Wu et al., 2016), although

other initialization recipes have been proposed (Glorot and Bengio, 2010).

For the training set, the overall error of the model is computed by taking the

average squared error over all samples:

E =
1

2T

T∑
t=1

∥∥f(x)t − yt
∥∥2 (2.31)

The problem can then be set as the selection of the optimal λ such that the sum

of squares error is minimized. Under certain conditions, it can be shown that a

least squares approximation is equivalent to maximization of the likelihood of the

training data (Bishop, 2006, §3.1.1). This least squares approximation is suitable
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for regression tasks, such as the one used in this thesis. Other approaches can

also be used depending on the task, such as the cross-entropy objective function

commonly used for classification problems.

Backward propagation

Multilayer perceptrons are differentiable operators and they can be optimized

with gradient descent. The gradient descent process is an iterative optimization

algorithm that finds the local minimum of a function. It involves finding the

gradient of the function, or the partial derivative of the function with respect to

each of its parameters: ∇E = ∂E
∂λ

. Updating each parameter in the direction of

the negative of the gradient will result in a movement in the direction of a local

minimum.

The process begins by finding the partial derivative of the error function with

respect to the output layer parameters. Because we can conceptualize the forward

pass as a nested function, we can apply the chain rule repeatedly to find the

partials of the intermediate functions. This can be repeated for every parameter

as we move backward through each layer in the network.

The partial derivative of the least squares error function with respect to the

generated output vector can be computed as:

∂E

∂ŷ
= ŷ − y (2.32)

Each layer contains an activation function. For a regression task, the output

layer typically contains a linear activation function, whose derivative is 1. The

derivative of the nonlinearity used in this thesis is:

∂ tanh(x)

∂x
= 1− tanh(x)2 (2.33)

Finally, the pre-activation for each layer is computed as an affine transforma-

tion, as given in Equation 2.27. The partial derivatives for each of those terms

is:
∂z

∂x
= W ,

∂z

∂W
= x,

∂z

∂b
= 1 (2.34)
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Let us say we wish to compute the partial derivative of the error function

w.r.t the weight matrix W out of the output layer:3

∂E

∂Wout

=
∂E

∂ŷ

∂ŷ

∂zout

∂zout
∂Wout

(2.35)

= ((ŷ − y) ◦ a′out(zout))h>L (2.36)

= (ŷ − y)h>L (2.37)

where the operator ◦ denotes the Hadamard product, or element-wise multiplica-

tion. Equation 2.35 applies the chain rule to unroll each of function components

of the objective function. And Equation 2.36 replaces each term based on the

definitions given above. Because the activation function a in the output layer is

the identity function, its derivative is dropped.

The same process can be repeated to the last hidden layer L of the network.

We can let δout = ∂E
∂ŷ

∂ŷ
∂zout

= (ŷ−y), as these terms will reappear in the remaining

layers of the network.

∂E

∂WL

=
∂E

∂ŷ

∂ŷ

∂zout

∂zout
∂hL

∂hL
∂aL

∂aL
∂WL

(2.38)

= [(W>
L δout) ◦ a′L(zL)]h>L−1 (2.39)

= δLh
>
L−1 (2.40)

Defining δl for each layer l, we observe that there is a recursive pattern in

the parameter update process. This pattern allows us to compute the partial

derivatives of lower layers based on pre-computed terms of top layers. Because

the update process begins at the output layer with the error function and moves

backwards to the input layer, this method is referred to as backpropagation

(Rumelhart et al., 1985; Williams and Zipser, 1995).

3Common derivations of the backpropagation algorithm are typically given in terms of indi-
vidual parameters. We choose instead to follow a derivation in matrix form as it proceeds layer
by layer and it reflects common software implementations. We follow the rather intuitive and
simple explanation given in https://sudeepraja.github.io/Neural

https://sudeepraja.github.io/Neural
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Parameter update and stochastic gradient descent

Given the gradient of the error function, the model parameters λ can be updated

as:

v = −α∇E (2.41)

λ̂ = λ+ v (2.42)

where α denotes a step size in the direction of steepest descent, commonly termed

the learning rate.

In difficult problems, the weight space governing the objective functions tends

not to be smooth. With gradient descent, it is easy to get suck in shallow local

minima. This can be averted with the addition of a momentum term (Plaut

et al., 1986), which essentially adds an acceleration term to the weight updates

based on earlier iterations. The term v during the i-th weight update is defined

as vi = mvi−1−α∇E, where m is the momentum term and typically 0 ≤ m ≤ 1.

During optimization, it is possible for the learned model to learn spurious

patterns from the training data. This typically leads to poor generalization to

unseen data and it is said that the model overfits the training data. Regular-

ization methods add a penalty for complex solutions, thus forcing the training

process to prefer simpler solutions. In this thesis, we use L2 regularization, which

penalizes solutions employing larger weights. We define the regularization error

term as

Ereg =
1

2

∑
i

w2
i (2.43)

where wi corresponds to each model parameter in λ. With the addition of this

complexity penalty, the objective function can be redefined as:

E = Etrain + βEreg (2.44)

where Etrain corresponds to Equation 2.31 and β is a small positive constant

weighting the regularization error term. The complexity term is differentiable

and is included in the estimation of the gradient of the redefined objective.
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A very similar approach uses L1 regularization, which, although very similar to

L2, tends to prefer sparse weights rather than smaller weights. A different method

of regularization has been proposed with dropout (Srivastava et al., 2014), which

forces the model to ignore randomly selected hidden units during training.

So far the training process defined the objective function as computing an

error measure over all training samples. Stochastic Gradient Descent (SGD) is

similar to gradient descent, but the gradient is approximated on a single training

sample. However, using a single example can lead to a high variance in the

estimated gradients. To avoid such large variances, most implementations instead

use a subset of training samples, termed a mini-batch. Mini-batch Stochastic

Gradient Descent therefore estimates the errors over B samples in a mini-batch

and updates the parameters accordingly. A full pass over the training set of T

samples, or epoch, consists of T
B

parameter updates.

The optimization process continues iteratively over several epochs until a stop-

ping condition is met. This condition may be a pre-defined maximum number of

epochs or an error measurement on a validation set. If validation error is logged

over epochs, loss of generalization may be identified when this error increases.

Choosing to stop training based on such a condition is often referred to as early

stopping.

Deep neural networks for speech synthesis

Recent approaches using neural networks for statistical parametric speech synthe-

sis aim to overcome the limitations given by the conventional modeling of speech

parameters with decision trees and Gaussian distributions. There has been a con-

siderable amount of earlier work using neural networks for speech synthesis (e.g.

Weijters and Thole (1993); Tuerk and Robinson (1993); Gerson et al. (1996); Son-

ntag et al. (1997); Chen et al. (1998)). However, recent improvements in software,

hardware, and data availability have caused a resurgence of these methods.

In 2013, various studies appeared investigating neural networks for statisti-

cal parametric speech synthesis. The feedforward neural network described in

this section was proposed as a replacement for decision tree clustering and Gaus-

sian Mixture Models (Zen et al., 2013). Generative models such as restricted
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Figure 2.6: Speech synthesis with feedforward neural networks. Illustration inspired

by Figure 1 in Zen and Senior (2014). The duration model generates phone-level

durations Tp from phone-level labels ~xp. The acoustic model generates frame-level

parameters for T frames in the utterance. Note that the neural network used for the

acoustic model is applied repeatedly to each frame-level input ~xt.

Boltzmann machines (RBMs) or deep belief networks (DBN) have also been in-

vestigated. These studies have proposed such models as replacements for GMMs

at the leaves of decision trees (Ling et al., 2013b,a) or as replacements for decision

trees and GMMs entirely (Kang et al., 2013). In Fernandez et al. (2013), DBNs

are used in conjunction with Gaussian Processes (GPs) to model fundamental

frequency.

In Zen and Senior (2014), deep mixture density networks (MDNs, Bishop

(1994)) were proposed as alternatives to the conventional multilayer perceptron.

MDNs combine mixture models and artificial neural networks through the use of

a mixture density output layer. Recurrent architectures have also been proposed,

such as long short term memory (LSTM) networks (Fan et al., 2014). More

recently, direct modeling of waveform samples was proposed with convolutional

neural networks with the Wavenet approach (van den Oord et al., 2016).

In this thesis, we use a framework such as the one described in Zen et al.

(2013) and Wu et al. (2015), illustrated in Figure 2.6, as this is the method

implemented in the Merlin Neural Network Toolkit (Wu et al., 2016). During

the data preparation stage, Hidden Markov Models with decision tree clustering
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and Gaussian distributions are inferred for the training data, as described in

Section 2.2.2. The learned models are then used to force align the data at the

state-level, from which frame alignment can be inferred. Given this alignment

between linguistic features and acoustic parameters, a feedforward neural network

called the acoustic model can be trained using mini-batch SGD as described in

the previous sub-section. An additional neural network called the duration model

may be trained in a similar fashion to model phone durations. Recently, rather

than using a separate model for duration, Henter et al. (2016) included an extra

output parameter in the acoustic model representing phone transition probability.

At synthesis time, for unseen data, the duration model estimates context-

dependent phone durations in terms of the number frames. For each frame, the

acoustic model then generates vocoder parameters, which are then smoothed with

MLPG and post-filtered. Finally, a vocoder is used to synthesize the waveform.

This framework for DNN-based speech synthesis is different to the HMM-

based framework discussed in the previous section, but one that has consistently

led to improvements in the quality of synthetic speech (Zen et al., 2013; Wu

et al., 2015; Hashimoto et al., 2015; Qian et al., 2014). In order to understand

the differences between paradigms, Watts et al. (2016) proposed a continuum

between HMM-based and DNN-based speech synthesis systems. It was observed

that the differences leading to clearer improvements in synthetic speech were

the change in regression model (decision trees to deep neural networks) and the

change in modeling unit (HMM states to speech frames).

Throughout this thesis, we adopt feedforward neural networks for the acous-

tic model rather than recurrent neural networks. This choice was made as these

models are quick to converge and still achieve good performance when compared

with recurrent ones (Wu et al., 2016). With respect to model topology, this the-

sis uses an architecture similar to the benchmarked DNN system in Wu et al.

(2016). This is a model with 6 hidden layers, each containing 1024 nodes with

the hyperbolic tangent function. This topology has been adopted by a variety of

other studies (Wu et al., 2015; Valentini-Botinhao et al., 2015; Hu et al., 2015;

Watts et al., 2015; Merritt et al., 2016; Henter et al., 2016). The choice of hyper-

parameters does not appear to contain any special properties, but it is presumed
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to be widely used as it is the default configuration of the Merlin Toolkit. Informal

experimentation has observed minor fluctuations of acoustic parameters in terms

of objective measures by exploring various model settings, but these were not

expected to be large enough to affect subjective evaluations. Nonetheless, we ac-

knowledge the importance of formally investigating alternative hyperparameter

settings (number of layers, neurons, activation functions, etc)̇, as well as more

complex architectures (RNN, LSTM, B-LSTMs). We leave such investigations

for future work (see Section 10.3).

We further adopt the implementation of the Merlin neural network toolkit

to jointly model source and filter parameters. The assumption that source and

filter are independent in vocoding and modeling leads to naturalness limitations

(Henter et al., 2014). Furthermore, the parameters themselves are not entirely

independent, as it was shown that f0 can be predicted from MFCCs (Milner and

Shao, 2007). Watts et al. (2016) investigated the effect of modeling spectrum

and f0 with separate networks and have found no improvements. For these rea-

sons, in this thesis, we jointly model all acoustic parameters. The techniques that

are explored here, although aimed at improving the generation of fundamental

frequency, may have the ability to positively affect the remaining acoustic pa-

rameters. This is particularly relevant for the methods discussed in Chapter 9,

which use f0 and energy to learn vector representations for statistical parametric

speech synthesis.

The framework implemented by the Merlin Neural Network toolkit (Wu et al.,

2016) uses a separate model for duration and acoustics parameters, illustrated

in Figure 2.6. In this framework, f0 and duration are modeled and generated

independently. Although recent work has investigated joint modeling of f0 and

duration (Ronanki et al., 2015; Henter et al., 2016), the standard approach still

remains the separate modeling of duration and acoustic parameters. In this thesis,

we adopt this standard approach, and we limit our scope to the acoustic model,

focusing particularly on fundamental frequency. Some of the methods proposed

could be extended to the duration model, such as those of Chapter 9. However,

we leave this extension to duration modeling for future work, and we propose

additional lines of research in this direction in Section 10.3.
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2.3 Evaluation of speech synthesis

2.3.1 Objective evaluation

In statistical parametric speech synthesis, objective evaluations compare a se-

quence of acoustic parameters generated from a model with a reference sequence

extracted from a waveform. Most objective metrics are distance measures between

the two sequences. The underlying assumption is that the distance between the

sequences is meaningful in terms of the quality of the model. That is, the smaller

the distance between generated and reference parameters, the better the model.

However, it is not always the case that objective measures are representative

of the quality of the acoustic parameters. Averaging over datasets might dilute

otherwise perceptible acoustic differences between systems. In terms of intona-

tion, for example, generated f0 contours might still considered natural and yet

different from the available references (see Section 3.1 for further details regarding

this claim).

Objective measures can still be useful as they are fairly easy to compute

and they facilitate comparisons over a large number of systems. In the main

chapters of this thesis, the proposed hypotheses are initially discussed with respect

to objective measures and a large number of systems. Those results are later

validated with subjective evaluations on selected systems.

In this section, we give a brief overview of the main measures used in this

work. When appropriate, these are computed according to the Merlin Neural

Network Toolkit (Wu et al., 2016) and the equations presented here reflect that

implementation. Note that objective metrics are sensitive to the vocoder used. In

this thesis, we use STRAIGHT (Kawahara et al., 1999, 2001) and these measures

are computed accordingly.

Mel cepstral distortion (MCD) measures the distance between two se-

quences of mel-cepstral coefficients. We are given a reference vector x and a

generated vector x̂ of mel-cepstral coefficients. MCD is then computed as an

extension of the standard Euclidean distance:
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MCD =
α

T

T∑
t=1

√√√√ D∑
d=2

(xd(t)− x̂d(t))2 (2.45)

α =
10
√

2

ln10
(2.46)

where T is the total number of frames in the data set and D is the dimensionality

of the mel-cepstral coefficients extracted at each frame. In this thesis, we use 60

coefficients per speech frame. Following Kominek et al. (2008), the constant α is

included for historical reasons. Note that we exclude the first coefficient, com-

monly associated with the energy of a speech frame. This prevents the distance

measure from being influenced by loudness, which may affect some datasets, such

as non-professional audiobooks (Kominek et al., 2008).

Band aperiodicity distortion follows the same intuition (and notation)

as MCD. For each frame, a D-dimensional vector of parameters is extracted to

represent the source excitation signal. In this thesis, we extract 25 band aperiod-

icities and we compute the distortion between natural and predicted parameters

as:

BAP =
1

10T

T∑
t=1

√√√√ D∑
d=1

(xd(t)− x̂d(t))2 (2.47)

In terms of objective measures related to the f0 signal, we have used the

root-mean-square error and Pearson’s product-moment correlation. These are

standard measures in the literature, although alternatives have been suggested

(Clark and Dusterhoff, 1999). For the purpose of this thesis, these measures

are computed at utterance-level on voiced-frames only and the average of all

utterances in the test set is reported.4

For a given utterance u, root-mean-square error of the f0 signal is deter-

4At the time of the writing of this thesis, the Merlin Neural Network Toolkit computes
f0 -related objective measures over all frames in the test set. The method used in this thesis
reflects an earlier implementation that takes the average over utterances.
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mined as

RMSEu =

√√√√ 1

N

N∑
n=1

(x(n)− x̂(n))2 (2.48)

where N is the total number of reference voiced frames for utterance u. Given a

total of U utterances in the dataset, the mean value is computed as

RMSE =
1

U

U∑
u=1

RMSEu (2.49)

Similarly, the correlation of the f0 signal is determined as

ru =

∑N
n=1(xu(n)− x̄u)(x̂u(n)− ¯̂xu)√∑N

n=1(xu(n)− x̄u)2
√∑N

n=1(x̂u(n)− ¯̂xu)2
(2.50)

CORR =
1

U

U∑
u=1

ru (2.51)

where x̄u and ¯̂xu denote the mean value of the reference and the generated f0

signal for utterance u, respectively. Note that f0 correlation is here implemented

as Pearson’s product-moment correlation coefficient. Intuitively, this measure

captures the similarity between the overall shape of generated and reference f0

signals, which is particularly relevant for intonation. While distance-based objec-

tive measures aim to be minimized, the signal’s correlation aims to be maximized.

Finally, in some chapters of this thesis, voicing error is reported as the

percentage of frames that were assigned the incorrect voicing label.

2.3.2 Subjective evaluation

Objective evaluation methodologies are often used as an indication of the quality

of synthetic speech, especially when a large number of systems is being developed,

and reference acoustic parameters are available. However, it is widely agreed that

subjective listening tests still remain the standard method for the evaluation of

synthetic speech. The subjective evaluation of synthetic speech is not a trivial

task and it still remains an active area of research. According to a recent overview
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of the Blizzard challenge (King, 2014), most system evaluations focus on natu-

ralness and intelligibility. With developments in speaker adaptation and voice

conversion techniques, speaker similarity has been adopted as a third dimension

in the evaluation of speech synthesis systems.

Subjective evaluation methods are able to provide more accurate quality mea-

surements than objective evaluation methods, but they also tend to be costly. Lis-

tening tests typically require a large investment in terms of time and resources,

as they require well-designed experiments and the recruitment of human partici-

pants. Various factors should also be considered when designing and conducting

listening tests for the evaluation of synthetic speech. For example, factors known

to affect the results are the type of test, the question being asked, or the type and

number of listeners. See Wester et al. (2015) for further details and a complete

checklist of issues to consider when designing listening tests.

Although we acknowledge the wide variety of listening tests proposed, in this

brief survey we focus on the methods used in this thesis. We provide some detail

on well-established protocols for the evaluation of naturalness, with additional

notes on methods used for the evaluation of intelligibility and comprehension.

Naturalness evaluation

Protocols for the evaluation of naturalness may be grouped into referenced meth-

ods, in which a synthetic sample is judged against an available natural reference,

and non-referenced methods, in which synthetic samples do not have an avail-

able reference and are instead judged against the listener’s expectations. The

term naturalness refers to a property that is associated with naturally occurring

speech, as produced by human speakers. It has been observed that this property

heavily contributes to the overall quality of synthetic speech (Hinterleitner et al.,

2011a).

MOS (Mean Opinion Score) is a non-referenced evaluation methodology from

the field of speech coding (ITU-T Recommendation P.800, 1996). Because lis-

teners are not given a speech reference to anchor their judgments, this method

is also termed absolute category rating (ACR) (as seen in (ITU-T Recommenda-

tion P.800, 1996)). In a MOS evaluation, listeners are presented with one speech
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sample at a time. They are then asked to judge that sample on a 5-point scale

in terms of quality, where 1 indicates bad and 5 indicates excellent. The question

asked might instead focus on a different speech attribute, such as naturalness or

pleasantness.

Variations of the MOS test are also possible, depending on the hypothesis

being investigated. DMOS (Differential MOS) is a referenced version of the MOS

test. Listeners provide their judgments for individual samples with respect to

a reference sample. CMOS (Comparison MOS) presents the listeners with two

randomized samples from different conditions. The task is to judge the second

condition with respect to the first in terms of quality on a 6-point scale ranging

from -3 (much worse) to 3 (much better). This method allows participants to

give two answers with a single judgment – which sample is better and by how

much (ITU-T Recommendation P.800, 1996).

MUSHRA (MUltiple Stimuli with Hidden Reference and Anchor, ITU-R

Recommendation BS. 1534-1 (2015)), like the MOS test, is an evaluation method-

ology inherited from the speech coding literature. In this approach, listeners are

presented with all conditions at once and they are tasked with ranking them with

respect to each other and an explicit reference. A copy of the explicit reference

is hidden within the remaining experimental conditions, which fixes an upper

bound for the listeners’ judgments. Typically, in the MUSHRA test, an anchor

such as low-pass filtered speech sets a lower bound. However, in speech synthesis,

defining a lower bound is not a trivial task. The low-pass filtered speech used in

speech coding, for example, is not applicable, since it remains a natural version of

the speech utterance when compared to a generated version. When MUSHRA is

applied in the context of speech synthesis, the anchor is normally dropped (Hen-

ter et al., 2014). Listeners are asked to rank each utterance on a 100-point scale,

where 1 indicates a poor match to the reference and 100 indicates an identical

match to the reference.

In the MUSHRA paradigm, listeners provide absolute scores measuring the

similarity of synthetic samples with respect to a reference. But because all con-

ditions are rated simultaneously, multiple comparisons across conditions are also

provided. This implicitly creates a ranking of systems, which might be prefer-
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able over an absolute score. Ranking scores can be interpreted as a preference

judgment, while absolute scores can be interpreted as a measurement of that

preference.

There may be experimental scenarios where side-by-side comparisons are use-

ful, but references are not appropriate. A MUSHRA evaluation with neither

reference nor anchor may be considered a misuse of the term (ITU-R Recommen-

dation BS. 1534-1, 2015), although the paradigm is still valid. With the lack of

proper terminology, these methods have been called hybrids between MUSHRA

and preference tests (Henter et al., 2016) or between MUSHRA and MOS tests

(Dall et al., 2016a).

Perhaps the simplest evaluation methodology is the AB test, also called a

preference test. In this paradigm, listeners are presented with randomized pairs

of samples and are asked to express their preference with respect to some speech

attribute. The most common question under this framework asks listeners to

select the sample which sounds more natural. Depending on the experimental

design, listeners may be given a third option indicating that they have no pref-

erence. If listeners are only given the option to choose between A and B, then

it is common to refer to this method as a forced preference test. Variations of

the preference test may include a reference, commonly termed an ABX test. In

this case, the judgment expresses the listener’s preference with respect to the

reference.

A similarity evaluation aimed at understanding perceptual similarities across

multiple systems may also be used (Mayo et al., 2005). Note that the term sim-

ilarity is here used somewhat freely. Any referenced methodology is, in a sense,

a measurement of the degree of perceptual similarity between an experimental

and a reference condition. An alternative term for this method may be a “same

or different” task (Merritt, 2016). In this evaluation paradigm, two randomized

speech samples are presented to the listener. Unlike other methods, these are not

two instances of the same utterance. Listeners are instructed to judge whether

the two samples are similar or different in terms of naturalness. All responses are

pooled to form a dissimilarity matrix, where each cell in the matrix corresponds

to a condition pair. Each condition pair is represented by the number of times the
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two conditions were judged to be different. The dissimilarity matrix can then be

embedded onto a lower-dimensional space with multidimensional scaling (MDS,

Borg and Groenen (2005); Mayo et al. (2005)). The distance between condi-

tions in the lower dimensional space is meaningful in terms of the the perceptual

distance given by the test participants. This method can be useful for clear vi-

sualizations of the perceptual differences of multiple systems. This evaluation

paradigm is used in Section 5.4 of this thesis.

Intelligibility and comprehension evaluation

Other well-established evaluation methodologies are also available, focusing in-

stead on the intelligibility and comprehension of synthetic speech. A survey of

the main findings until 2004 can be found in Winters and Pisoni (2004). We

do not go into detail regarding these alternatives, as they are not used directly

by this thesis, but we will mention some of them briefly. Evaluation methods

focusing on intelligibility measure how comprehensible speech is under noisy con-

ditions. Noise can be interpreted as originating from an external source (such

as background noise from a train, car, etc.) or as artifacts from the synthesis

process. Examples of evaluation methods may focus on individual words, such as

the modified rhyme test (MRT, House et al. (1965)). Listeners may also be asked

to transcribe utterances, from which word error rates can be computed. But

because listeners can often infer words from contextual information, semantically

unpredictable sentences (SUS) may be used (Benôıt et al., 1996).

Alternative methods to evaluate the comprehensibility of synthetic speech use

post-perceptual tasks. Participants are first asked to listen to synthetic speech

samples and then to carry out simple tasks. These tasks may take the form of

word-monitoring, multiple-choice questions, summarization or verification tasks

(following the prior work review presented in Wester et al. (2016)).

Although the methods described so far are useful in the measurement of in-

telligibility and naturalness, they have drawn criticism because they do not eval-

uate a system under real-world conditions (Taylor, 2009, §17.2.2). It has been

mentioned that listening tests commonly used in speech synthesis lack ecologi-



Chapter 2. Statistical parametric speech synthesis 45

cal validity (King, 2014) – the property that the conditions in which a study is

conducted approximate real-world conditions. Addressing this problem, a recent

approach has allowed users to interact with an avatar in order to evaluate syn-

thetic speech (Mendelson and Aylett, 2017). However, the authors did not find

the results to be different to those from an audio-only evaluation paradigm.

On the methods adopted by this thesis

This thesis investigates the modeling of prosody for statistical parametric speech

synthesis, focusing on intonation through the modeling of fundamental frequency.

Although some methods have been proposed specifically for prosody and audio-

book scenarios (Hinterleitner et al., 2011b), we mostly rely on traditional evalu-

ation protocols for the naturalness of speech.

The decision to prefer these methods was made for several reasons. Firstly, the

methods used in the evaluation of naturalness described in this section, although

with known issues, are well-established throughout the speech community. These

are effective in the measurement of clear differences between systems and suitable

for the techniques proposed here. The techniques developed in the context of

this work mostly focus on a general improvement of generated f0 signals with

respect to a given reference. Furthermore, within each chapter, hypotheses are

clearly defined, and the choice of listening test is motivated by those hypotheses.

Although this thesis does not directly investigate the evaluation of speech prosody

for speech synthesis, we do acknowledge the need for such novel methods.

The work of Hinterleitner et al. (2011b) is appropriate for the evaluation of

complete systems, as is the case of the Blizzard challenge (King, 2014). In this

thesis, we evaluate very specific speech attributes (such as intonation) in care-

fully designed experimental conditions. Simpler methodologies, such as an AB

or MUSHRA paradigm, are preferable in such scenarios. Throughout the thesis,

when appropriate, further comments and discussion regarding evaluation method-

ologies will be given. For example, Section 5.6.3 of Chapter 5 provides further

comments on referenced and non-referenced tests such as MOS and MUSHRA.

And Chapter 10 conducts a final evaluation of the main contributions and pro-

vides concluding thoughts on the adopted evaluation protocols.



Chapter 3

Speech prosody and fundamental

frequency

This chapter presents a brief overview of speech prosody, providing the theoretical

foundations motivating the main claim of this thesis and the three sub-problems

underlying it. A summary of earlier work in the context of statistical parametric

speech synthesis is given with respect to those three sub-problems: representations

of fundamental frequency, hierarchical modeling, and representations of linguistic

contexts.

3.1 Speech prosody

3.1.1 Introduction

Information that is conveyed through the speech signal spans a variety of domains.

These are of a linguistic, para-linguistic, and extra-linguistic nature (Obin, 2011).

Information belonging to the linguistic domain expresses variation that is related

to the underlying linguistic structure of an utterance. These may reflect lexical,

syntactic, semantic, or discursive constraints. For example, lexical constraints

relate, in some languages, to lexical or word stress. The syntax of the utterance,

although not entirely, may affect how the speaker signals the grouping of units

in the speech signal. Semantic constraints are related to focus or cohesion, while

46
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discursive constraints reflect the overall organization of the discourse.

The para-linguistic and extra-linguistic domains may be grouped under a more

general non-linguistic domain. Para-linguistic information is related to the con-

text of the communication in which the speech utterance is being produced. For

example, listeners may make assumptions regarding the intent or the emotional

state of the speaker. Extra-linguistic information introduces variation that is nor-

mally identified with the speaker as an individual, such as physiological (gender

or age), idiolectal, or geographical characteristics.

These domains span multiple dimensions of variation within the speech sig-

nal. We may, for example, conceptualize a speech utterance as corresponding to

an abstract sequence of phones over time. Each of the dimensions underlying

the speech domains places constraints on the signal. Even though the identity

of the phones in the sequence is not necessarily changed, the overall information

contained in the speech signal may be manipulated in a variety of ways. For ex-

ample, modal constraints (e.g. declarative, exclamative, interrogative sentences),

emotion (e.g. happy, sad, neutral, ...), and age all have an effect on the speech

corresponding to the same sequence of phones.

The study of prosody is concerned with the linguistic domain and with the

description of aspects of the speech signal that are not directly explained by

observing individual segments such as vowels or consonants in isolation from

one another.1 Such aspects stem from the mechanisms by which the speaker

organizes the speech signal into a coherent structure of linguistic units (syllables,

words, phrases, or utterances). Similarly, prosody is concerned with the aspects

of the speech signal used to assign and signal the prominence of such linguistic

units. Because these aspects are conveyed through acoustic or perceptual units at

higher levels than the segment, prosody is widely agreed to be suprasegmental

(Shattuck-Hufnagel and Turk, 1996; Nooteboom, 1997; Wennerstrom, 2001; Ladd,

2008; Obin, 2011; Xu, 2012; Turk and Shattuck-Hufnagel, 2014).

Traditionally, there are two perspectives on how to approach prosodic phe-

nomena (Shattuck-Hufnagel and Turk, 1996; Nooteboom, 1997). A phonetic ap-

1The term segment may be somewhat ambiguous, as it may be applicable to any clearly
identifiable unit in speech. We follow the traditional usage in phonetics and phonology, where
segment refers to phones or phonemes.
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proach is centered on the acoustic signal, focusing particularly on speech variation

that cannot be directly related to individual segments. These observations made

of speech data may then be related to information conveyed by the speech do-

mains described above or to overall theories of prosodic structure. A phonological

approach, on the other hand, focuses instead on the definition of higher-level

abstract constituents and general patterns of prominence within them, which

have the potential to be realized phonetically in the spoken utterance. Shattuck-

Hufnagel and Turk (1996) propose a third approach that finds a compromise

between the two views, which is related to the claim of Nooteboom (1997) that

both approaches essentially have the same goal, but different starting points.

While the phonetic view starts from the acoustic signal and generalizes to ab-

stract representations, the phonological view supports its proposed abstractions

with the acoustic signal.

3.1.2 Prosodic structure

When listening to spoken utterances, listeners may perceive that linguistic units

are naturally grouped together, with levels of prominence within them. These

groups, called prosodic constituents, define the prosodic structure of the speech

utterance. Whether approaching prosody from a phonological or phonetic point

of view, researchers aim to understand this prosodic structure and how it may be

signaled acoustically.

Prosodic structure is composed of two parts. The first part, called the prosodic

constituent structure, describes how prosodic constituents are signaled acousti-

cally and how they relate to each other hierarchically. The second part, the

prosodic prominence structure, is concerned with a description of the several de-

grees of prominence within prosodic constituents.

In terms of acoustic properties, there are three main correlates of prosodic

structure: fundamental frequency, duration, and intensity. Fundamental fre-

quency (or f0 ) refers to the vibrations of the vocal folds over time. This is a

physical property that can be estimated directly from the acoustic signal. It is

useful to separate it from its perceptual (or psychoacoustic) counterpart, often
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termed pitch. For example, speakers, limited by physical constraints, are bounded

to an f0 range, but listeners can perceive the same melody or pitch contour across

speakers. These two distinct speech dimensions can be related to the production

and perception of speech. These are a physical (or acoustic) dimension – that of

f0, intensity, and duration – and a perceptual (or psychoacoustic) dimension –

that of pitch, loudness, and quantity, respectively.2

The remainder of this section will provide a brief discussion of prosodic con-

stituent and prosodic prominence structures as well their key acoustic correlates.

We will focus primarily on fundamental frequency, as it is the acoustic property

investigated throughout this thesis.

Prosodic constituent structure

It is believed that prosodic constituent structure is a linguistic universal

(Turk and Shattuck-Hufnagel, 2014), with different languages selecting differ-

ent constituents and levels from a universal hierarchy to signal different types

of linguistic information. Units may be formed at multiple levels and incorpo-

rate constituents of differing length. For example, syllables or words may form

constituents at lower levels and phrases may form constituents at higher lev-

els. Regardless of the type of constituent, it is generally agreed that prosodic

structure is hierarchical in nature (Turk and Shattuck-Hufnagel, 2014). That is,

constituents are typically formed by constituents at lower levels.

There is some debate regarding the definition of constituents and how they

interact hierarchically. Shattuck-Hufnagel and Turk (1996) provide an overview

of four proposed hierarchies of prosodic constituency, with a selection illustrated

in Figure 3.1. At lower levels, constituents such syllables, feet, or prosodic words

may be identified. Although their exact definition may vary, these relate to

acoustic phenomena such as lexical stress and pitch accents. At higher levels,

phonological or intonational phrases may be identified. These are studied with

respect to phrasal stress, boundary tones, or with respect to the overall syntactic

2We use here the terminology of (Ladd, 2008, §1.1), although we replace the terms physical
and psychophysical with acoustic and psychoacoustic, respectively. Furthermore, we note that
Hirst and Di Cristo (1998) use the term length as the psychoacoustic counterpart of duration
and add spectral tilt and timbre as additional acoustic and psychoacoustic correlates of prosody.
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Intonational Phrase

Utterance

Phonological Phrase

Clitic Group

Prosodic Word

Foot

Syllable

(Utterance)

Intonational Phrase

Major Phrase

Minor Phrase

Mora

Prosodic Word

Foot

Syllable

(smallest constituents)

(largest constituents)

Figure 3.1: Two views of the prosodic hierarchy, inspired by Figure 2 of Shattuck-

Hufnagel and Turk (1996). The left column illustrates the views of Nespor and

Vogel (1986) and Hayes (1989) and the right column the views of Selkirk (1980) and

Selkirk (1986). Horizontal lines indicate correspondence between the two views and

parenthesis indicate common representations for a prosodic constituent.

structure of the sentence. Although syntax does impose some constraints on

prosodic structure, it is generally believed that the two are not isomorphic (see

Shattuck-Hufnagel and Turk (1996) for an overview of this claim).

Figure 3.1 defines the utterance as the highest level constituent. However,

researchers have also investigated prosodic phenomena at a supra-sentential level.

Such studies focus on finding evidence for supra-sentential prosodic constituents

that can be related to theories of discourse structure (Grosz and Hirschberg,

1992; Hirschberg, 1993; Sluijter and Terken, 1993; Swerts and Geluykens, 1994;

Nakatani et al., 1995; Wichmann, 2000; Wennerstrom, 2001; Smith, 2004; Tyler,

2013).

Prosodic prominence structure

Although no less important, prosodic prominence structure has received less

attention than prosodic constituency (Shattuck-Hufnagel and Turk, 1996). As in
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the case of prosodic constituency, prominence is thought to be organized hierar-

chically (Turk and Shattuck-Hufnagel, 2014), with different levels of prominence

identified within words or phrases.

One level of prominence occurs with syllables. For example, considering the

sentences ‘to present a case’ or ‘to buy a present ’, we may perceive that, in the

words present, the location of the prominent syllable varies (e.g. preSENT and

PREsent). In this case, the prominent syllable is said to carry word stress (also

lexical stress). Syllables which are stressed may be called strong, while unstressed

syllables may be called weak.

A different level of prominence occurs with phrases. For example, we may

perceive two realizations of a phrase, such as ‘to PRESENT a case’ or ‘to present

a CASE’. The capitalized word is perceived to be more prominence than the

remaining words. The word that is perceived to be more prominent is said to

carry phrasal stress (also termed phrasal accent or sentence stress).

Note that, in the example above, even though the phrasal stress is shifted

from ‘present’ to ‘case’, the word stress is still perceived. That is, one of the

syllables in ‘present’ is still perceived to be more prominent than the other. This

hierarchical prominence structure may be conceptualized using grid-like (Hayes,

1983) or tree-like (Liberman and Prince, 1977) representations.

Prominence encodes information regarding the structure and role of the utter-

ance in the discourse (Wagner and Watson, 2010). The presence of prominence

is influenced by factors related to discourse and information structure. For ex-

ample, it is argued that prominence may be placed on units that are new (also

called non-given or unpredictable in some studies) in the context in which the

utterance is spoken (see Wagner and Watson (2010) for a brief review).

Acoustic correlates of prosodic structure

Studies investigating prosodic constituent structure are normally concerned with

acoustic effects at constituent boundaries. These effects are expressed by a vari-

ety of acoustic correlates, such as duration, fundamental frequency, voice quality,

or articulation degree (Turk and Shattuck-Hufnagel, 2014). It has been argued

that durational cues are a reliable indicator of the presence and strength of con-
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stituent boundaries. This can be observed primarily through initial lengthening,

final lengthening, and pauses. Initial lengthening occurs in the onset of the first

syllable after a boundary, while final lengthening occurs in the rhyme of last syl-

lable before a boundary (Wightman et al., 1992; Turk and Shattuck-Hufnagel,

2007). Related to lengthening, the presence of pauses is a strong indicator of con-

stituent boundaries. Furthermore, it was also shown that the degree of lengthen-

ing (segment duration or pause) correlates well with the strength of the boundary

(Wagner and Watson, 2010). Other acoustic correlates of prosody boundaries are

voice quality (Dilley et al., 1996) – e.g. breathy, pressed, tense, creaky, etc.;

segment articulation degree (Fougeron and Keating, 1997) – e.g. hypo or hyper

articulation; and, to a lesser extent, intensity (Wagner and Watson, 2010).

Prominence structure is signaled through similar acoustic properties, with

the addition of intensity and spectral tilt. It is agreed that the overall effects are

different than those signaling prosodic constituency (Wagner and Watson, 2010;

Turk and Shattuck-Hufnagel, 2014). For example, in terms of duration, final

lengthening in constituent boundaries increases the duration of the nucleus and

then the coda of the syllable, while prominence primarily lengthens the nucleus

and then onset of the syllable (Turk and Shattuck-Hufnagel, 2014). The study of

Kochanski et al. (2005) showed evidence that intensity and duration constitute

good predictors of prominence in syllables, with intensity being the stronger of the

two. In terms of spectral tilt, stressed syllables tend to show an even intensity

distribution across the frequency spectrum, while unstressed syllables tend to

have lower intensities for higher frequencies (Gussenhoven, 2004).

But perhaps more importantly in the context of this thesis, fundamental fre-

quency is a key acoustic correlate of both constituent boundaries and prominence.

A pitch accent is a local pitch event associated with a unit, such as a syllable,

signaling some level of prominence relative to the surrounding units in the utter-

ance (Ladd, 2008). These events may be represented in terms of two primitive

pitch targets, denoted High (L) or Low (L). The acoustic realization of such

events tends to be fairly local, although their presence and form may be deter-

mined by the context in which the utterance is produced (relating it to discourse

and information structure).
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Pitch events at the edges of constituents are termed boundary tones. In

the English language, these are commonly associated with intonational phrases.

These pitch excursions may be used to signal semantic, pragmatic, or discursive

information (Wagner and Watson, 2010), such as indicating surprise, cuing turn-

taking, or, for example, to differentiate declarative/interrogative sentences.

Additionally, it is commonly accepted that pitch events are scaled relative to

each other (Wagner and Watson, 2010). Accents falling on individual words may

be downstepped in order to signal overall constituent structure. This may be seen,

for example, in structures such as A but (B and C) and (A and B) but C (Féry and

Truckenbrodt, 2005). In this case, the second constituent may carry a lower pitch

event relative to the first constituent to signal their dependency. Fundamental

frequency may also be used to signal boundaries by resetting the overall pitch

reference line, in what is often termed f0 reset, which is a phenomenon related

to boundary tones. Also, related to f0 resets, it can be observed that f0 tends to

drift downward over long constituents, an effect often called f0 declination.

Finally, it should be noted that the acoustic correlates of prosody are also

affected by short-term variation associated with the segment, often called micro-

prosody. Voiceless segments, for example, lack explicit f0 values, and high

vowels generally have higher f0 than low vowels. Similarly, some segments -

e.g. vowels, fricatives - are intrinsically longer than others - e.g. plosives, liquids

(Nooteboom, 1997).

The acoustic correlates of prosody can therefore be observed at various tem-

poral levels. For example, micro-prosodic variation at the segment level, lexical

stress at the syllable level, boundary tones or phrase stress at the phrase level,

or overall f0 declination at the sentence level. Quoting other work, Wu et al.

(2008) suggest that this phenomenon can be regarded as “small ripples on top of

big waves”.3 This conceptualization of the acoustic signal as ripples on waves on

swells on tides motivates some of the choices made throughout this thesis.

3The origin of this idea appears to have come from Bolinger (1964) (reprinted in Bolinger
(1972)). The epigraph of this thesis was taken from Bolinger (1972), but formatted in a similar
fashion to that of Ladd (2008).
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3.1.3 Intonation

Intonation is concerned with the tonal patterns used to convey discourse mean-

ing and to signal phrasal structure in speech communication (Gussenhoven, 2004).

Although on occasion used interchangeably with the term prosody, the term in-

tonation, in its narrower definition, refers to suprasegmental effects focusing on

non-lexical characteristics (Ladd, 2008). This notion excludes factors such as

lexical stress or word tone and focuses instead on phenomena such as pitch ac-

cents, boundary tones, or overall declinations. These phenomena are often called

supra-lexical or post-lexical (Hirst and Di Cristo, 1998). According to Ladd

(2008), this definition of intonation also excludes paralinguistic phenomena (such

as the speaker’s involvement in the speech communication).

Intonation is thought to have a phonological organization with tonal units

describing pitch events such as High (H), Low (L), and their combinations (Jun,

2006). This view of intonation is the foundation of the Autosegmental-Metrical

(AM) model of intonational phonology (Ladd, 2008). This model assumes a

discrete sequence of phonological tones that can be aligned with syllables or

placed at the edges of phrases. The tones aligned with syllables indicate relative

prominence levels between the various syllables and describe pitch accents and

phrasal accents. The tones placed at phrase boundaries are associated with

prosodic constituents and describe boundary tones.

A common framework for the annotation of tonal events and constituent

boundaries is the Tones and Break Indices (ToBI, Silverman et al. (1992)). This

framework defines two tiers of annotation. The first tier, called the tonal tier

is associated with tonal events describing accents and boundary tones, while the

second tier, called the break indices, indicates the strength of each word boundary

(Ladd, 2008). Proposed initially for the English language, various extension to

ToBI have since been made in an effort to describe the intonational phonology of

multiple languages (Jun, 2006).

Alternative approaches to ToBI have also been proposed. For exam-

ple, INTSINT (INternational Transcription System for INTonation, Hirst and

Di Cristo (1998)) is a coding system that describes relative pitch movements
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within a speech utterance. Intuitively, this can be compared to the narrow pho-

netic transcription of the utterance, rather than the broad phonological transcrip-

tion of ToBI (Hirst and Di Cristo, 1998). However, Hirst et al. (2000) linked this

transcription system to a distinct intermediate representation level, placed be-

tween a phonetic and a deep phonological level, which the authors call a surface

phonological representation level. Note that the ToBI framework requests the hu-

man annotators to transcribe the intonational contour with respect to multiple

acoustic cues by listening to the speech waveform. INTSINT, on the other hand,

is a data-driven method relying only on fundamental frequency.

3.1.4 The lack of reference problem

One of the fundamental problems of prosody is based on the knowledge that it

is an inherently phonological and phonetic phenomenon without a clear ortho-

graphic representation. This has been called the lack of reference problem

(Xu, 2012), which is of particular importance for text-to-speech synthesis. Al-

though some knowledge may be inferred from punctuation or other diacritics, this

knowledge remains incomplete and ambiguous. For example, the segmental se-

quence may be easily inferred from the orthographic representation. This can be

achieved, among other approaches, with lexica or G2P modules (see Section 2.1.1

for details). But devising a representation for the prosodic layer still remains a

challenging problem. Annotation with protocols such as ToBI is often costly, and

high inter-annotator agreement is not always achieved. The automatic detection

of prosodic events is not a trivial task and often requires annotated databases for

training, which are task- or domain-dependent (Rosenberg, 2009, 2010).

3.1.5 On the scope of this thesis

Given the complex interaction of acoustic properties, levels, and theoretical frame-

works in speech prosody, a work such as this thesis is necessarily limited in scope.

For this reason, throughout this thesis, we adopt a purely phonetic approach

to the the modeling of speech prosody. This limits our attention to one of the

its acoustic correlates: fundamental frequency, although we do acknowledge the
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importance of the remaining acoustic properties. In statistical speech synthesis,

fundamental frequency is represented explicitly by the acoustic parameters ex-

tracted from the vocoder (see Section 2.2.1). This is in contrast, for example, to

intensity, which is represented implicitly via the spectrum parameters. Addition-

ally, duration and fundamental frequency are normally modeled separately with

independent acoustic and duration models (see Section 2.2.3). For these reasons,

it is convenient to limit our investigations to the acoustic model, focusing partic-

ularly on fundamental frequency. We leave extensions of the proposed techniques

to the remaining acoustic correlates of prosody for future work.

Furthermore, we acknowledge the necessity of a good understanding of dis-

course for a more natural generation of prosody in speech synthesis. However,

the techniques explored in this work are bounded by the sentence and make no

attempt to move to discourse level.

The choices made throughout this thesis are motivated by the general be-

lief that prosody is suprasegmental and that the acoustic signal is affected by

information conveyed at multiple levels (e.g. phones, syllables, words, phrases).

We do not use an annotation protocol for the representation of prosodic events,

although automatically predicted ToBI labels are used as input features in the

HMM-based systems presented in Chapters 4 and 5. Additionally, the notion

of phrase is used throughout this work. Phrase boundaries are inferred by the

front-end of a text-to-speech system and may correspond to the intonational or

phonological phrases of Figure 3.1.

The scope of this thesis is derived from its main claim: More natural synthe-

sis of fundamental frequency can be achieved by exploring complex interactions of

suprasegmental units in terms of linguistic representations, acoustic representa-

tions, and the mapping between them, and its three sub-problems.

The conceptualization of acoustic effects being realized as ripples on top of

waves motivates the work presented in Chapters 4, 5, and 6. In this work, para-

metric representations of the f0 signal at multiple levels are investigated, for

example, in an effort to separate micro-prosodic variation (say, ripples) from the

overall sentence declination (say, the waves). The understanding of the acoustic

signal as a collection of segmental and suprasegmental phenomena motivates the
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investigations presented in Chapters 7 and 8. These chapters investigate hierar-

chical architectures that decouple the two components (segmental and supraseg-

mental) and explore different integration methodologies. Finally the lack of ref-

erence problem motivates the work presented in Chapter 9, which proposes a

method for the representation of suprasegmental units such as syllables and words.

3.2 Suprasegmental modeling of fundamental fre-

quency

In this section, we provide a brief overview of recent approaches to the modeling

of fundamental frequency in the context of text-to-speech synthesis. There is,

of course, a long and well-established tradition of such methodologies. However,

a complete review of these approaches is beyond the scope of this thesis, and

work reviewed here is selected and limited to the recent approaches that have

influenced our contributions.4

We prioritize recent work that focuses on representations of suprasegmental

models of f0 in the context of statistical parametric speech synthesis. This is

divided according to the three sub-problems that guide this thesis, proposed in

Section 1.1. In general, an attempt is made to divide previous work according to

those sub-problems, although at times these are not clearly separable and may

intersect. The overview presented here is brief and mostly focused on identifying

general trends and observations that directly or indirectly influenced this thesis.

Detailed reviews of relevant contributions are left to the introductory sections of

subsequent chapters.

4Further reading may begin with Yu (2012), which provides a general overview of f0 modeling
and generation in the context of HMM-based speech synthesis. More general sources include
(Taylor, 2009, Ch. 6) and Rao (2012), which describe general approaches to predict prosodic
information from text. Additionally, Chapter 9 of Taylor (2009) gives an overall description on
the synthesis of prosody.
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3.2.1 Representations of fundamental frequency

The stylization of speech prosody is the process of decomposing a prosodic signal

into several components: those that contain variation meaningful to the listener

and those that account for residual variation (Obin, 2011). This is typically

applied to fundamental frequency in an effort to find a compact representation of

the signal. The prosodic signal is transformed in such a way that it is described

at various temporal domains. These domains may reflect, for example, f0 effects

associated with multiple linguistic levels.

Various methods to stylize the f0 signal have been proposed. The TILT into-

nation model (Taylor, 1998) was designed to identify intonational events (such as

pitch accents and boundary tones) and represent them with interpretable param-

eters. MoMel (Modeling Melody, Hirst et al. (2000)) does not make assumptions

regarding linguistic units, therefore it does not require a priori segmentation and

identifies prosodic targets (inflections in f0 signal) which may span temporal do-

mains of variable length. The ProsoGram (Mertens, 2004) method is perceptually

motivated and captures tonal events over syllable-sized segments. The recently

proposed SLAM (Stylization and LAbeling of speech Melody, Obin et al. (2014))

is a data-driven method that identifies a set of discrete units representing shapes

of an acoustic signal over various temporal domains. This method has been

proposed for the analysis of speech prosody and it is not necessary invertible,

although it has been applied to speech synthesis (Dall and Gonzalvo, 2016).

The Fujisaki model of intonation (Öhman, 1967; Fujisaki and Hirose, 1982;

Fujisaki, 1983; Fujisaki et al., 1998) is a production-motivated approach to the

decomposition of fundamental frequency. The signal identifies two components:

the phrase or global component, assumed to be an impulse response, and the

accent or local component, assumed to be a stepwise function. This approach

inspired additional production-based methods, such as the atom-decomposition

method (Honnet et al., 2015).

Parametric decomposition methods are a subset of a larger body of

methodologies that have been proposed for the stylization of prosodic signals.

With these methods, the signal is decomposed into a set of elementary contours,
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which may be associated with macro- and micro-prosodic variations (Obin, 2011).

This decomposition is typically performed with a pre-defined set of time-varying

functions: Legendre polynomials (Hsia et al., 2010), cubic spline functions (Wu

et al., 2008; Qian et al., 2011), or cosine functions (Discrete Cosine Transform,

Teutenberg et al. (2008)).

Previous work has compared several parametric stylization methodologies,

either informally (Obin, 2011) or formally (Wu et al., 2008; Qian et al., 2011). In

most of these analyses, the Discrete Cosine Transform (DCT) has been shown to

be the most promising method. Common applications of the DCT in the context

of speech synthesis are focused on suprasegmental modeling of speech prosody

(Teutenberg et al., 2008; Latorre and Akamine, 2008; Wu et al., 2008; Qian et al.,

2011; Obin et al., 2011; Stan and Giurgiu, 2011; Ronanki et al., 2016; Ijima et al.,

2017).

More recently, the Continuous Wavelet Transform (CWT) has been used to

represent the f0 signal for speech synthesis (Vainio et al., 2013; Suni et al., 2013).

The DCT and the CWT are of particular interest to this thesis, as they are used

in the work presented in Chapters 4, 5, 6, and 9. The following sections provide

further intuition and applications regarding these two methods.

3.2.1.1 The discrete cosine transform (DCT)

The Discrete Cosine Transform (DCT) was introduced in the context of f0 mod-

eling and synthesis by Teutenberg et al. (2008). The DCT stylizes a contour

of N discrete samples with a weighted sum of zero phase cosine functions. The

signal is represented by N DCT coefficients C = [c1, c2, c3, ...cN ]. If x is a signal

of length N , then:

c(k) = w(k)
N∑
n=1

x(n)cos(
π(2n− 1)(k − 1)

2N
) (3.1)

where

w(k) =


√

1
N

if k = 1√
2
N

if 1 < k ≤ N
(3.2)
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The DCT is an invertible transform. The signal can be reconstructed with

the Inverse Discrete Cosine Transform (IDCT).

x(n) =
N∑
k=1

w(k)c(k)cos(
π(2n− 1)(k − 1)

2N
) (3.3)

With all coefficients, the IDCT is able to perfectly reconstruct the signal.

However, one of the advantages of the transform is the decomposition of the

initial signal into macro and micro variations (Obin, 2011). Most of the energy

(macro variation) is stored in the initial coefficients, which often leads to an

approximation of the signal with minimal loss by truncating the representation

to the first M coefficients.

Most applications of the DCT to the f0 signal for speech synthesis are con-

cerned with finding a parametric representation over long temporal spans. This

allows a fixed-sized compact representation of the signal, which then facilitates

its integration with hierarchical models. Typically, these approaches have used

the first 5–7 DCT coefficients (Teutenberg et al., 2008; Latorre and Akamine,

2008; Wu et al., 2008; Qian et al., 2011; Obin et al., 2011; Stan and Giurgiu,

2011; Ronanki et al., 2016; Ijima et al., 2017).

3.2.1.2 The continuous wavelet transform (CWT)

Wavelets have been used in a variety of applications in speech processing (Farouk,

2014). One of the main ideas behind wavelets is the analysis of a signal according

to scale or resolution. A wavelet is a short waveform with finite duration averaging

to zero. Larger windows are used to observe the long-term or coarser features of

the signal, while smaller windows are used to observe the short-term variations.

To provide an intuition for the wavelet transform, it is common to compare

it with the Fourier Transform. The latter uses the sine and cosine functions at

various frequencies and measures their similarity with the input signal using a

constant-sized window. It outputs a set of coefficients that represent the contri-

bution of each frequency to the signal, essentially transforming the signal from the

time domain to the frequency domain. Wavelet transforms are similar in princi-

ple. Instead of the sine and cosine functions, the Continuous Wavelet Transform
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Figure 3.2: Mexican hat wavelet at various levels of resolution. Left figure illustrates

ψ(t), corresponding to scale 1. Middle figure shows ψ(t/2), corresponding to scale

2. Right figure illustrates ψ(t/4), corresponding to scale 4.

(CWT) uses transformations of one analyzing function, commonly referred to as

the mother wavelet (Daubechies et al., 1992; Fugal, 2009; MATLAB, 2014).

The mother wavelet can be chosen or developed according to the analysis type

or the input signal, and various families of wavelets have been used, such as the

Haar, Daubechies, or Coiflet families (Graps, 1995). In speech synthesis, recent

work has used the Mexican hat wavelet as the mother wavelet for f0 processing

(Vainio et al., 2013; Suni et al., 2013; Sanchez et al., 2014; Suni et al., 2017). The

Mexican hat wavelet is given by:

ψ(t) =
2√

3π1/4
(1− t2)e

−t2

2 (3.4)

Two transformations of the mother wavelet are allowed: scaling and transla-

tion. The first transformation, scaling (or dilation) is the stretching or compres-

sion of the wavelet in time. An example is shown in Figure 3.2, where the mother

Wavelet (left) is scaled by a factor of 2 (middle), and by a factor of 4 (right).

Translation is the shifting of the wavelet in time.

For a given scale, the CWT measures the similarity between the signal and
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the scaled wavelet. It then shifts the wavelet in time by one sample and repeats

the process. The output is an MxN matrix, where M is the number of scales

and N is the length of the signal. The CWT coefficient at scale a and position b

is given by:

C(a, b; f(t);ψ) = a−1/2
∫ ∞
−∞

f(t)ψ(
t− b
a

)dt (3.5)

where f(t) is the input signal at time t and ψ is the analyzing wavelet. It is

easy to see that the three parameters that affect the coefficients are the scale,

the position, and the analyzing wavelet. By varying a and b, we obtain all CWT

coefficients.

Note that even though this transform is referred to as continuous, it still

operates on a discrete signal. The name merely distinguishes it from other wavelet

transforms, such as the Discrete Wavelet Transform (DWT). One main difference

is how the CWT is allowed to transform the mother wavelet. When scaling it,

the CWT allows any input as long as a ≥ 1, and, when translating it, the CWT

typically shifts the wavelet smoothly one data point at a time.

As the scale gets smaller, the more compressed the wavelet is, thus being more

susceptible to higher frequencies and short-term variation of the input signal.

Similarly, as the scale increases, the more stretched the wavelet is, thus making

it more susceptible to lower frequencies and long-term variations of the signal.

Therefore, there is an inverse relationship between scale and frequency, which

is reflected in the output of the transform. Typically, higher frequencies are

captured by the smaller scales, and lower frequencies are captured by the larger

scales. This provides some intuition as to how the wavelet transform can be seen

as a filtering technique.

Scaling the wavelet is essentially varying the size of the analysis window. As

mentioned above, larger windows (scales) capture long-term coarse features, while

smaller windows (scales) capture short-term finer features. This shows how the

transform can be seen as a windowed transform. Figure 3.2 exemplifies the usage

of the mother wavelet at different scales. On the left, the mother Wavelet is not

scaled, and corresponds to scale 1, while the other two sub-figures illustrate the

wavelet scaled by some factor. The larger the scaling factor, the more stretched
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is the wavelet, thus enlarging the window size and capturing coarser features of

the input signal.

If the Continuous Wavelet Transform is to be used as a stylization method for

analysis, modeling, and synthesis, it must be invertible. A reconstruction formula

is suggested by Suni et al. (2013). Assuming the signal has been decomposed into

ten scales i = [1, ..., 10], with each pair of neighboring scales one octave apart,

then each scale can be approximately recovered by:

C ′i(x) = Ci(x)(i+ 2.5)−5/2 (3.6)

The original signal can then be approximately reconstructed by summing over all

scales:

f̂0(x) =
10∑
i=1

C ′i(x) (3.7)

Figure 3.3 illustrates the 10 scale decomposition strategy proposed by Suni et al.

(2013). This leads to another interpretation of the CWT when applied to the f0

signal. The stylization method separates the signal into its lower frequencies (or

macro-prosodic variation) and its higher frequencies (or micro-prosodic variation).

In speech synthesis, the use of the CWT is not new, but there has been

renewed interest. Most work with the CWT used the Mexican hat wavelet to

analyze the f0 signal (Kruschke and Lenz, 2003; Vainio et al., 2013; Suni et al.,

2013; Sanchez et al., 2014). Earlier work used the CWT to estimate phrase and

accent commands under a generalized superpositional model (Kruschke and Lenz,

2003) or as a stylization method (Wang and Narayanan, 2005). More recently,

the CWT was proposed as a method for the analysis of prosody (Vainio et al.,

2013; Suni et al., 2017), as a representation of f0 in HMM-based speech synthesis

(Suni et al., 2013), for annotation and control of prominence in speech synthesis

(Vainio, 2014; Vainio et al., 2015), and as a parameterization method for f0 in

voice conversion (Sanchez et al., 2014).

This thesis contributes to signal representation approaches with work pre-

sented in Chapters 4, 5, and 6. These chapters inherit the findings of methods

using the discrete cosine transform and the continuous wavelet transform for the
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Figure 3.3: Continuous Wavelet Transform (CWT) applied to the f0 signal using

the 10-scale decomposition strategy proposed by Suni et al. (2013). Top sub-figures

illustrate the raw and linearly interpolated f0 signal in Hz. Remaining sub-figures

illustrate the 10 CWT components sorted by increasing frequency of the mother

Wavelet. Red vertical lines indicate word boundaries.
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representation of f0 in statistical parametric speech synthesis.

3.2.2 Hierarchical models

Because prosody is agreed to be hierarchical and suprasegmental, methods fo-

cusing on modeling prosodic variations at various temporal domains have been

proposed. These approaches attempt to move away from the short-term models

that are often used in statistical parametric speech synthesis. Although termi-

nology varies, there is often a distinction between two types of methods: joint

(or asynchronous) models and superpositional (or synchronous) models.

Joint models jointly describe prosodic variations over several temporal do-

mains. The signal is modeled separately at different levels with no interaction

between them. Typically, the syllable or phrase levels are added to the traditional

phone level. For parameter generation, the lower level parameters are maximized

under the constraint of the higher level models. However, these approaches are

weakened by using the same signal across linguistic levels. For example, models at

the lower levels (such as phones) are still influenced by acoustic effects associated

with long temporal domains (such as overall sentence declination). Similarly,

models at higher levels (such as syllables or phrases) still have to account for

micro-prosodic variation.

For statistical parametric speech synthesis, earlier joint models were primar-

ily based on a stylization of the f0 signal over long temporal domains using the

Discrete Cosine Transform (Teutenberg et al., 2008; Latorre and Akamine, 2008;

Wu et al., 2008; Qian et al., 2011; Obin et al., 2011; Latorre et al., 2013). These

have been proposed in the context of HMM-based speech synthesis. Long tem-

poral units are typically defined over syllables, although some work has focused

on longer units, such as phrases (Teutenberg et al., 2008; Obin et al., 2011).

For DNN-based speech synthesis, early work used a recurrent neural network

with recurrences defined at syllable and word levels (Chen et al., 1998). Recently,

joint hierarchical models in various forms have been proposed. In the approach

of Ronanki et al. (2016) the f0 signal at syllable-level is represented with the

DCT and clustered to find a small set of f0 templates. These templates are pre-
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dicted with LSTMs and used as input to a frame-level acoustic model. A different

method focuses instead on the input features and defines a top-down hierarchi-

cal encoder-decoder at word, syllable, and phone levels (Ronanki et al., 2017).

The work of Wang et al. (2017a) proposes a model for f0 using feedback links

defined over multiple linguistic units. These links transfer aggregated quantized

f0 features over phones and syllables.

Superpositional models consider f0 to have an additive structure with its

components influenced by separate factors. In this class of models, signal effects

are estimated separately at various temporal domains, and then superimposed, in

an additive or in a multiplicative fashion. Note that we use the term “superposi-

tional” quite loosely here. Traditionally, superpositional models refer to variants

of the Generalized Superpositional Model used in the context of concatenative

speech synthesis such as Fujisaki (2008), Van Santen and Möbius (2000), or Bailly

and Holm (2005).5 This type of models are also called overlay in Ladd (2008)

or superimpositional in Taylor (2009). In statistical parametric speech synthesis,

other types of additive models of f0 have been proposed, and therefore we adopt

the terminology of Obin (2011), which uses “superpositional” to describe this

type of modeling approach.

Various additive models have been proposed in the context of HMM-based

speech synthesis (Teutenberg et al., 2008; Zen and Braunschweiler, 2009; Hsia

et al., 2010; Lei et al., 2010; Yin et al., 2014). For DNN-based speech synthesis,

the work of Yin et al. (2016) investigated deep neural networks structured hier-

archically using a cascaded (or joint) and parallel (or superpositional) approach.

Although duration is beyond the scope of this thesis, it is worth noting some

work investigating hierarchical models of duration (Gao et al., 2008; Obin et al.,

2009; Qian et al., 2011). These models have shown a decrease in prediction er-

ror, although subjective evaluations were disappointing. Only one approach has

shown perceptual differences, and only when changing speaking rate (Zen et al.,

2012). Remaining work has either failed to show significant improvements (Qian

5We omit from this overview the large body of work exploring superpositional models for
concatenative speech synthesis, although we do acknowledge their influence on more recent
approaches.
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et al., 2011) or did not conduct perceptual experiments (Obin et al., 2009). How-

ever, the results of Qian et al. (2011) suggest that simultaneous modeling of f0

and duration over various temporal domains might be able to have a stronger

impact on the naturalness of synthetic speech than modeling either of them sep-

arately in those temporal domains.

In the modeling of f0, studies showing a comparison of short temporal domains

(e.g. phones, syllables) and long domains (e.g. words, phrases, utterances) seem

to agree that there is little to gain by considering long domains (Wu et al., 2008;

Zen and Braunschweiler, 2009; Obin et al., 2011; Stan and Giurgiu, 2011; Qian

et al., 2011). These studies claim that after including large temporal domains,

no relevant improvements were observed either over the frame-level baseline or

over the shorter domains. However, some work using long domains has claimed

significant improvements (Hsia et al., 2010), but they do not appear to report

any explicit analysis of temporal domains.

It is possible that the minimal influence of long domains in these studies is a

consequence of not having the proper text-derived features at those levels. The

vast majority of the work summarized here is limited to the features convention-

ally used in statistical parametric speech synthesis, which are mostly related to

the length and position of syllables, words, or phrases. Hierarchical modeling

is covered in this thesis by Chapters 7 and 8, where we investigate a cascaded

and parallel deep neural network architectures with various types of linguistic

features.

3.2.3 Representations of linguistic contexts

Prosody is an inherently phonological and phonetic process that operates at a

suprasegmental level. However, it suffers from what has been termed the lack

of reference problem (Xu (2012), see also a brief discussion on p. 55). This is

of particular importance for text-to-speech, as acoustic parameters are generated

from textual information. In most systems, prosodic phenomena are inferred

from modules learned from small annotated datasets or from a set of shallow

suprasegmental features. Examples include lexical stress, pitch accents, intona-
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tional phrase breaks, ToBI labels, or part-of-speech tags, which are predicted from

individual modules in the front-end. The remaining features mostly describe the

position of syllables, words, or phrases in the utterance. See Appendix A for a

full description of linguistic features.

In data-driven systems, this process may lead to noise in the representation

of linguistic contexts. When dealing with large databases, such as audiobooks,

manual labeling of higher-level features tends to be costly. This is because the

automatic annotation of prosodic information is not a trivial problem and is

prone to error (Rosenberg, 2009, 2010). For this reason, researchers often make

use of automatic labeling for the annotation of the training data: for example, by

using pitch accent or intonational phrase boundary predictors trained on small,

potentially out-of-domain, datasets. Such methods inevitably generate prediction

errors and cause mismatches between acoustic events in the training data and

their annotated labels, which is harmful to the acoustic model used for synthesis.

Earlier work has shown that using manually-annotated labels is largely pre-

ferred to using automatically-annotated labels at training and test time (Watts

et al., 2010). This is also observed when dealing with the more realistic scenario

of using manual labels at training time and automatic labels at test time.

The impact of high-level features was also investigated by Watts et al. (2010),

but limited to the system using manual labels. It was observed that good annota-

tion of pitch accents, boundary tones, and location of intonational phrase bound-

aries all contribute to the naturalness of synthetic speech. However, Watts et al.

(2010) did not explicitly evaluate the impact of the features on the automatically-

labeled system, although it was hypothesized that their importance would not be

as strong.

A separate study has investigated the relative impact of features at various

linguistic levels on the naturalness of HMM-based synthetic speech (Cernak et al.,

2013). The authors repeatedly added contextual features (phone, syllable, word,

phrase, and utterance) to their system. It was observed in a listening test that

most of the naturalness associated with synthetic speech is given by features at

the lower levels, mostly related to phones and syllables. It was mentioned in the

study that manually-annotated training data was used, which contradicts some
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of the observations reported by Watts et al. (2010), although details regarding

the origin and type of annotation are omitted.

These studies suggest that contextual factors describing prosodic phenomena

can be beneficial for speech synthesis, provided they match the training data and

achieve good accuracy at synthesis time. This, however, may still pose a problem

when using very large databases. especially found data such as audiobooks. The

studies of Cernak et al. (2013) and Watts et al. (2010) use experimental datasets

with approximately 1 hour of speech data for training.

One approach is to use signal-driven labelling to annotate the training data,

while using predicted labels for synthesis. Two recent studies have adopted this

approach, either using automatically annotated ToBI labels (Tesser et al., 2013)

or SLAM, a data-driven stylization method (Dall and Gonzalvo, 2016).

Alternatively, researchers have sought to learn data-driven representations of

higher-level linguistic units. In terms of discrete representations, some studies

focused on specific prosodic phenomena such as prominence or emphasis (Badino

et al., 2009, 2012), or on additional text representations through parsing (Obin

et al., 2010; Dall et al., 2016b).

With an increased interest in deep neural networks, recent approaches be-

gan to explore high-dimensional continuous-valued representations of contexts.

These methods have been used as input to intermediate front-end modules, such

as phrase-break predictors (Watts et al., 2011; Vadapalli and Prahallad, 2014;

Watts et al., 2014), or as direct input to text-to-speech systems (Lu et al., 2013;

Wang et al., 2015a, 2016b,a; Ijima et al., 2017). Because continuous-valued repre-

sentations are typically data-driven, some work has investigated them as replace-

ment of expensive knowledge-based features, typically POS tags (Watts et al.,

2011, 2014; Wang et al., 2015a).

It is worth noting the work of Wang et al. (2016b), which investigated the

impact of text-based continuous representations at various linguistic levels on the

naturalness of synthetic speech. The authors found that phone and syllable-level

representations added little to the acoustic model, while phrase-level representa-

tions gave the most promising results. This is an interesting observation, as most

hierarchical models described earlier found that longer-temporal levels have less
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impact on the quality of synthetic speech. At higher levels, sentence-level control

vectors learned jointly with the acoustic model have also been proposed (Watts

et al., 2015).

This thesis contributes to this body of work with the methods proposed in

Chapter 9. A data-driven method to learn vector representations of words and

syllables based on acoustic counts is proposed, and these are used directly as input

to a DNN-based acoustic model for text-to-speech synthesis. This method uses

acoustic evidence from the training data for the acoustic model, thus also being

signal-driven, and reducing the mismatch between context labels and training

data.



Chapter 4

A multi-level representation of

fundamental frequency

This chapter is an extended version of the work described in “A multi-level rep-

resentation of f0 using the continuous wavelet transform and the discrete cosine

transform” (Ribeiro and Clark, 2015) presented at ICASSP 2015.

We propose a representation of f0 using the Continuous Wavelet Transform

(CWT) and the Discrete Cosine Transform (DCT). The CWT decomposes the

signal into various scales of selected frequencies, while the DCT compactly rep-

resents complex contours as a weighted sum of cosine functions. The proposed

approach has the advantage of combining signal decomposition and higher-level

representations, thus modeling low-frequencies at higher linguistic levels and high-

frequencies at lower linguistic levels.

4.1 Introduction

Standard techniques in statistical parametric speech synthesis are still focused

on short-term approaches, such as Multi-Space Distribution HMMs (MSD-HMM,

Tokuda et al. (2002)) or Continuous F0 HMMs (CF-HMM, Yu and Young (2011)).

These approaches typically focus on short-term variations and capture supra-

segmental effects somewhat implicitly through context dependent models.

In order to leverage the suprasegmental characteristics of prosody, some work

71
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has started to explore multiple temporal domains in the modeling of f0 (Teuten-

berg et al., 2008; Latorre and Akamine, 2008; Qian et al., 2011; Obin et al.,

2011). These approaches typically model f0 over larger units, such as syllables or

phrases, adding them to the traditional phone-level models. To represent f0 at

these higher levels, the Discrete Cosine Transform (DCT) is used, which is able

to compactly represent complex contours.

Common findings within these approaches show that, although multi-level

models improve synthesized speech, higher levels contribute little to the natu-

ralness of synthetic speech. However, in most of these approaches there is no

attempt to separate the long-term from short-term effects of f0.

Recently, the Continuous Wavelet Transform (CWT) has been proposed for

the analysis and modeling of f0 within an HMM-framework (Suni et al., 2013).

In the work of Suni et al. (2013), some improvements were seen in the accuracy of

f0 modeling, but these effects were still being modeled only locally at frame-level.

Conversely to this CWT model, in the class of models using the DCT, the same

signal is modeled both on lower and higher levels. That is, long-term intervals

still have to deal with short-term effects and short-term models have to deal with

long-term effects.

In this work, we propose to explore a multi-level representation of f0 by com-

bining both transforms. This allows us to represent f0 by first decomposing it into

several scales and then model each at their hypothesized respective levels. That

is, short-term effects are modeled with short-term units and long-term effects are

modeled with long-term units.

4.2 Multi-level representation

4.2.1 Signal decomposition into multiple linguistic levels

This section details the steps applied to the f0 signal in order to achieve the

proposed representation. The following illustrates the chain of processes from the

f0 signal to the multi-level representation, with each of the following subsections

providing further details:
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f0 → normalization→ continuous wavelet transform→ discrete cosine transform

Signal normalization

Normalization of f0 signal follows the steps of Vainio et al. (2013) and Suni et al.

(2013). The signal is first transformed to the logarithmic scale. To reduce artifacts

from the f0 tracker, values below two standard deviations of the mean of log-f0

are removed. Unvoiced regions are then linearly interpolated and re-introduced

into the original log-f0 signal. Finally, the interpolated log-f0 contour is reduced

to zero mean and unit variance, as this is required by the wavelet transform.

Continuous wavelet transform

To decompose f0 into multiple linguistic levels, we use a wavelet based decompo-

sition approach identical to that described in Suni et al. (2013), with 10 wavelet

scales, each one octave apart. To reduce the number of scales, adjacent scales

were combined, which resulted in a 5 scale representation of the signal, each ap-

proximately 2 octaves apart. This is similar to the steps described in Section

3.2.1 of this thesis.

The use of these particular scales is motivated by an attempt to relate scales

to levels of linguistic structure, and each one of these scales is labeled with an

approximate representation in a linguistically-motivated hierarchical structure.

We assume that high frequencies (lower scales) capture short-term variations

associated with the phone and that low frequencies (higher scales) capture long-

term variations associated with the utterance.

Therefore, we associate components 1-2 with the utterance level, components

3-4 with the phrase level, components 5-6 with the word level, components 7-8

with the syllable level, and components 9-10 with the phone level. Figure 3.3

(p. 64) illustrates these components. The association of each component to a

particular linguistic level is approximate and inspired by the work of Suni et al.

(2013). The use of these linguistic levels was a practical decision in Suni et al.

(2013), but they do span the linguistic structure that is conventionally used in

TTS systems (phones, syllables, words, phrases, utterances).
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Level Coefficients

Utterance 3

Phrase 4

Word 4

Syllable 6

Phone 6

Table 4.1: Number of selected DCT coefficients at each linguistic level.

Note, however, that these associations remained assumptions at the time this

work was conducted. There is no evidence to support the idea that, in this

decomposition, for example, the wavelet components associated with the sylla-

ble correspond in fact to f0 effects at syllable-level. Further work focusing on

assessing the linguistic meaningfulness of these components will be discussed in

Chapters 5 and 6. The steps performed so far on f0 are similar to those described

in Suni et al. (2013).

Discrete cosine transform

To model each linguistic level, the signal extracted with the CWT is first seg-

mented appropriately at each level, e.g. the syllable component is segmented at

syllable boundaries – bootstrapped by forced alignment at the state level. The

DCT is then applied to parameterize each segment individually.

The usefulness of the DCT derives from the fact that we can truncate its

representation to a few coefficients without any relevant signal loss. This allows

the signal associated with each linguistic level to be modeled at its respective level.

Previous work typically uses the first 3–7 coefficients, depending on the modeling

approach, as seen in Section 3.2.1. A quick evaluation was performed on a held-

out set in order to determine an appropriate number of DCT coefficients at each

of the linguistic levels to minimize signal loss at the same time as representing

the signal compactly. Correlation and RMSE were used to measure the signal

before and after reconstruction.
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Figure 4.1: Reconstruction error in terms of Correlation and RMSE with varying DCT

coefficients for each wavelet component.

Each component from the CWT was represented with the DCT at its cor-

responding level with varying number of coefficients (2 to 7 coefficients). Fig-

ure 4.1 shows the results for each of the linguistic levels. Not surprisingly, the

lower linguistic levels (high frequencies) require more coefficients for an accurate

representation than the higher levels (low frequencies). The number of chosen

coefficients for each level is detailed in Table 4.1, based on evidence from Figure

4.1.

4.2.2 Analysis of the proposed multi-level representation

To test this representation, we measured RMSE (Hz) and correlation of recon-

structed linear f0 before and after parameterization. Table 4.2 shows that a

CWT/DCT representation is comparable to either the CWT or the DCT sepa-

rately. We lose less than 1% of the signal and RMSE is 2.66Hz.

At this point, the signal is represented by segments at 5 linguistically moti-
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Representation RMSE (Hz) Correlation

CWT-only 1.96 .997

DCT-only (5 coeffs at syllable level) 2.43 .995

CWT-DCT 2.66 .995

Table 4.2: Representation reconstruction error and correlation.

vated levels, each with a fixed number of coefficients. Every phone in the ut-

terance has an observation vector of 6 components representing high-frequencies,

each syllable an observation vector of 6 components representing mid-frequencies,

and so on.

Figure 4.2 illustrates the decomposition for one utterance. Each of the five

scales is associated with a linguistic level (listed in the lower left-hand side cor-

ner of each subplot). Vertical dashed lines indicate forced-aligned boundaries at

each of the levels, bootstrapped by forced alignment at the state level. For each

window, demarcated by the segment boundaries, the discrete cosine transform is

applied and the top N coefficients are preserved (where N is shown in Table 4.1

and on the lower left-hand side corner of each subplot of Figure 4.2).

The main motivation for the proposed representation is that each linguistic

unit can model effects of varying frequency at different levels. Higher frequen-

cies are modeled at phone-level, while slow-varying phenomena are modeled at

phrase and utterance levels. The mid-frequencies should capture f0 variation that

would correspond to word or syllable-level effects. For example, considering the

word-level signal in Figure 4.2, the word ordered appears to be the most promi-

nent in the sentence, followed by show me, and the less prominent content word

place. In terms of syllable variation, it can be seen from the same figure that

the stressed syllables appear to have more prominent signal peaks. It is expected

that these phenomena are captured over the entire data through the proposed

representation.

Furthermore, in Suni et al. (2013), the sentence mean was removed while nor-

malizing the signal and was ignored at training time. For synthesis, the authors

have used the overall sentence mean inherited from the baseline model. In this
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Figure 4.2: Five scale CWT decomposition with force-aligned boundaries (vertical

dashed lines) at each linguistic level. The top DCT coefficients at each level (listed

at the lower left-hand side of each subplot) are extracted for the signal between

each boundary. The bottom axes list the syllables and the words for this example,

with the axis marks placed at the mid-point of each syllable or word, considering the

force-aligned boundaries .

work, we include sentence mean as the fourth component in the utterance-level

observation vector, which is modeled jointly with the proposed representation.
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This representation allows us to move beyond frame-level modeling, used by Suni

et al. (2013), and model utterance-level effects at utterance level, and phone-level

effects at phone-level.

4.3 Data

4.3.1 Audiobook data

For this task, we have used the freely available audiobook A Tramp Abroad,

written by Mark Twain and first published in 1880, available from Librivox.1

Audiobooks are a rich source of speech data, as the speaker often reads full

chapters sequentially, thus making it ideal to explore prosodic phenomena such

as phrase breaks or word prominences motivated by the discourse. It is also very

expressive data, as the reader mimics the voices of characters and attempts to

convey some type of emotion depending on the circumstances. The data has

been pre-processed according to the methods described in Braunschweiler et al.

(2010) and Braunschweiler and Buchholz (2011). We have used the manually

selected subset consisting only of narrated speech described in Braunschweiler

and Buchholz (2011), thus setting aside direct speech data. The reason for this

is that we intend to focus only on expressive read speech that is influenced by

higher-level phenomena, and avoid possible changes of speaking style and voice

characteristics contained within the direct speech portions of the book.

4.3.2 ARCTIC data

The CMU ARCTIC speech synthesis database consists of phonetically balanced

independent sentences designed for unit selection speech synthesis (Kominek and

Black, 2004), available from Festvox.2 For this task, we have used the female SLT

voice, which was divided into 1000 training utterances and 113 testing utterances.

The main motivation for the selection of this data is the contrast with the more

expressive audiobook data. We hypothesize that the representation we intend to

1http://librivox.org
2http://festvox.org/cmu arctic
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explore is not useful with less expressive datasets. In this dataset, sentences were

recorded separately and are not semantically related. The speaker often places

a fairly neutral intonation on each sentence, which is ideal, for example, for unit

selection systems, which rely on the concatenation of similar units to minimize

join artifacts. Even though this data is expressive in its own way, it will contain

less prosodic variation. Therefore, multi-level modeling is perhaps less relevant

for these types of data.

4.3.3 Data preparation

Acoustic features were extracted every 5 ms using the STRAIGHT vocoder

(Kawahara et al., 1999, 2001) via the Voice Cloning Toolkit (VCTK, Yamagishi

et al. (2014)). These are 60 mel-cepstral coefficients, 1 f0 value, and 5-band ape-

riodicities. To these features, the corresponding delta and delta-deltas were ap-

pended. HTK/HTS (Zen et al., 2007, 2009a) was then used via the Voice Cloning

Toolkit to force-align the data. Context-dependent 5-state left-to-right hidden

Markov models were used with monophone pretraining. The models learned on

the training data were then used to force-align the train, validation, and test

sets at the state-level. Higher-level alignment, such as phone, syllable, word, or

phrase boundaries were inferred from the state-level alignment. All systems were

trained using the linguistic feature set described in Appendix A.0.1.

4.4 Systems trained

To test the proposed f0 representation, the following systems were trained.

MSD-HMM Standard f0 MSD model using 5-state left-to-right HMMs at

phone-level.

CF-HMM Continuous-F0 HMM using the interpolated f0 signal. f0 is modeled

in a single data stream with joint dynamic features. A variant of this system

controls for the number of parameters (denoted by the suffix *-pctrl), which

limits the size of the tree to be similar to that of the MSD-HMM.
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CWT-HMM The 5-scale wavelet representation is modeled with HMMs, sim-

ilarly to Suni et al. (2013). Each scale is modeled by a separate data

stream, with joint dynamic features. A variant of this system also controls

for the number of parameters (denoted with *-pctrl), limiting the size of

each wavelet scale decision tree to be similar to that of the MSD-HMM

decision tree.

DCT-phn and DCT-syl Interpolated log-f0 is represented at phone or sylla-

ble levels using 6 DCT coefficients. Since the CWT is not used for this

representation, the signal was not normalized for zero mean and unit vari-

ance. Observation vectors were clustered with multivariate regression trees.

For generation, the f0 contour is found by traversing the decision tree and

finding the predicted observation vector at its leaf node. The signal is then

reconstructed using the IDCT at phone or syllable levels with force-aligned

duration.

CWT/DCT-MRT and CWT/DCT-URT Normalized interpolated log-f0

is first decomposed with the CWT, then each scale is represented by the

DCT at each level. Multivariate Regression Trees (denoted by *-MRT ) are

used to cluster observation vectors. Therefore, the model consists of 5 trees,

one at each level. An alternative clusters each vector component using Uni-

variate Regression Trees (denoted by *-URT ) to a total of 24 regression

trees (one per vector component). For generation, the signal is found by

first applying the IDCT, concatenating wavelet contours, and applying the

wavelet reconstruction formula.

CWT/DCT-HMM Initial experiments have shown that higher frequencies are

harder to predict than lower frequencies. This approach models the high

frequencies (phone-level component) with 5 state left-to-right HMMs, using

an individual data stream with joint dynamic features. The remaining

components are modeled similarly to the CWT/DCT-MRT system, using

multivariate regression trees.
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4.5 Results

4.5.1 Objective results

The synthesized f0 contours were compared to the reference contours for all

50 utterances in the test set for each dataset. As objective measures, we have

used the traditional root-mean-square-error (RMSE) and Pearson’s correlation

coefficient. These measures are sensitive to duration, so to make all models

comparable, segment durations for all systems were taken from the force-aligned

natural speech from the held out test set. Each measure is computed at sentence-

level over voiced-frames only, and the arithmetic average is taken over the entire

test corpus. Results for the two datasets are shown in Table 4.3.

Given that the CF0-HMM and the CWT-HMM use considerably more param-

eters (larger trees) than the MSD-HMM, we have trained two systems (denoted

with the suffix *-pctrl) controlling for tree growth, such that tree size is compa-

rable to the tree generated by the MSD-HMM in terms of the total number of

parameters.

Audiobook data

Considering the results shown in Table 4.3, we observe that, when using expressive

audiobook data, objective measures indicate that our proposed representation

combining both the CWT and the DCT performs better than all other systems.

The CWT-HMM using a smaller tree is the only system that surpasses it in terms

of correlation. The CWT-HMM shows relevant improvements over the MSD and

CF0 HMMs, which reinforces the relevance of performing signal decomposition

for f0 modeling. The DCT models perform the worst out of all systems, which

suggests that some improvements might be achieved using more complex models

with this representation, such as using dynamic features, as shown by earlier

work (Teutenberg et al., 2008; Latorre and Akamine, 2008; Qian et al., 2011;

Obin et al., 2011).

A series of t-tests show that, in terms of RMSE, there are significant dif-

ferences between the MSD-HMM and the models using the CWT. The system
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System
audiobook data ARCTIC data

RMSE Correlation RMSE Correlation

MSD-HMM 40.895 0.327 15.174 0.705

CF0-HMM 54.997 0.336 58.678 0.722

CF0-HMM-pctrl 54.984 0.469 58.751 0.784

CWT-HMM 34.066 0.455 13.135 0.786

CWT-HMM-pctrl 65.811 0.534 12.905 0.799

DCT-phn 43.737 0.238 35.043 0.268

DCT-syl 41.338 0.223 28.144 0.297

CWT/DCT-MRT 32.462 0.493 13.949 0.760

CWT-DCT-URT 32.536 0.504 14.018 0.762

CWT/DCT-HMM 32.617 0.493 14.040 0.756

Table 4.3: Objective measures for audiobook and ARCTIC data. Bold highlights

indicate best performing results.

CWT/DCT-MRT shows a significant decrease in error when compared to the

MSD-HMM system (t(49)=-9.124, p<.001). Similar results are observed for the

CWT/DCT-URT, CWT/DCT-HMM, and CWT-HMM.

In terms of correlation, a different pattern is observed. All CWT systems

improve significantly over the systems using the MSD-HMM. Looking at the

CWT/DCT-MRT system, we observe a significant increase in correlation when

compared to the MSD-HMM (t(49)=4.494, p<.01). The only baseline system

with a higher correlation appears to be the CF0-HMM controlling for tree growth,

showing no significant differences when compared to the CWT systems. This

method, however, appears to increase RMSE. Comparing the CWT-HMM with

the proposed CWT/DCT representation showed no significant improvements in

terms of RMSE and correlation.

It should be noted that the more stable systems in terms of both measures

appear to be the CWT-HMM without controlling for tree growth and the pro-

posed CWT/DCT systems. These models behave consistently in terms of RMSE
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and correlation. The proposed representation has the advantage of considering

long-term representations, as well as achieving similar quality with considerably

less parameters.

ARCTIC data

With the more traditional less expressive database, signal decomposition and

modeling over longer units appears to be less relevant. Most systems achieve

similar error rates, although we do notice some improvement in terms of correla-

tion for systems using signal decomposition (i.e. those that the CWT). As before,

models using only the DCT perform the worst. It is unclear why the CF0-HMM

models achieve such high error when compared to the alternatives.

In terms of RMSE, the proposed CWT/DCT does not show significant im-

provements over the baseline system MSD-HMM. However, the CWT-HMM with

and without parameter control does show improvements. When compared to the

CWT/DCT-MRT, for example, RMSE of the CWT-HMM is significantly lower

(t(49)=4.403, p<.01).

A similar pattern is observed in terms of correlation. The proposed repre-

sentation does not show significant improvements over the baseline MSD-HMM

systems. However, the CWT-HMM proposed by Suni et al. (2013) does show

a significant increase in correlation when compared to the MSD-HMM (t(49)=-

4.836, p<.001).

4.5.2 Subjective results

A perceptual experiment was conducted on 3 selected systems from the objec-

tive results. 50 test utterances were synthesized with the f0 contours predicted

from the MSD-HMM, CWT-HMM, and CWT/DCT-MRT systems. Spectral and

aperiodicity parameters were used from the MSD-HMM, thus only f0 is different.

16 native speakers have judged randomized utterance pairs in a preference

test with a “no preference” option. Utterance pairs were organized such that

each participant only judged the same utterance pair once. Each utterance pair

was judged 8 times for a total of 400 judgments per condition. The process was
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Figure 4.3: Audiobook data preference test results with N/P indicating “No Pref-

erence”. In parenthesis, p-values indicate the results of 1-tailed binomial tests with

an expected 50% split, with the N/P results evenly distributed over the remaining

conditions.

identical for both datasets.

Figure 4.3 shows results for the audiobook data. We see percentage prefer-

ences and the results of a 1 tailed-binomial test assuming an expected 50% split,

with the no-preference judgments distributed equally over the other two condi-

tions. We see a significant preference for the CWT-HMM and CWT/DCT-MRT

over the baseline MSD-HMM, but no preference between the CWT-HMM and

CWT/DCT-MRT systems.

Figure 4.4 shows results for the ARCTIC data. The values in parenthesis

indicate the results of a 1-tailed binomial test assuming an expected 50% split,

with the no-preference judgments distributed equally over the other two condi-

tions. Objective results have shown no relevant improvements over the baseline

when it comes to the proposed CWT/DCT representation. However, a percep-

tual experiment does show a significant preference for the systems using signal

decomposition over the system that does not. Although with smaller effects we

observe the same pattern in the less expressive data as we did with the more

expressive dataset. Participants prefer the proposed CWT/DCT system and the

CWT-HMM over the traditional MSD-HMM, but they have no preference be-

tween the CWT/DCT and the CWT-HMM systems.
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Figure 4.4: ARCTIC data preference test results with N/P indicating “No Preference”.

In parenthesis, p-values indicate the results of 1-tailed binomial tests with an expected

50% split, with the N/P results evenly distributed over the remaining conditions.

4.6 Discussion

4.6.1 Number of parameters

Table 4.4 shows the number of parameters for the three systems evaluated in

Section 4.5.2. It is seen that the CWT-HMM trees tend to grow quite large. In the

work of Suni et al. (2013), similar observations were mentioned. The decision trees

learned over the wavelet signals tended to become larger and various attempts

were made to control tree growth. No results were reported regarding the effect of

tree size on the objective measurements. In the datasets we have experimented

with, it was observed that controlling for tree size improves results slightly in

the case of the less expressive data, but not in the case of the more expressive

dataset. However, it should be noted that, even if tree growth is controlled in the

CWT-HMM, it will still have 5 times more parameters than the baseline MSD-

HMM. Observing the CWT/DCT systems, we notice a considerable decrease in

the number of required parameters, having much simpler trees than both MSD-

HMM and CWT-HMM, and achieving better or similar performance in terms of

naturalness.
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Audiobook Data ARCTIC Data

# Leaf Nodes # Used Questions # Leaf Nodes # Used Questions

MSD-HMM log-f0 46583 1846 5050 1095

CWT-HMM

phn 66632 1878 5822 1085

syl 117987 1955 8895 1192

wrd 159043 2015 14613 1292

phr 271343 2014 13994 1271

utt 213919 1961 11808 1267

CWT/DCT

phn 1938 865 318 214

syl 699 433 108 84

wrd 426 280 50 41

phr 173 136 28 23

utt 13 12 8 7

Table 4.4: Number of parameters for Audiobook and ARCTIC data.

4.6.2 Objective measures for individual wavelet components

Figures 4.5 and 4.6 show objective measurements in terms of RMSE and Corre-

lation for individual scales for the two systems using the CWT. We include the

CWT-HMM, modeled at state level, and the CWT/DCT representation, modeled

at multiple linguistic levels. Note that typically wavelet components at various

scales tend to have different ranges. Therefore, the RMSE results are not com-

parable across linguistic levels.

Although there appears to be some differences in both datasets in terms of

the two systems, these differences were not enough to result in a clear perceptual

difference. In the case of the audiobook dataset (Figure 4.5), we observe that,

in general, for the lower linguistic levels (phone, syllable, word), the CWT/DCT

system appears to outperform the state-level CWT-HMM in terms of RMSE and

correlation. However, this trend is not observed for the ARCTIC dataset (Figure

4.6), where the two systems are closer, but the state-level CWT-HMM tends to

outperform the multi-level CWT/DCT system.

These observations relate to the hypothesis that a multi-level framework would

be suitable for more expressive data, as the speaker would include effects at vari-
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Figure 4.5: RMSE and Correlation of individual wavelet levels for Audiobook data

with error bars denoting 95% confidence intervals for the sample mean.

ous linguistic levels, such as various degrees of word prominence or clearer phrase

boundaries. The ARCTIC dataset was designed and recorded for unit selection

systems (Kominek and Black, 2004). Sentences are spoken in isolation without

any semantic relationship between them. The speaker tries to be consistent for

each sentence, which leads to a fairly neutral (and similar) intonation over the

entire dataset. The audiobook dataset, on the other hand, was not recorded for

text-to-speech. Chapters are read sequentially, which motivates the speaker to

place contextually-motivated prominences or phrase breaks, either in order to

captivate the listener or to convey meaningful semantic information. A represen-

tation of f0 at multiple linguistic levels could be more suitable for this type of

data.

However, it is not clear what effect each of these linguistic levels has on the

overall f0 signal. We have observed that two systems using signal decomposition

outperformed the system that does not. However, Figures 4.5 and 4.6 show

that the lower-frequency components (phrases and utterances) achieve very good

correlation when compared with the remaining components. It is not obvious

where the improvements originate. For example, we could hypothesize that the

advantages of using signal decomposition are mostly due to a direct modeling
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Figure 4.6: RMSE and Correlation of individual wavelet levels for ARCTIC data with

error bars denoting 95% confidence intervals for the sample mean.

of middle or lower frequencies. It is unknown if the improvements observed on

the systems doing signal decomposition with the CWT originate from a stronger

modeling of these frequencies.

This set of experiments has shown that signal decomposition is beneficial

and systems using it outperform systems that do not. But beyond this claim,

it is unclear from these results what causes these systems to surpass traditional

approaches. The following section discusses these hypotheses and how they are

handled in subsequent chapters of this thesis.

4.6.3 Overall Discussion

These experiments indicate that signal decomposition is relevant to the modeling

of f0, as all systems using the CWT performed better for expressive data than

systems that do not. In terms of the proposed representation, we did not observe

any relevant improvements over the CWT-HMM. However, the CWT-HMM by

Suni et al. (2013) is still a state-level model, capturing long-term effects implicitly.

It is therefore not surprising that it performs better in terms of objective measures

on a less expressive dataset. State-level modeling is most likely a better choice
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in these cases, as the speech is not influenced by the dependencies related to

the discourse. For example, each sentence in the ARCTIC dataset was recorded

separately, whereas the sentences in the audiobook data are semantically related

and were recorded sequentially. Prominences and phrase-breaks in the audiobook

data may be motivated by the discourse (e.g. saliency of a word or a group of

words).

We could argue, then, without any evidence to support this hypothesis, that

the CWT/DCT representation lacks proper long-term linguistic features (e.g.

words, phrases) to improve over the CWT-HMM. In these experiments, we were

mostly limited to the standard set of shallow context features commonly used in

speech synthesis (Tokuda et al., 2013). It has been shown that this feature set is

not very effective when it comes to modeling prosodic naturalness (Cernak et al.,

2013). Work exploring more complex representations of linguistic contexts would

fall under sub-problem 2 of the main claim of this thesis (see Figure 1.1, p. 6).

Chapters 7 and 9 explore additional feature representations that could be useful

for the models proposed in this chapter. It is possible that a state-level system

such as the CWT-HMM would be unable to leverage them, while a higher-level

representation such as the CWT/DCT would.

It is also observed from these experiments that the importance of each scale

is not yet clearly understood. In fact, in the work presented in this chapter, there

are two main assumptions:

• All wavelet components and their respective linguistic levels, contribute

equally to the f0 signal.

• Each wavelet component, under the current decomposition strategy, can be

meaningfully associated with a linguistic level.

The first assumption affects this work, as well as the work described in Suni

et al. (2013), as we reconstruct f0 by weighting all components equally. It was

observed informally by the authors of Suni et al. (2013) that weighting compo-

nents differently affects the overall f0 contour. For example, giving more weight

to the middle-frequencies has the effect of making speech more resolute.
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The second assumption was acceptable in the work of Suni et al. (2013), as

the CWT-HMM models all components at the same state level. However, this

might have implications for the representation used in the CWT/DCT system, as

this approach relies on the association of a given decomposition component with

a specific linguistic level.

It is clear, then, that a deeper understanding of how this wavelet decompo-

sition strategy affects and interacts with the f0 signal is relevant for this work.

In Chapters 5 and 6 we focus on the two assumptions. Chapter 5 investigates

the first assumption with a set of perceptual experiments aimed at understand-

ing the role of each decomposition component to the reconstructed f0 signal.

Chapter 6 focuses on the second assumption, attempting to relate decomposition

components to linguistic levels.

4.7 Conclusion

This chapter investigated a multi-level representation of f0 for a text-to-speech

system, inspired by initial work with the continuous wavelet transform (CWT)

described by Suni et al. (2013). The representation proposed in this chapter

has the advantage of decomposing the signal into various frequencies which can

be associated with multiple linguistic levels. This allows the system to model

prosodic effects at their respective linguistic levels.

It was observed that systems performing signal decomposition perform better

than systems that do not. This approach was evaluated on an more expressive and

a less expressive dataset. Although the effects are not as strong, signal decom-

position was shown to be useful for both types of data and to give considerably

more compact parameters.

The lack of improvements of the proposed multi-level CWT/DCT representa-

tion over the state-level CWT-HMM might be due to a lack of proper supraseg-

mental features. Additional contextual features will be investigated in Chapters

7 and 9. CARTs might also not be the appropriate modeling technique, clus-

tering each segment individually. More complex models, capable of leveraging

the interactions between scales and over time might be more useful. These types
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of models will be explored in Chapters 7 and 8. However, two key assumptions

affect the work described here: the meaningful association of wavelet components

with linguistic levels, and their equal contribution to the overall f0 signal. These

will be investigated in Chapters 5 and 6.



Chapter 5

A perceptual investigation of

wavelet-based decomposition of f0

This chapter covers the work described in “A perceptual investigation of wavelet-

based decomposition of f0 for text-to-speech synthesis” (Ribeiro et al., 2015),

which was presented at Interspeech 2015.

In this chapter, we consider a wavelet-based decomposition strategy for f0 and

we investigate the perceptual relevance of the found decomposition components. To

achieve this, the f0 signal is reconstructed with selected decomposition components

and native listeners are asked to judge the naturalness of synthesized utterances

relative to that of natural speech. Results indicate that HMM-generated f0 is

comparable to the wavelet components with lower frequencies, suggesting it mostly

generates utterances with neutral intonation. Middle frequencies achieve very high

levels of naturalness, while very high frequencies are perceived to be mostly noise.

5.1 Introduction

Wavelets have been used in a variety of applications in speech processing for a

number of years (Farouk, 2014). Recently, there has been a growing interest in

the application of wavelets for the analysis and modeling of prosody in the context

of statistical parametric speech synthesis (Vainio et al., 2013; Suni et al., 2013;

Ribeiro and Clark, 2015). Chapter 4 introduced a multi-level representation of

92
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the f0 signal using the continuous wavelet transform (CWT) and the discrete

cosine transform (DCT). The general conclusion appears to be that approaches

using signal decomposition outperform approaches that do not.

However, it was also shown in Chapter 4 that there are two underlying as-

sumptions in the proposed wavelet-based decomposition strategy. The first is that

all wavelet components contribute equally to the reconstructed signal. The second

is that decomposition components can be meaningfully associated with linguistic

levels. This chapter focuses on the first assumption. A set of listening eval-

uations is conducted, aimed at understanding the contribution of each wavelet

decomposition component to the overall signal.

Based on evidence from the work of Suni et al. (2013), it is known that some

components can be manipulated in order to affect the reconstructed f0 signal. In

the previous chapter, we observed that some components are harder to predict

than others. We hypothesize that, on expressive datasets, short-term modeling

approaches (such as MSD-HMMs) tend to average most f0 variation and generate

a neutral contour that is comparable to the low frequencies of the Continuous

Wavelet Transform. Approaches that use signal decomposition outperform these

short-term approaches because, on top of the easily predictable low frequencies,

there is always some improvement from the explicit modeling of middle or low

frequencies.

With this in mind, we propose to explore the following hypotheses in a series

of experiments:

• Listeners respond more to middle frequencies (scales 5 to 8) and associate

them with higher levels of naturalness when compared to other scales.

• Listeners do not respond much to low frequencies (scales 1 to 4) and they

achieve comparable naturalness to f0 synthesized from an HMM-based sys-

tem.

• High frequencies (scales 9 and 10) do not contribute significantly to per-

ceived naturalness nor do they contain relevant information for the recon-

structed signal.
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To evaluate these hypotheses, we will conduct four perceptual experiments.

In the first experiment we will measure listeners’ perception of selected wavelet

ranges under a specific task. By asking participants to judge which word appears

more prominent in an utterance, we will test whether or not a given wavelet scale

contains some type of variation that is perceptible to the listeners.1

In the second experiment, we give listeners different utterances and ask them

to judge whether or not they are similar in terms of naturalness. Considering

the ratio of dissimilarity between wavelet scales, we use Multidimensional Scaling

(MDS, Borg and Groenen (2005); Mayo et al. (2005)) to establish a perceptual

distance between all scales and natural speech.

In the third and fourth experiments, we will measure naturalness by asking

listeners how much each utterance resembles natural speech. In the first of these,

we run traditional Mean Opinion Score (MOS) tests, where participants are asked

to rate an utterance on a scale of 1–5. In the final experiment, we run a MUltiple

Stimuli with Hidden Reference and Anchor test (MUSHRA, ITU-R Recommen-

dation BS. 1534-1 (2015)), in which listeners rate an utterance against a refer-

ence and against all other conditions. The key difference between the MOS and

MUSHRA evaluations is that, in the first, participants rate an utterance without

any reference. In the second test, participants are given a reference and asked to

judge each sample against that and against all conditions simultaneously. Since

identical stimuli are used for the two evaluation approaches, these results should

also give us insights regarding the two testing methodologies.

1This is a different approach to the task described in Vainio et al. (2013) or Suni et al. (2017).
The work described in Vainio et al. (2013) annotates prominence with features extracted with
the continuous wavelet transform. The automatic annotation is then compared against the
annotation given by expert native listeners. It is the goal of that evaluation to show that the
continuous wavelet transform can be used for the automatic annotation of word prominence.
The work of Suni et al. (2017) extends this notion and uses a signal combining f0, intensity, and
duration to annotate prominence and prosodic constituent boundaries, which is then compared
with manually annotated ToBI labels.
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5.2 Reconstruction of the f0 signal

The f0 signal is normalized according to the steps of Vainio et al. (2013) and Suni

et al. (2013), briefly described on p. 73. The log-f0 signal is linearly interpolated

over unvoiced regions and reduced to zero mean and unit variance. To decompose

log-f0, we use a continuous wavelet based decomposition approach identical to

that described in Chapter 4, as well as in Suni et al. (2013), using 10 wavelet

scales, each one octave apart. A visualization of the decomposition is given in

Figure 3.3 (p. 64).

For reconstruction, we use a variation of the ad hoc reconstruction formula

proposed by Suni et al. (2013):

f0(x) =
10∑
i=1

wiCi(x)(i+ 2.5)−5/2 (5.1)

where scale 1 corresponds to the highest frequency scale and wi is the weight given

to scale i where wi ∈ {0, 1}. There is an inverse relationship between scales and

frequency. For clarity, we index components by their frequency. Components with

a lower index therefore correspond here to low frequency components. Table 5.1

shows all experimental conditions with these components indexed by increasing

frequency. Note that these frequencies are related to the wavelet component and

not the pitch range of the speaker. For each condition, f0 is reconstructed from

the wavelet domain zeroing out selected frequencies. For example, for condition

1-2, the weight vector would be ~w = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1]. This guarantees that

the signal is reconstructed as before, but preserving only selected components.

5.3 Experiment 1: prominence annotation

5.3.1 Data

For this experiment, we recorded a female native speaker speaking simple utter-

ances in response to different stimuli. All sentences consisted of 3 content words

and had similar syntactic structure. The stimuli were chosen in order to suggest
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Condition Description Freq. (Hz)

natural Vocoded speech using natural parameters -

all All f0 frequencies. 0.1-50

1-2 Low frequencies. Components indexed at 1 and 2. 0.1-0.2

3-4 Low frequencies. Components indexed at 3 and 4. 0.4-0.8

1-4 All low frequencies. Components indexed at 1, 2, 3, and 4. 0.1-0.8

5-6 Middle frequencies. Components indexed at 5 and 6. 1.6-3.2

7-8 Middle frequencies. Components indexed at 7 and 8. 6.3-13

5-8 All middle frequencies. Components indexed at 5, 6, 7, and 8. 1.6-13

9-10 High frequencies. Components indexed at 9 and 10. 25-50

MSD-HMM f0 signal predicted from an MSD-HMM. -

Table 5.1: Experimental conditions with approximate CWT frequency ranges.

different pitch accent locations in the responses.2 Table 5.2 exemplifies given

stimuli and requested responses for a single utterance. The full set of stimuli

and responses for this short database can be found in Appendix B. The absence

of stimulus (illustrated by the use of ellipsis) suggests a neutral (or random) re-

sponse from the speaker, without a clear indication of prominence. The remaining

stimuli suggested the placement of prominence in one of the three content words

of the response: subject, verb, or object. We recorded 10 different utterances in

4 different contexts resulting in a total of 40 utterances. For each utterance, the

stimulus was given to the speaker via a headset and the speaker would respond

with the suggested utterance.

5.3.2 Design

For each of the 40 utterances, speech parameters were extracted using the

STRAIGHT vocoder (Kawahara et al., 1999, 2001). This evaluation relies on

copy synthesis. It does not use artificially generated parameters, other than the

f0 signal used with the MSD-HMM condition. When synthesizing the evaluation

data, all conditions except natural use spectral envelope and aperiodicity param-

eters from the neutral response. The condition which we call natural is, in fact,

2We thank Robert Clark for suggesting the recording of this dataset.
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stimulus response

... John won at Mary’s.

Paul won at Mary’s? John won at Mary’s.

John lost at Mary’s? John won at Mary’s.

John won at Kate’s? John won at Mary’s.

Table 5.2: Stimuli and responses for one utterance in the data set. Ellipsis indicates

that no stimulus was given to the speaker.

vocoded speech using all original parameters.

For the remaining experimental conditions, the f0 signal was parameterized

at the syllable level with the DCT and reconstructed to match the corresponding

duration of the vocoder parameters extracted from the neutral response. This en-

sures that speakers will not respond to durational or intensity cues when judging

the utterances, as the only difference between them is the fundamental frequency.

We have a total of 400 unique utterances (10 sentences x 4 contexts x 10

conditions). Each of the 25 participants listened to a randomized subset of 80 ut-

terances. They were asked to select which of the 3 words appears most prominent

or salient in each utterance, with the option to indicate that all words appear

equally prominent.

5.3.3 Results

From the expected 2000 judgments (25 participants x 80 utterances), 23 were

missing. This left us with an average of 198 judgments per condition, with each

unique utterance having been judged either 4 or 5 times.

To analyze the results, we used an approach similar to that described in Cole

et al. (2010). That is, we considered the results from the natural condition as the

gold set to which we measured the accuracy of all other conditions. Therefore,

for each utterance, the response with the most votes across all natural speech

judgments was taken to be the correct choice. Across the natural condition, we
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Figure 5.1: Accuracy results for prominence detection evaluation. Vertical error bars

indicate 95% confidence intervals estimated with the Normal Approximation Method

of the binomial confidence interval. Notes with asterisks indicate the result of a

1-tailed binomial test assuming a chance accuracy of 25%.

observed an annotator agreement of 86%.3

Figure 5.1 shows the accuracy results for the non-natural conditions, assum-

ing the most likely answer given in the natural speech as the ground truth. The

notes on the graph indicate the result of a 1-tailed binomial test given a chance

accuracy of 25%. All conditions using the middle frequencies achieve accuracies

that are significantly above chance. Some conditions achieve a smaller, although

significant effect, where we would expect not to see any (such as the HMM con-

dition, for example). The reason for this might be how we are computing the

results. When faced with uncertainty, listeners might default to the same an-

swer. This could be, for example, that all words are equally prominent or that

the subject of the sentence carries the prominence. This would not be unlikely,

3In this task, the annotators essentially provide a likelihood of a given response being promi-
nent. An alternative approach to analyze these results would be to consider this distribution
over the possible choices, rather than picking the most likely one as the ground truth. This
method would have been more in line with the approach proposed in the work of Cole et al.
(2010).
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given that the remaining acoustic parameters are from the neutral response, so

we would expect listeners to perform well under this condition. If we compute a

1-tailed binomial test assuming instead a chance accuracy of 1/3, then the three

conditions observing a small effect will not deviate significantly from chance.

Results in Figure 5.1 show that the middle frequencies tend to carry a good

portion of the f0 signal and listeners are able to perceive these differences. It

was surprising to observe that the condition using only these components scored

a higher accuracy than the condition using the reconstructed signal with all com-

ponents. One interpretation of these results might be that the pitch excursions

present in the f0 signal become more noticeable once we remove short and long

term frequency information. In this case, given that the remaining parameters

correspond to the neutral response, listeners identify those pitch excursions as

a prominence marker. This can be related to the approach for automatic an-

notation of prominence proposed by Vainio et al. (2013), which uses the middle

frequency components associated with the word level.

5.4 Experiment 2: naturalness similarity

5.4.1 Data

To conduct this experiment, we used the freely available audiobook A Tramp

Abroad, as described in Section 4.3.1 (p. 78). A standard 5-state left-to-right

HMM system was trained on roughly 5000 utterances (approximately 9.5 hours

of speech). 20 utterances not in the training set were randomly selected for these

experiments. The natural condition is vocoded speech, which uses all natural

acoustic parameters. All remaining conditions use the same mel-cepstral, band

aperiodicity, and voicing parameters predicted from the HMM system, and dura-

tion is derived from the force-aligned data. These conditions vary only in terms

of f0, as shown in Table 5.1.
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Figure 5.2: Dissimilarity ratio matrix for experiment 2. Lighter colors indicate lower

dissimilarity ratio between conditions, while darker colors indicates higher dissimilarity

ratio.

5.4.2 Design

The 20 utterances selected from the test set were synthesized according to the 10

conditions described in Table 5.1. 10 native listeners participated in the experi-

ment, each rating a total of 144 utterance pairs. Participants were instructed to

listen to each pair carefully and judge if the pair is similar or different in terms of

naturalness. Each pair given to the participants consisted of different utterances

and different conditions. Within any three consecutive pairs, the same condition

and utterance is not repeated. This prevents the task from being too easy and

discourages participants from judging all comparisons as different. This follows

the methodology described in Merritt and King (2013) and Henter et al. (2014).

5.4.3 Results

Considering the 45 distinct condition pairs, each pair was judged at least 32

times. A 10x10 dissimilarity matrix was constructed, indicating the fraction of
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Figure 5.3: Kruskal’s normalized stress as a function of the number of dimensions.

times each pair was judged as different, which can be seen in Figure 5.2.

Multidimensional Scaling (MDS, Borg and Groenen (2005); Mayo et al.

(2005)) was used to embed the systems into a 2-dimensional space based on

the dissimilarity matrix. The Euclidean distances between points in this space

is representative of their similarity. We have used the function mdscale from

the Matlab statistic toolbox with Kruskal’s normalized stress1, which returned a

stress value of 0.086.4

Figure 5.3 shows the stress value as we increase the number of dimensions. As

more dimensions are used, the more accurate is the representation of the points

in the low-dimensional space. We have chosen two dimensions, as it shows a

considerable decrease in error and the visualization of the results appears to be

consistent with the dissimilarity matrix. Figure 5.4 shows the two-dimensional

representation of the 10 conditions as judged by the participants. Distances

between points are representative of their dissimilarity in terms of naturalness.

4The stress value represents the loss from the low-dimensional approximation of the data.
With a value of 0 indicating no error and a perfect representation of the data. More dimensions
naturally lead to better approximations, but they become hard to visualize. Further details can
be found in Borg and Groenen (2005).
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Figure 5.4: Two-dimensional representation of the dissimilarity matrix as estimated

by MDS. Each point represents one condition and distances are representative of their

dissimilarity in terms of naturalness.

Systems that are close in the embedding space are judged to be similar by the

native listeners, while points that are farther apart are judged to be dissimilar.

Listeners appear to have naturally clustered the conditions using most of the

low frequency components from the CWT (1-2, 3-4, 1-4), as well as conditions

using high frequency components (7-9 and 9-10), and mid-frequency components

(5-6 and 5-8). The condition with all frequencies (reconstructed f0 signal) is

closer the conditions using only the mid-frequencies, which suggests that these

components carry most of the information for the signal. Quite surprisingly, the

reconstructed f0 signal appears farther from natural speech than the utterances

using only selected components (5-6 and 5-8).
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5.5 Experiment 3: referenced evaluation

5.5.1 Design

In the MUSHRA test, participants are asked to rate all conditions of the same

utterance in parallel from 0 (very poor) to 100 (very natural). Each condition has

one slider and listeners are given the natural (vocoded) condition as reference.

This utterance is also included in the unlabeled conditions and participants are

instructed to judge at least one utterance as completely natural. This fixes the

high end of the scale and all conditions are judged in relation to this.

The same data described in Section 5.4.1 was used. 10 native listeners rated

all 20 sets of 10 stimuli, each stimulus originating from the conditions detailed in

Table 5.1. The order of the stimuli was randomized for each participant.

5.5.2 Results

From the expected 200 sets, 48 were discarded due to the hidden reference being

judged as less than completely natural. These were excluded from the analysis.

Figure 5.5 illustrates the distribution of the remaining 152 sets for all utterances

and participants. Listeners ranked the CWT middle frequencies higher than the

CWT low or high frequencies, with the HMM generated f0 being comparable to

the CWT low frequencies. Table B.1 in Appendix B shows the full results from

Bonferroni-corrected pairwise Wilcoxon sign rank tests on all conditions.

Comparison of the ranked systems shows that there were no significant dif-

ferences among all three conditions using low frequency components (conditions

1-2, 3-4, and 1-4). The condition using HMM-generated f0 also shows no signif-

icant differences from any of the systems using low frequencies, which supports

one of the initial hypothesis of this work. The system using the components pre-

viously associated with the syllable level (condition 7-8) is comparable in terms

of naturalness to the system using low frequencies and the systems using HMM-

generated f0. All other systems are significantly different, including the systems

using the fifth and the sixth components, which are ranked higher than all other

conditions, except the one using all signal components.
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Figure 5.5: Boxplot for the MUSHRA evaluation, where the y-axis denotes the score

given by participants on a 0-100 scale and the x-axis denotes the systems that were

evaluated. Dark blue horizontal line shows the median and the red square shows the

mean.

5.6 Experiment 4: non-referenced evaluation

5.6.1 Design

In the MOS (Mean Opinion Score) test, 25 participants were asked to rate each

utterance on a scale of 1 (completely unnatural) to 5 (completely natural). No

other instructions were given to the participants, therefore, unlike the MUSHRA

evaluation, participants have no reference against which to judge each utterance.

All utterances were randomized for each participant. This experiment uses the

same data described in Section 5.4.1.
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Figure 5.6: Boxplot for the MOS evaluation, where the y-axis denotes the score given

by participants on a 1-5 scale and the x-axis denotes the systems that were evaluated.

Dark blue horizontal line shows the median and the red square shows the mean.

5.6.2 Results

From the expected 1000 judgments, 1 was missing. Each unique utterance was

judged 5 times and all conditions had 100 judgments, except 1 condition which

had an utterance with 4 judgments and a total of 99 scores.

Figure 5.6 shows a boxplot with the results for the MOS test. Listeners were

quite conservative in the judgment of the natural speech, which has a median of 4,

possibly because it was given as vocoded speech. It still performs higher than the

remaining conditions, followed by, as expected, the condition that reconstructs

f0 with all frequencies. Table B.2, given in Appendix B shows the full results

for Bonferroni-corrected pairwise Wilcoxon sign rank tests on the mean opinion

score for all conditions evaluated.

Considering the condition using the reconstructed signal with all components,

the only conditions that show no significant differences are those using the middle
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frequencies 5-6 and 5-8. These are also the only conditions with selected com-

ponents that are rated significantly higher than the HMM-generated f0 signal.

However, when comparing these two conditions with the remaining frequency

ranges, we observe no significant differences with the condition using low fre-

quencies (conditions 1-4, 3-4) and selected middle frequencies (condition 7-8).

The two conditions considering only the very low frequencies (condition 1-2) and

the high frequency components (condition 9-10) are only significantly different

than the systems using the 5th and 6th components (conditions 5-6 and 5-8).

5.6.3 Referenced and non-referenced evaluations

The comparison of the results from the referenced evaluation (MUSHRA) and the

non-referenced evaluation (MOS) is worth mentioning. In general, the ranking

of the conditions is similar in the two evaluations, which suggests that the two

tests are similar in terms of the results. In both cases, the middle frequency

conditions using the fifth and the sixth components are ranked higher than all

other conditions, suggesting that this particular range carries a large amount of

information with respect to naturalness.

However, it is clear that the results from the MOS evaluation are more con-

servative in terms of the differences between the systems. One obvious difference

is that, lacking a reference stimulus, listeners judged whether the stimulus that

they listen is likely to occur against their internal references. Referenced tests,

such as the MUSHRA, in a sense, measure the deviation from a speech sample.

In this case, for the evaluation conducted in this chapter, we evaluate how much

of the signal is carried in a given component. With a non-referenced test such

as MOS, we evaluate instead how acceptable or natural a given signal is. In this

case, the amount of non-significant differences makes sense. If, for example, as

initially hypothesized, the low frequency components correspond to an f0 signal

associated with neutral intonation, then it is still a valid contour, depending on

the context in which it is given.

These observations follow the findings reported in Latorre et al. (2014), which

investigated the differences between referenced and non-referenced evaluation
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methodologies. The evaluation of natural and context-appropriate intonational

patterns in synthesis applications still remains an open problem (see Section 10.3

of this thesis for thoughts on future work in this direction).

In any case, regardless of referenced or non-referenced methodology, the results

indicate the two conditions that stand out by being closer to the condition using

all frequency components are those that use the 5th and the 6th components.

These were also rated higher than other components in the evaluations reported

in Sections 5.3 and 5.4.

5.7 Discussion

The main hypotheses motivating this set of evaluations derived from a key as-

sumption made in Section 4.6.3 of Chapter 4: that all wavelet components and

their respective linguistic levels, contribute equally to the f0 signal.

Given the observed results, we find evidence to reject this hypothesis. Native

listeners tend to prefer the middle scale components of the continuous wavelet

transform when used to decompose the f0 signal. The 5th and 6th components

consistently show higher degrees of naturalness when compared to the remaining

components. These are the components that have been previously associated with

the word level in Chapter 4. A visualization of the sum of these two components

is given in Figure 5.7, alongside the original f0 contour. The utterance shown

was extracted from the database used for the prominence evaluation, described

in Section 5.3.1.

The 7th and 8th components were also hypothesized to rank higher than oth-

ers, given that these were expected to capture syllable-level effects, as proposed

in Chapter 4. However, the results from this investigation show that the 7th and

the 8th components behave similarly to higher frequency components. That is,

alone they don’t contribute much in terms of naturalness, but when used with

the middle components 5 and 6, results tend to improve. This is observed in

experiments 1 and 2, in which the condition reconstructing f0 with all four com-

ponents achieves better results. However, in experiments 3 and 4, no significant

differences are seen in the judgments between the combination of components 5
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Figure 5.7: Response signals for the sentence “John won at Mary’s.” given four

different stimuli. The left column illustrates the f0 signal and the right column the

sum of the 5th and 6th wavelet components under a 10-scale decomposition strategy.

to 8 and components 5 and 6.

This suggests that listeners prefer components 5 and 6. In the first and sec-

ond experiments, these perform better than the condition using all frequencies,

which was unexpected. In experiments 3 and 4, they appear to behave as ex-

pected, ranking below all frequencies, but this difference is not significant in

the MOS experiment. In the MUSHRA evaluation, however, this is a signifi-

cant difference (Table B.2, p, 209). It is strongly suggested by these results that

the mid-frequency components of a wavelet-based decomposition contain most

of the information that listeners associate with naturalness in expressive speech.
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Therefore, such components might provide a suitable candidate when exploring

suprasegmental models of f0.

The second hypothesis expected the low frequency components to be similar to

the f0 signal generated by an MSD-HMM. These were the components associated

with the phrase and utterance levels. Results observed in the MOS and MUSHRA

evaluations show that no significant differences were found between the ratings

of all the lower scales. Similarly, we have failed to observe significant differences

between these components when comparing them to the HMM condition. This

suggests that HMMs are not very effective at modeling expressive f0. A possible

cause for this might be the focus on frame-level modeling combined with a lack of

understanding of proper suprasegmental contexts. These models tend to average

different effects, causing the generated contour to be neutral and similar to the

natural low frequencies. However, it should be noted that HMM-generated f0

does not appear to be completely similar to the low frequency components, as

the results from experiment 2 indicate.

The final hypothesis claimed that the higher frequency components would

carry little relevant information to the f0 signal. The results provide evidence to

support this claim, showing that the reconstructed f0 using only these compo-

nents is consistently rated lower than all other components. This might explain

the lack of improvements when modeling them at frame-level with HMMs, while

using suprasegmental approaches with the remaining scales, as proposed in Chap-

ter 4. When rated in isolation in the MOS test, they appear to be comparable

to the low frequencies (scales 1 and 2). However, when ranked directly, listeners

tend to prefer the low frequencies, possibly due to a more stable intonational

pattern over the utterance.

Therefore, we could hypothesize that the middle components might provide

a good starting point for suprasegmental models of f0. We can think of these

components as the signal stripped of most of its noise, preserving meaningful

information to the listener, such as word prominence. The low frequencies can be

captured and modeled by the traditional frame-level approaches such as MSD-

HMMs, or even modeled directly with a very simple approach such as the one

described in Chapter 4. It is possible that the high frequency components could



Chapter 5. A perceptual investigation of wavelet-based decomposition of f0 110

simply be discarded, although this hypothesis was not investigated in this work.

The second key assumption described in Section 4.6.3 of Chapter 4 claimed

that each wavelet component, under the current decomposition strategy, can be

meaningfully associated with a linguistic level. The work presented in this chap-

ter already showed some evidence to reject this assumption. For example, com-

ponents associated with the syllable level (scales 7 and 8) tend to rate lower

than expected, as observed in experiment 2. Chapter 6 investigates this notion

more thoroughly, and, using these findings, proposes an alternative decomposition

strategy using the CWT for the f0 signal.

5.8 Conclusion

This chapter conducted a perceptual investigation of a wavelet-based decompo-

sition strategy of the f0 signal. It was observed that the mid-frequency com-

ponents produced by this decomposition strategy are commonly associated with

higher levels of naturalness. The lower frequency components are comparable

to HMM-generated f0 and, although they contribute to the reconstructed signal,

they mostly reflect neutral intonation. High frequency components do not appear

to contribute much to the signal and may be regarded as noise. This suggests

that not all components from the decomposition contribute equally to the recon-

structed signal, as was initially assumed by earlier work (Suni et al., 2013; Ribeiro

and Clark, 2015).



Chapter 6

A dynamic wavelet-based

decomposition of f0

This chapter covers the work described in “Wavelet-based decomposition of f0 as a

secondary task for DNN-based speech synthesis with multi-task learning” (Ribeiro

et al., 2016c), presented at ICASSP 2016.

The multi-level representation proposed in Chapter 4 was based on two key

assumptions regarding a 10-scale wavelet based decomposition of the f0 signal.

While Chapter 5 investigated the initial assumption that all wavelet components

contributed equally to the signal’s reconstruction, this chapter will focus on the as-

sumption that wavelet components can be meaningfully related to linguistic units.

The distributions of peak rates for each wavelet component are compared with the

distributions of linguistic levels. The observations from this evaluation lead to an

alternative decomposition strategy, in which the mother wavelet is varied dynam-

ically for each utterance. The two decomposition strategies are then evaluated as

the secondary task of a feedforward deep neural network.

6.1 Introduction

Chapter 4 proposed a multi-level representation of the f0 signal using the con-

tinuous wavelet transform (CWT) and the discrete cosine transform (DCT). The

first part of the representation was inspired by the work of Suni et al. (2013),

111
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using the CWT to decompose the f0 signal into components that were associated

with linguistic levels. It was argued in Chapter 4 that the work presented was

mainly driven by two assumptions: (1) that all wavelet components are equally

relevant to the reconstructed f0 signal; and (2) that these components can be

meaningfully associated with various linguistic levels.

Chapter 5 investigated the first assumption in a set of experiments that ranked

each decomposition component against a reference or against each other. It was

observed that the mid-frequency components were consistently rated higher in

terms of naturalness than all other components. This suggests that these com-

ponents carry most of the meaningful variation in the signal. Evidence found

through these experiments does not support the first assumption made in earlier

chapters.

The current chapter is motivated by the need to gain further insight into

the second assumption. Section 6.2 provides a description and analysis of two

wavelet-based decomposition strategies. Section 6.2.1 focuses on the decomposi-

tion strategy proposed by Suni et al. (2013) and used in Chapters 4 and 5. For the

purposes of the current chapter, this strategy is termed the static decomposition

strategy. An alternative strategy is proposed in Section 6.2.2, leveraging findings

from earlier chapters, and it is termed the dynamic decomposition strategy. Sec-

tion 6.3 evaluates the two decomposition strategies as the secondary tasks of an

acoustic model in the context of text-to-speech synthesis.

6.2 Wavelet-based decomposition strategies

6.2.1 Static strategy

The decomposition strategy using the continuous wavelet transform investigated

in earlier chapters used a fixed set of 10 scales. Each scale is separated by one

octave, with the initial scale being set to be approximately the frame size (5ms).

Under this decomposition strategy, the scaling of the mother wavelet (and its

frequency) for each of the ten components is fixed across the entire dataset. Due

to this property, for the purposes of this chapter, we term this approach a static
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Figure 6.1: Top figure shows unit rate distributions for selected linguistic units. Bot-

tom figure shows peak (local maxima) rates per second for selected components under

a static 10-scale wavelet-based decomposition of the f0 signal, including the sum of

the 5th and 6th components.

decomposition strategy.

It is our goal to investigate the relationship between this decomposition

strategy and the linguistic levels (e.g. words, syllables, phrases) across a large

database. Linguistic levels are found from the front-end and unit boundaries

derived from state-level forced alignment, as in Chapter 4. To visualize the rela-

tionship between decomposition parameters and linguistic levels, we consider the

distributions of word and syllable rates, as well as peak (local maxima) rates per

second on selected wavelet components. For any linguistic unit and decomposition

component, if their respective unit and peak rates match within an utterance, we

infer that the given component captures the variation associated with that lin-
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guistic unit. For example, at the word level, a component giving approximately

1 local maximum per word would correspond to an effect of the f0 signal that

could be related to the word frequency.

Rates are computed at the utterance level on 5000 utterances of the training

set of the audiobook data described in Chapter 4. Figure 6.1 shows a Gaussian

best fit for the normalized distributions given selected components and linguistic

units. The selection of components and linguistic units illustrated in the figure

was made based on findings from Chapter 5. We focus on the mid-frequency

components and their relationship with syllables and words.

Although these might change depending on speaker or speaking rate, the 6th

component approximately matches the distribution of words, suggesting it could

be modeled at word level. The fact that the distributions match implies that

the 6th component contains approximately 1 local maximum per word in the

utterance, giving a approximation of, for example, word prominence.1

From Figure 6.1, we observe that the 5th component is best modeled at a level

that is higher than the word. The distribution of phrases could be associated

with the 4th component. Therefore, the 5th component lies at a level higher

than the word, but lower than the phrase. The 7th and 8th component were

associated with the syllable level, but evidence from Figure 6.1 suggests that

their distributions do not match. This might explain the perceptual similarity

observed in Chapter 5 between the condition using only the 7th and the 8th

components and the condition using higher frequency components.

The distances between these distributions can be formally quantified with

the root mean square error.2 Table 6.1 summarizes key comparisons between

linguistic levels and static decomposition components. The informal observations

from the distribution visualization are supported by the error measures shown

on the table. The phrase rate is well modeled by the sum of the 3rd and 4th

components. The word rate is closer to the peak rate of the 6th component

1Variations of this idea have been used before using the Continuous Wavelet Transform to
identify word-level prominence (Vainio et al., 2013; Vainio, 2014; Vainio et al., 2015).

2Although we acknowledge that other distance or divergence measures could be used, we
choose here to use the root mean squared error since it allows for direct comparison of sam-
ples. While Figure 6.1 visualizes the overall distribution for the dataset, mean squared error is
computed taking into account each sample utterance in the dataset.
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decomposition component phrase-rate word-rate syllable-rate

4th 0.371

5th 1.255

6th 0.566

7th 1.542

3rd-4th 0.263

5th-6th 0.714

7th-8th 2.53

Table 6.1: Root mean squared error for selected decomposition components and

respective linguistic levels. The top rows measure on single components given a 10-

scale decomposition and the middle rows measure on the sum of adjacent scales, as

used in Chapters 4 and 5 of this thesis.

rather than the sum of 5th and 6th. The syllable rate appears to include the

largest error with the sum of the 7th and 8th component.

Based on the informal observation from the distributions in Figure 6.1 and

the approximation errors of Table 6.1, we find evidence to support the hypoth-

esis that components of the static wavelet-based decomposition strategy is not

meaningfully associated with linguistic levels. This would have no impact for

frame-levels models, such as the CWT-HMM proposed by Suni et al. (2013),

but it could affect suprasegmental representations such as the one proposed in

Chapter 4.

6.2.2 Dynamic strategy

An alternative approach to the decomposition strategy investigated in the previ-

ous section varies the scale of the mother wavelet such that it matches the rate

of a given linguistic unit within utterances. This would constrain the CWT to

generate a representation that contains approximately one local maximum per

linguistic unit. Because this decomposition strategy is not limited to a fixed set

of scale values for the mother wavelet, we term this approach a dynamic strategy.

We propose a decomposition using four distinct linguistic levels: syllable,
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word, clitic-group, and phrase. These linguistic levels are chosen based on seg-

mentation available from a typical text-to-speech front-end. In this work, we

make use of syllable and word boundaries.

Additionally, we consider the phrase, which is inferred similarly to those

described in Chapter 4. Phrase boundaries (or breaks) are predicted from text

using models trained on smaller annotated datasets. This corresponds to the tra-

ditional phrase break prediction found in most text-to-speech systems.3 Concep-

tually, these phrases may correspond to the intonational or phonological phrases

of Nespor and Vogel (1986), following the description of Shattuck-Hufnagel and

Turk (1996) (see Section 3.1 and Figure 3.1 for details). Note, however, that

there is no attempt to relate these units with theories of prosodic constituency.

The linguistic levels we use in this work are simpler and inferred from the text.

The rate for words, syllables, and phrases is easily derivable given an

utterance-level alignment of speech with text. However, we lack textual annota-

tion for a linguistic level between the word and the phrase. Such an intermediate

level might be useful, since it could capture the variation associated with the fifth

component of Figure 6.1. For this reason, we define the rate of this intermediate

level to be the average of the word and phrase rates, and we call this level the

clitic-group.

Note that, in this work, the clitic-group is a conceptual unit capturing f0

variation between word and phrase units. It does not necessarily correspond to

clearly defined textual units, and it is not the purpose of this work to find such

a relation. We freely adopt the terminology of Nespor and Vogel (1986), but

make no attempt to relate this component with theories of prosodic constituency.

The clitic-group of Nespor and Vogel (1986) is described as a content word with

an optional adjacent monosyllabic function word (Shattuck-Hufnagel and Turk,

1996). Observing the f0 component associated with this level in the proposed

dynamic decomposition strategy, illustrated in Figure 6.3, it mostly appears to

capture variation related to content words, which could potentially be grouped

with adjacent function words. This observation alone motivates the usage of this

3For analysis and acoustic model training purposes, ideally we would consider acoustically
motivated phrase breaks. This was not implemented throughout the work described in this
chapter, but it is corrected in the database used in Chapters 9 and 10 of this thesis.
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Figure 6.2: Top figure shows unit rate distributions for selected linguistic units. Middle

figure shows peak (local maxima) rates per second for selected components under a

static 10-scale wavelet-based decomposition of the f0 signal. Bottom figure shows the

peak rates for the proposed dynamic wavelet-based decomposition of the f0 signal.

terminology.

In the proposed dynamic decomposition strategy, we first compute the unit

rate at each linguistic level for each utterance in the database. We then set the

wavelet scale a according to:

a =
1

λf
, where λ =

2π√
m+ 0.5

(6.1)

a is the wavelet scale, according to equation 3.5 (p. 62), f is the frequency, which

is set to the unit rate of each level, and λ is the Fourier wavelength (Torrence

and Compo, 1998), where m is set to 2 for the Mexican hat wavelet.
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decomposition component phrase-rate clitic-group-rate word-rate syllable-rate

phrase 0.145

clitic-group 0.233

word 0.327

syllable 0.565

Table 6.2: Root mean squared error for selected decomposition components and

respective linguistic levels components from a dynamic decomposition of the f0 signal.

6.2.3 Analysis

Figure 6.2 compares the proposed dynamic strategy with the static strategy de-

scribed in the previous section. The figure shows that the proposed method is a

better approximation to the observed distribution of linguistic units than the 10-

scale decomposition. The clitic-group was included in order to capture the range

given by the 6th component, which was judged to capture relevant long-term

variation (cf. Chapter 5). Note also that the proposed dynamic decomposition

captures the variation associated with components 4 to 6, covering the range of

0.6–3.35 Hz. This falls well within the range that speakers have associated with

naturalness (1.6–3.2Hz), according to the results presented in Chapter 5.

Table 6.2 quantifies the distance between the proposed decomposition strategy

and the unit rates of the database. Overall, all levels of a dynamic decomposition

are strong predictors of the rates within the utterance. Even though we are using

observed unit rates, there will always be a non-zero error since in general some

units might not carry an accent or prominence.

Figure 6.3 illustrates the dynamic decomposition strategy on an utterance

from the database. This figure can be compared with a static decomposition

strategy. Figure 4.2 (p. 77) shows a 10-scale static decomposition with adjacent

scales added together. This was the approach used for the multi-level representa-

tion described on Chapter 4 and the investigation on Chapter 5. For comparison

purposes, the same utterance is illustrated.

The curve that had been previously associated with the word level is now

associated with the clitic group, and it corresponds, for this particular example,

to the content words of the utterance. In the new decomposition strategy, the
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Figure 6.3: Four scale dynamic CWT decomposition strategy with force-aligned

boundaries (vertical dashed lines) at each linguistic level. The bottom axes list the

syllables and the words for this example, with the axis marks placed at the mid-point

of each syllable or word, considering the force-aligned boundaries. This decomposition

provides an alternative to the static decomposition strategy illustrated in Figure 4.2

(p. 77).
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all 5-6 5-8 4-7 dynamic

rmse
mean 2.588 21.134 11.553 16.647 11.303

std 1.01 10.078 5.548 8.799 4.847

corr
mean 0.995 0.704 0.904 0.815 0.901

std 0.001 0.115 0.047 0.091 0.057

Table 6.3: Reconstruction error for selected 10-scale decomposition components and

the proposed dynamic decomposition.

curves associated with words and syllables are similar due to the example con-

sisting mostly of monosyllabic words. Looking at the two figures, the dynamic

decomposition appears to extract a more stable contour in terms of syllables,

while discarding the high frequency information previously associated with the

phone-level.

Table 6.3 shows reconstruction error for the proposed dynamic decomposition,

as well as for selected wavelet scales given the 10-scale decomposition. A dynamic

decomposition method such as the one proposed will not achieve a good recon-

struction error, as some components are discarded (e.g. the very low or high

frequencies). However, we do observe that it is comparable to the ranges 5-8,

which was one of the systems associated with higher naturalness levels, according

to the evaluations conducted in Chapter 5. Although there is some reconstruc-

tion loss, f0 could be modeled directly with this representation if supplemented

by an additional fifth component. This additional component could be set as the

residual of the reconstructed signal not accounted for by the observed f0 signal.

The main advantage of this representation over the static strategy is that it

is linguistically derived, as well as perceptually motivated. We claim that this

dynamic decomposition strategy is linguistically derived because it is based on

observed unit rates from the data and the peak rate distributions can be associ-

ated with suprasegmental linguistic levels. We also claim that it is perceptually-

motivated because it is based on the frequency ranges judged to contain higher

levels of naturalness in the set of perceptual experiments described in Chapter 5.

In order to compare these two decomposition strategies, we consider them to
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be the secondary task in a feedforward neural network. The following sections

compare the two approaches as additional output features in the optimization of

an acoustic model for text-to-speech synthesis.

6.3 Experiments

6.3.1 Multi-task learning

The main idea behind multi-task learning (MTL, Caruana (1997)) is to train a

model on similar tasks using the same shared representation of input features. We

provide the model with a secondary task, which could help produce better latent

representations, thus improving performance on the primary task, illustrated in

Figure 6.4. Multi-task learning has been applied to automatic speech recognition

(Seltzer and Droppo, 2013) and to natural language processing (Collobert and

Weston, 2008) with various degrees of success.

In speech synthesis, recent work has explored secondary tasks mostly in the

spectral domain. In Wu et al. (2015), gammatone spectrum, formant frequencies,

line spectral frequencies (LSF), or spectro-temporal excitation patterns (STEP)

were used. Although improvements were seen in objective measures, the authors

failed to see significant differences between these systems and the baseline in a

perceptual evaluation.

In the following sections, we investigate the usefulness of the wavelet-based

decomposition strategies described in Section 6.2 as an f0-based secondary task.

We hypothesize that a different representation of the f0 signal will be useful

for the optimization of the model on the standard acoustic feature set, especially

when the representation is perceptually motivated, as in the case of the mid-

range frequencies of the static and dynamic strategies. We also hypothesize that

a balance between spectral features and f0-based features will be relevant. The

standard feature set uses 180 spectral features, 75 band aperiodicities, but only

3 f0 features, considering deltas and delta-deltas.
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Figure 6.4: Multi-task deep neural network (MTL-DNN). A secondary task is added

alongside the primary task during training. At synthesis time, the secondary task is

discarded.

6.3.2 Experimental setup

We have used the freely available audiobook A Tramp Abroad, processed as

described in Section 4.3.1. Acoustic parameters were extracted using the

STRAIGHT vocoder (Kawahara et al., 1999, 2001). These were log-f0, 60-

dimensional mel cepstral coefficients (MCCs), and 25 band aperiodicities (BAPs),

extracted at 5ms intervals. Log-f0 was linearly interpolated and voiced/unvoiced

decision (VUV) was stored separately. We further appended dynamic features

(deltas and delta-deltas), thus creating a 180 dimensional vector for MCCs, a 3

dimensional vector for log-f0, and a 75 dimensional vector for BAPs. With the

voiced/unvoiced decision, the full output acoustic feature vector consists of 259

values. We call this the primary task.

We further processed the interpolated log-f0 signal with the CWT, using the

two decomposition strategies described in Section 6.2. The various components of

these decomposition strategies and their dynamic features are called the secondary

task. The unit rates used with the proposed dynamic decomposition of f0 were

inferred from syllable, word, and phrase boundaries. These were extracted from
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the data after forced-alignment. For this alignment, context-dependent 5-state

left-to-right hidden Markov models were used with monophone pretraining. The

models learned on the training data were then used to force-align the training,

validation, and test sets at the state-level.

As input features, we used the set of 592 binary questions at phone and

higher-levels plus 9 numerical features related to the state and frame position.

The full input feature vector consists of 601 values. Details on the feature set can

be found in Appendix A.0.2. Input features were normalized to the range [0.01,

0.99] and output features were normalized to zero mean and unit variance. For

these experiments, durations was inferred from the forced-alignment.

The acoustic model for this task is a feedforward deep neural network. We

use tanh as the activation function in the hidden layers and a linear activation

function in the output layer. A total of six layers were used, each with 1024 nodes.

For training, we set the mini-batch size to 256. Momentum was set to 0.3 for the

first 10 epochs with a learning rate of 0.002. After the first 10 epochs, momentum

was set to 0.9 and the learning rate reduced by 50% after each epoch. Each

system trained for a maximum number of 25 epochs. Early stopping was used

and training and halted once validation error started increasing. L2 regularization

weight was set to 10−5. Training parameters and implementation are very similar

to those described in Wu et al. (2015). We have used an pre-release version of

the Merlin Neural Network Toolkit (Wu et al., 2016). Training, development,

and test sets consist of 4500, 300, and 100 utterances, respectively. The training

set consists of 9 hours of speech data, while validation contains 33 minutes, and

test set 9 minutes. In these experiments, we keep input features, data, and

architecture constant. The primary task is the same for all systems and only the

secondary task is varied.

6.3.3 Systems trained

We trained a total of 16 systems, which are shown in Table 6.4. They are differen-

tiated only by the secondary task that they use. The system using no secondary

task is taken as a baseline.
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The first block of systems uses the static 10-scale decomposition. For example,

cwt-5 indicates that the signal corresponding to the fifth component was used

as a secondary task. The system cwt-5, cwt-6 indicates that the fifth and the

sixth components were included as two secondary tasks. This specific range was

selected as the experiments described in Chapter 5 associated them with higher

levels of naturalness. The second block of systems uses the proposed four-level

dynamic decomposition. Selected levels of this decomposition strategy are used

as the secondary task. When more than one component is included, more than

one secondary task was used simultaneously.

The main hypothesis we test is that including f0 components capturing

suprasegmental prosodic variation as secondary tasks will improve the overall

quality of speech parameters generated by a system trained on an expressive

dataset. We expect that the distribution of the quality improvements seen with

each component to be similar to the distribution of their naturalness ratings.

That is, components (or ranges) that were judged more natural in Chapter 5 will

give better results if used as secondary tasks when compared with a system not

using additional tasks.

6.3.4 Objective results

Objective results for all trained systems are shown in Table 6.4. The results

presented for all systems are computed only on the primary task. At this point,

the output for the secondary task is discarded and no attempt was made to

integrate it in the f0 signal predicted from the primary task, although future

work in this direction could be useful.

We observe that including all decomposition components does not improve

the results over the baseline. In fact, noticeable decreases are seen, especially

in terms of f0 prediction. Similarly, lower frequency components, such as the

phrase component, do not show improvements. This is not surprising, as these

components reflect the longer-term variation of the f0 signal and may not be

useful for the short-term variation these frame-level models attempt to describe.

The cwt-5-6 condition, which uses the sum of components 5 and 6 of a 10-
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Secondary acoustic features MCD BAP F0 RMSE F0 Corr V/UV Error Rate

(dB) (dB) (Hz) (% of frames)

none 4.64 2.18 27.68 0.44 4.42

cwt-1 to cwt-10 4.65 2.20 28.82 0.40 4.53

cwt-5 4.48 2.15 27.31 0.46 4.05

cwt-6 4.48 2.15 27.38 0.48 4.05

cwt-5, cwt-6 4.48 2.16 27.28 0.47 4.07

cwt-5-6 4.46 2.15 26.96 0.49 3.40

cwt-syl, cwt-wrd, cwt-clg, cwt-phr 4.64 2.20 28.69 0.43 4.48

cwt-syl 4.47 2.15 27.14 0.48 4.01

cwt-wrd 4.48 2.15 27.41 0.46 4.07

cwt-clg 4.48 2.15 26.90 0.47 4.12

cwt-phr 4.64 2.18 28.07 0.44 4.50

cwt-syl, cwt-wrd 4.66 2.19 28.14 0.44 4.59

cwt-wrd, cwt-clg 4.50 2.16 27.50 0.46 4.09

cwt-clg, cwt-phr 4.67 2.19 28.67 0.42 4.66

Table 6.4: Objective results for trained systems. All systems include MCCs, log

f0, VUV, and BAPs as primary acoustic features. Secondary acoustic features are

added as per the proposed decomposition, using either a dynamic or a 10-scale de-

composition. MCD is mel cepstral distortion, BAP is band aperiodicity error, V/UV

is voiced/unvoiced error, and RMSE and Corr are the root-mean-squared error and

correlation between predicted and original f0 signal on voiced frames only. Best

performing results for each parameter are indicated in bold.

scale static decomposition, outperforms all other systems. This is also not a

surprise, as this is the condition judged as most natural by participants in the

experiments reported in Chapter 5. The disadvantage of this component is that

it is not directly associated with a linguistic unit, unlike the proposed dynamic

decomposition.

Quite interestingly, the condition including the syllable and word-level com-

ponents together as secondary task performs worse than the remaining systems,

being equivalent to the lower frequency components. The reason for this might

be the large overlap in the syllable and word distributions seen in Figure 6.2,
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Figure 6.5: Preference test results with N/P indicating “No Preference”. In paren-

thesis, p-values indicate the results of 1-tailed binomial tests with an expected 50%

split, with the N/P results evenly distributed over the other two conditions.

which makes these two components highly correlated. It was expected that the

clitic-group or the word components would outperform all other systems, as these

are approximately in the frequency range judged to contribute most towards nat-

uralness. Instead, we observe that the syllable component yields the best objec-

tive measures. Further experiments could investigate how these lower-frequency

components (word and clitic-group) behave under models capable of leveraging

long-term information, such as recurrent networks with Long Short-Term Memory

(LSTM) units (Hochreiter and Schmidhuber, 1997; Fernandez et al., 2014).

6.3.5 Subjective results

We conducted a perceptual evaluation of 3 selected systems. We chose the system

from each decomposition strategy with the highest f0 correlation and the base-

line system for inclusion in the evaluation. 50 test utterances were synthesized

from the primary parameters, and the secondary parameters were discarded. 16

native speakers judged randomized utterance pairs in a preference test with a no

preference option. Each pair was judged 8 times by different participants and
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each condition received a total of 400 judgments.

Results are presented in Figure 6.5, where we see preference percentages and

the results of a 1-tailed binomial test assuming an expected 50% split, with the

no-preference judgments distributed equally over the remaining conditions. The

two proposed systems are preferred over the baseline, but no significant differences

are seen when they are compared against each other. It was surprising to see a

much smaller effect when comparing the 10-scale system with the baseline, as it

was expected to achieve higher naturalness.

6.4 Discussion

In Chapter 4 of this thesis, the f0 signal was decomposed with the continuous

wavelet transform (CWT). The components extracted from the signal were then

modeled at various linguistic levels within an HMM-based text-to-speech sys-

tem. However, for modeling, the proposed representation made two fundamental

assumptions.

The first assumes that all decomposition components were equally relevant to

the reconstructed signal. This was investigated in Chapter 5. The results of a set

of perceptual evaluations found evidence to support that this assumption does not

hold. Some decomposition components can be removed without much loss of the

naturalness of the signal, while specific components (those in the mid-frequency

ranges) carry most of the signal’s information.

The second assumption, that each decomposition component can be meaning-

fully associated with a linguistic level, was investigated in the current chapter.

By relating unit rates (e.g. syllables, words) with peak rates (local maxima) of

signal components, we have found that the second assumption also does not hold.

It was observed that, in the case of phrase distributions, there is an approximate

match between unit rate and the peak rate distributions. However, in the case of

syllables and words, the unit and peak rate distributions were not very similar.

These two linguistic levels were of particular importance as the signal components

that were being associated with them were those that listeners associated with

higher naturalness.
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An alternative decomposition strategy was proposed, which adapts the scale

of the mother wavelet to match the unit rates within the utterance. Objective

results indicate that including multiple decomposition components as secondary

tasks is not beneficial for the primary task. Similar results were observed with low

frequency components, such as those associated with the phrase level. A decrease

in the objective error measurements was observed when using those components

that are in the same range that listeners have associated with naturalness. The

distribution of the objective scores is consistent with earlier findings related to the

components that were used as secondary tasks. The systems using components

that were given higher naturalness ratings (those in the mid-frequency ranges)

consistently scored higher when used as secondary tasks. In the dynamic decom-

position strategy, these are those that have been extracted with syllable, word,

or clitic-group unit rates.

Listening tests have provided further evidence that these components can be

beneficial for the modeling of acoustic parameters for text-to-speech systems.

Both systems using multi-task learning outperformed the system using only the

primary task. And although no preference was observed towards the system

using a dynamic decomposition component when compared to a system using

a static decomposition component, the proposed strategy has the advantage of

being related to linguistic levels.

The proposed dynamic wavelet-based decomposition has two key advantages

over a static strategy. It is both perceptually-motivated and linguistically-

motivated. We claim that the dynamic decomposition strategy is perceptually-

motivated because its key components (syllable, word, clitic-group) are within

the frequency range (1.6–3.2 Hz) that listeners have associated with naturalness.

Therefore, we know that the fundamental intonational patterns of the f0 signal

are being preserved in the decomposition components. We also claim that this

strategy is linguistically-motivated because the mother wavelet is dynamically

scaled to match the speech rate of the utterance. This conditions the transform

to find approximately one local maximum per unit in the utterance, which could

correspond to the prominence level of that unit within the utterance.

Further work could investigate direct modeling of the decomposed f0 signal
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by incorporating a fifth component made of the residual of the reconstructed

and the original signal. This would be a good step towards a hierarchical and

suprasegmental model of the f0 signal. Future work could also attempt to com-

bine the prediction of the secondary task with the predicted f0 signal, instead

of discarding it. The components at each level may also be used to learn better

feature representations at each linguistic level, as they are assumed to capture

each level’s variation. Some work in this direction is presented in Chapter 9.

6.5 Representations of acoustic signals

The current chapter concludes the evaluation of decomposition approaches to the

modeling of the f0 signal in statistical parametric speech synthesis. Considering

the segmentation of the main claim into three sub-problems, this work falls under

sub-problem 1: representations of acoustic signals. Although we are aware of a

wide variety of representation approaches for the f0 signal (see Section 3.2.1),

we have chosen to focus on a wavelet-based decomposition approach. The main

outcome of this work is the dynamic decomposition strategy of the f0 signal,

whose components can be meaningfully associated with linguistic levels.

In the following chapters of this thesis, we focus on the analysis of the re-

maining two sub-problems of the main claim: representation of linguistic contexts

(Chapters 7 and 9) and mapping acoustic and context representations (Chapters

7 and 8). The main contribution of Chapters 4, 5, and 6, focusing on supraseg-

mental acoustic representations, will be revisited in Chapter 10, together with

the main contributions presented in later chapters of this thesis.

6.6 Conclusion

This chapter investigated the association of f0 components with linguistic levels

under two wavelet-based decomposition strategies. While the first strategy (Suni

et al., 2013; Ribeiro and Clark, 2015) uses a static set of scales, the second strategy

dynamically adapts to the speech rate of an utterance. It was found that the

dynamic strategy has the ability to meaningfully relate to linguistic units such



Chapter 6. A dynamic wavelet-based decomposition of f0 130

as syllables and words. These approaches were evaluated as secondary tasks in

multi-task DNNs for expressive speech. We have observed a strong preference for

the systems using multi-task learning with selected decomposition components.



Chapter 7

Syllable-level representations of

suprasegmental features

This chapter presents an extended version of the work described in “Syllable-level

representations of suprasegmental features for DNN-based text-to-speech synthe-

sis” (Ribeiro et al., 2016b), presented at Interspeech 2016.

A top-down hierarchical system based on deep neural networks is investigated.

Suprasegmental features are processed separately from segmental features and a

compact distributed representation of high-level units is learned at the syllable

level. The suprasegmental representation is then integrated into a frame-level

network. Objective measures show that a hierarchical framework outperforms a

standard frame-level network. Additional features incorporated into the hierarchi-

cal system are then tested. At the syllable level, a bag-of-phones representation

is proposed and, at the word-level, vector representations are learned from text

sources are used. It is shown that the hierarchical system is able to leverage new

features at higher-levels more efficiently than a system which exploits them directly

at the frame level. A perceptual evaluation of the proposed systems is conducted

and followed by a discussion of the results.

131
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7.1 Introduction

Considering the main claim of this thesis and its three sub-problems defined in

Chapter 1, the work presented in previous chapters provided contributions and

insights into multi-level representations of fundamental frequency. These

chapters were associated with sub-problem 1: representations of acoustic signals.

The current chapter focuses on different sub-problems of the main thesis claim.

Together with Chapters 8 and 9, the common topic of these contributions is

hierarchical systems and suprasegmental input representations. These

fall under sub-problem 2: representation of linguistic contexts, and sub-problem

3: mapping acoustic and context representations.

In terms of modeling, multi-level approaches have been proposed for HMM-

based systems (Hsia et al., 2010; Qian et al., 2011). In the case of DNN-based

systems, recurrent (Fernandez et al., 2014), hierarchical (Yin et al., 2016), or

mixed (Chen et al., 1998) approaches have claimed to capture the long-term

dependencies of speech.

On the input side, it has been shown that prosodic contexts are very poorly

understood. Cernak et al. (2013) revealed that, in HMM-based synthesis, fea-

tures above the syllable-level do not improve the naturalness of synthetic speech

(see Section 3.2.3 for a discussion). In an effort to acquire a better understand-

ing of linguistic contexts, continuous representations of input features have been

explored, either at the segment (Lu et al., 2013; Wu et al., 2015) or word level

(Watts et al., 2014; Wang et al., 2015a), with various degrees of success.

This investigation adds to the work exploring input features for prosody mod-

eling in text-to-speech synthesis, specifically focusing on continuous representa-

tions of suprasegmental contexts. Two main contributions are made:

1. a top-down hierarchical model that pre-processes suprasegmental informa-

tion and represents it compactly at the syllable level.

2. an investigation of this architecture with a bag-of-phones representation at

the syllable level and word embeddings learned from a large text database

with the skip-gram model (Mikolov et al., 2013a,b).
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There are two possible lines of research in terms of suprasegmental informa-

tion. A first approach may focus solely on learning transformations of conven-

tional linguistic features (e.g. via a neural network) in an attempt to improve

the prediction of the acoustic parameters without adding any extra information.

A second line of research attempts to learn additional features and provides the

model with new information regarding suprasegmental context. Both approaches

are handled by the work presented in the current chapter.

In Section 7.3, an investigation of a cascaded hierarchical framework is con-

ducted. In this architecture, multiple linguistic levels are connected via a bot-

tleneck layer, which learns a compact latent representation of suprasegmental

features. Since no additional information is given to the model, this work falls

under the first line of research. We investigate three variables of interest: position

of the bottleneck layer, size of the bottleneck layer, and acoustic features used to

optimize the suprasegmental network. In Section 7.4, we evaluate the ability of

a hierarchical framework to leverage additional features. This work falls under

the second line of research, as new information is injected into the model. This

new information consists of a bag-of-phones representation of syllable structure,

and, at the word level, text-derived word embeddings learned with the skip-gram

model.

7.2 Experimental setup

For these experiments, we have used freely available audiobook data. This is the

same dataset described in Section 6.3.2. Training, development, and test sets

consist of 4500, 300, and 100 utterances, respectively. The training set consists

of 9 hours of speech data, the validation 33 minutes, and the test set 9 minutes.

As in earlier work, we have used the STRAIGHT vocoder (Kawahara et al.,

1999, 2001) to extract log-f0, 60-dimensional mel cepstral coefficients (MCCs),

and 25 band aperiodicities (BAPs) at 5ms intervals. Log-f0 was linearly in-

terpolated and voiced/unvoiced decision (VUV) was stored separately. Dynamic

features (delta and delta-deltas) are added to the static features to form an acous-

tic feature vector with 259 dimensions. Acoustic features were reduced to zero



Chapter 7. Syllable-level representations of suprasegmental features 134

mean and unit variance. For these experiments, we use natural duration, which

is inferred from the force-alignment given by a pre-trained 5-state left-to-right

HMM.

As input features, we use a set of 592 binary questions at phone and higher-

levels plus 2 numerical features related to the HMM state. These are the linguistic

features described in Appendix A.0.2 (p. 207). Input features were normalized to

the range [0.01, 0.99]. A subset of the input features are defined at syllable and

word-level (and are here termed suprasegmental features). These are separated

from the remaining features defined at frame and phone-level (and are termed

segmental features).

Basic network

The basic deep neural network is a simple feedforward multilayer perceptron. We

use a configuration identical to the baseline system described in Chapter 6. A

network with 6 hidden layers is used, each layer consisting of 1024 nodes. We set

tanh as the activation function in the hidden layers and we use a linear output

layer. During training, we use a mini-batch size of 256 and we set the maximum

number of iterations to 25. The network inputs the normalized binary vectors

from the concatenated segmental and suprasegmental features.

Top-down hierarchical network

Figure 7.1 illustrates the top-down hierarchical deep neural network. An initial

network takes the feature vector corresponding to the normalized binary supraseg-

mental features and maps it to acoustic parameters defined at the syllable level.

The network is set to be a 6 hidden layer triangular network. The lower layers

begin with 1024 nodes and this is halved in the next layer such that the top hid-

den layer reaches the desired dimensionality. We term this top hidden layer the

bottleneck layer. Further details are given in Section 7.3. The syllable network

uses the tanh activation function in the hidden layers and a linear output layer.

Mini-batch size is set to 16 and the maximum number of iterations is set to 25.

The remaining hyperparameters are identical to those used for the basic deep
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Figure 7.1: Integration of suprasegmental bottleneck features into a frame-level deep

neural network

neural network.

After the suprasegmental network is trained, the hidden representation of the

bottleneck layer is concatenated with the segmental feature vector. The frame-

level network is then trained as described in the previous section. Segmental and

suprasegmental networks are optimized separately.

7.3 Hierarchical framework

In this section, we explore a variety of configurations with the proposed cascaded

hierarchical structure. We begin in Section 7.3.1 by investigating the position of

the bottleneck layer within the syllable-level network. Section 7.3.2 investigates

how to include the learned representations in the frame-level network, while Sec-

tion 7.3.3 explores combinations of acoustic features in the output parameters of

the suprasegmental network.

7.3.1 Position of the bottleneck layer

We evaluate two strategies for integrating suprasegmental hidden representations

into a frame-level network and the position of the bottleneck layer in the supraseg-

mental network. Regarding integration methodologies, we consider replacing or

appending to the original binary set of suprasegmental features. Deviating from



Chapter 7. Syllable-level representations of suprasegmental features 136

System Bottleneck Size MCD BAP F0-RMSE F0-CORR VUV

baseline - 4.596 2.197 28.054 0.449 5.19

append - higher layer 128 4.603 2.199 27.625 0.441 5.243

replace - higher layer 128 4.568 2.182 27.312 0.462 5.202

replace - middle layer 128 4.565 2.184 27.482 0.441 5.058

replace - lower layer 128 4.580 2.188 27.875 0.455 5.147

Table 7.1: Objective measures for systems varying the position of the bottleneck layer

in the suprasegmental network. MCD is mel cepstral distortion, BAP is band aperi-

odicity error, F0-RMSE and F0-Corr are the root-mean-squared error and correlation

between the predicted and original f0 signal on voiced frames, and VUV is voicing

error.

Figure 7.1, the append system concatenates the learned hidden representation

with the full feature set containing segmental and suprasegmental features. The

replace systems instead removes the suprasegmental features from the frame-level

network and use only the hidden representation alongside the segmental features.

This follows the diagram illustrated in Figure 7.1.

We further vary the position of the bottleneck layer in the suprasegmental

network. Lower layer indicates that the first hidden layer (closer to the linguistic

features) has been set as the bottleneck. Higher layer indicates that the last

hidden layer (closer to acoustic features) has been used as the bottleneck. The

middle layer network places the bottleneck in the third hidden layer, approxi-

mately halfway between linguistic and acoustic features, thus diverging from the

described triangular architecture.

Table 7.1 shows the results from the trained systems, as well as the baseline,

the system with the full set of input features at the frame level. We observe

that appending the hidden representations to the full set of features does not

change performance, although there are very small improvements in terms of f0

RMSE. This could be due to the fact that binary and distributed representations

contain similar information. However, if we remove the binary suprasegmental

features and use only the bottleneck features from the syllable-level DNNs, we
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Figure 7.2: Objective measures for mel-cepstral coefficients and log-f0 as a function of

bottleneck size. bline represents the baseline system, while dn indicates a bottleneck

layer of dimensionality n.

notice some improvements across all acoustic parameters. This instead suggests

that the binary suprasegmental features may actually be noisy and damage the

performance of the system. In this case, one could think of the pre-processing

network as a denoising process, where we learn a compact distributed representa-

tion of suprasegmental context. This hypothesis will be evaluated more carefully

in Chapter 8.

In terms of the position of the bottleneck layer, we observe that all positions

appear to achieve similar results. But performance increases slightly as we move

closer to the acoustic features. This follows the results of the frame-level experi-

ments conducted in Wu and King (2016), which observed that best performance

with bottleneck features occurs when the bottleneck layer is placed in the top

half of the network.

7.3.2 Size of the bottleneck layer

In this set of experiments, we observe the effect of the bottleneck layer size in

the objective measures. We use the framework illustrated in Figure 7.1, where
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we replace the suprasegmental features with the learned hidden representations.

All experiments use the syllable mean for the acoustic features and the top layer

as bottleneck layer.

Bottleneck size is varied in powers of 2, from 32 to 512. All syllable-level

systems are triangular networks with 6 hidden layers. The lower layer has 1024

nodes and we either maintain that size or we reduce it in half until we reach the

desired dimensionality in the top hidden layer. As an example, the triangular

network for a bottleneck layer of size 256 would have the following structure, in

terms of layer size: [1024, 1024, 1024, 1024, 512, 256]. Similarly, for a bottleneck

layer of size 128, we would have [1024, 1024, 1024, 512, 256, 128].

Figure 7.2 shows layer size effect on mel-cepstral distortion (MCD), log-f0

RMSE and correlation. All systems using hidden representations outperform the

baseline, with the best results occurring with a dimensionality of 256. These

results make sense, as the segmental features use a vector of 350 dimensions. A

vector of 256 dimensions for suprasegmental features balances the two types of

features and allows the best prediction for all acoustic parameters.

7.3.3 Suprasegmental acoustic features

In the following experiments, we observe the effect of the acoustic features that

are used as output for the syllable-level deep neural network. Mel-cepstral coef-

ficients have a considerably larger number of features than f0, which will make

them have a much larger impact on the model’s error during training. By exclud-

ing selected groups of features, we expect to determine which features have the

biggest impact on the suprasegmental bottleneck representations. Intuitively, we

would expect f0 -based acoustic features to have a stronger impact on the learned

representations, as f0 is associated with intonation and suprasegmental variation.

All systems in this set of experiments use the bottleneck features as the only

suprasegmental information, as shown in Figure 7.1. The syllable-level system

consists of a triangular network with 6 hidden layers and a bottleneck size of

256 nodes. The top hidden layer is used as the embedded representation of

suprasegmental context.
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System MCD BAP F0-RMSE F0-CORR VUV

average on full syllable [all] 4.557 2.176 27.095 0.477 5.012

average on syllable nucleus [all] 4.573 2.181 27.347 0.465 5.185

average on full syllable [mgc] 4.558 2.173 27.286 0.460 5.026

average on full syllable [lf0] 4.575 2.188 27.280 0.459 5.095

average on full syllable [bap] 4.566 2.183 27.431 0.464 5.189

average on full syllable [mgc, bap] 4.561 2.176 27.353 0.452 5.004

average on full syllable [mgc, lf0] 4.563 2.177 27.406 0.461 5.095

average on full syllable [bap, lf0] 4.568 2.181 27.414 0.461 5.058

Table 7.2: Objective results for various combinations of acoustic parameters in the

syllable-level deep neural network. The acoustic parameters used as output features

are denoted in square brackets. Abbreviations are identical to those in table 7.1. For

each objective measure, best performing results are highlighted in bold.

We vary only the syllable-level acoustic features. In the first set, we compare

averaging over the full syllable and averaging only over the syllable nucleus. Av-

eraging only over the syllable nucleus might provide more stable acoustic values

over the syllable, which also motivates this experiment. In the remaining sets,

we use the full syllable average and we explore various combinations of acoustic

parameters. The results are detailed in Table 7.2.

Results indicate that averaging over the full syllable gives better results than

averaging only over the syllable nucleus. And including all acoustic parameters

gives better results than including selected combinations. However, we do observe

that the variation within each of the measures is very small. This suggests that it

is the learning of hidden representations that contributes to the small performance

gains we observe, rather than the acoustic features we use.

We were, however, limited to averaging over the syllable for existing acous-

tic features. It is possible that an alternative configuration could be capable of

learning more useful representations. For example, we could consider hidden rep-

resentations learned using only prosodic parameters in the output features. These

could range from various statistics of f0 over the syllable or other type of repre-
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sentations. Various possibilities of other representations include transforms such

as the Discrete Cosine Transform (DCT) or the Continuous Wavelet Transform

(CWT). A simple representation of f0 over the syllable using the DCT could be

attempted (Teutenberg et al., 2008; Stan and Giurgiu, 2011), or more complex

representations of f0, such as the dynamic multi-level representation proposed in

Chapter 6.

7.3.4 Discussion

The experiments conducted in this section should be considered exploratory as

they were not initially motivated by a clearly defined set of hypotheses. However,

some interesting observations are inferred from the results, which may lead to

further work.

It was observed in Section 7.3.1 that, when pre-processing suprasegmental

features, replacing the original feature set with the transformed set tends to give

better results than combining original and transformed feature sets. This obser-

vations suggests that the hierarchical framework may be operating as a denoiser

or feature extractor for the suprasegmental binary representation. Although this

hypothesis was not directly tested, some of the results indicate that this may

be a possibility. Chapter 8 will evaluate that hypothesis in controlled condi-

tions using various subsets of linguistic inputs and hierarchical frameworks. It

as also observed that placing the bottleneck layer closer to the acoustic features

generally gives better results than placing it closer to the linguistic features. This

observation agrees with the findings described in Wu and King (2016).

In Section 7.3.2, we observe that a balanced segmental and suprasegmental

features gives best results. This is an interesting finding as it suggests that blindly

adding new features to a frame-level network may not be a good idea. We may

argue that a good balance between the two types of features is needed for more

accurate results. Note, however, that varying bottleneck layer size was performed

as an optimization of the suprasegmental network. We did not directly test

the hypothesis that a good balance between the two types of features generally

gives better results. This observation may not be so clear, as results described
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in Chapter 9 indicate that dimensionality is not necessarily a problem if the

representations are rich enough.

In Section 7.3.3, we observe that, when defining the suprasegmental acoustic

feature vector, averaging over the full syllable is better than averaging over the

nucleus. This was a surprising observation, as we would expect the acoustic

parameters of the nucleus to be more stable and consistent across syllables. This

was expected to be relevant especially when including mel-cepstral coefficients,

as these features attempt to represent the position of the articulators, which is

correlated with phone identity. Averaging over an entire syllable (rather than just

the nucleus) was expected to give unstable acoustic representations that would

lead to underperforming systems.

In this set of experiments, we have also observed that averaging on all acoustic

features is better than averaging on selected features. This result was, to a certain

extent, also surprising. We would expect f0 to be the strongest feature, as it is

often associated with prosodic and suprasegmental variation.

However, these observations should be taken carefully. These are based on

objective measurements from the frame-level network, after integration of the

suprasegmental representation. It is not measured directly on the suprasegmental

network. These observations are also solely based on objective measures. It is not

clear if the improvements observed are perceptually meaningful. In the following

section, we provide a further investigation into the hierarchical framework by

including additional features defined at syllable and word level.

7.4 Additional features

In the previous section, we investigated various combinations of acoustic param-

eters in the syllable-level DNN. Results seem to indicate that choice of acoustic

features is less important than the learning process, although we were limited to

combinations of syllable averages to optimize the suprasegmental network. In this

section, we investigate the addition of new features to the frame-level and hier-

archical networks. The hypothesis is that the hierarchical network will be able to

leverage the information given by the new features, while the frame-level network
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will depend mostly on segmental features and ignore the new high-dimensional

representations.

One of the main claims of the work presented in this chapter is that supraseg-

mental features may need to be processed differently in order to fully leverage

their potential. If we choose to investigate new features, adding them to a frame-

level DNN may not produce the desired results, as the system will mostly depend

on phone-level information.

The proposed framework, illustrated in Figure 7.1, may be able to leverage

this type of new information and may be ideal to test new high-dimensional repre-

sentations of suprasegmental units that would otherwise be diluted alongside the

frame-level features. We evaluate this claim with two sets of additional features,

one defined at the syllable level and another defined at the word level. Section

7.4.1 uses a bag-of-phones representation of syllables, while Section 7.4.2 uses

text-derived word embeddings.

7.4.1 Syllable bag-of-phones

We propose a bag-of-phones representation for syllables in the form of an n-hot

encoding, a binary vector with n active bits. We use 3 bags of phones, each defined

for the onset, nucleus, and coda, and containing phone identity and articulatory

features. Taking the onset as an example, we define a binary vector where each

component indicates either an articulatory feature or a phone identity. For all

phones belonging to the onset of the current syllable, we activate the respective

articulatory and identity component in the onset vector. The same applies to

the nucleus and coda subvectors. This approach allows us to define a fixed-size

representation of syllables that accounts for the variable number of phones in the

onset and coda, while still including all of their defining features. An illustration

of this representation is given in Figure 7.3.

We compare four systems:

frame frame-level deep neural network with all available segmental and

suprasegmental features.
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onset rhyme

nucleus coda

k a ts

σ

Figure 7.3: Syllable bag-of-phones illustration for the monosyllabic word cats. The

syllable is segmented into onset and rhyme. The rhyme is then further divided into

nucleus and coda. An n-hot encoding for phone identity and articulatory features is

then created for the n phones. The concatenation of these three vectors is the syllable

bag-of-phones.

frame-BoP baseline DNN with all features plus bag-of-phones representation

for onset, nucleus, and coda of current syllable.

syl suprasegmental features are trained separately at the syllable level using a

hidden layer with 256 nodes. Input features to syllable DNN consist of the

suprasegmental features used with the baseline system. That is, this system

does not use the bag-of-phones for onset, nucleus, and coda.

syl-BoP similar to syl, except we include the bag-of-phones features in the input

to the syllable-level DNN. That is, we extend the suprasegmental features

used with the baseline with the proposed bag-of-phones for onset, nucleus,

and coda.
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Figure 7.4: Objective measure for mel-cepstral distortion, band aperiodicity distortion,

and log-f0 RMSE and correlation testing the proposed bag-of-phones representation.

Figure 7.4 plots the results for mel-cepstral distortion, band aperiodicity dis-

tortion, f0 RMSE, and f0 correlation. Results indicate that adding the bag-of-

phones representation to the frame-level DNN does not affect the results. This

follows our initial hypothesis that simply appending more suprasegmental fea-

tures to a frame-level DNN might limit the impact of those features.

The difference between frame and syl shows the changes we get by training

suprasegmental representations separately. This causes the biggest improvements

among the four systems. The difference between syl and syl-BoP measures the

changes caused by the bag-of-phones features when training suprasegmental fea-

tures separately. In the case of RMSE, we do not see many improvements, but we

do notice better results in terms of correlation and MCD. It’s interesting to ob-

serve that, in the BAP case, adding bag-of-phones features to the baseline slightly

decreases performance, while adding the same features to a syllable-level DNN

slightly increases it. This set of experiments shows that not only is the separate

training of suprasegmental feature predictors useful, but it creates a framework

that is able to leverage additional features in a more robust manner.
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7.4.2 Text-derived word embeddings

We extend the previous investigation to incorporate word-level features in the

hierarchical framework defined at syllable-level.1 For this task, we use word em-

beddings, which are high-dimensional continuous vector representation of words.

In this vector space, words that have similar distributions are closer together

than words with different distributions, given some distance measure. This type

of setup has been shown to capture relevant syntactic and semantic properties of

words, and they have been successfully applied to various tasks (Collobert and

Weston, 2008; Socher et al., 2011; Mikolov et al., 2013c).

There are a number of proposed methods to learn word embeddings for large

text databases (Turian et al., 2010; Mikolov et al., 2013a; Huang et al., 2012;

Pennington et al., 2014). For this work, we choose to use the skip-gram model

(Mikolov et al., 2013a,b) via the publicly available implementation of word2vec.2.

The reason for this choice is motivated by the work of Levy et al. (2015), which

compares various methods to learn word embeddings. The authors indicate that,

in general, most methods learn similar word representations and achieve similar

performance in a variety of similarity and analogy tasks. However, the skip-gram

model, with some hyperparameter configurations, tends to outperform techniques

such as continuous bag-of-words (CBOW, Mikolov et al. (2013a)) or Global Vec-

tors (GloVe Pennington et al. (2014)).

In speech synthesis, continuous representations of words learned through mod-

els such as the skip-gram or one of its variants have been previously explored

(Wang et al., 2015a, 2016b). While Wang et al. (2015a) claimed that these em-

beddings are a useful unsupervised replacement for hand-annotated word-level

features, Wang et al. (2016b) failed to see any improvements at this level.

To learn these embeddings, we have used the freely available English

1Less formal experiments were conducted on word-level deep neural networks. These archi-
tectures were similar to the ones investigated in this chapter, except they were defined at the
word level rather than the syllable level. Acoustic parameters of the suprasegmental network
were defined to be the average over the entire word and input features were set to be those
extracted on words. Results showed similar improvements to the syllable-level network, further
reinforcing the thought that it is the hierarchical framework rather than the addition of new
features giving the strongest results.

2https://code.google.com/archive/p/word2vec

https://code.google.com/archive/p/word2vec
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Wikipedia data dump from September 2015.3 This data has been pre-processed

and cleaned and we have kept the first 500 million words. Two models were

trained on this dataset, one using an embedding size of 100 and another an

embedding size of 300. The systems use the publicly available word2vec imple-

mentation of the skip-gram model with negative sampling and they were trained

for 15 epochs with a window of 5 words.

We consider five systems, whose identifiers are given in Table 7.3. The frame

system is the basic frame-level DNN using no additional features. frame-w100

uses 100-dimensional word embeddings and appends them to the input of the

basic DNN. The remaining systems use the framework illustrated in Figure 7.1,

including the bag-of-phones representation described in the previous section. The

first model (syl-BoP) is trained without word embeddings, and the final two with

100 and 300-dimensional embeddings (syl-BoP-w100 and syl-BoP-w300 )

Table 7.3 summarizes the results for each system. Adding word embeddings

to the frame-level DNN does not show any improvements over the baseline. This

is surprising, as we would expect some improvements, given the work described in

Wang et al. (2015a). However, the authors in Wang et al. (2015a) used a carefully

annotated non-expressive database for their experiments. In these experiments,

we used a shallow feature set learned automatically from various text sources.

They have also used a bi-directional LSTM, while we have used a feedforward

DNN. We do not observe any relevant differences in terms of objective measures

for the hierarchical systems. However, adding a larger word feature vector allows

the system to slightly improve f0 prediction. This is interesting, as it suggests that

higher-dimensional features may be useful to learn more complex relationships

between suprasegmental units. In that case, the proposed hierarchical system

might be useful in processing them.

7.4.3 Discussion

Regarding the main hypothesis evaluated in this section, we find some evidence to

support the notion that a hierarchical framework is able to use high-dimensional

3http://dumps.wikimedia.org/enwiki/20150901

http://dumps.wikimedia.org/enwiki/20150901
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System MCD BAP F0-RMSE F0-CORR

frame 4.596 2.197 28.054 .449

frame-w100 4.598 2.204 28.048 .448

syl-BoP 4.557 2.176 27.095 .477

syl-BoP-w100 4.55 2.177 27.086 .463

syl-BoP-w300 4.565 2.178 26.850 .479

Table 7.3: Objective results for word embedding systems. Abbreviations are identical

to those in table 7.1.

suprasegmental features more efficiently than a frame-level network. We ob-

serve that a hierarchical framework generally leads to more accurate generation

of speech parameters. This observation was clear from Figure 7.4 and follows

the findings reported in Section 7.3. In terms of additional features, we observe

that syllable bag-of-phones provide slight improvements in the objective measures

when used with a hierarchical framework. However, it should be noted that the

improvements were small when compared to a hierarchical system not using syl-

lable bag-of-phones and may not be perceptually significant. According to Figure

7.4, mel-cepstral distortion and f0 correlation are the acoustic features that are

more influenced by this representations. When using word embeddings with a

hierarchical framework, we observe no clear changes in the objective scores, al-

though higher-dimensional representations appear to be more promising.

We find some evidence to support the initial hypothesis, indicating that there

is some effect related to the addition of high-dimensional representations, al-

though the results were not as strong as we expected them to be. Chapter 8

will continue this line of research and provide more solid results regarding these

observations. In the following section, we evaluate two of the best performing

systems against a baseline system with a listening test.
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Figure 7.5: Preference test results with N/P indicating “No Preference”. In paren-

thesis, p-values indicate the results of 1-tailed binomial tests with an expected 50%

split, with the N/P results evenly distributed over the other two conditions.

7.5 Subjective evaluation

A listening test was conducted on selected systems described in previous sections.

For brevity, henceforth we will refer to the system syl-BoP as system syl. This

system pre-processes suprasegmental features separately with bags-of-phones and

uses a bottleneck layer with 256 nodes. System syl-w300 is similar, but it adds

300-dimensional word embedding representations to the input of the syllable-level

network. The baseline system processes suprasegmental features directly. From

a held-out set, 50 test utterances were synthesized from the parameters predicted

by the frame-level network. 16 native speakers judged randomized utterance pairs

for the two conditions in a preference test. Each pair was judged 8 times and

each condition received a total of 400 judgments. Participants were allowed to

play utterance pairs as many times as they wished and were asked to select the

utterance that they perceived to be more natural.

Figure 7.5 shows the results of the listening test. We conduct a 1-tailed bino-

mial test on the results, assuming an expected 50% split with the no-preference

judgments distributed equally over the remaining conditions. Although there ap-

pears to be a slight preference for the syl system, the results are not significant

in any of the conditions. This is surprising, as listening to the synthesized wave-
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ID syl-preference ID syl-preference

1 48.15% 9 44.44%

2 60.87% 10 65.38%

3 59.26% 11 42.59%

4 56.52% 12 52.17%

5 53.70% 13 55.56%

6 63.04% 14 65.22%

7 38.89% 15 46.30%

8 56.52% 16 45.65%

Table 7.4: Preference results by participant. Percentages indicate participant’s pref-

erences for the system syl over the baseline.

forms informally showed clear differences between the systems. In the following

section, we provide further insights into these results.

7.5.1 Analysis of subjective results

The results observed in the listening test were surprising. Clear differences were

perceived when listening to the synthesized speech samples informally. The sub-

jective evaluation, however, showed no overall significant preference, although

some participants seem to prefer the proposed hierarchical methods. Table 7.4

shows aggregated results per participant with the no-preference option divided

equally among competing conditions. While some listeners prefer the hierarchical

systems (2, 6, 10, 14), others prefer the baseline system (7, 11). Some participants

do not have a clear preference (1, 12).

The 50 utterances used for evaluation were randomly selected from a held-

out set and are not part of the same set used to compute objective measure-

ments. Therefore, we revisit the objective measurements for these utterances

and we conduct paired t-tests on the syl and baseline systems. We observe that,

in terms of mel-cepstral distortion, there is a significant difference between the

baseline (M=4.631, SD=0.429) and hierarchical (M=4.577, SD=0.42) systems,
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t(49)=4.1744, p<.001. However, in terms of band aperiodicity distortion, we do

not observe a significant difference between baseline (M=2.196, SD=0.174) and

hierarchical (M=2.184, SD=0.189) systems, t(49)=0.8873, ns. Considering the

f0 signal, there is a significant improvement in terms of RMSE between the two

systems: baseline (M=25.06, SD=10.44) and hierarchical (M=24.13, SD=10.88),

t(49) = 2.1276, p<.05. But we failed to observe significant differences in terms

of f0 correlation for the baseline (M=0.504, SD=0.153) and the hierarchical ap-

proach (M=0.529, SD=0.180), t(49)=1.2706, ns.

Objective measurements for the two proposed systems showed statistically

significant improvements over the baseline in terms of mel-cepstral distortion

and f0 RMSE. In order to understand what listeners are responding to when

submitting their judgments, we compare their preferences and the differences

between the two systems in terms of objective measures. As before, we compare

the baseline and syl systems.

Figure 7.6 shows a visualization of these trends. Each point on the figure

represents an utterance in the test set given in the listening test. For each utter-

ance, we take the relative number of times it was preferred in a judgment, with

the no-preference option distributed among the two conditions. Therefore, the

x-axis indicates the preference towards the proposed syl system. A lower value

shows a preference towards the baseline and a higher value a preference towards

the proposed system. The y-axis indicates the different between the hierarchical

and baseline system for selected acoustic parameters. Positive values indicate

higher error for the syl system, while negative values indicate higher error for the

baseline system. Because we are trying to maximize correlation, this pattern is

shifted in the visualization of f0 correlation.

Correlating objective measures with perceptual scores, we observe that there is

no significant correlation in terms of mel-cepstral distortion (r=-0.0075, n=50, ns)

and band-aperiodicity distortion (r=-0.174, n=50, ns). However, we do observe

a significant correlation in terms of f0 RMSE (r=-0.355, n=50, p<.01) and f0

correlation (r=0.323, n=50, p<.05). These results show that listeners are judging

the utterances in terms of the f0 signal. A significant correlation is observed in

terms of f0 correlation even though no statistically significant differences were
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Figure 7.6: Subjective judgments and objective measurement distortion for acoustic

features over the 50 test utterances. Each point indicates an utterance in the listening

test. Preference for the syl system is indicated in the x-axis. Difference in objective

measurement between syl and baseline systems is indicated in the y-axis. Red line

shows a best fit line.

observed in the objective scores. On the other hand, listeners do not respond

to mel-cepstral coefficient variation, even though there is a statistical significant

improvement in terms of mel-cepstral distortion.

It appears, in any case, that the f0 signal is the decisive factor that listeners

respond to when submitting their judgments. This is reassuring, as when learning

representations of suprasegmental context, we are essentially focusing on a better

understanding of prosody. The proposed systems, therefore, do modify the f0

signal in a way that affects listeners’ preferences. This was observed in terms of

the objective scores differences and in terms of listener’s judgments.

From this analysis, we can also infer that listeners are rating utterances accord-

ing to their similarity to the natural parameters. When comparing two samples,

lower RMSE and higher correlation are preferred over higher RMSE and lower
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correlation. This is also an interesting result, as it is unclear what listeners will

prefer when judging prosody. Similarity to natural parameters does not neces-

sarily imply listener preference. A prosodic layer that is different to the one that

was naturally produced may still be acceptable for a particular listener. The re-

sults obtained might be a side effect of the methodology used. A preference test

without context might not be the most adequate to evaluate natural intonational

patterns. Section 10.3 of this thesis provides a short discussion on the need for

evaluation protocols focusing on hypotheses centered on the generation of speech

prosody.

7.6 Overall discussion

For a better insight into how the syllable-level DNN manipulates the supraseg-

mental features, we visualize the hidden representations learned by the network.

For this task, we use t-SNE (t-Distributed Stochastic Neighbor Embedding,

van der Maaten and Hinton (2008)), an efficient technique for dimensionality

reduction. We randomly sample 1500 syllable embeddings from the syl system.

These are then reduced with t-SNE to two dimensions. The results are plotted

in Figure 7.7. In the figure, two sections are enlarged for clarity. Colors are as-

signed according to syllable nucleus and syllables are represented textually as the

concatenation of its phones separated by underscore (e.g. I n). We observe that

some syllables, which could potentially be different, are closer in the embedding

space. This is the case, for example, for T r i and T r u. The onset of the sylla-

ble seems to be the main similarity between the two samples. On the left-hand

section, it appears to be the nucleus and coda the main point of similarity for

I N and n I N.

The syllable-level network can be thought of as a feature extractor for

suprasegmental features. Appending new representations of context to a frame-

level feature vector could introduce more noise than useful information. This

could be the reason why we failed to observe improvements when adding word

embeddings to the frame-level network. Chapter 8 investigates this hypothesis.

In any case, pre-processing such features separately may allow us to learn useful
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Figure 7.7: 2-dimensional visualization of suprasegmental embeddings at syllable-level

using t-SNE (van der Maaten and Hinton, 2008). Colors are assigned to syllables

based on nucleus identity. Syllables are represented textually as the concatenation of

its phones joined by an underscore (e.g. I n).

and compact representations of suprasegmental context for frame-level predic-

tion. The syl system achieves good accuracy when computing objective measures

on the syllable-level parameters (MCD: 4.699, BAP: 1.252, F0-RMSE: 26.717).

Although we failed to observe an overall significant preference for the proposed

systems, the hierarchical systems are still capable of learning meaningful embed-

dings of suprasegmental features.

The results observed in this work raise questions regarding the evaluation

methodology of synthetic speech. In Section 7.5.1, we showed that, in a perceptual

evaluation, there is a slight preference towards the proposed system, although that

preference is not statistically significant. Participants judged various utterances

in a preference test. The lack of significant preference could be due to the large

no-preference between the two compared systems. But it could also be due to

a participant effect, where we see a trend to one system or another depending

on participant. Increasing the number of judgments per participant could help
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us identify the significance of these trends. Alternatively, a different evaluation

methodology, such as a MUSHRA test, might be more adequate, or designing

evaluation protocols aimed specifically at assessing how synthetic speech handles

prosodic properties, for example, by including some type of context (see Section

10.3 of this thesis for further lines of research on this topic).

Finally, in Section 7.1, we mentioned two scenarios in which suprasegmental

features could be investigated. The first explores methods to transform and

manipulate features that are already available. The second scenario focuses on

deriving additional suprasegmental features for speech synthesis.

It is commonly accepted that expressive speech, and prosody in general, are

mostly affected by suprasegmental effects. But current systems operate mainly at

the frame or phone level. Adding more features to frame-level systems may not

lead to more accurate acoustic parameter generation, as the results of Wang et al.

(2016b) indicate. Therefore, it is essential to have a framework that can leverage

suprasegmental information efficiently without affecting segmental prediction.

In this chapter, we have provided contributions to each of these scenarios. In

Section 7.3, we have investigated the first scenario with a top-down hierarchical

framework. The results showed some evidence that the proposed hierarchical

structure may be operating as a feature extractor. This hypothesis will be eval-

uated under more controlled conditions in Chapter 8.

Section 7.4 provided some results considering the second scenario. Two sets of

features were evaluated with the current framework: syllable bag-of-phones and

text-derived word embeddings. Future work could focus simply on learning more

appropriate representations of context for DNN-based speech synthesis. With

more relevant features, it would be interesting to observe how this method would

perform. Chapter 9 provides a novel way to infer suprasegmental features based

on acoustic counts. These features are evaluated with a frame-level network. In

Chapter 10, we integrate these additional features in a hierarchical framework to

test the hypothesis that these structures are able to leverage new information.

Finally, in terms of future work, it is unclear at this point how this method

performs with recurrent systems. It has been argued that systems using recurrent
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neural networks (RNNs) or long short term memory networks (LSTMs, Fernandez

et al. (2014)) are capable of leveraging suprasegmental information much more

efficiently. Understanding how this method could be used within such systems

could be useful, although a mixed hierarchical and recurrent model such as the

one presented in Chen et al. (1998) might be more interesting to explore. Future

work could also focus on the acoustic features in the suprasegmental network,

such as f0 representations or wavelet-based decompositions of acoustic signals.

7.7 Conclusion

In this work, we have proposed a system that pre-processes suprasegmental fea-

tures separately from segmental features. The system can be thought of as a

top-down hierarchical model, where a deep neural network transforms supraseg-

mental features first and then integrates them with a frame-level network.

We have investigated the hierarchical framework and the effect of various

configurations such as bottleneck layer size or position. The addition of new

features in the form of syllable bag-of-phones and text-derived word embeddings

was also evaluated. Although objective results seem to show a clear trend towards

the proposed hierarchical systems, a subjective test failed to see significant results.

Further work presented in this thesis will focus on understanding the hierarchical

network and learning new suprasegmental features from a speech database.



Chapter 8

Parallel and cascaded deep neural

networks

This chapter covers the work described in “Parallel and cascaded deep neural

networks for text-to-speech synthesis” (Ribeiro et al., 2016a), which was presented

at the 9th Speech Synthesis Workshop (SSW9).

Motivated by the findings of Chapter 7, we conduct an investigation of cascaded

and parallel deep neural networks for speech synthesis with a focus on the input lin-

guistic features. In these systems, suprasegmental linguistic features (syllable-level

and above) are processed separately from segmental features (phone-level and be-

low). Cascaded networks input suprasegmental features alongside frame features.

Parallel networks process segmental and suprasegmental features separately and

concatenate them at a later stage. These experiments are conducted with a stan-

dard set of high-dimensional linguistic features as well as a hand-pruned one.

8.1 Introduction

Chapter 7 investigated a hierarchical structure in the form of a cascaded deep neu-

ral network. This work was motivated by the idea that frame-level networks might

underperform when given high-dimensional input linguistic features of supraseg-

mental contexts. Hierarchical architectures are attractive alternatives, as they

could have the ability to extract meaningful information at suprasegmental levels

156
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by pre-processing them separately. This property would be useful when evaluating

additional high-dimensional representations of linguistic context. For example,

injecting a high-dimensional representation of words into a frame-level network

might cause the model to underperform when compared to an identical model

that does not use such representations.

In Chapter 7, an exploratory analysis of architecture configurations observed

that, when using additional features, the hierarchical systems outperformed the

non-hierarchical systems in terms of objective measures. However, we did not

find relevant improvements in terms of a subjective evaluation. Results indicated

that it was the hierarchical framework rather than the addition of new features

that contributed to improvements in terms of objective scores. An hypothesis

put forward was that these hierarchical architectures were operating as denoisers

or feature extractors on the linguistic features. That is, a suprasegmental net-

work pre-processes high-dimensional representations of context and extracts only

information useful for predicting acoustic features. Channeling these denoised

representations to a frame-level model instead of the noisy representations allows

the model to generate more natural acoustic parameters.

In the current chapter, we provide further insights into this hypothesis. This

investigation focuses mostly on the modeling architecture and how it processes

linguistic features. For this reason, according to the three sub-problems detailed

in Chapter 1, this work provides contributions to sub-problem 3: mapping acous-

tic and context representations. While Chapter 7 investigated only a cascaded

hierarchical framework, this chapter will investigate cascaded and parallel neural

networks. This was inspired by the work described in Yin et al. (2016).

Section 8.2 details the cascaded and parallel hierarchical architectures, as well

as the two sets of linguistic inputs to be used in the evaluation of the proposed

hypotheses. Section 8.3 describes detailed hypotheses and systems trained, as

well as the objective and subjective evaluations. Finally, Sections 8.4 and 8.5

discuss the results and future lines of research.
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8.2 Deep neural network architectures

8.2.1 Basic network

The basic deep neural network is identical to the frame-level model described in

Section 7.2. This is a simple multilayer perceptron with 6 hidden layers, each

layer with 1024 nodes. The activation function is set to be tanh in the hidden

layers and it is linear in the output layer. For training, a mini-batch size of 256

is set and the maximum number of iterations is set to 25.

We use the same output features described in Section 7.2. These are log-f0, 60-

dimensional mel cepstral coefficients (MCCs), and 25 band aperiodicities (BAPs),

extracted with the STRAIGHT vocoder (Kawahara et al., 1999, 2001) at 5 ms

intervals. Dynamic features (deltas and delta-deltas) are appended to these static

features. The log-f0 signal is linearly interpolated and a binary voiced/unvoiced

decision is appended to the acoustic feature vector. The complete output vector

has a total of 259 dimensions, which are then normalized to zero mean and unit

variance.

8.2.2 Cascaded and parallel networks

We define segmental features to be those that describe the input at the level

of the segment and below, at the phone and frame level. We term features that

represent the input at linguistic levels above the segment suprasegmental features :

features at the syllable, word, phrase, and utterance levels.

In the cascaded and parallel approaches, segmental and suprasegmental fea-

tures are decoupled and processed separately. In both systems, distributed rep-

resentations of suprasegmental contexts are learned and later integrated into a

frame-level system. An initial suprasegmental network is defined at the syllable

level. This network takes as input representations of context at the syllable and

above levels and maps them to acoustic parameters defined over syllables. For

the current experiments, the output of this network consists of a 258 dimensional

vector obtained by averaging the frame-level acoustic features over the entire syl-

lable. This follows best architecture investigated in the experiments detailed in
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Figure 8.1: Hierarchical cascaded deep neural network.

Section 7.3.3.

The suprasegmental network is set to be a 6 hidden layer triangular network.

In terms of layer size, it is defined as (1024, 1024, 1024, 1024, 512, 256). That

is, the top hidden layer is a bottleneck layer with 256 dimensions. The hidden

activation function is set to be tanh and the output layer uses a linear activation

function. Mini-batch size is set to 16 and the maximum number of iterations is

set to 25.

Figure 8.1 illustrates the cascaded deep neural network (Yin et al., 2016),

which can be thought of as a top-down hierarchical network. This was the archi-

tecture used in the work detailed in Chapter 7. The distributed representation

of suprasegmental features is concatenated with the segmental feature vector. A

second network is then trained to generate source and spectral parameters at the

frame level.

Figure 8.2 illustrates the parallel deep neural network (Yin et al., 2016). In this

integration strategy, segmental and suprasegmental features are joined at a later

stage. The second network inputs only segmental features and its architecture

is similar to that of the suprasegmental network. The distributed representation

learned from both networks, each with 256 dimensions, is used to drive a single

layer network that generates acoustic parameters at the frame level. The hy-

perparameters of the single-layer network are similar to those of the frame-level

network.
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Figure 8.2: Hierarchical parallel deep neural network.

8.2.3 Linguistic features

As input to the deep neural networks, we will consider two sets of linguistic

features. These two feature sets are fully detailed in Appendix A.

The first feature set is inherited from a conventional question set used for tree

clustering in HMM-based synthesis (Appendix A.0.1). These are the questions

used in the work described in Chapters 4 and 5. Linguistic contexts obtained

through a common front-end such as the one distributed with Festival1 are defined

at phone, syllable, word, phrase, and utterance levels. Questions are defined in

terms of quinphone identity, syllable stress or accent, part-of-speech, predicted

phrase boundaries, ToBI labels, or positional information in words, phrases, and

utterances. To these, we add two additional features defined at the state level.

These refer to the state number (absolute and relative position) within the current

phone after forced alignment of the data. We term this set of linguistic features

the standard feature set.

A major concern with the standard set of linguistic features is its high di-

1http://www.cstr.ed.ac.uk/projects/festival

http://www.cstr.ed.ac.uk/projects/festival
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linguistic level hand-selected standard

state 2

phone 350

syllable 152 426

word 92 184

phrase - 211

utterance - 300

Table 8.1: Dimensionality of input features per linguistic level.

mensionality. There is an imbalance between the segmental and suprasegmental

feature sets with respect to the number of features. With respect to supraseg-

mental text representations, some features may not be useful for frame-level pre-

diction. Therefore, the question set was pruned through optimization on a small

text-to-speech database. Various input feature combinations were selected and

used as input during acoustic model training. Questions were discarded if their

absence led to an improved acoustic model or if the model did not underperform

in terms of objective results.2 Based on this analysis, features at phrase and ut-

terance levels were removed. Various features within the syllable and word level

sets were ignored, such as forward or backward context and several positional

features. This is the linguistic feature set used for DNN-based speech synthesis

by the Merlin Toolkit (appendix A.0.2). This smaller pruned set of linguistic

features is here termed the hand-selected feature set.

Binary representations of these question sets were used and all features were

normalized to the range of [0.01, 0.99]. Segmental features were kept constant

for the standard and hand-selected sets. Thus, only suprasegmental features

vary between the two sets. Table 8.1 summarizes the dimensionality at each

linguistic level of each of the feature sets. Note that there is a large number

of features at the phrase or utterance levels because we choose to use a binary

representation of these features. The number of dimensions increases because

2This work was performed during early development stages of the Merlin Toolkit (Wu et al.,
2016) by Zhizheng Wu, to whom we are grateful.
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each feature is represented as a binary question (e.g. “Is the total number of

words in the current sentence 3?”). For most features, this could be avoided

by treating them as numerical features rather than binary. For example, the

number of words in a sentence could be represented as an integer (e.g. 3 ). This

is an artifact from tree clustering in HMM-based systems, which requires all

questions to be binary. However, this representation is well suited to the current

problem, whose main hypothesis requires the introduction of some noise in high-

dimensional representations of linguistic features. Representing these features

in a binary way allows us to achieve that result because the acoustic model

is forced dedicate more parameters to the processing of large high-dimensional

sparse vectors. For this reason, we claim that the standard feature set is a high-

dimensional noisy input when compared to the hand-selected feature set.

8.3 Experiments

As in earlier chapters, these experiments were conducted on expressive audiobook

data. A detailed description of the dataset is given in Section 6.3.2 (p. 122).

Training, development, and test sets are similar to those in Chapter 7. They

consist of 4500, 300, and 100 utterances, respectively. The training set consists

of 9 hours of speech data, while validation contains 33 minutes, and test set 9

minutes. The data used for the listening test was randomly drawn from a held-out

set.

8.3.1 Systems and hypotheses

Given three network architectures and two sets of linguistic features, a total of six

systems were trained. Two systems employed the basic feedforward deep neural

network architecture, two systems the cascaded deep neural network architecture,

and two systems the parallel network architecture. Within each of these system

pairs, we vary the input feature vector, either using the standard set or the hand-

selected subset.

These systems were constructed to test the following hypotheses:
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Addition of noisy suprasegmental features: Adding more (suprasegmen-

tal) features to a frame-level DNN will degrade the performance of the model. It

is expected that the baseline system with the standard feature set will perform

worse than the baseline system with the hand-selected features, as saturating a

subsegmental model with noisy suprasegmental inputs is likely to be harmful.

This hypothesis should provide further evidence for the observations described in

Chapter 7.

Hierarchical systems: Hierarchical architectures will outperform non hier-

archical systems. Previous investigations have suggested that handling various

linguistic levels separately tends to be beneficial for speech synthesis systems.

We expect cascaded and parallel deep neural networks to outperform their cor-

responding basic feedforward network.

Parallel and cascaded deep neural networks: Parallel architectures will

outperform cascaded architectures. Although using a different setup, previous

work using these methodologies has found that parallel systems tend to outper-

form cascaded systems (Yin et al., 2016). One of the disadvantages of processing

suprasegmental information directly with a subsegmental network is that the sys-

tem might learn to depend heavily on segmental features and ignore long-term

unit information. In a cascaded approach, even though segmental and supraseg-

mental feature sets are decoupled, a frame-level network still has to account for

them. In a parallel architecture, this may not be the case, as the system pro-

cesses the two feature sets separately and only concatenates them in the top

hidden layer.

8.3.2 Objective results

Table 8.2 shows objective measures on the test set for all six systems. The

first block in the table denotes the three networks operating with the standard

set of linguistic features. The second identifies those that use the hand-selected

feature set. Observing only the baseline feedforward networks (systems FS and

FH), we note a small improvement when moving to the hand-selected feature set,

especially in terms of mel-cepstral distortion. All hierarchical systems outperform
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system architecture features MCD BAP F0-RMSE F0-CORR

FS feedforward standard 4.68 2.22 28.23 .43

CS cascaded standard 4.60 2.19 27.43 .45

PS parallel standard 4.59 2.17 26.97 .45

FH feedforward hand-selected 4.61 2.20 27.66 .44

CH cascaded hand-selected 4.57 2.19 27.48 .45

PH parallel hand-selected 4.59 2.17 27.16 .45

Table 8.2: Objective results for trained systems. MCD is mel cepstral distortion, BAP

is band aperiodicity error, and F0-RMSE and F0-Corr are the root-mean-squared error

and correlation between the predicted and original f0 signal on voiced frames.

their respective baselines, although the impact appears to be less for the systems

using hand-selected features.

The parallel architecture gives the best results. It is interesting to observe

that, when using this architecture with a standard feature set, we achieve perfor-

mance that is comparable to the same architecture using a hand-selected feature

set. In terms of f0 RMSE, the parallel system with the standard feature set (sys-

tem PS) gives the lowest error. This is reassuring, as we provide the syllable-level

network with a larger number of input features. This suggests that hierarchi-

cal architectures are capable of leveraging high-dimensional representations of

suprasegmental contexts. Such is not the case for frame-level networks. In the

following section, we report a listening evaluation aimed at validating these ob-

servations.

8.3.3 Subjective results

To assess the naturalness of speech samples produced by the trained systems, we

conducted a MUSHRA (MUltiple Stimuli with Hidden Reference and Anchor)

test (ITU-R Recommendation BS. 1534-1, 2015). This methodology allows the

simultaneous comparison of multiple samples. Each sentence to be tested is

assigned a set of stimuli. In our case, a single set of stimuli includes 7 samples: one
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Figure 8.3: Boxplot for the absolute results from the MUSHRA evaluation. The y-

axis denotes the absolute score given by participants on a scale 0-100 and the x-axis

indicates evaluated systems. Dark blue horizontal line shows the median and the red

square shows the mean.

from each system described in Section 8.3 plus a final sample of matching vocoded

speech. This final sample is termed the reference. Within each set, samples are

unlabeled and, for each participant, the order of the samples is randomized.

Participants are then asked to judge the set of parallel samples on a scale from 0

(completely unnatural) to 100 (completely natural) with respect to the reference

sample. The reference sample itself is included in the unlabeled samples. This

ensures that participants provide accurate judgments and fixes the high end of

the scale.

A total of 20 native English listeners participated in the listening test. Each

participant rated 20 sets of stimuli produced from sentences taken from a set held

out from the training data. Sentence order was randomized for each participant.

This allowed us to gather a total of 400 parallel comparisons. All tests were
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Figure 8.4: Box plot for the rank order results from the MUSHRA evaluation. The

y-axis denotes the rank of each system, as given by participants in terms of absolute

scores, and the x-axis indicates evaluated systems. Dark blue horizontal line shows

the median and the red square shows the mean.

conducted in sound-insulated booths and all listeners were remunerated for their

time.

Figure 8.3 shows the distribution of the stimuli for each condition in terms of

the absolute values given by the test participants. Figure 8.4 shows the distribu-

tion in terms of their rank order, as derived from the absolute values.

8.4 Discussion

To better understand the results, we conduct a two-tailed paired t-test on the

absolute values given by the listeners. To reduce Type I error whose likelihood is

greater for multiple comparisons, we perform a Holm-Bonferroni correction on all
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results. All system pairs are significantly different at the level of p<.05, except

systems FH and CH, systems CH and CS, and systems PH and PS. Further-

more, we conducted a double-sided Wilcoxon signed-rank test on the rank order

results with a Holm-Bonferroni correction. The same pattern was observed, with

the addition of two system pairs not showing statistically significant differences:

systems FH and PH, and systems FH and PS.

We begin by considering the first hypothesis: addition of noisy supraseg-

mental features. Looking at the results of the two baseline systems, we observe

that there is a statistically significant difference between system FH, using a hand-

selected feature set, and system FS, using a noisy standard feature set (z=-6.607,

p<.001, r=-0.33). The comparison relevant to this hypothesis is illustrated on

the upper left-hand subplot of Figure 8.5. Results suggests that adding a larger

number of suprasegmental features to a frame-level network significantly damages

performance. This might be problematic when exploring a better understanding

of longer context for prosody modeling. This evidence supports the motivation

for the work presented in Chapter 7. If we are investigating high-dimensional rep-

resentations of context, using a frame-level network might mask potential benefits

from rich representations.

The second hypothesis focuses on the behavior of hierarchical systems. It

was expected that hierarchical approaches would consistently improve over their

non-hierarchical counterparts. A related claim, motivated by observation made

in Chapter 7, hypothesized that these architectures would function as feature

extractors or denoisers.

For this analysis of the results, we consider the systems using different feature

sets separately. We observe that, with systems using a hand-selected feature set,

hierarchical systems do not significantly differ from a non-hierarchical system. A

comparison of a feedforward system with a cascaded system does not show statis-

tically significant differences in the ranking of the systems (z=-2.341, ns, r=-0.12).

Similarly, a parallel integration strategy does not differ from a standard feedfor-

ward network using the same feature set (z=1.039, ns, r=0.052). However, this

pattern is not observed if we consider the three systems using a high-dimensional

standard feature set. A cascaded hierarchical framework significantly outperforms
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parallel and cascaded neural networks hierarchical frameworks as denoisers

addition of noisy suprasegmental features hierarchical systems

Figure 8.5: Rank order results from the MUSHRA evaluation annotated with relevant

system comparisons. The y-axis denotes the rank of each evaluated system, as given

by participants in terms of absolute scores. Green arrows indicate statistically sig-

nificant comparisons based on the holm-bonferroni-corrected double-sided Wilcoxon

signed-rank tests. Red arrows indicate non significant differences. For clarity, com-

parisons related to different hypotheses are illustrated in different subplots.

a frame-level system (z=3.226, p<.05, r=0.161). Similarly, a parallel hierarchical

framework outperforms the same frame-level system (z=7.354, p<.001, r=0.368).

Therefore, hierarchical systems improve over a non-hierarchical system when us-

ing high-dimensional noisy representations of context. These comparisons are

visualized in the upper right-hand subplot of Figure 8.5. These results suggest

that these hierarchical frameworks might be operating as feature selectors for
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high-dimensional suprasegmental features. In our results, the hierarchical sys-

tems using the standard set are comparable to most systems using hand-selected

features.

The third hypothesis concerned the comparison of parallel and cascaded

deep neural networks. Although using a hand-selected feature set, Chapter

7 used a cascaded approach to integrate suprasegmental representations with a

frame-level network. Objective measures showed some improvements in terms of

the generation of acoustic parameters. However, a listening test failed to detect

significant differences between the systems.

In the work of Yin et al. (2016), which focuses on a multi-level approach to

modeling the f0 signal, it was seen that parallel architectures tend to outperform

cascaded architectures. This observation is supported by our results. There is a

statistically significant preference for the parallel systems over cascaded systems.

The preference for a parallel architecture over a cascaded one is seen with systems

using a hand-selected feature set (z=3.74, p<.001, r=0.187) and with systems

using a standard feature set (z=4.663, p<.001, r=0.233). The relevant system

comparisons is illustrated on the lower left-hand subplot of Figure 8.5.

We could hypothesize that the frame-level network of the cascaded systems

ends up depending too much on segmental features instead of balancing both

sets. This is not the case for the parallel integration, as only one layer is used

after concatenation. Further work could investigate this interpretation of the

results by observing how the network weighs the various groups of features using

techniques such as the ones described in Sim (2015).

Finally, we observe that a parallel architecture using a noisy feature set is

comparable to a feedforward system using a hand-selected feature set. We do

not observe a statistically significant difference when comparing the ranks of a

feedforward systems with a hand-selected feature set and a parallel system using

a standard feature set (z=1.302, ns, r=0.184). This is illustrated on the lower

right-hand subplot of Figure 8.5. This supports the claim made in Chapter 7

hypothesizing that hierarchical frameworks are working as denoisers of supraseg-

mental features.
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8.5 Future work

As future work, the parallel neural network could be the focus of further research.

It is unknown at this point whether decoupling the various linguistic levels could

be useful. As suggested above, an attempt to visualize the impact of each linguis-

tic level in the networks could be attempted (Sim, 2015). Other lines of research

could investigate how these hierarchical networks operate with recurrent systems,

in a framework similar to that described in Chen et al. (1998). Alternative acous-

tic features for the suprasegmental networks were not investigated. An obvious

choice would be the use of selected components of a wavelet-based decomposition

of the f0 signal, such as the approach described in Chapter 6.

Finally, based on the work presented in Chapter 7, it would be interesting

to investigate how these architectures behave with less noisy additional features.

We have attempted to used syllable bag-of-phones and text-derived word embed-

dings in Chapter 7. Although some improvements in objective measures were

seen, we did not observe a preference for the systems using these features. We

propose therefore to first investigate additional representations of linguistic con-

texts that we know are useful for the acoustic model. In Chapter 9, we propose a

novel method to learn continuous representations of words and syllables based on

acoustic events. Although these features are initially evaluated with frame-level

networks, Chapter 10 integrates them into a parallel network architecture.

8.6 Conclusion

Hierarchical systems structured as cascaded or parallel deep neural networks were

investigated for decoupling segmental and suprasegmental features in statistical

parametric speech synthesis. We observed that, on expressive data, hierarchi-

cal systems are preferred over a standard feedforward network if using high-

dimensional noisy features. This preference was not observed when using a hand-

selected feature set. Hierarchical systems with a standard feature set are com-

parable to all systems using hand-selected features, which suggests they operate

mostly as denoisers or feature extractors. We also observed that a parallel in-
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tegration of segmental and suprasegmental features is preferred over a cascaded

integration. This preference was observed for both feature sets.



Chapter 9

Word vector representations based

on acoustic counts

This chapter is an extended version of the work described in “Learning word

vector representations based on acoustic counts” (Ribeiro et al., 2017), which was

presented at Interspeech 2017.

This chapter presents a simple count-based approach to learning word vector

representations by leveraging statistics of co-occurrences between text and speech.

This type of representation requires two discrete sequences of units defined across

modalities. Two possible methods for the discretization of an acoustic signal are

presented, which are then applied to fundamental frequency and energy contours of

a transcribed corpus of speech, yielding a sequence of textual objects (e.g. words,

syllables) aligned with a sequence of discrete acoustic events. Constructing a

matrix recording the co-occurrence of textual objects with acoustic events and

reducing its dimensionality with matrix decomposition results in a set of context-

independent representations of word types. We observe that the more discretiza-

tion approaches, acoustic signals, and levels of linguistic analysis are incorporated

into a TTS system via these count-based representations, the better that TTS sys-

tem performs.

172
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9.1 Introduction

In statistical parametric speech synthesis, acoustic parameters are generated

by an acoustic model and then used to drive a vocoder in order to obtain an

artificially-generated speech waveform. The acoustic model has, in recent years,

typically taken the form of a deep neural network (Zen et al., 2013; Qian et al.,

2014). The input to this model is often referred to as the linguistic specification,

which is a representation designed to bridge the gap between text and speech.

Common feature sets for English data, such as those described in Appendix A,

mostly involve context-dependent phones, syllable stress, word part-of-speech,

as well as various positional features describing phonetic and prosodic contexts

within a text sentence. The group of modules that processes a text sentence and

generate the corresponding linguistic specification is often termed the front-end

(cf. Section 2.1.1).

However, earlier work in the context of HMM-based speech synthesis found

that features defined at linguistic levels above the syllable have little impact on

the prediction of acoustic parameters (Cernak et al., 2013). Good representations

of higher-level phenomena (often related to syllables or words) are essential for

an accurate generation of natural speech prosody, especially in the context of

expressive audiobook speech synthesis, where speech is expected to be more fluid

and pleasing.

Following these notions, work presented in Chapter 7 investigated a cascaded

hierarchical framework with additional features defined at suprasegmental levels.

Although improvements were observed in terms of objective scores, a listening

test failed to see a preference for systems using the proposed syllable bag-of-

phones or text-based word embeddings. Chapter 8 elaborated on those results

and found that hierarchical frameworks work mostly as feature extractors for

noisy input representations. But it is still unclear whether hierarchical frame-

works have the ability to leverage high-dimensional suprasegmental information

more efficiently than subsegmental frameworks. To investigate that hypothesis,

however, we require a strong set of suprasegmental features that is known to

improve subsegmental systems. It is the goal of the current chapter to propose
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a novel method to learn these high-dimensional representations of linguistic con-

texts. Considering the segmentation of the main claim of this thesis into the

three sub-problems described in Section 1.1, this chapter provides contributions

focused on sub-problem 2: representation of linguistic contexts.

In this work, we investigate a method to learn acoustically-motivated repre-

sentations of words and syllables for text-to-speech synthesis. For this task, we

explore vector space models (VSM), which are a well-established approach for

obtaining semantic representations in the field of Natural Language Processing

(NLP). VSMs are rooted in the distributional hypothesis, which claims that words

that have similar contexts tend to have similar meanings (Lenci, 2008; Turney

et al., 2010). The approaches chosen to learn such representations can be grouped

into two main classes. Following the terminology of Baroni et al. (2014), these

can be count models and predictive models.

The first class of models is defined by extracting co-occurrence statistics over

large text corpora. Various transformations can be applied to the raw counts,

such as context weighting or dimensionality reduction techniques (Bullinaria and

Levy, 2007, 2012; Lebret and Collobert, 2015). Conversely, the second class of

models frames the problem as a context prediction task. That is, given a word,

it is the model’s objective to determine the context with which it occurs (i.e.

its neighboring words). Therefore, it is expected that words that have similar

contexts will be mapped to similar representations in the low-dimensional dense

space learned by the model (Turian et al., 2010; Mikolov et al., 2013a; Huang

et al., 2012; Pennington et al., 2014). This method has been previously used

and discussed in Section 7.4.2. Investigations have been made into these two

approaches, comparing them with various configurations on a set of semantic

tasks. Although earlier work showed a clear preference for predictive models

(Baroni et al., 2014), more recent work has shown that their superiority might

not be as obvious (Levy et al., 2015).

In terms of their application to speech synthesis, various approaches have

been proposed. Representations learned with count-based methods have been

explored as input features to modules within a TTS front-end (e.g. phrase-break

prediction (Watts et al., 2011, 2014)), replacement of those modules (e.g. part-
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of-speech tagging (Watts et al., 2011)), or as direct input for acoustic modeling

(Watts, 2012; Lu et al., 2013). With recent developments in neural network archi-

tectures, predictive approaches have gained popularity. Recent work investigated

representations of words derived from large text databases (Wang et al., 2015a,

2016b) and in combination with acoustic parameters (Wang et al., 2016a; Ijima

et al., 2017).

In this chapter, we investigate a simple approach inspired by the traditional

class of models based on co-occurrence statistics. Such statistics are extracted

over a parallel corpus of text and speech and common transformations are applied

to the raw count matrices. In a real-world scenario, these representations could

be easily included in the front-end of a text-to-speech system as simple look-up

tables.

Section 9.2 describes the methodology for learning the proposed count-based

word and syllable vector representations. Section 9.3 defines the dataset used,

while Section 9.4 details a set of experiments investigating the effect of the learned

representations on a text-to-speech acoustic model. A perceptual evaluation is

described in Section 9.5, followed by a discussion of the results in Section 9.6.

9.2 Count-based representations

Given a fixed vocabulary V and a fixed set of acoustic classes A, we define a count

matrix M ∈ R|V |×|A|. Mij denotes the number of times the jth class is observed

occurring with the ith vocabulary unit. The vocabulary can be defined over

textual objects (e.g. words, syllables). The classes can be defined by discretizing

an acoustic signal, such as f0 or energy. Sections 9.2.1 and 9.2.2 provide details

on how these classes are determined.

Because occurrences can be context-dependent, we can extend the set of

classes over a unit type1 to account for neighboring occurrences of the acous-

tic class. If we set a window of size w, then M ∈ R|V |×w|A|.
1The term type is used to indicate an element in the set of observed textual units, where no

repetitions are allowed. The term token indicates an instance of a type. For example, in terms
of words, the sentence “I saw what I saw” contains 5 tokens and 3 types.
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+1

the house is

+1 +1

Figure 9.1: The co-occurrence count matrix is populated by taking counts of acoustic

classes C and textual objects such as words. This example uses a window of size

w = 3. For all instances of the word token house, we take counts of the co-occurring

acoustic event cj and its neighboring events ci and ck. Note that the word tokens co-

occurring with house do not participate in the count vectors. Only the co-occurring

acoustic tokens. Each of the 3 sub-vectors of house is then normalized by the total

number of counts.

For example, consider an utterance for which U is a sequence of linguistic

units and C is the corresponding sequence of acoustic classes. If w = 3, then at

timestep t we count the occurrence of Ct−1, Ct, and Ct+1 in the ith row of M , for

which i is the vocabulary index of the unit Ut. Note that, in this case, the tokens

Ut−1 and Ut+1 are not used for the counts of Ut. This process is illustrated in

Figure 9.1.

Each row of the raw count matrix M is then normalized by the total number

of counts within each sub-vector of occurrences. Therefore, each sub-vector of

the ith row is a probability distribution over the acoustic classes A. Each row

consists of the concatenation of w probability distributions.

Finally, we reduce the dimensionality of the normalized count matrix M by

finding the Singular Value Decomposition (SVD) of the matrix, such that M =

UΣV T . We take k left singular vectors of M , such that the sum of squares of the

retained singular values is at least 90% of the sum of squares of all singular values.
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Figure 9.2: On the left, the figure illustrates DCT vectors color-coded by their corre-

sponding cluster, reduced to 2-dimensions with t-SNE (van der Maaten and Hinton,

2008). Each cluster in this illustration contains 200 randomly selected DCT vectors.

Axis labels and marks are purposefully not included. On the right, sub-figures illus-

trate the average of all DCT vectors in four sample clusters, reconstructed with 20

samples with the zeroth coefficient set to 0.

The result of this operation is a matrix Û ∈ R|V |×k. Each row of this matrix

corresponds to a entry in the vocabulary V , and we let that be the representation

for that linguistic unit.

9.2.1 Cluster-based class definition

This section describes a possible approach to the quantization of an acoustic

signal into a set of classes A. We assume we are given a set of linguistic units,

corresponding to entries in a vocabulary V , and its acoustic signal, such as f0,

with known unit boundaries. The boundaries can be found by force-aligning the

data at state or phone-level. Higher-level linguistic units can then be inferred via
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the lower-level units.

Within each utterance, the signal is normalized to zero mean and unit vari-

ance. For each unit (e.g. syllable or word), the Discrete Cosine Transform (DCT)

(cf. Section 3.2.1) is applied to the samples associated with the corresponding

linguistic unit. The first d coefficients are preserved and we let that be a vector

representation of the signal for a given unit.

We then use k-means clustering to group the acoustic vectors into classes.

For clustering, we exclude the zeroth DCT coefficient, as that is approximately

the mean energy of the signal and can heavily bias the clustering step. We can

regard the clustered vectors as a representation of the shape of the signal for

a given linguistic unit. The acoustic classes A are defined to be the clusters

identified by k-means. An additional class is added to represent silences such as

pauses or hesitations. Figure 9.2 shows a visualization of clustered DCT vectors,

as well as the average shape for four sample clusters using this method.

9.2.2 Mean-based class definition

The cluster-based representation ignores the mean value of the unit when defining

the acoustic classes. Therefore, a simpler approach quantizes the mean value of

the signal over the entire linguistic unit. If we consider the f0 signal, we might

observe that a speaker’s range is mostly within 100–300Hz, as shown in Figure

9.3. We then define 100 classes over this interval, each spanning a range of 2Hz.

Two additional classes are added to include occurrences below and above the

interval. An additional class is added to represent silences. Note that there are

several hyperparameters required by the two proposed class definitions, such as

number of clusters, number of retained DCT coefficients, and bin size. Details of

hyperparameter choices are given in Section 9.4.

9.3 Data

We use the data made available for the Blizzard Challenge 2013 (King and

Karaiskos, 2013), provided by Lessac Technologies Inc. and originally available
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Figure 9.3: Normalized histogram with 2Hz bins of f0 means at word-level with a

best fit line.

from Voice Factory International Inc. The data consists of a single female speaker

reading the text of classic novels. This database is of particular interest as the

speaker is a professional narrator and actress, which suggests the prosodic varia-

tion correlates meaningfully with the text being read. It is also a large dataset,

which is interesting for this type of study. However, as the speaker mimics charac-

ter voices over several books, there is a large variance in terms of speaking styles.

Therefore, utterance selection using an active learning approach (Yong et al.,

2015; Watts et al., 2013) was performed and a subset of utterances corresponding

mostly to narrated speech were selected.

Given the utterance-level segmentation already available from the Blizzard

challenge, state-level forced alignment was obtained using context independent

HMMs with Festival2 and HTK3 via the Merlin toolkit (Wu et al., 2016). Pauses

2http://www.cstr.ed.ac.uk/projects/festival
3http://htk.eng.cam.ac.uk

http://www.cstr.ed.ac.uk/projects/festival
http://htk.eng.cam.ac.uk
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were inserted motivated by acoustic evidence, using Festvox’s ehmm (Prahallad

et al., 2006). The training set consists of approximately 18 hours of speech over

13000 utterances, with approximately 220k word and 300k syllable tokens. We

set aside an additional 300 and 100 utterances for validation and test purposes.

9.4 Experiments

To evaluate and gain further insight into the proposed method, we will consider

three levels of variation when learning vector representations:

Discretization method This level of variation is focused on the discretization

methods described in Section 9.2. We consider a cluster-based approach

and a mean-based approach to define the set of acoustic classes A. While

the cluster-based class definition focuses on the shape of the signal for a

given linguistic unit, the mean-based class definition focuses on the mean

value of the linguistic unit.

Linguistic level Most experiments with the acoustic signal learn representa-

tions at the word level. This is mainly influenced by earlier work that learns

text-based representations by considering words as textual units. However,

the proposed method is data-driven and can be applied to any linguistic

level. Therefore, we further evaluate our method with textual units defined

over syllables. We choose to use syllables because syllabification is given by

conventional TTS front-ends and it is readily available at test time.

Acoustic signals Given a linguistic level and a discretization strategy, the pro-

posed approach can be applied to any acoustic signal. We consider two

distinct signals: the interpolated f0 signal and the zeroth mel-cepstral co-

efficient (c0 ) which we here term energy. Following the findings of Chapter

6, we also consider a dynamic wavelet-based decomposition of the f0 signal.

We begin in Section 9.4.1 by describing the main architecture and hyperpa-

rameters used throughout the proposed set of experiments. The same configu-

ration is used for baseline and systems using additional features. Sections 9.4.2
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and 9.4.3 are concerned with varying the acoustic signal, f0 and energy, respec-

tively. In Section 9.4.4, we extend the analysis to syllable-level representations.

All sections consider the two proposed discretization methods.

9.4.1 Baseline

The baseline system is a simple multilayer perceptron. The network contains 6

hidden layers, each with 1024 nodes. The hidden layers use tanh as the activation

function and the output layer uses a linear activation function. For training, mini-

batch size is set to 256 and we set a maximum number of epochs to 25 with 5

warmup epochs. Learning rate is initially set to 0.002 for warmup epochs and

after that reduced by 50% with each epoch. Momentum is set to 0.3 for warmup

epochs and 0.9 for all others. L2 regularization weight is set to 10−5. Training is

done with the Merlin Toolkit (Wu et al., 2016).

For output features, we use log-f0, 60-dimensional mel cepstral coefficients

(MCCs), and 25 band aperiodicities (BAPs) at 5 ms intervals, extracted using

STRAIGHT (Kawahara et al., 1999, 2001). To these features, we append their

respective dynamic features (deltas and delta-deltas). The log-f0 signal is linearly

interpolated through unvoiced regions and a binary voiced/unvoiced decision is

appended to the acoustic feature vector. The complete output vector has a total

of 259 dimensions, which are then normalized to zero mean and unit variance.

Input features to the network are derived from the labels extracted with Festi-

val and they correspond to a set of 592 binary questions defined at phone, syllable,

and word levels. These are quinphone identity, syllable stress, and guessed part-

of-speech, as well as all positional features. To these questions, we append 2

features indicating frame number relative to phone size and state number. We

let this feature set be the input to the baseline system. This is the same feature

set used in Chapters 6, 7, and 8. Full details on these features are available in

Appendix A.0.2.

Additional models are trained under identical conditions, but append the

learned representations to the baseline feature set, using a window of 3 units.

That is, if using word-level features, we append the representations for previous,
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current, and next word. All input features are normalized to the range [0.01,

0.99].

9.4.2 Fundamental Frequency

In this set of experiments, we learn word vector representations using the f0 sig-

nal. We consider a cluster-based (Section 9.2.1) and a mean-based discretization

method (Section 9.2.2).

We further consider a transformation of the f0 signal that is claimed to cap-

ture word level variation. We revisit the wavelet-based dynamic decomposition

strategy proposed in Chapter 6. The word-level component of this decomposition

strategy is extracted and we let this component be the acoustic signal from which

we learn our representations.

The training data contains approximately 220k word tokens. The vocabulary

is defined by taking all word types that occur at least 5 times. All other words are

mapped to a token symbolizing out-of-vocabulary entries, UNK. This generates

a set of units V with 4468 word types. With this vocabulary, we map 8.7% of

the total tokens to UNK.

For cluster-based representations, we set the number of DCT coefficients to 8,

excluding the zeroth coefficient. We then use k-means clustering to map the DCT

coefficients at word-level to 20 clusters. An additional class accounts for silence

or pause tokens. This gives us the set of acoustic classes A. For mean-based

representations, we set the f0 range to be between 100Hz and 300Hz. With a bin

size of 2Hz, this gives us 100 acoustic classes.4 To these we append 2 additional

classes for any word-means occurring above or below the range and 1 additional

class for silence or pause tokens. Figure 9.2 shows an example of 4 DCT clusters

and Figure 9.3 shows the histogram of word means for the f0 signal.

We set the count window w to be 3, which results in a count vector of size

w|A| for each word. Note that silence or pause tokens are not in the vocabulary

V , but they are taken into account because w > 1. Their counts participate in

the neighboring acoustic classes of in-vocabulary units.

4We choose to use here linear f0 rather than log f0 as we don’t expect this transformation
to have an impact on the learned representations.
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Figure 9.4: Integration of multiple discretization methods, acoustic signals, and lin-

guistic levels.

We also consider representations using both cluster and mean-based class

definitions. An illustration of the integration strategy of multiple discretization

approaches and multiple acoustic signals is given in Figure 9.4. When considering

multiple discretization methods, counts are extracted and normalized separately

to form two distinct matrices. These matrices are then concatenated row-wise to

form the matrix Mf0 . We then find the SVD of this matrix to get the reduced

matrix Ûf0 . When considering multiple acoustic signals, we treat those as separate

decomposed matrices, such as Ûf0 or ÛCWT .

Table 9.1 shows the results in terms of objective measures for the trained

systems. We observe that all systems using additional features from the pro-

posed vector representations outperform the baseline. In terms of the two pro-

posed discretization methods, the mean-based approach appears to outperform

the cluster-based representations. When using the f0 signal, surprisingly, com-

bining cluster and mean-based vector representations appears to improve MCD,

but not f0 RMSE. This is not the case for the CWT-based representations, which

improve over all objective measures when combining discretization methods.
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Unit Signal Discretization Vector Dim. DNN Input Dim. MCD BAP F0-RMSE F0-CORR

baseline - - - 594 5.717 2.538 38.137 0.455

word f0 cluster 50 744 5.688 2.531 37.629 0.472

word f0 mean 150 1044 5.673 2.520 37.095 0.483

word f0 cluster+mean 200 1194 5.656 2.516 37.263 0.473

word wavelet cluster 50 744 5.684 2.524 38.133 0.458

word wavelet mean 100 894 5.700 2.532 38.176 0.460

word wavelet cluster+mean 100 894 5.664 2.525 37.716 0.473

word f0 +wavelet cluster+mean 300 1494 5.643 2.515 36.878 0.481

Table 9.1: Objective results for count-based representations at the word level using

the f0 signal and the word-level component of a dynamic wavelet-based decompo-

sition strategy. Vector Dim. indicates the dimensionality of the representation on

the decomposed count matrices. DNN Input Dim. denotes the dimensionality of the

input features to the network, which includes a window of 3 units. MCD is mel-

cepstral distortion, BAP is band aperiodicity error, and RMSE and CORR are the

root-mean-squared error and correlation between predicted and original f0 signals on

voiced frames only.

We do not observe large differences in terms of objective measures when com-

paring systems learning representations directly over the f0 signal or over the

word-level component of a wavelet-based decomposition strategy. This is per-

haps not surprising, given that the cluster-based method focuses on the shape

of the signal for a given word. The wavelet transform correlates the signal with

the mother wavelet (cf. p. 60), emphasizing the signal’s variation associated with

the word. It is possible that the application of the DCT followed by clustering

(Figure 9.2) ends up representing similar signal contours. We do note, however,

that combining both signals leads to the best performing configuration. These

improvements might come from the mean-based representations, which, if using

the CWT-decomposed f0 signal, might be related to word prominence (Vainio

et al., 2013). The observed results indicate that including additional signals might

be worth exploring.
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Unit Signal Discretization Vector Dim. DNN Input Dim. MCD BAP F0-RMSE F0-CORR

baseline - - - 594 5.717 2.538 38.137 0.455

word energy cluster 50 744 5.692 2.521 38.217 0.452

word energy mean 100 894 5.690 2.529 38.211 0.473

word energy cluster+mean 150 1044 5.680 2.527 38.245 0.462

word f0 +energy cluster+mean 350 1644 5.637 2.517 37.194 0.479

Table 9.2: Objective results for count-based representations at the word level using

the zeroth mel-cepstral signal, counting over classes defined over means or clustered

vectors. Notation is identical to that of Table 9.1.

9.4.3 Energy

We experiment with the zeroth mel-cepstral coefficient, which may be regarded as

a measure of the energy of a speech frame. Table 9.2 details objective results for

systems appending representations learned with the zeroth mel-cepstral signal.

The same details described in Section 9.4.2 are used for these representations.

Cluster-based representations use the same hyperparameters. Mean-based rep-

resentations use 80 classes over the range [3, 7] with a bin size of 0.05, and we

include 3 additional classes. Figure 9.4 illustrates the steps taken when combin-

ing discretization methods or acoustic signal. As before, the system combining

both discretization approaches concatenates the normalized counts before apply-

ing SVD. For the system combining both signals (f0+energy), we use SVD to

produce two separate matrices Ûf0 and Ûc0 . These are treated as separate fea-

tures and we simply concatenate the learned representations to the features of

baseline system using a window of 3 words.

As expected, using the zeroth mel-cepstral signal provides little improvement

in terms of f0. However, quite surprisingly, it does not outperform representations

based on f0 in terms of mel-cepstral distortion, as seen on Table 9.1. No clear

difference is observed in terms of the mean and cluster-based methods, but we

again observe slight improvements through their interaction. Combining both

signals results in the best improvements of all representations defined at the

word level.
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Unit Signal Discretization Vector Dim. DNN Input Dim. MCD BAP F0-RMSE F0-CORR

baseline - - - 594 5.717 2.538 38.137 0.455

syllable f0 cluster+mean 180 1134 5.686 2.527 38.018 0.476

syllable energy cluster+mean 150 1044 5.673 2.52 38.029 0.474

syllable f0 +energy cluster+mean 330 1584 5.645 2.505 37.264 0.483

word f0 +energy cluster+mean 350 1644 5.637 2.517 37.1194 0.479

syllable+word f0 +energy cluster+mean 680 2634 5.612 2.501 36.927 0.498

Table 9.3: Objective results for count-based representations at the syllable and word

levels using the f0 and energy signals, counting over classes defined over means or

clustered vectors. Notation is identical to that of Table 9.1.

9.4.4 Syllable-level representations

We can easily extend this approach to other types of linguistic units, such as

the syllable. We represent syllable types textually as the concatenation of the

phones present in a given syllable and we build V by mapping all units with fewer

than 5 occurrences over the training data to the unknown token UNK. From the

approximately 300k tokens, a vocabulary of 3447 unit types is defined. This maps

1.9% of the total tokens to UNK. The remaining parameters are similar to those

of the word-level representations, except we vary the number of singular vectors

kept after SVD such that at least 90% of the singular values are preserved.

For brevity, we do not include all system combinations and we evaluate only

representations using both cluster-based and mean-based approaches. Table 9.3

shows objective results for the trained systems. In terms of combination of dif-

ferent counts, discretization methods were concatenated before matrix decompo-

sition. All other levels of variation assume separate matrices, which were then

added to the linguistic specification using a window of 3 textual units. The com-

bination methodology can be visualized in Figure 9.4.

We observe some improvements with syllable-level representations, but they

do not outperform their equivalent systems at the word level. As before, the

interaction of both f0 and energy representations shows the best results. The

system including representations at both syllable and word levels gives the best

results of all configurations. Although there might be some correlation between

representations, their interaction is still useful to the acoustic model.
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Figure 9.5: Preference test results with N/P indicating “No Preference”. In paren-

thesis, p-values indicate the results of 1-tailed binomial tests with an expected 50%

split, with the N/P results evenly distributed over the other two conditions.

9.5 Subjective evaluation

Given the large number of system configurations, we opt to conduct a percep-

tual evaluation on selected systems, based on the objective results presented in

the previous section. Besides the baseline, we consider a system using the best

combination of word-level features and the system using the best combination of

word and syllable level features. The proposed systems use both acoustic signals

(f0 and energy) and both discretization methods (cluster and mean) for their vec-

tor representations. Therefore, we vary only the linguistic level for the listening

evaluation.

A preference test with a no preference option was conducted on the three

selected systems. From the test set, 50 utterances were randomly selected and

synthesized with the acoustic parameters generated from each system. 20 na-

tive speakers judged randomized utterance pairs for each pair of systems. Each

utterance pair was judged 10 times and each condition received a total of 500

judgments. Percentage preferences are shown in Figure 9.5, which includes the

results of a 1 tailed-binomial test assuming an expected 50% split, with the no

preference judgments distributed equally over the other two conditions.

The results are consistent with the objective results presented in Section 9.4.
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Systems using the proposed additional features are preferred over the system using

no features. The system using multiple linguistic levels (e.g. words, syllables) is

preferred over using only representations learned at word level.

9.6 Discussion

In the previous section, we experimented with three main factors pertaining to

how the representations were learned: discretization method (e.g. cluster, mean),

acoustic signal (e.g. f0, energy), and linguistic level (e.g. words, syllables). Figure

9.6 visualizes the trained systems in terms of objective measurements. We selected

mel-cepstral distortion (MCD) and f0 root-mean-squared-error (RMSE) as these

are related to the two acoustic signals used while learning the representations.

The two axes are determined by the difference over the baseline. Farther from 0

in the positive direction indicates an improvement.

In terms of the first factor, we observe that the mean-based approach outper-

forms the cluster-based approach, but combining both methods provides better

results than either method separately. This pattern is also observed when vary-

ing the acoustic signal: f0 is shown to have a stronger impact on the objective

results than energy, but the interaction of both signals gives the best results.

In terms of linguistic units, we observe that word representations outperform

syllable representations when using f0, but not when using energy. Combining

both levels appears more useful than either level in isolation. We further observe

that the system using representations learned over word f0 means performs quite

well when compared to all other systems in terms of f0 -RMSE. Improvements in

terms of MCD mostly originate from the inclusion of additional information. In

general, we observe that the more information is incorporated into the linguistic

specification of a TTS system using the proposed representations, the better that

TTS system performs.

However, as we provide the acoustic model with more information, we also

increase the complexity of the acoustic model. While the baseline system only

needs to process a vector of 594 dimensions, the best performing systems uses a

vector of 2634 dimensions. This increases training and testing time, which might
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Figure 9.6: Visualization of trained systems in terms of objective measurements. Each

axis denotes the difference between a system using learned vector representations and

the baseline in terms of an objective measure. Horizontal axes shows difference for

MCD (mel-cepstral distortion) and vertical axis the difference for f0 RMSE (root-

mean-squared-error) on voiced frames.

be an issue in a commercial setting.

In any case, the proposed approach is still attractive as it is a fairly cheap way

to learn suprasegmental representations that are dependent on the data used for

acoustic modeling. This method could be useful, for example, to systems that

are limited by weaker front-ends. Further investigation could consider replacing

features such as part-of-speech tags or syllable stress. Similar scenarios have been

previously investigated with text-derived word embeddings (Wang et al., 2015a).

Corpus size is also a relevant factor when learning word vector representations.

In this work, we have used a fairly large text-to-speech database. It is unknown

how useful these representations would be on a smaller corpus. In a similar line

of research, work focusing on the speaker dependency of these representations
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would be very interesting. For example, such analysis could learn count-based

vector representations on a larger dataset and apply them on an acoustic model

trained on a different and smaller dataset. These types of investigations could

be performed together with a comparison of count-based and predicted-based

approaches for multi-modal embeddings. For example, evaluating our proposed

methods with the proposal of Ijima et al. (2017).5

With respect to the current methodology, it should be noted that no optimiza-

tion of hyperparameters was attempted. No tuning was performed, for example,

on the number of clusters or the number of bins for each discretization method. It

was surprising to observe such improvements with fairly arbitrary initial choices

of setting for these hyperparameters. Further improvements might be observed

with careful optimization.

In terms of discretization methods, we might consider earlier approaches for

the f0 signal, such as Tilt (Taylor, 1998), MoMel (Hirst et al., 2000), ProsoGram

(Mertens, 2004), or SLAM (Obin et al., 2014). Acoustic signals such as jitter

and shimmer might also be useful in the context of a TTS system. Learning

representations at multiple levels might be useful, as recent work showed that

using continuous representations of phrases as input to acoustic models for text-

to-speech synthesis can lead to improved quality in synthetic speech (Wang et al.,

2016b).

9.7 Conclusion

This chapter presented a novel method for learning vector representations by

leveraging statistics of co-occurrences between text and speech. The proposed

approach requires two discrete sequences of units across modalities and two dis-

cretization methodologies are described. This count-based method for learning

representations is data-driven and can be applied to any linguistic unit or acous-

5The work of Ijima et al. (2017) uses a very large database (700 hours over 5372 speakers)
with a word-level bi-directional LSTM-based architecture. The latent representation learned
by a bottleneck layer in the model is treated as the word vector representation, which is then
used with the main acoustic model. Although a different method than the one we propose in
this chapter, which learns context-independent vectors, the approach Ijima et al. (2017) could
be a starting point for the comparison of different techniques.
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tic signal. In the set of experiments presented, we have evaluated the proposed

method with two discretization approaches (e.g. cluster-based and mean-based),

two acoustic signals (fundamental frequency and the zeroth mel-cepstral coeffi-

cient), and two linguistic levels (syllables and words). Improvements were ob-

served in terms of objective measures across all systems using learned vector

representations. It was also observed that the more information is injected into

the acoustic model via the learned representations, the better that acoustic model

performs. A subjective evaluation showed a preference for systems using addi-

tional features learned using the proposed count-based method over a system not

using them.

Considering the three sub-problems of the main thesis claim described in

Chapter 1, we have proposed contributions to sub-problem 2: representation of

linguistic contexts. Chapter 7 provided an initial investigation under this topic.

Syllable bag-of-phones and text-derived word embeddings were proposed and eval-

uated with subsegmental and hierarchical frameworks. It was shown that these

representations could be useful with a hierarchical architecture, but not with a

subsegmental model. The current chapter has extended the investigation into

linguistic context representations and proposed a novel way to learn vector rep-

resentations of suprasegmental units over a large database.



Chapter 10

Conclusions and future work

The final chapter of this thesis provides a summary of its main contributions.

This is followed by a global evaluation of those contributions and a discussion with

respect to the main claim of the thesis. The chapter concludes with a proposal of

lines for future research focusing on the natural generation of speech prosody.

10.1 Overview of main contributions

This thesis aims to provide evidence that more appropriate suprasegmental repre-

sentations lead to more natural generation of fundamental frequency in statistical

parametric speech synthesis. The claim is motivated primarily by a set of ob-

servations about traditional approaches to text-to-speech. In terms of acoustic

signals, fundamental frequency is represented at the frame level, but affected by

a variety of prosodic phenomena associated with multiple linguistic levels. For

example, f0 is affected by segment identity and co-articulation at lower levels

and lexical stress, pitch accents, and boundary tones at higher levels. Linguistic

representations are often positional or predicted by separate modules trained on

potentially out-of-domain data. Finally, traditional acoustic models are defined

over sub-segmental intervals such as states or frames.

A segmentation of the main claim into clearer sub-problems was proposed in

Section 1.1. These are: representations of acoustic signals, representation of lin-

guistic contexts, and the mapping between acoustic and context representations.

192
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The relationship of each chapter of this thesis to each sub-problem was illustrated

in Figures 1.1 and 1.2 (p. 6 and 9). With this in mind, the overall contributions

of this thesis and its corresponding chapters can be summarized in the following

points:

• A representation of f0 that is defined at multiple linguistic levels using the

continuous wavelet transform and the discrete cosine transform. [Chapter

4].

• A stronger understanding of the role of the various frequencies in wavelet-

based decomposition and their relation to the perception of naturalness in

synthetic speech. [Chapter 5]

• A perceptually and linguistically motivated decomposition of f0 using the

continuous wavelet transform. [Chapter 6].

• An investigation of cascaded deep neural networks with additional features

defined at a suprasegmental level. [Chapter 7].

• Insights into the role of hierarchical deep neural networks using cascaded

and parallel approaches with a variety of features defined at various linguis-

tic levels. [Chapter 8].

• A data-driven method to learn vector representations of linguistic units such

as syllables or words by taking counts over acoustic events. [Chapter 9].

Each of these contributions deals with one or two of the proposed sub-

problems. Although there is some level of interaction between these sub-problems,

illustrated by Figure 1.1, there is no direct comparison of each presented tech-

nique. The following section therefore describes a final evaluation of the main

contributions of this thesis.

10.2 Global evaluation

In order to conduct a global evaluation, we have selected one main contribution

to each of the three sub-problems. These main contributions are also illustrated
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as the leaves of the hierarchical diagram on page 9. These are the main findings

described in Chapters 6, 8, and 9.

Chapter 6 proposed a representation of f0 using the continuous wavelet trans-

form that was then used as a secondary task with a feedforward neural network.

This approach is related to the first sub-problem of the main claim – representa-

tions of acoustic signals.

Chapter 9 proposed a method to learn syllable and word vector representations

by counting events from acoustic signals. This approach learns a matrix encoding

a representation of linguistic units and can be used as input to an acoustic model.

This work falls under the second sub-problem of the main claim – representations

of linguistic contexts.

Chapter 8 investigated a hierarchical approach using parallel deep neural net-

works, with each side of the network focusing on separate linguistic levels. This

work is focused on the third sub-problem – the mapping between input and out-

put representations. It was shown that this architecture has the ability to denoise

input features, but it is not known if it can leverage new features more efficiently

than a single feedforward neural network.

10.2.1 Systems trained

Table 10.1 describes the main systems and how they vary with respect to the

main sub-problems. It proposes a final analysis of systems with additions at

various levels: input, output, and acoustic model architecture. Two combinations

were omitted, as they were either already investigated or they were not expected

to be meaningful. The first would be a simple hierarchical parallel network.

This was investigated in Chapter 8 and it was observed that this architecture

performs similarly to a feedforward network if using a pruned set of linguistic

features. The second omitted combination would be a system using the wavelet-

based decomposition of Chapter 6 with a parallel network. We would expect this

configuration to perform similarly to the system using the decomposition strategy

as a secondary task, given the denoising properties of the parallel architecture.

For this evaluation, we have used the dataset described in Section 9.3 (p.
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System Input Architecture Output

baseline DNN-standard feedforward MGC, f0, BAP, VUV

vectors DNN-standard, word and syllable vectors feedforward MGC, f0, BAP, VUV

CWT DNN-standard feedforward MGC, f0, BAP, VUV, CWT-syl

vectors, CWT DNN-standard, word and syllable vectors feedforward MGC, f0, BAP, VUV, CWT-syl

vectors, parallel DNN-standard, word and syllable vectors parallel feedforward MGC, f0, BAP, VUV

vectors, parallel, CWT DNN-standard, word and syllable vectors parallel feedforward MGC, f0, BAP, VUV, CWT-syl

Table 10.1: Systems evaluating combinations of main contributions.

178). Input features denoted DNN-standard in Table 10.1 correspond to a con-

ventional feature set used for DNN-based speech synthesis, which is detailed in

Appendix A.0.2. A feedforward architecture corresponds to a 6 hidden layer net-

work with 1024 nodes per layer. Output acoustic features denoted MGC, f0,

BAP, VUV correspond to the standard mel-cepstral coefficients, fundamental

frequency, band aperiodicities, and voice/unvoiced decision extracted with the

STRAIGHT vocoder (Kawahara et al., 1999, 2001).

Each additional contribution generally corresponds to the best performing

configuration in its respective chapter. Additional input representations (denoted

vectors in Table 10.1) are learned over words and syllables and consider the f0

and energy signals with the two proposed discretization methods of Chapter 9.

Additional output acoustic representations (CWT-syl in Table 10.1) considers the

syllable-level component of the dynamic wavelet-based decomposition strategy as

a secondary task, according to Chapter 6. The parallel architecture is identical

to that of Chapter 8, using triangular pre-processing networks at segmental and

suprasegmental levels, which are integrated via a 1-hidden-layer network. When

integrating multiple contributions with a parallel architecture (system vectors,

parallel, CWT ), word vector input representations are used with the supraseg-

mental network and wavelet-based output representations are used as the sec-

ondary task of the 1-hidden-layer network combining latent representations.

10.2.2 Subjective results

We assess the differences between systems using a MUSHRA (MUltiple Stimuli

with Hidden Reference and Anchor, ITU-R Recommendation BS. 1534-1 (2015))
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evaluation. Participants were asked to rate samples generated from the six sys-

tems of Table 10.1 side-by-side, along with a seventh reference sample of matching

vocoded speech. Each sample was rated with respect to the reference, but also

against one another, along a 100-point scale where 0 denotes completely unnatural

and 100 denotes completely natural.

A total of 16 native English speakers participated in the evaluation. The test

was conducted in a sound-insulated booth with headsets and all participants were

remunerated for their effort. Each listener rated a total of 20 sets of samples, thus

providing us with a total of 320 parallel comparisons. One test participant, inad-

vertently or not, scored all samples at zero in 9 out of the 20 observed sets. For

this reason, the remaining judgments given by this participant were excluded from

the analysis. Additionally, 6 sets from two other participants failed to correctly

identify the hidden reference. These sets were also excluded from the analysis.

This allowed us to consider a total of 294 sets of stimuli over 15 participants.

Figure 10.1 illustrates the distributions of the rated stimuli in terms of the

absolute score given by the test participants. Figure 10.2 illustrates the same

data in terms of system rank order, derived from the 100-point scale provided by

test participants.

10.2.3 Discussion

To understand the differences between the systems, we conduct a two-tailed

paired t-test on the absolute distributions over the 100-point scale illustrated

in Figure 10.1. All results are adjusted for multiple comparisons with a Holm-

Bonferroni correction. We observe that all systems using proposed contributions

significantly outperform the baseline at the level of p<.05. No significant differ-

ences are observed when comparing systems using additional techniques.

We further analyze the results in terms of their rank order by conducting

a double-sided Wilcoxon signed-rank test with a Holm-Bonferroni correction.

All systems using proposed contributions outperform the baseline at the level

of p<.05, except vectors-parallel. As before, non-baseline systems do not show

significant differences in terms of their rank order when compared against one
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Figure 10.1: Absolute results from the MUSHRA evaluation. A dark blue horizontal

line indicates the median and a red square indicates mean. The hidden reference

stimulus is omitted from the visualization, as it was always ranked as completely

natural.

another.

It was surprising to observe a non-significant difference between the system

using count based representations with a hierarchical framework (vectors-parallel)

and the baseline. This was observed in the rank-order analysis, but not in the

absolute score analysis, although the Wilcoxon signed-rank test is more conser-

vative than the pairwise t-test. A similar observation was made in the analysis

conducted in Section 8.4. Given the findings detailed in Chapter 8, the parallel

architecture with additional features (vectors-parallel) was expected to perform

similarly to the corresponding non-hierarchical system (vectors). Although Figure

10.2 shows a slightly lower rank for system vectors-parallel, this system’s score is

not significantly different from those of the remaining systems using contributions

proposed by this thesis.
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Figure 10.2: Rank order results from the MUSHRA evaluation. A dark blue horizontal

line indicates the median and a red square indicates mean. The hidden reference

stimulus is omitted from the visualization, as it was always ranked as completely

natural.

The main observations indicate that additional input and output represen-

tations (system vectors and CWT ) appear to provide the stronger results. Un-

expectedly, however, their interaction (system vector-CWT ) does not perform

better than either of them separately. It should be noted that the integration

of these methods followed a simple approach, incorporating them together via

feedforward neural networks. It is possible that different architectures may be

required to leverage the full potential of stronger representations of both inputs

and outputs. This particular integration method was not directly investigated by

the work presented in this thesis. For example, the integration of the proposed

input and output representations with stronger hierarchical models might lead

to interesting results. It was mentioned in Chapter 8 that the main advantage

of a hierarchical parallel architecture was its ability to denoise high-dimensional
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representations. Since this analysis, various promising hierarchical frameworks

have been proposed (Wang et al., 2017a; Ronanki et al., 2017), which could pro-

vide a starting point for stronger hierarchical modeling with additional input and

output representations.

With respect to the main thesis claim, we observe that techniques exploring

suprasegmental representations lead to more natural generation of speech param-

eters. This was shown through various listening tests in this thesis and validated

with a global evaluation.1 However, although this work provides interesting meth-

ods and insights into the main problem, it also generates further questions and

ideas. In the following section, we detail possible next steps for the contributions

and research topics covered by this thesis.

10.3 Future work

In this section, we suggest directions for future research focusing on each of the

three sub-problems governing the main claim of this thesis. Specific details for

additional work are given in the discussion of each contributing chapter. Those are

directly related to the hypotheses and results described with each contribution.

The ideas proposed here instead aim to go beyond the scope of this thesis and

generalize to the overall problem of natural generation of speech prosody in text-

to-speech synthesis.

Sub-problem 1: representations of acoustic signals

The notion that prosodic information is embedded in the speech signal hi-

erarchically was discussed in Section 3. This describes the signal as mani-

festing effects that can be associated with multiple temporal domains, con-

ceptualized as small ripples on top of big waves (Wu et al., 2008).

1We purposefully avoid generalizing these observations to a comparison of the three sub-
problems: input representations, output representations, or acoustic model. The global evalua-
tion conducted in this chapter is limited to the techniques proposed in the scope of this thesis.
It should be clear that the observed results are a consequence of the proposed methods and not
evidence to the importance of each sub-problem to the main claim.
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This thesis made no claims or assumptions regarding a prosodic constituent

hierarchy and it is limited to considering the f0 signal. Future work could

combine the findings of Chapters 4, 5 and 6 with recent work using the

Continuous Wavelet Transform (Vainio et al., 2013; Vainio, 2014; Vainio

et al., 2015; Suni et al., 2017).

The work of Suni et al. (2017) is of particular relevance to this sub-problem.

The authors have used a combined signal of f0, intensity, and duration with

the CWT to infer prosodic prominence and constituent structure. Results

indicate that their approach is comparable to supervised methods for the

annotation of such structures. This annotation could be used directly with

an acoustic model (Tesser et al., 2013) or used to learn continuous repre-

sentations of context, such as those proposed in Chapter 9.

This thesis was limited to constituents that are easily inferred from textual

sources (e.g, words or syllables) or that are readily available in common

text-to-speech front-ends (e.g. predicted phrase breaks). These lines of

future work therefore aim to go beyond those limitations and focus on a

hierarchy that is grounded on established theories of prosodic structure as

well as on multiple acoustic correlates of speech prosody.

Sub-problem 2: representation of linguistic contexts

Stronger data-driven techniques that infer complex representations of lin-

guistic contexts would be beneficial for text-to-speech systems. This is mo-

tivated by what has been called the lack of reference problem (Xu, 2012).

In Chapter 9, we have investigated a count-based method to learn vector

representations. Recent work focused instead on predictive-based methods

such as the skip-gram model (Mikolov et al., 2013a). Various studies have

proposed multimodal variations of these models that have been successfully

applied in speech and vision (Lazaridou et al., 2015). Alternatives such as

deep canonical correlation analysis (DCCA) for representation learning also

might provide interesting results (Andrew et al., 2013; Wang et al., 2015b).

Similarly, the sequence-to-sequence LSTM based autoencoder described in
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Wan et al. (2017) to learn phone-level embeddings might be interesting to

explore at higher linguistic levels.

Other approaches could combine the method proposed in Chapter 9 with

a dependency parser, for example. This would be a multi-modal approach

related to the text-centered dependency-based word embeddings of Levy

and Goldberg (2014). Rather than considering sequential context, this

method considers textual units (e.g. words) that are adjacent on a depen-

dency graph.

Additionally, context representations could be explored with longer units

within the utterance, such as phrases. Chapter 9 focused on syllables and

words, but continuous representations of phrases have shown to be beneficial

for speech synthesis (Wang et al., 2016b).

For future work in the context of sub-problem 1, we have described the po-

tential benefits of inferring a prosodic constituent hierarchy from the acous-

tic signal. These findings could be used to learn vector representations

of those constituents. Recent work with recursive models have success-

fully learned representations of hierarchical structures (Socher et al., 2011;

Socher, 2014).

Ultimately, context representations for text-to-speech should be directed

at event longer temporal units, spanning multiple sentences. Although

this thesis was limited to sentential phenomena, speech prosody is known

to be influenced by discourse-level effects (Grosz and Hirschberg, 1992;

Hirschberg, 1993; Sluijter and Terken, 1993; Swerts and Geluykens, 1994;

Nakatani et al., 1995; Wichmann, 2000; Wennerstrom, 2001; Smith, 2004;

Tyler, 2013). When using expressive databases such as audiobooks, repre-

sentations inferred with larger contexts could be able to capture complex

interactions of lower-level units. These might capture effects related, for

example, to information structure (Steedman, 2000; Calhoun, 2007).

Sub-problem 3: mapping acoustic and context representations

It is widely agreed that prosody is suprasegmental and hierarchical in na-

ture. However, most text-to-speech systems still operate on very short-term
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intervals. In Chapters 7 and 8, we investigated cascaded and parallel deep

neural networks, in which two networks process segmental and supraseg-

mental layers separately. This is a simple two-tier approach that collapses

the rich higher-level prosodic hierarchy into a single suprasegmental layer.

Ideally, the global prosodic constituent structure would be processed at

multiple linguistic levels.

Similarly, in our method, segmental and suprasegmental networks were

optimized separately. Because the multiple layers of meaning manifested

through the acoustic correlates of prosody are embedded into the same

speech signal, jointly optimizing all model networks might be beneficial.

Recent hierarchical models have already begun to steer in this direction,

jointly optimizing multiple recurrent linguistic levels (Ronanki et al., 2017;

Wang et al., 2017a). Such models could be linked with additional rep-

resentations of context and stronger representations of prosodic structure.

However, these methods are still limited to individual sentences. Extend-

ing recurrences over multiple sentences might be useful. For example, in a

sample-level approach such as Wavenet (van den Oord et al., 2016), con-

text is introduced into the model via dilated convolutions. An extension of

this idea to parametric speech synthesis could be attempted, where multiple

linguistic levels leverage discourse-level context to jointly generate prosodic

acoustic parameters.

Similarly, instead of operating on clearly defined linguistic levels (such as

syllables or words), a hierarchical architecture defined over prosodic con-

stituents might be worth exploring. Such work could combine the signal-

driven prosodic annotation proposed in Suni et al. (2017) with a hierarchical

model similar to that of Ronanki et al. (2017).

Besides the three sub-problems that stem from the main claim of this thesis,

there are parallel areas of research that deserve additional notes. One such case

relates to the evaluation protocols used for text-to-speech synthesis. For systems

and hypotheses focusing on the natural generation of speech prosody, evaluation

methods need to go beyond the currently established methodologies discussed in
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Section 2.3.

An initial step has already been taken in this direction with the work of Latorre

et al. (2014). The authors test the hypothesis that, given a speech sample without

proper context, the mental reference of the listeners for the prosodic layer might

vary. This potentially invalidates non-referenced evaluation protocols such as

MOS or AB tests for prosody evaluation.

Future work could therefore investigate evaluation protocols that account for

supra-sentential context. These might be referenced or non-referenced. It is un-

known, for example, how context affects listeners’ responses. The type of context

(e.g. text, audio) or size of context (e.g. number of sentences or paragraphs)

might generate different responses. Further work investigating these questions

might be useful for speech synthesis. Alternatively, Winters and Pisoni (2004)

argue that the naturalness of synthetic speech in terms of prosody might need to

be evaluated indirectly. This would involve measuring the listeners’ response in

terms of memory, attention, or cognitive load.

Although this thesis aimed to isolate hypotheses to clearly identify differ-

ences between systems, some of the effects were not as strong as expected. This

might be due to evaluation methodologies focusing on out-of-context sentences.

In the listening tests conducted during this thesis, various listeners have infor-

mally mentioned the difficulty of evaluating sentences that differ primarily in

terms of intonation. A protocol that can accurately evaluate synthetic speech in

terms of prosody would be beneficial for future work focusing on the generation

of prosodic phenomena.

10.4 Final remarks

This thesis provided evidence that stronger suprasegmental modeling of funda-

mental frequency is essential for more natural generation of speech prosody. This

evidence was given through contributions across three sub-problems of this main

claim: suprasegmental representation of acoustic signals, suprasegmental repre-

sentations of linguistic contexts, and suprasegmental and hierarchical acoustic

modeling.
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Natural generation and control of speech prosody remains one of the funda-

mental problems in text-to-speech synthesis. A stronger understanding of speech

phenomena is indispensable if researchers hope to bridge the gap between natural

and synthetic speech. This thesis has sought to provide insights into this problem

and hopefully foster the discussion of topics that could eventually lead to more

natural speech synthesis.



Appendix A

Linguistic Features

This appendix provides a full description of the linguistic features used in this

work. Section A.0.1 includes a description of the full set of features used for the

HMM-based systems in Chapters 4 and 5. Section A.0.2 provides a description of

the subset of features used in the DNN-based systems presented in the remaining

chapters.

A.0.1 Feature set used with HMM-based systems

This is a typical set of features for the English language used for HMM-based

speech synthesis (Tokuda et al., 2013). The set is defined by 2926 binary questions

extracted from the features defined below. The binary questions are used for

decision tree clustering within the HTS framework. Further details can be found

in the question set distributed with HTS English recipes (Zen et al., 2007, 2009a).

Features defined at the level of the phone

– current phone.

– previous and next phones.

– previous and next phones at a distance of 2 from current phone.

The concatenation of the 5 phones is termed the quinphone. For each phone

in the quinphone, various features are defined. These are related to the phone

identity and the phone’s articulatory characteristics (place and manner of artic-

ulation).
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Features defined at the level of the syllable

– number of phones since/until the end of the syllable.

– lexical stress of the previous, current, and next syllable.

– number of phones in the previous, current, and next syllable.

– number of syllables since/until a lexically stressed syllable.

– number of syllables since/until a pitch accented syllable.

– previous, current, and next syllable contains a pitch accent.

– number of syllables since/until a word boundary.

– number of syllables since/until a phrase boundary.

– number of stressed syllables since/until a phrase boundary.

– number of pitch accented syllables since/until a phrase boundary.

– identity and articulatory features of the nucleus of the current syllable.

Features defined at the level of the word

– guessed part of speech of the previous, current, and next word.

– number of syllables in the previous, current, and next word.

– number of words since/until a phrase boundary.

– number of content words since/until a phrase boundary.

– number of words since/until a content word.

Features defined at the level of the phrase

– number of syllables in the previous, current, and next phrase.

– number of words in the previous, current, and next phrase.

– number of phrases since/until an utterance boundary.

– predicted ToBI endtone for current phrase.

Features defined at the level of the utterance

– number of syllables in the utterance.

– number of words in the utterance.

– number of phrases in the utterance.
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A.0.2 Feature set used with DNN-based systems

This is a binary hand-selected feature set distributed with earlier versions of the

Merlin Neural Network Toolkit (Wu et al., 2016). The questions are a subset

of the features available with HTS and described in Section A.0.1. This subset

reduces the 2926 HTS questions to 592 binary questions based on the features

defined below.

The current subset was hand-selected after experimentation aimed at the op-

timization of objective measures on a British English dataset.1 Various systems

have since been presented using this convention (Wu et al., 2015; Wu and King,

2016; Henter et al., 2016; Ronanki et al., 2016, 2017). For the release of the Merlin

Neural Network Toolkit (Wu et al., 2016), the feature set was further optimized.

For example, by allowing numerical features (e.g. positional or count-based) to

be continuous rather than binary. Binarization was inherited from the HTS ques-

tion set, which required binary features for decision tree clustering. Except where

noted, all DNN-based systems reported in this thesis use the early hand-selected

question set of 592 binary features.

Features defined at the level of the phone

– identity and articulatory characteristics of current phone.

– identity of previous and next phones.

– identity of previous and next phones at a distance of 2 from current phone.

Features defined at the level of the syllable

– number of phones since/until the end of the syllable.

– lexical stress of the previous, current, and next syllable.

– number of phones in the current syllable.

– number of syllables since/until a lexically stressed syllable.

– number of syllables since/until a pitch accented syllable.

– previous, current, and next syllable contains a pitch accent.

– number of syllables since/until a word boundary.

1This feature selection work was carried out during early development of the Merlin Toolkit
by Zhizheng Wu, to whom we are grateful.
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– identity and articulatory features of the nucleus of the current syllable.

Features defined at the level of the word

– guessed part of speech of the previous, current, and next word.

– number of syllables in the current word.

– number of words since/until a phrase boundary.

– number of content words since/until a phrase boundary.

– number of words since/until a content word.



Appendix B

Additional materials for chapter 5

This appendix provides additional material for the perceptual investigation of a

wavelet-based decomposition of f0 described in Chapter 5

1-2 3-4 1-4 5-6 7-8 5-8 9-10 hmm

all p<.001 p<.001 p<.001 p<.05 p<.001 p<.001 p<.001 p<.001

1-2 - ns ns p<.001 ns p<.001 p<.001 ns

3-4 - ns p<.001 p<.05 p<.01 p<.001 ns

1-4 - p<.001 ns p<.001 p<.001 ns

5-6 - p<.001 ns p<.001 p<.001

7-8 - p<.001 p<.001 ns

5-8 - p<.001 p<.01

9-10 - p<.001

Table B.1: Bonferroni-corrected pairwise Wilcoxon sign rank test for the MUSHRA

evaluation (Section 5.5).

all 1-2 3-4 1-4 5-6 7-8 5-8 9-10 hmm

natural p<.001 p<.001 p<.001 p<.001 p<.001 p<.001 p<.001 p<.001 p<.001

all - p<.001 p<.001 p<.01 ns p<.001 ns p<.001 p<.001

1-2 - ns ns p<.01 ns p<.01 ns ns

3-4 - ns ns ns ns p<.01 ns

1-4 - ns ns ns p<.01 ns

5-6 - ns ns p<.001 p<.05

7-8 - ns p<.05 ns

5-8 - p<.001 p=.05

9-10 - ns

Table B.2: Bonferroni-corrected pairwise Wilcoxon sign rank test for the Mean-

Opinion-Score evaluation (Section 5.6).
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