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Abstract

Sensing physical and social environments are ubiquitous in modern mobile phones,

IoT devices, and infrastructure-based settings. Information engraved in such

data, especially the time and location attributes have unprecedented potential

to characterize individual and crowd behavior, natural and technological pro-

cesses. However, it is challenging to extract abstract knowledge from the data

due to its massive size, sequential structure, asynchronous operation, noisy char-

acteristics, privacy concerns, and real time analysis requirements. Therefore, the

primary goal of this thesis is to propose theoretically grounded and practically

useful algorithms to learn from location and time stamps in sensor data. The

proposed methods are inspired by tools from geometry, topology, and statistics.

They leverage structures in the temporal and spatial data by probabilistically

modeling noise, exploring topological structures embedded, and utilizing statisti-

cal structure to protect personal information and simultaneously learn aggregate

information. Proposed algorithms are geared towards streaming and distributed

operation for efficiency. The usefulness of the methods is argued using mathe-

matical analysis and empirical experiments on real and artificial datasets.
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Lay Summary

Modern personal devices continuously record the social and physical context

of their users. Time and location stamps associated with these sensing data are

often important for personalization and optimization across applications. How-

ever, it is challenging to learn high level abstract knowledge from the sensing

data mainly due to huge dataset size, noisy environment, and realtime analysis

requirement. Moreover, even anonymized data used with best of intentions can

leak sensitive information about data contributors. So, in this thesis, we discuss

novel mechanisms inspired by statistics and geometry to learn fundamental pat-

terns inscribed in the data while protecting the privacy of the individual users.

Following are the specific problems we address here.

Periodicity is fundamental and useful to characterize and forecast time series.

For example, our footsteps, heart beats, traffic surges, etc., have regular repeating

patterns. But, it is challenging to automatically detect the periodicity in real

world signals due to dynamic period and phase and therefore popular frequency

domain methods do not apply. Here, we propose an online algorithm that guesses

several periods and iteratively refines them as it observes the signal.

Timings of important events are often sensitive. For example, we don’t want

an adversary to know the exact check-in times, but the aggregate information is

required for service optimization. We propose techniques to introduce carefully

chosen noise such as perturb the event timings or introduce spurious events so that

no adversary can learn sensitive event timings with confidence, while aggregate

inferences, like event density is preserved.

Location is another fundamental attribute in the sensing data. Mobility traces

are important in many practical applications, for example, predicting future loca-

tion. We propose a general framework to apply standard machine learning tools

for location trajectories. The fundamental idea is that the way the objects move

around the obstacles in the domain constitutes the most important characteristics

of the mobility pattern.

Location is also sensitive, for example, check-in at a hospital. To protect

location privacy, we develop algorithms to protect exact location stamps while

ensuring that the aggregate inferences are useful. These mechanisms are well

beyond simple anonymization and are inspired by the strongest form of privacy.
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Chapter 1

Introduction

Modern mobile phones and IoT devices are equipped with a rich collection of

sensing modalities, for example, location, proximity, audio, temperature, humid-

ity, etc. Infrastructures like cellular towers, transport services track users for

service optimization. The recent popularity of the personal devices and sensing

infrastructures are generating a huge amount of raw sensing data in terms of user

activities, application usage, location, health, etc. In this thesis, we seek efficient

and accurate methods to learn high level abstract patterns from such sensor data

for applications across domains, such as smart cities, smart transport, traffic man-

agement, etc. Further, these sensing data contain sensitive personal attributes,

so we also aim to sanitize the data to protect user privacy while preserving utility

for aggregate learning.

Out of numerous applications of sensor data, the most interesting and useful

ones are the context-aware applications (Schilit et al., 1994). They adapt accord-

ing to the timings and locations of use, user’s social situation, user activities, etc.

Among other factors, location and time stamp are the most important and funda-

mental context indicators in the majority of the applications. Henceforth, in this

thesis we consider multiple ubiquitous and fundamental problems to concerning

these two attributes.

In general, sensors continuously sample the environment at regular or irreg-

ular intervals. Values between samples can be interpolated to approximate the

continuous signal or sensors can extract discrete events without considering con-

tinuity. Events can be real valued or binary denoting occurrence of interest. For

temporal streams, we consider discrete events without explicitly approximating

continuity between events. Whereas, spatial data is considered in both the fla-

1



2 Chapter 1. Introduction

vors, with continuity (e.g., piece-wise linear GPS trajectories) and discrete events

(e.g., check-in). All the chapters in this dissertation only consider location and

time attributes in the data and do not deal with the content of the events.

The collected sensor data, traditionally, are sent to servers for analysis. How-

ever, the communication is costly and sharing personal data with an unknown

server raises user privacy concerns. Fortunately for us, the sensors are tiny com-

puters with computing, storage, and communication capabilities and this opens

the opportunity to analyze the collected data in the sensors themselves. However,

the processing algorithms often pose intensive resource requirements beyond the

capacities of the battery operated sensors. Therefore, a viable middle-ground is

to process the raw data partially in the sensors and share the extracted knowl-

edge or features with the servers for further analysis and fusion. This architecture

constitutes the main theme across all the chapters presented in this thesis.

1.1 Challenges in learning from sensor data

This section describes the primary challenges to learn from sensor data and the

broad design choices for learning algorithms to overcome them.

Massive dataset size. Sensors generate huge datasets as they collect data

continuously and there are multiple sensing modalities. Therefore, it is costly to

store the raw data in the sensors or send them to servers; which makes the online

methods necessary over batch processing techniques. For applications requiring

aggregation over multiple sensors, in-device processing needs to be augmented

with distributed computing techniques.

Noisy data. Noise is the unstructured part of the data which do not follow

a particular pattern. Data from the real world are often noisy due to complex

generation mechanisms and intrinsic characteristics of the sensors. For exam-

ple, location trajectories have noisy GPS points due to inaccurate localization,

personal and group preferences, road conditions, etc. Traditional learning sys-

tems pre-process the data to remove certain noise (e.g., using high pass filters),

however, noise often constitute an essential part of the sensing data (e.g., chang-

ing periodicity in footsteps). Moreover, online processing constraint makes noise

removal difficult. Therefore, the analysis algorithms in this regime need to be
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robust to realistic noises.

Sequential structure. Due to continuous recording, sensor data often are se-

quential. Sequences are complex objects to process and well-studied standard

machine learning methods for point cloud data do not apply to sequences. There-

fore, simplifying assumptions (e.g., Markov assumption) and customized learning

tools (e.g., Long short-term memory neural network) are developed. In this the-

sis, we explore the possibility of embedding the sequences in a nice geometric

space so that all existing learning and mining tools apply for further analysis.

Asynchronous operation. In many applications, events are captured asyn-

chronously, i.e., at real-valued timestamps. Blurring the event timing to fit syn-

chronous rounds make data useless in time critical applications. Besides, deciding

the interval for synchronous rounds is difficult. Whereas sensor data captured in

synchronous rounds is studied across domains, asynchronous events are not well

understood.

Time and space efficiency. Sensors have limited resource in terms of storage,

computation, energy, and communication, therefore, to run analysis algorithms in

the sensors the methods need to be time and space efficient. Moreover, the context

evolves quickly, therefore it needs to be processed fast to have relevant results. A

powerful resort to address this challenge is to have approximate processing and

compromise accuracy for efficiency.

User privacy. User centric sensing data has unavoidable privacy concerns. For

example, a traffic management system may want to track cars to predict and

manage congestion, but the users of the cars shall have privacy concerns in sharing

their routes. Therefore, an interesting research direction is to learn aggregate

inference without sacrificing individual privacy (Dwork, 2006).

1.2 Key topics in learning from sensor data

This section describes interesting and fundamental research problems concerning

time and location context in sensor data. There are three main avenues – data

collection, learning from the collected data and preserving privacy of individual

users. Each topic encompasses multiple problems and below we review the most

intriguing ones.
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1.2.1 Sensor data collection

The first step of learning is to collect data by sensing the environment. Depending

on the applications, there are multiple configurations. A sensor can capture

discrete events (e.g., user check-in) or sample from a continuous signal (e.g., user

locations). The inference can depend on a single sensor or on a distributed sensor

array. The collected signal can vary in dimensionality. The sensors can be static

or mobile with or without control over mobility. Moreover, it is infeasible to place

sensors at every location and sample continuously due to massive deployment cost,

high energy requirement, and huge resulting data size. Therefore, challenges are

to decide sensor locations, sampling frequency, and compressing the collected

data. Following problems discuss these challenges in more detail. However, none

of these problems are addressed in this thesis.

Deciding the sampling frequency. It is a common practice to use a fixed sam-

pling frequency for ease of sensor configuration and deterministic performance

in terms of both energy consumption and data size. The frequency value is

naturally derived in many settings, for example, wireless network nodes (e.g.,

WiFi, Bluetooth) can fix their duty cycles bounded by the wireless protocol.

Popular Nyquist Theorem asks to sample at least at twice the rate of the high-

est frequency component in the signal. It provides a conservative measure for

perfect reconstruction. More sophisticated methods reduce the rate using non-

uniform sampling (Venkataramani and Bresler, 2001). However, deciding the

frequency is nontrivial for sensors where the exact reconstruction of the signal

can be avoided (Candes, 2006). Therefore, an interesting research question is to

determine the sampling frequency such that the resulting data size is small and

yet contains adequate information to be useful in further analysis.

Compressing collected data. We can compress the data while it is being

collected (online), or after it is collected (offline). Data compression is well studied

in multiple fields and usually has two major variations – reducing dimensionality

and reducing the number of data points.

The compressive sensing framework proposes to compress the data to a low

dimensional representation with the possibility of approximate reconstruction. It

has been successfully used across fields for sensing traffic congestion (Zhu et al.,

2013), monitoring environmental signals (Yan et al., 2012a), etc. Apart from that,

a large body of literature is available for reducing dimension using PCA, SVD,



1.2. Key topics in learning from sensor data 5

factor analysis, etc., and selecting a subset of dimensions. Topological methods

are also studied to find and preserve persistent features in the data (Katsikouli

et al., 2014). There has been also research on smoothing signals (Hershberger

and Snoeyink, 1994b), which essentially compress the data.

Coresets (Bachem et al., 2017; Frahling and Sohler, 2008) reduce the data-set

size by keeping a subset of the data points. The constructions are application

specific and offer theoretically guaranteed accuracy on the targeted applications.

Clustering is useful for summarization where the data points are grouped and

representative samples from clusters are retained in the summary (Kleindessner

et al., 2019). Submodular optimization is also relevant to summarize data by

finding maximally dissimilar data points (Mitrovic et al., 2018).

Placing spatially distributed sensors. Spatially distributed sensors can be

placed at static locations, attached to controlled mobile objects, or crowd-sourced.

They have different opportunities and challenges, for example, static sensors are

often accurately calibrated, but have installation and maintenance cost, whereas

crowd-sourced data is imprecise, but is cost-effective.

Many practical signals such as cellular signal strength, temperature, crowd

density have correlated values at spatially nearby places. To place static sen-

sors, most frameworks use this structure. They first model the spatial correlation

among n possible sensor locations, then select a subset of k locations that maxi-

mize an objective, such as, uncertainty among sensor locations, coverage, the mu-

tual information between directly observed and unobserved locations, etc. This

is a variant of the well known NP hard maximum set cover problem and many

approximation methods are proposed using submodular maximization (Mirza-

soleiman et al., 2016; Krause et al., 2008), active learning, etc. However, these

theoretical frameworks assume simplistic models for the spatial correlation, thus

are less optimal in practice.

Motion planning for controlled vehicles is also studied in the literature (Kolyaie

and Yaghooti, 2011). Another setup is to attach sensors to buses and trains (Elmokashfi

et al., 2017). An interesting research question is how to select the buses and trains

to minimize the number of sensors attached. Moreover, the routes may change

frequently due to roadblocks, environmental phenomena, and sensors may fail;

thus, a related question is how to make the selection of routes robust.

In the crowd-sourced setting, user agents collect and report sensing data. The

sampling decision can be made by the user or a server knowing the location of the
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user. In this configuration, along with the obvious objective of maximizing data

quality, one has to consider that no individual user should be asked to collect

data many times. This setting depends on predicting the agents’ motion (explore

vs exploit trade-off), mitigating the low quality sensing from commodity devices,

possible attrition, and privacy concerns.

1.2.2 Learning from location and time stamps

Depending on the applications, inferences are learned from sensor data in various

settings, streaming vs offline; at individual sensors vs aggregated over multiple

sensors, etc. In the following, we describe multiple fundamental problems regard-

ing learning from sensor data.

Similarity measure. Similarity measures between data points are at the heart

of all machine learning and data mining methods.

Multiple methods exist to compute the distance between time series by com-

paring the signal values at corresponding time steps, using the coefficients in

frequency domains, etc. Categorical sequences are popularly compared using

edit distances.

Distances between curves are popularly computed using Hausdorff, Fréchet

, and Dynamic Time Wrapping. For discrete curves, these distances measure

the maximum distance between matched data points. To match the data points

(e.g., each point in one curve to the nearest point in the other), these methods

need computation time quadratic in the number of data points. Although there

are several variations of these measures, they still have super linear compute

time complexity (Chambers et al., 2010). Moreover, the Hausdorff and Fréchet

distances do not form normed spaces and DTW is not even a metric. Therefore,

these distances are not suitable for existing Euclidean learning methods. More

distances like area between curves (Chambers and Wang, 2013) are also studied.

We survey related works in Chapter 4.

Kernel methods are popular in machine learning for measuring distances in

point clouds, and recently they are being explored for sequential data (Király

and Oberhauser, 2019). Customized locality sensitive hashing schemes are also

designed for mobility traces (Astefanoaei et al., 2018).

Another way to find similarity is to first map sequential data to a geomet-

rically “nice” space, then do further analysis using the embeddings. Using this
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philosophy, Chapter 4 maps mobility traces as fixed dimensional Euclidean vec-

tors preserving their topological properties. Further, we analyze mobility traces

using the vector representations. This speeds up trajectory comparison as it uses

Euclidean distances, and enables all Euclidean learning tools.

Modeling a sequence. A generative model for sequential data is useful for

characterizing and forecasting. Point process models are well studied in statistics

for modeling discrete event streams, for example, Poisson point process models

uniformly random occurrences of events, Hawkes process (Parmar et al., 2017)

suits self-exciting events, etc. We have used Poisson Process to model the point

events in Chapter 2 and 3.

Periodic process is pervasive in event streams, however, periodicity analysis in

noisy streams is not well understood, especially when the periodicity and phase

change over time. Realistic signals often have these characteristics, for example,

delays between heart beats and foot-steps accumulate over time and that changes

the phase of the signal. Chapter 2 proposes a periodicity detection algorithm for

binary event streams with such noise. The proposed algorithm also handles false

positive events in the stream.

Markov models (Murphy, 2012) are popular for modeling latent states from

observations in a time series. These methods are extensively studied to better

understand, control, and forecast various signals (Jurafsky and Martin, 2014;

Rabiner and Juang, 1986; Xiao et al., 2017; Jia et al., 2017; Goldberg, 2017;

Hallac et al., 2017). These models are appropriate for random walks where the

next state depends only on the current one, however in many practical cases, the

future value depends on longer history (e.g., mobility). Neural networks based

models have recently become popular to model sequential data (Wu et al., 2017),

however, they are tuned to specific tasks and not suitable for general mining

and learning. We address this problem in Chapter 4 by encoding longer location

history using fixed dimensional topological signatures.

Although, several data driven methods for mobility modeling are proposed

in the literature (Barbosa et al., 2018; Rezaei et al., 2018), there is a lack of a

comprehensive reliable model. Therefore, the problems of predicting travel time,

estimating popular paths, generating synthetic trajectories are hard and need

further study.

Learning applications. Here, we briefly describe the major learning applica-
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tions for sensor data.

Mining statistics from categorical streams is well studied. Many interest-

ing randomized methods are proposed to estimate moments, find heavy hitters,

etc (Leskovec et al., 2014). However, all the methods in this genre either assume

events in synchronous rounds or do not depend on timing. In this dissertation, we

are concerned about events with associated timings generated in an asynchronous

setting.

Clustering is a fundamental operation in machine learning. This is relevant

to many applications, for example, grouping similar trajectories for ride sharing.

Clustering time series and trajectories have been studied in the literature using

different techniques (Buchin et al., 2011; Pokorny et al., 2016). We address this

problem using topological signatures in Chapter 4.

Classification, grouping objects according to their labels, is ubiquitous, for

example, classifying modes of transportation, user activities, etc. Several regres-

sion techniques like ARIMA (Liu et al., 2016), Gaussian Process Regression (Ha-

jiGhassemi and Deisenroth, 2014), etc., have also been studied to predict future

values in a time series.

1.2.3 Preserving Privacy

Privacy is a natural concern in user centric sensing because nontrivial sensitive

inferences are possible from location and time contexts. In the literature, there are

two fundamental approaches to preserve privacy – anonymization and statistical

privacy.

Anonymization. Anonymization is a common practice to make a dataset pri-

vate by taking out the obvious user identifiers or replacing them with random

values. However, it is shown to be possible to re-identify individuals considering

auxiliary knowledge from other publicly available datasets. For example, a user

can be characterized by time independent frequent visit locations (Pan et al.,

2013), and with the knowledge of home and work locations, individuals can be

re-identified. Moreover, (De Montjoye et al., 2013) showed that four spatiotem-

poral points are enough to uniquely identify 95% of individuals. They further

showed that even with reduced resolution in spatial and temporal dimension pri-

vacy improves a little.

Popular k-anonymity provides privacy by making the sensitive record in-
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distinguishable with k − 1 other records and has been successful for relational

databases (Sweeney, 2002). Although this is used for location privacy (Gra-

maglia et al., 2017; Gramaglia and Fiore, 2015), fundamentally it is not suitable

for spatial and temporal data, because these types of data are real valued and

need large perturbation. Again, k-anonymity protects against re-identification

with probability 1/k, but does not essentially protect the sensitive information.

For example, suppose an adversary is interested to know whether a user u visited

the hospital at a certain time. Then, knowing that one of k trajectories going to

the hospital belongs to u is vulnerable.

Publishing anonymized event timings can leak user identity or sensitive infor-

mation about an individual, for example, knowing that a user opens a medicine

website regularly may reveal the sensitive medical state, exact timing of a call

or message can reveal delicate dependence on sensitive incidents. The topic of

anonymization is not investigated in this dissertation.

Statistical privacy. A stronger privacy guarantee is achievable using statistical

privacy frameworks, such as differential privacy (Dwork et al., 2009). This is

now considered as the gold standard for privacy preservation to answer aggregate

queries. It probabilistically perturbs query results to blur the participation of any

individual in the dataset. For this purpose, a differential privacy mechanism adds

noise proportional to the worst case change in the query result in the absence of

any individual in the dataset. It protects any individual against the strongest

adversary who knows all sensitive information for all the participants except for

the one participant he is interested in.

Differential privacy is extended to support continuous queries in streaming

settings (Chan et al., 2011) and to accommodate data generation process into

the framework using Pufferfish privacy (Kifer and Machanavajjhala, 2014a). In

Chapter 3, we use the Pufferfish privacy framework to publish event timings and

answer temporal range queries. There we protect the exact timings of events and

their occurrence.

Privacy concerns for location tracking are omnipresent, however, location

based systems need to know the user’s location to produce useful results. Users

may not trust the service providers or possible third party agents involved in

the process (e.g., advertisements). A considerable amount of research has been

done to protect the exact location of the users and yet enable the location based

systems to return useful results (Andrés et al., 2013). We study the problem
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of protecting privacy of location data in a distributed sensor network setting in

Chapter 5 using the differential privacy framework.

Protecting privacy of trajectories is hard because users have unique mobil-

ity (Barbosa et al., 2018). (Xu et al., 2017) demonstrated that even without

any prior knowledge, individual users’ trajectories can be reconstructed from ag-

gregated data like the number of people served by a cellular tower at specific

timestamps. There have been multiple studies using k-anonymity (Gramaglia

and Fiore, 2015), plausible deniability (Bindschaedler and Shokri, 2016), etc. for

providing trajectory privacy. But, all these methods need much noise because

of their spatiotemporal uniquness, continuity of a trajectory, and correlation be-

tween trajectories; So, further in-depth study in this topic is required to reduce

the amount of noise needed and thus preserve better utility.

1.3 Summary

This section summarizes the major contributions of this thesis. It has two parts

discussing analysis and privacy aspects of temporal and spatial data.

1.3.1 Learning From Temporal Streams

In this part, we focus on sequences of discrete events at real valued timestamps.

These events are produced by sensors, for example, gait, heart beat, check-in,

usage of apps in a phone, etc. Depending on the application concerned, these

events can naturally be discrete, like check-ins, or extracted from the real valued

signals using suitably chosen peaks. Patterns in the timestamped events are

essential to learn for personalization and service optimization. However, these

events contain sensitive personal attributes, and thus raise privacy concerns in

such data collection. This thesis addresses the following specific problems in this

regime.

Tracking periodicity in noisy event streams. (Ghosh et al., 2017) Detecting

periodicity in noisy streams is challenging – especially when periodicity and phase

drift over time and the stream has false positive events. These characteristics are

common in many real datasets such as footsteps, heartbeats, daily habits, periodic

surges in traffic, etc.

Chapter 2 proposes a generalized formal framework for periodicity and a novel
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probabilistic model for periodic events in both idealized and realistic noisy sce-

narios. To estimate the periodicity, a particle filter-based algorithm is proposed.

The algorithm initially guesses a few periodicity values and iteratively refine them

based on real events. Experiments on simulated and real datasets show that the

method outperforms existing methods in both accuracy and efficiency.

Private sensing of asynchronous event sequences. (Ding et al., 2019) Densely

deployed sensors provide opportunities for large scale monitoring of home, work-

place and public domains. Such data are shared with service providers and pos-

sibly with third parties (Chen et al., 2017; Ganti et al., 2008) – for research,

environmental monitoring and other purposes. In the process of sharing and use

of IoT data, sensitive private information such as activities of an individual can

leak. Existing privacy mechanisms only consider events captured in synchronous

rounds and require high sampling rate to support dense events. As a result, these

methods introduce a large amount of noise globally.

Chapter 3 develops two mechanisms for protecting privacy of event timings.

The first algorithm publishes event timings by perturbing them using Laplace

distribution to hide exact event timings from an adversary. Further, to hide the

occurrence of an event, the second algorithm augments the event stream with fake

events in such a way that no adversary can be sure (e.g., with high probability)

if an observed event is real. The standard deviation of the Laplace distribution

and the rate of fake events are adjusted according to the privacy parameter and

real event rate. Both of these methods achieve ε-Pufferfish privacy and preserve

better utility for range queries than existing algorithms. In this chapter, we also

discuss design choices to implement a sanitization service on the mobile phone

such that all sensing applications in the phone can sanitize their data.

1.3.2 Learning From Spatial Data

Spatially distributed sensors collect data with location attributes, for example,

user check-ins at points of interests, trajectories of vehicles, etc. Location track-

ing applications localize individual users using positioning systems, like GPS, call

records, WiFi associations, etc. Applications range from learning individual mo-

bility (e.g., predicting future location) to aggregate behavior (e.g., finding popular

paths).

However, location data is among the most sensitive attributes being collected
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with the possibility of social, economic, and physical inference and vulnerability.

For example, one can infer a user’s non-trivial medical condition from his regular

visit to a certain part of the hospital. Despite its importance, until recently,

location privacy did not tract the attention of research or industry due to the

difficulty of tracking an individual’s movements. But, recent technological growth

with mobile phones, IoT devices, and GPS equipped vehicles made location data

abundant, and therefore location privacy is of paramount importance.

Mobility mining using topological analysis. (Ghosh et al., 2018) Chapter 4

develops an efficient framework to analyze spatial trajectories. The analysis is

from the perspective of the obstacles in the domain and it uses differential topol-

ogy to map the trajectories to Euclidean vectors, called topological signatures.

In a domain with k obstacles, the signatures have k dimensions; Each dimension

characterizes how the trajectory navigates the corresponding obstacle.

Topological signatures provably preserve homotopy properties of the trajecto-

ries and support similarity measures between arbitrary trajectories. They enable

Euclidean mining and learning methods to complex trajectories, e.g., nearest

neighbor search using locality sensitive hashing, clustering, regression, density

estimation, etc. Standard regressors using signatures can predict direction at

large scale (e.g., 500m) more accurately and efficiently than even complex neural

network based models on raw location data. Extensive experiments on GPS taxi

trajectories demonstrate that the signatures are useful for analyzing real datasets.

Publishing Differentially Private spatial data from distributed sen-

sors. (Ghosh et al., 2019) Events captured by spatially distributed sensors are

often subject to aggregate query over multiple sensors. For example, a range

query on a check-in dataset measures crowd density. However, such an aggregate

query needs an aggregator service. Users may not trust the aggregator, or the

communication medium connecting the sensors to the aggregator, therefore, the

sensors should sanitize the data before it reaches the untrusted entity. Existing

mechanisms either assume centralized operation, add noise after aggregation or

add too much noise to support distributed operation.

In Chapter 5, we propose multiple differentially private algorithms to pub-

lish event locations and support real-time analysis using range queries. Proposed

methods are based on fake event augmentation and perturbation of event origins

using a random walk in the sensor network. These mechanisms achieve (ε, δ)
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differential privacy and preserve better utility for spatial range queries than com-

peting methods.





Part I

Learning from Temporal Streams
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Chapter 2

Periodicity in Noisy Event Streams

In this chapter, we describe a model of periodic events that covers both ideal-

ized and realistic scenarios characterized by multiple kinds of noise. The model

incorporates false-positive events and the possibility that the underlying period

and phase of the events change over time. We then describe a particle filter that

can efficiently and accurately estimate the parameters of the process generating

periodic events intermingled with independent noise events. The system has a

small memory footprint, and, unlike alternative methods, its computational com-

plexity is constant in the number of events that have been observed. As a result,

it can be applied in low-resource settings that require real-time performance over

long periods of time. In experiments on real and simulated data we find that it

outperforms existing methods in accuracy and can track changes in periodicity

and other characteristics in dynamic event streams.

2.1 Introduction

Here, we will study discrete event streams that exhibit approximate periodicity.

These sequences contain noise events interleaved with the periodic events, to-

gether with variations in the times that events are observed, and variations in

the period itself.

The presence of noise events, or false positives, is common in sensor data and

other data streams that are subject to inaccuracies and calibration issues. An

example is shown in Figure 2.1, where we use the output of an accelerometer on

a phone to detect footsteps as a person walks. The steps are indicated by large

spikes in acceleration, but for any threshold that reliably detects actual steps,

17
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extraneous spikes in acceleration create false detections – or noise events. The

challenge here is to detect the periodic events against the backdrop of these false

positives.

Figure 2.1: Noise events in footstep detection. Top plot: Accelerometer signal (Eu-

clidean norm of acceleration given by 3-axis accelerometer on mobile phone), with

event detection threshold in red. Bottom plot: Detected events. Some of the de-

tections are noise events, produced by inter-footstep accelerations that exceeded the

threshold.

Another common property of approximately periodic sequences is that even

for events originating in the periodic process, the event times can be subject to

noise or drift. While footsteps are periodic, they do not follow a perfect lock-step

pattern – a person may pause, speed up, or slow down. These temporal offsets

can accumulate, causing the periodic signal to depart from its original phase

and/or period. Figure 2.2 shows an example of this behavior. A change in phase

can throw off classical methods such as Fourier transform, which has been used

to detect periodicity in discrete event streams in previous works (Jindal et al.,

2013).

We thus need methods to find noisy patterns that are functions of time itself

from an event stream. Some methods have been developed in the past to solve

the problem of detecting discrete periodic events (e.g., (Li et al., 2012, 2015b;

Indyk et al., 2000)) but these methods cannot handle sequences with variability in

inter-event time and consequent phase changes. We will discuss flexible designs to

accommodate this variability as well as noise events, while being computationally

efficient for long streams of events.

Our contribution. We define a model of discrete signals with approximately

periodic sequences embedded in them. The model is described in Section 2.3, and

includes a periodic component with probabilistic inter-event time, and a Poisson
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Figure 2.2: Top plot: Acceleration signal during walking. Bottom plot: Black lines

denote local maxima in acceleration above a threshold, corresponding to individual

footsteps; red line shows a sinusoid that is matched to the initial period of footsteps,

demonstrating phase drift (or noise in inter-event delays) over time.

process modeling the aperiodic false positive noise events. It generalizes previous

systems (Han et al., 1999; Indyk et al., 2000).

Section 2.4 describes the design of a particle filter system based on this model,

which can identify the periodic events from the sequence in an online fashion.

In addition to predicting events, it infers parameters of the underlying process

such as the local period, the rate at which the period changes, and the rate

at which noise events tend to occur. The particle filter system works with a

collection of particles or hypotheses. Each hypothesis includes guesses about the

parameters of the model, such as the period. With each new event, the system

evaluates the current set of particles and assigns a weight to each depending

on how well it has predicted the latest events. Based on these weights, the

model occasionally rejuvenates particles to retain a diverse and plausible set of

hypotheses and improve long-run accuracy.

To handle noise events, each hypothesis in the particle filter identifies the most

recently observed event as either a periodic event or a noise event, in addition to

tracking the overall rate of noise events. In systems where almost all events are

due to noise, identification of periodic events is costly and error-prone, while the

predictability of periodic events loses much of its utility as noise events overwhelm

periodic events. In order to achieve high performance and a low memory footprint

in contexts where periodic event detection is possible and useful, our particle filter

incorporates the assumption that tractable noise rates are more likely.

The system works in an online or incremental manner, in that it only requires

knowledge of events up to a point in time, without the need to know the entire

event stream. Thus it can be used to track events in real time – even as the period
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changes. We show it can operate accurately with relatively few particles and thus

can be used at a low computational cost to analyze large volumes of data in a

single pass. The particle filter processes events as they occur, and incurs no cost

for the quiet periods between them. Thus the cost of the method depends only

on the number of events, and is independent of the total duration of the event

sequence or the sampling rate.

Experiments in Section 2.5 show that the system can accurately estimate the

period of an event-generating process on both synthetic and real-world data. Ex-

isting methods are not designed to handle shifts in phase (Figure 2.2) and noise,

as a result, they perform relatively poorly in these cases. Each hypothesis in-

cludes expectations about when future periodic events will occur, so the system

can be used to predict upcoming events. Our experiments show that these pre-

dictions are accurate and robust to noise and changing periods. Moreover, the

experiments show that our system works well with sparse data, converging to

accurate estimates after observing only a few events.

2.2 Related works

Time series analysis has traditionally considered real-valued functions. Fourier

transform is a natural tool for detecting periodic patterns in real-valued signals,

and has also been applied to detect periodicity in binary event streams (Jindal

et al., 2013). However, as observed in (Li et al., 2012), it does not perform well

in data with noise, missing signals and other errors. It also does not lend itself to

online inference, which is one of our main desiderata. Further, Fourier transform

aims to fit a global phase and periodicity to the data. In our model, where

phase can drift, the signal can easily go out of phase with the basic sine wave

(Figure 2.2).

A sketch based approach in (Indyk et al., 2000) uses random linear projec-

tion over windows of time series data to compress them for easier comparison.

This makes comparison between windows easier, but does not easily extend to

detecting periodic events at arbitrarily large scales. More recently, Gaussian pro-

cesses with periodic and Fourier kernels have been used to detect such periodic

patterns (Ghassemi and Diesenroth, 2014; Osborne et al., 2008). These meth-

ods can detect periodic relationships in real-valued signals, but it is unclear how

they might be extended to accommodate point events or online inference; the
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cost of inference scales at least linearly with the number of data points being

considered (and is O(N3) in naive implementations), falling short of our goal of

constant-time inference per new event.

More relevant to our topic, Li et al. (Li et al., 2012) and its extension (Li et al.,

2015b) have recently considered detecting periodicity in binary event sequences

with noise. This approach is based on the intuition that the histogram modulo the

correct time period will show peaks corresponding to true periodic events. This

trial for various candidate periods, however, makes the method computationally

expensive and difficult to adapt to streaming data. This method also is based on

the model of a system with a fixed phase and thus fails when applied to more

dynamic models.

Periodicity in sequences of symbols or strings has been considered in various

other contexts. A filtering method based on the “apriori property”, is described

in (Han et al., 1999). It aims to find frequent periodic sequences in strings, which

is computationally expensive. Other methods for periodicity in symbol sequences

including gene sequences are considered in (Yang et al., 2003; Junier et al., 2010).

None of these existing methods can handle input with intrinsic variability

which can cause the phase of the periodicity to change. As a result, as we saw in

our experiments, these methods are not suitable for online operation or tracking

rapidly changing periods of signals.

2.3 Model and problem description

In this section, we will develop a model that allows noise in periodic event se-

quence – both in the period itself and in occurrence or observation of individual

events. Then we discuss how this model relates to different real scenarios.

Periodic events often arise because some recurring process takes a roughly

uniform amount of time to finish and yield an observable event. Examples include

heartbeats, volcanic geysers or steps taken by a walking person. In these systems

an event may sometimes be delayed due to irregularities of the intervening process,

resulting in a shift of phase as shown in Figure 2.2.

If such a system is perfectly regular, then every event i + 1 occurs at time

xi+1, exactly T time units after event i, that is, xi+1 = xi + T . The effect of

the irregularity is then modeled using a Gaussian of variance σ2 and zero mean

added to T , giving us xi+1 ∼ N (xi + T, σ2). Here T is the fundamental period
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or inter-event interval parameter, while σ can be seen as the “noisiness” of the

period over time.

Other than the intrinsic irregularity of the process, the data can reflect noise

events. Noise events may either come from the observation mechanism affecting

both record of true events as we have seen in Figure 2.1, or it may represent a

different or spurious source of events.

We model this noise sequence as a Poisson process, i.e., a sequence of events

z1, z2, ... where zi+1 = zi + δ, and δ follows an exponential distribution with rate

parameter λ; a higher lambda implies a greater rate, or shorter expected durations

between false positive events.

Thus in our model, the overall sequence y = y1, y2, . . . can be partitioned into

two subsequences1:

• A sequence x of periodic events, where xi+1 ∼ N (xi + T, σ2).

• A sequence z of noise events given by zi+1 = zi + δ, where δ follows an

exponential distribution with an expectation of (λ)−1, for a rate parameter

λ > 0.

Problem statement. Given a sequence of event times y1:n = y1, . . . , yn, we

wish to infer the period T , which is the fundamental parameter that describes

the behavior of the system. We would also like to know the parameters σ and λ

that determine the extent and nature of the noise in the system.

As an additional feature, we want the algorithm to be online, meaning that

it processes the sequence one item at a time, updating its estimates with each

input without requiring that the system store or process the full event history.

The ideal algorithm will make inferences with O(1) time and memory complexity

after each event, and can thus remain responsive even after processing arbitrarily

large numbers of events.

Generality of the model and local fit with input. This model incorporates

quite general scenarios. It does not make any assumption about there being a set

of “true” signal events to detect as opposed to observational noise. It assumes that

all events may be generated by the same underlying process, and aims to detect

the presence of a periodic subsequence. The Gaussian distribution of inter-event

1A subsequence of a sequence is a subset of the events, not necessarily contiguous, in the
same order as in the original sequence.
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time represents a sum of unknown variables that may cause the local variations

in the period.

As shown in Figure 2.1, the threshold for an “event” determines the noise rate.

It is possible to set a high threshold to ensure very few noise events, at the risk

of missing some fraction of periodic events. However, lower thresholds are more

desirable – they may include more noise, but will not miss the periodic events.

Our model is designed with this setup in mind – that periodic event information

is preserved, even at the cost of more noise events. The parameter λ as part of

the hypothesis learns this noise rate. Poisson processes are commonly used for

such models, as they only assume that the noise occurs at a certain uniform rate

in any temporal locality.

Note that the system operates in terms of a set of evolving hypothesis and

can adapt to changing model parameters online as the system behavior changes.

Thus, it is not required that the model fits the global data over long periods

of time, only that it fits the system approximately, over any short period of

time. Experiments show that in fact this model successfully adapts to periodic

events and tracks them closely with changes in the system. Its performance

remains consistent when the noise and inter-event variability are generated using

distributions other than the ones assumed in the model.

Discussion and variations of the model. There are various common sce-

narios where periodic events are generated by processes that are special cases or

variations on the model above. The simplest is what we will call strict periodicity,

where successive events are separated by an exact time interval T , such as clock

ticks, or events tied to clock-like sequences. Formally, xi = φ + iT , if all events

are due to a strictly periodic process. We get this behavior in our model above

by setting σ = λ = 0.

Strict periodicities are easy to capture, by simply observing the interval be-

tween successive events. A variant of this is partial periodicity, where a strict

periodic function is mixed with noise. This was considered in (Han et al., 1999).

Certain sequences like heartbeats or volcanic geysers satisfy λ = 0;σ > 0 –

they are not tied to a clock, but depend on a build up in the intervening process

that can have some variability, and change in phase or even dynamic change in

the period itself.

There are systems where noise in the periodicity exists, that is σ > 0, but

phase does not not change. Example would be daily activities of a person –
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such as checking the news in the morning – which may not have a strict inter-

event time, but still around a particular time in the morning. These can be

modeled by adding observational noise to strict periodicity: xi ∼ N (φ+ iT, σ̂2).

The variation in inter-event time does not affect the phase φ here. This type of

sequences have been addressed in a recent work (Li et al., 2012). The approach

there is to consider the histogram of events modulo a number W , which produces

a pronounced peak at the correct value of W = T . We discuss this and other

related methods in Section 4.2.

2.4 Particle filter design

In this section, we describe a particle filter based system to detect periodicity in

noisy and approximately periodic event sequences. The next subsection briefly

summarizes particle filters, which form the foundation of our approach, and lists

our notations. Following this, we describe the details of our design to adapt

particle filters to the current problem.

2.4.1 Particle filters and importance sampling

Particle filters, or sequential Monte Carlo methods, are a popular family of on-

line methods for making inferences about latent variables in noisy environments.

They have been applied to diverse problems, including locating and tracking ob-

jects using sensor data (e.g., (Stewart and McCarty, 1992)), machine vision (e.g.,

(Nummiaro et al., 2003)), and natural language processing (e.g., (Canini et al.,

2009)).

The essential idea is that each particle is a point sample in the space of pos-

sibilities of all the parameters in question. We interchangeably use the term

hypothesis to mean that each particle is one of our guesses of the true configura-

tion of the system.

Our goal is to determine the period T of an approximately periodic sequence.

In probabilistic terms, we want to obtain a posterior distribution over possible

values of Tn: the period after the nth event, given a vector of observed event

timestamps y1:n = {y1, ..., yn} up to that point. The period is not the only

salient feature of the event-generating process, so we will use hn to denote the

ensemble of features, which includes the period, variance σ2, rate of noise events
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Symbol Description

f(x;D)

Probability of random variable R ∼
D taking value in small neighbor-

hood of x.

F (x;D)
Probability of random variable R ∼
D taking value ≤ x.

exp(λ)
Exponential distribution with rate

λ.

yi ith Event timestamp.

h
(j)
i

jth hypothesis (also called as parti-

cle) after observing ith event times-

tamp.

L(j)
i Likelihood weight of h

(j)
i .

Hypothesis parameters of h
(j)
i

T
(j)
i Period parameter value.

σ
(j)
i

Standard deviation for Gaussian

distribution of period variability.

λ
(j)
i Rate of false positive noise events.

ẑ
(j)
i

Latest event timestamp marked as

noise event

x̂
(j)
i

Latest event timestamp marked as

periodic event

Table 2.1: Definition of useful symbols

λ and whether an event is periodic (from the subsequence x) or is noise (from

subsequence z).

With a posterior distribution over hn, we can draw probabilistic conclusions

about any of these variables. The probability of hn cannot be computed exactly

because it requires solving intractable integrals, but we can efficiently approx-

imate its distribution in constant time per incoming event, by using a simple

recursive Bayesian algorithm known as a bootstrap filter or sequential importance

sampler. This idea is closely related to conditional density estimation in machine

vision. We refer the reader to (Doucet et al., 2001; Thrun et al., 2005) for a de-
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tailed explanation, restricting our attention to a brief summary in Algorithm 1,

along with the distributional assumptions that allow us to apply it to the current

problem.

In this algorithm, we need to keep track of our estimates of various parameters

after each event. Thus we use subscript i to represent value of variables after

event i. Further, each hypothesis or particle has its own estimate of variables,

thus we use superscript (j) to represent the estimate of the variables in particle

(j). Table 2.1 summarizes all the symbols used in this section, while Algorithm 1

presents the basic operation of a bootstrap filter.

Algorithm 1: Sequential Monte Carlo with resampling

Particle filter (Event timestamps y1:n)

begin

Initialize k hypotheses h
(1)
0 , . . . , h

(k)
0 by sampling from a prior

distribution over hypothesis parameters.

for (time step i in 1, . . . , n) do

for (particle j in 1, . . . , k) do

sample h
(j)
i from p(hi|h(j)

i−1)

Likelihood weight L(j)
i = p(yi|h(j)

i )

end

Normalize likelihood weights: L̃(j)
i =

L(j)
i

k∑
j=1
L(j)
i

Resample k hypotheses with replacement according to

normalized weights L̃(j)
i .

end

end

Algorithm 1 processes each event as follows. It initializes several hypotheses

from the distribution over features for each particle. Then at every event, it

checks how likely the new event is for each of these hypotheses, and uses that as

a “score”, L(j), for each particle. Next, it normalizes the scores to turn them into

probabilities, and resamples the set of hypotheses according to these to get the

set of particles for the next round, effectively favoring neighborhoods of particles

that have matched better with recent events. At any time, the estimate for a

parameter is the expectation of the parameter over all particles weighted by their

current scores.
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2.4.2 Particle filter for discovering periodicity

A hypothesis hn contains the estimated characteristics of the periodic signal after

n events. The periodic characteristics are specified using the period Tn, and stan-

dard deviation σn for Gaussian distribution of period variability. Our hypothesis

hn also includes the last periodic event x̂n in the sequence. We have included

the rate of background noise events λn, and the timestamp of the last event that

was attributed to noise, ẑn in our definition of hn. We will use i to index event

timestamp, yi, where 1 ≤ i ≤ n.

Under this model, each event yi originates from either the periodic signal

or false positive noise. We introduce ri ∈ {0, 1} to track event provenance,

where ri = 1 represents the case where the ith event comes from the periodic

process. This auxiliary variable facilitates efficient inference: using ri, we ob-

tain a closed-form solution for the density of periodic events conditional on the

last periodic event, and noise density conditional on the last event. Calculat-

ing P (ri|y1:i, h0:i−1, r1:i−1) exactly is expensive, as the number of states involved

increases exponentially as we observe more events, but we can augment our sam-

pling procedure to reflect the posterior distribution of ri. For simplicity we omit

(j) superscripts where they are clear from context.

The bootstrap particle filter algorithm requires us to specify three probability

distributions:

• A prior over hypotheses for initialization of h
(j)
0 .

• A likelihood function adjusting the weight of a hypothesis given observed

events.

• A distribution defining how hypotheses change between events.

We specify the distributions as follows:

Priors. For each hypothesis h(j) we sample the initial period T
(j)
0 and noise

event rate λ
(j)
0 from exponential distributions, and sample the standard deviation

σ
(j)
0 uniformly from the interval [0, T

(j)
0 ]. At the initialization stage, we know

nothing about the periodicity value or noise event rate other than that they are

positive, thus we use exponential distribution as a maximum entropy guess for

the distribution. Both x̂
(j)
0 and ẑ

(j)
0 are assumed to start at zero.

Likelihood weighting. Given a hypothesis hi, the likelihood of event i occurring
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at time yi is equal to L =
∑

ri∈0,1 p(yi, ri|hi). The periodic signal’s contribution

to this sum is Lper = p(yi, ri = 1|hi), and is the product of two terms:

• Density function from the previous periodic event, assuming that x̂i−1 is

known. Since the time of a periodic event is subject to additive Gaussian

noise, we represent this density as

p(yi|h(j)
i ) = N (T

(j)
i + x̂

(j)
i−1, σ

(j)
i ). (2.1)

• A term based on the observation that ri = 0 if and only if there are zero

noise events in the time between ẑi−1 and yi, inclusive. If a Poisson process

generates noise events, then that probability is e−λi(yi−ẑi−1).

The false positive noise’s contribution to the total likelihood is Lbg = p(yi, ri =

0|hi). Here, we have a product of two terms:

• An exponential distribution, with its origin at ẑi and a rate equal to the

noise rate.

• The cumulative probability that no periodic event occurred between x̂i−1

and yi. We approximate this probability by the complementary cumulative

density of periodic events between yi and x̂i−1 by evaluating the comple-

mentary cumulative density function for the distribution in Equation 2.1.

A pseudo code of of the likelihood weighting is presented in Algorithm 2. The

components of the likelihood function are illustrated in Figure 2.3.

Hypothesis updates. With each iteration, the hypothesis distribution is up-

dated according to the prior over state changes. We obtain h
(j)
i by sampling from

p(hi|h(j)
i−1), where p(hi|h(j)

i−1) implements for each parameter in h
(j)
i , a sampling

from a Cauchy distribution centered at the previous value of the parameter. For

example, Ti ∼ Cauchy(Ti−1, b) where b is a tunable scale parameter. The period

(T ), periodic deviation (σ), and noise rate (λ) (truncated at zero) are updated

according to the said Cauchy distribution.

Note that these updates make it possible to iteratively refine parameter esti-

mates, in addition to tracking the dynamics of the system, e.g., when the period

or phase changes over successive events.

The ẑi−1 and x̂i−1 terms are updated differently depending on whether the

provenance of the latest event is the periodic or noise process. Given that yi is



2.4. Particle filter design 29

Figure 2.3: Periodic and false positive noise’s contribution to the likelihood of hypoth-

esis j. The periodic contribution Lper is centered around Tn + x̂n where x̂n denotes

the last periodic event and the noise contribution Lbg starts from the last noise event

ẑn.

Algorithm 2: Likelihood Weighting of jth hypothesis h
(j)
i on observing

ith event timestamp yi.

Likelihood Weight (h
(j)
i , yi)

begin

Lper = f
(
yi;N (x̂i−1 + Ti, σi)

)
×
(
1− F

(
yi − ẑi−1; exp(λi)))

Lbg = f
(
yi − ẑi−1; exp(λi)

)
×
(
1− F

(
yi;N (x̂i−1 + Ti, σi)

))
L = Lper + Lbg
return L

end

observed, we can use p(yi, ri|hi) to obtain a conditional distribution for ri: p(ri =

1|yi, hi) = p(yi,ri=1|hi)
p(yi,ri=1|hi)+p(yi,ri=0|hi) . We can then sample ri from this Bernoulli

distribution, and by extension x̂i−1 and ẑi−1: if ri = 1 then, x̂i = yi and ẑi = ẑi−1.

Otherwise, x̂i = x̂i−1 and ẑi = yi.

Output: period estimate. After seeing n events, the expected period of the

event sequence is E[Tn] ≈
∑k

i=1 L̃
(j)
n T (j), and represents an estimate of the pe-

riod. More generally, we can take the expectation of arbitrary functions f(.) of

hypotheses by replacing T
(j)
n with f(h

(j)
n ), to obtain estimates of other parameters

such as noise rate and period variability. In our experiments, we use the weighted

median as a more robust estimate of parameters.
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2.4.3 Practical optimizations for noisy environments

The algorithm presented in the previous section can detect the period of a noisy

sequence of events, but can require a large number of hypotheses to do so reliably;

the particle filter needs a considerable number of hypotheses to ensure that several

occupy high-probability regions of the parameter space. If we use a small number

of hypotheses, then the particle filter will occasionally provide poor or high-

variance estimates, especially when the period or dynamics are extreme or a

priori unlikely. In this section, we present a modification our basic algorithm

that preserves accuracy while using fewer hypotheses.

A pragmatic observation from an end-user’s point of view is that if the number

of noise events in a sequence is much greater than the number of periodic events,

then the period value of the signal is not useful for predicting future events, and

periodic event detection may become infeasible. Motivated by this observation,

we can modify the likelihood weighting strategy for the previous algorithm to

capture the assumption that we are facing an estimation problem for which there

exists a useful solution. In so doing, we improve our ability to obtain useful

solutions if they exist, and incur negligible costs if they do not.

Figure 2.4: Re-weighting function.

We fix an application specific input parameter c to our algorithm, expressing

a ratio of the number of noise events to the number of periodic or regular events,

above which useful inferences are likely to be elusive. Parameter c can be tuned

for specific applications, but in practice the value 2 works well across the settings

for all of our experiments. We assign lower probabilities to hypotheses that have

higher noise event rates than c, reducing the weights of the hypotheses for which

λ
(j)
i × T

(j)
i < c according to an exponential decay function. The start location

of the exponential decay function is set to be c

T
(j)
i

, and the rate depends on the
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importance of the assumption of limiting noise rate. We multiply the likelihood

of a hypothesis derived as described in the previous section by a value drawn

from a function as represented in Figure 2.4. With this strategy, we ensure low

weights for the hypotheses which have large periods and high noise event rates

that would lead to poor predictive accuracy.

2.5 Experimental evaluation

We tested the performance of our particle filter and compared it with existing

ideas on real human gait data and human pulse data. We also created several

sets of artificial data with different values of intrinsic variability, noise event rate,

and period to precisely characterize the detection accuracy. Overall, we found

that:

• In presence of noise events and phase drifts the particle filter method out-

performs other techniques in accuracy.

• With higher noise event rates and phase drift, only the particle filter pro-

duces reasonably accurate and reliable results.

• The particle filter method can operate with a reasonable and constant num-

ber of about 256 particles to give good results.

• The particle filter runs more efficiently than competing methods, and thus

is suitable for operation in an online environment to produce increasingly

accurate results.

• On data with rapidly changing periodicity, the method can track the period

closely. We show this by applying the technique to human step data to

determine changing gait rate.

• The method applied to real data such as human pulse and gait data accu-

rately detects periodicity.

The following subsections first describe the competing techniques for period-

icity detection, and then the detailed experimental results.
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2.5.1 Comparison algorithms

The following popular methods for detecting periodicity are compared with the

particle filter algorithm.

Fourier Transform: The frequency with highest spectral energy in Fast

Fourier Transform algorithm is a reasonable candidate for the true frequency of

the system. This technique has been used in the past as a practical method for

detecting periodicity (Jindal et al., 2013).

Autocorrelation: The cross-correlation of the input signal with the signal

itself with different amounts of offsets, thus building the autocorrelogram can

be used to find period of a signal. The delay of the signal where the cross-

correlation value reaches its maximum value can then be treated as the period of

the signal (Vlachos et al., 2005). A linear search on period values is required to

find this maximum.

Segmentation based algorithm: The method described in (Li et al., 2012)

detects periodicity in face of approximate periodicity and noise, as described in

Section 2.3. This algorithm operates by checking all possible periods by com-

puting the histogram of events modulo the period, and looking for a “peak” in

this histogram. This checking of all possible periods makes it inefficient on large

datasets.

2.5.2 Sensitivity to noise and model parameters

To gain understanding of the basic operation of the system in noisy environments

with variability in period and presence of noise events requires data with precisely

known values of these parameters. We thus simulated artificial data based on the

models described in Section 2.3.

2.5.2.1 Generation of synthetic data

With fixed values for parameters: period T , deviation of periodic events σ, and

noise event rate λ, we generated two separate sequences: the periodic events and

the noise events, and merged them in sorted order.

Periodic event sequence (x). The first periodic event x0 is set to 0. Each

subsequent periodic event i is designated to occur at time xi given by xi =

xi−1 + δper. The distance between two consecutive periodic events, δper is drawn
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form the Gaussian distribution N (T, σ2). While drawing the samples δper, we

make sure that the (i− 1)th periodic event always precedes ith periodic event, i.e.

xi−1 < xi, i > 0, by re-sampling δper from the Gaussian distribution.

False positive noise event sequence (z). Similar to periodic event sequence,

the first noise event, z0 is assumed to occur at time 0. Each subsequent noise event

time zi is constructed using recursive function zi = zi−1 + δbg. The inter-event

distance between two consecutive noise events, δbg is drawn from an exponential

distribution with rate λ.

The final event sequence y is a merge of the two event sequences in sorted

order.

2.5.2.2 Performance evaluation of accuracy

The evaluations are based on the signal characteristic parameters: period T , the

relative variance of periods ( σ
T

), and ratio of the frequency of noise events to

frequency of periodic events in the signal.

For a signal with period T , let us denote the period predicted by an algorithm

in consideration by T̂ . We define the relative error ξ as:

ξ =

∣∣∣∣∣ln T̂T
∣∣∣∣∣ (2.2)

This measure is symmetric with respect to multiples of T . That is, an estimate

of αT is considered equally erroneous as an estimate T/α.

For all the experiments, unless mentioned otherwise, we use a signal with 40

periodic events; the total number of observed events varies according to the noise

event rate. In all experiments, the particle filter assumes that the rate of noise

events rarely reaches twice the rate of periodic events. This assumption is not

critical in practice as we show in our results in Figure 2.7(b). All experiments

are repeated 16 times with independently generated synthetic data.

Effect of number of particles. Particle filters involve a tradeoff between

efficiency and accuracy. Increasing the number of particles increases accuracy, but

the computational cost increases linearly with number of particles. As expected,

larger particle counts lead to lower average error (Figure 2.5). The error decreases

steadily with increasing number of particles and we find that the error is quite

low at about 256 particles, beyond which the gains are small. Thus, in the rest

of the experiments, we use 256 particles. Note that computational cost for using
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Figure 2.5: Error in period detection decreases with number of particles. 256 particles

is a reasonable tradeoff for practical use where error is low and number of particles

is small. Signal parameters: period T=10, relative deviation ( σ
T

) = 0.6, and average

number of noise events per periodic event = 1.5.

256 particles is nominal in comparison to other algorithms as discussed later in

this section.

All the box plots in this chapter have bottom and top boundaries as 0.25

(Q1) and 0.75 (Q3) quartiles of the relative error ξ. The middle line in the

boxes represent the median values (Q2) of the relative error. The whiskers are

represented as 0.15 times the inter quantile range, e.g. Q3 + 1.5 × (Q3 − Q1).

Values appearing outside these ranges are considered as outliers and represented

as individual points.

Effect of relative deviation of periodic events ( σ
T
). The deviation that

the periodic signal can have, given by the standard deviation σ of the normal

distribution, determines how fast the phase can drift away from the original

configuration. Figure 2.6 shows that as σ increases relative to T , other methods

perform poorly for even small values of σ, and do increasingly worse. The particle

filter achieves reliable results even at high variance. This is in part due to the

fact that unlike other methods, the particle filter is designed to be adaptive to

change in phase and period and does not attempt to fit a single global model,

including phase, to the entire signal.

Effect of noise events. Figure 2.7 shows that the particle filter based method

has the lowest period detection error among all other methods for all noise event
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Figure 2.6: Base signal parameters: period T = 10. Average number of noise events

per periodic event = 0.05. Relative error in period detection for different deviations

of periodic events (σ/T ). Noise rate is low to focus on the effect of σ. Even for large

σ, particle filter shows small error and high reliability.

Figure 2.7: Base signal parameters: period T = 10. Relative deviation of periodic

events 0.1. Period detection error with increasing rate of noise events relative to

periodic events. Particle filter performs significantly better for reasonably large error

sizes.
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Figure 2.8: Base signal parameters: Average number of noise events per periodic

event = 0.05. Particle filter has lowest period detection error over varying periods.

rates starting from no noise event up to a rate of 2.5 times periodic events. In

this case, other methods perform well for few noise events, but with increase of

noise events, their relative errors rise rapidly. Note that our parameters are set

to assume that noise rates of over twice the periodic event rates are unlikely.

However, at a rate of 2.5 times the errors for particle filter are still lower than

other methods.

Effect of period (T ) The period T itself is not expected to have any significant

effect on the relative error. Our experiments show in Figure 2.8 that while all

methods have a general increase in variance, particle filter is by far the most

accurate across the spectrum.

Effect of number of observations. Figure 2.9 shows that particle filter based

method converges with minimum number of observations in comparison to other

methods. In this experiment, Fourier transform and autocorrelation algorithm

never converge to low error. The fast convergence of particle filter implies that

it can work with smaller quantities of data and does not require long observation

sequences.

Tracking rapidly changing periods. In this experiment, we fix the noise

parameters while changing the periodicity of the signal. In Figure 2.10, we ob-

serve that the period estimate of the particle filter closely follows the true period

changing curve, whereas other algorithms perform badly with changes in the pe-

riod value. Particle filter algorithm also converges quickly to the true period after
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Figure 2.9: Base signal parameters: relative deviation of periodic events = 0.2, and

relative amount of noise events to the periodic events = 0.01. Periodicity of the

signal is set to 10.0. Experiment plots RMS error from 16 iterations. Particle Filter

based method converges faster than other algorithms.

Figure 2.10: Base signal parameters: relative deviation of periodic events = 0.2, and

relative amount of noise events to the periodic events = 0.01. Periodicity of the signal

is set to 10.0. Particle filter based method successfully tracks changing periodicity of

the signal. Period estimate for Fourier Transform algorithm is not shown completely

as it is too large beyond certain point.
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Figure 2.11: Particle filter based method needs less time to process large event stream

compared to Fourier Transform. Particle filter based method execution time increases

linearly with number of events.

the true period changes which enables it to catch rapid dynamics of a system.

We note that similar behavior is noticed in our experiments with human steps as

walking speed changes in section 2.5.3.1.

In Figure 2.12, we tested the system on data generated under different models

– with different distributions (normal, Laplace, gamma, etc., with different pa-

rameters) for noise rate and inter-event time, and found that the system detects

periodicity accurately. As explained in Section 2.3, this is due to the fact that

for the sake of adaptability, the system prioritises local features over global ones,

and thus is not greatly affected by differences in global models.

2.5.2.3 Execution time comparison.

We measured the time taken to run the particle filter on datasets of various sizes,

and found that computing based on 256 particles is quite efficient and takes less

time to process a large event stream compared to Fourier Transform algorithm

and other algorithms.

The particle filter operates with constant amount of computation per event,

thus its execution time increases linearly with the number of events, while Fast

Fourier Transform takes O(n log n) time to process a signal of length n. Thus,

the FFT execution time increases at a superlinear rate. Figure 2.11 shows that

as expected, the particle filter requires less time to process large event stream
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Figure 2.12: Period estimation error of our particle filter based method converges

when the periodicity deviation is modeled using different distributions, such as

Laplace, Gamma, etc.

compared to Fast Fourier Transform. The Segmentation based algorithm and

autocorrelation check for all possible period values and require substantially larger

execution times, and are omitted in this plot. The plot is based on a period

value to 10, relative deviation of periodic events to 0.2, and relative amount of

noise events to the periodic events to 0.05. We used particle filter based method

implemented using Java 1.7 in Linux and Fast Fourier Transform functionality

available in Apache math library 2. We run these two algorithms in a typical

desktop machine with 8GB primary memory and Intel i5 processor.

One of the advantages of the particle filter is that it processes events only as

they happen, and does not perform computations in their absence. In contrast,

the complexity of methods like Fourier transform and autocorrelation scale with

the duration of the sequence, as opposed to number of events. Thus in systems

with sparse events, or with very high sampling rates, these methods incur high

cost for the quiet regions, while the cost of particle filters are independent of these

parameters and depend only on the number of events. We believe that the particle

filter can be made more efficient than this prototype implementation with suitable

code optimizations. Although the code optimizations are not investigated as a

part of this thesis, efficient sampling from the probability distribution and making

likelyhood computation distributed would make the system more efficient.

2https://commons.apache.org/proper/commons-math/
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2.5.3 Experiments on real datasets

We found that the particle filter can closely track changing periodicity in human

gait data in comparison to other algorithms and accurately predict next human

pulse event with low error.

2.5.3.1 Periodicity in human step data

We compared the performance of the particle filter based algorithm with other al-

gorithms described in subsection 2.5.1 for tracking changing periodicity in human

steps. We collected accelerometer signals using mobile phones while users walk

at their own pace, varying their walking speed between walking segments. An

accelerometer measures acceleration of a user giving a three dimensional signal

Sx, Sy, and Sz. The Euclidean norm represents the magnitude of the signal at

time t: St =
√

(Sxt )2 + (Syt )2 + (Szt )2, followed by smoothing using a Gaussian

filter and normalizing around its mean. All peaks in the normalized signal above

a predefined threshold are considered as discrete step events. Taking different

values for threshold results in different rates of noise events as we have seen in

Figure 2.1. We calculated the ground truth of step periodicity as the average time

taken per step over a segment. A segment is the time duration when the user

conciously maintains his walking speed almost a constant. The data is annotated

by the user himself while walking. He presses a button in the app at the time of

changing walking speed; thus, the segments can be identified later. The ratio of

the duration of a segment and the number of steps in that segment denotes the

ground truth walking speed.

Tracking a single walking trace. Figure 2.13 shows that the estimated period

from the particle filter closely tracks the changing curve of ground truth step

periodicity as it changes between segments. Here we used the threshold as the

half of the standard deviation of the smoothed magnitude signal to detect step

events. Figure 2.14 shows that due to its local adaptive nature, the particle filter

has the lowest periodicity estimation error among all algorithms. Figure 2.15

shows the CDF of error over twelve traces collected from six different people.

The particle filter method is robust to different choices of thresholds for ex-

tracting step events from the accelerometer signal. This is shown in Figure 2.16

for different choices of threshold.
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Figure 2.13: Periodicity estimation on human step data. Particle filter based method

closely follows changing periodicity.

Figure 2.14: Error in period estimation in human gait data. Particle filter based

method has lowest periodicity detection error.
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Figure 2.15: Estimating periodicity for steps from 6 subjects. Particle filter based

algorithm has small periodicity estimation error for all the users.

Figure 2.16: CDF of particle filter error, where event detection thresholds are mul-

tiples of the standard deviation of a preprocessed accelerometer signal, showing low

estimation error in all cases. However, with decreasing threshold (increasing false

positive events) the error naturally increases.
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2.5.3.2 Pulse prediction.

The particle filter can reliably predict upcoming events in a noisy sequence. For

this experiment we collected videos of users’ fingertips, and used the red color

component as a signal for pulse events. We applied similar preprocessing on the

pulse signal as we did for accelerometer signal.

The estimate of period by the particle filter gives an estimate of the next event

time. We measured the next pulse event prediction error as the absolute difference

in predicted and actual event times. Figure 2.17 shows that the particle filter

quickly converges to reliably predict the pulse event and consistently performs

better than other algorithms. The larger errors (e.g. at around 55 second mark)

represent sudden changes in heart rate due to change in user’s activity (a spot

jump otherwise the user was standing still).

Figure 2.17: After a small number of events, the next pulse event prediction error

(|predicted event time − actual event time|) is generally lower for the particle filter

compared to other algorithms.





Chapter 3

Private Sensing of Asynchronous

Event Sequences

In this chapter, we provide a rigorous study of the privacy of event timestamps,

which are particularly sensitive attributes. Our privacy approach is specially

tailored to discrete point events with varying rates and asynchronous operation,

which is shown to be more effective than existing synchronous methods. We

propose new privacy mechanisms, including temporal perturbation and inclusion

of fake events. These methods provide provable guarantees against the adversary

deducing time of events, identifying events with timing correlation attacks and

inferring temporal ordering of events. We describe the implementation of data

privatization as a system service on Android. Experiments on public datasets

and locally collected data show that the privacy mechanisms are found to protect

utility by preserving the overall distribution of events.

3.1 Introduction

Densely deployed sensors and IoT devices provide opportunities for large scale

monitoring of home, workplace and public domains (Chen et al., 2017; Ganti

et al., 2008). In the process of sharing and use of IoT data, protection of sensi-

tive information related to activities of an individual has become an important

research topic. In this paper, we consider the privacy issue in publishing times-

tamps of sensing events.

Consider sensors or mobile phones detecting specific events and activities of

users and later reporting these behavior statistics to a service provider for usage

45
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analysis. Timestamp information can imply correlation, association and causality

between events, and thus are sensitive attributes. An adversary who has access to

details of certain external events can cross-query the datasets and associate users

with external events. For example, timing information of online activities and

web browsing can be used to perform timing correlation attacks to deduce visits

to sensitive web sites. Precise timing information are known to even compromise

cryptographic protocols (Wong et al., 2009). In the following we discuss some

domains where privacy of timestamp is critical.

Mobile phone data. Activity timing information from a mobile phone can

paint very accurate pictures of someone’s habits. Recent advances in activity

and context recognition exacerbate the sensitivity of this information (González

et al., 2009; Song et al., 2010).

Social information. The reach of sensing data goes beyond individuals and

reveals information about social contacts and social life. Persons frequently found

at the same location at the same times are likely to be socially connected, which

is also a concern in crowd-sensing approaches (Miao et al., 2015). Analogously,

individuals frequently using the same chatting app at the same time are likely to

be friends.

Timing information in networks and web. Data from network routers as

well as website access logs are frequently used for analytics. Suppose an adversary

has knowledge that a web site (or service) X was accessed at exact times t1, t2

and t3, and now gains information that a user u triggered a browser session (or

relevant application) shortly before each time. The adversary can then associate

u with X. Such timing attacks are known even to compromise the anonymity of

mixing networks like Tor (Levine et al., 2004).

Motivated by these considerations, we specifically study the privacy of event

timestamps. A full solution of privacy of multi-attribute sensor data will require a

multitude of considerations and various application dependent attributes that are

beyond the scope of any single project. However, in many analytic applications,

such as packet arrivals or connection requests at routers, or visitor check ins at

venues, unlabelled point event sequences are themselves a subject of study, which

is the focus of this paper.

To protect private information from unknown users and inadvertent leakage,

statistical privacy mechanisms (Dwork et al., 2006; Kifer and Machanavajjhala,
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2014a) have been designed. The core idea of these methods is to perturb infor-

mation before sharing it, so that precise facts about individuals in the database

cannot be inferred, yet the aggregate result or statistical pattern is well approxi-

mated.

An example of timing information leakage and the action of our mechanism

is shown in Figure 3.1. Figure 3.1(a) is the Fourier transform of the sequence

events of a user opening the weather app on the phone. The data is taken

from the LiveLab dataset (Shepard et al., 2011). Figure 3.1(a) shows a clear

energy peak at 24 hours, which reveals the user’s habit of checking the app at the

same time. Applying the sanitization methods described in this paper, we get

the Fourier transform in 3.1(b), where the periodic behaviour has vanished, and

therefore the precise time of checking the weather app is no longer so predictable.

An overview of our techniques and contributions follow.

Our Contributions. Statistical privacy is a non trivial concept. The most pop-

ular statistical privacy technique is Differential Privacy (Dwork and Roth, 2014;

Dwork et al., 2006). The idea is to prevent inference of a particular data item

being present in the dataset. We describe in Section 3.3 why this approach and

existing differential privacy based algorithms operating in synchronous rounds are

unsuitable for publishing events over long duration of time – they add too much

noise which reduces data utility. In distributed sensor databases, asynchronous

operation is particularly desirable, since synchronization is non-trivial to main-

tain, and the frequency requirements can vary by system. Our approach, thus,

is to use the Pufferfish setup which can quantify privacy in the asynchronous

setting.

The overall model of operation and the adversarial knowledge is considered

in Section 3.4. Here we describe three fundamental problems we wish to solve.

1. Obscuring event times so that they cannot be inferred to a precision greater

than ∆.

2. Obscuring the presence of events so that an adversary cannot be sure

whether some event occurred within a particular interval of size ∆.

3. Obscuring event times so that relative order of events that take place within

a short time of each other cannot be inferred.

The statistical mechanisms that solve these problems are intuitive. For prob-
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lems 1 and 3, we present a perturbation of the event time by a real number chosen

uniformly from [−k∆/2, k∆/2], which suffices to achieve Pufferfish privacy. For

Problem 2, we show that adding fake events with a suitable rate achieves privacy,

while the error in a range query can be shown to be bounded. These mechanisms

are easy to implement for temporal data in a continual release scenario – when

one reports the cumulative event count continuously. In statistical privacy, a

major challenge always is to ensure that the privacy of the mechanism can be

quantified in a formal sense. All our solutions admit provable privacy guarantees,

which are deduced along with the mechanisms in Section 3.5.

Along with privacy guarantee, our main concern is preserving the utility of

data. Our methods introduce only small perturbations, so that the data retains

its statistical properties. In experiments (Section 3.7), we measure this quality

using range queries over time intervals and demonstrate that the perturbation

caused by our privacy mechanisms do not substantially change the utility in

range queries. Figure 3.2 shows an example for the same weather app usage

data (Shepard et al., 2011) for multiple people. Figure 3.2(a) shows that after

sanitization, the estimation of the periodicity has large errors, which means that

the habits of users are not revealed. Meanwhile, Figure 3.2(b) shows that the

density of events in given ranges does not change substantially, which means the

utility is well preserved.

Section 3.6 describes implementation of a data sanitization service for mobile

phones, along with the design considerations for such a service. A discussion of the

various implications of Pufferfish privacy, distributed operations, and publishing

latency are presented in Section 3.6.

3.2 Related Work

Releasing continual counts for temporal event streams with differential privacy

guarantees have been studied in (Chan et al., 2011; Dwork et al., 2015, 2010; Xiao

et al., 2011). More data-dependent works on continual aggregate statistics release

of stream data can be found in (Chen et al., 2017; Kellaris et al., 2014). All these

works assume a suitable sampling frequency for obtaining the event stream in

the first place. As we argued in the Section 3.4, these methods fail where event

density varies.
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Figure 3.1: Periodicity analysis on when a user opens weather app. (a) Fourier

periodogram of original time series shows clear periodicity of 24 hours - the user

checks the app at the same time every day. (b) After events are sanitized using

Mechanism 1.3 in 3.5.1, periodic pattern vanishes.

(Rastogi and Nath, 2010) transformed the time series into frequency domain

using discrete Fourier transform and applied sanitization to the k Fourier coeffi-

cients with highest spectral energy. This method achieves ε-differential privacy

with error of approximately O(k/ε). However, this algorithm does not suit our

setting as it releases data only once.

(Fan et al., 2013) proposed an adaptive system to release real time aggregate

traffic statistics under differential privacy using sampling and filtering. This algo-

rithm is data-dependent, but, without theoretical guarantee. (Ganti et al., 2008;

Ahmadi et al., 2010) have proposed to generate fake time series from the same

distribution as the original data. This method solves a related but a different

problem than ours, as the goal is to protect re-identification of a time series, but

do not hide individual events in a series.

(Song et al., 2017) discussed privacy preservation in presence of correlation

in the data. Activities of a user over time are modeled as a Markov chain and

sanitized using Pufferfish privacy. (Kifer and Machanavajjhala, 2014a; Niu et al.,

2019) designed a time-series data trading system with Pufferfish privacy under

temporal correlations. However, the method does not trivially translate to pri-

vacy of individual event timings as we consider in this paper. Blowfish (He et al.,

2014) is another instantiation of the Pufferfish framework for use on continuous

variables, which however does not apply to discrete abstractions like event order-

ing. Differential privacy is also being explored for correlated time series data (Cao
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Figure 3.2: Experiment on opening weather app from 5 users. All users here have

24 hours periodicity. (a) Periodicity estimation using Fourier transform on sanitized

events has large error in the order of several hours. Notice that the y-axis is on an

exponential scale. (b) Range queries count number of events in queried intervals still

have relatively low error.

et al., 2018).

Various methods have been proposed to protect user level and activity level

privacy. Differential privacy frameworks for protecting specific inference from

the data is investigated (Saleheen et al., 2016) using dynamic Bayesian networks

to capture the adversary’s knowledge. The proposed method first infers latent

states and then protects them. Continual adaptive release of histogram statistics

is considered (Li et al., 2015a) to protect users to be re-identified. Unlike these

works, the goal of the current paper is to protect individual event timings.

3.3 Statistical Privacy and Challenges in Streaming

Event Data

We will start the section with an overview of statistical and differential privacy.

Readers familiar with the basics may want to skip ahead to Subsection 3.3.1.

Let us consider a dataset D which contains some sensitive attributes. An

adversary who does not have access to D, may still be able to infer sensitive

information if we answer some queries on the dataset. The trivial method to

prevent such unintended inference is to disallow any query that uses the sensitive
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attributes, but that renders the data useless.

To preserve utility of the database and simultaneously protect sensitive in-

formation, statistical privacy methods work by creating uncertainties about the

original data. For example, if we are asked for the count of items in a dataset,

we can add noise – a small random number – to the count, and return this noisy

value. An adversary receiving this noisy value is uncertain about the true count,

which provides us with privacy.

This privacy has a tradeoff against utility of the query for legitimate use and

is a central issue in statistical privacy. For example, a small noise provides little

privacy, but largely preserves utility – as a user can make use of an approximate

result. A large noise creates larger deviation from truth, and destroys utility, but

provides greater privacy.

Quantifying privacy. Suppose there is a fact s about the database D that we

wish to keep secret, and A is a randomized algorithm (such as adding a type of

noise) that we use to answer a query. The fundamental idea is that the probability

of A producing a particular output w should be similar irrespective of s =True

or s =False. This property ensures that from the output w. the adversary

cannot gain much information. For example, if the probability of A producing w

is exactly the same irrespective of s, then observing w gives no information about

the truth of s. Based on this idea, Differential privacy was defined in (Dwork

et al., 2006; Dwork, 2006), as follows.

Definition 1 (Differential Privacy). Suppose D′ is a dataset that is different from

D in the presence of a single element x. Then randomized algorithm A is called

ε-differentially private, if for all such pairs (D,D′) and all w ∈ Range(A), the

algorithm A satisfies: P (A(D)=w)
P (A(D′)=w)

≤ eε.

Here the secret is the presence of item x in the dataset, and the definition

asserts that the presence or absence of any x does not change the probability of

the output w by more than a small factor eε. A smaller ε implies greater privacy.

We expect a positive fractional value: 0 < ε ≤ 1.

Differentially private algorithms depend on a quantity called sensitivity of a

query function f . It is defined as the maximum possible change to f(D) due to

presence or absence of any single element x:

Definition 2 (Sensitivity). The sensitivity of f , denoted as ∆f , is defined as

∆f = max ‖f(D)− f(D′)‖.
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When f is the counting query, ∆f = 1, since a single element can change the

count only by 1. The sensitivity determines the noise we need to add to obscure

the presence of an element. If sensitivity is high, more noise is needed to ensure

that an element is hidden. The most common method used to add noise based on

sensitivity is called the Laplace mechanism, and uses the Laplace distribution as

a source of noise. A Laplace distribution of mean zero and variance 2b2 is written

as Lap (b), and its probability density at x is given by 1
2b
e−
|x|
b .

Laplace mechanism. Suppose f : D → R is a query function. Then the

corresponding ε-differentially private Laplace mechanism (Dwork et al., 2006;

Dwork, 2006) is given by A(D) = f(D) + ξ where ξ ∼ Lap
(

∆f
ε

)
is a random

number drawn from the Laplace distribution of variance 2(∆f
ε

)2.

In the counting problem, since sensitivity is 1, this mechanism is equivalent

to adding a random number from the distribution Lap
(

1
ε

)
to the count before

returning the result. The corresponding guarantee is that inclusion or exclusion

of any single element to the dataset changes the probability of observing the same

output by at most a factor of eε.

3.3.1 Continuous Publication of Events

Suppose we monitor a sequence of events, and publish the time at which events

take place. All other attributes are either removed or unknown – such as arrivals

of vehicles at a junction, entry of people at a venue etc. Such sequences are of

interest in mining temporal patterns of events.

For simplicity, operation in synchronous rounds is often used – at each round

t, we publish the count c(t) of events. A particular variant of this problem was

considered by Chan et al. (Chan et al., 2011) where in each round there is zero

or one event. A basic method described in (Chan et al., 2011) is to publish the

count with a Laplace noise: c(t) + ξ(t), where ξ(t) ∼ Lap
(

∆f
ε

)
. In any individual

round, the presence or absence of an event is obscured by the noise.

The difficulty of this method is that over time, the noise builds up. Over T

rounds, T different values of ξ are added, and the total of published counts can

deviate rapidly from the true count – see Figure 3.3. The problem becomes more

severe when events are sparse and there are many rounds without any events.

Such empty rounds add to the noise and inaccuracy, but the true count does

not increase. Figure 3.3(b) shows a case where the round frequency is high,
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Figure 3.3: Synchronized privacy frameworks in (Chan et al., 2011) need discrete

time rounds with suitable sampling rate. Here Lap(1) noise is added to the data

at each time slot. (a) Low sampling frequency is enough, and synchronized privacy

mechanisms would add reasonable noise as shown in the count below. (b) High

density need high sampling rate for dense region and thus introduces many units of

noise in sparse areas, diverging from true count. Synchronized privacy mechanisms

would add noise so large that the output becomes useless.

but events occur sparsely in bursts. The noise dominates the true total count.

Chan et al. (Chan et al., 2011) go on to describe hierarchical methods that can

reduce the contribution of the noise to O(1
ε
(log T )1.5 log 1

δ
) with probability at

least 1− δ. See Section 4.2 for other related results. However, these approaches

do not eliminate the issue of accuracy decreasing with time.

As a practical matter, the round frequency, and therefore the temporal res-

olution of data in this design is hard to choose as a universal parameter. The

event density and required temporal resolution can vary by application (e.g. hu-

man behaviour in seconds, versus network measurements in milliseconds) can be

unknown, or can vary within the same application.

Thus, we would like to avoid rigid synchronous rounds, and use an asyn-

chronous setup, where the published timestamp of an event can be real number.

Our objective is to publish all events with approximately correct time, in a way

that the adversary cannot guess the true time accurately. For example we can

publish all events, with small noises added to their timestamps.

The privacy of such a method is difficult to define in the differential privacy

paradigm, because differential privacy, as we saw, hides the possible presence
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of an item, not its value. We will resume this discussion in Section 3.4; in the

following subsection, let us introduce Pufferfish privacy, which is a more versatile

framework.

3.3.2 Pufferfish Privacy

The Pufferfish Privacy framework (Kifer and Machanavajjhala, 2014b) allows us

to define any set of facts to be regarded as secret, and protect them probabilisti-

cally. To define the Pufferfish privacy, we first introduce the following sets.

• The set of secrets S to be protected within dataset X ,

• How the secrets shall be protected against each other: by specifying dis-

criminative pairs Q of secrets,

• And the prior knowledge of the adversary, written as a set Θ of prior dis-

tributions, essentially representing how the data is generated.

A discriminative pair can be written as (si, sj) ∈ Q, where si and sj are elements

of S, and represents two facts that we do not want the adversary to be able to

distinguish.

A randomized mechanism M satisfies ε-Pufferfish privacy if for si, sj ∈ S,

(si, sj) ∈ Q, θ ∈ Θ and w ∈ Range(M) the following holds:

e−ε ≤ P (M(X ) = w|si, θ)
P (M(X ) = w|sj, θ)

≤ eε (3.1)

assuming P (si|θ) 6= 0 and P (sj|θ) 6= 0. Similar to differential privacy, a smaller

ε implies greater privacy.

The definition is in the Bayesian philosophy. It implies that the truth of si

versus sj does not make a significant difference to the probability of observing

any particular output w. Therefore, when w is in fact observed, the adversary

does not gain any significant certainty whether si or sj is true, compared to what

he already knew based on prior knowledge θ. As we will see in the next section,

the generic nature of secrets and discriminative pairs lets us define privacy for

properties like event ordering and event times.

The interpretation of the prior Θ is that it represents the underlying distribu-

tions generating the data, for example, the vehicle density at a crossing at night,

morning or rush hour, or the distribution of certain events being performed on a
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mobile phone. Pufferfish allows this distribution to be known to the adversary,

but not true times of actual events.

3.4 Model and problem statements

We want to publish timestamps of events recorded by sensors. We are interested

in publishing data continuously, but not in real time. Events can be assumed to

be published in batches, for example, once in an hour or a day, and taken together

form a stream lasting over long time spans.

The sensors send their data to an aggregator service such as a cloud server,

which then publishes the data. Depending on whether the sensors trust the cloud

server or not, there can be different approaches to publishing.

Labelled and unlabelled event sets. Labelled events are those that carry

IDs or other attributes that can potentially identify events uniquely. Unlabelled

events are those that carry no such attributes or carry the same attributes mak-

ing them indistinguishable. Unlabeled events can occur in various time series

datasets, such as vehicles arriving at a crossing, anonymized access logs of a web

site, etc. Privacy implications of event sets can vary by their label status. Since

we are interested in the timestamp attribute of events, our event sets can be

regarded as unlabeled unless mentioned otherwise.

3.4.1 Sensing Data Collection and Trust Relations

If the devices (or their owners) trust the aggregator and the communication chan-

nel, they can transmit all data to the aggregator, who then sanitizes (privatizes)

and publishes it at suitable time.

If the channel or the aggregator is not trusted, then the devices must take

care of sanitization by themselves. In differential privacy terms, this is called

local privacy (Kasiviswanathan et al., 2011).

All algorithms in this paper can be applied locally, where a device detecting

events can apply sanitization before transmission to the aggregator. This ap-

proach has the advantage that the data transmitted is guaranteed to be private,

since data sanitized by suitable statistical methods are known to be immune to

post processing (Dwork and Roth, 2014). Once the data has been modified by

the mechanism, they carry the privacy guarantee irrespective of how the data is
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used. This is particularly useful in sensor data that may be shared with various

public and private organisations.

3.4.2 Utility: Range Queries

To ensure that the sanitized data is useful, we measure its utility in terms of

accuracy of range queries. Given a time interval T , the range query asks for the

number of events recorded inside T . The motivation for using range queries as

test of utility is that it is akin to preserving the large scale probability distribution

that generates the data. If the count of events in different ranges is preserved, it

implies that the statistical properties of data are preserved.

3.4.3 Adversary Model and Problem Statements

We assume that the adversary can observe the published events. Note that the

adversary may or may not be able to compromise the communication channel or

aggregator – this is not relevant for us, since we aim to create algorithms with

local privacy. We do, however, assume that the adversary cannot compromise

the distributed devices themselves to observe events as they happen.

As is standard in security and privacy, we assume that the privacy algorithms

and parameters are known to the adversary. However, the random choices – such

as the random numbers generated during an execution are not known.

Under these capabilities of the adversary, we consider the following types

of data protection. More details will be presented in Section 3.5 along with

algorithms.

Problem 1: Protecting the time of a published event. In this problem, we

publish events along with timestamps. However, we do not wish the adversary

to know the true time of the event. Now, in most cases, the adversary does not

need to know the precise number – narrowing the time down to a small interval

of the true time suffices. For example, for human activities like checking into a

venue, accuracy within a few minutes of the true time can be considered accurate

enough.

Thus for an event e at time t, we want to prevent an adversary from gaining

accuracy to within an interval of size ∆ around the true time.

Problem 2: Protecting existence of an event. Suppose we have a sequence
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of unlabeled events, such as arrival of cars at a crossing, or a person’s access to

a website. Such events are known to follow Poisson process models.

Definition 3 (Homogeneous Poisson Process). A homogeneous Poisson process

with intensity λ is one where the number of events X in any unit interval follows

a Poisson distribution:

P (X = K) = e−λ · λ
K

K!
.

The expected value of X is λ. The definition extends naturally to larger

intervals: the number of events in an interval B follows a Poisson distribution of

intensity |B| · λ.

In general, events may not have a uniform rate at all times. Such variable

rates are described by non-homogeneous Poisson processes:

Definition 4 (Non-homogeneous Poisson Process). In a non-homogeneous Pois-

son process defined over an interval A with intensity function λ : A → R≥0, the

number of events X(B) in any subinterval B of the domain follows a Poisson

distribution:

P (X(B) = K) = e−Λ(B) · Λ(B)K

K!
,

where Λ(B) =
∫
B
λ(t) dt is called the mean rate in B.

By using a function λ(t) that may vary in time, the Poisson process can be

used to generate almost any desired distribution of events.

Let us suppose that the adversary suspects the presence of an event inside a

small time interval of size ∆, and wishes to verify that such an event did in fact

take place. Our objective is to prevent such an inference in a statistical privacy

sense.

Problem 3: Protecting Event ordering. Relative ordering of events can

reveal sensitive information. For example, if A leaves a restaurant shortly after

B enters, that reveals that A and B are likely to have met. Thus, in this problem,

we wish to protect the relative ordering of two events that take place within an

interval of size ∆.

3.5 Privacy mechanisms

In this section, we discuss how to achieve statistical privacy of event ei with

respect to any choice of time interval I of size ∆. In some cases the detailed

technical proofs are replaced by their sketches in the interest of space.
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3.5.1 Problem 1: Protecting Event Times

First we consider that the adversary has the knowledge of a temporal domain

of W , bounded and large, within which an event ei of interest is known to have

taken place.

Let ti be the time of event ei. Assume that ti follows a uniform distribution

over W . This constitutes the prior knowledge θ about the data known to the

adversary. This assumption is for simplicity of analysis – we will discuss later

how the mechanisms work with more general distributions.

The secret we wish to protect here is s : ti ∈ I. The discriminative pair is

(s,¬s). The objective is to obtain ε-Pufferfish privacy for (s,¬s) – thus making

the adversary uncertain between the two possibilities. Note that we are not trying

to obfuscate presence of the event, only its time.

To warm up, let us discuss a trivial mechanism:

Mechanism 1.1: Given an event ei with true time ti, the mechanism outputs

M(ei) = ξ, where ξ is selected uniformly at random in the interval W .

It is easy to argue privacy for this method. Suppose that in a particular run of

the algorithm, M(ei) = w. In this case, P (M(ei)) = w is independent of the truth

of si, therefore, P
(
M(ei) = w|si, θ

)
= P

(
M(ei) = w|¬si, θ

)
, and the mechanism

satisfies 0-Pufferfish privacy. Essentially implying that it adds nothing to the

knowledge of the adversary.

The mechanism is unsatisfactory in the sense of utility. It is in fact completely

independent of the actual value ti – it samples a time from W , which is known,

so it does not add anything to the knowledge of legitimate users either. When

W is large, the perturbation to the event time is large, resulting in poor utility.

Next we consider a mechanism with better utility. Here, we provide the main

results and sketches of the proofs. The detailed proofs are in Section 3.8.

Mechanism 1.2: M outputs M(ei) = ti+ξ, where ξ is selected from the uniform

distribution over [−k∆/2, k∆/2].

This method is more useful since it restricts M(ti) to a smaller interval around

ti. It can be be shown to have ε-Pufferfish privacy for a suitable choice of k.

Theorem 1. Mechanism 1.2 satisfies ε-Pufferfish privacy for k =
|W |
eε∆

.

The sketch of the proof is that we compute the probability of the output M(ei)

being in [ti − k∆/2, ti + k∆/2], under the respective conditions of si being true
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and ¬si being true. Their ratio can be shown to be bounded by eε, which gives

ε-Pufferfish privacy.

3.5.1.1 Priors of Laplace distribution

Now we relax the requirement for the bounded window W . The adversary’s prior

hypothesis is that the timestamp ti of event ei follows a Laplace distribution

centered at µ, where |µ− ti| ≤ k∆.

Mechanism 1.3: M(ei) = ti + ξ, where ξ ∼ Lap
(
k∆
ε

)
. That is, a Laplace noise

similar to differential privacy is added.

Theorem 2. A perturbation with Lap
(
k∆
ε

)
guarantees ε-Pufferfish privacy.

The proof follows from the definition of Laplace distributions that if the mean

of two Lappace distributions with same variance are separated by distance x,

then at any point their probability densities differ at most by eε. The details is

in Section 3.8.

3.5.2 Problem 2: Protecting event existence in Poisson pro-

cesses

For this problem, we consider Poisson processes with event rate λ in a unit in-

terval. The events are assumed to be unlabeled. Remember that the adversary

wishes to confirm the existence of some event in the interval I of size ∆, where

the adversary has some reason to suspect the presence of an event in I. For

example, this interval may be based on the adversary’s knowledge of external

related events. The adversary also knows the Poisson rate λ.

Let us write ∆ = c/λ. In a Poisson process, the expected interval between

events is 1/λ. If c >> 1 and therefore ∆ >> 1/λ, then there is likely to be

multiple events in I, and presence of an event is not informative for the adversary.

However, when for c ≤ 1 – when the adversary has fairly accurate information

of the event’s possible time, and other events are unlikely in the interval, a small

∆ can isolate the event – it gives the adversary reasonable confidence that any

event in the interval is the one of interest.

In the Pufferfish model, the secret can be defined as s := (∃i : ti ∈ I) –

representing the fact that some event ei has occurred in the small neighborhood

I of size ∆. The discriminative pair is (s,¬s), where ¬s means that no event has
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taken place in I. For this problem, we describe a mechanism using fake events.

The main intuition is that if we add many fake events to the sequence, then any

interval I is likely to consider events, and thus the presence of events in I does

not give much information to the adversary.

Mechanism 2.1: Introduce a fake event sequence with unit time event rate

Λ = λ
c

ln eε

(eε−1)
, and publish both true and fake event times.

The greater rate of this Poisson process ensures that it is likely that one or

more events will be present in the interval, and thus the adversary cannot be

certain of the presence of a true event.

Theorem 3. Fake event rate Λ = λ
c

ln eε

(eε−1)
provides ε-Pufferfish privacy for

existence of events.

Proof. Let η be the situation that an event is seen in I in the stream after adding

fake Poisson events. When s is not true, there is no fake event generated by the

Poisson process. We have P (η | ¬s, θ) = 1 − e−Λ∆. When s is true, η is always

true, thus P (η | s, θ) = 1. When Λ = λ
c

ln eε

(eε−1)
, we have P (η|s,θ)

P (η|¬s,θ) ≤ eε.

In this setting, a range query on an interval [x, y] can be answered as follows.

If the total number of events (real and fake) in [x, y] is I, then a range query on

[x, y] is estimated as A(x, y) = n−Λ · (y− x). That is, from the total number of

events in the interval, we subtract the expected number of fake events, to get an

unbiased estimate. The following theorem shows that the error in range counting

introduced by this approach is not large.

Theorem 4. If Λ = λ
c

ln eε

(eε−1)
, we get an estimation of the count of real events in

a interval with length L with error bounded by O
(√

ΛL log 1
β

)
, with probability

1− β.

This mechanism has the nice property that if each device j applies the mech-

anism with respect to its local Poisson rate λj, then the aggregate global event

stream has the same privacy guarantee with respect to the global Poisson event

rate. This result follows from the Superposition Theorem (Kingman, 1992; Grim-

mett and Stirzaker, 2001) – that the union of Poisson processes is still a Poisson

process.
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3.5.3 Problem 3: Privacy of event order

Suppose the adversary knows a window W , and knows that events ea and eb

occurred within a short time difference ∆ of each other. The adversary wants to

know if ea occurred before eb or not. So, the secret is sa<b : ta < tb.

Mechanism 3.1: Apply the uniform mechanism (same as in 1.2): M(ei) = ti+ξ,

where ξ is chosen uniformly from [−k∆/2, k∆/2].

Theorem 5. k ≥ 3+eε

eε−1
gives ε-Pufferfish privacy with respect to event ordering.

The sketch of the proof considers two cases depending on whether the sanitized

events preserve the order. In each case, it looks at both possibilities of the

secret. To compute probabilities of the form P (M(ta) < M(tb)|sa<b, θ) we need

to consider three regions where the events can be perturbed to, namely [ta −
k∆
2
, tb − k∆

2
], [tb − k∆

2
, ta + k∆

2
], and [ta + k∆

2
, tb − k∆

2
]. Considering the fact that

the event ordering can only change based on in which region the sanitized events

are placed, we can get the theorem.

This implies that a simple mechanism provides a guarantee against inference of

precise ordering of nearby events. Note that events that are far separated in time

are not covered under this model, since any modified assignment of timestamps

that modifies the ordering of distant events will effectively randomize the the data

completely, destroying all utility.

In Subsections 3.5.1 and 3.5.3 we have used a uniform distribution for simplic-

ity of demonstration. The mechanisms can be easily adapted and implemented

for non-uniform distributions, albeit with a more complex analysis.

3.6 Privacy service design and implementation

To achieve private publishing of data, we designed and implemented a service in

Android. The service accepts raw data from an application, and returns sanitized

data. The same service can of course also be run on a central server to sanitize

data from multiple events. The following discussion applies to both cases. An

application may choose one of the mechanisms described in Section 3.5 to apply

to its data. Along with each event time, it passes the parameters for privacy as

arguments.

The privacy arguments and return values are shown in Table 3.1. We have

presented versions where privacy constraint ε is passed as argument, while the
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Table 3.1: Callable mechanisms, their arguments and return values in sanitization

service.

Mechanism Arguments Returns

Mechanism 1.2 (ti,∆,W, ε, . . . ) (M(ti), k, . . . )

Mechanism 1.3 (ti,∆, k, ε, . . . ) (M(ti), k, . . . )

Mechanism 2.1 (ti, λ, c, ε, . . . ) (List(ti,Λ, . . . ))

Mechanism 3.1 (ti,∆,W, ε, . . . ) (M(ti), k, . . . )

derived quantity k or Λ are returned along with sanitized values. It is possible

to have versions where the roles of these parameters are switched. In case of

mechanism 2.1, the return value consists of a list of event times instead of a

single time, since this mechanism generates fake events.

The service operates in batch mode, which is more efficient when sanitizing

large number of events. The ellipsis represents that the application can optionally

pass event id or other attributes. The service includes these attributes as is in the

returned set. This feature is useful in research where it is of interest to observe

the sanitized timestamp of an input event. In case of mechanism 3.1, the fake

events carry empty attributes. In case of real usage, it is the responsibility of the

application to remove these attributes before or after the call to the service, or

to set a flag remove labels = True.

Time of event publication. Beyond getting data sanitized by the service, the

application needs to take care in when the timestamp of an event is published,

since in temporal privacy, the time of publication may reveal information about

the true event time. In case of mechanisms 1.2 and 3.1, we recommend publishing

event time stamps after the time window W . In case of mechanism 2.1, events

can be published as soon as real time has passed the timestamp of the event.
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Sensing Interface Config Interface

Figure 3.4: System design for sanitization module. The service exposes APIs for san-

itizing events, configuring privacy parameters, and storing configuration parameters.

The design is flexible to have the components be part of a single process or from

different processes.

3.6.1 System design as background Android service

Our implemented service uses Java Apache math library1 for sampling and ran-

domization. The other aspects of the service are shown in Figure 3.4.

Sensing apps. Each app may have different privacy configuration and they can

register and unregister the settings as default.

Privacy configuration editor. Users can view and edit the privacy settings

for various apps.

Persistent storage. The privacy configuration for different apps are stored in

a secure file system.

The sanitization service offers separate interfaces to the sensing apps, privacy

configuration viewer and editor, and storage module. Below are the details of

the interface functions. This is of a proof of concept implementation, and can be

modified as appropriate in different circumstances.

3.7 Experiments

This section describes experiments showing that the privacy preserving mecha-

nisms preserve utility for practical purposes. Highlights of the results are the

following.

1http://commons.apache.org/proper/commons-math/
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• Sanitized event timings support accurate range queries.

• The proposed methods preserve utility better than competing methods in

terms of range queries.

• Privacy preserving mechanisms work in real event streams of check-ins,

app-usages, and phone unlock events.

3.7.1 Experimental Setup

Datasets. Our experiments use three real world event timing dataset. (i) The

check-in dataset2 consists of 12, 372 check-ins at Akihabara station, Tokyo by

Foursquare users. (ii) Events occur in the app-usage dataset (Shepard et al.,

2011) when a user opens one of his 10 most frequent apps, e.g., SMS, mail,

Facebook, etc. (iii) Event occurs when a user unlocks the phone. Whereas, the

first two datasets contain data for about an year, the last dataset has data of

a week. Further, the last two datasets have data for a single user and the first

dataset include data from 1k users.

Measuring utility. Utility of the sanitized data is measured using range queries.

Each experiment uses 5000 random query ranges and repeated 10 times. If the

range count in the original event stream is n and in the sanitized event stream is

ñ, then the relative error is ξ = |n−ñ|
n

The relative error is symmetric with respect

to addition, i.e., estimating n+ ∆ and n−∆ incur same error.

3.7.2 Evaluating Event Time Privacy

Figure 3.5(a) and (b) show the distribution of events in the check-in dataset

overlaid in a single day for actual stream and the sanitized stream respectively

using Mechanism 1.3. Visually, the sanitization preserves the critical features in

the distribution, e.g., the peak.

Mechanism 1.2 is evaluatede in Figure 3.5 by varying ε and the error is small

for small values of ε. Figure 3.7(a,b,c) and (d,e,f) evaluate Mechanism 1.3 and

show natural privacy-utility tradeoff by varying ∆ and ε respectively – with in-

creasing ∆ and decreasing ε, privacy increases and the error increases.

2https://www.kaggle.com/chetanism/foursquare-nyc-and-tokyo-checkin-dataset
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Figure 3.5: (a) Temporal distribution of check-in events at Akihabra station in Tokyo.

The dataset features typical behavior of a point of interest – gradually gets busy during

day and idle during early morning. (b) Temporal distribution of sanitized events using

mechanism in 3.5.1 with ∆ = 1 hour and ε = 1. Sanitized data preserves the overall

temporal pattern.

3.7.3 Evaluating Event Existance – Mechanism 2.1

The fake event rate at each hour is set according to Theorem 3. The event rate

at an hour is simply the number of events occured at that hour and c = 1. To

answer a range query we count total number of events in the range, n, and get

Λ by integrating λ(t) over the query range. The true count is then estimated as

n− Λ. Figure 3.8 (d,e,f) confirm usual ε behavior.

3.7.4 Comparison with existing methods.

The p-sum mechanism described in (Chan et al., 2011) and briefed in Section 3.3.1

is applied to event series with different resolution. Originally, the checkin-dataset

has resolution in seconds, and the coarser resolutions are prepared by suitable

binning. As we see in Figure 3.6 (a) our mechanism 1.3 is more accurate than the

p-sum mechanism for recording events every minute which is necessary for many

practical applications.

3.7.5 Time efficiency

Both Laplace perturbation and fake event augmentation method operate at con-

stant cost per event, and threfore are efficient to sanitize large event datasets as

shown in Figure 3.6 (b). The algorithms implemented using Python and executed
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in a Ubuntu desktop machine with i5 processor and 8GB memory. The execution

time grows linearly with the size of the dataset.
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Figure 3.6: (a) Real-time temporal range queries are more accurate for our Poisson

process based method than p-sum mechanism on time series with finer resolution

than a minute.(b) Both the privacy preserving methods using Laplace perturbation

and Fake event augmentation are efficient for large dataset. Sampling from Laplace

distribution is slightly slower than sampling from Poisson and Uniform distribution in

numpy Python library, therefore the Laplace perturbation method takes a bit longer

time to execute.
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Figure 3.7: Evaluating Mechanism 1.3. (a,b,c) vary ∆ with fixed ε = 1 and (d,e,f)

vary ε with fixed ∆ = 2 hours. (a, d) use check-in dataset,(b, e) use app-usage

dataset, and (c, f) use phone unlock dataset. For all configurations, the sanitized

dataset achieve high utility and they show natural privacy-utility tradeoff.
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Figure 3.8: Evaluating Mechanism 2.1. (a,b,c) vary ε for check-in dataset, app-usage

dataset, and phone unlock dataset respectively. The mechanism preserve high utility

for all ε and with decreasing ε, error increases.

3.8 Proofs of the Theorems

3.8.1 Proof of Theorem 1

Proof. Following the definition of Pufferfish privacy, for an event ei occuring at

ti, M(ei) needs to be checked for two types of ranges – i) when M(ei) ∈ I and

ii) when M(ei) /∈ I. Assume δ > 0 is a very small constant.

Event E1 denotes ei ∈ I1, event E2 denotes ei ∈ I2, and E3 denotes ei ∈ I3.

Case (i) When the sanitized event is placed in the ∆ sized neighbourhood I, i.e.,

M(ei) ∈ I.

It is easy to see that, Pr(M(ei) ∈ I|s, θ) = ∆
k∆

= 1
k
.
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Figure 3.9: Setup for the proof of Theorem 1

Pr
(
M(ei) ∈ I|¬s, θ

)
= Pr

(
M(ei) ∈ I, E1 ∪ E2 ∪ E3|¬s, θ

)
= Pr

(
M(ei) ∈ I, E1|¬s, θ

)
+ Pr

(
M(ei) ∈ I, E2|¬s, θ

)
+ Pr

(
M(ei) ∈ I, E3|¬s, θ

)
= Pr

(
M(ei) ∈ I|E1,¬s, θ

)
.P r(E1|¬s, θ)

+ Pr
(
M(ei) ∈ I|E2,¬s, θ

)
.P r(E2|¬s, θ)

[Using Pr
(
M(ei) ∈ I|E3,¬s, θ

)
= 0, and independence.]

Now the adversary’s prior knowledge is that the events occur with uniform

distribution, therefore Pr(E1|¬s, θ) = (k−1)∆−∆
W−∆

= (k−2)∆
W−∆

. And Pr
(
M(ej) ∈

I|E1,¬s
)

= 1
k
. So,

Pr
(
M(ei) ∈ I|E1,¬s, θ

)
.P r(E1|¬s, θ) =

(k − 2)∆

k(W −∆)

.

Again, Pr(E2|¬s, θ) = (2−δ)∆
W−∆

, and

Pr
(
M(ei) ∈ I|E2,¬s, θ

)
≥ δ∆

2k∆
= δ

2k
. Therefore,

δ(2− δ)∆
2k(W −∆)

≤ Pr
(
M(ei) ∈ I|E2,¬s, θ

)
.P r(E2|¬s, θ) ≤

(2− δ)∆
k(W −∆)

Now adding the probabilities for E1 and E2 we get,

δ(2− δ)∆
2k(W −∆)

+
(k − 2)∆

k(W −∆)
≤ Pr

(
M(ei) ∈ I|¬s, θ

)
≤ (2− δ)∆
k(W −∆)

+
(k − 2)∆

k(W −∆)

(2δ − δ2 + 2k − 4)∆

2k(W −∆)
≤ Pr

(
M(ei) ∈ I|¬s, θ

)
≤ (k − δ)∆
k(W −∆)

So,
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(W −∆)

(k − δ)∆
≤

Pr
(
M(ei) ∈ I|s, θ

)
Pr
(
M(ei) ∈ I|¬s, θ

) ≤ 2(W −∆)

(2δ − δ2 + 2k − 4)∆
(3.2)

Case (ii) When the sanitized event is placed in the ∆ sized neighbourhood N ,

i.e., M(ei) /∈ I.

It is easy to see that, Pr(M(ei) /∈ I|s, θ) = k−1
k

. Again, similar to the above

case,

Pr
(
M(ei) /∈ I|¬s, θ

)
= Pr

(
M(ei) ∈ I, E1 ∪ E2|¬s, θ

)
+ Pr

(
M(ei) /∈ I, E3|¬s, θ

)
Now, Pr(E1 ∪ E2|¬s, θ) = ∆(k−δ)

W−∆
.

Again, k−1
k
≤ Pr

(
M(ei) /∈ I, E1 ∪ E2|¬s, θ

)
≤ k−δ

k
, therefore,

(k − 1)(k − δ)
k(W −∆)

≤ Pr
(
M(ei) /∈ I, E1 ∪ E2|¬s, θ

)
≤ (k − δ)2∆

k(W −∆)

It is easy to see that, Pr
(
M(ei) ∈ I|E3,¬s, θ

)
= 1. Now, Pr(E3|¬s) =

W−(k+1−δ)∆
W−∆

. Therefore, Pr
(
M(ei) ∈ I, E3, |¬s, θ

)
= W−(k+1−δ)∆

W−∆
. Hence, we get

the following,

(k − 1)(k − δ)
k(W −∆)

+
W − (k + 1− δ)∆

W −∆
≤ Pr

(
M(ei) /∈ I|¬s, θ

)
≤ (k − δ)2∆

k(W −∆)

Or,
(k − 1)(k − δ) +Wk − k∆(k + 1− δ)

k(W −∆)

≤ Pr
(
M(ei) /∈ I|¬s, θ

)
≤ Wk + δ2∆− k∆(1 + δ)

k(W −∆)

Combining the results for E1 ∪ E2 and E3, we get,

(W −∆)

(k − 1)(Wk + δ2∆− k∆(1 + δ))
≤

Pr
(
M(ei) /∈ I|s, θ

)
Pr
(
M(ei) /∈ I|¬s, θ

) ≤
(W −∆)

(k − 1)[(k − 1)(k − δ) +Wk − k∆(k + 1− δ)]
(3.3)

Combining the lower bound of Equation 3.2 and Equation 3.3 we get.
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min

(
(W −∆)

(k − δ)∆
,

(W −∆)

(k − 1)(Wk + δ2∆− k∆(1 + δ))

)
≤

Pr
(
M(ei) = w|s, θ

)
Pr
(
M(ei) = w|¬s, θ

) ≤
max

(
2(W −∆)

(2δ − δ2 + 2k − 4)∆
,

(W −∆)

(k − 1)[(k − 1)(k − δ) +Wk − k∆(k + 1− δ)]

)
Or,

∆

2Wk2
≤

Pr
(
M(ei) = w|s, θ

)
Pr
(
M(ei) = w|¬s, θ

) ≤ 2W

k∆
when W ≥ 2∆

Or, eε ≥ 2W

k∆
and e−ε ≤ ∆

2Wk2
[from Pufferfish privacy defination.]

Or, k ≥ 2W

eε∆

3.8.2 Proof of Theorem 2

Proof. Similar to the above proof, for an event ei occuring at ti, M(ei) needs to

be checked for two types of ranges – i) when M(ei) ∈ I and ii) when M(ei) /∈ I.

Case (i) When the sanitized event is placed in the ∆ sized neighbourhood I, i.e.,

M(ei) ∈ I.

∆∫
0

Lap(x; 0, b)dx ≤ Pr(M(ei) ∈ I|s, θ) ≤
∆/2∫

−∆/2

Lap(x; 0, b)dx

Or, −1

2

[
e−x/b

]∆

0

≤ Pr(M(ei) ∈ I|s, θ) ≤ 2.

∆/2∫
0

Lap(x; 0, b)dx

Or,
1

2
[1− e−∆/b] ≤ Pr(M(ei) ∈ I|s, θ) ≤

[
e−x/b

]∆/2

0

Or,
1

2
[1− e−∆/b] ≤ Pr(M(ei) ∈ I|s, θ) ≤ (1− e−∆/(2b)) (3.4)

Now, for the secret ¬s, when event ei does not occur in I,

K∆∫
k∆−∆

Lap(x; 0, b)dx ≤ Pr(M(ei) ∈ I|¬s, θ) ≤
∆∫

0

Lap(x; 0, b)dx

Or,
e−k∆/b

2
(e∆/b − 1) ≤ Pr(M(ei) ∈ I|¬s, θ) ≤

1

2
(1− e−∆/b) (3.5)
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Combining Equation 3.4 and 3.5, we get the following,

min

(
ek∆/b(1− e−∆/b)

e∆/b − 1
, 1,

2ek∆/b(1− e−∆/(2b)

e∆/b − 1
,
2(1− e−∆/(2b))

1− e−∆/b

)
≤ Pr(M(ei) ∈ I|s, θ)
Pr(M(ei) ∈ I|¬s, θ)

≤

max

(
ek∆/b(1− e−∆/b)

e∆/b − 1
, 1,

2ek∆/b(1− e−∆/(2b)

e∆/b − 1
,
2(1− e−∆/(2b))

1− e−∆/b

)
1 ≤ Pr(M(ei) ∈ I|s, θ)

Pr(M(ei) ∈ I|¬s, θ)
≤ ek∆/b (3.6)

Case (ii) When the sanitized event is placed in the ∆ sized neighbourhood I,

i.e., M(ei) /∈ I.

For the case with secret s,

2

k∆/2∫
∆/2

Lap(x; 0, b)dx ≤ Pr(M(ei) /∈ I|s, θ) ≤

0∫
−(k−1)∆/2

Lap(x; 0, b)dx+

−(k+1)∆/2∫
∆

Lap(x; 0, b)dx

Or, e−∆/(2b) − e−k∆/2b ≤ Pr(M(ei) /∈ I|s, θ) ≤

1/2
(
1 + e−∆/b − e−(k−1)∆/(2b) − e−(k+1)∆/(2b)

)
(3.7)

And for the case with secret ¬s,

k∆∫
0

Lap(x; 0, b)dx+

(k+2)∆/2∫
k∆/2

Lap(x; 0, b)dx

≤ Pr(M(ei) /∈ I|¬s, θ) ≤
0∫

−(k−1)∆/2

Lap(x; 0, b)dx+

−(k+1)∆/2∫
∆

Lap(x; 0, b)dx

Or, 1/2(1 + e−(k+2)∆/(2b) − e−k∆/(2b) − e−k∆/b)

≤ Pr(M(ei) /∈ I|¬s, θ) ≤

1/2
(
1 + e−∆/b − e−(k−1)∆/(2b) − e−(k+1)∆/(2b)

)
(3.8)
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Now the ratio of Equation 3.7 and 3.8 is bounded by the following.

e−∆/(2b) − e−k∆/2b

1/2
(
1 + e−∆/b − e−(k−1)∆/(2b) − e−(k+1)∆/(2b)

)
≤ Pr(M(ei) /∈ I|s, θ)
Pr(M(ei) /∈ I|¬s, θ)

≤ 1

Or, e−k∆/b ≤ Pr(M(ei) /∈ I|s, θ)
Pr(M(ei) /∈ I|¬s, θ)

≤ 1 (3.9)

Finally we combine Equation 3.6 and 3.9 and get the following.

e−k∆/b ≤ Pr(M(ei) = w|s, θ)
Pr(M(ei) = w|¬s, θ)

≤ e(k−1)∆/b

From the Pufferfish privacy definition,

e−ε ≤ e−k∆/b ≤ Pr(M(ei) = w|s, θ)
Pr(M(ei) = w|¬s, θ)

≤ e(k−1)∆/b ≤ eε

Which gives the bound b ≥ k∆
ε

.

3.8.3 Proof of Theorem 4

To proof the theorem we need the following lemma first.

Lemma 1. Goldreich (2017) If a random variable Y follows a Poisson distribu-

tion with mean ΛY , P (|Y − ΛY | ≥ α) ≤ 2 exp
(
− α2

2(ΛY +α)

)
.

Proof. Given a interval [x, y] with length L, denote the count of real events as

n∗. A(x, y) − n∗ = n − n∗ − Λ · (y − x). Notice that n − n∗ is the count of fake

events, following the Poisson with mean Λ · (y − x). Applying the Lemma 1, for

any β, we set α ≥ log 2
β

+
√

log2 2
β

+ 2Λ log 2
β
, and we have

P

(
|A(x, y)− n∗| ≤ log

2

β
+

√
log2 2

β
+ 2Λ log

2

β

)
≥ 1− β.

Rearranging, we get the theorem.

3.8.4 Proof of Theorem 5

Proof. For simplicity of calculation let us assume ∆ = 1 (we can scale everything

to make this happen). Form the figure, |I2| = (k − 1). For two events ea and eb
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Figure 3.10: Setup for the proof of Theorem 5

occuring at time ta, tb, the situation E denotes that the fact that M(ea) ≤M(eb),

and ¬E denotes the complement of this situation. Therefore,

Pr(E|s, θ) ≤Pr(M(ea) ∈ I1) + Pr(M(ta) ∈ I3)

+ Pr(M(ea) ≤M(tb),M(ea) ∈ I2,M(eb) ∈ I2)

Or, ≤2

k
+

(k − 1)2

k2

(k − 1) + 1

2(k − 1)

≤2

k
+
k − 1

2k

≤k + 3

2k
(3.10)

For the lower bound we have ta and tb almost coencide, which makes the

R3 ≈ k,

Pr(E|s, θ) ≥k + 1

2k
(3.11)

Now, combining Equation 3.11 and equation 3.10, we have the following.

k + 1

2k
≤ Pr(E|s, θ) ≤ k + 3

2k
(3.12)

Again for the secret ¬s, we have the following.

(k − 1)2

k2

k − 1 + 1

2(k − 1)
≤Pr(E|¬s, θ) ≤ k + 1

2k

Or,
k − 1

2k
≤Pr(E|¬s, θ) ≤ k + 1

2k
(3.13)
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Now, combining the Equation 3.12 and Equation 3.13 we have the following.

min

(
k + 1

k − 1
,
k + 1

k + 1
,
k + 3

k − 1
,
k + 3

k + 1

)
≤ Pr(E|s, θ)
Pr(E|¬s, θ)

≤

max

(
k + 1

k − 1
,
k + 1

k + 1
,
k + 3

k − 1
,
k + 3

k + 1

)
1 ≤ Pr(E|, θ)

Pr(E|¬s, θ)
≤ k + 3

k − 1
(3.14)

Now, for the event ¬E and secret s, we have the following.

(k − 1)2

k2

k − 1 + 1

2(k − 1)
≤Pr(¬E|s, θ) ≤ k + 1

2k

Or,
k − 1

2k
≤Pr(¬E|s, θ) ≤ k + 1

2k
(3.15)

Again for the event ¬E and secret ¬s, we have the following. This equa-

tion is same as the one in Equation 3.12 by simply considering opposite timing

assignment of the events, i.e., event ea occurs in tb and event eb occurs in time ta.

k + 1

2k
≤ Pr(¬E|¬s, θ) ≤ k + 3

2k
(3.16)

Combining Equation 3.15 and Equation 3.16,

min

(
k − 1

k + 1
,
k − 1

k + 3
,
k + 1

k + 1
,
k + 1

k + 3

)
≤ Pr(¬E|s, θ)
Pr(¬E|¬s, θ)

≤

max

(
k − 1

k + 1
,
k − 1

k + 3
,
k + 1

k + 1
,
k + 1

k + 3

)
k − 1

k + 3
≤ Pr(¬E|s, θ)
Pr(¬E|¬s, θ)

≤ 1 (3.17)

Suppose, the ordering of the sanitized events M(ea) and M(eb) is denoted

as O(M(ea),M(eb)) ∈ {M(ea) ≥ M(eb),M(eb) ≥ M(ea)}, Combining Equa-

tion 3.14 and Equation 3.17,

min

(
k − 1

k + 3
, 1

)
≤ Pr(O(M(ea),M(eb))|s, θ)
Pr(O(M(ea),M(eb))|¬s, θ)

≤ max

(
1,
k + 3

k − 1

)
k − 1

k + 3
≤ Pr(O(M(ea),M(eb))|s, θ)
Pr(O(M(ea),M(eb))|¬s, θ)

≤ k + 3

k − 1
(3.18)
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For ε-Pufferfish privacy we have k+3
k−1
≤ eε, which gives k ≥ 3+eε

eε−1
.
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Chapter 4

Topological Signatures For Fast

Mobility Analysis

Analytic methods can be difficult to build and costly to train for mobility data.

We show that information about the topology of the space and how mobile objects

navigate the obstacles can be used to extract insights about mobility at larger

distance scales. The main contribution of this chapter is a topological signature

that maps each trajectory to a relatively low dimensional Euclidean space, so

that now they are amenable to standard analytic techniques. Data mining tasks:

nearest neighbor search with locality sensitive hashing, clustering, regression, etc.,

work more efficiently in this signature space. We define the problem of mobility

prediction at different distance scales, and show that with the signatures simple

k nearest neighbor based regression perform accurate prediction. Experiments

on multiple real datasets show that the framework using topological signatures

is accurate on all tasks, and substantially more efficient than machine learning

applied to raw data. Theoretical results show that the signatures contain enough

topological information to reconstruct non-self-intersecting trajectories upto ho-

motopy type. The construction of signatures is based on a differential form that

can be generated in a distributed setting using local communication, and a sig-

nature can be locally and inexpensively updated and communicated by a mobile

agent.

79
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4.1 Introduction

Location traces are computationally challenging to process. Distances between

trajectories like Fréchet and Hausdorff distances (Alt and Godau, 1995) do not

form a normed space, Dynamic time warping distance (Sakoe and Chiba, 1978)

does not even form a metric (Driemel and Silvestri, 2017). As a result, typical

computational methods are difficult to apply. Specialized techniques have been

developed for location traces. Theoretical approaches such as locality sensitive

hashing have to be tailored to trajectories for faster near neighbor search (Indyk,

2002; Driemel and Silvestri, 2017; Astefanoaei et al., 2018); computation of me-

dians (Buchin et al., 2013), popular paths (Katsikouli et al., 2018) etc have also

been considered.

Analysis and prediction of motion have been developed with Markov mod-

els (Xue et al., 2013; Ziebart et al., 2008; Liu et al., 1998) that assume motion

to depend only on the current “state” of an agent and not on longer history.

However, recent experimental results show that the memoryless assumption of

Markov models does not hold in real location data, since agents do not execute a

random walk, but move with the purpose to reach a destination (Srivatsa et al.,

2013). Specialized neural network based models (Wu et al., 2017; Lv et al., 2018)

with the power to encode longer history are shown in practice to be effective for

next road segment prediction, although they do not provide rigorous models for

other general tasks, e.g., search and comparison of trajectories. We instead seek

a framework for interpretable encoding of large scale properties of trajectories,

that is compatible with a range of analytic methods.

The motion of objects is determined by the major obstacles in the plane,

which defines the geometry and topology of the space. However, considerations of

topology raise complex issues, and traditional quantities like Fréchet distance are

prohibitively expensive to compute in domains with obstacles (Chambers et al.,

2010). Geometric algorithms thus usually assume motion in a simple plane, or of

same topological type.

In past work, Hodge theory and relative homology from algebraic topology

have been used for the purpose of topological classification (Yin et al., 2015;

Pokorny et al., 2016). However, these approaches are only applicable to specific

start and end points of trajectories, and yield only discrete classifications by

homotopy type, which is not general enough for use in further analysis. They are
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also expensive to compute. We intend to overcome these obstacles by using more

flexible topological constructs.

Our contributions. This chapter shows that topological information can en-

hance mobility analysis by meaningfully encoding large scale patterns of move-

ment, and demonstrates how the relevant information can be represented com-

pactly.

The geometry and topology of the space of mobility itself can be discretized

as a graph, where regions of zero or little activity are treated as obstacles or holes,

and the remaining space is triangulated based on a suitable set of vertices.

Let us define a discrete differential form ξ : E → R as a function that assigns

values to directed edges. For any directed edge ab, the function ξ satisfies ξ(ab) =

−ξ(ba), that is, the values on an edge and its reverse are negations of each other

(See Section 4.3). Further, the values on the edges sum to zero around any face

of the graph, except possibly the obstacles. For each obstacle i, we define a

differential form ξi such that around obstacle i, ξi on the edges sum to 1, and

thus preserves topological information with respect to this obstacle.

For any mobility trace A, the differential form values along its directed edges

are added to obtain ξi(A). For a trajectory that goes around an obstacle i, ξi(A) =

1. In a space with k obstacles, the general differential form ξ = {ξ1, ξ2, . . . ξk} is

a vector of length k.

The significant property here is that a signature element ξi(A) can have a real

numbered value when A is not a perfect loop. The signature ξ(A) ∈ Rk is a point

in k dimensional space. Thus, beyond simple topological equality, the signatures

can represent topological similarity. The mapping to a normed space enables

standard analytic techniques like clustering, regression, density estimation, etc.

We discuss the basic construction in Section 4.4 and the detailed technique in

Section 4.5.

Summations over differential forms preserve only large scale properties, and

are insensitive to noise that does not change topological type of a trajectory.

As a result, the signatures are invariant to localization errors and GPS noise.

They are compact compared to real trajectory data, and can be easily exchanged

between mobile nodes to perform mobility comparison among nearby nodes. It

is efficient to compute and to update incrementally as an object moves in the

plane. Comparison between trajectories is now reduced to comparison of points

in a low dimensional space. The signature of a simple trajectory contains sufficient
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information to provably reconstruct it upto homotopy equivalence.

The knowledge of global topological behaviors of trajectories can be used to

make predictions at larger scale beyond the next road segment. For this purpose,

we define a notion of prediction at an arbitrary scale r. Motion prediction on

larger scale can be useful in many applcations, e.g., to predict tourists visiting var-

ious attractions in a city. Simple k nearest neighbor regression on the signatures

performs comparably to expensive and opaque neural network based methods,

which suggests that the topological features are essential to understanding and

prediction of motion.

Data mining techniques of locality sensitive hashing, dimension reduction,

etc run efficiently and accurately on the signatures (Section 4.6). Experiments

(Section 4.7) show that the dimensionality of the signatures can be reduced by

selecting only a few obstacles from the domain, and this further increases the

efficiency of the system. Based on how the trajectories traverse the domains, the

obstacles themselves can be characterized by how they influence mobility.

Section 4.2 discusses some related works and how the new approach compares

with them.

Before we move on with technical details, let us summarize our approach into

the following steps: 1. Find obstacle as sparse regions of the plane 2. construct a

differential 1-form for each obstacle. 3. As a mobile agent moves, use these forms

to track how it circumnavigates each obstacle and get a point in Euclidean space,

where each dimension represents behavior with respect to one obstacle. 4. Apply

efficient analytic techniques treating trajectories as points in Euclidean space.

4.2 Related work

Hodge decomposition of a randomly generated vector field has been used in (Yin

et al., 2015) to classify paths into homotopy types. This approach relies on

a numerical process, and only applies to trajectories with same start and end

points. This problem is avoided to an extent in (Pokorny et al., 2016), which

uses relative homology, and marks certain regions of the space where start and

end points lie, but other trajectories do not pass. Thus these approaches do not

apply to general trajectory datasets of the type we have considered here. Both

these methods are also computationally expensive.

In other works, topological characterization has been used to measure dis-
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tances between curves (Chambers and Wang, 2013) but restricted to curves with

same start and end points, since homotopy cannot be defined between open

curves. A seminal work (Baryshnikov and Ghrist, 2009) Baryshnikov and Ghrist

used integrals of Euler characteristics to compute number of mobile targets. Topo-

logical persistence can be used to simplify trajectories (Katsikouli et al., 2014).

Discrete exterior calculus has been a subject of study in graphics, modeling and

discrete geometry and developed in several different flavors (Hirani, 2003; Des-

brun et al., 2008). In sensor network, it has been used for performing range

queries of mobile objects (Sarkar and Gao, 2013).

Mobility modeling using (hidden) Markov models have been developed in (Xue

et al., 2013; Ziebart et al., 2008; Liu et al., 1998) and other works, usually with

the objective to predict the agent’s next road segment. As mentioned earlier,

the Markov assumption can be shown to be unrepresentative of typical trajec-

tory datasets (Srivatsa et al., 2013). In line with recent developments in machine

learning, Neural networks have been designed for the prediction task. Recurrent

Neural Networks using Long Short Term Memory are considered useful in sequen-

tial data, and has been used in (Wu et al., 2017); we used a similar approach in

our experiments, modified suitably for geometric trajectories in the datasets.

In contrast to these methods, our approach is computationally much more

efficient in preprocessing, training as well as prediction query. It can be applied

to road networks and geometric data alike. Unlike Markov and neural models

that simply provide a prediction mechanism, the topological signatures reveal

similarity between trajectories and reveal insights about how they traverse the

domain. As a result, they can form the basis of search, clustering, prediction and

other analytic tasks.

4.3 Theoretical background

Discrete differential forms and exterior calculus are a varied topic of study across

many disciplines. This section presents a brief description of the main ideas

relevant. A more formal treatment can be found in (Hirani, 2003). Readers

familiar with the topic can consider skipping ahead to the next section.

Let us represent the space of motion using a simplicial complex or a cell

complex. A two dimensional simplicial complex is a planar graph G with 0, 1, and

2 dimensional simplices as vertices, edges, and triangles as shown in Figure 4.1(a).
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A simplicial complex is built by attaching simplices together along subsimplices.

Orientation of a simplex is defined using ordering of constituent lower dimen-

sion simplices. E.g. ordering of two 0−simplices [v0, v1] produces an oriented

1−simplex or a directed edge, e, while its opposite orientation is −[v0, v1] or −e.
A linear combination of d dimensional simplices:

∑k
i=0 λiσi, where each λi

is an integer, is called a d-chain. A trajectory or mobility trace can be seen as

1-chain.

The boundary (∂σ) of an oriented p−chain σ is a (p−1)−chain that separates

σ from rest of the complex and the orientation of the boundary is inherited from

σ. Planar graphs are orientable, meaning that all its simplices can be oriented

consistently (Kinsey, 2012). Here, all 2−simplices or faces are assumed to be

oriented counter clockwise. Consequently, the boundary of a summation of faces

(2-chains) is the sum of their boundaries (1-chains); formally: ∂(f1 + f2 + f3 +

. . . ) = ∂f1 + ∂f2 + ∂f3 + . . . (Figure 4.1(b)).

(a) (b)

Figure 4.1: (a) 0, 1, and 2−simplices (b) Boundary operation on a chain of 2-simplices

Cell complexes are a natural extension of simplicial complexes. The only

difference meaningful to this context is that a two dimensional cell, or face, can

be a simple polygon instead of a triangle, otherwise a cell complex retains all

relevant properties of a simplicial complex. The area external to the planar graph

is called the exterior face, or the face at infinity. The edges at the boundary of

this face constitute the exterior boundary.

Dual complex. The dual of a simplicial complex G is a planar graph ?G where

a face σ in G corresponds to a node ?σ in ?G and an edge ?e in ?G exists between

two nodes if the corresponding two faces in G are adjacent with shared edge e.
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An example is shown in Figure 4.2(a).

4.3.1 Discrete differential 1-forms and co-chains

Differential forms are defined as functions over the directed cells of the cell com-

plex. Specifically, 1-forms are values for the edge set E of a graph as ω : E → R.

The values are associated with directed edges, so that ω(ab) = −ω(ba). Given a

discrete trace written as e1 + e2 + e3 . . . , the integral of the form over it is now

computed as sum of ω over the directed edges: ω(e1) + ω(e2) + ω(e3) . . . .

The function ω thus defines a co-chain in C1(G;R) that maps 1-chains to real

values. The entire construct translates to a dual with a dual function ?ω defined

simply as ?ω(?e) = ω(e). Thus ?ω, yields a differential form ω, which will be

useful in the following section.

Sources and sinks. Suppose X(v) is the set of edges of the type (v, ◦) – that

is, all edges incident on v, with orientation selected as pointing outward from v.

Then we can compute the net outflow from v as h(v) =
∑
e∈X(v)

ω(e). Depending

on this value, v can be a:

• Source: net outflow h(v) > 0.

• Internal or regular node: net outflow h(v) = 0.

• Sink: net outflow h(v) < 0.

Observe the effect on the dual system. For a primal face f with dual vertex

?f , we have :
∑

?e∈X(?f)

?ω(?e) = ω(∂f).

4.4 Topological signatures

The goal is to utilize differential forms to characterize the behavior of the traces

with respect to obstacles in the domain. We assume that the obstacles such as

buildings and lakes reside in the larger faces of the graph and the mobile objects

move along the nodes and edges of the graph. The question of what constitutes

important obstacles in a domain will be taken up later, for now assume that some

faces are given to us to be treated as obstacles.

Dual sources. Each obstacle is a source of a dual vector field ?ξ. More specifi-

cally, given a face f with an obstacle, the corresponding dual node ?f is the only
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(a) (b)

Figure 4.2: (a) An example primal graph with a source face f . Dual path ?ρ flows

from ?f to external node ?f0.(b) Multiple dual paths from the source ?f construct

a differential form of non-zero integral around ?f .

source for ?ξ in the dual graph. The external face, dual node ?f0 is the only sink.

A specific weight h(?f), usually set to 1, is associated with each source ?f .

The dual form with a value for each directed dual edge defines a differential

form for the primal graph using ξ(e) = ?ξ(?e). For each face fi that is an obstacle,

we create one such differential form ξi, which equivalently sums to h(?fi) around

the boundary ∂f – representing a cyclic vector field along ∂f . We refer to these

as the signature forms for the obstacles. The idea is shown in Figure 4.2.

The important property of this structure is that over any cycle γ surrounding

f , the form sums to ξ(γ) = ξ(∂f) = h(?f).

Theorem 6. For a 2−chain U with coefficients in 0, 1 in G (excluding f0) with

a single source face fi, the differential form ξ(∂U) = h(?fi) if fi ∈ U , otherwise

ξ(∂U) = 0.

The proof follows simply from the fact that for any face f , ξ(∂f) = h(?f),

and that ∂(f1 + f2 + f3 + . . . ) = ∂f1 + ∂f2 + ∂f3 + . . . .

Topological signatures of trajectories. Using these differential forms, we

can now define the topological signature of a trace. If there are k obstacles and

corresponding signature forms, then for a trace T , we get a k dimensional vector

θ(T ). The component θi(T ) represents to what extent T goes around obstacle i.

If it forms exactly one complete cycle, then θi(T ) = h(fi).

The useful feature here is that even if T does not quite form a cycle, θi(T )
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still reveals valuable information. If the value of θi(T ) is higher, it implies that t

goes farther around the obstacle. This construction is more general than simple

winding numbers, since the differential forms construction can assign arbitrary

weights to individual edges, and can be made sensitive to specific mobile agents.

From a computational point of view, it works directly on a discrete structure,

with or without knowledge of locations. The symmetric nature of directed edges

nullifies the effect of noisy GPS localization.

The signature θ : T → Rk maps trajectories in set T to a k dimensional

space.

4.5 Algorithms

This section describes how the mathematical construct of discrete topological

signatures can be realized, including in a distributed environment.

4.5.1 Construction of planar graphs

The algorithms work on any planar graph on the mobility domain. Following are

a few possible strategies varied by availability of mobility data and infrastructure.

Graphs from data. In many scenarios, road map data is available and directly

yields a graph, where road intersections are vertices and road segments are edges.

Alternatively, a simple model – a grid or a triangulation of randomly deployed

point sets (vertices) may serve as the planar graph. In (Pokorny et al., 2016)

a triangulation of the locations from the dataset itself is used as the discrete

domain. A mobile trace is then converted to a sequence of edges in this graph.

This can be done by simply mapping locations to nearby vertices. With sufficient

data, it is also possible to construct a roadmap itself as is done in openstreetmap

and other projects (Cao and Krumm, 2009).

Discrete sensor domains. In sensor networks and robotics, trajectories may

be recorded by sensors. Such a trajectory may not have any localization at all,

and is represented simply as a sequence of sensors that have detected the mobile

object. For localized and unlocalized wireless sensor networks, there is a large

body of research in topology control, localization and planar graph extraction,

relying on the locality of wireless transmission. Depending on the network, such

a technique can compute planar graph of the nodes (Sarkar et al., 2009; Funke
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and Milosavljevic, 2007).

Our differential forms setup, as described in the previous section, works on

the planar graph, without the need for an explicit embedding.

4.5.1.1 Obstacles and dual sources.

Having constructed the planar graph and map of trajectories to sequence of edges,

we are left with the question of what are the ‘obstacles’ in the domain. In prin-

ciple, every face can be an obstacle, but this is neither intuitive, nor informative

to any algorithm operating on the data.

Instead, a face can be an obstacle if it is larger than a certain size, measured

as area, diameter, or some other measure. The strength h(?f) of the source ?f ,

which is normally set to 1, can also be set to be proportional to the measure to

reflect the weight of an obstacle. In unlocalized scenarios, there are techniques for

detecting boundaries of large enough sizes (Wang et al., 2006), while a measure

such as the number of edges on the face can be used to determine its weight.

Subsection 4.6.3 discusses more involved questions of determining the im-

portance of an obstacle and dimension reduction techniques to merge nearby

obstacles to simplify data.

4.5.2 Constructing signature forms

For each obstacle face f , our basic strategy is to take its dual face ?f , and

start multiple walks in the dual graph. The walks spread in all directions, and

end in the exterior face at infinity ?f0. The total weight of the walks is h(?fi).

Having constructed walks of total weight of h(?fi), the weight of each dual edge

can be transferred to the corresponding primal edge as ξi(ab) := ?ξi(?ab).

In a distributed sensor network scenario, the operations of a dual node ?f ,

which is a face f in the primal, can be handled by an elected sensor node on its

boundary. There are different ways to structure these walks and the correspond-

ing differential form. Unless mentioned otherwise, the following mechanisms work

in localized as well as unlocalized graphs.

Random walk in the dual. Starting from the dual node ?fi, create several

random walks that stop only when they reach ?f0. Each walk has a weight w,

and to each directed dual edge ?ab it traverses, the weight is added as ?ξi(?ab) :=
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?ξi(?ab) + w. Note that this process preserves the strictly one source (?fi) and

one sink (?f0) since at every other vertex it exits every time it enters. The walk

is also allowed to pass through ?fi as well as any other dual vertex.

Shortest paths in the dual. Another possible way of constructing the signature

forms is using shortest paths to the boundary faces, which are adjacent to the

external face f0.

From these boundary faces, select a subset either randomly or at some uniform

separation. From the dual source node ?fi, a shortest path in the dual is computed

to each such boundary face ?fj and appended a final edge (?fj, ?f0) to complete

the walk.

Following a straight line to the boundary. In scenarios with available lo-

cations, instead of selecting faces at the boundary, it is possible to select specific

locations at the boundary and follow a straight line to them. By picking a location

to place the dual nodes inside faces, e.g., at centroids, a line starts from a source

location ?fi. ’Following’ a straight line in the dual graph is essentially choosing

the next node in the path that minimizes the distance to the line segment (Nath

and Niculescu, 2003).

4.5.3 Computing topological signatures

A trace consists of a sequence of edges, and for each edge e, the value ξi(e) is

computed corresponding to each obstacle i. Thus, for each e traversed by the

trajectory T results in updates of the form θi(T ) = θi(T ) + ξi(e).

In a distributed scenario, this works naturally, where for any edge ab, the

ξ values for this edge are held by sensors a and b, and when a mobile object

traverses this edge, it can obtain the values locally and maintain its own θ(T )

vector. Or in a tracking scenario, the sensors as they track the object’s motion

can maintain and handoff this value.

While in principle θi(T ) can take up any real value, the larger values of θ

imply an agent circumscribing an obstacle many times. This is unlikely in many

realistic scenarios such as trips in a city. In such cases, it is natural to assume that

on a single trip an agent does not take sub-optimal self-intersecting paths that

go all the way around the obstacle. Thus, for such trajectories, for any obstacle

i, |θi(T )| < 1, and let us refer them as simple trajectories. Theorem 7 shows that

for simple trajectories, the signature uniquely determines their homotopy type.
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(a) (b)

Figure 4.3: (a)Two simple trajectories α, β goes from s to d have same homotopy

type w.r.t. source fj, but different homotopy type w.r.t. fi. (b) Two self-intersecting

paths between same source and destination may have same signature value but dif-

ferent homotopy type.

Theorem 7. For two simple trajectories α and β between same source s and

destination d:

θi(α) =

θi(β) If α, β have same homotopy w.r.t. source fi.

θi(β)± 1, otherwise [assuming h(?f) = 1]

Proof. An example setup is shown in Figure 4.3(a). Where paths α and β have

the same homotopy type with respect to fj and different types with respect to

fi. The concatenation of α with −β gives loop γ = α− β.

The first claim simply says θj(α) = θj(β), since otherwise θj(α − β) 6= 0,

contradicts Theorem 6.

For the second claim, any closed oriented one dimensional loop object γ̂ in the

two dimensional cell complex is the boundary ∂U of a chain U with coefficients

in [0, 1]. Thus fi ∈ U implies ξ(γ̂) = 1. Depending on the orientation of γ =

α− β, θ(α− β) = ±θ(γ̂) = ±1, implying the second claim.

Figure 4.3(b) shows an example where the above condition is violated, and

trajectories of the same signature have different homotopy types.
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(a) (b)

Figure 4.4: (a) Construction of homotopy equivalent path for desired signature value.

(b) Realization of the idea by taking a path from the current path to the boundary

of the obstacle.

4.5.4 Reconstructing traces from signatures

The following lemmas say that given a signature it is possible to check in poly-

nomial time if such a trajectory exists, and if so it can be reconstructed up to

homotopy equivalence in linear time.

Lemma 2. Given a signature vector X, source s, and destination d; it is possible

to find in linear time if there exists a homotopy class of simple paths going from

s to d with the signature X.

Proof. Consider the shortest path P from s to d as shown in Figure 4.4(a) and

its signature θ(P ). Using the result from Theorem 7, the only thing to test is if

(θi(P )−Xi) ∈ {0, 1,−1} for all i. This can be done in linear time in the number

of holes in the domain.

Lemma 3. Given signature vector X, source s, and destination d, there exists

an algorithm to find a unique simple trajectory up to homotopy equivalence with

signature X. The algorithm runs in linear time in the number of holes in the

domain.

Proof. A natural extension of Lemma 2 uniquely identifies the source faces fi

where we need to change the side by which P passes fi – precisely where (θi(P )−
Xi) 6= 0. Next, these sources are fixed iteratively.



92 Chapter 4. Topological Signatures For Fast Mobility Analysis

Initialize this process by setting the path P as the shortest path from s to

d. Suppose at iteration l, the path is P l and the next obstacle to fix is fi.

Consider an arbitrary node b ∈ P l, and another arbitrary node a ∈ ∂fi as shown

in Figure 4.4(b). Now P l+1 is the concatenation of the following path segments:

s to b, b to a, a to a (along ∂fi), a to b, and finally b to d. So, the path P l+1 has

now right homotopy type w.r.t. fi.

This construction essentially determines the homotopy type from the signa-

ture. Given that, we can now compute a short path in that class using well known

algorithms in computational geometry (Hershberger and Snoeyink, 1994a).

4.6 Applications and Optimizations

Here we discuss how the topological signatures can be designed and implemented

for better applied analytics.

4.6.1 Nearest neighbor search and Locality Sensitive Hashing

A fundamental question in data analysis is the search for nearest neighbor, or k

nearest neighbors, which forms the basis of several classification and clustering

techniques and queries on noisy data. In case of trajectories, searching for near-

est neighbors is expensive due to the fundamental cost of comparing two long

trajectories (Alt and Godau, 1995).

Locality sensitive hashing (LSH) is used in data mining to accelerate the search

for nearest neighbors. However, defining LSH for trajectories is a non trivial

problem, as is constructing computationally efficient hash functions (Driemel and

Silvestri, 2017). We want to instead use representations of trajectories as points

in the Euclidean space, where good LSH techniques are known.

A standard LSH scheme (Datar et al., 2004) uses a hash function h constructed

as follows. Select a random straight line in Rk. Then project each data point

linearly onto the line. Partition the line into segments of length w for some given

w, and treat each segment as a “bucket”. Nearby data points are likely to hash

into the same bucket, while far apart points are likely to hash to different ones.

Given a query point q, we can perform the same projection and hashing, and then

search for its nearest neighbor in the bucket containing q. Expensive methods (Alt

and Godau, 1995) can be used for this search since the pruned candidate set
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is smaller. Repeating the process with multiple hash functions increases the

probability to find the true nearest neighbor of q. Note that Euclidean hash is

substantially more efficient than direct locality sensitive hashing of trajectories

described in (Driemel and Silvestri, 2017; Indyk, 2002).
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Figure 4.5: (a) Trajectory set with 8 obstacles. (b) Correlation matrix with respect to

signatures of the trajectories. Darker shades imply higher correlation (c) PCA based

importance ranking.

4.6.2 Predicting motion at large scales

Let us define motion prediction at scale r, where r is a given distance – e.g. 500

meters. We wish to ask where will a mobile object be, when it is at a distance

r from its current location. Formally suppose o is the current location, Cr is the

circle of radius r centered at o. Based on our mobility data, we can predict p on

Cr as a point where the object’s trajectory will exit (intersect) Cr.
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Figure 4.6: Given the history predict the next direction φ at current location p.

To measure the error in prediction, suppose the object actually exits the

circle at point z. The prediction error is defined as the angle φ = ∠poz. More

accurately, it is min(|φ| , |2π − φ|). See Figure 4.6. Since the scale itself is given,

the essential task here is to predict the right direction from o at scale r, which is

represented as predicting the angle.

The motion prediction itself can proceed according to any machine learning

method. Experiments in Section 4.7 demonstrate that standard prediction tech-

niques based on k-nearest neighbors, linear regression, random forest, gradient

boosting trees work well.

4.6.3 Dimension reduction, correlation and domain analysis

Given that the trajectories are now points in k dimensional Euclidean space given

by θ(T ), standard analytic techniques can be applied to better understand the

trajectories, and to understand the underlying domain from the perspective of the

given trajectories. We can ask, which obstacles are important, or which obstacles

are similar with respect to actual mobility patterns?

Figure 4.5(a) shows a set of trajectories moving in the plane around obstacles

1, 2, . . . , 8. Clearly, there is a natural grouping of obstacles where obstacles 3 and

4 are similar in the sense that they act practically as a single obstacle, since every

trace passes either to the right or left of both. The same holds for pairs (5, 6)

and (7, 8). Obstacles 1, 2 are also similar in the sense that most traces behave
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similarly with respect to both, with only a few passing between them.

These intuitive results can be obtained from standard analytic and visual-

ization methods. Figure 4.5(b) shows the correlation matrix of θ, where darker

shades indicate higher correlation. The correlation lets us have a more abstract

view of the domain, where related nearby holes can be viewed as one.

Techniques like Principal Component Analysis can be applied to the Euclidean

data to determine which dimensions record larger variance – implying larger vari-

ability in how traces traverse the obstacles. We apply this idea to get the intuitive

result in Figure 4.5(c) that obstacles 1 and 2 are clearly more significant than

others as they split a large body of motions.

Greedy filtration of obstacles. A different strategy which is found effective

in experiments, is to greedily select obstacles (dual sources) that maximize the

accuracy for the task at hand.

For example, for nearest neighbor search, this accuracy can be defined as the

fraction of times that the true Fréchet nearest neighbor is contained among the

m nearest neighbors. The greedy strategy will iteratively select the obstacle that

maximizes the total accuracy over all pairs, until it has selected some k obstacles.

For scenarios with large number of obstacle, similar strategies can be implemented

for distributed cluster computation (Mirzasoleiman et al., 2016). The benefit of

this heavy computation is that the signatures become more compact and assuming

the dataset is representative of typical motion, future computations of signatures,

nearest neighbors, predictions etc will be more efficient.

4.6.4 Adaptive resolution signatures

It is natural to ask for representations that give greater weight to recent infor-

mation and less weight to history, for example, for short term prediction. The

signatures can be seamlessly adapted to achieve this using weighted averaging.

Where for each edge traversed by the trajectory, we modify the update rule to

be θi(T ) = β.θi(T ) + (1 − β)ξi(e) for a constant β : 0 < β < 1 that determines

the weight of history in the signature.

In the example in Figure 4.7(a) at point o, the adaptively weighted signature

finds the set γ to be currently more relevant to the query α.



96 Chapter 4. Topological Signatures For Fast Mobility Analysis

Other trajectories
0.00

0.04

0.08

S
ig

n
a
tu

re
 d

is
t.

 t
o
 

(a) (b)

Figure 4.7: (a) Trajectories flow left to right. (b) Distance of α’s signature from

others shows that in near future the set γ is more relevant than the set λ that have

clearly diverged.

4.6.5 Composing signatures

The composability of differential forms means that a set of traces can be repre-

sented in the signature space as a linear combination of the constituent traces

– such as the mean of all the signatures. This simplifies center computation by

creating an abstract ‘center’ that is not a trajectory itself, but can be used to

compare other trajectories to the given cluster or set.

4.6.6 Implementation in distributed and mobile setups

Mobile computers are a natural platform for application of trajectory signatures,

with applications in social mobile networks, autonomous driving, etc. For large

computers in automobiles, the differential forms can be pre-loaded into the mem-

ory, downloaded incrementally as required. In sensor or other dense network

scenarios, the mobile device can obtain local values of ξ from nearby sensors and

devices. The signature is computed and stored incrementally.

The knowledge of signatures allows mobile entities to exchange data with

other nearby ones and predict which ones are likely to have similar behavior.

This is useful, for example, in autonomous vehicles and delay tolerant networks.

The above constructions of differential forms are all naturally implementable

in distributed scenarios like sensor networks. For example, consider a Voronoi

diagram of sensors where they can detect the direction and identity of the objects

crossing the edges of the voronoi graph, as used in (Sarkar and Gao, 2013). The
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sensors maintain the weights on the edges giving the differential forms and as

an object moves between cells, its signature is handed off (similar to hand-off in

cellular network) to the successive sensor. An alternative approach could be for

the sensors to record and store the edge crossings of mobile objects, and compute

the signature on demand by summing along the handoff path.

4.7 Experiments

In this section, we show experimental evidence that the topological signatures

simplify the representation of trajectories and also perform well in clustering,

prediction, and other tasks. The main observations are:

• Nearest neighbor of a query trajectory according to Fréchet distance can

be found efficiently using fast Locality Sensitive Hashing and pruning on

topological signatures.

• Motion prediction of trajectories is accurate and efficient. It achieves similar

accuracy as Long Short Term Memory neural networks (henceforth LSTM),

but provides much faster training and query time. Prediction results are

verified using two real mobility datasets.

• Greedy source selection reduces dimension to get compact signatures, with

minimal loss in quality of analytic results.

• Popular paths or paths with the most number of trajectories in a given

region can be estimated by kernel density estimation on signatures.

• Topological signature based method is robust to sparse, noisy trajectories;

it can predict future direction of mobile objects accurately in trajectories

with many missing data points.

4.7.1 Experimental setup

Datasets. We use two publicly available datasets: Rome Taxi dataset (Bracciale

et al., 2014) and Porto Dataset1. While the former has trajectories of 320 taxis

1https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i
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for a month in Rome, Italy; the latter has trip partitioned trajectories of 442

taxis for one and half years in Porto, Portugal.

Constructing planar graph. The Delaunay triangulation (Edelsbrunner and

Harer, 2010) of 20000 random points in the plane make the planar graph G. Each

GPS point of a trajectory is mapped to its nearest node in G and connecting them

by the shortest path in the graph produces its representation in G.

Identifying obstacles. All faces in G where less than a predefined threshold

number of trajectories pass a boundary edge are considered as obstacles. E.g, the

portion of Rome dataset in Figure 4.8(a) has 67 such obstacles with threshold 2.

In Porto dataset (Figure 4.12(a)), we choose 30 largest regions of low trajectory

density as obstacles.

Constructing differential forms. Dual paths along linear rays with random

slopes from each obstacle yields the differential forms (Section 4.5.2). E.g, in

both Figure 4.8(a) and Figure 4.12(a) 20 dual paths each with weight 0.05 are

constructed from each obstacle.
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Figure 4.8: (a) A region (latitude−[41.8708◦N, 41.8826◦N ] and

longitude−[12.4919◦E, 12.5089◦E]) of size roughly 1km × 1km from Rome

taxi dataset with 1189 sub-trajectories. We detect 67 internal holes (shaded)

using trajectory density threshold as 2.(b) CDF of percentage of times the nearest

neighbor is included in the approximate k nearest neighbors (x-axis) found using

Locality Sensitive Hashing based on topological signatures. With suitable segment

length, Locality Sensitive Hashing can reliably approximate k nearest neighbors to

find Fréchet based nearest neighbor.
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Figure 4.9: (a) Time to run naive Fréchet increases super linearly when increasing the

size of the dataset whereas topological signature method consumes very little time in

comparison. (b) k nearest neighbor query accuracy with 5 obstacles selected using

different source selection strategies.

4.7.2 Nearest neighbor search

Fréchet nearest neighbor of a query trajectory is approximated by the pruning

based on LSH with trajectory signatures using independently chosen 3 sets of 5

linear projection hash functions. This experiment uses each trajectory in Fig-

ure 4.8(a) as a query trajectory in turn.

Figure 4.8(b) confirms that with high probability, Fréchet nearest neighbor is

included in the approximate k nearest neighbors found by LSH. Larger bucket

size naturally yields better accuracy and offers standard accuracy and efficiency

trade-off of LSH.

In efficiency, even including preprocessing time to construct planar graph (15.9

sec), differential forms (20.5 sec), and computing signatures (varies with dataset

size), this method greatly outperforms basic Fréchet based method of computing

distance to all trajectories (Figure 4.9(a)). The Euclidean distance measure is

faster than Fréchet and LSH based pruning makes a query even faster. Fréchet

distance is computed using MDA tool (mda, 2017). The experiments are run on

a typical desktop machine with 8 GB primary memory and Intel i5 processor.

4.7.3 Clustering and estimating density

The signatures are useful to cluster trajectories. Figure 4.10 shows a small exam-

ple with 66 trajectories. The varied types of trajectories are well separated even
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Figure 4.10: Clustering 66 trajectories from Rome taxi dataset using DBSCAN clus-

tering algorithm with neighborhood distance parameter set as 0.25 and minimum

samples to form a cluster is set as 2. To construct the triangulation, 20000 random

points are used, Sources are placed based on the trajectory density threshold as 2.

if they have large portion of overlapping pattern.

High density regions in the signature space correspond to popular topological

types of trajectories. The popular bidirectional traffic flow in Figure 4.11(a)

is neatly identifiable in the estimated density using Gaussian Kernel in Fig-

ure 4.11(b). Clustering can also be applied to anonymize personal data (Zeng

et al., 2017).

4.7.4 Motion prediction

Figure 4.8(a) and Figure 4.12(a) show the datasets from Rome and Porto respec-

tively used in prediction experiments. With randomly chosen 90% trajectories

as training, we predict direction φ for different scales r on each test trajectory

where current location o is randomly chosen from middle 1/3rd of its length. The

prediction error is measured as described in Section 4.6.2.

Using topological signatures, next direction is predicted as the mean direc-

tion φ of k nearest training trajectories that pass within 20 meters of o. The

nearest neighbors are computed using kd-tree on the space of signatures with the
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Figure 4.11: Detecting popular topological types using kernel density estimate of the

trajectory signatures. (a) Portion of trajectories from (Bracciale et al., 2014) with

1809 trajectories (area 1km × 1km). The busiest road in this map is easily visible.

Two signature sources are manually placed in the map. (b) Two hotspots in the

kernel density estimate denotes the two way traffic on the busy road.

training trajectory segments ending near o. In both Porto and Rome datasets,

our method attains high accuracy even with small number of nearest neighbors

(Figure 4.12(b)) and large prediction radius (Figure 4.13).

As a benchmark we use neural networks with LSTM as regressors (Gers et al.,

2000) to predict φ, given equi-spaced 20 locations on the trajectory between o and

start of the trajectory. Each model has two layers of 20 LSTM cells followed by

a fully connected layer with 100 rectified linear units. With a squared error loss

function we train these models with a variant of stochastic gradient descent for

50 epochs using a batch size of 32 with the standard optimizer settings (Diederik

P. Kingma, 2015). Figure 4.14(a) shows that simple k-NN on topological signa-

tures achieve similar accuracy as LSTM, implying that the topological signatures

in fact encode the critical intrinsic features that determine motion.

Figure 4.15 shows that topological signature based prediction is more efficient

than LSTM in terms of both preprocessing and query time. Before answering

queries, whereas our method requires to setup planar graph, identify obstacles,

and create differential forms; LSTM requires data preprocessing and training.

Although our method needs to find k nearest neighbors at query time, it offers

faster query than LSTM. We use TensorFlow for implementing the LSTM (Abadi

et al., 2016). All experiments are run on a typical desktop machine with 8 GB
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Figure 4.12: (a) A region latitude–[41.1468◦N, 41.1699◦N ] and longitude–

[8.62931◦W, 8.60411◦W ] of size 2.5Km × 2.1Km from Porto dataset with 3952

trajectories. Among 101 regions with low trajectory density (threshold 2), we con-

sider largest 30 to be obstacles. (b) In Porto dataset, topological signature based

method accurately predicts next direction even with small number of nearest neigh-

bors. Here, r = 100 meters.

primary memory and Intel i5 processor. Note that with increasing dataset size,

the number of queries also increase as we randomly choose 10% of the trajectories

in the dataset as test data. Figure 4.15(b) shows that with increasing number

of queries, the query time for our topological signature based method increases

linearly whereas the LSTM based method needs super-linear query time.

Popular regression techniques, Random Forest, Gradient Boosting Trees, and

Linear Regression also predict φ well given the current location o and topolog-

ical signature of trajectory segments ending at o. High prediction accuracy of

these methods in Figure 4.14(b) suggests that using topological signatures, the

plethora of knowledge about these well studied methods can now be leveraged

for trajectories and mobility analysis.

4.7.5 Signature source selection

In domains with large number of obstacles, the signatures will have correspond-

ingly large size, losing the benefits of compact representation. We found that in

practice, differential forms with respect to a small number of sources suffice to

accurately capture the motion.

Figure 4.9(b) compares different signature source selection strategies in Rome
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Figure 4.13: Topological signature based method can accurately predict next direction

even for large r in (a) Porto dataset and in (b) Rome dataset. Here, k = 4 neighbors.
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Figure 4.14: (a) Topological signature based method attains similar accuracy as

LSTM. (b) Popular regression methods using topological signatures achieve similar

high accuracy.
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Figure 4.15: (a) Preprocessing and (b) query time. Both increase slowly for topo-

logical signature based method compared to LSTM, with dataset size.

dataset from Figure 4.8(a); different strategies can select small number of sig-

nature sources to attain high nearest neighbor query accuracy. Specifically, this

experiment compares the following strategies: i) all faces in G with low trajec-

tory density (holes) are signature sources, ii) k largest holes, iii) greedy selection

as described in Section 4.6, and iv) randomly choose k sources from all faces

in G. This result demonstrates that trajectories in a complex domain can be

represented by simple low dimensional topological signatures.

In this experiment, we describe an important insight into the strategy to re-

duce the dimensionality of the signatures and thus the computational cost of our

framework and further learning systems. In the Figure 4.9(b) we see that con-

sidering all holes naturally gives highest accuracy. Interestingly, the accuracy is

almost preserved if only 5 randomly chosen obstacles are kept out of 66 obstacles.

This enables an application developer to increase the efficiency of the system by

choosing suitable trade-off between accuracy and efficiency.

4.7.6 Robustness to sparsity

Mobility traces differ in sparsity of constituent entities due to varied location

sampling frequency. In this experiment, the dense GPS traces are made sparse

by randomly retaining location points at fixed rates. The Figure 4.16 shows that

our method can accurately predict motion in trajectories with missing locations.
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Figure 4.16: Predicting locations with sparse trajectories: Each location point is re-

tained with certain probability in each trajectory. Our method achieves high prediction

accuracy even with sparse trajectory.





Chapter 5

Publishing Differentially Private

Spatial Data From Distributed

Sensors

This chapter focuses on publishing sanitized location stamps of independent

events recorded by spatially distributed sensors. We design differential privacy

mechanisms for two scenarios, to protect accurate locations of the events and

their occurrences. Proposed mechanisms are based on location displacement and

inclusion of fake events. They are designed to maintain a balance between privacy

and utility for spatial range queries. Our algorithms allow distributed operation

and maintains utility for any number of queries.

Previously in Chapter 3 we discussed how to protect event timings in a time

series. Here, we do not consider the temporal attributes in the events and describe

how to protect privacy for their spatial attributes. All these mechanisms can be

augmented with the algorithms in Chapter 3 to attain privacy for spatiotemporal

range queries.

5.1 Introduction

Here, we are concerned about the data collected by distributed sensors. Examples

of such data include location snapshots of a population, events detected by traffic

sensors, occupancy and motion sensing information etc. After the collection,

events are delivered to the aggregator services, where they are subject to queries

and analysis by users of the service. In the process, implicit sensitive information

107
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can leak or be inferred in spite of best intentions and security. In some cases, users

of the service may be malicious and aim to find information not intended to be

disclosed. Therefore, in this chapter, we propose mechanisms to protect privacy

of spatial attributes, especially we consider statistical guarantees in privacy and

utility in publishing such sensor data to an aggregator and performing counting

range queries.

We discuss two types of privacy to sanitize spatial attributes. First, we hide

the accurate location of an event. Suppose, the adversary has the prior knowledge

that an event had occurred and has a rough idea of where the event could have

happened. Using spatial attributes of the published events, he will try to localize

the event location with more accuracy. Our claim in this setting is that, with

the proposed privacy preserving publishing algorithm, the adversary will not be

able to localize any event location with vulnerable accuracy. Further, consider

a setting where the adversary knows the location where an event could have

happened and wants to know if the event had occurred there in the first place.

So, we propose sanitization algorithms to hide occurrence of any event in the

database.

Most of the current differential privacy mechanisms consider the centralized

setting when all data is placed in a secure database which supports interactive

queries to the database. Before the query result is returned to the proposer, noise

is carefully introduced to protect user privacy. This framework faces challenges

in spatial sensing setting. It is unclear if we can always assume a trusted ag-

gregator or a trusted communication channel. It is highly desirable that data is

sanitized close to the source, before it reaches an untrusted medium. However,

since the answer to a query can be a function of data from multiple sensors, a

local mechanism is required in coordinating the privacy mechanism employed by

the sensors. Therefore, we develop differential privacy schemes with these models

and considerations in mind.

In Subsection 5.4.1, we show a method for achieving differential privacy of

localized events by means of collaboration between sensors. In this case, the

spatial privacy of events is achieved by sending them on a random walk of W

steps for a given constant W , where the final sensor on the walk claims the event

as its own. This method is shown to achieve (ε, δ)-differential privacy, if we choose

W as a function of ε, δ. See Figure 5.1. This approach makes it difficult for either

the aggregator or even a wireless snooping adversary to localize the real event
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s

s′

Figure 5.1: To avoid the aggregator/collector knowing the location of the sensor

generating the event, the source s uses a random walk to send the message to a node

s′ who delivers to the aggregator instead. The nodes in the network might also report

fake events as shown in gray arrows.

source. From system perspective, this mechanism protects against untrusted

aggregator but needs the inter-sensor communication channel to be trusted.

When the inter-sensor communication is also vulnerable then it is difficult

to apply the above random walk mechanism. Here, we develop a mechanism

involving a stream of spurious, or fake events introduced from a Poisson process

with a rate λ dependent on the privacy requirement. This mechanism is an

extension of the fake event augmentation mechanism discussed in Chapter 3 in

2D spatial dimension. This approach is proved to provide differential privacy

of counting range queries for λ = O
(

1
ε2

log 1
δ

)
, while providing accurate results.

One nice property is that the intensity magnitude λ of the added noise is only

relevant to the privacy guarantee and the absolute error in data utility, and is

independent of the real event distribution.

In Section 5.5, we experimentally compare the utility of our algorithms against

the local privacy mechanism proposed in (Chan et al., 2011). Although the

method was developed for 1D temporal sequences, we extend it to 2D spatial

range queries for our purposes in Subsection 5.4.3. However, this mechanism is

not suitable for publishing data. We use a real world dataset of geo-located tweets

in and around London. Experiments show that our approaches provide accurate

results for range queries in all cases.

In the following, we first discuss the existing research results in Section 5.2,

background material and models in Section 5.3 before moving on to the algo-

rithms.
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5.2 Related Work

Differential privacy was first proposed in (Dwork et al., 2006), where user data

are collected by a trusted aggregator and Laplace noise are added before the

aggregator releases the data to achieve differential privacy. After that, there has

been a plethora of works on releasing different types of data under differential

privacy.

(Andrés et al., 2013) introduced geo-indistinguishibility, a generalized version

of differential privacy for location information, where using planar Laplace noise,

any two locations within a given distance produce observations with similar dis-

tributions. Differentially private data aggregation in crowd sensing system is

analyzed in (Jin et al., 2016; Yang et al., 2018).

Spatial decomposition under differential privacy. (Cormode et al., 2012)

proposed a geometric budget strategy, adding noise with geometric distribution

at each level of quad-tree for private spatial range queries. If h is the height of

the tree (leaves are on level 0), then Lap(εi) noise is added to the true count

of each quad-cell on level i, where εi = 2(h−i)/3 3√2−1
2(h+1)/3−1

. The upper bound for

the variance of a range query is 2h+7/ε2. (Qardaji et al., 2013) analyzed query

errors on uniform grids, which consists of two sources of errors. One is the error

is introduced by adding random noise from Laplace distribution, and the other

from the assumption that the data points are distributed uniformly in a cell.

If there are N points and the domain is partitioned into a m × m uniform

grid, the error, determined by standard deviation, is
√

2rm/ε+
√
rN/mc0, where

r is the ratio of the area of the query over the whole domain, c0 is constant.

To minimize the error, m = O(
√
Nε) is suggested. They further proposed an

adaptive grids methods to adjust the size of the grids considering the density of

data. Further works on uniform grids can also be found in (Wang et al., 2018).

Local differential privacy. Most works under differential privacy are in the

setting of central model, where a trusted aggregator is present. In the notion of

local differential privacy, first proposed by (Kasiviswanathan et al., 2011), data

sources sanitize their own data with differential privacy mechanism before sharing

with the aggregator. It is widely adopted, for example in (Erlingsson et al., 2014;

Bittau et al., 2017). However, the partial sum mechanism does not suit our

purpose of data publishing as the amount of noise is decided based on the query.
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5.3 Models and problem descriptions

5.3.1 System Model

The typical entities in a distributed sensing scenario are:

• Sensors : A sensor detects events generated in the physical environment.

This detection could be through wireless connectivity, from visual sensing,

or other sensing modalities. We assume that the sensors detecting the events

are connected by suitable communication technology.

• Aggregators : an aggregator is a service provider who collects data from the

sensors and responds to an aggregation query, such as a range counting

query – report the number of events that happened within a geographical

domain.

• Query makers : A user can issue queries to the aggregator to infer knowledge

about the event counts and patterns.

In a typical setup, data from sensors are sent to the aggregator. The query

maker then queries the aggregator to obtain information. The data that the

sensors transmit can be raw data, or aggregated ones. Depending on the trust-

worthiness of the aggregator or communication channels, the sensors may need

to sanitize data before transmission.

5.3.2 Trust Model

Depending on the applications, there could be different levels of trust between

the entities:

• Trusted aggregator. The most trusted scenario, where the aggregators and

all communications upto them are trusted and secure. This is closest to

the common differential privacy model, where only the query maker is un-

trusted, and the aggregator can perform centralized computations on col-

lected data. We do not design algorithms for this setting in this chapter,

but we compare with solutions of this setting in the evaluation section.

• Trusted sensors. In this model, the sensors trust each other, but not the

aggregator or the communication channel to the aggregator. As a result,
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query results sent to the aggregator must be sanitized. However, the sensors

are allowed to perform in-network computations and apply sanitization to

partial results. Section 5.4.1 discusses a privacy mechanism suitable for this

setting.

In this setting, we assume that the sensors are aware of other nearby sensors

in the system, can send encrypted messages to each other, and a routing

mechanism for inter-sensor communication is present.

• Untrusted sensors. Where the sensors, or communication between them, are

not trusted. Any data going out of a sensor must be sanitized. Section 5.4.2

addresses privacy concerns in this setting.

5.3.3 Distributed Event Model

We consider a bounded domain with a set S of stationary check points or sensors

that monitor and collect events. For any event e, we write L(e) for the location

of the event. Depending on the setup, the location may be an arbitrary location

in the plane (e.g. location of an accident), or they may be location of the sensor

s that detected the event, if finer localization is not required. Our algorithm in

Section 5.4.2 is designed for the former setup, and the algorithm in Section 5.4.1

considers the later.

The location attributes of the events can be modeled as a point process, a

special case of which is when the events are independent, i.e., the Poisson process.

More generally, the events may not have a uniform rate at all locations. This is

captured by a non-homogeneous Poisson process.

We skip the definitions of variety of Poisson processes here as they are dis-

cussed in Chapter 3. A sequence of random events at a sensor follows a Poisson

distribution with only temporal attribute. The location of events in any subset

of the geographical domain follows a Poisson distribution in 2D, while in the

spatiotemporal events will follow a Poisson distribution in 3D.

5.3.4 Privacy and Utility Models

To elaborate the challenges of this problem, consider existing solutions for pro-

tecting data privacy. First, any cryptography based solutions that encrypt the

message content cannot help with protecting the location of the events directly.
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For example, an adversary can know the location of an event by snooping the

vulnerable communication medium. Second, we may consider limiting the loca-

tion resolution of the reports. However, it is difficult to decide the resolution and

shape of discretization and this introduces inaccuracy in the analysis. Therefore,

we rigorously define the protection on spatial attributes in terms of differential

privacy, which requires revision and adaptation of the differential privacy defini-

tions.

We measure the utility of the data using counting range queries because they

are fundamental in many machine learning and data mining algorithms. This

chapter considers axis aligned rectangular range queries as defined below.

Definition 5 (Range query Q(R)). Given a rectangular range R = [x1, x2] ×
[y1, y2], report the number of events in the range: |{e : L(e) ∈ R|.

We have discussed the background of differential privacy in Chapter 3 and

therefore skip it here. Both the mechanisms proposed in the following sections

publish the event location stamps.

5.4 Algorithms

5.4.1 Location Privacy using Random Walks

Here, we obfuscate the accurate location of an event by attributing the event to

a different sensor location than the one that recorded it. We get this spurious

location via a random walk on the sensor network.

Let D be a collection of datasets of events. The spatial data publication

process of events is a function, g : D → (R× R)N, that takes a dataset of events

as input and outputs their sanitized locations.

Definition 6 (Spatial neighboring datasets). Let D,D′ ∈ D, L = g(D), L′ =

g(D′). D,D′ are spatial neighboring datasets, if all pairs of locations in L and L′

are the same, except one pair ` ∈ L and `′ ∈ L′, that ` 6= `′ and ||` − `′||1 ≤ ∆

for a suitable privacy parameter ∆ > 0.

We assume that the location of an event is known to the nearby sensor detect-

ing the event. For simplicity, let us consider sensors on a grid. In a real network,

such grids can be simulated as a virtual grid, where each virtual node is managed

by the sensor whose sensing range covers the location of the virtual node.
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(x,y)

(x+1,y+1)

(x+1,y-1)

(x-1,y+1)

(x-1,y-1)

Figure 5.2: A sensor located at (x, y) (red) sends the event to one of its four neighbors

(blue).

The algorithm works as follows: When a sensor detects an event, it does not

directly report to the aggregator, but randomly sends a message describing the

event to one of its neighboring sensors, with a TTL (time-to-live value) set to

W . The neighboring sensor decrements the TTL and forwards the message to

a random neighbor again. The sensor that receives the message with TTL = 0

sends the message to the aggregator with its own location.

Let us take the grid as shown in Figure 5.2. A sensor with coordinate (x, y)

has four neighbors located at (x + 1, y + 1), (x + 1, y − 1), (x − 1, y + 1), and

(x− 1, y− 1). When a sensor detects an event, it chooses one from the neighbors

with equal probability to forward the event. This process can be viewed as making

two independent random moves along x and y axes, resulting in two independent

random walks on horizontal and vertical coordinates.

Let us consider the walk on the x coordinate. Assume that a random walk

starts at x, and let Xi ∈ {−1,+1} denote the movement of step i. After W

steps, the position SW =
∑W

1 Xi, SW follows a binomial distribution, E(SW ) = 0,

Var(SW ) = W . With Chebyshevs inequality, Pr[|SW − E(SW )| ≥ Q] ≤ Var(SW )
Q2 ,

we have the following lemma.

Lemma 4. Pr[|SW | ≥ Q] ≤ W
Q2 .

To establish differential privacy, we consider the probability that walks orig-
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inating at two different sensors terminate at the same sensor. Notice that only

sensors that are even steps away can come to the same position after W steps.

We can make each sensor move W or W + 1 steps with half chance.

Theorem 8. The random walk mechanism achieves

(ε, δ)-differential privacy for W ≥ 1
δ

(
∆
ε

+ 1
)2

.

Proof. We have two spatial neighboring data sets D,D′; L = g(D), L′ = g(D′).

For the only different pair ` = (x, y) ∈ L and `′ = (x′, y′) ∈ L′, ||` − `′||1 ≤ ∆.

Therefore, ||x − x′||1 ≤ ∆, ||y − y′||1 ≤ ∆. Since the horizontal random walk is

independent, now we just focus on the horizontal one.

xx’ x+U

Z U

Figure 5.3: Two random walks starting at x, x′ with distance Z, after W steps, stop

at the same position x+ U .

Assume x > x′, x− x′ = Z. Now we analyze the probability that the random

walks starting from x and x′ both arrive at x+U after W steps, shown in Figure

5.3, denoted as Pr[x+U | x] and Pr[x+U | x′], where U =
√

W
δ
−∆. In Lemma

4, let Q = U + ∆, we have

Pr[|SW | ≥ U + ∆] ≤ W

(U + ∆)2
= δ.

That is, with probability 1− δ, the horizontal shift of the random walk starting

from both x and x′ after W steps are within U+∆. We also have W ≥ 1
δ
(∆
ε

+1)2 ≥
1
δ
( 2

exp( 2ε
∆

)−1
+ 1)2, since exp(x) ≥ 1 + x.

Pr[x+ U | x]

Pr[x+ U | x′]
=

(
W

W+U
2

)
(1

2
)W(

W
W+U+Z

2

)
(1

2
)W

=

W !
(W+U

2
)!(W−W+U

2
)!

W !
(W+U+Z

2
)!(W−W+U+Z

2
)!

=

Z
2
−1∏
i=0

W+U+Z
2
− i

W−U
2
− i

≤
(
W + U + Z

W − U − Z

)Z
2

≤
(
W + U + ∆

W − U −∆

)∆
2

=

W +
√

W
δ

W −
√

W
δ


∆
2

≤

( 1
δ
( 2

exp( 2ε
∆

)−1
+ 1)2 + 1

δ
( 2

exp( 2ε
∆

)−1
+ 1)

1
δ
( 2

exp( 2ε
∆

)−1
+ 1)2 − 1

δ
( 2

exp( 2ε
∆

)−1
+ 1)

)∆
2

=

( 2
exp( 2ε

∆
)−1

+ 2

2
exp( 2ε

∆
)−1

)∆
2

= exp(ε)
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Therefore, the random walk mechanism in one dimension achieves (ε, δ)-

differential privacy. Since the random walk on horizontal and vertical directions

are independent, we conclude that the random walk on two dimension grids also

achieves (ε, δ)-differential privacy.

The following lemma shows that the displacement to an event’s location due

to the random walk is bounded, and therefore, the spatial perturbation process

does not significantly change the event distribution.

Lemma 5. When achieving (ε, δ)-differential privacy, with probability 1−δ, after

W steps, the Euclidean distance between the sensor reporting to the message and

the original sensor detecting the event is at most
√

2
δ

(
∆
ε

+ 1
)
.

Proof. In the proof of theorem 8, for the random walk on one dimension, if

W ≥ 1
δ

(
∆
ε

+ 1
)2

, we have |SW | satisfies,

|SW | ≤
√
W

δ
≤ 1

δ

(
∆

ε
+ 1

)
.

Therefore, the euclidean distance for the random walk in two dimension is at

most
√

2
δ

(
∆
ε

+ 1
)
.

The random walk mechanism, in addition to perturbing the events to a suit-

able distribution, has additional privacy properties. In Scenarios where an adver-

sary can sense transmissions from sensors, such random walks generated by many

sensors can help to obscure the source of events, particularly when mixed with ac-

tivities of fake events described in the next section. Such mixing methods are used

in the TOR network and known to effectively obscure message sources(Piotrowska

et al., 2017).

The results for homogeneous temporal and spatial Poisson processes in this

section can be applied to non-homogeneous Poisson processes by changing the

sensitivity according to the intensity function, and operating according to the

local intensity value.

5.4.2 Poisson Process for Event Privacy

For the setting where the sensors can not trust each other, the above method

do not apply. Here, we model the real event sequence by a non-homogeneous
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Poisson process with spatial intensity function λ(Σ), where Σ are the parameters

for space. This model closely relate to the privacy preserving method presented

in Section 3.5.2. Events there follow a non-homogeneous Poisson process with a

one dimensional intensity function.

To protect the occurrence of a single event using differential privacy, the fol-

lowing algorithm, AD(R), is designed. Here, D is the input dataset and R ⊆ R2

denotes the domain range. Augment D with N ′ fake events uniformly distributed

over the domain where N ′ follows a Poisson distribution with intensity function

λ(Σ). Then given a range R, the algorithm AD(R) outputs the total number of

events (real and fake) inside the range, R.

We first prove that the above algorithm satisfies differential privacy.

Theorem 9. AD(R) is (ε, δ)-differentially private, when Λ = O
(

1
ε2

log 1
δ

)
, where

Λ denotes the integrated intensity over the range, R, i.e., Λ =
∫
R
λ(s)ds.

Proof. For simplicity of the proof, let’s consider one dimensional data along real

line R. Note that the below argument hold for two dimensional space as the Pois-

son process is trivially extended to two dimension considering a two dimensional

intensity function.

Consider two neighboring datasets D and D′ (one dimensional data). Without

loss of generality, assume that D has one additional event at τ . Now, any query

range not containing τ have the same probability for all the outputs given the

input datasets D and D′.

Now, consider a query interval, I, containing τ . To have the same outputs

given input D and D′, AD′ need to introduce one more fake event than AD.

Therefore,

Pr[AD(I) = N ]

Pr[AD′(I) = N ]
=

exp
(
−Λ (Λ)N

′

N ′!

)
exp

(
−Λ (Λ)N′+1

(N ′+1)!

) =
Λ

N ′ + 1
,

where N ′ is the number of fake events introduced by AD.

Let’s partition the range of the values of N ′, into two parts N1 and N2.

Let, N1 = {x ∈ N| |Λ− x| ≤ Λ(1 − e−ε) + 1} and N2 = {x ∈ N| |Λ− x| >
Λ(1− e−ε) + 1}.

Let α = Λ(1− e−ε) + 1. For N ′ ∈ N2, using Lemma 1 we have,
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Pr[|N ′ − Λ| ≥ α] ≤ 2 exp

(
− α2

2(Λ + α)

)
=2 exp

(
− (Λ(1− e−ε) + 1)2

2(Λ(2− e−ε) + 1)

)
≤ 2 exp

(
−Λ(1− e−ε)2

2(2− e−ε)

)
≤ δ,

where Λ =
2(2−e−ε) log 2

δ

(1−e−ε)2 , which is O( 1
ε2

log 1
δ
) when ε is small.

For N ′ ∈ N1, we have

Pr[AD(I) = N ]

Pr[A′D(I) = N ]
=

Λ

N ′ + 1
≤ Λ

Λe−ε − 1 + 1
= eε.

Therefore, combining above equations we have,

Pr[AD(I) = N ] = Pr[N ′ ∈ R1] + Pr[N ′ ∈ R2]

≤ eε Pr[AD′(I) = N ] + δ

Publishing data. The above sanitization algorithm AD(R) can be considered

for publishing data; If one considers query for all possible intervals it is equivalent

to publishing the events. Practically, each sensor can publish the union of the

real and fake events and the published data would preserve differential privacy

as argued above.

Answering Range Queries. Now, we design an algorithm, Q(AD(R)), to

accurately answer range queries based on the results published by AD(R). As in

the most security and privacy settings where the algorithms and their parameters

are all public except the specific random choices the algorithms make, consider

ε, δ, and the event intensity λ are known.

Counting query on a spatial range R = [x1, x2] × [y1, y2] is estimated as

AD(R) − Λ, where Λ =
∫ x2

x1

∫ y2

y1
λ(s)ds. Let’s denote AD(R) as n for simplic-

ity.

Let’s denote the count of real events inside the range R in the dataset D as n∗.

Now, n∗− n gives an unbiased estimator for n∗, by the well known superposition

theorem. We present the main statement below.

Theorem 10. Superposition Theorem (Kingman, 1992; Grimmett and

Stirzaker, 2001). The superposition of independent Poisson point processes

N1, N2, · · · , Nm with mean rates Λ1,Λ2, · · · ,Λm respectively is a Poisson point

process with mean rate of Λ =
∑m

i=1 Λi.
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Now we analyze the utility of our algorithm.

Lemma 6. The algorithm QS, for a probability 0 ≤ β ≤ 1, gives the following

range query error

Pr

[
|QS(A(R))− n∗| ≤ log

2

β
+

√
log2 2

β
+ 2Λ log

2

β

]
≥ 1− β.

Proof. Notice that QS(A(R)) is n − Λ. The count of fake events, n − n∗, fol-

lows the Poisson distribution with mean Λ. Therefore, applying α ≥ log 2
β

+√
log2 2

β
+ 2Λ log 2

β
in Lemma 1, we have 2 exp

(
− α2

2(Λ+α)

)
≤ β. Therefore,

Pr

[
|n− Λ− n∗| ≥ log

2

β
+

√
log2 2

β
+ 2Λ log

2

β

]
≤ β.

Rearranging we get the lemma.

Theorem 11. If Λ = O
(

1
ε2

log 1
δ

)
, QD(A(R)) estimates the counts of real events

with error O
(√

1
ε2

log 1
δ

log 1
β

)
, with probability 1− β.

Replacing the value of Λ in the above Lemma gives the theorem.

Extension to spatiotemporal data. Poisson process is trivially extended to

spatiotemporal dimension by using suitable intensity function in three dimen-

sions. The spatiotemporal sanitization mechanism can generate fake events to

obfuscate both the accurate location and timing. This method is suitable for

realtime data analysis.

5.4.3 Extending Psum Method to Spatial Dimension

Here, we extend the results from (Chan et al., 2011) designed for temporal queries

to spatial dimension and we compare its accuracy with our algorithms in the

experiments.

Let’s assume that the sensors are positioned on a
√
m×
√
m unit square grid.

An event occurring at location (x, y) is recorded by the sensor nearest to (x, y); for

multiple nearest sensors we choose one arbitrarily. Suppose, S(x, y) ∈ N denotes

the number of events recorded by the sensor at grid location (x, y).

To protect the presence of a single event in the dataset, differential privacy

considers neighboring dataset S and S ′ that have event count differing by 1 at

one sensor.
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Similar to the binary mechanism in (Chan et al., 2011), a quadtree (Samet,

1988) can be constructed over S and any range query can be answered by adding

the canonical ranges of the query range; Let’s call these sums as partial sums.

Thus, a change in a cell S(x, y) affects at most dlog2me queries.

The randomized mechanism A adds Laplace noise with b = logm/ε to each

partial sum. We now analyze the privacy and utility of this mechanism.

Theorem 12 (Differential privacy). The above mechanism preserves ε-

differential privacy.

Proof. It is easy to see that for a single query, the above mechanism preserves
ε

logm
-differential privacy. As there can be at most dlogme queries affected by this

change, sequential composition of the differential privacy gives the theorem.

Before analyzing the utility of the method, we need the following lemma

Theorem 13 (Utility). For a spatiotemporal range query, the error of the above

mechanism is O
(

log1.5
2 m

ε
log 1

β

)
with probability 1− β.

Proof. Corresponding to noises at partial sums, a query accumulates total noise

from dlog2me Laplace distributions each with bi = logm/ε. This gives the theo-

rem.

5.5 Experiments

This section describes experiments showing that the privacy preserving mecha-

nisms for the proposed algorithms. Highlights of the results are

• Proposed methods are more accurate for range queries than existing con-

tinual release methods for same privacy guarantees.

• Privacy preserving mechanisms work in real datasets of geo-located tweets.

5.5.1 Experimental Setup

Dataset. We use a publicly available dataset of 9, 267 Geo-located tweets from

London, UK1.

Evaluating utility using range queries. Range queries are fundamental to

mining and learning methods and thus used here as the measure of utility of the

1http://followthehashtag.com/datasets/170000-uk-geolocated-tweets-free-twitter-dataset/
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sanitized data. Each experiment uses 5000 uniformly chosen query ranges and

the experiments are repeated 10 times to capture confidence in the result. If the

count of events in a query range with n events is estimated as ñ, then the error in

estimation is ξ = |n−ñ|
ñ

. The relative error is symmetric with respect to addition,

i.e., estimating n+ ∆ and n−∆ incur same error.

5.5.2 Evaluating Random walk based algorithm

This subsection evaluates the mechanisms proposed in Section 5.4.1 for publishing

spatial events.

Accuracy for spatial range queries. Figure 5.4(a), (b), and (c) show how

relative error changes for spatial range queries on the spatial data publish model.

The range queries are accurate for reasonable privacy, i.e., with large ∆ and small

ε and δ values.

5.5.3 Evaluating Poisson Process based algorithm

This section describes experiments corresponding to methods proposed in Sec-

tion 5.4.2.

In this setting, the the space is divided into cubic grid cells indexed by (x, y)

with spatial resolution as 50 meters. Each event is mapped to its nearest grid

point and the intensity of the fake events at each cell is determined using Theo-

rem 9. The events are sanitized using the mechanism described in Section 5.4.2.

Relative error, ξ increases with increasing privacy as shown in Figure 5.5(a) and

(b) by varying ε and δ.

Spatial privacy for synchronous model. This section evaluates range queries

in synchronous setting described in 5.4.3. The space-time is divided into a gird,

with the spatial resolution being 50 meters. A quadtree is built on this grid and

a query is answered by aggregating counts of the partial canonical ranges.

Compare utility of methods. In Figure 5.6, we notice that the spatial partial

sum method achieves lowest error for range queries compared to privacy preserv-

ing mechanism with Poisson process method and naive Laplace perturbation.

The naive Laplace perturbation algorithm first computes the accurate answer to

the range query and then adds Lap(m)/ε noise in a domain with
√
m×
√
m grid.

Also note that neither the naive Laplace mechanism nor the partial sum method



122Chapter 5. Publishing Differentially Private Spatial Data From Distributed Sensors

10 3 10 1 101

Relative error ( )
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

= 0.5
= 0.1
= 0.05

10 3 10 1 101

Relative error ( )
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

= 0.5
= 1
= 2

(a) (b)

10 3 10 2 10 1 100 101 102

Relative error ( )
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

= 1
= 2
= 4

(c)

Figure 5.4: (a,b,c) Accuracy of spatial range queries for random walk based sani-

tization. (a) CDF of the relative error for varying δ with ε = 1 and ∆ = 1. (b)

varying ε with δ = 0.05 and ∆ = 1. (c) varying ∆ with ε = 1 and δ = 0.05. All

of these figures show natural privacy-utility trade-off and utility is well-preserved for

reasonable privacy.
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Figure 5.5: CDF of the relative errors for range queries (a) using the mechanism for

adding Poisson noise events. (a) Error decreases with increasing ε. Here, δ = 0.05

(b) Error decreases with increasing δ. Here, ε = 1. These shows natural trade-off

between privacy parameters and utility.
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Figure 5.6: The spatial partial sum method achieves lowest error for range queries

compared to Poisson process based method and naive Laplace mechanism. All meth-

ods have ε = 1 and Poisson noise method has δ = 0.05. All comparing methods

discretize space-time using spatial resolution of 50m. However, note that except our

Poisson process based method, the rest are not suitable for publishing data.

can support data publication as both these methods need to add noise to the true

answer.
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Conclusion and Future Directions

Sensing using IoT devices and mobile phones have proliferated in pervasive areas

of modern day living (Gubbi et al., 2013). Fundamental learning techniques such

as the ones proposed in this dissertation will be of interest for years to come.

In this dissertation, we present multiple learning algorithms for spatiotemporal

sensing data. The algorithms are efficient with online and distributed computa-

tion. They preserve individual privacy and learn aggregate knowledge from the

data. This chapter presents the concluding remarks and brief ideas on related

open research areas.

Learning periodicity from noisy streams. We have demonstrated the use of

a sequential Monte Carlo method to detect and track the periodicity in discrete

event streams. Unlike other methods, this technique does not rely on the under-

lying process sticking to a constant phase. As a result, it adapts to noise and

changes in the period very quickly. Experiments show this method to be more

accurate and efficient than existing methods for detecting periodicity in noisy

event streams.

Our basic approach is quite general and can be adapted to detect and char-

acterize more complex temporal patterns. Doing so will require a more flexible

class of event-generating functions, which we expect will be a fruitful area for

future research.

Many applications require inference from an aggregate signal contributed by

multiple periodic signals. Examples include forecasting demand for an item (e.g.,

shampoo) at a super market. Many users buy shampoos at regular intervals,

although their phases and intervals are dynamic. It is interesting and as well as

challenging to analyze the interweaving pattern in the data. Frequency analysis
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techniques are not applicable due to dynamic phases and periodicity in each sig-

nal; Markov models become complicated for high dimensional data. It is possible

to treat the signal as a univariate signal of demands and apply regression tech-

niques, but that misses the structure provided by the periodicity in individual

user’s buying patterns.

Chapter 2 empirically shows that the algorithm works in real and artificial

data, but a rigorous mathematical analysis would be required to characterize

the algorithm, for example, lower bound of the number of events required for

convergence, the number of particles needed for robust operation, etc.

Private Sensing of Asynchronous Event Sequences. In Chapter 3, we

proposed multiple privacy preserving mechanisms for protecting individual event

timings and hiding the occurrence of an event. The proposed framework uses con-

temporary Pufferfish definition of privacy – a generalization of differential privacy

– and supports asynchronous event timings. The mechanisms add considerably

less noise than the existing algorithms to achieve the same privacy guarantee.

We also proposed a system design to implement the framework in mobile phones.

Multivariate event streams that carry interrelations are harder to sanitize as they

may contain a complex relation between attributes, and this remains to be inves-

tigated in future works.

Topological Signatures For Fast Mobility Analysis. In Chapter 4, We pre-

sented a topological framework to represent a trajectory as a point in a Euclidean

space, enabling natural applications of well established machine learning and min-

ing techniques. The topological construct preserves relevant qualitative features

in trajectories while ignoring the extraneous details and noise. The framework

can be set up using fast distributed algorithms and used in an online manner

by mobile entities. The framework is quite general and flexible, and it allows

application specific choice of obstacles and domains.

The proposed framework uses the obstacles and designs a method to infer

obstacles from trajectory data (no or less mobility correspond to obstacles), how-

ever, further study is needed to characterize the obstacles in a domain. This

would provide insight to causality behind mobility (Cobb et al., 2017).

Many applications like driver-less cars need to consider dynamic obstacles

(other vehicles and pedestrians on road). Our framework does not trivially extend

to dynamic obstacles and needs further work.
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Time is an essential attribute in mobility traces for many applications. How-

ever, it is nontrivial to extend our framework to the temporal dimension because

of the uni-direction property of time (Ghrist and Krishnan, 2017). Therefore, it

needs further study to analyze spatiotemporal trajectories using topology.

Publishing Differentially Private Spatial Data From Distributed Sen-

sors. In Chapter 5, we proposed a differentially private sensing framework for

spatial data publication. The proposed framework supports distributed operation

and has good privacy and utility guarantees for independent events. However,

in many applications, spatial events are correlated, for example, occupancy re-

lates to mobility and locations in a trajectory, etc. Due to the correlation in the

data, traditional differential privacy frameworks do not apply and therefore, need

further investigation.

Moreover, the algorithms in this chapter apply to axis aligned rectangular

queries where sensors are arranged on a grid. Further study is required to support

more realistic general graph topology and general shaped ranges.
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