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Abstract
Language is the primary and most natural means of communication for humans. The

learning curve of interacting with various devices and services (e.g., digital assistants,

and smart appliances) would be greatly reduced if we could talk to machines using

human language. However, in most cases computers can only interpret and execute

formal languages. In this thesis, we focus on using neural models to build natural

language interfaces which learn to map naturally worded expressions onto machine-

interpretable representations. The task is challenging due to (1) structural mismatches

between natural language and formal language, (2) the well-formedness of output rep-

resentations, (3) lack of uncertainty information and interpretability, and (4) the model

coverage for language variations. In this thesis, we develop several flexible neural

architectures to address these challenges.

We propose a model based on attention-enhanced encoder-decoder neural networks

for natural language interfaces. Beyond sequence modeling, we propose a tree decoder

to utilize the compositional nature and well-formedness of meaning representations,

which recursively generates hierarchical structures in a top-down manner. To model

meaning at different levels of granularity, we present a structure-aware neural archi-

tecture which decodes semantic representations following a coarse-to-fine procedure.

The proposed neural models remain difficult to interpret, acting in most cases as

a black box. We explore ways to estimate and interpret the model’s confidence in its

predictions, which we argue can provide users with immediate and meaningful feed-

back regarding uncertain outputs. We estimate confidence scores that indicate whether

model predictions are likely to be correct. Moreover, we identify which parts of the

input contribute to uncertain predictions allowing users to interpret their model.

Model coverage is one of the major reasons resulting in uncertainty of natural lan-

guage interfaces. Therefore, we develop a general framework to handle the many

different ways natural language expresses the same information need. We leverage

external resources to generate felicitous paraphrases for the input, and then feed them

to a neural paraphrase scoring model which assigns higher weights to linguistic ex-

pressions most likely to yield correct answers. The model components are trained

end-to-end using supervision signals provided by the target task.

Experimental results show that the proposed neural models can be easily ported

across tasks. Moreover, the robustness of natural language interfaces can be enhanced

by considering the output well-formedness, confidence modeling, and improving model

coverage.
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Chapter 1

Introduction

Language is the primary and most natural means of communication for humans. Be-

sides ease of use and sufficient expressive power, recent development in speech tech-

nology makes natural language a very appealing user interface for many applications,

such as digital personal assistants and wearable devices. Language provides a con-

venient way to interact with different services without requiring users to be domain

experts. This advantage is of great value especially when there are quite a lot of op-

erations allowed in an application. For example, a smart home usually contains many

appliances with various functions, it would be much more convenient to express de-

sired actions in natural language, rather than struggling to find the buttons and enter the

execution plans according to user manuals. Moreover, it is hard for users to remem-

ber different machine-interpretable languages, while human language could provide

a unified interaction experience across domains. For devices (such as smart speak-

ers) that have restricted keyboard usage, dictating in natural language together with

a speech recognition module complements other input methods. For instance, voice

control when used in the automotive environment improves the driving experience and

reduces cognitive load (i.e., the driver focuses on the driving task per se with having to

use their hands or direct their gaze for other functions).

Natural language interfaces aim at allowing users to interact with devices in human

language (such as English), rather than relying on special-purpose machine-interpretable

language. The learned interfaces are transparent layers between users and comput-

ers, which can handle commands expressing various intents. It can greatly reduce the

learning curve of interacting with various devices and services (e.g., robots, digital

assistants, and smart appliances) if we can manipulate machines using human lan-

guage. Such kind of human-computer interface has a wide range of applications, such

1
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Natural 

Language 

Utterance

Structured 

Meaning 

Representation

Natural 

Language 

Interface

What is the population of the 

state with the largest area?
(population:i (argmax $0 (state:t $0) (area:i $0)))

State Area Population

… … …

… … …
World

Figure 1.1: The goal of natural language interfaces is allowing users to interact with

computers in human language. As shown by the example from the GEO dataset (Zelle

and Mooney, 1996; Zettlemoyer and Collins, 2005), the model maps the input question

to the λ-calculus meaning representation, and then execute it over the database to

obtain the answer.

as querying databases, completing tasks, and answering questions. There have been

some successful use cases by now: Google answers questions over a knowledge base;

Apple Siri, Amazon Alexa, and Microsoft Cortana assist individuals in performing

tasks or services on smartphones, computers, and smart speakers; and some cars en-

able us to adjust climate controls or move seats using natural speech. Although these

applications can presently only handle limited commands, they have shown the great

potential of natural language interfaces.

Computers can only interpret and execute formal languages that are more machine-

friendly but difficult to learn and master for most people. So one of the core challenges

of building a natural language interface is semantic parsing, i.e., how to map a natu-

rally worded expression onto the machine-interpretable representation of its underly-

ing meaning. Figure 1.1 shows the workflow of a typical natural language interface

and an example taken from the GEO dataset (see Chapter 2 for more detail on this

dataset). Given a natural language utterance, the system predicts a machine-readable

(structured) representation. The prediction is then executed against a read-world en-

vironment to perform a task (e.g., query a knowledge base, or instruct a robot). The

example question in Figure 1.1 is used to query a database of U.S. geography. The pre-

dicted meaning representation is based on lambda calculus. And the logical form can

be transformed to a database query in order to obtain the answers. As we can see from

this example, a regular user could utilize everyday languages to query a knowledge

base without the need to learn a database query language.
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What microsoft jobs do not require a bscs?

ans(company(J,’microsoft’),job(J),not((req deg(J,’bscs’))))

What is the population of the state with the largest area?

(population:i (argmax $0 (state:t $0) (area:i $0)))

Table: ‖Pianist‖Conductor‖Record Company‖Year of Recording‖Format‖
What record company did conductor Mikhail Snitko record for after 1996?
SELECT Record Company WHERE (Year of Recording > 1996)

AND (Conductor = Mikhail Snitko)

In which office was the patent computer mouse filed?

Law.Us patent.Patent office(ENTITY.mouse) u TYPE.Law.Patent office

Turn on heater when temperature drops below 58 degree
Weather−Current temperature drops below−((Temperature (58)) (Degrees in (f)))

THEN WeMo Insight Switch−Turn on−((Which switch? ("")))

if length of bits is lesser than integer 3 or second element of bits is not equal to string ’as’,

if len(bits) < 3 or bits[1] != ’as’:

Table 1.1: The examples of natural language descriptions and their meaning represen-

tations are taken from (Tang and Mooney, 2001; Zettlemoyer and Collins, 2005; Zhong

et al., 2017; Su et al., 2016; Quirk et al., 2015; Oda et al., 2015).

The formal language is usually chosen by considering the convenience for end

applications and used models. Table 1.1 shows some examples of natural language

expressions and their meaning representations. The first four blocks are question an-

swering examples which retrieve answers from databases. Their semantic representa-

tions are based on Prolog (Zelle and Mooney, 1996; Tang and Mooney, 2000), lambda

calculus (Zettlemoyer and Collins, 2005; Kwiatkowksi et al., 2010), SQL (Giordani

and Moschitti, 2010; Zhong et al., 2017; Iyer et al., 2017), and knowledge graph

query (Reddy et al., 2014; Yih et al., 2015; Su et al., 2016), respectively. The fifth

example uses a tree-structured program (Quirk et al., 2015; Beltagy and Quirk, 2016)

to represent the automation command. The last example is based on the Python pro-

gramming language (Yin and Neubig, 2017). In thesis we do not assume that a specific

formal language is used in order to enable the proposed models to be general and

portable across domains and meaning representations.

Recently, models based on neural networks have achieved promising results in the

field of natural language processing (Goldberg, 2017). Typically, discrete words are

mapped to a continuous vector space and then processed by nonlinear transformations.
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The modeling flexibility allows us to design various neural components to construct

larger networks, which can be jointly trained with gradient-based optimization algo-

rithms. The end-to-end learned representations also reduce the requirement of domain

knowledge and feature engineering. Additionally, neural models are good at handling

compositionality, which is critical for both natural language and formal representa-

tions. The composition of dense vectors in neural networks alleviates the problems

of data sparsity compared with using symbolic n-gram features. Because of these ad-

vantages, in thesis we will explore how to use neural networks to build and improve

natural language interfaces.

1.1 History of Natural Language Interfaces

Due to the complexity of language, building natural language interfaces has been a

long-standing research goal of artificial intelligence. In the early days, systems were

mainly built with manually defined lexicons and rules. Along with the development of

machine learning, statistical systems became mainstream. We summarize the develop-

ment of research on natural language interfaces as follows.

Rule-Based Systems One of the earliest natural language interfaces is THE CON-

VERSATION MACHINE (Green et al., 1959). The system was built to carry out a

conversation about the weather. A dictionary was used to match words which were

categorized into time (e.g., “July”), operator (e.g., “not”), and ordinary (e.g., “rain”).

Each matched word was assigned with an attribute-value pair to store its meaning. For

example, for the time word “July”, the attribute is the type of month and the value

the specific month. The assigned functions of operator words were then executed to

change the parsed values. And a reply frame was selected according to the results. An-

other early system was BASEBALL (Green et al., 1961), which answers questions about

baseball games. Similarly, a dictionary was used to match the words and constituent

phrases of the given question with the database, which built an executable specifica-

tion list to obtain the answers. The algebra problem solver STUDENT (Bobrow, 1964)

transformed natural-language statements into a set of equations. Heuristic dictionary

lookup was employed to identify the equation operators and function terms. Another

noteworthy system is PICTURE LANGUAGE MACHINE (Kirsch, 1964), which verified

whether natural-language statements were correct for a given image. It is one of the

earliest systems that translate sentences into a formal language. A sentence was parsed
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to syntactic trees with a constituent grammar. And a rule-based formalizer would trans-

late the trees to first-order functional calculus in a top-down manner. The logical form

was executed together with the picture to obtain the result.

The linguistically rich systems LUNAR (Woods et al., 1972) and SHRDLU (Wino-

grad, 1972) achieved significant success in the early 1970s. The system LUNAR

can answer questions against a database of isotope, chemical, and age analysis of the

Apollo 11 samples. The application was designed to help geologists access the data

records without learning a database querying language. The system first performs syn-

tax analysis to obtain the sentence’s grammatical structure. Then the syntactic frag-

ments are transformed into structured meaning representations using rules. SHRDLU

has a syntax-driven semantic parser built with rules. Users can use natural language

to manipulate a block world. Although the application is artificial, the system shows

the ability to handle context information and interact with users. The language under-

standing process and action execution are performed jointly, which connects semantics

with the real world.

Some other rule-based systems (Hendrix et al., 1978; Damerau, 1981; Warren and

Pereira, 1982; Thompson and Thompson, 1983; Templeton and Burger, 1983; Hafner,

1984; Ballard, 1984; Ballard and Stumberger, 1986; Grosz et al., 1987; Alshawi and

van Eijck, 1989; Bobrow et al., 1990) also obtained promising performance for differ-

ent applications and meaning representations. Typically, syntax analysis is performed

first to obtain the chunks or syntactic structures for the given input utterance. Next, a

set of manual lexicons and translation rules are applied, which transforms the natural

language input to a formal representation. Priority values are often predefined for rules

to resolve the ambiguity if multiple rules are matched. However, rule-based systems

are often limited to a specialized subset of natural language that can be covered by the

predefined lexicons and templates. Substantial engineering efforts and domain exper-

tise are required to build such systems and extend them manually to new tasks. The

complexity of rules increases exponentially with the complexity of linguistic phenom-

ena being handled.

Statistical Systems Advances in statistical techniques have led to the development

of natural language understanding models which can learn from data, in lieu of hand-

coding rules. In the statistical paradigm, a training corpus is first collected to provide

supervision signals. Once we define the model and the training objective, we can use

optimization algorithms to learn the model’s unknown parameters. During testing, the
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model with learned parameters is employed to predict the results for input examples.

These systems typically learn lexicalized mapping rules to construct a candidate set of

meaning representations for a given input. Then a scoring component assigns scores

to these candidates and uses the best results (i.e., with largest scores) as the final pre-

dictions.

Various models have been proposed over the years to learn natural language inter-

faces from natural language expressions paired with their meaning representations. Ex-

amples include the use of inductive logic programming (Zelle and Mooney, 1996; Tang

and Mooney, 2000; Thomspon and Mooney, 2003), parsing models (Miller et al., 1996;

Ge and Mooney, 2005; Lu et al., 2008; Zhao and Huang, 2015), probabilistic automata

(He and Young, 2006), string/tree-to-tree transformation rules (Kate et al., 2005), clas-

sifiers based on string kernels (Kate and Mooney, 2006), machine translation (Wong

and Mooney, 2006, 2007; Andreas et al., 2013), and combinatory categorial grammar

induction techniques (Zettlemoyer and Collins, 2005, 2007; Kwiatkowksi et al., 2010;

Kwiatkowski et al., 2011). CHILL (Zelle and Mooney, 1996) is one of the first sta-

tistical systems. CHILL provided a natural language interface to a database about US

geography. The second block of Table 1.1 shows an example from the created dataset.

The model used inductive logic programming to learn definite-clause logic descrip-

tions for a shift-reduce parser expressed in Prolog. The training examples were used

to formulate an overly-general parser. Control rules were then learned to characterize

whether the parsing operators should be employed in the context of training exam-

ples. The final model was the overly-general shift-reduce parser and the learned rules.

Another model worth mentioning was developed by Zettlemoyer and Collins (2005),

who employed combinatory categorial grammar (CCG; Steedman (2000)) as a syntax-

semantics interface. A log-linear model was used to induce probabilistic CCGs and

lexicons from training examples.

Other work learns natural language interfaces without relying on logical-from an-

notations, e.g., from sentences paired with conversational logs (Artzi and Zettlemoyer,

2011), system demonstrations (Chen and Mooney, 2011; Artzi and Zettlemoyer, 2013;

Goldwasser and Roth, 2014), question-answer pairs (Clarke et al., 2010; Liang et al.,

2013; Yih et al., 2015; Pasupat and Liang, 2015; Berant and Liang, 2015), and distant

supervision (Krishnamurthy and Mitchell, 2012; Cai and Yates, 2013; Reddy et al.,

2014).
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Neural Systems However, most previous systems rely on manually defined features,

which greatly affect model performance. It is time-consuming and expensive to de-

velop features which adequately capture the relation between natural language and

semantics. Lexical features are often sparse due to the size of the training data, render-

ing the task of generalizing to unseen examples difficult. The reliance on predefined

templates or lexicons also limits these models from scaling to different domains, lan-

guages, or meaning representations. Moreover, the choice of intermediate representa-

tion make the systems representation-specific. It is usually nontrivial to design features

applicable to various semantic representations (e.g., Python code, and SQL query). In

addition, errors propagate, e.g., if the system is based on a pipeline or syntactic parsers

are used during the parsing process.

More recently, neural sequence-to-sequence models have been applied to seman-

tic parsing with promising results (Dong and Lapata, 2016; Jia and Liang, 2016; Ling

et al., 2016), eschewing the need for extensive feature engineering. There are also

efforts to develop structured decoders that make use of the syntax of meaning repre-

sentations. Dong and Lapata (2016) and Alvarez-Melis and Jaakkola (2017) develop

models which generate tree structures in a top-down fashion. Xiao et al. (2016) and

Krishnamurthy et al. (2017) employ a grammar to constrain the decoding process.

Yin and Neubig (2017) design a grammar model for the generation of abstract syn-

tax trees (Aho et al., 2007) in depth-first, left-to-right order. Rabinovich et al. (2017)

propose a modular decoder whose submodels are dynamically composed according to

the generated tree structure. Grammar-specific models are also developed to utilize

the syntax of formal languages (Zhong et al., 2017; Xu et al., 2017; Sun et al., 2018;

Yu et al., 2018). Cheng et al. (2017) use a transition system to generate variable-free

queries. Chen et al. (2018) design a sequence-to-action model to build graph-structure

representations. Both structure constraints and semantic constraints are applied to en-

sure predictions form connected acyclic graphs and follow the domain-specific schema.

Suhr et al. (2018) propose a context-dependent neural semantic parser to handle multi-

turn conversations. In order to incorporate interaction history, previous requests and

predictions are encoded and used as context for the current utterance. Moreover, sev-

eral ideas have been explored to enhance the performance of these models such as data

augmentation (Kočiský et al., 2016; Jia and Liang, 2016), transfer learning (Fan et al.,

2017), active learning (Duong et al., 2018), sharing parameters for multiple meaning

representations (Herzig and Berant, 2017), leveraging cross-lingual data (Susanto and

Lu, 2017; Duong et al., 2017; Zou and Lu, 2018; Richardson et al., 2018), handling
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Figure 1.2: Formal meaning representation is structurally different from the natural lan-

guage string and even its syntactic representation.

out-of-vocabulary words (Ray et al., 2018), utilizing user feedback signals (Iyer et al.,

2017; Lawrence and Riezler, 2018), and semi-supervised learning (Yin et al., 2018).

Recently, the weakly-supervised learning paradigm has also been explored to train

neural semantic parsers (Neelakantan et al., 2016; Yin et al., 2016; Liang et al., 2017;

Iyyer et al., 2017; Guu et al., 2017; Iyer et al., 2017; Zhong et al., 2017; Goldman

et al., 2018; Liang et al., 2018a). Apart from utilizing weak supervision as a training

signal, various methods have been developed to ease the acquisition of logical-from

annotations, such as using paraphrases to populate examples (Wang et al., 2015; Su

et al., 2016), automatically generating natural language queries (Serban et al., 2016),

and increasing lexical diversity (Ravichander et al., 2017).

1.2 Challenges

Building natural language interfaces is a challenging task which often requires sub-

stantial engineering effort. We summarize important challenges that need to be tackled

as follows.

Structural Mismatch There is usually a divergence between the grammar of human

expression and the syntax of formal language, which introduces challenges to model-

ing. Apart from capturing the semantics expressed by the input, models need to learn

how to transform user intentions into formal language. For instance, in a flight book-

ing system, the input “How much does it cost to fly to Boston?” is mapped to (lambda

$0 e (exists $1 (and (flight $1) (to $1 boston:ci) (= (fare $1) $0)))), which is

structurally very different from the natural language string and even its syntactic rep-
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resentation (as shown in Figure 1.2). The structural mismatch requires us to handle

different types of alignments (e.g., one-to-many, and many-to-many) and reordering

during the decoding process.

Output Well-Formedness After obtaining the output meaning representations from

natural language interfaces, we usually need to execute them to obtain user intentions

as shown in Figure 1.1. Because the downstream executors only accept grammatical

programs, it is beneficial to explicitly model the structure of predictions. The struc-

tural information of the output should be taken into consideration so that the models

can generate well-formed meaning representations. It is still an open problem to add

grammatical and semantic constraints into neural models (Xiao et al., 2016; Rabi-

novich et al., 2017; Yin and Neubig, 2017; Chen et al., 2018).

Uncertainty and Interpretability Natural language interfaces involve interactions

with end-task applications, where the actions often need to be executed with high con-

fidence. For example, if smart appliances are uncertain about the user commands, we

would like to verify the predicted actions to avoid unwanted behaviors. In addition

to the uncertainty caused by models, the vagueness and ambiguity of human language

also make confidence estimation necessary. However, most models cannot directly

provide uncertainty information, which prevents the deployment of natural language

interfaces in some scenarios. It would also be beneficial to obtain fine-grained inter-

pretations of uncertainty for model predictions, so that users can rewrite the input text

according to the obtained results.

Model Coverage The word choices of natural language are varied. The same mean-

ing can be expressed in many different ways. Learning lexical variation is nontrivial

for natural language interfaces, because we usually only have limited training data and

do not have fine-grained annotations of lexicons. Lexical variation makes it difficult

to generalize to new examples. For instance, the questions “who created microsoft”

and “who started microsoft” express the same meaning, but the relation is realized by

different verbs. Models need to ground different words or phrases that have the same

semantics to the same predicate in logical forms. External resources could be helpful

to learn such kind of lexical knowledge especially for expressions that are unseen in

the training data.
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Figure 1.3: Thesis overview.

1.3 Thesis Overview

In this thesis, we aim at developing portable and robust neural models for natural lan-

guage interfaces, while addressing the challenges outlined in the previous section.

Firstly, our models are designed with the goal of being easily and quickly portable

across domains and meaning representations. As shown in Table 1.1, various formal

languages are employed for different applications, so the model portability is impor-

tant for natural language interfaces. Because of structural mismatches between natural

language and formal language, previous work often relies on linguistic formalisms to

alleviate the learning difficulty. For example, Zettlemoyer and Collins (2005) generate

lambda calculus based on CCG parse results, and further improvements (Zettlemoyer

and Collins, 2007; Kwiatkowksi et al., 2010; Kwiatkowski et al., 2011) are proposed

to handle more linguistic phenomena. However, relying on particular linguistic for-

malisms often requires substantial engineering effort and domain knowledge, render-

ing the models domain- or representation-specific.

Our second objective is to enhance the robustness of models that are built for nat-

ural language interfaces. Specifically, models should be robust in terms of the well-

formedness of predictions. By considering structural information of formal languages,

constraints can be added into the decoding process to prune invalid outputs. More-

over, models should be robust in the sense of knowing whether they are uncertain

in their predictions, rather than always guessing some results. Confidence modeling

helps models to make robust decisions, and provides interpretations for uncertain out-

puts. Additionally, we would like to make natural language interfaces robust to lexical

variation, so that models can handle different input utterances that express the same

intention.
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We do not assume a syntactic parser is available. Because user inputs are often of

spoken and informal, the error propagation of syntactic parsing could harm the final

performance. Moreover, if we would like to deploy the models to various languages,

we would need a syntactic parser for every language. In this thesis, we regard inputs

as sequences of words. The simplification enables us to adapt our models to various

domains or languages lacking syntactic parsing resources.

Figure 1.3 shows the overview of the thesis. We propose a neural semantic parsing

framework based on encoder-decoder networks, which learns to map natural language

inputs onto their meaning representations in an end-to-end fashion. Both encoder and

decoder are built on recurrent neural networks. The underlying networks can cope

with variable-length examples, and are suitable for handling compositional structures,

which is critical for semantic parsing (Liang and Potts, 2015). We also introduce an at-

tention mechanism (Bahdanau et al., 2015; Luong et al., 2015a) allowing the model to

learn soft alignments between natural language and formal representations. The mod-

els are end-to-end learned from utterances annotated with formal meaning represen-

tations, so we can directly optimize the objective rather than using a pipeline system.

Moreover, we do not rely on predefined lexicons and annotated alignments between

input utterances and output meaning representations. The models acquire such kind

of knowledge from training data, and utilize this information to overcome structural

mismatches.

Meaning representations are typically structured objects instead of just sequences.

In order to guarantee the well-formedness of the output we explicitly model the hi-

erarchical and compositional nature of meaning representations, and thus develop a

sequence-to-tree model, and a coarse-to-fine decoding algorithm. In the first solution,

the proposed tree decoder defines a placeholder to indicate nonterminal nodes. Tree

structures are recursively generated in a top-down, and left-to-right manner. The ex-

plicit modeling of hierarchical structures constrains results in the space of well-formed

trees. In other words, ill-formed logical forms can be pruned from the candidate set. To

model meaning at different levels of granularity, the second solution uses a structure-

aware neural architecture to decode semantic representations from coarse to fine. The

coarse meaning decoder first generates a rough sketch of the meaning representation,

which omits low-level details, such as arguments and variable names. Then, the fine

meaning decoder fills in missing details by conditioning on the input utterance and the

sketch itself. Particularly, the sketch is encoded into vectors to guide the generation

process, where the basic meaning is used as global context to improve fine-grained
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decoding.

The proposed neural models remain difficult to interpret, acting in most cases as a

black box, not providing any information about uncertainty or what made them arrive

at a particular decision. For this challenge, we explore ways to estimate and inter-

pret the model’s confidence in its predictions, which we argue can provide users with

immediate and meaningful feedback regarding uncertain outputs. We categorize the

causes of uncertainty into model uncertainty, data uncertainty, and input uncertainty.

We then design various metrics to characterize “what the model does not know”, and

compute confidence scores which indicate how likely the predicted meaning represen-

tations are correct. We further backpropagate uncertainty scores from predictions to

input words so that we can know the contribution degree of each word to the uncer-

tainty. These scores allow us to interpret model behavior by identifying which parts of

the input contribute to uncertain predictions.

Model coverage is one of the major reasons resulting in uncertainty of natural lan-

guage interfaces. Therefore, we develop a query paraphrasing framework for the chal-

lenge. To handle the many different ways natural language expresses the same infor-

mation need, we leverage external resources to generate paraphrases for the input utter-

ance. We jointly train a neural paraphrase scoring model that assigns higher weights to

those which are more likely to yield correct answers. The entire system is end-to-end

trained so that the paraphrase model is task-specific. The plug-and-play functional-

ity of the framework allows us to explore various paraphrase generation methods for

natural language interfaces.

The main contributions of this work are:

• A general method based on a neural encoder-decoder architecture for mapping

natural language expressions to their logical forms. We also demonstrate how to

adapt the neural models to natural language interfaces characteristic of different

domains and meaning representations.

• A tree decoder and a coarse-to-fine decoding algorithm to better handle hierar-

chical structures and the well-formedness of meaning representations.

• A proposal of various ways to estimate and interpret the model’s confidence in

its outputs, which provides users with feedback and interpretations regarding

uncertain predictions.

• A query paraphrasing framework to handle the variation of natural language
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input. The paraphrase scoring model and the final task are trained end-to-end,

which results in learning paraphrases with a purpose.

1.4 Outline

The remainder of this thesis is organized as follows:

• Chapter 2 presents a neural encoder-decoder framework that maps natural lan-

guage expressions to their logical forms. We encode input utterances into vector

representations, and generate their logical forms by conditioning the output se-

quences or trees on the encoding vectors. Experimental results on four datasets

show that our approach performs competitively without using hand-engineered

features and is easy to adapt across domains and meaning representations.

• Chapter 3 introduces a structure-aware neural architecture which decomposes

the semantic parsing process into two stages. Given an input utterance, we first

generate a rough sketch of its meaning, where low-level information (such as

variable names and arguments) is glossed over. Then, we fill in missing details

by taking into account the natural language input and the sketch itself. Exper-

imental results on four datasets characteristic of different domains and mean-

ing representations show that our approach consistently improves performance,

achieving competitive results despite the use of relatively simple decoders.

• Chapter 4 is concerned with confidence modeling for neural semantic parsers

which are built upon sequence-to-sequence models. We outline three major

causes of uncertainty and design various metrics to quantify these factors. These

metrics are then used to estimate confidence scores that indicate whether model

predictions are likely to be correct. Beyond confidence estimation, we identify

which parts of the input contribute to uncertain predictions allowing users to in-

terpret their model, and verify or refine its input. Experimental results show that

our confidence model significantly outperforms a widely used method that relies

on posterior probability, and improves the quality of interpretation compared to

simply relying on attention scores.

• Chapter 5 describes a general framework which learns felicitous paraphrases

for various question answering tasks. Our method is trained end-to-end using

question-answer pairs as a supervision signal. A question and its paraphrases
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serve as input to a neural scoring model which assigns higher weights to linguis-

tic expressions most likely to yield correct answers. We evaluate our approach

on question answering over Freebase and answer sentence selection. Experi-

mental results on three datasets show that our framework consistently improves

performance.

• Chapter 6 concludes the thesis, and discusses directions for future work.

Portions of this thesis have been previously published in Dong and Lapata (2016)

(Chapter 2), Dong and Lapata (2018) (Chapter 3), Dong et al. (2018) (Chapter 4), and

Dong et al. (2017b) (Chapter 5).



Chapter 2

Neural Semantic Parsing

Semantic parsing is the task of translating text to a formal meaning representation such

as logical forms or structured queries, which is one of the core components of natu-

ral language interfaces (as shown in Figure 1.1). There has recently been a surge of

interest in developing machine learning methods for semantic parsing (see the refer-

ences in Section 2.1), due in part to the availability of corpora containing utterances

annotated with formal meaning representations. Figure 2.1 shows an example of a

question (left-hand side) and its annotated logical form (right-hand side), taken from

JOBS (Tang and Mooney, 2001), a well-known semantic parsing benchmark. In order

to predict the correct logical form for a given utterance, most previous systems rely on

predefined templates and manually designed features (Zelle and Mooney, 1996; Zettle-

moyer and Collins, 2005; Kwiatkowksi et al., 2010), which often render the parsing

model domain- or representation-specific. In this chapter, we aim to use a portable

method to bridge the gap between natural language and logical form with minimal

domain and linguistic knowledge.

Encoder-decoder architectures based on recurrent neural networks have been suc-

cessfully applied to a variety of NLP tasks ranging from syntactic parsing (Vinyals

et al., 2015a), to machine translation (Kalchbrenner and Blunsom, 2013; Cho et al.,

2014; Sutskever et al., 2014), and image description generation (Karpathy and Fei-

Fei, 2015; Vinyals et al., 2015b). As shown in Figure 2.1, we adapt the general

encoder-decoder paradigm to the semantic parsing task. Our model learns from natural

language descriptions paired with meaning representations; it encodes sentences and

decodes logical forms using recurrent neural networks with long short-term memory

(LSTM; Hochreiter and Schmidhuber (1997)) units. We present two model variants,

the first one treats semantic parsing as a vanilla sequence transduction task, whereas

15
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Figure 2.1: Input utterances and their logical forms are encoded and decoded with

neural networks. An attention layer is used to learn soft alignments.

our second model is equipped with a hierarchical tree decoder which explicitly captures

the compositional structure of logical forms. We also introduce an attention mecha-

nism (Bahdanau et al., 2015; Luong et al., 2015a) allowing the model to learn soft

alignments between natural language and logical forms and present an argument iden-

tification step to handle rare mentions of entities and numbers.

Evaluation results demonstrate that compared to previous methods our model achieves

similar or better performance across datasets and meaning representations, despite us-

ing no hand-engineered domain- or representation-specific features.

2.1 Related Work

Our proposed framework synthesizes two strands of research, namely semantic parsing

and the neural encoder-decoder architecture. We adopt the general encoder-decoder

model based on neural networks which has been recently repurposed for various NLP

tasks such as syntactic parsing (Vinyals et al., 2015a), machine translation (Kalchbren-

ner and Blunsom, 2013; Cho et al., 2014; Sutskever et al., 2014; Bahdanau et al., 2015;

Gehring et al., 2017; Vaswani et al., 2017), visual description generation (Karpathy and

Fei-Fei, 2015; Vinyals et al., 2015b; Donahue et al., 2015; Venugopalan et al., 2015a,b;

Xu et al., 2015), question answering (Hermann et al., 2015), text generation (Wiseman

et al., 2017; Dong et al., 2017a; Beck et al., 2018), and summarization (Rush et al.,

2015; Chopra et al., 2016; See et al., 2017). The framework typically contains an en-

coder and a decoder. The input is first encoded into vector representations, which can

be viewed as feature extraction. By conditioning on these encoding results, the de-

coder predicts the final output. Under this flexible framework, we can design different



2.2. Problem Formulation 17

network architectures for various kinds of data (e.g., sequences, tables, and graphs).

The whole model is end-to-end learned from training examples, and thus directly op-

timizes a given objective. We also describe an attention mechanism (Bahdanau et al.,

2015; Xu et al., 2015) to explicitly model alignments between encoding and decoding

states.

Compared with the previous models (Sutskever et al., 2014; Karpathy and Fei-Fei,

2015) that are built upon the encoder-decoder framework, the main difference is that

decoding results of semantic parsing are structured. Directly using sequence decoders

sometimes produces invalid results in terms of the underlying grammar and structure.

The nature of semantic parsing task motivates the use of a constrained decoder in order

to guarantee the well-formedness of predicted meaning representations. For example,

we can leverage a tree decoder to generate well-formed trees rather than using brackets

to linearize hierarchical structures. Moreover, structured decoders can model long-

term dependencies in meaning representations, and hard constraints can be advantages

for model learning because of the reduction of the search space.

2.2 Problem Formulation

Our aim is to learn a model which maps natural language input q= q1 · · ·q|q| to a logical

form representation of its meaning a = a1 · · ·a|a|. The conditional probability p(a|q)
is decomposed as:

p(a|q) =
|a|

∏
t=1

p(at |a<t ,q) (2.1)

where a<t = a1 · · ·at−1.

Our method consists of an encoder which encodes natural language input q into a

vector representation and a decoder which learns to generate a1, · · · ,a|a| conditioned

on the encoding vector. In the following we describe two models varying in the way in

which p(a|q) is computed.

2.2.1 Sequence-to-Sequence Model

This model regards both input q and output a as sequences. As shown in Figure 2.2,

the encoder and decoder are two different L-layer recurrent neural networks with long

short-term memory (LSTM) units which recursively process tokens one by one. The

first |q| time steps belong to the encoder, while the following |a| time steps belong to



18 Chapter 2. Neural Semantic Parsing

LST
M

LSTM

LST
M

LSTM

LSTM
LSTM

LST
M

LSTM

LST
M

LSTM

LSTM
LSTM

<s>

Layer 2

Layer 1

Figure 2.2: Sequence-to-sequence (SEQ2SEQ) model with two-layer recurrent neural

networks. LSTM units are shown in Figure 2.3.

the decoder. Let hl
t ∈ Rn denote the hidden vector at time step t and layer l. hl

t is then

computed by:

hl
t = fLSTM

(
hl

t−1,h
l−1
t

)
(2.2)

where fLSTM refers to the LSTM function being used. In our experiments we follow the

architecture described in Zaremba et al. (2015), however other types of gated activation

functions are possible (e.g., Cho et al. (2014)). The LSTM unit is given by:
i
f
o
g

=


sigm

sigm

sigm

tanh

W l

(
hl−1

t

hl
t−1

)

pl
t = f�pl

t−1 + i�g

hl
t = o� tanh(pl

t)

(2.3)

where tanh, sigm, and � are element-wise operators, and W l ∈ R4n×2n is a weight

matrix for the l-th layer. As shown in Figure 2.3, the input modulation gate creates

vector g that can be added to the cell state. The input gate controls which values the

cell will update. The forget gate determines whether the values of the previous cell

state should be kept or not. The output gate masks the cell state vector and obtains the

final output.

For the encoder, h0
t = Wqe(qt) is the word vector of the current input token,

with Wq ∈ Rn×|Vq| being a parameter matrix, and e(·) the index of the corresponding



2.2. Problem Formulation 19

Input 
gate

Cell

Forget 
gate

Input 
modulation 

gate

Output 
gate

Figure 2.3: Long short-term memory (LSTM) unit.

token. For the decoder, h0
t = Wae(at−1) is the word vector of the previous predicted

word, where Wa ∈ Rn×|Va|. Notice that the encoder and decoder have different LSTM

parameters.

Once the tokens of the input sequence q1, · · · ,q|q| are encoded into vectors, they

are used to initialize the hidden states of the first time step in the decoder. Next, the

hidden vector of the topmost LSTM hL
t in the decoder is used to predict the t-th output

token as:

p(at |a<t ,q) = softmaxat

(
WohL

t
)

(2.4)

where Wo ∈ R|Va|×n is a parameter matrix.

We augment every sequence with a “start-of-sequence” <s> and “end-of-sequence”

</s> token. The generation process terminates once </s> is predicted. The con-

ditional probability of generating the whole sequence p(a|q) is then obtained using

Equation (2.1).

2.2.2 Sequence-to-Tree Model

The SEQ2SEQ model has a potential drawback in that it ignores the hierarchical struc-

ture of logical forms. As a result, it needs to memorize various pieces of auxiliary

information (e.g., bracket pairs) to generate well-formed output. In the following we

present a hierarchical tree decoder which is more faithful to the compositional nature of

meaning representations. A schematic description of the model is shown in Figure 2.4.

The present model shares the same encoder with the sequence-to-sequence model

described in Section 2.2.1 (essentially it learns to encode input q as vectors). However,
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Figure 2.4: Sequence-to-tree (SEQ2TREE) model with a hierarchical tree decoder.

its decoder is fundamentally different as it generates logical forms in a top-down man-

ner. In order to represent tree structure, we define a “nonterminal” <n> token which

indicates subtrees. As shown in Figure 2.4, we preprocess the logical form “lambda

$0 e (and (>(departure time $0) 1600:ti) (from $0 dallas:ci))” to a tree by replacing

tokens between pairs of brackets with nonterminals. Special tokens <s> and <(> de-

note the beginning of a sequence and nonterminal sequence, respectively (as shown in

Figure 2.5). Token </s> represents the end of sequence.

After encoding input q, the hierarchical tree decoder uses recurrent neural networks

to generate tokens at depth 1 of the subtree corresponding to parts of logical form

a. If the predicted token is <n>, we decode the sequence by conditioning on the

nonterminal’s hidden vector. This process terminates when no more nonterminals are

emitted. In other words, a sequence decoder is used to hierarchically generate the tree

structure.

In contrast to the sequence decoder described in Section 2.2.1, the current hidden

state does not only depend on its previous time step. In order to better utilize the parent

nonterminal’s information, we introduce a parent-feeding connection where the hidden
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Figure 2.5: A SEQ2TREE decoding example for the logical form “A B (C)”.

vector of the parent nonterminal is concatenated with the inputs and fed into LSTM.

As an example, Figure 2.5 shows the decoding tree corresponding to the logical

form “A B (C)”, where a1 · · ·a6 are predicted tokens, and t1 · · · t6 denote different time

steps. Span “(C)” corresponds to a subtree. Decoding in this example has two steps:

once input q has been encoded, we first generate a1 · · ·a4 at depth 1 until token </s> is

predicted; next, we generate a5,a6 by conditioning on nonterminal t3’s hidden vectors.

The probability p(a|q) is the product of these two sequence decoding steps:

p(a|q) = p(a1a2a3a4|q) p(a5a6|a≤3,q) (2.5)

where Equation (2.4) is used for the prediction of each output token.

2.2.3 Attention Mechanism

As shown in Equation (2.4), the hidden vectors of the input sequence are not directly

used in the decoding process. However, it makes intuitively sense to consider relevant

information from the input to better predict the current token. Following this idea,

various techniques have been proposed to integrate encoder-side information (in the

form of a context vector) at each time step of the decoder (Bahdanau et al., 2015;

Luong et al., 2015a; Xu et al., 2015).

As shown in Figure 2.6, in order to find relevant encoder-side context for the current

hidden state hL
t of decoder, we compute its attention score with the k-th hidden state in

the encoder as:

rt,k ∝ exp{hL
t ·hL

k} (2.6)

where ∑
|q|
j=1 rt, j = 1, and hL

1 , · · · ,hL
|q| are the top-layer hidden vectors of the encoder.
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Figure 2.6: Attention scores are computed by the current hidden vector and all the

hidden vectors of encoder. Then, the encoder-side context vector ct is obtained in the

form of a weighted sum, which is further used to predict at .

Then, the context vector is the weighted sum of the hidden vectors in the encoder:

ct =
|q|

∑
k=1

rt,khL
k (2.7)

In lieu of Equation (2.4), we further use this context vector which acts as a summary

of the encoder to compute the probability of generating at as:

hatt
t = tanh

(
W1hL

t +W2ct
)

(2.8)

p(at |a<t ,q) = softmaxat

(
Wohatt

t
)

(2.9)

where Wo ∈ R|Va|×n and W1,W2 ∈ Rn×n are three parameter matrices.

2.2.4 Model Training

Our goal is to maximize the likelihood of the generated logical forms given natural

language utterances as input. So the objective function is:

maximize ∑
(q,a)∈D

log p(a|q) (2.10)

where D is the set of all natural language-logical form training pairs, and p(a|q) is

computed as shown in Equation (2.1).

The RMSProp algorithm (Tieleman and Hinton, 2012) is employed to solve this

non-convex optimization problem. Moreover, dropout is used for regularizing the
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Algorithm 1 Decoding for SEQ2TREE

Input: q: Natural language utterance

Output: â: Decoding result

Function: SeqEnc: Encode sequence to vector

SeqDec: Decode vector to sequence

HidVec: Get hidden vectors

1: . Push the encoding result to a queue

2: Q.init({hid : SeqEnc(q)})
3: . Decode until no more nonterminals

4: while (c← Q.pop()) 6=∅ do
5: . Call sequence decoder

6: c.children← SeqDec(c.hid)

7: . Push new nonterminals to queue

8: for n← nonterminal in c.children do
9: Q.push({hid : HidVec(n)})

10: â← convert decoding tree to output sequence

model (Zaremba et al., 2015). Specifically, dropout operators are used between dif-

ferent LSTM layers and for the hidden layers before the softmax classifiers. This

technique can substantially reduce overfitting, especially on datasets of small size.

2.2.5 Inference

At test time, we predict the logical form for an input utterance q by:

â = argmax
a′

p
(
a′|q
)

(2.11)

where a′ represents a candidate output. However, it is impractical to iterate over all

possible results to obtain the optimal prediction. According to Equation (2.1), we

decompose the probability p(a|q) so that we can use greedy search (or beam search)

to generate tokens one by one.

Algorithm 1 describes the decoding process for SEQ2TREE. The time complexity

of both decoders is O(|a|), where |a| is the length of output. The extra computation of

SEQ2TREE compared with SEQ2SEQ is to maintain the nonterminal queue, which can

be negligible because most of the time is spent on matrix operations. We implement the

hierarchical tree decoder in a batch mode, so that it can fully utilize GPUs. Specifically,
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as shown in Algorithm 1, every time we pop multiple nonterminals from the queue, we

decode these nonterminals in one batch.

2.2.6 Argument Identification

The majority of semantic parsing datasets have been developed with question-answering

in mind. In the typical application setting, natural language questions are mapped into

logical forms and executed on a knowledge base to obtain an answer. Due to the na-

ture of the question-answering task, many natural language utterances contain entities

or numbers that are often parsed as arguments in the logical form. Some of them are

unavoidably rare or do not appear in the training set at all (this is especially true for

small-scale datasets). Conventional sequence encoders simply replace rare words with

a special unknown word symbol (Luong et al., 2015b; Jean et al., 2015), which would

be detrimental for semantic parsing.

We have developed a simple procedure for argument identification. Specifically, we

identify entities and numbers in input questions and replace them with their type names

and unique IDs. For instance, we pre-process the training example “jobs with a salary

of 40000” and its logical form job(ans),salary greater than(ans,40000,year) as “jobs

with a salary of num0” and job(ans),salary greater than(ans,num0,year). We use dif-

ferent IDs for multiple arguments that have the same type to distinguish them. For

example, the input “i need to go from boston to dallas” and its meaning represen-

tation (lambda $0 e (and (from $0 boston:ci) (to $0 dallas:ci))) are converted to

“i need to go from ci0 to ci1” and (lambda $0 e (and (from $0 ci0) (to $0 ci1))),

where ci0 and ci1 represent the cities boston:ci and dallas:ci, respectively. We

use the pre-processed examples as training data. At inference time, we also mask

entities and numbers with their types and IDs. Once we obtain the decoding result,

a post-processing step recovers all the markers typei to their corresponding logical

constants.

2.3 Experiments

We compare our method against multiple previous systems on four datasets. We de-

scribe these datasets below and present our experimental settings and results. Finally,

we conduct model analysis in order to understand what the model learns. The code and

pretrained models are available at https://github.com/donglixp/lang2logic.

https://github.com/donglixp/lang2logic
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Dataset Length Example

JO
B

S 9.8 what microsoft jobs do not require a bscs?

22.9 ans(company(J,’microsoft’),job(J),not((req deg(J,’bscs’))))
G

E
O 7.6 what is the population of the state with the largest area?

19.1 (population:i (argmax $0 (state:t $0) (area:i $0)))

A
T

IS 11.1 dallas to san francisco leaving after 4 in the afternoon please

28.1 (lambda $0 e (and (> (departure time $0) 1600:ti)
(from $0 dallas:ci) (to $0 san francisco:ci)))

IF
T

T
T 7.0 Turn on heater when temperature drops below 58 degree

21.8
Weather−Current temperature drops below−((Temperature (58))

(Degrees in (f))) THEN WeMo Insight Switch−Turn on
−((Which switch? ("")))

Table 2.1: Examples of natural language descriptions and their meaning representa-

tions from four datasets. The average length of input and output sequences is shown in

the second column.

2.3.1 Datasets

Our model was trained on the following datasets, covering different domains and using

different meaning representations. Examples for each domain are shown in Table 2.1.

JOBS This benchmark dataset contains 640 queries to a database of job listings.

Specifically, questions are paired with Prolog-style queries. We used the same training-

test split as Zettlemoyer and Collins (2005) which contains 500 training and 140 test

instances. Values for the variables company, degree, language, platform, location, job

area, and number are identified.

GEO This is a standard semantic parsing benchmark which contains 880 queries to

a database of U.S. geography. GEO has 880 instances split into a training set of 600

training examples and 280 test examples (Zettlemoyer and Collins, 2005). We used the

same meaning representation based on lambda-calculus as Kwiatkowski et al. (2011).

Values for the variables city, state, country, river, and number are identified.

ATIS This dataset has 5,410 queries to a flight booking system. The standard split has

4,480 training instances, 480 development instances, and 450 test instances. Sentences

are paired with lambda-calculus expressions. Values for the variables date, time, city,
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aircraft code, airport, airline, and number are identified.

IFTTT Quirk et al. (2015) created this dataset by extracting a large number of if-this-

then-that recipes from the IFTTT website1. Recipes are simple programs with exactly

one trigger and one action which users specify on the site. Whenever the conditions

of the trigger are satisfied, the action is performed. Actions typically revolve around

home security (e.g., “turn on my lights when I arrive home”), automation (e.g., “text

me if the door opens”), well-being (e.g., “remind me to drink water if I’ve been at a bar

for more than two hours”), and so on. Triggers and actions are selected from different

channels (160 in total) representing various types of services, devices (e.g., Android),

and knowledge sources (such as ESPN or Gmail). In the dataset, there are 552 trigger

functions from 128 channels, and 229 action functions from 99 channels. We used

Quirk et al.’s (2015) original split which contains 77,495 training, 5,171 development,

and 4,294 test examples. The IFTTT programs are represented as abstract syntax trees

and are paired with natural language descriptions provided by users (see Table 2.1).

Here, numbers and URLs are identified.

2.3.2 Settings

Natural language sentences were lowercased; misspellings were corrected using a dic-

tionary based on the Wikipedia list of common misspellings. Words were stemmed

using NLTK (Bird et al., 2009). For IFTTT, we filtered tokens, channels, and functions

which appeared less than five times in the training set. For the other datasets, we fil-

tered input words which did not occur at least two times in the training set, but kept all

tokens in the logical forms. Plain string matching2 against lexicons of augments was

employed for pre-processing as described in Section 2.2.6.

Model hyper-parameters were cross-validated on the training set for JOBS and

GEO. We used the standard development sets for ATIS and IFTTT. We used the RM-

SProp algorithm (with batch size set to 20) to update the parameters. The smoothing

constant of RMSProp was 0.95. Gradients were clipped at 5 to alleviate the explod-

ing gradient problem (Pascanu et al., 2013). Parameters were randomly initialized

from a uniform distribution U (−0.08,0.08). A two-layer LSTM was used for IFTTT,

1http://www.ifttt.com
2More sophisticated approaches, such as named entity linking (Ling et al., 2015) and typing (Ling

and Weld, 2012; Dong et al., 2015a), can be used to improve argument identification and make the
pre-processing step language-independent.

http://www.ifttt.com
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Method Accuracy

COCKTAIL (Tang and Mooney, 2001) 79.4

PRECISE (Popescu et al., 2003) 88.0

ZC05 (Zettlemoyer and Collins, 2005) 79.3

DCS+L (Liang et al., 2013) 90.7

TISP (Zhao and Huang, 2015) 85.0

ASN (Rabinovich et al., 2017) 91.4

ASN+SUPATT (Rabinovich et al., 2017) 92.9

SEQ2SEQ 87.1

− attention 77.9

− argument 70.7

SEQ2TREE 90.0

− attention 83.6

Table 2.2: Evaluation results on JOBS. Methods in the last two blocks are neural models.

while a one-layer LSTM was employed for the other domains. The dropout rate was

selected from {0.2,0.3,0.4,0.5}. Dimensions of hidden vector and word embedding

were selected from {150,200,250}. Early stopping was used to determine the number

of epochs. Input sentences were reversed before feeding into the encoder (Sutskever

et al., 2014). We use greedy search to generate logical forms during inference. No-

tice that two decoders with shared word embeddings were used to predict triggers and

actions for IFTTT, and two softmax classifiers are used to classify channels and func-

tions.

2.3.3 Results

We first discuss the performance of our model on JOBS, GEO, and ATIS, and then ex-

amine our results on IFTTT. Tables 2.2–2.4 present comparisons against a variety of

systems previously described in the literature. We report results with the full models

(SEQ2SEQ, SEQ2TREE) and two ablation variants, i.e., without an attention mecha-

nism (−attention) and without argument identification (−argument). We report accu-

racy which is defined as the proportion of the input sentences that are correctly parsed

to their gold standard logical forms. Notice that DCS+L, KCAZ13 and GUSP out-
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Method Accuracy

SCISSOR (Ge and Mooney, 2005) 72.3

KRISP (Kate and Mooney, 2006) 71.7

WASP (Wong and Mooney, 2006) 74.8

λ-WASP (Wong and Mooney, 2007) 86.6

LNLZ08 (Lu et al., 2008) 81.8

ZC05 (Zettlemoyer and Collins, 2005) 79.3

ZC07 (Zettlemoyer and Collins, 2007) 86.1

UBL (Kwiatkowksi et al., 2010) 87.9

FUBL (Kwiatkowski et al., 2011) 88.6

KCAZ13 (Kwiatkowski et al., 2013) 89.0

DCS+L (Liang et al., 2013) 87.9

WKZ14 (Wang et al., 2014) 90.4

TISP (Zhao and Huang, 2015) 88.9

DATARECOMB (Jia and Liang, 2016) 89.3

ASN (Rabinovich et al., 2017) 85.7

ASN+SUPATT (Rabinovich et al., 2017) 87.1

SEQ2ACT (Chen et al., 2018) 88.9

SEQ2SEQ 84.6

− attention 72.9

− argument 68.6

SEQ2TREE 87.1

− attention 76.8

Table 2.3: Evaluation results on GEO. 10-fold cross-validation is used for the systems

shown in the first block of the table. The standard split of ZC05 is used for all other

systems. Methods in the last two blocks are neural models.

put answers directly, so accuracy in this setting is defined as the percentage of correct

answers.

Overall, SEQ2TREE is superior to SEQ2SEQ. The result is to be expected since

SEQ2TREE explicitly models compositional structure. On the JOBS and GEO datasets

which contain logical forms with nested structures, SEQ2TREE outperforms SEQ2SEQ

by 2.9% and 2.5%, respectively. SEQ2TREE achieves better accuracy over SEQ2SEQ
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Method Accuracy

ZC07 (Zettlemoyer and Collins, 2007) 84.6

UBL (Kwiatkowksi et al., 2010) 71.4

FUBL (Kwiatkowski et al., 2011) 82.8

GUSP-FULL (Poon, 2013) 74.8

GUSP++ (Poon, 2013) 83.5

WKZ14 (Wang et al., 2014) 91.3

TISP (Zhao and Huang, 2015) 84.2

DATARECOMB (Jia and Liang, 2016) 84.6

ASN (Rabinovich et al., 2017) 85.3

ASN+SUPATT (Rabinovich et al., 2017) 85.9

SEQ2ACT (Chen et al., 2018) 85.5

SEQ2SEQ 84.2

− attention 75.7

− argument 72.3

SEQ2TREE 84.6

− attention 77.5

Table 2.4: Evaluation results on ATIS. Methods in the last two blocks are neural models.

on ATIS too, however, the difference is smaller, since ATIS is a simpler domain without

complex nested structures. We further compute significance levels using bootstrap

hypothesis testing (Efron and Tibshirani, 1994). The improvements of SEQ2TREE

on JOBS and GEO are significant at p < 0.1 and p < 0.05, respectively, while the

gain on ATIS is non-significant. We find that adding attention substantially improves

performance on all three datasets. This underlines the importance of utilizing soft

alignments between inputs and outputs. We further analyze what the attention layer

learns in Figure 2.7. Moreover, our results show that argument identification is critical

for small-scale datasets. For example, about 92% of city names appear less than 4

times in the GEO training set, so it is difficult to learn reliable parameters for these

words. In relation to previous work, the proposed models achieve comparable or better

performance. Importantly, we use the same framework (SEQ2SEQ or SEQ2TREE)

across datasets and meaning representations (Prolog-style logical forms in JOBS and

lambda calculus in the other two datasets) without modification. Despite this relatively
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Figure 2.7: Alignments (same color rectangles) produced by the attention mechanism

(darker color represents higher attention score). Input sentences are reversed and

stemmed. Model output is shown for SEQ2SEQ (a, b) and SEQ2TREE (c, d).
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simple approach, we observe that SEQ2TREE ranks second on JOBS, and is tied for

first place with ZC07 on ATIS.

We show examples of alignments produced by SEQ2SEQ in Figures 2.7a and 2.7b.

Alignments produced by SEQ2TREE are shown in Figures 2.7c and 2.7d. Matrices of

attention scores are computed using Equation (2.6) and are represented in grayscale.

Aligned input words and logical form predicates are enclosed in (same color) rectan-

gles whose overlapping areas contain the attention scores. Also notice that attention

scores are computed by LSTM hidden vectors which encode context information rather

than just the words in their current positions. The examples demonstrate that the at-

tention mechanism can successfully model the correspondence between sentences and

logical forms, capturing reordering (Figure 2.7b), many-to-many (Figure 2.7a), and

many-to-one alignments (Figures 2.7c,d).

For IFTTT, we follow the same evaluation protocol introduced in Quirk et al.

(2015). The dataset is extremely noisy and measuring accuracy is problematic since

predicted abstract syntax trees (ASTs) almost never exactly match the gold standard.

Quirk et al. view an AST as a set of productions and compute balanced F1 instead

which we also adopt. The first column in Table 2.5 shows the percentage of channels

selected correctly for both triggers and actions. The second column measures accuracy

for both channels and functions. The last column shows balanced F1 against the gold

tree over all productions in the proposed derivation. We compare our model against

posclass, the method introduced in Quirk et al. and several of their baselines. posclass

is reminiscent of KRISP (Kate and Mooney, 2006), it learns distributions over produc-

tions given input sentences represented as a bag of linguistic features. The retrieval

baseline finds the closest description in the training data based on character string-

edit-distance and returns the recipe for that training program. The phrasal method

uses phrase-based machine translation to generate the recipe, whereas sync extracts

synchronous grammar rules from the data, essentially recreating WASP (Wong and

Mooney, 2006). Finally, they use a binary classifier to predict whether a production

should be present in the derivation tree corresponding to the description.

Quirk et al. (2015) report results on the full test data and smaller subsets after

noise filtering, e.g., when non-English and unintelligible descriptions are removed (Ta-

bles 2.5a and 2.5b). They also ran their system on a high-quality subset of description-

program pairs which were found in the gold standard and at least three humans man-

aged to independently reproduce (Table 2.5c). Across all subsets our models outper-

forms posclass and related baselines. Again we observe that SEQ2TREE consistently
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Method Channel +Func F1

retrieval 28.9 20.2 41.7

phrasal 19.3 11.3 35.3

sync 18.1 10.6 35.1

classifier 48.8 35.2 48.4

posclass 50.0 36.9 49.3

LR 56.0 44.3 –

NN 55.1 41.2 –

SEQ2SEQ 54.3 39.2 50.1

− attention 54.0 37.9 49.8

− argument 53.9 38.6 49.7

SEQ2TREE 55.2 40.1 50.4

− attention 54.3 38.2 50.0

(a) Omit non-English.

Method Channel +Func F1

retrieval 36.8 25.4 49.0

phrasal 27.8 16.4 39.9

sync 26.7 15.5 37.6

classifier 64.8 47.2 56.5

posclass 67.2 50.4 57.7

LR 71.9 56.6 –

NN 71.3 53.7 –

DOUBLYRNN 74.9 54.3 65.2

SEQ2SEQ 68.8 50.5 60.3

− attention 68.7 48.9 59.5

− argument 68.8 50.4 59.7

SEQ2TREE 69.6 51.4 60.4

− attention 68.7 49.5 60.2

(b) Omit non-English & unintelligible.

Method Channel +Func F1

retrieval 43.3 32.3 56.2

phrasal 37.2 23.5 45.5

sync 36.5 24.1 42.8

classifier 79.3 66.2 65.0

posclass 81.4 71.0 66.5

LR 88.8 82.5 –

NN 88.0 74.3 –

DOUBLYRNN 90.1 78.2 77.4

SNM 90.0 82.0 –

SEQ2SEQ 87.8 75.2 73.7

− attention 88.3 73.8 72.9

− argument 86.8 74.9 70.8

SEQ2TREE 89.7 78.4 74.2

− attention 87.6 74.9 73.5

(c) ≥ 3 turkers agree with gold.

Table 2.5: Evaluation results on IFTTT. Results of retrieval, phrasal, sync, classifier and

posclass are taken from (Quirk et al., 2015), LR and NN are from (Beltagy and Quirk,

2016), DOUBLYRNN is from (Alvarez-Melis and Jaakkola, 2017), SNM is from (Yin and

Neubig, 2017). Methods in the last two blocks are neural models.
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outperforms SEQ2SEQ, albeit with a small margin. The gains of F1 scores are non-

significant, partly because the program trees of IFTTT have a fixed and simple struc-

ture. Compared to the previous datasets, the attention mechanism and our argument

identification method yield less of an improvement. This may be due to the size of

Quirk et al. (2015) and the way it was created – user curated descriptions are often of

low quality, and thus align very loosely to their corresponding ASTs.

2.3.4 Error Analysis

Finally, we inspected the output of our model in order to identify the most common

causes of errors which we summarize below.

Under-Mapping The attention model used in our experiments does not consider the

alignment history. So, some question words may be ignored in the decoding process.

For example, the input “show me the flight to and from ap0” in the development set

of ATIS is under-mapped to (lambda $0 e (and (flight $0) (from $0 ap0))), where

(or (from $0 ap0) (to $0 ap0)) should be predicted. This is a common problem for

encoder-decoder models and can be addressed by explicitly modeling the decoding

coverage of the source words (Tu et al., 2016; Cohn et al., 2016) or using length nor-

malization to encourage longer sequences (Wu et al., 2016). Keeping track of the

attention history would help adjust future attention and guide the decoder towards un-

translated source words.

Argument Identification Some mentions are incorrectly identified as arguments. For

example, the word “may” is sometimes identified as a month when it is simply a modal

verb. Moreover, some argument mentions are ambiguous. For instance, “6 o’clock”

can be used to express either “6 am” or “6 pm”. We could disambiguate arguments

based on contextual information. The execution results of logical forms could also

help prune unreasonable arguments.

Well-Formedness Because no explicit constraint is used for the decoding process of

sequence-to-sequence models, the well-formedness of predictions is not guaranteed.

We use brackets to linearize tree-structured logical forms for sequence modeling. A

typical prediction error is that the pairs of brackets are mismatched, i.e., the predicted

result is not a well-formed tree. On the development set of ATIS, the predictions that

are ill-formed trees account for 11.27% of the error cases. The sequence-to-tree model
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partially solves the problem of well-formedness, since the decoder always produces

valid trees. We can further integrate a grammar model into the decoder, which forces

predictions to obey the predefined grammar of meaning representations (Xiao et al.,

2016; Yin and Neubig, 2017; Rabinovich et al., 2017; Krishnamurthy et al., 2017).

Rare Words Because the data size of JOBS, GEO, and ATIS is relatively small, some

question words are rare in the training set, which makes it hard to estimate reliable

parameters for them. We propose confidence estimation and interpretation methods

in Chapter 4 to provides feedbacks to users for uncertain predictions. Moreover, we

leverage external resources to generate paraphrases for natural language inputs in order

to improve model coverage.

2.4 Summary

In this chapter we presented an encoder-decoder neural network model for mapping

natural language descriptions to their meaning representations. We encode natural

language utterances into vectors and generate their corresponding logical forms as se-

quences or trees using recurrent neural networks with long short-term memory units.

Experimental results show that enhancing the model with a hierarchical tree decoder

and an attention mechanism improves performance across the board. Extensive com-

parisons with previous methods show that our approach performs competitively, with-

out recourse to domain- or representation-specific features.

The proposed models are portable as they can be end-to-end trained by giving

annotated data, namely, natural language utterances paired with their meaning repre-

sentations. So we can easily adapt the models to different applications with minimal

efforts. The structural gap between inputs and outputs is bridged by neural encoder-

decoder networks augmented with attention mechanisms. Moreover, explicitly con-

sidering the hierarchical structure of formal languages constrains outputs in the space

of well-formed trees, which enhances the model robustness. In the next chapter we

will further explore how to decode structured representations and model meaning at

different levels of granularity.
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Coarse-to-Fine Decoding

The fact that meaning representations are typically structured objects prompt efforts

to develop neural architectures which explicitly account for their structure as pre-

sented in Chapter 2. Other examples include tree or graph decoders (Alvarez-Melis and

Jaakkola, 2017; Chen et al., 2018), decoders constrained by a grammar model (Xiao

et al., 2016; Yin and Neubig, 2017; Krishnamurthy et al., 2017), or modular decoders

which use syntax to dynamically compose various submodels (Rabinovich et al., 2017).

In this chapter, we propose to decompose the decoding process into two stages. The

first decoder focuses on predicting a rough sketch of the meaning representation, which

omits low-level details, such as arguments and variable names. Example sketches for

various meaning representations are shown in Table 3.1. Then, a second decoder fills

in missing details by conditioning on the natural language input and the sketch itself.

Specifically, the sketch constrains the generation process and is encoded into vectors

to guide decoding.

We argue that there are at least three advantages to the proposed approach. Firstly,

the decomposition disentangles high-level from low-level semantic information, which

enables the decoder to model meaning at different levels of granularity. As shown in

Table 3.1, sketches are more compact and as a result easier to generate compared to

decoding the entire meaning structure in one go. For examples in the dataset ATIS,

the average length of meaning sketch is 9.2, while the original average length is 21.1.

Secondly, the model can explicitly share knowledge of coarse structures for the exam-

ples that have the same sketch (i.e., basic meaning), even though their actual meaning

representations are different (e.g., due to different variable names or argument values).

Thirdly, after generating the sketch, the decoder knows what the basic meaning of the

utterance looks like, and the model can use it as global context to improve the predic-

35
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Dataset Num. Example
G

E
O

7.6 x : which state has the most rivers running through it?

13.7 y :(argmax $0 (state:t $0) (count $1 (and (river:t $1)
(loc:t $1 $0))))

6.9 a :(argmax#1 state:t@1 (count#1 (and river:t@1 loc:t@2 ) ) )

A
T

IS

11.1 x : all flights from dallas before 10am

21.1 y :(lambda $0 e (and (flight $0) (from $0 dallas:ci)
(< (departure time $0) 1000:ti)))

9.2 a :(lambda#2 (and flight@1 from@2 (< departure time@1 ? ) ) )

D
JA

N
G

O

14.4 x : if length of bits is lesser than integer 3 or second element of bits is not

equal to string ’as’ ,

8.7 y :if len(bits) < 3 or bits[1] != ’as’:

8.0 a :if len ( NAME ) < NUMBER or NAME [ NUMBER ] != STRING :

W
IK

IS
Q

L 17.9 Table: ‖Pianist‖Conductor‖Record Company‖Year of Recording‖Format‖
13.3 x : What record company did conductor Mikhail Snitko record for after 1996?

13.0 y : SELECT Record Company WHERE (Year of Recording > 1996)
AND (Conductor = Mikhail Snitko)

2.7 a : WHERE > AND =

Table 3.1: Examples of natural language expressions x, their meaning representa-

tions y, and meaning sketches a. The average number of tokens is shown in the second

column.

tion of the final details. The sketches can also provide constraints for the generation

of fine-grained meaning representations. For example, as shown in Table 3.1, sketch

symbols indicate the number of missing tokens, and use type information to constrain

the search space of decoding.

The proposed framework is flexible and not restricted to specific tasks or any par-

ticular model. We conduct experiments on four datasets representative of various se-

mantic parsing tasks ranging from logical form parsing, to code generation, and SQL

query generation. We adapt our architecture to these tasks and present several ways

to obtain sketches from their respective meaning representations. Experimental results

show that our framework achieves competitive performance compared with previous

systems, despite employing relatively simple sequence decoders.
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3.1 Related Work

Coarse-to-fine methods have been popular in the NLP literature, and are perhaps best

known for syntactic parsing (Charniak et al., 2006; Petrov, 2011). The nonterminals

of the grammar are clustered to represent syntactic structures at a coarse level. The

training and inference processes have multiple stages. Each stage refines results of the

previous stage until final outputs are predicted. Charniak et al. (2006) first identify the

locations of constituents of the parse tree, and then distinguish only argument from

modifier phrases. Next, prepositional phrases, nominal, verbal, and adjectival are pre-

dicted. In the last stage, all the categories are distinguished. Petrov (2011) develop

a latent variable approach to automatically induce coarse-to-fine grammar rules from

data. A similar idea is also used to build class-based (Brown et al., 1992; Niesler et al.,

1998; Maltese et al., 2001) and discriminative (Morin and Bengio, 2005; Parvez et al.,

2018) language models. The methods typically represent tokens by their type informa-

tion or clusters. The clusters of words can be either manually derived (Maltese et al.,

2001; Parvez et al., 2018) or automatically obtained by clustering algorithms (Brown

et al., 1992; Maltese et al., 2001; Morin and Bengio, 2005). Language models first

predict coarse categories of words, and then generate actual outputs.

For semantic parsing, Artzi and Zettlemoyer (2013) and Zhang et al. (2017) use

coarse lexical entries or macro grammars to reduce the search space of semantic parsers.

Compared with coarse-to-fine inference for lexical induction, sketches in our case are

abstractions of the final meaning representation. Goldman et al. (2018) utilize a par-

tially abstract representation to learn neural semantic parsers from weak supervision

(i.e., denotations), where tokens are lifted to abstract forms according to lexical rules.

The abstraction relieves the search and spuriousness challenges of weakly supervised

semantic parsing. In our work, we explore different ways to define meaning sketches

for various types of meaning representations, e.g., trees or other structured objects.

Moreover, our model uses an additional encoder to encode the generated sketch into

vectors, which provides global context for fine-grained meaning decoding.

The idea of using sketches as intermediate representations has also been explored

in the field of program synthesis (Solar-Lezama, 2008; Zhang and Sun, 2013; Gaunt

et al., 2016; Feng et al., 2017). Yaghmazadeh et al. (2017) use SEMPRE (Berant et al.,

2013) to map a sentence into SQL sketches which are completed using program synthe-

sis techniques and iteratively repaired if they are faulty. Bošnjak et al. (2017) present a

differentiable Forth (Rather and Conklin, 2007) interpreter to complete slots for given
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program sketches. The model is trained from pairs of input-output data with gradi-

ent descent algorithms. Murali et al. (2018) propose a method based on neural sketch

learning for conditional program generation, which aims at generating source code in

a Java-like programming language. The model learns to produce program sketches

which abstract from names and operations. Then, the output code is concretized by

using combinatorial techniques. In contrast, our model is trained using pairs of natural

language descriptions and their meaning representations instead of input-output exam-

ples. Furthermore, we learn models for generation of both coarse- and fine-grained

meaning representations, rather than using program synthesis techniques to produce

final outputs.

3.2 Problem Formulation

Our goal is to learn semantic parsers from instances of natural language expressions

paired with their structured meaning representations. Let x = x1 · · ·x|x| denote a natural

language expression, and y = y1 · · ·y|y| its meaning representation. We wish to esti-

mate p(y|x), the conditional probability of meaning representation y given input x. We

decompose p(y|x) into a two-stage generation process:

p(y|x) = p(y|x,a) p(a|x) (3.1)

where a = a1 · · ·a|a| is an abstract sketch representing the meaning of y. We defer

detailed description of how sketches are extracted to Section 3.3. Suffice it to say

that the extraction amounts to stripping off arguments and variable names in logical

forms, schema specific information in SQL queries, and substituting tokens with types

in source code (see Table 3.1).

As shown in Figure 3.1, we first predict sketch a for input x, and then fill in missing

details to generate the final meaning representation y by conditioning on both x and a.

The sketch is encoded into vectors which in turn guide and constrain the decoding

of y. We view the input expression x, the meaning representation y, and its sketch a as

sequences. The generation probabilities are factorized as:

p(a|x) =
|a|

∏
t=1

p(at |a<t ,x) (3.2)

p(y|x,a) =
|y|

∏
t=1

p(yt |y<t ,x,a) (3.3)
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where a<t = a1 · · ·at−1, and y<t = y1 · · ·yt−1. In the following, we will explain how

p(a|x) and p(y|x,a) are estimated.

3.2.1 Sketch Generation

An encoder is used to encode the natural language input x into vector representations.

Then, a decoder learns to compute p(a|x) and generate the sketch a conditioned on

the encoding vectors.

Input Encoder Every input word is mapped to a vector via xt = Wxo(xt), where

Wx ∈ Rn×|Vx| is an embedding matrix, |Vx| is the vocabulary size, and o(xt) a one-hot

vector. We use a bi-directional recurrent neural network with long short-term memory

units (LSTM, Hochreiter and Schmidhuber 1997) as the input encoder. The details of

an LSTM unit are described in Section 2.2.1. The encoder recursively computes the

hidden vectors at the t-th time step via:

−→e t = fLSTM
(−→e t−1,xt

)
, t = 1, · · · , |x| (3.4)

←−e t = fLSTM
(←−e t+1,xt

)
, t = |x|, · · · ,1 (3.5)

et = [−→e t ,
←−e t ] (3.6)

where [·, ·] denotes vector concatenation, et ∈ Rn, and fLSTM is the LSTM function.

Compared with SEQ2SEQ and SEQ2TREE that are described in Chapter 2, the input

encoder used here is based on bi-directional LSTMs instead of uni-directional LSTMs.

Coarse Meaning Decoder The decoder’s hidden vector at the t-th time step is com-

puted by dt = fLSTM (dt−1,at−1), where at−1 ∈ Rn is the embedding of the previously

predicted token. The hidden states of the first time step in the decoder are initialized by

the concatenated encoding vectors d0 = [−→e |x|,←−e 1]. Additionally, we use an attention

mechanism (as described in Section 2.2.3) to learn soft alignments. We compute the

attention score for the current time step t of the decoder, with the k-th hidden state in

the encoder as:

st,k = exp{dt · ek}/Zt (3.7)
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where Zt = ∑
|x|
j=1 exp{dt · e j} is a normalization term. We then compute p(at |a<t ,x)

via:

ed
t =

|x|

∑
k=1

st,kek (3.8)

datt
t = tanh

(
W1dt +W2ed

t

)
(3.9)

p(at |a<t ,x) = softmaxat

(
Wodatt

t +bo
)

(3.10)

where W1,W2 ∈ Rn×n, Wo ∈ R|Va|×n, and bo ∈ R|Va| are parameters. Generation

terminates once an end-of-sequence token “</s>” is emitted.

3.2.2 Meaning Representation Generation

Meaning representations are predicted by conditioning on the input x and the generated

sketch a. The model uses the encoder-decoder architecture to compute p(y|x,a), and

decorates the sketch a with details to generate the final output.

Sketch Encoder As shown in Figure 3.1, a bi-directional LSTM encoder maps the

sketch sequence a into vectors {vk}
|a|
k=1 as in Equation (3.6), where vk denotes the

vector of the k-th time step.

Fine Meaning Decoder The final decoder is based on recurrent neural networks with

an attention mechanism, and shares the input encoder described in Section 3.2.1. The

decoder’s hidden states {ht}
|y|
t=1 are computed via:

it =

vk yt−1 is determined by ak

yt−1 otherwise
(3.11)

ht = fLSTM (ht−1, it) (3.12)

where h0 = [−→e |x|,←−e 1], and yt−1 is the embedding of the previously predicted to-

ken. Apart from using the embeddings of previous tokens, the decoder is also fed

with {vk}
|a|
k=1. If yt−1 is determined by ak in the sketch (i.e., there is a one-to-one

alignment between yt−1 and ak), we use the corresponding token’s vector vk as input

to the next time step.

The sketch constrains the decoding output. If the output token yt is already in

the sketch, we force yt to conform to the sketch. The constrained decoding algorithm

explicitly makes use of structural information of meaning representations. In some



42 Chapter 3. Coarse-to-Fine Decoding

cases, sketch tokens will indicate what information is missing (e.g., in Figure 3.1, token

“flight@1” indicates that an argument is missing for the predicate “flight”). In other

cases, sketch tokens will not reveal the number of missing tokens (e.g., “STRING”

in DJANGO) but the decoder’s output will indicate whether missing details have been

generated (e.g., if the decoder emits a closing quote token for “STRING”). Moreover,

type information in sketches can be used to constrain generation. In Table 3.1, sketch

token “NUMBER” specifies that a numeric token should be emitted.

For the missing details, we use the hidden vector ht to compute p(yt |y<t ,x,a),

analogously to Equations (3.7)–(3.10).

3.2.3 Training and Inference

The model’s training objective is to maximize the log likelihood of the generated mean-

ing representations given natural language expressions:

max ∑
(x,a,y)∈D

log p(y|x,a)+ log p(a|x) (3.13)

where D represents natural language and meaning representation training pairs.

At test time, the prediction for input x is obtained via â = argmaxa′ p(a
′|x) and

ŷ = argmaxy′ p(y
′|x, â), where a′ and y′ represent coarse- and fine-grained meaning

candidates. Because probabilities p(a|x) and p(y|x,a) are factorized as shown in

Equations (3.2)–(3.3), we can obtain best results approximately by using greedy search

to generate tokens one by one, rather than iterating over all candidates.

3.3 Task Description

In order to show that our framework applies across domains and meaning representa-

tions, we developed models for three tasks, namely parsing natural language to logical

form, to Python source code, and to SQL query. These tasks represent typical use cases

of natural language interfaces, i.e., querying database and completing desired actions

using structured programs. We describe the datasets we used, and specify model details

over and above the architecture presented in Section 3.2. For each of these tasks we

also present the algorithms used to automatically extract sketches from output meaning

representations.



3.3. Task Description 43

Algorithm 2 Sketch for GEO and ATIS

Input: t: Tree-structured λ-calculus expression

t.pred: Predicate name, or operator name

Output: a: Meaning sketch

. (count $0 (< (fare $0) 50:do))→ (count#1 (< fare@1 ?))

function SKETCH(t)

if t is leaf then . No nonterminal in arguments

return “%s@%d” % (t.pred,len(t.args))

if t.pred is λ operator, or quantifier then . e.g., count

Omit variable information defined by t.pred

t.pred ← “%s#%d” % (t.pred,len(variable))

for c← argument in t.args do
if c is nonterminal then

c← SKETCH(c)

else
c← “?” . Placeholder for terminal

return t

3.3.1 Natural Language to Logical Form

For our first task we used two benchmark datasets, namely GEO (880 language queries

to a database of U.S. geography) and ATIS (5,410 queries to a flight booking system).

These two datasets are also employed in Chapter 2. Examples are shown in Table 3.1

(see the first and second block). We used standard splits for both datasets: 600 train-

ing and 280 test instances for GEO (Zettlemoyer and Collins, 2005); 4,480 training,

480 development, and 450 test examples for ATIS. Meaning representations in these

datasets are based on λ-calculus (Kwiatkowski et al., 2011). We use brackets to lin-

earize the hierarchical structure. The first element between a pair of brackets is an

operator or predicate name, and any remaining elements are its arguments. The JOBS

dataset (as described in Chapter 2) is not used because its meaning representation (i.e.,

Prolog-style queries) is different with GEO and ATIS. The proposed model can also be

applied to other semantic representations, while we leave it for future work.

Algorithm 2 shows the pseudocode used to extract sketches from λ-calculus-based

meaning representations. We strip off arguments and variable names in logical forms,

while keeping predicates, operators, and composition information. We use the symbol
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(lambda#2 (and flight@1 from@2 (< departure time@1 ? ) ) )

(lambda $0 e (and (flight $0) (from $0 dallas:ci) (< (departure_time $0) 1000:ti)))

“#”
Variable 

information 
(e.g., lambda, 

count, and 
argmax)

“?”
Partial argument 

information

“@”
Arguments of 
predicate or 

operator

Figure 3.2: Example sketch for ATIS.

“@” to denote the number of missing arguments in a predicate. As shown in Figure 3.2,

we extract “from@2” from the expression “(from $0 dallas:ci)” which indicates that

the predicate “from” has two arguments. We use “?” as a placeholder in cases where

only partial argument information can be omitted. We also omit variable information

defined by the lambda operator and quantifiers (e.g., exists, count, and argmax). We

use the symbol “#” to denote the number of omitted tokens. As shown in Figure 3.1,

“lambda $0 e” is reduced to “lambda#2”. For ATIS, about 85.9% of meaning sketches

of the development set appear in the training set.

Parent Feeding The meaning representations of these two datasets are highly com-

positional, which motivates us to utilize the hierarchical structure of λ-calculus. Taking

the meaning sketch “(and flight@1 from@2)” as an example, the parent of “from@2”

is “(and”. Let pt denote the parent of the t-th time step in the decoder. Compared with

Equation (3.10), we use the vector datt
t and the hidden state of its parent dpt to compute

the probability p(at |a<t ,x) via:

p(at |a<t ,x) = softmaxat

(
Wo[datt

t ,dpt ]+bo
)

(3.14)

where [·, ·] denotes vector concatenation. Parent feeding is used for both generation

stages in Equations (3.2)–(3.3) to take advantage of tree decoding. A similar idea

is also explored in the tree decoder proposed in Section 2.2.2 and Yin and Neubig

(2017) where parent hidden states are fed to the input gate of the LSTM units. On the

contrary, parent hidden states serve as input to the softmax classifiers of both fine and
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coarse meaning decoders.

3.3.2 Natural Language to Source Code

Our second semantic parsing task used DJANGO (Oda et al., 2015), a dataset built upon

the Python code of the Django library. The dataset contains lines of code paired with

natural language expressions (see the third block in Table 3.1) and exhibits a variety of

use cases, such as iteration, exception handling, and string manipulation. The original

split has 16,000 training, 1,000 development, and 1,805 test instances.

We used the built-in lexical scanner of Python1 to tokenize the code and obtain to-

ken types. Sketches were extracted by substituting the original tokens with their token

types, except delimiters (e.g., “[”, and “:”), operators (e.g., “+”, and “*”), and built-in

keywords (e.g., “True”, and “while”). For instance, the expression “if s[:4].lower() ==

’http’:” becomes “if NAME [ : NUMBER ] . NAME ( ) == STRING :”, with details about

names, values, and strings being omitted. For DJANGO, about 75.1% of meaning

sketches of the development set appear in the training set.

Copying Mechanism DJANGO is a diverse dataset, spanning various real-world use

cases and as a result models are often faced with out-of-vocabulary (OOV) tokens

(e.g., variable names, and numbers) that are unseen during training. We handle OOV

tokens with a copying mechanism (Gu et al., 2016; Gulcehre et al., 2016; Jia and Liang,

2016), which allows the fine meaning decoder (Section 3.2.2) to directly copy tokens

from the natural language input.

Recall that we use a softmax classifier to predict the probability p(yt |y<t ,x,a) over

the pre-defined vocabulary. We also learn a copying gate gt ∈ [0,1] to decide whether yt

should be copied from the input or generated from the vocabulary. We compute the

modified output distribution via:

gt = sigmoid(wg ·ht +bg) (3.15)

p̃(yt |y<t ,x,a) = (1−gt)p(yt |y<t ,x,a)+1[yt /∈Vy]gt ∑
k:xk=yt

st,k (3.16)

where wg ∈ Rn and bg ∈ R are parameters, the probability p(yt |y<t ,x,a) is described

in Section 3.2.2, and the indicator function 1[yt /∈Vy] is 1 only if yt is not in the target

vocabulary Vy; the attention score st,k (see Equation (3.7)) measures how likely it is to

copy yt from the input word xk.

1https://docs.python.org/3/library/tokenize

https://docs.python.org/3/library/tokenize
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3.3.3 Natural Language to SQL

The WIKISQL (Zhong et al., 2017) dataset contains 80,654 examples of questions and

SQL queries distributed across 24,241 tables from Wikipedia. The goal is to generate

the correct SQL query for a natural language question and table schema (i.e., table col-

umn names), without using the content values of tables (see the last block in Table 3.1

for an example). The dataset is partitioned into a training set (70%), a development set

(10%), and a test set (20%). Each table is present in one split to ensure generalization

to unseen tables.

WIKISQL queries follow the format “SELECT agg op agg col WHERE (cond col

cond op cond) AND ...”, which is a subset of the SQL syntax. SELECT identifies the col-

umn that is to be included in the results after applying the aggregation operator agg op2

to column agg col. WHERE can have zero or multiple conditions, which means that

column cond col must satisfy the constraints expressed by the operator cond op3 and

the condition value cond. Sketches for SQL queries are simply the (sorted) sequences

of condition operators cond op in WHERE clauses. For example, in Table 3.1, sketch

“WHERE > AND =” has two condition operators, namely “>” and “=”. All meaning

sketches of the development set have been seen in the training set.

The generation of SQL queries differs from our previous semantic parsing tasks,

in that the table schema serves as input in addition to natural language. We therefore

modify our input encoder in order to render it table-aware, so to speak. Furthermore,

due to the formulaic nature of the SQL query, we only use our decoder to generate the

WHERE clause (with the help of sketches). The SELECT clause has a fixed number of

slots (i.e., aggregation operator agg op and column agg col), which we straightfor-

wardly predict with softmax classifiers (conditioned on the input). We briefly explain

how these components are modeled below.

Table-Aware Input Encoder Given a table schema with M columns, we employ the

special token “‖” to concatenate its header names as “‖c1,1 · · ·c1,|c1|‖· · ·‖cM,1 · · ·cM,|cM |‖”,

where the k-th column (“ck,1 · · ·ck,|ck|”) has |ck| words. As shown in Figure 3.3, the

first column is “college”, and the second one is “number of presidents”. We use bi-

directional LSTMs to encode the whole sequence of columns. Next, for column ck, the

LSTM hidden states at positions ck,1 and ck,|ck| are concatenated. Finally, the concate-

nated vectors are used as the encoding vectors {ck}M
k=1 for table columns.

2agg op ∈ {empty,COUNT,MIN,MAX,SUM,AVG}.
3cond op ∈ {=,<,>}.
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|| of |||| college number presidents

Column 1 Column 2

𝒄1 𝒄2

𝑥2 𝑥3 𝑥4

𝒆1 𝒆2 𝒆4𝒆3

𝑥1

Input Question

Question-to-Table Attention

𝒄1
𝒆 𝒄2

𝒆 𝒄4
𝒆𝒄3

𝒆

ǁ𝑒1 ǁ𝑒2 ǁ𝑒4ǁ𝑒3 LSTM units

Vectors

Attention

Figure 3.3: Table-aware input encoder (left) and table column encoder (right) used for

WIKISQL. At first, we use the bidirectional LSTM encoders to encode the sequences

of input and table schema. For each question word, we use an attention mechanism

towards table to obtain its relevant column vectors. Finally, we use another bidirectional

LSTM to aggregate the question encoding results and their attentional vectors. We then

use these new vectors to represent the input question.

As mentioned earlier, the meaning representations of questions are dependent on

the tables. As shown in Figure 3.3, we encode the input question x into {et}
|x|
t=1 using

LSTM units. At each time step t, we use an attention mechanism towards table column

vectors {ck}M
k=1 to obtain the most relevant columns for et . The attention score from

et to ck is computed via ut,k ∝ exp{α(et) ·α(ck)}, where α(·) is a one-layer neural net-

work, and ∑
M
k=1 ut,k = 1. Then we compute the context vector ce

t = ∑
M
k=1 ut,kck to sum-

marize the relevant columns for et . We feed the concatenated vectors {[et ,ce
t ]}
|x|
t=1 into

a bi-directional LSTM encoder, and use the new encoding vectors {ẽt}
|x|
t=1 to replace

{et}
|x|
t=1 in other model components. We define the vector representation of input x as:

ẽ = [
−→̃
e |x|,
←−̃
e 1] (3.17)

analogously to Equations (3.4)–(3.6).

SELECT Clause We feed the question vector ẽ into a softmax classifier to obtain the

aggregation operator agg op. If agg col is the k-th table column, its probability is

computed via:

σ(x) = w3 · tanh(W4x+b4) (3.18)

p(agg col= k|x) ∝ exp{σ([ẽ,ck])} (3.19)
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𝒄2

ǁ𝑒
Softmax
Classifier

agg_operator∈ {empty, COUNT, 

MIN, MAX, SUM, AVG}

|| of ||college number presidents

Column 1 Column 2

Column 
Pointer

𝒄1

agg_column
Question 

Vector

Figure 3.4: Decoder of the SELECT clause used for WIKISQL. We feed the question

vector into a softmax classifier to obtain the aggregation operator. The column pointer

network is used to compute the matching score between the question vector and table

column vectors, which selects the column that is included in the results.

where ∑
M
j=1 p(agg col= j|x)= 1, σ(·) is a scoring network, and W4 ∈R2n×m,w3,b4 ∈

Rm are parameters.

WHERE Clause We first generate sketches whose details are subsequently decorated

by the fine meaning decoder described in Section 3.2.2. As the number of sketches

in the training set is small (35 in total), we model sketch generation as a classifica-

tion problem. We treat each sketch a as a category, and use a softmax classifier to

compute p(a|x):

p(a|x) = softmaxa (Waẽ+ba) (3.20)

where Wa ∈ R|Va|×n,ba ∈ R|Va| are parameters, and ẽ is the table-aware input repre-

sentation defined in Equation (3.17).

Once the sketch is predicted, we know the condition operators and number of

conditions in the WHERE clause which follows the format “WHERE (cond op cond col

cond) AND ...”. As shown in Figure 3.5, our generation task now amounts to populating

the sketch with condition columns cond col and their values cond.

Let {ht}
|y|
t=1 denote the LSTM hidden states of the fine meaning decoder, and

{hatt
t }
|y|
t=1 the vectors obtained by the attention mechanism as in Equation (3.9). The

condition column cond colyt is selected from the table’s headers. For the k-th column

in the table, we compute p(cond colyt = k|y<t ,x,a) as in Equation (3.19), but use dif-

ferent parameters and compute the score via σ([hatt
t ,ck]). If the k-th table column is
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Figure 3.5: Fine meaning decoder of the WHERE clause used for WIKISQL.

selected, we use ck for the input of the next LSTM unit in the decoder.

Condition values are typically mentioned in the input questions. These values are

often phrases with multiple tokens (e.g., Mikhail Snitko in Table 3.1). We therefore

propose to select a text span from input x for each condition value condyt rather than

copying tokens one by one. Let xl · · ·xr denote the text span from which condyt is

copied. We factorize its probability as:

p(condyt = xl · · ·xr|y<t ,x,a) = p
(
JlKL

yt
|y<t ,x,a

)
p
(
JrKR

yt
|y<t ,x,a,JlKL

yt

)
(3.21)

p
(
JlKL

yt
|y<t ,x,a

)
∝ exp{σ([hatt

t , ẽl])} (3.22)

p
(
JrKR

yt
|y<t ,x,a,JlKL

yt

)
∝ exp{σ([hatt

t , ẽl, ẽr])} (3.23)

where JlKL
yt
/JrKR

yt
represents the first/last copying index of condyt is l/r, the probabil-

ities are normalized to 1, and σ(·) is the scoring network defined in Equation (3.18).

Notice that we use different parameters for the scoring networks σ(·). The copied span

is represented by the concatenated vector [ẽl, ẽr], which is fed into a one-layer neural

network and then used as the input to the next LSTM unit in the decoder.

3.4 Experiments

We present results on the three tasks discussed in Section 3.3. The code and pretrained

models are available at https://github.com/donglixp/coarse2fine.

https://github.com/donglixp/coarse2fine


50 Chapter 3. Coarse-to-Fine Decoding

3.4.1 Experimental Setup

Preprocessing For GEO and ATIS, we used the preprocessing process as in Sec-

tion 2.3, where natural language expressions are lowercased and stemmed with NLTK (Bird

et al., 2009), and entity mentions are replaced by numbered markers. We combined

predicates and left brackets that indicate hierarchical structures to make meaning repre-

sentations compact. We employed the preprocessed DJANGO data provided by Yin and

Neubig (2017), where input expressions are tokenized by NLTK, and quoted strings in

the input are replaced with place holders. WIKISQL was preprocessed by the script

provided by Zhong et al. (2017), where inputs were lowercased and tokenized by Stan-

ford CoreNLP (Manning et al., 2014).

Configuration Model hyperparameters were cross-validated on the training set for

GEO, and were validated on the development split for the other datasets. Dimen-

sions of hidden vectors and word embeddings were selected from {250,300} and

{150,200,250,300}, respectively. The dropout rate was selected from {0.3,0.5}. La-

bel smoothing (Szegedy et al., 2016) was employed for GEO and ATIS. The smoothing

parameter was set to 0.1. For WIKISQL, the hidden size of σ(·) and α(·) in Equa-

tion (3.18) was set to 64. Word embeddings were initialized by GloVe (Pennington

et al., 2014), and were shared by table encoder and input encoder in Section 3.3.3.

We appended 10-dimensional part-of-speech tag vectors to embeddings of the ques-

tion words in WIKISQL. The part-of-speech tags were obtained by the spaCy toolkit.

We used the RMSProp optimizer (Tieleman and Hinton, 2012) to train the models.

The learning rate was selected from {0.002,0.005}. The batch size was 200 for WIK-

ISQL, and was 64 for other datasets. Early stopping was used to determine the number

of epochs.

Evaluation We use accuracy as the evaluation metric, i.e., the percentage of the ex-

amples that are correctly parsed to their gold standard meaning representations. For

WIKISQL, we also execute generated SQL queries on their corresponding tables, and

report the execution accuracy which is defined as the proportion of correct answers.

3.4.2 Results and Analysis

We compare our model (COARSE2FINE) against several previously published systems

as well as various baselines. Specifically, we report results with a model which decodes
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Method GEO ATIS

ZC07 (Zettlemoyer and Collins, 2007) 86.1 84.6

UBL (Kwiatkowksi et al., 2010) 87.9 71.4

FUBL (Kwiatkowski et al., 2011) 88.6 82.8

GUSP++ (Poon, 2013) — 83.5

KCAZ13 (Kwiatkowski et al., 2013) 89.0 —

DCS+L (Liang et al., 2013) 87.9 —

TISP (Zhao and Huang, 2015) 88.9 84.2

SEQ2SEQ (Dong and Lapata, 2016) 84.6 84.2

SEQ2TREE (Dong and Lapata, 2016) 87.1 84.6

ASN (Rabinovich et al., 2017) 85.7 85.3

ASN+SUPATT (Rabinovich et al., 2017) 87.1 85.9

SEQ2ACT (Chen et al., 2018) 88.9 85.5

ONESTAGE 85.0 85.3

COARSE2FINE 88.2 87.7

− sketch encoder 87.1 86.9

+ oracle sketch 93.9 95.1

Table 3.2: Accuracies on GEO and ATIS.

meaning representations in one stage (ONESTAGE) without leveraging sketches. We

also report the results of several ablation models, i.e., without a sketch encoder and

without a table-aware input encoder.

Table 3.2 presents our results on GEO and ATIS. Overall, we observe that our

method COARSE2FINE outperforms ONESTAGE. Improvements on both datasets are

significant with p < 0.05 according to bootstrap hypothesis testing (Efron and Tib-

shirani, 1994). The results suggest that disentangling high-level from low-level infor-

mation during decoding is beneficial. The results also show that removing the sketch

encoder harms performance since the decoder loses access to additional contextual

information. Compared with previous neural models that utilize syntax or grammat-

ical information (SEQ2TREE, ASN, SEQ2ACT; the second block in Table 3.2), our

method performs competitively despite the use of relatively simple decoders. As an

upper bound, we report model accuracy when gold meaning sketches are given to the

fine meaning decoder (+oracle sketch). As can be seen, predicting the sketch correctly
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Method Accuracy

Retrieval System 14.7

Phrasal SMT 31.5

Hierarchical SMT 9.5

SEQ2SEQ+UNK replacement 45.1

SEQ2TREE+UNK replacement 39.4

LPN+COPY (Ling et al., 2016) 62.3

SNM+COPY (Yin and Neubig, 2017) 71.6

ONESTAGE 69.5

COARSE2FINE 74.1

− sketch encoder 72.1

+ oracle sketch 83.0

Table 3.3: DJANGO results. Accuracies in the first and second block are taken from Ling

et al. (2016) and Yin and Neubig (2017).

boosts performance. The oracle results also indicate the accuracy of the fine meaning

decoder.

Table 3.3 reports results on the dataset DJANGO where we observe similar tenden-

cies. COARSE2FINE outperforms ONESTAGE by a wide margin, which is significant

at p < 0.05. It is also superior to the best reported result in the literature (SNM+COPY;

see the second block in the table). Again we observe that the sketch encoder is benefi-

cial and that there is an 8.9 point difference in accuracy between COARSE2FINE and

the oracle.

Results on WIKISQL are shown in Table 3.4. Our model is superior to ONESTAGE.

Improvements over the baseline model are significant at p < 0.05. COARSE2FINE’s

accuracies on aggregation agg op and agg col are 90.2% and 92.0%, respectively,

which is comparable to SQLNET (Xu et al., 2017). So most gain is obtained by the

improved decoder of the WHERE clause. We also find that a table-aware input encoder is

critical for doing well on this task, since the same question might lead to different SQL

queries depending on the table schemas. Consider the question “how many presidents

are graduated from A”. The SQL query over table “‖President‖College‖” is “SELECT

COUNT(President) WHERE (College = A)”, but the query over table “‖College‖Number

of Presidents‖” would be “SELECT Number of Presidents WHERE (College = A)”.
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Method Accuracy
Execution
Accuracy

SEQ2SEQ 23.4 35.9

Aug Ptr Network 43.3 53.3

SEQ2SQL (Zhong et al., 2017) 48.3 59.4

SQLNET (Xu et al., 2017) 61.3 68.0

METALEARN (Huang et al., 2018) 62.8 68.0

TYPESQL (Yu et al., 2018) 66.7 73.5

MQAN (McCann et al., 2018) 75.4 81.4

ONESTAGE 68.8 75.9

COARSE2FINE 71.7 78.5

− sketch encoder 70.8 77.7

− table-aware input encoder 68.6 75.6

+ oracle sketch 73.0 79.6

Table 3.4: Evaluation results on WIKISQL. Accuracies of SEQ2SEQ and Aug Ptr Net-

work are taken from Zhong et al. (2017).

Method GEO ATIS DJANGO WIKISQL

ONESTAGE 85.4 85.9 73.2 95.4

COARSE2FINE 89.3 88.0 77.4 95.9

Table 3.5: Sketch accuracy. For ONESTAGE, sketches are extracted from the meaning

representations it generates.

We also examine the predicted sketches themselves in Table 3.5. We compare

sketches generated by COARSE2FINE against ONESTAGE. The latter model gener-

ates meaning representations without an intermediate sketch generation stage. Never-

theless, we can extract sketches from the output of ONESTAGE following the pro-

cedures described in Section 3.3. Sketches produced by COARSE2FINE are more

accurate across the board. This is not surprising because our model is trained ex-

plicitly to generate compact meaning sketches. Taken together (Tables 3.2–3.4), our

results show that better sketches bring accuracy gains on GEO, ATIS, and DJANGO.

On WIKISQL, the sketches predicted by COARSE2FINE are marginally better com-



54 Chapter 3. Coarse-to-Fine Decoding

pared with ONESTAGE. Performance improvements on this task are mainly due to the

fine meaning decoder. We conjecture that by decomposing decoding into two stages,

COARSE2FINE can better match table columns and extract condition values without

interference from the prediction of condition operators. Moreover, the sketch pro-

vides a canonical order of condition operators, which is beneficial for the decoding

process (Vinyals et al., 2016; Xu et al., 2017).

3.5 Summary

In this chapter we presented a coarse-to-fine decoding algorithm for neural semantic

parsing. We first generate meaning sketches which abstract away from low-level in-

formation such as arguments and variable names and then predict missing details in

order to obtain full meaning representations. The proposed framework can be easily

adapted to different domains and meaning representations. Experimental results show

that coarse-to-fine decoding improves performance across tasks.

The structure-aware decoders model meanings at different levels of granularity.

The decomposition of decoding improves performance of both meaning sketches and

final predictions. The sketch constrains the fine-grained meaning decoding process,

which forces the prediction to conform the sketch. The decoding constraints prune

invalid candidates, so that the output well-formedness can be improved.

In addition to enhancing the robustness of decoders, we would like to make the

models robust to uncertain examples. In other words, the models should be able to

alert users when they are unsure about the predictions. However, neural models tend

to always predict some answers even if they could not handle the input example. To

make the proposed models less black-box, we present confidence modeling algorithms

for neural semantic parsing in the next chapter.



Chapter 4

Confidence Modeling

In previous chapters, we present neural semantic parsing models that map natural lan-

guage text to a formal meaning representation (e.g., logical forms or SQL queries).

However, despite achieving promising results, the neural semantic parsers remain dif-

ficult to interpret, acting in most cases as a black box, not providing any information

about what made them arrive at a particular decision. In this chapter, we explore ways

to estimate and interpret the model’s confidence in its predictions, which we argue can

provide users with immediate and meaningful feedback regarding uncertain outputs.

An explicit framework for confidence modeling would benefit the development cy-

cle of neural semantic parsers which, contrary to more traditional methods, do not

make use of lexicons or templates and as a result the sources of errors and inconsis-

tencies are difficult to trace. Moreover, from the perspective of application, semantic

parsing is often used to build natural language interfaces, such as dialogue systems. In

this case it is important to know whether the system understands the input queries with

high confidence in order to make decisions more reliably. For example, knowing that

some of the predictions are uncertain would allow the system to generate clarification

questions, prompting users to verify the results before triggering unwanted actions. In

addition, the training data used for semantic parsing can be small and noisy, and as a re-

sult, models do indeed produce uncertain outputs, which we would like our framework

to identify.

A widely-used confidence scoring method is based on posterior probabilities p(y|x)
where x is the input and y the model’s prediction. For a linear model, this method

makes sense: as more positive evidence is gathered, the score becomes larger. Neural

models, in contrast, learn a complicated function that often overfits the training data.

Posterior probability is effective when making decisions about model output, but is

55
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no longer a good indicator of confidence due in part to the nonlinearity of neural net-

works (Johansen and Socher, 2017; Guo et al., 2017). This observation motivates us

to develop a confidence modeling framework for sequence-to-sequence models. We

categorize the causes of uncertainty into three types, namely model uncertainty, data

uncertainty, and input uncertainty and design different metrics to characterize them.

We compute these confidence metrics for a given prediction and use them as fea-

tures in a regression model which is trained on held-out data to fit prediction F1 scores.

At test time, the regression model’s outputs are used as confidence scores. Our ap-

proach does not interfere with the training of the model, and can be thus applied to

various architectures, without sacrificing test accuracy. Furthermore, we propose a

method based on backpropagation which allows to interpret model behavior by identi-

fying which parts of the input contribute to uncertain predictions.

Experimental results on two semantic parsing datasets (IFTTT, Quirk et al. 2015;

and DJANGO, Oda et al. 2015) show that our model is superior to a method based

on posterior probability. We also demonstrate that thresholding confidence scores

achieves a good trade-off between coverage and accuracy. Moreover, the proposed

uncertainty backpropagation method yields results which are qualitatively more inter-

pretable compared to those based on attention scores.

4.1 Related Work

Confidence Estimation Confidence estimation has been studied in the context of

a few NLP tasks, such as statistical machine translation (Blatz et al., 2004; Ueffing

and Ney, 2005; Soricut and Echihabi, 2010), and question answering (Gondek et al.,

2012). To the best of our knowledge, confidence modeling for semantic parsing re-

mains largely unexplored.

A common scheme for modeling uncertainty in neural networks is to place distri-

butions over the network’s weights (Denker and Lecun, 1991; MacKay, 1992; Neal,

1996; Blundell et al., 2015; Gan et al., 2017). But the resulting models often con-

tain more parameters, and the training pipeline has to be accordingly changed, which

makes these approaches difficult to work with.

Another strand of related work needs minor modifications to the standard training

process of neural networks. Gal and Ghahramani (2016) develop a theoretical frame-

work which shows that the use of dropout in neural networks can be interpreted as a

Bayesian approximation of Gaussian processes. We adapt their framework so as to rep-
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resent uncertainty in encoder-decoder architectures, and extend it by leveraging other

metrics to estimate confidence. Li and Gal (2017) propose an approximate inference

technique to avoid the uncertainty underestimation of Dropout variational inference.

Lakshminarayanan et al. (2017) use ensembles and adversarial training to modify the

training pipeline, and investigate how to use them to compute predictive uncertainty

estimates.

Recently, Ott et al. (2018) analyze the effects of uncertainty in neural machine

translation model fitting and search strategy, which is closely related to our work. The

source of uncertainty is categorized to two types in their work, i.e., intrinsic uncertainty

and extrinsic uncertainty. Intrinsic uncertainty is due to the existence of several se-

mantically equivalent translations and under-specification, caused by the one-to-many

nature of the machine translation task. Extrinsic uncertainty is caused by noise in the

training data. The goal is to analyze how uncertainty affects model fitting and can-

didate searching. In contrast, we aim at quantifying the confidence scores for given

examples, which can be used to indicate how likely the predictions are correct. We

also develop an uncertainty interpretation model based on estimated scores to provide

fine-grained analyses for predictions. We further identify model uncertainty and design

various metrics.

Previous work also investigates how to detect out-of-distribution examples for neu-

ral models, which can be a cause of uncertainty. Hendrycks and Gimpel (2017) utilize

a pre-trained classifier to measure a maximum value of the predictive distribution,

and compare this value to a threshold that determines whether the example is out-

of-distribution or not. Liang et al. (2018b) enhance the threshold-based method with

temperature scaling (Guo et al., 2017) and adding controlled perturbations to the in-

put. DeVries and Taylor (2018) add a confidence estimation branch in the network

architecture to detect out-of-distribution examples based on the encoding vectors of

the input. Lee et al. (2018) jointly train both generative and classification networks for

out-of-distribution detection. The generator produces samples that are most effective

to train the classifier, while the classifier is encouraged to assign uniform class prob-

abilities to out-of-distribution examples. In our work, we use the probability of the

input computed by a language model and the number of unknown tokens to indicate

whether it is out-of-distribution.

Interpretability Another strand of related work concerns the interpretation of neu-

ral models. Network gradients can be used to compute how much a unit contributes
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to the final score (Baehrens et al., 2010; Li et al., 2016), e.g., in a classification task.

This method assumes that the scores of interest are differentiable, whereas uncertainty

scores do not satisfy this requirement. Attention scores between the encoder and de-

coder are often interpreted as alignments and used to analyze model output (Xu et al.,

2015; Bahdanau et al., 2015). However, attention scores offer little information when

the input and output are loosely aligned as is the case with IFTTT in semantic parsing

(Dong and Lapata, 2016), and any interpretation method based on them will be equally

ineffective. Besides, the attention component is learned as a part of the model to obtain

good predictions, rather than being specifically designed for the purpose of interpre-

tation. Lei et al. (2016) jointly train a generator and an encoder to extract rationales

for given input texts. The generator identifies text fragments as candidate rationales

which are passed through the encoder to predict the results. Bach et al. (2015), Zhang

et al. (2016), Montavon et al. (2017), Ding et al. (2017), and Kindermans et al. (2018)

propose to use rules to backpropagate salience scores to input layers. The intuition is

to decompose the neuron activation in terms of contributions from its input values. We

expand on this idea, defining new propagation rules for encoder-decoder networks that

clarify the relation between input tokens and uncertainty scores of predictions. In ad-

dition, our goal is to identity the input words that contribute to prediction uncertainty,

rather than explaining how the model obtains results.

4.2 Neural Semantic Parsing Model

In the following section we describe the neural semantic parsing model we assume

throughout this chapter. The model is built upon the sequence-to-sequence architecture

and is illustrated in Figure 4.2. An encoder is used to encode natural language input

q = q1 · · ·q|q| into a vector representation, and a decoder learns to generate a logical

form representation of its meaning a = a1 · · ·a|a| conditioned on the encoding vectors.

The encoder and decoder are two different recurrent neural networks with long short-

term memory units (LSTMs; Hochreiter and Schmidhuber 1997) which process tokens

sequentially. The model is presented in Section 2.2.1, while we use one-layer LSTMs

in this chapter. The proposed confidence modeling methods can also be applied to

multi-layer models. Specifically, the probability of generating the whole sequence

p(a|q) is factorized as:

p(a|q) =
|a|

∏
t=1

p(at |a<t ,q) (4.1)
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where a<t = a1 · · ·at−1.

Let et ∈ Rn denote the hidden vector of the encoder at time step t. It is computed

via et = fLSTM (et−1,qt), where fLSTM refers to the LSTM unit, and qt ∈Rn is the word

embedding of qt . Once the tokens of the input sequence are encoded into vectors, e|q|
is used to initialize the hidden states of the first time step in the decoder.

Similarly, the hidden vector of the decoder at time step t is computed by dt =

fLSTM (dt−1,at−1), where at−1 ∈ Rn is the word vector of the previously predicted

token. Additionally, we use an attention mechanism (Luong et al., 2015a) to utilize

relevant encoder-side context. For the current time step t of the decoder, we compute

its attention score with the k-th hidden state in the encoder as:

rt,k ∝ exp{dt · ek} (4.2)

where ∑
|q|
j=1 rt, j = 1. The probability of generating at is computed via:

ct =
|q|

∑
k=1

rt,kek (4.3)

datt
t = tanh(W1dt +W2ct) (4.4)

p(at |a<t ,q) = softmaxat

(
Wodatt

t
)

(4.5)

where W1,W2 ∈ Rn×n and Wo ∈ R|Va|×n are three parameter matrices.

The training objective is to maximize the likelihood of the generated meaning rep-

resentation a given input q, i.e.,

maximize ∑
(q,a)∈D

log p(a|q)

where D represents training pairs. At test time, the model’s prediction for input q is

obtained via:

â = argmax
a′

p
(
a′|q
)

where a′ represents candidate outputs. Because p(a|q) is factorized as shown in Equa-

tion (4.1), we can use beam search to generate tokens one by one rather than iterating

over all possible results.

4.3 Confidence Estimation

As shown in Figure 4.1, given input q and its meaning representation a predicted by

the semantic parser, the confidence estimation method computes score s(q,a) ∈ (0,1).
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Figure 4.1: Overview of confidence estimation.

A large score indicates the semantic parsing model is confident that its prediction is

correct. In order to gauge confidence, we need to estimate “what we do not know”. To

this end, we identify three causes of uncertainty, and design various metrics character-

izing each one of them. We then feed these metrics into a regression model (see upper

part in Figure 4.1) in order to predict s(q,a).

4.3.1 Model Uncertainty

The model’s parameters or structures contain uncertainty, which makes the model less

confident about the values of p(a|q). For example, noise in the training data and

the stochastic learning algorithm itself can result in model uncertainty. We describe

metrics for capturing uncertainty below:

Dropout Perturbation Our first metric uses dropout (Srivastava et al., 2014) as ap-

proximate Bayesian inference to estimate model uncertainty (Gal and Ghahramani,

2016). Dropout is a widely used regularization technique during training, which re-

lieves overfitting by randomly masking some input neurons to zero according to a

Bernoulli distribution. In our work, we use dropout at test time, instead.
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Figure 4.2: We use dropout as approximate Bayesian inference to obtain model uncer-

tainty. The dropout layers are applied to i) token input vectors; ii) the encoder’s output

vectors; iii) bridge vectors between encoder and decoder; and iv) decoding vectors.

Algorithm 3 Dropout Perturbation
Input: q,a: Input and its prediction

M : Model parameters

1: . Perform F forward passes through the network

2: for i← 1, · · · ,F do
3: . Get perturbed networks

4: M̂ i← Apply dropout layers to M as in Figure 4.2

5: Run forward pass and compute p̂(a|q;M̂ i)

6: . Compute the metric as in Equation (4.6)

7: return var{p̂(a|q;M̂ i)}F
i=1

As shown in Algorithm 3, we perform F forward passes through the network, and

collect the results {p̂(a|q;M̂ i)}F
i=1 where M̂ i represents the perturbed networks. Then,

the uncertainty metric is computed by the variance of results. We define the metric on

the sequence level as:

var{p̂(a|q;M̂ i)}F
i=1. (4.6)

In addition, we compute uncertainty score uat for each token at via:

uat = var{p̂(at |a<t ,q;M̂ i)}F
i=1 (4.7)

where p̂(at |a<t ,q;M̂ i) is the probability of generating token at (Equation (4.5)) using

perturbed model M̂ i. We operationalize token-level uncertainty in two ways, as the

average score avg{uat}
|a|
t=1 and the maximum score max{uat}

|a|
t=1 (since the uncertainty

of a sequence is often determined by the most uncertain token).
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As shown in Figure 4.2, we add dropout layers in i) the word vectors of the encoder

and decoder qt ,at ; ii) the output vectors of the encoder et ; iii) bridge vectors e|q| used

to initialize the hidden states of the first time step in the decoder; and iv) decoding

vectors datt
t (Equation (4.4)).

Gaussian Noise Perturbation Standard dropout can be viewed as applying noise

sampled from a Bernoulli distribution to the network parameters. We instead use Gaus-

sian noise, and apply the metrics in the same way discussed above. Let v denote a

vector. The perturbed vectors v̂1, v̂2 are obtained via:

g∼N (0,σ2)

v̂1 = v+g

v̂2 = v+v�g

where g is a noise vector sampled from the Gaussian distribution N (0,σ2), and σ is

the standard deviation. Intuitively, if the model is more confident in an example, it

should be more robust to perturbations.

Posterior Probability Our last class of metrics is based on posterior probability. We

use the log probability log p(a|q) as a sequence-level metric. The token-level metric

min{p(at |a<t ,q)}
|a|
t=1 can identify the most uncertain predicted token. The perplexity

per token − 1
|a|∑

|a|
t=1 log p(at |a<t ,q) is also employed.

4.3.2 Data Uncertainty

The coverage of training data also affects the uncertainty of predictions. If the input

q does not match the training distribution or contains unknown words, it is difficult to

predict p(a|q) reliably. We define two metrics as follows.

Probability of Input We train a language model on the training data, and use it to

estimate the probability of input p(q|D) where D represents the training data. The

probability measures whether the input utterance is an out-of-domain/distribution in-

stance.

Number of Unknown Tokens Tokens that do not appear in the training data harm

robustness, and lead to uncertainty. So, we use the number of unknown tokens in the

input q as a metric.
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4.3.3 Input Uncertainty

Even if the model can estimate p(a|q) reliably, the input itself may be ambiguous. For

instance, the input the flight is at 9 o’clock can be interpreted as either flight time(9am)

or flight time(9pm). Selecting between these predictions is difficult, especially if

they are both highly likely. We use the following metrics to measure uncertainty caused

by ambiguous inputs.

Variance of Top Candidates We use the variance of the probabilities of the top can-

didates to indicate whether these are similar. The sequence-level metric is computed

by:

var{p(ai|q)}K
i=1

where a1 . . .aK are the K-best predictions obtained by the beam search during inference

(Section 4.2).

Entropy of Decoding The sequence-level entropy of the decoding process is com-

puted via:

H[a|q] =−∑
a′

p(a′|q) log p(a′|q)

which we approximate by Monte Carlo sampling rather than iterating over all candidate

predictions. The token-level metrics of decoding entropy are computed by:

avg{H[at |a<t ,q]}
|a|
t=1

and

max{H[at |a<t ,q]}
|a|
t=1 .

4.3.4 Confidence Scoring

The sentence- and token-level confidence metrics defined in Section 4.3 are fed into a

gradient tree boosting model (Chen and Guestrin, 2016) in order to predict the overall

confidence score s(q,a). The gradient tree boosting model is an ensemble of a set

of classification and regression trees which classify instances into different leaves and

assign these examples the corresponding scores. The model is wrapped with a logistic

function so that confidence scores are in the range of (0,1).

Because the confidence score indicates whether the prediction is likely to be cor-

rect, we can use the prediction’s F1 (see Section 4.5.2) as target value. The training
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loss is defined as:

∑
(q,a)∈D

ln(1+e−ŝ(q,a))yq,a+ ln(1+eŝ(q,a))(1−yq,a)

where D represents the data, yq,a is the target F1 score, and ŝ(q,a) the predicted confi-

dence score. We refer readers to Chen and Guestrin (2016) for mathematical details of

how the gradient tree boosting model is trained. In short, second-order Taylor expan-

sion is used to approximate the loss function. A regularization term is also added to

control the model complexity (such as the number of leaves of boosted trees). Because

it is intractable to learn all the decision trees at once, only one new tree is added at a

time while the other trees are kept fixed. The parameters and decision tree structures

are trained to optimize the objective function. Notice that we learn the confidence scor-

ing model on the held-out set (rather than on the training data of the semantic parser)

to avoid overfitting.

Once we have a scoring model, we use it to estimate confidence scores for new

examples. Given the input and its prediction, we first extract the confidence metrics as

described in Section 4.3.1–4.3.3. Then these metrics are used as features and fed into

the scoring model, which produces the estimated confidence score.

4.4 Uncertainty Interpretation

Confidence scores are useful in so far they can be traced back to the inputs causing

the uncertainty in the first place. For semantic parsing, identifying which input words

contribute to uncertainty would be of value, e.g., these could be treated explicitly as

special cases or refined if they represent noise.

In this section, we introduce an algorithm that backpropagates token-level uncer-

tainty scores (see Equation (4.7)) from predictions to input tokens, following the ideas

of Bach et al. (2015) and Zhang et al. (2016). Let um denote neuron m’s uncertainty

score, which indicates the degree to which it contributes to uncertainty. As shown in

Figure 4.3, um is computed by the summation of the scores backpropagated from its

child neurons:

um = ∑
c∈Child(m)

vc
muc

where Child(m) is the set of m’s child neurons, and the non-negative contribution ratio

vc
m indicates how much we backpropagate uc to neuron m. Intuitively, if neuron m

contributes more to c’s value, ratio vc
m should be larger.
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Figure 4.3: Uncertainty backpropagation at the neuron level. Neuron m’s score um is

collected from child neurons c1 and c2 by um = vc1
m uc1 + vc2

m uc2 . The score um is then

redistributed to its parent neurons p1 and p2, which satisfies vm
p1
+ vm

p2
= 1.

After obtaining score um, we redistribute it to its parent neurons in the same way.

Contribution ratios from m to its parent neurons are normalized to 1:

∑
p∈Parent(m)

vm
p = 1

where Parent(m) is the set of m’s parent neurons.

Given the above constraints, we now define different backpropagation rules for the

operators used in neural networks. We first describe the rules used for fully-connected

layers. Let x denote the input. The output is computed by z = σ(Wx+ b), where

σ is a nonlinear function, W ∈ R|z|∗|x| is the weight matrix, b ∈ R|z| is the bias, and

neuron zi is computed via zi = σ(∑
|x|
j=1 Wi, jx j +bi). Neuron xk’s uncertainty score uxk

is gathered from the next layer:

uxk =
|z|

∑
i=1

vzi
xk

uzi

=
|z|

∑
i=1

|Wi,kxk|

∑
|x|
j=1 |Wi, jx j|

uzi

ignoring the nonlinear function σ and the bias b. The ratio vzi
xk

is proportional to the

contribution of xk to the value of zi.

We next define backpropagation rules for element-wise vector operators. For z =

x±y, these are:
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uxk =
|xk|

|xk|+ |yk|
uzk

uyk =
|yk|

|xk|+ |yk|
uzk

where the contribution ratios vzk
xk and vzk

yk are determined by |xk| and |yk|. For multiplica-

tion, the contribution of two elements in 1
3 ∗3 should be the same. So, the propagation

rules for z = x�y are:

uxk =
| log |xk||

| log |xk||+ | log |yk||
uzk

uyk =
| log |yk||

| log |xk||+ | log |yk||
uzk

where the contribution ratios are determined by | log |xk|| and | log |yk||. The propaga-

tion rule of element-wise multiplication is important to the gating mechanism of LSTM

units as shown in Equation (2.3).

For scalar multiplication, z = λx where λ denotes a constant. We directly assign z’s

uncertainty scores to x and the backpropagation rule is uxk = uzk .

As shown in Algorithm 4, we first initialize uncertainty backpropagation in the

decoder (lines 1–5). For each predicted token at , we compute its uncertainty score

uat as in Equation (4.7). Next, we find the dimension of at in the decoder’s softmax

classifier (Equation (4.5)), and initialize the neuron with the uncertainty score uat .

We then backpropagate these uncertainty scores through the network (lines 6–9), and

finally into the neurons of the input words. We summarize them and compute the

token-level scores for interpreting the results (line 10–13). For input word vector qt ,

we use the summation of its neuron-level scores as the token-level score:

ûqt ∝ ∑
c∈qt

uc

where c ∈ qt represents the neurons of word vector qt , and ∑
|q|
t=1 ûqt = 1. We use the

normalized score ûqt to indicate token qt’s contribution to prediction uncertainty.

4.5 Experiments

In this section we describe the datasets used in our experiments and various details

concerning our models. We also present our experimental results and analysis of model

behavior. The code and pretrained models are available at https://github.com/

donglixp/confidence.

https://github.com/donglixp/confidence
https://github.com/donglixp/confidence
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Algorithm 4 Uncertainty Interpretation
Input: q,a: Input and its prediction

Output: {ûqt}
|q|
t=1: Interpretation scores for input tokens

Function: TokenUnc: Get token-level uncertainty

1: . Get token-level uncertainty for predicted tokens

2: {uat}
|a|
t=1← TokenUnc(q,a)

3: . Initialize uncertainty scores for backpropagation

4: for t← 1, · · · , |a| do
5: Decoder classifier’s output neuron← uat

6: . Run backpropagation

7: for m← neuron in backward topological order do
8: . Gather scores from child neurons

9: um← ∑c∈Child(m) vc
muc

10: . Summarize scores for input words

11: for t← 1, · · · , |q| do
12: uqt ← ∑c∈qt uc

13: {ûqt}
|q|
t=1← normalize {uqt}

|q|
t=1

Dataset Example

IFTTT
turn android phone to full volume at 7am monday to friday

date time−every day of the week at−((time of day (07)(:)(00))

(days of the week (1)(2)(3)(4)(5))) THEN android device−
set ringtone volume−(volume ({volume level’:1.0,’name’:’100%’}))

DJANGO
for every key in sorted list of user settings

for key in sorted(user settings):

Table 4.1: Natural language descriptions and their meaning representations from IFTTT

and DJANGO.

4.5.1 Datasets

We trained the neural semantic parser introduced in Section 4.2 on two datasets cover-

ing different domains and meaning representations. Examples are shown in Table 4.1.

IFTTT and DJANGO are also used in Section 2.3 and Section 3.3.2, respectively. The

datasets contain uncertainty because of the method of data collection and the ambiguity
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of examples. The natural language descriptions and meaning representations of IFTTT

are written by end users from the IFTTT website1, which renders the dataset noisy. The

other dataset DJANGO contains pairs of pseudocodes and Python statements, which is

annotated by software engineers. Because of the flexibility of Python language, the

same natural language expression can have various implementations. For example,

the pseudocode “summation of variables a and b” can be mapped into both a+b and

sum((a,b)) in Python.

IFTTT This dataset (Quirk et al., 2015) contains a large number of if-this-then-that

programs. The programs are paired with natural language descriptions and are writ-

ten for various applications, such as home security (e.g., “email me if the window

opens”), and task automation (e.g., “save instagram photos to dropbox”). Whenever

a program’s trigger is satisfied, an action is performed. Triggers and actions represent

functions with arguments; they are selected from different channels (160 in total) rep-

resenting various services (e.g., Android). There are 552 trigger functions and 229 ac-

tion functions. The original split contains 77,495 training, 5,171 development, and

4,294 test instances. The subset that removes non-English descriptions was used in

our experiments.

DJANGO This dataset (Oda et al., 2015) is built upon the code of the Django web

framework. Each line of Python code has a manually annotated natural language de-

scription. Our goal is to map the English pseudocode to Python statements. This

dataset contains diverse use cases, such as iteration, exception handling, and string

manipulation. The original split has 16,000 training, 1,000 development, and 1,805

test examples.

4.5.2 Settings

We followed the data preprocessing used in previous work (Dong and Lapata, 2016;

Yin and Neubig, 2017). Input sentences were tokenized using NLTK (Bird et al., 2009)

and lowercased. We filtered words that appeared less than four times in the training set.

Numbers and URLs in IFTTT and quoted strings in DJANGO were replaced with place

holders. Hyperparameters of the semantic parsers were validated on the development

set. The learning rate and the smoothing constant of RMSProp (Tieleman and Hinton,

1http://ifttt.com

http://ifttt.com
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2012) were 0.002 and 0.95, respectively. The dropout rate was 0.25. A two-layer

LSTM was used for IFTTT, while a one-layer LSTM was employed for DJANGO.

Dimensions for the word embedding and hidden vector were selected from {150,250}.
The beam size during decoding was 5.

For IFTTT, we view the predicted trees as a set of productions, and use balanced

F1 as evaluation metric (Quirk et al., 2015). We do not measure accuracy because the

dataset is very noisy and there rarely is an exact match between the predicted output

and the gold standard. The F1 score of our neural semantic parser is 50.1%, which is

comparable to Dong and Lapata (2016). For DJANGO, we measure the fraction of exact

matches, where F1 score is equal to accuracy. Because there are unseen variable names

at test time, we use attention scores as alignments to replace unknown tokens in the

prediction with the input words they align to (Luong et al., 2015b). The accuracy of our

parser is 53.7%, which is better than the result (45.1%) of the sequence-to-sequence

model reported in Yin and Neubig (2017).

To estimate model uncertainty, we set dropout rate to 0.1, and performed 30 infer-

ence passes. The standard deviation of Gaussian noise was 0.05. The language model

was estimated using KenLM (Heafield et al., 2013). For input uncertainty, we com-

puted variance for the 10-best candidates. The confidence metrics were implemented

in batch mode, to take full advantage of GPUs. Hyperparameters of the confidence

scoring model were cross-validated. The number of boosted trees was selected from

{20,50}. The maximum tree depth was selected from {3,4,5}. We set the subsample

ratio to 0.8. All other hyperparameters in XGBoost (Chen and Guestrin, 2016) were

left with their default values.

4.5.3 Results

Confidence Estimation We compared our approach (CONFIDENCE) against con-

fidence scores based on posterior probability p(a|q) (POSTERIOR). We also report

the results of three ablation variants (−MODEL, −DATA, −INPUT) by removing each

group of confidence metrics described in Section 4.3. Specifically, −MODEL removes

the metrics computed by dropout perturbation, Gaussian noise perturbation, and pos-

terior probability. The second variant −DATA removes the confidence metrics based

on probability of input, and number of unknown tokens. The last variant−INPUT does

not use metrics computed by variance of top candidates, and entropy of decoding. We

measure the relationship between confidence scores and F1 using Spearman’s ρ cor-
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Method IFTTT DJANGO

POSTERIOR 0.477 0.694

CONFIDENCE 0.625 0.793
− MODEL 0.595 0.759

− DATA 0.610 0.787

− INPUT 0.608 0.785

Table 4.2: Spearman ρ correlation between confidence scores and F1. Best results are

shown in bold. All correlations are significant at p < 0.01.

F1 Dropout Noise Posterior Perplexity LM #UNK Variance

Dropout 0.59
Noise 0.59 0.90

Posterior 0.52 0.84 0.82

Perplexity 0.48 0.78 0.78 0.89

LM 0.30 0.26 0.32 0.27 0.25

#UNK 0.27 0.31 0.33 0.29 0.25 0.32

Variance 0.49 0.83 0.78 0.88 0.79 0.25 0.27

Entropy 0.53 0.78 0.78 0.80 0.75 0.27 0.30 0.76

Table 4.3: Correlation matrix for F1 and individual confidence metrics on the IFTTT

dataset. All correlations are significant at p < 0.01. Best predictors are shown in bold.

Posterior is short for posterior probability, LM for probability based on a language model,

#UNK for number of unknown tokens, and Variance for variance of top candidates.

relation coefficient which varies between −1 and 1 (0 implies there is no correlation).

High ρ indicates that the confidence scores are high for correct predictions and low

otherwise.

As shown in Table 4.2, our method CONFIDENCE outperforms POSTERIOR by

a large margin. The ablation results indicate that model uncertainty plays the most

important role among the confidence metrics. In contrast, removing the metrics of

data uncertainty affects performance less, because most examples in the datasets are

in-domain. Improvements for each group of metrics are significant with p < 0.05

according to bootstrap hypothesis testing (Efron and Tibshirani, 1994).
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F1 Dropout Noise Posterior Perplexity LM #UNK Variance

Dropout 0.76
Noise 0.78 0.94

Posterior 0.73 0.89 0.90

Perplexity 0.64 0.80 0.81 0.84

LM 0.32 0.41 0.40 0.38 0.30

#UNK 0.27 0.28 0.28 0.26 0.19 0.35

Variance 0.70 0.87 0.87 0.89 0.87 0.37 0.23

Entropy 0.72 0.89 0.90 0.92 0.86 0.38 0.26 0.90

Table 4.4: Correlation matrix for F1 and individual confidence metrics on the DJANGO

dataset. All correlations are significant at p < 0.01. Best predictors are shown in bold.

Same shorthands apply as in Table 4.3.

Metric Dropout Noise Posterior Perplexity LM #UNK Variance Entropy

IFTTT 0.39 1.00 0.89 0.27 0.26 0.46 0.43 0.34

DJANGO 1.00 0.59 0.22 0.58 0.49 0.14 0.24 0.25

Table 4.5: Importance scores of confidence metrics (normalized by maximum value on

each dataset). Best results are shown in bold. Same shorthands apply as in Table 4.3.

Tables 4.3–4.4 show the correlation matrix for F1 and individual confidence met-

rics on the IFTTT and DJANGO datasets, respectively. As can be seen, metrics rep-

resenting model uncertainty and input uncertainty are more correlated to each other

compared with metrics capturing data uncertainty. Perhaps unsurprisingly metrics of

the same group are highly inter-correlated since they model the same type of uncer-

tainty. Table 4.5 shows the relative importance of individual metrics in the regression

model. As importance score we use the average gain (i.e., loss reduction) brought by

the confidence metric once added as feature to the branch of the decision tree (Chen

and Guestrin, 2016). The results indicate that model uncertainty (Noise/Dropout/Pos-

terior/Perplexity) plays the most important role. On IFTTT, the number of unknown

tokens (#UNK) and the variance of top candidates (var(K-best)) are also very helpful

because this dataset is relatively noisy and contains many ambiguous inputs.

Finally, in real-world applications, confidence scores are often used as a threshold
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Figure 4.4: Confidence scores are used as threshold to filter out uncertain test exam-

ples. As the threshold increases, performance improves. The horizontal axis shows the

proportion of examples beyond the threshold.

to trade-off precision for coverage. Figure 4.4 shows how F1 score varies as we in-

crease the confidence threshold, i.e., reduce the proportion of examples that we return

answers for. F1 score improves monotonically for POSTERIOR and our method, which,

however, achieves better performance when coverage is the same.

Uncertainty Interpretation We next evaluate how our backpropagation method (see

Section 4.4) allows us to identify input tokens contributing to uncertainty.

We compare against a method that interprets uncertainty based on the attention

mechanism (ATTENTION). As shown in Equation (4.2), attention scores rt,k can be
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used as soft alignments between the time step t of the decoder and the k-th input token.

We compute the normalized uncertainty score ûqt for a token qt via:

ûqt ∝

|a|

∑
t=1

rt,kuat (4.8)

where uat is the uncertainty score of the predicted token at (Equation (4.7)), and

∑
|q|
t=1 ûqt = 1.

Unfortunately, the evaluation of uncertainty interpretation methods is problematic.

For our semantic parsing task, we do not a priori know which tokens in the natural

language input contribute to uncertainty and these may vary depending on the archi-

tecture used, model parameters, and so on. We work around this problem by creating a

proxy gold standard. We inject noise to the vectors representing tokens in the encoder

(see Section 4.3.1) and then estimate the uncertainty caused by each token qt (Equa-

tion (4.6)) under the assumption that addition of noise should only affect genuinely

uncertain tokens. Notice that here we inject noise to one token at a time2 instead of

all parameters (see Figure 4.2). Tokens identified as uncertain by the above procedure

are considered gold standard and compared to those identified by our method. We use

Gaussian noise to perturb vectors in our experiments (dropout obtained similar results).

We define an evaluation metric based on the overlap (overlap@K) among tokens

identified as uncertain by the model and the gold standard. Given an example, we first

compute the interpretation scores of the input tokens according to our method, and

obtain a list τ1 of K tokens with highest scores. We also obtain a list τ2 of K tokens

with highest ground-truth scores and measure the degree of overlap between these two

lists:

overlap@K =
|τ1∩ τ2|

K
where K ∈ {2,4} in our experiments. For example, the overlap@4 metric of the lists

τ1 = [q7,q8,q2,q3] and τ2 = [q7,q8,q3,q4] is 3/4, because there are three overlapping

tokens.

Table 4.6 reports results with overlap@2 and overlap@4. Overall, BACKPROP

achieves better interpretation quality than the attention mechanism. On both datasets,

about 80% of the top-4 tokens identified as uncertain agree with the ground truth. The

evaluation results demonstrate that the backpropagation algorithm is relatively good at

identifying the most important words that cause prediction uncertainty.
2Noise injection is used for evaluation purposes only since we need to perform forward passes mul-

tiple times (see Section 4.3.1) for each token, and the running time increases linearly with the input
length.
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Method IFTTT DJANGO

@2 @4 @2 @4

ATTENTION 0.525 0.737 0.637 0.684

BACKPROP 0.608 0.791 0.770 0.788

Table 4.6: Uncertainty interpretation against inferred ground truth; we compute the

overlap between tokens identified as contributing to uncertainty by our method and

those found in the gold standard. Overlap is shown for top 2 and 4 tokens. Best results

are in bold.

google calendar−any event starts THEN facebook−create a status message

−(status message({description}))
ATT post calendar event to facebook

BP post calendar event to facebook

feed−new feed item−(feed url( url sports.espn.go.com)) THEN ...
ATT espn mlb headline to readability

BP espn mlb headline to readability

weather−tomorrow’s low drops below−((temperature(0)) (degrees in(c)))

THEN ...
ATT warn me when it’s going to be freezing tomorrow

BP warn me when it’s going to be freezing tomorrow

if str number[0] == ’ STR ’:
ATT if first element of str number equals a string STR .

BP if first element of str number equals a string STR .

start = 0
ATT start is an integer 0 .

BP start is an integer 0 .

if name.startswith(’ STR ’):
ATT if name starts with an string STR ,

BP if name starts with an string STR ,

Table 4.7: Uncertainty interpretation for ATTENTION (ATT) and BACKPROP (BP) . The

first line in each group is the model prediction. Predicted tokens and input words with

large scores are shown in red and blue, respectively.
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Table 4.7 shows examples where our method has identified input tokens contribut-

ing to the uncertainty of the output. We highlight token at if its uncertainty score uat

is greater than 0.5∗ avg{uat′}
|a|
t ′=1. The same criterion is used to highlight input words

that have larger scores. The results illustrate that the parser tends to be uncertain about

tokens which are function arguments (e.g., URLs, and message content), and ambigu-

ous inputs. The examples show that BACKPROP is qualitatively better compared to

ATTENTION; attention scores often produce inaccurate alignments while BACKPROP

can utilize information flowing through the LSTMs rather than only relying on the

attention mechanism. In the first example, the model identifies the trigger function

any event starts as a uncertain token in the prediction. Because both trigger functions

any new event added and any event starts are correct for the input utterance. Another

uncertain span in the first prediction is {description}, as the message content is ab-

sent in the input. In the third instance, the model is unsure about the trigger function

tomorrow’s low drops below and the function argument 0. BACKPROP highlights the in-

put words “freezing tomorrow” for uncertainty interpretation, which helps us to quickly

verify or post-edit the results.

4.6 Summary

In this chapter we presented a confidence estimation model and an uncertainty inter-

pretation method for neural semantic parsing. We identified three types of uncertainty,

and designed various metrics for them. A regression model uses the metrics as features

to estimate confidence scores for model predictions. We also proposed a method that

allows to interpret uncertainty: by backpropagating and aggregating the uncertainly

scores through the neural network, identifying which tokens contribute to uncertain

predictions. Experimental results show that our method achieves better performance

than competitive baselines on two datasets. Directions for future work are many and

varied. The proposed framework could be applied to a variety of tasks (such as ma-

chine translation) employing encoder-decoder architectures. We could also utilize the

confidence estimation model within an active learning framework for neural semantic

parsing (Hwa, 2000; Duong et al., 2018).

The confidence modeling algorithms help the neural semantic parsers to make ro-

bust decisions for uncertain predictions, rather than always guessing some outputs. The

estimated confidence scores can be used as threshold to avoid unwanted actions. Fur-

thermore, fine-grained uncertainty interpretations provide valuable clues about what is
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not learned by neural semantic parsers, which makes the proposed models more in-

terpretable. As indicated by the experimental results, model coverage is one of the

important factors influencing prediction uncertainty. The findings motivate us to uti-

lize external resources to handle the many different ways natural language expresses

the same information need. In the next chapter, we learn paraphrase models to improve

the model robustness to variations in semantically equivalent utterances.
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Query Paraphrasing

As described in Section 1.2, one of the challenges to build a robust natural language

interface is model coverage. Due to the limited size of training data, it is challenging

to handle the many different ways natural language expresses the same information

need. As a result, small variations in semantically equivalent inputs may yield dif-

ferent results. For example, a hypothetical natural language interface must recognize

that the questions “who created microsoft” and “who started microsoft” have the same

meaning and that they both convey the founder relation in order to obtain the correct

answer from a knowledge base. Moreover, in Chapter 4, one of the main causes of un-

certainty is defined as data uncertainty, namely, uncertainty of predictions affected by

the coverage of training data. If the pattern of input is unseen by the model on training

data, it is difficult to predict reliable outputs.

In this chapter, we leverage external resources to rewrite the natural language input

during both training and test, so that model coverage can be increased by augmenting

the original expression with its variations. We focus on natural language interfaces

that are used to automatically answer questions posed in human language on any do-

main or topic, as open-domain question answering (QA) tasks contain more language

variations.

Given the great variety of surface forms for semantically equivalent expressions,

it should come as no surprise that previous work has investigated the use of para-

phrases in relation to natural language interfaces. There have been three main strands

of research. The first one applies paraphrasing to match natural language and logical

forms in the context of semantic parsing. Berant and Liang (2014) use a template-

based method to heuristically generate canonical text descriptions for candidate logical

forms, and then compute paraphrase scores between the generated texts and input ques-

77
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tions in order to rank the logical forms. Another strand of work uses paraphrases in

the context of neural question answering models (Bordes et al., 2014a,b; Dong et al.,

2015b). These models are typically trained on question-answer pairs, and employ

question paraphrases in a multi-task learning framework in an attempt to encourage

the neural networks to output similar vector representations for the paraphrases.

The third strand of research uses paraphrases more directly. The idea is to para-

phrase the question and then submit the rewritten version to a QA module. Various

resources have been used to produce question paraphrases, such as rule-based machine

translation (Duboue and Chu-Carroll, 2006), lexical and phrasal rules from the Para-

phrase Database (Narayan et al., 2016), as well as rules mined from Wiktionary (Chen

et al., 2016) and large-scale paraphrase corpora (Fader et al., 2013). A common prob-

lem with the generated paraphrases is that they often contain inappropriate candidates.

Hence, treating all paraphrases as equally felicitous and using them to answer the ques-

tion could degrade performance. To remedy this, a scoring model is often employed,

however independently of the QA system used to find the answer (Duboue and Chu-

Carroll, 2006; Narayan et al., 2016). Problematically, the separate paraphrase models

used in previous work do not fully utilize the supervision signal from the training data,

and as such cannot be properly tuned to the question answering tasks at hand. Based

on the large variety of possible transformations that can generate paraphrases, it seems

likely that the kinds of paraphrases that are useful would depend on the QA application

of interest (Bhagat and Hovy, 2013). Fader et al. (2014) use features that are defined

over the original question and its rewrites to score paraphrases. Examples include the

pointwise mutual information of the rewrite rule, the paraphrase’s score according to a

language model, and POS tag features. In the context of semantic parsing, Chen et al.

(2016) also use the ID of the rewrite rule as a feature. However, most of these features

are not informative enough to model the quality of question paraphrases, or cannot

easily generalize to unseen rewrite rules.

We present a general framework for learning paraphrases for question answering

tasks. Given a natural language question as input, our model estimates a probabil-

ity distribution over candidate answers. We first generate paraphrases for the ques-

tion, which can be obtained by one or several paraphrasing systems. A neural scoring

model predicts the quality of the generated paraphrases, while learning to assign higher

weights to those which are more likely to yield correct answers. The paraphrases and

the original question are fed into a QA model that predicts a distribution over answers

given the question. The entire system is trained end-to-end using question-answer pairs
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as a supervision signal. The framework is flexible, it does not rely on specific para-

phrase or QA models. In fact, this plug-and-play functionality allows to learn specific

paraphrases for different QA tasks and to explore the merits of different paraphrasing

models for different applications.

We evaluate our approach on question answering over Freebase and text-based an-

swer sentence selection. We employ a range of paraphrase models based on the Para-

phrase Database (PPDB; Pavlick et al. 2015), neural machine translation (Mallinson

et al., 2016), and rules mined from the WikiAnswers corpus (Fader et al., 2014). Re-

sults on three datasets show that our framework consistently improves performance;

it achieves state-of-the-art results on GraphQuestions and competitive performance on

two additional benchmark datasets using simple QA models.

5.1 Related Work

The task of automatically generating and acquiring semantic equivalences for natural

language expressions has been widely studied in previous work. The key to the prob-

lem is to learn surface forms that express the same meaning. In our work, we focus on

generating paraphrases for questions.

Apart from relying on dictionaries, manually defined rules, and formal grammars,

various methods (Madnani and Dorr, 2010) have been used to generate paraphrases at

different levels (e.g., lexical, phrasal, and sentential). For example, statistical machine

translation techniques are widely used in the context of “translating” the input to its

paraphrases (Quirk et al., 2004; Bannard and Callison-Burch, 2005; Wubben et al.,

2010; Zhao et al., 2010).

Recently, neural networks have also been used for the task of paraphrase gener-

ation. Sequence-to-sequence models are trained from pairs of paraphrases to map

sentences in the learned vector space (Prakash et al., 2016; Cao et al., 2017; Gupta

et al., 2018). Moreover, the techniques of neural machine translation and the idea of

bilingual pivoting are integrated, which utilizes large-scale bilingual parallel corpora

to produce multiple paraphrases for the input sentence (Mallinson et al., 2016; Wieting

and Gimpel, 2018). The proposed method can be adapted for wide domains, because

it is easier to collect bilingual parallel data compared with pairs of paraphrases. Iyyer

et al. (2018) further use a target syntactic form as extra input to generate a paraphrase

of the sentence with the desired syntax. They also show that the model robustness

to syntactic variation is improved when adversarial paraphrase examples are used for
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training data augmentation. In our work, we employ several generators (as described

in Section 5.2.1) to rewrite input queries and regard them as candidates.

5.2 Problem Formulation

Let q denote a natural language question, and a its answer. Our aim is to estimate p(a|q),
the conditional probability of candidate answers given the question. We decompose p(a|q)
as:

p(a|q) = ∑
q′∈Hq∪{q}

pψ

(
a|q′
)︸ ︷︷ ︸

QA Model

pθ

(
q′|q
)︸ ︷︷ ︸

Paraphrase Model

(5.1)

where Hq is the set of paraphrases for question q, ψ are the parameters of a QA model,

and θ are the parameters of a paraphrase scoring model.

As shown in Figure 5.1, we first generate candidate paraphrases Hq for question q.

Then, a neural scoring model predicts the quality of the generated paraphrases, and

assigns higher weights to the paraphrases which are more likely to obtain the correct

answers. These paraphrases and the original question simultaneously serve as input to

a QA model that predicts a distribution over answers for a given question. Finally, the

results of these two models are fused to predict the answer. In the following we will

explain how p(q′|q) and p(a|q′) are estimated.

5.2.1 Paraphrase Generation

As shown in Equation (5.1), the term p(a|q) is the sum over q and its paraphrases Hq.

Ideally, we would generate all the paraphrases of q. However, since this set could

quickly become intractable, we restrict the number of candidate paraphrases to a given

size. In order to increase the coverage and diversity of paraphrases, we employ three

methods based on: (1) lexical and phrasal rules from the Paraphrase Database (Pavlick

et al., 2015); (2) neural machine translation models (Sutskever et al., 2014; Bahdanau

et al., 2015); and (3) paraphrase rules mined from clusters of related questions (Fader

et al., 2014). We briefly describe these models below, however, there is nothing inher-

ent in our framework that is specific to these, any other paraphrase generator could be

used instead.
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Input: what be the zip code of the largest car manufacturer

what be the zip code of the largest vehicle manufacturer PPDB

what be the zip code of the largest car producer PPDB

what be the postal code of the biggest automobile manufacturer NMT

what be the postcode of the biggest car manufacturer NMT

what be the largest car manufacturer ’s postal code Rule

zip code of the largest car manufacturer Rule

Input: which country have the largest hi-tech company in europe

which country have the largest high-technology company in europe PPDB

which country have the largest high-tech company in europe PPDB

which country own europe ’s biggest high-tech company NMT

which country have europe ’s largest high-tech company NMT

what european country have the largest hi-tech company Rule

which country have the biggest hi-tech company in europe Rule

Table 5.1: Paraphrases obtained for an input question from different models (PPDB,

NMT, Rule). Words are lowercased and stemmed.

5.2.1.1 PPDB-based Generation

Bilingual pivoting (Bannard and Callison-Burch, 2005) is one of the most well-known

approaches to paraphrasing; it uses bilingual parallel corpora to learn paraphrases

based on techniques from phrase-based statistical machine translation (SMT, Koehn

et al. 2003). The intuition is that two English strings that translate to the same foreign

string can be assumed to have the same meaning. The method first extracts a bilin-

gual phrase table and then obtains English paraphrases by pivoting through foreign

language phrases.

Drawing inspiration from syntax-based SMT, Callison-Burch (2008) and Ganitke-

vitch et al. (2011) extended this idea to syntactic paraphrases, leading to the creation

of PPDB (Ganitkevitch et al., 2013), a large-scale paraphrase database containing over

a billion of paraphrase pairs in 24 different languages. Pavlick et al. (2015) further

used a supervised model to automatically label paraphrase pairs with entailment rela-

tionships based on natural logic (MacCartney, 2009). In our work, we employ bidirec-

tionally entailing rules from PPDB. Specifically, we focus on lexical (single word) and
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Figure 5.2: Overview of NMT-based paraphrase generation. NMT1 (green) translates

question q into pivots g1 . . .gK which are then back-translated by NMT2 (blue) where K

decoders jointly predict tokens at each time step, rather than only conditioning on one

pivot and independently predicting outputs.

phrasal (multiword) rules which we use to paraphrase questions by replacing words

and phrases in them. An example is shown in Table 5.1 where we substitute car with

vehicle and manufacturer with producer.

5.2.1.2 NMT-based Generation

Mallinson et al. (2016) revisit bilingual pivoting in the context of neural machine trans-

lation (NMT, Sutskever et al. 2014; Bahdanau et al. 2015) and present a paraphrasing

model based on neural networks. At its core, NMT is trained end-to-end to maximize

the conditional probability of a correct translation given a source sentence, using a

bilingual corpus. Paraphrases can be obtained by translating an English string into a

foreign language and then back-translating it into English. NMT-based pivoting mod-

els offer advantages over conventional methods such as the ability to learn continuous

representations and to consider wider context while paraphrasing.

In our work, we select German as our pivot following Mallinson et al. (2016) who

show that it outperforms other languages in a wide range of paraphrasing experiments,

and pretrain two NMT systems, English-to-German (EN-DE) and German-to-English

(DE-EN). A naive implementation would translate a question to a German string and

then back-translate it to English. However, using only one pivot can lead to inaccura-

cies as it places too much faith on a single translation which may be wrong. Instead,

we translate from multiple pivot sentences (Mallinson et al., 2016). As shown in Fig-
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Source Target

what be the zip code of what be ’s postal code

the average size of what be average size

what be the money in what currency do use

be locate on which continent what continent be a part of

what be some famous place in what be some place of interest in

language speak in what be the official language of

in which state be in what state be at

what can be use instead of what can you use to substitute

Table 5.2: Examples of rules used in the rule-based paraphrase generator.

ure 5.2, question q is translated to K-best German pivots, Gq = {g1, . . . ,gK}. The

probability of generating paraphrase q′ = y1 . . .y|q′| is decomposed as:

p
(
q′|Gq

)
=
|q′|

∏
t=1

p
(
yt |y<t ,Gq

)
=
|q′|

∏
t=1

K

∑
k=1

p(gk|q) p(yt |y<t ,gk)

(5.2)

where y<t = y1, . . . ,yt−1, and |q′| is the length of q′. Probabilities p(gk|q) and p(yt |y<t ,gk)

are computed by the EN-DE and DE-EN models, respectively. We use beam search

to decode tokens by conditioning on multiple pivoting sentences. The results with the

best decoding scores are considered candidate paraphrases. Examples of NMT para-

phrases are shown in Table 5.1.

Compared to PPDB, NMT-based paraphrases are syntax-agnostic, operating on the

surface level without knowledge of any underlying grammar. Furthermore, paraphrase

rules are captured implicitly and cannot be easily extracted, e.g., from a phrase table.

As mentioned earlier, the NMT-based approach has the potential of performing major

rewrites as paraphrases are generated while considering wider contextual information,

whereas PPDB paraphrases are more local, and mainly handle lexical variation.

5.2.1.3 Rule-Based Generation

Our third paraphrase generation approach uses rules mined from the WikiAnswers cor-

pus (Fader et al., 2014) which contains more than 30 million question clusters labeled



5.2. Problem Formulation 85

as paraphrases by WikiAnswers1 users. This corpus is a large resource (the average

cluster size is 25), but is relatively noisy due to its collaborative nature – 45% of ques-

tion pairs are merely related rather than genuine paraphrases. We therefore followed

the method proposed in (Fader et al., 2013) to harvest paraphrase rules from the corpus.

We first extracted question templates (i.e., questions with at most one wild-card) that

appear in at least ten clusters. Any two templates co-occurring (more than five times)

in the same cluster and with the same arguments were deemed paraphrases. Table 5.2

shows examples of rules extracted from the corpus.

During paraphrase generation, we consider substrings of the input question as ar-

guments, and match them with the mined template pairs. For example, the stemmed

input question in Table 5.1 can be paraphrased using the rules (“what be the zip code

of ”, “what be ’s postal code”) and (“what be the zip code of ”, “zip code of ”).

If no exact match is found, we perform fuzzy matching by ignoring stop words in the

question and templates.

5.2.2 Paraphrase Scoring

Recall from Equation (5.1) that pθ (q′|q) scores the generated paraphrases q′ ∈ Hq ∪
{q}. We estimate pθ (q′|q) using neural networks given their successful application to

paraphrase identification tasks (Socher et al., 2011; Yin and Schütze, 2015; He et al.,

2015). As shown in Figure 5.3, the input question and its paraphrases are encoded

as vectors. Then, we employ a neural network to obtain the score s(q′|q) which after

normalization becomes the probability pθ (q′|q).

Encoding Let q= q1 . . .q|q| denote an input question. Every word is initially mapped

to a d-dimensional vector. In other words, vector qt is computed via qt = Wqe(qt),

where Wq ∈ Rd×|V | is a word embedding matrix, |V | is the vocabulary size, and

e(qt) is a one-hot vector. Next, we use a bi-directional recurrent neural network

with long short-term memory units (LSTM, Hochreiter and Schmidhuber 1997) as

the question encoder, which is shared by the input questions and their paraphrases.

The encoder recursively processes tokens one by one, and uses the encoded vectors to

represent questions. We compute the hidden vectors at the t-th time step via:
−→
h t = fLSTM

(−→
h t−1,qt

)
, t = 1, . . . , |q|

←−
h t = fLSTM

(←−
h t+1,qt

)
, t = |q|, . . . ,1

(5.3)

1http://wiki.answers.com

http://wiki.answers.com
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Figure 5.3: Overview of paraphrase scoring model. A bidirectional LSTM is used to

encode the question q and the generated paraphrase q′ ∈ Hq∪{q}. We then employ

a neural network to obtain the score s(q′|q) for paraphrase identification.

where
−→
h t ,
←−
h t ∈ Rn. We use the fLSTM function as described in Equation (2.3). The

representation of q is obtained by:

q =
[−→

h |q|,
←−
h 1

]
(5.4)

where [·, ·] denotes concatenation, and q ∈ R2n.

Scoring After obtaining vector representations for q and q′, we compute the score

s(q′|q) via:

s
(
q′|q
)
= ws ·

[
q,q′,q�q′

]
+bs (5.5)

where ws ∈R6n is a parameter vector, [·, ·, ·] denotes concatenation, � is element-wise

multiplication, and bs is the bias. Alternative ways to compute s(q′|q) such as dot

product or with a bilinear term were not empirically better than Equation (5.5) and we

omit them from further discussion.
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Normalization For paraphrases q′ ∈ Hq∪{q}, the probability pθ (q′|q) is computed

via:

pθ

(
q′|q
)
=

exp{s(q′|q)}
∑r∈Hq∪{q} exp{s(r|q)}

(5.6)

where the paraphrase scores are normalized over the set Hq∪{q}.

5.2.3 QA Models

The framework defined in Equation (5.1) is relatively flexible with respect to the QA

model being employed as long as it can predict pψ (a|q′). We illustrate this by per-

forming experiments across different tasks and describe below the QA models used

for these tasks.

Knowledge Base QA In our first task we use the Freebase knowledge base to answer

questions. Query graphs for the questions typically contain more than one predicate.

For example, to answer the question “who is the ceo of microsoft in 2008”, we need

to use one relation to query “ceo of microsoft” and another relation for the constraint

“in 2008”. For this task, we employ the SIMPLEGRAPH model described in Reddy

et al. (2016, 2017), and follow their training protocol and feature design. In brief, their

method uses rules to convert questions to ungrounded logical forms, which are subse-

quently matched against Freebase subgraphs. SIMPLEGRAPH is simple yet effective,

and achieves competitive performance compared to state-of-the-art methods (Reddy

et al., 2017). The QA model learns from question-answer pairs: it extracts features for

pairs of questions and Freebase subgraphs, and uses a logistic regression classifier to

predict the probability that a candidate answer is correct. We perform entity linking

using the Freebasee/KG API on the original question (Reddy et al., 2016, 2017), and

generate candidate Freebase subgraphs. The QA model estimates how likely it is for a

subgraph to yield the correct answer.

Answer Sentence Selection Given a question and a collection of relevant sentences,

the goal of this task is to select sentences which contain an answer to the question. The

assumption is that correct answer sentences have high semantic similarity to the ques-

tions (Yu et al., 2014; Yang et al., 2015; Miao et al., 2016). We employ a QA model

that is similar to the paraphrase scoring model described in Section 5.2.2. We use two

bi-directional recurrent neural networks (BILSTM) to separately encode questions and

answer sentences to vectors (Equation (5.4)). Similarity scores are computed as shown
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in Equation (5.5), and then squashed to (0,1) by a sigmoid function in order to predict

pψ (a|q′).

5.2.4 Training and Inference

We use a log-likelihood objective for training, which maximizes the likelihood of the

correct answer given a question:

max ∑
(q,a)∈D

log p(a|q) (5.7)

where D is the set of all question-answer training pairs. According to Equation (5.1),

the objective becomes:

max
ψ,θ

∑
(q,a)∈D

q′∈Hq∪{q}

log pψ

(
a|q′
)
+ log pθ

(
q′|q
)

(5.8)

where the QA model and the paraphrase scoring model are jointly learned by using

question-answer pairs as a supervision signal.

For the knowledge base QA task, we predict how likely it is that a subgraph obtains

the correct answer, and the answers of some candidate subgraphs are partially correct.

So, we use the binary cross entropy between the candidate subgraph’s F1 score and the

prediction as the objective function. The RMSProp algorithm (Tieleman and Hinton,

2012) is employed to solve this non-convex optimization problem. Moreover, dropout

is used for regularizing the recurrent neural networks (Pham et al., 2014).

At test time, we generate paraphrases for the question q, and then predict the answer

by:

â = argmax
a′∈Cq

p
(
a′|q
)

(5.9)

where Cq is the set of candidate answers (e.g., knowledge base subgraphs, and answer

sentences), and p(a′|q) is computed as shown in Equation (5.1).

5.3 Experiments

We compared our model which we call PARA4QA (as shorthand for learning to para-

phrase for question answering) against multiple previous systems on three datasets.

In the following we introduce these datasets, provide implementation details for our

model, describe the systems used for comparison, and present our results.
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5.3.1 Datasets

Our model was trained on three datasets, representative of different types of QA tasks.

The first two datasets focus on question answering over a structured knowledge base,

whereas the third one is specific to answer sentence selection.

WEBQUESTIONS This dataset (Berant et al., 2013) contains 3,778 training instances

and 2,032 test instances. Questions were collected by querying the Google Suggest

API. A breadth-first search beginning with wh- was conducted and the answers were

crowd-sourced using Freebase as the backend knowledge base.

GRAPHQUESTIONS The dataset (Su et al., 2016) contains 5,166 question-answer

pairs (evenly split into a training and a test set). It was created by asking crowd workers

to paraphrase 500 Freebase graph queries in natural language.

WIKIQA This dataset (Yang et al., 2015) has 3,047 questions sampled from Bing

query logs. The questions are associated with 29,258 candidate answer sentences,

1,473 of which contain the correct answers to the questions.

5.3.2 Implementation Details

Paraphrase Generation Candidate paraphrases were stemmed (Minnen et al., 2001)

and lowercased. We discarded duplicate or trivial paraphrases which only rewrite stop

words or punctuation.

For the NMT model, we followed the implementation2 and settings described

in Mallinson et al. (2016), and used English↔German as the language pair. The system

was trained on data released as part of the WMT15 shared translation task (4.2 million

sentence pairs). We also had access to back-translated monolingual training data (Sen-

nrich et al., 2016a). Rare words were split into subword units (Sennrich et al., 2016b)

to handle out-of-vocabulary words in questions. We used the top 15 decoding results

as candidate paraphrases.

In the PPDB-based generator, we used the S size package of PPDB 2.0 (Pavlick

et al., 2015) for high precision. For each question, we utilized at most two lexical

rules. At most ten candidate paraphrases were considered.

2http://github.com/sebastien-j/LV_groundhog

http://github.com/sebastien-j/LV_groundhog
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We mined paraphrase rules from WikiAnswers (Fader et al., 2014) as described

in Section 5.2.1.3. The extracted rules were ranked using the pointwise mutual in-

formation between template pairs in the WikiAnswers corpus. The top ten candidate

paraphrases were used.

Training For the paraphrase scoring model, we used GloVe (Pennington et al., 2014)

vectors3 pretrained on Wikipedia 2014 and Gigaword 5 to initialize the word embed-

ding matrix. We kept this matrix fixed across datasets. Out-of-vocabulary words were

replaced with a special unknown symbol. We also augmented questions with start-of-

and end-of-sequence symbols. Word vectors for these special symbols were updated

during training. Model hyperparameters were validated on the development set. The

dimensions of hidden vectors and word embeddings were selected from {50,100,200}
and {100,200}, respectively. The dropout rate was selected from {0.2,0.3,0.4}. The

BILSTM for the answer sentence selection QA model used the same hyperparameters.

Parameters were randomly initialized from a uniform distribution U (−0.08,0.08).

The learning rate and decay rate of RMSProp were 0.01 and 0.95, respectively. The

batch size was set to 150. To alleviate the exploding gradient problem (Pascanu et al.,

2013), the gradient norm was clipped to 5. Early stopping was used to determine the

number of epochs.

5.3.3 Paraphrase Statistics

Table 5.3 presents descriptive statistics on the paraphrases generated by the various

systems across datasets (training set). As can be seen, the average paraphrase length

is similar to the average length of the original questions. The NMT method generates

more paraphrases and has wider coverage, while the average number and coverage of

the other two methods vary per dataset. As a way of quantifying the extent to which

rewriting takes place, we report BLEU (Papineni et al., 2002) and TER (Snover et al.,

2006) scores between the original questions and their paraphrases. The NMT method

and the rules extracted from WikiAnswers tend to paraphrase more (i.e., have lower

BLEU and higher TER scores) compared to PPDB.

3http://nlp.stanford.edu/projects/glove

http://nlp.stanford.edu/projects/glove


5.3. Experiments 91

Metric GRAPHQ WEBQ WIKIQA

NMT PPDB Rule NMT PPDB Rule NMT PPDB Rule

avg(|q|) 10.87 7.71 6.47

avg(|q′|) 10.87 12.40 10.51 8.13 8.55 7.54 6.60 7.85 7.15

avg(#q′) 13.85 3.02 2.50 13.76 0.71 7.74 13.95 0.62 5.64

Coverage (%) 99.67 73.52 31.16 99.87 35.15 83.61 99.89 31.04 63.12

BLEU (%) 42.33 67.92 54.23 35.14 56.62 42.37 32.40 54.24 40.62

TER (%) 39.18 14.87 38.59 45.38 19.94 43.44 46.10 17.20 48.59

Table 5.3: Statistics of generated paraphrases across datasets (training set). avg(|q|):
average question length; avg(|q′|): average paraphrase length; avg(#q′): average num-

ber of paraphrases; coverage: the proportion of questions that have at least one candi-

date paraphrase.

5.3.4 Comparison Systems

We compared our framework to previous work and several ablation models which ei-

ther do not use paraphrases or paraphrase scoring, or are not jointly trained.

The first baseline only uses the base QA models (SIMPLEGRAPH and BILSTM)

described in Section 5.2.3. The second baseline (AVGPARA) does not take advan-

tage of paraphrase scoring. The paraphrases for a given question are used while the

QA model’s results are directly averaged to predict the answers. The third baseline

(DATAAUGMENT) employs paraphrases for data augmentation during training. Specif-

ically, we use the question, its paraphrases, and the correct answer to automatically

generate new training samples.

In the fourth baseline (SEPPARA), the paraphrase scoring model is separately trained

on paraphrase classification data, without taking question-answer pairs into account.

In the experiments, we used the Quora question paraphrase dataset4 which contains

question pairs and labels indicating whether they constitute paraphrases or not. We

removed questions with more than 25 tokens and sub-sampled to balance the dataset.

We used 90% of the resulting 275K examples for training, and the remaining for de-

velopment. The paraphrase score s(q′|q) (Equation (5.5)) was wrapped by a sigmoid

function to predict the probability of a question pair being a paraphrase. A binary

cross-entropy loss was used as the objective. The classification accuracy on the dev set

4http://goo.gl/kMP46n

http://goo.gl/kMP46n
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was 80.6%.

Finally, in order to assess the individual contribution of different paraphrasing re-

sources, we compared the PARA4QA model against versions of itself with one para-

phrase generator removed (−NMT/−PPDB/−RULE).

5.3.5 Results

We first discuss the performance of PARA4QA on GRAPHQUESTIONS and WEBQUES-

TIONS. The first block in Table 5.4 shows a variety of systems previously described in

the literature using average F1 as the evaluation metric (Berant et al., 2013). Among

these, PARASEMP, SUBGRAPH, MCCNN, and BILAYERED utilize paraphrasing re-

sources. The second block compares PARA4QA against various related baselines (see

Section 5.3.4). SIMPLEGRAPH results on WEBQUESTIONS and GRAPHQUESTIONS

are taken from Reddy et al. (2016) and Reddy et al. (2017), respectively.

Overall, we observe that PARA4QA outperforms baselines which either do not

employ paraphrases (SIMPLEGRAPH) or paraphrase scoring (AVGPARA, DATAAUG-

MENT), or are not jointly trained (SEPPARA). Improvements over SIMPLEGRAPH

on both datasets are significant with p < 0.05 according to bootstrap hypothesis test-

ing (Efron and Tibshirani, 1994). On GRAPHQUESTIONS, our model PARA4QA out-

performs the previous state of the art by a wide margin. Ablation experiments with

one of the paraphrase generators removed show that performance drops most when the

NMT paraphrases are not used on GRAPHQUESTIONS, whereas on WEBQUESTIONS

removal of the rule-based generator hurts performance most. One reason is that the

rule-based method has higher coverage on WEBQUESTIONS than on GRAPHQUES-

TIONS (see Table 5.3).

Results on WIKIQA are shown in Table 5.5. We report MAP and MMR which

evaluate the relative ranks of correct answers among the candidate sentences for a

question. Again, we observe that PARA4QA outperforms related baselines (see BIL-

STM, DATAAUGMENT, AVGPARA, and SEPPARA). Improvements over BILSTM are

significant at p < 0.1. Ablation experiments show that performance drops most when

NMT paraphrases are removed. When word matching features are used (see +CNT in

the third block), PARA4QA reaches state of the art performance.

Examples of paraphrases and their probabilities pθ (q′|q) (see Equation (5.6)) learned

by PARA4QA are shown in Table 5.6. The two examples are taken from the develop-

ment set of GRAPHQUESTIONS and WEBQUESTIONS, respectively. We also show the
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Method Average F1 (%)

GRAPHQ WEBQ

SEMPRE (Berant et al., 2013) 10.8 35.7

JACANA (Yao and Van Durme, 2014) 5.1 33.0

PARASEMP (Berant and Liang, 2014) 12.8 39.9

SUBGRAPH (Bordes et al., 2014a) - 40.4

MCCNN (Dong et al., 2015b) - 40.8

YAO15 (Yao, 2015) - 44.3

AGENDAIL (Berant and Liang, 2015) - 49.7

STAGG (Yih et al., 2015) - 48.4 (52.5)

MCNN (Xu et al., 2016) - 47.0 (53.3)

TYPERERANK (Yavuz et al., 2016) - 51.6 (52.6)

BILAYERED (Narayan et al., 2016) - 47.2

UDEPLAMBDA (Reddy et al., 2017) 17.6 49.5

SIMPLEGRAPH (baseline) 15.9 48.5

AVGPARA 16.1 48.8

SEPPARA 18.4 49.6

DATAAUGMENT 16.3 48.7

PARA4QA 20.4 50.7
−NMT 18.5 49.5

−PPDB 19.5 50.4

−RULE 19.4 49.1

Table 5.4: Model performance on GRAPHQUESTIONS and WEBQUESTIONS. Results

with additional task-specific resources are shown in parentheses. The base QA model

is SIMPLEGRAPH. The ablation models AVGPARA and DATAAUGMENT directly use para-

phrases without paraphrase scoring. SEPPARA separately trains a paraphrase scoring

model on paraphrase classification data. Best results in each group are shown in bold.

Freebase relations used to query the correct answers. In the first example, the original

question cannot yield the correct answer because of the mismatch between the question

and the knowledge base. The paraphrase contains “role” in place of “sort of part”, in-

creasing the chance of overlap between the question and the predicate words. The sec-

ond question contains an informal expression “play 4”, which confuses the QA model.
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Method MAP MRR

BIGRAMCNN (Yu et al., 2014) 0.6190 0.6281

BIGRAMCNN+CNT (Yu et al., 2014) 0.6520 0.6652

PARAVEC (Le and Mikolov, 2014) 0.5110 0.5160

PARAVEC+CNT (Le and Mikolov, 2014) 0.5976 0.6058

LSTM (Miao et al., 2016) 0.6552 0.6747

LSTM+CNT (Miao et al., 2016) 0.6820 0.6988

NASM (Miao et al., 2016) 0.6705 0.6914

NASM+CNT (Miao et al., 2016) 0.6886 0.7069

KVMEMNET+CNT (Miller et al., 2016) 0.7069 0.7265

COMPAGG (Wang and Jiang, 2017) 0.7433 0.7545

BILSTM (baseline) 0.6456 0.6608

AVGPARA 0.6587 0.6753

SEPPARA 0.6613 0.6765

DATAAUGMENT 0.6578 0.6736

PARA4QA 0.6759 0.6918
−NMT 0.6528 0.6680

−PPDB 0.6613 0.6767

−RULE 0.6553 0.6756

BILSTM+CNT (baseline) 0.6722 0.6877

PARA4QA+CNT 0.6978 0.7131

Table 5.5: Model performance on WIKIQA. +CNT: word matching features introduced

in Yang et al. (2015). The base QA model is BILSTM. Same ablation models apply as

in Table 5.4. Best results in each group are shown in bold.

The paraphrase model generates “play for” and predicts a high paraphrase score for it.

More generally, we observe that the model tends to give higher probabilities pθ (q′|q)
to paraphrases biased towards delivering appropriate answers.

We also analyzed which structures were mostly paraphrased within a question. We

manually inspected 50 (randomly sampled) questions from the development portion

of each dataset, and their three top-scoring paraphrases (Equation (5.5)). We grouped

the most commonly paraphrased structures into the following categories: a) question

words, i.e., wh-words and “how”; b) question focus structures, i.e., cue words or cue

phrases for an answer with a specific entity type (Yao and Van Durme, 2014); c) verbs
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Examples pθ (q′|q)

(music.concert performance.performance role)

what sort of part do queen play in concert 0.0659

what role do queen play in concert 0.0847

what be the role play by the queen in concert 0.0687

what role do queen play during concert 0.0670

what part do queen play in concert 0.0664

which role do queen play in concert concert 0.0652

(sports.sports team roster.team)

what team do shaq play 4 0.2687

what team do shaq play for 0.2783

which team do shaq play with 0.0671

which team do shaq play out 0.0655

which team have you play shaq 0.0650

what team have we play shaq 0.0497

Table 5.6: Questions and their top-five paraphrases with probabilities learned by the

model. The Freebase relations used to query the correct answers are shown in brack-

ets. The original question is underlined. Questions with incorrect predictions are in

red.

or noun phrases indicating the relation between the question topic entity and the an-

swer; and d) structures requiring aggregation or imposing additional constraints the

answer must satisfy (Yih et al., 2015). In the example “which year did Avatar re-

lease in UK”, the question word is “which”, the question focus is “year”, the verb is

“release”, and “in UK” constrains the answer to a specific location.

Figure 5.4 shows the degree to which different types of structures are paraphrased.

As can be seen, most rewrites affect Relation Verb, especially on WEBQUESTIONS.

Question Focus, Relation NP, and Constraint & Aggregation are more often rewritten

in GRAPHQUESTIONS compared to the other datasets.

Finally, we examined how our method fares on simple versus complex questions.

We performed this analysis on GRAPHQUESTIONS as it contains a larger proportion

of complex questions. We consider questions that contain a single relation as simple.

Complex questions have multiple relations or require aggregation. Table 5.7 shows

how our model performs in each group. We observe improvements for both types of
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Figure 5.4: Proportion of linguistic phenomena subject to paraphrasing within a ques-

tion. The results of three datasets are shown in different colors.

Method Average F1 (%)

Simple Complex

SIMPLEGRAPH 20.9 12.2

PARA4QA 27.4 (+6.5) 16.0 (+3.8)

Table 5.7: We group GRAPHQUESTIONS into simple and complex questions and report

model performance in each split. Best results in each group are shown in bold. The

values in brackets are absolute improvements of average F1 scores.

questions, with the impact on simple questions being more pronounced. This is not

entirely surprising as it is easier to generate paraphrases and predict the paraphrase

scores for simpler questions.

5.4 Summary

In this chapter we proposed a general framework for learning paraphrases for ques-

tion answering. We employ various paraphrase generators based on the Paraphrase

Database, neural machine translation, and rules mined from a QA website. Paraphrase

scoring and QA models are trained end-to-end on question-answer pairs, which results

in learning paraphrases with a purpose. Experimental results on three datasets show
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that our method improves performance across tasks. There are several directions for

future work. The framework can be used for the semantic parsing datasets in Chap-

ter 2 and Chapter 3, as Ray et al. (2018) show that paraphrases improve performance

of semantic parsers on out-of-vocabulary words and phrases. We would like to explore

more advanced paraphrase scoring models (Parikh et al., 2016; Cheng et al., 2016;

Wang and Jiang, 2016) as well as additional paraphrase generators since improvements

in the diversity and the quality of paraphrases could also enhance performance.

As an important application of natural language interfaces, question answering

tasks usually need to handle many language variations, which makes model coverage

important for the robustness of QA models. The proposed framework is portable, and

not tied to a specific paraphrase generator or QA system. In fact it allows to incorporate

several paraphrasing modules, and can serve as a testbed for exploring their coverage

and rewriting capabilities. Moreover, we can plug the paraphrase model into the ex-

isting natural language interfaces, which enables the systems to handle semantically

equivalent expressions.





Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we aim at developing portable and robust neural models for natural lan-

guage interfaces that allow users to interact with computers in human language. In

particular, the proposed neural semantic parsers are portable across tasks and mean-

ing representations. Our main motivation is that neural networks can be end-to-end

trained without manually-designed domain- or representation-specific features, and

their strong modeling capability is suitable for learning structural mismatches between

natural language and formal language. The modeling paradigm simplifies the devel-

opment process of natural language interfaces. Furthermore, we enhance the model

robustness in the following ways. Firstly, constraints can be added to neural models

in order to prune invalid outputs by taking the well-formedness of formal languages

into consideration. Secondly, confidence modeling helps models to make robust de-

cisions by estimating and interpreting uncertainties in the predictions. Thirdly, para-

phrasing resources can be leveraged to improve the model coverage and its robustness

to language variations, so that natural language interfaces can handle different input

utterances that express the same intention.

One of the core techniques in natural language interfaces is semantic parsing that

maps human language expressions onto machine-interpretable meaning representa-

tions. We developed neural semantic parsing models built upon the encoder-decoder

architecture in Chapter 2. Given an input utterance, the encoder first encodes it into

vector representations. Then the decoder generates the output meaning representa-

tion by conditioning on the encoding vectors. The framework is, in principle, simple

and flexible, allowsing us to design various architectures for both the encoder and the

99
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decoder. The structural mismatches between natural language and formal language

are bridged by neural networks, which enable end-to-end training without employing

hand-crafted domain- or representation-specific features. So the models can be easily

ported across tasks. Experimental results showed that compared to previous systems

our models achieve competitive performance across datasets and meaning representa-

tions.

Apart from modeling formal language as sequences, the fact that meaning represen-

tations are typically structured objects motivates us to explicitly model the structures

of meaning representations. Specifically, we proposed a tree decoder (Chapter 2) and

a coarse-to-fine decoding algorithm (Chapter 3) for neural semantic parsing. The pro-

posed tree decoder recursively generates hierarchical structures in a top-down, and left-

to-right manner, which ensures the well-formedness of predicated trees. Moreover, we

have proposed a method which models meaning at different levels of granularity, and

decodes semantic representations from coarse to fine. We first generate a rough mean-

ing sketch that omits low-level details. Then, a second decoder is used to fill in missing

details. The sketch constrains the fine meaning generation process and is encoded into

vectors to guide decoding. We found that structure-aware neural decoders improve the

robustness and performance of natural language interfaces on various tasks.

Although neural models can predict outputs with good accuracy, they are mosty

black-box models and remain difficult to interpret as they do not provide any uncer-

tainty information. We further studied confidence modeling for the proposed neural

semantic parsing framework in Chapter 4. We explored ways to estimate and interpret

the model’s confidence in its predictions. We designed various metrics to characterize

the causes of uncertainty. The estimated confidence indicates how likely the prediction

is correct. The proposed algorithm does not interfere with model training, so that we

can apply it to various models without sacrificing performance. We conducted exper-

iments for the neural model proposed in Chapter 2. Evaluation results suggested that

our confidence estimator outperforms the approach based on posterior probabilities.

We further proposed an uncertainty interpretation algorithm, which interprets model

behavior by identifying which parts of the input contribute to uncertain predictions.

We backpropagate uncertainty scores from the prediction to the input words at the

neuron level. The scores indicate their contributions to the prediction uncertainty. We

found that the backpropagation algorithm obtains more accurate uncertainty interpre-

tations compared to using attention scores.

There are usually many different ways natural language expresses the same infor-
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mation need. Due to the limited size of training data, model coverage would cause un-

certainty in natural language interfaces. In Chapter 5, we present a model for learning

paraphrases for natural language interfaces, which help the system handle variations in

semantically equivalent questions. Question answering and neural paraphrase scoring

models are jointly trained, thereby learning paraphrases with a purpose. As the frame-

work is not restricted to a specific paraphrase generator, we explore three ways (i.e.,

Paraphrase Database, neural back-translation, and mined rewriting rules) to produce

diverse candidate paraphrases. On several question answering datasets, we observed

that the proposed paraphrasing model boosts the performance of natural language in-

terfaces.

6.2 Future Work

The models presented in this thesis were developed and evaluated on a single domain,

and were trained on English utterances paired with their meaning representations. It is

worth studying and exploring how to improve the proposed models’ scalability in terms

of supporting many different domains, languages, and supervision signals. Avenues for

future research about the scalability of natural language interfaces are many and varied.

We discuss some promising directions as follows.

Cross-Domain Sharing For real-world applications (such as voice assistants), a sys-

tem usually needs to handle many different domains. It is helpful to transfer and share

knowledge across domains and meaning representations, especially when the data size

of each domain is not large enough. We can share the common operators, predicates,

and composition structures for similar examples. The idea of using meaning sketches

described in Chapter 3 provides a promising approach to share high-level semantics

across relevant domains by defining unified meaning representations. So the model

can explicitly share knowledge of coarse structures for the examples that have the same

sketch (i.e., basic meaning), even though their actual semantic representations are dif-

ferent (e.g., due to different details). Specifically, we can share the same coarse mean-

ing decoder that generates rough meaning sketches, and learns multiple fine meaning

decoders to fill in the missing details for various domains.

Zero/Few-Shot Learning The training data size for a new domain is often small

or even non-existent. It is valuable to conduct few-shot or zero-shot learning for a
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cold start (Bapna et al., 2017; Herzig and Berant, 2018), so that the model can be

quickly adapted to a new similar domain. The problem is related to cross-domain

sharing. We can also share the composition structures and common operators across

domains, which would help boost performance on a new domain. The difference is that

there are significantly fewer training examples in this setting. We assume that high-

level structures of semantic representations are similar in related domains, while the

predicates are different according to the tasks. So our main goal is to enable the model

to handle new predicates. Based on the coarse-to-fine decoding framework, the coarse

decoder could be used to learn high-level meaning sketches across domains, while a

fine decoder would predict predicates and other details. For each predicate, we could

use natural language explanations, trigger words, and typed grammars to describe its

usage. Then, the fine meaning decoder would learn to match predicates according to

their descriptions and the natural language input.

Data Collection Model performance can usually be improved if more annotated data

is fed to the model. However, sometimes it is difficult to directly annotate meaning rep-

resentations for ordinary users. A new paradigm of training data collection is critical

for the acceleration of model deployment. A practical solution is to utilize active learn-

ing to reduce the amount of required annotations (Hwa, 2000; Duong et al., 2018).

With the help of the confidence estimation approach proposed in Chapter 4, we can

adaptively select the examples that the current model is least confident about, and an-

notate these first. The method potentially avoids spending time on instances which the

model can handle well. Furthermore, under the coarse-to-fine decoding framework (as

described in Chapter 3), we can only annotate the coarse-grained meaning sketches if

predicting them is the performance bottleneck, which would accelerate the annotation

process. Moreover, we could choose examples that contain as many meaning sketches

as possible. So the training dataset would cover broader semantic phenomena. The

paraphrasing techniques presented in Chapter 5 could also be used for data collection.

Once we have a training dataset, we can then leverage the paraphrase generators to pro-

duce paraphrases for these input queries. The data augmentation method can generate

multiple surface forms for a desired meaning.

Weakly Supervised Learning The models presented in this thesis were trained on

natural language utterances paired with their meaning representations. Given the data

paucity of such parallel corpora, we can learn models from weak supervision signals
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(e.g., question-answer pairs), which would reduce the annotation burden. Weakly su-

pervised learning also provides a way to utilize online user feedback (Iyer et al., 2017).

A typical solution is to search for latent intermediate representations that lead to a cor-

rect outcome. Then, the obtained results are used to train the model. One of the chal-

lenges is that spurious meaning representations (Pasupat and Liang, 2016; Guu et al.,

2017) can deliver the desired answers but the meaning representations might be incor-

rect. For language understanding tasks, only a few semantic representations are correct

among candidates entertained by the model. The parameter learning process is greatly

distracted by spurious programs. In order to solve this problem, we can add grammar

constraints and inductive biases (e.g., using a structured decoder) in the method, so

the learned model prunes spurious meaning representations during the search process.

Another method would be to involve a human in the loop, which would enable users

to identify the correct candidates when the model is unsure about the results.

Multilingual Semantic Parsing Natural language interfaces should accept multiple

languages, so users from different world regions can freely use their native language. A

typical problem is that for some languages there is less data compared to others, which

inevitably results in inferior semantic parsing performance. Although input utterances

are different, the meaning representations obey the same grammar. We can learn cross-

lingual word embeddings or share the decoder across languages (Duong et al., 2017;

Susanto and Lu, 2017; Zou and Lu, 2018; Richardson et al., 2018). So, systems in

different languages can benefit from each other.

Multi-Turn Interactions Sometimes users express their intentions in multiple utter-

ances or update the requests according to the system responses. Users often tend to

omit information which has been expressed in the conversation history. So the pre-

diction should be conditioned on the current utterance as well as the interaction his-

tory (Long et al., 2016; Iyyer et al., 2017; Suhr et al., 2018). As there is no explicit

annotation about dependencies between the current utterance and the history, the model

has to automatically learn how to understand the context. The problem is challenging

because the combination of multi-turn interactions grows exponentially, which makes

model learning data-hungry. Moreover, the model needs to identify co-reference re-

lations within the same dialogue. In addition, error recovery is an interesting topic in

the setting. The model should be able to correct previous predictions according to the

user’s clarification. An interesting idea would be to generate questions and ask users
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to clarify their intentions, in cases when the model is uncertain about the predictions

according to the results of confidence modeling presented in Chapter 4.
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Kočiský, T., Melis, G., Grefenstette, E., Dyer, C., Ling, W., Blunsom, P., and Hermann,
K. M. (2016). Semantic parsing with semi-supervised sequential autoencoders. In
Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, pages 1078–1087, Austin, Texas.

Krishnamurthy, J., Dasigi, P., and Gardner, M. (2017). Neural semantic parsing with
type constraints for semi-structured tables. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing, pages 1517–1527, Copen-
hagen, Denmark.



Bibliography 115

Krishnamurthy, J. and Mitchell, T. M. (2012). Weakly supervised training of semantic
parsers. In Proceedings of the 2012 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Natural Language Learning, pages
754–765, Jeju Island, Korea.

Kwiatkowksi, T., Zettlemoyer, L., Goldwater, S., and Steedman, M. (2010). Inducing
probabilistic CCG grammars from logical form with higher-order unification. In
Proceedings of the 2010 Conference on Empirical Methods in Natural Language
Processing, pages 1223–1233, Cambridge, MA.

Kwiatkowski, T., Choi, E., Artzi, Y., and Zettlemoyer, L. (2013). Scaling semantic
parsers with on-the-fly ontology matching. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Processing, pages 1545–1556, Seattle,
Washington.

Kwiatkowski, T., Zettlemoyer, L., Goldwater, S., and Steedman, M. (2011). Lexical
generalization in CCG grammar induction for semantic parsing. In Proceedings of
the 2011 Conference on Empirical Methods in Natural Language Processing, pages
1512–1523, Edinburgh, Scotland.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017). Simple and scalable pre-
dictive uncertainty estimation using deep ensembles. In Advances in Neural Infor-
mation Processing Systems, pages 6402–6413.

Lawrence, C. and Riezler, S. (2018). Improving a neural semantic parser by counter-
factual learning from human bandit feedback. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 1820–1830, Melbourne, Australia. Association for Computational Linguis-
tics.

Le, Q. and Mikolov, T. (2014). Distributed representations of sentences and docu-
ments. In Proceedings of The 31st International Conference on Machine Learning,
pages 1188–1196.

Lee, K., Lee, H., Lee, K., and Shin, J. (2018). Training confidence-calibrated classifiers
for detecting out-of-distribution samples. In International Conference on Learning
Representations.

Lei, T., Barzilay, R., and Jaakkola, T. (2016). Rationalizing neural predictions. In
Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, pages 107–117. Association for Computational Linguistics.

Li, J., Chen, X., Hovy, E., and Jurafsky, D. (2016). Visualizing and understanding
neural models in NLP. In Proceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 681–691, San Diego, California.

Li, Y. and Gal, Y. (2017). Dropout inference in Bayesian neural networks with alpha-
divergences. In Precup, D. and Teh, Y. W., editors, Proceedings of the 34th Inter-
national Conference on Machine Learning, volume 70 of Proceedings of Machine



116 Bibliography

Learning Research, pages 2052–2061, International Convention Centre, Sydney,
Australia.

Liang, C., Berant, J., Le, Q., Forbus, K. D., and Lao, N. (2017). Neural symbolic ma-
chines: Learning semantic parsers on freebase with weak supervision. In Proceed-
ings of the 55th Annual Meeting of the Association for Computational Linguistics,
pages 23–33. Association for Computational Linguistics.

Liang, C., Norouzi, M., Berant, J., Le, Q. V., and Lao, N. (2018a). Memory augmented
policy optimization for program synthesis and semantic parsing. In Advances in
Neural Information Processing Systems, pages 10014–10026.

Liang, P., Jordan, M. I., and Klein, D. (2013). Learning dependency-based composi-
tional semantics. Computational Linguistics, 39(2).

Liang, P. and Potts, C. (2015). Bringing machine learning and compositional semantics
together. Annual Reviews of Linguistics, 1(1):355–376.

Liang, S., Li, Y., and Srikant, R. (2018b). Enhancing the reliability of out-of-
distribution image detection in neural networks. In International Conference on
Learning Representations.

Ling, W., Blunsom, P., Grefenstette, E., Hermann, K. M., Kočiský, T., Wang, F., and
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