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Abstract

This thesis investigates how through experience the brain acquires and stores memo-

ries, and uses these to extract and modify knowledge. This question is being studied

by both computational and experimental neuroscientists as it is of relevance for neuro-

science, but also for artificial systems that need to develop knowledge about the world

from limited, sequential data. It is widely assumed that new memories are initially

stored in the hippocampus, and later are slowly reorganised into distributed cortical

networks that represent knowledge. This memory reorganisation is called systems con-

solidation. In recent years, experimental studies have revealed complex hippocampal-

neocortical interactions that have blurred the lines between the two memory systems,

challenging the traditional understanding of memory processes. In particular, the prior

existence of cortical knowledge frameworks (also known as schemas) was found to

speed up learning and consolidation, which seemingly is at odds with previous models

of systems consolidation. However, the underlying mechanisms of this effect are not

known.

In this work, we present a computational framework to explore potential interac-

tions between the hippocampus, the prefrontal cortex, and associative cortical areas

during learning as well as during sleep. To model the associative cortical areas, where

the memories are gradually consolidated, we have implemented an artificial neural net-

work (Restricted Boltzmann Machine) so as to get insight into potential neural mech-

anisms of memory acquisition, recall, and consolidation.

We analyse the network’s properties using two tasks inspired by neuroscience ex-

periments. The network gradually built a semantic schema in the associative cortical

areas through the consolidation of multiple related memories, a process promoted by

hippocampal-driven replay during sleep. To explain the experimental data we suggest

that, as the neocortical schema develops, the prefrontal cortex extracts characteristics

shared across multiple memories. We call this information meta-schema. In our model,

the semantic schema and meta-schema in the neocortex are used to compute consis-

tency, conflict and novelty signals. We propose that the prefrontal cortex uses these

signals to modulate memory formation in the hippocampus during learning, which in

turn influences consolidation during sleep replay.

Together, these results provide theoretical framework to explain experimental find-

ings and produce predictions for hippocampal-neocortical interactions during learning

and systems consolidation.
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Chapter 1

Introduction

What would you do if you saw a pink alien mammoth walking towards you?

The input the brain receives is a mix of relevant and irrelevant information, and

importantly, like here, sometimes unknown information. Nevertheless, the brain has

to somehow make sense of the input data. Fortunately, we do not memorise plentiful

isolated facts, but instead we build mental schemas upon our experiences which allow

us to confront new situations. These mental schemas are believed to help us to under-

stand incoming information, and then help us to decide what is presumably the best

course of action.

Besides guiding behaviour in situations of uncertainty, mental schemas also impact

the way we learn new information. For instance, after seeing the pink alien mammoth

only once, we rapidly create a new memory model of this new species, because we

transfer our prior knowledge about related species (e.g. elephant). While it is clear that

we assimilate new information faster when it relates to past experiences, it is unclear

how the brain can incorporate new information quickly, and how the brain knows if it

is necessary to do so. Indeed, the brain often learns from sparse data, but it would be

risky to always learn rapidly as the brain might assimilate unreliable information, or

worse, it might overwrite crucial prior information.

This thesis aims to provide a computational framework to examine these questions.

In particular, we investigate potential neural mechanisms underlying the gradual ac-

quisition of mental schemas across sparse data, and how these schemas may influence

memory processing in the brain. In this chapter, we first review the relevant litera-

ture in neuroscience for memory consolidation (Section 1.1.1), sleep replay (Section

1.1.2), and memory schemas (Section 1.1.2). Next, we briefly describe computational

frameworks for modelling memory acquisition and consolidation (Section 1.2). We

conclude this chapter with the main objectives and outline the thesis (Section 1.3).
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2 Chapter 1. Introduction

1.1 Declarative memory in neuroscience

Long-term memory in the brain is traditionally divided into two categories. The first

category, which is the focus of this work, is called declarative or explicit memory. It

includes memories of facts, so called semantic memory, such as general knowledge

about elephants, as well as memories of events or episodic memory (e.g. an elephant

charged you while on a safari in South Africa), a distinction introduced by Tulving

(1972). By contrast, the second memory category is used without being aware, and

thus is called implicit memory. Examples include procedural memory, i.e. perceptual

and motor skills, conditioning, and habits.

Early studies in humans showed that declarative memories are initially vulnerable

to disruption, but gradually stabilise over time; researchers then concluded that memo-

ries must be reorganised over time, and they named this process memory consolidation

(Müller and Pilzecker 1900; Lechner et al. 1999). The idea that memories need time

to be stabilised had already been reported in 1881 by the psychologist Ribot. He found

that patients with brain trauma forgot most memories acquired not long before the in-

jury, but remembered most memories acquired long before. This temporal gradient

of memory loss, which became known as the Ribot’s law, was later linked to a spe-

cific region in the brain, namely the hippocampal region. In the mid-twentieth century,

the pioneering work of Scoville and Milner on patient H.M., and the clinical studies

on retrograde amnesia that followed, revealed that damage to the hippocampal region

impaired the recall of recent memories, while remote memories were usually intact.

Animal studies confirmed the temporal gradient observed in amnesic patients, and

provided more evidence that the hippocampal region plays a central, but temporary role

in memory recollection (early studies include: object discrimination in monkeys, Zola-

Morgan & Squire 1990; in rodents, social transmission of food preference, Winocur

1990, and contextual fear conditioning, Kim & Fanselow 1992).

These observations led to the standard cortico-hippocampal interaction model for

systems consolidation: the acquisition, initial storage and recollection of memory re-

quire the hippocampal region, but over time memory is reorganised and permanently

stored in the neocortex, so that the hippocampal region is no longer needed to support

recall.

However, the numerous studies on retrograde amnesia and damage to the hip-

pocampal region reported a wide range of temporal gradients and conflicting results:

the range of temporal gradients found in humans spreads from a few years to decades,
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in animals it spreads from a few days to weeks, and sometimes researchers did not find

any temporal gradient at all. Although this question is presently still debated, many fac-

tors have been put forward to explain the discrepancies in results, besides the species

tested and the extent of lesions. For instance, because the hippocampal formation is

essential for navigation and contextual information, damage or inhibition of this region

was found to impair both recent and remote memories in studies that involve spatial or

context discrimination tasks (e.g. context fear conditioning in rodents, Wiltgen et al.

2010). One theory, the transformation hypothesis (previously multiple-trace theory,

Nadel & Moscovitch 1997, Winocur & Moscovitch 2011), argues that the hippocam-

pus is always required to recollect past memories with spatial and contextual details,

and that only for semantic memories the hippocampus has a temporary role. This the-

ory is nonetheless contested by evidence showing that rodents successfully performed

a spatial memory task when the hippocampus was lesioned after weeks of training (Tse

et al. 2007), and that some amnesic patients with extensive lesions in the hippocam-

pal region had intact, but less detailed, remote spatial memory (e.g. Rosenbaum et al.

2000), or even intact remote autobiographical memories (Bayley et al. 2003).

The diversity of temporal gradients observed in retrograde amnesia can also be the

result of memories being more or less rapidly consolidated. Indeed, recent studies have

revealed complex interactions between the hippocampus and the neocortex which start

at the time of acquisition, and have identified factors that influence the speed of mem-

ory consolidation (e.g. reward, sleep, schemas). Even though the two explanations are

not mutually exclusive, we only investigate the latter one in this thesis. In the follow-

ing subsections we briefly summarise experimental work that supports this view and

justify the choices we have made for our computational model.

Important note Throughout this work, “memory consolidation” will refer to sys-

tems consolidation, the gradual reorganisation of memory across brain regions over

days to years. This kind of consolidation must not be confused with synaptic con-

solidation, which involves cellular mechanisms, protein synthesis in particular, to

fix memory within synapses and occurs over minutes to hours. Likewise, a “con-

solidated memory” will refer to a memory that can be recalled independently of the

hippocampus.
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1.1.1 Interaction between the hippocampus and neocortex during

memory consolidation

This section briefly presents evidence of the reorganisation of memories across hip-

pocampal and neocortical networks during memory consolidation. For reviews of the

topic, see Frankland & Bontempi (2005), Genzel & Wixted (2017).

Formation of memories in the hippocampus and neocortex

In the contemporary understanding of declarative memory processes, the medial tem-

poral lobe (MTL) is necessary for the acquisition of memories, and hence plays a fun-

damental role to later establish long-term memories. Damage to the MTL, as in H.M.

was indeed found to severely impair the capacity to form new declarative memories

(Milner et al. 1968). The MTL, which comprises the hippocampus, entorhinal, perirhi-

nal, and parahippocampal cortices, has a hierarchical organisation which is believed to

progressively integrate information scattered across higher-order associational cortices

(Lavenex & Amaral 2000). Thus, it is widely assumed that the hippocampus binds the

neural representations of sensory stimuli that can compose a memory (e.g. visual input,

scents, sounds...). These representations are encoded in distributed areas in the neocor-

tex and are usually not connected to each other initially; therefore, the hippocampus is

believed to mediate memory recall while the memories are not yet consolidated.

To support this view, Tanaka et al. (2014) have monitored neurons that were re-

cruited in the cortex and CA1 region of the hippocampus in rodents during learning of

a fear conditioning paradigm. The authors have shown that silencing the hippocam-

pal cells in CA1 during retrieval selectively disrupted the reactivation of patterns in

cortical regions (entorhinal cortex and amygdala), and prevented memory retrieval.

However, Genzel & Wixted (2017) stress that memories are not literally “trans-

ferred” from the hippocampus to the cortex. Instead, studies suggest that upon learn-

ing there is already a memory trace in the neocortex, albeit it is too weak to support

recall on its own. For instance, Cowansage et al. (2014) trained mice in a context fear

conditioning task and found that, shortly after training, optogenetic stimulation of the

retrosplenial cortex could successfully elicit freezing behaviour despite hippocampal

inactivation. However, mice did not freeze in response to natural sensory stimulation

(context exposure) when the hippocampus was inactivated. Their findings imply that

the recall pathway was formed early in the neocortex, but was not yet able to drive

behaviour and hence the hippocampus was required to support memory retrieval.
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Consolidation of long-term memories in the neocortex

The general consensus posits that the involvement of the hippocampus is only tempo-

rary (but as mentioned earlier, “temporary” can be days up to years!), and long-term

memories are thought to be sustained solely by the distributed cortical areas. Dur-

ing (systems) consolidation, the cortical-cortical connections are presumably strength-

ened, and thus, representations distributed in neocortical areas eventually become in-

terconnected so that memories no longer require the hippocampus to be recalled. Ex-

perimental studies have investigated the relative engagement of the hippocampus and

cortical areas during memory retrieval in humans and animals (for reviews, see Frank-

land & Bontempi 2005, McKenzie & Eichenbaum 2011), and have found evidence that

the hippocampus is most active during the recall of recent memories, but seemingly be-

comes less active over time; at the same time activity increased in various cortical areas

during recall of remote memories. Studies have also shown that functional connectiv-

ity was changed: while it decreased between the hippocampus and cortical areas, it

increased between cortical networks.

Nonetheless, the consolidation of memories in the neocortex does not mean they

are stable and immutable. Indeed, we are usually exposed to new information that

is related to past experience, and hence established cortical circuits might change to

incorporate newly learned material. A common idea posits that when new experience

overlaps with prior knowledge, consolidated memories can be reactivated and return to

a labile state, and can either be erased or “reconsolidated” (Nader et al. 2000); the latter

mechanism has been proposed to mediate the reorganisation of cortical networks to as-

similate new memories (for a review see McKenzie & Eichenbaum 2011). However, it

remains unclear how the brain reconsolidates remote, hippocampal-independent mem-

ories in the neocortex, and whether the hippocampus is involved in this process.

1.1.2 Neural replay during wake and sleep

Neurons change their connectivity with other neurons via synaptic plasticity (Martin &

Morris 2002). As a simplified summary, when neurons tend to co-activate in response

to a stimulus, their connection strength increases (long-term potentiation or Hebbian

plasticity), but if their activity is not synchronised their connection strength decreases

(long-term depression).

However, exposure to specific sensory input from the external world is limited (say,

you are attending a math class, or observing a pink elephant in the savanna). You may
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still repeat the experience (study the math lesson again), but when learning something

related (say, you attend a second class of math), you are not exposed to the exact, orig-

inal stimulus. Therefore, to nevertheless have a strong memory, neuroscientists have

hypothesised that the brain ’replays’ neural activity patterns that mimic sensory expe-

rience, so that synapses can be progressively strengthened or weakened. They propose

this neural replay as a mechanism underlying memory consolidation and reorganisa-

tion across hippocampal-neocortical networks.

Hippocampal replay during sharp wave-ripples (SPW-Rs)

In line with this theory, experimental studies in rats, birds, monkeys, and humans have

found that patterns of brain activity related to a specific task could re-occur later on

even in the absence of the stimulus. In particular, spontaneous reactivations of neu-

ronal ensembles have been identified during sharp wave-ripples (SPW-Rs) in the hip-

pocampus (for a review, see Buzsáki 2015). SPW-Rs are events of highly synchronised

network activity that can be recorded in the local field potential in the hippocampus.

They occur while the animal is awake and immobile, but also during sleep (non-REM).

SPW-R complexes have been found in mice, rats, rabbits, monkeys and humans; how-

ever most studies focus on hippocampal place cells activity in animals, as they have

particular spatiotemporal activity patterns that are well suited to understand replay.

Hippocampal place cells fire when the animal is in specific locations, and hence

their successive activations form sequences that reflect the trajectory of the animal.

The sequential structure of these place cells activity is preserved during SPW-R reac-

tivation, albeit on a compressed time scale; thus, these hippocampal bursts of activity

are hypothesised to be rapid ’replay’ events, compressed versions of the neuronal ac-

tivity observed during experience. Replay during SPW-R was indeed found to echo

the sequences observed while the animal explored the environment (forward or back-

ward), but replay could also contain sequences that did not correspond to experience,

suggesting that these might reflect past or potential future experiences (Gupta et al.

2010, but see Chadwick et al. 2015). Therefore, replay in the hippocampus has been

predicted to play a fundamental role for imagining, learning and modifying cognitive

maps (see Buzsáki 2015).

When the animal temporarily stops exploration and is immobile but awake, neural

replay during SPW-Rs is suggested to help to recall, predict, and plan trajectories to

guide navigational behaviour (Pfeiffer & Foster 2013), as well as to support learning.

In line with this, Jadhav et al. (2012) interrupted SPW-Rs with electrical stimulation
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while rodents learned a spatial task, and found that it impaired performance. More re-

cently, Roux et al. (2017) found that such disruption (optogenetic silencing) prevented

memory stabilisation of spatial representations and maintenance of cognitive maps.

We discuss the role of SPW-Rs during sleep next.

Hippocampal-cortical replay during sleep: dialogue for memory consolidation

During ’off-line’ periods, hippocampal SPW-R events were found to occur during non-

REM sleep. This period of sleep is characterised by the presence of cortical slow

oscillations, synchronous events that spread across cortical areas, in contrast to REM

sleep which is characterised by desynchronised dynamics (for review on sleep, see

Genzel et al. 2014). Importantly, hippocampal SPW-Rs are coupled to these cortical

slow oscillations. In addition, studies have suggested that replay of experiences also

occurred in cortical areas, since activity patterns during sleep were similar to the task-

related activity patterns observed during training, for example, in the visual cortex (Ji

& Wilson 2007), the auditory cortex (Rothschild et al. 2017), the prefrontal cortex

(Peyrache et al. 2009), and rapid replay of sequences was also recorded in the rat

medial prefrontal cortex (Euston et al. 2007).

In particular, hippocampal SPW-R-related replay has been hypothesised to es-

tablish a dialogue with the neocortex during non-REM, slow-wave sleep, to support

consolidation and formation of long-term memories in distributed neocortical areas.

Evidence that SPW-Rs impact consolidation was shown for example by Girardeau

et al. (2009) and Ego-Stengel & Wilson (2010). In these two studies, they suppressed

SPW-Rs during sleep after rats learned a hippocampal-dependent spatial memory task,

thereby blocking potential replay of place-cell sequences, and observed that perfor-

mance was impaired.

Furthermore, experiments in animals have revealed that there is a correlation be-

tween hippocampal SPW-Rs and activity in multiple cortical areas (Logothetis et al.

2012), supporting the idea that synchronised replay in the hippocampus and cortex

mediates memory consolidation. Ji & Wilson (2007) showed that such coordinated

replay occured between the visual cortex and hippocampus in rats. In this study they

recorded firing patterns during slow wave sleep in both structures, and they found that

patterns reactivated during sleep were coordinated and coherent with patterns recorded

while the animals actively explored a maze. Similarly, Peyrache et al. (2009) found

coordinated replay during slow wave sleep between the medial prefrontal cortex and

the hippocampus. They trained rats on a task in a maze with a specific rule, and then
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changed the rule in the maze. They showed that during subsequent sleep, the neural

activity patterns that occurred when animals learned the new rule were predominantly

replayed in the prefrontal cortex and coincided with SPW-Rs in the hippocampus.

Direct evidence about the role of the dialogue between hippocampus and neocortex

for memory consolidation during sleep was shown in a recent study by Maingret et al.

(2016). The authors reported that memory consolidation in rats was associated with

increased temporal coupling between the hippocampus and medial prefrontal cortex

during slow-wave sleep. Following this observation, they applied electrical stimulation

to the neocortex that was synchronised to SPW-Rs so as to boost this coupling. They

found that the prefrontal cortex was subsequently more responsive to the task, and this

result was accompanied by increased recall performance.

Organisation of replay and influential factors

Despite the evidence of a hippocampo-cortical coupling during sleep it is not clear

where the reactivations start and what orchestrates them, and studies suggest a bidirec-

tional dialogue between the two structures. It is commonly assumed that the hippocam-

pus coordinates replay in the cortex because of its role in memory formation and recall

(Section 1.1.1), but also because blocking hippocampal replay during during SPW-R

impairs memory consolidation (cf. previous paragraph). However, recent studies sug-

gest otherwise. For instance, Rothschild et al. (2017) has recently shown that replay

during sleep seemingly originates from neocortical areas. The authors monitored pat-

terns of activation in the hippocampus (CA1) and the auditory cortex as rodents learned

a sound-guided task, and recorded the timing of reactivations in the two brain stuctures

during subsequent non-REM sleep. They observed a cortical-hippocampal-cortical

loop of information flow during a time window centered around hippocampal SPW-

Rs: the loop began with cortical reactivation, which predicted hippocampal patterns of

activity during the following SPW-R, which in turn predicted subsequent reactivation

in the auditory cortex. The idea that during sleep hippocampal SPW-Rs are influenced

by cortical reactivation preceding the SPW-R complex is further supported by Bendor

& Wilson (2012), who successfully biased the content of hippocampal replay in rats

during sleep by presenting the same auditory stimuli as during training.

Recent theories have also argued that sleep facilitates ’memory triage’ (Stickgold

& Walker 2013), as it appears that after sleep relevant memories are better remembered
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than irrelevant ones. Such proposal is in line with recent evidence that neuromodula-

tion, e.g. in response to novelty or reward, can influence which memory traces are

subsequently replayed (Atherton et al. 2015). Stickgold & Walker (2013) suggest that

memories are attached to “salience tags” at the time of learning, and thus memories

can later be selectively consolidated, in particular during sleep replay. Consistent with

the theories, McNamara et al. (2014) have used optogenetics to stimulate midbrain

dopaminergic neurons that projected to the hippocampus while mice learned specific

rewarded locations. During subsequent sleep/rest, they observed that hippocampal

memory patterns related to experience were more often reactivated, and performance

was improved during later recall. Similarly, Igloi et al. (2015) have found that three

months after learning an associative memory task, participants who had a nap after

the task better remembered pictures that were associated with high reward outcome

than low reward outcome, but participants who did not sleep after the task did not

show such distinction (and overall their performance was lower). Furthermore, the

authors found a correlation between performance of highly rewarded memories and

sleep replay mechanisms (number of sleep spindles). These results suggest that the

brain prioritises processing of memories with high relevance during sleep.

Summary: neural replay

Replay of experiences, wherein specific, coherent patterns of neural activity are reac-

tivated, has been hypothesised to mediate memory retrieval and consolidation. Such

events occur when the brain is at rest during wake, or during sleep, and reactivations

spread brain-wide via hippocampo-cortical coupling, suggesting a transfer of infor-

mation between memory systems. Spontaneous reactivations of neural patterns some-

times reflect recently acquired information, but when they do not, we may suppose that

they represent various past memories or reflect imagining new scenarios. Importantly,

recent theories suggest that memory replay is organised in such a way that it promotes

the integration of relevant experiences. Because of these properties, replay and in par-

ticular replay during sleep has been hypothesised to underlie not only consolidation of

specific, task-related memory traces, but also to underlie the extraction of structured

representations, the topic of the next section.
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1.1.3 Theory of cognitive schemas

In cognitive psychology Piaget (1926) and Bartlett (1932) introduced the idea of men-

tal frameworks, called “schemas”, that guide the way we interpret the world and learn

about it. They suggested that schemas can be activated to support inference, and that a

schema continuously develops by either assimilating new consistent information, or by

adjusting to be more conform to the new observation. Hence, studies have proposed

that schemas are the basis of cognitive development, in particular since young chil-

dren already demonstrate the ability of inductive reasoning. For instance, Smith et al.

(2002) showed that when two-year-old children learned names of various objects, they

were also able to learn what characterised each object category, without explicit indi-

cation. In their experiment, the children were presented with a training set comprising

four groups of unknown objects with two exemplars in each group. Critically, exem-

plars of the same category had the same shape, but different texture and color. Next,

they presented an exemplar object from one group, along with three other tests objects

which matched one of the properties of the exemplar object, i.e. either the shape, the

texture, or the color. The children were able to recognise the correct object with the

same shape. More importantly, children generalised the structure common to the four

categories to new objects categories, which allowed them to rapidly learn new object

names.

Building schemas

Leading theories suggest that the brain builds schemas by extracting commonalities

and salient information across related episodes, probably through the reorganisation

of memories during consolidation. For instance, Richards et al. (2014) showed that,

over time, rodents learned the statistical structure underlying multiple experiences in

a water-maze memory task, where the escape platform was more likely in one area of

the pool than elsewhere (the details of the experiments are discussed in Section 5.1.1).

Throughout training, the animals tended to return to where they found the platform

last, but weeks after the training their search behaviour matched the latent distribution

of the platform locations.

Schema extraction relies on memory integration, a process by which related mem-

ories are encoded with overlapping patterns of activity (Schlichting & Preston 2015).

In particular, the hippocampus presumably uses its remarkable spatio-temporal rep-

resentations to organise memories into relational schemas. Such organisation has
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been found for instance in rodents, which develop hierarchical memory representa-

tions in the hippocampus that capture the relative importance of the stimuli for the task

(McKenzie et al. 2014).

Relational schemas in the hippocampus support rapid encoding of new related

items (McKenzie et al. 2014), and they might coordinate replay and thereby could pro-

mote memory integration in neocortical areas. Specifically, Lewis & Durrant (2011)

suggest that related memories are replayed together in the hippocampus, and sub-

sequently reactivate their corresponding memories in the neocortex (Section 1.1.2).

Thus, shared neural ensembles of cortical representations are strengthened, and the

brain would gradually abstract schemas via this selective strengthening. Although this

process could already occur during wake, Lewis & Durrant (2011) propose that it is

primarily facilitated by replay during slow wave sleep. Similarly, this process would

allow to incorporate new related memories as they overlap with existing representa-

tions, perhaps accompanied by reconsolidation (McKenzie & Eichenbaum 2011).

Learning with schemas

Once a schema is formed, it can influence subsequent learning. Tse et al. (2007)

showed that it could also significantly speed up memory consolidation. Indeed, when

rats had be trained to learn six odor-place associations in an arena, they learned two

new associations in a single trial; critically, these new associations were consolidated

in a time window between 24 and 48 hours, whereas for a naive animal it would prob-

ably take weeks to consolidate (the details of these experiments are in Section 3.1.1).

Why is learning fast with a schema? Similar to memory integration during the

formation of schema, if a new memory relates to prior knowledge it will overlap with

existing representations, and hence the new memory can be rapidly assimilated. It was

suggested that new memories that are congruent with a schemas might rely less on

MTL regions (van Kesteren et al. 2012), albeit in Tse et al. (2007) if the hippocampus

was lesioned too early it prevented the formation of long term memories of the new

associations.

Furthermore, sleep is hypothesised to facilitate the incorporation of new memo-

ries within established cortical networks (Lewis & Durrant 2011). Recent studies in-

vestigating the interaction between sleep and schemas found in particular that sleep

spindles (markers of replay in the neocortex) can be associated with memory integra-

tion into prior knowledge (Tamminen et al. 2013, Hennies et al. 2016, Groch et al.

2017). Hence, Lewis & Durrant (2011) suggested that the speed of acquisition of
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new schema-related memories might be influenced by the number of reactivations, the

degree of overlap, and strength at encoding.

The role of the prefrontal cortex

In light of recent studies such as Tse et al. (2007), it has been suggested that the for-

mation, and also recall, of long-term memories can not solely be explained by the

interaction between the hippocampus and representational areas in the cortex. More

and more experimental findings have pointed out that the prefrontal cortex is essential

to both form and retrieve remote memories, albeit its exact role is still not well defined

(Fernández 2017). For example, Tse et al. (2011) found that pharmacological block-

ade in the prefrontal cortex impaired the recall of the remote, consolidated odor-place

associations.

The medial prefrontal cortex (mPFC) has been hypothesised to coordinate the acti-

vation of schemas (Ghosh & Gilboa 2014). For instance, a memory disorder following

damage to the mPFC is confabulation, which seemingly results from an inappropri-

ate use of schemas during recall (Ghosh & Gilboa 2014). In particular, the mPFC is

thought to bias memory retrieval in the hippocampus so as to reactivate representations

that are relevant in a given context (Preston & Eichenbaum 2013). While such inter-

action might guide behaviour, it was also suggested that the mPFC might influence

integration of related memories in the hippocampus (Schlichting & Preston 2015). Ev-

idence of coordinated replay between the two structures during wake and sleep further

supports this hypothesis (Peyrache et al. 2009, Tang & Jadhav 2018).

Researchers have thus predicted that the mPFC plays a role during the acquisition

of new memories related to a schema. To test this, van Kesteren et al. (2013) investi-

gated the activity of the mPFC and MTL of participants while they learned associations

between pictures of a scene, which supposedly had an associated schema (e.g. a tennis

court), and a picture of an object that fitted more or less in the setting (e.g. an umbrella).

Activity in the mPFC increased when the item was congruent with prior knowledge,

and decreased when the item was less congruent, while the MTL showed the opposite

activation trend. These results suggest that the mPFC may monitor the congruency of a

new experience with the schema it relates to, according to which memory is processed

differently.

In addition, Tse et al. (2011) inactivated the mPFC while rats learned new associ-

ations related to a pre-existing schema, and they found that recall was impaired 24h
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later. This result suggest that the mPFC was critical at the time of learning for rapid

memory acquisition. However, such result is not limited to new information that fits

into a knowledge structure, but rather if it is relevant. For instance, in the experiment

of Richards et al. (2014), mice learned very rapidly that a platform was located in one

side of the water-maze while they had been previously trained for several days to swim

to the other side of the pool (Section 5.1.1); yet, inhibition of the mPFC prevented this

rapid learning, and mice revisited also the old locations. Bero et al. (2014) showed that

optogenetic silencing of excitatory mPFC neurons during contextual fear conditioning

impaired the activation in the entorhinal cortex and hippocampus, and also impaired

recall both after 1 day and 28 days.

In summary, these results suggest that the prefrontal cortex is crucial to establish

and retrieve long-term memories and that it might control memory encoding in the

hippocampus.

1.2 Computational models of declarative memory

In this section we review computational frameworks that were developed to study

declarative memory at the system-level. The first models presented are based on artifi-

cial neural networks and as such are usually referred to as ’connectionist’ models. We

particularly emphasise the model of Káli & Dayan (2004) that we used to build our

framework, and the recent update of the Complementary Learning Systems Theory by

McClelland (2013) to take the recent findings about schemas into account.

1.2.1 Neural networks models for memory consolidation

Connectionist models are artificial neural networks that are inspired by the brain archi-

tecture and explore how information could be processed by the nervous system. Very

briefly, these networks are composed of multiple simplified neuron-like units inter-

linked by weighted connections. The neural activity is typically represented by a firing

rate or a (probabilistic) binary variable. The connectivity is typically feedforward, or

symmetric, so that the activity is guaranteed to settle in an attractor state. When ju-

diciously wired, a network can thus recognise patterns of activity, and some networks

can also reconstruct partial patterns (e.g. Hopfield 1982).

Although the units are not detailed models of real neurons, and although biological

processes are greatly simplified, these artificial networks are useful to simulate and
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gain insight into neural mechanisms that may underlie memory consolidation. We first

review early computational models that investigated the interaction between the me-

dial temporal lobe (MTL) and neocortex during memory consolidation, while Sections

1.2.2 and 1.2.3 describe more recent models.

Model for long-term memory and amnesia by Alvarez and Squire

Alvarez & Squire (1994) developed a simple network for studying long-term mem-

ory and amnesia. Their model consisted of three groups of units, with two groups

representing two distinct cortical areas (8 units each) and one group representing the

MTL region (4 units). Each unit in one area was connected to all units in other areas,

but within each group the activations were regulated by winner-take-all inhibition. A

memory was composed of two patterns of activity, one in each cortical area. However

at the start of training the cortico-cortical connections were weak and, since the intra-

cortical weights changed slowly, the network could not initially retrieve a memory

given a partial input via this cortical recall route. On the other hand, the connections

to MTL were rapidly changing, and hence the MTL quickly supported memory recall

by binding the two cortical patterns: if one pattern was presented in one cortical re-

gion, the activity in the MTL helped restore the missing pattern in the other cortical

area. Over time, the cortico-cortical connections strengthened via multiple presenta-

tions of the patterns in the cortical areas, and eventually recall was independent of

MTL. Interestingly, Alvarez & Squire (1994) already incorporated the notion of replay

to support consolidation: the patterns were presented only twice given external inputs,

and subsequently repetitive presentations relied on random reactivations of activity in

the MTL area. Therefore, the model of Alvarez & Squire (1994) provided a computa-

tional framework of the hippocampal-neocortical memory system which could account

for retrograde amnesia.

The Complementary Learning Systems Theory

Contemporary and in parallel to Alvarez & Squire (1994), McClelland et al. (1995)

developed a computational framework called the Complementary Learning Systems

Theory (CLST). The prominent prediction of CLST model was that the brain needs

distinct fast and slow learning systems to prevent catastrophic forgetting.

In McClelland et al. (1995) the hippocampus supports rapid learning, while the

neocortex slowly incorporates memories. The neocortex was modelled with a multi-



1.2. Computational models of declarative memory 15

layer, feed-forward neural network (Rumelhart network). This network architecture

had more representational power compared to the simple model of Alvarez & Squire

(1994), which allowed McClelland et al. (1995) to study the acquisition of knowledge

and how the brain learns new items. Their network had to interleave the learning of

multiple examples to discover knowledge, and hence learning in the neocortex was

slow. In particular, McClelland et al. (1995) showed that slow, interleaved learning

was crucial to incorporate new memories in the neocortex without overwriting existing

knowledge.

However, in contrast with Alvarez & Squire (1994), the model of McClelland et al.

(1995) was not explicit on the mechanisms by which the hippocampus interacts with

the neocortex, and hence it is difficult to explore hippocampal contribution to memory

consolidation.

The CLST framework has since been used as theoretical background for other com-

putational models studying the roles of hippocampus and neocortex for recognition

memory (recall versus familiarity, Norman & O’Reilly 2003), and autonomous and in-

dependent reactivations in the hippocampus and neocortex during REM sleep to reduce

interference (Norman et al. 2005). Fiebig & Lansner (2014) extended the framework

to a three-stage model for memory consolidation. The authors included the prefrontal

cortex to mimic working memory and bridge the temporal gap (seconds to decades) be-

tween early memory acquisition to consolidation, but it had no role in mental schemas.

1.2.2 Model of hippocampal-neocortical interactions of Káli & Dayan

Káli & Dayan (2004) developed a model that shares the same principles as the model

of Alvarez & Squire (1994) (Section 1.2.1), namely (i) the hippocampus for rapid

storage, (ii) memories consolidated across distributed cortical areas, and (iii) off-line

replay driven by the hippocampus. However, the model of Alvarez & Squire (1994)

was extremely simple and hence its predictive power was limited. Thus Káli & Dayan

(2004) implemented a more sophisticated architecture and data. In particular, the neu-

ral network has a hierarchical structure (as an illustration see Fig. 2.6) where three

cortical sensory areas are connected to a cortical area in the MTL, which in turn is

connected to the hippocampus. Hence, Káli & Dayan (2004) could investigate mem-

ory consolidation in a framework where information flow was similar to the cortex:

a bottom-up stream from sensory cortices, through associative cortices and converg-

ing to the hippocampus, and then a top-down stream from the hippocampus, again
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through associative cortices, and reconstructing patterns of activity in the sensory cor-

tices. Such structure contrasted with the feed-forward approach of McClelland et al.

(1995).

Káli & Dayan (2004) created a semantic domain by defining a set of possible

activity patterns for each of the three cortical sensory areas. The network learned

these patterns and thus established the semantic background knowledge. Subsequently,

episodes were defined as specific associations between three sensory patterns. These

episodes had corresponding codes in the MTL, which were stored in the hippocam-

pus. The hippocampus replayed these patterns during off-line replay via the top-down

stream, allowing their consolidation in the neocortex. When patterns of activity that be-

longed to a new domain were presented to the network, Káli & Dayan (2004) showed

that presumably consolidated memories were vulnerable to ongoing plasticity in the

neocortex, and that off-line replay of the memories stored in the hippocampus pre-

vented this effect. Furthermore, due to the hierarchical structure of network, their re-

sults revealed a different kind of interference: the codes in the MTL, obtained via the

bottom-up stream from sensory cortices, were changed because of cortical plasticity,

and hence no longer matched with the old codes that were stored in the hippocampus.

The authors suggested that off-line replay has two functions: first, to reactivate mem-

ories in the sensory cortex for consolidation in the neocortex, and second, to allow

the update of the codes stored in the hippocampus so that their correspondence with

cortical memories was maintained.

1.2.3 The Complementary Learning Systems Theory and schemas

The CLST (McClelland et al. 1995) stipulates that consolidation should be slow so

as to prevent catastrophic forgetting of established knowledge, yet Tse et al. (2007)

showed that rodents very rapidly consolidated new associations if they possessed a

framework of knowledge (schema) relevant to the task.

In a more recent computational work McClelland (2013) clarified the CLST in

light of these findings. In particular, he stressed that in the original work on CLST

the network learned a new item that was inconsistent with prior knowledge. Indeed,

the network had initially acquired knowledge about the properties of living things,

e.g. plant, animals, birds, fish, etc... and subsequently was presented with a new

bird ’penguin’. This new item challenged existing knowledge, because as a bird it
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input layer output layer

item relation attributes

canary is living thing, animal, bird, yellow

canary can grow, move, fly, sing

daisy is living thing, plant, flower, pretty, yellow

Table 1.1: Example data for the simulations in the The Complementary Learning Sys-

tems framework (McClelland 2013).

was expected to fly yet it did not, and instead it could swim. Therefore McClelland

predicted that catastrophic interference arised because the new item overlapped with

two distinct categories. On the other hand, he argued that in the experiment of Tse

et al. (2007) the rats learned rapidly new associations because these were consistent

with prior knowledge.

To test this prediction, McClelland (2013) compared the acquisition of new schema-

consistent versus new schema-inconsistent items in the same framework as McClelland

et al. (1995). The model was a feed-forward, multi-layer neural network that learned

to map input labels with output attributes (see Table 1.1). The input label consisted

of the item (e.g. canary) with a relation (e.g. can), and the corresponding output was

a set of features (e.g. {grow, move, fly, sing}). Each item, relation, and feature was

represented by one unit in the network.

McClelland (2013) interleaved the presentation of the training examples so that the

network gradually incorporated the associations. This process was the analogue of the

initial training in the experiment of Tse et al. (2007), when rodents acquired slowly

a set of flavour-place associations in the arena. Next, McClelland (2013) trained the

network on a new schema-inconsistent item, the infamous bird penguin. In this case,

training was slow and led to catastrophic interference, as was reported in McClelland

et al. (1995). Again, interleaved learning of the new item along with the old patterns

helped preserve existing knowledge, albeit this procedure greatly impeded the acqui-

sition of the new item. On the other hand, when the network learned a new schema-

consistent item (e.g. bird cardinal), the network rapidly learned the new item without

catastrophic interference.

Therefore, McClelland (2013) concluded that the speed of learning was influenced

by prior knowledge in the neocortex, and as such experimental findings were fully

compatible with the CLST framework.
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Why was learning rapid in the consistent case? During the first part of training,

the network learned specific examples of categories but also extracted the hierarchical

organisation of the data: for instance, when the network learned specific birds, it also

learned that birds in general can fly. Thus, for the new training the knowledge was

automatically passed on to the new consistent item. For example, the cardinal is a bird,

and hence cardinal-can-fly was easily incorporated because it did not require existing

connections to change. By contrast, in the inconsistent case the network had to re-

arrange its connectivity.

However, the model of McClelland (2013) does not learn abstract knowledge about

each category, e.g. it did not capture the idea that flowers can have many colours

whereas trees have little colour variation. Yet, we believe this abstract information is

important to account for experimental studies in neuroscience and cognitive psychol-

ogy. For instance, if we used this framework to replicate the experimental study of

Smith et al. (2002) described in Section 1.1.3, we predict that when the model learns a

new object category it will associate the new material and the new shape equally fast,

which would be wrong as the material is likely to change within the category.

1.3 Aim and outline of this thesis

Mental schemas are well defined at the cognitive level, but their implementation at the

neural level remains unknown. Indeed, the neurobiology of schemas is particularly

hard to study because memory acquisition, retrieval and consolidation involve com-

plex interactions between the hippocampus, the prefrontal cortex and higher sensory

cortical areas. Thus, our aim was to develop a computational model to investigate and

have a better understanding of neural mechanisms that may underlie the acquisition of

schemas, their adaptation and their influence on memory processing.

The neural network models of hippocampal-neocortical interactions that we have

introduced so far do not learn abstract information about sensory experiences. On the

other hand, cognitive computational models, such as hierarchical Bayesian models,

are able to represent knowledge at various levels of abstraction. They learn abstract

principles that define how knowledge should look like, and hence these models can

explain inductive learning (Kemp et al. 2007, Tenenbaum et al. 2011). Without going

into details about the modelling, we briefly describe a simple example to illustrate the

approach.

Say, we observe some examples of the category Bird, and some examples of the
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Elephant

Global colour distribution

Single observation from 
a new similar category

1-shot generalisation

"a pink alien mammoth"

φ*
1

Expected colour 
distribution for 
category k

Bird

φ*
2

"a pink feathered pterosaur"

Alien Mammoth Feathered Pterosaur

slow learning

Expected colour 
distribution for 
new category

Figure 1.1: Conceptual examples to illustrate generalisation from a single example.
The meta-parameter φ∗ represents the variability in color for each category. Adapted
from examples given in Tenenbaum et al. (2011).

category Elephant. The birds are of various colours, e.g. red, grey, yellow and blue,

while all the elephants are grey. From these observations, we learn a prior distribution

over the possible colours that we have encountered as well as the colour distribution

within each category (Fig. 1.1). However, we also learn something more abstract: there

is a high colour variability for the Bird category, while the spectrum is focused on a

single colour for the Elephant category. This abstract knowledge can be represented

by a meta-parameter φ∗, which has a different value for each category to reflect the

variability of the colours within the category. Next, say we observe an example of a

new category: “a pink alien mammoth”. Because of its resemblance, we group it with

the category Elephant, and thus transfer the abstract knowledge φ∗1 that we have ac-

quired about it (Fig. 1.1). Since we expect the colour to be consistent, we can rapidly

generalise from a single observation that all the examples in the new category Alien

Mammoth are pink (one-shot learning). By contrast, say we observe an example of an-

other new category: “a pink feathered pterosaur”. We transfer the abstract knowledge

φ∗2 that we have acquired about Bird category, which tells us that the colour variabil-

ity is high (Fig. 1.1). Hence we do not generalise the colour pink to the Feathered

Pterosaur category, but instead we wait for more observations to gradually update our
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belief about possible colours of this new category.

Bayesian frameworks are well suited to model schemas in the brain at the cognitive

level, but they do not allow us to investigate the underlying neural mechanisms. For

instance, the symbolic representations would not capture the difficulty of incorporating

the new feature colour ’pink’ into cortical networks. Hence, while we did not use this

modelling approach, throughout this thesis we will keep it in mind as inspiration.

Instead we built our hippocampal-neocortical model based on the framework of

Káli & Dayan (2004) which we believed had the right level of complexity. Further-

more, we examined how the abstract knowledge described above could be incorporated

in our framework, as we believed it was fundamental to account for experimental find-

ings. Importantly, we assumed that regions in the prefrontal cortex coordinate the

extraction and use of this abstract knowledge.

In Chapter 2 we introduce the neural network that represents the neocortex. This

network, a Restricted Boltzmann Machine, is the core of our model because it extracts

the knowledge which is thereafter processed by the hippocampus and prefrontal cortex.

In Chapters 3&4 we present our simulations of the experiments of Tse et al. (2007). In

Chapter 3 we developed two models to clarify the definition of mental schemas, their

acquisition and impact on subsequent learning and consolidation. Based on our find-

ings we developed a third model, introduced in Chapter 4, which captured the interplay

between the hippocampus, prefrontal cortex and associative cortex during schema for-

mation and new memory acquisition. In Chapter 5, we simulated the experiments of

Richards et al. (2014) to gain insight into the role of plasticity and sleep replay in the

context of schemas. Finally, in Chapter 6 we discuss our theoretical framework.
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Restricted Boltzmann Machines as

models for the neocortex

In this chapter we introduce the Restricted Boltzmann Machine (RBM), an artificial

neural network with properties relevant to modelling system-level memory functions

in the neocortex. A RBM is a probabilistic generative model: given a set of variables,

it defines a probability distribution P over all the configurations of these variables. For

example, the variables could be a set of features say, NAME, SIZE, and COLOR, and

the data would be specific configuration patterns such as {elephant, big, grey} and

{rose, small, pink}, that follow a certain probability distribution Q. The RBM will

approximate this distribution Q so as to represent the dependencies between the vari-

ables as faithfully as possible. Thus, given an incomplete configuration, for instance

{elephant, ?, ?}, the RBM will reconstruct the associated features, SIZE and COLOR,

according to the probability distribution P. For this specific example, {big, grey}

will have a higher probability of being sampled than {small, pink}. Additionally,

the RBM can make inference to interpret configurations that it has never seen before:

when the network observes {elephant, ?, pink}, it can evaluate the probabilities of

each possible answer for the feature SIZE. Importantly, unlike the popular standard

feedforward neural networks, inference can go in any direction since a RBM specifies

a joint distribution over the variables. Therefore, the RBM contains a probabilistic

model of the world. This makes it well suited as model of semantic memory in the

brain, better than a multi-layer perceptron, which does not allow for bidirectional as-

sociation, and a Hopfield network, which can only memorise patterns.

Our choice for the RBM was also motivated by the fact that while it can be used

as cognitive model, it is on the other hand perhaps not too far removed from biology.

21
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Hence, it allows us to make sense of experimental behavioural data and gain insight

into potential neural mechanisms. Although the units of the network and their interac-

tions are too simple to be realistic models of neurons and synapses, they nonetheless

bear similarity with biological processes that underlie learning and memory in the

brain. We will highlight the similarities in this chapter.

Numerous computational models have used neural networks to model cortical mem-

ory and have demonstrated the benefits of this approach (see Section 1.2.1). The RBM

model of Káli & Dayan (2004) in particular caught our attention, because the level

of description of the hippocampal-neocortical interactions suited our application, and

it had a simple implementation that enabled to modify and expand on it. The main

difference with their framework, apart from the training protocols, is the inclusion of

a new module to perform operations that we suppose are mediated by the prefrontal

cortex in the brain.

Section 2.1 of this chapter describes the Boltzmann Machine (BM) of which the

RBM is a sub-class, and we highlight the relationship with semantic memory. Our

description of the BM was inspired by the earliest work on the subject (Hinton et al.

1984), which we believe has a more intuitive interpretation of the network as compu-

tational model of the brain. However, the reader can find alternative descriptions in

the machine learning literature (i.e. probabilistic graphical models, see introduction by

Fischer & Igel 2014). Section 2.2 focuses on the RBM in particular, and our imple-

mentation of it to model neocortical associative areas. We outline how this network

learns, how we can probe its memory, and we conclude this section by presenting

the constraints we had to consider for setting hyper-parameters. Finally in Section

2.3, we describe the main lines of our computational framework for systems consol-

idation, specifically the interaction between the associative neocortex (RBM) and the

hippocampal memory system, and sleep replay. While we describe the different frame-

works in more detail in their respective chapters, here we present the foundations of

the model.
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2.1 Boltzmann Machines and semantic knowledge

The Boltzmann Machine (BM) (Hinton et al. 1984) is a stochastic neural network with

one layer of visible units which are observable, and one layer of hidden units which are

not connected to the external world (Fig. 2.1). Throughout this work and as is common,

we only use binary units as a simplification of neuronal states: 1/’on’ if the neuron

fires, 0/’off’ if the neuron remains silent. Other types of units could be used, such

as softmax units to model more than two discrete states, or Gaussian units to model

real values. The state of the binary units is determined stochastically according to a

transition probability, the Boltzmann distribution, that we will describe later. The BM

can be seen as a generalisation of the Hopfield network (1982) in that it has stochastic

updates and hidden units.

W
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h

i 

j

Boltzmann Machine

External world

hidden units

visible units

W

v

h

i 

j

Restricted 
Boltzmann Machine

External world

Figure 2.1: Boltzmann Machine.

In the following parts, we use the notation vi ∈ {0,1} to refer to the state of the

visible unit i, h j ∈ {0,1} the state of the hidden unit j, and si when we refer to either

a visible or a hidden unit. We denote v ∈ {0,1}Dv the vector of dimension Dv with

elements vi, and vα when we refer to a particular configuration α of the visible units.

Similarly, h ∈ {0,1}Dh denotes the vector of dimension Dh with elements h j , and hγ

when the hidden units are in a particular configuration γ. Finally, s ∈ {0,1}D is the

vector with the state of all the units in the network, with D = Dv +Dh, and sαγ when

the visible and hidden units are in particular configurations α and γ respectively.

In line with connectionists models, the units in a BM are connected to each other

by weighted links. These weights are in analogy to the synaptic strengths between

pairs of neurons, which are believed to underlie long-term memory in the brain. The

weights of a BM can take any real value, positive for excitatory connections and neg-

ative for inhibitory connections. Unlike multilayer perceptrons, the connections are

bidirectional and hence a BM forms a recurrent network. We denote W the weight

matrix with elements wi j connecting unit i and unit j (visible or hidden). Similar to the
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Hopfield network, there is no self-connection (wii = 0) and the connections are sym-

metric (wi j = w ji). (We note that both the lack of sign constraint and the symmetry

are not necessarily true in biology. For instance, Dale’s principle says that synaptic

connections cannot change sign. However, on the network level, it might still be a

reasonable assumption. It would be very interesting to know when these assumptions

hold and when not.)

The total input, or field, of unit i is calculated by:

xi = bi +

D∑
j=1

wi j s j (2.1)

which is the weighted sum of all the active units connected to unit i, plus the bias bi of

the unit.

The hidden units in a BM improve the representational power of the Hopfield net-

work, which is fundamental to extract complex structures underlying data. Indeed, the

Hopfield network has a limited representational power since the pairwise connections

between observable units cannot capture interactions higher than second-order. For

example, a Hopfield network cannot learn the states (patterns) with 3 observable units

shown in Table 2.1, which corresponds to XOR function from the point of view of the

third unit.

Instead, given sufficient hidden units, the BM can represent an arbitrary probability

distribution (Le Roux & Bengio 2008). The hidden units in the BM are not observed

and hence can be freely used to represent higher order interactions between groups

of units. They act as “feature detectors”, their state reflecting whether some specific

pattern of activation is present or not, and the information they carry can then be used

by the other units of the network. These “internal representations” will naturally be

discovered by the network during training.

unit 1 2 3

state 1 0 0 0

state 2 1 0 1

state 3 0 1 1

state 4 1 1 0

Table 2.1: XOR function cannot be learned in a Hopfield network, but can be learned

by a Boltzmann Machine with hidden units.
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2.1.1 Stochastic units and energy

The BM has an energy function that associates a scalar value (energy) to each con-

figuration (vα,hγ) given the network parameters. The concept of the energy function

was introduced for neural networks in general by Hopfield (1982), and the existence

of this function is guaranteed by the symmetric connection weights. The idea is that

low-energy configurations are more consistent with the structure of domain (which is

set by the weights and biases), whereas high-energy configurations are more conflict-

ing with the constraints, that is, are less likely. The energy of a configuration, or global

state, is given by:

Eαγ = −bᵀv vα −bᵀh hγ −
(
vα

)ᵀWvhhγ −
1
2

(
vα

)ᵀWvvα −
1
2

(
hγ

)ᵀWhhγ (2.2)

= −bᵀsαγ −
1
2

(
sαγ

)ᵀWsαγ

where Eαγ = E (vα,hγ) is the energy of the configuration (vα,hγ), Wvh is the weight

matrix with elements wi j connecting the visible and hidden units, Wv and Wh are

the matrices with connection weights visible to visible and hidden to hidden units

respectively, bv and bh are the vectors with the bias terms of visible and hidden units

respectively; the second formulation is the compact version of the parameters, where

we put all the bias terms in the vector b and all the weights in the matrix1 W.

When a unit switches state from ’off’ (si = 0) to ’on’ (si = 1), the effect on the

global energy can be computed locally as:

∆Ei = E(si = 0)−E(si = 1) (2.3)

= bi +

D∑
j=1, j,i

wi j s
αγ
j

We can notice that this “energy gap” corresponds to the total input of the unit described

Eq. 2.1. To determine the state of the unit, Hinton et al. (1984) used the analogy with a

particle that has two energy states in statistical physics: at temperature T , the particle

switches to one state or the other in an attempt to decrease the global energy. Each unit

is in the ’on’ state with probability:

p(si = 1 | sαγ
−i ) =

1
1+ e−∆Ei/T

(2.4)

1Remember that all the matrices are symmetric and have zeros in the diagonal.
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Figure 2.2: Sigmoid activation function. Transition probability of unit si.

where T is the temperature of the network, and sαγ
−i is the vector of states of the other

units. Note that the updating rule is equivalent to applying the sigmoid function to the

total input of the unit (Fig. 2.2). We see in Eq. 2.4 that if the energy gap is such that

the system has a lower energy when si = 1 (i.e. ∆Ei > 0), then the unit will most likely

go into the ’on’ state. The temperature T is a parameter that can be varied so as to

scale the weights and alter the state transition probability. When this temperature is

reduced to zero, the system becomes deterministic: unit i goes into the ’on’ state if its

total input is greater than zero, and into the ’off’ state if its total input is less than zero.

On the other hand, as the temperature increases the system becomes more noisy, until

each unit has equal chance of being ’on’ or ’off’ regardless of the state of the other

units. The bias term bi shifts the activation probability of the unit: for instance, if the

bias bi of unit i is positive, then this unit is more likely in the ’on’ state (see that when∑
j,i wi j s j = 0 the energy gap in Eq. 2.3 is equal to bi > 0).

2.1.2 Network memory and dynamics

In the previous subsection we have shown that each configuration of the network has

an energy (Eq. 2.2), and that the transition probability of each unit is expressed as a

function of the energy gap between its two states (Eq. 2.3). With this setting, when

the network reaches thermal equilibrium it follows the Boltzmann-Gibbs distribution.

Then BM then defines the joint probability distribution over all the configurations α of

the visible units and configurations γ of the hidden units:

P
(
vα,hγ

)
=

e−Eαγ/T

Z
(2.5)

where Eαγ = E (vα,hγ) is the energy described Eq. 2.2, and Z =
∑
βδ e−Eβδ/T is the
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normalisation factor and is called the partition function. However, we are ultimately

interested in the distribution underlying the activity of the variables that are connected

to the external world, which is defined by the marginal probability distribution:

P(vα) =
∑
γ

P(vα,hγ) =
1
Z

∑
γ

e−Eαγ/T (2.6)

We can see in Eq. 2.6 that the lower the energy, the higher the probability of the con-

figuration. Therefore, given the constraints set by the network parameters (weights

and biases), the BM has an “internal model” that allows to generate plausible/probable

samples, to evaluate the probability of an observed configuration pattern, or to make in-

ference (i.e. generate samples conditioned on a partial configuration). At high temper-

ature T the energy gaps between configurations are reduced, and hence the probability

distribution converges to a uniform distribution.

However, calculating P(vα) or sampling from it is not straightforward, primarily

because of the partition function Z which sums over the 2D configuration space. In-

stead of directly calculating it, we use the activity dynamics of the network to estimate

the probabilities. The estimation process is generally referred to as Gibbs sampling

(Fig. 2.3). The dynamics are governed by the energy function: the system gradually

evolves so that the energy decreases or remains constant (strictly at zero temperature

only). Starting from an initial global state, the units are asynchronously updated ac-

cording to their transition probability (Eq. 2.4) in random order until the system finds

a configuration of states that is a (local) minimum of the energy function. The asyn-

chronous updating is required to prevent occurrence of cyclic states.

If the network has a deterministic update rule (see Eq. 2.4 when T → 0), the system

will always settle in the same stable state for a given initial state. Hopfield used this

property to introduce the idea of associative memory, where the memory patterns cor-

respond to local minima (attractors). While such system is useful to perform pattern

completion, it can only retrieve specific stored configurations but cannot explore more

combinations. For instance, going back to our toy example, if the network starts with

{elephant, ?, pink} it would either settle on {elephant, big, pink} or {elephant,

small, pink}, but cannot alternate between the two answers. In other words, one

cannot represent probabilities2.

By contrast, if the network uses the stochastic update rule (Eq. 2.4), the system

has the ability to escape these attractors. Indeed, each unit will preferably go into the

2Stochastic versions of the Hopfield network are able to represent these probabilities.
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Figure 2.3: Gibbs sampling is a Markov Chain Monte Carlo (MCMC) algorithm to
obtain samples from the model probability distribution P of the Boltzmann Machine.
The variables of the network are initialised in a specific state s ∈ {0,1}D, where s =
(v,h) with v the state of the visible units and h for the hidden units, and D is the
total number of units in the network. The procedure constructs a chain of steps (Gibbs
step) during which the state of all the variables is updated. Thus, each step produces
a new sample s, and longer chains lead to better samples as the distribution of the
samples converges to the model distribution P (equilibrium distribution). For a Gibbs
step in a BM each variable is updated sequentially (D sub-steps), using the conditional
distribution given the state of the others units (Eq. 2.4).
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state that decreases the global energy, but they can sometimes end up in the “wrong”

state because the update is stochastic. The energy might temporary increase, but it

allows the network to jump energy barriers before moving again towards other low-

energy configurations. Therefore the system will continuously evolve and will keep on

searching for interpretations. After reaching equilibrium, the distribution matches the

Boltzmann distribution.

If we use this method from random starts, we can monitor the configurations visited

and thus obtain samples from the distribution. Similarly, if we clamp a subset of the

visible units (e.g. inference from a partial input from the environment), the remaining

units adopt configurations that minimise the energy. The lower the energy, the more

satisfactory the interpretation.

However, the downside of Gibbs sampling is that the system must reach thermal

equilibrium before it starts generating configuration samples that correspond to the

Boltzmann probability distribution (Eq. 2.5). While BMs are guaranteed to eventually

reach equilibrium, this means that the system might have to run many update steps,

which can be an issue for networks with large number of units since each variable has

to be updated independently.

2.1.3 Learning

We have seen in the preceding part that a BM defines a probability distribution P

over the state of the visible units, and we would like this distribution to reflect the

underlying structure of the data. How does the network acquire this distribution? A

BM is trained by observing examples of configurations that belong to the domain we

wish to model, and the network adjusts its parameters until it can generate samples that

match the probability distribution of the data. In most real-world applications there are

many visible units (e.g. pixels of an image), and hence the network cannot exactly

capture the probabilities of the 2Dv configurations. Nonetheless, by learning the BM

will approximate the unknown distribution by extracting the main features of the data.

The similarity between the model probability distribution P (at equilibrium) and the

original distribution Q of the observed examples can be evaluated with the Kullback-

Leibler divergence:

G = DK L (Q ‖ P) =
∑
α

Q(vα) ln
Q(vα)
P(vα)

(2.7)

where G measures the divergence of the distribution P from the distribution Q.
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The divergence is null when the two distributions are a perfect match, otherwise it is

positive. The aim is to minimise this divergence by modifying the weights and biases

of the network. When the system is at thermal equilibrium, the partial derivative of the

divergence G with respect to the weight wi j connecting two units (visible or hidden) is

(Hinton et al. 1984):

∂G
∂wi j

= −
1
T

*.
,

∑
αγ

Q(vα)P(hγ |vα)sαγi sαγj −
∑
βδ

P(vβ,hδ)s βδi s βδj
+/
-

(2.8)

= −
1
T

(
〈sis j〉data −〈sis j〉model

)
where α and β are configurations of the visible units, and γ and δ are configurations

of the hidden units. The first term 〈sis j〉data represents the average probability of the

two units being ’on’ when the visible states are clampled by the environment (observed

examples). The second term 〈sis j〉model represents the average probability of the two

units being ’on’ when the visible states are generated by the model distribution. Using

gradient descent, the change of weight is then proportional to the difference between

these two terms: ∆wi j ∝ 〈sis j〉data − 〈sis j〉model . A similar learning rule is derived for

the bias terms.

We can see that the weight update is local, as it is only determined by the co-

activation probability of the two units it connects. For instance, if the gradient of G in

the direction of wi j is negative (Eq. 2.8), it means that the activations of units i and j

are less correlated in the model than in the original distribution, and hence, the weight

wi j needs to be increased. The BM thus continuously adjusts its internal model. These

properties, locality and error correction, resemble ideas of Hebbian and anti-Hebbian

plasticity for synapses and learning by prediction error in the brain. However, despite

its compelling character, it should also be stressed that it is unclear if and how the brain

implements this two-phase learning rule.

We cannot calculate the gradient analytically since it is very hard to compute the

probability distribution of the BM, as explained in the preceding Section 2.1.2, but

instead we estimate it by again generating samples using Gibbs sampling (Fig. 2.3).

The procedure has to be run twice, once for the “positive phase” to calculate 〈sis j〉data,

and once for the “negative phase” to calculate 〈sis j〉model . During the “positive phase”,

we need to obtain samples of the hidden units activations when the visible states are

provided externally, i.e. when the network observes examples from the unknown dis-

tribution Q. During the “negative phase”, we let the system run freely so as to generate
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samples of (v,h). However, we can only obtain samples after the system relaxes to

equilibrium (at a fix temperature T), which can be quite long since the number of sub-

steps in Gibbs sampling is equal to the number of units in the network. In addition, the

procedure must be repeated for many examples from the external world so as to get a

better approximation of the unknown distribution Q (sum over the configurations α in

Eq. 2.8).

Techniques have been developed to improve the efficiency of the learning algo-

rithm. For example, similar to physical systems, “simulated annealing” (Kirkpatrick

et al. 1983) allows the system to reach equilibrium faster by starting the training at

higher temperature, and then progressively reducing the temperature. Another popu-

lar technique is mean-field approximation (Peterson 1987, Welling & Hinton 2002).

Recent work has intensively researched the use of variational approach and more ad-

vanced sampling methods to approximate the log-partition function or its upper bounds

(Salakhutdinov 2008). Despite these methods, training takes usually very long, espe-

cially when the network gets larger. This has hindered the application of Boltzmann

machines.

2.2 The Restricted Boltzmann Machines and the neo-

cortex

BMs are powerful models, but we have highlighted in Section 2.1 that, in practice, the

training is difficult and takes very long. A simplified variant of the network is gener-

ally used to circumvent this issue, originally introduced as Harmonium by Smolensky

(1986) and now called Restricted Boltzmann Machine (RBM). As the name indicates,

this network is a BM with restriction on the connectivity, where the visible-visible

connections and hidden-hidden connections are removed (Fig. 2.4). As a result, the

dependencies between the visible units are only captured by the hidden units. De-

spite the restriction of topology, a RBM is a universal approximator provided that the

number of hidden units is sufficient (Le Roux & Bengio 2008), which means that any

distribution can in principle be approximated with arbitrary precision. A complete

description of RBMs can be found in Fischer & Igel (2014).
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Figure 2.4: Boltzmann Machine and Restricted Boltzmann Machine.

Because of the simplification of connectivity, the energy function of Eq. 2.2 can be

re-written for the RBM:

Eαγ = −
(
vα

)ᵀWhγ (2.9)

where W denotes the interaction terms between visible and hidden units (previously

noted Wvh in Eq. 2.2). Note also that in the equation above we omitted the bias terms

so as to simplify the notations, but also because we will not use them throughout this

work. Indeed, the bias terms capture the average activity of each unit across the data

set, and they are commonly used in applications where the RBM learns from large

data sets and the visible units are active in many input patterns (e.g. pixels of images).

However, in this work we considered very small data sets with sparse input patterns.

In preliminary explorations we found that it was not crucial to use biases to monitor

frequency of units activations, especially since we did not have constraints on the num-

ber of hidden units. Furthermore, because we had a small set of input data, our RBM

network did not seem to learn properly the bias terms: for instance, for two visible

units with same average on-probability, one unit could end up with a large positive

bias while the other had a large negative bias. We wished to avoid this situation as our

aim was to obtain meaningful cortical representation of knoweldge, so that the network

could then use this knowledge to learn additional information.

Given the properties described in Section 2.1 above, we use the RBM to model as-

sociative areas in the neocortex, where the memories are consolidated. Similar to the

interpretation of Káli & Dayan (2004), the bottom (visible) layer represents a vector of

variables that receive input from higher sensory areas. We call it the “sensory cortex”.

As there are no lateral connections in the RBM, this layer can be divided into multi-

ple pools of units representing different sensory modalities, or different features. For

example, in Chapters 3 & 4 the visible layer has two pools of units, one to represent
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flavours and the other to represent reward locations; in Chapter 5, the visible layer also

has two pools of units, but this time to represent the polar coordinates of platforms in

a circular watermaze.

2.2.1 Cortical recall

Although the energy function is simplified, the probability P(v) (Eq. 2.6) is still not

easy to compute because of the partition function. However, the modification of the

connectivity leads to a useful property, namely the hidden units (resp. visible) are inde-

pendent of each other and only depend on the state of the visible units (resp. hidden):

P (h|v) =
Dh∏
j=1

P
(
h j |v

)
(2.10)

and

P (v|h) =
Dv∏
i=1

P (vi |h) (2.11)

This factorisation greatly simplifies the process of Gibbs sampling, which we use to

obtain samples from the model probability distribution as explained in Section 2.1.2.

Indeed, we no longer need to evaluate successively the state of each unit given the state

of the others, but instead we can sample the state of all the units belonging to the same

layer simultaneously (Fig. 2.5). Therefore the number of sub-steps required for Gibbs

sampling, which was equal to the number of units in the network for the BM, is now

reduced to two sub-steps.

In our model we use Gibbs sampling to probe cortical memory when the network

is presented with a partial input pattern. An example of pattern completion is given in

Algorithm 2.1. Say a cue v is presented, and we wish to infer the rest of the visible

units u. The unknown part of the visible units u could be a noisy input that we would

like to denoise (e.g. noisy version of an image), or it could simply be missing (i.e.

u = 0). In this work we use the latter during recall when testing memory performance,

because we suppose that the neocortex receives cues from one sensory modality (e.g.

a flavour) and must retrieve the activity in the second one (e.g. a reward location). The

network performs several Gibbs sampling steps as shown Fig. 2.5, starting the chain

from the cue. Note that, in practice, we do not need to compute the activity of the

visible units v corresponding to the cue since we clamp this part at each iteration, but

it can still be useful to check their reconstruction.
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Figure 2.5: Gibbs sampling is a Markov Chain Monte Carlo (MCMC) algorithm to

obtain samples from the model probability distribution P, for the Boltzmann Machine

(BM) and Restricted Boltzmann Machine (RBM). The variables of the network are

initialised in a specific state s ∈ {0,1}D, where s = (v,h) with v the state of the visible

units and h for the hidden units, and D is the total number of units in the network.

The procedure constructs a chain of steps (Gibbs step) during which the state of all the

variables is updated. Thus, each step produces a new sample s, and longer chains lead

to better samples as the distribution of the samples converges to the model distribution

P (equilibrium distribution). Gibbs step in a BM: each variable is updated sequentially

(D sub-steps), using the conditional distribution given the state of the others units

(Eq. 2.4). For the RBM, each step of the chain only requires two sub-steps: sample h
given the visible states v, and then sample v given the hidden states h (Eq. 2.10&2.11).
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Algorithm 2.1 Cued recall in a RBM
# Notations:

# p (h = 1) is the real-valued vector with elements p
(
h j = 1

)
# σ (·) is the sigmoid activation function applied element-wise

Given the observed pattern v0 and noisy pattern u0 in the visible layer

1. Compute the activation probability of the hidden units

p
(
h = 1|v0,u0

)
= σ

(
Wᵀs0

)
, where s0 =



v0

u0


2. Sample binary pattern h0 from p

(
h|v0,u0

)
for n Gibbs sampling steps do

a. Compute the activation probability of the visible units

p
(
s = 1|hn−1

)
= σ

(
Whn−1

)
, where s =



v
u


b. Sample binary pattern un and clamp v← v0

c. Compute the new activation probability of the hidden units

p
(
h = 1|v0,un

)
= σ (Wᵀsn), where sn =



v0

un


d. Sample binary pattern hn from p

(
h|v0,un

)
end for

Given the last binary pattern hn, obtain the reconstruction of the memory pattern

p (s = 1|hn) = σ (Whn), where s =


v
u



reconstructed
memory

External world

v0

cue
u0

noise

h ~ 0 p(h|v ,u ) 00

v0 u1

h ~ 1 p(h|v ,u ) 10

v0

clamp sample

h 0

u ~ 1 p(u|h ) 0 p(u|h ) n

h ~ n p(h|v ,u ) n0

1 step of Gibbs sampling
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In Chapter 5, on the other hand, we model an experiment where rodents must swim

in a pool of water to find a hidden platform so as to escape, and hence there is no cue

presented to the network during recall. In this case, we start the chain from random

states to probe memory.

Similar to Gibbs sampling in BMs, the network has to take many steps to ensure

that we sample from the model equilibrium distribution. However, if we clamp a set of

visible units to a training example pattern, the network then converges more rapidly.

In addition our model learned small data sets and simple patterns, and thus required

very few steps to correctly reconstruct the activities during recall. Biologically, Gibbs

sampling resembles neural reverberation in the brain which has been proposed as a

potential neural mechanism underlying recall.

2.2.2 Cortical learning

When training BMs, the weights are updated so as to mimise the divergence between

the model distribution P and the true distribution of the data Q. This weight change

is obtained by comparing the correlations when the visible units are clamped by the

environment and the correlations predicted by the model, and thus requires to average

over all possible state configurations of the visible patterns vα (Eq. 2.8). However,

in practice we only observe a subset of these patterns. The standard procedure for

training consists in dividing the training data into groups (“mini-batches”), and for each

group we collect the statistics to estimate the weight change. Although it is usually

more efficient to train the network on these mini-batches (Hinton 2010), in the current

work we use online learning, i.e. we update the weights directly after we observe a

single example. The motivation was that 1) we could afford online learning because

we handled small data sets and simple tasks that did not require much computational

power and 2) online learning seems more in line with the biology than having a positive

phase cycling through training examples, then a negative phase cycling through model

samples, and then finally update the weights.

When the RBM sees a single training pattern vα, we compute the weight change by

maximising the log-likelihood log P (vα), where P is the marginal distribution over the

visible states defined Eq. 2.6. To simplify the notations, from now on we assume that

we operate at a temperature T = 1, and hence we omit this term in the equations. The

derivative of the log-likelihood for the training example pattern vα, w.r.t. the weight

wi j between visible unit i and hidden unit j is
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We can notice that if we average Eq. 2.12 over a training set {vα}α we retrieve the

learning rule3 of Eq. 2.8:
∑
α
∂ log P(vα)

∂wi j
=

∑
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∑
βδ p

(
vβ,hδ

)
v
β
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But since we do online learning, i.e. we update the weights after each example pattern

presentation, we keep the gradient of Eq. 2.12 above. Because of the factorisation

property of the RBM (Eq. 2.10), if we note hγ
− j the pattern γ with all hidden units but

unit j, this gradient can be written as
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From Eq. 2.13 we can see that the first term of the gradient is easy to compute. On the

other hand, the second term still requires that we collect the statistics for all configura-

tions of the visible patterns vβ. Once again, we use Gibbs sampling to approximate the

log-likelihood gradient but, in contrast to the BM, it was shown that the RBM can be

successfully trained by running short chains. For instance, the k-step Contrastive Di-

vergence (CD-k)(Hinton 2002) is a common learning algorithms to train RBMs which

works well with a few steps of Gibbs sampling. The main idea of CD-k is to start the

chain from a training example pattern of activity and then run only k steps of Gibbs

sampling (Fig. 2.5) to obtain a sample configuration
(
vk,hk

)
. The second term in

3Note that the gradients have opposite signs, but in the first case we minimise the divergence and
hence the change of weight is proportional to the negative gradient, while here we maximise the log-
likelihood, and hence the change of weight is proportional to the gradient.
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the gradient is then approximated using this single sample instead of the average over

all possible configurations (Algorithm 2.2 describes the case of CD-1). Surprisingly,

theoretical results have demonstrated that 1-step Contrastive Divergence (CD-1) often

performs well, albeit it introduces a bias in the gradient estimate since it works locally

around training data points. This bias is reduced as the number of steps k increases.

Although more advanced techniques have been developed since, we retained the CD-1

algorithm for its simplicity and efficiency but also because its interpretation suited the

biology: the negative part of the gradient could be seen as the reactivation of activity

patterns triggered by current sensory experience (i.e. model prediction).

For the calculation of the gradient we sampled both v and h, while it is often ad-

vised to use p (h | v). The latter could be interpreted as the rate of the neurons, but

since the input patterns were binary we wanted to be consistent between the visible

and hidden units activity (during learning at least, as for recall we sometimes used the

probabilities rather than the binary states...). This of course should be investigated in

the future, especially for more complex data sets.

2.2.3 Constraints of RBMs as model of the neocortex

It should be stressed that we did not do a grid search to find optimal hyper-parameters

for our models. Indeed, since we simulated behavioural experimental studies, we were

not interested in achieving the best possible performance. Instead, the results of our

simulations aimed to capture the tendency of the experimental data. A second reason

is that most of methods to set the parameters require access to a batch of examples

patterns (refer to Hinton 2010 for a list of training tips). However, this work assumes

that our model is initially naive and trained online on sparse data. Thus, the idea was

to set baseline parameters and to fix them throughout training rather than to fine-tune

them.

Number of training epochs and number of cortical updates The number of train-

ing epochs represented the number of times the network was connected to and then

disconnected from the external world, reflecting cycles of experience / sleep. We there-

fore limited this number according to the experimental task we simulated. During each

epoch the patterns could be presented repeatedly. The patterns presented to the visible

layer of the network (v0 in Algorithm 2.2) were either given by the external world (e.g.

if observe vα, set v0 ← vα), or generated internally by the model (e.g. if the model
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Algorithm 2.2 RBM training with 1-step Contrastive Divergence
# Learning procedure for a Restricted Boltzmann Machine using CD-1

# Notations:

# p (h = 1) is the real-valued vector with elements p
(
h j = 1

)
# σ (·) is the sigmoid activation function applied element-wise

# η is learning rate for parameter update

Given the example pattern vα in the visible layer

1. Initialise the positive chain with the example configuration v0← vα

2. Compute the activation probability of the hidden units

p
(
h = 1|v0

)
= σ

(
Wᵀv0

)
3. Sample binary pattern h0 from p

(
h|v0

)
A. End of positive phase: compute positive update ∆W+ = v0

(
h0

)ᵀ
4. Compute the activation probability of the visible units to start the negative chain

p
(
v = 1|h0

)
= σ

(
Wh0

)
5. Sample binary pattern v1 from p

(
v|h0

)
6. Compute the activation probability of the hidden units

p
(
h = 1|v1

)
= σ

(
Wᵀv1

)
7. Sample binary pattern h1 from p

(
h|v1

)
B. End of negative phase: compute negative update ∆W− = v1

(
h1

)ᵀ
8. Update the weights W←W+η

(
∆W+−∆W−

)

External world

v

h ~ 0 p(h|v ) 0

1 step of Gibbs sampling

0 v

h ~ 1 p(h|v ) 1

1 v0Δ ∝wij h0 - v1h1

CD-1  update

i j i j~ p(v|h )0
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generates ṽ, set v0← ṽ; see sleep replay in Section 2.3). When learning was driven by

an observed example vα, we limited the number of repetitions, e.g. if in the experiment

animals were exposed N times to a stimulus, we would present this stimulus N times to

our network, with exception of the model in Section 3.2. On the other hand, we did not

limit for the off-line repetitions, but we tuned this number to ensure that the network

learned in a reasonable number of training epochs.

Number of hidden units An RBM can approximate any distribution with arbitrary

precision if the number of hidden units is sufficient. Hence we set an arbitrary number

of hidden units that was large enough to ensure that it would not hamper learning. In

particular, we wanted to make sure that, once the model was trained on a particular

task, it could learn new information.

Learning rate We aimed to set a fixed learning rate η to train the network with CD-1

learning (Algorithm 2.2). We did not implement a schedule to reduce the learning rate

over time, nor did we include momentum and weight decay, as is commonly done in

machine learning studies. However, we did have two learning rates: one when the

model received input from the external world, and one when the model was discon-

nected from the external world. The former learning rate was usually higher than the

latter because we had less training events driven by the environment. We come back to

this in more details in Section 3.3.2 of result Chapter 3.

Model architecture

The architecture of the RBM is helpful as it greatly simplifies training algorithms, but

imposes constraints that move the model away from neurobiology. Other architectures

can be considered to relax this constraint, but the downside is that they usually increase

the complexity of computations. For instance, the asumption that visible units (resp.

hidden) activate independently is not compatible with the activity in the neocortex. We

could consider the semi-restricted Boltzmann machine, which is similar to a RBM but

allows visible-visible connections (Osindero & Hinton 2008). Similarly, hidden units

could be connected with lateral inhibition in the hidden layer (similar to the radial basis

Boltzmann machine, Kappen 1995)

Another criticism of RBMs from a biological point of view is that bottom-up

and top-down information is processed by the same symmetric weight matrix. The

Helmholtz machine (Dayan et al. 1995) is a network similar to the BM, but with two
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sets of weights so that bottom-up recognition and top-down generative models are

separated. The generative model is trained during a “wake” phase, and the recogni-

tion model during a “sleep” phase. Although the Helmholtz machine is an interesting

framework to study the formation of knowledge and inference in the brain, research on

this network did not follow-through because it is hard to train and it could not compete

with simpler models that emerged at the same time.

Finally, our model could benefit from a deeper architecture if we simulated more

complex data set, as numerous studies in machine learning show that networks with

more hidden layers extract more useful representations. For instance, Salakhutdinov

et al. (2013) implemented a deep Boltzmann machine and they showed that the first

hidden layer extracted low-level features in the input, while the next layers discovered

more abstract representations based on these low-level features. Thus, they could suc-

cessfully train a hierarchical Dirichlet process prior over the top-level features, which

learned the structure of knowledge and could subsequently generalise to new cate-

gories. More related to biology, Series et al. (2010) modelled the visual cortex with a

deep Boltzmann machine. They introduced homeostatic mechanisms by manipulating

the bias of the hidden units and investigated the emergence of hallucinations in Charles

Bonnet Syndrome.

Such deeper architectures are therefore relevant to our research, and are promising

models for studying memory processes in cortical networks; however, adding more

layers means that the weights update require backpropagation, which is not obviously

consistent with neurobiology.

2.3 Model for systems memory consolidation

The RBM is capable of learning and subsequently generating patterns that resemble

those of the external world, and also making inference on new activity patterns it has

never seen before. Knowledge in the RBM is represented as an “energy landscape”

defined by the cortical weights (Hinton et al. 1984), and the network can explore it by

stochastically updating the states of the neurons.

Káli & Dayan (2004) have exploited this idea to study systems memory consoli-

dation, and they have developed a model of interactions between cortical areas, repre-

sented by the RBM, and the hippocampus (see Section 1.2.1). We have built our model

on their work and we here introduce the main lines of this framework. However, more

detail is provided in the results sections (Chapters 3 and 4).
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2.3.1 Interaction with the hippocampus

The bottom layer of the RBM represents sensory areas in the cortex (higher areas, pro-

cessed information), while the top layer integrates the information and relays it to the

hippocampus (Fig. 2.6). Following the models of Alvarez & Squire (1994) and Mc-

Clelland et al. (1995) (Section 1.2.1), the hippocampus has a temporary role, storing

memories and mediating retrieval while these memories are slowly consolidated in the

neocortex over time (days to years). Similar to the model of Káli & Dayan (2004), the

hippocampus in our framework rapidly learns memory patterns by contrast with the

neocortex which has an incremental, slow learning. In practice, the hippocampus takes

instantaneous “snapshots” of the activity of the hidden, associative layer of the neo-

cortex (Fig. 2.6). Memories in the hippocampus could be modelled with attractors in a

Hopfield network, but we did not need this feature in our work and thus we retained a

simple model to store memories, where the hippocampus acts as a temporary database.

The neocortex defines a probability distribution from which we can sample patterns

of activity for the visible units. From Eq. 2.6 we can re-write this probability as

P
(
vα

)
=

∑
γ

P
(
vα | hγ

)
P

(
hγ

)
(2.14)

The hippocampus stores the conditional probability Pk (h) = P
(
h | vk

)
of the activity

of the hidden units in response to a specific sensory input pattern vk in the visible layer.

Thus, the activity in the visible layer given the reactivation of hippocampal memory k

follows from

P
(
vα |k

)
=

∑
γ

P
(
vα | hγ

)
Pk

(
hγ

)
(2.15)
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Therefore, the hippocampus can support recall in the neocortex by constraining the

possible states of the hidden units. In particular, when the network is cued by a partial

input pattern, the hippocampus recalls a corresponding memory k and reinstates the

activity according to Eq. 2.15; thus, it allows to bypass the search in the neocortex

(i.e. Gibbs sampling steps) that is described in Algorithm 2.1 and instead rapidly

reconstruct memory patterns in the sensory layer (Fig. 2.6).

Critically, as we shall see in Chapter 3, memory storage and retrieval by the hip-

pocampus depend on the knowledge in the neocortex, and hence the fact that memories

are rapidly formed in the hippocampus does not imply that memory recall will be ac-

curate.

Although we did not test this idea within our framework, the hippocampus could

potentially be involved during cortical learning by initiating the negative chain to es-

timate the second term in the log-likelihood gradient (i.e. to generate v1 in Algorithm

2.2). Indeed, we mentioned in Section 2.2.2 that a common learning algorithm for

RBM is Contrastive Divergence, where the chain starts from an observed training pat-

tern (example in Algorithm 2.2). However, Tieleman (2008) showed that learning is

usually better when the negative chain is initialised by persistent ”fantasy particles”,

where the last sampled visible pattern is re-used to start the chain at v1, a technique

called Persistent Contrastive Divergence. Thus, we could assume that the hippocampus

mediates the temporary storage and reinstatement of these sensory patterns to compute

the second, anti-Hebbian term of the gradient. This idea is consistent with experimen-

tal evidence of hippocampal memory replay during wake (during sharp wave-ripples,

see Section 1.1.2), and studies have suggested that this replay could support consoli-

dation in cortical areas already during wake (Carr et al. 2011).

Finally, in our model we were not concerned about memory storage capacity in the

hippocampus, since we had small data sets that we assumed could all be stored. How-

ever, when we repeated the same patterns across training, old memories were overwrit-

ten with the newest ones. The motivation was the observation by Káli & Dayan (2004)

that over training, as the cortical weights are updated, there is a shift in the represen-

tations of sensory stimuli in the hidden layer. Thus, when the hippocampus reinstated

a memory pattern in the hidden layer, the reconstruction of the patterns of activity in

the sensory cortices no longer matched the original stimulus. Káli & Dayan (2004)

showed that off-line replay helped to maintain the correspondence: when a pattern was

generated in a sensory cortical area following reactivation in the hippocampus, this pat-
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tern was replaced with the closest match among the valid input patterns for this area;

information was sent back to the hippocampus which then updated the memory repre-

sentation. Nevertheless, in our model we assumed that the network did not have access

to the set of valid input sensory patterns, and thus we never allowed the hippocampus

to update representations during sleep.

2.3.2 Sleep replay and memory consolidation

In line with Káli & Dayan (2004), a training epoch has an experience phase followed

by a a sleep replay phase. It is important to note that the experience and replay phases

do not correspond to the two phases of the “wake-sleep” algorithm, which was de-

veloped to train models like the Helmholtz machine (Dayan et al. 1995), and which in

contemporary notations usually refers to the two terms of the gradient when computing

the weights change (Eq. 2.12).

The aim of the sleep replay phase is to allow the reactivation of memory patterns,

and subsequently to strengthen the cortical weights. This idea was based on exper-

imental studies which suggest that replay of experiences, in particular during sleep,

promotes memory consolidation (see Section 1.1.2). In our framework, as in Káli &

Dayan (2004), sleep replay is driven by the hippocampus which reinstates activity pat-

terns in the hidden layer, followed by the generation of “dream” patterns in the sensory

layer of the neocortex. During this phase, we trained the model on the “dream” patterns

using the same method as during the experience phase (CD-1 learning; Algorithm 2.2).

Consequently, during sleep the model had to generate training patterns that resembled

those observed during experience. This operation was challenging as in most models

we did not include “clean-up” connections within the sensory areas of the neocortex,

and hence the model could in principle replay any pattern of activity.

We investigated two methods for generating the training patterns during sleep re-

play. The first method, which we primarily used, was similar to online training: we

reactivated a memory in the hippocampus, reconstructed the corresponding activity in

the sensory cortices, and the RBM was trained on this pattern. Next, we repeated the

procedure by reactivating another memory in the hippocampus (Fig. 2.7, left panel).

The second method, which we used in Chapter 5, consisted in first generating a

“batch” of training data, and then presenting in turn each pattern to update the weights

(Fig. 2.7, right panel). We preferred the first method as it seemed more in line with

biology. On the other hand, it necessitated to calibrate the right number of replay
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Figure 2.7: Replay of memories during sleep, driven by reactivation in the hippocam-
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ple memories in the hippocampus, and reconstruct the corresponding activities in the
sensory layer using the same set of weights. (2) Loop over the patterns generated to
update the weights. Eventually generate a new batch after the update.

events along with the right learning rate so that the weight updates did not bias the

generative model. The main downside of the second method was that learning tended

to be “stuck”, because the model was trained on patterns it could already generate,

whereas the first method introduced some noise during training.

Although replay was initiated by the hippocampus in our model, it could easily be

modified to start with the reactivation of a pattern in one sensory area of the neocortex.

For instance, if replay was initiated with a partial visible pattern, the hippocampus

could then recall a memory as depicted in Fig. 2.6 (right panel) in order to replay the

associated memory. Such replay would be more compatible with recent experimental

work suggesting that replay might start from cortical reactivations (Rothschild et al.

2017).

2.3.3 Evaluating “consistency” in the neocortex

Knowledge in the RBM is coded in the energy function, where plausible patterns of

activity have a low energy, while less plausible patterns have a higher energy. We have

exploited this property to define a measure of “consistency” of an activity pattern with

the knowledge consolidated in the neocortex.

Given a visible activity pattern v, the expected enery is E (v) = −xᵀp (h = 1|v),

where x = vᵀW is the vector with the field (or total input) of the hidden units, and

p (h = 1|v) is the vector with the on-probabilities of the hidden units given v. We then

normalised by
∑

j p
(
h j = 1 | v

)
so that the final value could easily be transformed into a
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probability by applying the sigmoid function. The resulting value provides information

about the “consistency” of v, given the current knowledge of the RBM. However, we

generalised this to evaluate the “consistency” given an arbitrary expectation of the

hidden units activity ξ = p (h = 1):

C
(
x;ξ

)
= −

1∑
j ξ j

xᵀξ (2.16)

In particular, we used Eq. 2.16 during recall mediated by the hippocampus (for in-

stance, Eq. 3.6 in the second model implementation, Section 3.3.1). We also used this

measure to track the consistency of the association between two patterns of activity in

different sensory areas (Chapter 4).

We believe it is important to monitor this consistency, since new associations can

involve new patterns of activity, or simply be novel combinations. Therefore, if the

model can detect whether new information is new or familiar, consistent or conflicting

with prior knowledge, it is then able to adapt its learning strategy. In our framework

we assumed that the prefrontal cortex fulfilled this function.



Chapter 3

Modelling mental schemas

In this chapter we present exploratory work to study the acquisition and adaptation of

semantic knowledge in the neocortex. We aim to gain a better understanding of the

mechanisms underlying the development of “schemas”, knowledge structures in the

neocortex, and their influence on subsequent memory processing. To this end, we have

implemented various computational frameworks, strongly inspired by Káli & Dayan

(2004), and modelled the experiments of Tse et al. (2007), which investigated such

schemas with rodents.

The experimental study of Tse et al. (2007) revealed in particular that, with an

appropriate pre-existing schema, new memories could rapidly become independent

of the hippocampus. These findings thus challenged the traditional belief that sys-

tems memory consolidation is always a slow process. Specifically, the discovery of

Tse et al. (2007) seemed to challenge the Complementary Learning Systems The-

ory (CLST) (McClelland et al. 1995), which states that systems consolidation in the

neocortex should be slow so as to prevent catastrophic interference with consolidated

memories. McClelland (2013) argued that the experimental findings and CLST were

actually compatible if one considered the consistency of the new memory with prior

knowledge: he showed that neocortical learning in the CLST framework was fast and

did not lead to catastrophic interference when learning a new consistent item, whereas

slow learning was required when learning a new inconsistent item (see Section 1.2.3).

However, we argue that the consistency with prior knowledge advocated by Mc-

Clelland (2013) corresponds to the problem of novelty versus familiarity with the en-

vironment in the experimental study (e.g. layout of the arena). Yet, the results reported

by Tse et al. (2007) indicate that familiarity with the environment was not enough to

trigger rapid learning and consolidation of new memories. Indeed, when rodents previ-
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ously received information that was inconsistent over training, they did not exhibit fast

learning during subsequent training even though they were in a familiar environment.

Only when they initially learned consistent information rodents rapidly acquired new

memories. This would suggest that the animals have developed an expectation about

the reliability of the information in each environment. Thus, we believe the model of

McClelland (2013) only partially explains the findings of Tse et al. (2007).

We propose that the first type of consistency, as described in the work of Mc-

Clelland (2013), is related to semantic schemas in associative areas of the neocortex

(knowledge), while the second type of consistency, as measure of information reliabil-

ity, is related to meta-schemas (expectation about the structure of knowledge), which

might be processed by the prefrontal cortex (Section 1.1.3). We predict that both are

decisive for subsequent memory acquisition.

In Section 3.1 we summarise the experimental study of Tse et al. (2007) and de-

scribe our modelling approach. In Section 3.2 we show a simple toy model with a

training protocol similar to Káli & Dayan (2004); we also introduce the prefrontal cor-

tex module in our framework and the concept of the meta-schema in order to better

define their relevance for the findings of Tse et al. (2007). Section 3.3 focuses on the

formation of a semantic schema in the neocortex and its impact on the acquisition of

new memories. For this study, we used a modified training protocol and a more suit-

able representation of the sensory data which allowed us to further investigate the role

of sleep and the relationship between hippocampal memory and knowledge in the neo-

cortex. We also investigate the consistency with prior knowledge of the new memories,

in line with the work of McClelland (2013). These two models served as foundation

for the final model (Chapter 4).

Besides the addition of the prefrontal cortex module, some studies presented here

and in the next chapter differ from the work of Káli & Dayan (2004) since we are

interested in the gradual formation of semantic knowledge, whereas that study imple-

mented a semantic learning phase (pre-training) before the hippocampus was tasked to

store episodic patterns.
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3.1 Modelling the schema experiment

In this section we first summarise the experimental study of Tse et al. (2007), and we

present our interpretation of their results that we wish to illustrate with our model. We

then describe how we modelled the data and the task, and how we evaluated perfor-

mance in our model. The specific setup used for the simulations will be outlined in

each result section.

3.1.1 Summary of the experimental study and its significance

In the experiment of Tse et al. (2007), rats first acquired an associative schema by

exploring an event arena with six baited sand-wells (Fig. 3.1a). Each sand-well was

associated with a different flavour. The rats were trained each day concurrently on the

six associations, and they had one trial per association. During each training trial, rats

were placed in a randomly selected start box and were given a flavoured food (cue).

They then had to fetch more food of that flavour hidden in one of the sand-wells.

Slowly, over weeks of training sessions, the rats eventually learned to associate the six

specific flavours with the six specific reward locations (Fig. 3.1b). That is, they went

directly to the rewarded sand-well, as quantified by the performance index, and also

did so during probe trials (denoted PT) when no reward was present.

Once the schema had been acquired, two of the original sand-wells were moved to

new, neighboring locations (Fig. 3.1c, inset left panel). In a single trial the rats success-

fully learned to associate two new flavours with each of these new locations (Fig. 3.1c,

left panel ’new cued’). Furthermore, the rats still recalled the new associations after a

hippocampal lesion only 48hrs after training, suggesting that the new memories were

consolidated by then. This is much quicker than typical for cortical systems consoli-

dation in rodents which is thought to take weeks for similar tasks (Section 1.1). Nev-

ertheless, a lesion already 3hrs after training did impair the new memories, suggesting

that these memories were initially hippocampal-dependent (Fig. 3.1c, right panel).

Importantly, these experiments revealed that the observed speed-up in learning

was due to the learnt schema and not familiarity with the environment: when rats

were initially trained in an inconsistent schema, where the associations flavour-place

were randomly swapped every two sessions (Fig. 3.1d), single-trial acquisition failed

(Fig. 3.1e).

In a follow up study, Tse et al. (2011) investigated the role of the medial prefrontal
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(a) Event arena. (b) Original training of six flavour-place associations.

(c) Training two new associations. (d) Consistent (top) & incon-
sistent (bottom) associations.

(e) Original training (left) and new training (right) in the consistent and inconsistent schemas.

Figure 3.1: Schema experiment of Tse et al. (2007). Abbreviations: PA=paired asso-
ciates; PT=probe test; HPC=hippocampal lesions. (a) Photograph of the event arena
with the six original sand-wells (left), and schematic of the spatial arrangement (right).
(b) Acquisition of the six original associations over training sessions. Rats learned
multiple flavour-place associations: after training, given a cue flavour in a start box,
the animals recalled the location of the rewarded sand-well. (c) Acquisition of two new
pairs of flavour-reward location. Animals with hippocampal lesions made 48 hours
after new training recalled both original and new associations during probe tests, indi-
cating that the memories were consolidated in the neocortex (left). Rats did not recall
the new associations 14 days later if hippocampal lesions were made 3 hours after new
training (right). (d) In the consistent schema, the associations between flavours and
places were fixed across sessions, while in the inconsistent schema the associations
between the six flavours and six locations were changed every two sessions. (e) Ac-
quisition curve as the rats concurrently learned the consistent schema in one context
and the inconsistent schema in another (left). Rats rapidly learned the new associations
in the consistent schema context, but not in the inconsistent schema context (right). All
panels taken from Tse et al. (2007).
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cortex region (mPFC) for the acquisition of the new flavour-place associations. When

rats were trained on the new associations in the consistent schema setting, it was ac-

companied with an increase of immediate early gene expression in the mPFC, suggest-

ing a rapid encoding in this cortical region already at the time of learning. Furthermore,

Tse et al. (2011) pharmacologically inactivated the mPFC region during learning, and

animals in these conditions did not recall the new associations during a probe test 24hrs

after training, indicating that memory consolidation had been disrupted. These find-

ings imply that early encoding in the mPFC was necessary for the rapid assimilation

of the new associations.

The two studies raise the question of what mechanisms could explain this fast learn-

ing and consolidation. We propose two influential factors.

The first factor is the base semantic knowledge to complete the task in the arena

which is slowly consolidated in the associative areas of the neocortex over time. In both

consistent and inconsistent arenas, the spatial arrangement of the reward locations,

the cues, the room, and the task are stable across sessions, and thus animals become

more and more familiar with the environment. We call this knowledge the semantic

schema. For the example shown in Fig. 1.1, it would correspond to the set of colours

and the set of animals categories. We suggest this schema allows rapid encoding in the

hippocampus of new rewarded pairs, provided the new locations are compatible with

the existing semantic layout.

The second factor is the high-level semantic knowledge underlying the associa-

tions, namely if there is a consistent relation between flavours and reward locations

or not. We call this knowledge the meta-schema, because it captures abstract features

that characterise a group of related memories. Note that in this particular example, the

associations are characterised by a single meta-parameter, namely their consistency.

For the example shown in Fig. 1.1, it would correspond to the variability of colours

within a category. We suggest that the meta-schema gradually builds in the neocortex,

and that its formation and use are supported by regions of the prefrontal cortex. We

also suggest that the prefrontal cortex monitors the match/mismatch between an expe-

rience and the expectation of the meta-schema, and influences the acquisition of new

memories accordingly. Therefore, we expect that if the system is first trained on con-

sistent associations it will rapidly incorporate new associations, while if it is exposed to

variable associations during initial training it will slowly incorporate new associations.

Our aim was to develop a computational framework to test these hypotheses and

identify potential mechanisms underlying these processes.
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3.1.2 Model of the data: flavours and reward locations

The model received inputs from the environment via higher sensory areas of the neo-

cortex. As explained in Chapter 2, the sensory areas were represented by the visible

layer of the Restricted Boltzmann Machine (RBM). In this case study, the visible layer

had a pool of units that represented the flavours (odors/taste), and another pool of units

that represented the reward locations in the event arena.

We worked with two representations for the flavours: 1) each flavour was repre-

sented by the activation of one out of NF units, where NF is the number of flavours, or

2) we attributed 100 units to the flavour sensory area, and each flavour was mapped to

a random binary pattern, in which each unit turned on with probability 0.2.

We also worked with two representations for the reward locations: 1) each reward

location was represented by the activation of one out of NL units, where NL is the

number of locations, or 2) we attributed 225 units to the reward locations sensory area,

and each reward location was represented according to its coordinates in the arena.

For the latter representation, each unit encoded a location with coordinates
(
x, y

)
in

the arena (Fig. 3.2a). Similar to the experimental study, the arena had 7x7 possible

locations for the sand-wells. We used a grid with a step of 0.5 to define the coordinates,

which brought the total of reward locations units to 225 (15x15 units, the edges were

not encoded). The units were active whenever there was a reward at the location they

represented, or in the close neighbourhood. The activation was modelled by a Gaussian

tuning curve, centered at the reward coordinates
(
x0, y0

)
:

f (x, y) = rmaxe
− 1

2

(
(x−x0)2

σ2 +
(y−y0)2

σ2

)

where rmax is the maximum on-probability at the reward location, and σ denotes the

spatial spread, which is identical in x and y directions (Fig. 3.2b). The 15x15 ma-

trix was then rearranged into a vector containing the probability of activation of the

225 units. Finally, this vector was converted into a binary vector, since the RBM re-

quired binary inputs1. This conversion could be done in two ways, depending on the

simulation (Fig. 3.2b):

1. Sample the activation probabilities (rmax = 0.9, σ = 0.7). In this case, the input

data varied at each presentation.

1As explained in Chapter 2, RBMs can have real values units, but for our modelling purpose we
chose to use binary units.
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Figure 3.2: Model of the schema experiment of Tse et al. (2007). (a) Model of the
event arena. (Left) Grid 15x15, where each square is encoded by a reward location
unit in the sensory cortical layer. The orange circles are the potential sand-wells sites
(the size of the circles is non-representative). (Right) Spatial arrangement of the six
original sand-wells. Note: in the experimental study, the rodents entered the arena via
one of the start boxes located at each side. The choice of the start box varied across
trials to prevent procedural learning. However, in our modeling the point of entry
did not matter and hence we did not take into account the start boxes. (b) Extended
representation of the reward locations in the sensory layer of the neocortex. The left
inset shows the probability of activation of the location units. To obtain the input binary
patterns that we presented to the network, we either sampled or used a threshold. (c)
With the extended representation of the locations shown in (b), the probability to go
to a location is derived by taking into account the activity of the units that encode
neighbouring coordinates. The figure shows the areas surrounding the six original
sand-wells. For example, the activity of the units in the blue region contribute to the
probability to go to the closest sand-well, which is no.1 in this case. (d) The two types
of schemas for the original training. In the consistent schema, the flavour Pineapple
is always associated with the sand-well no.1. In the inconsistent schema the reward
location associated with flavour Pineapple is different every two training epochs.
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2. Threshold the activation probabilities (rmax = 1, σ = 1.5, threshold = 0.8). In

this case, the input data were identical at each presentation.

For the simulations in Section 3.2, we used the simplest representations for both

flavours and reward locations. For the simulations in Section 3.3, we kept the sim-

ple representation for the flavours, but used the extended representation of the reward

locations. For the final model and simulations in Chapter 4, we used the extended

representations for all sensory inputs.

The advantage of the simple representations is that we can keep the size of the

RBM small, and computations are easier. However, the extended representations are

more realistic, as semantic memories are believed to have distributed representations

in the neocortex rather than local representations.

Finally, the extended representation of the reward locations must not be confused

with the place cells of the hippocampus. We are not modelling spatial navigation, but

rather the specific locations of rewards in some representation of the event arena in

the neocortex. Indeed, when Tse et al. (2007) lesioned the hippocampus at the end of

training the rats correctly recalled the reward locations (Fig. 3.1), suggesting that the

hippocampus was not required to find the locations, and, for instance, used the visual

cues of the environment.

3.1.3 Memory tasks and training

Conform to the experimental study of Tse et al. (2007), the first task consisted of

teaching the model to associate six different flavours with six sand-wells locations. We

call this task the ’original training’. The six sand-wells were initially arranged in the

arena as shown Fig. 3.2a. From the point of view of the neocortex (RBM), the task

was to correlate the activity of the flavour units with the activity of the reward location

units in the sensory layer.

In analogy with an experimental training + sleep/rest cycle we defined a ’training

epoch’, which comprised an experience phase followed by a sleep replay phase. Dur-

ing the experience phase, the model received inputs from the environment and was

trained on the flavours and reward locations stimuli presented in the sensory cortex.

The parameters of the associative cortex (RBM), the hippocampus and the prefrontal

cortex were updated during that phase. During the sleep replay phase, the model was

disconnected from the environment and generated its own sensory stimuli for training.

Only the parameters of the associative cortex (RBM) were updated during that phase.
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The exact training protocol was different for each model we implemented, and hence

we describe the method in more details in the relevant sections.

We implemented two types of schemas for the original training, as in the experi-

ment (Fig. 3.2d). In both conditions, we defined six flavours and six reward locations.

In the first schema, called the ’consistent schema’, the same flavour was associated

with the same location over training. In the second schema, called the ’inconsistent

schema’, the associations were swapped over training every two epochs.

After the training of the six original associations, the model was presented with

two new associations. We call this second memory task the ’new training’. Similar to

the experiment, two original sand-wells, no.1 and no.6, were displaced and associated

with two new flavours.

3.1.4 Memory performance

When cued with a flavour, the recall (explained below in Section 3.2.1) led to the ac-

tivation of the location units in the sensory cortex, i.e. the on-probability of the units

p (ui = 1) similar to Fig. 3.2b. We converted this activity into a probability distribution

over the reward locations (sand-wells). For this conversion, we assumed that the prob-

ability to go to a certain location was proportional to the activity of the corresponding

location unit.

The method for the conversion depended on the type of data representation (Section

3.1.2). For the simple representation, where each reward location was represented

by only one unit in the sensory cortex, we simply normalised the on-probabilies of

the location units. This gave us the probability to recall each reward location. For

the extended representation, we assumed that the probability to visit a specific sand-

well was equivalent to the probability to visit the region surrounding that sand-well

(Fig. 3.2c). The probability to recall a reward location was then calculated by taking

into account the activity of the all the units surrounding that sand-well, relative to

the total activity in the arena. We evaluated memory performance in our model by

measuring the average probability to recall the correct reward location associated to

each flavour.

By default, memory was probed with the hippocampus active during recall, hence

combining both the episodic and semantic contributions. To assess semantic memory,

and track the time course of memory consolidation in the neocortex, we disabled the

hippocampus during recall (mimicking the hippocampal lesions in experiments).
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Figure 3.3: First version of the model. Global model architecture (left panel). The
sensory cortex receives inputs from the environment. There is one unit per flavour,
one unit per location, and one unit for the context (not shown). The hippocampus is
connected to the associative layer of the neocortex. The prefrontal cortex learns the
consistency of the rewarded associations, and our hypothesis is that it somehow influ-
ences learning in the hippocampus. The hippocampus (right panel) stores memories of
all possible combinations

(
vα,uβ

)
and the corresponding reward probabilities qαβ.

3.2 The prefrontal cortex and the meta-schema

In this section we present our first attempt at modelling the experiment of Tse et al.

(2007). In particular, we demonstrate why the abstract knowledge about the task is

important to account for the experimental data. For this study, we used a simple toy

model and we implemented a training protocol that was directly inspired by the original

model of Káli & Dayan (2004). We also introduced the prefrontal cortex module,

which was not present in the original model, to investigate its potential role.

3.2.1 Model setup

Model of the associative neocortex and sensory input data

For this first implementation we used a small network and the simple data represen-

tation: each potential reward location (sand-well), and each flavour, was represented

by one unit in the sensory layer of the neocortex (visible layer of the RBM, Fig. 3.3).

We added a context unit to indicate that the training took place in the same arena, and

hence this unit was always in the ’on’ state. The purpose of context units was to allow

the network to learn multiple schemas in different contexts, but we never implemented
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such multi-training, and thus we kept only one context unit2. We arbitrarily set the

number of hidden units to the total number of possible flavour-location combinations

used for the original training (36 units).

We note vα the vector of visible units vi ∈ {0,1} representing a flavour α, uβ the

vector of visible units ui ∈ {0,1} representing a location β, WF and WL the weight ma-

trices connecting the flavour and location units to the hidden layer. The vector with the

state of the hidden units h j ∈ {0,1} is noted h. In addition, we note p (h = 1) the vector

with as elements the probabilities p
(
h j = 1

)
∈ [0 . . .1]. Purely for convenience we as-

sume that flavour 1 is associated to location no.1, and so on, so that the associations to

be learned are simply given by α = β.

Model of the hippocampus

During training the hippocampus took snapshots of the field of the hidden units xαβ

when the network was presented with a flavour pattern vα and a location pattern uβ

(step 1 in Fig. 3.5):

xαβ =Wᵀ
Fvα +Wᵀ

Luβ (3.1)

All flavour-place associations were memorised in the hippocampus, mimicking explo-

ration. The hippocampus also created a memory for each flavour α by averaging the

fields of the hidden units of the memories linked to that flavour:

x̄α = 〈xαβ〉β (3.2)

where 〈·〉β is the average over the potential locations, computed element-wise. This

flavour memory pattern was used during recall to recognise the flavour cue when we

tested the network performance (procedure described below). The memory patterns

xαβ and x̄α were overwritten at each epoch.

Finally, the hippocampus keeps track of the reward probability of each flavour-

place association. We note qαβ the probability of reward at location β given the flavour

α, and Qα =
{
qαβ

}
β

the reward probability distribution associated to the flavour mem-

ory α (Fig. 3.3, top right panel). As such,
∑
β qαβ = 1. In contrast to the memory

vectors xαβ which were snapshots, the reward probabilities qαβ were increased by a

fixed increment ∆q over epochs (procedure described below).

2The context units are equivalent to the categories units in the data set used by McClelland (2013),
such as “living thing”, “animals”, “plants”, etc...
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Figure 3.4: Recall mediated by the hippocampus. Step 1: A flavour cue is presented
to the sensory cortex, and the activity propagates to the associative layer of the neo-
cortex. The hippocampus computes the sum of squares errors between the resulting
field vector xcue and each of the stored field vectors x̄r , the latter vectors corresponding
the memories of the flavours. The memory that minimises the error is chosen. Step
2: Given the flavour memory α, the hippocampus can sample one of the associated
flavour-place memories using the probability distribution of rewards Qα. Step 3: Fi-
nally, the hippocampus reinstates the field xαβ of the hidden units that corresponds to
the sampled memory. The neocortex reconstructs the activity in the sensory layer via
top-down connections to infer the reward location.
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Model of the prefrontal cortex

We introduced a module that we identified as the prefrontal cortex. We attributed two

main functions to this module. First, in line with experimental theories, we assumed

that the prefrontal cortex could detect the context, and subsequently biased recall in

the hippocampus towards memories relevant to the current context (Preston & Eichen-

baum 2013). Although we did not implement the mechanisms whereby the prefrontal

cortex biased hippocampal recall, we implemented two memory retrieval strategies

in the hippocampus to mimic context-dependent or independent memory recall (next

section). The second function of the prefrontal cortex was to extract the meta-schema.

As explained in Section 3.1.1, the rewarded associations were characterised by their

consistency across presentations. We defined a scalar variable φ∗ as meta-parameter to

capture the overall consistency of the associations. To compute the meta-parameter φ∗

we simply took the expected reward probability, which we calculated by averaging the

highest reward probabilities qαβ associated to each flavour memory α:

φ∗ = 〈max
β

(
qαβ

)
〉α (3.3)

but in the last version of the model (Chapter 4) we introduce a different method to

compute the meta-parameter.

The meta-parameter captures the shape of the distribution of rewards: for the task

in the consistent schema the distribution would be tuned to a particular reward location,

i.e. the reward expectation φ∗ would be high, whereas the distribution would be broad

for task in the inconsistent schema, i.e. expectation would be low.

Memory recall and performance

During recall, one of the flavours from the training set was presented as cue in the

sensory layer of the neocortex. The network computed the field vector xcue =Wᵀ
Fv of

the associative cortical layer (Fig. 3.4; note that we included the context unit with the

flavour units to simplify the notations). The hippocampus compared the field vector

xcue with the stored flavour memory patterns x̄r and selected the flavour memory α that

minimised the sum of squares error3 (Step 1 in Fig. 3.4):

α = argmin
r



xcue− x̄r 

2
2

3On a more detailed level, such a computation could be done by a Hopfield network, in that case, the
recalled flavour is the one the network converges to after being initialised with the cue.
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Once the cue was identified, the hippocampus sampled one of the associated mem-

ories β according to the reward probability distribution Qα (Step 2 in Fig. 3.4). The

hippocampus set the field of the hidden layer to xαβ to reinstate the activity of the

hidden units p (h = 1) = σ
(
xαβ

)
, where σ (·) is the sigmoid activation function (’on’

probability) applied element-wise to the field vector xαβ. The neocortex then recon-

structed the activity of the locations units p (u | h) in the sensory layer (Step 3 in

Fig. 3.4). We normalised the probabilities of activation to obtain the final ’on’ proba-

bility p̂ (ui = 1) of each location unit. Since each location unit represented a potential

reward location, the probability to go to location no.1 for instance was P (location 1) =

p̂ (u1 = 1).

As we mentioned above, we implemented a second recall pathway for the hip-

pocampus, which we supposed was used when the prefrontal cortex did not recognise

the context. We propose that the hippocampus in this case relied on semantic memory

in the neocortex rather than episodic memory. For semantic-based recall, the model

directly compared the activation of the hidden units p (h|v) resulting from the pre-

sentation of flavour v, with the activations corresponding to memories of associations

stored in the hippocampus (hence, replacing steps 1 and 2 in Fig. 3.4). It then chose

the memory pair αβ that minimised the sum of squares error:

{α, β} = argmin
rk




h−σ
(
xrk

)



2

2
(3.4)

where h ∼ p (h|v) with p (h = 1 | v) = σ (xcue), and xrk is the field of the memory pair

r, k in the hippocampus (flavour r and location k).

By default, recall was mediated by the hippocampus, and used the first, context-

dependent method of recall. To test whether the memories were consolidated in the

neocortex, we disabled the hippocampus during recall and let the RBM perform 5

Gibbs sampling steps to reconstruct the activity of the location units (see Cortical recall

in Section 2.2.1).

Network training

Each epoch began with an experience phase during which the sensory layer of the

neocortex received inputs from the environment, i.e. the flavours, the reward loca-

tions, and the context (Fig. 3.5). First, a flavour was randomly selected in the data set.

Next, all the possible combinations of that flavour with all potential reward locations,

even the non-rewarded combinations, were successively presented to the network in
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Figure 3.5: (Top panel) Training epoch. During the experience phase, the model sees
all possible combinations of flavour pineapple with locations 1 to 6. The hippocampus
stores the field xαβ of the associative layer for each association

(
vα,uβ

)
presented,

and updates the reward probabilities (see lower panel for details). Lastly, the prefrontal
cortex updates the meta-schema. During the sleep replay phase, memories are sampled
in the hippocampus according to the reward probability distributions Qα =

{
qαβ

}
β
.

This memory reactivation leads to the replay of ’dreams’ in the sensory cortices via
the top-down connections. The hippocampus samples memories corresponding to the
same flavour multiple times in a row (n being equal to the total number of potential
reward locations) simply to mirror the experience phase. See Section 2.2 for details
about cortical learning and sleep replay. (Lower panel) Hippocampal learning during
the experience phase.
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Training: Original New

reward locations 6 8
input patterns 6x6 2x8

memories in HPC 6x6 8x8
visible units 13 17
hidden units 36 36

cycles EXP 50 150
per epoch SLEEP 100 300

weights mean 0
initialisation std 0.1

learning EXP 0.05
rate SLEEP 0.001

reward increment 0.1

Table 3.1: Model and training parameters. Notations: HPC = hippocampus; EXP =
experience phase; SLEEP = sleep replay phase. The coloured numbers are parameters
that will be modified during the simulations (see main text in the results sections).
Number of input patterns during the experience phase / number of memory patterns in
hippocampus: n×m, where n is the number of flavours, and m the number of reward
locations. For the cycles during the experience and sleep replay phases, refer to the
diagram of the training epoch (Fig. 3.5).

a random order. This can be thought of the rat exploring the arena and visiting both

rewarded and unrewarded sand-wells. The cortical weights were updated at each pre-

sentation (using CD-1 learning, see method in Section 2.2.2), even for non-rewarded

experiences (we comment on this later). The model cycled 50 times4 through all the

flavours and applied the same protocol. The repetitions were necessary to update the

cortical weights using a lower learning rate (see Table 3.1), which is common practice

for training neural network so as to gradually incorporate information without erasing

previous experience. However, the learning rate had to be large enough during the ex-

perience phase so that the network could later generate dream patterns that resembled

the sensory input patterns (sleep replay phase).

After the cortex had updated its weights, the hippocampus memorised the repre-

sentations of all the associations, again both rewarded and non-rewarded (we comment

on this in the next paragraph). The hippocampus stored the field vector xαβ of the hid-

den units (Eq. 3.1) corresponding to each flavour-place association
(
vα,uβ

)
(step 1 in

lower panel of Fig. 3.5). Next, for each flavour memory α the hippocampus adjusted

the reward probability distributions Qα over the locations (step 2 in lower panel of

Fig. 3.5). To update the distribution, we simply incremented the probabilities qαβ cor-

responding to the rewarded associations (β = α) by a fixed value ∆q, and normalised.

4The rats had a limited number of trials to learn the associations at each session, but one could argue
that some kind of replay took place, with working memory for example.
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We chose an arbitrary, small value as the default reward increment (see Table 3.1).

For the last stage of the experience phase the prefrontal cortex extracted the meta-

parameter φ∗ (Eq. 3.3), which in this case represented the overall consistency of the

rewarded associations.

Next, the model entered the sleep replay phase. The hippocampus randomly se-

lected a flavour memory α, and sampled one of the associated memories according to

the reward probability distribution Qα. The hippocampus clamped the hidden layer to

the selected memory pattern, and given this activation the cortex generated a ’dream’

pattern in the sensory layer (Fig. 2.7). This procedure was the same as steps 2 and 3
during recall, shown Fig. 3.4, except that it reconstructed the activity of all the visi-

ble units: context, flavours, and locations units. The final activity of the flavours and

locations units was derived using a winner-take-all step. The cortical weights were

trained on this ’dream’ pattern (binary), using the same protocol as during the experi-

ence phase (CD-1 learning, see method in Section 2.2.2) but with a lower learning rate

(Table 3.1). We decreased the learning rate during sleep replay to allow the gradual

incorporation of memories and prevent catastrophic interference. The hippocampus

cycled 100 times through all the memories of the flavours.

Modified experience phase. In the experience phase described above, the network

updated the weights for all possible associations, rewarded and non-rewarded. During

sleep on the other hand, the hippocampus preferentially replayed the memories with

high reward probability. Therefore the consolidation of the correct associations was

only possible because of sleep replay. However, we noticed that over the course of

training, the cortical updates during the experience phase deteriorated what was con-

solidated during sleep: when we probed memory at the end of the experience phase,

performance was lower than when we probed memory just after sleep. We could have

compensated this effect by further increasing the number cortical updates during off-

line replay, like Káli & Dayan (2004). However, instead we set a criterion to stop the

update of the cortical weights during the experience phase at some point during train-

ing. The criterion was simply a recall test: learning stopped when all the rewarded

locations had the highest probability of being recalled. The recall test was performed

at the start of each experience phase. If the system fulfilled the stopping criterion,

the experience phase only consisted of hippocampal learning and the update of the

meta-parameter by the prefrontal cortex. Hippocampal learning was still necessary,

because cortical plasticity during sleep replay altered the representations in the asso-
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ciative layer of the sensory input; hence, the hippocampus had to re-store the field

vectors xαβ (Eq. 3.1) for each flavour-place association.

A different approach could have been to mimic the search behaviour of the animals

by selecting the associations according to their reward probabilities, similar to the sleep

replay phase. As the rat learns, it will presumable visit the unrewarded locations less

and less, and hence the patterns presented during experience would reflect this choice.

Important remarks about training

In the current model the cortical weights were updated for both rewarded and non-

rewarded events during the experience phase. This method was also implemented in

the model of Káli & Dayan (2004). This update rule, however, is questionable as it

seems at odds with the idea that memory persistence in the brain is strongly influenced

by relevance (e.g. reward), which was shown experimentally by the action on LTP

of the neurotransmitter dopamine (Lisman et al. 2011). This was the main reason for

changing the training protocol in the next versions of the model. In the current model,

if the network only learned the rewarded associations during the experience phase the

neocortex could learn simple, consistent associations without sleep replay. However, in

Section 3.3 we emphasise that sleep replay promotes the consolidation in the neocortex

of more complex patterns of activity, and in Chapter 5 we propose that sleep replay is

particulary necessary to incorporate multiple memories that interfere with each other.

Similarly, the choice of storing non-rewarded events in the hippocampus was also

questionable, for the same reasons that we stated above about cortical learning. How-

ever, this method gave more flexibility for the hippocampus as it could recall different

locations for a given flavour. It may seem like a waste of resources, but only when

we a priori know that the associations are consistent. It is reasonable to assume that

at the start of training, without prior knowledge, the rats do not know yet whether the

information is reliable - for that matter, it might not even be relevant for the future.

This is the case for the inconsistent schema where the associations are swapped over

the course of training. In the next Chapter 4 we describe a different model for the hip-

pocampal memory system which is a compromise between flexibility and efficiency.
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3.2.2 Results: The acquisition of a consistent schema

We first investigated the acquisition and retrieval of the six original flavour-place asso-

ciations. To check that there was not much variation in our results, we ran five simula-

tions, each with a different random initialisation of the cortical weights (weights sam-

pled from a Normal distribution, see parameters in Table 3.1). We initialised the reward

probability distributions in the hippocampus as uniform distributions, i.e. qαβ = 1
6 for

each flavour-location memory pair αβ (right panel of Fig. 3.3). For all simulations the

model stopped updating the cortical weights during the experience phase (coinciden-

tally) after six epochs. After the sixth epoch, the cortical-cortical connectivity (RBM)

was modified solely during sleep replay.

During training the probabilities of the rewarded association memories {q11, . . .,q66}

in the hippocampus increased from the baseline value 1
6 to a high value close to 1

(Fig. 3.6c). Recall performance of the correct reward locations improved in parallel

over time (Fig. 3.6a, solid line). Furthermore, over time the rewarded associations

memories in the hippocampus were more likely selected for replay during sleep, and

thereby were gradually consolidated in the neocortex. When the hippocampus was dis-

abled during recall, performance was initially lower but had less effect later in training,

indicating a successful consolidation (Fig. 3.6a, dashed line).

At the end of the experience phase of each epoch, the prefrontal cortex averaged

the highest reward probabilities qαβ of all flavour memories α in the hippocampus

(Eq. 3.3). This average probability was then stored in the prefrontal cortex as the

meta-parameter φ∗, and reflected the expectation about the consistency of the rewarded

associations. Since the associations were consistent over training, the value of the

meta-parameter φ∗ increased and converged to 1 (Fig. 3.6b). On the other hand, if

the associations were inconsistent over training, the meta-parameter φ∗, and hence the

expected reward probability, would remain at the baseline value.

The recall probabilities of the rewarded locations that we evaluated from the activ-

ity in the sensory cortex were lower than the reward probabilities qαβ (β = α) in the

hippocampus (see Fig. 3.7a, compare solid blue line to semi-dashed black line). This

effect could be the result of (i) the hippocampus recalling the wrong flavour memory,

and/or (ii) the neocortex poorly reconstructing the activity of the location units in the

sensory cortex (top-down reconstruction). We found that already after one epoch the

recall of the flavour memories in the hippocampus was 100% accurate (not shown).

Therefore recall performance with hippocampus was limited by the reconstruction of
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Figure 3.6: Training of the six original flavour-place associations in the consistent
schema. (a) Recall performance over training epochs. Performance is the probability to
recall, given a flavour, the correct rewarded location. The red line indicates the epochs
when the cortical weights are updated during the experience phase. Solid blue lines:
recall with hippocampus. Dashed blue lines: hippocampus disabled at recall (only).
The thin lines are the average performance of each run (five RBM initialisations). The
thick lines are the average over the five simulation runs. Note that a performance of
0.5 means that the correct locations are recalled on average with probability 0.5, and
does not mean that on average 50% of the associations are recalled. This is illustrated
in the two insets, which show the individual recalls of the six associations for two runs
(black: hippocampus on; grey: hippocampus off). (b) The prefrontal cortex learns
the meta-schema over time. The meta-schema tracks the consistency of the rewarded
associations: the meta-parameter φ∗ increases for the consistent schema but not for
the inconsistent schema. (c) Reward probability distribution Qα =

{
qαβ

}
β

over the
location memories β, for each flavour memory α in the hippocampus at the end of
training. The hippocampus correctly recalls with high probability (diagonal β = α).
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the sensory patterns in the neocortex. As the flavours and reward locations were gradu-

ally consolidated in the neocortex, the difference was reduced towards the end of train-

ing. This observation also suggests that even if the probabilities qαβ of the rewarded

associations (β = α) in the hippocampus were equal to one from the start of training,

the increase in recall performance would still be gradual while the cortex adjusts its

weights.

Impact of blocking the replay of episodic memories during sleep

The current model stores both rewarded and unrewarded associations in the hippocam-

pus. The reason that in the end the rewarded ones prevail is that the rewarded ones are

replayed more often during sleep. To further demonstrate this effect we implemented

a random replay where all associations stored in the hippocampus had equal chance of

being selected, instead of a replay based on reward probabilities in the hippocampus.

As expected, when we disabled the hippocampus for recall, performance was at

chance level throughout training (Fig. 3.7b), indicating that consolidation of the re-

warded associations failed. Since the reward probabilities qαβ in the hippocampus

were updated the same way as in the control condition, the probabilities of the rewarded

associations had the same evolution as the semi-dashed black line Fig. 3.7a. Yet, the

measured recall performance was even lower than the control condition (Fig. 3.7a). We

checked that the hippocampus recalled the correct flavour memory, and found that this

recall was perfect (not shown). Therefore this result further demonstrate the impact of

the top-down cortical reconstruction of sensory patterns even when recall is mediated

by the hippocampus.

Despite this limitation, the network still had more than 50% chance to recall the

correct rewarded location by the end of training. This result would imply that cortical

consolidation of the six specific flavour-place associations is not required to perform

the task, as long as the episodic memories are stored in the hippocampus. Blocking the

replay of rewarded experiences might be detrimental in the current task, yet we believe

it could be helpful in situations where the consolidation of specific associations is not

required, if for instance these associations are not particularly relevant for the future,

while the hippocampus allows tempory storage and recall.
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Figure 3.7: Impact on training of 1) blocking hippocampal replay of episodic memo-
ries during sleep (light blue lines), 2) blocking episodic memory recall, to mimic failure
of context detection (orange line), or 3) blocking both (red line). The control condi-
tion (dark blue lines) corresponds to the results shown in Figure 3.6. (a) Performance
when recall is mediated by the hippocampus. The semi-dashed black line shows the
evolution of the reward probabilities {q11, . . .,q66} in the hippocampus corresponding
to the correct associations (represented by one curve since these probabilities are all
equal). The solid lines show the recall performance measured after the hippocampus
recalled the memory and the neocortex reconstructed the sensory pattern. (b) Perfor-
mance with the hippocampus disabled during recall to evaluate memory consolidation.
(c) When the context detection fails (orange and red lines in (a)), the hippocampus
relies on memories consolidated in the neocortex. To do so, it measures the correlation
between the activities of the hidden units when cued by a flavour sensory pattern α,
and the activities when the hippocampus reinstates stored memories.
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Impact of blocking episodic memory retrieval in the hippocampus

Here we consider a new arena (say, with different walls colours) but with the same

spatial arrangements of the sand-wells. Because it is a new context, the rule about

the associations might have changed. Hence, when presented with one of the known

flavours, it might be better to visit the closest potential reward location instead of going

to the supposedly associated one at the other side of the arena. In our model, we mod-

elled this flexibility of behaviour by allowing two recall pathways in the hippocampus

(*recall* in Section 3.2.1).

When we blocked episodic memory recall, the hippocampus relied on the knowl-

edge consolidated in the neocortex. Hence, we expected recall performance to be sim-

ilar to the recall when we disabled the hippocampus (Fig. 3.6a, dashed line). However,

this was not the case (Fig. 3.7a, orange line). Instead, performance increased at a low

pace, and by the end of training, recall probability was lower than 0.5 when the hip-

pocampus mediated recall, although recall probability without hippocampus was close

to 0.9 since the associations were consolidated in the neocortex. The decrease of per-

formance can be explained by looking at the correlations between the sensory-driven

activities p (h = 1|vα), corresponding to the flavour α, and all the hippocampal-driven

activities p (h = 1) = σ
(
xαβ

)
, corresponding to the memories of associations flavour

α and location β (Fig. 3.7c, upper panel). Despite the consolidation in the neocor-

tex, when the network was cued by a flavour the hippocampus the resulting activity

in the associative cortex was correlated with all the flavour-place memories in the hip-

pocampus that corresponded to that flavour. Thus, the hippocampus had a chance to

reactivate each memory β linked to the flavour memory α, but more likely reactivated

the correct reward memory (β = α) 5. Therefore, the hippocampus could have two

context-dependent recall strategies, one based on episodic memory which allowed the

network to complete the task, and one based on semantic information which allowed

the network to have a broader search.

On the other hand, if the network replayed random associations during sleep, hip-

pocampal recall performance was flat throughout training when it relied on semantic

memory (Fig. 3.7a, red line), because in this case the associations were not consoli-

dated. This is further illustrated by the correlations between the activity in the associa-

tive cortex and the memories stored in the hippocampus (Fig. 3.7c, lower panel), which

5Note that if we used the activity p (h|v) instead of sampling h in Eq. 3.4, semantic-based recall
performance in the hippocampus would be the same as episodic-based recall performance. Hence, the
decrease in recall performance as observed in Fig. 3.7a (orange line) was only obtained with sampling.
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show that when the network was cued with the flavour α, the hippocamus reactivated

all the memory traces linked to that flavour equally.

3.2.3 Results: The acquisition of new associations

During the original training, the prefrontal cortex learned a meta-schema: it extracted

the meta-parameter φ∗ which captured the overall consistency of the flavour-place as-

sociations (Fig. 3.6b). However, the model has not used this information yet. Here we

illustrate why this information is relevant for the data of Tse et al. (2007).

In line with the experimental paradigm, we trained a network on the task with

the consistent schema and we examined how this network learned two new pairs of

flavour-place associations (Fig. 3.2d). To check that there was not much variation in

our results, we tested the acquisition of the new associations using ten networks that

were trained on the original flavour-place associations. The training lasted 10 epochs

instead of the 30 epochs used for the initial training.

To model the new flavours and new locations we simply added one unit for each

in the visible layer of the RBM. The initial weights connecting the new units to the

hidden layer were sampled from a Normal distribution with the same parameters as

for the original training (Table 3.1). When we evaluated recall performance using the

reconstruction of the activity of the location units (see Fig. 3.4), the reward probability

distribution was defined over eight potential locations6, the six original locations no.1

to no.6, and the two new locations no.7 and no.8.

The same training protocol was applied to the two new flavours (training epoch

Fig. 3.5). All possible combinations were presented as input to the sensory layer of the

neocortex, i.e. each new flavour was shown with both the new and original locations.

The cortical weights were updated at each presentation, and the hippocampus stored

each memory. During the first epoch, the reward probability distributions associated

to the new flavour memories Qα =
{
qαβ

}
β

(α ∈ {7,8}, β ∈ {1, . . .,8}) were initialised

as uniform distributions. We tripled the number of cycles during the experience phase

(data set repetitions) compared to the original training (see Table 3.1). The aim was

to boost the update of the cortical weights of the new units. The number of cycles

6Note that in the experiment of Tse et al. (2007) they closed the sand-wells no.1 and no.6 and
opened neighbour sand-wells no.7 and no.8 (Fig. 3.1). However, in the current simulations the data
representation did not take into account the spatial arrangement of the sand-wells. Hence we did not
consider the proximity of the new locations to calculate performance. This of course will be an upgrade
in the next models.
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during sleep replay (memory reactivations) was increased accordingly in order to keep

the same ratio with experience.

Despite the fact that we increased the number of cortical updates, the model learned

the new associations only slowly with the baseline reward update parameter in the

hippocampus (i.e. increment ∆q = 0.1) (Fig. 3.8a, light green lines).

On the other hand, if the model could take the expectation about the consistency

of associations into account, it might somehow adjust the rate of update of the reward

probabilities in the hippocampus to generalise the prior belief to the new associations.

For instance, for the consistent schema the learned reward probability expectation is

high (Fig. 3.6b), and hence the model can increase ∆q as it trusts the new associations.

By contrast, for the inconsistent schema the learned reward probability expectation is

low (Fig. 3.6b), and hence the model does not increase ∆q as it considers that the new

associations are unreliable.

In the current model we manually adjusted the parameter ∆q for hippocampal

learning at the start of the new training (∆q = 0.1 for baseline slow update, ∆q = 1
for rapid update), but in the final model (Chapter 4) the prefrontal automatically mod-

ulated the learning in the hippocampus.

When the model had a fast reward update it reached more rapidly the same end-

performance of the original training (Fig. 3.8a, dark green lines). After one epoch

of training, the reward probabilities qαβ of the new associations in the hippocampus

(
(
α, β

)
∈ {(7,7) , (8,8)}) were higher than 0.5 (semi dashed black line); as a result, the

new associations memories were more likely replayed during sleep, and hence the new

associations were rapidly consolidated (Fig. 3.8a, dashed lines); note how it closely

tracks the performance when recall is mediated by the hippocampus (solid curve).

As noted in Section 3.2.2, the observed recall performance was lower than the

reward prediction in the hippocampus (semi dashed line). We found again that the

limiting factor was not the identification of the flavour cue, but rather the top-down

sensory reconstruction in the neocortex.

We further investigated why performance was low at the start in the case of the

fast reward update. We found that one of new locations was learned at the expense of

the other new location. For example, for the simulation run 1 in Fig. 3.8b, after one

epoch of training the network more likely recalled the new location no.7 regardless

of the flavour tested; in the next epoch, it was the opposite. Performance increased

and fluctuations were reduced over training as the connectivity in the neocortex had

undergone plasticity.
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Figure 3.8: Acquisition of two new associations (new flavours + new locations) with
a consistent prior schema. (a) Recall performance of the new associations with the ba-
sic slow reward update in the hippocampus (light green lines), or with the fast update
(dark green lines). The semi-dashed lines show the evolution of the reward probabil-
ities {q77,q88} in the hippocampus corresponding to the new associations. The two
insets show the average performance of each simulation (10 runs, same legend as main
plot), while the main plot shows the average over all runs. (b) Each panel shows the
probability to recall the new locations no.7 or no.8 (purple and yellow lines respec-
tively) when the network is cued with the new flavours, for two runs. The solid lines
are for recall with hippocampus, the dashed lines are for recall without hippocampus.
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Figure 3.9: Comparison of the acquisition of two new associations with a consistent or
inconsistent prior schema. The light colours show the case of the baseline slow update
of the reward probabilities qαβ (

(
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)
∈ {(7,7) , (8,8)}) in the hippocampus. The dark

colours show the case of a fast update. We suggest that the speed of the reward update
in the hippocampus can be regulated by the prefrontal cortex to differentiate between
consistent and inconsistent schemas.

What would happen in the inconsistent schema? To mimic the task in the inconsis-

tent schema, we trained ten networks on the original flavours, but with random sleep

replay. In this case, the original training looked like the training when we blocked

episodic replay, described Section 3.2.2 and shown Fig. 3.7a&b (light blue lines). In

addition, the reward probability distributions Qα associated to the flavour memories in

the hippocampus were uniform distributions.

We then trained the network on the new associations with the two types of reward

update (baseline increment ∆q = 0.1 or fast update ∆q = 1). In contrast with exper-

imental data of Tse et al. (2007), we found no difference between performance with

consistent or inconsistent prior schemas (see Fig. 3.9 vs. Fig. 3.1d&e). Therefore, in

our model, the knowledge consolidated in the associative neocortex cannot by itself

account for the difference in the speed of acquisition of the new associations that was

observed in experimental results. We thus propose that learning in the hippocampus

should be modulated depending on prior consistency of associations. We suggest that

the prefrontal cortex uses the meta-schema to decide whether hippocampal learning

should be up-regulated or not.
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Figure 3.10: Interference with the original flavour-place associations. Performance
at epoch 0 corresponds to a test before the start of new training, indicated by the
grey shaded area. (a) Recall performance of the original associations with the ba-
sic slow reward update in the hippocampus (light blue lines), or with the fast update
(dark blue lines). The semi-dashed line show the evolution of the reward probabilities
{q11, . . .,q66} in the hippocampus corresponding to the correct original associations
(represented by one curve since these probabilities are all equal). These probabilities
were updated once at the start of training to include the new locations memories. The
two insets show the average performance of each simulation (10 runs, same legend as
main plot), while the main plot show the average over all runs. (b) Each panel shows
the probability to recall the original rewarded locations (dark blue) or the new locations
(no.7 or no.8, yellow lines) when the network is cued with the six original flavours.
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3.2.4 Results: Fate of the original associations

In the previous part we modulated the speed of acquisition of two new flavour-place

associations by manually changing the increment during the update of the reward dis-

tributions in the hippocampus. Here we investigate the impact on the retention of the

original associations.

During the first epoch of training the hippocampus also stored the memories of the

associations xαβ (Eq. 3.1) between the original flavours vα (α ∈ {1, . . .,6}) and the two

new locations uβ (β ∈ {7,8}). However, when we presented these associations to the

network, the cortical weights were not updated. In addition, the reward probabilities

in the hippocampus corresponding to these associations were set to the baseline value

qαβ = 1
6 , and for each flavour memory α the reward probability distribution was nor-

malised so that
∑8
β=1 qαβ = 1. Thus, the reward probabilities of the original rewarded

memories {q11, . . .,q66} decreased slightly (semi-dashed line Fig. 3.10a; from q ' 0.95
to q ' 0.71). We chose to modify the reward expectation so that, given an old flavours,

the model could select one of the new locations (mimicking novelty effect). In the

absence of feedback for the old flavours the model had no reason to re-adjust its ex-

pectations. Thereafter the reward probability distributions associated with the original

flavour memories were fixed for the rest of training.

Recall performance of the original associations deteriorated upon learning the new

associations (Fig. 3.10a, solid lines). For instance, with the fast reward update, when

cued by the original flavours the network progressively recalled the new locations in-

stead of the old ones (Fig. 3.10b, solid lines in the upper row). However, performance

was lower than the hippocampal reward prediction (semi dashed line Fig. 3.10a). This

result implies that interference was not solely due to the modification of the reward

probabilities qαβ in the hippocampus, but was also due to the sudden change of con-

nectivity in the associative cortex to incorporate the new flavours and locations. Con-

sequently we found a stronger effect for the fast update in the hippocampus of the new

reward probabilities (dark blue lines).

We then probed the semantic memories of the original associations by disabling the

hippocampus during recall. Recall performance also decreased upon learning the new

associations (Fig. 3.10a, dashed lines), which further demonstrates that cortical plas-

ticity was responsible for the interference observed when the hippocampus mediated

recall. However, while recall with hippocampus stabilised during training, semantic

knowledge continued declining over training for the fast reward update (Fig. 3.10a,
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dark blue dashed lines). When cued with the original flavours after a few epochs of

training, the network already had more chance to select the new locations than to se-

lect the original ones (Fig. 3.10b, dark blue dashed lines). This significant drop of

supposedly consolidated memory was problematic. If anything, one would expect the

opposite result: hippocampal memory is believed to be flexible so as to rapidly incor-

porate novel information, whereas semantic memory is thought to be gradually updated

so as to preserve relevant information established in the neocortex.

Catastrophic forgetting is a well known issue in connectionist networks (McClel-

land et al. 1995, French 1999), and various computational models have shown that

interleaved learning of new and old information (or a noisy version of old information)

can prevent it. In line with this, we allowed the hippocampus to reinstate old patterns

during sleep replay in order to compensate for interference, or at least minimise their

effect (until now the model only replayed the memories related to the new flavours, i.e.

the pairs flavours α ∈ {7,8} and locations β ∈ {1, . . .,8}). We ran again ten simulations

for the case of the fast reward update in the hippocampus. We initially kept the same

number of cycles during sleep replay (300 cycles, see Table 3.1).

To assess the impact of replaying old memories we examined the recall perfor-

mance at the end of training. We first examined recall with hippocampus, and we found

that the performance for the original associations was closer to the reward probability

predicted by the hippocampus (Fig. 3.11, recall with hippocampus, top right plot; the

light blue histogram is closer to the semi-dashed line). In addition, this reactivation

did not impair the recall of the new associations (Fig. 3.11, recall with hippocampus,

top left plot; the only difference noted was a lower performance at the start of training,

which was 0 instead of ∼ 0.25 as in Fig. 3.8a, dark green).

We then checked the impact on memory consolidated in the neocortex by disabling

the hippocampus during recall. We found that the interleaved replay during sleep pre-

vented the new locations from completely overwriting the old ones (Fig. 3.11, recall

without hippocampus, top right plot). However, this came at the expense of the con-

solidation speed of the new associations (Fig. 3.11, recall without hippocampus, top

left plot). We increased the number of cycles (reactivations) during sleep replay in the

hope to speed-up the reorganisation of neocortical connectivity, i.e. to more rapidly in-

corporate new information while preserving old knowledge. Increasing to 450 cycles

helped the consolidation of the new flavour-place associations, but larger increase (600

cycles) proved to be ineffective (Fig. 3.11, recall without hippocampus, bottom row).

This result is not very surprising, because when we increased the number of cycles we
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Figure 3.11: Interleaved learning with prior knowledge during sleep replay: impact
on end-of-training performance for the new associations (plots on the left side) and
for the original associations (plots on the right side). The baseline performances (dark
green and dark blue) correspond to Fig. 3.8a (dark green lines) and Fig. 3.10a (dark
blue lines). The plots in the bottom panel show the performance with the hippocampus
disabled during recall to evaluate memory consolidation. Each histogram shows the
distribution of the performances obtained with ten simulation runs. The colours corre-
spond to various number of cycles used during sleep replay (300, 450 and 600). The
semi-dashed line represents the updated reward probability of the original associations
q ' 0.71 in the hippocampus.
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did not alter the proportion of reactivations of new versus original memories. A replay

schedule that prioritises the reactivation of new associations would probably be more

effective.

On the other hand, a more surprising result in our model is that the hippocampus

seems to be necessary to maintain the memories of both new and old associations,

while the neocortex undergoes plasticity. This result implies that if the hippocampus

is lesioned after new training, but before sleep, the old semantic memories would be

impaired, and that only if lesions are made after sleep the old semantic memories would

be preserved.

3.3 The neocortex and the semantic schema

In the preceding Section 3.2 we have presented the implementation of a simple net-

work to model the experiment of Tse et al. (2007). We introduced the idea of the

meta-schema to capture a global feature about the task, which in this particular case

was the consistency of the rewarded flavour-place associations. We have shown that

without the meta-schema, prior knowledge has no impact on learning new associations,

in contrast with the experimental results of Tse et al. (2007).

However, we did not fully address the representation of knowledge about the flavours

and locations encountered and its impact on the new training. This knowledge is stored

in the connections between the sensory and associative cortices (RBM), and we call

it semantic schema. In the previous simulations we could not explore this aspect as

we implemented a simple representation of the sensory input that did not take into ac-

count the spatial arrangement of sand-wells in the arena. In this section, we chose a

more elaborate representation of the reward locations so as to examine how the net-

work reshapes its connectivity to incorporate new associations. In particular, this new

representation allowed us 1) to investigate the role of replay for the formation of the

semantic schema and the impact of cortical consolidation on recall mediated by the

hippocampus (Section 3.3.2), 2) to investigate the impact of the prior semantic schema

on the acquisition of new associations (Section 3.3.3), and 3) to investigate the impact

of the consistency with prior knowledge of the new associations (Section 3.3.4).

In addition, in the first model the cortical weights were updated even for non-

rewarded events; we have highlighted that such cortical update rule diverges from the

“NeoHebbian” framework which predicts that the persistence of a memory depends

on its relevance (Lisman et al. 2011). Thus, in this second computational model we
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Figure 3.12: Second version of the model. Global model architecture (left panel). The
sensory cortex receives inputs from the environment. There is one unit per flavour,
while the location patterns are encoded by 225 units (Fig. 3.2b). The hippocampus is
connected to the associative layer of the neocortex. This model did not include the
prefrontal cortex module. In contrast with the first model (Fig. 3.3), only rewarded
events are stored in the hippocampus (right panel).

modified the plasticity protocols so that both cortical weights update and hippocampal

storage were restricted to rewarded events (Fig. 3.12).

3.3.1 Model setup

Note that in this second version of the model, we did not include the prefrontal cor-

tex module as it did not play a role during the simulations. Nonetheless, we will

re-introduce this module in Chapter 4.

Model of the associative neocortex and sensory input data

To model the spatial arrangement of the rewarded sand-wells we used the representa-

tion described in method section 3.1.2, where 225 location units encode the locations

with coordinate (x,y) in the arena (Fig. 3.2b). The motivation of this change was to

obtain a meaningful representation that could resemble semantic knowledge, where

each location was defined in relation to the others. This representation was also more

suitable to explore the adaptation of the semantic schema to include new reward lo-

cations, as these could be close or far from the original ones. We retained the simple

representation for the flavours, where each flavour was encoded by one visible unit.

The hidden layer of the cortical network had 200 units.

Since we only presented the rewarded flavour-place associations to the model, we

changed the notations of indexation: vk and uk are the vectors of visible binary units

representing the flavour and location of the kth rewarded association. Furthermore,

to model the reward locations we used binary patterns uk sampled from the activation
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probabilities (Fig. 3.2b). Otherwise, we kept the same notation: WF and WL are the

weight matrices connecting the flavour and location units to the hidden layer, h is the

vector with the state of the hidden units h j ∈ {0,1}, and p (h = 1) is the vector with

elements p
(
h j = 1

)
.

Model of the hippocampus

The hippocampus only stored rewarded memories, as opposed to the first model where

the hippocampus stored any incoming information regardless of its relevance (Section

3.2.1). Hence, the hippocampus no longer required to store the reward probabilities

of each association to support recall and replay, as the only memories available were

already the rewarded events.

The method to store memories in the hippocampus was similar to the method in

the first model. The hippocampus took snapshots of the field of the hidden units when

the network encountered a rewarded flavour-place association
(
vk,uk

)
(Fig. 3.14):

xk =Wᵀ
Fvk + λWᵀ

Lµ
k (3.5)

where µk = p (u = 1 | k) is the vector with the ’on’ probabilities of the location units

corresponding to the rewarded association k. We used the probabilities µk as input

instead of the binary samples uk so that the field of the hidden units would reflect

the average activity given a reward location. To compensate for the fact that we used

real values between 0 and 1 for the location units, we weighted their contribution by a

factor λ = 2 . The memory patterns xk were overwritten at each epoch.

Memory recall and performance

To test the network performance, we presented the flavours from the training set in the

sensory layer of the neocortex. The network computed the on-probability of the hidden

units ξcue = p (h = 1 | v) = σ
(
Wᵀ

Fv
)

(step 1 in Fig. 3.13). The hippocampus compared

the activation ξcue of the associative (hidden) layer with the stored memory patterns xk

using the consistency measure C
(
x;ξ

)
= − 1∑

j ξ j
xᵀξ (Section 2.3.3), and then sampled

a memory k according to the softmax distribution:

p
(
x = xk

)
=

exp
(
−C

(
xk ;ξcue

)
/T

)
∑

r exp
(
−C

(
xr ;ξcue) /T ) (3.6)

where T = 0.1. We had to take a lower value for the temperature instead of T = 1 to

obtain better recall performance. Next, the hippocampus clamped the hidden units to
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Figure 3.13: Recall mediated by the hippocampus. Step 1: A flavour cue is pre-
sented to the sensory cortex, and the activity propagates to the associative layer of the
neocortex. Given the activity of the associative layer, the hippocampus computes the
probability to recall each stored memory, and then samples a memory k. Step 2: The
hippocampus reinstates the field xk of the hidden units that corresponds to the sampled
memory. The neocortex reconstructs the activity of the location units in the sensory
layer via top-down connections. Finally, we derive the probability to go to each reward
location from the activity of the location units.
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the selected memory pattern xk , and the neocortex reconstructed the activity of the

locations units p (u | h) in the sensory layer using the top-down cortical connections

WL (step 2 in Fig. 3.13). As we explained in Section 3.1.2, we derived the probability

to go to a location by summing the on-probabilities of the units surrounding it, and

normalising by the total activity: if Ar is the region surrounding the potential reward

location r , the probability to go to location no.1 for instance is P (location 1) = D1∑
r Dr

,

where Dr =
∑

i∈Ar
p (ui = 1 | h).

By default, recall was mediated by the hippocampus. To test whether the memories

were consolidated in the neocortex, we disabled the hippocampus during recall and let

the RBM perform 5 Gibbs sampling steps to reconstruct the activity of the location

units (see Cortical recall in Section 2.2.1).

Network training

As in the previous model simulations (Section 3.2), the training was divided into

epochs that simulated day and night cycles. However, we made two important mod-

ifications for the training protocol. The first modification was to restrict the number

of presentations of each association during the experience phase, when the model re-

ceives input from the environment. The idea was to reflect that sensory experience is

limited, as opposed to sleep replay which we suppose can have many reactivations.

The second modification was to allow cortical plasticity and hippocampal storage only

for rewarded events. This learning rule seemed more efficient and in line with biology

compared to the learning implemented in the first model (Section 3.2).

An overview of the training epoch is given Fig. 3.14. Each epoch began with an ex-
perience phase during which the sensory layer of the neocortex received inputs from

the environment. In contrast with the training inspired from Káli & Dayan (2004)

which we used in the previous simulations, only the rewarded flavour-place associa-

tions were presented to the network during the experience phase7, and each rewarded

association was presented only three times8. The order of presentation was random at

each epoch.

7Note that even if the network encountered the non-rewarded associations, to mimic the animal
exploring other sand-wells, the result would be exactly the same because cortical plasticity and hip-
pocampal learning were restricted to rewarded events.

8The number of presentations of each flavour-place association was chosen according to the exper-
imental data. Once the rats found the correct sand-well, they collected the food pellet and returned to
the starting box to eat. Since three food pellets were hidden in the sand-well, they came back and forth
three times (without revisiting the other sand-wells).
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Figure 3.14: (Top panel) Training epoch. During the experience phase, the model
sees the rewarded flavour-place associations. For each association, we sample the
activation of the location units three times to obtain multiple binary input patterns
(see Fig. 3.2b). The hippocampus stores the field xk of the associative layer for each
association presented (see lower panel). During the sleep replay phase, memories are
randomly selected in the hippocampus. When a memory is selected, the hippocampus
clamps the activity of the associative layer, leading to the replay of a ’dream’ pattern
in the sensory cortices via the top-down cortical connections WF and WL. See Section
2.2 for details about cortical learning and sleep replay. (Lower panel) Hippocampal
learning during the experience phase.
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Training: Original New

reward locations 6 6
memories in HPC 6 2

visible units 231 233
hidden units 200 200
sleep cycles 600 600

weights mean 0
initialisation std 0.1

learning EXP 0.01
rate

SLEEP
0.01 (flavours)

0.0001 (locations)

Table 3.2: Model and training parameters. Notations: HPC = hippocampus; EXP =
experience phase; SLEEP = sleep replay phase. The coloured numbers are parameters
that will be modified during the training of new associations (see main text in the results
sections). For the sleep cycles refer to the diagram of the training epoch Fig. 3.14.

Upon selecting a flavour-place association, we sampled the corresponding raw pat-

tern representing the activation probabilities of the location units (Fig. 3.2b). We sam-

pled three times so as to obtain three different binary input patterns per location. The

cortical weights were updated for each rewarded stimulus presented (using CD1 learn-

ing, see method in Section 2.2.2).

After the cortex had updated its weights, the hippocampus stored the field vector xk

of the hidden units (Eq. 3.5) corresponding to each rewarded flavour-place association(
vk,uk

)
(Fig. 3.14, lower panel).

Next, the model started the sleep replay phase. The hippocampus randomly se-

lected a flavour memory k, and clamped the hidden layer. Given the activation h ∼
p
(
h | xk

)
in the associative cortex, the network generated a “dream” pattern (v,u) in

the sensory layer. This procedure was the same as the step 2 during recall, shown

Fig. 3.13, except that it reconstructed the activity of all the visible units, the flavour

units using the connection matrix WF , and the location units using the connection

matrix WL. The cortical weights were trained on this “dream” pattern (binary), us-

ing the same protocol as during the experience phase (CD1 learning, see method in

Section 2.2.2). The hippocampus cycled 600 times through all the stored memories

in this way. Note that Girardeau et al. (2014) detected some 1000 ripple events per

hour (which they then perturbed and observed impaired consolidation). Their detec-

tion method likely included false positives or task-irrelevant, and missed events. In any

case our number of consolidation cycles seems reasonable.

We set a lower learning rate for the location units compared to the experience phase

(Table 3.2). We justify how we set the cortical learning rates at the beginning of the

results in Section 3.3.2.
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3.3.2 Results: Sleep replay and consolidation in the neocortex

In the previous model in Section 3.2 sleep replay was needed because without it the

correct associations could not be consolidated (Fig. 3.7b). By contrast, in this model

consolidation was possible even without replay since we only presented the rewarded

associations. Hence we first wished to study the potential role of sleep replay.

Trade-off between training time and performance without sleep replay

We initially trained the model on the six original associations, similar to the experi-

mental paradigm of Tse et al. (2007), but without sleep replay. The cortical weights

were updated during the ’experience phase’ (Fig. 3.14) for 5000 epochs, with various

cortical learning rates η between 0.001 and 0.1. For each learning rate η we ran 10

simulations with different random initialisation of the cortical weights (weights sam-

pled from a Normal distribution, see parameters in Table 3.2). We tested the recall

performance of the network at each epoch, and we assessed memory consolidation by

blocking the hippocampus during recall.

To evaluate the training speed, we looked at the number of epochs the network re-

quired to reach an average recall performance of 0.5 (i.e. 〈P (Location k)〉k=1..6 = 0.5,

where k is the rewarded location; see Fig. 3.13). As expected, we found that training

was faster with higher learning rates (top left panel in Fig. 3.15). Next, we examined

the patterns consolidated in the neocortex at the end of training by probing memories

without hippocampus. We noticed that, for higher learning rates, the patterns recon-

structed during recall did not reflect the average activity representing the locations,

but rather the sparse sensory experience of the samples (see lowest panel Fig. 3.15;

examples of samples are shown Fig. 3.2b).

To investigate this, we computed the ’reconstruction quality’ of the activity of the

location units û in comparison with the original input u using the correlation measure:

rq (û,u) =
〈(û−〈û〉)ᵀ (u−〈u〉)〉

s (û) s (u)
(3.7)

where 〈·〉 is the average over the location units, and s is the standard deviation. This

measure is bounded between [−1,1], and rq = 1 means the observation is a perfect

match with the input pattern. We monitored the reconstruction quality of the location

units’ activity when the network reached the target performance (top right panel in

Fig. 3.15). For recall without hippocampus (pure cortical recall), we found that with

higher cortical learning rate the quality was poor (cyan line). Recall quality with hip-
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Figure 3.15: Training on the six original associations, without sleep replay, for various
cortical learning rates. The reconstruction quality is a quantitative measure of the
similarity between the true average activity patterns representing the locations and the
activity patterns reconstructed in the sensory layer during recall. The lowest panel
shows an example of the true pattern for location no.1 (data) and the reconstructed
activities observed during recall at the end of training.
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pocampus seemed more robust (black line), but we found more variability in the results

for higher learning rates. At the end of training, quality of recall without hippocampus

was even lower for high η (bottom right panel in Fig. 3.15, cyan line), which suggests

that quality deteriorated over training. With the recall probability we could not see this

effect as the performance measure was tricked by the activation of a few units.

The poor quality of the reconstructions indicated that the neocortex kept on over-

writing past experiences instead of incorporating them over time. It memorised the

specific activation patterns. We believed this aspect did not fit with cortical learning in

the brain, and thus we concluded that the cortical learning should be slow.

Remarks. In the next parts, for all the simulations with similar data set we made

sure the reconstruction quality was good during recall. In addition, it should be noted

that when the location input patterns were not stochastically sampled, but always iden-

tical (Fig. 3.2b) we did not observe the effect described above. Instead, recall both

with and without hippocampus were accurate over training, and training was faster

with higher learning rates. We come back to the role of sleep replay for simple data

versus more complex inputs in Section 5.2.1.

Sleep replay: a virtual training to promote consolidation

Sensory-driven experience, however, is limited. Hence, with small cortical learning

rates the training would be extremely slow. We propose that replay during sleep could

compensate by providing a ’virtual training’. However, to allow this ’virtual training’

the network has to be able to replay sensory patterns that resemble the ’real’ sensory

experience. Thus, the learning rate should be large enough to allow the hippocampus

to store memory patterns that can be reconstructed during subsequent sleep. This was

possible because we saw that memory retrieval by the hippocampus was robust even

for larger learning rates (right panel in Fig. 3.15, black line). Therefore, in theory, the

hippocampus should be able to drive the replay of sensory patterns via the top-down

neocortical connections.

For the remaining simulations, we found a trade-off (arbitrary) by setting the cor-

tical learning rate to 0.01 during the experience phase, and to 0.0001 during the sleep

replay phase.

We examined how sleep replay affected the learning and consolidation. We ran

5 simulations with different random initialisation of the cortical weights to check the

variability of the results. Sleep replay improved recall performance (Fig. 3.16). The
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Figure 3.16: Training of the six original flavour-place associations, with (dark blue) or
without (cyan) sleep replay. (Upper panel) Average recall performance over training
epochs. Performance is the probability to recall, given a flavour, the correct rewarded
location. Solid lines: recall with hippocampus. Dashed lines: hippocampus disabled at
recall (only). The two insets show the individual recalls of the six associations for the
five runs (thin lines), and the average for each run (thick lines). (Lower panel) Single
example run of reconstruction of the activity of the locations units during recall at the
end of training. The six insets in each row show the probability of activation of the 225
reward location units when the network is cued with one of the six flavours (numbers
at the bottom). The probabilities are averaged over 100 trials.
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training time required to reach the average performance of 0.5 was less than without

sleep replay with the same learning rate η = 0.01 (about 20 epochs versus 100 epochs;

see for comparison the top left panel in Fig. 3.15, black line). The associations were

consolidated gradually over time in the neocortex, tracking the performance with hip-

pocampus with smaller delay than without sleep replay (top left panel in Fig. 3.15).

At the end of training, the network successfully recalled the six locations when

cued with the corresponding flavours (see reconstructions of the locations in Fig. 3.16).

Without sleep replay the reward locations were extracted, i.e. they were correlated

with the input patterns, but the associations were weak and hence performance was

low at the end of training. Note that without sleep replay, semantic recall appeared

to be more accurate than hippocampal recall: the correct locations had the highest

probability, whereas when recall was mediated by the hippocampus recall was biased

towards locations no.2 and no.5 (Fig. 3.16, bottom right panel).

In summary, sleep acted as a virtual training for the neocortex, an opportunity to

strengthen the connections that started to develop during the experience phase. Sleep

replay thereby promoted the consolidation and stabilisation of the six associations in

the neocortex.

Recall mediated by the hippocampus is limited while memories are gradually con-

solidated in the neocortex

In the simulations with the previous model in Section 3.2.2, hippocampal performance

increased gradually for two reasons: 1) it was regulated by the reward probabilities

which were incremented over training epochs, and 2) the recall probability inferred

from the sensory cortex activity was lower because of the top-down cortical recon-

struction (Fig. 3.7a, solid blue line compared to semi-dashed black line). In the current

model however, the hippocampus no longer relied on reward probabilities for recall,

as it only stored rewarded memories. We then investigated two factors that could limit

recall with hippocampus: (i) the problem of cue identification in the hippocampus

(hidden layer activation, step 1 in Fig. 3.13), and (ii) the quality of reconstruction in

the sensory layer (from the hidden layer activation clamped by the hippocampus, step
2 in Fig. 3.13). Both issues were due to the neocortical weights, the first one due to

bottom-up stream, and the second one due to top-down stream.

To separate the two contributions, we considered an ’ideal observer’ which always

correctly identified the cues; hence, recall consisted only of step 2 in Fig. 3.13. As a
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Figure 3.17: Recall mediated by the hippocampus is limited by the gradual consoli-
dation in the neocortex. (a) Recall performance (test every 5 epochs). The solid lines
are the same results shown Fig. 3.16. The semi-dashed lines show the performance ob-
tained when we bypassed memory recall in the hippocampus (Step 1 in Fig. 3.13), and
instead supposed that the hippocampus had perfect cue recognition (’ideal observer’).
Hence, the performance measured is, in this case, only dependent on the top-down
reconstruction in the neocortex (Step 2 in Fig. 3.13). (b) Schematic of the sand-wells
spatial arrangement for the original training, for reference for the next figures. (c&d)
Reconstruction of the location units activities during recall of the associations no.2,
no.4 and no.6. The insets in one row correspond to different trials when cued by the
flavour indicated. The reconstructions shown were obtained with one of the five simu-
lation runs.
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result, if performance were low it would be due to the top-down reconstruction of the

activities in the neocortex. We found that performance with the ’ideal observer’ was

low during the first half of training (Fig. 3.17, semi-dashed lines), which implies that

the top-down cortical reconstruction was indeed a limiting factor in the performance

when recall was mediated by the hippocampus. Over time, as the quality of the recon-

structions improved, performance with the ’ideal observer’ also improved. In addition,

we noticed that the ’ideal observer’ had a similar behaviour when the network was

trained without sleep replay (Fig. 3.17, light blue semi-dashed line).

The actual recall performance was initially lower than the performance predicted

by the ’ideal observer’, but did catch up later on (Fig. 3.17a, dark blue solid line). This

suggests that the cue identification in the hippocampus (step 1 in Fig. 3.13) was also

limiting performance. To illustrate this we looked at the reconstruction of the activity

of the location units during recall of associations no.2, no.4 and no.6 (Fig. 3.17b&c,

left panels): mid-training (epoch 15), the reconstructions were noisy as predicted, and

we can see that the hippocampus wrongly identified the cues (mainly associations no.4

and no.6), but at the end of training recall was accurate.

When the network was trained without sleep replay, performance was always lower

than the performance of the ’ideal observer’ (Fig. 3.17a, light blue solid line). This

suggests that the hippocampus never correctly identified the cues. When we tested the

network mid-training (Fig. 3.17b, right panel), the reconstructions looked similar to

those with sleep replay, but the identifications appeared more random. When tested

at the end of training, (Fig. 3.17c, right panel), the network reinstated good quality

sensory patterns corresponding to known locations, but it reinstated the wrong ones.

We further investigated the cue identification in the hippocampus during memory

recall (step 1 in Fig. 3.13). We found that the hippocampus preferentially picked the

memories of associations no.2 and no.5 (Fig. 3.18). The only difference between these

two associations and the other ones is that locations no.2 and no.5 are located near

the edge, and thus have less noisy input patterns representations (less units with low

probability of being active); however we do not know how this difference in sensory

activation explains the bias observed during recall.

To conclude, recall mediated by the hippocampus was influenced by the gradual

consolidation of memories in the neocortex. When the network was trained with

sleep replay, recall performance was initially limited by both bottom-up and top-down

streams. However, after a while the hippocampus correctly identified the cue and per-
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Figure 3.18: Identification of the memory cue in the hippocampus during recall, with
or without sleep replay.

formance was only limited by the cortical reconstruction of the sensory patterns. On

the other hand, when the network was trained without sleep replay the reconstructions

of sensory patterns did increase in quality but the hippocampus constantly failed to

recognise the memory cue coming from the bottom-up stream, and hence reinstated

the wrong memories.

3.3.3 Results: Impact of the cortical weights initialisation on the

acquisition of new associations

At the end of the training on the six original associations, the network had learned a

semantic schema: six flavours, six potential reward locations, and their associations. In

line with the experimental study of Tse et al. (2007), the network was then concurrently

trained on two new flavour-place associations. The aim was to investigate the impact of

the prior semantic schema on the acquisition and consolidation of the new associations.

The new associations involved two new flavours, and we added one new unit per

new flavour in the sensory layer of the neocortex (RBM). The weights connecting the

new flavour units to the hidden units were set to the default values, i.e. they were

sampled from a normal distribution with mean 0 and standard deviation 0.1 (see Table

3.2). The two new reward locations were in the neighbourhood of two original loca-

tions (no.7 replaced no.1, and no.8 replaced no.6, see inset at the top in Fig. 3.19). We
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Figure 3.19: Acquisition of two new associations (new flavours + new locations) in
a naive network (grey lines, weights with default initialisation) or in a network with
a prior schema (green lines, trained weights). The two insets show the average per-
formance of each simulation (5 runs per network type), while the main plot show the
average over all runs. The axes of the insets are the same than the main plot. The solid
lines represent recall performance with hippocampus, while the dashed lines show the
performance with the hippocampus disabled during recall to evaluate memory consol-
idation.

applied the same training protocol described in Fig. 3.14, but only the new associa-

tions were presented to the network. The training parameters were the same as during

the original training. The hippocampus was cleared at the start of training, and hence

could only recall new memories.

To assess the impact of prior knowledge on the acquisition of the two new associa-

tions, we compared the performance of a network with semantic schema, i.e. which

was previously trained on the six original associations, with the performance of a naive
network, i.e. which started with the default weight initialisation for all units (Table

3.2). We ran five simulations for each network type. To evaluate recall performance

we derived the probabilities to go to the new locations using the same procedure shown

Fig. 3.13 (step 2), but replacing the locations no.1 and no.6 with the new locations.

The network with prior schema learned and consolidated the new flavour-place

associations faster than the naive network (Fig. 3.19). With a prior schema, the hip-

pocampus learned the new locations more rapidly because the network already knew
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Figure 3.20: Recall of the two new flavour-place associations after one epoch of train-
ing with (1) a naive network (left column, default initialisation), (2) a network with
prior schema (middle column, pre-trained with the six original associations), and (3)
a network with random weight initialisation for the location units (right column, pa-
rameters extracted from the semantic schema, see Fig. 3.21). The images show the
reconstruction of the activity of the location units during recall of the new associa-
tions no.7 and no.8. The reconstructions displayed were obtained with one of the five
simulation runs. Note that for all the flavour units had default initialisation values.

the arena; this is illustrated by the reconstruction of the location units activities, shown

in Fig. 3.20 (left and middle columns): after one epoch of training, the hippocampus

could already reinstate the new locations, in contrast to the naive network for which

reconstructions were noisy. Hence, while the naive network required more training

epochs to adjust the cortical weights and reduce the background noise, the network

with prior schema could be trained faster.

Next, we examined whether sleep replay was necessary for the rapid acquisition of

new associations in a network with prior schema. We turned-off sleep replay during

the new training, and we observed that both learning and consolidation were slower

compared to the training with sleep replay (Fig. 3.22a, no markers). In the long run,

the performance of the network with prior schema, but without sleep replay, was worse

than the performance of the naive network (grey lines). However, when both networks

were trained without sleep replay, performance with prior schema was better than per-

formance of a naive network (no shown).

We suspected that learning without sleep replay might have been slow because

the weights of the new flavour units had low initial values compared to the weights

of the flavour units that represented the six original flavours. To check this, we ran

new simulations where we initialised the weights of the two new flavour units using

the statistics of the semantic schema. From now on we call this type of initialisation
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Figure 3.21: Statistics of the cortical semantic schema. The plots show the distribu-
tions of the cortical weights after training on the six original flavour-place associations.
The main plots show the distributions for all the 5 simulation runs, and the small panels
show the distribution for two simulation runs. Large panels show the distribution for
all five simulations. Statistics of the weights of the flavour units: mean = [-0.14, -0.13,
-0.13, -0.14, -0.14] ; std = [0.69, 0.68, 0.67, 0.68, 0.67]. Statistics of the weights of
the location units: mean = [-0.05, -0.05, -0.05, -0.05, -0.05] ; std = [0.11, 0.11, 0.11,
0.11, 0.11]. The black lines represent the Normal distributions we used to sample the
weights for the ’random’ training condition (see main text) (Flavours: mean = -0.14 ;
std = 0.68. Locations: mean = -0.05; std = 0.11).

’random’. We extracted the mean and standard deviation of the flavour weights that

were obtained after training the network on the original associations (Fig. 3.21, top

row). We then initialised the weights from a broad normal distribution with mean

w̄ = −0.14, and standard deviation std=0.68 (Fig. 3.21, black line).

With the ’random’ initialisation, learning speed increased and consolidation speed

slightly increased in networks trained with sleep replay (Fig. 3.22a, with markers).

More importantly, performance of recall mediated by the hippocampus during training

without sleep replay was almost identical to that with sleep replay (Fig. 3.22a left

panel, light green line with markers). Thus for this particular task, a network with

prior schema does not require sleep replay to learn the new associations when the

weights of the new units are properly initialised.

Consolidation speed without sleep replay was also increased with the ’random’ ini-

tialisation of the new flavour units, albeit in the long run, performance was better with

sleep replay (Fig. 3.22a right panel, with markers). This suggests that consolidation

still benefits from sleep replay.
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(a) New training with replay versus without replay.
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(b) Network with learned semantic schema versus ’random’ initialisation.

Figure 3.22: Impact of the weight initialisation on the training of two new flavour-
place associations (see Table 3.3). Notes: (1) The grey line shows the reference training
of the naive network (default initialisation), and hence is the same in each plot. (2) The
lines with markers represent performance of networks with the ’random’ initialisation
of the new flavour units (using the parameters extracted from the semantic schema). (3)
The left panels show recall mediated by the hippocampus, and the right panels show the
consolidated memories (hippocampus disabled during recall only). (a) Performance
with or without sleep replay in a network with prior schema. (b) Performance with
sleep replay, in a network with prior schema (green lines), or with ’random’ weight
initialisation for the location units and for the six original flavour units (purple lines,
using the parameters extracted from the semantic schema).
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Network
Weight initialisation scheme

original flavour & location units new flavour units

Naive default default
Schema end of original training default ’random’
Random ’random’ default ’random’

Table 3.3: Networks trained on the new associations. Default refers to the initialisation
we used for the original training (see Table 3.2). ’Random’ initialisation uses the
statistics of the semantic schema (see Fig. 3.21).

Since a ’random’ initialisation of the new flavour units facilitated learning and con-

solidation, we considered training a naive network with similar ’random’ initialisation

for all the weights instead of the default initialisation. We extracted the parameters

of the location weight distribution at the end of the original training (Fig. 3.21, lower

panel). We then initialised the weights of the location units from a normal distribution

with mean w̄ = −0.05, and standard deviation std=0.11 (Fig. 3.21, black line). Simi-

larly, we initialised the weights of the six original flavour units from the distribution

we mentioned earlier, but for now the units corresponding to the two new flavour units

were still initialised from the default distribution. In the following paragraphs we re-

fer to this “improved” naive network as random network. Table 3.3 summarises the

different network initialisations implemented.

At the start of training, performance of the random network was lower than perfor-

mance of the network with schema (Fig. 3.22b left panel, no marker). The reason was

the same as for the naive network: it had no knowledge about the reward locations in

the arena, and hence the reconstructions of the location units activities were noisy, as

opposed to the network with the prior semantic schema (Fig. 3.20, middle and right

columns). Nevertheless, the random network learned the two new associations much

faster than the naive network, and consolidation was as fast as in the network with prior

schema (Fig. 3.22b right panel, no marker).

Next, we repeated the simulations but we initialised the weights of the new flavour

units from the normal distribution with the schema statistics (Fig. 3.21, upper panel).

Learning speed and recall performance at the beginning of training did not improve as

much as it did in the network with prior schema (Fig. 3.22b left panel, with markers).

On the other hand, consolidation in the random network was again very similar to the

one observed in the network with prior schema (Fig. 3.22b right panel, with markers).
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Figure 3.23: Relative training time for various weight initialisation schemes compared
to a naive network (relative time is t/tre f , where tre f is the time for training a naive
network; time was measured when performance reached p=0.5). The dots represent the
results of individual runs. The left panel shows speedup in performance when recall is
mediated by the hippocampus, and the right panel shows the consolidation speedup.

In summary, weight initialisation influenced how rapidly the network learned and

consolidated the two new associations. The network with prior semantic schema as-

similated the new memories more rapidly than a naive network (Fig. 3.23, in dark

green), which is consistent with the data of Tse et al. (2007). In addition, we observed

a speedup even if memories were not replayed during sleep (in light green); nonethe-

less, the speedup was greater with sleep replay, which is consistent with the fact that

rats required 24-48hrs for the successful consolidation of the new associations. How-

ever, we also obtained rapid learning in a random network initialised from distributions

with statistics similar to those of the semantic schema (in purple). In particular, con-

solidation was as fast as in the network with prior schema (Fig. 3.23, right panel).

Furthermore, sampling the initial weights of the new flavour units from a broader

distribution promoted hippocampal memory acquisition, but only in a network with

prior schema (Fig. 3.23, left panel). Importantly, the difference in learning with versus

without sleep replay almost vanished. On the other hand, the consolidation speed with

sleep replay was not much affected by the initialisation of the new units (right panel).

Consolidation without sleep replay was faster in this case, yet performance was still

overall lower than with sleep replay (Fig. 3.22b right panel, with markers).

All together, these results imply that the pre-training on the original associations

facilitated the rapid acquisition of two new associations in the hippocampus, but this

specific semantic schema did not benefit consolidation compared to a random initiali-

sation with appropriate statistics.
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(b) Cortical recall of the original associations (hippocampus disabled at recall).

Figure 3.24: Interference with the original associations during the new training.

Retention of the original associations

In order to assess the interference in the neocortex caused by the new training, we

disabled the hippocampus at recall and we probed the memories of the on the origi-

nal flavour-place associations. Note that the old memories were never replayed during

sleep for the new training. We tested memory retention (i) for the default initialisation

and (ii) for the ’random’ initialisation of the two new flavour units (Fig. 3.24). Re-

call performance of the original associations with locations no.1 and no.6 increased

because these locations were in the neighbourhood of the new locations. On the other

hand, memories of the other four original associations (no.2 to no.5) were gradually

overwritten with the new reward locations.

For both conditions, performance did not drop suddenly upon learning the new as-

sociations, in contrast with the interference observed with similar conditions (focused

learning, old memories not reactivated) in the first model that used one unit per lo-

cation coding (Fig. 3.10a). Not surprisingly, the distributed representation of reward

location, was more robust to overwriting.
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3.3.4 Results: impact of the consistency of the new associations

with prior knowledge

In the Complementary Learning Systems Theory (CLST), McClelland (2013) high-

lighted that the consistency of new information with prior knowledge had a significant

impact on the learning speed and on the extent of interference (see Section 1.2.3).

When we implemented the ’living things’ data set with our RBM-hippocampus

framework, we did not find that learning about penguin was an issue, but we did find

similar results to those of McClelland (2013) when learning more alien items which

had very unlikely combinations of features. However, unlike McClelland (2013), the

consolidation of the ’penguin’ was actually easier than the consolidation of the ’car-

dinal’. We assumed the novelty of the ’penguin’ facilitated consolidation, while the

’cardinal’ was too similar and hence consolidation was stuck (our guess was that there

was barely a gradient during sleep replay).

We decided to further investigate this effect with the current simulations of the task

of Tse et al. (2007). We repeated the training of two new associations 1) in a naive

network (default weight initialisation), 2) in a network with prior schema with default

initialisation of the new flavour units, or 3) in a network with prior schema with ’ran-

dom’ initialisation of the new flavour units, using the statistics shown Fig. 3.21. In the

current setting, it was difficult to characterise what defined a consistent new associa-

tion, hence we measured instead the similarity of the new locations with two original

locations. We considered various potential locations in a squared area surrounding the

original sand-wells no.1 and no.6 (Fig. 3.25, ’Possible new locations’). The two new

locations coordinates mirrored each other: for instance, if the new location no.7 was at

the original location no.1, then the new location no.8 was at the original location no.6

(locations indicated A in Fig. 3.25). In the results, we highlight four particular cases:

identical locations A, which we just mentioned; similar locations B, which correspond

to the previous simulation in Section 3.3.3; unknown locations C, which challenge the

old reward mapping; and finally conflicting locations D, which are close to two original

locations and close to each other.

Acquisition of the new associations

We first looked at recall performance with hippocampus after one epoch of training.

We noticed in Fig. 3.22, which corresponds to the location B here, that this perfor-

mance was already high because the network confused the new locations with the
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Figure 3.25: Acquisition of two new associations for different location similarity with
prior knowledge. Similarity is measured by the reconstruction quality Eq. 3.7, between
the activity vector of the location units corresponding to the new location no.7, and the
activity vector of the location units corresponding to the original location no.1. For all
plots, each dot represents the average result (10 runs) obtained for a given new location.
There are 49 possible new locations that correspond to the small squares in the green
areas surrounding the orginal locations no.1 and no.6 (top right panel). The results
ABCD correspond to specific locations. The grey dot show the results obtained with a
naive network (default weight initialisation). The green dots show the results obtained
with a network with prior schema and default initialisation of the new flavour units,
and the pink dots show the same but with the ’random’ initialisation of the new flavour
units. (Top left panel) Performance after one epoch of training the new associations,
when recall is mediated by the hippocampus. (Lower panels) Training time to reach an
average recall performance of 0.5, when recall is mediated by the hippocampus (left),
or not (right).
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Figure 3.26: Interference with the six original flavour-place associations after 30
epochs of training two new associations for different location similarity with prior
knowledge. For all plots, each dot represents the average result (10 runs) obtained for
a given new location (49 in total) (see locations in Fig. 3.25). The dark dots show the
results obtained with a network with prior schema and default initialisation of the new
flavour units, and the dots in light colors show the same but with the ’random’ initial-
isation of the new flavour units. We divided the results according to the placement of
the original locations in the arena (see inset at the top). The performance ratio is Pnew

Pre f
,

where Pnew is the performance measured during recall without hippocampus at the end
of the new training (for example, with location B see Fig. 3.24), and Pre f is the perfor-
mance measured during recall without hippocampus at the end of the original training
(Fig. 3.16, dark blue dashed line).
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original ones: see for instance the reconstruction of the activities in Fig. 3.20, the net-

work reactivates the original locations no.1 and no.6 rather than the new ones. This

result was confirmed with the current simulations (top left panel in Fig. 3.25): when

the new locations were closer to the original locations no.1 and no.6, recall perfor-

mance improved in the network with prior schema (in green and pink), in contrast with

the naive network (in grey). Performance further increased when we used the ’random’

initialisation of the two new flavour units (in pink). However, when the networks with

prior schema had to learn new locations further away from the original locations, they

both lost their advantage. Nevertheless, we observed a speed up in training with prior

schema for all new locations (bottom left panel in Fig. 3.25). The speedup was greater

when the new locations were closer to the original ones. In addition, as anticipated,

the conflicting locations D were the most difficult to train. Note that for the training

with naive network (in grey), the training time was diverse for the locations of lower

similarity: we found that the naive network learned with difficulty the rewards located

at the edges, whereas the networks with prior schema did not have such problem.

The consolidation time had a more complex profile (bottom right panel in Fig. 3.25).

With the new flavour default initialisation (in green), the consolidation took longer

when the new locations were closer to the original ones: see for instance that locations

A, which perfectly overlap with the original locations, have similar consolidation speed

than in the naive network. On the other hand, consolidation was faster for the unknown

location C. This effect was compensated with the ’random’ weight initialisation of the

new flavour units (pink dots).

Impact on the original associations

Next, we investigated the impact of the new training on the retention of the six original

associations. We disabled the hippocampus during recall since 1) it only contained the

new memories, and 2) we wished to evaluate if the neocortex had forgotten previously

consolidated memories.

We checked recall performance at the end of the 30 epochs of training the new

associations. Similar to the results in Fig. 3.24, we found that when the new locations

were close to the original sites no.1 and no.6 (AB), performance of these two original

associations improved or remained stable (Fig. 3.26, left panel). As the new associa-

tions were further away, performance decreased. For the two original locations no.3

and no.4 we saw a somewhat similar profile: as the two new locations were closer to

them (CD), there was less interference (right panel). For the two original locations
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Figure 3.27: Total weight change in the neocortex after 30 epochs of training two
new associations for different location similarity with prior knowledge. For all plots,
each dot represents the average result (10 runs) obtained for a given new location (49
in total) (see locations in Fig. 3.25). The dark dots show the results obtained with a
network with prior schema and default initialisation of the new flavour units, and the
dots in light colors show the same but with the ’random’ initialisation of the new flavour
units. We divided the results according to the types of units. The total cortical plasticity
was measured as the average absolute weight change for each group of units, between
the end of training and before the start of training: ∆w = 〈 1

Nh

∑Nh

j=1 |w
end
i j −w

start
i j |〉i ,

where Nh is the number of hidden units, and the index i represents the group of visible
units considered. For example i can be the indices of the two original flavour units of
the associations no.1 and no.6 (bottom left panel), the indices of the new flavour units
(top left panel), or the indices of the 225 location units (top right panel).
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no.2 and no.5, performance dropped to half for all new locations (middle panel).

Thus recall performance of old associations was less impaired when the new loca-

tions were closer to them. This observation is in line with the results of McClelland

(2013), and we suggest that to prevent the forgetting of original locations that were

further away from the new ones (e.g. locations no.2 and no.5) the network would have

to replay them and do interleaved learning.

Note that when we probed the old memories at the start of training we did not

find catastrophic interference upon presenting the new associations, regardless of the

location of the new rewards. This result is not shown, but was similar to the example

in Fig. 3.24, which corresponds to the training with location B.

Remark on the performance of the two original locations no.1 and no.6. We already

mentioned in Section 3.3.2 that a good performance did not imply that the memory re-

construction was of ’good quality’, i.e. the reconstruction of the location units activity

did not reflect the true sensory patterns (Fig. 3.15). In the current simulations, we sus-

pect that the reconstruction quality of the sensory patterns for the locations no.1 and

no.6 would be lower at the end of the new training, because it would capture the shift

of the representations of the locations: the network did not reinstate the old locations

per se but the new locations, as shown in Fig. 3.24a. However, we predict that this shift

of representation would not affect performance at the behavioural level, which in our

framework is modelled as the probability to recall the correct location, as long as the

new locations are not too far from the two original reward sites.

Plasticity of the flavours and locations units

Finally, we monitored the total weight change after the new training for the different

visible units (Fig. 3.27): the two new flavour units (top left panel), the original flavour

units (the three lower panels), and the locations units (top right panel). We measured

the plasticity as the average absolute weight change of the cortical connections.

For the location units (top right panel), we found more change for the unknown

location (location C), and less change for the locations in the edges (not highlighted

in the figure). When the new locations were close to the two original (no.1 and no.6),

the new flavour units required less plasticity (top left panel). The old flavour units 2

to 5 underwent little plasticity compared to the new flavour units9 (middle and right

9We can compare the plasticity levels between the flavour units as we took groups of two visible
units for each analysis; on the other hand, we cannot compare with the location units as the plasticity
was averaged over the 225 units.
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lower panels), which was surprising considering the drop of performance of the related

associations (see Fig. 3.26, middle and right panels). This suggest that performance

dropped because of the remapping of the location units activity, and not because the

weights of the flavour units were modified. On the other hand, when the new locations

overlapped with the two original no.1 and no.6 we found more connection change for

the two original flavour units, almost as much as for the new flavour units (left lower

panel, locations B and A). We observed a similar effect, albeit less pronounced, when

the new locations were closer to no.3 and no.4 (location D).

3.4 Conclusion

In this chapter we modelled the experiment of Tse et al. (2007) in order to clarify the

concept of schemas, the mechanisms of sleep replay, and the potential involvement of

the prefrontal cortex.

In Section 3.2, we implemented a simple model to identify why our network re-

quired 1) the prefrontal cortex and 2) the meta-schema to replicate the findings of Tse

et al. (2007).

First, we looked at the acquisition of a consistent schema by presenting constant

flavour-place associations to the network (Section 3.2.2). We found that the hippocam-

pus was important to select the relevant memories for replay during sleep, which al-

lowed to consolidate the rewarded associations. Replay of random associations pre-

vented consolidation, but it did not prevent hippocampal recall of rewarded memories

as the network still acquired the body of knowledge (i.e. the flavours on one hand, and

the locations on the other hand). We also suggested that the hippocampus might have

two recall pathways to allow flexible behaviour depending on the context. We pro-

posed that the hippocampus could either rely on recent, episodic memories, or probe

memories consolidated in the neocortex. The selection of the retrieval pathway could

perhaps be biased by the prefrontal cortex (Preston & Eichenbaum 2013).

Next, we trained the network on two new flavour-place associations (Section 3.2.3).

Rapid acquisition was only possible if we up-regulated memory formation in the hip-

pocampus. Yet, recall performance was low at the start of training as the network

could not learn the two new associations simultaneously. We believe this competitive

effect was a consequence of the novelty of the features since new units were added

to the sensory layer, which made it difficult to replay them correctly during sleep.

We then compared these results with the new training in an inconsistent schema. Tse
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et al. (2007) showed that rats rapidly acquired the two new associations in the con-

sistent but not in the inconsistent schema. However, our simulations indicated that

there was no difference between the two schemas, implying that memory formation in

the hippocampus had to be dynamically regulated. We suggested that the prefrontal

cortex could monitor the expected consistency of the flavour-place associations during

the original training, and then somehow use it to influence memory acquisition in the

hippocampus.

Finally, we examined the retention of the original rewarded associations (Section

3.2.4). The new training did not impair the retention of remote memories in Tse et al.

(2007), whereas in our model recall deteriorated significantly. In particular, consol-

idated memories were quickly overwritten, while recall mediated by the hippocam-

pus was less impaired. In line with McClelland et al. (1995), reactivation of remote

memories during sleep reduced interference but hindered the consolidation of the new

memories. On the other hand, replaying old associations did not impair the retrieval of

the new memories by the hippocampus. Increasing the number of replays helped the

consolidation the new associations while preserving existing knowledge; however, the

new memories were never fully consolidated, as opposed to when the system replayed

only the new associations.

The second part of this chapter focused on the semantic schema in the neocortex

during the training of consistent associations (Section 3.3). We implemented a dif-

ferent model as the previous one was too simplistic to explore the representation of

knowledge in cortical networks.

We first studied the requirements for the successful acquisition of the flavours and

the reward locations activity patterns (Section 3.3.2). We initially trained the network

without sleep replay for different cortical learning rates, and we observed a trade-off

between training time and quality of the memories. Since the network had limited ac-

cess to training examples during experience, the learning rate had to be large enough

to drive learning, but not too high otherwise the sensory patterns could not be prop-

erly reconstructed. Nevertheless, in these conditions learning would be too slow, and

hence we suggested that replay during sleep could serve as a ’virtual’ training to the

network. We observed that, with a low learning rate and a large number of reactiva-

tions, sleep replay facilitated the consolidation and stabilisation of the memory pat-

terns. Furthermore, our simulations revealed that cortical knowledge in the neocortex

impacted hippocampal recall in two ways: first, during the bottom-up cue recognition,

and second, during top-down reconstruction in the sensory cortices. Hence, hippocam-
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pal recall performance was limited while memories were gradually consolidated in the

neocortex.

The aim of the next simulations was to study the impact of the semantic schema

on the acquisition of two new odour-place associations (Section 3.3.3). For compar-

ison, we also trained a ’naive’ network, i.e. with the same initial weights as prior to

the original training. In other words, we wanted to evaluate whether knowing the six

flavours and the six locations facilitated the assimilation of the new memories. In line

with the findings of Tse et al. (2007), learning and consolidation were more rapid in a

trained network compared to a naive network. However, the new memories could also

be rapidly assimilated in a network with random weights sampled from distributions

with similar statistics than the weights of a network trained on the six original asso-

ciations. We tested whether any random weight initialisation would lead to the same

outcome (not shown), but our preliminary results indicated that it only worked when

we chose the statistics of the schema (e.g. it did not work with only the mean or the

standard deviation).

Weight initialisation thus played an important role in how much more quickly

the network learned the new information. Unfortunately, experimentally very little

is known about this issue, and most experimental techniques are geared towards seeing

changes in connections rather than measuring their strength before they are modified.

In addition, weight initialisation in neural network is a hard problem as convergence is

often unpredictable. For instance, the study by Kolen & Pollack (1991) revealed that a

very small change of initial weights can have a significant impact on the convergence

time even in a simple feedforward network and on a simple problem. Hence, it was

interesting that we obtained similar speedup with the ’random’ initialisation as with

the prior semantic schema.

In the last part we further investigated the relationship between the new associa-

tions and prior knowledge (Section 3.3.4). The hippocampus assimilated more rapidly

new associations when the new locations were closer to original ones. This effect was

associated with less plasticity for the new flavours units. On the other hand, consolida-

tion did not benefit from the similarity with old locations. If anything, consolidation of

new flavours with old locations was slower. When the new locations overlapped with

original locations, we found less interference for the corresponding original flavour-

place associations, despite the fact that we did not replay them. This effect was as-

sociated with more plasticity for the concerned old flavours units. This could imply

reconsolidation mechanisms.
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Interplay between hippocampus,

prefrontal cortex and associative

cortex

In this chapter, we present the final computational framework that we implemented

to investigate the experimental results of Tse et al. (2007). Although this model was

developed for this particular purpose, it can easily be extended to study similar memory

tasks. This version of the model built upon the models introduced in the previous

Chapter 3, and expands the implementation of the different modules: prefrontal cortex,

associative cortex and hippocampus.

We noticed in Section 3.2 that a system consisting of only hippocampus and asso-

ciative cortex was not able to learn and generalise the structure of knowledge. Indeed,

a network that was trained in a consistent schema, where the associations flavour-

place were fixed, learned new flavour-place associations the same way than a network

that was trained in an inconsistent schema, where the associations flavour-place were

swapped across training (see Figure 3.9 in Section 3.2). This result was at odds with

the experiment of Tse et al. (2007), because in the experimental study the rodents

distinguished the two types of schemas and learned rapidly new associations in the

consistent, but not in the inconsistent schema (Fig. 3.1e). Thus, we suggested in Sec-

tion 3.2 that the prefrontal cortex could extract the information about the structure of

knowledge, which we called meta-schema, and was for this task characterised by a sin-

gle meta-parameter that tracked the consistency of the rewarded associations. We also

suggested that the prefrontal cortex could use this abstract knowledge for subsequent

learning by modulating memory formation in the hippocampus. However, the model

109
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in Section 3.2 did not address how the prefrontal cortex could mediate these opera-

tions. In the current work we propose an implementation that relies on the interaction

between the prefrontal cortex, associative cortex and hippocampus.

Particularly, in the first model (Section 3.2), the prefrontal cortex did track the

consistency of the associations but it required that the hippocampus explicitly stored

the reward probabilities at all times (see model of the hippocampus Fig. 3.3 and update

Fig. 3.5). In the current model, on the other hand, we will show that the network can

directly compute the consistency of associations based on the knowledge consolidated

in the neocortex (RBM).

In the first Section 4.1 of this chapter we describe the implementation of the frame-

work. In the result Section 4.2 we investigate the interactions between the prefrontal

cortex, associative cortex and hippocampus during the acquisition of six flavour-place

associations. In line with the experiment of Tse et al. (2007), we considered two

schemas to train the network1: a consistent schema, where the associations flavour-

place were fixed, and an inconsistent schema, where the associations flavour-place

were continually swapped across training (Section 4.2.1). For each training condition,

we examine 1) the interaction between the prefrontal cortex and the hippocampus dur-

ing episodic memory formation (Section 4.2.2), and 2) the off-line replay of episodic

memories during sleep (Section 4.2.3).

In the second part of the results we investigate whether the acquisition of new asso-

ciations is faster in a consistent schema than in an inconsistent schema (Section 4.3.1).

In particular, we examine the impact of blocking the interaction between the prefrontal

cortex and hippocampus (Section 4.3.2). Finally, we study other factors that could

influence learning and consolidation, namely remote memories in the hippocampus

(Section 4.3.3) and the number of reactivations during sleep (Section 4.3.4).

1Unlike the experimental study, we never trained simultaneously on the two types of schemas; how-
ever, this could be implemented by adding context units in the visible layer of the RBM.
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4.1 Model setup

This version of the model incorporates all the modules introduced in Chapter 3: pre-

frontal cortex, associative cortex and hippocampus. In particular, we elaborated the

model of the prefrontal cortex, introduced in Section 3.2, clarifying its interaction with

the hippocampus and the semantic schema in the associative cortex. We also extended

the model of the neocortex used in Section 3.3, and we implemented a new version of

the hippocampus that combined elements of the models used in Sections 3.2&3.3. An

overview of the model is shown Fig. 4.1.

k

1 q1

1

k k
qk

2
2 q2

?

Hippocampus

Memory of reward 
location

Memory of flavour 
(cue item)

Recall probabilityk
episodic memory

probe cortical memory

qk
1-qk

Sensory Cortex

vk uk

Associative Cortex

Hippocampus

Flavours Locations

WF WL

Prefrontal
Cortex

consistency

modulate qk

Figure 4.1: Overview of the last version of the model. Global model architecture
(left panel). The sensory cortex receives inputs from the environment. The prefrontal
cortex tracks the overall consistency of the associations over epochs. It can also detect
novel or conflicting associations by interacting with the neocortex (Section 4.1.2), and
subsequently influences the formation of episodic memories in the hippocampus. The
hippocampus (right panel) is connected to the associative layer of the neocortex; it
stores memories of rewarded associations, creating a memory for the flavour and a
memory for the location, and connecting the two memories with an episodic link qk .
The value of qk is modulated by the prefrontal cortex during the creation of the episodic
memory (Section 4.1.3). The hippocampus mediates recall when the system is cued by
a flavour (Section 4.1.4), but also recall during sleep replay and thus impacts memory
consolidation in the neocortex (Section 4.1.5).

4.1.1 Model of the associative neocortex and measure of associa-

tion consistency

The neocortical module was similar to the model in Section 3.3. The cortical network

(RBM) had 325 visible units and 100 hidden units. We used the coordinate representa-

tion of the locations in the arena (225 units), as described in the method Section 3.1.2,

but we used the fixed input activation patterns instead of sampling to obtain the input

patterns (Fig. 3.2b, threshold method). Thus, we did not have to worry about the qual-



112 Chapter 4. Interplay between HPC, PFC and associative cortex

ity of sensory reconstructions during sleep replay and we could increase the learning

rate during this phase of training compared to simulations in Section 3.3.

To represent flavours in the sensory layer, we defined random patterns of size 100

units with on-probability p = 0.2. This contrasted with the previous model in Section

3.3, where we used one visible unit to represent each flavour, and we added a new

unit to represent a new flavour. Such change was motivated by two reasons: 1) sensory

representations are believed to overlap in the cortex, and 2) we could define new flavour

patterns without worrying about weight initialisation, which we saw was an influential

parameter for new training (Section 3.3.3).

We used similar notations to the ones in Section 3.3: vk and uk are the vectors of

visible binary units representing the flavour and location of the kth rewarded associa-

tion. Their respective on-probabilities are noted νk and µk . The matrices connecting

the flavour units and location units to the hidden layer are noted WF and WL, and h is

the vector with the state of the hidden units h j ∈ {0,1}, and p (h = 1) is the vector with

elements p
(
h j = 1

)
.

We needed a method to infer the likelihood of reward for a given flavour-place

association since the network did not explicitly keep track of the reward probabilities.

We thus defined a probability φ to evaluate the consistency of an association between

a flavour and a reward location (v,u):

φ =
1

1+ exp (Gv (u))
(4.1)

where Gv (u) is an energy-based measure of the consistency between the reward loca-

tion u and the flavour v (Algorithm 4.1). The method to evaluate consistency is based

on cortical recall: starting from the flavour pattern v, the neocortex infers the activity

of the location units; then, the network compares the resulting activation of the hidden

units ξ with the field of the hidden units y corresponding to the observed reward lo-

cation u. If Gv (u) is low (Gv (u) < 0 ) then the consistency is high, and if Gv (u) is

high (Gv (u) > 0 ) then the consistency is low. Note that in Algorithm 4.1 to reduce the

noise during the computations we used the real-valued vectors (probabilities) for the

Gibbs sampling steps, and low temperature to infer the activity of the hidden units.

Although we refer to φ as the probability of an association, it must not be confused

with the probability distribution P (v,u) over the all visible patterns of the Restricted

Boltzmann Machine. We chose not use the probability distribution of the RBM because

this distribution is rather hard to compute biologically because of the normalising fac-
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Algorithm 4.1 Computation of consistency Gv (u) of u given v
# Notations:

# p (h = 1) is the vector with elements p
(
h j = 1

)
# σ (·) is the sigmoid activation function applied element-wise

Given the observed flavour pattern v
1. Compute the activation probability of the hidden units

ξ = p (h = 1|v) = σ
(
Wᵀ

Fv;T
)
, temperature T = 0.5

2. Compute the activation probability of the location units

µ = p
(
u = 1|ξ

)
= σ

(
WLξ ;T

)
, temperature T = 1

3. Compute the new activation probability of the hidden units

ξ = p
(
h = 1|µ

)
= σ

(
Wᵀ

Lµ;T
)
, temperature T = 0.5

Given the observed reward location pattern u
Compute the field of the hidden units y =Wᵀ

Lu
Compute consistency Gv (u) = C

(
y;ξ

)
= − 1∑

j ξ j
yᵀξ

(  ;  )C
Consistency

ξy

WF

v

(1) (2)

μ=p(u=1|ξ)

Ty=W uL

WL

u
Locations

Hidden units

(3)

Favours

WL

Hidden units

ξ=p(h=1|μ)ξ=p(h=1|v)

Locations

Hidden units

Favours

WL

Locations

Hidden units

Favours

observed flavour observed location

ξ

tor (partition function) which sums over all possible visible patterns (see Chapter 2).

One way of reducing the computational load is to restrict the visible patterns to the

ones from the data set, i.e. the N flavours and N reward locations in our case. How-

ever, this solution would require that the system has full knowledge of these specific

patterns, which is a constraint that we wished to avoid. Thus, we decided to derive a

simple probability measure instead.

Another important remark is that φ should not be interpreted as the probability of

location u given flavour v, normalised by all possible locations; instead, it should be

interpreted as the likelihood of the association: if φ→ 1, then it is likely, if φ→ 0
then it is unlikely. Since we measure φ by probing neocortical memory, we can also

interpret it as measure of consolidation strength.

At the start of training, the initial cortical weights (RBM) were all zeros, so Gv (u) =

0 and thus φ = 0.5. This was the default value when the network had no prior knowl-
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edge. Then, for a consistent association the probability φ will increase, indicating a

strong and reliable association, whereas for an inconsistent association the probability

φ will decrease, indicating a weak and unreliable association. In the next Section 4.1.2

we explain how the prefrontal cortex interpreted the probability φ of an association.

4.1.2 Model of the prefrontal cortex

The prefrontal cortex mediated the extraction of the meta-parameter φ∗ which repre-

sented the expectation about the consistency (or variability) of the associations. Since

there is no evidence about where such knowledge could be stored in the cortex, we

supposed that the prefrontal somehow had access to this meta-parameter.

In the preceding Section 4.1.1 we defined a measure of consistency φ (Eq. 4.1),

and hence the prefrontal cortex simply had to extract the overall consistency of the

rewarded associations across epochs. As we mentioned earlier, prior to training the

initial value od consistency was φ∗ = 0.5. Then the prefrontal cortex updated the meta-

parameter at each epoch (see Section 4.1.5). If the flavours were always associated to

the same locations, φ∗ should increase above 0.5. This is the case of the ’Elephant’

category in Fig. 1.1, and the system then will expect consistent associations. On the

other hand, if the associations were swapped throughout training, φ∗ should decrease

below 0.5. This is the case of the ’Bird’ category in Fig. 1.1, and the system will expect

the associations to change in the future.

The meta-parameter set expectations for new incoming information, and thus if the

expectations are not met the system knows something is amiss. We incorporated this

function in our model so that the prefrontal cortex could detect whether a new experi-

ence was normal or surprising. The implementation was very simple: when presented

with an association, the network computed the probability φ of the observed associa-

tion, and then compared it to the model expectation φ∗. If φ ≥ φ∗, the association met

the expectation, but if φ� φ∗ then the system detected a surprising event.

However, the observed probability φ could be lower than the expectation for two

reasons. In a first case, the association is conflicting with prior knowledge: for in-

stance, in the current task, a known flavour that used to be always associated to a

specific reward location is suddenly associated with a different reward location. In

a second case, the association involves new elements: for instance, a new flavour is

associated with a new reward location. To distinguish these two cases, the system esti-

mated the consistency of the predicted reward location given the observed flavour. The
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predicted consistency, noted φ̂, is defined for a given flavour v by:

φ̂ =
1

1+ exp (Gv)
(4.2)

Eq. 4.2 above is similar to Eq. 4.1, but it evaluates the average consistency of the

recalled locations when the network is cued by the flavour v, rather than evaluating

the consistency of the recalled locations with the observed location u (Algorithm 4.2).

Thus, in the conflict case the predicted consistency φ̂ is close to the model expectation,

because the flavour was already consolidated with a different reward location. By con-

trast, in the novelty case the predicted consistency φ̂ is low because the new flavour was

not associated to any particular location. The Fig. 4.2 describes conceptual examples

of the different scenarios.

Algorithm 4.2 Computation of predicted association consistency Gv given v
# Notations:

# p (h = 1) is the vector with elements p
(
h j = 1

)
# σ (·) is the sigmoid activation function applied element-wise

Given the observed flavour pattern v
1. Compute the activation probability of the hidden units

ξ = p (h = 1|v) = σ
(
Wᵀ

Fv;T
)
, temperature T = 0.5

2. for M iterations do
2a. Compute the activation probability of the location units

µ = p
(
u = 1|ξ

)
= σ

(
WLξ ;T

)
, temperature T = 1

2b. Compute the field of the hidden units y =Wᵀ
Lµ

2c. Compute the new activation probability of the hidden units

ξ = p
(
h = 1|µ

)
= σ (y;T ), temperature T = 0.5

end for
3. Compute consistency Gv = C

(
y;ξ

)
= − 1∑

j ξ j
yᵀξ

(  ;  )C
Consistency

ξy

WF

v

(1) (2)

μ=p(u=1|ξ)

Ty=W μL

(3)

WL

Hidden units

ξ=p(h=1|μ)

ξ=p(h=1|v)

Locations

Hidden units

Favours

WL

Locations

Hidden units

Favours

observed flavour

WL

Hidden units

WL

Locations

ξ
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In practice, to determine whether the observed probability φ or the predicted prob-

ability φ̂ were larger than the meta-parameter φ∗ (expected probability), we set an

arbitrary lower bound to (1− ε ) φ∗, where ε = 0.15.

In our model, the prefrontal cortex coordinated the detection of consistency and

compliance with the meta-schema of incoming information, and changed its state ac-

cordingly (see Algorithm 4.3). In the next Section 4.1.3 we explain how the state of

the prefrontal cortex influenced the creation of episodic memories in the hippocampus.

φ* φ

neutral surprise

conflict novel

"a pink elephant in a fairy tale book"

"a pink elephant in the savanna""a grey elephant in the savanna"

φ* φ φ

φ*

(model)

(model)

(observation)

(observation)

φ̂(prediction)

"a pink feathered pterosaur 
in the savanna"

"a pink alien mammoth 
in the savanna"

φ φ*φ̂

φ φ*φ̂

"a pink bird in the savanna"

φ

φ*

φ̂
(prediction)

Figure 4.2: Conceptual examples to explain how the state of the prefrontal cortex is de-
termined. The arrows represent the consistency or strength of the associations. (Left)
In the context of the savanna, the model has a high expectation φ∗ about the colour
of the Elephant family (sharp distribution over colours, Fig. 1.1), whereas it does not
in the context of a fairy tale. Thus, “a pink elephant”, which has low probability φ

(Eq. 4.1), is classified as neutral in the fairy tale context, but surprising in the savanna.
(Middle) Since the model is confident about the grey color of the elephant in the sa-
vanna, measured by φ̂ ∼ φ∗ (Eq. 4.2), “a pink elephant in the savana” is classified as
conflicting. Similary, even though we expect more colour variability in the Bird cat-
egory (Fig. 1.1), the model detects conflict because the colour “pink” was never seen
before. (Right) Still in the savanna, if we see unknown animals, i.e. an “alien pink
mammoth” or a “pink feathered pterosaur”, we may assume that each belongs to the
same super-category as either the Elephant or Bird family, and thus we use the corre-
sponding expectation φ∗ for comparison. Yet, we have no expectation for these new
animals (low φ̂ ) and thus the episodes are classified as novel.
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Algorithm 4.3 Setting the state of the prefrontal cortex
# Notations:

#φ probability of the observed association (Eq. 4.1)

# φ̂ probability of the predicted association (Eq. 4.2)

#φ∗ model expectation (meta-parameter)

# Threshold ε = 0.15

if φ ≥ (1− ε ) φ∗ then # observation conform to expectation

PFC state = neutral

else
Compute prediction φ̂

if φ̂ ≥ (1− ε ) φ∗ then # prediction conform to expectation

PFC state = conflict

else # prediction different from expectation

PFC state = novelty

end if
end if

Summary: surprise and the neocortex There are two different kind of surprise

that should not be confused. (1) Whether an association is semantically odd (low φ)

or likely (high φ), which is related to the consolidation in the neocortex. For example,

“a pink elephant” is odd. (2) Whether an association is a mismatch (φ � φ∗) or is

acceptable (φ ∼ φ∗) relative to a specific model expectation φ∗. For example “a pink

elephant in the savanna” is a mismatch, but “a pink elephant in a fairy tale book” is

acceptable. We suggest this second type of surprise involves the prefrontal cortex,

and necessitates a meta-schema linked to a context to define the meta-parameter φ∗.

4.1.3 Model of the hippocampus

Similar to the model in Section 3.3, the hippocampus only stored rewarded memories,

and the memory patterns were overwritten at each epoch. However, unlike the previous

model, here the hippocampus stored the elements of an episodic memory separately:

when the network encountered a rewarded flavour-place association
(
vk,uk

)
, the hip-

pocampus first took a snapshot of the field of the hidden units when the flavour pattern
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φ* φ

neutral surprise

conflict novel

"a pink elephant in a fairy tale book"

"a pink elephant in the savanna""a grey elephant in the savanna"

φ* φ φ

φ*

(model)

(model)

(observation)

(observation)

φ̂(prediction)

qk qk

1-φ*

qk qk

"a pink feathered pterosaur 
in the savanna"

"a pink alien mammoth 
in the savanna"

φ φ*φ̂

φ φ*φ̂

qk

"a pink bird in the savanna"

φ

φ*

φ̂
(prediction)

1-φ*

qk

Figure 4.3: Conceptual examples to explain how the value of the episodic link in the
hippocampus is determined according to the state of the prefrontal cortex. The arrows
represent the consistency or strength of the associations. (Left) The two episodes are
classified as neutral and hence the probability qk of this episode is equal to φ, the
probability of the association according to the knowledge consolidated in the neocor-
tex (Eq. 4.1). (Middle) The two episodes are classified as conflicting and hence the
probability qk of the episodes are set to 1− φ∗, where φ∗ is the expectation for each
category. As a result, “pink bird” is more likely than “pink elephant”, even though they
are both semantically unlikely (low φ). (Right) The two episodes are classified as novel
and hence the links qk are set to the expectations φ∗ of the known similar categories,
generalising the structure to the new categories (Fig. 1.1).
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vk was presented, and then took a snapshot of the field of the hidden units when the

location pattern uk was presented (step 1 in Fig. 4.5):




xk =Wᵀ
Fvk

yk =Wᵀ
Luk

(4.3)

These two memory patterns xk and yk were connected with an ’episodic link’ qk which

represented the recall probability of the association. We assumed that the value of the

episodic link qk was determined by the state of the prefrontal cortex (Table 4.1). The

procedure is illustrated in Fig. 4.3 for the conceptual examples mentioned in the Intro-

duction of this thesis (Fig. 1.1). Briefly, if the prefrontal cortex was in the neutral state,

the recall probability qk of the episode was then equal to the probability φ of the asso-

ciation according to neocortical memory. If the prefrontal cortex detected conflict, the

link qk was then set to 1− φ∗; hence, the higher the expectation φ∗ (meta-parameter),

the lower the value qk of the episodic link. Finally, in case of novelty the episodic link

was set to the value of the meta-parameter, that is qk = φ
∗. The role of the episodic link

qk for recall and sleep replay is explained in the next Sections 4.1.4 and 4.1.5.

PFC state Episodic link qk

neutral φ

conflict 1−φ∗

novelty φ∗

Table 4.1: Value of episodic link qk connecting a flavour and location memories in
the hippocampus, according to the state of the prefrontal cortex. Notations: φ is the
probability of the flavour-place association (Eq. 4.1), and φ∗ is the model expectation
(meta-parameter). For the states of the prefrontal cortex refer to Algorithm 4.3.

It is important to note that odd things usually tend to stick in our memory. Thus, we

might actually remember all the conflicting examples given Fig. 4.3 vividly because

they are extremely odd2. However, these memories will presumably be unique, long-

term episodic-like memories, and hence fall out of the scope of this work as we are

interested in memories that will be integrated within neocortical schemas.

We mentioned that the hippocampus stored separately the memory of the flavour

and the memory of the location for each rewarded association; this method contrasted

with previous model (Section 3.3), where the hippocampus directly stored the memory

2To our knowledge, there is no proof of existence of pink elephants...
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of the associations (i.e. it stored the field xk =Wᵀ
Fvk +Wᵀ

Luk). There were two reasons

for this change. The first reason was that if the network learned novel or conflicting

associations, it could not properly reconstruct the patterns in the sensory cortex when

the hippocampus reinstated the new memories. For instance, if we swapped a flavour-

place association at the end of training in the consistent schema, the memory could not

be reconstructed using the top-down connections because the field of the hidden units

x was mostly negative, as the combination of the two patterns v and u was implausible.

This effect was particularly detrimental for sleep replay. To circumvent this issue we

created two distinct memory patterns x and y in the hippocampus, and hence even if

one pattern or the other was implausible, or if the association was implausible, the

sensory patterns could nonetheless be reactivated. We show in the training Section

4.1.5 how we implemented this procedure during sleep replay.

The second reason for storing separate flavour and location memories was that the

hippocampus was then able to reinstate associations that were not necessarily rewarded

during the last epoch. We expand on this point in the following Section 4.1.4.

4.1.4 Memory recall

We decided to extend the hippocampal model of Section 3.3 to implement a model

that was more flexible. Indeed, the former model only contained the memories of the

last epoch, and thus if the network saw the association flavour PINEAPPLE + reward

location no.1, the hippocampus could only reinstate this particular association and was

unable to reinstate the flavour PINEAPPLE with another location. We believed that it

was a limitation, because during training the animals did not know yet whether the

associations were reliable or not. In particular, we wanted the hippocampus to have

the ability to select not only the last rewarded location, but also any location that was

rewarded in the past or that was rewarded with a different flavour.

The first hippocampal model in Section 3.2 took the uncertainty about the observed

associations into account, but there the hippocampus was overloaded with unnecessary

memories (it stored both rewarded and unrewarded events). Therefore, here we imple-

mented an alternative solution where the hippocampus could recall episodic memories,

to reinstate the last rewarded locations, or it could probe memory consolidated in the

associative neocortex, to reinstate a location that could possibly be different. To com-

pare the various models of the hippocampus, the reader can refer to Fig. 3.3&3.4 (first

model), Fig. 3.12&3.13 (second model) and Fig. 4.1&4.4 (current model).
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Standard recall was implemented as follows (same steps shown in Fig. 4.4):

Step 1 Given a flavour v in the sensory cortex (visible layer of the RBM), the acti-

vation propagated to the associative (hidden) layer; let xcue =Wᵀ
Fv be the vector with

the field of the hidden units. The hippocampus selected the flavour memory vector xk

which had the highest correlation with xcue. We chose the maximum correlation be-

cause this method of recall was robust (correct identification), and hence we knew this

first step of hippocampal recall would not influence memory performance. However, a

more flexible method of recall would be preferable in the future (i.e. probabilistic re-

call), in particular to test weak or mixed flavours. In addition, if we tested old flavours

that were consolidated in the neocortex, but no longer stored in the hippocampus, the

current model was forced to select one of the newly stored flavour memories; instead,

the model should have the option to switch to pure neocortical recall (i.e. in Fig. 4.4,

the network would continue Gibbs sampling steps directly from xcue instead of xk ).

Step 2 Given the flavour memory k, the hippocampus could recall a location mem-

ory via to recall pathways: one direct recall pathway, recalling the association of the

episodic memory (black arrow in Fig. 4.4), and one indirect recall pathway, probing

the memory consolidated in the neocortex (purple dashed arrows in Fig. 4.4). The hip-

pocampus recalled associated location memory vector yk (episodic memory k) with

probability qk ; otherwise, it switched to the cortical recall pathway, and could then re-

call any location memory r stored in the hippocampus with probability Ps
(
y = yr |xk

)
,

where Ps is a recall probability defined by

Ps
(
y = yr |xk

)
=

exp
(
−C

(
yr ;ξ

))∑
l exp

(
−C

(
yl ;ξ

)) (4.4)

The probability Ps was obtained by probing memory in the neocortex: the hippocam-

pus clamped the hidden units to xk (the flavour memory pattern recalled), and the

neocortex did M Gibbs steps to reconstruct the activity p
(
û | xk

)
of the location units

in the sensory layer. Taking a last sample û, the network computed once again the

activity of the hidden units ξ = p (h = 1 | û). Finally, the system calculated the consis-

tency C
(
yr ;ξ

)
= − 1∑

j ξ j
(yr )ᵀ ξ (see Section 2.3.3 in Chapter 2) between ξ and each

field vector yr (location memory patterns) stored in the hippocampus. We then applied

the softmax function to obtain the recall probabilities. We added a null-field vector y0

(r = 0) to take into account the case where no location memory was found to match the

cue. Note that for the null vector y0 the consistency C
(
y0;ξ

)
is equal to zero.
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Step 3 For the last step of recall the network inferred the final activity of the location

units. If the hippocampus selected the null vector y0, the hippocampus did not reinstate

a location memory and instead the network kept the activation p
(
û | xk

)
of the location

units obtained by cortical recall. Otherwise, the hippocampus clamped the hidden

units to the selected location memory vector yr , and the neocortex reconstructed the

activity of the locations units p (u | h) in the sensory layer using the top-down cortical

connections WL. To calculate performance for the simulation of the task of Tse et al.

(2007), the method was the same that the one we used in Section 3.3. We derived the

probability to go to a location by summing the on-probabilities of the units surrounding

it, and normalising by the total activity: if Ar is the region surrounding the potential

reward location r , the probability to go to location no.1 for instance is P (location 1) =
D1∑
r Dr

, where Dr =
∑

i∈Ar
p (ui = 1).

Figure 4.4: (Next page.) Recall mediated by the hippocampus. Step 1: A flavour cue
is presented to the sensory cortex, and the activity propagates to the associative layer of
the neocortex. The hippocampus computes the correlation between the resulting field
vector xcue and each of the stored field vectors xk corresponding to the memories of
the flavours. The memory that maximises the correlation is chosen. Step 2: Given the
selected flavour memory k, the hippocampus recalls the associated location memory
pattern yk with probability qk (episodic link, black arrow), or the system probes mem-
ory consolidated in the neocortex with probability

(
1− qk

)
(purple dashed arrows). If

the hippocampus selects the cortical recall pathway, it may sample any of the stored
location memory patterns yr with probability Ps

(
y = yr | xk

)
. To compute this prob-

ability, we clamp the field of the hidden units to xk (flavour memory pattern), and we
let the cortical network do M Gibbs sampling steps to infer the activity of the location
units û. We then calculate the new activity of the hidden units ξ = p (h = 1 | û) and
compare it with each field vectors yr (location memory patterns) and a null vector y0,
using the consistency measure C

(
y;ξ

)
= − 1∑

j ξ j
(yr )ᵀ ξ . The probability Ps is then

derived by taking the softmax. Step 3: If the hippocampus samples the null vector
y0, the network keeps the activity p

(
û | xk

)
reconstructed by the neocortex. Other-

wise, the hippocampus reinstates the field yk of the hidden units that corresponds to
the sampled memory. The neocortex reconstructs the activity in the sensory layer via
top-down connections, and we derive the probability to go to each reward location
from the activity of the location units.
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Figure 4.4: Recall mediated by the hippocampus. (Continued on the following page.)
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Therefore, when the episodic link qk was strong the hippocampus more likely re-

called the episodic memory (direct pathway, black arrow in Fig. 4.4), and when the

episodic link qk was weak the hippocampus more likely probed cortical knowledge to

infer the memory corresponding to the cue (indirect pathway, purple dashed arrows in

Fig. 4.4). We believe it is useful for the hippocampus to have two pathways for rec-

ollection as it could potentially chose one and discard the other. For example, if the

animal learn the task in one context, and subsequently are placed in a different context,

they might discard episodic recall (direct pathway) and instead rely solely on mem-

ory consolidated in the neocortex (indirect pathway; i.e. do not sample qk but sample

Ps straight away). We have already suggested in Section 3.2 that, due to the context-

dependency, the prefrontal cortex might be involved in the selection of the appropriate

recall strategy in the hippocampus.

By default, recall was mediated by the hippocampus. To test if the memories were

consolidated in the neocortex, we disabled the hippocampus during recall and let the

RBM perform 2 Gibbs sampling steps to reconstruct the activity of the location units

(see Cortical recall in Section 2.2.1). Note that this cortical recall differs from the

“cortical recall” described above (step 2) when hippocampal recall failed: in the latter,

the activity of the location units was inferred by Gibbs sampling starting from xk , the

flavour memory recalled in the hippocampus, while for cortical recall non-mediated

by the hippocampus the activity of the location units was inferred by Gibbs sampling

starting directly from xcue.

In the next Section 4.1.5, we further develop on recall mediated by the hippocam-

pus as we explain its role for sleep replay during training.

4.1.5 Network training

The cortical weights were initially set to zero, and the initial value of the meta-schema

was φ∗ = 0.5 (see justification in the PFC model Section 4.1.2). Similar to the training

in Chapter 3, each epoch was divided into an experience phase and a sleep replay phase.

At the start of each epoch the hippocampus cleared out all its past memories. Similar

to the training in Section 3.3, the network only learned rewarded associations and we

limited the number of presentations of the sensory patterns during the experience phase

at each epoch. An overview of the training epoch is given Fig. 4.5, and the parameters

are in Table 4.2.
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Figure 4.5: (Top panel) Training epoch. During the experience phase, the model sees
the rewarded flavour-place associations in a random order. (Lower panel) Hippocam-
pal learning during the experience phase. See Section 2.2.2 for details about cortical
learning and Section 2.3.2 for sleep replay.
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Training:
Original New

associations associations

reward locations 6 6
memories in HPC 6 2

visible units 325
hidden units 100
sleep cycles 6x100 2x100

weights init. w = 0

learning rate
EXP 0.01

SLEEP 0.001

Table 4.2: Model and training parameters. Notations: HPC = hippocampus; EXP =
experience phase; SLEEP = sleep replay phase. The number of memories in HPC indi-
cated is the total number of episodic links created per epoch. This number is then used
to calculate the total number of replay events generated during sleep.

1 - Experience phase

The network cycled only once through the rewarded flavour-place associations during

the experience phase, but each association was presented three times in a row to the

sensory cortex. The order of presentation was random at each epoch.

Say the rewarded association k has been randomly selected (flavour k and reward

location k in the arena). We first presented the flavour pattern vk to the sensory cortex,

and updated the cortical weights WF connecting the flavour sensory area to the asso-

ciative cortex (using CD-1 learning, see method in Section 2.2.2). Next, we presented

the reward location pattern uk to the sensory cortex, and updated the cortical weights

WL connecting the location sensory area to the associative cortex.

Following cortical update, we computed the probability φ (consistency, Eq. 4.1) of

the flavour-place association
(
vk,uk

)
. The prefrontal cortex then compared the proba-

bility φ of the association with the current model expectation φ∗ (meta-parameter, see

Section 4.1.2), and detected if the association was neutral, novel or conflicting with

prior knowledge; the prefrontal cortex set its state accordingly (Algorithm 4.3).

The hippocampus then stored the memory of the association (lower panel, Fig. 4.5).

As explained in Section 4.1.3, it stored the field xk of the hidden units when the flavour

pattern was clamped in the sensory cortical area, and the hippocampus also stored

the field yk of the hidden units when the location pattern was clamped. The flavour

and location memories in the hippocampus had to be connected so as to finalise the

formation of the episodic memory. The value of episodic link qk was set according to

the state of the prefrontal cortex (see Section 4.1.3, Table 4.1).
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The procedure was repeated for all rewarded flavour-place associations. At the

end of the experience phase, the prefrontal cortex adjusted the meta-schema about the

consistency of the associations so as to reduce the discrepancy between observation

and expectation. It updated the meta-parameter φ∗ by averaging the probabilities φk

of the rewarded associations, but only considering the associations that were classified

either as “neutral” or “conflicting”:

φ∗← (1−γ)φ∗+γ〈φk〉k for k where PFC state , novelty (4.5)

The rate of update was γ = 0.2. For this update we did not include the associations

classified as “novel” because their probabilities φk were low, and thus if we included

them it would wrongly decrease the value of the meta-parameter φ∗.

2 - Sleep replay phase

In the current version of the model, the cortical weights for the flavours WF and the

cortical weights for the locations WL were adjusted independently during the experi-

ence phase. Hence, the flavours and the reward locations were consolidated, but their

associations were not. The sleep replay phase allowed the consolidation of the asso-

ciations. Importantly, only the associative part of the neocortex (RBM) was trained

during sleep replay, whereas hippocampus and prefrontal cortex were not plastic and

only supported the replay process.

Cortical learning during sleep was driven by the replay of flavour-place associa-

tions in the sensory cortex (Section 2.3.2). We assumed that the replay originated from

reactivations in the hippocampus. At each epoch, the number of reactivations in the

hippocampus was set to K×100, where K is the number of episodic memories stored in

the hippocampus (memories were randomly selected, hence on average each memory

was replayed 100 times).

A replay event started with the random reactivation of a hippocampal flavour mem-

ory pattern xk (Algorithm 4.4). The hippocampus then recalled a reward location mem-

ory pattern yr using the same method described Section 4.1.4. Note that we never

started a replay event from a location memory stored in the hippocampus, but this

could be an extension of the model.

If the hippocampus failed to recall a location memory, no pattern was generated

in the sensory layer of the neocortex. In that case the replay event failed and was not

replaced with a new recall attempt. Instead, the hippocampus proceeded to reactivate
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another flavour memory.

If the hippocampus successfully recalled a location memory, the replay event was

used to train the neocortex. The training had two stages. First, the network generated

two dream sensory patterns (binary patterns), first a flavour and then a reward location,

and for each the corresponding cortical weights were updated. Next, the two dream

patterns were clamped simultaneously in the sensory cortex, and the cortical weights

were updated again. This last update consolidated the association between flavour and

reward location.

Algorithm 4.4 Sleep replay.
# See Fig. 4.4 for recall mediated by the hippocampus.

for t = 1 to K ×100 do
1. Randomly select a flavour memory pattern xk in the hippocampus

2. Recall a reward location memory pattern yr in the hippocampus

if r = 0 then
Replay event fails

else
Replay event is successful

2a. Generate a flavour dream v from xk , and update WF

2b. Generate a location dream u from yr , and update WL

2c. Clamp (v,u) in the sensory cortex, and update {WF,WL}

end if
end for
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4.2 Results: Interplay between HPC, PFC and associa-

tive cortex during the acquisition of a schema

In this first part we ran five simulations for the training in the consistent schema, where

the flavour-place associations are fixed, and five simulations for the training in the in-

consistent schema, where the associations vary across epochs (Fig. 4.6a). For each run

we defined a different set of six random patterns for the flavours. The initial weights of

the cortical network (RBM) were all set to zero. The initial value of the meta-parameter

was φ∗ = 0.5 (no expectation prior to training, see Section 4.1.2). For this part of the

simulations, the network was trained for 50 epochs.

4.2.1 Training in a consistent or an inconsistent schema

For the consistent schema, recall performance improved over time (Fig. 4.6b, recall

with hippocampus, blue solid line) and the flavour-place associations were gradually

consolidated in the neocortex (Fig. 4.6b, recall without hippocampus, blue dashed

line). At the end of training, the network successfully reconstructed the activity of

the location units in the sensory cortex, where each rewarded location matched the

corresponding flavour cue (Fig. 4.7a,b, left panels).

Performance in the inconsistent schema increased at a lower pace than performance

in the consistent schema (Fig. 4.6b, recall with hippocampus, red solid line). Perfor-

mance was measured as the probability to recall, for a given flavour, the last rewarded

location. At the end of training, there was a larger variance of recall performance across

the six associations compared to performance in the consistent schema (black dots in

Fig. 4.7a, right panel). Indeed, the hippocampus correctly recalled some associations,

but for others recall alternated between two locations, (i) the correct location and (ii)

the consolidated location (Fig. 4.7b, upper right panel). The alternative behaviour

arised because of the two recall pathways of hippocampal recall, direct episodic re-

call and indirect cortical-based recall (refer to Fig. 4.4). For example, for the flavours

no.2, 3, 5 and 6, recall did not alternate because when the hippocampus probed cor-

tical memory (indirect recall pathway), the distribution Ps over the stored location

memories was uniform (Fig. 4.7d, right panel); this means that these flavours were not

consolidated to any location, which is also illustrated by the reconstructions obtained

when the hippocampus was disabled during recall (Fig. 4.7b, lower right panel). Note

that performances (with hippocampus) for the flavours no.2, 5 and 6, were higher than
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Figure 4.6: Original training in a consistent schema, where the associations are fixed,
and an inconsistent schema, where the associations are shuffled every two epochs. (a)
Example of associations in the two schemas. (b) Recall performance for the consistent
schema (blue), and the inconsistent schema (red). Solid lines: recall with hippocampus
intact; dashed lines: hippocampus blocked during recall only, to evaluate consolidated
memory. (c) Acquisition of the meta-schema. The prefrontal cortex updates the expec-
tation about the association probability between flavours and reward locations. This
expectation is represented by the meta-parameter φ∗. The thin lines show the value of
the meta-parameter for the different simulations. (d) State of the prefrontal cortex when
the associations are presented at each training epoch. Each panel shows an example
of simulation in the consistent and in the inconsistent schemas. Each row represents a
flavour-place association, and the rows are ordered according to the location number.
Note that for the training in the consistent schema we picked the result of a simulation
where the prefrontal cortex did find novelty and conflict, but for the majority of the
simulations the prefrontal cortex was always in the neutral state.
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performance for flavour no.3; this is explained by the direct recall probability (episodic

qk), which was lower for the flavour no.3 and hence the hippocampus more likely

probed cortical memory during recall (Fig. 4.7d, left panel). On the other hand, when

cued with the flavours no.1 or no.4, the network reinstated both locations no.2 and no.5.

The location no.2 (resp. no.5) corresponded to the correct reward location for flavour

no.1 (resp. no.4) in the last epoch, and was recalled with a probability qk (Fig. 4.7d,

left panel). Since qk < 1, the hippocampus had a probability 1− qk to probe cortical

memory during recall. In contrast with flavours no.2, 3, 5 and 6, the distribution Ps

over the stored location memories was peaked at one location for he flavours no.1 or

no.4 (Fig. 4.7d, right panel); this means that these two flavours were consolidated with

the two particular locations, which is also illustrated by the reconstructions obtained

when the hippocampus was disabled during recall (Fig. 4.7b, lower right panel). In the

case of flavour no.1, the episodic link qk was larger than 0.5 and hence the network

more likely recalled the correct location, while in the case of flavour no.4, the episodic

link qk was smaller than 0.5 and hence the network more likely recalled the incorrect,

consolidated location.

Despite the increase in hippocampal performance, semantic memory in the incon-

sistent schema performed poorly (Fig. 4.6b, recall without hippocampus, red dashed

line). Indeed the associations were changed every two epochs and hence the network

constantly overwrote the associations during sleep replay consolidation. Therefore,

if the direct, episodic recall pathway in the hippocampus was blocked (black arrow

in Fig. 4.4), performance would drop and would be similar to the recall performance

without hippocampus.

By contrast, for the training in the consistent schema, all episodic links qk were

high (Fig. 4.7c, left panel), which means that the hippocampus almost always recalled

location memories via the direct, episodic pathway. However, even if this recall path-

way was blocked, the result would be the same since the associations were consolidated

in the neocortex (Fig. 4.7b, left panel).

At each epoch, at the end of the experience phase, the prefrontal cortex aver-

aged the probabilities φ (Eq. 4.1) of the associations encountered and updated the

meta-parameter φ∗ (Eq. 4.5). The meta-parameter monitored the consistency of the

flavour-place associations across epochs. For the consistent schema, the value of the

meta-parameter increased (Fig. 4.6c, blue lines), as the flavour-place associations were

gradually consolidated in the neocortex. For the inconsistent schema, however, the

meta-parameter decreased over time (Fig. 4.6c, red lines), as the flavour-place associ-
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Figure 4.7: Recall of the six original flavour-place associations at the end of training
in the two schemas. Except for (a), all figures show the results of one simulation run.
(a) Recall probability of the reward locations for the five training simulations in the
consistent schema (left) and inconsistent schema (right). The dots represent individual
performances for the six associations. (b) Reconstruction of the activity of the location
units in the sensory cortex (activities averaged over 100 trials). The six insets in each
panel show the reconstruction for the six trained flavour-place associations, sorted by
flavour tested. The correct reward locations are indicated below the insets (for the
inconsistent schema, they correspond to the rewards allocation of the last epoch). (c,d)
Hippocampal (HPC) recall probabilities (step 2 in Fig. 4.4). When the hippocampus
recalls a flavour memory, the associated location memory is recalled with a probability
qk (episodic link, left panel). If direct recall fails (probability 1−qk), the hippocampus
probes cortical memory to compute the probability of each stored location memory
(softmax, right panel; Ps in Fig. 4.4). The last column (?) is the 7th option in the
softmax. When selected, the hippocampus does not reinstate a location memory and
instead let the cortex infer the activity of the location units (p (û) in Fig. 4.4).
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ations were, on average, only weakly consolidated in the neocortex.

We anticipated hippocampal performance to increase in the inconsistent schema

because the neocortex learned over time the flavour and reward location patterns, and

hence the quality of the reconstructions in the sensory cortex improved. However,

performance was higher than expected, because the correct locations were recalled

with high probability in the hippocampus (episodic links qk , in Fig. 4.7d), while we

expected these to be lower. Indeed, we expected the prefrontal cortex to be in the

neutral state during the training of the six original associations in both consistent and

inconsistent schema, because the meta-parameter φ∗ (Eq. 4.5) is supposed to grow (or

decrease) as the associations get progressively consolidated (or not) and the associa-

tions probabilities φ increase (resp. decrease). Thus if the prefrontal cortex was in the

neutral state, the episodic link should have been set to qk = φ, where φ is the probabil-

ity of the observed association; since we have seen earlier that the associations were

not consolidated in the inconsistent schema, the probabilities qk should have had low

values (similar to the meta-parameter φ∗, Fig. 4.6c, red line). Therefore we hypothe-

sised that the prefrontal might have been in a different state during the training in the

inconsistent schema.

To investigate this behaviour, we monitored the state of the prefrontal cortex over

training. While in the consistent schema the prefrontal cortex was, as expected, in the

neutral state over training, for the training in the inconsistent schema the prefrontal

cortex switched to the conflict state mid-training for some associations (Fig. 4.6d).

This result explains why the episodic link had high value for training in the inconsistent

schema: when the prefrontal cortex was in the conflict state, the episodic links of the

associations were set to qk = 1−φ∗ (Table 4.1), but the meta-parameter φ∗ was low for

the inconsistent schema (Fig. 4.6c, red lines).

Why did the network detect conflict in the inconsistent schema? Say flavour PINEAP-

PLE was associated with a reward at location no.4, and the probability φP4 of the as-

sociation had a value close to the meta-parameter φ∗. At the beginning of training this

value was about 0.5, which means that flavour PINEAPPLE had more chance of being

replayed with location no.4 than with any other location. Yet, after two epochs the

associations were changed. Thus, flavour PINEAPPLE was then associated with a dif-

ferent location, say no.1. Hence, the new association had low probability φP1 that was

lower than the expectation set by the meta-parameter φ∗, but since φ̂ = φP4 was simi-

lar to φ∗ the prefrontal cortex detected conflict. As an illustration, the process would

look like to the “pink bird” example in Fig. 4.3: when the meta-parameter φ∗ is low,
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the episodic link qk is high. Consequently, the new association will be more likely

replayed during subsequent sleep, which will decrease φP4 and increase φP1; but as

the new association is consolidated, φP1 might end up higher than the meta-parameter

φ∗, and thus it might lead to conflict detection later when the associations are changed

again. Hence we believe the conflict detection occurred because of the consolidation

of associations during sleep replay.

4.2.2 Impact of blocking the PFC modulation of memory formation

in the HPC

We have seen at the end of Section 4.2.1 that, in the case of the inconsistent schema, the

prefrontal cortex detected conflicting associations over the course of training instead

of remaining in the neutral state as we anticipated. By contrast, we did not observe

such behaviour during the training in the consistent schema (Fig. 4.6d). Since the

state of the prefrontal cortex modulated memory formation in the hippocampus during

learning, here we investigate what would happen if we interfered with this modulation.

In practice, it means that during step 2 of hippocampal learning (“link memories” in

Fig. 4.5), the strength qk of the episodic link between the flavour memory and the loca-

tion memory was set to φ, the probability of the association measured by the neocortex

(Eq. 4.1), regardless of the state of the prefrontal cortex (while previously qk was set

according to Table 4.1). If we look at the examples in Fig. 4.3, this operation will not

affect the outcome for the “neutral” associations, because in this case we already had

qk = φ. This operation will not affect either the case of “pink elephant in the savanna”,

because φ ∼
(
1−φ∗

)
, but it will affect the outcome for “pink bird in the savanna”,

since the episodic link will be set to a lower value than the value they would normally

have after modulation by the prefrontal cortex. Note that during training the prefrontal

cortex still monitored the consistency of the associations with prior knowledge.

For the consistent schema, blocking the modulation during the creation of the

episodic link in the hippocampus had no impact on the performance (Fig. 4.8a&b, left

panels, orange lines). This was expected, since we found in the control condition that

the prefrontal cortex was almost always in the neutral state. This result is equivalent to

our example of the “grey elephant in the savanna” in Fig. 4.3 (φ ∼ φ∗ and qk = φ).

On the other hand, the performance in the inconsistent schema was impaired when

the strength of the episodic link was not modulated by the state of the prefrontal cor-

tex (Fig. 4.8a, right panel, orange line). Hippocampal recall randomly alternated be-
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Figure 4.8: Impact on training in the consistent (left) and inconsistent schema (right)
of: 1) blocking PFC modulation of the episodic link qk during memory formation in
the hippocampus (orange lines), 2) blocking hippocampal recall via the direct, episodic
pathway (black arrow in Fig. 4.4) during sleep replay (light blue lines), or 3) block-
ing both (purple lines). The control condition (black lines) corresponds to the results
shown in Fig. 4.6b.

tween the episodic memory of the last rewarded location, and the consolidated location

(Fig. 4.9c, left panel). We noticed some of this effect already in the control condition,

i.e. with prefrontal interaction intact (Fig. 4.7b, top right panel), but in the current con-

dition the hippocampus mostly recalled the consolidated location. Indeed, the location

with higher probability matched the location recalled without hippocampus (Fig. 4.9c,

right panel), whereas the location with lower probability matched the correct location,

indicated by the number below each inset.

To understand this result we looked at hippocampal recall. We found that most

episodic links qk in the hippocampus were lower than 0.5 (Fig. 4.9e, left panel), in

contrast with the control condition where most were higher than 0.5 (Fig. 4.7d, left
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panel). As a result, in the current simulations the hippocampus most likely probed cor-

tical memory (probability 1−qk) during recall rather than recalling the recent episodic

memory; however, for four out of five simulations, the probability distribution Ps over

the location memories stored in the hippocampus was peaked at one unique location

memory (Fig. 4.9e, right panel). This location memory corresponded to the location

consolidated (Fig. 4.9c, right panel). Accordingly, the episodic link of the association

that involved this consolidated location memory was higher than the others (Fig. 4.9e,

left panel; in this example, flavour no.5 was, by chance, associated with location no.4).

Therefore, for the majority of the simulations, we found that the network reinstated

one rewarded location, regardless of the flavour tested (which location was dominantly

consolidated was random across the different simulations).

Note about the consolidation in the inconsistent schema. To investigate why the

network recalled only one reward location, we first checked whether the bias in recall

was a consequence of the network having learned only one location. We tested memory

recall with a random cue and found that the network reinstated all locations, suggesting

that all locations were learned more or less equally (result not shown here, but this will

be illustrated when we introduce the new associations in Section 4.3). Despite this,

as we mentioned earlier, when the hippocampus probed cortical memory during recall

the resulting probability distribution Ps over the location memories was peaked at one

unique location memory (Fig. 4.9e, right panel), which implies that all flavours were

consolidated with the same location. Indeed, if the flavours were not consolidated

with any specific location, we would have observed that hippocampal recall had failed

(option marked as (?) in Fig. 4.9e, right panel; refer to recall method in Fig. 4.4).

Next, we checked whether the consolidated location varied across training epochs.

We monitored the state of the prefrontal cortex over time (Fig. 4.9d) and found that it

switched to conflict mode for most associations presented. However, for one location

the prefrontal cortex was always in the neutral state (for instance the location no.4 in

Fig. 4.9b, top panel, corresponding to the simulation shown in panel (c) in the same

figure). This means that, every epoch, any flavour presented with this specific location

did not trigger conflict detection in the prefrontal cortex. This result implies that the

consolidated location observed at the end of training was the same all the way.

In order to get further insight why such bias in recall occurred, we looked at the re-

construction quality3 (Eq. 3.7) during recall with hippocampus. This measure reflects

3We have introduced the reconstruction quality in Section 3.3.2 of Chapter 3 when we investigated
the impact of cortical learning rate on the quality of the recalled sensory activations.
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Figure 4.9: Training in the inconsistent schema when we block modulation of the
episodic link qk by the prefrontal cortex during memory formation in the hippocam-
pus. (a) Recall performance, at the end of training, for five simulations. The dots
represent the individual performance of the six flavour-place associations. Notice that
for four out of five simulations, one association has high recall performance while the
others are low. (b) Quality of the reconstruction of the activity of the location units
during recall over time. (c) Reconstruction of the activity of the location units when
recall is mediated by the hippocampus (left) or or not (right). Notice that one location
is preferably reinstated, which explains the performance shown in panel (a). (d) State
of the prefrontal cortex when the associations are presented at each training epoch.
Each panel shows an example of simulation. Each row represents a flavour-place asso-
ciation, and the rows are ordered according to the location number. (e) Hippocampal
(HPC) recall probabilities (step 2 in Fig. 4.4). When the hippocampus recalls a flavour
memory, the associated location memory is recalled with a probability qk (episodic
link, left panel). If direct recall fails (probability 1− qk), the hippocampus probes cor-
tical memory to compute the probability of each stored location memory (softmax,
right panel; Ps in Fig. 4.4). The last column (?) is the 7th option in the softmax. When
selected, the hippocampus does not reinstate a location memory and instead let the
cortex infer the activity of the location units (p (û) in Fig. 4.4)
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the correlation between the true sensory patterns and reconstructed ones; its evolution

over training epochs is shown Fig. 4.9b. We noticed that the recall quality initially

increased (orange curve) similar to the control condition (black curve). Yet, the recall

quality started to decline mid-training while the reconstruction quality kept on increas-

ing for the control condition. This suggests that mid-training, one location took over

and, as it became more and more consolidated with all the flavours, the recall quality

decreased over time.

To understand what led to the consolidation of a unique location, we need to go

back to the example explained earlier in Section 4.2.1, when the network was trained

in control conditions in the inconsistent schema. We saw that when the associations

were swapped the prefrontal cortex detected conflict. We also saw that when flavour

PINEAPPLE was suddenly associated with location no.1 instead of location no.4, with

modulation by the prefrontal cortex the new memory in the hippocampus had a high

episodic link (e.g. “pink bird” in Fig. 4.3). By contrast, the episodic link was here set to

qk = φP1. But φP1 was low, which means that when the memory of flavour PINEAPPLE

was reactivated during subsequent sleep, the new location only had a low probability

of being recalled, and hence the new association was less replayed and consequently it

never got a chance to be consolidated. Instead, when the memory of flavour PINEAP-

PLE was reactivated, the hippocampus probed cortical memory with high probability

1− qk , and thus recalled the initial location no.4 because the recall probability Ps was

peaked at this location memory. Thus, the most consolidated association was again re-

played, strengthened, and hence its probability φP4 further increased. In other words,

the “bird” will never turn pink in Fig. 4.3.

In the meantime, say location no.4 was then associated to flavour CHAMPAGNE.

Say this flavour was not preferably consolidated to any particular location, and the

episodic link qr = φC4 was lower than 0.5. Thus, like for the flavour PINEAPPLE, the

hippocampus most likely probed cortical memory during recall during sleep replay.

Since flavour CHAMPAGNE was not consolidated to a location, the recall probability

Ps should have been uniform over the location memories in the hippocampus. How-

ever, we believe that as the flavour PINEAPPLE was more and more replayed with

its preferred location no.4, it created a bias in memory retrieval for the flavour CHAM-

PAGNE when the hippocampus probed cortical memory (probability Ps), leading to the

memory of location no.4 being more sampled than the other location memories in the

hippocampus. Therefore, location no.4 was often replayed with flavour CHAMPAGNE

since it was predominantly recalled via both recall pathways in the hippocampus.
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This created a snowball effect sustained by sleep replay, leading to the consolida-

tion of a single location with all the flavours.

To conclude, blocking the hippocampal-prefrontal cortex interaction during the for-

mation of memories in the hippocampus did not affect training in the consistent schema

because there was no conflict detected during learning, and hence no need for modu-

lating the episodic link (i.e. the grey elephant was already grey). On the other hand,

blocking this interaction during training in the inconsistent schema did impair perfor-

mance: when the modulation of the episodic link in the hippocampus was not allowed,

memories were not correctly recalled during subsequent sleep and hence the network

consolidated the wrong memories, which also impacted hippocampal recall.

4.2.3 Impact of blocking episodic memory recall in the hippocam-

pus during sleep replay

In Section 4.2.2 above we saw that blocking the modulation of the episodic link did

not impair performance in the consistent schema, but impaired performance in the

inconsistent schema as memories were not correctly recalled during sleep. Further-

more, in most simulations in the inconsistent schema we found that one location was

consolidated with all flavours, at the cost of the other locations. We suspected that if

we suppressed the episodic link recall pathway during sleep replay for the training in

the consistent schema we would find similar results. With this manipulation the hip-

pocampus automatically recalled a location memory by probing cortical memory (see

Fig. 4.10), and hence hippocampal replay never reflected experience but instead was

based on prior knowledge. Since the cortical weights were initially set to zero, the

neocortex had no prior knowledge and consequently the hippocampus should replay

random combinations of flavour-place associations during sleep. We thus wondered

whether we would observe a bias during the consolidation process (i.e. one loca-

tion memory taking over the others), similar to the training in the inconsistent schema

(Fig. 4.9c) or whether all locations would be equally consolidated with all flavours.

In the consistent schema, since the network replayed random flavour-location com-

binations we anticipated that consolidation would be impaired. We already reported

this result in Section 3.2.2 of Chapter 3, where we prevented consolidation by block-

ing the replay of the rewarded associations (Fig. 3.7b). However, we also found that

when the hippocampus mediated recall, performance was not greatly impaired by this

procedure (Fig. 3.7a). Therefore we wanted to check whether the network would have
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Figure 4.10: Blocking episodic memory recall in the hippocampus during sleep replay.
Normal recall is described Fig. 4.4.

such behaviour in the current model.

We must stress that the two types of training - consistent and inconsistent - were

equivalent when we blocked episodic-based recall during sleep replay. Indeed, in

the control condition the difference between training in the consistent or inconsistent

schemas was the replay of experiences during sleep that allowed consolidation of the

associations in the consistent, but not in the inconsistent schema. This consolidation

impacted the associations probabilities φ, and thus the update of the meta-parameter

φ∗ (Eq. 4.5), which in turn modulated the episodic link qk during memory formation in

the hippocampus. By contrast, if we block the replay of experiences it should prevent

consolidation, and hence the meta-parameter φ∗ should be the same in consistent and

inconsistent training. Thus, the modulation of the episodic link qk would also be the

same, and as a result we expected similar hippocampal recall performance in the two

schemas.

We found indeed similar recall performance for consistent and inconsistent schemas,

as is illustrated in Fig. 4.8a&b (light blue lines). It is interesting to note that when we

blocked the replay of experiences during sleep the network trained in the inconsistent

schema performed best in this condition.

As expected, consolidation failed during training in the consistent schema (Fig. 4.8b,

left panel, light blue dashed line). Indeed, as explained earlier, the consolidation of

flavour-place associations only occurred during sleep replay, and since replay was now

independent of the experience, the system never had the chance to correct the cortical

knowledge over training. We noticed that the neocortex had consolidated a unique lo-

cation at the end of training (Fig. 4.11c, right panel), similar to what we found for the

inconsistent schema when the interaction with the prefrontal cortex was blocked dur-
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Figure 4.11: Training in the consistent schema when we block the hippocampal re-
call via the direct, episodic pathway during sleep replay (suppress episodic link qk in
Fig. 4.4). (a) Recall performance, at the end of training, for five simulations. The dots
represent the individual performance of the six flavour-place associations. Notice that
for all five simulations, one association has higher recall performance than the others.
(b) Evolution of the meta-parameter φ∗ extracted by the prefrontal cortex (expecta-
tion about the association probability between flavours and reward locations). The thin
lines show the results for the different simulations. (c) Reconstruction of the activity of
the location units when recall is mediated by the hippocampus (left) or or not (right).
(d) State of the prefrontal cortex when the associations are presented at each training
epoch. Each panel shows an example of simulation. Each row represents a flavour-
place association, and the rows are ordered according to the location number. (e)
Hippocampal (HPC) recall probabilities (step 2 in Fig. 4.4). When the hippocampus
recalls a flavour memory, the associated location memory is recalled with a probability
qk (episodic link, left panel). If direct recall fails (probability 1−qk), the hippocampus
probes cortical memory to compute the probability of each stored location memory
(softmax, right panel; Ps in Fig. 4.4). The last column (?) is the 7th option in the
softmax. When selected, the hippocampus does not reinstate a location memory and
instead let the cortex infer the activity of the location units (p (û) in Fig. 4.4)
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ing the formation of episodic memories (Fig. 4.9c, right panel). The bias in recall was

again due to a snowball effect during sleep replay: sleep replay was based on semantic

recall, the more the associations were replayed the more they were consolidated, and

the more they were consolidated the more they were recalled during replay. Even-

tually, one location took over the others. Since the neocortex did not consolidate the

correct associations, the meta-parameter φ∗ decreased as we predicted in the consistent

schema (Fig. 4.11b, light blue lines).

In line with the results in Section 3.2.2, recall performance with the hippocampus

was less impaired by the current manipulation (Fig. 4.8a, left panel, light blue solid

line) than recall without hippocampus. The hippocampus mostly reinstated the correct

location, but also reinstated the consolidated location (Fig. 4.11c, left panel, the con-

solidated location is the no.6 in the example displayed). We noticed that the prefrontal

cortex switched to the conflict state for all but one association, which corresponded

to the association with the consolidated location (Fig. 4.11d). This result is similar

to what we observed in the inconsistent schema, when the network also consolidated

a unique location (Figure 4.9d). However, in the current case the modulation of the

episodic link by the prefrontal cortex was allowed, and thus for the five associations

detected as conflicting this link was set to qk = 1− φ∗ (see Table 4.1). Since φ∗ was

decreasing over time (Fig. 4.11b), qk was increasing and thus the memories could be

recalled by the hippocampus. In addition, the association corresponding to the con-

solidated location was labeled as neutral, and as such qk = φ, where the probability

φ of this association was high, and hence this memory could also be recalled by the

hippocampus. The values of the episodic links are shown for one simulation example

Fig. 4.11e, left panel.

Thus, performance when recall was mediated by the hippocampus, which relied

on the episodic link qk of each association, appeared to be preserved thanks to the

modulation by the prefrontal cortex during memory formation in the hippocampus.

Indeed, without this modulation, the episodic links of the five associations that were

detected as conflicting would be qk = φ, where the probability φ of each association

was low. We confirmed this by blocking the modulation by the prefrontal cortex, and

found that performance dropped as expected (Fig. 4.8a, left panel, purple solid line).

To conclude, as we predicted the consolidation of the associations in the consis-

tent schema was impossible if we blocked the recall pathway in the hippocampus that

allowed the replay of episodic memories during sleep. However, instead of replaying

randomly each location with all the flavours, recall eventually became biased towards
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one specific location memory mid-training, and hence this location was wrongly con-

solidated with all flavour memories. The network could not correct this bias despite

the signal from the prefrontal cortex, which detected that associations were conflict-

ing, because replay was independent of experience in the current simulations. On the

other hand, performance when recall was mediated by the hippocampus was preserved,

albeit it was lower than control performance.

The effect on hippocampal performance mirrors the results reported with the toy

model when we blocked episodic memory replay (Section 3.2.2), but is interesting be-

cause this time the hippocampus did not need to explicitly store and update reward

probabilities. Furthermore, in Section 3.2.2 we suggested that the model could decide

to block episodic memory replay so as to prevent the consolidation of specific associ-

ations which might not be that relevant in the future. However, in the current model

it seems better to simply not replay these associations during sleep, at least when the

network has no prior knowledge, as otherwise recall during sleep becomes biased and

leads to the replay and consolidation of false memories.

4.3 Results: Interplay between HPC, PFC and associa-

tive cortex during the acquisition of new associa-

tions

In Section 4.2 above we have trained our model to learn six flavour-place associations.

These associations were either consistent or inconsistent across training. Such distinc-

tion is important as Tse et al. (2007) have shown that rodents could learn quickly two

new associations in the consistent schema setting, but not in the inconsistent schema

setting. However, in previous simulations in Section 3.2 our first model could not make

this distinction, as the learning speed of new associations was identical in the consis-

tent and inconsistent schemas (Fig. 3.9). Thus, we suggested that the prefrontal cortex

regulated the learning in the hippocampus so as to influence the speed of acquisition

of the new associations as a function of the prior schema. Yet, in our first model there

was no connection between prefrontal cortex and hippocampus to allow such opera-

tion. By contrast, in the current model there is a direct link between the consistency of

new information (neutral, conflicting or novel), the prior schema (meta-parameter φ∗)

and memory formation in the hippocampus (Table 4.1). Therefore in this section we

investigate how the current model learns the new associations with either a consistent
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or inconsistent prior schema, and whether it can account for the experimental findings

of Tse et al. (2007).

4.3.1 Acquisition of new associations with a consistent or incon-

sistent prior schema

We initialised the model using the parameters obtained in previous simulations of the

original training (5 networks). We generated 5 sets of two random patterns to repre-

sent the two new flavours, and we trained each network on these sets (25 simulations

in total). The training protocol was identical to the original training, but only the new

associations were presented to the network (see training epoch Fig. 4.5). In addition,

the hippocampus was cleared out before training and hence it only contained the mem-

ories of the two new flavours and the two new locations at each epoch. This also means

that only the new memories could be replayed during sleep. Accordingly, we set the

total number of reactivations during sleep to 200 (as opposed to 600 for the original

training), so that each flavour memory was reactivated on average 100 times in the

hippocampus (same as original training).

The network learned more rapidly the two new associations when it had been pre-

viously trained in the consistent schema than when trained in the inconsistent schema

(Fig. 4.12a). From the start of the new training, recall performance with hippocam-

pus was high in the consistent schema, while it was at chance level in the inconsistent

schema (Fig. 4.12a, solid lines). Consolidation was also faster with the consistent prior

schema than with the inconsistent prior schema (Fig. 4.12a, dashed lines).

The prefrontal cortex detected the novelty of the associations at the start of training

for all simulations in the consistent schema, and for the majority of the simulations

in the inconsistent schema (Fig. 4.13a, green line = % novelty detected). Indeed, the

probability φ (Algorithm 4.1) of each new association was low, and it was lower than

the expected association probability set by the meta-parameter φ∗ in both consistent

and inconsistent schemas (Fig. 4.13b, epoch 1 column). The network thus detected

a uprising event. Furthermore, to compute the predicted association probability φ̂ of

the new flavours, the network had to infer the patterns of activity for the location units

(Algorithm 4.2); yet, the flavour patterns of activity were new and consequently the

network reconstructed improbable activation patterns (for illustration, similar to the

reconstructions shown in Fig. 4.19, Epoch 1, recall without hippocampus). Thus, the

predicted probability φ̂ was even lower than the observed probability φ Fig. 4.13b,
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Figure 4.12: New training in the consistent schema (green) versus inconsistent schema
(purple). (a) Recall performance during the training of the two new flavour-place
associations. Solid lines: recall with hippocampus intact; dashed lines: hippocam-
pus blocked during recall only, to evaluate consolidated memory. (b) Evolution of
the meta-schema. The prefrontal cortex updates the expectation about the association
probability between flavours and reward locations. This expectation is represented by
the meta-parameter φ∗. The thin lines show the value of the meta-parameter for the dif-
ferent simulations (25 simulations, 5 pre-trained networks trained 5 times on two new
flavour-place associations). For the consistent schema, the initial value of φ∗ is high,
while it low for the inconsistent schema (see Fig. 4.6c). (c) Sleep replay monitoring.
Number of replay events that were used for training the network during sleep, out of
the 200 reactivations in the hippocampus. Reactivations failed when the hippocampus
could not recall a location memory associated with the flavour memory reactivated.
See Algorithm 4.4 for sleep replay.
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Figure 4.13: State of the prefrontal cortex during the new training in the consistent
schema versus inconsistent schema. (a) State of the prefrontal cortex during the new
training for all 25 simulations. Fraction = across all the simulations. (b) Examples of
how the prefrontal cortex determines its state.
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epoch 1 column). This case relates to our conceptual example of the “mammoth”

depicted in Fig. 4.2, and similarly the network detected a novel event.

Over time, the new associations were consolidated in the neocortex, their respec-

tive probabilities φ increased (Fig. 4.13b, epoch 10 column). Since the expected prob-

ability φ∗ was low for the inconsistent schema, the prefrontal cortex rapidly switched

back to the “neutral” state in this case, while it took longer in the consistent schema

(Fig. 4.13a, grey line = % neutral detected). We also noticed in the consistent schema

that during the transition of states from “novel” to “neutral” the prefrontal cortex de-

tected conflicting associations (Fig. 4.13a, red line = % conflict detected), and we will

expand on this later in Section 4.3.2.

New training with a consistent prior schema

Since the prefrontal cortex was in the novelty state at the beginning of training, the

episodic link qk in the hippocampus between a new flavour memory and its associated

new location memory was set to the expected probability φ∗ (Table 4.1). For the con-

sistent schema, this expected probability φ∗ was high, and hence the new episodic links

in the hippocampus had the same high value qk ∼ 0.8 (episodic-based recall, Fig. 4.14a,

top left panel). Consequently, when the network was cued with the new flavours during

early training, the hippocampus already had a high probability of recalling the correct

locations memories. When the hippocampus did recall the correct location memories,

the reconstructions of the activity patterns in the sensory layer were very similar to the

activity patterns of original locations no.1 and no.6 (episodic-based recall, Fig. 4.14a,

lower left panel). This result was not surprising as the new rewarded sand-wells were

located near the original ones (see schematic of the arena in Fig. 4.12). Despite this, the

reconstructions were noisy as the other four original locations were also reactivated,

and hence the corresponding performance was lower than expected, i.e. around 0.6 in-

stead of 0.8 (Fig. 4.14b, episodic component, green bar). We had already reported with

our previous models in Chapter 3 that recall performance was limited by the top-down

reconstruction quality in the neocortex, and in particular in Section 3.3.4 we have high-

lighted that the similarity of the new locations with the original map (semantic schema)

had a significant impact on hippocampal recall performance (Fig. 3.25). Accordingly,

if the two new locations were the same as the original locations no.1 and no.6, early in

training recall performance with hippocampus should be as high as the performance of
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Figure 4.14: Recall mediated by the hippocampus after one epoch of training on the
two new associations. For reference see Fig. 4.4 (step 2). Note that the hippocampus
only contains the memories of the new flavours and locations. (a) Top panels: Hip-
pocampal recall probabilities. When the hippocampus recalls a flavour memory, the
associated location memory is recalled with a probability qk (episodic pathway). If
direct recall fails (probability 1− qk), the hippocampus probes cortical memory (se-
mantic pathway) to compute the probability of each stored location memory (softmax;
Ps in Fig. 4.4). If the hippocampus selects the 3rd option (?) when probing cortical
memory, it does not reinstate a location memory and instead let the cortex infer the
activity of the location units (p (û) in Fig. 4.4). Lower panels: Reconstruction of the
activity of the location units in the sensory cortex (activities averaged over 100 trials,
results of one simulation run). The insets in each panel show the reconstruction for the
two new flavour-place associations, sorted by flavour tested. The correct reward loca-
tions are indicated below the insets. The reconstructions were obtained either with the
episodic recall pathway only (to evaluate this we set qk = 1), or with the semantic recall
pathway only (to evaluate this we set qk = 0), or with the two recall pathways available
(default, average recall). (b) Recall performance corresponding to each reconstruction
shown in (a).
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the original associations4.

Since the new episodic links in the hippocampus were about 0.8, the hippocampus

still had 20% chance (1−qk) to switch to semantic-based recall, i.e. to probe neocorti-

cal memory in order to infer the location memory (see recall procedure in Fig. 4.4). In

this case, the probability to recall the correct location memory was low since the new

memories were not yet consolidated (semantic-based recall, Fig. 4.14a, top left panel).

Thus, the reconstruction of the activity of the location units was poor, and the cor-

responding performance was very low (Fig. 4.14b, green bar, semantic component).

Finally, the average recall performance reflected the performances of the two possi-

ble hippocampal recall pathways, considering that episodic recall was predominant

(Fig. 4.14b, green bar, average recall).

However, the network required more epochs for the new associations to be consol-

idated in the neocortex. Indeed, performance was impaired if the hippocampus was

disabled during recall up to about 10 epochs (Fig. 4.12a, dashed green line). We an-

ticipated this result as we had already reported in Section 3.3.4 that consolidation was

hampered by the novelty of the flavours and the overlap between the new and old lo-

cations. In addition, we believe that the difficulty was increased in the current model

because the flavours were represented by random binary patterns (as opposed to one

unit in previous models) and thus representations potentially overlapped. We will see

later how we can speed-up consolidation with more sleep replay events (Section 4.3.4).

At the beginning of training the prefrontal cortex was in the novelty state, and as

such meta-parameter φ∗ was not updated (Fig. 4.12b, green lines). We have mentioned

earlier that in the course of training the prefrontal cortex eventually switched to the

conflict state before settling in the neutral state (Fig. 4.13a, left panel). While in these

two states, the meta-parameter φ∗ was updated with the values of the new associations

probabilities φ (Eq. 4.5). Nevertheless, these probabilities φ had not yet caught up with

the value of the meta-parameter φ∗ (Fig. 4.13b, epoch 10 in the consistent schema),

because the probabilities φ gradually increased at similar pace than memory consol-

idation. This caused the meta-parameter φ∗ to slightly drop and then increase again

during training (Fig. 4.12b, green lines).

4In the current model, the representations of the flavours and the representations of the reward lo-
cations were stored as separate memories in the hippocampus. Hence, when the network stored the
memories of the new locations, the representations in the hidden layer were not altered by the novelty
of the flavours but solely by the novelty of the locations. Therefore if the new locations were the same
as the original locations no.1 and no.6, the reconstructions should be of high quality.



150 Chapter 4. Interplay between HPC, PFC and associative cortex

New training with an inconsistent prior schema

For the inconsistent schema, we have seen that the prefrontal cortex was also mainly

in the novelty state at the beginning of training. The episodic links qk of the new

associations in the hippocampus were respectively set to the expected probability φ∗,

which in this case was low (qk ∼ 0.3, episodic-based recall, Fig. 4.14a, top right panel).

Therefore, when the network was cued with the new flavours during early training, the

hippocampus had a low probability of selecting the episodic memory recall pathway

(i.e. recalling the locations memories that were associated to these flavour memories

via the episodic link qk ; refer to step 2 in Fig. 4.4). Instead, the hippocampus most

likely switched to semantic-based recall with probability1−qk . In this case, the proba-

bility to recall the correct location memory was low since the new memories were not

yet consolidated, and was the same as in the consistent schema (semantic-based recall,

Fig. 4.14a, top right panel). Thus, similar to the consistent schema, the corresponding

performance was very low (Fig. 4.14b, purple bar, semantic component). Nonetheless,

when the hippocampus recalled the episodic memory, performance was the same with

both consistent and inconsistent prior schemas (Fig. 4.14b, episodic component). This

observation is important as it shows that if we set the episodic links of the new associ-

ations to the same values in the consistent and inconsistent schemas, we should obtain

the same results in both conditions. We illustrate this point in next Section 4.3.2. But

for now, in the inconsistent schema case the probability to recall the episodic memory

was low and hence the average hippocampal recall performance was lower than in the

consistent schema (Fig. 4.14b, purple bar, average recall).

Consolidation with the prior inconsistent schema was slower than with the consis-

tent prior schema (Fig. 4.12a, dashed lines), and this effect was probably due to the

model replaying the wrong associations during sleep. However this effect could also

be a consequence of a reduction of the number of “dream” sensory patterns generated

during sleep replay. Indeed, in our model replay during sleep was based on hippocam-

pal recall, and we have seen above that the hippocampus most likely recalled location

memories via the semantic recall pathway. Yet, with this recall the hippocampus most

likely failed to retrieve a location memory (semantic-based recall, Fig. 4.14a, top right

panel), and accordingly the replay event failed (Algorithm 4.4). Therefore we expected

a reduction of the number of successful reactivations during sleep at the beginning of

training. We found that this was the case, since out of the 200 replay attempts during

sleep, almost half did not generate a “dream” sensory pattern (Fig. 4.12c).
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At the beginning of training the prefrontal cortex was in the novelty state, and as

such meta-parameter φ∗ was not updated (Fig. 4.12b, purple lines). When the pre-

frontal cortex eventually switched to the neutral state, the meta-parameter φ∗ was then

updated with the values of the new associations probabilities φ (Eq. 4.5). By contrast

with the consistent schema, these probabilities φ were already similar to the meta-

parameter φ∗ of the inconsistent schema (Fig. 4.13b, epoch 10). Thus, probabilities φ

and meta-parameter φ∗ both gradually increased over time as the new memories were

consolidated in the neocortex (Fig. 4.12b, purple lines).

4.3.2 Interaction between prefrontal cortex and hippocampus dur-

ing episodic memory formation of the new associations

Of the importance of the prefrontal cortex to differentiate consistent and incon-

sistent schemas

In the Section 4.3.1 above we have seen that a network pre-trained in a consistent

schema learned more rapidly two new associations than a network pre-trained in an

inconsistent schema, in line with the experimental study of Tse et al. (2007). This dis-

tinction of behaviours was possible because the prefrontal cortex, which detected the

novelty of the associations, transferred the structure of knowledge, i.e. the expectation

about the consistency of associations to the new flavour-place memories. This transfer

was done by modulating the formation of episodic memory in the hippocampus: the

new episodic memories were strong with a consistent prior schema, while they were

weak with an inconsistent prior schema. The strength of the episodic memories influ-

enced how often they were replayed during subsequent sleep, which in turn regulated

memory consolidation in the neocortex. To illustrate this, we blocked the interaction

between the prefrontal cortex and hippocampus during episodic memory formation.

As predicted, we found that learning was as slow with the consistent prior schema as

with the inconsistent prior schema (Fig. 4.15a). This is consistent with the data of Tse

et al. (2011) (Section 3.1.1).

When we interfered with the modulation of episodic memory formation (step 2 in

Fig. 4.5), the strength of the episodic link qk between the flavour memory and the loca-

tion memory in the hippocampus was independent of the state of the prefrontal cortex.

Instead, it was set to qk = φ, where φ is the probability of the association measured by

the neocortex. We have seen earlier that in both consistent and inconsistent schemas,
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Figure 4.15: Blocking PFC modulation of the episodic link qk during memory for-
mation in the hippocampus: impact on new training with consistent and inconsistent
prior schemas. (a) Blocking the modulation prevents rapid acquisition in the consis-
tent schema. (b) While the modulation is blocked, if the episodic links qk of the new
associations are set to 1 in the hippocampus then learning becomes as rapid with the
inconsistent prior schema as with the consistent prior schema.

the probabilities of the new associations were low at the beginning of training (φ in

Fig. 4.13b, epoch 1 column). Indeed, the new patterns of activity (new flavour and

new location) were unknown according to the existing knowledge in neocortex (like

the two new animals examples in Fig. 4.2).

With the inconsistent prior schema, at the beginning of training the new episodic

links qk = φ were very similar to the control condition, because when the interaction

was allowed the episodic links were set to the low value of the meta-parameter φ∗ (φ

close to φ∗ in Fig. 4.13b, inconsistent prior, epoch 1 column). As such, blocking the

interaction between prefrontal cortex and hippocampus did not affect the performance

compared to the control condition (Fig. 4.15a, pink vs. purple lines). By contrast, in
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the case of the consistent prior schema, the new episodic links qk were much lower

compared to the control condition, as these links were formerly set to the high value of

the meta-parameter φ∗ (Fig. 4.13b, consistent prior, epoch 1 column). This prevented

rapid episodic memory formation in the hippocampus, and thus performance of the

new training with the consistent prior was reduced (Fig. 4.15a, light vs. dark green

lines).

It is important to note that models pre-trained on a consistent and inconsistent

schemas have similar knowledge in the neocortex, i.e. they both know the six original

flavours and the six original reward sites. This explains why the new associations

probabilities φ were similar with both prior schemas at the beginning of training, and

why performance in the two conditions was identical when we blocked the interaction

between prefrontal cortex and hippocampus. To further illustrate this, we ran a new

training where we blocked again the modulation of episodic memory formation in the

hippocampus, but the new episodic links qk were set to a fixed value of 1. In this case,

learning and consolidation were as fast with the inconsistent prior schema as with the

consistent one (Fig. 4.15b).

Note about novelty and conflict detection

We have noticed earlier in Section 4.3.1 that in the course of training with the consistent

prior schema, the network detected conflict around epoch 10 (Fig. 4.13a, left panel).

This effect occurred when the probability φ of an association was lower than the ex-

pected probability φ∗, but the predicted association probability φ̂ was close or larger

than φ∗ (Fig. 4.13b, consistent prior, epoch 10). When the prefrontal cortex was in the

conflict state, the episodic link was set to qk = 1−φ∗, and thus both recall performance

with hippocampus and the number of sleep replay events dropped (Fig. 4.12a&c). Yet,

it did not impair consolidation (Fig. 4.12a) because the prefrontal cortex was only

momentarily in this state. By contrast, we did not see such conflict detection for the

new training with the inconsistent prior schema, and instead the prefrontal cortex was

rapidly in the neutral state (Fig. 4.13a, right panel). Nonetheless, like in the consis-

tent prior schema, we noted that the associations probabilities φ were lower than the

predicted associations probabilities φ̂ around epoch 10 (Fig. 4.13b, inconsistent prior,

epoch 10). Unlike in the consistent prior schema, the expected probability φ∗ was low

for the inconsistent schema and hence the observed associations probabilities φ caught

up with φ∗ before the prefrontal cortex could detect conflict.
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Since the mismatch between observed and predicted associations probabilities oc-

curred in both prior schemas, we suspected that this effect was a consequence of the

displacement of the original reward locations (no.1 and no.6) to new neighbouring

locations (no.7 and no.8 respectively). To verify this hypothesis we monitored the

reconstruction of the activities of the location units over time (Fig. 4.19, “Control”

panels). We noticed that at the beginning of the new training the network reinstated

the original locations no.1 and no.6 when cued with the new flavours; only later on,

around epoch 10, the neocortex adjusted the representations of the reward locations,

which coincided with the conflict detection. Therefore we predict that if we did not

move the original locations the network should not detect conflict; on the other hand

we cannot yet predict the behaviour if we moved the locations further away, without

overlapping with the original reward locations.

When we blocked conflict detection, the prefrontal cortex took longer to switch

from the novelty to the neutral state, and recall performance with hippocampus was no

longer impaired (Fig. 4.16).
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Figure 4.16: With the consistent prior schema, blocking conflict detection in PFC
prevents the transient drop in recall performance with hippocampus (a) that was caused
by the displacement of the two original reward locations to the two new ones. (b)
When conflict detection is blocked, the prefrontal cortex stays longer in the novelty
state (solid lines). The dashed lines represent the state of the prefrontal cortex when
conflict detection was allowed.
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4.3.3 Impact of remote location memories in the hippocampus

In the previous simulations, the hippocampus was cleared out prior to the new training,

and thus the hippocampus could only recall the memories of the two new flavours and

the two new locations throughout training. However, the six original memories were

relevant to the task, and more specifically the memories of the reward locations. As

such it might be interesting to keep them, and here we investigate how it would impact

the acquisition of the two new flavour-place associations.

We kept the six location memory patterns yk obtained at the end of the original

training, and these memory patterns were never updated during the new training. In ad-

dition, we disabled the conflict detection in the prefrontal cortex to prevent the impact

on performance of the location displacement, following the observations in Section

4.3.2 above; however in practice we found that this did not make any major difference.

When the hippocampus kept all location memories it did not impact the training

with the consistent prior schema, whereas learning in the inconsistent prior schema

was slowed down (Fig. 4.17a). To understand this result we monitored the recall prob-

abilities of the location memories in the hippocampus. In particular, we focused on

the semantic recall pathway of the hippocampus, because via this recall pathway the

hippocampus could select any location memory according to the probability Ps (step
2 in Fig. 4.4).

With the consistent prior schema, at the beginning of training the hippocampus se-

lected mostly the original location memories with semantic-based recall (Fig. 4.18a,

epoch 1), as opposed to the previous simulations where the hippocampus mostly se-

lected the (?) option and hence the reconstructions were mainly obtained by cortical

inference (Fig. 4.14a, upper left panel). However, this had no consequence on hip-

pocampal recall since qk was high and hence the hippocampus had a low probability

1− qk to use semantic-based recall (Fig. 4.18b, light blue line). If anything, we found

a slight increase in performance for recall with hippocampus; indeed, when the hip-

pocampus reinstated old location memory patterns yk with semantic-based recall, the

reconstructions of the sensory patterns were less noisy than during recall in the control

condition5. Over time, the hippocampus reactivated the correct, new location memo-

ries along with their neighbouring original location memories (no.7 & no.1 and no.8

5For illustration of the difference, refer to the “semantic” reconstructions in Fig. 4.14a, compared to
reconstructions in the panel “inconsistent prior schema, recall with hippocampus, old location memories
in HPC” in Fig. 4.19. We actually found that this was caused by multiple steps of Gibbs sampling;
when we allowed only one step of Gibbs sampling at the beginning of training, performance in controld
condition improved.
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Figure 4.17: Impact of remote location memories in the hippocampus during the ac-
quisition of two new associations. (a) Impact on recall performance mediated by the
hippocampus and on consolidation. (b) Evolution of the state of the prefrontal cortex
in the inconsistent schema. (There was no change in the consistent schema compared
to control.) (c) Monitoring the number of successful replay events during sleep. See
Algorithm 4.4 for sleep replay.

& no.6, Fig. 4.18a, epoch 10-20). Since hippocampal recall was not affected by the

original location memories, sleep replay was unchanged and as a result consolidation

was also the same as in the control condition (Fig. 4.17a).

With the inconsistent prior schema, the hippocampus most likely selected the re-

mote location memories via semantic-based recall at the beginning of training, similar

to the training in the consistent schema (Fig. 4.18a, epoch 1). However, in contrast

with the consistent prior schema, qk in this case was low and thus the hippocampus

had a high probability 1− qk to recall the location memories via semantic-based re-

call (Fig. 4.18b, yellow line). We also noticed that (i) the hippocampus used the se-

mantic recall pathway more often in the current simulations than in control condition
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Figure 4.18: Recall mediated by the hippocampus when cued with the two new
flavours. For reference see Fig. 4.4 (step 2). Note that the hippocampus only con-
tains the memories of the two new flavours, but contains the memories of the two new
and original six reward locations. (a) Top panels: hippocampal recall probabilities (1
simulation run). When the hippocampus recalls a flavour memory, the associated loca-
tion memory is recalled with a probability qk (episodic pathway). If direct recall fails
(probability 1− qk), the hippocampus probes cortical memory (semantic pathway) to
compute the probability of each stored location memory (softmax; Ps in Fig. 4.4). If
the hippocampus selects the 3rd option (?) when probing cortical memory, it does not
reinstate a location memory and instead let the cortex infer the activity of the location
units (p (û) in Fig. 4.4). (b) Probability 1− qk that the hippocampus probes cortical
memory (semantic pathway) instead of recalling the episodic memory.
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(Fig. 4.18b), and (ii) up to about 10 epochs of training the hippocampus randomly

chose among the location memories via this recall pathway (Fig. 4.18a, epoch 10). All

together, these results mean that, on average, the hippocampus most likely reinstated

random location memory patterns yk during early training. This is illustrated by the

reconstruction of the activity of the location units at epochs 1 and 10 Fig. 4.19 (panel:

inconsistent prior schema, recall with hippocampus, old location memories in HPC).

Furthermore, since the hippocampus successfully recalled location memory patterns

yk , albeit the wrong ones, almost all reactivations were successful during sleep replay,

as opposed to the control condition where many reactivations failed (Fig. 4.17c). Yet,

the hippocampus replayed the wrong associations, and this delayed consolidation of

the new flavour-place memories (Fig. 4.17a).

4.3.4 Sleep replay and consolidation speed

With the consistent prior schema, the hippocampus could rapidly learn the two new

flavour-place associations, but the consolidation in the neocortex was rather slow.

While we anticipated this result as mentioned in Section 4.3.1, it was not compara-

ble to the experimental results of Tse et al. (2007), as they showed that hippocampal

lesions already 48 hours after new training did not impair the behaviour of the rodents

(Fig. 3.1c).

In our model, we had multiple ways of influencing the consolidation speed. The

first option was to increase the cortical learning rate (RBM), but this parameter was

difficult to adjust in the current task, especially for the sleep replay phase. Indeed, if

the learning rate was too large it could impair learning in the long run if not carefully

adjusted over training epochs (e.g. risk of catastrophic interference). The second op-

tion was to allow consolidation between cortical areas already during the experience

phase. However, as mentioned just before, it was difficult to calibrate how much plas-

ticity could be allowed, and there was a risk that the network would no longer require

sleep replay to consolidate the new associations. Since Tse et al. (2007) suggested

that sleep was necessary for systems consolidation of the new associations (Fig. 3.1c),

we decided against this option. The third option was to increase the number of re-

activations during sleep replay; we considered this last option as it seemed the more

appropriate and easiest to implement. Indeed, provided that the cortical learning rate

was small enough, the only drawback with this hyper-parameter was that replay might

become ineffective at a certain point during sleep (i.e. the patterns replayed would no
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Figure 4.19: Reconstruction of the activity of the location units in the sensory cor-
tex (activities averaged over 100 trials, 1 simulation run). Each group of two insets
show the reconstruction for the two new flavour-place associations, sorted by flavour
tested. The correct reward locations are indicated below the insets. Notations: HPC
= hippocampus; PFC= prefrontal cortex. “Control” corresponds to the simulations of
Section 4.3.1, “Block PFC-HPC interaction” corresponds to the simulations of Section
4.3.2, and “Old locations memories in HPC” corresponds to the simulations of Section
4.3.3. Note that for the reconstructions at epoch 1 without hippocampus, we did not
allow iterations of Gibbs sampling.
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longer drive learning).

We ran new simulations for the training of the new associations with both prior

schemas. The conditions of training were the same as in control condition (Section

4.3.1). For each simulation, we increased the total number of reactivations during sleep

replay (200, 600, 1000, or 1400). To assess the impact on the speed of acquisition (re-

call mediated by the hippocampus) and consolidation (recall not mediated by the hip-

pocampus) we measured the number of training epochs required to reach an average

performance p = 0.5 for the new associations. Increasing the number of reactivations

to 1400 during sleep replay did not benefit acquisition in the consistent schema, but

did reduce almost by half the time for acquisition in the inconsistent schema (Fig. 4.20

solid lines). Consolidation time in both schemas was also reduced almost by half

(Fig. 4.20 dashed lines). However, we observed that with larger number of replay

events the speedup saturated, although the consolidation time never reached memory

acquisition time. We believe that memory consolidation was hindered by the novelty

of the flavour sensory patterns, which could not be reconstructed properly during sleep.

One possibility could be to have more cortical updates during experience. In this case

it would imply that sleep replay cannot alone account for rapid consolidation of asso-

ciations in the neocortex. Instead, consolidation of the new features should already be

enhanced during the experience phase, so that the network is able to replay them dur-
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ing subsequent sleep. This can be done by either increasing the cortical learning rate

during experience, or by increasing the number of presentations of the input sensory

patterns.

4.4 Conclusion

To summarise, our framework consisted of a closed-loop of information processing

that involved the associative neocortex, prefrontal cortex, and hippocampus. The asso-

ciative cortex maintained the representation of knowledge which allowed the prefrontal

cortex to extract the expected consistency of associations, and to detect novel or con-

flicting events. In turn, the prefrontal cortex regulated the strength of the memory

formed in the hippocampus based on the congruence of the event with prior knowl-

edge. During subsequent sleep, the hippocampus replayed memories according to their

strength, thus influencing memory consolidation and the update of knowledge in the

neocortex.

We first tested this model on the acquisition of six consistent or six inconsistent

flavour-place associations, as in the experiment of Tse et al. (2007). In both settings,

the neocortex learned a set of features, i.e. the flavours and the reward sites. Following

the process described above, the rewarded associations were consolidated in the con-

sistent schema but not in the inconsistent schema. Recall mediated by the hippocampus

was also impaired in the inconsistent schema, but the hippocampus nonetheless mostly

reinstated the recent rewarded associations. However, hippocampal recall deteriorated

in the inconsistent schema when we blocked the interaction between prefrontal cor-

tex and hippocampus during episodic memory formation. This operation, on the other

hand, had no effect on the acquisition of consistent associations. Blocking the replay of

experiences during sleep prevented consolidation of associations in both consistent and

inconsistent schemas, while the hippocampus was still able to recall recent rewarded

association, albeit less accurately than in control condition.

We noticed that, when replay was mostly driven by prior knowledge rather than by

experience, the network consolidated one location with all the flavours (Fig. 4.9&4.11).

This effect occurred because replay was based on recall in the hippocampus, which

was then biased by the consolidation in the neocortex. By contrast, in our first model

in Section 3.2 we replayed random combinations in the hippocampus, and hence we

did not observe this effect. Such result, however, is questionable: for instance, if
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we blocked the replay of experiences, the system would then consolidate a memory

“blue elephant” rather than not consolidating “elephant” with any colour. Yet, we

implemented this replay method because we wanted our system to be able to reactivate

prior knowledge in case of conflict so as to reduce interference.

What would happen if we disabled the semantic-based recall in the hippocampus

(Ps in Fig. 4.4) during replay? We predict that, for training in normal conditions,

learning and consolidation will be faster. However, in the inconsistent schema this will

probably lead to fluctuations in cortical recall as the memories get consolidated and

then overwritten every two epochs6. On the other hand, replay of prior knowledge

allowed to keep the fluctuations low (on average).

How could we solve this problem? We thought about three solutions that could

be explored in the future. The first is to find a better semantic-based recall (i.e. Ps

Eq. 4.4), as here it led to biased recall. The second option would be to control whether

the system should replay the associations, or the features alone. This would particularly

be relevant in the case of the inconsistent schema, where there is no apparent gain in

learning the associations, while the reward locations by themselves are relevant. The

third option would be to delay the replay instead of reactivating memories during the

sleep phase that immediately follows their acquisition. For instance, the hippocampus

could accumulate experiences, and could replay all memories only after a few epochs.

Next, we investigated the impact on the acquisition of two new associations with ei-

ther the consistent schema or inconsistent schema. In line with the results of Tse et al.

(2007), learning and consolidation were faster in the consistent schema (Fig. 4.21,

’control’). Indeed, the prefrontal cortex detected novelty in both settings, but only in

the consistent schema the system up-regulated memory strength in the hippocampus.

Furthermore, when we blocked the modulation by the prefrontal cortex during the ac-

quisition of the new associations, memories were slowly incorporated regardless of the

prior schema (Fig. 4.21). This is in line with the experiments of Tse et al. (2011), where

inhibition of the prefrontal cortex at the time of learning impaired memory acquisition.

Thus, our results suggest that the consolidation of the six original associations in the

neocortex is not enough by itself to account for the experimental findings, but that the

system needs to extract and use abstract knowledge. This confirms our prediction in

Section 3.2.

We further explored how to influence the speed of learning, and in particular we

considered the impact of sleep replay. We ran simulations where the hippocampus had
6We found such behaviour in preliminary results, and we predict it will be the same here.



4.4. Conclusion 163

−3

−2

−1

0

1
Hippocampus ON during recall

R
el

at
iv

e 
le

ar
ni

ng
 t

im
e

consistent
prior schema

inconsistent
prior schema

Block modulation 
of episodic link

Control

 PFC    HPC

Old locations
memories 
in HPC

−1

0

Hippocampus OFF during recall

-0.25

0.25

-0.5

-0.75

consistent
prior schema

inconsistent
prior schema

Block modulation 
of episodic link

Control

 PFC    HPC
Old locations

memories 
in HPC

R
el

at
iv

e 
le

ar
ni

ng
 t

im
e

Figure 4.21: Summary of the learning time t of the new associations for various train-
ing conditions, compared to the time tre f in control conditions with a prior consis-
tent schema (relative time is (tre f − t)/tre f ; time was measured when performance
reached p=0.5). The dots represent the results of individual runs (five runs). The left
panel shows speedup in performance when recall is mediated by the hippocampus,
and the right panel shows the consolidation speedup. These results refer to Fig. 4.12,
4.15a&4.17.

access to the memories of the original reward locations; in this case it further delayed

the acquisition of new memories in the inconsistent schema, but had no effect on the

training in the consistent schema (Fig. 4.21). Similarly, we predict that if we kept the

memories of the original flavours, these would be more rapidly associated with the new

reward locations. Finally, we noticed that the consolidation speedup was not as strong

as memory acquisition in the hippocampus (see the different time scales in Fig. 4.21).

We increases the number of replays to boost the incorporation of the new memories

into cortical networks. Consolidation was indeed faster, but it never reached the same

speed as hippocampal learning. This suggest that other mechanisms are required to

explain the rapid consolidation observed in Tse et al. (2007) and Tse et al. (2011).





Chapter 5

Sleep replay and plasticity: impact on

episodic memory and consolidation

Internally driven (off-line) replay of declarative memories is believed to mediate their

consolidation in the neocortex. An emerging hypothesis is that the salience of a mem-

ory (e.g. a rewarded experience) can modulate how often it will be reactivated during

off-line replay (Stickgold & Walker 2013, Atherton et al. 2015, see Section 1.1.2).

So far we have assumed that such selective replay was taking place in order to con-

solidate relevant memories in associative areas of the neocortex. For instance, in the

first model in Section 3.2 and last model in Chapter 4, the hippocampus reactivated

memories of flavour-place associations based on their reward probability. In the sec-

ond model in Section 3.3, the selective replay was implicit as the hippocampus only

stored rewarded memories, and hence could only reactivate these during subsequent

sleep. Furthermore, computational studies have suggested that off-line replay of old

memory patterns is a key mechanism to resolve the so-called ’stability - plasticity’

problem (Grossberg 1987), allowing new information to be incorporated into cortical

circuits while avoiding catastrophic interference with existing knowledge (McClelland

et al. 1995, Robins 1995, Káli & Dayan 2004, Norman et al. 2005). Consistent with

their findings, we have shown with our first model (Section 3.2) that replaying old

memories during sleep helped preserve them, but as a consequence it hindered consol-

idation of new memories and so caused us to increase the total number of reactivations

(Fig. 3.11). In addition, in our last model (Chapter 4) we could control the acquisition

of new memories by manipulating the content available for replay (Fig. 4.17).

Therefore, our results support the view that off-line replay (e.g. sleep replay) is

involved in controlling the entry of information into long-term memory, promoting

the integration of relevant memories into cortical networks, while forgetting irrelevant

165



166 Chapter 5. Sleep replay and plasticity

information. Such ’memory triage’ has been proposed to underlie the development of

knowledge (Stickgold & Walker 2013). In particular, we believe that the brain needs

such selection when exposed to a new experience, as it must decide whether to reject

it, incorporate it with existing knowledge or overwrite this knowledge. Importantly,

Richards et al. (2014) have provided evidence that this decision balance changes over

time: when animals received new information related to a current task, they seemingly

integrated new and old memories, but if they received it after a longer delay, they

quickly assimilated the new information at the expense of pre-extisting memories.

In this chapter we investigate this effect, and more specifically whether selective

off-line (sleep) replay can account for the experiments of Richards et al. (2014). In

Section 5.2.1, we modify the content of replay during sleep while the network discov-

ers a schema by observing one example at each epoch of training. Importantly, we

compare the relative gain provided by sleep replay when the schema is simple (the

examples belong to the same distribution), or more complex (the examples belong to

two distributions).

The Section 5.2.2 focuses on the second experiment of Richards et al. (2014),

where they revealed that mice adopted different strategies over time to acquire new

information, either learning slowly or rapidly. In our model, we had to increase cor-

tical plasticity in order to rapidly assimilate new memories in one trial; however, this

operation was likely to destabilise existing knowledge, and hence we examined the

role of sleep replay to counterbalance the effect. In particular, we distinguished be-

tween the impact on the episodic memory (recall mediated by the hippocampus) and

the impact on consolidation in the neocortex.

Finally, during all our experiments we could reactivate old memories, because we

always assumed that the memories were still stored in the hippocampus. However, this

goes against the prediction of experimental studies which suggest that once memories

are consolidated they are no longer supported by the hippocampus. Thus, we modified

sleep replay so that it could not only be driven by the hippocampus, which replays

newly acquired memories, but was also driven by reactivations in the neocortex, so as

to reactivate prior knowledge (Section 5.2.3).

The current work was done prior to the implementation of the last model introduced

in Section 4, and hence the prefrontal cortex here is not explicitly implemented. As

future work, these simulations could be done in the model with the prefrontal cortex.

Another important remark is that we refer to a recall as “episodic memory” when the
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hippocampus mediates it, and ”semantic memory” when it does not. The first should

mostly reflect the memory of recent events, while the second should reflect the statistics

across several episodes.

5.1 Model of the water maze experiment

5.1.1 Summary of the experimental study

Richards et al. (2014) investigated whether mice could extract regularities over time

by integrating multiple related episodes. They trained the mice on a memory task in

a water-maze. Each day mice had to find a circular platform (10 cm diameter) in the

pool of water (120 cm in diameter and 50 cm in depth). The mice could not see the

small platform as it was hidden just below the surface of the water, and hence they had

to swim until they reached the platform in order to escape. The platform location was

changed each day, but the locations had an underlying spatial distribution (Fig. 5.1a).

Hence, if the mice did extract the regularities, their search path should reflect the mean

of the distribution rather than retrace the specific locations of each platform they had

encountered.

To test this, they trained mice to locate platforms drawn from a bimodal distribu-

tion1 (2:1 weighting in the north vs. the east quadrant; see right panel in Fig. 5.1c). The

mice were trained for 9 consecutive days, and each day the platform location was dif-

ferent (Fig. 5.1b). The animals had four trials to learn the platform location, and they

started each trial from a different place in the pool that was randomly chosen from one

of the cardinal coordinates (N, E, S, W). At the end of training, mice were tested on a

probe trial that took place either one day after the training (1-d delay) or 30 days after

(30-d delay) (Fig. 5.1b). For the probe test after 1-d delay (Fig. 5.1c, left panel), mice

principally searched in the area of the platform they learned the day before, which

was in this case in the East quadrant as indicated Fig. 5.1b. By contrast, a probe test

after 30-d delay revealed that mice mostly returned to the North quadrant, which cor-

responded to the most likely location according to the underlying spatial distribution.

The authors concluded that initially animals rely on memory of recent events, while

over time they extract latent regularities across multiple memories.

Next, Richards et al. (2014) investigated whether this apparent memory transforma-

1They initially tested on a unimodal distribution. They did find evidence of regularity extraction,
however it is difficult to conclude for such trivial distribution (Fig. 5.8). By contrast, a bimodal distri-
bution should be more informative.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: All panels adapted from Richards et al. (2014): Extraction of regulari-
ties underlying multiple episodes in a water-maze memory task. (a) Schematic of the
water-maze. Mice searched for a platform that was submerged below water level so as
to escape the pool. The specific location of this platform varied each day (left panel,
gray circles). These locations were drawn from a probability distribution (right panel).
(b) First experiment. Mice had 4 trials a day to learn the platform location, starting
(randomly) from one of the four cardinal coordinates (N, E, S, W). After a delay of
1 day or 30 days following training, mice were tested on a probe test. (c) Averaged
search paths during the probe test. Here, the platform locations alternated between two
distributions (right panel). After 1-d delay (left panel), mice spent more time around
the last platform they encountered whereas with 30-d delay (middle panel) the search
was a better match to the actual distribution. (d) Second experiment. Same as (b), but
mice were trained on a unimodal distribution, and after 1-d or 30-d delays mice were
presented with a new platform location, either consistent (sampled from the original
distribution) or conflicting (opposite side in the pool). Mice had a probe test 1 day after
training. (e) Model (left panel), escape latencies during the 4 training trials (middle)
and averaged search paths during probe test (right panel). When the new conflicting
platform was presented after 1-d delay, mice searched in both old and new locations,
while with a 30-d delay they focused on the new platform. (f) Averaged search paths
during probe test (same protocol (d)), similar to (e) for control condition (vehicle).
However, mPFC inhibition impairs learning of the new conflicting platform after 30-d
delay.



5.1. Model of the water maze experiment 169

tion had an impact on how animals acquired new conflicting information. They trained

mice for 8 consecutive days on a uniform distribution in the North-West quadrant (left

panel Fig. 5.1e). Following this training, the platform location was moved to a new

location in the East quadrant, thus conflicting with the original spatial distribution. As

control, they trained another group of mice on a new platform that was located near the

original distribution, and hence was consistent with existing knowledge. To assess the

influence of time on the acquisition of the new platform location, and in principle the

influence of memory consolidation (as memory reorganisation), Richards et al. (2014)

trained the mice on this new platform either after 1-d or 30-d delay (Fig. 5.1d).

During the training after both 1-d and 30-d delay on the consistent new platform,

mice did find the platform quickly as they were used to swimming in this area (see

escape latency in Fig. 5.1e, middle panel, black lines). By contrast, mice took longer

to locate the new conflicting platform (Fig. 5.1e, middle panel, grey lines). Mice were

quicker when the new conflicting platform was presented after 1-d delay compared to

30-d delay, however after four training trials in both conditions they eventually reached

the same performance as the mice that learned the consistent platform. The main

question then was whether mice would remember and go back to this new conflicting

platform location on the following day, or whether they would revert to the original

distribution. The study revealed that it depended on the time elapsed between original

and new training. Indeed, when they were trained after 1-d delay, mice then searched

in the area of the new conflicting location and also returned to the original area during

the probe test on the next day (right panel in Fig. 5.1e, inset at the lower left). On the

other hand, when they were trained after 30-d delay, mice searched primarily in the

area of the new conflicting location (right panel in Fig. 5.1e, inset at the lower right).

The result for 1-d delay was less pronounced in a second set of experiments (Fig. 5.1f,

top row “Vehicle”), but still showed a broader averaged search path than the 30-d delay.

Finally, Richards et al. (2014) explored whether the medial prefrontal cortex (mPFC)

was important to obtain this effect, since the mPFC is believed to play a role in the res-

olution of memory conflict (Preston & Eichenbaum 2013). They pharmacogenetically

inhibited mPFC neurons during the new training, but the animals were drug-free during

the probe test on the next day. The inhibition of mPFC did not alter the training after

1-d delay, but altered the training when it occurred 30 days later (Fig. 5.1f, “CNO”). In

the latter case, the animals searched in both regions of the water-maze, instead of fo-

cusing on the new conflicting platform as they did before (Fig. 5.1f, “Vehicle”). Hence,

their results indicate that the animals strategy to update knowledge evolves over time,
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and the mPFC appears to play an important role in rapid update of search behaviour.

5.1.2 Model of the data

We used the same framework as in Section 3.3.1. In Chapters 3&4 the task of the

network was to learn associations between a cue and a specific location of where to

find a reward, while in the current task there is no cue. The visible layer only encodes

probabilities of “reward” locations, which are in this case the platform locations to

escape the water. To represent the platform locations we used polar coordinates, and

thus the visible layer of the network had two vectors of units: one vector of units to

encode the distance of the platform from the centre of the pool, and one vector of units

to encode the angle.

We simplified the representations by allowing only discrete values for the distance

and angle, as it seemed more likely that neurons encode an estimation of the distance

and angle based on external cues rather than encoding their exact values. The distance

units encoded discrete values of the distance d in the range [0,60] with a step size

δd = 5. We assumed that the probability of being at a distance d from the centre of

the pool was represented by the on-probability of the corresponding visible unit. If the

centre of the platform is located at the distance d0 from the centre of the pool (Fig. 5.2,

left panel), the activation of the unit encoding distance d was modelled by a Gaussian

tuning curve:

f (d) = pmaxe−
(d−d0)2

2σ2 (5.1)

where pmax = 1 is the maximum on-probability at the platform location, σ = r
√

2 de-

notes the standard deviation and r = 5 is the radius of the platform. Similarly, the angle

a of the platform took discrete values in the range [0,2π] with a step size δa = 0.1π,

and we assumed that the probability of the platform being at an angle a was represented
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Figure 5.2: Model for the input data in the watermaze experiment.
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by the on-probability of the corresponding visible unit. If the centre of the platform is

located at the angle a0 (Fig. 5.2, right panel), the activation of the angle unit encoding

angle a was modelled by a Gaussian tuning curve:

f (a) = pmaxe−
(a−a0)2

2σ2 (5.2)

where pmax = 1 is the maximum on-probability at the platform location, and σ = 0.05π
denotes the standard deviation. However, each discrete angle value represented neigh-

bouring platforms, and the closer these platforms were from the centre of the pool, the

more likely they overlapped with several discrete angle values (Fig. 5.2, right panel).

To take this effect into account, for a given distance d we calculated the angle with the

edges of the platform: a′ = arctan
(

2r
d

)
, and if a′ ≥ δa then we set f (a) = pmax for all

angles a such that |a− a0 | ≤ a′.

5.1.3 Model setup

For the simulations we used our second model presented in Section 3.3.1. As stated

in the introduction above, we did not include the model of the prefrontal cortex in the

current simulations. Since we have already described the framework, we are succinct

here and only highlight the differences.

The sensory layer of the associative neocortex (RBM) encoded the platform loca-

tions in the watermaze as described above in Section 5.1.2, and thus had a total of 33

units, 13 units to encode the distance of the platform from the centre of the pool, and 20

units to encode the angle. The associative layer had 30 hidden units. At each epoch,

during the experience phase the network was presented with one platform location

only. We took the on-probabilities of the visible units as input data to train the network

(Eq. 5.1&5.2), and we limited the number of presentations of each input pattern to four

trials per epoch, to mimic the four trials the mice had to learn the platform location in

the experiment of Richards et al. (2014).

The hippocampus stored the memories of the platform locations using the method

shown in Fig. 3.14. The hippocampus took snapshots of the field of the hidden units

when the network learned a platform location, and to compute the field (Eq. 3.5) we

used the on-probabilities of the visible units (Eq. 5.1&5.2). By contrast with previous

models in Chapters 3&4, the hippocampus kept all episodic memories over epochs.

Nonetheless, during the sleep replay phase the hippocampus either replayed the last

stored memory only (default condition) or it reactivated all stored memories. Another
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difference with previous models was the procedure to generate sensory patterns dur-

ing sleep replay. Instead of generating patterns and subsequently updating the cortical

weights, here we first generated a “batch” of dream sensory patterns, and then cycled

through this batch to update the cortical weights (Fig. 2.7). We had to generate several

batches (see Table 5.1) to increase the benefit of sleep replay. The number of reactiva-

tions per batch was quite large, and thus the total number of sleep reactivations seemed

a bit excessive considering that we trained only one platform per epoch. We believe

that this number can be reduced by adjusting other parameters such as the plasticity

during sleep or the temperature to generate the samples.

In the experimental study of Richards et al. (2014) there was no specific cue pro-

vided for memory retrieval as mice were simply placed in the water and they swam

until they found the hidden platform to escape the pool. To implement memory recall
in our model we let the hippocampus reinstate the memories that were stored during the

last epoch only. Since the network only learned one platform location per epoch, the

hippocampus could only pick the corresponding memory. The method to reconstruct

the activity of the distance and angle units was otherwise as described in Fig. 3.13 (step

2). By default, recall was mediated by the hippocampus. To assess semantic memory

we disabled the hippocampus during recall: we set the value of the visible units to

zero (i.e. the hidden units were randomly activated), and we let the RBM perform 5

Gibbs sampling steps to reconstruct the activity of the visible units (see Cortical recall

in Section 2.2.1).

Note that we did not have a performance measure in this work. To examine the

results we looked at the reconstruction of the activity of the sensory units in the neo-

cortex. Since we assumed that the probability of the platform being at a distance d

from the centre of the pool, and the probability of being at an angle a, were represented

by the on-probabilities of the corresponding visible units, we derived the probability

of being at the corresponding location with p (current location) ∝ p (d) p (a). To ob-

tain a quantitative measure one could use the Kullback–Leibler divergence between

this reconstructed probability and the empirical location distribution, as in the work of

Richards et al. (2014).

Remarks about the role of the hippocampus for training and recall

In the experimental study mice started each trial from a random location (North, East,

South or West quadrant). The random start was important to ensure that animals
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# platform \ epoch 1
visible units 33
hidden units 30

sleep replay
10 batches

1000 replays \ batch

weights init. w = 0

learning rate
ηEXP 0.05
ηSLEEP ηEXP/10

Table 5.1: Model and training parameters. Notations: HPC = hippocampus; EXP =
experience phase; SLEEP = sleep replay phase. The coloured numbers are parameters
that can be modified during the simulations.

learned the platform locations using the visual cues in the surroundings instead of

memorising the path from a fixed starting point as a procedure, which does not require

the hippocampus (Eichenbaum et al. 1990). In our simulations we did not implement

navigation and hence we did not take into consideration where the animal started the

trial from (similar to the start box in the arena that was not included in Chapters 3&4).

However, we assumed that the hippocampus was somehow responsible for allowing

the neocortex to develop a representation of relevant locations in space, i.e. to repre-

sent the distance and angle in the visible layer. Consequently, the hippocampus was

required to learn the task, even though we did not implement its contribution explicitly.

This simplification of hippocampal contribution during memory processing can

also explain another divergence between our framework and experimental data: the

model could retrieve memories without the hippocampus as the memories of plat-

form locations were consolidated in the neocortex, while studies in the water-maze

have shown that after hippocampal damage remote spatial memories are impaired (e.g.

Clark et al. 2005). However, we could suppose that when the hippocampus was dis-

abled during recall in our model, it could still play a role in many ways: for instance,

it could be required to interpret the activity in the neocortex to allow spatial naviga-

tion /orientation in the water-maze. Thus, when we “disable” the hippocampus during

recall, we mean that the hippocampus does not retrieve a specific episodic memory to

support recall, but we do not mean that it is not required to guide behaviour.

5.2 Results

5.2.1 Sleep replay and extraction of semantic information

Richards et al. (2014) showed that mice extracted the underlying spatial distribution of
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platforms in a water-maze over time (Fig. 5.1a-c). Here we examined whether sleep

replay helped the extraction of semantic information.

In Section 3.3 we have shown that sleep replay promoted consolidation of noisy

input data (Fig. 3.16), because during sleep replay the network could generate many

“virtual” training patterns to teach the RBM while keeping a low learning rate in the

neocortex. In Chapter 4, consolidation of cross-modal memories was not possible

without sleep replay as there was no plasticity between cortical areas during experi-

ence. However, in the current model we consider one sensory modality, and cortical

plasticity was allowed during both experience and sleep replay. Therefore, since the

RBM extracted the regularities of the activity patterns in the sensory area during both

phases, we suspected that sleep replay might not be required for homogeneous input

patterns, but might be important when the patterns were inconsistent.

To investigate this, we simulated the experiments of Richards et al. (2014). In a

first experiment (A), the network was presented with platform locations drawn from a

unimodal distribution (top panel in Fig. 5.3, similar to the original training in Fig. 5.1e,

left panel). In the second experiment (B) the locations were drawn from a bimodal

distribution (left panel in Fig. 5.4, similar to experimental paradigm in Fig. 5.1b&c).

In line with the experimental study of Richards et al. (2014), the network was presented

with one different platform location at each epoch.

In the first experiment (A) the platforms were located in the North-West quadrant

(top panel in Fig. 5.3). The network was trained for 8 epochs, with or without sleep

replay, and we tested memory recall before presenting a new platform at each epoch.

The first important remark is that there was no difference between episodic and se-

mantic memories, suggesting that memory was rapidly consolidated in the neocortex.

Such a result was not too surprising as the sensory activity patterns were consistent

across epochs (see examples of input patterns in the column Data in Fig. 5.3), and

also because we had larger cortical learning rates and more sleep replay events than in

Section 3.3 (e.g. here ηEXP = 0.05 compared to ηEXP = 0.01 in previous simulations).

Hence, we will refer to the results simply as “memory recall”.

At the end of training with sleep replay, memory recall reflected the platform dis-

tribution (last inset in the middle column in Fig. 5.3, compared to top panel). This

means that hippocampal-mediated recall also reflected the statistics of the data rather

than the exact last location (compare to last data in the first column in Fig. 5.3). This

was compatible with the averaged search paths of the animals during a probe test one

day after the training on the unimodal distribution (Fig. 5.8).
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Figure 5.3: Experiment (A). Training where the platforms locations are drawn from a
unimodal distribution. (Top panel) Schematic of the experiment (left) and distribution
of the platform locations (right). The model learns one platform per epoch, and is
trained in total for 8 epochs. (Main panel) The column on the left (’data’) shows the
input sensory patterns presented to the network (one platform each epoch). The middle
and right columns show the reconstruction in the sensory cortex during recall, when
the network was trained with or without sleep replay.
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Importantly, the network also learned without sleep replay (last inset in the last

column in Fig. 5.3). We suppose the reason was that the cortical learning rate dur-

ing experience was large enough to allow cortical consolidation without sleep replay.

Thus, the network seemingly does not require sleep replay when the input patterns

are consistent. However, when we looked at memory recall during the first epochs of

training, we noticed that with sleep replay the network quickly focused its search in

the area where the last platform was seen, whereas without sleep replay the network

had a broader search (Fig. 5.3).

We then investigated a more complex data set. In the experiment (B) the platforms

were located in North or East sides, more likely in the North (top panel in Fig. 5.4).

We followed the same protocol as in the experimental study (Fig. 5.1b), alternating

the presentation of the platforms from each mode (6 in the North, and 3 in the East),

and the last platform shown was in the East (top right inset in Fig. 5.4). In contrast

to the unimodal distribution, we found that episodic and semantic memories differed

(main panel in Fig. 5.4). Without sleep replay, semantic memory recall was biased to-

wards the last platform location (first row in Fig. 5.4), contrary to experimental results

(Fig. 5.1c, 30-d probe). A similar result was obtained when the network replayed only

the last memory stored in the hippocampus (second row in Fig. 5.4). As we saw for the

unimodal distribution, recall was similar at the end of training with or without sleep

replay because the cortical learning rate was large enough during the experience phase.

In contrast, when all the memories of the 9 platform locations were reactivated during

sleep replay, semantic memory better matched the spatial distribution of the platforms

(last row in Fig. 5.4). On the other hand, episodic memory always preferred the last

location (left column in Fig. 5.4), consistent with the experimental findings (Fig. 5.1c,

1-d probe).

To conclude, we found that, given sufficient training, sleep replay was not neces-

sary to learn the task when the sensory patterns of activity were drawn from a unimodal

distribution. However, if data is limited, sleep replay is beneficial as it speeds up mem-

ory consolidation. On the other hand, when dealing with conflicting sensory patterns

of activity, sleep replay allows the integration of multiple episodic memories into se-

mantic cortical networks that reflect their underlying distribution.
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Figure 5.4: Experiment (B). Training where the platforms locations are drawn from
a bimodal distribution (for reference, see Fig. 5.1b&c). (Top panel) Distribution of
the platform locations (left), schematic of the experiment (middle) and last activity
pattern shown (right). The model learns one platform per epoch, and is trained in
total for 9 epochs. (Main panel) Each inset shows the reconstruction in the sensory
cortex during recall. The first columns shows episodic memory, recall mediated by
the hippocampus to mimick a probe test after 1-d delay, and the second column shows
semantic memory, recall not mediated by the hippocampus to mimick a probe test
after 30-d delay. Each row corresponds to a different replay protocol during sleep. We
can see that selecting memories for off-line replay biases the extraction of semantic
information, while episodic memories generally reflects recent events. Replaying all
the experiences accumulated over training gives a better representation of the data
statistics, consistent with the experimental results.
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5.2.2 Interplay between sleep replay and plasticity during the mod-

ification of semantic information

Here we examined the requirements for incorporating new conflicting information.

Following the experiment of Richards et al. (2014), we first trained our model on

the unimodal distribution as in Section 5.2.1, and then we presented the new conflicting

location (Fig. 5.5). We investigated whether we could obtain the two learning strategies

as in Fig. 5.1e (right panel) by manipulating the content of replay during sleep. Note

that with our model we could monitor both episodic and semantic memories; however,

in the study of Richards et al. (2014) the probe tests were done one day after the new

training, which most likely corresponded to episodic memory. As such, our results

about semantic memory are purely speculative and we do not have data to compare to.

The results are displayed in Fig. 5.6, and we assume in the following paragraph

that we refer to this figure unless specified otherwise.

The network could not learn the new location in one shot when it was trained in

the same conditions as the original training (insets 1a&b), which contradicts the exper-

imental results. Thus, we increased cortical plasticity (baseline x2) and the network

was then able to learn the new platform location, provided the network replayed the

new memory (insets 2a&b). This shows again that sleep replay facilitates memory

consolidation.

Episodic memory (inset 2a) was similar to the search behaviour of the animals

when trained after 1-d delay (Fig. 5.1e, right panel). If we further increased plasticity

(baseline x4), we obtained results that corresponded more to the search path of the

animals when trained on the new conflicting platform after a delay of 30 days (episodic

memory, inset 3a; for comparison, refer to Fig. 5.1e, right panel). However, with such

a high level of plasticity the network erased previous semantic knowledge (semantic

memory, inset 3a). On the other hand, without sleep replay episodic memory was

also updated, but semantic memory was better preserved (insets 3b). We do not have

experimental data about the update of semantic knowledge to decide which behaviour

is correct. In fact, the two could be possible. Indeed, the results for the bimodal

experiment would suggest that, since mice saw the new location only once, semantic

memory would be gradually updated and not overwritten. On the other hand, the logic

of survival would predict that mice rapidly consolidate the new location and forget the

old, probably irrelevant ones, especially when the mice are trained 30 days after the

original training.
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Figure 5.5: New conflicting platform location in the East side presented after the
model was trained to locate the platforms in the North-West side of the pool.
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Figure 5.6: Interplay between sleep replay and plasticity during the training on the
new conflicting platform location (schematic in Fig. 5.5). Sleep replay: 1) no off-line
reactivation (learning during experience only), 2) control condition, the hippocampus
replays the new location memory only, 3) equal chance to select the new or one of
the old memories (8 original platforms in Fig. 5.5; reactivation probability of the new
location is then 1

2 ), 4) randomly pick a location memory (reactivation probability of
the new location is then 1

9 ). Plasticity: 1) baseline, 2) baseline x2, 3) baseline x4. For
episodic memory, insets 2a and 4c could correspond to mice trained after 1-d delay,
while insets 3a, 3b and 4a could correspond to mice trained after 30-d delay (Fig. 5.1e,
right panel). Note that to obtain the latter results the network required higher plasticity.
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The next question was, with the same high level of cortical plasticity (baseline x4),

could we obtain a search pattern for episodic memory similar to the 1-d delay exper-

iment (i.e. as in the inset 2a), while preserving semantic memory? In line with our

simulations of the bimodal distribution, we let the hippocampus reactivate the 8 old

memories of the original platforms along with the new memory during sleep replay

(probability 0.5 to reactivate one of the old patterns, and probability 0.5 to reactivate

the new one). In these conditions, we found that semantic memory was preserved, but

the plasticity was too high and the reactivation of prior knowledge was not sufficient

to slow down episodic memory update (insets 4a). Hence, we decreased the corti-

cal plasticity (baseline x2) to the same level at which we managed to integrate new

with old information, but we found in this case that reactivations of prior knowledge

prevented the integration of the new location memory (inset 4b). Thus, we again in-

creased cortical plasticity (baseline x4), and we tried instead to manipulate the content

of replay: the hippocampus picked randomly a memory among the 9 stored memories

(8 originals, and the new one), and as such it replayed the old memories more. As a

result, episodic memory reinstated both old and new location memories, and semantic

knowledge was completely preserved (insets 4c).

To conclude, our results show that the brain could have various strategies when

learning new information that conflicts with established knowledge. We suggest that

these strategies could rely on an interplay between plasticity and selective replay dur-

ing off-line states such as sleep. In particular, our results demonstrate that episodic and

semantic memories can be updated independently with this method, and also imply

that the strategies might be chosen to target one or both memory systems.

5.2.3 Cortical-driven sleep replay

In Section 5.2.2 we could control the update of episodic and semantic information by

reactivating the memories of the platform locations that were stored during the origi-

nal training (the 8 locations indicated in Fig. 5.5). Yet, according to standard theories

of memory consolidation, when animals are tested after a month memories are pre-

sumably consolidated in the neocortex, and as such they might have been removed

from the hippocampus. Indeed, studies have shown that animals and amnesic patients

with hippocampal lesions still recall remote spatial memories (Rosenbaum et al. 2000,

Tse et al. 2007). Although this fact does not directly prove that memories are no

longer stored in the hippocampus, having multiple versions of the same memory does
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Figure 5.7: Prior knowledge can be reactivated by the neocortex during sleep replay
when the hippocampus no longer stores the original memories. The network is trained
on the new conflicting platform location (schematic in Fig. 5.5). Sleep replay alter-
nates, with equal probability, between hippocampal reactivations of the new platform
memory, and cortical reactivations of prior knowledge. Plasticity: 1) baseline, 2) base-
line x2, 3) baseline x4. For episodic memory, the inset in the middle corresponds
to mice trained after 1-d delay, while the inset on the right (higher plasticity) could
correspond to mice trained after 30-d delay (Fig. 5.1e, right panel).

not seem very efficient. On the other hand, other theories stipulate that systems con-

solidation of semantic memory occurs in neocortical networks, but the hippocampus

permanently stores contextual and spatial elements, and hence is always required to

recall some remote memories (Multi trace theory, Nadel & Moscovitch 1997). In sup-

port of this, remote memories in a water-maze are usually impaired after hippocampal

lesions (Clark et al. 2005). Nonetheless, since this question is still an open debate

among neuroscientists, we decided to test whether we could obtain multiple learning

strategies, like in Section 5.2.2, but without the original hippocampal memories. In-

stead, we implemented a cortical-driven replay during sleep, which alternated with

traditional hippocampal-driven replay. When off-line replay was driven by the neo-

cortex, the network randomly reactivated the hidden layer of the associative neocortex

(i.e. p
(
h j = 1

)
∼Uniform (0,1)), and generated a dream pattern in the sensory layer of

the neocortex. Hence, we expected to reactivate prior knowledge consolidated in the

neocortex. On the other hand, the hippocampus could only replay the memory of the

new location.

We initially trained the network on the uniform distribution (hippocampal-driven

sleep replay only), and then we presented the new conflicting platform. Replay was

split 50/50 between cortical and hippocampal-driven, thus we predicted comparable

results as shown in the third row in Fig. 5.6. We found again that the network could

rapidly assimilate the new location only if we increased the cortical plasticity, and

we could replicate similar results than the ones observed in mice in the experimental
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studies (Fig. 5.7). In contrast with our previous simulations, where sleep replay was

only driven by the hippocampus, memory seemed to be updated more rapidly (see third

row Fig. 5.6). We believe that the noisy cortical reactivations were better at driving

learning during sleep.

Therefore, our results suggest that even if the memories are no longer stored in

the hippocampus, the network can still have multiple strategies to incorporate new

information. This is possible again by the interplay between plasticity and off-line

replay, the hippocampus reactivating the new experiences and the cortex reactivating

prior knowledge. In addition, we further support the idea that once memories are

consolidated in the neocortex, there is no need to sustain them in the hippocampus.

5.3 Interpretation of the experimental data based on our

model

We have seen in the preceding sections that we can control the entry of information

into long-term memory by manipulating cortical plasticity and sleep replay. Hence,

our model could select various strategies when exposed to a new event, and could

decide to either reject it, incorporate it with existing knowledge, or overwrite prior

information.

Such flexibility would suit the experiment of Richards et al. (2014), who have pro-

vided evidence that this decision balance changes over time (Fig. 5.1e, right panel).

Furthermore, their data suggests that the prefrontal cortex plays a crucial role in learn-

ing new conflicting information. Indeed, 30 days after mice learned the distribution

of the platform locations, mPFC inhibition during the training of a new conflicting

platform prevented rapid acquisition (Fig. 5.1f).

Given our model of the prefrontal cortex described in Chapter 4, we interpret their

findings when learning the conflicting platform after 30 days as follows: at the end of

the training on the original platform distribution (Fig. 5.1e, left panel), the system has

extracted the high consistencies of the locations in the pool. Next, when presented with

the platform location, the prefrontal cortex module should detect conflict, and hence

the new memory will be weak in the hippocampus (e.g. the “pink elephant in savanna”

in Fig. 4.3). But this behaviour does not fit with the data, as learning would then

be slow. Hence, we suggest that instead the prefrontal cortex overrides the strategy

and generalises the expected consistency to the new platform location, similar to the
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“novelty” case. We believe that such an override might be triggered by the relevance

of this choice: while it does not make much sense to generalise the colour ’pink’ to

the Elephant family after seeing one example, in a water-maze there is the incentive

to escape water. This would also fit the data when the mPFC is inhibited: in our

model, if the prefrontal cortex cannot interact with the hippocampus during learning,

the memory strength in the hippocampus is then set to its consolidation strength, which

here would be low. Hence, we predict that we would observe similar results to those

of Richards et al. (2014) when they trained the mice after 30-d delay, with or without

mPFC inhibition (Fig. 5.1f, right panel).

The next question is why there is a difference of behaviour when the new training

occurred 1 day or 30 days after the initial training. Richards et al. (2014) suggested

that over time, mice extracted the statistics underlying multiple memories throughout

consolidation, and thus had a better knowledge of the world after 30 days compared to

after 1 day. They predicted that this effect was associated with an increase of sensitivity

to conflict, and that the mPFC was therefore more engaged later on. Thus, they argued

that learning was enhanced by the high prediction error that would be generated after

30 days.

There could be two interpretations with our model. The first would be that the

memories of the 8 original platforms were consolidated later after training, and that

the meta-parameter which tracked the variability of information would not be updated

online over the course of training, but would rather be computed later on. Yet, with our

current modelisation it would not work, as the memories of the original locations were

directly consolidated during subsequent sleep (Fig. 5.3). Hence, regardless of when

we train the new conflicting platform, its probability will be low and thus will trigger

conflict detection. While this might be a limitation of our model, we believe that there

could be an alternative explanation.

Specifically, we believe that the system could actually detect conflict both after

1 day and 30 days, but then would select different strategies. The results of Richards

et al. (2014) would actually support this theory, as when they replicated the experiment

mice seemingly returned to the new platform and less to the original locations even

with 1-d delay (Fig. 5.1f). Furthermore, we were not convinced by the argument that

the sensitivity to conflict increased over time after learning the unimodal distribution,

as we did not find that pattern matching improved significantly enough to justify it (see

Fig. 5.8).

According to our model, if the system detected conflict after 1-d the strength of
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Figure 5.8: Adapted from Richards et al. (2014): Average search path when mice
were trained on the unimodal platform distribution, indicated by P(location). Mice
were either tested after 1 day (1 d probe) or after 30 days (30 d probe). The plot in
the right panel shows the corresponding Kullback–Leibler divergence between the true
distribution and the search path.

the memory in the hippocampus would be low (e.g. the “pink elephant in savanna” in

Fig. 4.3); yet, if we blocked the prefrontal cortex during learning the outcome would

be similar to the control condition (albeit we predict a slower learning), since the new

location had a low probability. Hence, our results would explain why inhibition of the

mPFC after 1 day delay did not affect the new training in the experiment of Richards

et al. (2014) (Fig. 5.1f).

Why would the strategy be different then? We believe that, when mice are exposed

to the new conflicting platform the following day, they might process this new infor-

mation as part of the current task, i.e. they incorporate it into building the schema. This

would correspond for instance to the training on the bimodal distribution (Fig. 5.1c)

or to the original training in the inconsistent schema in Tse et al. (2007). By contrast,

after 30-d delay, the task was presumably completed, and hence mice could use the

learned “schema”, i.e. high consistency of the locations, when exposed to the new

platform.

In the end, our conclusion is not dissimilar to that of Richards et al. (2014), but

only the interpretation of the underlying mechanisms.

To conclude, we suggest that when the prefrontal cortex detects conflicting events

it can still choose different learning strategies: either slowly update knowledge, or

rapidly assimilate the new information. We believe that neuromodulatory signals, trig-

gered by relevant or emotional events for instance, might have a role in this selection.

Furthermore, our results in this chapter suggest that the different learning strategies

might involve adjusting plasticity levels and off-line reactivations.
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Discussion

6.1 Summary

Studies in neuroscience and psychology reveal that humans and animals are able to

learn abstract knowledge from very few examples: in the experiment of Smith et al.

(2002) children learned the shape bias given only four object categories with only two

exemplar in each category; in the experiment of Tse et al. (2007) rats presumably

learned the consistency of flavour-place associations given only six examples, albeit

over weeks of training. Furthermore, in both experiments, children and animals were

able generalise the abstract knowledge given a single new example.

While these concepts can be formalised at the cognitive level (Kemp et al. 2007),

how the brain achieves this is unknown. Connectionist models such as McClelland

(2013) have demonstrated that new information is rapidly assimilated when it fits with

the established cortical mapping. However, we argue that these models do not explain

how to integrate new information that is related to existing knowledge at an abstract

level. Indeed, a new event can be consistent with existing knowledge but also un-

reliable (e.g. a new association in the inconsistent schema in Tse et al. 2007), and,

although we did not test this directly, we believe that these models would nonetheless

rapidly integrate it. Conversely, we might want to rapidly incorporate new informa-

tion that might lead to catastrophic interference, but has strategic relevance. As an

illustration, in the experiment of Richards et al. (2014), after mice learned that escape

platforms were located in one area of the pool of water, they switched their search

strategy to a different area after being exposed to a single new platform location. How-

ever, in the network of McClelland (2013) learning would be slow as the new platform

is conflicting with prior knowledge.

185
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6.1.1 Review of our results

We summarise the three models and results of Chapters 3 & 4 in Table 6.1 at the end

of this chapter.

We proposed a definition of schemas in line with hierarchical Bayesian models

(which Kemp et al. 2007 call overhypotheses), where a schema is actually composed

of two schemas. The first is what we called the semantic schema, which defines a

distribution over the features in play (e.g. the names and colours of animal categories

in Fig. 1.1, the flavours and the locations in Tse et al. 2007, or simply the platform

locations in Richards et al. 2014). The second is what we called the meta-schema,

which represents the abstract knowledge; in our applications, it is characterised by

a single meta-parameter (denoted φ∗ in Fig. 1.1), which captures the variability, or

consistency of associations between the features.

In chapter 2, we have introduced a computational model that was based on the

framework of Káli & Dayan (2004). In this model, a neural network called Restricted

Boltzmann Machine (RBM) represents associative cortical areas. A RBM is able to

extract and reinstate patterns of activity, but is also able to evaluate the plausibility of

events. Hence, it was suitable to our definition of schemas. We extended the model

with a prefrontal cortex module to support operations related to the abstract knowledge.

The neocortex (or RBM) interacts with a hippocampal module which can store and

subsequently replay memories during sleep. Thus, this model was suitable to study on

one hand episodic memory formation and recall mediated by the hippocampus, and on

the other hand memory consolidation in the neocortex. Additionally, this framework

allowed us to explore the role of sleep replay.

In chapter 3, we aimed to identify mechanisms that could support 1) the acquisition

of the two schemas mentioned above, and 2) rapid learning and generalisation.

In Section 3.2, we implemented a first, simple model and simulated the associative

task of Tse et al. (2007) (Fig. 3.1). We found that rapid assimilation of new infor-

mation required up-regulation of hippocampal memory formation. In addition, if we

up-regulated memory formation in the inconsistent schema the outcome was exactly

the same as in the consistent schema. This contrasted with the experiment of Tse et al.

(2007) where rodents did not learn rapidly in the inconsistent schema, and hence we

suggested that memory formation in the hippocampus had to be dynamically regulated.

Since the prefrontal cortex tracked the consistency of associations, we suggested that it

could influence memory acquisition in the hippocampus. Furthermore, the hippocam-
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pus was important to organise replay during sleep, not only to consolidate the relevant

memories in the neocortex, but also to reconsolidate old memories that were damaged

upon learning new information.

In Section 3.3, we focused on the semantic schema in the experiment of Tse et al.

(2007). We first investigated its formation, and we found that there was a trade-off be-

tween plasticity and memory stability (i.e. reconstruction quality of activity patterns in

sensory cortices). Given the limited exposure to training examples, sleep replay helped

resolve this trade-off by providing a “virtual” training. Next, we examined the impact

of knowledge consolidated in the neocortex on episodic memories in the hippocam-

pus. Indeed, as sensory information is processed by associative cortices before it is

relayed to the hippocampus, memory retrieval was affected twice: once by the bottom-

up stream, which affected recognition in the hippocampus, and second by the top-down

stream, which affected the reconstruction of the activity in the sensory cortex. As a re-

sult, the hippocampus rapidly recalled new associations if these were closely related

to existing knowledge, which was compatible with the model of McClelland (2013).

However, when we examined memories in the neocortex our results diverged from

the model of McClelland (2013). First, we observed that consolidation was not facili-

tated by the similarity of the new reward location, in contrast to hippocampal memory

(Fig. 3.25). Second, consolidation speed was not determined by the specific semantic

schema, e.g. if animals had been trained in a different environment than the one of

the new training, the outcome would have been the same (Fig. 3.23). This is not fully

incompatible with the work of McClelland (2013), as the input activity patterns we

considered were sparse and had no hierarchical structure, as opposed to the data set of

McClelland (2013). Yet, these findings seem at odds with biology, and hence imply

that other mechanisms might be in play to influence consolidation, mechanisms that

perhaps can only be triggered when new information is related to a schema. Nonethe-

less, our results were overall in line with the findings of Tse et al. (2007), since a

trained network learned and consolidated faster new associations compared to a naive

network that was trained from scratch.

At this point, we had a better understanding of the meta-schema but we had to clar-

ify the mechanisms by which it could impact the assimilation of new information. We

addressed this in Chapter 4, where we defined a measure of the consistency of associ-

ation (i.e. their variability or reliability) that was based on the strength of their consol-

idation in the neocortex. Thus, we could extract the meta-parameter that captured the

overall consistency of the associations presented to the network. We assumed that the
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prefrontal cortex mediated this operation. Hence, as consistent associations were con-

solidated over training the meta-parameter increased, and conversely decreased when

the network was exposed to inconsistent associations. Next, we examined how the

prefrontal cortex could influence the formation of episodic memories in the hippocam-

pus. When an association was presented to the network, the prefrontal cortex detected

if it was neutral, novel or conflicting by comparing the consistency of this associa-

tion with the schema expectation (meta-parameter). The strength of the memory in

the hippocampus was modulated accordingly, which in turn influenced memory con-

solidation as the hippocampus replayed memories during sleep based on their strength.

When a new association was detected, the prefrontal cortex set the corresponding mem-

ory strength to the expected consistency. Hence, in the consistent schema it led to an

up-regulation of the memory strength in the hippocampus, while it did not in the in-

consistent schema. As a result, learning and consolidation were faster in the consistent

schema compared to the inconsistent schema, similar to the experiment of Tse et al.

(2007). Furthermore, if we blocked this modulation the distinction between consis-

tent and inconsistent schemas was nullified, and memory acquisition in the consistent

schema was as slow as in the inconsistent schema. This is in line with the data of Tse

et al. (2011), where inhibition of the prefrontal cortex during training prevented the

acquisition of the new associations in a single trial.

In Chapter 5 we further investigated this difference in our model between episodic

memory in the hippocampus and memory consolidated in the neocortex. For this, we

simulated the study of Richards et al. (2014) where animals had to quickly learn plat-

form locations to escape water. In previous chapters we had considered the network

intialisation and number of sleep replays to speedup learning, but had not yet manipu-

lated plasticity. In this study we increased the cortical learning rate so that the network

could learn rapidly, in line with the experimental data. Using the interplay between

plasticity and sleep replay we obtained various strategies for memory acquisition, and

we could separately control episodic memory and extraction of semantic knowledge.

This interplay might underlie the different learning strategies that mice adopted in the

experiment of Richards et al. (2014). Our results also suggest that plasticity and the

content of replay sleep complement the upregulation of memory strength in the hip-

pocampus described earlier, and together they might support the rapid assimilation of

new information into existing knowledge.
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Figure 6.1: Overview of the theoretical framework.

6.2 Theoretical framework

Our framework, Fig. 6.1, attempts to address the three following open questions.

The first question is how the brain can learn mental schemas from limited data.

The neocortex, i.e. the neural network of our model, discovers the features as it ob-

serves and slowly consolidates examples of associations (semantic schema, body of

knowledge). These examples are stored in the hippocampus, which later recalls rel-

evant memories, new and old, during sleep/rest. This recall might be triggered by

spontaneous reactivations in the hippocampal region, or cued by reactivations in the

neocortex (Rothschild et al. 2017). Such off-line replay facilitates the consolidation of

memories in the neocortex, in particular when the number of training samples is lim-

ited (Section 3.3.2) and if there is a latent structure underlying the data (Section 5.2.1).

The prefrontal cortex supports the extraction of the overall consistency of the associa-

tions (meta-schema, abstract knowledge), which we suggest can be done by evaluating

the strength of the associations consolidated in the neocortex (Chapter 4).

The second question is when the hippocampus rapidly assimilates new information.

In the model the hippocampus is not directly connected to the sensory cortices, but in-

stead it stores the information relayed by associative cortices. Hence, a new event that

is similar to existing knowledge can be accurately stored in the hippocampus, and when

the hippocampus reinstates the memory, the neocortex is able to reconstruct the correct

activation pattern in the sensory cortices (Section 3.3.4). Otherwise, plasticity in the

neocortex may be increased to allow rapid memory acquisition in the hippocampus

(Chapter 5). Next, the model decides whether it should rapidly learn the association or

not. For this, both semantic and meta- schemas are fundamental (Chapter 4). Based on
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the knowledge in the neocortex, the system can predict the consistency of the episode.

The prefrontal cortex, presumably after activating a schema, compares the predicted

and the expected consistency. This computation determines whether information is

neutral, novel or conflicting. The prefrontal cortex modulates memory strength in the

hippocampus accordingly, and for instance it may up-regulate the memory strength of a

new memory in a consistent schema. However, we suggest that other neuromodulatory

factors could be in play to override a learning strategy in the prefrontal cortex (Chapter

5), or to directly modulate memory strength in the hippocampus (e.g. dopamine).

The third question is how the neocortex rapidly consolidates new information. We

already mentioned that the hippocampus replays memories according to their relevance

during sleep, which we suppose is linked to their strength (Chapter 4). Nonetheless,

the speed of consolidation will be determined by 1) the quality of the memories re-

played in the sensory cortices, which is depends on hippocampal recall and top-down

cortical reconstruction, 2) the number of reactivations, and 3) which memories can be

reactivated (e.g. old memories) (Chapters 3-5).

As memories get consolidated in the neocortex, it will impact (1) the consistency

of the associations, hence the meta-schema, and (2) the body of knowledge in the neo-

cortex. Therefore, we have a closed-loop of information processing where a schema

develops through the consolidation of multiple examples, and in turn the schema influ-

ences the acquisition of new memories.

Together, these mechanisms allow us to interpret the behavioural data observed in

Richards et al. (2014) and the experiments of Tse et al. (2007) and Tse et al. (2011),

but can also be extended to other experiments in the future.

6.2.1 Implication for experimental studies and open questions

Consistency, prefrontal cortex and interaction with hippocampus

Experimental studies have highlighted that the medial prefrontal cortex might help

detect schema-congruency (van Kesteren et al. 2013) and conflict with prior experi-

ences (Richards et al. 2014). In Chapter 4 we suggested that the prefrontal cortex is

necessary to compare the consistency of an association with the schema expectation.

We proposed that the consistency of an association could simply be the strength of its

consolidation, which may be computed via recall in the neocortex.

Experimental findings of Tse et al. (2011) and Richards et al. (2014) have shown
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that inhibition of the prefrontal cortex during training prevented the rapid acquisition

of new memories. We proposed that the prefrontal cortex could modulate memory

strength in the hippocampus during learning. We found in particular that this modula-

tion was crucial to form a new memory in the consistent schema, since otherwise the

memory would be too weak and rapid memory retrieval and consolidation would fail

(Chapter 4). Such regulation of hippocampal activity would be compatible with the

data of Bero et al. (2014) (Section 1.1.3).

Conversely, our model also suggests that, in principle, even in the inconsistent

schema of the experiment of Tse et al. (2007) the rats should also be able to quickly

learn two new associations (Fig. 4.15b). This would require an upregulation of the

memory strength in the hippocampus. However, we believe that this modulation could

be triggered by other signals that carry the relevance of information (say, the reward is

really good!) that could override (or switch) the learning strategy set by the prefrontal

cortex.

On the other hand, our model predicts that the modulation of memory strength in

the hippocampus is not required during the formation of the consistent schema (origi-

nal training), nor when learning a new association in the inconsistent schema (Chapter

4). Our hypothesis is that this interaction with the hippocampus is not required when

there is no surprise (but the prefrontal cortex might still be important to relate the

memories to a context for instance). The fact the prefrontal cortex has more than one

function, like other regions in the brain, makes it difficult to test experimentally, unless

we have a precise area or mechanism to target.

Schemas in the brain

We found an important role of prior knowledge in the neocortex for successful re-

call of the hippocampus. First, during the initial acquisition of consistent associations

(Section 3.3.2), hippocampal recall performance was limited as memories were not yet

consolidated in the neocortex (Section 3.3.4). Our results suggest that if hippocampal

lesions were made at some point during training, recall performance would be similar

to the performance prior lesions (see for instance Fig. 3.16). In support of this, in Tse

et al. (2007) hippocampal lesions were made just after the new training, and the rats

still correctly retrieved the old associations (Fig. 3.1b&c). But this result does not in-

form us about the time course of memory consolidation during training. However, if

we delayed replay in our model hippocampal performance would no longer gradually

increase as in Tse et al. (2007).



192 Chapter 6. Discussion

The second impact was during new memory acquisition, as memory was more

rapidly assimilated by the hippocampus when it fitted prior knowledge (Section 3.3.4).

Since replay in the sensory cortices relied on hippocampal-driven recall, we expected

that the quality of the “dream” patterns would improve as the new memories were more

consistent with prior knowledge, and thus we expected more benefit of sleep replay.

Such result would be in line with the study of Groch et al. (2017) who found that only

memories that were related to prior knowledge benefited from cued reactivation during

sleep. However, with our models we did not obtain greater speedup of consolidation

for these new memories (Section 3.3.4), but we believe that with a different replay

method this could work (see next section).

In this work we argued that a schema also represented abstract knowledge, such as

the expected consistency (or variability) of associations. However, there is no evidence

about when this schema is extracted (although see discussion in 5.3), where it is stored,

and how it is activated. Neuropsychological studies suggest that the prefrontal cortex

primarily coordinates the use of schemas to process information (Fernández 2017).

For instance, patients with damage to the medial prefrontal cortex are prone to confab-

ulation (Ghosh & Gilboa 2014), but they are less prone to the “false memory effect”

with the paradigm of Roediger and McDermott, where participants learn words that

belong to a semantic schema (e.g., cold, blizzard, winter) and usually wrongly recall

nonstudied word (e.g., snow) (Warren et al. 2014).

Replay during sleep (or rest) for consolidation and reconsolidation

In Chapter 3 we highlighted that learning new associations impaired the recall of con-

solidated memories, and our results suggest that replay is necessary to reconsolidate

them. Indeed, when we disabled the hippocampus during recall, we found that per-

formance of the original associations dropped after the new training but before sleep

replay, and performance remained low, or further decreased, after sleep if we did not

allow the replay of the original associations. In our model such replay occurs during

sleep, but it might as well occur during wake (e.g. during immobility; see Section

1.1.2). Furthermore, we found that while memories are destabilised, the hippocampus

can still support their retrieval (Fig. 3.11&3.15). To test these hypotheses, we could

block the reactivation of old association patterns during sleep after the new training in

Tse et al. (2007). If we do not observe interference afterwards, then it may be that (i)

replay occurred during wake, and reconsolidated the memories, or (ii) that there was
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no interference in the first place.

Another assumption of our model was that the network might have to increase

the number of reactivations during sleep, for instance as a consequence of replaying

remote memories (Section 3.2.4) or to boost the consolidation of a new memory (Sec-

tion 4.3.4). Such operation would require a regulation of the number of replays as a

function of consolidation requirements. Evidence of dynamic regulation was shown

by Girardeau et al. (2014): when hippocampal sharp wave-ripples (SPW-Rs) were

artificially suppressed during sleep after learning, the rate of occurrence of SPW-Rs

increased.

6.2.2 Limitations of the model and future work

To test the hypotheses derived from the theoretical framework, the computational

model has to be further developed. Here we highlight some features of the model

and potential modifications which we believe are important to address.

Model of the hippocampus

The first important consideration about the model was memory storage of associations.

In the two models in Chapter 3, the hippocampus stored directly the activity of the as-

sociative cortex given two patterns of activity in the sensory cortices. Thus, the repre-

sentations of the sensory stimuli were integrated into one memory in the hippocampus.

However, we found that this storage method did not allow to form memories of certain

stimuli combinations. Indeed, when the hippocampus stored the memory of a known

sensory stimulus, it could later reinstate the corresponding activity pattern in the sen-

sory cortex. However, if the same stimulus was presented with an unknown stimulus

in a different cortical area, the neocortex could no longer reconstruct the memory that

was reinstated by the hippocampus. As mentioned earlier in the discussion, recall of

memories stored in the hippocampus was strongly influenced by the knowledge in the

neocortex. Thus, in the third model (Chapter 4) the hippocampus could form a mem-

ory for each sensory modality, and then bound these memories. This would be in line

with experimental data (see Sections 1.1.1&1.1.2). This method was also interesting

as it provided more flexibility for recall and replay (i.e. the elements of an episode

could be reactivated independently).

However, our hippocampal model is currently very simplistic. In particular, we

greatly simplified the model by assuming that the hippocampus cleared out past mem-
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ories at the start of each training epoch, which does not seem plausible. Ideally, the

hippocampus should keep the memories, and perhaps later overwrite or integrate them

with new related information (Schlichting & Preston 2015). Furthermore, the hip-

pocampus could determine whether it should keep a memory in storage or not: for

instance, a memory could be forgotten if it is already consolidated or if is obsolete.

We believe that a more sophisticated model of the hippocampus would give further in-

sight into the mechanisms for schema formation (e.g. McKenzie et al. 2014) and sleep

replay (Section 1.1.2).

Another important upgrade of the model would be to include other neuromodula-

tory system to control the formation of memories in the hippocampus. Indeed, iy is too

restrictive to consider only the influence of the prefrontal cortex, as it is known that the

persistence of long-term memory can be modulated with dopamine mechanisms in the

hippocampus (Rossato et al. 2009).

Schemas

In this work we considered a very simple schema: only a few features, and only associ-

ations between two sensory modalities. This framework is suited to model many exper-

imental tasks with rodents, as the animals usually learn simple associations. Nonethe-

less, it would be interesting to add more sensory elements in the associations. For

example, in Fig. 1.1, the variability of both colour and size of the animals in a family

could be each represented by a meta-parameter. Also, we assumed that the system

knew which features were important - e.g. the flavours and locations in Tse et al.

(2007), although the animals probably have to discover in the first place that these are

the relevant stimuli among many others. In addition, the model should be extended

to allow more layers of abstraction (i.e. over-overhypotheses in Kemp et al. 2007).

For instance, in Fig. 1.1, even though the spectrum of colours in general is wide, it is

limited to a subset of possible colours for the animals. We believe these modifications

are important to model mental schemas and account for rapid generalisation seen in

humans.

Furthermore, we did not explore how the model could have multiple schemas (e.g.

“the pink elephant” either in the “savanna”, “fairy tale”, or “street”). This feature

should be introduced in future work as it would help investigate how schemas are

activated and updated in the brain, and how the prefrontal cortex would then coordinate

their use. It would also allow to study behaviours such as confabulation.
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Replay during sleep /rest

Sleep, or more accurately off-line replay, was important in all our models to facilitate

memory consolidation and reconsolidation. However, we often observed that consol-

idation in the neocortex was rather slow despite replay (for example, see Fig. 4.21).

Even though consolidation with a prior schema was faster than in a naive network, the

speed we observed still contrasted with the rapid consolidation in rats in the study of

Tse et al. (2007).

This issue may be solve by adjusting other parameters during sleep replay, in par-

ticular the temperature parameter (see Eq. 2.4). We found that this method usually

worked for the top-down reconstruction of “dream” patterns in the sensory cortices

(not shown), but in practice it was difficult to implement as the temperature had to be

adjusted over the course of training. In addition, instead of having a fixed number of

reactivations during sleep, the model should also be able to detect when the “dream”

patterns generated are consolidated and hence stop replay.

More work should be done on the advantage of sleep replay, especially with a

generative model similar to the RBM (or perhaps more complex... see Deep Dream

Generator1). It would be interesting to explore more replay schemes that go beyond

sensory experience (fantasy), which could be the basis of generalisation or gist extrac-

tion.

The organisation of replay should also be revised in the model. Indeed, we saw

with our last model (Chapter 4) that the reactivation of prior memories could lead to

the consolidation of false memories in the neocortex. We already discussed potential

alternatives in the discussion about this model (Section 4.4). Cortical-driven replay

should also be further studied, because it allows the replay of consolidated memories

when the hippocampus can no longer support their reactivation. This is particularly im-

portant to preserve knowledge while incorporating new information. Robins (1995) for

instance used noise (i.e. random patterns) in the network to internally reactivate “pseu-

dopatterns”. These patterns were similar to those observed during experience, and this

technique reduced catastrophic interference when learning new patterns. We have im-

plemented a similar, but somewhat too simplistic method in Section 5.2.3 which we

believe only worked because the network had previously learned a uniform distribu-

tion.

1https://deepdreamgenerator.com/
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Mechanisms for regulation of memory consolidation

Throughout this work we sometimes tuned cortical plasticity, increased the number

of reactivation during sleep, and we also organised which memories were selected for

replay. However, we yet have to define how these processes can be regulated. The

findings of Girardeau et al. (2014) that we mentioned earlier suggest that the reactiva-

tions of memories might be regulated by consolidation requirements. The hypothesis

of network “tagging” (Lesburguères et al. 2011), similar to synaptic tagging and cap-

ture process (Frey et al. 1997) but at the network level, should also be investigated as a

regulatory mechanism to influence systems consolidation. For instance, Lesburguères

et al. (2011) found that “tagging” in the orbitofrontal cortex (OFC) during encoding

was fundamental for successful remote memory formation: inactivation of this corti-

cal area during a food preference transmission task did not affect the acquisition since

memory retrieval was intact 7 days later, but it impaired retrieval 30 days later, and

also prevented the development of structural plasticity in OFC.

Model architecture

We mentioned in Section 2.2 that deeper architectures could be used instead of the

RBM as models of cortical processing, in particular if we want to examine more com-

plex data (Series et al. 2010, Salakhutdinov et al. 2013). Perhaps these models could

also bring to the fore new hypotheses that we would miss with simpler structures. We

also emphasised that such structures have constraints that are incompatible with biol-

ogy (Chapter 2), although researchers actively investigate how to make the learning

algorithms more biologically plausible (Bengio et al. 2015).

In addition, sleep replay had to be suitably parametrised so that the network was

able to generate patterns related to experience. Káli & Dayan (2004) circumvented this

issue by identifying the patterns reconstructed in the sensory cortices and correcting

them. However, we did not want to memorise the input patterns, and instead we let the

network reconstruct on its own. As a result, sleep replay was sometimes difficult to

calibrate. We suggest as an alternative to use for instance a semi-Restricted Boltzmann

machine which has connections within the visible layer (Osindero & Hinton 2008).

Our framework could also be extended with more modules to process the input /

output which might facilitate the interpretation of behavioural data. For example San-

toro et al. (2016) implemented a similar system to ours within a larger framework

of reinforcement learning that modelled the interaction between episodic memory,
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schematic memory (RBM) and decision making for navigation.
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