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Lay Summary
Multi-dialect speech recognition is an important challenge due to the growing
adoption of personal assistant devices and smart phones. In particular, Arabic
poses an interesting challenge as the language has many dialects, and dialectal
Arabic (DA) does not have standard orthographic rules. Despite the fact that
there has been a great deal of speech recognition research in modern standard
Arabic (MSA), which constitutes formal speech, there is still no open platform
with standard lexicon and training data to benchmark results and advance the
state of the art in Arabic automatic speech recognition (ASR). With regards to
DA, it is lacking speech resources as well as appropriate methods for evaluating
dialectal speech recognition. The standard word error rate (WER) metric assumes
a single reference is sufficient for a single speech utterance, which is not true for
non-orthographic languages, such as DA. This thesis concerns understanding and
evaluating multi-dialect Arabic ASR without prior knowledge about the Arabic
dialect that will be given as speech input. Therefore, we address the following
three challenges: (1) finding labelled dialectal Arabic speech data, (2) building
robust dialectal speech recognition with limited labelled data and (3) evaluating
speech recognition for dialects with no orthographic rules. We make the following
contributions:
Arabic Dialect Identification: We are concerned with Arabic speech without
prior knowledge of the spoken dialect. Arabic dialects are sufficiently diverse to
the extent that one can argue to describe them as different languages rather than
dialects of the same language. Thus, automatically identifying the input dialect
can greatly improve ASR. We look at two main groups of features: acoustic
features and linguistic features. For the linguistic features, we look at a wide
range of features; addressing words, characters and phonemes. With respect
to acoustics, we look at raw features such as mel-frequency cepstral coefficients
combined with shifted delta cepstra (MFCC-SDC), bottleneck features and the
i-vector as a latent variable. In our work, we classify Arabic into five dialects:
(i)Egyptian, (ii)Levantine, (iii)Gulf or Arabic peninsula, (iv)North African or
Moroccan and finally (v)Modern Standard Arabic.
Arabic Speech Recognition: We introduce our effort in building Arabic speech
recognition, and we create an open research community platform to advance it.
We have two main goals: First, we create a framework for Arabic speech recog-
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nition that is publicly available for research. We address our effort in building
two multi-genre broadcast (MGB) challenges. MGB-2 focuses on broadcast news
using more than 1,200 hours of speech and 130M words for text collected from
Al Jazeera broadcast news channel and their website: Aljazeera.net. MGB-
3, however, focuses on dialectal multi-genre data with limited non-orthographic
speech data collected from YouTube, with special attention paid to transfer learn-
ing. Second, we build a robust Arabic speech recognition system and reporting a
competitive WER results and use it as a benchmark to advance the state of the
art in Arabic ASR.
Evaluation: The third part of the thesis addresses our effort in evaluating di-
alectal speech with no orthographic rules. Our methods learn from multiple
transcribers and align the speech hypotheses to overcome the non-orthographic
aspect. We have also automated this process by learning from Twitter data’s
different writing and we propose a new evaluation metric. Finally, we tried to
estimate the word error rate with no reference transcription using decoding and
language features. We show that our word error rate estimation is robust for
many scenarios with and without the decoding features.
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Abstract
Dialectal Arabic speech research suffers from the lack of labelled resources and
standardised orthography. There are three main challenges in dialectal Arabic
speech recognition: (i) finding labelled dialectal Arabic speech data, (ii) training
robust dialectal speech recognition models from limited labelled data and (iii)
evaluating speech recognition for dialects with no orthographic rules. This thesis
is concerned with the following three contributions:
Arabic Dialect Identification: We are mainly dealing with Arabic speech
without prior knowledge of the spoken dialect. Arabic dialects could be suf-
ficiently diverse to the extent that one can argue that they are different lan-
guages rather than dialects of the same language. We have two contributions:
First, we use crowdsourcing to annotate a multi-dialectal speech corpus collected
from Al Jazeera TV channel. We obtained utterance level dialect labels for 57
hours of high-quality consisting of four major varieties of dialectal Arabic (DA),
comprised of Egyptian, Levantine, Gulf or Arabic peninsula, North African or
Moroccan from almost 1,000 hours. Second, we build an Arabic dialect identifi-
cation (ADI) system. We explored two main groups of features, namely acoustic
features and linguistic features. For the linguistic features, we look at a wide
range of features, addressing words, characters and phonemes. With respect to
acoustic features, we look at raw features such as mel-frequency cepstral coeffi-
cients combined with shifted delta cepstra (MFCC-SDC), bottleneck features and
the i-vector as a latent variable. We studied both generative and discriminative
classifiers, in addition to deep learning approaches, namely deep neural network
(DNN) and convolutional neural network (CNN). In our work, we propose Ara-
bic as a five class dialect challenge comprising of the previously mentioned four
dialects as well as modern standard Arabic.
Arabic Speech Recognition: We introduce our effort in building Arabic au-
tomatic speech recognition (ASR) and we create an open research community
to advance it. This section has two main goals: First, creating a framework for
Arabic ASR that is publicly available for research. We address our effort in build-
ing two multi-genre broadcast (MGB) challenges. MGB-2 focuses on broadcast
news using more than 1,200 hours of speech and 130M words of text collected
from the broadcast domain. MGB-3, however, focuses on dialectal multi-genre
data with limited non-orthographic speech collected from YouTube, with special

v



attention paid to transfer learning. Second, building a robust Arabic ASR sys-
tem and reporting a competitive word error rate (WER) to use it as a potential
benchmark to advance the state of the art in Arabic ASR. Our overall system is
a combination of five acoustic models (AM): unidirectional long short term mem-
ory (LSTM), bidirectional LSTM (BLSTM), time delay neural network (TDNN),
TDNN layers along with LSTM layers (TDNN-LSTM) and finally TDNN layers
followed by BLSTM layers (TDNN-BLSTM). The AM is trained using purely
sequence trained neural networks lattice-free maximum mutual information (LF-
MMI). The generated lattices are rescored using a four-gram language model
(LM) and a recurrent neural network with maximum entropy (RNNME) LM.
Our official WER is 13%, which has the lowest WER reported on this task.
Evaluation: The third part of the thesis addresses our effort in evaluating di-
alectal speech with no orthographic rules. Our methods learn from multiple
transcribers and align the speech hypothesis to overcome the non-orthographic
aspects. Our multi-reference WER (MR-WER) approach is similar to the BLEU
score used in machine translation (MT). We have also automated this process
by learning different spelling variants from Twitter data. We mine automatically
from a huge collection of tweets in an unsupervised fashion to build more than
11M n-to-m lexical pairs, and we propose a new evaluation metric: dialectal
WER (WERd). Finally, we tried to estimate the word error rate (e-WER) with
no reference transcription using decoding and language features. We show that
our word error rate estimation is robust for many scenarios with and without the
decoding features.
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This is the first section of the thesis and it has the following four chapters:

Chapter 1 introduces our contributions.

Chapter 2 presents Arabic as a language with an emphasis on the computa-
tional linguistic aspects of the language.

Chapter 3 offers an introduction to automatic speech recognition (ASR) and
a brief summary of recent work in Arabic ASR.

Chapter 4 introduces language identification and dialect identification (DID).
For the DID section, we focus on dialectal Arabic.



Chapter 1

Introduction

This thesis is concerned with the understanding and evaluation of multi-dialect
Arabic Automatic Speech Recognition (ASR) without prior knowledge of the di-
alect given as an input. We primarily focus on four major Arabic dialects in
addition to modern standard Arabic. This thesis is in line with a great deal of
research on Arabic speech recognition that started more than fifteen years ago
[Kirchhoff et al., 2003].

Despite recent success in Arabic ASR, the community lacks standard resources
to advance the academic research as well as baseline results for understanding the
dialect of the Arabic speech, converting speech to text, and finally measuring the
quality of the ASR output with a metric that is suitable for dialectal Arabic.

This thesis offers three major contributions:
1. Arabic Dialect Identification: we mainly deal with Arabic speech with-
out prior knowledge of the dialect. Arabic dialects could be sufficiently different
to the extent that one can argue that they are different languages rather than
dialects of the same language. We look at two main groups of features, namely
acoustic and linguistic features. For linguistic features, we look at a wide range
of features such as words, characters, and phonemes. With respect to acous-
tic features, we look at raw features such as mel-frequency cepstral coefficients
(MFCC), bottleneck features and i-vectors as latent variables. In our work, we
handle five major dialects of Arabic, namely Egyptian, Levantine, Gulf or Arabic
peninsula, North African or Moroccan, and finally modern standard Arabic.

4
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2. Arabic Speech Recognition: We introduce our effort in building Arabic
speech recognition and in creating an open research community to advance it.
We address two main points:

1. Creating a framework for Arabic speech recognition that is available for
research. We focus our efforts on building two multi-genre broadcast (MGB)
challenges. MGB-2, which focuses on broadcast news using more than 1,200
hours of speech and 130M words of text. MGB-3, which focuses on dialectal
multi-genre data with limited non-orthographic speech data collected from
YouTube with a special focus on transfer learning.

2. Building a robust Arabic speech recognition system, reporting a competitive
word error rate, and using it as benchmark to advance the state of the art
in Arabic.

3. Evaluation: The third part of the thesis addresses our efforts towards eval-
uating dialectal speech where the corresponding dialectal text does not adhere
to orthographic rules. Our methods learn from multiple transcribers and align
the speech hypothesis to overcome the lack of standard orthography. We also
automate this process by learning from Twitter data’s different word spellings,
and we propose a new evaluation metric. Finally, we try to estimate the word
error rate with no reference transcription using decoding and language features.
We show that our word error rate estimation is robust for many scenarios with
and without the decoding features.

1.1 Thesis structure

The reminder of the thesis is organised as follows:

• Chapter 2 gives an introduction to Arabic with an emphasis on the com-
putational linguistic aspect of the language. It also covers the required
principles for speech and language computing.

• Chapter 3 introduces automatic speech recognition (ASR) and briefly sum-
marises recent work on Arabic ASR.

• Chapter 4 offers an introduction to language identification (LID) and dialect
identification (DID). For the DID section, we focus on dialectal Arabic
(DA).
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• Chapter 5 highlights our efforts in building a dialectal Arabic (DA) corpus
using a crowdsourcing approach to label the dialectal data. This corpus is
to be used in the dialect identification work.

• Chapter 6 introduces our effort in building dialectal Arabic identification
(DID) systems using data from the broadcast domain. We study the lin-
guistic and acoustic features.

• Chapter 7 presents our effort in building Arabic speech recognition and
creating an open research community to advance it. The chapter addresses
two main areas: (i) Arabic broadcast domain with more than 1,200 hours
and 130M words (also known as MGB-2), and (ii) 16 hours of dialectal data
from Youtube for transfer learning and dialectal adaptation (also known as
MGB-3).

• Chapter 8 proposes a novel approach in using multiple references to deal
with the lack of orthographic rules in dialects to report more appropriate
evaluation metric for dialectal ASR. The chapter also introduces multi-
reference word error rate (MR-WER).

• Chapter 9 builds on chapter 8 to introduce a new method to automate multi-
reference generation by learning different spelling variants from Twitter data
and proposes a new evaluation metric, namely: dialectal word error rate
(WERd).

• Chapter 10 addresses how to estimate the WER with no need for reference
transcription and introduces robust quality estimation for large vocabulary
speech recognition (LVCSR) system; word error rate estimation (e-WER).

• Chapter 11 concludes our contribution and discusses possible future work.
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1.2 Declaration of content

The thesis is almost composed of the work published in the following journal,
conference and workshop papers:

• A Ali, S Renals, "Word Error Rate Estimation for Speech Recognition:
e-WER", in ACL 2018.

• A Ali, S Vogel, S Renals, "Speech Recognition Challenge in the Wild: Arabic
MGB-3", in ASRU 2017.

• A Ali, P Nakov, P Bell, S Renals, "WERd: Using Social Text Spelling
Variants for Evaluating Dialectal Speech Recognition", in ASRU 2017.

• S Shon, A Ali, J Glass, "MIT-QCRI Arabic Dialect Identification System
for the 2017 Multi-Genre Broadcast Challenge", in ASRU 2017.

• S Khurana, M Najafian, A Ali, T Al Hanai, Y Belinkov, J Glass, "QMDIS:
QCRI-MIT Advanced Dialect Identification System", in Interspeech 2017.

• F Dalvi, Y Zhang, S Khurana, N Durrani, H Sajjad, A Abdelali, H Mubarak,
A Ali, S Vogel, "QCRI Live Speech Translation System", demo paper in
EACL 2017.

• M Zampieri, S Malmasi, N Ljubešić, P Nakov, A Ali, J Tiedemann, "Find-
ings of the VarDial Evaluation Campaign 2017", EACL 2017

• A Ali, P Bell, J Glass, Y Messaoui, H Mubarak, S Renals, Y Zhang, "The
MGB-2 Challenge: Arabic Multi-Dialect Broadcast Media Recognition",
SLT 2016.

• S Khurana, A Ali, "QCRI Advanced Transcription System (QATS) for the
Arabic Multi-Dialect Broadcast Media Recognition: MGB-2 Challenge",
SLT 2016.

• A Ali, N Dehak, P Cardinal, S Khurana, SH Yella, J Glass, P Bell, S Renals,
"Automatic Dialect Detection in Arabic Broadcast Speech", InterSpeech
2016.

• A Ali, W Magdy, P Bell, S Renals, "Multi-reference WER for evaluating
ASR for Languages with no Orthographic Rules", ASRU 2015.
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• S Wray, H Mubarak, A Ali, "Best Practices for Crowdsourcing Dialectal
Arabic Speech Transcription", ANLP workshop, ACL 2015.

• S Wray, A Ali,"Crowdsource a Little to Label a Lot: Labeling a Speech
Corpus of Dialectal Arabic", InterSpeech 2015.

• MH Bahari, N Dehak, L Burget, AM Ali, J Glass, "Non-negative Factor
Analysis of Gaussian Mixture Model Weight Adaptation for Language and
Dialect Recognition", IEEE/ACM transactions on audio, speech, and lan-
guage processing, 2014.

• A Ali, Y Zhang, S Vogel, "QCRI Advanced Transcription System (QATS)",
demo paper SLT, 2014.

• A Ali, H Mubarak, S Vogel, "Advances in Dialectal Arabic Speech Recog-
nition: A Study Using Twitter to Improve Egyptian ASR", IWSLT 2014.

• A Ali, Y Zhang, P Cardinal, N Dahak, S Vogel, J Glass, "A Complete Kaldi
Recipe for Building Arabic Speech Recognition Systems", SLT, 2014.

• P Cardinal, A Ali, Dehak, Najim, Y Zhang, A Hanai, Tuka, Y Zhang, S Vo-
gel, J Glass, "Recent Advances in ASR Applied to an Arabic Transcription
System for Al-Jazeera", InterSpeech 2014.



Chapter 2

Arabic Language Background

2.1 Introduction

Arabic is a language spoken by over 350 million speakers (estimated in 2017), pri-
marily known as Arabs. Arabic is the main language in more than 22 countries,
which comprises the Arab league. Arabic, the language, has a great dialectal
variety, with modern standard Arabic (MSA) being the only standardised dialect
[Badawi et al., 2013]. MSA is syntactically, morphologically and phonologically
grounded on classical Arabic (CA), the language of the Qur’an (Islam’s Holy
Book). Lexically, however, it is much more modern [Habash, 2010]. MSA is
taught in schools across the Arab region and is the main language in news broad-
casts, parliament and formal speech in general. Remarkably, MSA is not a native
language of any Arab. Lay people in the Arab world use Dialectal Arabic (DA)
as their way of communication; DA is the main language for drama, comedy
programs in general in multi-genre broadcast. This is the day-to-day speech. Di-
alects used to be primarily spoken, not written. However, this has changed since
the rise of Web 2.0. DA has become a written, as well as a spoken language. In
general, Arabic can be classified into three groups:

• Modern Standard Arabic (MSA) új�
	
®Ë@

�
éJ
K. QªË@

�
é

	
ªÊË @: the official lan-

guage of the Arab World also known as fus’ha. MSA is also known as the
primary language of all Arabs. MSA is more often written than spoken.

• Classical Arabic (CA) �
H@Q

�
�Ë @

�
éJ
K. QªË@

�
é

	
ªÊË @: the language of the Qur’an

(Islam’s Holy Book). This can be seen as analogous to Shakespearean
English. CA also known as alturath, used to be the main language in the

9
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pre-Islamic time, more than 1400 years ago. CA is commonly used today
in studying Arabic poetry and in Friday prayers' speeches in mosques.

• Dialectal Arabic (DA) �
éJ
ÓAªË@

�
é

	
ªÊË @: the daily speech of Arabic native

speaker [Maamouri et al., 2006]. DA is also known as alamia and is used
in everyday speech such as phone calls and family discussions.

Arabic speakers typically do not make an explicit distinction between MSA and
Classical Arabic. However, the relationship between MSA and the dialect in a
specific region is rather complex. Arabs do not think of these two as separate
languages. This particular perception leads to coexistence between the two forms
of the language that serve different purposes. This kind of situation is what
linguists term diglossia [Holes, 2004], where both MSA and dialectal Arabic exist
side by side. Although the two variants have clear domains of prevalence: formal
written (MSA) versus informal spoken (dialect), there is a large gray area in
between that is often filled with a mix of the two forms.

2.2 Arabic Script

The Arabic script is alphabetically written from right to left. Arabic, the lan-
guage, is written using Arabic, the script, which is also used to write many
languages around the world that are not related to Arabic such as Persian, Kur-
dish, Urdu and Pashto. Arabic dialects are by default written in Arabic script,
although there are no standard dialectal spelling systems. The attempt to call
for spelling standardisation of the Arabic dialects is sometimes perceived as a
challenge or even as a threat to MSA’s hegemony.

Letters: The Arabic letters typically consist of two parts: First, the letter
form, which is an essential component in every letter. There are 19 letter forms
in total. Second, the letter marks, also called consonantal diacritics, which are
mainly dominated by hamzas, and dots. Most commonly, the Arabic alphabet is
said to have 28 letters or 29 depending on wheter the hamza is counted or not.

Arabic keyboard: Before the existence of smart devices, where it is easy
to localise the keyboard, there were several tools that allowed their users to type
in some form of a strict or loose romanisation, e.g., Yamli, Google’s ta3reeb and
Microsoft’s Maren. Some websites, and operating systems also provide a phonetic
keyboard for Arabic.
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Buckwalter transliteration or UTF-81,2: Buckwalter is a one-to-one map-
ping allowing non Arabic speakers to understand Arabic scripts, and it is also
left-to-right, making it easy to render on most devices. The Buckwalter translit-
eration can be seen as the binary code for English, which makes it easy for a
machine to understand. However, the Buckwalter format is mainly easy to read
and debug by non-Arabic-literate researchers. Most Arabic language processing
engines use Buckwalter to deal with the text and map one-to-one at the last stage
before displaying it to users.

Diacritics also called diacritic, vocalization, vowelization and vowels:
In MSA, letters are always written, while diacritics are optional: written Arabic
can be fully diacritised, partially diacritised, or entirely undiacritised. Usually,
the Arabic text is undiacritised except in religious texts, children educational
texts, and some poetry. Some diacritics are indicated in modern written Arabic
to help readers disambiguate certain words. In the Penn Arabic Treebank (part
3) [Maamouri et al., 2004], 1.6% of all words have at least one diacritic. There
are three types of diacritics: Vowel, Nunation, and Shadda.

Normalisation: Orthographic normalisation is a basic task that researchers
working on Arabic language processing always apply with a common goal in mind:
reducing the noise and the sparseness in the data. This is true regardless of the
task: preparing parallel text for machine translation, documents for information
retrieval or text for language modeling. There are four letters in Arabic that
are so often misspelled using variants that researchers find it more helpful to
completely make these variants ambiguous (normalised). The following are the
four letters in order of most commonly normalised to least commonly normalised
[Buckwalter, 2007] (the first two are what most researchers do by default, the last
two are less commonly applied).

• The Hamza forms of Alef are normalised to Alef

• The Alef-Maqsura is normalised to Ya

• The Ta-Marbuta is normalised to Ha

• The non-Alef forms of Hamza are normalised to the Hamza letter
1UTF-8 stands for Unicode Transformation Format. The ’8’ means it uses 8-bit blocks to

represent a character. UTF-8 is a variable width character encoding, it is an efficient represen-
tation for many character representation and it has been used for Arabic for some time. Other
encodings are also possible.

2https://en.wikipedia.org/wiki/UTF-8
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2.3 Modern Standard Arabic

Modern Standard Arabic is the official language of the Arab world. MSA is
the primary language of the media and education. TV hosts who read prepared
scripts, for example on Al Jazeera, are trained to be careful in the pronunciation
of certain phonemes (e.g., the realisation of the Classical jiim in MSA as geem
by Egyptians).

Research on MSA in computational linguistics has been extensively investi-
gated over the past two decades: exploring machine translation systems mainly
focusing on MSA to English, innovations in speech recognition focusing on broad-
cast news and natural language processing. Furthermore, there were many tree-
banks, linguistic and speech corpora created and collected recently addressing
MSA in both spoken and written formats. While MSA is the official language
of the Arab world, almost no native speakers of Arabic sustain a continuous and
spontaneous production of MSA.

2.4 Dialectal Arabic

Dialects are the primary form of Arabic used in unscripted spoken genres; such as
conversations, talk shows and interviews. Since the rise of Web 2.0, dialects are
increasingly in use in new written media, social networks, news forums, weblogs:
e.g., more than 30M Arabic tweets are posted daily. Arabic dialects may be
regarded as the true native language forms. How many Arabic dialects are there?
There is no single answer for this, linguistics go as far as 27 different dialects of
Arabic [Habash, 2010].

Arabic dialects vary across many dimensions: primarily by geography and
social class. With respect to the geographical aspect of the language, the Arabic
dialects can be divided in many different ways. The following is only one of many
(and should not be taken as all members of any particular dialectal group being
completely homogeneous linguistically):

• Egyptian Arabic (EGY) covers the dialects of the Nile valley: Egypt and
Sudan.

• Levantine (LAV) Arabic includes the dialects of Lebanon, Syria, Jordan,
Palestine and Israel.
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• Gulf Arabic (GLF) includes the dialects of Kuwait, United Arab Emirates,
Bahrain, and Qatar. Saudi Arabia is typically included although there is a
wide range of sub-dialects within it. Omani Arabic is sometimes included
as well.

• North African (NOR) Arabic (also known as Maghrebi) covers the dialects
of Morocco, Algeria, Tunisia and Mauritania. Libyan Arabic is sometimes
included too.

• Iraqi Arabic (IRQ) has elements of both Levantine and Gulf.

• Yemeni Arabic (Yem) is often considered its own class.

In this thesis, we will deal with the first four dialects3 in addition to MSA, which
sums up five classes: MSA, EGY, LAV, GLF and NOR. We can summarise the
computational aspects in Arabic dialects to the following challenges:

2.4.1 Orthographic Variants

Table 2.1 shows two phrases across the different dialects. It is clear from this
example that there are lexical variations across the different dialects including
MSA [Ahmed et al., 2016].

EGY GLF LAV MSA NOR English Gloss
½K
@ 	P@

AzAYk

½
	
KñÊ

�
�@

A$lwnk

½
	
KñÊ

�
�@ / ½

	
®J
»

kyfk / A$lwnk

½ËAg
	

J
»

kyf HAlk

¼@P
�

�@ð

wA$ rAk
How are you?

	á�

	
¯

�
I

	
K@

Ant fyn

½
	
JK
ð

wynk

½
	
JK
ð

wynk

�
I

	
K@ 	áK
@

Ayn Ant

¼@P 	áK
ð

wyn rAk
Where are you?

Table 2.1: Lexical examples in Arabic and Buckwalter format.

3We consider both Iraqi and Yemeni as a subset of the Gulf dialect for two reasons; Iraqi
dialects became popular mainly because of the war in Iraq, thus DARPA funded research
projects to understand it. However, we see it as a standalone dialect as most of the other
dialects in the Gulf, Kuwait for example. While the Yemeni dialect could be different, it was
not easy to get access to an abundance of data, and, therefore, we consider it as a subset of the
Gulf dialect.
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2.4.2 Phonological Variants

Arabic dialects vary phonologically from MSA and from each other. Some of
the common variations are shown in table 2.2. In this table, example words
are written as they will be pronounced by each dialect. For instance, in the
first example, the name can be written as Õæ�A

�
¯ Qasm as in MSA, but will be

pronounced as shown in the table. First example shows the MSA consonant ( �
�

q) is pronounced as (h. g) in Gulf and as (Z ') in Egyptian and Levantine. The
second example shows that the MSA alveolar fricative (h� j) is pronounced as (h� j)
in Gulf and as (h. g) in Egyptian and Levantine. The last example shows that the
MSA consonant ( 	

X *) is pronounced as ( 	P z) in Egyptian and North African and (X

d) in Levantine. Sometimes the dialectal pronunciation impacts the translation as
the name (ú




	
¯ @

	
Y

�
¯ q*Afy) which was translated to all the media as the name (ú




	
¯ @Yg.

Gaddafy) which is the actual Libyan way of saying the name. More details about
phonetic features for Arabic can be found [Biadsy et al., 2009a,b].

EGY GLF LAV MSA NOR English Gloss
Z (Õæ� @Z)

'('Asm)

h. (Õæ�Ag. )

g (qAsm)

Z (Õæ� @Z)

'('Asm)

�
� (Õæ�A

�
¯)

q (qAsm)

�
� (Õæ�A

�
¯)

q (qAsm)
Qasm (person name)

h. (ÉÔg
.
)

gml

h� (ÉÔg
�
)

jml

h. (ÉÔg
.
)

gml

h� (ÉÔg
�
)

jml

h. (ÉÔg
.
)

gml
Camel

	P ( @ 	Që)

hzA

	
X ( @

	
Yë)

h*A

X ( @Yë)

hdA

	
X ( @

	
Yë)

h*A

	
X ( @

	
Yë)

h*A
This

Table 2.2: Phonological examples in Arabic and Buckwalter format.

2.4.3 Latin Script for Arabic

Before the rise of Web 2.0, and particularity the soft keyboard in smart devices, it
was not easy for computer users to write Arabic letters, which is also represented
in UTF-8. Therefore, there was a great deal in mapping the shape of some of
the Arabic letters to the corresponding available shape on the English keyboard.
Table 2.3 shows some of these examples. The importance of these challenges
comes when there is a need to process lots of text and harvesting from a social
platform, such as Twitter. This kind of writing is called: Arabizi, Arabish, or
Franco-Arab. Some companies like Microsoft and Google developed software
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capable of dealing with this kind of text and automatically convert it to Arabic
script (UTF-8). We had to deal with this problem in this research as we processed
a lot of Twitter data, and this was part of the text normalisation pipeline.

Arabic Latin symbol
ø


ðZ

�
@ @



@

'<>&}
2

h

h
7

p

x
7’

¨

E
3

	
¨

g
3’

Table 2.3: Latin script examples used for Arabic script.

2.4.4 No Orthographic Standards

In a standardised language such as English, we know that enough is the correct
spelling, while enuf is not. However, we cannot be sure about the correct spellings
of dialectal words; at best, we would know what a preferred or a dominant spelling
is. This is because dialects typically do not have an official status, and thus their
spelling is not regulated, which widely opens the door to orthographic variation.
Table 2.4 shows an example of the same word and various dialectal forms of
writing it. All of them are widely used in social network and blogging and all
formats are accepted too. Some researchers have looked at this challenge and
built guidelines on how to write dialectal forms in a consistent way, such as
CODA (a conventional orthography for dialectal Arabic). Nizar Habash has
looked at automatically converting dialectal text to a standard convention, which
is being termed as codifying the text, converting raw dialectal text to CODA and
subsequently correcting various dialectal mistakes.
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Spelling Variants Buckwalter English Gloss
�

�
	
�A¿ AÓ mAkAn$ He was not

�
�

	
�» AÓ mAkn$

�
�

	
�A¿ AÓ mA kAn$
�

�
	
�ºÓ mkn$

éÊ
�
JËñ

�
¯ qwltlh I told him

éË
�

IËñ
�
¯ qwlt lh

éÊ
�
JÊ

�
¯ qltlh

éË
�

IÊ
�
¯ qlt lh

iJ.�Ë@ úÎ« ElY AlSbH By the morning

iJ.�Ë@ ú


Î« Ely AlSbH

iJ.�Ë@ ¨ E AlSbH

iJ.�ËA« EAlSbH

iJ.
�

�« ESbH

Table 2.4: Dialectal phrases with multiple spelling variants: shown in Arabic script
and in Buckwalter transliteration.

2.5 Arabic Dialects or Languages

It can be argued that a language is a dialect with an army and navy [Michalowski,
2006]. If we take this perspective into consideration, we can describe the differ-
ent Arabic dialects as different languages. However, Arabs in general perceive
dialects as a deterioration from the classical Arabic, almost using all the same
Arabic letters. An objective comparison of the varieties of Arabic dialects could
potentially lead to the conclusion that Arabic dialects are historically related,
but not synchronically, and are mutually unintelligible languages like English
and Dutch. Normal vernacular can be difficult to understand across different
Arabic dialects [Holes, 2004]. Arabic dialects are thus sufficiently distinctive.
Thus, from a computational prospective, we treat the Arabic dialects as different
languages for tasks like dialect identification. However, for ASR, we consider all
dialects to build Arabic background models and specific data from each dialect;
both speech and text improves transfer learning to have a robust dialectal ASR
for each dialect.
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2.6 Dialect Identification and Codeswitching

In this thesis, we classify Arabic speech into five dialects: (i) EGY, (ii) LAV, (iii)
GLF, (iv) NOR and finally (v) MSA. Our Arabic Dialect Identification (ADI)
classification assumes that each speech segment corresponds to one Arabic native
speaker is spoken in a single dialect. We assume that codeswitching happens
when an Arabic native speaker switches between MSA and their own dialect.

2.7 Summary

This chapter gave basic background about Arabic, its script, phonetics, and di-
alects. We highlighted the two major classes of Arabic, dialectal and MSA. Given
these highlights, the emphasis of the thesis is to deal with the multi-dialect Ara-
bic speech recognition, and we will, therefore, study the two variants with their
domains of prevalence; formal written (MSA) and informal spoken (dialect), in
spite of the large grey area that is often filled with a mix of the two forms. This
can be described as dialect diarization, where an Arabic native speaker switches
between MSA and their own dialect. Also, it can be described as codeswitch-
ing. This thesis will illustrate some of these challenges, but will leave dialect
diarization open for future research.



Chapter 3

Automatic Speech Recognition
Overview

Automatic Speech Recognition (ASR) is defined as the process of realising acous-
tic speech audio into a corresponding word sequence Wh, which is the word se-
quence that is as close as possible to what a human could transcribe. The input
speech data can be represented by a sequence of speech vectors or observations
O. Thus, the challenge in predicting the most likely word sequence wh can be
described by solving equation 3.1, which has been described as the fundamental
equation of statistical speech recognition [Clark et al., 2013].

Wh = arg max
w

P (w|o) (3.1)

Despite the fact that some of the recent work in speech recognition attempted
to calculate the posteriors of word sequence directly [Graves and Jaitly, 2014,
Hannun et al., 2014, Chorowski et al., 2014, Chan et al., 2015, Chorowski et al.,
2015], the main stream in speech recognition still applies Bayes’ rule to decompose
equation 3.1 into the likelihood P (o|w), the prior P (w), and the denominator P (o)
which is independent of the word sequence, and it does not affect the search of
the word sequence. Therefore P (o) is removed.

Wh = arg max
w

p(o|w)P (w)
P (o)

= arg max
w

p(o|w)P (w)
(3.2)

p(o|w) is often refereed to as the likelihood of the acoustic model and P (w) is
described as the language model. Since the language model probability P (w)

18
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does not depend on acoustics, it can be calculated independently, and can use
different corpora.

It can be seen from equation 3.2 that the task of building a speech recognition
system is based on two main modules: acoustic modelling and language modelling.
The aim of acoustic modelling is to train a model that can explain the speech
signals given an observation vector o. Due to the sequential nature of speech
signals, hidden Markov models (HMMs) are found to be effective for this task
[Rabiner, 1989]. The acoustic observation vector o = [o1, o2, ..., oT ] is the outcome
of the front-end signal processing extracted from the raw waveform, which ideally
should be invariant with respect to extraneous factors to speech recognition such
as speaker factors, pronunciation variability, and environmental noise. However,
in practice, the feature processing step cannot normalise all of the variability and
the acoustic models are expected to share the task. Language models, on the
other hand, should try to predict the prior distribution of the word sequence w
before the observation of speech signals. Conventional language models are based
on the frequency of n-grams, which assume that the distribution of each word
depends on the previous n−k words, where k is the history of the language model,
and is also known as the order of the language model. The rest of this chapter
presents an overview of a standard speech recognition system, and at the end will
shed light on recent efforts in Arabic speech recognition.

3.1 Front-end feature extraction

The raw waveform is received in continuous time and magnitude. The aim of the
signal processing front end is to sample the raw acoustic waveform into feature
vectors and to extract the acoustic features that are to be modelled by the acoustic
modelling. Ideally, the acoustic feature representation for speech recognition will
be compact, without losing much signal information, minimising variability across
speakers and environmental acoustic conditions at the same time. The feature
extraction step is language-independent, and often the extracted features do not
retain information about the glottal source. However, in some case glottal features
such as pitch is used Ghahremani et al. [2014]. The initial step relies on sampling
the waveform into chunks, also known as windows; typically 25ms are processed
with 10ms intervals. Intuitively, the extracted features should contain as much
information as possible to distinguish between phones. The first section in figure
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3.1 shows vectorising an audio file into overlapping samples and store feature
vector representing a frame of the speech signal.

العربيةاللغة

Allgp AlErbyp

Input speech waveform

Reference utf8 transcription

Reference buckwlater transcription

Grapheme transcription (character representation)

O1    O2                                                                                                                            Ot OT

sil A l l g p sil A l E r b y p sil

. . . . . . . . . . . .
Digitizing the audio into overlapping blocks

Figure 3.1: Diagram for speech sample digitised into a feature vector, and aligned
with word transcription, as well as the corresponding grapheme sequence.

Although a variety of representations are used in speech recognition, one of
the common approaches applies the short-time fast Fourier transform on each
window to transform it into the spectral domain followed by transformation to
power-spectra and smoothed by 20-40 mel filter-bank filters. This is done in or-
der to perform an auditory-based warping of the frequency axis to account for
the frequency sensitivity of the human hearing system. Those smoothed power-
spectra are further logarithmically compressed and are referred to as mel-filter
bank (FBANK) features, and are often used in deep learning and will be used in
this thesis to train various neural network acoustic models. The FBANK features
can be further processed for diagonal GMMs with a decorrelating discrete cosine
transform (DCT) transform resulting in mel-frequency cepstral coefficients fea-
tures (MFCC) [Davis and Mermelstein, 1980]. Another popular acoustic feature
extractor is perceptual linear prediction (PLP) [Hermansky, 1990]. PLP relies on
using bark scale to compute the filter-bank filters followed by a linear predictive
analysis, from which one then derives a cepstral representation. Both MFCC
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and PLP are used quite often in Hidden Markov Models (HMM), which will be
discussed in depth in section 3.2.

The static MFCC and PLP features are extracted for each frame of windowed
speech. However, since the speech is not constant frame-to-frame, there is a
benefit from adding dynamic features to deal with how the cepstral coefficients
change over time. Dynamic features can be calculated by simply using the differ-
ence method ∆Os,t = Os,t+2−Os,t−2 or by using linear regression to approximate
the temporal derivative as shown in equation 3.3

∆Or
t =

∑∆
δ=1 δ(Or

t+δ −Or
t−δ)

2 ∑∆
δ=1 δ

2 (3.3)

One can derive dynamic features for an arbitrary order. However, there is a
reduced gain after the second order. Therefore, the final feature vector used for
speech recognition is the concatenation of static and dynamic coefficients also
known as delta and delta delta, as shown in equation 3.4. Typical MFCC-based
ASR features (mainly HMM) are 39 dimensions as shown in equation 3.4.


Ot

∆Or
t

∆2Or
t

 (3.4)

It is worth mentioning that with the rise of convolutional Neural Networks (CNN),
there is further research to use less feature engineered from the raw audio data;
spectrogram [Tüske et al., 2014, Hannun et al., 2014] and some recent work is
modelling the raw audio files with no signal processing [Tüske et al., 2014, Palaz
et al., 2015]. However, these will not be used in this thesis.

3.2 Acoustic modelling

The likelihood of the acoustic models P (o|w) is typically estimated from a sizable
corpus of speech segments with the corresponding word level transcription; speech
segments are often less than 30 seconds each. There are three major challenges
to estimate the aforementioned conditional probability directly; first, given that
we only know the word sequence in the transcription, the frame-state alignment
is unknown. Second, the length of the observation vector is of a variable length.
Finally, the observation vector o is of high dimensionality, making direct esti-
mation of the conditional probability difficult. One proposed solution for these
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challenges is to model the joint probability p(o, w) using a set of parametric mod-
els of word production having parameters µ. Within this generative framework,
it is assumed that the sequence of observation vectors for a given word could be
generated by a Markov model.
The hidden Markov model (HMM) has proven to be successful in acoustic mod-
elling since it can estimate the time-varying nature of the speech audio quite well.
Good reviews of using HMMs for speech recognition can be found in [Rabiner,
1989, Gales and Young, 2008]. HMM can be ergodic, which means that each
state can be reached from any state in a finite number of steps. However, given
the speech signal is varying in time, a left-to-right HMM topology has been used
successfully. An example of an HMM with three emitting states and two non-
emitting states is shown in figure 3.2, which are used as building blocks for most
HMM-based speech recognition systems.

q1
a12 q2

a23 q3
a34 q4

a45 q5

a22 a33 a44

Markov model

O1 O2 O3 O4 O5

Acoustic observation
(feature vector)              O6

b2 (o1) b2 (o2) b4 (o4)b3 (o3) b4 (o5) b4 (o6)

O=

Figure 3.2: Topology of a five states left to right HMM with 3 emitting states and
2 nonemitting states. State 1 is the entrance state and state 5 is the exit state and
both of them are non-emitting. aij denotes the state transition probability from state
i to state j. bj(ot) is the state output probability distribution for state j at time t.

The HMM used for ASR acoustic modelling is designed following two important
assumptions; the HMM is a first-order Markov process, which means that state
qt at time t depends only on the previous state qt−1, as shown in the following
equation:

p(qt|qt−1, qt−2, ...q1) = p(qt|qt−1) (3.5)

The second assumption is that the observation vector Ot at any particular time
t is assumed to be conditionally-independent of the previous observations and
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states given the state qt, as shown in the following equation:

p(ot|ot−1, .....o1, qt, ..., q1) = p(ot|qt) (3.6)

These two assumptions significantly simplify the application of HMM for
speech recognition. For instance, assuming Q = q1, q2, ..., qT is the possible state
sequence for transcription w, by HMM, the likelihood P (o|w, µ) can be computed
as

p(o|w, µ) =
∑
Q

p(o|Q, µ)p(Q|w, µ) (3.7)

Since the state sequence Q is hidden and the space for Q is likely to be large,
the likelihood in equation 3.7 is hard to compute. However, using the previous
two assumptions, the likelihood can be decomposed as shown in equation 3.8

p(o|w, µ) =
∑
Q

T∏
t=1

p(ot|qt, µ)p(rt|qt−1, µ)

=
∑
Q

aq0q1
T∏
t=1

bqt(ot)aqtqt+1

(3.8)

where aij denotes the state transition probability from state i to state j. bj(ot) is the
state output probability distribution for state j at time t.

Given that the state sequence (q0, q1, q2, ..., qT , qT+1) is hidden for the observa-
tion O, using exhaustive search for evaluating the likelihood can be estimated by
summing all the possible state sequences in Q for HMM with N states as O(NT ),
which is computationally impractical. However, this challenge can be addressed
using the Baum-Welch algorithm [Baum et al., 1970], which is an instance of the
expectation maximization (EM) algorithm [Moon, 1996]. This approach reduces
the computational cost to O(NT 2).

The proposed HMM architecture so far has assumed that each model in the
HMM represents a word level in the speech recognition system. However, prac-
tically, in a large vocabulary speech recognition system (LVCSR) there is not
enough data to model each word in the vocabulary. English systems typically
use about 60K words, and in this thesis, Arabic uses a vocabulary of more than
one million words. This will be explained in more detail in chapter 7. It is there-
fore more common to have sub-word representation; most systems use phoneme
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representation. One approach to map words to phoneme automatically using a
grapheme to phoneme approach (G2P); more detail can be found here [Bisani and
Ney, 2008]. This thesis will focus on using grapheme representation for Arabic as
shown in the last block in figure 3.1. In the grapheme-based system, each model
in the HMM represents a character level in the speech recognition system. This
simplifies the process of building the word to sub-word units map considerably.
Using the sub-word for modelling the acoustics ensures that there is enough train-
ing data to estimate the model parameters robustly. Context-dependent models
are often used as well, which leads to increasing the set of sub-word representa-
tions. The mapping between words and sub-word representation is known as the
speech recognition lexicon.

3.2.1 Neural network acoustic model

The objective of the acoustic modelling is to have the right label for certain frame,
e.g., each 10 msec. The Gaussian mixture model takes generative probability role
in modelling the acoustics, whereas the neural network looks at the probability
of each phone given the input feature data, which can be described as a prob-
ability estimation problem. The idea of using multilayer perceptrons in speech
recognition has been studied in hybrid approach more than 20 years ago, where
researchers achieved good results by using single hidden layer of a neural-network
to predict the HMM states from windows of acoustic coefficients [Bourlard and
Morgan, 1993]. However, neither the hardware nor the learning algorithm were
adequate to train neural network with many hidden layers on large amount of
data. An excellent overview can be found here [Morgan and Bourlard, 1995].
The recent advances in both machine learning algorithms and computer hard-
ware have led to more efficient methods for training DNNs that contain many
hidden layers with a very large output layer to accommodate large vocabulary
speech recognition systems. This is primarily to deal with the large number of
HMM states that arise when each phone is modeled by a number of different tri-
phone HMMs that take into account the phones on either side. Even when many
of the states of these triphone HMMs are tied together, there can be thousands
of tied states (context-dependent states) [Hinton et al., 2012].

We can interpret the output of the neural network as an estimate of the
probability of the phone given the input data. While predicting the phone can be
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done using a single frame, this is usually done with a window of λ frames context,
typically λ being between 3 and 4. Figure 3.3 shows a context of 3 frames to
right and 3 frames to the left to Ot as the central frame input to the network. It
also shows a feed-forward neural network with one-input layer accepting sampled
waveform data; such as MFCC, PLP or filter bank. For example, an MFCC
feature vector is of 39 dimensions per frame, times 7 frames (3-left context, central
phone and 3-right context) will be 7 ∗ 39 = 273 MFCC input as a feature vector.
This is followed by two hidden layers and one output layer. The hidden layers
help to build rich representations to deal with many variations of the feature
vector coefficient; such as different accents and diversity in speech rate.

O1      O2                                                                                                    Ot -3  Ot -2  Ot-1   Ot Ot +1 Ot+2  Ot+3 OT

P(state1|Ot) P(state2|Ot) P(stateK|Ot)

Figure 3.3: Diagram for feed-forward neural network for acoustic modelling.

Gradient descent is used to estimate the weights and biases at each layer,
using back-propagation to estimate the required gradients.

There are many error functions to use in a neural network classification prob-
lem, such as mean square error (MSE) and cross entropy (CE). The CE objective
function is matched with the softmax activation function, which makes CE widely
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used in acoustic modelling. In a hybrid HMM/DNN ASR system, there are K
context-dependent CD states. Ideally, the output layer of the neural network
calculates the score for each state corresponding to the central frame of speech.
Typical English LVCSR will have a few thousand classes, e.g., there are 9,304 CD
state outputs in a DNN acoustic model for switchboard [Hinton et al., 2012].

The neural network output is typically followed by a soft-max function, which
converts scores at the output-layer to a probability for all output states. Soft-max
will ensure two things: (i) probability for each CD state is between zero and one,
and (ii) the summation of the probabilities will add to one. This is very practical
for the LVCSR problem, especially when it is desirable to prune branches with
small probabilities, which is similar to what is used in Viterbi decoding. This will
be discussed in section 3.5.

For an observation out corresponding to time t in utterance u, the output
yut(s) of the DNN for the HMM state s is obtained using the following softmax
activation function:

yut(s) ∆= P (s|Out) = exp{aut(s)}∑
s′ exp{aut(s′)}

(3.9)

where aut(s) is the activation at the output layer corresponding to state s. The
pseudo log likelihood of state s given observation out,

log p(out|s) = log yut(s)− log P (s) (3.10)

where P (s) is the prior probability of state s calculated from the training data
[Bourlard and Morgan, 1993].

Finally, each label in the output-layer is represented mathematically by a
vector that has the same size as the number of classes (CD states). Each label
will have the value of one for the correct class and zero everywhere else. This
is also known as one-hot vector. The CE loss function is calculated between the
one-hot vector and the softmax output. Given that, we are dealing with a typical
multi-class classification problem, where it is common to use the negative log
posterior as the objective:

FCE = −
U∑
u=1

Tu∑
t=1

log yut(sut) (3.11)

where sut is the reference state label at time t for utterance u. This is also the
expected CE between the distribution represented by the reference labels and the
predicted distribution y(s).
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A very good review of neural network and related examples can be found in
[Nielsen, 2015]. In an excellent study by Mohamed et al. [2012], they illustrated,
with reasonable depth, the performance of deep belief network (DBN) as a com-
petitive alternative to Gaussian mixture models for relating states of a hidden
Markov model to frames of coefficients derived from the acoustic input.

Various neural network architecture

Various acoustic neural architectures have shown good results on LVCSR. We can
list some of the most recent implementations here:

• Feed-forward neural network: Hinton et al. [2012] introduced the most
recent wave of deep learning in speech recognition, showing a substantial
improvement in WER by training FDNN with many hidden layers and
trained over a short-window of frames. Their study investigated 3 to 8
hidden layers, and explored 1,024 to 3,072 neurons per layer. Their study
reported, in some scenarios in the LVCSR, more than 10% absolute reduc-
tion in WER. In a further by, Mohamed et al. [2012] visualised some results
and illustrated, for example, some of the gains in DBN. Moreover, Deng
et al. [2013] presented experimental evidence that the spectrogram features
of speech are superior to MFCC with FDNN, in contrast to the earlier long-
standing practice with GMM-HMMs. They also evaluated the multilingual
FDNN architecture, which has the input and hidden layers shared by all
languages, but separate output layers are made specific to each language.
Using their language universal feature extractor, they readily construct a
powerful monolingual DNN for any target language.

• Sequence neural network: In a study by Graves et al. [2013b], they
explored using deep recurrent neural network (deep RNN), and deep long
short term memory (deep LSTM). In their study, they relied on end-to-
end training, where the RNNs learn to map directly from an acoustic to
a phonetic sequence. They studied 1 to 5 RNN hidden layers: Both uni-
direction, and bi-direction (BLSTM) layers. Their results were evaluated
only on TIMIT phoneme classification task. In their extended study, Graves
et al. [2013a] applied the deep BLSTM (DBLSTM) as an acoustic model
in a standard neural network-HMM hybrid system. They reported that
the DBLSTM-HMM hybrid gives equally good results on TIMIT as their
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previous study. It also outperformed the DNN benchmarks on a subset of
the Wall Street journal corpus.

Given an input sequence x = (x1, ..., xT ), a standard RNN computes the
hidden vector sequence h = (h1, ..., hT ) and output vector sequence y =
(y1, ..., yT ) by iterating the following equations from t = 1 to T :

ht = H (Wxhxt +Whhht−1 + bh) (3.12)

yt = Whyht + by (3.13)

where the W terms denote weight matrices (e.g., Wxh is the input-hidden
weight matrix), the b terms denote bias vectors (e.g., bh is hidden bias
vector) and H is the hidden layer function, which is usually an element-
wise application of a sigmoid function. The LSTM architecture [Hochreiter
and Schmidhuber, 1997], which uses purpose-built memory cells to store
information, is better at finding and exploiting long range context.

In speech recognition, where whole utterances are transcribed at training
time, this is possible to exploit future context as well. Bidirection RNNs
(BRNNs) [Schuster and Paliwal, 1997] do this by processing the data in both
directions with two separate hidden layers, which are then fed forward to the
same output layer. Deep RNNs can be created by stacking multiple RNN
hidden layers on top of each other. Deep BRNNs can be implemented by
replacing each hidden sequence hn with the forward and backward sequences
←−
hn and

−→
hn, and ensuring that every hidden layer receives input from both

the forward and backward layers at the level below. If LSTM is used for
the hidden layers, we get deep bidirectional LSTM, as illustrated in figure
3.4. Both LSTM and BLSTM will be studied in section 7.2.3.

• Convolutional neural network: In a study by Sainath et al. [2013],
they studied using deep CNN for LVCSR. They determined the appropriate
architecture to make CNNs effective compared to DNNs for LVCSR tasks.
Specifically, they focused on how many convolutional layers are needed, the
optimal number of hidden units and the best input feature type for CNNs.
They reported that CNN offered 13-30% relative improvement over GMMs,
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Inputs:                              xt-1                     xt xt+1  

Outputs:                          yt-1                    yt yt+1  

Forward layer

Backward layer

Forward layer

Backward layer

Figure 3.4: Deep bidirectional long short term memory network (DBLSTM).

and 4-12% relative improvement over DNNs, on a 400 hours broadcast news
and 300 hours switchboard data.

• Time delay neural network: In a study by Peddinti et al. [2015], they
proposed a TDNN architecture that models long term temporal dependen-
cies with training times comparable to the standard feed forward DNN.
The network uses sub-sampling to reduce computation during training. On
the switchboard task, they showed a relative improvement of 6% over the
baseline DNN model. They presented results on several LVCSR tasks with
training data ranging from 3 to 1800 hours to show the effectiveness of the
TDNN architecture in learning wider temporal dependencies in both small
and large data scenarios.

TDNN [Waibel et al., 1989] has proven to be effective in modelling long
range temporal dependencies. When processing a wider temporal context,
in a standard DNN, the initial layer learns an affine transform for the entire
temporal context. However, in a TDNN architecture, the initial transforms
are learnt on narrow contexts and the deeper layers process the hidden ac-
tivations from a wider temporal context. Hence, the higher layers can learn
wider temporal relationships. Each layer in a TDNN operates at a different
temporal resolution, which increases as we go deeper into the network. The
hyper parameters of the TDNN network are the input contexts of each layer
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required to compute an output activation, at one-time step. Given that,
there are large overlaps between input contexts of activations computed at
neighbouring time steps, they can be sub-sampled. Peddinti et al. [2015]
splices together adjacent temporal windows of frames at each layer, to allow
gaps between the frames. In fact, in the hidden layers of the network, they
generally splice no more than two frames. For instance, splicing together
frames t–2 through t+ 2 at the input layer, which could be written as con-
text (–2, –1, 0, 1, 2). With the proposed sub-sampling scheme, the overall
necessary computation is reduced during the forward pass and backpropa-
gation, due to selective computation of time steps. Another advantage of
using sub-sampling is the reduction in the model size. Splicing adjacent
frames at hidden layers would require to either have a very large number
of parameters, or reduce the hidden-layer size significantly. TDNNs will be
studied in section 7.2.3.

• Various neural network: There have been many recent architectures for
neural acoustic modelling In fact, a recent common trend in ASR modelling
is to combine different types of layers [Deng and Platt, 2014, Sainath et al.,
2015]. In a study by Cheng et al. [2017], they explored using dropout to
improve generalisation in DNN training. They reported that combining
TDNN with LSTM (TDNN-LSTM) outperformed BLSTM with about 3%
relative gain. In addition to this, it is also much faster to train than BLSTM.

This thesis explores various neural acoustic modelling architectures: TDNN,
LSTM, BLTSM, TDNN-LSTM and TDNN-BLSTM. More details are given in
chapter 7.

Error function in neural AM

Sequence discriminative training ASR has shown significant reduction in WER
in HMM [Woodland and Povey, 2002, Povey and Woodland, 2002, Povey, Mc-
Dermott et al., 2007]. In the neural framework, more recent work was introduced
by Kingsbury [2009], Veselỳ et al. [2013], Su et al. [2013]. Sequence discrimina-
tive training of neural networks for ASR has been shown to provide a significant
reduction in WER compared to the frame level cross entropy training . In this
thesis, we adopt the purely sequence trained neural networks using lattice-free
maximum mutual information (LF-MMI) [Povey et al., 2016].
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The maximum mutual information (MMI) criterion used in ASR [Bahl et al.,
1986] is the mutual information between the distributions of the observation and
word sequences. With Ou is the sequence of all observations, and Wu as the
word-sequence in the reference for utterance u, the MMI criterion is defined as
follows:

FMMI =
∑
t=1

log
p(Ou|Su)kP (Wu)∑
U p(Ou|S)kP (W ) (3.14)

where Su is the sequence of states corresponding to Wu and k is the acoustic
scaling factor. The sum in the denominator is taken over all word sequences in
the decoded speech lattice for utterance u.

Computing the denominator in equation 3.14 involves summing over all pos-
sible word sequences, i.e., generating lattices, and summing over all words in
the lattice. The proposed LF-MMI is denominator-lattice-free, where it does the
summation over all possible label sequences on the GPU. To avoid overfitting, it
uses a combination of three different regularisation techniques: cross entropy reg-
ularisation, output l2-norm regularisation, and leaky HMM. In Povey et al. [2016],
they attempted, to make the LF-MMI computation feasible; they used a phone
n-gram language model instead of the word language model. To further reduce
its space and time complexity, they computed the objective function using neural
network outputs at one third of the standard frame rate. These changes enable
the network to perform the computation for the forward-backward algorithm on
GPUs. Furthermore, they reduced the output frame-rate which provides a sig-
nificant speed-up during training. In their study, models trained with LF-MMI
provide a relative word error rate reduction of about 11.5%, over those trained
with cross entropy objective function. This thesis will use LF-MMI in chapter 7
for the ASR experiments.

3.3 Language modelling

The probabilities assigned to the sequences of words are called language mod-
elling (LM); p(w), as shown in equation 3.2, estimates the prior distribution over
a sequence of words w = [w1, w2, ..., wk]. The simplest model that assigns a prob-
ability to a sequence of words is the n-gram LM [Damerau, 1971]. Where n-gram
is a sequence of n words, a 2-gram (or bigram) is a two-word sequence of words
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like “dialectal Arabic”, “Arabic speech”, or “speech recognition”, and a 3-gram
(or trigram) is a three-word sequence of words like “dialectal Arabic speech”, or
“Arabic speech recognition” [Jurafsky, 2017].

The n-gram can be expressed as shown in equation 3.15.

P (w) =
K∏
k=1

p(wk|wk−1, wk−2, ..., wk−n+1) (3.15)

This equation has two main hyper-parameters; K is the number of words in W
and n is the order of the LM: two for the bigram and three for the trigram LM.
Ideally, one can compute LM for an arbitrary order. However, higher order n-
gram LM usually leads to unseen word sequences. Therefore, zero probabilities
are due to data sparsity reasons, where normally the values of n are typically in
the range of two-to-four for speech recognition applications.

An intuitive way to estimate the n-gram probabilities is to use maximum
likelihood estimation (MLE). We obtain the MLE estimate for the parameters of
an n-gram model by counting the n-gram occurrence in the training text, which
can be expressed as follows:

p(wk|wk−1, wk−2, ..., wk−n+1) = C(wk−n+1, ..., wk)
C(wk−n+1, ..., wk−1) (3.16)

The frequency of a given word sequence C(.) in the training text for some word
sequences may be very low or even zero. To keep the language model from
assigning zero probability to these unseen word sequences, we need to reserve some
of the probability mass from some more frequent word sequences and allocate it to
the unseen word sequences. This process is called smoothing or discounting. This
is normally addressed by using two major techniques: (i) back-off or interpolation
[Katz, 1987] in which the model will assign the probability mass unevenly to
unseen word tokens in proportion to the probability lower than the lower-order
n-gram, and (ii) discounting [Kneser and Ney, 1995] in which the smoothing
technique relies on assigning some of the probability distribution mass to n-
gram sequences unseen in the training text. In this thesis, we use the smoothing
technique that was developed by Kneser and Ney [1995].

3.3.1 Neural network language model

With the rise of deep learning, the continuous space language model has become
a popular choice compared to the discrete n-gram. Initially, a feed forward neu-
ral network was proposed by Bengio et al. [2003]. This was followed by different
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architectures of neural networks and has shown better results, such as recur-
rent neural network (RNN) modelling [Mikolov et al., 2010]. Recent work was
introduced using long short term modelling (LSTM) for language modelling [Sun-
dermeyer et al., 2012]. One plausible explanation for the superior performance of
the neural language model compared to the n-gram modelling is that the hidden
layers in the network hold a better representation of the words. For example,
the vector representation for the word-sequence “recognising dialectal Arabic is
challenging” would be close enough to the vector for word-sequence “recognis-
ing colloquial Arabic is challenging”, although the model may have never seen
dialectal and colloquial in this context. However, the vector representation for
both words, dialectal and colloquial, should be close enough from other contexts,
not necessarily in the same exact context. This capability is not available in the
n-gram LMs. The superior performance of neural LM comes with the price of
high computational cost compared to n-gram, especially the RNN and LSTM
LM. Therefore, for practical usage, the neural language model is often used for
LM rescoring or reordering the top n ASR results (n-best) with smaller vocabu-
lary size, ideally between 50K-to-100K words. Furthermore, recent work by Liu
et al. [2016], Chen et al. [2016b] developed an efficient lattice rescoring meth-
ods using recurrent neural network language models. This has been released in
CUED-RNNLM [Chen et al., 2016a], which is an open-source toolkit for efficient
GPU-based implementation for training and evaluation of RNN LM.

The maximum entropy ME LM can be seen as neural network models with no
hidden layer, with the input layer directly connected to the output layer. Such
a model has been described in detail in [Xu and Rudnicky, 2000], where it was
shown that it can be trained to perform similarly to a Kneser-Ney smoothed
n-gram model. Mikolov et al. [2011a] introduced an excellent architecture of
recurrent neural network with maximum entropy (RNNME). Their work is based
on a hash-based implementation of a maximum entropy ME LM [Rosenfeld, 1996],
which has been trained as part of the neural network LM. This has led to a
significant reduction in computational complexity of the LM. In their study, they
showed that training the RNN model with direct connections can lead to a good
performance both on perplexity and word error rate, even if very small hidden
layers are used. The model RNNME with only 40 neurons has achieved almost
as good performance as RNN model that uses 320 neurons. It is worth noting
that RNNME performs completely different to the interpolation of RNN and ME
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models. The essential step is to train both models jointly, so that the RNN model
can focus on discovering complementary information to the ME model [Mikolov
et al., 2011b]. We will use RNNME in our language model rescoring as shown in
section 7.2.3.

3.3.2 Evaluating a language model

Since the LM is normally trained using more text than the AM text data, it is
common practice to keep some text data out of the training to compare different
LMs as well as for evaluating improvements within one LM. Typically, for LM,
two values are reported: perplexity (PP) on a test set is the inverse probability
of the test set using a language model; simply, the lower the perplexity the better
the LM. PP can be expressed as shown in equation 3.17. The second variable
is out of vocabulary (OOV), which expressed in the percentage of the unknown
words with respect to all the tokens in the test set. Similar to PP, for OOVs, the
lower the better.

PP = exp{− 1
K

K∑
k=1

log(p(wk|wk−1, wk−2, ..., wk−n+1))} (3.17)

3.4 Adaptation and transfer learning

Most modern speech recognition systems will be trained on hundreds or even
thousands of hours from a specific domain including many speakers. However, at
deployment time, there are often unseen speakers, where the acoustic models µ
will have poor performance. In this case, there is a need for speaker adaptation
techniques. Another common challenge happens when the deployment domain
is different from the training domain. For example, a speech system may be
trained on broadcast news data and deployed to recognise a comedy program.
In this case, there is a domain mismatch. Both cases are quite common in most
of the practical speech recognition systems. The HMM-based systems are often
using two main adaptation techniques; maximum a posteriori (MAP) [Gauvain
and Lee, 1994] and maximum likelihood linear regression (MLLR) [Leggetter and
Woodland, 1995]. One of the successful techniques used for the neural network
acoustic models is called the i-vector for speaker and domain adaptation [Saon
et al., 2013]. This thesis will be using the i-vector for both speaker and domain
adaptation.
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The i-vector is widely used in speaker recognition [Dehak et al., 2011a,b] and
speaker adaptation [Saon et al., 2013], where a large Gaussian mixture model
(GMM), called the universal background model (UBM), is typically trained to
act as a prior model of the distribution of speech sounds. The speaker UBM
mean components, also known as a supervector, have been found to be an effec-
tive representation for the speaker . The i-vector approach models supervector
adaptation to a given sequence of frames in a low-dimensional space called the
total variability space. In the i-vector framework, each speech utterance can be
represented by a GMM supervector, which is assumed to be generated as follows:

M = m+ Tw (3.18)

where m is the speaker independent and channel independent supervector (which
can be taken to be the UBM supervector),T is a rectangular matrix of low rank,
and w is a random vector having a standard normal distribution prior N(0, 1).
The i-vector is a Maximum A Posteriori (MAP) point estimate of the latent vari-
able w adapting the UBM (supervector m) to a given audio file. Recently, the
i-vector method has been successfully applied to speaker and channel adaptation
in speech recognition. The main idea behind it is adding speaker characteris-
tics to the audio features allowing the neural network to learn more efficiently
about the speaker or the channel. One of the common settings for the i-vector
is 400-dimensional per sentence and the UBM normally consists of 512 mixture
components. This thesis will use the same setup of the i-vector for speech recog-
nition and language identification as shown in chapters 6 and 7.

Moreover, there has been recent work to use deep neural network embedding
for speaker adaptation. In a study by Senior and Lopez-Moreno [2014], they
proposed providing additional utterance-level features as inputs to a deep neu-
ral network to facilitate speaker, channel and background normalisation. They
showed that these input features provide the networks with valuable information
that, with their proposed regularisation brings roughly 4% relative reduction in
word error rate for various model sizes. In another study by Snyder et al. [2017],
they showed that long-term speaker characteristics are captured in the network
by a temporal pooling layer that aggregates over the input speech. This en-
ables the network to be trained to discriminate between speakers from variable
length speech segments. After training, utterances are mapped directly to fixed-
dimensional speaker embeddings. Their embeddings outperformed i-vectors for
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short speech segments and are competitive on long duration test conditions.

3.5 Decoding

Generating the most-likely word sequence is also known as decoding. Once both
the LM and the AM have been trained, a naïve assumption is to obtain and
combine their scores from both models to estimate wh as shown in equation
3.1. However, this poses two major challenges. First, the score of the acoustic
model that often overwhelms the effect of the LM, which can be handled by giving
different weights to each model as shown in equation 3.19. Ideally, both variables,
word insertion penalty µ and language model scale factor κ can be tuned using
development data as part of the hyper-parameter optimisation.

Wh = arg max
w

log p(w|o)

= arg max
w
{log p(o|w;µ) + κ log p(w)}

≈ arg max
w
{log (max

Q
p(O,Q|w;µ)) + κ log p(w)}

(3.19)

The second challenge comes from combining the models directly, which would lead
to a huge search space for all the possible word sequences. This often happens in
a typical large vocabulary speech recognition (LVCSR) system. One assumption
that has been widely used to make the decoding process more practical is the
Viterbi approximation [Viterbi, 1967], which only search for the most likely state
sequence by an efficient recursive form. Beam-pruning is often used in Viterbi
search, which means we access the frames one by one, and for each frame, we
prune away states with low probability.

The recent advances in weighted finite state transducers (WFSTs) [Mohri
et al., 2002] have made it possible to build the decoding search space prior to
starting recognition statically. A WFST maps the input sequence to an output
sequence in which each transition has an input label, an output label and a weight.
Table 3.1 shows the four main component used to build WFST for decoding
LVCSR.

In Decoding, we deploy the following three WFST operations:
• Composition (◦): Combine transducers at different levels. For example,

if G is a finite state grammar and L is a pronunciation dictionary then L◦G
transduces a phone string to word strings allowed by the grammar.
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transducer input sequence output sequence
H HMM HMM states CD phones
C context-dependency CD phones phones
L pronunciation lexicon phones words
G word-level grammar words words

Table 3.1: Main four transducers used in LVCSR decoding.
Note: phones can be replaced with characters if the system is grapheme-based.

• Determinisation (det): Ensure that each state has no more than a single
output transition for a given input label.

• Minimisation (min): Transforms a transducer to an equivalent trans-
ducer with the fewest possible states and transitions.

The full process includes composing the acoustic model, lexicon and language
model in a single and large network using the HMM topology. This approach
is widely used for research and has successfully been adopted in many commer-
cial platforms for offline ASR decoding. The overall decoding graph HCLG is
constructed as shown in equation 3.20, this is ideally a much smaller graph than
naïvely combining the four transducers shown in table 3.1.

HCLG = min(det(H ◦min(det(C ◦min(det(L ◦G)))))) (3.20)

The WFST is the main decoding scenario used in the Kaldi software Povey et al.
[2011], which will be the main framework for the Arabic ASR decoding in this
thesis.

3.6 Evaluation

Word error rate (WER) is the most common metric used to evaluate how well
a speech recognition performs. WER is normally used for comparing different
systems as well as for evaluating improvements within one system. It can be
solved by aligning the recognised word sequence with the reference word sequence
using dynamic string alignment. There are three types of errors that can happen
in the recognised transcript: deletion (D) when the recognised text missed a
word or more in the reference transcription, insertion (I) when the recognised
text inserted a word or more which was not in the reference transcription and
substitution (S) when the recognised text produced a different word compared
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to the word in the reference. Given the total number of words to be recognised
in the reference transcript is N, the WER is expressed as in equation 3.21

WER = I +D + S

N
(3.21)

Let the total number of correct words (C). Thus, WER can also be calculated
using equation 3.22. It is worth noting that evaluating a speech recognition
system is based on the assumption that there is a single ground-truth for speech
audio. This thesis will challenge this assumption for dialectal Arabic and equation
3.22 will be the basic for further studies in chapters 8 and 9 for evaluating dialectal
speech recognition.

WER = I +D + S

S +D + C
(3.22)

3.7 Arabic speech recognition overview

Building a robust Arabic speech recognition system can be considered as a mul-
tidisciplinary effort. In addition to dealing with the standard acoustic pipeline,
building a robust Arabic ASR requires various natural language processing (NLP)
components to address language challenges. This list can summarise challenges
unique to Arabic speech recognition.

1. Arabic has short vowels, which are often ignored in the text as shown in
section 2.2.

2. Arabic is a morphologically rich language, and dealing with morphemes is
often used to reduce OOV as shown in section 2.4.

3. Arabic has not enough labelled data available for research, more details will
be discussed in chapter 5.

4. Arabic has many dialects, where different words are used and pronounced
differently.

This thesis, of course, is not the first work to explore Arabic speech recogni-
tion. Here, we try to summarise some of the previous work done on Arabic ASR.
The 2002 Johns Hopkins Summer Workshop [Kirchhoff et al., 2003] focused on
Arabic ASR, more than eight research labs during the summer workshop ad-
dressed the first and the second challenges mentioned earlier. They have also
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studied the discrepancies between dialectal and formal Arabic. They proposed
a novel approach to automatic vowel restoration, morphology-based language
modelling and the integration of out-of-corpus language model data, and report
significant word error rate improvements on the LDC Arabic Call Home data1.

3.7.1 GALE Project

The global autonomous language exploitation (GALE) project was funded by De-
fense Advanced Research Projects Agency (DARPA) to produce a system that is
able to automatically take multilingual newscasts, text documents, and other
forms of communication, and to make their information available for human
queries. The program encompassed three main challenges: automatic speech
recognition, machine translation, and information retrieval. The focus of the
program was on recognising speech in Mandarin and Arabic and translating it
into English. The Arabic speech recognition was mainly concerned with broad-
cast news and broadcast conversation. This section highlights some of the impact
that came out of GALE project.

1- Missing vowels: Several toolkits were developed for Arabic pre-processing
such as Arabic tokenisation, diacritization, morphological disambiguation, part-
of-speech tagging, stemming and lemmatisation (MADA) [Habash et al., 2005].
A similar tool for Arabic NLP AMIRA [Diab, 2009], where both were studied at
Columbia University. Further work was developed for speech recognition pronun-
ciation dictionary using linguistically-based pronunciation rules [Biadsy et al.,
2009a].
2- Morphological Analysis and Decomposition: Given that Arabic is a mor-
phologically complex language, a study by El-Desoky et al. [2009] introduced both
morphological decomposition and diacritization for Arabic language modelling.
In a study by Diehl et al. [2009], they introduced a novel context-sensitive method
for morpheme-to-word conversion in language modelling, where they used MADA
from decomposition. Both studies reported between 0.5-1.0% absolute reduction
in WER.
3- Lack of enough labelled speech data: the linguistic data consortium
(LDC) has built a sizable Arabic broadcast corpus for research in the GALE

1https://catalog.ldc.upenn.edu/LDC97S45
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project, and excellent Arabic recognition systems were built studying different
aspect of the language [Al-Onaizan and Mangu, 2007, Gales et al., 2007, Vergyri
et al., 2008, Saon et al., 2010, Metze et al., 2010, Kingsbury et al., 2011, Mangu
et al., 2011]. Some of these systems were trained on more than 300 hours in the
broadcast news domain mainly dominated by modern standard Arabic.

Despite the fact that GALE was a sizable effort that made a very good impact
on the state-of-the-art in Arabic ASR and increased awareness of the language, it
did not make any of the results available to reproduce by researchers outside the
project. There was no publicly available speech lexicon like CMU in American
English [Walker et al., 2004] or like British English example pronunciation dictio-
nary (BEEP) [Robinson et al., 1995]. Furthermore, the reported results within
GALE were not accessible by researchers not involved in the project. This made
it difficult to challenge the achieved results and to improve on the same baseline.
It is worth mentioning that five years after the project, LDC has released about
500 hours of transcribed Arabic broadcast speech data from the GALE project,
by making it available on their catalog.

Finally, we can acknowledge the progress in Arabic ASR for MSA. We can also
see a clear gap in dialectal speech recognition, particularly beyond the broadcast
news domain. This thesis will address this gap in detail in chapter 7.

3.8 Summary

We presented a brief overview of the different aspects of modern speech recog-
nition systems. For acoustic modelling, we discussed the standard HMM and
focused on recent progress in deep learning approaches using a different cost func-
tion such as LF-MMI. The language modelling covered both n-gram approach and
the neural network techniques. Finally, the last section shed some light on recent
efforts in Arabic ASR.



Chapter 4

Overview of Automatic Language
and Dialect Identification

Automatic spoken language identification is defined as the process that deter-
mines the identity of the language spoken in a speech audio sample. Its im-
portance can be gagued from the growing interest in automatic speech recogni-
tion. A good language recognition system can facilitate labelling the language
of a speech segment for many tasks like multilingual speech processing, such as
spoken language translation, spoken document retrieval, metadata labelling and
multilingual speech recognition [Waibel et al., 2000]. The same principle can be
applied on automatic spoken dialect identification that can help reduce the ASR
word error rate for dialectal data by training ASR systems for each dialect, or by
adapting the ASR models to a specific dialect.

Humans are born with the ability to discriminate between spoken languages as
part of human intelligence. A human being with the adequate training is the most
accurate language recogniser given that the human listener speaks the language
[Li et al., 2013]. It is estimated that there are several thousand spoken languages
in the world. The recent edition of the Ethnologue, a database describing all
known living languages, has documented 6,909 living spoken languages [Gordon
et al., 2009]. Unlike spoken language identification, text-based language iden-
tification has traditionally relied on distinct textual features of languages such
as words and sub-words: morpheme, stem and characters. Text-based language
identification for the Latin-alphabet languages has attained a reasonably good
performance, and thus it is considered to be a solved problem [Christopher et al.,
2008]. There are special cases in near-by languages are still not solved, e.g re-

41
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cent challenge in discriminating between similar languages (DSL) task covered
the following languages: Bosnian, Croatian, and Serbian, Malay and Indonesian,
Persian and Dari, Canadian and Hexagonal French, Brazilian and European Por-
tuguese, Argentine, Peninsular, and Peruvian Spanish [Zampieri et al., 2017].
With the rise of Web 2.0, it is easy now to harvest text for many languages or
even dialects, which improved the performance on the non-Latin languages sig-
nificantly for text-based language and dialect detection [Darwish et al., 2014]. In
contrast, spoken language identification is far more challenging than text-based
language identification because there is no guarantee that the transcription from
the speech recognition engine will be error-free. Intuitively, one can argue that
once the system knows what a person is saying, its language is obvious. There-
fore, the type of perceptual cues that human listeners use is always the source of
inspiration for automatic spoken language identification [Zhao et al., 2008]. Sim-
ilar to most of the machine learning challenges, the objective of spoken language
identification is to replicate the human’s ability through computational means.

The recent advances in signal processing, cognitive science and machine learn-
ing have improved the state of the art in spoken language identification consider-
ably. This thesis is concerned with Arabic dialect identification, which is a closely
related problem to the language identification problem. An excellent overview of
the spoken language identification can be found in [Li et al., 2013].

4.1 Front-end feature extraction

The vocal apparatus of a human being is capable of producing a wide range of
sounds. The physical sound can be referred to as acoustics, while the pattern
of the sound can be referred to as phonotactics [Li et al., 2013]. Listeners can
often make subjective judgments regarding unknown languages, e.g., this audio
sounds like Arabic, it is tonal like Chinese, or it has a stress pattern like German
or English. This is of course difficult when a listener tries to distinguish between
nearby languages like Portuguese and Spanish without lexical knowledge.

Researchers concluded four groups of features: acoustic, phonotactic, prosody,
and lexical features [Muthusamy et al., 1994]. The prosodic features such as stress,
duration, rhythm, and intonation are challenging to extract automatically, and
did not show great gain as standalone features in spoken language identifica-
tion compared to phonetic features [Ng et al., 2010]. Therefore, this thesis is



Chapter 4. Overview of Automatic Language and Dialect Identification 43

concerned with the remaining three features: acoustic, phonotactic and lexical
features extracted automatically from an audio file.

Figure 4.1 shows the most popular techniques used for digitising the audio file
for the task of language recognition. By looking top-down, starting at section (a),
which has the simplest and the less feature engineering to the audio, in addition
to the raw audio file, the spectrogram is a visual representation of the spectrum
of frequencies in the audio file. The motivation to list the spectrogram is based
on the recent success of using convolution neural networks for image processing
classification challenges. In a recent study by Bartz et al. [2017], they investigated
using the spectogram features in a language identification task. Their method
was applied in the image domain by using convolutional recurrent neural network
(CRNN).
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Figure 4.1: Various levels of feature extraction for an audio file for spoken language
identification.
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4.1.1 Acoustic features

The Mel-frequency cepstral coefficients are effective in most speech recognition
tasks as discussed in section 3.1. The first- (∆) and the second- (∆∆) order
MFCC derivatives capture short-term speech spectral dynamics and do not cap-
ture longer term variation in speech reflected in high level language features,
such as prosodic, phonetic and linguistic. The shifted-delta-cepstral (SDC) coef-
ficients as a means of incorporating additional temporal information about the
speech into the acoustic feature vectors showed better performance in language
recognition [Torres-Carrasquillo et al., 2002, Kohler and Kennedy, 2002].

The SDC features are specified by a set of 4 parameters, N , d, P and k, where:

• N : number of cepstral coefficients computed at each frame.

• d: represents the time advance and delay for the delta computation.

• P : time shift between consecutive blocks.

• k: number of blocks whose delta coefficients are concatenated to form the
final feature vector.

For cepstral coefficient c(t), the SDC vector at frame time t is given by the
concentration from i = 0 to k − 1 blocks of all the ∆c(t+ iP ), where:

∆c(t+ iP ) =
∑D
d=−D dc(t+ iP + d)∑D

d=−D d
2 (4.1)

The commonly-used configuration forN -d-P -k is 7-1-7-3 along with the MFCCs
per 20/25 ms sliding window over the speech signal and a 10 ms overlap. This
concludes for 56 feature vectors per frame. More detail about MFCC-SDC for
language recognition can be found in [Torres-Carrasquillo et al., 2002, Zazo et al.,
2016]. Both MFCC and MFCC-SDC are commonly used as acoustic representa-
tion for a language identification task.

One of the factor analysis techniques, i-vector, which has been introduced in
3.4, has become very popular in speaker recognition and speaker adaptation. It
has also shown very good results in language identification [Dehak et al., 2011b].
Similar to speaker adaptation, the i-vector provides an efficient way to compress
the GMM supervectors by combining mainly all the language variabilities into a
low dimensional subspace, referred to as the total variability space. Section (b) in
figure 4.1 shows a sample for the two most common approaches for the acoustic
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features; MFCC+SDC and using them to construct an i-vector. It is worth noting
that the acoustic-based i-vector in language identification is commonly used to
represent a speech sentence; ideally 10-30 seconds, which is different than its usage
in speaker adaptation, where, in some scenarios like live speech recognition, the
i-vector is calculated per frame.

4.1.2 Bottleneck features

The probabilistic features were introduced to speech recognition in TANDEM fea-
ture extraction [Hermansky et al., 2000]. Normally, these features are extracted
by training a neural network to predict context-independent monophone states.
The neural network typically has one narrow hidden layer placed in the middle
of the network, this is the bottleneck feature. Since the neural network has the
ability of nonlinear compression of the input features, the bottleneck output from
the hidden layer represents the underlying speech well and is more compact than
the input features. Bottleneck features have shown to be effective in improving
the accuracy in automatic speech recognition [Grézl et al., 2007] and recently in
automatic language identification [Richardson et al., 2015b].

A common setup for using the bottleneck features in language identification is
shown in figure 4.2. In the context of language identification, the neural network
is used to extract features to be used by a secondary classifier. The bottleneck
features have information about both the acoustics and the phonetics since the
network is trained to predict sub-phonetic units or “senones” for each input frame.
The neural network is a multi-layer perceptron with more than two hidden layers;
typically between three-to-five layers with stochastic gradient descent. The speech
input is commonly to be a stacked set of standard MFCCs extracted from 20/25
ms sliding window over the speech signal and a 10 ms overlap similar to the setup
discussed in section 3.1.

4.1.3 Phonotactic features

Spoken language identification can be characterised by phonological variations
between different languages. The phone units are widely used in most of the
speech recognition systems. Tokenizing the speech audio into a phonetic sequence
is done using a phone recogniser, wherein, no language model is used, practically
open phone loop or null grammar is used for decoding the HMM models to allow
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Figure 4.2: Example for bottleneck feature in language recognition

the transition from one phone to another to be equally probable. The outcome
from this process is often known as a phoneme sequence. The number of phonemes
used in a language ranges from about 15 to 50, with the majority having around
30 phonemes. For example, Arabic phoneme-based speech recognition systems
contain 29 consonants and 6 vowels.

Phonetic repositories differ from one language to another, although they may
share some common phonemes. Ideally, it is better to use a phone recogniser
of the target language. However, practically, robust phone recogniser for other
languages have shown superior results. For example, the Hungarian phone recog-
niser based on a long temporal context [Matejka et al., 2005] has been widely used
to discriminate between various languages and dialects not including Hungarian.
The intuition here is that a robust phone recogniser is capable of extracting an
accurate phonotactic pattern for the recognised language. It is worth noting that
most of that common practice in phoneme based systems consists of multiple
phone recognisers and combine them to enrich the feature vectors used for classi-
fication. In general, a phone recogniser system can produce the phone sequence
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along with the duration for each phone, which is one of the prosodic features.
Most of the phonotactic-based approaches discard the duration and use the se-
quence of the sound units. This thesis will study the duration in the context of
dialectal Arabic versus standard Arabic.

4.1.4 Lexical features

The LVCSR system will ideally convert a raw audio file into the most likely spoken
word sequence given that the speech system knows the language of the spoken
audio, which is missing in the context of language recognition. Therefore, it is
not a surprise that the word sequence feature vector is not commonly used in
spoken language recognition. On the contrary, text-based language recognition
system mainly relies on lexical features, word sequence and derivative features;
phrases, grammars and character features. This thesis is concerned with spoken
Arabic dialect identification; therefore, it is plausible to assume that the Arabic
audio input can be recognised by a generic Arabic LVCSR system trained on
multi-dialectal speech data. The recognised word sequence from such a system
and derivative features can be used to build a lexical-based feature vector to be
used for identifying the dialect of the spoken audio [Malmasi et al., 2016, Zampieri
et al., 2017].

4.2 Statistical modelling

As shown in section 4.1, there are different kinds of features used in spoken lan-
guage identification, and based on the information source, the model will vary.
A wide spectrum of approaches have been proposed for modelling the character-
istics of languages. The commonly used features can be summarised into two
groups: (i) acoustic-based features, e.g., MFCC-SDC, filterbank and bottleneck
features, and (ii) sound pattern features, e.g., phonotactic, lexical and derivative
features such as character sequence. During the training phase, speech utterances
are analysed and models are built using training data given the language labels.
The models are intended to represent some language-dependent characteristics
seen on the training data. During testing, each utterance will apply the same
pre-processing steps for training; the likelihood for each utterance will be com-
puted afterwards for each language. Finally, the language with the highest score
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is typically assigned to this utterance. It is worth noting that recent approaches
in language recognition explored using a filter-bank for feature extraction [Zazo
et al., 2016].

4.2.1 Acoustic-based modelling techniques

Similar to speech recognition, given the extracted acoustic feature vector from an
audio file is o = o1, o2, ..., oT , where ot represent the acoustic feature vector for
frame t, and there are N possible languages where and all of them are equally
probable. The language identification problem can be described as follows:

Lh = arg max
l
p(o|Ll) (4.2)

Equation 4.2 follows the maximum-likelihood (ML) criterion where Lh is the
most likely language label. The language recognition and speaker recognition
are closely related in both modelling and evaluation. The universal background
model GMM (UBM-GMM) is often used in acoustic-based modelling. There are
two main differences to speaker recognition: (i) The UBM is a background model
representing all the languages, where typically the UBM model is trained with a
sample from all the N languages in the training data, e.g., 5-10 hours from each
language; and (ii) the GMM is adapted using the MAP adaptation as mentioned
in section 3.4 using all the available data from each language in the training
data to build specific GMM for each language; practically the GMM has between
512-1024 Gaussians.

Recently, the i-vector has shown to be effective for language recognition similar
to the success in speaker recognition. Ideally the outcome from the latent variable
is of a fixed length per utterance, practically 100-400 dimensional feature vector
per utterance. It is worth noting that the compact i-vector representation yields
better results when dimensionality reduction such as linear discriminant analysis
(LDA) is used. The extracted vector representation is also often used in vector
space modelling (VSM), and the similarity between the vectors can be measured
using cosine distance [Salton and Buckley, 1988, Chu-Carroll and Carpenter,
1999]. This will be discussed further in section 6.4.
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4.2.2 Sound-pattern modelling techniques

Sound patterns can be referred to as the constraints that determine permissible
syllable structures in a language [Li et al., 2013]. This can include phoneme se-
quence, word sequence, and character sequence. The most common pattern is the
phoneme sequence, which is also known as the phonotactic system. This section
will use the phonotactic as an example to highlight the common techniques; how-
ever, same approaches are applicable to character and to word sequences as well.
Given the extracted phoneme sequence from an audio file is x = {x1, x2, ..., xT},
where xt represents the spoken phoneme sound at time t, and assuming that there
are N languages and all of them are equally probable, the language identification
problem can be described as follow:

Lh = arg max
l
P (x|Ll) (4.3)

The main difference between equation 4.3 and equation 4.2 is that P (x|Ll) is a
discrete probability model for the phoneme occurrence and co-occurrences. One
of the widely used techniques is the phoneme n-gram modelling. The method is
based on using the phone recognition followed by language modelling (PRLM).
The used language for the phone recognition can be one of the target languages, as
it can also be a disjoint language to any of the target N languages. One common
practice for using the PRLM is to build an n-gram language model using the
phoneme sequence for each of the N languages in the training data. During
testing, the same pipeline should be applied to extract the phoneme sequence,
and measure the perplexity across all the N n-gram language models. A lower
perplexity shows that a phone n-gram matches the phone sequence better; in
other words, the phone sequence is more predictable.

Figure 4.3 shows a scenario for using the PRLM. Following the same assump-
tion, more than one phone recogniser can be deployed followed by an n-gram
language model. The intuition here is that multiple phone recognisers should
provide different perspectives for the statistics of the test audio file. This Parallel
PRLM (PPRLM) can be seen as a system combination to fuse the results from
multiple recognisers. Also, the output from the multiple recognisers is often used
by another classifier, e.g., logistic regression or support vector machine (SVM),
where both are examples of discriminative models used regularly in a spoken
language identification task.
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Figure 4.3: Example for PRLM using Arabic phone recogniser.

4.3 Overall system

Most of the modern spoken language identification systems will benefit from sys-
tem combination. The combination approaches have traditionally been tuned to
have higher accuracy than the best subsystem. Generally, system combination in-
cludes one or more of the acoustic and of the phonotactic sub-systems. There are
various approaches to combine systems. These can be grouped into two groups:
(i) combine systems at the feature level and use single classifier in the testing
phase, and (ii) build individual sub-systems and combine scores from different
each sub-system using some balanced voting. Ideally in the second approach,
each system will have different weight that needs to be tuned using development
data as part of the hyper-parameter optimisation. This thesis concerns the second
approach in system combination and combines scores from different sub-systems.

4.4 Evaluation metric

Since the language identification task is a standard statistical classification prob-
lem, this thesis will report precision (positive predictive value), recall (false neg-
ative value) and overall accuracy on the test set for evaluation and comparison.
Precision, recall and overall accuracy are calculated using true positives tp, true
negative tn, false positives fp and false negative fn. Equations 4.4, 4.5 and 4.6
show how to calculate them. It is worth noting that evaluation is one of the shared
items between the speaker and the language recognition challenge. The National
Institute of Standards and Technology (NIST) has adopted another evaluation
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metric; equal error rate (EER), as the default method for evaluating language
and speaker recognition. The EER is a different score to measure the accuracy of
a statistical classification, where the value for which the false acceptance errors
and false rejection errors are equal. In this thesis, we will report precision, recall
and overall accuracy.

Precision = tp
tp + fp

(4.4)

Recall = tp
tp + fn

(4.5)

Accuracy = tp + tn
tp + tn + fp + fn

(4.6)

4.5 Arabic dialect identification overview

The previous sections in this chapter gave an overview of language identification,
which is a closely related problem to spoken Arabic dialect identification. One can
argue that dialect identification is a harder problem since there is no single view
on how many spoken dialects there are in Arabic. This section will summarise
some of the previous work in dialectal Arabic identification. Biasdy et al. stud-
ied spoken dialectal Arabic in depth and the impact on Arabic ASR [Biadsy and
Hirschberg, 2009, Biadsy et al., 2009b, 2010, Biadsy, 2011]. They studied spoken
dialect recognition, and their main focus was phonotactic, prosodic and acoustic
modelling. They also studied the classification among four dialects: Gulf, Iraqi,
Levantine, and Egyptian. For classification, they studied kernel and HMM for
modelling. Biasdy reported EER for the shared results. They concluded from
their experiments that phonetic features alone carry significant and nearly suf-
ficient information to distinguish dialects. Furthermore, they have shown that,
if it is possible to cluster the ASR acoustic training and testing data based on
dialect labels and then use it to train dialect-specific models, this will improve
ASR on dialectal Arabic.

In a study by Akbacak et al. [2011], they studied dialect-specific and cross-
dialectal phonotactic models, using both language models and an SVM classifier.
Their system was deployed as a stand-alone and in combination with a cepstral
system with joint factor analysis (JFA). The system was evaluated using four
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dialects: Levantine, Iraqi, Gulf, and Egyptian. The speech sample was telephony
sampled at 8Khz with 30-seconds fixed length each. They achieved 2% average
EER for pairwise classification. In Liu et al. [2010], a systematic assessment
of the differences between the acoustic characteristics of spontaneous and read
speech and their effects on dialect identification performance was applied. They
reported that each spans different dialect spaces and with distinct characteristics
that need to be addressed respectively. From this comparison, they proposed a
novel feature extraction technique.

4.6 Summary

In this chapter, we presented a brief overview of the different aspects of spo-
ken language and dialect identification. For the acoustic features, we discussed
the three most commonly used features: MFCC+SDC, bottleneck features, and
sound pattern features such as phonotactic and words/character extracted from
LVCSR speech recognition system. For statistical modelling, we highlighted
the most common techniques, such as VSM, and the commonly-used classifiers,
PRLM and PPRLM, SVM, and logistic regression. This was followed by a quick
analysis of previous work in spoken dialectal Arabic identification. In the subse-
quent sections, we will study how to use crowdsource efficiently to build dialectal
corpus and our effort in building dialectal Arabic classifier across the five Arabic
dialects: Egyptian, Levantine, Gulf, North African, and modern standard Arabic.
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Dialect Identification
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This is the second section of the thesis and it is concerned with detecting
spoken Arabic dialect. It has the following two chapters:

Chapter 5 introduces our effort in building a dialectal Arabic corpus using a
crowd source approach to be used in the dialect identification work.

Chapter 6 introduces our efforts in building dialectal Arabic identification sys-
tems using data from broadcast domain.



Chapter 5

Crowd-Sourcing Dialectal Arabic

This chapter is based on [Wray and Ali, 2015] published at Interspeech 2015 and
concerns using crowdsourcing to build a dialectal Arabic corpus for Arabic dialect
identification.

5.1 Introduction

Arabic is a language with great dialectal variety, with modern standard Arabic
(MSA) being the only standardised dialect. Spoken Arabic is characterised by
frequent code-switching between MSA and dialectal Arabic (DA). DA varieties
are typically differentiated by region, but despite their wide-spread usage, they are
under-resourced and lack viable corpora and tools necessary for speech recognition
and natural language processing. Existing DA speech corpora are limited in scope,
consisting of mainly telephone conversations and scripted speech.

In this chapter, we describe our efforts for using crowdsourcing to annotate a
multi-dialectal speech corpus collected from Al Jazeera. We obtained utterance-
level dialect labels for 57 hours of high-quality audio from Al Jazeera consisting
of four major varieties of DA: Egyptian, Levantine, Gulf, and North African.
Using speaker linking to identify utterances spoken by the same speaker, and
measures of label accuracy likelihood based on annotator behavior, we automat-
ically labelled an additional 94 hours. The complete corpus contains 850 hours
with approximately 18% DA speech.

As mentioned in chapter 2, Arabic consists of numerous varieties. MSA is the
standardised dialect of news media and schooling, and the varieties of DA that
characterise day-to-day usage can be very roughly categorised into four broad cat-
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egories based on region of usage: Egyptian, Levantine (spoken in Syria, Lebanon,
Jordan, and Palestine), Gulf (spoken in Saudi Arabia, Qatar, the United Arab
Emirates, Bahrain, Oman, Kuwait, Yemen, and Iraq), and North African (spoken
in Morocco, Libya, Tunisia, Algeria, and Mauritania.)

Existing Arabic speech corpora are dominated by MSA, and the few colloquial
resources (with notable exceptions: 20 hours of Egyptian [Wray, 2016], 45 hours
of Levantine [Technologies et al., 2005], 32 hours of Gulf, Levantine, and Egyptian
[Almeman et al., 2013], 15 hours of Gulf [Elmahdy et al., 2014]) consist of narrow
bandwidth telephone conversations. More detail about Arabic can be found in
chapter 2.

Crowdsourcing has become a standard method for accessing large numbers of
participants who are demographically diverse and harbor a number of skillsets
that can be utilised for collection and annotation of data in various speech and lan-
guage processing studies, such as text corpus construction [Dolan and Brockett,
2005] and acquisition of translations [Zaidan and Callison-Burch, 2011]. Within
the specific domain of speech data, crowdsourcing has been used effectively for
transcription of speech [Marge et al., 2010], and collection of speech via prompts
[Lane et al., 2010, Davel et al., 2012, Novotney and Callison-Burch, 2010b], among
other tasks. Numerous studies have investigated the development of quality
control mechanisms which can be used to obtain expert-level quality data at a
much lower cost [Snow et al., 2008, Novotney and Callison-Burch, 2010a], making
crowdsourcing a viable method for efforts of speech corpus building and labelling.

In this chapter, we present a multi-dialectal speech corpus of DA created from
high-quality broadcast, debate, and discussion programs from Al Jazeera, and as
such containing a combination of spontaneous and scripted speech. We utilise
human computation by means of crowdsourcing, and we develop methods for
selecting representative utterances for each speaker to minimise the necessity of
complete human annotation for the whole corpus. The chapter is organised as
follows: in Section 5.2, we describe the process of collecting speech data from
Al Jazeera and selecting representative samples from each speaker for manual
classification. Section 5.3 presents the role of human annotation and development
of best practices for obtaining reliable classifications. Then, annotator behavior
and implications for perception are described in Section 5.4. Section 5.5 shows the
results of generalising dialect information for all speech data based on annotations
for representative samples.
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5.2 Speech data

The Qatar Computing Research Institute (QCRI) has worked closely with Al
Jazeera to develop a transcription queue which allows journalists and editors
at Al Jazeera to choose episodes to be automatically transcribed by the QCRI
advanced transcription system (QATS) [Ali et al., 2014c]. All videos processed by
QATS appear on Al Jazeera’s Arabic site aljazeera.net. The transcriptions have
been formatted into SRT1 and Distribution Format Exchange Profile (DFXP)
subtitles and have been uploaded to the Brightcove video platform. The audio
that makes up the corpus in the current study was pulled from videos in the
transcription queue in the time period between June 2014 and January 2015,
with an average of 33 videos per day. In total, there were more than 8,500 video
files, which contain approximately 850 hours of speech. The audio is a mix of
programs, reports, and conversational debates. The data is 44.1 kHz with the
highest quality that has been uploaded directly from Al Jazeera to Brightcove.
After downloading the video files, we ran ffmpeg2 to downsample to 16 kHz, and
then ran each audio file through a pre-processing pipeline before submitting it to
annotators.

The pre-processing stage consisted of the following steps. First, for each
episode, we ran voice activation detection (VAD) to remove as many non-speech
segments (such as music or white noise) as possible. Then, speaker diarization
was performed to determine who speaks when, and to assign each segment a
speaker ID. All the aforementioned data pre-processing was carried out using
the LIUM system speaker diarization [Meignier and Merlin, 2010]. The output
from the LIUM segmentation is typically small chunks of audio files containing
information about speaker ID, speaker gender and duration of utterance. Table
5.1 shows some statistics about segment duration, we can see that most of the
segments are between 10-20 seconds.

Less than 5 5-10 10-20 20-30 More than 30
0.3% 15.4% 39.4% 18.4% 26.4%

Table 5.1: Distribution of segment duration in seconds.

1Subtitle, also referred to as closed captioning
https://en.wikipedia.org/wiki/Subtitle_(captioning)

2https://www.ffmpeg.org/

https://en.wikipedia.org/wiki/Subtitle_(captioning)
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5.2.1 Segmentation and speaker linking

As a result of processing the data using the LIUM system, the audio was split
into 167,000 segments. Then, we ran a second step in which we concatenated
consecutive segments from the same speaker if a one-second or less period of
silence or non-speech separated them. The aim of this step was to reduce the
number of segments to submit for manual labelling. At this stage, we also dis-
carded any segment less than three seconds long as we felt dialect assessment
would be too difficult for the annotator in such a short span of time. After con-
catenation, 121,000 segments remained. These 121,000 represent the Expanded
data set which contains every utterance.

The LIUM system also provided speaker linking information in which different
speech segments produced by the same speaker were assigned to the same ID
within the same file. From the 121,000 segments, two segments per speaker per
video were selected, typically the first and the last segments, resulting in a total
of 47,696 segments of unknown dialects to be labelled by human annotators. This
subset represents the Sample data set. The assumption was that labels for the
Sample set can be generalised to segments from the same speaker in the Expanded
data set. The crowdsourced labelling of the Sample set is described in Section 5.3
and the process of expansion of the Sample set to the Expanded set is evaluated
in Section 5.5.

5.3 Crowd-sourcing task

Crowdsourced classifications were obtained via CrowdFlower (henceforth CF)3,
a service that utilises various worker channels including other microworking and
rewards sites. Workers can also be targeted by country of user origin. The service
also employs optional verification stages in which gold standard data can be used
to verify the contributor answers as they are submitted. Additionally, it also
makes use of a dynamic judgment system in which more annotators are recruited
for items for which the inter-annotator agreement is low.

The output of CF tasks takes various forms. First, the service outputs the
full collection of contributor answers. CF also aggregates these answers together,
so each task item is assigned a single answer based on inter-annotator agreement

3http://www.crowdflower.com

http://www.crowdflower.com
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scores and contributor trust calculated from their performance in previous tasks.
The combined trust and inter-annotator agreement calculation is quantified in a
value called confidence4 which is also released with the aggregate data. Thus, each
item in the aggregate data set is assigned an answer and a confidence value for
that answer. CF also outputs a list of contributors who worked on the task with
information about which worker channel they were recruited from and location
data.

5.3.1 Task anatomy

The task was restricted to users in the Arab world. All directions for the task
were written in modern standard Arabic. Contributors were directed to listen
to the short speech segments described in Section 5.2.1 and to determine which
dialect they thought the speaker was speaking. Contributors were asked to listen
only as long as necessary to determine the dialect being spoken. Compensation
for this task was USD 0.03 per page of 10 items.

Dialect judgment was answered by a seven-way forced-choice between Mod-
ern Standard Arabic (MSA), Levantine Arabic (LAV), Egyptian Arabic (EGY),
North African Arabic (NOR), Gulf Arabic (GLF), non-Arabic speech, and non-
speech. The non-Arabic speech in the data included foreign speakers who were not
dubbed over. The non-speech included white noise, music, and other non-speech
sounds such as traffic and gunfire, which were mislabelled by LIUM as speech
data. For each regional variety of DA, contributors were explicitly instructed
which countries belonged to which dialect groups.

5.3.2 Development of quality measures

Existing CF quality control options were utilised to reduce the amount of noisy
data and post-crowdsource cleanup necessary. Twenty-five audio files were man-
ually annotated to create a gold standard data set in order to use CF automatic
quality control. These files were selected to be unambiguous and clear, and the
answers distributed across categories with little potential for dispute, such as
non-speech, non-Arabic, MSA, in addition to clear examples of DA. Pilot testing
confirmed that the gold standard items were appropriately unambiguous.

4The confidence is calculated and reported by the CrowdFlower platform.
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Live quality control was accomplished in two ways. First, CF optional Quiz
Mode was engaged, which required contributors to answer five gold standard
items before entering the main portion of the task. Second, for every five items,
contributors were presented with a gold standard item that was not discernible
from the task items. Contributors had to maintain an accuracy of at least 65% on
these hidden gold standard items or else their participation in the task was ended.
Although this cutoff point may appear too forgiving, pilot work showed that
spammy annotators had an average accuracy of 31% on test questions, whereas
the remainder of annotators had an average of 94% accuracy. In addition to
utilising live quality control, efforts were also made to reduce the amount of data
with low inter-annotator agreement. Recall that CF features a built-in mechanism
for fetching additional contributors to provide judgments for items with low inter-
annotator agreement. Recall also that each item is assigned a confidence value
based on inter-annotator agreement and contributor trust. To determine the
most effective way to utilise this feature, an experiment was performed on a
random sample of 500 segments. This sample was submitted for contributor
judgments three times on CF with different manipulations of both confidence
thresholds and maximum number of contributors per item. Suggested settings for
the dynamic judgments feature which automatically submits low-agreement items
are to resubmit an item with lower than 70% to one additional contributor. This
feature was tested on the 500 set, as well as a higher threshold of 75%, and two
maximum contributor-per-item numbers: 7 and 9. This experiment demonstrated
a gain in total percentage of high-confidence items, as the threshold was made
stricter and the number of annotators higher. These results are summarised in
table 5.2. After determining best practices for dynamic judgments and quality
control, the 47,696 sample files representing 404 hours of speech were classified
over a period of three weeks, costing a total of USD 971.

Threshold Minimum contributors Maximum contributors % items above 70% confidence
70% 3 4 79%
75% 3 7 89%
75% 3 9 92%

Table 5.2: Percentage of high-confidence answers for 500 segments annotated with
three dynamic judgment options.
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5.3.3 Contributor demographics

A total of 2,053 users contributed to the labelling task, with 39% of contributors
hailing from Egypt, the single highest country by contributor count. Complete
contributor counts by country5 are shown in Table 5.3. In comparing the numbers

Egypt 795 Saudi Arabia 80 Oman 10
Algeria 422 Palestine 51 Bahrain 4
Tunisia 303 Yemen 45 Qatar 3
Jordan 177 UAE 33
Morocco 117 Kuwait 13 Total 2053

Table 5.3: Contributor count by country.

of contributors based on their dialect group, North African speakers contributed
the highest total percentage to the task. Lowest participation by number of
contributors was from countries in the Gulf. Percentages of total contributors
per dialect group are shown in the map in Figure 5.1.

Figure 5.1: Map of contributor origin by dialect group.

Note in Figure 5.1 that although the Gulf region is a large multi-national
group, it contributed a minority of the participants. Potential implications for
this and other contributor origin-related phenomena are discussed in the following
section.

5At the time of this study, CF was not available for residents of Iraq, Syria, Libya, and
Lebanon. Although the task was available for users in South Sudan, no contributors participated
from this country.
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5.4 Dialect perception

Although the aim of this chapter is primarily concerned with resource improve-
ment and data collection through crowdsourcing, insights on human perception
were also investigated based on contributor behavior. We considered the possi-
bility of annotator bias during the process of labelling, and explored implications
of labels which regularly co-occurred.

5.4.1 Contributor bias

Overall, of the four major DA varieties, labels assigned to Egyptian had the overall
highest average confidence value and labels for Gulf exhibited the lowest average
confidence value. Percentages for confidence values for items are shown by label
in Figure 5.2. Items were binned according to three confidence thresholds: less
than 50% confidence, between 50% and 75% confidence, and finally above 75%.

Figure 5.2: Distribution of confidence by dialect

As for the relation between annotator origin and label assigned, Zaidan and
Callison-Burch [2014] present evidence of annotator bias in a task identifying
dialectal content in text mined from comments on on-line news articles. They
found that annotators were biased towards selecting their own native dialect when
asked to provide dialect judgments. Thus, Egyptian speakers often mistakenly
annotated non-Egyptian comments as being Egyptian, Levantine speakers over-
annotated sentences as Levantine, and so forth. This raises the question of the
current study: Is there any evidence that contributors were biased towards se-
lecting their own dialect when presenting with speech of unknown origin? To de-
termine this, we also presented annotators with twenty-five manually-annotated
items per DA category to compare behavior across origins of annotator.

A chi-square test of independence was performed to determine whether an
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annotator’s dialect of origin affected their selection and therefore whether DA
selections were equally distributed. Annotators chose their own dialect 22 ±
3.7% of the time, which was not significantly different from their probability of
choosing other dialects 22.2 ± 2.7% of the time;((x2(12)=12.7, p=0.4)). Thus,
contributors did not exhibit a bias to their own native dialect group in the process
of making dialect judgments.

Although it may be difficult in certain contexts to determine the dialect of
a written comment if it contains graphemic cognates common across multiple
dialects of colloquial Arabic and even modern standard Arabic, this ambiguity is
absent in spoken utterances. The specific cues that lead to differences in dialect
confusability across written and spoken modalities are beyond the scope of this
chapter, but merit further investigation.

5.4.2 Interdialectal confusability

Recall that a label is assigned to an item based on the judgments of several anno-
tators and in the event an item exhibited low inter-annotator agreement, more an-
notators would automatically be obtained to provide additional judgments. Each
label then is the product of judgments from 3-9 different annotators. However,
what was the cause of low agreement in the first place, and was there a pattern
to contributor disagreement? To investigate the rates of confusability between
dialects and the amount of ambiguity which led to high competition between
multiple dialect judgments for one item, we counted each judgment provided to
each label. Percentages are shown in Table 5.4.

Percentage of total judgments
Label EGY GLF LAV NOR MSA
EGY 79.6% 1.3% 2.6% 1.4% 15.1%
GLF 1.4% 61.3% 11.9% 5.2% 20.2%
LAV 1.7% 6.8% 73.8% 3.6% 14.1%
NOR 0.6% 5.1% 5.3% 70.7% 18.3%

Table 5.4: Percentages of judgments by each dialect label with respect to the five-
dialects. i.e., each row sums up to 100%.

Results suggest that Egyptian is easily distinguished from other varieties of
DA, likely due to its wide-spread representation in media consumed through-



Chapter 5. Crowd-Sourcing Dialectal Arabic 64

out the Arabic-speaking world. This interpretation is consistent with the high
confidence values for EGY labels as shown in section 5.2. Although the GLF
label exhibits the highest percentage of competition between GLF judgments
and MSA when compared to other DA varieties (20.2% of GLF labels contained
MSA judgments, whereas 15.8 ± 2.2% of EGY, LAV and NOR labels contained
MSA judgments), a chi-square test of independence shows this difference was not
significant ((x2(1)=0.91, p=0.3)).

5.5 Expansion results

Recall that the annotated audio set was a subset of the larger audio set. In
the process of linking annotated Sample files to the Expanded set in order to
generalise contributor judgments, we explored three possible confidence threshold
levels for expansion. First, we started with no threshold. All Sample items
were eligible for expansion, and whatever answer was selected based on highest
inter-annotator agreement and contributor trust was linked to the other files in
the Expanded set. The second threshold was set at 50% confidence. At this
threshold, any item with at least 50% confidence contributed dialect labels to the
files it was linked to in the Expanded set. Items with less than 50% confidence
were discarded. Finally, the strictest threshold was the 75% confidence level.

5.5.1 Validating the expansion process

In order to compare the three possible thresholds of expansion, a sample of
randomly-selected previously-unseen 200 items per confidence threshold per di-
alect from the expanded sets were submitted to CF for manual annotation. The
purpose of this was to determine if propagating labels from the Sample set to the
Expanded set resulted in accurate labels. Table 5.5 shows the results of man-
ual annotation of the selected sample of items from each confidence threshold.
Common sense would predict that discarding items that were labelled with low
confidence values even after multiple additional annotators improves the total
percentage of dialect data during the expansion process, and the manually anno-
tated results confirm this: the total percentage of predicted dialect increases as
the confidence threshold becomes more restrictive.

However, as shown in Table 5.5, given that even a strict threshold of 75%
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Confidence threshold Expected Dialect Hours linked Confirmed % of sample
None EGY 32h 59m 17%

GLF 27h 11m 25%
LAV 55h 42m 19%
NOR 27h 02m 16%

50% EGY 31h 31m 36%
GLF 22h 17m 39%
LAV 50h 30m 31%
NOR 24h 32m 36%

75% EGY 26h 37m 65%
GLF 12h 30m 41%
LAV 38h 49m 53%
NOR 18h 24m 69%

Table 5.5: Results of manually-annotated expansion sets.

does not produce full coverage of the predicted dialect, a question presents itself:
what other speech is contained in the files and what makes it so easily confused
with the predicted dialect?

5.5.2 Codeswitching

In looking at the results of the highest confidence threshold and the manually
annotated dialectal labels versus the expected dialect labels, it is clear that using
an sample-expansion system does not result in completely generalisable labels.
However, a closer look reveals that this could be due to the nature of codeswitch-
ing. Arabic as a language is characterised by frequent bi-dialectal codeswitching,
meaning a speaker alternates between their native dialect and MSA [Ferguson,
1959, Elfardy and Diab, 2012, Elfardy et al., 2013, Solorio et al., 2014, Elfardy
et al., 2014]. Because of this fact, much of the remaining percentage of expected
dialect data is in fact MSA, as shown in Table 5.6. (Remaining percentages
belonged to Non-Arabic and Non-Speech categories.)

For speakers whose samples were labelled as a particular DA variety, the
majority of their speech was indeed in that variety, with a minority being in
MSA. The exception to this is the Gulf variety. It is therefore possible that Gulf
speakers in the corpus used more MSA in their speech than their native dialect,
but a comprehensive account of the differences in codeswitching for different DA
varieties is warranted.
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Expected Dialect EGY GLF LAV NOR MSA
EGY 65% 32%
GLF 41% 4% 53%
LAV 1% 1% 53% 39%
NOR 1% 69% 28%

Table 5.6: Percentages of expected dialect (from expansion) of segment by actual
dialect (from manual annotation).

5.6 Conclusions

This chapter presented our efforts to create a multi-dialectal corpus of Arabic
speech6 using audio from Al Jazeera. We showed that using CrowdFlower to label
samples from each speaker at the beginning and at the end of an audio segment
results in labels for all of that speaker’s speech and that results are suggestive
of a regular practice of code-switching between one’s native dialect and MSA.
The corpus has been automatically transcribed, and utterances determined as
DA have also begun to be manually transcribed using crowdsourcing. The data
with confidence 0.75 or higher will be used for testing and development in the
Arabic dialect identification studies.

6The corpus can be accessed at http://alt.qcri.org/resources/aljazeeraSpeechCorpus/



Chapter 6

Arabic Dialect Identification

This chapter is based on [Ahmed et al., 2016, Khurana et al., 2017, Shon et al.,
2017] published at Interspeech 2015, InterSpeech 2016 and ASRU 2017 respec-
tively. This chapter will cover my contribution to the three papers. The main
focus of the three aforementioned papers is Arabic dialect identification. This
chapter will also discuss some experiments that have not been published yet.

6.1 Introduction

In this chapter, we investigate different approaches for Arabic dialect identifica-
tion (ADI) in broadcast speech. These methods are based on phonotactic and
lexical features obtained from a speech recognition system, and acoustic features
using the i-vector framework. We studied both generative and discriminative
classifiers, and we combined these features using a multi-class support vector ma-
chine (SVM), a deep neural network (DNN), and a convolutional neural network
(CNN). We validated our results on an Arabic/English language identification
task. We also evaluated these features in a binary classifier to discriminate be-
tween modern standard Arabic (MSA) and dialectal Arabic (DA). We further
report results using the proposed methods to discriminate between the five most
widely used dialects of Arabic: namely Egyptian, Gulf, Levantine, North African,
and MSA.

We discuss dialect identification errors in the context of dialect codeswitching
between DA and MSA, and compare the error patterns between labelled data,
and the output from our classifier. All the data used in our experiments have
been released to the public as a dialect identification corpus.

67
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The task of dialect identification (DID) is a special case of the more general
problem of language identification (LID). LID refers to the process of automati-
cally identifying the language class for a given speech segment or text document.
DID is arguably a more challenging problem than LID, since it consists of identi-
fying the different dialects within the same language class. As discussed in section
2.5, Arabic dialects are sufficiently distinctive, and it is reasonable to regard the
DID task in Arabic as similar to the LID task in other languages. Table 2.1 shows
two phrases across the different dialects. It is clear from this example that there
are lexical variations across the different dialects that motivate us to consider it.

Two broad LID approaches have been investigated in the literature: low-level
acoustic features, and high-level phonetic and lexical features. In the lexical area,
words, roots, morphology, and grammars [Reynolds et al., 2008, Ambikairajah
et al., 2011] have been studied. Acoustic features such as shifted delta cepstral
coefficients [Dehak et al., 2011b] and prosodic features [Martínez et al., 2012] using
Gaussian mixture models (GMMs), i-vector representations and support vector
machine (SVM) classifiers [Dehak et al., 2011b] have been shown to be effective
for LID. More recent work explored the use of frame-by-frame phone posteriors
(PLLRs) [Plchot et al., 2014] as new features for LID. New subspace approaches
based on non-negative factor analysis (NFA) for GMM weight decomposition and
adaptation [Bahari et al., 2014] were also applied to both LID and DID tasks.
GMM weight adaptation subspaces seem to provide complementary information
to the classical i-vector framework. Finally, phoneme sequence modelling and its
n-gram subspace have been studied for both Arabic DID [Soltau et al., 2011] and
LID [Soufifar et al., 2012].

In this chapter, we investigate three vector subspace models (VSMs) for ADI
based on 1) lexical, 2) phonotactic, and 3) acoustics. We conduct a thorough
feature selection study of these models to better understand their interaction. A
further contribution of this chapter is the release of an ADI system, so others
can extend and improve DID performance on this task.1. It is worth noting
that Arabic dialect identification was introduced as a challenge at VarDial 2016
[Malmasi et al., 2016] and 2017 [Zampieri et al., 2017] and at MGB-3 [Ali et al.,
2017b]. There have been more than 30 different submissions addressing challenges
in dialectal Arabic in these three competitions.

1https://github.com/qcri/dialectID
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6.2 Data corpus

The data for the ADI task comes from a multi-dialectal speech corpus created
from Arabic broadcast, debate and discussion programs from Al Jazeera and
other Arabic channels. The development and testing data were labelled using
the crowdsource platform CrowdFlower, with the criteria to have a minimum of
three judges per file and up to nine judges, or 75% inter-annotator agreement
(whichever comes first). It is worth noting that this is a subset of the sampled
data not the expanded corpus. More detail about the testing and development
data can be found in chapter 5. On the other hand, recording the training data
was done using satellite cable sampled at 16kHz directly from the broadcast
speech from many Arabic broadcast channels.

Training data were manually segmented and labelled. Although the testing
and the development data sets came from the same broadcast domain, the record-
ing setup is different, which could potential lead to channel mismatch as we will
discuss later in section 6.4. The training, development and testing data are well
balanced across the five dialects studied in this chapter; EGY, LAV, GLF, and
NOR, as well as in MSA. Table 6.1 shows some statistics about the ADI training,
development and testing datasets.

Training Development Testing
Dialect Dialect Ex. Dur. Words Ex. Dur. Words Ex. Dur. Words
Egyptian EGY 3,093 12.4 76 298 2 11.0 302 2.0 11.6
Gulf GLF 2,744 10.0 56 264 2 11.9 250 2.1 12.3
Levantine LAV 2,851 10.3 53 330 2 10.3 334 2.0 10.9
MSA MSA 2183 10.4 69 281 2 13.4 262 1.9 13.0
North African NOR 2,954 10.5 38 351 2 9.9 344 2.1 10.3
Total 13,825 53.6 292 1524 10 56.5 1492 10.1 58.1

Table 6.1: The ADI data: examples (Ex.) in utterances, duration (Dur.) in hours,
and words in 1000s.

6.3 Features

This section investigates different features to identify spoken Arabic dialect. For
the acoustic features, we studied the MFCC-SDC in section 4.1.1 and bottleneck
features using i-vector as a latent variable representation in section 4.1.2. For the
linguistic features, we studied phonetic and lexical features.
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6.3.1 Acoustic representation

Recently, bottleneck features extracted from an ASR DNN-based model were ap-
plied successfully to language identification [Song et al., 2013, Matejka et al.,
2014, Richardson et al., 2015a]. In this chapter, we used a similar bottleneck fea-
ture configuration to the ASR-DNN system for MSA speech recognition [Cardinal
et al., 2015]. This system is based on two successive DNN models. Both DNNs
use the same setup of 5 hidden sigmoid layers and 1 linear BN layer, and they
were both based on tied states as target outputs. The senone labels of dimension
3,040 are generated by forced alignment from an HMM-GMM baseline trained
on 60 hours of manually transcribed Al Jazeera MSA news recordings [Ali et al.,
2014b]. The input to the first DNN consists of 23 critical-band energies that are
obtained from Bark scale. Pitch and voicing probability are then added. With
11 consecutive frames are then stacked together. The second DNN is used for
correcting the posterior outputs of the first DNN. In this architecture, the input
features of the second DNN are the outputs of the BN layer from the first DNN.
Context expansion is achieved by concatenating frames with time offsets of -10,
-5, 0, 5, and 10. Thus, the overall time context seen by the second DNN is 31
frames. For modelling, we use the i-vector approach which has been introduced
in section 3.4. The universal background model (UBM) – typically a large GMM
with 2,048 components, the bottleneck features were used as input feature, and
the i-vectors were of 400-dimensional for each utterance. In order to maximise
the discrimination between the different dialect classes in the i-vector space, we
combine linear discriminant analysis (LDA). Both SVM and DNN were studied
for the ADI classification task.

Unlike the bottleneck features, which combined information from acoustic
and phonetic information, we studied pure acoustic features, we parametrised
the speech signal by extracting Mel-frequency cepstral coefficients (MFCCs) per
25 ms sliding window over the speech signal, having a 10 ms overlap. The MFCC
feature vector is enriched using shifted delta cepstral coefficients (SDCs) [Torres-
Carrasquillo et al., 2002]. We use the configuration 7-1-3-7 for extracting the
MFCC-SDC features, similar to the one used in [Zazo et al., 2016], more details
about SDC settings can be found in section 4.1.1. The aforementioned approach
gives us a sequence of feature vectors for each spoken utterance. We use Kaldi
[Povey et al., 2011], a publicly available Automatic Speech Recognition toolkit,
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for feature extraction. Similar to the bottleneck features, we used the i-vector
framework and we applied LDA for dimensionality reduction.

6.3.2 Lexical representation

The word sequences are extracted using a state-of-the-art Arabic speech-to-text
transcription system built as part of the multi-genre broadcast challenge (MGB-
2) [Ali et al., 2016]. The system is a combination of a time-delayed neural net-
work (TDNN), a long short-term memory recurrent neural network (LSTM) and
bidirectional LSTM (B-LSTM) acoustic models, followed by 4-gram and recur-
rent neural network (RNN) for language model rescoring. Our system used a
grapheme lexicon. The acoustic models are trained on 1,200 hours of Arabic
broadcast speech. More details about the ASR system are covered in chapter 7.

Each utterance is represented using vector space modelling (VSM). The word-
based utterance VSM (Uw) is constructed as follows. An ASR system is used
to extract the word sequence for each utterance in the speech database. Given
that the ASR system is not tailored to any specific dialect, there are often many
out-of-vocabulary dialectal words. In an attempt to capture this pattern, we
kept the unknown word that is produced by the ASR indicating the possibility
of an out-of-vocabulary word. Each speech utterance (u) is then represented as
a high-dimensional sparse vector ( #»u ):

#»u = (A(f(u,w1)), A(f(u,w2)), . . . , A(f(u,wd′))) , (6.1)

where f(u,wi) is the number of times a word wi occurs in the speech utterance
u and A is the scaling function. The identity scaling function and tf.idf scaling
function, commonly used in the field of natural language processing [Ramos, 2003]
to downweight the contribution of the words that occur in almost all documents
(in utterances in our case), these words do not provide enough discriminative
information across the other documents (utterances). The vocabulary size was
55K words.

The vector space is then represented by the matrix, Us ∈ Rd×N (see Fig 6.1).
This approach and the notation used to define a VSM is directly inspired by the
seminal works in the area of VSM of natural language processing in [Salton et al.,
1975, Lowe et al., 2000, Padó and Lapata, 2007] and in language identification in
Li et al. [2007].
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UW =



u1 u2 ... uN

w1 A(f(w1, u1) A(f(w1, u2) . . . A(f(w1, uN)
w2 A(f(w2, u1) A(f(w2, u2) . . . A(f(w2, uN)
... ... ... . . . ...
wd A(f(wd, u1) A(f(wd, u2) . . . A(f(wd, uN)



Figure 6.1: Word-based utterance VSM. The column vectors of the matrix correspond
to the speech utterance vector representation formed using equation 6.1, d is the size
of the word dictionary, and N is the total number of speech utterances in the dialectal
speech database.

As an extension for the lexical features, we experiment with character-based
features, which are extracted from the same word sequence using the same LVCSR
system. Similar to the lexical features, we kept the unknown from the ASR, and
we replaced it with a special character to keep the out-of-vocabulary (OOV) infor-
mation. Space was inserted between all characters including the word boundaries.
This led to 38 characters as the vocabulary size for the character-based system.

6.3.3 Phonotactic representation

The phonotactic approach was based on multiple phoneme recognisers as intro-
duced in section 5.3. Initially, we experimented with Arabic phoneme recognition,
in which a phoneme recogniser is used to extract the n-gram phone sequence. The
phoneme sequence is obtained by automatic vowelization of the training text, fol-
lowed by vowelization to phonetization (V2P). The 36 chosen phonemes cover
all the dialectal Arabic sounds. Further details about the speech recognition
pipeline, training data, and phoneme set are given in [Ali et al., 2014b]. For
the phoneme sequence, we process the phoneme lattice, and obtain the one-best
transcription, ignoring silences as well as noisy silences. As mentioned earlier,
the pipeline included V2P, which is based on vowelizing the input text. For this
purpose, MADA [Habash et al., 2005] was used for automatic vowelization.

The Arabic phoneme recognition was mainly based on MSA data, mainly
because the automatic vowelization did not perform as well on dialectal data.
Therefore, we limit the training for the 60 hours MSA Broadcast speech corpus
from the multi-genre broadcast MGB-2 Arabic. This will be discussed more in
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chapter 7. As mentioned in section 4.1.2, a robust phoneme recognisers for other
languages has shown superior results. For example, the Hungarian phoneme
recogniser based on long temporal context has been widely used to discriminate
between various languages and dialects not including Hungarian. We explored
the Czech, Hungarian and Russian using narrowband model, and English using
a broadband model [Matejka et al., 2005]

Phoneme duration: In an attempt to study the speech pattern in dialectal
Arabic, we investigated phoneme duration in all Arabic dialects. We also ran
the same experiment using English speech data: 10 hours randomly selected
from MIT open courses corpus [Glass et al., 2007]. We investigated phoneme
duration features, using both the average phoneme duration for each dialect,
and the duration of the consecutive phonemes. Sampled information for average
phoneme duration for each dialect as well as English can be found in table 6.2.
Both the phoneme sequence and the phoneme duration2 are extracted using the
aforementioned Arabic phoneme recogniser. There were only negligible differences
in average phoneme duration across different Arabic dialects. However, average
phoneme duration is a more useful feature, when English and Arabic (both MSA
and dialectal Arabic) are compared. More interestingly, phoneme duration does
differ between MSA and dialectal Arabic. One plausible explanation for this is
that MSA is nobody’s native dialect, which means that MSA is a formal speech
scenario used in: news, lectures, and formal presentations. However, DA is more
widely used in day-to-day communication. It can be argued that the difference
between MSA and DA is mainly the pattern of talking rather than yet another
dialect.

Phone EGY GLF LAV NOR MSA English
b 90 90 91 91 85 97
i 45 46 45 43 39 52
m 80 81 82 81 75 92
z 130 137 139 141 122 159
Z 140 131 141 135 117 153

Table 6.2: Sample phoneme duration of Arabic phoneme recognition across the major
Arabic dialects and English.

2It is worth noting that phoneme duration is not normalised with respect to speaker and
environment factors.
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We also investigated individual phoneme duration features, in which a VSM
feature vector could potentially look like: g_10 T_20 S_200 a_30 A_ 50. We
binned the durations using 40 bins from 0 to 400 ms with a 10 ms window, thus
avoiding a long tail of phonemes with longer durations, resulting in 1,440 unique
phoneme features in total (40 per phone for 36 phones). We also investigated
using unlabelled phone durations, so the previous feature vector will look like
10 20 200 30 50, resulting in 40 unique features. In both cases, discriminating
between MSA and DA yielded 100% accuracy using a simple logistic classifier.
Also, 100% accuracy was achieved for discriminating Arabic speech from English.

6.4 Experiments

In this section, we explored several models to study the acoustic- and linguistics-
based features. Given that the training and the development have been released
for the VarDial and the MGB competitions, but not the test set, we used the
training data to train different models and the development data to report re-
sults. The final results in the system combination in section 6.5 used the test data.

Best Classifier: We studied the best classification approach for the ADI task
from a set of two generative models: n-gram language model [Roark et al., 2007]
and Naive Bayes [Frank and Bouckaert, 2006], and two discriminative classifiers:
linear SVM [Drucker et al., 1999] and Maximum Entropy [Nigam et al., 1999].
We also explored using deep neural networks for classification. The DNN has an
embedding layer of 256 dimensions followed by two fully connected feed forward
layers 64 and 32 dimensions using a ReLU activation function. The DNN has a
dropout of 0.2. We measured the performance of each model on the word-based
vector space model, which was constructed using the approach mentioned in
section 6.3.2, using identity scaling function A, and performing no dimensionality
reduction. Hence, the dimensionality of an utterance vector, #»u , is the same as
the size of the lexicon, which in our case was 55k.

Finally, inspired by the recent success of using convolutional neural networks
(CNNs) for text classification [Kim, 2014], we explored using CNN for dialect
identification, and here we introduce a brief comparison with the other classifi-
cation techniques. More detail about the deployed CNN is depicted in section
6.4.2. The results can be seen in table 6.3. Both, CNN and SVM with linear ker-
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nel perform the best, with slightly better results when using the CNN classifier.
Therefore, it is our choice that both will be used as back-end classifiers for the
rest of the experiments in this chapter. However, for the acoustic methods, we
decided to consider the DNN for classification as the internal layers can help in
reducing the dimensionality of the acoustic feature vector and can be comparable
with the LDA combined with SVM. In section 6.5, we studied system combina-
tion, and this was done on the score level to achieve the best results in the overall
ADI system.

Model Precision Recall Overall Accuracy
n-gram Language Model 0.44 0.44 0.42

Naive Bayes 0.41 0.53 0.39
Maximum Entropy 0.44 0.43 0.42

Two layers neural network 0.44 0.45 0.44
Support Vector Machine 0.49 0.48 0.47

Convolutional Neural Networks 0.51 0.50 0.50

Table 6.3: Performance of different classifiers using lexical features with lexicon size
of 55K. All the models were evaluated on the development data set.

6.4.1 Acoustic methods

In this section, we studied two acoustic representations: the bottleneck features
and the MFCC-SDC features. The i-vector latent variable is deployed as a final
representation for both features. Each utterance is finally represented as a 400-
dimensional feature vector.

Modelling the bottleneck i-vector features: The bottleneck features were
extracted as explained in section 6.3.1. The i-vector representation has been
widely used in speaker recognition and language recognition, and in this chapter
we adopt the i-vector approach as explained in section 3.4. Similar to equation
3.12, we use the i-vector as low dimension representation for each sentence.

M = m+ Tw (6.2)

The main differences here compared to using the i-vector for speaker recognition
are the following: (i) m is the dialect independent supervector, and (ii) w is the
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factor that describes each utterance. In our experiments, the UBM is a GMM
comprised of 2,048 components, and the i-vector dimension is 400. In order to
maximize the discrimination between the different dialect classes in the i-vector
space, we combine LDA as dimensionality reduction for the 400-dimensional i-
vector to 4 dimensions. Table 6.4 shows the results before and after dimension-
ality reduction for both the SVM and DNN classifiers, which shows the superior
performance of the bottleneck representation compared to the lexical representa-
tion in table 6.3. There is very little difference between the SVM and the DNN.
We can see small gain from the LDA projection in terms of precision for both
systems. Figures 6.2 and 6.3 show the LDA projection for the five dialects.

It is clear that MSA is different from the rest of the dialects, and also NOR is
separate enough from EGY, GLF and LAV; this is indeed true from a linguistic
point of view. We can see a similar pattern for the the testing and the development
data. However, figure 6.4 shows a different pattern for the training data in the
same LDA space; this can be justified as a result of the channel mismatch between
the training data versus the testing and the development data, which is expected
to be visible in the acoustic space.

Bottleneck i-vector features Classifier Precision Recall Overall Accuracy
400 dimensions SVM 0.61 0.58 0.57

4 dimensions LDA projection SVM 0.62 0.58 0.58
400 dimensions DNN 0.60 0.56 0.57

4 dimensions LDA projection DNN 0.62 0.59 0.58
Table 6.4: Evaluating bottleneck i-vector features across the five dialects.

Modelling the MFCC-SDC features: We parameterised the speech signal
using the MFCC-SDC as described in section 6.3.1. Similar to the bottleneck
features, the i-vector representation is deployed for each sentence using a 400-
dimensional feature vector. We also experimented to classify the five dialects
using the raw 400 MFCC-SDC and also applying the LDA dimensionality reduc-
tion. Table 6.5 shows the results before and after dimensionality reduction, which
shows better accuracy compared to both lexical and phonetic VSM, but signifi-
cantly worse than the bottleneck, which is expected since the bottleneck represen-
tation holds information about both acoustic and linguistic features. Therefore,
the bottleneck features are our choice in the final system combination.
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Figure 6.2: LDA projection for the BNF development data.

MFCC-SDC i-vector features Classifier Precision Recall Overall Accuracy
400 dimensions SVM 0.50 0.49 0.48

4 dimensions LDA projection SVM 0.52 0.50 0.49
400 dimensions DNN 0.51 0.50 0.50

4 dimensions LDA projection DNN 0.51 0.50 0.52
Table 6.5: Evaluating MFCC-SDC i-vector features across the five dialects.

6.4.2 Lexical methods

Given that the dialectal data used in this chapter have not been manually tran-
scribed, we used standard automatic speech recognition to extract the word se-
quence corresponding to each utterance. Word sequences are extracted as de-
scribed in section 6.3.2. We kept the unknown word that indicates the possibility
of an out-of-vocabulary words. In this section, we explored the word sequence as
well as the character sequence. Table 6.6 shows some linguistic statistics for the
training, the development and the testing datasets, including the frequency of
the unknown word. One interesting finding here is that the frequency of the un-
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Figure 6.3: LDA projection for the BNF testing data.

known is small in MSA compared to the other four dialects, which is expected as
the speech recognition training data is mainly dominated by MSA. More details
about the speech recognition chapter will be explained in chapter 7.

As part of the linguistic feature ablation study, we deployed the SVM classifier
twice; for the word features and for the character features. Table 6.7 shows the
results across the five dialects. The hyper-parameters for the SVM classifier were
tuned for each system. The bigram context was enough for the word-based sys-
tem, while the character-based system benefited from larger context; we found no
gain beyond 5-gram context for the character-based system. Finally the dictio-
nary size for the character-based system was slightly bigger than the word-based
system 294K versus 230K. The confusion matrix from the character based and
the word-based, and the error pattern was similar, we therefore decided to ex-
plore different classification techniques. In the following section, we explore using
a convolutional neural network for classification using the lexical features.
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Figure 6.4: LDA projection for the BNF training data.

CNNs with lexical features

Inspired by the recent success of using CNNs for text classification [Kim, 2014,
Zhang et al., 2015], we used lexical features for CNN-based classification. In this
section, we explore the word sequence as well as the character sequence. The
input word sequences were trimmed to a maximum of 100 words for the long
sentences, and we padded shorter sentences with zeros. However, a maximum
of 200 dimensions were used for the character-based CNN experiments. This
was followed by an embedding layer of a dimension of 256. Followed by three
convolutional layers in parallel to each other with the same number of filter: 512
each, and ReLU activation function. The filters’ sizes were different for each
convolution layer: 3, 4 and 5, respectively. The three-convolutional layers were
then merged into a single tensor. This was followed by a fully-connected hidden
layer with a dropout of 0.2 to get the final representation, which is fed to softmax
layer that outputs the final prediction. The architecture is same as the one used
in [Oswal, 2016], which is shown in figure 6.5.
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Training Development Testing
Dialect Char. UNK. Words Char. UNK. Words Char. UNK. Words
EGY 420 701 76 60 117 11.0 63 127 11.6
GLF 308 584 56 66 85 11.9 69 115 12.3
LAV 290 550 53 56 96 10.3 59 122 10.9
MSA 398 287 69 77 90 13.4 75 58 13.0
NOR 207 583 38 55 106 9.9 57 102 10.3
Total 1623 2705 292 314 494 56.5 323 524 58.1

Table 6.6: The ADI data: Characters in 1000s, unknown, and words in 1000s.

Lexical Features Context Dictionary Size Precision Recall Overall Accuracy
Words bigram 230K 0.51 0.49 0.48

Characters five-gram 294K 0.52 0.51 0.53
Table 6.7: Evaluating SVM with characters and word features.

We evaluated the CNN for words and characters as described before, and we
obtained the results as shown in table 6.8. It is worth noting that both systems
were trained with a maximum of 50 epochs, with an early stopping criterion to
avoid overfitting. The character-based system stopped after 17 epochs and the
word-based after 9 epochs. We can see from this result that the word-based CNN’s
overall accuracy outperforms the character-based CNN system and, furthermore,
the word-based CNN is slightly better than the word-based SVM system. We
found that the character-based SVM achieved the best overall accuracy in the
lexical representation. In the overall ADI system, we will combine the words and
the characters system for both the SVM and CNN. The combination will be done
at the system-level, and not at the feature-level; this will be discussed more in
section 6.5.

CNN Classification Input Dimension Precision Recall Overall Accuracy
Words 100 0.51 0.50 0.50

Characters 200 0.47 0.47 0.46
Table 6.8: Evaluating CNN for characters and word features.

6.4.3 Phonotactic methods

In this section, we study phoneme representation; the Arabic phoneme sequence
and four non-Arabic phoneme sequence extracted using a phone recogniser based
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Figure 6.5: Lexical based CNN architecture used for dialect classification.

on long temporal context; namely English, Hungarian, Russian and Czech. The
five phoneme recognitions systems have been compared using an SVM classifier.
We used the training data for training the SVM and the development data for
reporting results to be consistent with all the previous results.

Best phoneme sequence: We evaluated the five systems using an SVM. The
hyper-parameters for the SVM were tuned separately for each system. Table
6.9 shows the results for the five phoneme recognisers. The Hungarian phoneme
recognition achieved the best results, which is even better than the Arabic sys-
tem. This can be due to the fact that the Arabic phoneme recognition system was
built using only MSA data, and also the Hungarian phone recogniser based on
long temporal context is more robust and is capable of extracting more accurate
phonotactic patterns for the recognised dialects. This aligns with recent prac-
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tice that Hungarian phone recogniser based on long temporal context [Matejka
et al., 2005] has been widely used to discriminate between various languages and
dialects, not including Hungarian [Li et al., 2013]. The Hungarian system will be
used for the final system combination.

Phone Recognisers Context Dictionary Size Precision Recall Overall Accuracy
Arabic trigram 47K 0.44 0.45 0.45
Czech bigram 2K 0.45 0.45 0.45

Hungarian trigram 48K 0.47 0.47 0.48
Russian trigram 49K 0.46 0.47 0.47
English trigram 31K 0.33 0.33 0.34

Table 6.9: Evaluating five phoneme recognition features using SVM classifier.

We explored using the CNN classifier with a similar architecture to the lexical
system and we deployed it on the best phoneme sequence, which is the Hungarian
in this case. Unlike the lexical system, the input phoneme sequences were trimmed
to a maximum of 300 for the long sentences, and we padded shorter sentences
to 300. This is intuitive since the number of phonemes is expected to be much
bigger than the number of words for the same utterance. We used early stopping
as well, and we found no gain beyond 10 epochs. Table 6.10 shows the comparison
between the SVM and CNN, and it is clear that the CNN is outperforming the
SVM classification results on all measures. Therefore, we decided to use the
Hungarian CNN classifier for the phoneme score in the overall ADI system.

Classifer Precision Recall Overall Accuracy
CNN 0.51 0.51 0.50
SVM 0.47 0.47 0.48

Table 6.10: Benchmarking CNN and SVM using Hungarian phoneme sequence.

6.5 System combination

We fused the scores of the best system from the three vector representations; (i)
acoustics, (ii) lexical, which comprised of two sub-systems: the word-based and
character-based, and finally (iii) Phonotactic. Since we have limited data (10
hours only for training data), the final system used the training and development
data for training and testing data to report results. The score from B1 and B2
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were combined and the average score is used to represent the lexical features B.
The scores from the three systems A, B and C we fused with weight of 0.7, 0.2, 0.1
respectively. The intuition here is that the acoustic based system is considerably
outperforming the lexical and the phonetic system, so it would make sense to
increase the weight for the acoustic system in the final contribution. Also, the
weight for the lexical representation is higher than the Phonotactic. Combining
the three systems improved the final results to be 0.73, 0.73, 0.73 for precision,
recall and overall accuracy, respectively.

Features Classifier Precision Recall Overall Accuracy
Acoustics:

bottleneck ivectors with LDA (4 dimensions) SVM 0.62 0.63 0.62
(A) bottleneck ivectors (400 dimensions) DNN 0.67 0.67 0.67

Lexical:
Words SVM 0.53 0.55 0.54

(B1) Words CNN 0.54 0.54 0.54
(B2) Characters SVM 0.59 0.58 0.59

Characters CNN 0.56 0.56 0.55
Phonotactics:

Hungarian phoneme sequence SVM 0.52 0.52 0.53
(C) Hungarian phoneme sequence CNN 0.53 0.53 0.53

overall system: 0.7 ∗ A+ 0.2 ∗B + 0.1 ∗ C 0.73 0.73 0.73

Table 6.11: Train on training + development and test on testing data.

Looking at the confusion matrix in figure 6.6, it can be inferred that Gulf
is the most confused dialect, most often with LAV and MSA. The second most
confused dialect is NOR, most often with LAV. It can be inferred that it is difficult
to distinguish between the following three dialects: GLF, LAV and NOR.

We hypothesize that the reason our system performs worst in the case of Gulf
and North African dialects is codeswitching [Elfardy and Diab, 2012, Auer, 2013,
Elfardy et al., 2013, 2014, Solorio et al., 2014], where the same speaker alternates
between two dialects in the context of a single conversation. This is similar to
our findings in the crowd-sourcing task in figure 5.6. For more detail see section
5.5.2. We perform further investigation into the error patterns for utterances of
different durations. Assuming that the speech is spoken in a single dialect, the
ADI accuracy should increase as the duration of the speech utterances increases.
GLF and NOR do not follow the aforementioned pattern as shown in figure 6.7,
unlike other dialects. This leads us to believe that there is codeswitching in the
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Figure 6.6: ADI Confusion matrix for the final combined system.
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6.6 Conclusions

This chapter has presented our efforts in automatic dialect identification for Ara-
bic broadcast speech. We have demonstrated a dialect classifier with an overall
accuracy of 73% using system combination. We highlighted the codeswitching
patterns between Arabic dialects, which can be considered as dialect diarization
in spoken Arabic. Finally, the work in this chapter has created a baseline for
the VarDial 2016 [Malmasi et al., 2016] and 2017 [Zampieri et al., 2017] and
the MGB-3 [Ali et al., 2017b] challenges. This has led to more than 30 different
submissions addressing challenges in dialectal Arabic in these three competitions.
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This is the third section of the thesis and it has one chapter

Chapter 7 introduces our effort in building Arabic speech recognition, and
creating an open research community to advance it. In this chapter, we have two
main goals:

• Creating a framework for Arabic speech recognition that is publicly avail-
able for research. We present our efforts in building multi-genre broadcast
challenges: MGB-2 and MGB-3.

• Building a state-of-the-art Arabic ASR system, and reporting WER for
different techniques.



Chapter 7

Arabic Speech Recognition

This chapter concerns Arabic speech recognition. Various parts of this chapter
were published in [Ali et al., 2014a,b, Khurana and Ali, 2016, Ali et al., 2016,
2017b]. Most of the results in this chapter have been reproduced to ensure rational
comparison. We will also discuss some experiments that have not been published
yet. Two sections in this chapter are not directly my contributions and have been
borrowed from our previous submissions:

• Light alignment implementation in section 7.2.1.

• Recurrent neural network implementation for language model rescoring in
section 7.2.3.

7.1 Introduction

This chapter describes our efforts in creating a public framework for an Arabic
speech recognition challenge, a multi-genre broadcast (MGB) competition. The
MGB challenge is a core evaluation of speech recognition, speaker diarization,
lightly supervised alignment, and dialect identification using TV recordings from
the BBC and Aljazeera, as well as YouTube videos.

My contribution in the MGB is designing the tasks, leading the investigation
of the competition, developing the baseline, and creating the public framework.
I have also developed a robust system for the MGB-2 (see section 7.2).

MGB-1 Challenge: First edition of the MGB challenge is the MGB-1 for the
2015 Automatic Speech Recognition and Understanding (ASRU-2015) [Bell et al.,

88
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2015]. MGB-1 focuses on BBC English TV output across four channels. A total
of 1,600 hours of broadcast audio is provided for acoustic modelling and several
hundred million words of BBC subtitle text is shared for language modelling.

MGB-2 Challenge: The second edition of the MGB challenge is the MGB-2
for the 2016 Spoken Language Technology (SLT-2016) [Ali et al., 2016]. MGB-2
has an emphasis on handling the diversity in broadcast news domain in Arabic
speech. Audio data comes from 19 distinct programmes from the Al Jazeera Ara-
bic TV channel. A total of 1,200 hours have been released with lightly supervised
transcriptions for the acoustic modelling. For language modelling, we made avail-
able over 130M words crawled from Al Jazeera Arabic website Aljazeera.net.

MGB-3 Challenge: The third edition of the MGB challenge is the MGB-3 for
ASRU-2017 [Ali et al., 2017b]. MGB-3 focuses on dialectal Arabic (DA) using
a multi-genre collection of Egyptian YouTube videos. Seven genres were used
for the data collection. A total of 16 hours of videos, split evenly across the
different genres, were divided into adaptation, development and evaluation data
sets. The MGB-3 has three targets: a) dealing with languages which do not have
well-defined orthographic systems, Egyptian Arabic in particular, b) Multi-genre
scenarios; seven different genres are included in the challenge, and c) low-resource
scenarios; only 16 hours of in-domain data was provided.

The rest of the chapter focuses on the MGB-2 challenge (see section 7.2) and
the MGB-3 challenge (see section 7.3). We summarise the results of the MGB-3
in appendix A.

7.2 MGB-2 framework

The second round of the Multi-Genre Broadcast MGB [Bell et al., 2015] challenge
is a controlled evaluation of Arabic speech to text transcription. The MGB-2 used
a multi-dialect dataset, spanning more than 10 years of Arabic language broad-
casts. The total amount of speech data crawled from Al Jazeera using the QCRI
Advanced Transcription System (QATS) [Ali et al., 2014c] was about 3,000 hours
of broadcast programmes, whose durations ranged from 3 to 45 minutes. For the
purpose of this evaluation, we only used those programmes with transcription

Aljazeera.net
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on their Arabic website, Aljazeera.net. These textual transcriptions contained
no timing information. The quality of the transcription varied significantly: the
most challenging were conversational programmes in which overlapping speech
and dialectal usage were more frequent.

7.2.1 MGB-2 Data

The Arabic MGB-2 Challenge used more than 1,200 hours of broadcast videos
recorded during 2005–2015 from the Al Jazeera Arabic TV channel. These pro-
grammes were manually transcribed, but not in a verbatim fashion. In some
cases, the transcript includes re-phrasing, the removal of repetition, or summa-
rization of what was spoken, in cases such as overlapping speech. We found that
the quality of the transcription varied significantly. The WER between the orig-
inal transcribed text from Al Jazeera to the verbatim version is about 5% on the
development set. It is worth noting that the WER in the MGB-2 is much lower
than the English MGB-1 [Bell et al., 2015], owing to varying subtitle (closed
captions) time-lags, and transcript reliability, owing to differences in the subti-
tle creation process (prerecorded (offline) or live (re-speaking)). Also, the text
here did not include the filled pauses, indication of music and sound effects, or
indications of the way the text has been pronounced.

Metadata challenges

We selected Al Jazeera programmes that were manually transcribed (albeit with-
out timing information). A total of 19 programmes series were collected, which
have been recorded over 10 years. Most, but not all, of the recorded programmes
included the following metadata: programme name, episode title, presenter name,
guests’ names, speaker change information, date, and topic. The duration of an
episode is typically 20–50 minutes, and the recorded programmes can be split into
three broad categories: conversation (63%), where a presenter talks with more
than one guest discussing current affairs, interview (19%), where a presenter
speaks with one guest, and report (18%), such as news or documentary. Con-
versational speech, which includes the use of multiple dialects and overlapping
talkers, is a challenging condition and is the typical scenario for political debates
and talk show programmes.

Much of the recorded data used in MGB-2 was Modern Standard Arabic

Aljazeera.net
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(MSA): we estimate that more than 70% of the speech is MSA, with the rest
in dialectal Arabic (DA). English and French language speech is also included,
where typically the speech is translated and dubbed into Arabic. This is not
marked in the transcribed text.

The original transcription has no clear metadata structure that would enable
domain classification, so we decided to perform classification based on the key-
word tags that were provided for the 3,000 episodes to define 12 domain classes,
namely: politics, economy, society, culture, media, law, science, religion, educa-
tion, sport, medicine, and military. Because some domains have a very small
number of programmes, we merged them to the nearest domain to have a coarse-
grained classification as shown in table 7.1, where the politics domain is the most
frequent class.

Domain Politics Society Economy Media Law Science
Percentage 76% 9% 8% 3% 2% 2%

Table 7.1: MGB-2 coarse-grained domain distribution.

Data processing and light alignment

Removing programmes with damaged aligned transcriptions resulted in a total
of about 1,200 hours of audio, which was released to the MGB-2 participants.
All programmes were aligned using the QCRI Arabic LVCSR system [Ali et al.,
2014b], which is grapheme-based with one unique grapheme sequence per word. It
used LSTM acoustic models and trigram language models with a vocabulary size
of about one million words. The same language model and decoding setup was
used for all programmes. For each programme, the ASR system generated word-
level timings with confidence scores for each word. This ASR output was aligned
with the original transcription to generate small speech segments of duration 5–30
seconds suitable for building speech recognition systems.

As shown in [Braunschweiler et al., 2010] and based on the Smith–Waterman
algorithm [Smith and Waterman, 1981], we identified matching sequences by
performing local sequence alignment to determine similar regions between two
strings. We addressed two challenges when aligning the data:

• The original transcription did not match the audio in some cases owing
to edits to enhance clarity, paraphrasing, the removal of hesitations and
disfluencies, and summarisation in cases such as overlapping speech.
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• Poor ASR quality in cases such as noisy acoustic environments, dialectal
speech, use of out-of-vocabulary words, and overlapped speech.

We applied two levels of matching to deal with these challenges: exact match
(where the transcription and the ASR output are identical), and approximate
match (where there is a forgiving edit distance between words in the transcrip-
tion and the ASR output).
To evaluate the quality of the alignment between the ASR output and the tran-
scription, we calculated the “anchor rate” for each segment as follows:

AnchorRate = #MatchedWords

#TranscriptionWords
(7.1)

The AnchorRate across all segments came with the following: 48% exact match,
15% approximate match, and 37% with no match. More details about the An-
chorRate distribution is shown in figure 7.1.

Figure 7.1: Anchor rate distribution for all programs.

To assign time for non-matching word sequences, we used linear interpolation
to force-align the original text to the remaining speech segments.

After aligning the whole transcript, each audio file was acoustically segmented
into speech utterances, with a minimum silence duration of 300 milliseconds. The
metadata for aligned segments includes timing information obtained from the
ASR, speaker name, and text obtained from the manual transcription. For each
segment, the average word duration in seconds (AWD), the phoneme matching
error rate (PMER), and word matching error rate (WMER) are stored in the given
meta-data. Both PMER and WMER were calculated as traditional error rates
but are described as matched error rates since there are not accurate transcripts
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to be used as reference. For more details about PMER and WMER, see Bell
et al. [2015].

Overall, more than 550,000 segments with a total duration of 1,200 hours were
made available together with the aligned transcription and metadata. Figure 7.2
shows segment distribution according to the AWD value, and figure 7.3 shows
segment distribution according to a cumulative AWD value. Figure 7.4 shows
cumulative duration for the grapheme and the word matching error rate.

Figure 7.2: Distribution of average word duration (AWD).

Figure 7.3: Cumulative average word duration (AWD).

During data preparation, we removed about 300 hours, mainly coming from
very short audio clips with the corresponding full transcription. These audio clips
are just the highlights of other programmes. No further filtering was applied to
the 1,200 hours data.
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Figure 7.4: Cumulative duration for word (red line), and grapheme (blue line) match-
ing error rate (MER).

Lexicon

Two lexicons were made available for participants in the challenge: a grapheme-
based lexicon1 with more than 900K entries with one unique grapheme sequence
per word, and a phoneme lexicon2 with more than 500K words with an average of
four phoneme sequence per word using our previous vowelization to phonetization
(V2P) pipeline [Ali et al., 2014b]. Participants could also choose any lexicon
outside the provided resources.

Evaluation conditions

This speech transcription task operates on a collection of whole TV shows drawn
from diverse Arabic dialectal programmes from Al Jazeera TV channel. Scoring
required ASR output with word-level timings. Segments with overlapped speech
were scored but not considered in the main ranking. Overlapped speech was de-
fined to minimise the regions removed – at the segment level where possible. As
the training data comes from only 19 series, some programmes from the same

1http://alt.qcri.org/resources/speech/dictionary/arar_grapheme_lexicon_20160209.bz2
2http://alt.qcri.org/resources/speech/dictionary/arar_lexicon_20140317.txt.bz2
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series appeared in the training, the development and the evaluation data. Each
show in the development and in the evaluation set was processed independently,
so no speaker linking across shows was given. The data were carefully selected
to cover different genres, and being diverse among the five dialects. Development
and evaluation came from the last month of 2015 to avoid being seen in the train-
ing data. The duration of each file was between 20 minutes and 50 minutes with a
total duration of 10 hours for each set. These files were transcribed verbatim, and
manually segmented for speech/silence/overlapped-speech with segment lengths
between three and ten seconds. Words with hesitation or correction were also
marked by adding a special symbol at the end of these words.
Four WER scores were reported for the speech-to-text task:

• Scoring the original text as being produced by manual transcription, which
might have punctuation/diacritization.

• Scoring after removing any punctuation or diacritization.
• Scoring using the Global Mapping File (GLM), which is the official result

for the competition. This deals with various ways of writing numbers, and
common words with no standard orthography.

• Scoring after normalising the Alef, Yaa, and Taa Marbouta characters in
the Arabic text, i.e., assuming that these kinds of differences are not consid-
ered as errors because they can be easily corrected using a surface spelling
correction component.
The WER report in this thesis will follow the official result using the GLM.

7.2.2 MGB-2 baseline system

We provided an open-source baseline system for the challenge, via a GitHub repos-
itory3. The data was shared in XML format4. The baseline system included data
pre-processing, data selection, acoustic modelling (AM), and language modelling
(LM), as well as decoding. This allowed participants to focus on more advanced
aspects of ASR and LM modelling. A Kaldi toolkit [Povey et al., 2011] recipe
for the MGB2, and for language modelling the SRILM [Stolcke et al.] toolkit
was used. The baseline system was trained on 250 hours sampled from the train-
ing data, which comes from 500 episodes. This system uses a standard MFCC
multi-pass decoding:

3https://github.com/qcri/ArabicASRChallenge2016
4http://xmlstar.sourceforge.net/



Chapter 7. Arabic Speech Recognition 96

• The first pass uses a GMM with 5,000 tied states, and 100K total Gaussians,
trained on features transformed with FMLLR.

• The second pass is trained using a DNN with four hidden layers, and 1,024
neurons per layer, sequence trained with the MPE criterion.

• A tri-gram language model is trained on the normalised version of the sam-
ple data text (250 hours).

The baseline results were reported on 10 hours of verbatim transcribed develop-
ment set: 34% (8.5 hours) for the non-overlap speech and 73% (1.5 hours) for the
overlap speech.

7.2.3 MGB-2 ASR system

In this section, we describe our speech transcription system using the MGB-
2 challenge data. Our system is a combination of five purely sequence-trained
recognition systems that achieved the lowest WER of 13%5. The key features
of our transcription system are the following: purely sequence trained acoustic
models using the lattice free maximum mutual information (LF-MMI) modelling
framework, language model rescoring using a four-gram and a recurrent neural
network with MaxEnt connections (RNNME) for language modelling, and finally
a system combination using minimum Bayes risk (MBR) decoding criterion. The
whole system is built using the Kaldi speech recognition toolkit.

Training data

AM training data: Initially, we used about 250 hours of training data for the
AM experiments. This is the same amount of data as for the baseline system.
This is called MGB-2 sample data through the rest of the chapter. The MGB-2
sample data are those segments with word MER less than 80%, and limited to
the first 500 programs. The full AM training data comes from all segments with
MWER less than 80%, which summed up to more than 370K segmented across
the 2,214 programs, creating more than 1,200 hours of speech segments. The
development and the evaluation data are coming from diverse 10 hours each that
have not been used in the training data. The program title itself may have been
seen, but not these particular episodes. Table 7.2 shows more details about the

5The experiments here were done after the MGB-2 evaluation deadline. The MGB-2 test
data is the data from the MGB-2 evaluation which is public.
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AM data.

Type Duration Programs Segments

Sample Data 250h 500 83
Training 1200h 2214 370
Development 10h 17 5.8
Evaluation 10h 17 5.6

Table 7.2: Data used for acoustic model training, development and evaluation
duration in hours and segments in 1000s.

LM training data: We used the provided Buckwalter format for the transcrip-
tion as well as the 130M words crawled from Al Jazeera. The data did not have
any punctuation or dicraization, and we did not use any text normalisation like
normalising Alef, Yaa, and Taa marbouta in the given text. Table 7.3 shows more
details about the LM data.

Type Tokens Vocabulary

Transcription Text 8M 200k
Background Text 130M 1.3M

Table 7.3: Transcription text refers to the training transcripts and Background text
refers to the extra Arabic language modelling text provided for the challenge.

Acoustic modelling experiments

Grapheme versus phoneme ASR system: In an attempt to evaluate both the
grapheme and the phoneme approaches for the Arabic ASR, we built time-delay
neural network acoustic-models in both systems. The phoneme system used the
phonetic lexicon shared by QCRI, while the grapheme lexicon used the same word
list with 1:1 word-to-character mapping, which means that the vocabulary size is
the same as the lexicon size. Table 7.4 shows more details about both systems.
We can see here that the phoneme-based system outperforms the grapheme-based
system with about 0.5% absolute reduction in WER on both the dev and the test
sets. However, this comes with a price of almost four times the size of the lexicon.
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The out-of-vocabulary for this lexicon on the dev set is 3.3% and 1.9% on the
test set, which is relatively high.

Given that Arabic is a phonologically complex language [Pasha et al., 2014],
increasing the lexicon size considerably to reduce the out-of-vocabulary (OOV) is
needed. Therefore, the final ASR systems used the grapheme approach. The final
lexicon was constructed using the word list in the shared phoneme and grapheme
lexicon in addition to the most frequent words in background text and the Arabic
giga-word corpus6; we considered any word that occurred more than twice in the
lexicon. The final lexicon size was 1.3M words. Our acoustic units will represent
the character in the surface form of the words instead of phone units.

Phoneme Grapheme
Word-to-pronunciation 1:3.8 1:1
Lexicon size 2M 520K
Dev data WER 22.9% 23.5%
Test data WER 22.6% 23.1%

Table 7.4: Comparison between grapheme and phoneme systems trained on sample
MGB-2 data.

Acoustic modelling training setup

Basic recipe for acoustic modelling: The AM development was started by
first training a monophone Gaussian Mixture Model (GMM) from the 10,000
shortest utterances in the corpus with the highest confidence in the transcription
(WMER= 0). This was followed by three tri-phone models that were built in
succession; first a regular GMM model, then a GMM model on top of features
transformed with linear discriminant analysis (LDA) and lastly a speaker adaptive
trained (SAT) GMM model [Anastasakos et al., 1996]. The tri-phone models were
trained using all the 1200 hours in table 7.2. This SAT model was used to generate
state-frame-alignment for the neural network acoustic modelling. The training of
the neural network acoustic models included volume perturbation and three-way
speed perturbation of the training data [Ko et al., 2015] and the training of an
LDA-based i-vector extractor.

6https://catalog.ldc.upenn.edu/ldc2006t02
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The i-vectors were extracted for two utterances at a time at most to pro-
vide training variability. Mainly, as the shared data did not include speaker
information, the i-vectors were extracted per utterance in decoding. From the
final GMM model, alignment lattices (which contain multiple alignments per
utterance) were generated. Together with the i-vectors, the alignments and high-
dimensional MFCC features were joined in a neural network training examples
with the amount of context applicable for the used network. The acoustics fea-
ture vector is a concatenation of 40 dimensional high-resolution MFCC features
(MFCC hires) and 100 dimensional i-vectors [Dehak et al., 2011a] for each frame.

Recurrent neural networks acoustic models have shown tremendous improve-
ments in recognition performance by reducing the WER significantly. Being in-
spired by the recent progress in RNN and TDNN [Povey et al., 2014, Peddinti
et al., 2015, Povey et al., 2016], we explored the following five neural network
architectures:

• Unidirectional long short term memory (LSTM)
• Bidirectional LSTM (BLSTM)
• Time-delay neural network (TDNN)
• TDNN layers along with LSTM layers (TDNN-LSTM)
• TDNN layers followed by BLSTM layers (TDNN-BLSTM)

For the objective function, we focus on the lattice-free MMI (LF-MMI) [Povey
et al., 2016] models because they are several times faster to train and yield better
performance than standard cross-entropy (CE)-trained systems. For more dis-
cussion about LF-MMI, see section 3.2.1.

LSTM AM: Similar to [Sak et al., 2014, 2015], the AM is trained using con-
catenated 40 dimensional high-resolution MFCC features (MFCC hires) and 100
dimensional i-vectors for each frame. While the cross entropy model would have
used 3 LSTM layers with a delay of -1,-2 and -3 at each layer, in our adopted
purely sequence trained model the delay at each layer is chosen to be -3. We use
the LSTM architecture with recurrent and non-recurrent projection layers. An
output label delay of 5 is also used. A major component in an LSTM model is
the memory block, that consists of the following:

• input (i ) the input gate controls the flow of input activations into the
memory cell.
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• output (o ) the output gate controls the output flow of cell activations into
the rest of the network.

• forget (f ) the forget gate prevents the LSTM from processing continuous
input streams that are not segmented into subsequences.

In addition, the modern LSTM architecture contains peephole connections
from its internal cells to the gates in the same cell to learn precise timing of
the outputs. The architecture of the LSTM memory is similar to the originally
proposed in [Sak et al., 2014]. Figure 7.5 shows the hyperparametrs of the LSTM
memory block.

g hCELL

MEMORY 
CELL

OUTPUT GATE

FORGET GATE

INPUT GATE

CELL INPUT

CELL OUTPUT

OUTPUT

Figure 7.5: LSTM architecture used in acoustic modelling.
Wr and Wp refer to the recurrent and the non-recurrent projection spaces respec-
tively, which are of dimensions 256. The dimension of the memory cell is 1024 and
the activation function is showed next to the dotted lines.

BLSTM AM: The acoustic modelling architecture in BLSTM is similar to
LSTM, except that the training occured in both directions; left-to-right and right-
to-left. For more discussion about LSTM and BLSTM AM, see section 3.2.1.

TDNN AM: The time-delayed neural network acoustic is trained using the
same concatenated 40-dimensional high-resolution MFCCs with 100-dimensional
i-vectors for each speech frame. TDNNs require less training time than sequence
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models such as LSTMs, while attempting to capture the long-term temporal de-
pendencies just like a sequence model. We use the same TDNN architecture as
given in Peddinti et al. [2015], except with a different configuration of splicing
indexes. The splicing indexes used are -1,0,1 -1,0,1, -3,0,3 -3,0,3 -6,-3,0. The ini-
tial -1,0,1 means that the first layer sees 3 consecutive frames of input; the -3,0,3
means that most hidden layers see 3 frames of the previous layer, separated by
3 frames. Since these differ by multiples of 3 and we only evaluate the output
at multiples of 3 frames, most hidden layers only need to be evaluated every 3
frames, like the output, which is efficient. All the TDNN layers have fixed di-
mensions of 450 for each layer. For more discussion about TDNN and splicing,
see section 3.2.1.

TDNN-LSTM AM: The TDNN-LSTM had three recurrent layers interleaved
with the six TDNN layers as follow: TDNN2-LSTM1-TDNN3 TDNN4-LSTM2-
TDNN5 TDNN6-LSTM3. The three LSTM layers have 128 recurrent and 128
non-recurrent with 512 dimensions for each layer in the TDNN and the LSTM
models, respectively.

TDNN-BLSTM AM: The TDNN-BLSTM had three forward and three back-
ward layers following three TDNN layers. The three forward and three backward
layers have 256 recurrent and 256 non-recurrent, with a 1024 dimensions for each
layer in TDNN and B-LSTM.

It is worth noting that the number of layers as well as the hyper-parameters
for the neural acoustic model were not fully tuned for the Arabic MGB-2 data.
However, most were borrowed from similar tasks in the Kaldi recipes [Povey et al.,
2011].

Table 7.5 shows the AM results for various model architectures. It is clear from
the results that TDNN-LSTM and TDNN-BLSTM are giving the best results
across the five models. At this stage, we decided to use the five acoustic models
for LM model rescoring, and further system combination.

LM modelling experiments

N -gram language model: We train two n-gram language models (LMs); big-
four-gram LM (bLM4), which is trained using the spoken transcripts and the
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Data Dev Test
TDNN 22.3% 23.7%
LSTM 20.0% 21.1%
BLSTM 19.7% 20.8%

TDNN-LSTM 19.4% 20.3%
TDNN-BLSTM 18.2% 19.1%

Table 7.5: AM results for different acoustic models architecture.

background text as shown in table 7.3. This language model was pruned to
small-four-gram LM (sLM4). The LM was built and pruned using pocolm 7. The
small LM is used for first-pass acoustic decoding to generate lattices. These lat-
tices are then rescored using bLM4. The pruned LM technique is similar to one
used in [Stolcke et al.], with the difference in taking into account the change in
the likelihood of the backed-off-to-state. The sLM4 was pruned with a limit of
about 2 million n-grams target. The SRILM baseline LM were trigram trained
with the SRILM toolkit, roughly the same size, but pruned differently. Table 7.6
shows some analysis for the n-gram LM.

LM sLM4 bLM4
Total n-gram 2.1M 10.4M
Size on disk 13M 85M

Dev set OOV 0.78%
Dev set Perplexity 1417 1121

Test set OOV 0.64%
Test set Perplexity 1389 1089

Table 7.6: N-gram LM analysis.

Recurrent network language model: We trained a recurrent neural net-
work language model with maxEnt connections (RNNME) using RNNLM-Toolkit
[Mikolov et al., 2011b]. RNNLM-Toolkit is arguably the first toolkit publicly re-
leased to construct RNN language models. As the training procedure in this
toolkit is CPU-based, it takes a considerable amount of time to train an LM,
and hence we go straight to building an RNNME LM. This has been shown to

7https://github.com/danpovey/pocolm
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perform better than RNN LM without direct connections (MaxEnt) between the
input and the ouput layer [Mikolov et al., 2011b].

RNNME refers to an RNN architecture, which along with recurrent con-
nections, also has non-recurrent or direct connections between the input and
the output layer. These direct connections are known as MaxEnt connections,
which derives its name from maximum entropy language model. This kind of
RNN architecture provides a way to jointly train an n-gram LM and an RNN
LM. RNNME has been shown to perform better than the conventional RNN
LM. In this work, we train a class-based RNNME LM, with hyperparameter
settings as follows; class dimensions: 200, input-layer-size: 40k, which is
also the language model vocabulary, which is restricted to the top 40k most fre-
quent words, hidden-dimension: 300, hidden-activation function: sigmoid,
direct-connections: 2000M, which are the number of weights used for direct
connections between the input and the output layer, n-gram order: 3, which is
referred to as the direct-order in the RNNLM toolkit. Fig 7.6 shows the RNNME
architecture along with the hyperparameter settings used.

.

.

.

.

MAX ENT 
CONNECTIONS PARAMETER 

SETTINGS

- DIRECT CONNECTIONS: 
2000M 

- ORDER OF DIRECT 
CONNECTIONS: 4 

- HIDDEN LAYER SIZE: 300
- CLASS SIZE: 200 
- VOCAB SIZE: 40k
- BPTT: 2 
- BPTT BLOCK: 20 
- CLASS SIZE: 200 

Figure 7.6: RNNME LM architecture and the hyperparameter settings.
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Overall experiments and results

GMM-HMM baseline system: We train a GMM-HMM recognition system
that provides frame vs HMM-state alignments that are used to train the neural
network acoustic models. The GMM-HMM system is built using whitened (Mean
Normalised) spliced MFCC features that are transformed using LDA and MLLT,
followed by speaker adaptive training (SAT) [Matsoukas et al., 1997]. We used
Kaldi to build the baseline system, which is explained in [Povey et al., 2011].
The %WER, using the baseline GMM-HMM system, is 40.2 on the dev set. No
further filtering was applied on the 1,200 hours. Our intuition here was to avoid
filtering as the dialectal data will contain challenging utterances that may be seen
as poor transcription quality. We decided to keep all data for training the neural
acoustic modelling.

Data augmentation: We use the audio augmentation technique proposed in
[Ko et al., 2015]. We perform audio speed perturbation with speed factors of
0.9, 1.0, 1.1. This gives us three times the original speech utterances. The speed-
perturbed data is followed by volume perturbation with volume factors that are
uniformly sampled from the interval [1

8 , 2.0]. The same data augmentation ap-
proach was also used by [Peddinti et al., 2015].

Decoding: Table 7.5 gives the recognition performance on the dev and on the
test set using the five acoustic modelling recognition systems: the decoding re-
sults used the small-four-gram LM (sLM4), and no lattice-rescoring was applied
until this stage. The best results as expected are coming from TDNN-LSTM and
TDNN-BLSTM models.

Four-gram LM rescoring: The decoding lattices obtained from LF-MMI trained
recognition systems from the previous step are rescored using the big-four-gram
LM (bLM4), which is built using the same data with less pruning. Table 7.6 shows
details for both LM. The language model rescoring assigned a new graph score
to each alternated hypothesis path in the lattice by scoring it using the bLM4.
Table 7.7 shows improvements in recognition results due to n-gram LM rescoring.

RNN LM rescoring: We rescore the bLM4 rescored lattices obtained from the



Chapter 7. Arabic Speech Recognition 105

Data Dev Test
TDNN 21.1% 22.2%
LSTM 19.1% 20.0%
BLSTM 19.0% 20.1%

TDNN-LSTM 18.6% 19.7%
TDNN-BLSTM 17.7% 18.5%

Table 7.7: AM results after n-gram bLM4 LM lattice rescoring. The baseline without
rescoring is shown in table 7.5.

previous step, using an RNNME LM. Full lattice rescoring is inefficient using RNN
LMs, and hence we extract the N -best hypotheses for each utterance and rescore
the N -best list. In our case, N is 1000. We found out that the interpolation of
the scores that RNNME LM assigns to the hypotheses with the score assigned
by the bLM4 language model gives us the best recognition performance. The
interpolation parameters are 0.3 and 0.7 for the bLM4 LM score and RNNME LM
score respectively. These parameters are optimized on the dev set. Thus, Table
7.8 shows the results of N -best rescoring for the test set only. Clear improvements
in the recognition results can be seen after performing N -best list rescoring.

Model %WER(bLM4) %WER(bLM4
+RNNME)

TDNN 22.2 21.4%
LSTM 20.0 19.3%
BLSTM 20.1 19.3%
TDNN-LSTM 19.7 19.0%
TDNN-BLSTM 18.5 17.9%

Table 7.8: Recognition results on the test set after performing interpolated bLM4
and RNNME LM rescoring. Interpolation parameters are 0.3 for bLM4 and 0.7 for
the RNNME.

Overall speech recognition system

The overall Arabic speech recognition system, which is illustrated in figure 7.7, is
the combination of the five LF-MMI trained recognition systems that are rescored
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using four-gram and RNNME language models, i.e., we combine the five recogni-
tion systems mentioned in Table 7.8.

Data preparation 
and GMM training

TDNN

Speed and volume 
perturbation

TDNN-
LSTM

TDNN-
BLSTM

LSTM BLSTM

Decoding with sLM4

WFST lattices

Lattice rescoring 
with bLM4

Rescored lattices

N-best rescoring 
with RNN-LM

System combination 
MBR

Final text output 
(CTM file)

Figure 7.7: System Description of the final Arabic MGB-2 speech recognition system.

The three sets of output lattices are combined to form a union lattice, which is
then used as an input to the minimum Bayes risk (MBR) decoding pipeline to get
the final recognition output on the evaluation and on the development set. The
best WER achieved on the full 5,655 sentences test set is 17%. Moreover, for our
results to be comparable to the MGB-2 reported results, we excluded sentences
with overlap speech, so the official test set comprised 5,002 non-overlapping speech
segments. Our official WER is 13%, which has the lowest WER reported
on this task. More detail about other submissions for this task can be found in
[Ali et al., 2016, 2017b].
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7.3 MGB-3 framework

Similar to the MGB-2, the MGB-3 Arabic Challenge was a controlled evaluation
of speech-to-text transcription and dialect identification, focused on Egyptian
dialect speech obtained from YouTube.

While the previous MGB challenges used mainstream broadcast media (BBC
in MGB-1, Al Jazeera in MGB-2), the Arabic MGB-3 challenge used YouTube
recordings for two reasons: it is a platform that enables dialectal recordings to be
harvested easily, and it also allows the collection of videos across different genres.
Thus, the MGB-3 Arabic Challenge extends the diversity of the data compared
to previous MGB Challenges. This results in a relatively high baseline word error
rate (WER) for MGB-3 Arabic, compared to MGB-2 Arabic. We, thus, targeted
the following aspects in MGB-3 Arabic:

• Dealing with languages which do not have well-defined orthographic rules;
Egyptian Arabic in particular.

• Multi-genre scenarios: seven different genres are included in MGB-3 Arabic.
• Low-resource scenarios: only 16 hours of in-domain data was provided, split

into adaptation, development, and testing data.
The MGB-3 Arabic data comprised 16 hours of Egyptian Arabic speech extracted
from 80 YouTube videos distributed across seven genres: comedy, cooking, fam-
ily/kids, fashion, drama, sports, and science talks (TEDx 8).

We assume that the MGB-3 data is not enough by itself to build robust speech
recognition systems, but could be useful for adaptation, and for hyper-parameter
tuning of models built using the MGB-2 data. Therefore, we reused the MGB-2
training data in this challenge, and we considered the provided in-domain data
as (supervised) adaptation data.

7.3.1 MGB-3 data

To build the MGB-3 corpus, YouTube clips from various Egyptian channels were
selected. The various genres are shown in Table 7.9. Across the seven different
genres, a total of 80 videos were selected.

From each video, the first 12 minutes were selected. Manually-identified non-
speech segments were removed. The resulting clips were then distributed into

8TEDx Talks includes prepared talks of up to 18 minutes duration; the chosen TEDx talks
are in Egyptian dialect: https://www.youtube.com/user/TEDxTalks

https://www.youtube.com/user/TEDxTalks
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Adapt Dev Test
Comedy 0.6/3 0.6/3 1.0/5
Cooking 0.6/3 0.8/4 0.6/3

FamilyKids 0.8/4 0.6/3 1.0/5
Fashion 0.6/3 0.6/3 0.8/4
Drama 0.6/3 0.8/4 0.8/4
Science 0.6/3 0.8/4 1.0/5
Sports 0.8/4 0.6/3 0.8/4

Total overlap speech segments* 0.6 0.3 0.5
Total non-overlap speech segments* 4.0 4.1 5.3

Overall data 4.6/23 4.8/24 6.0/30

Table 7.9: MGB3 data distribution across the three classes, duration in hours/number
of programs (12 minutes each). * is duration in hours across all speech segments.

adaptation, development, and testing groups, with the test set being a little
larger than the other two sets. Details can be seen in Table 7.9. The table also
summarizes how much of the overall data contains overlapping speech (more than
one speaker talking simultaneously) and how much data contains non-overlapping
speech.

It can be argued that Egyptian Arabic is a language with no orthographic
rules [Ali et al., 2017a]. Given that dialectal Arabic does not have a clearly
defined orthography, different people tend to write the same word in slightly
different forms. Therefore, instead of developing strict guidelines to ensure a
standardised orthography, we allow for variations in spelling. Thus, we decided to
have multiple transcriptions, allowing transcribers to write the transcripts as they
deemed correct. This can be addressed in evaluation by using a multi-reference
WER estimation (MR-WER) [Ali et al., 2015]. The idea behind MR-WER is to
align the ASR results with multiple transcriptions, which is similar to the multi-
reference BLEU score [Papineni et al., 2002] used to evaluate Machine Translation
(MT). For more discussion about MR-WER, refer to chapter 8.

Table 7.10 shows the inter-annotator disagreement on the development data.
This table shows two numbers: the raw Word Error Rate (WER) and the WER
after applying surface normalisation9. This indicates that there is about 13%

9Surface orthographic normalisation for three characters; alef, yah and hah, which are often
mistakenly written in dialectal text. This normalisation is standard for dialectal Arabic pre-
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ref2 ref3 ref4
ref1 23/17 17/14 15/11
ref2 – 19/15 20/16
ref3 – – 8/7

Table 7.10: Word-level inter annotator disagreement on the development data across
the four different human references before/after normalisation (in %).

disagreement between the annotators for the MGB-3 data. We will report results
for the MGB-3 data after normalisation only.

7.3.2 MGB-3 baseline

The ASR baseline system was trained using the full MGB-2 data; 1,200 hours
of audio. This data was augmented by applying speed and volume perturbation
[Ko et al., 2015], increasing the number of training frames by a factor of 3. The
code recipe is available on the Kaldi repository10. The acoustic modelling is
similar to the QCRI submission to the MGB-2 Challenge [Khurana and Ali, 2016].
The lexicon was grapheme-based, covering 950,000 words collected from a set of
shared lexicons, as well as the training data text. The systems used a single-pass
decoding with a trigram LM, along with a purely sequence trained TDNN acoustic
model [Povey et al., 2016]; i-vectors were used for speaker adaptation. We report
results for the MGB-2 development set (5,002 non-overlapping speech segments)
on which we achieve a WER of 22.6% without LM rescoring. This is a fairly
reasonable MGB-2 baseline. We also report results for the MGB-3 development
set explained in table 7.9 using the MGB-2 baseline system, without adaptation
to Egyptian Arabic using the MGB-3 data.
Table 7.11 shows the results for all 1,279 non-overlapping speech segments across
the four annotators. We can observe that the MGB-3 baseline WER is high, which
is to be expected as the system was not adapted to the changed characteristics
of the MGB-3 data.
processing and reduces the sparseness in the text.

10https://github.com/kaldi-asr/kaldi/tree/master/egs/gale_arabic/s5b

https://github.com/kaldi-asr/kaldi/tree/master/egs/gale_arabic/s5b
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WER1 WER2 WER3 WER4 AV-WER MR-WER
Comedy 59.5 59 58.8 60.4 59.4 53.6
Cooking 72.0 71.3 71.5 71.2 71.5 67.5

FamilyKids 50.2 48.4 48.3 48.3 48.8 43.5
Fashion 82.2 81.4 82.0 81.2 81.7 78.0
Drama 68.8 68.5 68.8 68.2 68.6 64.5
Science 59.3 57.7 59.5 57.2 58.4 51.4
Sports 54.6 54.9 55.0 54.4 54.7 49.4

Overall WER 63.8 62.9 63.3 62.8 63.20 58.0

Table 7.11: Baseline results in % for the development data after applying surface
text normalisation. WERs are given for each of the four references (produced by
different transcribers), as well as average WER (AV-WER) and multi-reference WER
(MR-WER) across the four references.

7.3.3 MGB-3 submissions and results

We assume that the MGB-3 data is not enough by itself to build robust dialect-
dependent speech recognition systems, but could be useful for adaptation, and
for hyper-parameter tuning of models built using the MGB-2 data. Therefore, we
reused the MGB-2 training data in this challenge, and considered the provided
in-domain data as (supervised) adaptation data.
Our focus in the MGB-3 was mainly to build the framework, design the tasks and
to take a particular care of the evaluation, i.e., introduce new evaluation metric
MR-WER (more details in chapter 8). Therefore, we did not make a submission
ourselves. Appendix A highlights some of the major features in the submitted
systems.
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7.4 Conclusions

This chapter presented our efforts in building public framework for researchers
to advance the state of the art in Arabic speech recognition. We focused on two
areas: broadcast news transcription and dialectal multi-genre broadcast. Our ex-
periments have shown promising results in building robust acoustic model using
deep neural network with more than thousands hours with no-need for verbatim
transcription. For the language model, we explored the standard n-gram ap-
proach as well as recurrent neural language modelling to train models with more
than 100 million tokens and 1.3 million-words vocabulary. We achieved the best
results using system combination. Our code and data are publicly available for
the research community to build on it and advance the shared results.
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Speech Recognition Evaluation
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This is the fourth section of the thesis and it addresses evaluating speech
recognition, with special focus on dialectal speech

Chapter 8 introduces a novel approach of using multiple references to deal
with the non-orthographic rules in dialects to report more appropriate evaluation
metric for dialectal speech recognition.

Chapter 9 builds on chapter 8 and introduces a new method which relies on a
single reference and learn from social media particularly tweets, multiple lexical
variations.

Chapter 10 addresses how to estimate the WER with no need for reference
transcription and introduces robust quality estimation for the LVCSR system.



Chapter 8

Multi Reference Word Error Rate:
MR-WER

This chapter is based on [Ali et al., 2015] published at ASRU 2015 and concerns
evaluating dialectal speech recognition using multiple-references.

8.1 Introduction

WER has continued to be the most commonly used metric for evaluating ASR.
The metric simply relies on comparing the recognised text to a reference of a
manual transcription to the speech signal. This approach has always been seen
as sufficient for an effective evaluation of ASR, since transcription of the speech
signal is deterministic and one manual transcription should be a sufficient refer-
ence. However, in recent years, some interest has been directed towards ASR for
dialects and rural languages. Some of these languages suffer from the absence
of unified orthographic rules; non standard orthographic languages (NSOL). DA
is an example for NSOL. Although DA is not a rural language, its variants are
spoken by 350 million people, and there is no unique writing system for it as
explained in chapter 2. This creates a challenge for evaluating an ASR output,
since one reference transcription may cover only a few of many valid forms of the
spoken words.

Unlike English, where enough is a correct word and enuf is an incorrect
spelling, NSOL can have many valid written forms for the same word. Table
2.4 has an example of spoken Egyptian sentence transcribed in Arabic and Buck-
walter, the table highlights the variations when writing a NSOL.

114
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In this chapter, we propose an evaluation methodology for ASR, which accepts
the presence of multiple transcription references. The methodology is inspired by
the evaluation of machine translation (MT) systems, where multiple translation
references could be used. Similarly for some languages, multiple spellings and
forms could be accepted as a transcription for a word or a phrase. We introduce
multi-reference WER (MR-WER), which is a modified version of WER that uses
multiple reference transcriptions. We describe the process of aligning the multiple
references (that can be of different lengths), and we show how MR-WER is cal-
culated. We examine our new metric over two different datasets of DA, namely,
Egyptian and North African Arabic, that both have no standardised orthography.
For each dialect, we collected a set of five different transcriptions using a crowd-
sourcing platform, and we compared the performance of WER to MR-WER for
these dialects. We provide our scripts and code for calculating MR-WER for the
research community for usage and potential future contributions 1.

8.2 ASR for NSOL

Several studies have investigated applying ASR to under-resourced languages.
Under-resourced languages are those lacking the basic components to have a de-
cent ASR system, such as sufficient labelled speech data for training, a lexicon,
and a natural language processing (NLP) pipeline for phonetic systems. More-
over, they can be NSOL. DA is considered one of the largest under-resourced
languages that is highly used by millions of people in daily conversation and in
social media, while lacking most of the required resources for creating an effec-
tive ASR. More details about DA can be found in chapter 2. For more discussion
about resources in DA, refer to section 5.2.

In a study by Habash et al. [2012], they presented conventional orthography
for dialectal Arabic (CODA), explaining the design principles of CODA, and us-
ing the Egyptian dialect as an example, which has been presented mainly for
the purpose of developing DA computational models. Similar work by Ali et al.
[2014a] studied the best practices for writing Egyptian orthography. They re-
leased guidelines for transcribing Egyptian speech for what is called augmented
conventional orthography for dialectal Arabic (augmented-CODA). They also re-
ported a gain in Egyptian speech recognition when augmented-CODA is followed

1https://github.com/qcri/multiRefWER
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in transcribing Egyptian speech data.
In this chapter, we propose a more robust solution for handling the variations

in orthography when no rules exist by using multiple reference transcriptions for
evaluations. This leads to less-biased evaluation to a given form of writing. In ad-
dition, it is a language-independent approach that could be applied to any NSOL.
This has been the main motivation for us not to apply any text normalisation or
pre-processing for the text.

8.3 Multi-reference evaluation for ASR

8.3.1 Multi-references alignment to recognised speech text

The initial step for an ASR multi-reference evaluation is to have alignment be-
tween each recognised word and the corresponding reference words from all refer-
ences. Our approach extends the current alignment used when performing ASR
evaluation between the recognised text and one reference text to allow for align-
ment between the recognised text and N references.

For a recognised text Rec = (w′1, w′2, .... w′|Rec|), and a set of N references:
Ref1 = (w11, w12, .... w1|Ref1|) to RefN = (wN1, wN2, .... wN |RefN |), we perform
the following steps:

• For each word in Rec, list all words in Ref1 to RefN that are aligned to
it. Note that some references may not include any corresponding word for
some of the words in Rec, which is counted as an insertion. The output of
this process will be an array of size N of reference words for each recognised
word.

• The previous step effectively captures insertions, substitutions, and correct
recognitions. However, deletions would not be handled, since there is no
corresponding word in the Rec to the deleted words in the reference. In
addition, a different number of deletions could exist across different ref-
erences. To map deletions effectively across multiple references, for each
reference, we map any non-aligned word to the recognised text to a dele-
tion pointer (<DEL>) with a counter to the position of the last aligned
word in Rec. For example, if two deletions are detected for one reference
after three aligned words with Rec, the words in the reference would be
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mapped to {03-01 <DEL>, 03-02 <DEL>} in the Rec. If another deletion
is detected after the fifth word in Rec, it will be mapped to 05-01 <DEL>.
For deletion pointers that are mapped to some of the references only, those
references that have nothing deleted would be assigned to NULL.

Table 8.1 shows the output of alignment of a recognised DA sentence with four
different references that disagree on the spelling of many words and the number
of words itself. As shown, each word in the recognition is aligned to N references,
which maximises the likelihood of finding a possible match that is accepted by
one of the references.

8.3.2 Calculating MR-WER

Using the multi-aligned references, the number of correct, insertions, substitu-
tions, and deletions are calculated as follows:

• C (Correct): is the number of recognised words that has a match in any of
the aligned reference words.

• S (Substitutions): is the number of recognised words that has alignment to
at least one reference words, but none of them matches it.

• I (Insertions): is the number of recognised words that are not aligned to
any reference word, i.e., all corresponding alignments are <INS>.

• D (Deletions): is the number of <DEL> instances in the Rec that has no
NULL alignment in any of the references. The main reason for not counting
deletions that have no corresponding word in one of the references is that
if one of the reference transcriptions decided not to write such a word, then
the ASR should not be penalised for missing it.

WER = I +D + S

S +D + C
× 100% (8.1)

As shown in Table 8.1, the length of the transcription varies from one refer-
ence to another, which means that the deletion count is different between differ-
ent transcriptions. The WER per reference ranged between 65% to 81%, which
demonstrates the challenge of using a single reference for evaluation. One solu-
tion is to average the WER across different references, which is 75%. However,
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Index Rec Ref1 Ref2 Ref3 Ref4
(00-1) <DEL> NULL NULL nEm NULL
(00-2) <DEL> nEm nEm nEm nEm
(01) >ETY Ah Ah Ah hw
(02) b<n TbyEy TbyEy hw TbyEY
(03) dA <n dA TbyEy dA
(04) >SlA dp >SlA dh >SlA
(05) yEny >SlAF yEny ASlA yEnY
(06) <HnA <HnA >HnA AHnA nHn
(07) fy fy fY fy fy
(08) wDE wDE wDE wDE wDE
(09) gyr gyr gyr gyr gyr
(10) qAnwny qAnwny qAnwny qAnwny qAnwnY
(11) bAlmr bAlmrp bAlmrp bAlmrh bAlmrh
(12) gyr gyr gyr gyr gyr
(13) dstwry dstwry dstwry dstwry <INS>
(14) bAlmr <INS> <INS> <INS> <INS>
(15) wADH <INS> <INS> <INS> <INS>
(16) >h <INS> bAlmrp <INS> dstwrY
(17) fyh bAlmrp Ah bAlmrh bAlmrh
(18) AnqlAb wDE wDE wDE wDE
WER MR:53% 75% 65% 82% 81%

Table 8.1: Alignment applied between a recognised text (Rec) and four different
references.

the MR-WER words achieved 53% calculated as shown in equation 8.1 using
the alignment in table 8.1, which is a more realistic measure for this type of or-
thography. Our approach is similar to finding the best path through a lattice of
references. However, we leave the exact comparison for future research.

8.4 Experiments

Our experiments were done using the crowdsourced dialectal data collected in
chapter 5, we chose two dialects, namely Egyptian (EGY) and North African
(NOR). For each dialect, we asked for five transcriptions for each speech segment
(utterance), with an average length of 4-6 seconds per utterance. EGY had 2,087



Chapter 8. Multi Reference Word Error Rate: MR-WER 119

utterances, totaling 3.6 hours, and NOR had 1,088 utterances with 3.1 hours.
The data was transcribed using CrowdFlower2, a crowdsourcing platform with a
large user base in the Arab world. Quality control was performed using the best
practices described by Wray and Ali [2015], Wray et al. [2015]. For more details
about the crowdsourced data, see chapter 5.

8.4.1 Inter-reference agreement

An initial necessary step before evaluating the effectiveness of our evaluation
methodology is to measure the difficulty of the problem. Here we measure the
agreement on the transcriptions with different references. We measure the WER
between each two references and we apply this to all references for all segments.
We found that the median WER between different references for EGY is 59%
and for NOR is 78.5%. We also calculated the percentage of exact-match tran-
scriptions among references. The percentage was only 2.2% and 1.3% for EGY
and NOR, respectively. These values were astonishing to us, therefore, we looked
at many examples and determined that this was due to valid variation in the
transcription. Our intuition for this diversity is that using a crowdsourcing plat-
form for transcription limits the chance of having detailed training and in-depth
guidelines for annotators. Consequently, we can see many disagreements in tran-
scribing repeated words or unintelligible words, in addition to many transliterated
words. In our further study to automate the multi-reference WER by harvesting
dialectal data, we used a more controlled environment for transcription. Chapter
9 will discuss this in more detail. In general, this highlights the severe issue for
these languages and confirms that the evaluation of ASR systems with only one
reference would be highly biased.

8.4.2 MR-WER results

We evaluated the ASR output using 1 to 5 reference transcriptions. We used all
the combinations between reference transcriptions in cases whenN > 1 to validate
our findings. As shown in table 8.2, for each experiment, we report the minimum,
the maximum and the average MR-WER for each number of transcriptions we
use. We conclude two findings from these experiments:

2http://www.crowdflower.com
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EGY

# Ref One Two Three Four Five
Min. 69.1% 52.3% 45.9% 42.2% 39.70%
Av. 71.4% 53.4% 46.4% 42.3%
Max. 74.0% 55.1% 47.3% 42.7%
# Exp. 5 10 10 5 1

NOR

# Ref One Two Three Four Five
Min. 78.9% 59.1% 51.8% 48.1% 45.9%
Av. 80.2% 60.4% 52.8% 48.7%
Max. 80.7% 62.2% 53.9% 49.2%
# Exp. 5 10 10 5 1

Table 8.2: MR-WER for various number of references per experiment.

1. The WER is reduced considerably when we increase the number of tran-
scriptions, and there may be a potential to reduce the WER more if there
are more transcriptions (although we can see the reduction in MR-WER
between four and five references is minor). The MR-WER has reduced the
error from 71.4% to 39.7% in EGY, and from 80.1% to 45.9% in NOR. This
could be happening due to various ways of writing DA and not due to bad
ASR.

2. The variance in WER is reduced noticeably when the number of references
increase. This is due to the fact that multi-reference is capable of capturing
some of the variations in transcription, which makes the reported error rate
more robust to actual mistakes.

8.4.3 Applying voting with multi-references

In the standard WER, the algorithm will loop over a single reference and check
each word: insertion, deletion, substitution or correct. However, in the MR
scenario, someone can argue that the algorithm in acting like cherry-picking and
looking for a correct word in any of the references to make the WER look better
rather than validating these findings. To address this concern, we explore the
impact in MR-WER when the algorithm asks for more than one evidence that a
word is correct, i.e., the same word occurred in the same position in more than
one reference. We evaluated correct word counting in 1+ (standard), 2+ and 3+
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EGY

One Two Three Four Five
1+ 71.4% 53.4% 46.4% 42.4% 39.7%
2+ NA 78.3% 63.3% 55.5% 50.7%
3+ NA NA 83.7% 69.6% 61.6%

NOR

One Two Three Four Five
1+ 80.2% 60.4% 52.8% 48.7% 45.9%
2+ NA 84.5% 69.7% 61.6% 56.7%
3+ NA NA 88.9% 76.0% 67.5%

Table 8.3: MR-WER with one or more voting for acceptance.

occurrences. Obviously, we apply N number of times seeing the word correct if
there is N number of references or more.

As we can clearly see in Table 8.3, the proposed MR-WER reports that while
asking for more than one proof in the reference for each correct word, the MR-
WER still outperforms the standard WER when we average it over five references.

8.5 Conclusions

In this chapter, we presented a novel way for measuring ASR performance in non-
standard orthographic languages: multi-reference Word Error Rate (MR-WER).
Our results were based on two Dialectal Arabic corpora: Egyptian and North
African. We were able to report 39.7% and 45.9% MR-WER, respectively, using
five reference transcriptions collectively, while for the same test set the average
WER was 71.4%, and 80.1%, respectively, when we used the same five references
individually.



Chapter 9

Dialectal Word Error Rate: WERd

This chapter is based on [Ali et al., 2017a] published at ASRU 2017 and concerns
dialectal word error rate WERd, which evaluates dialectal speech recognition
using social text spelling. We study the problem of evaluating automatic speech
recognition (ASR) systems that target dialectal speech input.

9.1 Introduction

Automatic Speech Recognition (ASR) has shown fast progress recently, thanks
to advancements in deep learning. As a result, the best systems for English have
achieved a single-digit word error rate (WER) for some conversational tasks [Saon
et al., 2017]. However, this is different for dialectal ASR, for which the WER can
easily go over 40% [Ali et al., 2017b]. Chapter 7 shows more details about high
WER in dialectal speech in the MGB-3 challenge.

As mentioned in chapter 8, in a standardised language such as English, we
know that enough is a correct spelling, while enuf is not. However, we cannot be
sure about the correct spellings of dialectal words; at best, we would know what
a preferred or a dominant spelling is. This is because dialects typically do not
have an official status and thus their spelling is not regulated, which opens the
door widely to orthographic variation.1

Table 2.4 shows some examples of spelling variation in DA. We can see that
clitics (pronouns and negations) can be written concatenated or separated from
the verb, and the definite article can undergo different spelling variations due

1Note that here we target primarily intra-dialectal variation. Yet, there is also inter-dialect
variation, e.g., between the different dialects of Arabic.
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to coarticulation with the following word. Long vowels can become short, and
thus be dropped as they are typically not written in Arabic, etc. While some
variations can happen in standardised languages such as English, e.g., healthcare
vs. health care, or organise vs. organise, this is much less common, and in ASR it
is easily handled with simple rules, e.g., using the Global Mapping file2 in sclite
[Rosenfeld and Clarkson, 1997, Fiscus, 1997].

The examples in table 2.4 partially explain the high WER for dialects. While
they suffer from a lack of training resources, the main problem is their informal
status, which means that their spelling is rarely regulated. This makes training an
ASR system for dialects much harder as there is no single gold standard towards
which to optimise at training time.

More importantly, it is hard to evaluate such a system and to measure progress
as multiple possible text outputs for the same speech signal could be considered
correct by different people. Thus, there is a need for an evaluation measure that
would allow for common spelling variations. In this chapter, we propose to mine
such variations from dialectal Arabic tweets and to incorporate them as spelling
variants as part of a more adequate ASR evaluation measure for dialects.

In chapter 8, we addressed this challenge using the multi-reference word error
rate (MR-WER) [Ali et al., 2015], which is similar to the multi-reference BLEU
score [Papineni et al., 2002] used to evaluate Machine Translation (MT). How-
ever, obtaining multiple references is expensive. Moreover, it could take many
human annotators to get good coverage of the possible orthographic variants of
the transcription of a speech recording. Thus, we propose to use a single refer-
ence, but to perform matching using spelling variants that could capture some of
the variation.

This was applied to MT, e.g., for parameter optimisation [Madnani et al.,
2007], where additional synthetic references are generated for tuning purposes,
or for phrase-based MT, where paraphrasing is applied to the source side of the
phrase table [Callison-Burch et al., 2006], of the training bi-text [Nakov, 2008b], or
both [Nakov, 2008a, Nakov and Ng, 2011, Wang et al., 2012, 2016]. Paraphrasing
has also been used for evaluating text summarisation [Zhou et al., 2006].

More relevant to the present work, in MT evaluation, paraphrasing was ap-
plied to the output of an MT system [Kauchak and Barzilay, 2006]. It was also

2The global mapping file can help for handcrafted variants like color/colour and ten/10 in
English. However, it is not applicable to dialectal Arabic, where multiple spelling variants are
acceptable; we use 11M pairs.
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incorporated in measures such as TERp [Snover et al., 2009], which is a transla-
tion edit rate metric with paraphrases. Indeed, here we borrow ideas from TERp
for dialectal ASR, with a paraphrase table (in our case, a spelling variants table),
which we mine automatically from a huge collection of tweets in an unsuper-
vised fashion. Our experiments and our manual analysis show that this is a very
promising idea.

Our contributions are as follows: (i) We propose a method for automatically
collecting spelling and tokenisation variations for dialectical Arabic (and, presum-
ably, other languages and language variants) from Twitter data; (ii) We further
incorporate these spelling variants in an evaluation metric, WERd, which is a
variation of TERp, and we demonstrate its utility for dialectal Arabic ASR.

9.2 Method

We propose a method for evaluating dialectal ASR, which consists of two steps:
(i) collecting a large number of spelling variants, which we mine from social
media in an unsupervised manner, and (ii) using these spelling variants, with
associated probabilities, into an MT-inspired evaluation measure (together with
standard unit-cost word insertions, deletions, and substitutions).

9.2.1 Mining spelling variants from social media

We use social media to mine dialectal spelling variants from a collection of half
a billion dialectal Arabic tweets. Our approach is language-independent, scal-
able, and unsupervised, as it assumes no prior knowledge about the language, its
dialects, or the data.

We build a list of pairs of spelling variants with probabilities using the follow-
ing steps (as shown in figure 9.1):

First, we collect Arabic tweets. Then, we normalise hashtags, URLs, emoti-
cons. We further drop Arabic diacritics and elongation, and we reduce letter
repetitions to a maximum of three. Our pipeline is an extension to the previous
work done in Arabic language processing for microblogs [Darwish et al., 2012].

Next, we extract all the n-grams of lengths 5–8. In each n-gram, we con-
sider the first two and the last two words as a context, and the 1–4 words
in the middle as a target for this context. For example, for a 5-gram con-
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Figure 9.1: Diagram of our pipeline for extracting dialectal spelling variants from
Twitter.

text, we will have < L1, L2, t1, R1, R2 >, while for an 8-gram we will have
< L1, L2, t1, t2, t3, t4, R1, R2 >, where Li and Ri represent the left and the right
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context words, and tj are the target words in the middle (1 ≤ i ≤ 2, 1 ≤ j ≤ 4).
Next, we generate pairs of potential spelling variants for targets that share the

same contexts. This is subject to the constraint that the normalised Levenshtein
distance between the targets is less than t, measured in characters. We tried
values between 0.1 and 0.6 for t, and we manually inspected the resulting pairs
of spelling variants. Ultimately, we set t = 0.6. With normalisation in mind,
we further impose a constraint that in each pair of spelling variants, one of the
targets is extracted in the same contexts at least N times more frequently than
the other one (we set N to 3). Finally, with each pair of spelling variants, we
associate a score: the average of the two Levenshtein distances. The resulting
scored pairs of spelling variants form a spelling variant table for WERd.

Here are two examples from this final table of n-to-m spelling variant pairs
with corresponding frequencies and normalised edit distance (shown in Buckwal-
ter):

mAfy mAAfy 752 75 0.25
lwny w DAEt lwny wDAEt 32 8 0.1

The first column (yellow) contains the frequent form, which is the target
mAfy. The second column (green) contains the source mAAfy, which is a
less frequent term. The next column is the frequency of the target, e.g., the word
mAfy occurred 752 times. The following column is the frequency of the source in
the same context, e.g., mAAfy occurred 75 times. Finally comes the normalised
edit distance.

Related approaches for paraphrase extraction have used random walks [Has-
san and Menezes, 2013], pairwise similarity [Han et al., 2012], and continuous
representations [Sridhar, 2015, Sproat and Jaitly, 2016]. Unlike that work, we
mine pairs of spelling variants for ASR evaluation, not for modeling; we further
allow many-to-many mappings, and we do not target canonical gold normalisa-
tion.

9.2.2 Using the spelling variants for evaluation: WERd

We borrow ideas from an evaluation measure for MT evaluation, namely Transla-
tion Edit Rate Plus or TERp [Snover et al., 2006]. TERp allows block alignment
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of words, called shifts within the hypothesis as a low cost edit, a cost of 1, the same
as the cost for inserting, deleting or substituting a word. TERp uses a greedy
search and shift constraints to both reduce the computational complexity and
to model the quality of translation better. The metric further supports tuned
weights for the edit operations, a paraphrase table, synonym/hypernym-based
matching using WordNet, etc.

The main motivation for using paraphrases in TERp for MT evaluation is to
capture some lexical variation, e.g., (controversy over, polemic about), (by using
power, by force), (brief, short), (response, reaction). In contrast, we focus on
capturing spelling variation in a dialect as shown in section 2.4.

In this work, we only use the paraphrasing capability of TERp. We restrict
the matching to monotonic, i.e., no reorderings and no shifts. The only additional
operation that we allow, compared to WER, is mapping between the hypothesis
and the reference using a pair of spelling variants from our spelling variants table,
which can span up to four words on either side of the pair of spelling variants as we
have explained above. This monotonic version of TERp, with no reordering but
with spelling variant matching capabilities gives rise to our metric for dialectal
ASR evaluation, which we will call WERd (or WER for dialects).

9.3 Experiments and evaluation

9.3.1 Dialectal data

Speech data. We collected two hours of Egyptian Arabic Broadcast news [Wray
and Ali, 2015] speech data, which we split into 1,217 segments, each 3-10 seconds
long. The data are a subset of the Egyptian dialectal data collected in chapter
5. Since Egyptian Arabic has no established orthographic rules, it is difficult to
develop standard transcription guidelines covering orthography. Therefore, we
decided to have multiple transcriptions, but to let transcribers write the tran-
scripts as they deemed correct, while trying to be as verbatim as possible. All
the transcribers are native speakers of the chosen dialect with no linguistic back-
ground3. It is worth noting that, transcription in this chapter has been carried out
in carefully controlled environment rather than using CrowdFlower as described

3The transcribers were asked to follow these transcription guidelines: http://alt.qcri.
org/resources/MGB-3/Arabic_Transcription%20_Guidelines_20170330.pdf

http://alt.qcri.org/resources/MGB-3/Arabic_Transcription%20_Guidelines_20170330.pdf
http://alt.qcri.org/resources/MGB-3/Arabic_Transcription%20_Guidelines_20170330.pdf
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in chapter 8 to make sure we have relatively high quality control. In an attempt
to understand why the difference in variance is much smaller here compared to
the crowdsourced data in chapter 8, we looked at some examples and we observed
the following:

• Due to the nature of crowdsourcing, we are limited on how detailed guide-
lines could be. This is not the case here where we were able to give detailed
instructions (as detailed in section 9.3.1) and to provide some on-boarding
to the annotators. Therefore, we noticed many cases where hesitation and
unintelligible words were not consistent across annotations. These are com-
mon in the DA speech.

• The diversity of workers in CrowdFlower was high, with transcribers coming
from all over the Arab region. Regional differences in style and spelling were
manifested. This led to higher sparseness.

• We found a small percentage of incorrect transcription that was not caught
by our quality control mechanisms.

Table 9.1 shows the overlap agreement between the annotators, at the segment
level, for their original transcription and after applying surface normalisation for
alef, yah and hah, which is standard for Arabic. In Table 9.1, the first number is
for the original text, and the second number is for the normalised text. We can
see that even after normalisation,4 there are about 15% differences between most
of the annotators.
Social media data: We further collected dialectal Arabic tweets in order to
extract spelling variants. In particular, we issued queries using lang:ar against
the Twitter API5. Note that we did not try to control the location where the
tweets originated from, but only the language they were written in. We collected
two months of tweets (from December 2015 and January 2016), with about eight
million tweets per day on average, which yielded a total of half a billion tweets
containing over seven billion word tokens.
ASR system: For our experiments, we used the speech-to-text transcription
system built using the 2016 Arabic Multi-Dialect Broadcast Media Recognition
(MGB-2) as discussed in chapter 7.

4Below, we will report results after normalisation only.
5http://dev.twitter.com/

http://dev.twitter.com/
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ref2 ref3 ref4 ref5
ref1 77/86 80/84 78/86 80/87
ref2 — 74/83 71/85 72/85
ref3 — — 77/84 78/84
ref4 — — — 91/93

Table 9.1: Pairwise overlap of the five human references before/after normalisation
(in %).

WER TER WERd MR-WER
ref1 46.2 37.4 34.3 —
ref2 42.9 38.7 35.7 —
ref3 48.9 41.9 38.3 —
ref4 46.2 39.0 35.6 —
ref5 46.0 38.3 34.9 —

ALL refs — — — 25.3

Table 9.2: WER vs. TER vs. WERd vs. MR-WER, after normalisation (in %).

9.3.2 Experimental results

We first evaluated the ASR system on our two-hour dialectal Arabic test dataset
using WER with respect to each of the five references. The results are shown
in Table 9.2. We can see that the WER is much higher on our dialectal Arabic
dataset, ranging in 40–50%.

We further calculated MR-WER for our ASR system using all five references,
achieving a score of 25.3%. This number is much lower than when evaluating
with respect to any individual reference, which is to be expected, as we allow
more matching options.

Table 9.2 reports TER6 and WERd scores calculated with respect to each of
the five references and shows for both metrics a strong correlation with WER. We
can also see that the scores for WERd are halfway between WER and MR-WER

6The difference between TER and WER arises owing to the costs associated with deletion
(D), insertion (I), and substitution (S) in the TER framework are 1.4, 0.25 and 1.6 respectively.
This is an unusual setup for the ASR. We plan to use the same unified cost for I, D and S in
our future study to be able to compare WER with WERd.
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No Variants ED ≤ 0.1 ED ≤ 0.2 ED ≤ 0.3 ED ≤ 0.4 ED ≤ 0.5 ED ≤ 0.6
ref1 37.4 37.1 36.6 35.5 34.8 34.6 34.3
ref2 38.7 38.4 37.9 36.9 36.3 36.1 35.7
ref3 41.9 41.5 40.9 39.7 38.9 38.7 38.3
ref4 39.0 38.6 38.1 36.9 36.2 36.0 35.6
ref5 38.3 37.9 37.3 36.2 35.6 35.3 34.9

Table 9.3: WERd using pairs of spelling variants extracted using different maximum
edit distances (ED).

(e.g., for ref1, it is 34.3 vs. 46.2 and 25.3, respectively), but without the need for
additional human references.
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Evaluating the Spelling Variants in WERd

 Total number of spelling variant pairs

 Number of matched spelling variant pairs

 Precision of the matched spelling variant pairs

Figure 9.2: Analysis of the total number of spelling variants, the number of matched
variants, and the precision for different thresholds on the edit distance (with respect
to ref1). Note that the y axis shows different units for each of the three curves.

There are two reasons for MR-WER to be considerably lower compared to
the other metrics. First, the way foreign words and codeswitching is handled
by different annotators, e.g., words like BBC can be written in either Arabic
(ú



æ� ú



G
.

ú


G
.
by by sy) or Latin characters. Some annotators would use Arabic

while others would prefer English, which would allow matching either of them
when evaluating the ASR output with multiple references. Second, in dialectal
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Arabic, there are many filler words such as ú



	
æªK
 yEny, É�@ ASl and ø



	P zy, which

some annotators would skip and some would keep.

9.4 Discussion

WERd for different thresholds. Table 9.3 shows the performance of WERd
when using pairs of spelling variants with different maximum edit distances: 0.1–
0.6. As the threshold increases, WERd decreases, e.g., for ref1, it goes from 37.4
to 34.3, or 8% relative reduction. The difference is due to the number of matched
spelling variant pairs, e.g., 865 for ref1.

Analysis of the pairs of spelling variant matches. Next, we study the re-
lationship between the threshold on the maximum edit distance vs. the spelling
variant table size, the number of spelling variants matches, and the accuracy of
these matches. This is shown in figure 9.2, where we focus on the best refer-
ence, ref1 (according to native speakers of Egyptian Arabic who have a linguistic
background). We can see that the threshold has a major impact on the spelling
variant table size: going from 0.1 to 0.6 yields a six times larger table. It also
yields a 21 times larger number of spelling variant matches on the test dataset:
from 41 to 865.

Of course, this comes at a cost: while all 41 spelling variant matches at thresh-
old of 0.1 are correct, there are 8% errors among the 865 matches at threshold
of 0.6. We believe this is a relatively small price to pay, given the advantage of
being able to identify 791 additional correct matches, which we capture without
the need for having multiple references.7

Pearson correlation. We further measured the correlation between WER/MR-
WER vs. TER/WERd. For the 1,217 test utterances, we calculated the scores for
WER/MR-WER/TER/WERd in isolation, and then we calculated the Pearson
correlation using the corresponding lists of utterance-level scores. The results are
shown in Table 9.4. We can see that WERd correlates better than TER with
both WER and also with MR-WER. Overall, we can conclude that WERd is a
promising measure for evaluating ASR systems that target dialectal speech input.

Closer look at the spelling variants used in test. Finally, we had a closer
look at the 865 spelling variant pairs that were matched and used when calcu-

7We were unable to measure the recall as it requires manual evaluation of all the possible
candidates for spelling variants in the references.
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Metrics Compared Correlation
WER vs. TER 0.44
WER vs. WERd 0.47
MR-WER vs. TER 0.36
MR-WER vs. WERd 0.39

Table 9.4: Pearson correlations.

lating WERd for the test set of 1,217 segments, when using edit distance of 0.6.
Our analysis shows three types of word-level changes:

1. Word splitting: 3% of the pairs
e.g., �

��

	
®Ó (mfy$) → �

��

	
¯ AÓ (mA fy$).

2. Word merging: 16% of the pairs
e.g., A

	
Jk AÓ ø



	P (zy mA HnA) → A

	
JkAÓ ø



	P (zy mAHnA).

3. Word substitution: 81% of the pairs
e.g., 	

àA¾K
QÓB@ (AlAmrykAn) → 	
àA¿Q�
ÓB@ (AlAmyrkAn).

These statistics show that we learn many useful spelling variants, i.e., more
than 80%, rather than just splitting and merging words. Moreover, note that
these word-level substitutions are actually small character-level transformations
inside words. Tables 9.5 and 9.6 show some examples of correct and wrong spelling
variant pairs that were matched when calculating WERd for our Dialectal Arabic
test set.

Table 9.7 further shows how spelling variant pairs affect hypothesis scoring
for an example test sentence. There are three spelling variant pairs that match
the input ASR hypothesis �

��

	
¯ AÓ → �

��

	
®Ó , éJ
ºK
QÓB@ → éJ
»

Q�
ÓB@ , and finally
	

àA
�

�Ê« → 	
àA

�
�« . The former involves word splitting, while the latter two are

about substitution. We can see that the WER after using spelling variant substi-
tutions would go down to 30%, (the actual WERd score would be slightly higher
as it needs to take the cost of the spelling variant substitutions into account),
while the initial WER was 61.5%.
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English Gloss Spelling Variants Operation
Netanyahu ñëAJ


	
K A

�
J
	
K ntAnyAhw word substitution

ñëAJ

	
J
�
�
	
K ntnyAhw

as we are A
	
Jk AÓ ø



	P zy mA HnA word merging

A
	
JkAÓ ø



	P zy mAHnA

talking ÕÎ¾
�
J
�
�K. bttklm word substitution

ÕÎ¾
�
J
�
K ttklm

like (as if) ú



	
æªK
 yEny word splitting

H. ú



	
æªK
 yEny b

Table 9.5: Correctly accepted spelling variants in test.

English Gloss Spelling Variants Operation
some YªK. bEd word substitution

after 	
�ªK. bED

principal ú


æ�J



KP r}ysy word substitution

president ��


KP r}ys

Table 9.6: Wrongly accepted spelling variants in test.

Hypothesis (before): 	
àA

�
�« éJ
»

Q�
ÓB@ èYj
�
JÖÏ @

�
HAK
BñË@ 	áÓ Qå�Ó 	áÓ Ñë

�
��


	
®Ó

mfy$ hm mn mSr mn AlwlAyAt AlmtHdh AlAmyrkyh E$An
WER: 61.54 [ 8/13; 0 insertions, 4 deletions, 4 substitutions ]
Hypothesis (after): 	

àA
�

�Ê« éJ
ºK
QÓB@ èYj
�
JÖÏ @

�
HAK
BñË@ 	áÓ Qå�Ó 	áÓ Ñë

�
��


	
¯ AÓ

mA fy$ hm mn mSr mn AlwlAyAt AlmtHdh AlAmrykyh El$An
WER: 30.77 [ 4/13; 0 insertions, 3 deletions, 1 substitutions ]
Reference: 	

àA
�

�Ê« éJ
ºK
QÓB@ èYj
�
JÖÏ @

�
HAK
BñË@ É¿ 	áÓ Ñk. ð Qå�Ó 	áÓ Ñk. ÑîE


	P
�

��

	
¯ AÓ

mA fy$ zyhm jm mn mSr wjm mn kl AlwlAyAt AlmtHdh AlAmrykyh El$An

Table 9.7: Extra word matches due to using spelling variants. Shown is an ASR
hypothesis for a test utterance, and the impact of hypothesis matching on the number
of insertions, deletions and substitutions, as well as on the overall WER score.

9.5 Conclusions

In this chapter, we have addressed the evaluation of ASR systems that target
dialectal speech input, where a major problem is the natural variation in spelling
due to the unofficial status and the lack of standardisation of the orthography. We
have proposed a new metric, WERd (or WER for dialects), a variation of TERp,
for which multiple text outputs for the same speech signal can be acceptable given
a single reference transcript. Our implementation of WERd was based on mining
11M pairs of spelling variants from a huge dialectal Arabic tweet collection. Our
automatic experiments, as well as manual analysis, have shown that this is a
highly promising metric that addresses the problems of WER for dialectal speech,
and approaches the performance of multi-reference WER.



Chapter 10

Word Error Rate Estimation:
e-WER

This chapter is based on [Ali and Renals, 2018] published at ACL 2018 and
concerns estimating word error rate with no golden transcription.

10.1 Introduction

Measuring the performance of ASR systems requires manually transcribed data in
order to compute the WER, which is often time-consuming and expensive. In this
chapter, we propose a novel approach to estimate WER, or e-WER, which does
not require a gold-standard transcription of the test set. Our e-WER framework
uses a comprehensive set of features: ASR recognised text, grapheme recogni-
tion results to complement recognition output, and internal decoder (glass-box)
features. We report results for the two features; black-box and glass-box using
unseen 24 Arabic broadcast programs.

ASR has made rapid progress in recent years, primarily due to advances in
deep learning and powerful computing platforms. As a result, the quality of ASR
has improved dramatically, leading to various applications, such as speech-to-
speech translation, personal assistants, and broadcast media monitoring. Despite
this progress, ASR performance is still closely tied to how well the acoustic model
(AM) and language model (LM) training data matches the test conditions. Thus,
it is important to be able to estimate the accuracy of an ASR system in a par-
ticular target environment.

WER is the standard approach to evaluate the performance of a large vo-
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cabulary continuous speech recognition (LVCSR) system. The word sequence
hypothesised by the ASR system is aligned with a reference transcription, and
the number of errors is computed as the sum of substitutions (S), insertions (I),
and deletions (D). If there are N total words in the reference transcription, then
the word error rate WER is computed as follows:

WER = I +D + S

N
× 100. (10.1)

To obtain a reliable estimate of the WER, at least two hours of test data are
required for a typical LVCSR system. In order to perform the alignment, the
test data needs to be manually transcribed at the word level – a time-consuming
and expensive process. In scenarios such as broadcast monitoring, it may not
be practical to create test sets, as new channels may be frequently presented
for monitoring. It is, thus, of interest to develop techniques which can estimate
the quality of an automatically generated transcription without requiring a gold-
standard reference.

Such quality estimation techniques have been extensively investigated for ma-
chine translation [Specia et al., 2013], with extensions to spoken language trans-
lation [Ng et al., 2015, 2016]. Although there is a long history of exploring
word-level confidence measures for speech recognition [Evermann and Woodland,
2000, Cox and Dasmahapatra, 2002, Jiang, 2005, Seigel and Woodland, 2011,
Huang et al., 2013], there has been less work on the direct estimation of speech
recognition errors.

Seigel and Woodland [2014] studied the detection of deletions in ASR output
using a conditional random field (CRF) sequence model to detect one or more
deleted word regions in ASR output. Ghannay et al. [2015] used word embed-
dings to build a confidence classifier which labelled each word in the recognised
word sequence with an error or a correct label. They studied both Multi-layer
Perceptrons (MLPs) and CRFs for sequence modeling. Tam et al. [2014] inves-
tigated the use of a RNN LM with complementary DNN and Gaussian Mixture
Model (GMM) acoustic models in order to identify ASR errors, based on the
assumption that when two ASR systems disagree on an utterance region, then it
is most likely an error.

Ogawa and Hori [2015] investigated using deep bidirectional recurrent neural
networks (DBRNNs) to detect errors in ASR results. They explored four tasks for
ASR error detection and recognition rate estimation: confidence estimation, out-
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of-vocabulary (OOV) word detection, error type classification, and recognition
rate estimation. They showed that the DBRNN substantially outperformed CRFs
for this task. In an extension to this work, Ogawa et al. [2016] investigated the
estimation of speech recognition accuracy based on the classification of error
types, in which sequence classification was performed by a CRF. Each word in a
hypothesised word sequence was classified into one of three categories: correct,
substitution error, or insertion error. Their study did not estimate the presence
of deletions, and consequently cannot estimate the WER.

Jalalvand et al. [2016] developed a tool for ASR quality estimation, Tran-
scRater, which is capable of predicting WER per utterance. This approach is
based on a large set of extracted features (which do not require internal access
to the ASR system) used to train a regression model (e.g., extremely randomised
trees), with a mean absolute error (MAE) loss function, and can also rank differ-
ent transcriptions from multiple sources [Negri et al., 2014, de Souza et al., 2015,
Jalalvand and Falavigna, 2015, Jalalvand et al., 2015a,b]. TranscRater provides a
WER per utterance, reporting the results as the MAE with respect to a reference
transcription. This work did not report WER estimates for complete recordings
or test sets, although it is possible that this could be done using utterance length
estimates.

In this chapter, we build on these contributions to develop a system to directly
estimate the WER of an ASR output hypothesis1. Our contributions are: (i) a
novel approach to estimate WER per sentence and to aggregate them to provide
WER estimation per recording or for a whole test set; (ii) an evaluation of our
approach which compares the use of “black-box” features (without ASR decoder
information) and “glass-box” features which use internal information from the
decoder; and (iii) a release of the code and the data used for this chapter for
further research.

10.2 e-WER framework

Estimating the probability of error of each word in a recognised word sequence has
been successfully used to detect insertions, substitutions, and interword deletions
[Ogawa et al., 2016, Ogawa and Hori, 2015, Ghannay et al., 2015, Jalalvand and

1It is worth noting that many commercial systems estimate the quality of an ASR using the
average word-based confidence. We will evaluate this approach as a possible future extension.
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Falavigna, 2015, Seigel and Woodland, 2014]. However, these local estimates do
not provide an estimate of the overall pattern of error, such as the total number
of deletions in an utterance.

In our framework, we use two speech recognition systems; a word-based
LVCSR system and a grapheme-sequence based system. Following Tam et al.
[2014], we assume that when two corresponding ASR systems disagree on a sen-
tence or part of a sentence, there is a pattern of error to be learned. Our archi-
tecture also benefits from utterance-based LVCSR decoder features including the
total number of frames, the average log likelihood and the duration. Intuitively,
we correlate short sentences with less context and assume that LM scoring will
not be able to capture long context. Since our approach is looking for the overall
error pattern, we are not particularly concerned with the type of the error (inser-
tion, deletion, or substitution). We estimate directly the numerator in equation
10.1, which is the summation of insertion, deletion and substitution errors, which
we refer to as ˆERR, the estimated total number of errors per utterance. We also
estimate directly N̂ , an estimate of the total number of words in the reference.
Therefore, e-WER is defined as follows:

e-WER =
ˆERR

N̂
× 100% (10.2)

Our model is required to predict two values for each utterance: ˆERR and
N̂ . Given that each is integer-valued, we decided to frame their estimation as a
classification task rather than a regression problem as shown in equations 10.3
and 10.4. Each class represents a specific word count. We limit the total number
of classes to a maximum of C in ˆERR, with range from 0 to C. However, the
total number of classes for N̂ is C −K to avoid estimating an utterance length
of zero, with a range from K to C. If an utterance has more than C words or
less than K words, it will thus be penalised by the loss function,

ˆERR = arg max
cj∈C

P (cj|x1, x2, ..., xn) (10.3)

N̂ = arg max
kj∈C−K

P (kj|x1, x2, ..., xn) (10.4)

Table 10.3 shows that fewer than 5% of the sentences have more than 20 words,
and it is very unlikely to have an utterance with fewer than 2 words. We trained
our system with C = 20 and K = 2. Since our approach predicts ˆERR and N̂ for
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LVCSR
Output brnAmj AlwAqE AlErby

Normalised b r n A m j A l w A q E A l E r b y
Grapheme ASR

Output q p SIL A l j w A q A l E d y
Normalised q p A l j w A q A l E d y

Table 10.1: Normalised sequences from the two systems used to provide the grapheme
alignment error rate. GER=50.00%; G_ERR=9; G_N=18; G_I=0; G_D=5; G_S=4.

each sentence, it is possible to aggregate each of the two values across the entire
test set in order to estimate the overall WER, as shown in section 10.4.

10.2.1 Speech recognition system

The LVCSR system was trained using the second Multi-Genre Broadcast chal-
lenge data, MGB-2 as described in chapter 7. For acoustic modelling, we used
the TDNN-LSTM models as described in section 7.2.3 and for LM, we use the
small-four-gram LM (sLM4) as described in section 7.2.3. More details about the
AM and LM data can be found in chapter 7. The results used in this chapter are
limited to the one-best ASR results from the first-pass decoding to ensure that
the decoder features match the single pass decoding results. Therefore, no system
combination, nor LM rescoring was applied to the ASR results in this chapter.

10.2.2 e-WER features

To estimate e-WER, we combine features from the word-based LVCSR system
with features from the grapheme-based system. By running both word-based and
character-based ASR systems, we are able to align their outputs against each
other as shown in table 10.1, assuming the LVCSR system provides the ground
truth. We extract six features from the grapheme alignment: (1) grapheme error
rate (GER); (2) total grapheme errors (G_ERR); (3) grapheme count (G_N);
(4) grapheme insertion count (G_I); (5) grapheme substitution count (G_S);
and (6) grapheme deletion count (G_D). We split the studied features into the
following four groups:

• L: lexical features – the word sequence extracted from the LVCSR;
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• G: grapheme features – character sequence extracted from the grapheme
recognition;

• N : numerical features – basic features about the speech signal, as well as
grapheme alignment error details;

• D: decoder features – total frame count, average log-likelihood, total acous-
tic model likelihood and total language model likelihood.

Similar to previous research in ASR quality estimation, we refer to {L,G,N} as
the black-box features, and {L,G,N,D} as the glass-box features, which are used
to estimate the total number of words N̂ , and the total number of errors ˆERR in
a given sentence. It is worth noting that the glass-box features assume a single
pass ASR decoding and not a multi-stage or system combination. Table 10.2
shows more detail about the studied features and their dimensions.

Category Feature Type # of Features
(L) Lexical (unigram/bigram) word sequence 14K/58K
(G) Grapheme (unigram/bigram) grapheme sequence 37/1.1K
(N) Sentence Duration general 1
(N) Word count lexical 1
(N) Character count lexical 1
(N) Grapheme alignment GER details 6
(D) Frames count decoder features 1
(D) Average loglikelihood decoder 1
(D) Total AM loglikelihood decoder 1
(D) Total LM loglikelihood decoer 1

Total: 14,450 unigrams and 59,513 bigrams.

Table 10.2: Features used for WER estimation.

10.2.3 Classification Back-end

We deployed a feed-forward neural network as a backend classifier for e-WER.
The deployed network in this work has two fully-connected hidden layers (ReLU
activation function), with 128 neurons in the first layer and 64 neurons in the
second layer followed by a softmax layer. A minibatch size of 32 was used, and
the number of epochs was up to 50 with an early stopping criterion. Figure 10.1
illustrates the deployed DNN system architecture. We report mean absolute error
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Figure 10.1: DNN architecture.

(MAE) and root mean square error (RMSE) for estimating the total number of
errors ( ˆERR) and the total number of words (N̂) per sentence.

10.3 Data

The e-WER training and development data sets are the same as the Arabic
MGB-2 development and evlauation sets [Ali et al., 2016], which is comprised
of audio extracted from Al-Jazeera Arabic TV programs recorded by Brightcove
in the last months of 2015. The e-WER training and development sets come
each comprise 10 hours of audio that were not used in the MGB-2 training data.
(Other episodes of the same program may have been included in the training set).
For more details about the MGB-2 development and evaluation, see section 7.2.1.
To test whether our approach generalises to test sets from a different source, and
not tuned to the MGB-2 data set, we validated our results on another three hours
of test set collected by BBC Monitoring during November 2016, as part of the
SUMMA project2. The SUMMA data is referred to as the test set. All data was
manually segmented and labelled. Table 10.3 shows more details about the data
used for these experiments.

10.4 Experiments and discussions

We trained two DNN systems to estimate N̂ and ˆERR separately. We explored
training both a black-box based DNN system (without the decoder features)

2http://summa-project.eu
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Train Dev Test
Number of programs in corpus 17 17 24
Utterances 58K 56K 1.4K
Duration (in hours) 9.9 10.2 3.2
2-20 words sentences 96% 95% 96%
Word count (N) 75K 69K 20K
ASR word count (hyp) 58K 60K 18K
WER 42.6% 33.1% 28.5%
Sentence Error Rate (SER) 88.7% 89.1% 86.0%
Total INS 1.9K 1.8K 130
Total DEL 19.1K 10.2K 2.6K
Total SUB 11.1K 10.8K 2.9K
ERR count (ERR) 32.1K 22.8K 5.7K

Table 10.3: Analysis of the train, dev and test data.

MAE/Dev MAE/Test
ˆERR N̂ e-WER ˆERR N̂ e-WER

glass-box 1.60 1.75 13.78 1.65 1.69 12.29
black-box 1.81 2.16 28.38 1.97 2.32 24.68

Table 10.4: MAE per sentence reported for the glass-box and black-box features.

and a glass-box system using the decoder features. Overall, four systems were
trained: two glass-box systems and two black-box systems. We used the same
hyper-parameters across the four systems. Tables 10.4 and 10.5 present the e-
WER performance in terms of MAE and RMSE per sentence for ˆERR, N̂ and the
estimated WER for the dev and test sets with reference to the errors computed
using a gold-standard reference. As expected, the glass-box features help to
reduce MAE and RMSE for both ˆERR and N̂ . Although the difference between
the black-box estimation and the glass-box results is not big for ˆERR and N̂ , we
can see that the impact becomes substantial on the estimated WER per sentence,
which is almost double the error in both MAE and RMSE per sentence.

Table 10.6 reports the overall performance on the dev and on the test set.
Across the 17 programs in the MGB-2 dev data, the actual WER is 33.0%, and the
glass-box e-WER is 29.32%, while the black-box e-WER is 30.87%. Evaluating
the same models on the 24 programs test data results in an actual WER of 28.51%,
while the glass-box e-WER is 25.35%, and the black-box e-WER is 30.25%.
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RMSE/Dev RMSE/Test
ˆERR N̂ e-WER ˆERR N̂ e-WER

glass-box 2.20 2.14 18.32 2.32 2.15 16.88
black-box 2.43 2.71 36.13 2.6 2.88 35.01

Table 10.5: RMSE per sentence reported for the glass-box and black-box features.

Actual/estimated WER
Data Reference glass-box black-box
Dev 33.03% 29.32% 30.87%
Eval 28.51% 25.35% 30.25%

Table 10.6: Overall WER across dev and eval data set.

Tables 10.4 and 10.5 show the glass-box features outperformed the black-
box features in predicting both ˆERR and N̂ . Furthermore, the performance of
the estimated WER per sentence in the glass-box is substantially better than
the black-box for both development and test sets. Table 10.6 (and also figure
10.2) indicates that the glass-box estimate is systematically lower than the black-
box estimate. To further visualise these results, figure 10.2 plots the cumulative
WER and e-WER across the three hours of test set. This plot indicates that the
glass-box estimate is continually lower than the black-box estimate. The large
difference during the first 30 minutes arises owing to significant over-estimates of
the WER by the black-box system during the first 2-3 programs, as can be seen
in figure 10.2.

We estimate N̂ and ˆERR separately. Therefore, our system is capable of
estimating the WER at different levels of granularity.

Since the sentence is the smallest unit in the proposed framework, we tried to
visualise the performance of our prediction at the sentence level on the dev set.
Here, we plot the confusion matrix heat-map for predicting the total number of
errors and total number of words for each sentence. It is noticeable that most of
the heat is around the diagonal axis and when there is a shift, it is not far from
the right zone. Figure 10.3 shows the heat-map for predicting ˆERR, where we
can see most of the intensity in the diagonal with less than ten words. This is
expected since the overall WER is less than 30%. On the other hand, figure 10.4
shows the heat-map for word count N̂ , where we can see most of the intensity
between 5-15 words. The test set has a similar pattern for the confusion matrix.
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Figure 10.2: Test set cumulative WER over all sentences, x-axis is duration in hours
and y-axis is WER in %.
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Figure 10.5: Total word count estimated over 24 programs in the test data.

Finally, we visualise the prediction per program, and we can see that predict-
ing the total word count N̂ in figure 10.5 shows the glass-box results are slightly
better than the black-box. Similarly, in figure 10.6, the glass-box prediction out-
performs the black-box in predicting total error count ˆERR per program. In
scenarios such as media-monitoring, where the main objective is to have a robust
monitoring system for specific programs, we plot the WER across the 24 programs
in the test set, and we can see in figure 10.7 that both the glass-box and black-box
estimation are following the gold-standard WER per program. However, unlike
predicting word count N̂ or error count ˆERR, we can see that the black-box,
in general, over-estimates the WER, while the glass-box system under-estimates
WER similar to figure 10.2. It is not very clear which system is better. One can
argue from figure 10.7 that the decoder features are not helping in programs with
high WER. We found both systems to be useful for reporting WER per program.
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Figure 10.6: Total error count estimated over 24 programs on the eval data.
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Figure 10.7: WER estimated over 24 programs on the eval data.
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10.5 Conclusions

This chapter presented our efforts in predicting speech recognition word error
rate without requiring a gold-standard reference transcription. We presented a
DNN-based classifier to predict the total number of errors per utterance and the
total word count separately. Our approach benefits from combining word-based
and grapheme-based ASR results for the same sentence, along with extracted
decoder features. We evaluated our approach per sentences and per program.
Our experiments have shown that this approach is highly promising to estimate
WER per sentence and we have aggregated the estimated results to predict WER
for complete recordings, programs or test sets without the need for a reference
transcription. For future work, we shall continue our investigation into approaches
that can estimate the word error rate using convolutional neural networks. In
particular, we would like to explore combining the DNN numerical features with
the CNN word embedding features. Another line of research worth exploring
is the possibility to build a language-independent module for word error rate
estimation.



Chapter 11

Conclusions

11.1 Overview of contributions

This thesis investigated multi-dialect Arabic automatic speech recognition (ASR)
with no prior knowledge about the spoken dialect. There are three main chal-
lenges in dialect Arabic ASR: (1) finding labelled dialectal Arabic speech data,
(2) building robust dialectal speech recognition with limited labelled data and
(3) evaluating speech recognition for dialects with no orthographic conventions.
Below, we summarise our contributions and findings, and we explore possible
future work.

11.1.1 Arabic dialect identification

We developed a dialectal Arabic (DA) corpus and we investigated different ap-
proaches to build robust Arabic dialect identification (ADI) system using acous-
tic and linguistic features. Chapter 5 featured our effort in labelling the multi-
dialectal speech corpus, which we collected from Al Jazeera TV channel. The
corpus contains 850 hours with approximately 18% DA speech. We used crowd-
sourcing to annotate a multi-dialectal speech corpus. We obtained utterance
level dialect labels for 57 hours consisting of four major varieties of DA, namely:
Egyptian, Levantine, Gulf, and North African. Using speaker linking to identify
utterances spoken by the same speaker and label accuracy based on annotator
behavior, we automatically labelled an additional 94 hours. We showed that us-
ing crowdsourcing to label samples from each speaker at the beginning and at the
end of an audio segment resulted in labels for all of that speaker’s speech and the

147
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results are suggestive of a regular practice of codeswitching between one’s native
dialect and modern standard Arabic (MSA) – as shown in table 5.6. Chapter 6
was dedicated to approaches designed and optimised for ADI for Arabic broad-
cast speech. In our work, we proposed Arabic as a five-class dialect challenge
comprising of the previously mentioned four dialects as well as MSA. We investi-
gated different approaches for ADI in broadcast speech. These methods are based
on phonotactic and lexical features obtained from a speech recognition system,
and acoustic features using the i-vector framework. We studied both generative
and discriminative classifiers, and we combined these features using a multi-class
support vector machine (SVM), deep neural network (DNN) and convolutional
neural network (CNN). We validated our results on an Arabic/English language
identification task, with an accuracy of 100%. We also evaluated these features
in a binary classifier to discriminate between MSA and DA, with an accuracy of
100%. We reported results using the proposed methods to discriminate between
the five most widely used dialects of Arabic with an overall accuracy of 73%.
We discussed dialect identification errors in the context of dialect codeswitching
between DA and MSA, and compared the error pattern between labelled data,
and the output from our classifier. All the data used in our experiments have
been released to the public as a dialect identification corpus.
Future work for ADI: Our dialect identification study has two limitations:
First, we restricted Arabic to five major dialects, while many more exist. A
potential future direction for ADI is to increase the granularity of the task to
account for more dialects – often multiple dialects per country. For example,
we have seen annotators often disagree on speech from countries like Jordan to
be classified as Gulf or Levantine. In a preliminary study, we found Youtube to
be a good platform to harvest lots of speech data in a semi-supervised way per
country. Second, we can address the DA codeswitching challenge as a dialect
diarization problem as opposed to a classification problem. Speakers regularly
codeswitch between one’s native DA and MSA. As we saw in table 5.6 and figure
6.7, long utterance yields worse accuracy.

11.1.2 Arabic speech recognition

We introduced our effort in building Arabic ASR, and created an open research
community platform to advance it. We have two main contributions: first, cre-
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ating a framework for Arabic ASR that is publicly available for research; second,
building a robust Arabic ASR system with limited labelled data leading to com-
petitive WER results, which can be used as a potential benchmark to advance
the state of the art in Arabic ASR.

• Creating a framework for Arabic ASR that is publicly available for research.
We addressed our effort in building two multi-genre broadcast (MGB) chal-
lenges. MGB-2 for the 2016 Spoken Language Technology (SLT-2016) con-
ference [Ali et al., 2016]. The second version of the MGB challenge em-
phasised the handling of diversity in the broadcast news domain in Arabic
speech. Audio data comes from 19 distinct programmes from the Al Jazeera
Arabic TV channel between March 2005 and December 2015. The pro-
grammes are split into three groups: conversations, interviews, and reports.
A total of 1,200 hours have been released with lightly supervised transcrip-
tions for the acoustic modelling. For language modelling, we made available
over 130M words crawled from Al Jazeera Arabic website Aljazeera.net

for a 10 year duration 2000-2011. Two lexicons were provided; one phoneme
based and one grapheme based. The MGB-3 for the 2017 Automatic Speech
Recognition and Understanding (ASRU-2017) [Ali et al., 2017b], which is
the third version of the MGB challenge, emphasised DA ASR using a multi-
genre collection of Egyptian YouTube videos. Seven genres were used for
the data collection, namely: comedy, cooking, family/kids, fashion, drama,
sports, and science (TEDx). A total of 16 hours of videos, split evenly across
the different genres, were divided into adaptation, development and evalu-
ation data sets. The MGB-3 has three targets; (a) dealing with languages
which do not have well-defined orthographic systems, Egyptian Arabic in
particular, (b) Multi-genre scenarios: seven different genres are included in
the challenge, and (c) low-resource scenarios: only 16 hours of in-domain
data was provided. Overall, thirteen teams submitted ten systems to the
challenge. We outlined the approaches adopted in each system, and sum-
marised the evaluation results.

• Building a robust Arabic ASR system and reporting a competitive word er-
ror rate (WER) to use as a potential benchmark to advance the state of the
art in Arabic ASR. Our overall ASR system for the MGB-2 is a combination
of the five acoustic models (AM); named as unidirectional long short term

Aljazeera.net
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memory (LSTM), bidirectional LSTM (BLSTM), time delay neural net-
work (TDNN), TDNN layers along with LSTM layers (TDNN-LSTM), and
finally TDNN layers followed by BLSTM layers (TDNN-BLSTM). The AM
was trained using the purely sequence trained neural networks lattice-free
maximum mutual information (LF-MMI). We also performed data augmen-
tation using speed perturbation with speed factors of 0.9, 1.0, 1.1, followed
by volume perturbation uniformly sampled from the interval [1

8 , 2.0]. This
gave us three times the original training data. Given that Arabic is a phono-
logically complex language, the lexicon size was 1.3M words. Our acoustic
units represent the character in the surface form of the words instead of
phone units. As for the language model, we deployed n-gram LM for de-
coding; 4-gram for first pass decoding and LM rescoring. In addition to
recurrent neural network language model with MaxEnt connections RN-
NME for n-best rescoring. The word error rate (WER) for the final system
is 13%, which is the lowest WER reported on this task.

11.1.3 Dialect speech recognition evaluation

The standard word error rate (WER) assumes a single reference is sufficient for a
single speech utterance, which is not true for languages and dialects lacking ortho-
graphic conventions. We examined appropriate methods for evaluating dialectal
speech recognition:

• Multi-reference word error rate (MR-WER): We proposed a novel
approach for evaluating ASR using multi-references. For each recognised
speech segment, we asked n (five in our study) different users to transcribe
the speech. We combined the alignment for the multiple references, and
we used the combined alignment to report a modified version WER. This
approach is in favor of accepting a recognised word if any of the references
typed it in the same form. Our approach showed promising results for two
dialects, namely Egyptian and North African. The proposed MR-WER
approach is similar to BLEU in machine translation (MT) evaluation.

• Dialectal word error rate (WERd): In this study, we continued our
effort in evaluating dialectal ASR with no orthographic rules. We auto-
mated the multi-reference in MR-WER by learning different writing from
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Twitter data. We automatically mined more than 500M tweets in an un-
supervised fashion to build more than 11M n-to-m lexical pairs, and we
proposed a new evaluation metric inspired by the MT community, namely
the translation edit rate metric with paraphrases TERp. Indeed, WERd
(or WER for dialects) borrowed ideas from TERp for dialectal ASR, with
a paraphrase table (in our case, a spelling variants table). Our experiments
and our manual analysis show that this is a very promising idea.

Future work for dialectal ASR evaluation: We plan experiments with other
dialects and non-standardised language varieties. We also want to incorporate
word embeddings in the process of computation, e.g., character-based, which can
naturally tolerate some spelling variation [Bojanowski et al., 2016]. We further
want to explore using weighted finite state transducers (WFST) as an alternative
way to allow using multiple spelling variants for both references and hypothe-
ses. Another line of research that is worth exploring is integrating MR-WER
and WERd for ASR systems such as a new technique for discriminative training
objective function.

11.1.4 Word error rate estimation (e-WER)

Measuring the performance of ASR systems requires manually transcribed data
in order to compute the WER, which is often time-consuming and expensive.
In chapter 10, we proposed a novel approach to estimate WER, or e-WER,
which does not require a gold-standard transcription of a test set. Our e-WER
framework used a comprehensive set of features, namely: ASR recognised text,
grapheme recognition results to complement recognition output, and internal de-
coder (glass-box) features. We reported results for the two features sets: black-
box and glass-box using unseen 24 Arabic broadcast programs. Our system
achieved 12.3% WER mean absolute error (MAE) and 16.9% WER root mean
square error (RMSE) across 1,400 sentences. The estimated overall WER e-WER
was 22.9% for the 3 hours test set, while the actual WER was 28.5%. For future
work, we shall continue our investigation into approaches that can estimate the
word error rate using convolutional neural networks. In particular, we would like
to explore combining the DNN numerical features with the CNN word embedding
features. Another line of research worth exploring is the possibility of building a
language independent module for word error rate estimation.
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11.2 Future work

Our investigations concerned both dialectal Arabic and modern standard Arabic
in the broadcast domain. Future work can apply the sequence-to-sequence mod-
elling, which provides simple and elegant architecture. In such a system, acoustic
models, language models, and pronunciation dictionary are mingled in one single
network. Chan et al. [2015] introduced the attention-based sequence-to-sequence
model, namely listen, attend and spell (LAS) approach, which has showed su-
perior performance compared to other sequence-to-sequence model for a single
dialect. Recently, Li et al. [2017] adopted the LAS framework for multi-dialect
modelling. The dialect-specific information is incorporated into the model by
modifying the training targets by inserting the dialect symbol at the end of the
original grapheme sequence and also feeding a one-hot representation of the di-
alect information into all layers of the model. Similar approach can be applied
to multi-dialect Arabic speech recognition.
The variational autoencoder (VAE) has shown to be effective for domain mis-
match between training and testing. Hsu et al. [2017] proposed unsupervised
domain adaptation for robust speech recognition. Such technique can poten-
tially be used for dialect mismatch between dialect and MSA. Since, there are
considerable amount of transcribed data in modern standard Arabic and limited
transcribed dialectal data as shown in chapter 7, VAE approach can be used for
dialect adaptation in unsupervised way.
Recent advances in CNN and LSTM modelling along with character aware lan-
guage model [Ling et al., 2015, Kim et al., 2016] seem to be promising approach to
deal with the non-orthographic rules in dialectal Arabic for multi dialect Arabic
ASR, such as open vocabulary word representation.
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Appendix A

MGB-3 Submissions and Results

In this appendix, we highlight some of the major features in the submitted systems
in the MGB-3 challenge (introduced in chapter 7). Participants were asked to
submit results for the MGB-2 and MGB-3 Arabic test sets. Participants submit-
ted one primary submission and as many contrastive submissions as they wished.
We scored and ranked results based on the primary submissions. The test set
was manually segmented and only non-overlapping speech was used for scoring.

Aalto University1: The novelties of the Aalto ASR system Smit et al. [2017]
come from using TDNN-BLSTM acoustic models trained on 1,022 hours filtered
from the MGB-2 training data, and adapted using the MGB-3 dialectal Egyp-
tian data. Further improvement came from creating systems using subword and
character-based language models (lexicon-free). The final submission was a min-
imum Bayes risk (MBR)-decoded system combination of over 30 systems using
two acoustic models and a variety of language models (character-, subword- and
word-based). Aalto achieved the best results 37.5% AV-WER and 29.25% MR-
WER.

NDSC-THUEE The NDSC-THUEE system Yang et al. [2017] used a TDNN
followed by unidirectional LSTM layers or bidirectional LSTM (BLSTM) lay-
ers for the acoustic model. Their overall system makes use of speaker adaptive
training, knowledge distillation-based domain adaptation, and MBR for system
combination. Finally, they used an RNNLM for rescoring to generate their re-
sults. They achieved 40.8% AV-WER and 32.5% MR-WER.

1spa.aalto.fi/en/research/research_groups/speech_recognition/
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Johns Hopkins University (JHU2): The JHU Kaldi system Manohar et al.
[2017], Povey et al. [2011] trained seed acoustic models using 982 hours filtered
from the MGB-2 training set using speaker diarization and audio-transcript align-
ment, which was used to prepare lightly supervised transcriptions. They used a
TDNN-LSTM acoustic model with a lattice-free (LF) MMI objective followed
by segmental MBR (sMBR) discriminative training. For supervision, they fused
transcripts from the four independent transcribers into confusion network training
graphs. They achieved 40.7% AV-WER and 32.8% MR-WER.

MIT3: The MIT system Najafian et al. [2017] used both the MGB-2 and MGB-3
data to train a wide range of acoustic models: DNN, TDNN, LSTM, BLSTM,
and prioritized grid LSTM (BPGLSTM) trained using LF-MMI. They used both
the Kaldi and the CNTK toolkits. They applied 40 rounds of data augmentation
to the MGB-3 data, and combined this with the MGB-2 data for acoustic domain
adaptation. They used the full MGB-2 data without data filtering. They achieved
44.9% AV-WER and 36.8% MR-WER.

Brno University of Technology (BUT)4: The BUT submission Veselỳ et al.
[2017] addressed the task as a low-resource challenge. Their system trained
BLSTM-HMM models using 250 hours. They integrated speaker diariazation to
improve speaker adaptation. They investigated the integration of the four tran-
scriptions into acoustic model training, by using them serially (including each
sentence four times into the training data, once with each transcription). An
alternative, parallel, approach consisted of combining all the annotations into a
confusion network. They achieved 53.4% AV-WER and 46.8% MR-WER.

Table A.1 summarises the main features of all the submitted systems. We can
conclude that the leading teams benefitted from transfer learning and audio adap-
tation by building background acoustic models using the MGB-2 data and aug-
menting the five hours of in-domain MGB-3 training data. Also, language mod-
elling approaches, such as lexicon adaptation and higher order n-gram and RNN
LM rescoring, also made positive contributions to the overall systems. Only the
Aalto team used subword language modeling to deal with the non-orthographic
nature of the dialectal speech in the MGB-3 data. Finally, BUT and JHU ex-

2clsp.jhu.edu
3csail.mit.edu
4speech.fit.vutbr.cz

clsp.jhu.edu
csail.mit.edu
speech.fit.vutbr.cz
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Aalto JHU NDSC-THUEE BUT MIT
Used MGB2 data (in hours) 1,022 982 680 250 1,200

MGB3 domain adaptation (transfer learning) X X X X X

Subword modeling X - - - -
RNNLM rescoring X X X - -
Speaker diarization - X - X -

FST (confusion matrix) - X - X -
Low-resource - - - X -
AM (NN)
LSTM - - - - X

BLSTM - - - X X

BPGLSTM - - - - X

TDNN X - - - X

TDNN-LSTM X X X - -
TDNN-BLSTM X - X - -

Table A.1: Main features in the submitted systems for Arabic speech-to-text tran-
scription.

Aalto JHU NDSC-THUEE BUT MIT
Comedy AV-WER 51.4 55.0 54.3 67.7 58.0
Comedy MR-WER 42.4 45.7 46.2 61.5 50.0
Cooking AV-WER 38.2 43.1 43.8 57.1 46.7
Cooking MR-WER 30.9 36.1 37.2 52.0 40.1

FamilyKids AV-WER 30.6 35.3 33.9 49.6 38.0
FamilyKids MR-WER 24.2 27.7 26.9 44.0 31.3
Fashion AV-WER 40.5 42.2 40.4 54.8 45.1
Fashion MR-WER 30.9 31.5 30.9 46.9 35.44
Drama AV-WER 28.7 32.7 30.7 41.7 34.9
Drama MR-WER 19.9 24.2 22.5 34.6 27.0
Science AV-WER 31.1 36.6 35.4 48.2 39.4
Science MR-WER 23.1 27.7 27.2 41.4 31.6
Sports AV-WER 45.2 49.0 48.7 64.2 52.1
Sports MR-WER 36.0 39.1 43.9 57.6 42.7
MGB3 AV-WER 37.5 40.7 40.7 53.4 44.9
MGB3 MR-WER 29.3 32.8 32.5 46.8 36.8

Table A.2: Error rates (AV-WER and MR-WER over four reference transcriptions)
per genre for Arabic speech-to-text transcription for the MGB-3 Egyptian Arabic test
set.
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plored combining the four transcriptions into a confusion matrix, allowing an
alignment process to choose the best transcription.

WER per transcriber Overall
WER1 WER2 WER3 WER4 AV-WER MR-WER

Aalto 38.0 37.7 37.4 36.9 37.5 29.3
NDSC-THUEE 41.5 40.1 40.7 40.8 40.75 32.5
JHU 42.1 42.4 41.4 41.1 40.7 32.8
MIT 45.4 45.4 45.5 44.2 44.9 36.8
BUT 55.0 55.2 54.3 54.4 53.4 46.8

Table A.3: Summary of speech-to-text transcription results for MGB-3 data. WERs
are given for each of the four references (produced by different transcribers), as well
as average WER (AV-WER) and multi-reference WER (MR-WER) across the four
references.

Table A.2 presents the error rates per genre for each of the submitted systems.
In this table, we show both AV-WER across the four transcribers per genre, and
the MR-WER. The most accurate system is consistently more accurate across
all genres (with a small exception for the fashion genre). We also note that the
ordering of systems by AV-WER and MR-WER can change, in particular, at
higher error rates. For example, results for comedy and science are not consistent
between JHU and NDSC-THUEE. The overall ranking is still consistent using
the two evaluation metrics. We ranked all the submitted systems with respect
to MGB3 AV-WER and MGB3 MR-WER in order. Table A.3 summarises the
overall results, sorted by the best results.


