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Abstract

Cell assemblies are considered to be physiological as well as functional units in

the brain. A repetitive and stereotypical sequential activation of many neurons was

observed, but the mechanisms underlying it are not well understood. Feedforward net-

works, such as synfire chains, with the pools of excitatory neurons unidirectionally

connected and facilitating signal transmission in a cascade-like fashion were proposed

to model such sequential activity. When embedded in a recurrent network, these were

shown to destabilise the whole network’s activity, challenging the suitability of the

model. Here, we investigate a feedforward chain of excitatory pools enriched by in-

hibitory pools that provide disynaptic feedforward inhibition. We show that when

embedded in a recurrent network of spiking neurons, such an augmented chain is ca-

pable of robust signal propagation. We then investigate the influence of overlapping

two chains on the signal transmission as well as the stability of the host network. While

shared excitatory pools turn out to be detrimental to global stability, inhibitory over-

lap implicitly realises the motif of lateral inhibition, which, if moderate, maintains

the stability but if substantial, it silences the whole network activity including the sig-

nal. Addition of a disinhibitory pathway along the chain proves to rescue the signal

transmission by transforming a strong inhibitory wave into a disinhibitory one, which

specifically guards the excitatory pools from receiving excessive inhibition and thereby

allowing them to remain responsive to the forthcoming activation. Disinhibitory cir-

cuits not only improve the signal transmission, but can also control it via a gating mech-

anism. We demonstrate that by manipulating a firing threshold of the disinhibitory neu-

rons, the signal transmission can be enabled or completely blocked. This mechanism

corresponds to cholinergic modulation, which was shown to be signalled by volume

as well as phasic transmission and variably target classes of neurons. Furthermore,

we show that modulation of the feedforward inhibition circuit can promote generating

spontaneous replay at the absence of external inputs. This mechanism, however, tends

to also cause global instabilities.

Overall, these results underscore the importance of inhibitory neuron populations

in controlling signal propagation in cell assemblies as well as global stability. Specific

inhibitory circuits, when controlled by neuromodulatory systems, can robustly guide or

block the signals and invoke replay. This mounts to evidence that the population of in-

terneurons is diverse and can be best categorised by neurons’ specific circuit functions

as well as their responsiveness to neuromodulators.
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Chapter 1

Introduction

Sequential activation of neurons has emerged as a ubiquitous feature of network ac-

tivity. Repetitive sequences have been detected in many brain regions including hip-

pocampus and cortex and during various behaviours such as working memory or deci-

sion making (Pastalkova et al., 2008; Harvey et al., 2012). Elucidating the theoretical

underpinnings of these is an important issue in contemporary neuroscience and will be

investigated in computational models in this thesis.

Groups of interconnected and coactivated neurons are commonly conceptualised

as cell assemblies which, unlike the individual neurons, are considered to be the phy-

siological and functional units in the brain (Yuste, 2015). Over the decades, a great

wealth of theoretical models of cell assemblies emerged. The ones with the feedfor-

ward architectures aim to model the sequential activation and are the main topic of this

thesis. A classical model of feedforward networks – a synfire chain – is composed of

exclusively excitatory neurons arranged in unidirectionally connected layers (Abeles,

1991). To date, numerous extensions of synfire chains have been thoroughly studied

in spiking networks and several limitations of these were identified (Mehring et al.,

2003). Such models are commonly criticised for their stereotypical activity and the

ability to rapidly synchronise and destabilise the whole network in which they are em-

bedded if their parameters are not carefully controlled. It is also often claimed that

such highly ordered architectures lack biological realism (Rajan et al., 2016).

Although the great majority of neurons in the brain are excitatory and these are

the actual carriers of the signals, the importance of inhibition should by no means be

deprecated. A solid and constantly growing body of evidence reveals that the role

of inhibition in regulating network activity is immense and often critical (Tremblay

et al., 2016). Depending on the connectivity patterns between the cells, inhibitory

1
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neurons can control network’s oscillations, gate the signals in excitatory populations,

control the temporal precision of spikes, or normalise the activity of groups of neurons

(Roux and Buzsáki, 2015). Many contemporary studies explore the non-overlapping,

genetically-defined subpopulations of inhibitory neurons which appear to be highly

specialised for different, well-defined tasks in the microcircuits (Rudy et al., 2011).

We argue that there is a considerable discrepancy between the theoretical modelling

of feedforward networks and the recent experimental findings. Theoretical models

appear to lag behind the current trend underscoring the importance of neural inhibition.

Synfire chains composed of exclusively excitatory neurons are a prime example of it.

In this thesis, we seek to bring more of biological realism into the theoretical mod-

els of feedforward networks in the hope of mitigating the known limitations. Firstly,

we embed synfire chains in recurrent networks and secondly, we aim to incorporate

stereotypical inhibitory circuits into the chain’s architecture and systematically study

their influence on the signal propagation and network stability. We focus on lateral

and disynaptic feedforward inhibition as well as disinhibition. Furthermore, we aim to

identify possible mechanisms of gating the signals transmitted by the excitatory popu-

lations, so that the signal propagation can be flexibly controlled by a ’switch’. In search

of such switch we explore different modes of neuromodulation targeting exclusively

inhibitory circuits.

Cholinergic modulation will be investigated as an important source of neuromodu-

lation. Acetylcholine was shown to be crucially implicated in attention, memory, coor-

dination of behavioural state and arousal (Hasselmo, 2006). Numerous studies revealed

that the inhibitory neurons richly express cholinergic receptors and acetylcholine was

found to directly control the disinhibitory mechanisms in the cortex (Letzkus et al.,

2011). Moreover, cholinergic transmission was found to operate on many time scales

– from hours to milliseconds – offering a whole range of potential modulatory modes

(Sarter et al., 2009).

Cholinergic modulation is also involved in invoking spontaneous replay – a sequen-

tial activation that is internally generated at the absence of input (Gais and Born, 2004).

Replay is observed during animal’s sleep and quiet wakefulness but never during the

fully awake state (Carr et al., 2011). Noteworthy, it was shown that the awake and

sleep states differ considerably in the levels of acetylcholine available in the extracel-

lular space (Lee and Dan, 2012). Thus, it is hypothesised that the level of cholinergic

modulation can realise a switch between the awake and sleep state and influence the

circuits in such a way that the spontaneous replay emerges only in the sleep state.
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1.1 Structure of this thesis

This thesis is structured in the following way. Chapter 2 contains the literature review,

which firstly discusses cell assemblies, their feedforward subcategory and the exper-

imental evidence for such assemblies. Then, the theoretical modelling of the neural

networks is discussed, with emphasis on the features of the already existing compu-

tational models of the feedforward networks followed by a critical analysis and a list

of suggested improvements inspired by the physiology of inhibitory neurons. Then,

the selected aspects of neural inhibition, disinhibition and cholinergic modulation are

discussed, as they are crucial to justifying the choices made in the modelling work

as well as in evaluating the overall significance and novelty of the results. Chapter 3

outlines the methods that were used in all the variants of the model presented in this

thesis. Chapter 4 presents the data and analysis obtained from the simulations of the

feedforward networks embedded in a spiking balanced network with the addition of

the disinhibitory pathways and sharing the pools of neurons to various degrees. We

show that the level and type of overlaps between the feedforward chains significantly

influence the signal propagation as well as the stability of the whole host network. We

also show the functional role of the disinhibitory pathways along the chains. Chapter

5 investigates the volume and phasic modes of cholinergic transmission and their role

in modulating disinhibitory pathways to control the signal propagation along the feed-

forward chains. Modulation of pools of inhibitory neurons controlling feedforward

inhibition is described in Chapter 6. We show that disabling the feedforward inhibition

enables weak and essentially random signals to invoke spontaneous replay along the

chain. Lastly, Chapter 7 discusses the results and their relevance to the current state of

knowledge and points at the future avenues that are worth pursuing in order to advance

the knowledge about the role of inhibitory pathways in cell assemblies and in cortical

networks.



Chapter 2

Background

2.1 Cell assemblies in the brain

One of the main quests in neurobiology involves understanding of how the memory is

being represented and managed in the brain. To date, experimentalists and theoreti-

cians have unravelled a great wealth of mechanisms governing memory formation and

retrieval from subcellular to network level (Poo et al., 2016). Noteworthy, many of

the contemporary discoveries still give credit to two old theories that surfaced back in

times when even the notion of neural inhibition was still unknown1.

Engram theory – as formulated by Richard Semon (1921) – postulated that any

memory is physically stored in brain and represented by a coactivation of a group

of neurons termed an engram. Semon aptly predicted that learning induces persistent

physical/chemical changes in these neurons and subsequent partial reactivation of these

may lead to a full memory retrieval – a phenomenon that nowadays is known as pattern

completion (Tonegawa et al., 2015).

In similar vein, Donald Hebb in his seminal work introduced a term cell assembly

to denote a group of strongly interconnected neurons that represent a distinct cognitive

entity and proposed a mechanism based on synaptic plasticity as a substrate of memory

formation (Hebb, 1949). Most, if not all contemporary plasticity rules, stem from the

Hebbian learning rule, which, overly simplified, asserts that cells that fire together,

wire together. Besides neuroscience, Hebbian theory also immensely contributed to

the fields of artificial neural networks and machine learning.

Nowadays, the term cell assembly (as well as cell/neural ensemble) is widely used

to describe spatiotemporal orchestration of activity of interconnected neurons and pro-

1The discovery of inhibition is discussed in Section 2.3.2

4
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vides a useful conceptual framework to study integration of distributed neuronal activ-

ity (Varela et al., 2001). Moreover, the cell assemblies, not the individual neurons, are

now believed to be the physiological units of the brain which generate and sustain the

functional properties as well as the dynamical states of the entire system (Yuste, 2015;

Buzsáki, 2010).

2.1.1 Theoretical models of cell assemblies

Over the decades, numerous models of cell assemblies have been proposed. Based

on their architecture, these can be grouped into two general types: feedforward net-

works, which are predominantly governed by the one-way connections, and recurrent

networks, also called attractor-based models, which essentially rely on a positive feed-

back to sustain their activity (Yuste, 2015).

The attractor-based architectures are well-studied and frequently employed to solve

problems involving working memory, path integration, and the head direction cells

system, to list a few (Durstewitz et al., 2000; Samsonovich and McNaughton, 1997;

Redish et al., 1996). On the other hand, certain limitations of such models were identi-

fied, especially the need for the fine-tuning of the parameters as well as low variability

in neuronal response properties (Shafi et al., 2007; Lim and Goldman, 2012). The

neuronal variability is commonly measured by the coefficient of variation CV of the

neuron’s interspike intervals distribution and defined by the ratio of the standard devi-

ation to the mean of this distribution. Cortical neurons were shown to have high CV

values implying that their firing patterns are very irregular, a property the attractor-

based models fail to reproduce (Softky and Koch, 1993). In the context of the working

memory, however, one solution to alleviate the variability problem involved the inclu-

sion of short-term plasticity to the model (Hansel and Mato, 2013).

Finally, it should be clearly stressed, that these general types are actually the two

extremes along a continuum. A fully recurrent network, such as a Hopfield network,

can be initiated in many ways, but the resultant dynamics will always push the net-

work to enter a stable state and remain there infinitely. In contrast, fully feedforward

networks lack such fixed points and their activity keeps transitioning from one state

to another. In between, however, there exist mixed models which enable sequential

transitions from one fixed point to another (Kleinfeld, 1986; Sompolinsky and Kanter,

1986), or fully recurrent models which functionally in fact behave akin to the purely

feedforward networks (Goldman, 2009).
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No attempts will be made to directly compare the two architectures and evaluate

their performance. Throughout the whole thesis only the former – feedforward net-

works models – will be under thorough investigation, whereas the purely recurrent

ones will be considered as out of scope.

2.1.2 Experimental evidence for sequential activity

The feedforward networks are by no means merely the abstract, theoretical creations as

there is ample evidence for the transient sequential activity found in many brain regions

across various species. Neural sequences are now considered to be a common feature

of the network activity during a whole range of behaviours. Below, the prominent ex-

amples of such sequences are briefly reviewed, followed by a commentary concerning

the general difficulties with detecting such activity in neuronal networks.

Birdsong

Birdsong, commonly studied on the zebra finch, is one of the most well-understood

sequential activity found in brain and is characterised by the extremely precise spiking

patterns (Hahnloser et al., 2002). The songs are internally generated in the high vocal

centre (HVC) – an analogue of the mammalian premotor cortex – where the principal

neurons produce sparse, time-locked bursts of activity that are stereotyped from trial to

trial and each neuron typically produces only one such burst during a song. Subsequent

studies revealed that inhibitory interneurons’ activity is stereotyped as well (Markowitz

et al., 2015).

Hippocampal and cortical sequences

Hippocampal place cells, which encode particular regions in space, produce sequences

while the animal explores the environment, so that based on the neurons’ firing patterns

it is possible to reproduce the animal’s trajectory (O’Keefe and Dostrovsky, 1971).

Such sequences are believed to rely on the external inputs such as environmental or

self-motion cues as they are activated during the behaviour. In contrast, after the ex-

perience and typically during sleep or rest periods, such sequences reappear in a rapid,

compressed way (Buzsáki, 2010). Such reactivation of the previously experienced tra-

jectories was termed as a spontaneous or offline replay (Carr et al., 2011) and it was

shown to appear in either forward or reverse fashion (Diba and Buzsáki, 2007). On top,

a preplay – an activation of a future trajectory – was also reported in animals that were
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resting before the exploration of a novel environment (Dragoi and Tonegawa, 2011).

Neurons termed time cells that encode the time course, rather than the animal’s location

during a task were also shown to fire in a sequential fashion (MacDonald et al., 2011).

Lastly, yet another group of neurons produced internally-generated sequential activa-

tions that were related to the future choices of a behaving animal (Pastalkova et al.,

2008). All these examples demonstrate that the sequential activation is ubiquitous and

comes in two forms – either it is stimulus-driven or internally-generated.

Sequential activation is by no means limited to the hippocampal system. In rodent

posterior parietal cortex and visual cortices various choice or stimulus-specific sequen-

tial patterns were also reported (Harvey et al., 2012; Luongo et al., 2016; Sadovsky and

MacLean, 2014; Carrillo-Reid et al., 2015). In the rat medial prefrontal cortex, on the

other hand, an offline replay of sequential motifs related to the previously experienced

rule learning sessions was observed during animal’s sleep (Peyrache et al., 2009).

2.1.3 Difficulties with detecting sequences

For the sake of completeness, it should be remarked that finding solid evidence for the

sequential cell assembly activation is fraught with difficulties. Although the cell as-

semblies theories were postulated many decades ago, for years the lack of appropriate

technology to record many neurons simultaneously in behaving animals hindered the

discovery. Nowadays not only hundreds or even thousands of neurons can be recorded

at a time (Stevenson and Kording, 2011), but also individual neurons or groups of such

can be manipulated by virtue of the optogenetic techniques (Buzsáki, 2004; Deisseroth,

2011). The experimental techniques, however, is not the only limitation in finding the

true sequential activation. Detecting robust sequences in non-categorised datasets of

spike trains is not a trivial task and it heavily relies on complex statistical methods and

hypotheses testing.

A publication reporting the detection of cortical songs (a counterpart of the bird-

song) attracted a lot of attention as the authors boldly claimed to have found precise

repetitions of sequential activation in the visual cortex (Ikegaya et al., 2004). Based

on the motifs found in vitro and composed of individual cells’ repetitive firings, they

developed an indirect method to search for similar motifs in vivo. These were indeed

found in the visual cortex of an anaesthetised cat and it was concluded that sequential

activation can be internally generated there. Later, the flaws in the detection method

were identified (Roxin et al., 2008; Mokeichev et al., 2007), and it was argued that the
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detected motifs in vivo can in fact occur by chance. Thus, this report shall not be used

as a piece of evidence for the actual sequential activation in the cortex.

The discovery of the hippocampal preplay has also been greeted with a deal of

scepticism (Dragoi and Tonegawa, 2011). A subsequent study attempted to reproduce

the results and its conclusions rejected the idea of preplay in favour of the sequence

forming exclusively during the actual experience (Silva et al., 2015). Does it mean that

the methodology in the original study was again faulty and the very idea of preplay

downright wrong? Not necessarily. One of the clear differences between the studies

is that in the first one, the ’novel’ environment was actually an extension of a familiar

track, which could possibly influence the ’reuse’ of the already existing representations

(Eichenbaum, 2015). The broader question here is whether and how the pre-existing

structures influence the new encoding. Another study indeed identified two types of

neurons – the rigid and plastic ones – that are differentially prone to undergoing mod-

ifications during the novel experience (Grosmark and Buzsáki, 2016), suggesting that

the observed preplay might have depended on such rigid cells. The problem of cell

assembly creation and modification will be revisited later.

In conclusion, although some reports remain controversial, the majority of accounts

of sequential activation are still based on sound methodologies and imply that the se-

quential activation indeed robustly occurs in various brain regions and can be regarded

as a common feature of the neuronal networks. The following sections will review a

selection of the feedforward network models which are believed to provide the theo-

retical underpinnings of the sequential activation.

2.2 Computational models of feedforward networks

2.2.1 Spiking balanced networks

Although there is a wealth of models generating seuqential activation (Rajan et al.,

2016), only the ones based on the integrate-and-fire (IAF) neuron model are being

investigated here. Integrate-and-fire model is widely used in theoretical neuroscience

and was first proposed by Lapicque (1907), long before the action potential mechanism

was understood (see Figure 2.1). It provides a useful simplification of the underlying

biophysical mechanisms by treating the model neuron as an electric circuit consisting

of a resistor R and capacitor C in parallel (Abbott, 1999).
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Figure 2.1: The IAF model. A: An equivalent RC circuit. V is the membrane potential,

Vrest is the resting membrane potential, and I is an injected current. B: The voltage

trajectory of the model. When V reaches a threshold value, an action potential is gen-

erated and V is reset. C: The upper trace is the membrane potential and the bottom

trace is the input current. Diagram from (Abbott, 1999).

Networks composed of such IAF spiking neurons have emerged as a standard the-

oretical model and are ubiquitously adapted in both analytical and numerical studies.

These networks comprise two populations of excitatory and inhibitory neurons which

are sparsely (typically 1-10%) and randomly connected via the weighted synapses.

Based on the cortical measurements, 80% of neurons are excitatory and the inhibitory

weights are stronger so that the two forces are balanced. Depending on the amount

of external noise injected into the system and the ratio between the excitatory and in-

hibitory weights, different regimes of activity were observed. The network’s activity

can be either asynchronous or synchronous from a population viewpoint and either reg-

ular or irregular from a neuron viewpoint (Brunel, 2000). The asynchronous irregular

(AI) regime is considered to model a default state of the cortical networks.

The notion of the balance between excitation and inhibition (E/I balance) was in-

troduced to generate the irregular responses of the individual neurons and it assumes

that the positive and negative inputs cancel each other. If excitation dominates, the

neuron produces a fairly regular firing patterns in spite of high levels of noise. If the

excitation and inhibition are balanced on a slower scale, yet remain uncorrelated on

the faster one – then the net input current is dominated by those faster fluctuations and

the membrane potential follows a random walk towards the firing threshold, resulting

in an output spike train with Poisson statistics (Denève and Machens, 2016).
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2.2.2 A generic model of feedforward networks

A basic model of a feedforward network (FFN) was proposed by Abeles (1991) and

termed a synfire chain to highlight the synchronous firing patterns of neurons along

the chain. Essentially, it is a divergent-convergent network composed of groups (also

called layers) of excitatory neurons connected in an exclusively feedforward manner.

A synfire chain, as shown in Figure 2.2, can be described by its width w – a number

of neurons in every group; and length l – a number of such groups. A given neuron in

a group i receives connections from all the neurons in the preceding group i−1; there

are neither lateral connections within the groups, nor the feedback ones between the

groups.

Figure 2.2: A diagram depicting a synfire chain with a w width and l length. All neurons

are excitatory pyramidal cells and the consecutive layers are connected in an all-to-all

fashion.

Although the synfire chain might appear to have a rather simple architecture and re-

sulting dynamics, numerous implementations and extensions involving isolated as well

as embedded variants focused on distinct aspects, stumbled upon various problems and

operated in different parameter spaces. A systematic overview of these models can be

found in reviews (Kumar et al., 2010; Vogels et al., 2005; Destexhe and Contreras,

2006), in the following sections, however, the goal is to identify a set of key features

that can be used to describe and assess these models and are relevant to the extensions

presented in this thesis. As these features are tightly coupled to one another, some

models, principles or problems will be mentioned several times.
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2.2.3 Two modes of propagation

Firstly, the signal transmission along the chain can be realised in two distinct modes:

synchronous spiking or asynchronous firing rate propagation; which correspond to two

widely discussed paradigms of neural coding (Shadlen and Newsome, 1994; Perkel and

Bullock, 1968).

The rate coding paradigm postulates that all the information about a stimulus is

contained in the firing rate of the population of neurons. Single neuron responses were

shown to be variable from trial to trial and only averaging a given population may carry

information (Vogels et al., 2005). An opposing view – the temporal coding paradigm

– assumes that precise spike timing is a significant element in neural coding (Softky

and Koch, 1993), as a number of experimental studies have found (Butts et al., 2007).

Although deciphering and understanding the neural code is one of the central problems

in neuroscience, there are no definite answers yet which paradigm is closer to truth or

whether the two can actually coexist in different systems (Luczak et al., 2015; Brette,

2015).

2.2.3.1 Synchronous spiking

The majority of models reviewed here relate to the synchronous spiking mode. This

mode is initiated by an arrival of a strong transient input at the first layer of the synfire

chain, which makes the neurons fire in unison to form a so-called pulse packet (Dies-

mann et al., 1999), characterised by its activity a – number of spikes and σ – temporal

dispersion measured by the standard deviation of the underlying pulse density (more

details on the pulse packet characteristics are given in Section 4.6). The pulse packet’s

activity in the first layer propagates to the second layer after one synaptic delay and

then further down the chain. The signal transmission in this mode is thus characterised

by a rapid and transient pulse traversing the layers and engaging usually most of the

neurons belonging to the chain.

2.2.3.2 Asynchronous firing rate propagation

The second mode of signal transmission involves propagating firing rates, rather than

transient pulses, along the layers in a feedforward chain. Because the neurons in the

deep layers of synfire chains by definition share a lot (if not all) of their input connec-

tions, preventing synchronisation is the main concern in this mode.
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This problem was tackled by van Rossum et al. (2002), who implemented an iso-

lated feedforward chain of excitatory neurons. At the absence of external noise, only

a strong input into the first layer would cause the chain to activate, resembling a syn-

fire pulse packet activation. Addition of a noisy background current with a positive

mean changed the mode of propagation, so that also weak inputs would reach the dis-

tant layers and the rates would be faithfully transmitted along the chain. However, the

background current needed two components adjusted to be rendered useful. Firstly,

the mean current, which mostly brought the average neuron membrane potential closer

to the threshold, so that the rate propagation would proceed faster. And secondly, the

noise component, which ensured that the neurons are in different states when the signal

arrives preventing them from acting in synchrony. With only the mean current present,

the synchrony would still arise, whereas only noisy component would cause the strong

thresholding of inputs so that weak firing rates would fail to propagate.

Another model attempted to incorporate the notion of E/I balance to examine its

role in the firing rate propagation along feedforward networks (Litvak et al., 2003). In

this implementation, an isolated synfire chain consisted of layers of 3000 excitatory

and 3000 inhibitory neurons and each neuron maintained 10% connectivity with the

preceding layer. Input was modelled as long, uncorrelated Poisson spike trains (half

excitatory, half inhibitory) to keep a precise balance, where the net synaptic current was

zero, and the response was driven entirely by the variance of the membrane potential.

It was shown that it is difficult to transmit the firing rates beyond the third layer as

deeper layers would fire independently of the input firing rate. The neurons belonging

to the same, deep layers also developed synchrony. Removing a precise balance in

input spike trains caused an emergence of strong synchronisation resembling a pulse

packet travelling along the synfire chain.

A model of firing rate propagation in a feedforward chain within a recurrent net-

work has also been proposed (Vogels and Abbott, 2005). In this implementation, a

synfire chain was not artificially embedded into an otherwise random structure – in-

stead, the already existing connections were chosen to form a chain. Since the network

was sparsely connected (2%), not many neurons shared large pools of inputs and out-

puts, and a width of a chain was set to only 33 excitatory neurons and in deep layers

each neuron would receive at least 3 input connections from the preceding layer, ren-

dering it a rather ’diluted’ version of a synfire chain. To compensate for the small

number of connections, synaptic weights along the chain were strengthened up to 13

times compared to the rest of the synapses in the whole network. With these adjust-
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ments, it was demonstrated that firing rates can be propagated in a feedforward manner

in sparse networks and they are capable of performing simple logical operations.

2.2.4 Chain–rest of the network relationship

Another key feature of a model is the way how the relationship between the chain and

its surrounding network is being modelled. In the actual brain, every local circuitry

is in fact only a small part of an enormous recurrent network and apart from local

connections, it also receives lots of inputs from distant locations and sends many out-

puts there. Theoretical models have no capacity to precisely and faithfully recreate the

whole system, and the activity of the rest of the brain is usually simplified or removed

entirely. Concerning the feedforward chains, these can be either isolated entities or

embedded in a bigger, recurrent network and the examples of the two classes were

already given above.

It should be highlighted, that the chain – rest of the network relationship is essen-

tially mutual and both entities influence one another:

– The network provides external as well as feedback inputs in a form of the bal-

ancing excitation and inhibition.

– The chain has a potential of destabilising the whole network through its non-

random connectivity and transient synchronous events.

Below the two points are discussed in greater detail.

2.2.4.1 Network’s influence on chain

By isolating a chain, that is by creating it as a stand-alone entity, the relationship

between the chain and the rest of the network is completely abolished. In consequence,

some compensatory adjustments need to be added to the model, as already seen in the

above-mentioned examples, where the fine-tuned noise or balancing inhibition had to

be present in order to keep the neurons’ activity asynchronous (van Rossum et al.,

2002; Litvak et al., 2003). Such setup, however, is too simplified and biologically

unrealistic as the networks are recurrent and their noisy inputs are essentially internal,

not external and in other words, the noise cannot be adjusted to the network, as it is

actually fixed by the network (Vogels and Abbott, 2005).

From a certain point of view, it may look like a paradox that a finite network itself

can provide the noise ensuring the asynchronous E/I balance. Neighbouring neurons

inevitably share some fractions of their presynaptic inputs, yet they can produce un-
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correlated spike trains (Ecker et al., 2010). Should not it be the external noise that adds

extra randomness to the system that could help to scramble the otherwise correlated

signals? Surprisingly, it was shown that the spike-train correlations in the simulated

finite-size recurrent networks are much smaller compared to the case with the spike

trains generated by large but finite-size non-interacting Poissonian processes (Tetzlaff

et al., 2004). A follow-up study identified the negative feedback, not the E/I balance,

to be a sufficient cause of efficient suppression of correlations between the neighbour-

ing neurons (Tetzlaff et al., 2012). Negative feedback is a product of the network’s

own activity, a fact which proves that the recurrent networks indeed can decorrelate

the spike trains by their own means. Thus, to ensure the asynchronous state during the

signal propagation along the feedforward chain, a large enough host network should

provide the negative feedback to its sub-elements rather than relying on the externally

generated random inputs.

2.2.4.2 Chain’s influence on network

The overall problem here is how can a sparse, randomly connected network in an

asynchronous irregular (AI) state accommodate a synchronous transient within a sub-

network without simultaneous switching to a global synchronous state. It was shown

that pulse packet’s (PP) activity excites background neurons after one synaptic delay –

a phenomenon termed a ’halo’ of the travelling PP (Kumar et al., 2008a). Aviel et al.

(2003) embedded a synfire chain of width 250 neurons into a large balanced network to

find out that such setup leads to large transient global oscillations. Another study em-

bedded a synfire chain of width 300 into a modified version of balanced networks – a

locally connected random network (LCRN) (Mehring et al., 2003), where neurons are

defined by their location on a 2D plane and connectivity is established with Gaussian

kernels so that the probability of connection decreases with distance. Without embed-

ding a synfire chain, just a mere simultaneous forced firing of 100–500 neighbouring

neurons led to serious disruptions of the surrounding region. Excitatory and inhibitory

neurons would fire in unison, causing a so-called synfire explosion followed by a silent

period caused by a wave of inhibition quenching all the network’s activity. Only after

recovering from that period, the whole network would return to its default, AI state.

In the previous sections, another model was discussed which studied firing rate

propagation in a recurrent network where no synfire explosions were reported (Vogels

and Abbott, 2005). The reason for that is that the chain used was of a small size (33

neurons per layer), the layers had 11% connectivity and the synapses along the chain
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were significantly strengthened. Under such conditions, an injection of a pulse packet

activated only 33 neurons which fed to another 33 neurons and so forth via strong

synapses, but the background was fed only via weak synapses. In setups with synfire

explosions a chain neuron would feed to the next layer and to the background (non-

chain neurons) via the synapses of equal strengths and, essentially, each layer would

be much wider than 33.

Synfire explosion is definitely an undesirable phenomenon in a robust model and

various solutions were proposed to tackle this. In the next section we will discuss

two distinctive types of synapses used in models that might play an important role in

synfire explosion generation. Other proposed ways of avoiding such instabilities in-

volve adding inhibitory control along the chain (discussed in the forthcoming section),

fine-tuning of network parameters, introducing heterogeneities or spreading the layers

across the network to minimise the interference of the haloes from individual layers.

Instabilities caused by a strong halo is an extreme case of the chain’s influence on

the host network. In more general terms, the addition of an embedded feedforward

connectivity into a recurrent network can be seen as introducing non-random elements

into an otherwise random structure. As the AI state of a random network is believed to

faithfully recreate a typical cortical activity, embedding a synfire chain automatically

disturbs the randomness that might in turn compromise network’s variability, general

E/I balance and asynchronous activity. On the other hand, it should be stressed that

the cortex itself is not perfectly random. Various studies revealed that cortical micro-

circuits display many stereotyped motifs and neurons seem to be clustered to a higher

degree than it would be expected in a purely random network (Song et al., 2005). Thus,

a random network with the embedded synfire chain might be seen as a plausible ex-

ample of a cortical network with some degree of specific circuitry, much more than an

idealised random and sparse balanced network.

2.2.5 Current vs conductance-based synapses

As outlined above, embedding synfire chains in a recurrent network uncovered a prob-

lem with the explosions of activity. As indicated by Kumar et al. (2008a), the cause of

the troubles might, at least partially, lie in the very choice of the computational model

used in the simulations, namely current-based synapses.

There are two ways of modelling synaptic inputs – they can be either voltage-

independent (as in the current-based model) or voltage-dependent (as in the conduc-
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tance-based model). The current-based model (CUBA) is popular due to its relative

simplicity and linear dynamics that can facilitate derivation of analytical solutions

(Cavallari et al., 2014). The conductance-based model (COBA) is more biologically

grounded, as, for example, it can reproduce a so-called high-conductance state, a state

when a neuron under bombardment of inputs decreases its membrane input resistance

3 to 5–fold (Destexhe et al., 2003). The two models were exhaustively compared in a

single-cell (Kuhn et al., 2004) and in a network setting (Cavallari et al., 2014; Kumar

et al., 2008b) and indeed it was demonstrated that the two models differ considerably,

especially in the second order statistics of neural population interactions.

And how does it affect the behaviour of synfire chains? Kumar and colleagues

(Kumar et al., 2008a) explained how the dynamics of current-based synapses can lead

to the synfire explosions. The arrival of a pulse packet invokes large compound EPSPs

in the chain neurons whose decay is governed by a membrane time constant, which in

the studies reporting the explosions was set to 10ms (Aviel et al., 2003; Mehring et al.,

2003). As a result, the chain neurons emit multiple spikes, which also activate the

background neurons leading to a global explosion. A large time constant, however, is

not realistic and in a biological cell there is only a short conductance transient and the

long-lasting compound PSPs are shortened at the high conductance states (Kuhn et al.,

2004). Thus, in the case with conductance-based synapses, large compound PSPs are

abolished as a strong transient input affects the integrative properties, the effective time

constant is shortened and the neurons respond with one spike only to a strong input, as

demonstrated by Kumar et al. (2008a).

2.2.6 Recruitment of inhibition

The original framework of synfire chains involves only excitatory neurons, as shown in

most of the above-mentioned models. In a random balanced network, where all 4 types

of connections between the excitatory and inhibitory populations exist (E→ E, E→ I,

I→ E, I→ I ) it may look somewhat bizarre to modify only one type: the E→ E con-

nections. It should come as no surprise that the balance is disturbed, sometimes even

catastrophically, when only the excitatory signals get rapidly amplified without the

counteracting inhibitory ones. Studies showed that inhibition tightly follows excitation

(Wehr and Zador, 2003) as well as distant inputs recruit both, excitation and inhibition,

leaving the E/I balance approximately unperturbed (Isaacson and Scanziani, 2011; Xue

et al., 2014). Thus, even the very injection of the excitatory pulse packet into a pool of
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local excitatory neurons might be considered as a breach of a general rule of balanc-

ing inputs in the cortex. Further divergent-convergent dense E → E connectivity only

makes matters worse, upsetting the balance even more, as clearly demonstrated in the

example networks with the occurrence of synfire chain explosions (Aviel et al., 2003;

Mehring et al., 2003). Yet, only a few models explicitly employed inhibitory neurons

to improve signal propagation and render the model more biologically plausible.

The circuitry of feedforward inhibition (details of this circuit are given in Section

2.3) added to an isolated synfire chain were studied by Kremkow et al. (2010b). They

demonstrated that such disynaptic inhibition ensures that only strong and synchronous

signals get propagated which eliminates a problem of spontaneous signals triggering

the chain creating false-positive responses. This study also embedded such chain into

a recurrent network, but only 3 layers were involved, which could not elicit a synfire

explosion.

Another model that incorporated inhibition along a synfire chain aimed to repro-

duce the birdsong (Cannon et al., 2015). The model itself is an isolated case where

excitatory neurons are grouped into pools which are then grouped into zones. Feed-

forward connectivity is realised between the groups belonging to successive zones,

which are arranged into a circle. A signal effectively travels along a spiral, visiting the

zones several times via different groups. The crucial element of the setup are the local

inhibitory pools for each excitatory zone, which do not receive the actual signal, but

are just activated by the zone’s activity. It was demonstrated that the presence of such

dedicated inhibition improved spiking synchrony and consistency across the trials.

2.2.7 Gating mechanisms

All the models reviewed so far are focused on a general signal propagation, where the

goal is to find a set of conditions that allows for a high fidelity signal transmission with-

out upsetting the host network (if one exists). Once such setup is found, it is implicitly

assumed that the signalling pathways are always in a ready state, or in other words,

a given pathway, or a gate to it, is open. The actual cortical networks, however, are

very flexible and take part in various tasks under different conditions and states. Thus,

the signals not only need to be faithfully transmitted at the presence of an input, but

they also might need to be dynamically changed, rerouted or even completely stopped

(Chatham and Badre, 2015). In essence, identical inputs, depending on a current ’con-
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text’, might lead to different responses and in order to obtain such flexibility, control

or gating mechanisms are required.

In principle, there are two contrasting ways of implementing the gating mechanism:

either the gate is open by default (as in all the models discussed so far) and some extra

mechanism needs to be added to close it, or the gate is persistently closed and in order

to open it, certain modifications need to be applied. (More details on gating principle

will be discussed in Chapter 5).

The principle of a gate closed by default was implemented in the context of firing

rates propagation (Vogels and Abbott, 2009) within a 2D balanced network, where a

subset of inhibitory neurons had distance-dependent connectivity, and the rest of the

neurons were connected randomly. The signal path was composed of only 2 layers

– sender and receiver. The sender contained exclusively excitatory neurons which

projected onto either excitatory or inhibitory receiver neurons, so that they maintained

a so-called detailed balance. In a default, balanced mode, the rate propagation would

fail, as the receiver neurons would receive the signal monosynaptically which was then

balanced out by inhibition delivered disynaptically via local connections. Only in the

unbalanced state achieved by the decreased inhibition, the gate would open and the rate

propagation would take place. This framework, however, failed to block the transient

signals – whenever the sender would rapidly increase its firing rate, the disynaptic

inhibition would be too slow to balance this upsurge out and the receiver would still

respond to the signal.

The gating of pulse packets was tackled by Kremkow et al. (2010a). In their im-

plementation, the signal path was composed of three layers: sender, gate and receiver

embedded in an LCRN and the gating was controlled by the delayed feedforward inhi-

bition (Kremkow et al., 2010b). They presented the idea of exploiting the arrival time

of the inhibition to open and close the gates – if the inhibition arrived at the gate before

the actual signal, the signal would be successfully blocked, if afterwards, the signal

would freely pass. The arrival time of inhibition was controlled externally by injecting

extra current, so it remained an open question what biologically plausible mechanism

could implement this sort of precise control of the timing.

2.2.8 Summary of the models and proposed augmentations

How to compare the models and, most importantly, what can one learn from them?

Table 2.1 summarises the chosen models with regard to the key features discussed in
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the previous sections. What can be striking is a high variability of parameters and as-

sumptions used. Some networks were small, some feedforward chains were embedded

in huge recurrent networks, some required fine-tuning, some destabilised the whole

host networks. Several points are concluded from the overview presented here.

1. An isolated case of a feedforward chain proved to be too idealised, although very

useful for formulating the basic properties of the phenomenon. Disengaging the

chain from its host network annihilates the mutual influence between the two. With-

out this, important features are missed out and the conclusions based on the studies

on the isolated models do not necessarily find agreement with the actual networks

found in brain.

2. Biological plausibility of a model is an important factor and the conductance-based

synapse model (COBA) is preferred despite its non-linearity and higher complexity

compared to the CUBA. It can be argued that the model does not need to reflect all

the biological features, but the COBA synapse adds a lot more realistic behaviour,

especially during the transient high-conductance states, essential for studying syn-

chronous pulse packet propagation within a recurrent network.

3. It is strongly stressed that the use of inhibition should be regarded as another key

factor in signal propagation modelling. When a chain is embedded in a balanced

network, it cannot exclusively engage the excitatory population. A rapid amplifi-

cation of excitatory signal should always be accompanied by the inhibitory activity

to keep the network balanced and at the same time let the pulse packet traverse the

feedforward structure. Feedforward inhibition is a good candidate to be integrated

into the feedforward networks.

4. Overall, propagating signals across recurrent networks proves to be difficult, and

it will be claimed, that this fact can be turned into a very desirable feature. In a

network that embeds multiple chains or assemblies, by defaut they should be kept

quiet. If the signal propagation was easy and possible in a wide range of parameters,

spontaneous signal amplification would blur the signal transmission fidelity. It is

argued that the default state of cortical networks is to prevent the assemblies from

firing and only dedicated gating/control signal should have the power to turn the

signal on.
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.

Model

Isolated? Layer

size

Inhibi-

tion in

chain

Synap-

se

model

Propaga-

tion

mode

Comment

van Rossum

et al. (2002)

Isolated 20 None CUBA Firing

rate

Fine-tuning of

noise

Litvak et al.

(2003)

Isolated 6000 50% CUBA Firing

rate

Fine-tuning of

E/I balance

Vogels and

Abbott

(2005)

Embedded

in BN

33 None CUBA

COBA

Both Strengthened

synapses

Aviel et al.

(2003)

Embedded

in BN

250 None CUBA Pulse

packet

Global synchro-

nisation

Mehring

et al. (2003)

Embedded

in LCRN

250 None CUBA Pulse

packet

Synfire chain

explosions

Kumar et al.

(2008a)

Embedded

in LCRN

300 None COBA Both heterogeneities

& COBA elimi-

nates explosions

Cannon et al.

(2015)

Isolated 100 Local

shared

pools

CUBA Pulse

packet

Birdsong

sequence,

spiralling chain

Kremkow

et al. (2010a)

Embedded

in LCRN

125 20% COBA Gating

of pulse

packet

Delayed inhibi-

tion, 3 layers

Vogels and

Abbott

(2009)

Embedded

in LCRN

728

and

536

14%

(in 2nd

layer)

COBA Gating

of firing

rates

2 layers, de-

tailed balance

Kremkow

et al. (2010b)

Isolated 125 20% COBA Pulse

packet

Feedforward

inhibition

Table 2.1: Comparison between various models extending the synfire chain architec-

ture. Abbreviations: BN: balanced network, LCRN: locally connected random network,

CUBA: current-based model, COBA: conductance-based model.
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2.3 Neural inhibition

Most neurons in the CNS are excitatory and it is their activity that triggers other activi-

ties or is transformed into behaviour. However, a network composed of only excitatory

units has a very limited range of behaviours and even a simplistic simulation inevitably

leads to an observation that the excitation tends to spread and amplify nearly infinitely

if left uncontrolled.

One can compare the activity of excitatory neurons to a herd of galloping horses:

it will always push forward if given an opportunity, powerful and energetic but with

no specificity or direction. It is the presence of inhibition that keeps tight reins on

this darting activity. It creates obstacles, counterweights and gates in order to control

the magnitude, timing, and direction of the flow of excitation. To fully understand

the functionality of cortical activity, an appreciation of the less numerous players –

inhibitory neurons – is indispensable.

2.3.1 Beyond balancing excitation

Neuronal excitation and inhibition are inseparable and a healthy, well-functioning net-

work is believed to maintain a balance between the two. It was demonstrated that

inhibition tightly follows excitation – whenever there is an increase or decrease in

excitatory activity, the inhibitory activation faithfully follows suit (Wehr and Zador,

2003). Additionally, it was revealed that during sensory processing in the neocortex,

presentation of a sensory stimulus invariably recruits inhibition in addition to exci-

tation, leaving the E/I balance approximately unperturbed (Isaacson and Scanziani,

2011; Xue et al., 2014). Conversely, several reports suggested that the elevated E/I ra-

tio and impaired inhibitory circuits may be responsible for the clinical features found in

autism, schizophrenia, intellectual disabilities and epilepsy (Yizhar et al., 2011; Marı́n,

2012; Cossart et al., 2001; Engel, 1996).

The role of neural inhibition, however, goes far beyond a mere balancing of its ram-

pant companion. Inhibitory neurons (also called interneurons) play a key role in vari-

ous forms of network oscillations and synchronising the spiking of principal neurons

which serves to coordinate communication between different brain areas. Depending

on the connectivity patterns between the neurons, inhibition can gate the signals, con-

trol the temporal precision of spikes or normalise the activity of groups of neurons

(Roux and Buzsáki, 2015; Kepecs and Fishell, 2014). Interneurons are also believed to

be a dominant factor in mediating the selectivity of projection neurons and adjusting



Chapter 2. Background 22

their input/output relationship (Letzkus et al., 2015).

The microcircuits and several functions of inhibitory neurons will be discussed in

more detail in the subsequent sections. Before that, let us briefly focus on the history of

the discovery of inhibition which might shed some light on why the role of inhibition

had been ignored for decades and only recently it started attracting the well-deserved

attention which, beyond any doubt, advanced the understanding of neural circuits im-

mensely (for a more comprehensive history of inhibition refer to (Fishell and Rudy,

2011; DeFelipe, 2002)).

2.3.2 A brief history of inhibition

When back in 19th century Camillo Golgi developed his ground-breaking staining

method (De Carlos and Borrell, 2007), he was the first one to suggest the two main

types of neurons – motor neurons (type I) with long axons and sensory neurons (type

II) with short axons (DeFelipe, 2002). Santiago Ramón y Cajal rejected such mo-

tor/sensory differentiation and proposed his own terms instead, which were based

solely on the morphology of neurons: “cells with a long axon” and “cells with a short

axon” (y Cajal, 1995). For many decades afterwards, the terms short-axon cells and

interneurons would be used synonymously.

Noteworthy, at Cajal’s times the very idea of inhibition was still non-existing. Ca-

jal reasoned that the short-axon cells might work as “condensers, or accumulators, of

nervous energy” that would support the signal transmission along the principal cells

by boosting their energy (DeFelipe, 2002). The possibility of decreasing or counter-

acting such energy was not taken into account at all. As a matter of fact, it was not

until the late 60s and early 70s when immunocytochemical studies confirmed that most

interneurons release a neurotransmitter called GABA – γ-aminobutyric acid – which

reduces the neuronal excitability (Bowery and Smart, 2006). Only then the notion of

neural inhibition, as an opposite to excitation and signalled by the GABA neurotrans-

mitter and to a much smaller extent, glycine, was established. Nowadays it is estimated

that inhibitory neurons make up roughly 15-30% of all neurons found in the CNS, with

the actual percentage varying between the cortical layers, areas and species (Markram

et al., 2004). They are still commonly called interneurons as they usually wire around

local cells and their axons terminate in the same region where their dendritic arborisa-

tion is (with some clear exceptions). It should also be mentioned that some classes of

interneurons are of an excitatory type, but here we aim to focus only on the inhibitory
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ones, which means that any occurrence of the term ’interneuron’ will imply the in-

hibitory interneuron, unless explicitly stated. Excitatory glutamatergic neurons, on the

other hand, are commonly called principal cells and since their most numerous sub-

group comprises the pyramidal neurons, all these terms are often used interchangeably.

2.3.3 Classification of interneurons

The Francis Crick’s famous statement “If you want to understand function, study struc-

ture” (Crick, 1988) proved to be not the most useful advice for the community re-

searching the interneurons as the whole population of interneurons is tremendously

heterogeneous on the level of morphological, molecular and physiological features

(Markram et al., 2004). A plethora of data collected over the decades and via indepen-

dent research programmes rendered the problem of classification remarkably difficult

as multiple approaches were used to systematise and name the individual subtypes.

Although in 2008 a group of experts was convened to establish a common termino-

logy and classification system for the whole interneuron population, a consensus is not

reached yet (Ascoli et al., 2008). A study employing a web-based interactive system

asked 42 experts in the field to classify 320 cortical interneurons to uncover a level of

agreement regarding the assignment of the morphological features between the lead-

ing neuroscientists (DeFelipe et al., 2013). While some neuron subtypes were correctly

classified with a high level of agreement (such as Chandelier or Martinotti cells), other

subtypes – ironically including ’common type’ and ’common basket’ cells – turned out

to be highly confusing even for the experts.

In contrast to this intricate, multi-dimensional systematisation, there exists a clas-

sification that creates non-overlapping groups of nearly all interneurons and is based

on only four biochemical markers: the calcium-binding protein parvalbumin (PV), the

neuropeptide somatostatin (SOM), the ionotropic serotonin receptor 5HT3a (5HT3aR)

and the vasoactive intestinal polypeptide (VIP) (Rudy et al., 2011). While the PV and

the SOM markers create one group each, the 5HT3aR marker demarcates two further

groups – gathering the neurons that co-express VIP or not.

The second classification is widely exploited in contemporary studies harnessing

optogenetic (Deisseroth, 2011) or two-photon calcium imaging techniques together

with the recent advances in mouse genetics where the SOM, VIP or PV-expressing

neurons can be selectively targeted and manipulated both in vitro and in vivo by virtue

of genetically engineered cre-driver mice lines (Taniguchi et al., 2011).
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PV-positive interneurons

Interneurons expressing calcium-binding protein parvalbumin are the largest group

(40% of all interneurons) and they all exhibit fast-spiking firing pattern. There are

two most common types of the PV-positive (from now on PV+) interneurons: basket

and chandelier cells, whose connectivity patterns and electrophysiological properties

vary (Rudy et al., 2011). Overall, the PV+ interneurons are believed to be specialised

for speed, efficiency and temporal precision (Hu et al., 2014).

PV+ neurons receive inhibitory inputs primarily from other PV+ neurons (via both

synapses and gap junctions) as well as from the SOM and VIP neurons. On top, some

autapses were found on the basket cells in the cortical layer 5 that are believed to

provide the fastest and most reliable form of feedback inhibition (Bacci et al., 2005).

The output of PV+ cells targets the perisomatic region of pyramidal neurons including

the cell body, the axon initial segment and the proximal apical and basal dendrites

(Freund and Katona, 2007).

In the rodent hippocampus it was found that the strength and time course of PV-

mediated inhibition decays with distance, a feature which presumably leads to higher

precision in principal cell spike times (Strüber et al., 2015).

SOM interneurons

Somatostatin-expressing interneurons (SOM and occasionally also called SST) ac-

count for 30% of interneurons. These neurons, often represented by the dendritic-

targeting, regular-spiking Martinotti cells are believed to provide more graded inhibi-

tion and control the inputs of the pyramidal cells (as opposed to PV+ cells that control

the output owing to the perisomatic inhibition) (Wang et al., 2004). SOM interneu-

rons do not inhibit each other, but reach all the other inhibitory populations (Pfeffer

et al., 2013). Their connectivity with local pyramidal neurons is very dense, as they

were shown to be synaptically connected to virtually all neighbouring cells, forming a

so-called blanket of inhibition (Karnani et al., 2014).

In the cortex, SOM interneurons mediate surround suppression of visual responses

(Zhang et al., 2014), provide disynaptic inhibition between neighbouring pyramidal

cells (Silberberg and Markram, 2007), whereas in the hippocampus they were shown

to control burst firing (Kepecs and Fishell, 2014). A subtype of SOM interneurons

residing in layer 4 was found to specialise in disinhibition of local principal cells via

the inhibition of fast-spiking PV+ cells (Xu et al., 2013). Another study showed that
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the SOM and PV+ neurons are activated during different phases of a behavioural task

(approaching a reward zone vs leaving it), suggesting that interneuron subtypes can

specialise in temporal regulation of the flow of information during behavioural events

(Kvitsiani et al., 2013).

5HT3aR-expressing interneurons

The last group, the 5HT3aR-expressing interneurons, associating 30% of all interneu-

rons, comprises VIP (40%) and non-VIP neurons (60%).

VIP neurons are often associated with disinhibition as they tend to inhibit other

groups of inhibitory neurons: the SOM and to a smaller degree PV+ interneurons,

whereas they rarely directly target pyramidal cells (Hangya et al., 2014; Jackson et al.,

2016).

Non-VIP neurons mostly comprise neurogliaform cells and a prominent example

of those is a class of interneurons found in the cortical layer 1. Many studies refer to

those neurons as L1 as indeed, in the whole layer apart from the 5HT3aR-expressing

interneurons there is only a small group of SOM interneurons. Interestingly, L1 neu-

rons were also found to be implicated in mediating disinhibition in the context of as-

sociative fear learning (Letzkus et al., 2011).

Summary of the subgroups

The big, overly simplified, picture that emerges from the studies on the interneuron

subgroups is as follows: PV+ interneurons are a fast-spiking population that con-

trols the output of pyramidal cells via perisomatic inhibition. SOM interneurons are

dendrite-targeting, regular-spiking neurons that control the inputs of the pyramidal

cells. 5HT3aR-expressing interneurons, on the other hand, are believed to predomi-

nantly mediate disinhibition.

2.3.4 Inhibitory circuits

Inhibitory neurons can form various stereotypical circuits with pyramidal neurons that

are widely found in the brain. Depending on the connectivity patterns between the

neurons, one can define the following motifs: feedforward inhibition, feedback inhi-

bition, lateral inhibition, direct inhibition and disinhibition. Direct inhibition is self-

explanatory, whereas the forthcoming section will thoroughly review the disinhibitory

circuit. The remaining patterns are briefly discussed below.
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Figure 2.3: Main circuits involving inhibition. A. Feedforward inhibition. B. Feedback

inhibition. C. Lateral inhibition.

Feedforward inhibition

Feedforward inhibition was already mentioned in the context of the synfire chain mod-

els (Kremkow et al., 2010b; Vogels and Abbott, 2009). In this scenario (Figure 2.3 A),

the principal neurons receive an external signal and inhibition activated by the same

source. The duration of the time window between the arrival of both determines how

the signals will be integrated. Although inhibition is delivered disynaptically, owing

to the lower firing threshold and more efficient synapses it may potentially arrive si-

multaneously or even before the signal, preventing the neuron from firing. When it

arrives with a short delay, it can improve precision of the evoked spiking and filter out

weak signals (Roux and Buzsáki, 2015). It was shown that such inhibition improves

temporal precision in the auditory cortex (Wehr and Zador, 2003).

Feedback inhibition

In the feedback inhibition circuit (Figure 2.3 B), the principal neurons that trigger the

inhibition are the ones who receive it via a feedback loop. Such circuitry provides

a form of a regulatory mechanism akin to a thermostat, because the elevated activity

of principal cells will inevitably cause an elevated inhibition fed back into the same

neurons. Such reciprocal excitatory–inhibitory connections are ubiquitously found in

various brain regions (Markram et al., 2004; Roux and Buzsáki, 2015).
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Lateral inhibition

An extension of feedback inhibition is lateral inhibition (Figure 2.3 C). This occurs

when the activation of principal cells recruits interneurons, which in turn suppress

the activity of the neighbouring principal cells of a similar function. Such circuitry

can realise neuronal competition and a winner-takes-all computational motif (Maass,

2000) to assure that only one assembly is active at a time.

2.3.5 Inhibition as a better modulator than excitation

Lastly, yet another important feature of the nature of inhibitory activity as a whole, is

the fact that it appears to be more suitable than the excitation to provide modulation.

One study asked whether excitatory or inhibitory inputs can better gate the signal

propagation along the synfire chains (Shinozaki et al., 2007). The chain was an iso-

lated entity composed of Hodgkin-Huxley (HH) neurons which are more biologically

grounded than the integrate-and-fire neurons (Izhikevich, 2004). A given layer, besides

the pulse packet from the preceding layer, received a modulatory injection of either in-

hibitory or excitatory inputs at various times relative to the arrival of the pulse packet.

It was demonstrated that when the inhibitory modulation arrived a few milliseconds

before the packet, the signal transmission improved, whereas when it coincided with

the packet’s arrival, the transmission was suppressed. The excitatory modulation, on

the other hand, failed to suppress the signal at all times, and managed to enhance it

efficiently only when their arrival times coincided. When the excitatory modulation

was arriving slightly before the packet, the modulatory signal would behave as a pulse

packet itself and thus override and corrupt the timing information of the actual signal.

These results can be summarised as follows: inhibition, if timed appropriately, is

capable of providing a bidirectional modulation: either by suppressing or boosting

the signal without overriding its temporal information. Excitation, on the other hand,

can only work unidirectionally: it merely helps to strengthen the signal. Because the

excitatory modulation is composed of actual spikes, it can be disguised as a signal

itself, causing a confusion between what is being transmitted and what is merely a

modulator. Thus, it should be concluded that excitatory neurons do not provide the

flexibility needed to modulate the signal propagation, and it is the inhibitory population

that appears to be better equipped to control the transmission bidirectionally.
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2.4 Disinhibition

The previous section presented a number of stereotyped circuits involving interneurons

that are repeated across the brain and used to perform specific computations. Although

all were shown to be powerful in many ways, here only the motif of disinhibition will

be discussed in a greater detail.

2.4.1 Disinhibitory circuit

As outlined in earlier sections, persistent disharmony in the E/I balance is typically

associated with a network dysfunction or disease. However, a transient disruption of

this balance mediated by disinhibition is considered to be a potent mechanism for pro-

cessing information in the brain networks. In principle, the balance can be disrupted

by either increasing the excitation, or reducing the inhibition and it can be mediated

by a whole range of mechanisms (Froemke, 2015). Here, however, the focus is placed

solely on the disinhibition defined as “a transient and selective break in the excita-

tory/inhibitory balance caused by reduced firing of different interneuron groups” (Let-

zkus et al., 2015).

Disinhibition involves the removal of an already existing inhibitory control from

a target cell and the elementary form of a disinhibitory circuit comprises 3 neurons

(or groups of these): a principal cell that is under inhibitory control, an interneuron

providing this control and another interneuron that removes it (Figure 2.4 A). Thus, a

net effect of activating such pathway is an increased activity of the excitatory cell.

Figure 2.4: A basic diagram of a disinhibitory microcircuit. A pyramidal neuron is disin-

hibited by an interneuron (green) which inhibits another interneuron (blue) which holds

the pyramidal neuron under the inhibitory control.
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2.4.2 Disinhibitory circuit as a modulator

It has been already indicated that the inhibitory activity is a suitable candidate to pro-

vide modulation and the disinhibition is one form of realising this. As mentioned

above, a net effect of disinhibition is an increased activity of the excitatory cells and

this is the key element that renders disinhibition an attractive mechanism for mod-

ulating pyramidal cells’ responses. It does not cause firing in itself, but rather it is

permissive for strong activation of excitatory neurons (Poorthuis et al., 2014). By si-

lencing the inhibitory inputs, disinhibition allows other systems/excitatory inputs to

take over the control of the firing of the target cell.

This passive role in inducing increased spiking activity is exploited in signal gating,

which is a common computational task performed by the disinhibitory circuits. Signal

gating by disinhibition was recognised as the central influence that the striatum (a part

of the basal ganglia) exerts on the motor system. Inhibitory striatal inputs relieve the

target neurons from the ongoing inhibition and thus enable the premotor circuits to

work (Chevalier and Deniau, 1990). Another example of gating by disinhibition was

uncovered in the hippocampus, where the long-range entorhinal inhibitory inputs were

shown to target the local CA1 interneurons and thereby causing transient disinhibition

of the CA1 pyramidal neurons during memory tasks (Basu et al., 2016). When such

disinhibition was finely timed with the incoming inputs from the CA3 fibres, more spe-

cific memories could be formed. At the absence of such synchrony, the mice exhibited

inappropriate context-dependent responses as well as they did not distinguish novel

from familiar objects very well. Thus, it was concluded that the disinhibitory circuit

increases the precision of the hippocampus-based memory associations.

2.4.3 Disinhibitory pathways found in brain

A concise view on the role of disinhibitory mechanisms in neural circuits has only

started emerging and to date, disinhibition has been shown to be implicated in associa-

tive learning, attention, social behaviour and spatial navigation (Letzkus et al., 2015).

Many contemporary studies exploit the SOM, VIP and PV+ interneuron differentia-

tion and scrutinise the disinhibitory circuits between these subgroups. Below a short

review of the selected disinhibitory circuits found in the brain is laid out. It is by no

means exhaustive, as the goal is solely to point at the mounting evidence showing the

importance and ubiquity of the disinhibitory motif (for a more systematic review refer

to Letzkus et al. (2015)).
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The disinhibitory pathways V IP a SOM as well as V IP a PV + were uncovered

in the medial prefrontal cortex and the auditory cortex during sensory processing (Pi

et al., 2013). VIP stimulation was shown to modulate the gain of the auditory cortical

responses. On the behavioural level, the recruitment of VIPs was strongly correlated

with the reinforcement signals – punishment events – when the mice made a mistake

in a discrimination task. The V IP a SOM pathway in the V1 is also linked to the top-

down attention (Zhang et al., 2014) of visual processing. The pathway was shown to

be activated by the inputs from the cingulate part of the mouse frontal cortex and the

VIP and SOM responses were crucial for the correct visual discrimination. In similar

vein, it was suggested that the V IP a SOM disinhibition might in fact create a so-called

spotlight of attention by selectively overriding the lateral disynaptic inhibition between

the pyramidal cells and thereby enhancing their responses (Karnani et al., 2016). This

mechanism was conceptualised as a process of opening the holes in the blanket of inhi-

bition and it directly refers to the already discussed view on the innervation pattern of

the SOM interneurons which were shown to target nearly all the local excitatory cells.

Disinhibitory circuits often occur in the context of the cortical cross-modality. Al-

though the brain contains specialised, anatomically isolated areas for processing dif-

ferent sensory inputs – visual, auditory, somatosensory cortices – it was found that the

cross-modal interactions take place much earlier than previously thought (Kayser et al.,

2005). Numerous studies showed that primary cortices – the visual V1 and the audi-

tory A1 – are mutually innervated and on the behavioural level, the presence of sound

improved the visual responses (Iurilli et al., 2012). On the microcircuit level, it was

revealed that the targets of axons originating from the A1 are the L1 non-VIP neurons

in V1, whose activation sharpened the orientation selectivity of pyramidal neurons via

inhibitory and disinhibitory effects (Ibrahim et al., 2016).

Similarly to the visual-auditory cross-modality, several studies revealed that lo-

comotion also improves the visual responses. Again, disinhibitory circuits were dis-

sected, suggesting that locomotion activates VIP neurons in the V1, which in turn

disinhibit local pyramidal cells via SOM inhibition (Fu et al., 2014). Subsequent opto-

genetic activation of the VIP neurons was shown to recreate the effects at the absence

of the actual locomotion suggesting that it is necessary and sufficient to obtain im-

proved visual responses (Fu et al., 2015).
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Although the emerging picture suggests that via disinhibitory effects mediated by

the VIPs, the SOM interneurons should decrease their activity, some studies contradict

such conclusions. In the case of locomotion, one study showed the opposite effect

(Polack et al., 2013), while another one reported two types of the responses in SOM

neurons (Reimer et al., 2014). To reconcile these contradicting views, Dipoppa et al.

(2016) suggested that the recruitment of disinhibition critically depends on the type

of the visual stimuli. Since VIP and SOM in fact inhibit each other, the net effect of

disinhibition can widely vary depending on many factors. Overall, it should also be

noted that many of the aforementioned studies used very small samples, for example

28 VIPs pooled from 4 mice, 44 VIPs pooled from 7 mice and 11 SOM neurons with

undisclosed number of mice (Fu et al., 2014). The misclassification of the SOM in-

terneurons in cre-mice was also reported (Hu et al., 2013), a fact which could possibly

explain the two contrasting responses of the SOM neurons (Reimer et al., 2014).

The last example of cross-modality comes from the interactions between the pri-

mary motor M1 and sensory S1 cortices (Lee et al., 2013). It was revealed that the

pyramidal cells in M1 target the VIP interneurons in S1 which then activate the local

disinhibitory pathway via the SOM interneurons. The interaction was shown to en-

hance the sensory processing in the cortex during whisking.

Finally, numerous disinhibitory pathways were found to be activated in the context

of the fear learning, as already shown in the aforementioned study on hippocampal

gating (Basu et al., 2016). In the auditory cortex, it was shown that the acquisition

associative fear-memories critically depends on the recruitment of a disinhibitory cir-

cuit (Letzkus et al., 2011). The signalling pathway was meticulously dissected and it

was shown that the circuit is activated by the cholinergic inputs originated from the

basal forebrain and targeting the L1 interneurons via the nicotinic receptors. These

L1 neurons then inhibit the PV+ interneurons in the L2/3 which in turn disinhibit the

pyramidal neurons. In amygdala, a similar pattern was observed during the foot-shocks

(Wolff et al., 2014) where both groups, SOM and PV+ interneurons, were shown to be

strongly inhibited and thus enhanced the responses of the pyramidal neurons. The ori-

gin of the disinhibition, however, was not uncovered. Lastly, a mutli-area pathway was

dissected during the defensive behaviour (freezing) which again, pointed at possible

disinhibitory mechanisms (Tovote et al., 2016). The pathway consisted of GABAergic
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inputs from the central nucleus of amygdala to the ventrolateral midbrain PAG region,

which resulted in an increased activity of the local excitatory neurons, enabling their

outputs reach the pre-motor targets in the magnocellular nucleus of the medulla.

2.4.3.1 Summary of discussed disinhibitory circuits identified in brain

We have presented a whole range of disinhibitory pathways found in numerous brain

regions. The recurring motif across all of them is the consistent recruitment of the

same, specific interneuron classes. It is either SOM and PV+ interneurons that pro-

vide the inhibitory control to the pyramidal cells, and the VIP and L1 interneurons that

remove this control via the disinhibition (Figure 2.5). Importantly, the signal activat-

ing the local disinhibitory pathways typically comes from the external source – either

from another cortex (such as the input from the M1 which activates the disinhibitory

pathway in the S1) or the cholinergic basal forebrain fibres that directly innervate the

VIP and L1 interneurons. Table 2.2 provides a more detailed and systematic review of

the discussed disinhibitory pathways.

Figure 2.5: Simplified view of the selected disinhibitory microcircuits found in the brain.

VIP, L1 and the unclassified interneurons belong to the disinhibitory group, whereas the

SOM and PV+ hold the inhibitory control over the pyramidal cells. The SOM a V IP

connection refers to the finding about the reciprocal interaction between the two groups

(Dipoppa et al., 2016). Anatomically, there is also a SOM a PV connection which is

omitted in the diagram since any of the discussed studies mentioned it.
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Study Brain

region

Circuit found Mode Comment

Letzkus

et al.

(2011)

Acx BF → nAChR → L1 a
PV a PY R

awake Fear conditioning.

BF cholinergic

signalling

Pi et al.

(2013)

Acx &

mPFC

V IP a SOM a PY R

V IP a PV a PY R

awake

&

in vitro

VIPs controlled by

the reinforcement

signals

Lee et al.

(2013)

M1 & S1 PY R(M1)→ V IP(S1) a
SOM(S1) a PY R(S1)

in vivo Motor cortex input

controls processing

in sensory cortex

Wolff

et al.

(2014)

Basolateral

amygdala

unkn a SOM a PY R

unkn a PV a PY R

in vivo Fear conditioning

Fu et al.

(2015)

V1 V IP a SOM a PY R awake Increased V1

responses indepen-

dent of locomotion

Basu

et al.

(2016)

EC &

CA1

IN (EC) a IN (CA1) a
PYR (CA1)

in vivo Disinhibition in-

creases specificity

of memory

Karnani

et al.

(2016)

L2/3 of

V1 & S1

V IP a SOM a PY R in vivo

&

in vitro

Disinhibition opens

holes in the blanket

of inh.

Ibrahim

et al.

(2016)

V1 & A1 PY R(A1) → L1(V 1) a
SOM/PV a PY R

in vivo Cross-modulation

Dipoppa

et al.

(2016)

V1 V IP a SOM a PY R

SOM aV IP

in vivo Extended model

of disinhibitory

control

Table 2.2: Selected disinhibitory circuits found in the Central Nervous System. Abbre-

viations: Str: Striatum; Acx: Auditory Cortex; BF: basal forebrain; ACh: Acetylcholine;

nAChR: nicotinic cholinergic receptors; L1: interneurons in cortical Layer 1; mPFC:

medial prefrontal cortex; EC: Entorhinal Cortex; CA1: region in hippocampus, IN: un-

specified interneuron, unkn: unknown source of inhibition.
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2.5 Neuromodulatory cholinergic system

Neuromodulation is a term used to describe various phenomena that modify electrical

properties of a neuron, be it changing its excitability, altering presynaptic neurotrans-

mitter release or inducing synaptic plasticity (Kaczmarek and Levitan, 1987). The dif-

ference between neurotransmission and neuromodulation is that the effect of the latter

is not directly excitatory or inhibitory (mediated through ionotropic receptors), but in-

stead it involves modification of a cell’s response to a subsequent stimulation (Picciotto

et al., 2012). Neuromodulation is critically involved in adjusting neural networks’ ac-

tivity to the current behavioural requirements and providing flexibility so much needed

in the ever-changing environments. Although there are many neuromodulators found

in the brain (Lee and Dan, 2012), here, the focus is placed solely on acetylcholine

(ACh), which is considered to be crucially implicated in various cognitive functions

including attention, memory, coordination of behavioural state and arousal (Hasselmo,

2006; Picciotto et al., 2012).

Peculiarly, acetylcholine was the first substance to be identified as a neurotrans-

mitter. Back in 1921, German physiologist Otto Loewi (allegedly following an idea

that occurred to him in a dream) performed a ground-breaking experiment where he

demonstrated that electrical stimulation of the vagus nerve slows down the heartbeat

by releasing a chemical agent – originally referred to as Vagusstoff (vagus substance in

English) – which later turned out to be acetylcholine (Loewi, 1921; McCoy and Tan,

2014). Indeed, acetylcholine is a fast-acting neurotransmitter at the skeletal neuromus-

cular junction and in the autonomic ganglia, but in the central nervous system it acts

predominantly as a neuromodulator. Only this role will be examined here.

Neuromodulators, unlike neurotransmitters, are confined to well-defined systems

across the CNS. Acetylcholine is principally released by neurons originating from

the two: basal forebrain (BF) and brain stem cholinergic systems (Newman et al.,

2012). Neurons in the latter system primarily reach the thalamus, basal ganglia, and

to a smaller extent they also innervate the basal forebrain and neocortex (Mesulam

et al., 1983). The basal forebrain cholinergic system, on the other hand, contains pro-

jection neurons that innervate neocortex, hippocampus, entorhinal cortex, amygdala

and olfactory bulb, among others (Mesulam et al., 1983). In the neocortex, BF axons

project to all 6 layers and it should be highlighted that the BF input does not only

comprise cholinergic neurons – in some parts of medial and lateral prefrontal cortex,

BF fibres were meticulously measured and it was revealed that cholinergic terminals
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represented merely∼ 19% of all terminals, whereas the glutamatergic and GABAergic

ones represented ∼ 15% and ∼ 52%, respectively (Henny and Jones, 2008). For the

sake of completeness, it should be remarked that various brain areas including basal

ganglia and prefrontal cortex also host local cholinergic neurons, some of which also

co-release GABA (Thiele, 2013). However, unless stated otherwise, cholinergic mod-

ulation typically refers to the one stemming from the basal forebrain or the brain stem

systems.

2.5.1 Cholinergic signalling

Classically, the cholinergic system is described as a diffuse or reticular cortical pro-

jection system (Sarter et al., 2016), highlighting the fact that the distribution of acetyl-

choline is non-specific and uniformly broadcast across the cortical regions. Many stud-

ies employing microdialysis techniques supported this idea by demonstrating that the

in vivo measurements of cortical ACh do not considerably differ across a range of

various behaviours (Zaborszky et al., 2015b). Another traditional view assumes that

the cholinergic signalling is primarily carried out via diffuse extrasynaptic modulation

coined volume transmission, as opposed to a wired transmission provided by the regu-

lar synapses or gap junctions (Agnati et al., 1995). Indeed, cholinergic fibres reaching

the cortex have many axonal varicosities not associated with postsynaptic densities and

they do not form synaptic contacts with the target neurons. As a result, the signalling

is thought to be relatively slow and lacking spatial and temporal precision, a fact which

attracted some scepticism about acetylcholine’s role in attentional and memory tasks,

which are thought to demand a lot more accuracy (Thiele, 2013).

Nowadays, however, these traditional views are being challenged. Recent stud-

ies employing 3D reconstruction and retrograde tracing of BF cholinergic (and non-

cholinergic) neurons to various cortical areas concluded that these projections are not

strictly diffusive and uniform. Instead, they are topologically organised into the segre-

gated and overlapping pools of neurons, potentially broadcasting different signals from

specific locations in the BF (Zaborszky et al., 2015a).

The view concerning the tonic ACh release via the volume transmission as the

only mode of the cholinergic signalling also underwent adjustments. Several studies

reported regionally–specific phasic signalling in the cortex coined cholinergic tran-

sients, proving that the ACh release can also be fast (on a few milliseconds scale) and

precise (Sarter et al., 2009; Hangya et al., 2015). In the context of cue detection, phasic
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signalling was found in the medial prefrontal cortex (mPFC) (Parikh et al., 2007). The

phasic transients were present only in the trials with the correctly reported cues and

the follow-up study employed optogenetic methods to uncover the causal role of such

transients (Gritton et al., 2016). It was demonstrated that the suppression of cholinergic

transmission was directly related to the reduced hit rates, whereas the photostimulation

of either cholinergic soma in the BF or cholinergic terminals in the mPFC increased

the number of false alarms in the non-cued trials. These studies, however, did not

investigate the specific cellular effects of the cholinergic transients.

Nevertheless, cholinergic signalling is now considered to work on multiple time

scales and provide a wide range of specificity and precision. Slow and fast ACh release

is thought to be mediated by distinct synaptic mechanisms which involve two separate

families of cholinergic receptors: metabotropic muscarinic (mAChRs) and ionotropic

nicotinic (nAChRs) receptors.

Metabotropic muscarinic receptors are second messenger, seven-transmembrane,

G protein-coupled receptors (GPCRs). Apart from the endogenous acetylcholine, they

are also activated by muscarine and inhibited by atropine and scopolamine (Eglen,

2005). There are 5 subtypes of muscarinic receptors which are coupled either to Gq

proteins (M1, M3 and M5 subtypes, referred to as M1-type) or to Gi/o proteins (M2

and M4 subtypes, or M2-type) (Thiele, 2013). Muscarinic receptors are located pre and

postsynaptically and affect mainly potassium and calcium channels. On the level of

cellular effects, they were shown to cause depolarisation, reduction of spike frequency

adaptation, increased excitability and spontaneous activity (Thiele, 2013).

Ionotropic nicotinic receptor channels are activated by nicotine and inhibited by

mecamylamine. Among a large variety of their subtypes (Albuquerque et al., 2009),

two main groups can be distinguished: the low affinity homomeric α7 receptors and

the high affinity heteromeric α4β2 receptors (Arroyo et al., 2014) which were shown

to mediate fast and slow nicotinic responses respectively (Arroyo et al., 2012).

2.5.2 Action of Acetylcholine

As already stated, BF cholinergic fibres reach all 6 layers of the cortical mantle, but

the projections are not uniformly spaced among them. Moreover, the distinct classes

of neurons show very diverse expressions of numerous cholinergic receptors, so that

the ACh can impact the local circuits in multiple ways and degrees. On a large network

scale, acetylcholine was shown to enhance cortical sensory processing by improving a
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signal-to-noise ratio (Sato et al., 1987) and causing cortical desynchronisation (Harris

and Thiele, 2011). Reported effects of acetylcholine on the pyramidal neurons include

direct depolarisation and reduction of cortico-cortical input by muscarinic receptor ac-

tivation, enhancement of thalamo-cortical input via presynaptic nicotinic receptors or

lowering the firing threshold of the target neurons (Poorthuis et al., 2014; Martinello

et al., 2015). Here, the emphasis is put on the cholinergic modulation of the corti-

cal inhibition. Although the knowledge of the effects of neuromodulators on specific

interneuron subtypes is still incomplete (Kruglikov and Rudy, 2008), differential re-

cruitment of distinct interneuron types is emerging as an important neuromodulatory

mechanism. Indeed, local inhibitory neurons are thought to be the main targets of

neuromodulation (Bacci et al., 2005), a fact clearly demonstrated in the context of

cholinergic attentional modulation in macaque V4 (Mitchell et al., 2007).

In vivo studies revealed that the PV+ interneurons in layer 2/3 of anaesthetised

mouse V1 do not directly respond to ACh released after the BF stimulation, but in-

crease their activity at low ACh concentrations due to the muscarinic effects on the

pyramidal cells. At higher ACh concentrations, however, PV+ cells attenuate their re-

sponses due to the activation of VIP and L1 interneurons via nicotinic receptors (Alitto

and Dan, 2012). Noteworthy, the study did not detect any effects on the SOM interneu-

rons, presumably due to the fact that the SOM responses were shown to be suppressed

under anaesthesia (Urban-Ciecko and Barth, 2016).

2.5.3 Acetylcholine and disinhibition

The findings presented above lead to the conclusion that acetylcholine is very likely

to invoke local disinhibitory pathways. Both, VIP and L1, populations were shown to

be directly activated by the BF cholinergic inputs via the nicotinic receptors. These

interneuron groups, in turn, preferentially target other interneurons and are implicated

in numerous disinhibitory pathways as laid out in the earlier sections.

The study which dissected the signalling pathway during the auditory fear con-

ditioning clearly demonstrated that the L1 a PV a PY R pathway is in fact directly

activated by the basal forebrain cholinergic inputs via the nicotinic signalling (Letzkus

et al., 2011). In the context of locomotion, increased responses of VIPs were shown to

be caused by exactly the same, BF → nAChRs signalling (Fu et al., 2014).

Finally, another already-discussed study which uncovered the V IP→ SOM/PV

pathways, showed that the recruitment of VIPs was strongly correlated with the rein-
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forcement signals – punishment events – when the mice made a mistake in a discri-

mination task (Pi et al., 2013). These reinforcement signals were shown in a similar

study to also rapidly activate the BF cholinergic fibres (Hangya et al., 2015). It is well

plausible, that these in turn activate the disinhibitory pathways via VIP activation to

enable learning.

2.5.4 Computational models of cholinergic modulation

Computational models of hippocampal circuits numerously employed cholinergic mod-

ulation to explain the theta rhythms formation and their role in supporting learning via

the synaptic plasticity (Newman et al., 2012). Most of such models, however, do not

differentiate between muscarinic and nicotinic effects and focus only on the volume

transmission. Therefore, the implementation of cholinergic effects usually involves a

uniform modulation of cellular parameters of all the neurons in a local circuit.

For instance, a simple model composed of a single layer of rate coded point neurons

was used to demonstrate how the acetylcholine might tune the networks for a more ef-

fective processing by improving the signal-to-noise ratio (Hasselmo et al., 1992). The

modulated variable in the model was the ratio between the external (thalamocortical)

input and recurrent feedback reaching the excitatory neurons. High levels of ACh were

shown to increase the efficacy of the feedforward signals, whereas the absence of mod-

ulation caused a significant interference between the feedback and feedforward signals

impairing the memory encoding. Such model is admittedly over-simplistic, as the net-

work itself is an isolated entity of the rate units. Also, the modulation evenly targets

exclusively excitatory neurons and only these neurons receive the thalamic input.

One model explicitly harnessed the disinhibitory pathway targeted by cholinergic

modulation in the context of visual selective attention (Sridharan and Knudsen, 2015).

The investigated network, however, was again not composed of the spiking neurons,

but was approximated with the mean field approach using two equations. Selective

disinhibition was shown to be able to affect differential processing of information that

was prioritised prospectively or retrospectively by selective attention.

In summary, to date, cholinergic modulation has been modelled as a global modifi-

cation of neurons’ properties and targetting primarily excitatory population. No model

harnessed the recent findings concerning the differential recruitment of interneurons by

acetylcholine in spiking networks, nor compared the volume with phasic transmission

as possible modes of cholinergic signalling.
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2.5.5 Summary

Cholinergic system can be summarised in the following points:

1. Although classically of diffusive nature, cholinergic projections originating from

the basal forebrain are clustered and reach various, well-defined subareas of the

cortex.

2. Cholinergic signalling is facilitated via slow volume transmission as well as fast,

phasic ACh release via classical synaptic transmission.

3. Principal neurons as well as various classes of interneurons express a wide range

of sets of muscarinic and nicotinic receptors found both pre- and postsynapti-

cally, which vary across the layers as well as across cortical regions.

4. There is an immense repertoire of possible mechanisms that allow acetylcholine

to selectively and precisely alter the neural circuits.

5. A recurring motif of cholinergic action is selectively targeting interneurons fa-

cilitating local disinhibitory effects - L1 and VIPs. Thus, disinhibition emerges

as a potent mechanism activated by the cholinergic signalling via the nicotinic

receptors.

6. The existing computational models typically do not differentiate between the

receptor types and the cholinergic modulation is modelled by a uniform, global

change affecting all the neurons or is targeted only at the excitatory population.

No computational model investigated the role of acetylcholine in controlling the

disinhibitory pathways in the spiking networks.
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Methods

3.1 Introduction

In this chapter, the main aspects of methodology and the reasoning behind the choices

made that are common to all the variants of the model presented in chapters 4, 5, and 6

are explained. All the specific details of the further extensions are laid out in individual

chapters for better clarity.

The model presented in this thesis is heavily based on the models developed by

Kremkow and colleagues (Kremkow et al., 2010b,a). Their models, firstly, incorporate

the notion of the disynaptic feedforward inhibition (FFI) into the synfire chain archi-

tecture and secondly, exploit the delay of such FFI to realise the gating mechanism.

We aim to harness such architecture and the gating principle in the long chains of ar-

bitrary length and crucially embedded in a random, recurrent network, as opposed to

the isolated chains (Kremkow et al., 2010b) or short, 3-layer chains, embedded in the

locally connected random networks (LCRNs) (Kremkow et al., 2010a) already scruti-

nised. We also aim to embed two chains into a network and study the functionality of

the overlapping pools of neurons between them.

The majority of the basic properties of the network is modelled similarly as in

the previous studies (Kremkow et al., 2010a,b) and all the values of the key model

parameters are collected in Table 3.1.

40
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3.2 Neuron model

The neurons were modelled as leaky, conductance-based integrate-and-fire (IAF) neu-

rons with the subthreshold dynamics of the membrane potential described by the fol-

lowing equation:

C
d
dt

V i(t)+Grest [V i(t)−Vrest ] = Ii
syn,

where the Ii
syn is the total synaptic input current into neuron i, and the capacitance C

and the leak conductance Grest are the passive electrical properties of its membrane at

rest (Vrest). As soon as the membrane potential reached the threshold (Vth =−57mV ),

a spike was emitted, the membrane potential reset to its resting value (Vrest =−70mV ),

and the synaptic integration was suspended for the refractory period of 2ms.

Since the neural inhibition is of particular interest in this thesis, a certain limitation

of the IAF model shall be mentioned. The dynamics of the model implies that a neuron

can emit a spike only at the presence of a sufficient number of inputs. While this is

generally true for excitatory neurons, many inhibitory neurons were found to be also

active spontaneously, at the absence of any inputs (Häusser and Clark, 1997; Frank and

Mendelowitz, 2012). Although such intrinsic firing is expected to have a considerable

impact on the activity of the entire networks, this cannot be captured by the IAF model

employed here. This limitation will be revisited later.

3.2.1 Synapses

Synaptic inputs were modelled as transient conductance changes, using exponential

functions with τexc = 1.5ms and τinh = 10ms. Various values of weights of inhibitory

(JIE and JII) as well as excitatory (JEE and JEI) synapses were used, depending on

the size of the network as well as the ratio between the strength of external noise

and recurrent connections. The choice of the conductance-based synapses was based

on the findings discussed in the previous chapter. Most importantly, this model is

more biologically grounded than the current-based equivalent, and appears to be more

suited to model high conductance states and prevent from the formation of synfire

chain explosions.

The total synaptic current into the neuron i was given by:

Ii
syn(t) =−Gi

exc(t)[V
i(t)−Vexc]−Gi

inh(t)[V
i(t)−Vinh],
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where the reversal potentials of the excitatory and inhibitory synaptic currents were

set to Vexc = 0mV and Vinh =−80mV respectively. The total excitatory conductance in

neuron i denoted by Gi
exc(t) was given by the following:

Gi
exc(t) =

kexc+Kext

∑
j=1

∑
k

gexc exp((t− t j
k −Dexc)/τexc),

where the outer sum runs over all excitatory synapses, including the ones providing

the external noise onto the neuron i and the inner sum runs over the spikes arriving at

a given synapse. Transmission delay for all excitatory synapses was set to Dexc = 2ms.

Similarly, the inhibitory conductance Gi
inh(t) in the neuron i was expressed as follows:

Gi
inh(t) =

kinh

∑
j=1

∑
k

ginh exp((t− t j
k −Dinh)/τinh),

with the transmission delay for all inhibitory synapses set to Dinh = 3ms. There

were no external sources of inhibition.

The main reason for introducing different delays for excitatory and inhibitory synapses

was to reliably induce a delay in inhibitory responses along the feedforward structures.

Moreover, such a discrepancy was also prompted by certain electrophysiological prop-

erties of neurons such as conduction velocity and gating of receptors, suggesting that

excitatory signalling tends to be faster.

C = 290pF Capacitance

Grest = 29nS Leak conductance

τexc = 1.5ms Excitatory synaptic time constant

τinh = 10ms Inhibitory synaptic time constant

Dexc = 2ms Excitatory synaptic delay

Dinh = 3ms Inhibitory synaptic delay

Vexc = 0mV Excitatory reversal potential

Vinh =−80mV Inhibitory reversal potential

Vth =−57mV Firing threshold

Vrest =−70mV Resting potential

Nexc = 5000 Number of excitatory neurons

Ninh = 1250 Number of inhibitory neurons

Table 3.1: Values of the parameters used in the network model.
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3.3 Network characteristics

The network was composed of excitatory (80%) and inhibitory (20%) neurons which

were sparsely connected with the 5% probability of connection (fixed in-degree). The

excitatory noise was injected to all the neurons so that the network maintained the low

firing rate activity (1–2Hz) at the absence of a strong input.

The connectivity in the host network was set to be purely random, in contrast to

Kremkow et al. (2010a) and Mehring et al. (2003), whose models employed the lo-

cally connected random networks (LCRNs). In this setting, every neuron was de-

fined by its location on a 2D plane and the connectivity profiles were defined with

the Gaussian filters, so that neurons were more likely to connect to the nearby neigh-

bours and inhibitory neurons had considerably narrower Gaussian kernels to model a

localised mode of inhibition. Here, in order to make as little assumptions as possible,

the location-based connections were not employed.

Kremkow’s 3-layer chain was embedded in such a way that the three layers were

pooled from separate, distant locations. Then, the activation of the first layer influenced

the activity of the second one mostly via the within-chain connections. The probability

of other connections (both excitatory and inhibitory) via the rest-of-the-chain was very

small. Clearly, such isolation prevented the network from forming synfire explosions

and unwanted interference of the signal. Such setup, however, is believed to minimise

the recurrent influence of the chains’ activity back to itself. A pulse packet traversing

the chain also influences the background neurons which, inevitably, also influence the

chain in a feedback loop. In a fully recurrent network, a strong synchronised transient

cannot traverse the network without changing it – and then remain unaffected by this

change. When the individual layers are located far away from each other on a 2D

plane, the probability of recurrent connectivity between them is low.

Localisation can also make the embedding of longer, multiple, and overlapping

chains unnecessarily complicated – while 3 non-overlapping layers can be placed far

away from each other without the risk of interference, 10–15 layers would need some

denser allocation. Then one could define various patterns of allocating consecutive

layers – they could be placed locally next to each other to form a spiral or rows, or

they could be allocated randomly, with some fixed distance between the consecutive

layers. This aspect was already briefly discussed in (Mehring et al., 2003). Embedding

multiple chains would open doors for another set of patterns one could implement. It

is conceivable that depending on different patterns of allocation or overlap, the chain–
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background influence would vary so that a mode of computing overlaps would need

to become yet another network parameter. Here it is assumed that delving into such

details is unnecessary and definitely out of scope.

3.4 Feedforward chain characteristics

The main feature of the models studied here is the embedded chain of groups of neu-

rons that are expected to propagate the sequential activity in a cascade-like fashion.

The previous studies investigated the case only with 3 groups, but here the concept of

temporal gating is adapted in the extended scenario. We will use an arbitrary number

of groups, which from now on will be called layers. These layers were connected to

form a chain using the aforementioned principle of the disynaptic feedforward inhibi-

tion in order to introduce the delay between the excitation and inhibition arriving at

the layer (Figure 3.1). Each layer consisted of 100 excitatory and 25 inhibitory neu-

rons. Every neuron in any layer (excluding the first one) received input from 60 (out of

100) excitatory inputs from the preceding layer. Every excitatory neuron in any layer

received 15 (out of 25) inhibitory inputs from the same layer.

Figure 3.1: Connectivity along the chain. Each layer consists of 100 excitatory and 25

inhibitory neurons. The connectivity between the consecutive layers is on the level of

60%. Input reaches both, excitatory and inhibitory pools.
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3.4.1 Embedding the chain in the network

Since the host network was random, the selection of neurons to build a chain was also

random. To ensure that all neurons maintain the 5% global connectivity (fixed in-

degree), the in-chain neurons received fewer connections from the background. This

rule was consistently applied in all the further modifications of the model, even if not

mentioned explicitly.

No restrictions were imposed on pooling the neurons to set up the random con-

nections onto the in-chain neurons, except for not allowing the self-connections (au-

tapses). This freedom entailed that the pool of presynaptic neurons could contain both

non-chain as well as in-chain neurons, meaning that an individual neuron in, for ex-

ample, 6th layer, could receive direct inputs from neurons belonging to the 1st , 3rd or

8th layers, apart from the signal pathway containing synapses from neurons in the pre-

ceding 5th layer. Prohibiting such short-circuiting within the chain could potentially

cause problems in cases with embedding long, multiple and non-overlapping chains, as

the number of non-chain neurons there would be considerably smaller. Any restriction

would need to be parameterised and could possibly cause extra non-random pathways

between the non and in-chain populations.

3.4.2 The nature of overlaps

Two embedded chains with overlapping pools were generated the following way. Ex-

citatory and inhibitory overlaps between the two chains were defined and processed

separately. The levels of excitatory overlaps were selected from the following set:

[0%, 10%, 20%, 30%, 40%, 50%]. The maximum overlap level was chosen to be

50% as any higher level would create too similar chains. Inhibitory levels of overlap,

however, were allowed to go up to 100%. Even though technically the inhibitory pools

participate in the chain architecture, the propagating signal is carried solely by the

excitatory neurons that feed the activity forward. Inhibitory neurons provide control

within a layer and as such do not transmit the signal. Due to their controlling rather

than relaying role, it was assumed that two chains in principle could share the same

inhibitory population. It could be argued that for the sake of completeness, excitatory

overlaps should also reach the natural limit of 100%. This point will be revisited in the

forthcoming chapter.

Most importantly, the overlaps were defined on the level of the whole chain, not the

individual layers. That means that the 10% overlap does not entail that, for example,
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5th layer in the first chain shares 10% of its neurons with the 5th layer in the second

chain. It was assumed that such setting is highly ordered and thus less probable to

be found in real networks. A random assignment was used instead which involved

selecting a pool of neurons to be shared between the chains and each chain assigned

individual neurons to layers independently and randomly. As a result, a given neuron

could for example belong to the 3rd layer in the first chain and to the 12th layer in the

second chain. Similarly, 100% inhibitory overlap does not entail that the connectivity

is exactly the same in both chains. Rather, it means that every layer in one chain is a

mixture of neurons belonging to potentially all the layers in the second chain and every

such neuron is involved in the two connectivity patterns along both chains.

3.5 Input injection

Previous studies on signal propagation, in order to activate the chain, either all the neu-

rons in the first layer were forced to spike simultaneously, regardless of their membrane

potential (Mehring et al., 2003), or they received an input in a form of a volley of spikes

(Kremkow et al., 2010a). Here, the latter approach was used, which was extended to

include the inhibitory population in the first layer to also receive the volley.

In simulations it was shown that simultaneous activation of a large group of ex-

clusively excitatory neurons tends to be detrimental to the whole network’s stability

(Mehring et al., 2003). Similarly, experimental results suggest that in the neocortex

the projection axons invariably recruit inhibition in addition to excitation (Isaacson and

Scanziani, 2011; Xue et al., 2014), whereas thalamic input onto the cortex was shown

to recruit inhibition more strongly that excitation (Cruikshank et al., 2007). Thus, the

very injection of excitatory pulse packet into a pool of solely excitatory neurons might

be considered as a breach of a general rule of balancing inputs in the cortex.

The volley is characterised by two parameters: α – number of spikes; and σ –

temporal dispersion. In most simulations, the values were chosen to ensure that the

chain is reliably activated on most trials. For each trial a new volley of spikes for each

projection neuron was randomly generated instead of fixing one instance of a volley

to avoid the variability as it was done by Kremkow et al. (2010b). Tests were run to

examine network’s behaviour when a fixed volley was repeatedly used. Indeed, some

volleys tended to lead to successful signal propagations more frequently than others,

but qualitatively the results were similar. It is implausible that an external input is

fixed – when distant axons and multiple synapses are involved, there is an intrinsic



Chapter 3. Methods 47

variability due to the variable synaptic delays, release probability and others. Since

the goal was to capture a general behaviour of the system with all its randomness, the

volleys were generated separately for each trial.

3.6 Generating data via simulations

The networks studied here are highly non-deterministic and contain many sources of

variability, such as random noise, recurrent random connectivity or injected inputs.

Since the identical setups might lead to drastically different behaviours, it was vital to

generate enough data to capture the whole range of possible outcomes.

Most of the simulations involved creating an instance of a network with a prede-

fined set of parameters and recording its activity during signal propagation along the

embedded chains. The following protocol was obeyed to obtain the data. For every

set of parameters, 100 instances of the network were created with random connectiv-

ity and random pools of neurons assigned to the embedded chains. Then, each such

instance was recorded for the time window of 21 seconds, filled with 20 injections of

randomly generated volleys of spikes into the first layer of the chain. As a result, for

each setup 2000 trials of signal injection coming from 100 individual networks were

available and the setup’s characteristics were expressed by the probabilities.

3.7 Simulation tools

All network simulations were written in Python and run using the NEST 2.10 simu-

lator (Gewaltig and Diesmann, 2007). Simulation management was provided by the

Python package NeuroTools (http://neuralensemble.org/NeuroTools/). Data analysis

was carried out in Python using libraries SciPy, NumPy and visualised with the help

of the library Matplotlib.
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Signal propagation in overlapping

chains with disinhibitory pathways

Chapter summary

In this chapter, we exploit the principle of disynaptic feedforward inhibition and build

a long chain with layers of both excitatory and inhibitory pools embedded into a purely

random network. We then add disinhibitory pathways to demonstrate that these can be

a powerful mean of control of signal propagation across random networks. We also

study two chains sharing the pools of neurons and demonstrate stark differences in

functional relevance of excitatory and inhibitory overlaps between the two embedded

chains. Specifically, we demonstrate that the inhibitory overlap between the chains

stabilises the network and protects it from synfire chain explosions by realising the

motif of lateral inhibition. We also show that inhibitory and disinhibitory overlaps

should be considered as separate entities.

4.1 One embedded chain

Firstly, a single chain of 15 layers of both excitatory and inhibitory pools (as described

in Section 3.4) was embedded into a random recurrent network and a strong volley

of spikes was repeatedly injected into its first layer to elicit the mode of synchronous

spiking propagation. The results obtained from 2000 signal injections are shown in

Figure 4.1.

As expected, a transient activity lasting ∼ 50ms was observed along the chain,

where a strong pulse packet traversed the subsequent layers in a cascade-like fashion.

48
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Figure 4.1: Signal propagation along a chain embedded in a random network. Top:

Three possible outcomes of signal propagation, starting from left: successful propaga-

tion, failed propagation due to a strong inhibitory halo, and failed propagation due to a

synfire chain explosion. Middle: Individual traces (blue) and the average trace of the

signal propagation along 15 layers (red) for 2000 trials. Colour and size of the circles

correspond to the number of trials. Bottom: Relationship between the activity in first

layer, last layer and the background. Successful trials (teal) are clearly separated, the

borderline between the halo (orange) and explosion (blue) failures is arbitrary and set

to 700 spikes.
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Overall, the signal was successfully propagated up to the final layer in 86% of trials,

10% led to synfire explosions, and in the remaining 4% of trials the signal declined

along the chain before reaching the final layer. These results demonstrate that it is

possible to transmit a signal along the chain within a random network, extending the

previous reports which studied the locally connected random networks (LCRNs) with

and without inhibitory pools within the chain (Kremkow et al., 2010a; Kumar et al.,

2008a; Mehring et al., 2003).

4.2 Definitions

In order to describe and evaluate the results presented in Figure 4.1, it is useful to define

certain activity characteristics that will also be relevant in the forthcoming extensions

of the basic model.

First of all, one can characterise three fates of the signal – it can be either suc-

cessfully propagated, it can decline before reaching the chain’s final layer, or it can

destabilise the whole network by causing a synfire chain explosion, as shown in the

top panel in Figure 4.1. For the sake of completeness, one can define yet another fate

– an outset failure – which denotes the case when the signal dies out immediately after

the injection. This fate, however, is irrelevant here, as it refers to the signal’s initia-

tion, not its propagation across the network and the interactions with it. As a matter of

fact, in all the experiments described here the input was chosen to be strong enough to

minimise the chances of the outset failure occurrence, but due to the system’s intrinsic

randomness, a small number of trials (up to 3 per 2000) still failed to initiate the signal.

These trials were removed from the analysis unless explicitly mentioned.

A successful signal propagation is the main feature of interest and it can be ex-

pressed in many ways. The middle panel in Figure 4.1 displays a mean trace (red)

which is composed of arithmetic means of the numbers of neurons that fired in each

layer in all 2000 trials (blue traces). The mean trace captures the average behaviour

of the pulse packet – after initiation in the first layer, the number of active neurons

increases to reach 100% up to the 6th layer and afterwards the pulse packet undergoes

disturbances which is reflected in the decreased number of active neurons in the subse-

quent layers. In the last, 15th layer, the average number of active neurons equals 87%

and this can be used as a measure of the chain’s success rate. It can be argued though,

that such measure is misleading as the underlying distribution is rather bimodal. Suc-

cessful propagations typically activate 95-100%, whereas many failed ones exactly
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0% of neurons and the arithmetic average between them removes this information. In-

stead, a ratio of trials that led to successful propagations can be given, which is still

very much comparable to the above success rate and here equals 86%. This measure

is similar to the chain’s survival probability which was introduced by Gewaltig et al.

(2001). From now on, the arithmetic success rate will be reported by default and the

survival probability will be given only if strongly divergent from the first measure.

Mean trace Arithmetic mean of the activity (number of neurons that

emitted a spike) along the chain.

Success rate Average number of active neurons in the last layer (last

value in the mean trace).

Successful
propagation

A signal propagation with at least 90% neurons active in

the last layer.

Survival rate A ratio of successful propagations.

Background spikes A number of spikes that occurred in the non-chain exci-

tatory neurons within a 50ms time window after the input

injection.

Explosion failure A failed trial due to the synfire chain explosion (less than

90% neurons active in the last layer and background spikes

at least 700).

Halo failure A failed trial due to the inhibitory halo (less than 90% neu-

rons active in the last layer and background spikes less than

700).

Outset failure A failed trial due to a faulty initiation (less than 40 neurons

active in layer 5).

Table 4.1: Definitions of the terms introduced in this chapter.

Another important aspect of signal propagation is chain’s influence on the host

network. As already discussed in Section 2.2.4, a pulse packet travelling along the

chain excites background neurons after one synaptic delay, creating an excitatory halo

of its activity, which is then followed by an inhibitory halo. As a matter of fact, these

haloes are the main cause of the signal’s failure – too strong excitatory halo causes

synfire chain explosions (as shown in Figure 4.1, top panel, right graph) , whereas too

strong inhibitory halo hyperpolarises neurons rendering the chain, as well as the whole

network, unresponsive to the following stimuli (as shown in Figure 4.1, top panel,
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middle graph). To quantify the activity of the host network, a number of spikes that

occurred in the background, non-chain excitatory neurons was obtained.

All the definitions of the aforementioned terms are included in Table 4.1. It can be

argued that the thresholds chosen are arbitrary, but as shown in Figure 4.1C, the three

groups are well separated: successful trials reside in the bottom left corner, failed by

halo trials on the bottom right corner and failed by explosion trials on the top region

of the plot. It should be noted that indeed, some explosions reside in the bottom right

corner too (700 on z-axis upwards) and are somewhat artificially cut from the halo

failures.

4.2.1 Excitatory and inhibitory haloes

When examining the top panel in Figure 4.1, one can notice an increased number of

spikes across many layers within the 10− 20ms time window, followed by a sharp

cut around the 20ms time point. This behaviour is in fact a hallmark of the haloes

of the travelling pulse packet. Firstly, the network is dominated by the additional

excitation which in turn recruits additional inhibition that can subsequently dominate

the network.

Figure 4.2 displays the traces of conductances and membrane potentials of three

arbitrary excitatory neurons from the 10th layer during the activation of the chain.

Initially, these neurons began to receive an increased amount of excitatory inputs via

the excitatory halo, but also the amount of inhibition followed suit. At around 21ms

time, one neuron emitted a spike, akin to many other neurons across the network, after

which the inhibitory inputs became stronger for all the three neurons. This was the

time when the inhibitory halo dominated the whole network. At around 32ms time,

the actual pulse packet arrived at the layer and only one neuron correctly responded

to the activation while the two remaining ones were too hyperpolarised to reach the

firing threshold and emit a spike. On top, the pulse packet arriving from the preceding,

9th layer was already slightly weaker compared to the packet visiting the earlier layers

(actual data not shown, but the middle panel in Figure 4.1 displays the overall decay

of the number of activated neurons around the 9th layer). This rendered it even harder

to excite the neurons influenced by the inhibitory halo. As expected, the pulse packet

failed to propagate any further and this example was labelled as the halo failure.

In the case of explosion halo (data not shown), the initial additional excitation

recruits too many neurons at the same time and the subsequent inhibitory halo fails to
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smoothly balance this, and instead a rapid sequence of explosion – silence – explosion

appears, as shown in the top right panel of Figure 4.1.

Figure 4.2: Excitatory and inhibitory conductances (top) and membrane potential (bot-

tom) traces of three excitatory neurons from the 10th layer of a chain during the signal

propagation. The input was injected into the first layer at 0ms time point.

4.3 Chains with disinhibitory pathways

Although the explosions are the most severe and least desired outcomes of the synfire

chain activation, the other cause of the failure – inhibitory halo – was tackled first.

It was hypothesised that the principle of disinhibition might protect the chain from

the inhibitory halo that spreads across the network and hyperpolarises the neurons

rendering them unresponsive to the subsequent activation. Disinhibitory connectivity

was expected to take advantage of this global inhibitory wave to specifically disinhibit

neurons along the chain instead of directing excessive inhibition at them. The diagram

of the chain with extra disinhibitory pathways is shown in Figure 4.3.

Since a fully operational disinhibitory pathway requires three synaptic contacts:
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Figure 4.3: Disinhibitory pathway added to the chain. A: a schematic of the circuit. B:

The same schematic, but split into 2 temporal phases. Firstly, disinhibitory pool deac-

tivates the inhibitory one, and thus pyramidal cells are ’guarded’ against the excessive

inhibition. In the second phase, the feedforward inhibition motif is activated, similar

to the circuitry without the disinhibition. Purple arrows denote the activation (up) and

deactivation (down) of the pools.

input→ IN a IN a PY R, and the inhibitory synaptic delay is longer than the excitatory

one. In the model described here, the excitatory pool in the 1st layer connects to the

disinhibitory pool in the 4th layer (three layers ahead), the pool in the 2nd one reaches

the 5th layer and so forth. Disinhibitory pools consist of 12 inhibitory neurons which

connect to the chain’s inhibitory pool such that each neuron receives inputs from 8

out of 12 disinhibitory neurons. As a consequence, inhibitory pools within the chain

now play a dual role: firstly, they are inhibited due to the disinhibitory pathway in

order to serve disinhibition to the excitatory pools, and soon after they receive the

actual signal so they can provide disynaptic inhibition to the same excitatory pools. As
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a result, the excitatory neurons within a chain are expected to be protected from the

excessive hyperpolarisation before the arrival of the signal so that they can respond to

it as expected.

Another possibility to include the disinhibitory pathway is to build it independently

of the already existing connectivity in the chain as shown in Figure 4.4. In that way, the

inhibitory pool would be released from its dual role in providing both disinhibition and

feedforward inhibition, as a dedicated pathway comprising two inhibitory pools would

realise disinhibition exclusively. Both dedicated and shared pathways were tested and

qualitatively, they gave similar results, with the dedicated variant being slightly more

effective. It is argued, however, that this variant recruits unnecessarily too many in-

hibitory neurons per layer (one pool for disynaptic inhibition and two pools for disin-

hibition) and thus was not further examined.

Figure 4.4: Dedicated disinhibitory pathway added to the chain. Separate inhibitory

pools implement disynaptic inhibition and disinhibition. This variant was not examined

due to a large number of inhibitory neurons recruited.

The results from the simulations involving a chain with a shared disinhibitory path-

way are shown in Figure 4.5. Surprisingly, not only the halo failures were removed,

but also this setup did not lead to a single synfire chain explosion. It should be noted

that the disinhibitory pools not only specifically connect to the inhibitory pools within

the chain, but they also maintain a global 5% connectivity within the whole network.

Thus, when activated, they also inhibit the background neurons which would otherwise

fire and could potentially cause synfire explosions.

As shown in the top subplot in Figure 4.5, the individual traces and their mean trace
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Figure 4.5: Signal transmission after adding disinhibitory pathway to the chain. Top:

Individual traces (blue) and the average trace of the signal propagation along 15 layers

(red) for 2000 trials. Colour and size of the circles correspond to the number of trials.

Bottom: Relationship between the first layer, last layer and the background activity.

differ from the ones in the case without the disinhibitory pathways. Most importantly,

much fewer trials failed to propagate past the 7th layer. Around that area, many traces

nevertheless decreased the number of their active neurons, but towards the end of the

chain, the signal again got stronger to fire with 100% of neurons. This behaviour

demonstrates the core effect of disinhibition – the neurons indeed got hyperpolarised

due to the inhibitory halo, some of them even failed to fire, but overall, enough neurons

managed to withstand this wave and the signal did not diminish. Disinhibition takes

advantage of the increased global inhibition and transforms it into a power that locally

cancels out the inhibitory control held over the excitatory neurons.

The bottom subplot in Figure 4.5 displays the relationship between the chain’s

success and the background spikes. All the successful trials invoked less than 700
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spikes in the background, the value chosen to demarcate the borderline between the

halo and explosion failures.

From this point forward, a chain without disinhibition will be referred to as a basic

chain, whereas the chain with the shared disinhibitory pathway will be referred to as a

guarded chain, to highlight the protective role of the disinhibitory pathway against the

global instabilities.

4.4 Embedding two non-overlapping chains

Having established that firstly, signal propagation in a random network is possible and

secondly, that specific disinhibition protects the chain and the whole network from

synfire chain explosions and thus improves the overall success rate, the focus was

placed on the possible interactions between multiple chains embedded in the same

network.

To study this case, two chains were embedded in the network and the experimental

procedure remained the same, that is a volley of spikes was injected only to one chain

and this chain’s activity was analysed. When analysing the background activity, both

non-chain neurons as well as the neurons belonging to the second, inactivated chain,

were included.

Initially, the two chains were non-overlapping. Both, basic and guarded chains

were considered and the comparison between the conditions with one and two chains

embedded is shown in Figure 4.6.

Surprisingly, the addition of an extra basic chain improved the signal propagation

– 95% of trials were successful, 5% led to explosions and 0.5% trials failed due to

the inhibitory halo (as compared to 86%, 10% and 4% respectively in the one chain

condition). The background activity during the signal transmission also decreased at

the presence of the second chain. For the guarded chain conditions, the difference was

minimal as in both setups the success rate was excellent and the average number of

background spikes relatively low.

The reason why the addition of the second basic chain improved the signal trans-

mission by eliminating both, explosion and halo failures is the fact that adding non-

random connectivity implicitly removes the random connectivity. Globally, the con-

nectivity is maintained on the 5% level and the neurons belonging to the chain have a

large proportion of their incoming and outgoing connections ’locked’ along the chain.

Thus, when only one chain is embedded, the signal along the chain activates the back-
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ground which immediately interacts back with the chain. When the two chains are

embedded, however, the feedback loop is longer, as the signals that reach the second

chain remain within this chain and only a smaller part of the signal feeds back to the

first chain.

Figure 4.6: One vs two embedded chains for basic and guarded conditions. Left: mean

traces. Right: Background spike counts for all 2000 trials per condition, sorted in as-

cending order. Y-axis is not continuous to capture the average distribution as well as

the extreme counts. Bright and dark grey shading denote the top 10% and 5% trials

(200 and 100). Dashed line along the 700 spikes denotes the borderline between the

halo and explosion fails.

4.5 Embedding two overlapping chains

It is desirable that neurons in networks are flexible and take part in encoding or com-

puting of more than just one entity or task. If neurons were able to encode only one

entity, networks containing large cell assemblies would have a very limited capacity

which would render them rather inefficient computational units. The problem of net-

works’ capacity to embed multiple synfire chains was previously studied (Trengove

et al., 2013), where the symmetry between the excitatory and inhibitory overlaps was

assumed. Here, the network’s capacity is out of scope and the focus is placed solely

on the excitatory and inhibitory overlaps between the two embedded chains. Since the

excitation and inhibition have distinctive functions in the network, it was hypothesised

that excitatory and inhibitory overlaps will have contrasting influence on the signal

transmission and network’s stability and thus should be studied in separation.

Both basic and guarded chain conditions were considered. The grid plots in Figure

4.7 display the signal transmission success rates depending on the levels of excitatory

(up to 50%) and inhibitory (up to 100%) overlaps. Each square displays the success

rate for a given setup obtained from 2000 trials.
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Figure 4.7: Success rates for basic chain and guarded chain conditions for the whole

range of excitatory and inhibitory overlaps.

The first observation is a clear difference between the basic and guarded chain

conditions. Although qualitatively similar, quantitatively, the guarded chains proved

to be more resistant against the disturbances caused by the overlapping non-random

pathways. The grid plot in Figure 4.8 depicts the difference in the success rates after

the addition of the disinhibitory pathways. In the extreme case, disinhibition improved

the success rate by 75%, and on average – by 19.5%.

Figure 4.8: Difference in the success rates after adding disinhibitory pathways. Left: a

grid plot of the differences (guarded minus basic chain condition). Right: the average

improvement for each level of inhibitory (top) and excitatory (bottom) overlap.

Regardless of the presence of the disinhibitory pathways, an asymmetry between

the excitatory and inhibitory overlaps is evident. Increased excitatory overlap (EO)

impairs the signal transmission at all times, whereas the effect of inhibitory overlap

(IO) is more complex as it depends on the level of EO, but in most cases inhibitory
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overlap is beneficial for the signal transmission.

Excitatory overlap has very severe effects when applied on its own (first column in

the grid plots). For the basic chain condition, two non-overlapping chains setup yields

a high success rate of 95%, 10% overlap decreases the rate down to 89%, 30% – 51%

and 50% EO causes the success rate to go as low as 16% and the main cause of the

failure are the synfire chain explosions. When the inhibitory overlap is applied on its

own (bottom row in the grid plots), the success rate is very close to 100% for all the

levels of IO. When both overlaps are at their maximum, the success rate is extremely

low and its main cause are the halo failures. The forthcoming sections will explore

in more detail the relation between the combination of overlaps and the explosion and

halo failures occurrence.

The above observations firmly confirm the hypothesis that the excitatory and in-

hibitory overlaps should be treated as two individual factors. They play different roles

in the circuits and the combination of two can affect the network immensely. Were

the level of overlaps treated as a single feature, then by looking at the diagonal of

the grid plots in Figure 4.7, one would conclude that in the basic chain condition, the

setups with more than 20% overlap are unstable. This could lead to the conclusion

that network’s capacity is rather low as it cannot remain stable with highly overlap-

ping assemblies. Releasing the symmetry assumption opens up the possibility that

even without disinhibitory pathways, the chains with the substantial excitatory overlap

can still robustly facilitate signal transmission, provided that the inhibitory overlap is

considerably higher.

Remarkably, inhibitory overlap implicitly realised the motif of lateral inhibition

– when one chain is active, the pool of shared inhibitory neurons prevents the other

chain from firing. As discussed in Section 3.4.2, the overlaps were set on the level

of the whole chain, not the individual layers. Thus, in the case of two chains with

100% inhibitory overlap, activating the first layer of the first chain did not activate the

first layer of the second chain via the overlap. Instead, due to the random allocation,

these activated neurons could potentially reside in any layer in the second chain, so that

every layer received a part of the inhibitory signal. Then, when the signal propagated

further along the first chain, all the layers in the second chain would evenly receive

the parts of the inhibitory waves created by the activated chain. In that way, the entire

chain was under the inhibitory control throughout the whole activation time. However,

such excessive inhibitory control via the 100% overlap was the main cause of the low

success rate in the setup with 50% excitatory overlap. In this case, the neurons not
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only received the global inhibitory halo, but also the inhibitory signals produced by

the implicit activation of the second, overlapping chain. As a result, the chain neurons

were too hyperpolarised to correctly respond the to arriving signal.

4.5.1 Activity of the rest of the network

A closer look at the activity of the rest of the network reveals that the low success rates

at the top left corner (high EO, low IO) have different causes than the ones at the top

right corner (both EO and IO high). The plots in Figure 4.9 present the background

spike counts for all the levels of excitatory overlaps and the 4 levels of inhibitory

overlaps (one per plot). Clearly, high excitatory overlap activates the whole network,

whereas the inhibitory overlap silences it.

Figure 4.9: Sorted background spike counts in the basic chains condition for 4 levels

of inhibitory and all levels of excitatory overlaps. Note the different scales and maximal

values on the y-axis. Excitatory overlap causes a strong activation of the whole net-

work, while the inhibitory one silences it. Even for the 100% IO there are still explosion

failures, but with much smaller number of spikes, compared to lower IO levels.

Excessive activation and silencing of the network are the signatures of the explo-

sion and halo failures. The grid plots in Figure 4.10 display the probability of oc-

currence of them depending on the condition and the overlap levels. As expected,

excitatory overlap that is not counteracted by the IO disbalances the network and its



Chapter 4. Signal propagation in overlapping chains with disinhibitory pathways 62

activity explodes. When the high EO is accompanied by a much higher IO, the whole

network and the chain get silenced, promoting the halo failures.

Figure 4.10: Halo vs explosion failures. Top row: explosion failures, bottom row: halo

failures for the basic chain (left column) and the guarded chain (right column) conditions.

These grid plots show the average activation of the non-chain neurons, defined

from the perspective of the active chain. In fact, those non-chain neurons are either

the background neurons or the ones belonging to the second, not activated, chain. In

principle, the excessive activation of both neuron classes is detrimental to the signal

transmission and network’s stability. Since the second chain is a cell assembly en-

coding some information and composed of highly non-random circuits, it is useful to

analyse its behaviour separately. With the non–zero excitatory overlaps, the second

chain naturally becomes partially activated, but the question is what happens to the

remaining, non-overlapping part of the chain. If it also fires, then the total amount

of activation might reach the levels where this chain should be labelled as active, not

silent (although the individual gates would not necessarily fire in a cascades-like fash-

ion, so the temporal patterns would be scrambled). Nevertheless, this is not a desirable

setting, as an activation of one chain is not supposed to trigger yet another assembly

as this corrupts the overall signal and recruits too many local resources for a single

signal transmission. An ideal setup would cause the signal-carrying neurons to acti-

vate, while keeping the rest on hold. The plots in Figure 4.11 explore the behaviour of

the second chain during the 50ms time window after the signal injection into the first,
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active chain. It was assumed that due to the intrinsic randomness, even a stable setup

can at times switch to an unstable state via the synfire chain explosions. In order to

account for that, for each setup the 5% of the trials (100 out of 2000 trials) with the

highest values reached were removed to omit the clear outliers that would distort the

final average number.

Figure 4.11: Second chain activation during the signal transmission. Top row: basic

chain, bottom row: guarded chain condition. First column: the percentage of active

neurons in the whole second chain including the overlap. Second column: the percent-

age of active the non-overlapping neurons.

Top plots in the left column in Figure 4.11 show the levels of activation of whole

second chain (top: basic, bottom: guarded chain condition). The horizontal stripes

reflect the fact that the overlapping neurons got activated via a signal traversing the

first chain. On the left, only the non-overlapping neurons are shown. Overall, only in

the setups with the prevalence of synfire chain explosions the activation of the second

chain turned out to be very pronounced. High inhibitory overlap effectively silenced

the non-overlapping neurons in the second chain.

4.6 Evolution of a pulse packet along the chain

To quantify the degree of synchrony of a signal propagated along a chain, a term pulse

packet was introduced (Diesmann et al., 1999). A pulse packet, similarly to the volley
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of spikes used as an input, is characterised by its activity a – a number of spikes; and

σ – temporal dispersion, measured by the standard deviation of the underlying pulse

density. These two variables form a 2-dimensional state space, commonly used to

study the pulse packet dynamics, where the evolution of synchronous activity along

the layers of a chain is plotted as a trajectory. In studies of isolated synfire chains, it

was shown that there are two fixed points in such space: an attractor and a saddle point

(Figure 4.12 left). A separatrix running through this saddle separates the state space

into two regimes. In the basin of attraction, all trajectories converge into the attractor,

which denotes the successful signal transmissions. Packets starting their evolution

outside of this basin, thin and die out already after a few layers of the chain.

Figure 4.12: State space portrait of synfire chain activity. Left: state space for an iso-

lated chain. Blue and green trajectories are successful propagations, red and pink

trajectories are failures. Between the two classes there is a separatrix. Figure from

(Diesmann et al., 1999). Right: state space for an isolated chain with a strong back-

ground input. The space is covered by a gradient from white (100%) to black (0%)

denoting the packet’s survival probability. Figure from (Gewaltig et al., 2001).

The main observation here is that the fate of the pulse packet is binary and de-

termined by its initial conditions defined by only two variables. The very shape and

position of the separatrix and the basin of attraction are determined by the network’s

and neurons’ properties, but once they are set, the pulse packet’s trajectory will depend

solely on the a and σ. This behaviour, first shown by Diesmann et al. (1999), was

later formulated by a simplified mathematical approach applying the Fokker-Planck

equations (Câteau and Fukai, 2001). Subsequent studies investigated an isolated chain

with a strong background input mimicking the host network (Gewaltig et al., 2001) to

reveal that the system is no longer deterministic. Along the separatrix the fate of pulse
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packets is best characterised by a gradient of survival probabilities (Fig. 4.12 right).

4.6.1 State space analysis for basic and guarded chain conditions

Here, the goal was to apply the state space analysis to the behaviour of a pulse packet

travelling along a chain that is no longer isolated, but embedded in a random network.

It should be remarked that the variable a that measures the number of spikes per

layer, does not explicitly specify whether the spikes come from different neurons or

whether some neurons do emit more than one spike. This issue was briefly investi-

gated and it was concluded that the event of multiple spikes emitted by one neuron is

extremely rare and equating the variable a with the number of active neurons should

be deemed acceptable.

Visualising the state space spanned between the a and σ helps to gain more insight

into the pulse packet’s evolution in embedded chains as demonstrated in Figure 4.13.

Figure 4.13: Examples of state spaces for basic and guarded chain conditions. Failed

(red) and successful (blue) trajectories are marked with starting points (yellow and teal

circles respectively). There is no separatrix that could separate the two classes.

First of all, the colour-coding of failed and successful trajectories reveals that it is

impossible to find an attractor and a separatrix between the two classes of trajectories.

They all originate in a similar area, travel to the same place (which corresponds to the

attractor in the isolated chain condition – high a and narrow σ), but then the failed

trajectories are pushed away from that area to pave their way to the ’failure’ region

where they terminate. As expected, the system is stochastic and the variables a and σ

cannot alone predict the fate of a pulse packet.
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4.6.2 The shapes of trajectories for all combinations of overlaps

As already demonstrated, success rates as well as the probability of halo and explosion

failures occurrence depend on the levels of overlaps. It was hypothesised that these

dependencies might be reflected in the patterns of the trajectories across the (a – σ)

spaces. To investigate this, successful and failed trajectories were separately plotted for

all the overlap combinations for both, basic and guarded chain conditions and arranged

akin to the grid plots for easy comparison. Figure 4.14 shows the successful trajectories

for both conditions, whereas Figure 4.15 shows all the failed ones.

Trajectories of successful propagations, on the other hand, look similar to the tra-

jectories inside the basin of attraction (as in Figure 4.12) – they quickly reach the

attractor region and remain there. The shapes of failed trajectories vary considerably

across the overlap combinations and they clearly reflect the occurrences of the halo and

explosion failures. Both types of failures have distinct underlying causes and thus the

pulse packet’s trajectory is affected in a different manner. The plots also display the

outset failures to demonstrate that their trajectories are akin to the ones that originate

outside of the basin of attraction in the deterministic setup (as in Figure 4.12).

4.6.3 Successful trajectories

In all the successful trajectories, after just a few layers the activity of a pulse packet in-

creases to 100% and the packet becomes narrower, regardless of the number of spikes

in the first layer. Then, the pulse packet either remains that way until the end, or it be-

gins to lose a few spikes and become slightly wider, which is illustrated by trajectories

forming various shapes of loops or zigzags, as shown in Figure 4.16. Different levels

of overlaps were selected in order to display the distinct trajectory shapes.

These shapes are in fact a signature of an influence of the inhibitory halo: near the

middle of the chain, the neurons get hyperpolarised due to the global inhibitory halo

and some of them fail to respond to the pulse packet activation. Because the basic

chains lack the protection against the halo, they usually formed irregular trajectories

with their endpoints scattered. Guarded chains, on the other hand, formed mostly the

trajectories with loops and the endpoints concentrated near the maximal pulse packet’s

activity.



Chapter 4. Signal propagation in overlapping chains with disinhibitory pathways 67

Figure 4.14: State space diagrams for the basic (top) and guarded (bottom) chain con-

ditions: trajectories of successful propagations for all the overlap combinations.
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Figure 4.15: State space diagrams for the basic (top) and guarded (bottom) chain con-

ditions: trajectories of failed propagations for all the overlap combinations. In some

subplots individual trajectories were highlighted for better visibility. Note the presence

of the outset failures (bottom right corner for the guarded chain condition).
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Figure 4.16: Successful trajectories. Left: Two examples of setups with different trajec-

tory silhouettes. Purple and yellow dots denote the start and end points respectively.

Right: Individual trajectories pooled from the setups on the left. Subsequent chain lay-

ers are marked by colour-coded circles: first layer is marked by a dark blue circle and

the end one by a brown circle via the rainbow gradient.

4.6.4 Halo failure trajectories

The trajectory of a pulse packet that failed to propagate due to the inhibitory halo is

characterised by the direction it follows when being pushed away from the attractor

area (top left corner). Both parameters are initially affected simultaneously – a de-

scends and σ grows and the trajectory follows the diagonal until it reaches the bottom

area of the plot. The resulting silhouette forms an inverted Z–shape. As shown in Fig-

ure 4.17 left, some trajectories terminated all the way along the diagonal, but the vast

majority of trajectories ended near the bottom left corner marked by a = 0 and σ = 0.

This fact is captured in the plot by many red lines directed at the several dots at that

corner.
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Figure 4.17: Trajectories of halo failures. Left: Halo failure trajectories for the Basic

chain with 30/0% E/I overlap. Right: individual trajectories. Subsequent chain layers

are denoted by colour-coded circles: first layer is marked by a dark blue circle and the

final one by a brown circle via the rainbow gradient.

4.6.5 Explosion failure trajectories

Similarly to the halo failures, trajectories of explosion failure propagations can also

be identified by their behaviour when being pushed away from the attractor area. As

expected, at the outset of the explosion, the number of spikes per gate remain 100%.

Only the σ becomes wider as illustrated by the first half of the trajectory – it is first

reaching the attractor corner and then heading rightwards in a straight line. Then,

the number of spikes sharply decreases and the σ becomes narrow again, causing the

trajectory to move via diagonal towards the bottom left side where it terminates. The

overall silhouette forms a 7–shape and the distribution of the end points reveals some

signs of regularity. One can identify two sharp spires in the silhouette – a horizontal

one at the top, which is a signature of the outset of the explosion, and the second,

vertical one - at the bottom left corner, along which many trajectories terminated. One

might also notice a hyperbolic curve starting from the tip of the lower spire towards

the bottom, also dotted with many trajectory end points.

These regularities created by the trajectories endpoints are in fact an artefact of a

pulse packet detection algorithm. The rightmost plots in Figure 4.18 depict the ele-

ments used in the algorithm. Starting from the first layer at the bottom, the shaded

area marks the time window where the spikes were counted and the red line denotes

the pulse packet’s mean spike time. This mean is then used as a starting point for the
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Figure 4.18: Trajectories of explosion failures. Left: explosion failure trajectories for

the Basic chain with 50/0% E/I overlap. Middle: individual trajectories. Subsequent

chain layers are denoted by colour-coded circles: first layer is marked by a dark blue

circle and the final one by a brown circle via the rainbow gradient. Right: depiction

of a pulse packet detection algorithm. Starting from the bottom (first layer) a shaded

rectangle marks the area where the spikes were counted to form a pulse packet. Red

lines denote the centre of mass for each layer.

time window for the subsequent layer. The algorithm was shown to work well with

the not-exploding cases and different sizes of the time window showed to have only a

minimal effect on the packet’s final parameters: a and σ. When the explosion appears,

however, the spikes in different layers appear simultaneously, and the mean spike times

(the red lines) are very close to each other and the time windows of consecutive layers

are nearly the same. As a result, the last layer, which defines the trajectory endpoint,

can capture one or two waves of explosion composed of multiple spikes appearing

nearly simultaneously. If one wave is captured (Figure 4.18 top right), the trajectory

endpoint would lie along the vertical spire, as there are many spikes, but the σ is close

to zero. If two waves are captured (Figure 4.18 bottom right) - the σ is larger and the

endpoint lies along the hyperbolic curve.

If the algorithm was changed to differently treat the overlapping means (for exam-

ple stopping as soon as the explosion is detected and zeroing all the following values)
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or the borders of the time window redefined, the final results would differ quantita-

tively. Since the very appearance of synfire explosion is highly undesirable, there is

no need to elaborate on how to count spikes in pulse packets when the network enters

the explosion phase. More important is that with the current algorithm this state has a

clear signature and the further details of it are negligible.

4.7 Can one predict pulse packet’s fate?

Although it is apparent that a clear separation between the failed and successful trials

is impossible on an a−σ state space diagram, one could still reason whether there

is some other measure that sets the two apart. Since the system explored here is not

deterministic, we can ask whether there is some set of features that can be used to

predict the probability of packet’s success or failure.

By visual inspection one can conclude that the failed trajectories usually start with

a high a. In Figure 4.19, every trajectory and its endpoint was assigned a colour based

on the number of activated neurons a in the first layer. The plot on the left displays a

condition where the majority of trials are failures, whereas on the right – successes. In

both cases the failures are dominated by the blue trajectories denoting the trials with

large initial a.

Figure 4.19: Colour-coded trajectories by the number of spikes elicited in the first gate.

Coloured dots denote the endpoints of the trajectories.

This intuition was checked for both, basic and guarded chain conditions across all

the overlap combinations. In principle, in all the trials, the injected volley of spikes was

drawn from the same distribution. Due to the randomness of the volley and the current

state of the network, a volley would activate a variable number of neurons to create

a pulse packet of a wide range of temporal dispersion. Across all the setups, pulse

packet’s parameters a and σ in the first layer were similar (data not shown) with the
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average a ranging between 85–87 neurons. When the trials were divided into groups

of failed and successful propagations, it was revealed that the failed trials contain on

average 6 neurons more (Figure 4.20). Every square in the grid plots was computed

with the amount of data that was available for a given condition. In some conditions

more than 80% of trials were failures, for some only a handful or none failures were

available. All the extreme values in the plots stem from such cases.

Figure 4.20: Top: Difference in the mean number of active neurons in the first layer

between the failed and successful trials for the basic chain (BC, left) and guarded chain

(GC, right) conditions. Bottom: Basic chain condition only, the same difference as

above, but including only the halo failures (left) and explosion failures (right).

In the halo/success difference plot, there is a darker region on the top left corner,

meaning that in these setups the halo failures, on average, were triggered by weaker

pulse packet activations. It should be borne in mind that this region was dominated by

the synfire chain explosions and not many samples of halo failures were available. On

top, this also reflects the instability of these setups – most of the stronger activations

led to the explosion and only much weaker, yet marginally stronger than the baseline

led to the halo failures. Similarly, in the explosion/success plot, the top right corner

features the examples of considerably stronger activations leading to the explosions.

Again, this region was dominated by the halo failures and due to the strong inhibitory

control, only the activation of particularly many neurons in the first layer could cause

the synfire chain explosion.
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Although the above reasoning suggests that the failed propagations are the ones

which, on average, elicit more spikes in the first layer, the inverse is not always true.

Many successful trials also have a high number of spikes in the first layer. The plots

in Figure 4.21 display the ratio between failed and successful trajectories depending

on the activity in the first layer. As already mentioned, some setups contained a vast

majority of failures or successes and overall, the sample sizes were often too small to

draw decisive conclusions.

Figure 4.21: Ratio of successful vs failed trials depending on the number of neurons

active in first gate for the basic (top) and guarded (bottom) chain condition and four

selected combinations of overlaps.

The top left subplot displays a setup with a nearly perfect ratio: 50% of trials were

successful, and the other 50% were failed. As the number of active neurons in the first

layer is increased, the ratio changes for failures’ favour. The trials with 95 or more

active neurons are nearly all failures.

Overall, it is demonstrated that when an injected input elicits a strong pulse packet

already in the first layer which is rapidly amplified, it is more prone to destabilise the

network either by inducing explosion or a global wave of inhibition abolishing the

signal. One suggestion to avoid instabilities is to use the inputs which on average

do not elicit strong responses in the first layer. But if a weaker input is chosen, the

probability of the outset failures increases, so instead of instabilities, the signal fails to

fully enter the chain.
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4.8 Injecting input to two chains simultaneously

By now, all the setups involved solely one chain receiving the input at a time. Here, we

briefly examined a condition where two chains received the signal of identical strength

simultaneously. Since injecting two strong inputs into a network is very likely to in-

duce synfire chain explosions, only the regimes that normally are resilient to explosion

formation were examined. A small batch of simulations was run, with 5 instances of

the network per condition.

Figure 4.22: Layers reached by the pulse packets along the two chains for four com-

binations of overlaps. Size and colour of the circles correspond to the number of input

injections (out of 100).

As demonstrated in Figure 4.22, most of the pulse packets failed to reach the final

layer in either chain. In fact, the signal turned out to die out in both chain at the same

stage, which is indicated by the data points lined up along the diagonal. Inhibitory

overlap was shown to impair the signal propagation, due to the lateral inhibition reach-

ing both chains.

It is hypothesised that biasing one signal should help to select one chain to permit
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the full propagation while suppressing the other one. In order to test it, however, bigger

networks are believed to be more suitable since the injection of two pulse packets in-

vokes a large number of synchronised spikes. Thus, the issue of multiple simultaneous

signals will not be investigated here any further.

4.9 Splitting the inhibitory overlap

All the data generated and analysed so far relied on the default algorithm to imple-

ment the overlaps between the chains, which involved creating a single random pool

of neurons to be shared by the two chains which were then assigned to layers and pools

independently for each chain. In the case of the guarded chains this simplification in-

troduced a possible problem, since the inhibitory population is essentially composed

of two distinct pools: the inhibitory pool of neurons realising feedforward inhibition

(FFI) and the disinhibitory pool of neurons along the disinhibitory pathway, as shown

in the left panel in Figure 4.23. The default algorithm implicitly allowed for a random

pool allocation and as a result, individual neurons would simultaneously participate in

the two distinctive circuits realising FFI in one chain and disinhibition in another (right

panel in Figure 4.23). It can be well criticised that it is not biologically realistic that a

given inhibitory neuron has two different functional roles within multiple assemblies it

is a part of. Experimental evidence suggests that various classes of interneurons have

well-defined microcircuits and connectivity patterns between each other and with the

principal neurons (as discussed in 2.3.3). Furthermore, it is not desirable in the mi-

crocircuits to have too much such cross-talks. The chains discussed here have specific

connectivity and synaptic delays to serve a tight control over the timing and order of

the signals traversing the circuit. Neurons that in one assembly are wired to fire in a

given order and in another one in reverse, can cause interference and corrupt the signal

transmission.

4.9.1 Specific pool allocation

It was hypothesised that the signal corruption and interference affected the success

rates in the guarded chain condition in the setups with both overlaps high (top right

corner in the grid plot of Figure 4.7). Admittedly, for these setups the overall success

rates were already very high, but still consistently lower than the ones of the setups

residing in the middle and the bottom regions of the grid plot. The sole cause of the
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Figure 4.23: Different ways of generating overlaps of inhibitory populations. Left panel:

A diagram of an inhibitory population of a single, non-overlapping chain. It is composed

of two separate pools: neurons implementing disynaptic feedforward inhibition (FFI)

and neurons belonging to the disinhibitory pathway. Right panel: 3 ways of generating

inhibitory overlaps between two chains. Left: random pool allocation causes individual

neurons to end up in two different pools and are forced to implement both, FFI and

disinhibition. Top right: Specific pool allocation makes sure that the shared neurons

implement either FFI or disinhibition and never both. The levels of overlaps for both

pools are equal. Bottom right: overlap levels for inhibitory and disinhibitory pools can

be set separately.

failures were inhibitory haloes, suggesting that the present disinhibitory pathways did

not manage to sufficiently protect the chain from the excessive wave of inhibition.

To check this possibility, the algorithm for generating the inhibitory overlap was

modified to ensure the specific pool allocation, so that two separate pools of neurons to

be shared by the chains were created. First pool contained the neurons to be assigned

exclusively to the inhibitory pools realising the FFI, and the second pool contained

the neurons to be used to exclusively populate the disinhibitory pools (as illustrated in

the right panel in Figure 4.23). Another batch of simulations was ran, but this time it

did not span the whole overlap space. Specifically, only the setups with at least 30%

excitatory and 10% inhibitory overlap were under examination, because the setups

with less than 30% excitatory overlap yielded very high success rates already for both,
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the basic and guarded chain condition and thus no effect was expected to be observed.

As shown in Figure 4.24, implementing the specific pool allocation caused only a

marginal improvement in the region where the signal transmission was already high

(30-40% EO). However, the key observation is that the separation indeed improves the

signal transmission in setups with 50% EO and high IO. It proves that when both over-

laps are large, separating the inhibitory neurons by their function in a microcircuit is

beneficial to the signal propagation. It also demonstrates that the circuits can function

more efficiently when interneurons implement only one type of computation at a time,

even if they belong to more than one cell assembly.

Figure 4.24: Success rates for the guarded chain condition with a modified algorithm

creating inhibitory overlaps. Top left: Success rates. First column was omitted as it

involved IO of 0%. Top right: Difference between the default and modified algorithm.

Bottom: two grid plots combined. Three top rows come from the simulations with the

modified algorithm, the three bottom rows come from the default algorithm. Notice

different ranges on colour bars chosen for better visualisation.

4.9.2 Specific pool allocation with separate overlap levels

The results above demonstrated that the signal propagation works better if the interneu-

rons are allocated to only one computation – disynaptic feedforward inhibition or dis-

inhibition – when they belong to two cell assemblies. This observation opens up an-
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other possibility, not discussed so far – in principle, two chains can maintain three,

not two, types of overlaps between each other: the excitatory, the inhibitory and the

disinhibitory one. By now, when the 100% inhibitory overlap was reported, it implic-

itly assumed the 100% overlap in both pools of interneurons comprising the chain. In

general, high inhibitory overlap was shown to protect the chain from the synfire explo-

sions and the presence of the disinhibitory pathways helped to overcome the upsurge of

the global inhibition. But the effects of treating the two inhibitory overlaps separately,

as illustrated in the right panel in Figure 4.23, were not explored.

Two boundary conditions from the top corners in the grid plots were examined:

first one involved the setup with 50% excitatory overlap and 0% inhibitory overlap. In

the default cases it was shown that the success rate is low and that the main cause of

the failure is the synfire chain explosion. The second condition involved again 50%

excitatory overlap, but full, 100% inhibitory one which was shown to protect the chain

from the explosions and the haloes were the causes of failures. In both cases the EO

and IO were fixed and the disinhibitory overlap (DO) varied from 0% up to 100%.

Figure 4.25: Signal propagation (left) and background spikes (right) for different levels

of disinhibitory overlaps for the 50% EO and 0% IO (top row) and 50% EO and 100%

IO (bottom row).

As expected, higher disinhibitory overlap for the 0% IO case did not help the over-

all signal transmission (Figure 4.25 top left). This setup was dominated by the in-

stabilities caused by the synfire chain explosions and transforming global inhibition
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into disinhibition to release even more excitation not only failed to improve the sig-

nal propagation, but also caused more occurrences of the explosions (Figure 4.25 top

right). The setup with 100% IO benefited from the higher disinhibitory overlap (Figure

4.25 bottom left) by effectively turning the halo failures into successful trials. Releas-

ing the excitation in the high DO cases, however, led to a few occurrences of mild

explosions (Figure 4.25 bottom right).

These results clearly demonstrate the fact, that the disinhibition can destabilise the

whole network if too much excitation is being released. In order to safely and ro-

bustly benefit from the advantages that the disinhibition offers, the network should be

in regimes dominated by inhibition so that releasing extra excitation does not compro-

mise the overall stability.

4.10 Conclusions

The main findings from this chapter can be summarised as follows:

1. It is possible to create long chains composed of layers of excitatory and in-

hibitory populations realising a principle of disynaptic feedforward inhibition

in a fully recurrent network. When the network remains in a low firing regime,

synfire explosions appear only rarely.

2. Multiple chains can be embedded into a random network and they can be over-

lapping or non-overlapping. Excitatory overlap is detrimental to the signal pro-

pagation and network’s stability (synfire explosions), whereas inhibitory over-

laps can be as high as 100% and typically improve the signal success rate via the

lateral inhibition motif.

3. Addition of disinhibitory pathways into a chain stabilises the network during the

signal transmission and rescues the signal from dying out when global inhibition

is strong. Conversely, disinhibitory pathways can destabilise the whole network

in regimes with weak inhibition by releasing too much excitatory activity.

4. External stimulus should target both excitatory and inhibitory local neurons not

to disturb the E/I balance.

5. When interneurons participate in multiple assemblies, they should realise only

one type of computation in each assembly to avoid interference. Thus, it appears
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that the interneuron groups are the most efficient when they are specialised in

terms of the roles they play in the network.

6. Although the excitatory neurons are the carriers of the signals, manipulations of

inhibitory connectivity patterns play a key role in controlling the signal transmis-

sion and stabilising the whole network. These observations underscore the im-

portance of neuronal inhibition which shall not be considered as a mere provider

of a force to balance excitation.



Chapter 5

Signal gating by cholinergic

modulation of disinhibitory pathways

Chapter summary

In the previous chapter we have explored overlapping feedforward chains with the

inhibitory as well as disinhibitory pools. The disinhibitory pathway was shown to

be central in improving signal transmission success rate in the setups dominated by

the inhibitory haloes. Here, the goal is to introduce the principle of gating to control

the effectiveness of the disinhibitory pools activity to flexibly propagate or block the

signal. We first show that cholinergic modulation targeting the disinhibitory pools

can robustly act as a switch. Then we test whether location-specific modulation can

modulate individual assemblies while ignoring the others. Both, volume and phasic

transmission modes were shown to implement gating, with the phasic transmission

providing higher, but not perfect, levels of precision.

5.1 Introduction

Earlier chapters briefly outlined the importance of incorporating gating mechanisms

to obtain flexibility of neural networks’ responses when exposed to the ever-changing

flow of information. As shown in the context of working memory in the prefrontal

cortex, the gates can be located at different stages of information processing (Chatham

and Badre, 2015). The activity of basal ganglia (BG) was shown to act as a gate on

the input to, as well as on the output out of the working memory system. In terms of

the input gating, it is commonly assumed that a so-called early selection performed

82



Chapter 5. Signal gating by cholinergic modulation of disinhibitory pathways 83

by a top-down attentional system filters out all the irrelevant sensory signals at their

very arrival (Jacoby et al., 1999). Studies on primates performing a context-dependent

selection task, however, found no evidence to support this hypothesis and showed that

even irrelevant cues get integrated into the circuitry processing which in the later stages

leads towards a choice (Mante et al., 2013). Thus, early gating off the sensory inputs,

at least in the working memory context, might not be biologically realistic.

Nevertheless, the fact that the BG input can play a role of a gate on the incoming

or local signals illustrates another principle – that the information about the signal

importance (be it cue’s relevance or saliency) essentially comes from another brain

region. To analyse the activity of a local network, the metaphor of the black box can

be employed. A given black box receives some inputs and is expected to process

them to produce an output. The question is which piece of information or element of

processing belongs to the ’input’ part and what is intrinsic, that belongs to the internal

toolkit of this black box. It is well established that the neocortex behaves differentially

during various behavioural states suggesting that a variable determining the ’current

state’ should belong to the input ingredients (Doiron et al., 2016).

5.1.1 Control of disinhibition as a gating mechanism

The black box metaphor can readily be applied to the disinhibitory pathways along the

synfire chain, which were thoroughly studied in the previous chapter. In the guarded

chain model, these were an integral part of the circuitry itself, so that the chain was un-

conditionally helping itself to transmit the signal and the elements were tightly timed.

No external input was determining the signal’s fate, only the internal toolbox which,

admittedly, was better equipped than the one of the basic chain.

To implement the gating mechanism, however, the control and decision whether

the signal shall pass or halt should come from the outside and be independent of the

chain circuitry. In that way, depending on some external input, the disinhibitory mech-

anism should be on or off, determining whether the actual signal should be propagated

along the chain or not. In principle, three modes of implementing the control of the

disinhibitory mechanism can be distinguished, as shown in Figure 5.1:

Intrinsic mechanism Disinhibitory pathways are integrated in the chain circuitry and

provide a scaffolding that guards the signal from the globally increased inhibi-

tion. This was implemented in the previous chapter in the guarded chains.

Controlled by direct external input Disinhibition is activated by external projections.
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Controlled by neuromodulation Instead of the direct synaptic projections, disinhibi-

tion is activated by neuromodulatory mechanisms, both via volume transmission

and phasic inputs.

Figure 5.1: Disinhibitory circuit with three possible sources of controlling signals.

It is argued that in order to realise the gating mechanism, the control of the disin-

hibitory pathways should be transferred from the chain to the external entity.

5.1.2 Default state of a gate

Two possible ways of realising the gating mechanism – with the gate open or closed by

default – were already discussed and the examples of models with both variants were

given. But what are the functional differences between the two frameworks?

Let’s assume that within a given network as many as 10 assemblies are embedded

and they are all open in the default state. When there are many inputs arriving, possibly

even simultaneously, the gating mechanism would need to make sure that only one gate

is open, which translates to extra work on the remaining gates the amount of which

scales up with the number of incoming signals. Were the 10 gates closed by default,

the extra work would have to be done solely on the gate that is expected to get opened,

regardless of the total number of inputs.

Although the closed-gates variant implies that by default a given network is not

tuned for optimal signal processing, Newman et al. (2012) argue that this can actually

be very advantageous, for example while resting or consolidating memories, when tun-

ing out the external stimuli is desirable and best if achieved effortlessly. Ultimately, it

can be argued that depending on the task, brain region or species, either framework can

be more relevant. The applicability of either framework can be assessed by estimating

the cost of having a false-positive or false-negative response. If a missed signal is to be

avoided at all costs, persistently open systems are more suitable, whereas if precision

and low error rate are sought-after, closed systems should be favoured.
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5.2 The actual contribution of disinhibitory pathways

Before embarking on studying the modulation, we tested the actual contribution of the

disinhibitory pathways, which are composed of 2 types of synaptic connections: E→ I

and then I a I. We individually removed either type from the chain circuitry to see what

their partial contributions are in the signal transmission. After removing the E → I

connections (Figure 5.2 top left), the chain still contained disinhibitory pools, called

unactivated pools, as these were not activated by the chain’s own activity. This setup

aimed to check whether the background activity is sufficient to trigger the disinhibitory

mechanism. The second condition involved a so-called non-specific activation (Figure

5.2 top right). The chain still sent the signal to inhibitory pools, but these were random

and not explicitly connected to the inhibitory pools within the chain. The goal was to

verify the role of specificity of the disinhibitory connections.

Figure 5.2: Partitioning the disinhibitory pathway. Top left: a chain with unactivated

disinhibitory pools. Top right: a chain with non-specific activation of inhibitory pools.

Bottom: a comparison between basic, guarded and chains with partitioned disinhibitory

pathways in 50/100% E/I overlap condition.

Both setups were tested with high E/I overlaps: 50% excitatory and 100% in-

hibitory, to ensure a clear difference between the success rates in basic and guarded
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chains. As demonstrated in Figure 5.2, only the full disinhibitory pathways provided

substantial improvement in the transmission success rates. Partitioned pathways, not

only failed to improve the rates, but actually impaired the already poor signal prop-

agation even further. The condition with non-specific activation involved activating

an extra number of inhibitory neurons without providing the protecting disinhibitory

scaffolding to the chain. As a result, the chain had to withstand an even stronger wave

of inhibition, which inevitably led to a complete failure in signal transmission. The

unactivated pools, although providing the scaffolding, also worsened the transmission.

This was due to the fact that the disinhibitory pathways could be activated only by

the random background signals, which naturally were independent of the timing of the

signals traversing the chain. The chain, however, to fully benefit from the disinhibitory

protection needs precise, time-locked activations strictly occurring before the arrival

of the actual signal.

Thus, we have shown that the disinhibitory mechanism in order to be effective

needs to fulfil two conditions. Firstly, it should steer the already existing inhibitory

wave into inhibitory pools to transform it into disinhibition and secondly, these created

disinhibitory signals should be well-timed to effectively provide the protection to the

target circuitry.

5.3 Methods

Here, the closed framework will be under investigation and the modulation of disin-

hibitory pathways will provide a mechanism to open a gate to control propagation of a

signal already traversing the chain. The default state will correspond to the basic chains

discussed in the previous chapter, whereas the opening of the gate will in essence ac-

tivate the guarding disinhibitory pathway to facilitate the signal transmission. We will

only focus on the modulatory control of disinhibition since there is ample evidence for

cholinergic activation of disinhibitory pathways across many brain parts (as outlined

in sections 2.4.3 and 2.5.2).

For the sake of completeness, it should be clearly stated that the modulation target-

ing only one subpopulation of interneurons is a considerable simplification. As already

outlined in Chapter 2, neuromodulation is an umbrella term that encompasses various

phenomena that alter the electrical properties of neurons. Indeed, interactions associ-

ated with acetylcholine are complex and multi-faceted as there is a whole repertoire of

cholinergic receptors residing in pre– and postsynaptic sites of various neuron types
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and in diverse concentrations. Although a clear-cut neuromodulation of one neuron

subtype is biologically improbable, such a simplification allows the model to remain

simple and tractable.

5.3.1 Modification of disinhibitory pathways

Having established that only the full disinhibitory pathway improves the signal trans-

mission thanks to its specificity and transforming the inhibition into disinhibition, we

modified the pathway so that it could be a target of cholinergic modulation.

The core modification involves decreasing the number of E → I synapses along

the disinhibitory pathway. In the guarded chain each disinhibitory neuron received 60

synapses from the excitatory chain neurons to ensure that enough neurons emit a spike

to disable the inhibitory pools. In the modulation condition, the number of synapses is

decreased down to 20–30, as shown in Figure 5.3. Disinhibitory neurons still receive

the activation from the chain, but it is too weak to evoke robust responses, and the

success rates are similar to those of the basic chains. It is the role of modulation to

activate the full disinhibitory pathway.

Figure 5.3: Diagram of the guarded chain with modified disinhibitory pathways. Purple

arrows denote the altered connections. In the modulation conditions, each disinhibitory

neuron receives a decreased number of synapses ranging from 20 to 30 (instead of 60)

from the chain.

The reason for keeping the full disinhibitory pathways and only attenuating them

is the fact that modulation itself is not expected to activate neurons, it can merely
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influence neurons’ responses to the incoming activation. If there is no input, even

the most powerful modulation should have no effect, as it can only come into play

when accompanied by the actual spiking activity. Furthermore, such setup ensures

that the disinhibitory pathways will be activated at the expected points of time, strictly

depending on the signals already traversing the chain.

5.3.2 Choosing the levels of overlaps

In the previous chapter we showed that when two chains are embedded, the levels

of overlaps influence the signal transmission and overall, guarded chains had a much

wider parameter space that led to high success rates. In order to model a clear transition

from a fully closed to a fully opened gate, a setup with such levels of overlaps had to

be found that, firstly, the success rate is very low in the basic chain and very high in

the guarded chain; and secondly, the network itself is stable in both variants.

Figure 5.4: Chances of the synfire chain explosion for basic and guarded chains. Note

the maximum value set at 5%.

High excitatory and low inhibitory overlap (top left corner in the grid plots in Fig-

ure 5.4) is a region where the chances of synfire explosion are very high. It is assumed

that a robust system does not allow this to occur and therefore this region shall be la-

belled as unstable and not likely to be biologically relevant, although the higher the

excitatory overlap, the higher the network capacity, as the neurons can potentially par-

ticipate in more than one chain, increasing the maximum number of embedded chains.

Bottom left corner represents the regime where multiple chains share very little or no

neurons, compromising the network’s capacity. On top of that, the chances of synfire

chains are non-zero, rendering this regime unstable. The regimes in the bottom right

corner still compromise the capacity, as the excitatory overlaps are low; the whole net-

work, however, is stable and synfire chains do not appear. But it should be noted that

the signal transmission succes rate is already near 100% in the basic chain. As the

excitatory overlap increases (top right corner), the network is still stable but the dense
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inhibition hinders the signal transmission in the basic chain. Disinhibitory pathway

improves the signal transmission while keeping the whole network stable. And the

relatively high excitatory overlap, potentially improves the network’s capacity.

Therefore, the chosen regime to be explored is the one with firstly, a relatively high

excitatory overlap (30%–50%) and secondly, a high inhibitory overlap (>= 50%). This

regime does not allow for synfire explosions to appear, the addition of the disinhibitory

pathways proved to improve the signal transmission considerably and network’s capac-

ity is potentially high.

5.3.2.1 Setups for uniform volume transmission

Initially, for the guarded chain conditions, the setups with specific pool allocation and

identical overlap levels for inhibitory and disinhibitory populations were chosen, so

that the two embedded networks maintained 50% excitatory, 100% inhibitory and

100% disinhibitory overlap. This setup, in the basic chain condition, yielded the lowest

success rate, rendering it an optimal default state representing a closed gate.

5.3.2.2 Setups for location-specific volume transmission

The setup above – with the full disinhibitory overlap, might be problematic when two

chains are expected to be differentially modulated. If disinhibitory pools are to be

utilised as switches in the gating mechanism, is it acceptable that they are fully over-

lapping? If such switches are shared through 100% overlap, then modulating one chain

implicitly entails modulating the other chain too. It is conceivable that the modulation

can target only one chain and as such, the switches should be private, that is having no

overlaps with other ones.

It can also be argued that the 50% excitatory overlap is rather extreme and it might

be desirable to explore smaller levels of overlap to find a general behaviour of the

networks rather than exploiting a specific point in the parameter space.

Meeting the above requirements turned out to be problematic, because such setups

yield a decent success rate in the basic condition, so they could not be used as a default,

closed system. The reason for that is that the global inhibition is not as strong during

the chain activation so that many signals manage to get propagated even without the

disinhibitory scaffolding. One way to introduce more global inhibition is to increase

the global inhibitory connectivity. All the networks studied here maintained 5% global

connectivity and we explored the networks with denser connectivity onto inhibitory
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population to find the setups with a very low success rate in the default state to then

apply modulation in order to open the gate. As a result, 4 different setups were chosen

for further investigation:

– One setup with 6.0% global inhibition and 100% inhibitory overlap

– Three setups with 6.5% global inhibition and 85%, 90% and 100% inhibitory

overlap respectively.

Figure 5.5: Default state in the setups with 6% and 6.5% global inhibition with various

inhibitory overlaps. The smaller the overlap, the better signal success rate. Only the

setups with the success rate below 10% were selected to study the cholinergic modu-

lation.

Figure 5.5 shows the mean traces in the default state for the chosen setups as well as

the rejected setups with 6.5% global inhibition but lower inhibitory overlaps. Setups

with denser, 7% connectivity were also explored, where the lowest success rate in

the default state was shown to be around 10%. However, when the full disinhibitory

pathway was added (60 synapses per neuron, as in the guarded chains), the success

rate did not improve up to > 90%, but merely to 50% (data now shown).

It might also be desirable to explore the effects of various levels of inhibitory over-

laps on the specificity of cholinergic modulation. The chosen setups above have very

high inhibitory overlap because all the setups with the IO of 80% or less yielded too

high success rate in the default state as shown in Figure 5.5. Thus, here we will not

explore the cases with low or no inhibitory overlaps. This issue will be revisited later.
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5.4 Cholinergic signalling via volume transmission

First of all, we modelled cholinergic modulation signalled by non-specific and uniform

volume transmission. It was shown that acetylcholine lowers the firing threshold of the

target neurons, which makes them fire more effectively.

Only the disinhibitory pools – switches – were under modulation in the activated

chain (as depicted in the diagram in Figure 5.7 C). Neurons in these switches had

lowered (or increased) firing threshold throughout the whole simulation time, not only

during the input injections. Setups with various numbers of synapses along the disin-

hibitory path were investigated. The simulations followed the same protocol as in the

previous chapter, and as already stated, the excitatory overlap between the chains was

set to 50% and the inhibitory one – to 100%.

Figure 5.6: Success rate as a function of the firing threshold change in the disinhibitory

neurons for setups with variable number of E→ I synapses in the disinhibitory pathway.

Circles denote the actual data obtained from simulations, the lines are interpolated.

As shown in Figure 5.6, by manipulating the firing threshold of the disinhibitory

pools, it is possible to obtain a robust switch to perform a graded gating of the signals

along the synfire chains augmented with disynaptic inhibition. What is striking is how

small the range of the threshold change needs to be in this setup to obtain a near perfect

switch from a completely blocked gate to an opened gate with almost 100% success

rate.
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5.4.1 Location-specific volume transmission

Having demonstrated that the cholinergic modulation modelled as the manipulation of

the firing threshold of disinhibitory neurons can work as a robust gating mechanism,

we asked how specific such modulation can be. The example above involved the case

when both, inhibitory and disinhibitory pools of the two chains were fully overlap-

ping. Here, the goal was to employ the private switches (non-overlapping disinhibitory

pools) and modulate them separately. This allowed us to examine the old view about

the diffusive nature of the basal forebrain projection into the cortex. Although classi-

cally it is assumed that acetylcholine is released uniformly across the cortices, recent

studies showed that the projection axons reach specific sites and thus there is a possi-

bility to send different signals of variable magnitude to different regions (Zaborszky

et al., 2015a). As a result, the modulation does not need to reach the areas equally.

Figure 5.7: Inhibitory and disinhibitory pools within two chains under cholinergic mod-

ulation. A. Idealised setup where one chain receives the input and the second one is

modulated. B. The actual setups under investigation: disinhibitory switches are private,

but the inhibitory pools maintain 85%-100% overlap. When one chain receives the input

and the other one is modulated, the targets of the two are mixed. C. Modulating two

switches during the activation of one chain.
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In principle, the goal was to explore the influence of the modulation of one chain

on the activity of the other one. As shown in Figure 5.7 A, there can be two chains

with private switches, and only the first chain receives the activation, whereas the sec-

ond one receives the modulation. The question is to what extent the modulation of one

chain will affect the second chain if they are embedded in the same local network. If

the modulation of one chain does not affect the signal propagation along the other one,

we can label it as a perfect separation. The setups under investigation, however, are

the ones depicted in Figure 5.7 B. Although the switches are private, their targets – in-

hibitory pools – are heavily overlapping. Then the modulation of one chain inevitably

can influence the signal propagation along the second one. To find out the extent of

this influence, we fixed the number of synapses reaching the disinhibitory neurons to

25 per neuron and we modulated the switch either of the activated or the unactivated

chain.

It was revealed that modulating the unactivated chain can immensely influence the

signal transmission. As demonstrated in Figure 5.8, when a given strength of modu-

lation (expressed by the threshold change) fully opens the gate in the activated chain

(success rate above 90%), the same strength applied on the unactivated chain can still

cause the gate to be opened in 30%– 60% of trials. Overall, no setup was found with a

near perfect separation.

Figure 5.8: Modulation of one chain only. Solid lines denote the cases with modulation

and input targeting the same chain, dashed lines denote the cases when modulation

targeted the unactivated chain.
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5.4.1.1 Modulation of two switches simultaneously

The above example tackled the cases when only one switch was under modulation

– either of a chain receiving the input or the unactivated one. The separation of re-

sponses were not very well, since, although the switches are private, they still target

the inhibitory pools, which share 85-100% of their neurons. We asked whether there

is a further improvement in signal propagation if both switches are modulated simulta-

neously (as shown in Figure 5.7 C). We extended the protocol above to also modulate

the two switches simultaneously. Various levels of thresholds were chosen in order to

explore the parameter space.

Figure 5.9: Modulation of one or two switches simultaneously. The orange and teal dots

in the bottom right corner show that if the modulation is weak, even targeting two sets

of switches will not be sufficient to open the gate.

Not surprisingly, modulation of both switches improves the signal propagation,

when the strength of modulation is weak. When modulating the switches along the

activated chain already robustly opens the gate, modulating another set of switches

improves the signal transmission only modestly.

5.5 Cholinergic signalling via phasic transmission

Finally, we sought to explore another mode of cholinergic transmission. It was found

that the ACh release can also be fast and precise (Gritton et al., 2016; Sarter et al.,

2009), contradicting the notion of the diffusive nature of cholinergic projections. Thus,

we asked whether in the case of disinhibitory control on the synfire chains such fast
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signalling can indeed provide more precise responses when targeting only one switch

but not the other. Again, an assumption that the cholinergic receptors reside exclusively

on the presynaptic terminals of the disihibitory neurons was made. In reality, however,

the α7 receptors, which are believed to mediate fast responses, were found on both,

pre– and postsynaptic sites (Picciotto et al., 2012).

Phasic input was modelled as a volley of spikes arriving at a certain time at the dis-

inhibitory pools. The volley was a Gaussian, similar to the input volley, and described

by α: number of spikes reaching each neuron, and σ: standard deviation of the volley.

The values of both, α and σ, were varied to explore their influence on the activating of

the switches. The volleys were targeting only a subset of layers, since the first 3 layers

are lacking the disinhibitory pools and it was shown that the global inhibitory wave af-

fects mostly the middle layers along the chain. Many setups were tested and the results

presented here come from the setup where 6 middle layers were receiving the phasic

inputs and the timing of these was set to arrive well ahead of the actual signal along

the chain, with the 2ms increase in the subsequent layer.

Figure 5.10: Phasic transmission improvement. Top dashed lines denote the cases with

modulation and input targeting the same chain, bottom dashed lines denote the cases

when modulation targeted the unactivated chain. Solid lines in the middle denote the

difference between the two cases.

We show that more spread injections work better, presumably due to better cover-

age of the time window when the signal might occur. Too specific pulses might miss

the signal which in fact can appear within a few millisecond jitter. The volleys essen-

tially come from the external sources and their timing is fixed and not dependent on

the signals traversing the chain. Too strong and too dispersed modulatory signals cause



Chapter 5. Signal gating by cholinergic modulation of disinhibitory pathways 96

the other, not modulated chain to also improve its success rate, so there should be some

trade-off between the strength and dispersion of the phasic input.

5.6 Volume and phasic transmission comparison

Finally, we compared the two modes of transmission, which are controlled by differ-

ent sets of parameters – volume transmission involves modifying the firing threshold

throughout the entire simulation time, whereas in the phasic transmission mode the

volleys of spikes are sent to the chosen pools to elicit spikes. The goals of both modes,

however, are the same: firstly, to open the gate along the activated and modulated

chain and, secondly, provide some level of specificity when the modulation targets the

unactivated chain.

Two plots in Figure 5.11 collate the success rates obtained in the volume and phasic

transmission setups. In the left panel, success rates in the modulated chain are plotted

against the rates in the unmodulated one. The right-hand side plot displays the success

rates in the modulated chain versus the difference. This plot highlights the fact that the

relation between the success rate and the difference is not perfectly linear – the best

precision can be obtained in regimes that open the gate with the 80% efficiency, but if

the above 90% efficiency is sought-after, the precision decreases.

Figure 5.11: Volume vs phasic transmission. The same data, two ways of showing the

relation. Blue dots denote volume transmission, warm reds – phasic setups. Left: suc-

cess rate in the modulated vs unmodulated chain. Right: success rate in the modulated

chain vs the difference in rates (modulated – unmodulated). Green shading denotes

the regions where the gate in the modulated chain is open (>90% success rate).
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The plots reveal that all the setups with phasic transmission are moderately but

consistently better than the volume ones. Does it mean that the phasic mode should

be regarded as the more efficient one? Not necessarily. It should be remarked that

the volume transmission is controlled by only one parameter affecting all the neurons

in the disinhibitory pools, whereas the phasic one is more complex, and, most impor-

tantly, targets only a subset of disinhibitory pools. It can be argued that introducing

more complexity and optimisation only to obtain a rather modest improvement is un-

necessary and somewhat troublesome.

Finally, although a perfect separation was not found, it should be clearly high-

lighted that the setups that were under investigation involved as high as 85-100% level

of inhibitory overlap. Although the disinhibitory switches were private, their target

populations were highly overlapping. Then, even with such a high level of overlap,

as high as 65% separation was achieved to boost one cell assembly while ignoring the

other.

5.7 Discussion

We have shown that in principle, a uniform global modulation targeting the disin-

hibitory pathways is capable of controlling the signal propagation along the feedfor-

ward chains. In more detailed scenarios, where the goal was to modulate one assembly

while ignoring the other, such a global mode turned out to be insufficient. The phasic

cholinergic transients improved the response separation, but only to some extent.

The core of the issue lies in the fact that although the modulated disinhibitory sig-

nals are specific, they target the same, globally shared inhibitory blanket. Such setup

obviously lacks the sought-for specificity. It has been suggested that the solution to

this problem might actually be found on the subcellular level, namely in the dendritic

branches of pyramidal cells where the SOM interneurons’ axons terminate. Recently,

it was proposed that although the SOM a PY R connectivity appears to form the indis-

criminate blanket of inhibition, this connectivity can actually be sparse when exam-

ined at the individual branches (Yang et al., 2016). This observation was exploited in a

computational model which demonstrated that if the specific input pathways cluster on

separate dendritic branches of the pyramidal neurons, these pathways can be robustly

gated by the disinhibitory mechanisms. Importantly, such branch-specific disinhibition

was shown to be possible also with a dense, blanket-like connectivity.



Chapter 6

Cholinergic modulation of feedforward

inhibition to invoke replay

Chapter summary

In this chapter we explore the notion of spontaneous replay and possible mechanisms

to generate one in the feedforward chain model presented in this thesis. We show that

the modulation of a subpopulation of interneurons providing disynaptic feedforward

inhibition (FFI) proves to be the key element in invoking replay. Since this circuit

also protects the network from the synfire chain explosions by providing balancing

inhibition, weakening the FFI promotes not only replay but also explosions. In order

to find stable setups we explore various patterns of selecting only subpopulations of

the interneurons. We conclude that both tasks, providing balancing FFI and ensuring

global stability should be realised by separate pools of interneurons and hypothesise

that the SOM and PV+ interneuron classes might be suitable candidates.

6.1 Introduction

The mode of the synchronous spiking propagation triggered by a strong input – volley

of spikes – was extensively explored in the previous chapters and the modulation of

the disinhibitory pathways was shown to realise the gating of signals along the chains

of excitatory and inhibitory pools. In this chapter we focus on the question, whether

such chains can also be modulated to invoke an internally generated replay.

Internally generated or spontanous replay is defined here as a type of an activation

that is generated at the absence of an external, specific input. It is implicitly assumed

98
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that the signal pathways are already embedded into a random network, but the baseline

activity is too weak to turn them on. Such a replay refers to an activity that is typically

observed during animal’s sleep or quiet wakefulness, when an animal indeed tunes out

the external stimuli (Carr et al., 2011).

Technically, this definition of replay calls for a requirement that the state that en-

ables the formation of replay has to be crucially different that the awake state char-

acterised by network’s vigilance and responsiveness to the incoming stimuli. It is not

desirable to have an awake state facilitating both: input-driven and internally-generated

activation, because that would cause confusion whether an activation was caused by

an actual input and is relevant or whether it can be disregarded due to its spontaneous

formation. Thus, certain manipulations need to be applied to turn the awake network

into a sleep–like state, when the replay is allowed to take place. Since it is assumed

that there is no external input reaching the network in that state, it is irrelevant whether

the robust input-driven activation is possible or not.

Neuromodulation is a straightforward candidate for controlling network states as

these were shown to be characterised by different levels of neuromodulators available

in the extracellular space (Lee and Dan, 2012). Microdialysis measurements of acetyl-

choline in the hippocampus of freely moving rats (Kametani and Kawamura, 1990)

and cats (Marrosu et al., 1995) showed high levels of acetylcholine release during this

active waking behaviour. During sleep, on the other hand, the levels of cortical acetyl-

choline are considerably lower. Thus, it was hypothesised that the sleep-like state can

be achieved by modifying the level of available acetylcholine in the local circuits.

The question is what exactly such modulation is supposed to achieve and which

network elements should be its targets. In principle, the network receiving only exci-

tatory background noise and maintaining low firing rates is expected to integrate and

amplify a random signal along the feedforward circuitry. By default, the balanced con-

nectivity ensures that any upsurge of excitatory activity is immediately followed by

the inhibition, impeding the integration of stronger signals out of random fluctuations.

Thus, breaking a balance might be an option to overcome this obstacle. Again, this

can be achieved by either modifying excitation or inhibition. Since the expectation is

to amplify a weak signal, the excitation should become stronger or inhibition weaker.

Cholinergic modulation of excitatory neurons was numerously reported, but it would

always improve neurons’ excitability in the states with high ACh levels. Here, the

goal is to modulate a network to turn it from the default, awake state into the sleep-

like state, thus, the biologically realistic modulation of excitatory population would
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in fact have to involve decreasing the activity of the excitatory cells. Increasing the

excitatory background noise is also not realistic since in the sleep state the networks

are less active. In fact, injection of extra excitation was already examined and it was

demonstrated that when the network increases its firing rates from 5Hz up to 12Hz,

spontaneous replay can robustly occur (Chenkov et al., 2016). Here, it is argued that

such mode does not account for the biological characteristics of the sleep-like state.

Modulation of inhibition remains as a potential candidate. In the previous chapter

we discussed the disinhibition as a powerful mean of passively increasing the activity

of excitatory neurons. Here, however, this mechanism is inappropriate, since in order

to apply disinhibition to gate the signal, the signal itself should already be existing.

Generating replay involves creating a signal out of random noise and disinhibition as

such cannot help. Also, first three layers of the chain do not have disinhibitory pools

so it is impossible to modulate the initial part of the chain via disinhibition.

Notably, the chains modelled here contain yet another type of inhibitory pools –

the interneurons that realise the disynaptic feedforward inhibition. As remarked by

Kremkow et al. (2010b), the addition of the FFI into the synfire chain results in pow-

erful filtering out the weak signals and ensures that random background fluctuations

do not trigger the signal transmission along the chain causing false-positive responses

(Tetzlaff et al., 2002). Such spontaneous firing is naturally unacceptable during the

awake state, but in the sleep-like state this is exactly what is needed to invoke re-

play. Thus, it was hypothesised that during the sleep-like state the FFI mechanisms are

relaxed so that the random network fluctuations are sufficient to trigger signal amplifi-

cation along the chain.

6.2 Methods

In the previous chapter, the default state of the network involved a closed gate and

the application of cholinergic modulation opened it to enable signal transmission. In

the case of replay, the setup is inverse. The default state examined so far corresponds

to the awake state, which is implicitly already under the influence of the cholinergic

modulation thanks to the high levels of extracellular acetylcholine. The modulation

examined here essentially involves removing the acetylcholine from the local circuits

which presumably will decrease inhibitory neurons’ efficacy and is thought to work

exclusively via the volume transmission. Phasic transmission was shown to involve

precise transient pulses correlated with the behaviour and as such, the awake state can
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be described as dominated by the periods without the cholinergic transients in local

circuits. Thus, modelling the sleep-like state without the transients would in fact look

too similar.

Only the inhibitory neurons in the FFI pools were under modulation. Their firing

threshold was raised so that they fired less reliably. The expectation was that at the

event of random upsurges of excitatory activity, weak signals would have a chance to

integrate inside an excitatory pool within a given layer and then activate the next layer’s

excitatory pool and FFI interneurons pool. Since these interneurons would be under

modulation, they would need more inputs to reach the threshold and thus their firing

would be delayed or abolished. As a result, the random signal would gain extra time

to integrate and again reach the next layer until it gets amplified to become a strong

volley.

To detect the replay events, networks with the two embedded guarded chains were

simulated for 60 seconds. In contrast to the previous protocols, only the background

excitatory noise was delivered to all the neurons so that the network maintained the

low firing rate activity (1–2Hz). For each investigated condition, 10 network instances

were created.

6.3 Cholinergic modulation of feedforward inhibition

Firstly, an idealised setting was examined. Although two chains were embedded in the

network, these were non-overlapping and only one chain underwent modulation, that

is all the interneurons in the FFI pools had their firing threshold increased.

The spontaneous replay indeed occurred along the modulated chain, as shown in

Figure 6.1, whereas no replay event was recorded along the second, non-modulated

chain.

This result underscores the importance of the FFI circuit in controlling the width

of the time window for integrating the signals. In the awake state, this filter works

powerfully to ensure that only the strong volleys are capable of activating the chain,

while the random fluctuations remain with no opportunity to invoke false positive re-

sponses. Modulation of the FFI supports the formation of spontaneous replay out of

much weaker signals which is not desirable in the awake state, but biologically realistic

during sleep and quiet wakefulness.

The right hand side plot in Figure 6.1 displays a rather abnormal instance of a re-

play event. The signal amplification occurred in multiple sites simultaneously creating
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Figure 6.1: Spontaneous replay during the modulation of FFI. Left: an ideal replay event

initiated in the middle of the chain out of random fluctuations. Right: signal amplification

at multiple sites simultaneously.

two strains of cascades and a mild explosion in the initial layers of the chain, since the

neurons there fired in unison. Such events, although undesirable, are the straightfor-

ward results of the uniform modulation of the whole chain – the random signals can

independently enter the chain at any layer, especially during strong global fluctuations

which spread across the whole network.

6.4 Synfire chain explosions

The abnormal replay events are not the only unwanted result of the FFI modulation.

The main and most severe side effect of such intervention is the reduced amount of

global inhibition which results in frequent occurrences of spontaneous synfire chain

explosions, as shown in Figure 6.2.

Since the whole chain is evenly modulated, a signal amplification can be initialised

in any layer. As a result, a strong global fluctuation can trigger such amplification in

two or more sites simultaneously. Already weakened global inhibition has no chance

to balance such multiple upsurges and instead of replay, an explosion spreads across

the whole network.

Four levels of spontaneous activation can be singled out. The replay can be reli-

ably invoked without causing global instabilities, as shown in the left hand side plot in

Figure 6.1. Right hand side plot displays the second level of activation – a replay with
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Figure 6.2: Spontaneous synfire chain explosion. Left: an explosion triggered by a

cascade-like activity. Right: an explosion without the preceding cascades.

multiple cascades. Then, the emerging volley can cause global explosion, as shown

in Figure 6.2 left, and finally, the explosion can occur at the absence of any preced-

ing cascade-like behaviour (Figure 6.2 right). Since any occurrence of explosions is

adverse, only two types of events will be of interest here: either robust replays or any

events that involve explosions.

To search for the replay events, various levels of the firing threshold were tested.

For each level, the number of occurrences of both, replay and explosions were counted

and it was revealed that explosions emerge considerably more frequently than the re-

play events, as shown in Figure 6.3.

Figure 6.3: Spontaneous synfire chain explosion vs replay for different levels of the

firing threshold. The default value of the firing threshold was -57mV.
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The setups which, in principle, allow for the occurrences of replay, but are dom-

inated by the random explosion events are evidently unacceptable. The ideal setup

should facilitate random replay events and remain stable at all times.

6.5 Modes of modulation to avoid the instabilities

The next goal was to find a way of modulating a sufficient amount of FFI interneurons

to still promote the replay formation but at the same time to minimise the chances of

the synfire chain explosion events. A straightforward way of avoiding instabilities is

to modulate fewer FFI interneurons. Below two ways of achieving this are scrutinised.

6.5.1 Modulation targeting a subset of layers

Firstly, we selected only the initial segment of the chain to be the target of the mod-

ulation. In principle, we need to find a setup to let weak and dispersed pulse packets

accumulate along the chain. Wide pulse packets were shown to always get narrower

and more precise when they traverse the chain (see the state space diagram for synfire

chains in Figure 4.12). In essence, only at the entrance of the chain the FFI is required

to be relaxed. Down the chain, there is no longer a need for the wider window of op-

portunity as the signal is narrow enough to withstand the powerful filtering. On top,

reliable FFI is necessary to balance the sudden amplification of the excitatory activity.

Figure 6.4: Spontaneous synfire chain explosion vs replay for different levels of neurons’

firing threshold. Modulation targeting only the initial 10 layers of the chain.

Figure 6.4 displays the number of occurrences of spontaneous events when only

the first 10 layers are modulated for various levels of firing threshold. Although the
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ratio between the replay and explosion events occurrences improved, the results are

still not fully satisfying. As soon as the setup allows for the replay events, these are

inevitably accompanied by the explosions.

Such setup can be conceptualised as an analogue of opening holes in the blanket

of inhibition (Karnani et al., 2016). One only needs to open a hole in the ’blanket of

FFI’ to let a wide signal in, which will subsequently get narrower once it is inside the

chain. Although it can be criticised that it is unrealistic and somewhat rigid to only

modulate the selected segment of the chain, it may still have a biological relevance.

The washout of modulators does not happen uniformly so the holes can randomly

arise along a chain. Also, the cortex is composed of 6 layers with different stereotyped

connectivity patterns. It is plausible that the FFI gets weakened only in some layers

where the initial segment of the chain resides – such as L4 which was shown to receive

inputs from the thalamus (Cruikshank et al., 2007).

One can ask whether there is the minimum number of layers that need to be mod-

ulated to let wide signals in, or parameterise the width and strength of the such wide

signals. The above analysis involved 10 layers under modulation, the setups with 9, 8

and 7 layers were also investigated (data not shown) and in all cases the setups were

found where both, replay and explosion events emerged. Importantly, no setup was

found that only the replay events were robustly present. Weak modulation caused no

events at all, whereas as soon as the level of modulation allowed the replay events

to emerge, these were always accompanied by the explosions. Because no satisfac-

tory setup was identified, no thorough analysis was carried out to establish a minimum

number of layers and the width of the signals needed for the replay formation.

6.5.2 Modulation of a fraction of neurons in pools

Another way of selecting a ’sufficient number’ of the FFI interneurons to be the tar-

get of modulation is to pick only a fixed percentage of these in each layer under the

assumption to model the division of labour. While some neurons undergo cholinergic

modulation, some might not, so that they can remain responsive during the amplifica-

tion to protect the whole network from synfire chain explosions.

Simulations were run with the 50%, 60%, 65% and 70% of the FFI interneurons

modulated. While for the first two setups no events were detected, the 65% and 70%

ones exposed a number of synfire chain explosions. No replay events were recorded at

all. It was hypothesised that it is more probable to form an explosion as this can arise
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when the amplification takes place in several places simultaneously. The replay event,

however, necessitates only one site where the signal becomes narrower and stronger.

This mode was rejected as a way of invoking replay while avoiding explosions.

6.6 Overlapping chains

So far only the idealised setup was examined, where the embedded two chains were

non-overlapping and the modulation affected only one of them. In the previous chap-

ters, however, we examined two chains with substantial overlaps and showed that these

have a lot of influence on the signal propagation and overall stability. Thus, it was ex-

pected that these might also play an important role in invoking replay as well as synfire

chain explosion events is the sleep-like state. Because the excitatory overlap in general

promotes explosions, here only the inhibitory overlap was under consideration.

Two setups were tested. The first one involved modulation targeting the full chain

and the second setup involved modulating 10 initial layers. In both setups the in-

hibitory overlap was set at 50%, whereas the excitatory as well as disinhibitory over-

lap remained at 0%. The levels of firing threshold were set at the same levels as in

the cases with the 0% inhibitory overlap discussed in the previous sections to enable a

direct comparison.

Figure 6.5 compares the counts of replay and explosion occurrences for the setups

with 0% inhibitory overlap (data taken from Figures 6.3 and 6.4) and the newly gener-

ated setups, with 50% overlap. The inhibitory overlap turned out to be detrimental to

the network’s stability. Interestingly, in both setups, the overlap had a different effect.

When the modulation was applied to the whole chain, the number of both, replay and

explosion events raised. When the modulation targeted only the initial segment, the

presence of overlap only promoted more explosions, but the number of occurrences of

replay events remained the same.

These results are not surprising. Overlapping pools of FFI provide lateral inhibition

between the chains and thereby protect the network from the synfire chain explosions.

While the FFI is relaxed, this protection no longer works and the instabilities dominate

the network.
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Figure 6.5: Spontaneous synfire chain explosion and replay event occurrences for two

levels of inhibitory overlap (IO). Left: Modulation targeting the full chain. Right: Modu-

lation targeting the initial 10 layers of the chain.

6.7 Discussion

We have shown that in principle, the modulation of feedforward inhibition can invoke

spontaneous replay. However, relaxing FFI implies decreasing the amount of global

and lateral inhibition, which was shown to result in instabilities in form of synfire chain

explosions. Without accompanying reliable inhibition, rapidly amplified excitation

spreads uncontrollably.

6.7.1 Two types of inhibition

How to safely relax the FFI without destabilising the whole network? One solution

would be to introduce another source of reliable inhibition apart from the modulated

FFI. Since the interneuron population is highly heterogenous, such an extension of

the model could be readily justifiable and backed by the experimental data. Specifi-

cally, the PV+ interneurons, unlike the SOM ones, typically do not directly respond to

modulation and their physiological properties are specialized for rapid signaling (Hu

et al., 2014). In the presented model, all the inhibitory synapses had their delay set to

3ms, so that all the inhibitory signaling was carried out at the same speed, which was

also slower than the excitatory one (2ms synaptic delay). It is proposed that another

group of interneurons loosely mimicking the PV+ interneurons as expressed by short-

ening their synaptic delay would potentially provide a faster component of inhibition

that would in turn improve the network’s stability. The future extension of the model

should verify these claims.

Curiously, in the theoretical studies the division of slow and fast feedback inhi-



Chapter 6. Cholinergic modulation of feedforward inhibition to invoke replay 108

bition was proposed to be responsible for different aspects of neuronal activity. Fast

inhibition was suggested to be for coding, whereas slow inhibition – for computation

(Denève and Machens, 2016). The fast component provides stability, tightly tracks

excitation and rapidly balances the activity, whereas the slow one can realise more

specific computations on longer time scales, for instance the FFI. This reasoning was

backed up by the models involving the rate neurons, so it remains to be discovered how

this idea can be practically realised in the spiking networks.



Chapter 7

General discussion

7.1 Summary of the thesis

In this thesis we have explored the propagation of the synfire chain-like activity aug-

mented by the feedforward inhibition (FFI) embedded in the random spiking networks.

We have shown that the signal propagation is possible in the chains embedded in the

recurrent networks and the addition of disinhibition improves the transmission. By

overlapping the chains, a lateral connectivity between the two assemblies is implicitly

created. While the excitatory overlap is detrimental, the inhibitory overlap ensures that

while one chain is active, the remaining chains stay suppressed. Such lateral inhibition

was shown to robustly protect the network from instabilities.

We then studied the cholinergic neuromodulation to gate the signal on and off

where the disinhibitory pools were its sole targets. Modulation was modelled either

as a manipulation of the firing threshold via the volume transmission or as a transient

direct depolarisation mimicking the phasic transmission. We show that both modes can

powerfully realise the gating mechanism along the feedforward networks. Modulating

one assembly while ignoring the other turned out to be problematic due to the fact that

the modulated disinhibitory switches targeted the same, shared inhibition.

Modulation of the feedforward inhibition proved to be suitable to invoke spon-

taneous replay, but at the same time it also increased the chances of synfire chain

explosions. We have explored various ways of modulating the FFI while keeping the

network stable, but it appeared that the replay would always be accompanied by the ex-

plosion risk. We hypothesised that the solution to this problem might lie in introducing

fast and reliable inhibition that would not be subject to modulation.

Altogether, we have shown that by incorporating various inhibitory mechanisms

109
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inspired by the experimental results, one can obtain not only stability, but also robust

control over the signal transmission along the multiple synfire chains in random spik-

ing networks. Inhibitory and disinhibitory circuits are excellent targets for modulation

because they only passively promote spiking activity. Lastly, when neurons participate

in multiple cells assemblies, they should invariably realise only one type of computa-

tion in all the assemblies.

7.2 Relevance of the presented models

’The key test of the value of a theory is not necessarily whether it predicts something

new, but whether it makes postdictions that generalise to other systems and provide

valuable new ways of thinking.’ (Marder, 2015)

How to evaluate the work presented in this thesis in the light of the above quotation?

We believe to have demonstrated the importance of studying neural inhibition even in

the scenarios where the primary goal is to shape the excitatory activity. Exploration of

inihibitory circuits should be considered an essential part of studying neural networks.

Nevertheless, certain prediction can be formed based on the presented results.

The first prediction relates to the disinhibitory circuit. As thoroughly reviewed

in Section 2.4.3, many disinhibitory motifs were dissected in various parts of brain

and typically involved VIP and SOM interneurons that increased and decreased their

activity, respectively. Some studies, however, showed an inverted effect, suggesting

that a model with a one-way disinhibitory path is too simplistic and might require an

extension (Dipoppa et al., 2016). How do our data relate to this? It should be borne

in mind that these experimental studies employed the data recorded over long periods

of time, when an animal was, for instance, running on a ball or watching some visual

stimuli (Fu et al., 2014). The disinhibitory circuit we developed, on the other hand,

operates on a milisecond timescale. Activated disinhibitory neurons reliably silence

inhibitory pools, which just a few miliseconds later become equally active, as they are

also involved in a yet another circuit realising FFI. Thus, it is predicted that certain

disinhibitory effects can operate only on a small scale, and what is captured on a big

scale, might not necessarily reflect the actual functionalities. It is well plausible that

an increased activity of SOM interneurons is in fact a consequence of a well-timed

disinhibition, that controlled the excitability of the SOMs, as shown in our examples

with the guarded chains, where disinhibitory pools (putative VIPs) reliably protected
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the circuit so that it could successfully transmit the signal and thus activate the (putative

SOM) interneurons. Further physiological experiments should examine the SOM –

VIP circuits on a milisecond scale to verify the results obtained on a bigger scale.

Regarding overlapping cell assemblies, we have shown that two assemblies can

share a considerable proportion of excitatory neurons and virtually an entire inhibitory

neurons population. Thus, our model appears to confirm the notion of a blanket of

inhibition (Karnani et al., 2014) and the idea of harnessing the disinhibition to locally

override this blanket (Karnani et al., 2016). However, as revealed in Chapter 5, densely

shared inhibition poses a problem in modulation of individual assemblies via inhibi-

tiory circuits and a solution involving dendritic computation was proposed (Yang et al.,

2016) In detail, it is expected that interneurons from the global blanket are not only lo-

cally connected to specific neurons to form specialised circuits, but also connect to

these neurons on specific dendritic branches. Thanks to such organisation, 10 inputs

entering the same branch would have a stronger effect on a cell than 10 inputs enter-

ing a cell in random, distant branches. Future computational studies should examine

to what extent such a solution improves the specificity of inputs filtering and where

exactly in circuits such differentiation should be placed. Physiological studies, on the

other hand, could uncover the actual distribution of synaptic contacts on the dendritic

branches between various interneuron groups and pyramidal neurons.

Finally, we have shown that, in principle, a spontaneous replay can be invoked by

silencing a group of interneurons realising the circuit of feedforward inhibition (FFI).

Silencing a random pool of inhibitiory or disinhibitory neurons showed no effect. This

result could be readily tested experimentally. Given a network that was shown to ex-

hibit some sequential activity, it is expected that by inactivating (for example by har-

nessing optogenetics) certain groups of interneurons, one can obtain variable levels of

sequential spontaneous activations. Since the SOM interneurons were shown to realise

the FFI, it is expected that their decreased activity should be correlated with the in-

creased appearance of sequential activity. The VIP and PV+ groups are expected to

show no such relation.

7.3 Inhibitory overlaps between cell assemblies

One of the main results in this thesis is that the levels of inhibitory, unlike excitatory,

overlaps between the embedded chains were critical in providing stability of the net-

works and flexibility in signal transmission.
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Firstly, in Chapter 4 we have shown that the high inhibitory overlap protects the

whole network from the synfire chain explosions. Then, in Chapter 5, disinhibitory

pathways were chosen to be the targets of modulation and the separation of inhibitory

and disinhibitory overlaps turned out to be essential. In the scenarios with modulating

only one chain, high inhibitory overlaps proved to be problematic. Finally, Chapter 6

demonstrated that when the feedforward inhibition is modulated in one chain, the risk

of explosions increases and the inhibitory overlap only escalates the problem.

It appears that the high inhibitory overlap is beneficial in some setups, while it

becomes problematic in others. Lateral inhibition is essential in providing global sta-

bility, but if too much inhibition is shared, it becomes troublesome to harness the

inhibition-targeting modulation to affect only one cell assembly while ignoring the rest.

A shared, global inhibition seems to agree with the recent studies demonstrating that

the SOM interneurons are locally densely connected, targeting virtually all the neigh-

bouring principal cells, and thereby creating a ’blanket of inhibition’ (Karnani et al.,

2014). Similarly, other studies revealed that the highly interconnected operational

hubs (following the small-world wording), which orchestrate the whole network’s ac-

tivity, are usually the GABAergic interneurons, not the principal cells (Cossart, 2014;

Bonifazi et al., 2009).

These findings support only the results, where the lateral inhibition proved to be

beneficial. But how to obtain the specificity within a dense, indiscriminate inhibitory

connectivity? As already mentioned in Chapter 5, the computations on the dendritic

branches might reconcile the contrasting results (Yang et al., 2016). In brief, it was

demonstrated in a computational model that when specific pathways terminate on sep-

arate branches, the signals can be successfully gated by the disinhibitory mechanisms.

Future studies should resolve, whether the compartmental models are indeed necessary

to obtain the specificity between the cell assemblies or whether these effects can still

be reproduced in the less complex, spiking networks.

Another extension of the current model should definitely involve studying much

bigger networks with the capacity to embed several cell assemblies simultaneously.

This would allow to construct overlaps spanning more than 2 assemblies, which can

potentially shed more light on the functionality and limitations of the globally shared

blanket of inhibition.

Nevertheless, studying two overlapping cell assemblies proved to be immensely

valuable. This setup enabled us to uncover many problems and mechanisms that would

have never appeared if only one feedforward chain was under investigation. This ob-
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servation extends the view about the cell assemblies studied in isolation. These should

not only be embedded in a recurrent network, but should also interact with other as-

semblies so that the full range of behaviours is exposed.

7.4 Should cortical activity be dominated by inhibition?

The networks that were under investigation can be described as random balanced net-

works with the embedded non-random elements in a form of feedforward chains. We

have shown that the presence of such non-random elements has a potential to desta-

bilise the whole network due to a strong signal amplification along the divergent-

convergent connections along the chain.

One can single out two types of regimes depending on the amount of global in-

hibition that arises during the amplification. If a network lacks inhibitory counter-

measures, a sudden upsurge of excitation can cause synfire chain explosions and such

regimes can be labelled as dominated by excitation. Conversely, the regimes with

strong lateral inhibition causing inhibitory haloes can be labelled as dominated by in-

hibition. Both regimes are not ideal: explosions are the events that should be avoided

at all costs, whereas silencing of the whole network is nothing else but throwing a baby

out with the bathwater. The addition of disinhibitory pathway rescues the signal, but it

should also be used with care. Disinhibition involves removing the inhibition, and nat-

urally, if too much inhibition is being removed, the regime can no longer be dominated

by inhibition and can become susceptible to explosions.

This issue is figuratively depicted in Figure 7.1. The regimes dominated by the

effective excitation are coloured red, and the ones dominated by the effective inhibi-

tion – blue. In the middle, where the two forces are balanced, stable propagation can

take place. Green arrows denote the action of disinhibition – it involves removing a

part of inhibition, so it shifts the regime horizontally towards the redder region. Two

leftmost arrows represent the negative effect of disinhibition – due to the removal of

inhibition, excitation becomes dominant and thus the risk of explosions raises. Two

rightmost arrow represent safe application of disinhibition – after the removal of some

amount of inhibition, it is still dominant so that two effects are achieved: firstly, the

risk of explosion is negligible and secondly, disinhibition can selectively gate the actual

signal.

Thus, it is suggested that the regimes strongly dominated by inhibition provide

better conditions for efficient signal transmission than the balanced ones. In order to
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Figure 7.1: A simplified diagram of regimes with various E/I ratio during the signal

amplification. Green arrows symbolise the action of disinhibition: it removes inhibition

causing the regime to shift horizontally. In the balanced regimes, disinhibition can cause

instabilities, whereas the safest region to apply disinhibition is the one dominated by

inhibitory haloes.

modulate the signal and briefly break the E/I balance via the disinhibitory mechanisms,

the system should have sufficient amount of inhibition to forgo without compromising

the global stability.

7.5 The significance of disinhibition

The role of disinhibition was already discussed and we have shown that the disin-

hibitory pathways can powerfully gate the signals when controlled by neuromodula-

tion. Disinhibition serves as a mean to briefly break the E/I balance in order to provide

a window of opportunity for excitation to pass through. In principle, however, the bal-

ance can potentially be broken either by decreasing inhibition or increasing excitation.

Before discussing this issue further, the very notion of balance should be clarified.

The term E/I balance may potentially cause confusion as it might entail that it is

created out of two symmetric forces. The E/I balance was in fact compared to the yin

yang balance taken from the Chinese philosophy by Northoff (2013). While inhibition

indeed cannot live without excitation, the converse is not entirely correct and it was

actually phrased that the sparsened excitation wouldn’t do without preceding inhibition

(Northoff, 2013). Throughout this thesis, it was numerously reiterated that the role of
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inhibition goes far beyond a mere balancing excitation. In fact, there is a fundamental

asymmetry between excitation and inhibition: while inhibition is capable of tracking

excitation when a neuron is stimulated, excitation does not compensate for inhibition

when the neuron is suppressed (Denève and Machens, 2016). Neurons communicate

via spikes, which are ’positive’ events and only the excitation can bring the membrane

potential closer to the firing threshold. Thus, it has a causal power to induce spikes,

whereas inhibition can directly only cause a neuron NOT to spike.

7.5.1 Can disinhibition be equivalent to increased excitation?

In the light of the above E/I asymmetry, a short answer to the question whether disin-

hibition can be equivalent to increased excitation is: no.

Excitation and inhibition have different tasks and roles to play and as such, break-

ing the balance between the two is not only about the arithmetics, that is achieving

some disbalanced E/I fraction like 1.2:1 which, naturally, can be obtained in two

ways: either by increasing the excitatory contributions or decreasing the inhibitory

ones. Because the contributions are asymmetric, adding a pool of excitatory contribu-

tions which have a causal power is profoundly different from removing contributions

that lack such power but can suppress and modulate the signals instead. Disinhibition

assumes the removal of the brake holding the already existing drive. Increasing excita-

tion assumes that more drive is being added which has a causal power to evoke spikes

and then inhibition.

The reasoning above is rather speculative and only the actual analysis can prove the

claims. In the context of the spiking networks we can ask what effect on the spike trains

the disinhibition has, compared to the increased excitation. For example, as mentioned

earlier, the negative feedback was found to be responsible for the decorrelation of the

neighbouring neurons in the network (Tetzlaff et al., 2012). If disinhibition implies

removing inhibition, we could describe the decorrelation as a function of the amount

of the removed inhibitory inputs via disinhibition and then compare it to the neurons

with extra excitatory inputs. If disinhibition indeed is different from the increased

excitation, it should be reflected in neurons variability and correlations.

As a matter of fact, selective disinhibition was already compared to other mech-

anisms in the context of predictive and post hoc attentional selection using the mean

field approach (Sridharan and Knudsen, 2015). Specifically, two mechanisms based

on excitation were tested: multiplicative input gain and adding an excitatory bias cur-
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rent. The input gain mechanism proved to be unable to enhance the responses in the

post hoc scenarios, whereas adding the extra current lifted the baseline activity prior to

the stimulus presentation increasing the risk of saturation. In conclusion, disinhibitory

mechanism was indicated to be the most suited solution to the problem.

7.6 Mapping neurons to functions?

In this thesis, a great deal of experimental evidence was used to justify the extensions

of the standard synfire chain model. Although we were inspired by the findings about

the interneuron classes, in the model we chiefly employed the connectivity patterns

between these, not the detailed characteristics of neurons’ physiology.

We show for instance, that the modulation of the disinhibitory pathway is a pow-

erful mean of control of the signal transmission and the circuits involving the VIP or

L1 interneurons were a clear inspiration for this model. Although many contemporary

studies aim at mapping interneuron classes to function, we deliberately refrain from

this. Below, several issues supporting this stance are discussed.

7.6.1 Sampling problem

One problem involves the statistical considerations, as it was communicated that the

average statistical power of studies in neuroscience is very low, which severely under-

mines their credibility (Button et al., 2013). A low statistical power, usually due to

small sample sizes or small effects, not only reduces the chances of detecting a true

effect, but it also decreases the probability that the statistically significant findings re-

flect a true effect. How does it relate to the studies on interneurons? Can the findings

concerning various subgroups and their functions be considered reliable? Here, only

the sample sizes used in the reviewed studies will be scrutinised.

First of all, the interneuron population is inherently small and on average, only 20%

of all cortical neurons are inhibitory. Thus, a blind pooling of 1000 neurons would

contain a modest sample of 200 interneurons. Then, if we follow a rough estimate,

40% = 80 of these should be PV+, 30% = 60 should be SOM and 15% = 30 should

be VIPs (Rudy et al., 2011). Naturally, the actual numbers will differ across layers,

regions and species. For instance, it was estimated that in the L2/3 of mice S1 (primary

somatosensory cortex) 50% of interneurons are 5HT3aR-expressing (both VIP and

non-VIP), and PV+ and SOM account for roughly 25% each (Rudy et al., 2011). Thus,
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in a pool of 1000 neurons one would expect 100 5HT3aR-expressing cells, 50 PV+ and

50 SOM cells. Clearly, such estimates should not be taken as definite, especially in

relation to studies that used cre-based strategies. Nevertheless, one can reason that in

order to image/photostimulate 80 PV+ cells, one needs to cover an area/volume resided

by 1000 neurons (again, under the assumption that all the neurons are evenly spaced).

Nevertheless, it should be appreciated that the chances of obtaining a representative

sample of a given interneuron group are rather low and may widely vary depending on

the interneuron type, area or cortical depth.

Another fact undermining the value of the samples is that the present-day cre-mice

lines cannot label two or more genetically-defined cell types simultaneously, unless

specifically crossed. Hence, in most of the reviewed studies which compared the ac-

tivity of SOM with PV+ or VIP classes, different and multiple organisms were used

to pool individual classes. For instance, one study reported that 6 PV-Cre driver mice

were needed to obtain 23 cells and another 6 SOM-Cre driver mice for further 33 cells

(Kvitsiani et al., 2013). It remains controversial whether such samples are indeed re-

presentative and whether low variability between the animals can be safely assumed.

Clearly, individual neurons pooled from different animals are definitely not neigh-

bours, they do not share inputs or outputs, by no means are connected to each other

and were not necessarily recorded during the same brain state.

Table 7.1 presents the sample sizes selected from the studies on interneuron func-

tions that used cre-driver mice to label selected subgroups. What is striking is that

indeed the sample sizes are alarmingly low. The last study pooled considerably more

cells than the rest (Dipoppa et al., 2016), and interestingly, the authors reported signif-

icant differences in their results compared to the studies that used much smaller sam-

ples. Altogether, it is recommended to wait for studies with higher statistical power

reproducing the results before accepting the conclusions as final and definitive.
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Study Technique Samples description

Kvitsiani

et al.

(2013)

Optogenetics

and tetrode

recordings

Optogenetic stimulation: All cells=1339, PV=23 from

6 mice, SOM=13+22 from 6 mice.

Behavioural task: All cells = 1034, PV=14 from 4

mice, SOM=31 from 6 mice

Polack

et al.

(2013)

Two-photon

guided whole

cell recordings

PV=9, SOM=10

Number of animals not disclosed.

Zhang

et al.

(2014)

Optogenetic

inactivation

PV=9, SOM=10, VIP=9

“Data were from more than three mice in each group”

Fu et al.

(2014)

Optogenetics

& two-photon

Ca2+ imaging

First set: VIP=28, non-VIP=77 from 4 mice

Second set: VIP=44, non-VIP=76 from 7 mice

Locomotion effects: VIP=21, SOM=11, PV=40.

Number of mice not disclosed.

Karnani

et al.

(2016)

Optogenetics

& two-photon

Ca2+ imaging

Morphology analysis: VIP=19, SOM=8, PV=7

Behavioural task: 11 experiments, total VIP=68

VIP activation: 27 experiments, 638 cells, 5% disin-

hibited, <1% inhibited. Number of mice not disclosed.

Dipoppa

et al.

(2016)

Two-photon

Ca2+ imaging

Pyr=5556, PV=192, VIP=633, SOM=525 from differ-

ent cortical depths.

Number of mice not disclosed.

Table 7.1: Sample size in selected interneuron studies. Selected, chronologically or-

dered, studies that used cre-driver mice to study functions of interneuron groups.

7.6.2 Neuron vs network doctrine

The history of neuroscience is actually a history of techniques as most of the major

breakthroughs were due to a new technique that expanded the possibilities of investi-

gation (Yuste, 2015). As a matter of fact, one cannot discover anything that is beyond

the capacity of the method/equipment used. Small-scale single cell recordings over the

decades contributed to the ideas which can be labelled as the neuron doctrine which

asserts that single neurons are the structural and functional units of the nervous system.

With the advent of more advanced techniques and theoretical models, cell assemblies
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gained more recognition and, as already stated, these are nowadays considered to be

the functional units of the nervous system, reinforcing a so-called network doctrine

(Yuste, 2015).

Presently, the biochemical markers – SOM, PV, VIP – dominate the narrative of

the exploration of the neuronal inhibition. Do studies on these markers capture the real

picture of the interneuron population? Or is it merely yet another step in the history

of methods, which will become obsolete as soon as a more advanced technique is

developed?

It is argued here that dissecting the functions of the separate, genetically-defined

interneuron subgroups, which are pooled from multiple animals, can be compared to

the methodology of the single neuron doctrine – a some sort of a single–subgroup doc-

trine. Similarly, Kumar et al. (2013) rejected the view that in complex and recurrent

networks like the brain one can find a single neuron-type/single-function relationship.

Only in the case of a purely feedforward network one can fully learn the interactions

between the elements solely by modulating one element at a time. In a recurrent net-

work of n elements, however, this simplistic approach is insufficient, as in order to fully

uncover the actual interactions between all the elements, one would need to simulta-

neously modulate all combinations of 1,2,3, ...,(n−1) elements. The total number of

such subsets is given by Bell’s number, which grows faster than exponentially with n

(Kumar et al., 2013).

7.6.3 Building blocks of networks

Instead of finding a mapping, we claim to have studied so-called building blocks of

neuronal networks, which can be used to perform canonical computations (Miller,

2016). Circuit motifs like lateral and feedforward inhibition or disinhibition can be

useful in controlling the cortical processing and some neuron classes indeed repeatedly

take part in these. However, when these building blocks are assembled together and

are under the influence of multiple neuromodulators, some novel emergent properties

might appear that may change the responses of individual neurons/classes consider-

ably. Thus, a rigid class-to-function mapping should not be regarded as a final goal in

deciphering such a complex, multi-dimensional network like the brain.

Ironically, the presented results inadvertently seem to validate the intuition about

three separate tasks for inhibition. Firstly, we have shown a massive benefit of intro-

ducing a dedicated group of neurons that serve disinhibition and is subject to neuro-
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modulation. Then, we demonstrated that relaxing feedforward inhibition can invoke

replay, but at the same time it destabilises the whole network. Thus, it was hypothe-

sised that yet another type of inhibition – fast and not subject to modulation – might

be necessary to maintain the global stability. Disinhibition is typically mapped to the

VIP/L1 classes, FFI and lateral inhibition usually involves the SOM interneurons, and

the fast inhibition is usually associated with the PV+ interneurons. The keyword here

is usually, as there is plenty of examples where such clear separation is invalid. For

instance, VIP and SOM classes inhibit each other and under some conditions it might

appear that the SOM interneurons serve disinhibition (Dipoppa et al., 2016).

Thus, it is asserted that the complex behaviour of the networks is the effect of the

interplay of various building blocks. The total functionality of the system cannot be

reduced to some arithmetical sum of the functions of individual elements. Instead, it

is the effect of the emergent properties of the recurrently connected combination of

elements.

7.7 Biological realism of interneuron classes in spiking

networks

The current model can be readily extended to explicitly model the physiology of indi-

vidual interneuron classes to reproduce some experimental results. In Chapter 6, the

differentiation of fast and slow inhibition was already discussed and it was suggested

that introducing these two modes via modelling the distinct physiology of the SOM

and PV+ interneuron classes might be a necessary next step to realise.

Another issue involves topology. In the model, although we imposed distinct con-

nectivity patterns, all neurons maintained random, 5% global connectivity with the

fixed number of inputs (in-degree). The experiments, however, suggest that there is a

much higher specificity in the patterns. For instance, the VIP interneurons target only

other interneuron classes and avoid the excitatory cells, whereas the SOM interneu-

rons seem to connect to nearly all neighbouring pyramidal cells (Pfeffer et al., 2013;

Karnani et al., 2014).

It should be borne in mind that the spiking balanced networks were shown to main-

tain the AI (asynchronous irregular) state under the assumption that the connectivity

is sparse and the neurons’ in-degree is homogenous. Recently it was shown that by

relaxing this rule, that is by allowing the number of inputs be drawn from a wide dis-
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tribution, the E/I balance is disrupted (Landau et al., 2016). Homeostatic plasticity and

spike-frequency adaptation were demonstrated to mitigate the problem.

Another consideration refers to the fact that the interneurons do fire intrinsically, at

the absence of any inputs. As already mentioned, this feature is not integrated into the

IAF neuron model, but might have serious consequences in reality. We have dealt with

various examples where the haloes were able to disrupt the whole network’s activity.

Once the interneurons received strong inhibition, they would get hyperpolarised and

become unresponsive to the further activation. Also, inactivating the FFI reduced the

total amount of inhibition and promoted the formation of explosions in the scenarios

with the replay. It is plausible that allowing interneurons to emit spikes intrinsically

would increase the amount of global inhibition and presumably help in preventing the

abnormal behaviours. This prediction, however, is impossible to verify with the current

IAF model.

7.8 Neuromodulation

We have investigated two modes of cholinergic signalling: volume and phasic trans-

mission. Although the phasic transmission proved to be consistently more efficient in

modulating specific cell assemblies, the difference was rather minuscule. The core of

the problem turned out to be related to the shared inhibitory pools and neither mode

had capacity to overcome it. Thus, our results cannot be used to compare the two

modes. In principle, the volume transmission mode proved to be sufficient to control

the specific disinhibitory pathways and as such, there is no reason to employ more

specific, well-timed phasic transmission instead.

Although we assumed that it is the cholinergic modulation that is being investi-

gated, the studied mechanisms can as well apply to other neuromodulators. Specifi-

cally, the disinhibitory switch that was the main target of the cholinergic modulation

in the model, was hypothesised to be composed of the VIP or L1 interneuron classes.

Noteworthy, both classes were shown to also robustly express the ionotropic serotonin

receptor 5HT3a (Lee et al., 2010). Thus, it is plausible that the serotonergic modulatory

system may also exert control on the disinhibitory signalling in the cortex. Serotonin

is critically involved in various cortical functions and was found to be implicated in

cognition, mood and impulse control (Celada et al., 2013). The combination of two

neuromodulators regulating a circuit is a common motif and the cholinergic together

with norepinephrine modulation was already proposed to be responsible for controlling
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two types of uncertainty (Angela and Dayan, 2005).

7.9 Back to cell assemblies – how can they be created?

Although classically it is assumed that the assembly formation takes place during the

actual experience, it somewhat implicitly assumes that at the time of learning the net-

work encoding the memory is perfectly random and uniform, which naturally cannot

be true. Neuronal networks are in a constant flux, the synaptic weights continually

change, and neurons and synapses are being reused in the ever-changing environments

and contexts (McKenzie and Eichenbaum, 2011). In such setting, a local network will

always be tainted with the already existing non-random structures which were indeed

shown to influence the recruitment of neurons to form new assemblies during the en-

coding novel memories (Grosmark and Buzsáki, 2016; Holtmaat and Caroni, 2016).

However, the very fact that the non-random elements are plausible to be found does

not immediately entail that these elements can be large and highly ordered. Synfire

chains are very specific structures which require hundreds of neurons and thousands

of synapses to become a fully operational feedforward network. Recent theoretical

work on the spike timing dependent plasticity (STDP) demonstrated that the synfire

chains are in fact likely to be formed in random recurrent networks (Tannenbaum and

Burak, 2016). Remarkably, it was suggested that such structures can also emerge au-

tonomously, without the need to provide structured inputs to the network during learn-

ing phases. This study, however, investigated only the formation of the standard synfire

chains, composed exclusively of excitatory neurons. Excitatory synapses were also the

sole targets of the plasticity dynamics.

Inhibitory synapses, on the other hand, were also found to be plastic, and it is

believed that it is a crucial feature in maintaining the E/I balance (Vogels et al., 2011;

D’amour and Froemke, 2015). Also, various inhibitory and disinhibitory mechanisms

were indicated as the key factors in controlling network activity and thus in shaping

cell assembly formation (Holtmaat and Caroni, 2016). Furthermore, neuromodulators

were numerously shown to be implicated in plasticity including STDP and long term

potentiation and depression (LTP and LTD) (Hasselmo, 2006; Seol et al., 2007; Pawlak

et al., 2010).

In conclusion, standard synfire chains appear to be likely to be formed in ran-

dom networks. Since the inhibitory mechanisms and neuromodulation targeting the

interneuron pools were shown to be the key factors in plasticity and assemblies for-
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mation, it is speculated that the augmented synfire chains should also be likely to ap-

pear. Overall, the presence of inhibitory and disinhibitory pathways that are controlled

by neuromodulators might not only support the signal transmission, but actually con-

tribute to the learning mechanisms, such as strengthening the connections along the

chosen chain out of many overlapping assemblies. Future studies should extend the

present model by adding synaptic plasticity to elucidate potential effects of inhibitory

mechanisms on the chain formation.
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Destexhe, A., Rudolph, M., and Paré, D. (2003). The high-conductance state of neo-

cortical neurons in vivo. Nature reviews neuroscience, 4(9):739–751.
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Archiv European Journal of Physiology, 189(1):239–242.

Luczak, A., McNaughton, B. L., and Harris, K. D. (2015). Packet-based communica-

tion in the cortex. Nature Reviews Neuroscience.

Luongo, F. J., Zimmerman, C. A., Horn, M. E., and Sohal, V. S. (2016). Correlations

between prefrontal neurons form a small-world network that optimizes the genera-

tion of multineuron sequences of activity. Journal of neurophysiology, 115(5):2359–

2375.

Maass, W. (2000). On the computational power of winner-take-all. Neural computa-

tion, 12(11):2519–2535.

MacDonald, C. J., Lepage, K. Q., Eden, U. T., and Eichenbaum, H. (2011). Hip-

pocampal “time cells” bridge the gap in memory for discontiguous events. Neuron,

71(4):737–749.

Mante, V., Sussillo, D., Shenoy, K. V., and Newsome, W. T. (2013). Context-dependent

computation by recurrent dynamics in prefrontal cortex. Nature, 503(7474):78–84.

Marder, E. (2015). Understanding brains: details, intuition, and big data. PLoS Biol,

13(5):e1002147.



Bibliography 134

Marı́n, O. (2012). Interneuron dysfunction in psychiatric disorders. Nature Reviews

Neuroscience, 13(2):107–120.

Markowitz, J. E., Liberti III, W. A., Guitchounts, G., Velho, T., Lois, C., and Gard-

ner, T. J. (2015). Mesoscopic patterns of neural activity support songbird cortical

sequences. PLoS Biol, 13(6):e1002158.

Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., and Wu, C.

(2004). Interneurons of the neocortical inhibitory system. Nature Reviews Neuro-

science, 5(10):793–807.

Marrosu, F., Portas, C., Mascia, M. S., Casu, M. A., Fà, M., Giagheddu, M., Im-

perato, A., and Gessa, G. L. (1995). Microdialysis measurement of cortical and

hippocampal acetylcholine release during sleep-wake cycle in freely moving cats.

Brain research, 671(2):329–332.

Martinello, K., Huang, Z., Lujan, R., Tran, B., Watanabe, M., Cooper, E. C., Brown,

D. A., and Shah, M. M. (2015). Cholinergic afferent stimulation induces axonal

function plasticity in adult hippocampal granule cells. Neuron, 85(2):346–363.

McCoy, A. N. and Tan, Y. S. (2014). Otto loewi (1873–1961): Dreamer and nobel

laureate. Singapore medical journal, 55(1):3.

McKenzie, S. and Eichenbaum, H. (2011). Consolidation and reconsolidation: two

lives of memories? Neuron, 71(2):224–233.

Mehring, C., Hehl, U., Kubo, M., Diesmann, M., and Aertsen, A. (2003). Activity

dynamics and propagation of synchronous spiking in locally connected random net-

works. Biological cybernetics, 88(5):395–408.

Mesulam, M., Mufson, E., Wainer, B., and Levey, A. (1983). Central cholinergic

pathways in the rat: an overview based on an alternative nomenclature (ch1–ch6).

Neuroscience, 10(4):1185–1201.

Miller, K. D. (2016). Canonical computations of cerebral cortex. Current opinion in

neurobiology, 37:75–84.

Mitchell, J. F., Sundberg, K. A., and Reynolds, J. H. (2007). Differential attention-

dependent response modulation across cell classes in macaque visual area v4. Neu-

ron, 55(1):131–141.



Bibliography 135

Mokeichev, A., Okun, M., Barak, O., Katz, Y., Ben-Shahar, O., and Lampl, I. (2007).

Stochastic emergence of repeating cortical motifs in spontaneous membrane poten-

tial fluctuations in vivo. Neuron, 53(3):413–425.

Newman, E. L., Gupta, K., Climer, J. R., Monaghan, C. K., and Hasselmo, M. E.

(2012). Cholinergic modulation of cognitive processing: insights drawn from com-

putational models. Frontiers in behavioral neuroscience, 6.

Northoff, G. (2013). Unlocking the brain: Volume 1: Coding. Oxford University Press.

O’Keefe, J. and Dostrovsky, J. (1971). The hippocampus as a spatial map. preliminary

evidence from unit activity in the freely-moving rat. Brain research, 34(1):171–175.

Parikh, V., Kozak, R., Martinez, V., and Sarter, M. (2007). Prefrontal acetylcholine

release controls cue detection on multiple timescales. Neuron, 56(1):141–154.

Pastalkova, E., Itskov, V., Amarasingham, A., and Buzsáki, G. (2008). Internally gen-
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Song, S., Sjöström, P. J., Reigl, M., Nelson, S., and Chklovskii, D. B. (2005). Highly

nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol,

3(3):e68.

Sridharan, D. and Knudsen, E. I. (2015). Selective disinhibition: A unified neu-

ral mechanism for predictive and post hoc attentional selection. Vision research,

116:194–209.

Stevenson, I. H. and Kording, K. P. (2011). How advances in neural recording affect

data analysis. Nature neuroscience, 14(2):139–142.
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