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Abstract
Methods for learning optimal policies often assume that the way the domain is con-

ceptualised—the possible states and relevant actions that are needed to solve one’s

decision problem—is known in advance and does not change during learning. This is

an unrealistic assumption in many scenarios. Often, new evidence can reveal important

information about what is possible, not just what is likely, or unlikely. A learner may

have been completely unaware such possibilities even existed prior to learning.

This thesis presents a model of an agent which discovers and exploits unforeseen

possibilities from two sources of evidence: domain exploration and communication

with an expert. The model combines probabilistic and symbolic reasoning to estimate

all components of the decision problem, including the set of belief variables, the

possible actions, and the probabilistic dependencies between variables. Unlike prior

work on solving decision problems by discovering and learning to exploit unforeseen

possibilities (e.g., Rong (2016); McCallum and Ballard (1996)), our model supports

discovering and learning to exploit unforeseen factors, as opposed to an additional

atomic state. Becoming aware of an unforeseen factor presents computational challenges

when compared with becoming aware of an additional atomic state, because even a

boolean factor doubles the size of the decision problem’s hypothesis space as opposed

to increasing it by just one more state. We show via experiments that one can meet

those challenges by adopting (defeasible) reasoning principles that are familiar from

the literature on belief revision: roughly, default to simple models over more complex

ones and default to conserving what you’ve learned from prior evidence.

For one-step decision problems, our agent learns the components of a Decision Network;

for sequential problems, it learns a Factored Markov Decision Process. We prove

convergence theorems for our models, given the learner’s and expert’s strategies for

gathering evidence. Furthermore, our experiments show that the agent converges on

optimal behaviour even when it starts out completely unaware of factors that are critical

to success.
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Lay Summary
When learning to how to identify the best plans of action in a given environment,

humans have the remarkable ability to adapt what they already know to totally new and

unforeseen information. For example, when we are taught a new skill, we can easily

imagine how we might apply that skill in scenarios we have encountered previously.

Similarly, when we ask someone a question about what will happen in a given situation,

their answer might not just merely tell us what is most likely from a list of outcomes we

had already anticipated. Instead, they might inform us of an outcome that we had never

even thought of. Despite not expecting this answer, we can integrate such information

into our previous understanding of the world without much difficulty.

Most artificial intelligence systems, on the other hand, have become very good at

analysing large amounts of data so as to find the optimal solution to a given task,

but only provided that all the actions the system is allowed to take, as well as all

the outcomes that can possibly occur are explicitly specified in advance. If, mid-way

through the task, the system is informed of some previously unforeseen action it can take,

or encounters an unforeseen concept that it so far hasn’t considered when distinguishing

one state of affairs from another, then the system will not know how to adapt what it’s

already learned to incorporate these unforeseen possibilities and then learn to exploit

them.

This thesis takes a different approach and presents an artificial intelligence system that

learns not just from raw data, but also from advice from an informed expert. In this way,

our system mirrors the teacher-apprentice model of learning, which is common between

humans. Our informed expert can interject during the task with advice and corrections,

which may include concepts our system was previously completely unaware of. We

provide a method by which our system can integrate this new unforeseen concept into

its existing model of a task, and thereby continually grow its awareness of the given

problem.
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Chapter 1

Introduction

1.1 Motivation

This thesis explores the problem of an agent learning optimal policies when it starts

unaware of factors that are critical to solving its task. In typical machine learning tasks,

a learner starts with some fixed set of hypotheses, but is uncertain about which of them

is the most likely (and is perhaps also uncertain about the rewards they will obtain

from the possible outcomes of their actions). In this thesis, “unawareness” has a much

stronger meaning, concerning the ignorance of something’s existence as opposed to its

relative likelihood—what if the learner was initially unaware of the set of hypotheses

itself?

Consider the following medical example: Suppose a decision making agent prescribes

a drug which it has learned from past experience is effective at treating a certain illness.

However, a senior pharmacologist later objects to the prescription based on a reason

totally unforeseen by the agent—the patient carries a newly discovered genetic trait,

and the drug produces harmful side effects in its carriers. Instead, the pharmacologist

suggests prescribing to the patient a new topical cream (which the agent had not

previously heard of), which is slightly less effective at treating the illness, but does not

produce harmful side effects. These unforeseen discoveries (becoming aware of the

existence of the new genetic trait and new topical cream) may occur after the agent

has already learned quite a lot about how other (foreseen) factors impact the drug’s

effectiveness.

This example illustrates at least three challenges, the combination of which typically is

11



12 Chapter 1. Introduction

not handled by current methods for learning optimal behaviour (Chapter 2 contains a

detailed discussion of related work):

1. In addition to starting ignorant of the probabilistic structure of the decision

problem, the relative likelihood among possible states and the range of rewards

they engender, the agent starts unaware of even the true set of possible actions

and states themselves.

2. Domain exploration alone might not be enough to discover these unknown factors.

For instance, it is unlikely the agent would discover the concept of a new genetic

trait by just continuing to prescribe drugs and observing their effect. Expert

instruction may be necessary to overcome unawareness.

3. An expert might interject with relevant advice during learning, not just at the

beginning when the initial model of the problem is designed.

As Coenen et al. (2017) point out, such scenarios are common in human discussion—the

answer to a question may not only provide information about which of the questioner’s

existing hypotheses are likely, but also reveal unforeseen consequences not yet con-

sidered. This example also shows that it is often infeasible for an agent to gather an

exhaustive explanation of all relevant factors prior to learning. A domain expert may

find it difficult or impossible to express all details of a decision problem in advance due

to lack of knowledge, cognitive constraints on either the expert or learner, or limitations

on communication. However, it may be easy for an expert to offer contextually relevant

advice during learning.

There are many other examples of such scenarios are in the real world. The invention of

vaccinations or the creation of new financial instruments are examples of discovering

new actions in medicine and finance. The discovery of syphilis added a previously

unknown consequence to the act of sex.1 Another example is in robotic skill learning.

Methods like Cakmak and Thomaz (2012) enable an expert to teach a robot how to

perform a new action, but not necessarily when it is optimal to use it (the latter task

being the focus of this thesis). In lifelong learning scenarios, there is a need for flexible

and robust responses to a vast array of contingencies (Silver, 2011; Thrun and Pratt,

2012). We would like such a robot to continually add to its knowledge, and revise

the hypothesis space of possible states and actions within which decisions are made.

In this context, there is a need for autonomous model management (Liebman et al.,

1These examples are from Karni and Viero (2013)
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2017), which calls for reasoning about what the hypothesis space is, in addition to

policy learning within those hypothesis spaces.

Current learning and decision making models do not address such issues; they assume

the task is to use data to refine a distribution over a fixed hypothesis space. In these

frameworks, any change to the set of possible hypotheses constitutes a unrelated

problem. The above examples, however, illustrate a sort of reverse bayesianism (Karni

and Viero, 2013), where the hypothesis space itself expands over time.

An inevitable consequence of a learner starting out unaware of critical factors is that

its conceptualisation of the domain might be deficient: it fails to discriminate among

states where a crucial factor (which the agent is unaware of) takes different values. In

light of this, one might be tempted to side-step the difficult problem of overcoming

unawareness of states and actions, and instead represent unawareness implicitly via

an infinite number of hidden variables (Doshi-Velez, 2009; Wood et al., 2006), or

abandon learning a structured model and use densely connected layers of hidden nodes

to learn optimal behaviour directly from raw sensory input (Mnih et al., 2015). Deep

reinforcement learning in particular (e.g. Mnih et al. (2015)) has proved useful for

learning implicit representations of large problems, particularly in domains where

sensory input is complex and high-dimensional (e.g. computer vision). However, in

many such models, the focus of attention for abstraction and representation learning

is on perceptual features rather than probabilistic relations (see e.g. (Pearl, 2018))

and other decision-centric attributes. For instance, in work by Chen et al. (2015),

who demonstrate an end-to-end solution to the problem of autonomous driving, the

decisions are not elaborated beyond “follow the lane” or “change lanes” although

significant perceptual representation learning may need to happen in order to work with

the predicate “lane” within the raw sensory streams (often relying on millions or billions

of data trials). For safety critical reasons, or ones involving significant investment (e.g.

driving a car, advising on a medical procedure, deciding on crops to grow for the year) it

is important that a system can explain the reasoning behind its decisions so the user can

trust its judgement. This issue lies behind recent major funding initiatives in explainable

AI (e.g., DARPA-BAA-16-53 (2016)).

We instead propose a system which explicitly overcomes its unawareness, and constructs

an interpretable structured model of the problem.
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1.2 Contributions

This thesis presents an agent that, in a complementary approach to representation

learning in batch mode from large data sets, uses evidence and a reasoning mechanism

to incrementally construct an interpretable model of a decision problem from which

optimal policies can be computed. The main contributions of this thesis are:

1. We provide a model for learning in which an agent starts unaware of the existence

of factors on which an optimal policy depends, then learns optimal behaviour

via direct experience and expert advice. The learning proceeds incrementally

such that, at every step of the task, the agent is able to produce a compact and

interpretable model representing its beliefs about the variables and probabilistic

structure of the task. Crucially, the agent can revise all components of its model.

This means not just the probabilistic dependencies between variables (Chapter

3), but also the domain of the reward function, and the set of state variables and

actions itself (Chapters 4 and 5).

2. We specify a communication framework via which an expert offers advice to

the agent during learning: that is, advice is offered in reaction to the agent’s

latest attempts to solve the task, rather than all expert input being provided prior

to learning. By offering contextual advice in a piecemeal manner, we have

worked towards ensuring the interaction between the agent and expert builds

upon dialogue moves that would be quite natural between a human expert and

learner (for example, correcting the agent when they make a sub-optimal move, or

helping the agent resolve a conflict between its current model and the latest piece

of evidence). This contrasts with fully exhaustive explanations of a task, which

may be impossible for a human expert to articulate due to lack of knowledge,

cognitive constraints, or limitations on the method of communication.

Under our model, the expert advice can include mentions of factors which the

agent didn’t know existed, thereby exposing the agent to unforeseen possibili-

ties. This advice provides important qualitative information to complement the

quantitative information conveyed by statistical correlations in the domain trials.

What is not covered in this thesis is the pervasive ambiguity that is inherent in

natural language, which is beyond the scope of our work. Rather, the signals

that the agent and expert exchange are more like formal semantic representations
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of natural language utterances, once parsed and disambiguated as the speaker

intended (see Sections 4.2.1 and 5.3.1 for details).

3. We state theorems and proofs which show that our agent-expert dialogue strategy

is one where the learner is guaranteed to eventually become aware of all the

actions and variables necessary to express the true optimal policy (see Theorems

1 and 4 on pages 59 and 93 ).

Our model also guarantees that the learner, at all times, assumes a (graphical)

model of its decision problem which is well-formed and consistent with all

evidence it has observed so far (see Theorem 2, page 60). We can therefore

guarantee that the learner’s model can be used to compute what the learner

currently believes to be an optimal policy. This is typically not an issue for

standard learning tasks where the hypothesis space is completely known in

advance of learning, but is one which must be carefully considered when evidence

can expand a learner’s conceptualisation of the decision problem.

4. We conduct experiments across a suite of both hand-crafted problems from

existing literature (which have been chosen on the grounds that they represent

practical real-world problems) and randomly generated decision problems (which

demonstrate our method’s robustness to problems of varying complexity). These

experiments demonstrate that, in practice as well as in theory, the agent can learn

the optimal policy from evidence, even when initially unaware of variables that

are critical to its success (Sections 4.4, 5.4)

1.3 Task Overview and Scope

For a given decision problem, our agent’s overarching goal is to learn a model which

guides it towards an optimal decision policy. As is traditional in AI, we adopt a

Savagean model of rational action (Savage, 1972): the agent’s action is an optimal

trade-off between what it prefers and what it believes it can achieve. More formally, for

a one-step decision problem, this means the agent will take the action a∗ which, given

observed evidence e, maximizes its expected utility:

a∗ = argmax
a∈A

EU(a|e) = argmax
a∈A

∑
s∈S

P(s|a,e)R (s) (1.1)
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Here, R (s) is the reward function, which gives the real-valued reward received for

entering state s. The distribution P(s|a,e) gives the probability of entering state s given

observed evidence e and that the agent took action a.

As is standard in learning tasks, the agent may not initially know R or P(s|a,e), and

so must estimate them via trial-and-error in the task, or by receiving advice from an

informed expert. However, the core issue in this thesis is that the agent faces the extra

difficulty of starting unaware of certain possible actions a ∈ A, or is unaware of certain

states s ∈ S on which the optimal policy depends. To put this another way, the agent

starts out not knowing the set A nor the state space S . The task then, is to use evidence

from both domain exploration and expert advice to learn the optimal policy, despite

beginning with an initial model defined over an incomplete set of possible states and

actions, with incorrect dependencies among them, and a possibly incorrect reward

function. Each chapter addresses increasingly complex versions of this core scenario.

Chapter 3 sets up some preliminaries for the rest of the thesis by describing a method for

learning the probabilistic structure of a problem from data. Our key contribution here is

to show that existing methods for learning Bayesian Networks (BNs) can be extended

to the case where not all belief variables are known prior to learning, but are added

incrementally during learning. Chapter 4 then builds on this initial framework to show

how an agent can learn not just the probabilistic structure of a problem, but also learn

an optimal policy for taking actions within single-stage environments. This chapter also

shows the mechanism by which the agent actually overcomes its initial unawareness.

Chapter 5 then extends the agent’s capabilities further to deal with sequential tasks,

where the agent’s current actions may affect not just its current immediate reward, but

also have long-term effects on future states and rewards.

To restrict the scope of our task, this thesis deals exclusively with decision problems

where all variables have finite and discrete values. The tasks considered are also all

stationary. This means that the true properties of the underlying decision problem do

not change over time. Further we assume that all variables are fully observable once

an agent becomes aware of them. This means that, for example, if an agent becomes

aware of a variable Xi at time step t, then the agent can observe the value of this variable

at all subsequent time steps t ′ > t.2

2We do not, however, make the much stronger assumption that the agent can re-perceive past domain
trials upon discovering an unforeseen factor. In our example, this means that the agent cannot go back
and observe the value of Xi at time steps t ′ < t.
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The primary goal of the work in this thesis is to show that, under our model, it is

possible for an agent to overcome its initial unawareness and learn all relevant factors

necessary to learn the true optimal policy for a given task. Additionally however, we

also investigate whether the intuitive principles used to guide the design of our learner

actually result in better performance.

One of these principles is that of Minimality. Minimality is essentially a form of

Occam’s razor, which means that we prefer simple models over complex ones. This

preference already underpins most existing model-based learning techniques (Koller,

2009), as simpler models not only make inference and learning more computationally

tractable, but also tend to generalize better to unseen data.

We also investigate the value of Conservativity in incremental learning. Conservativity

is the compelling intuition that when the learner discovers a new unforeseen possibility,

they should preserve as much as possible about what they inferred from past evidence,

even when this new discovery forces them to revise their current model to remain

consistent with new evidence. Conservativity underlies existing symbolic models of

common-sense reasoning (Poole, 1993; Hobbs et al., 1993; Alchourrn et al., 1985),

the acquisition of probabilistic dependencies (Bramley et al., 2016; Buntine, 1991)

and preference change (Hansson, 1995; Cadilhac et al., 2015). These principles are

deliberately stated in broad terms here in the introduction, as they influence design

decisions across many parts of the learning model. We will highlight throughout

the thesis the explicit algorithms, formulas and properties of the model where these

principles manifest.

In general, the results of this thesis offer several key insights:

• It is feasible to build agents that learn optimal policies even when they start out

unaware of the existence of almost all critical factors, and even on relatively large

decision problems (e.g., those featuring upwards of a million atomic states).

• Using algorithms which favour minimal complexity allows one to keep the

learning of complex decision problems tractable without harming the learner’s

ability to eventually converge upon the optimal policy (Section 4.4).

• Having an agent conserve its previous beliefs upon discovering previously un-

foreseen factors has a number of advantages. Not only does it prevent the quality

of the agent’s learned model from degrading throughout learning (Section 3.3),

but also results in faster convergence to the optimal policy in terms of both
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computational time and number of trials (Sections 4.4 and 5.4).

• Depending on the application domain, one can choose to trade-off the quality of

the agent’s learned policy against the amount of time the expert spends giving

advice to the agent. This can be done by altering the expert’s tolerance towards

the agents mistakes (Sections 4.4 and 5.4).



Chapter 2

Related Work

This chapter provides an overview of related literature dealing with both symbolic and

statistical approaches to decision-making and learning. In particular, it highlights how

such works deal with unawareness, and the gap our work fills in this area.

2.1 Decision Theory and Preference

The traditional analysis of rational action optimises the trade-off between what you

prefer and what you believe can achieve (Savage, 1972). This notion is typically

formalized as maximizing expected utility (See equation (1.1) in the introduction).

However, such formalisms assume the hypothesis space — the set of possible states S
and actions A—is fixed and known in advance. Changing the hypothesis space under

this framework essentially amounts to considering an unrelated decision problem. In

this thesis, our agent discovers new states and actions through growing awareness,

but instead of treating the expanded hypothesis space as an unrelated problem, it uses

its experience before the discovery to inform its behaviour and inferences after the

discovery.

Some recent works do integrate unawareness into a theory of decision making. Karni

and Viero (2013) present a set of representation theorems and update principles which

formalize an agent’s growing awareness about a hypothesis space. Such representations

are framed as Reverse Bayesianism: Bayesian methods consider the complete hypothesis

space, then shrink the space of plausible states as evidence reveals which states are

unlikely. Reverse Bayesian methods start with an incomplete view of the hypothesis

19
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space and expand the set of plausible states as evidence reveals new possibilities. Such

work is valuable in that it shows that a principled theory of rational action exists even in

the face of expanding awareness, and many of the theorems for updating beliefs which

result as a consequence of the axioms of their representation (e.g. that the likelihood

ratios over existing beliefs should be preserved when new possibilities are introduced)

align with the intuitive principle of Conservativity (Section 1.3) that the model in this

thesis is based upon.

This thesis builds on such theorems to explore how an agent could discover these gaps

in awareness in the first place via trial and error and dialogue (4.2.1). Additionally,

Karni and Viero (2013) remain neutral on the specific structure the agent’s probabilistic

beliefs should take, and consequently provide no algorithms which support modelling

dependencies among probabilistic factors within a given domain. Such probabilistic

structure allows one to exploit probabilistic independencies during learning and infer-

ence, and are therefore necessary to scale these tasks to cope with the complexity of

practical and realistic decision problems (e.g., it is not unusual for the domain to admit

millions of atomic states). This thesis explores how such updates on growing awareness

might be applied to explicit structured representations, such as decision networks and

factored markov decision processes. These allow us to analyse larger problems by

providing a compact representation of the joint probability distribution of the problem.

One further difference is that, while Karni and Viero (2013) provide a set of important

foundational theorems, they do not test the performance of their models empirically.

This thesis focuses on evaluating the empirical performance of such approaches to

unawareness in a concrete implementation of a learning agent.

Karni and Viero (2017) go further, allowing the agent to imagine that their current

conception of the hypothesis space is incomplete as part of its decision policy, even if

the agent is unsure what they might be unaware of. Agents who do not consider this

possibility are “Myopic”, since they always evaluate actions as if their current view of

the hypothesis space is complete, even if they have expanded their awareness in the

past. These considerations present an interesting problem, but are outside the scope of

this thesis. The agent presented in subsequent sections considers the utility of actions in

the “Myopic” sense described above.

Discovering a new state or action may prompt revisions of the reward function itself

rather than just the probability distribution over belief states. However, current models
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of preference which support revision on discovering an unforeseen possibility assume

a qualitative preference model (Hansson, 1995; Cadilhac et al., 2015). Following

Cadilhac et al. (2015), we use evidence to dynamically construct an ever more specific

partial description of preferences (with the agent defaulting to indifference to produce a

complete preference function from the partial description). Unlike Cadilhac et al. (2015),

the learning agent uses evidence to estimate numeric payoffs rather than qualitative

preference relations.

2.2 Unawareness Logics and Game Theory

There is a growing body of work on how to model unawareness as an epistemic concept

within agents (Fagin and Halpern, 1987; Board et al., 2011). These theories deal with

the problem of developing a logically precise model of the agent’s unawareness of

particular facts.

Other work approaches these issues from a game-theoretic perspective (Feinberg, 2004;

Halpern and Rego, 2013; Heifetz et al., 2013) and focus on when the agent’s unaware-

ness causes it to deviate from truly optimal behaviour (and how an adversary might

exploit such gaps in awareness).

However, all such work interprets awareness from an omniscient perspective which is

capable of modelling all possible options. A fully aware agent (e.g. the domain expert

in this thesis) or an analyst can model an unaware agent in this way, but it does not

characterise the unaware agent’s own subjective perspective (Li, 2008). In contrast, our

learning task requires the unaware agent to use evidence to expand and change its set of

possible options.

2.3 Structure Learning for Decision Problems

As part of its task, the agent must learn and revise an interpretable model of the decision

problem to incorporate newly discovered actions and concepts. Hence, part of the task

is to incrementally learn the domain’s probabilistic structure. Several approaches exist

for jointly learning probabilistic dependencies in an online setting (Bramley et al., 2016;

Buntine, 1991; Friedman, 1998; Alcobe, 2005) and also for exploiting causal structure
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to speed-up inference (Albrecht and Ramamoorthy, 2016).

This thesis extends this work in three main ways to meet the objectives described in

Chapter 1. First, current models for learning dependencies all assume that the vocabulary

of belief variables does not change during learning, but in our task it changes when the

agent becomes aware of an unforeseen action or concept. Second, since optimal actions

depend on payoffs as well as beliefs, this thesis integrates learning dependencies with

learning potential pay-offs. Third, our model uses both domain trails and expert advice

as evidence. Methods such as Buntine (1991) can technically support the incorporation

of expert evidence too, but only if the messages are about probabilistic relations and are

all declared before learning. In contrast, our model interleaves dialogue and learning.

This enables the expert to offer advice in a timely and contextually relevant manner,

which means they can explain particular outcomes and correct mistakes. There are many

scenarios where a human expert cannot articulate to full extent their skill and expertise

in a lengthy monologue prior to learning; they can, however, react in a competent way

to specific scenarios that the learner and expert encounter as the learner attempts to

learn the task.

There has been some work on inferring the probabilistic structure and utilities of other

agents using influence diagrams (Bielza et al., 2010; Nielsen and Jensen, 2004; Suryadi

and Gmytrasiewicz, 1999). More broadly, work on inverse reinforcement learning

(Rafferty et al., 2015; Herman et al., 2016; Wu et al., 2018) attempts to estimate

an agent’s beliefs and preferences based on observing their actions. However, the

majority of such work assumes the task is simply to learn a reward function for the

agent given full knowledge of its probabilistic beliefs about the world, or attempts to

estimate probabilistic parameters given a fixed, known structure. Our work considers

the scenario in which the agent may start unaware of the probabilistic structure, or even

the set of variables which are relevant to optimal behaviour.

One alternative way to think about modelling probabilistic dependencies in an incom-

plete hypothesis space is to represent factors the agent may be unaware of as a potentially

infinite number of latent (hidden) variables. Such non-parametric approaches to struc-

ture learning (e.g. Wood et al. (2006)) leverage Monte-Carlo sampling techniques to

form a distribution over a number of potential structures with an unbounded number of

latent variables. This technique is valuable for discovering latent structure within an

existing data set. However, such methods stop short of seeking out explanations for what

these latent structures actually represent in terms of the underlying decision problem.
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Our model instead takes the approach of attempting expand and repair the model when

such deficiencies are discovered, linking unforeseen possibilities to explicitly named

state and action variables via contextual expert advice.

2.4 Reinforcement Learning and Sequential Decisions

The literature on learning optimal policies for sequential decision problems includes

methods for dealing with numerous types of change, such as noise in sensing and

actuation (Da Silva et al., 2006), and non-stationary rewards (Besbes et al., 2014).

Such methods have also been applied in situations involving hidden variables (e.g. with

Partially Observed Markov Decision Processes (Leonetti et al., 2011)) or in cases where

the learner must reason about the underlying probabilistic structure of the problem

(e.g. with Factored Markov Decision Processes (Degris et al., 2006)). However, these

methods require all possible states and actions to be known in advance of learning. In

contrast, our agent learns these components from evidence.

There are a few notable exceptions in the reinforcement learning (RL) literature, which

attempt to relax the standard assumption that all possible states and actions are known in

advance of learning. Rong (2016) define Markov Decision Processes with Unawareness

(MDPUs), which can learn optimal behaviour when an agent starts unaware of some

actions. They apply MDPUs to a robotic-motion task with around 1000 discretised

atomic states. The agent uses an explore move, which randomly reveals useful motions

they were previously unaware of.

Our work differs from theirs in several ways. First, we provide a concrete mechanism

for discovering unforeseen factors via expert advice, rather than random discovery from

the agent’s own exploration. This gets us closer to supporting interactive task learning

(Laird et al., 2017) of the kind which happens between a human apprentice and expert.

Second, we allow the agent to discover explicit belief variables rather than atomic

states, and focus more on exploiting the inherent structure present in problems with

large numbers of features. This enables us to conduct experiments in Section 4.4 with

upwards of a million distinct atomic states (as compared to the roughly 1000 atomic

states in the experiments of Rong (2016)).

Another exception is the family of selective perception methods, such as the U-tree

algorithm of McCallum and Ballard (1996). These methods were designed for problems
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where the true state space may technically be available, but is infeasibly large to reason

with. The U-tree method initially treats all states as indistinguishable, then recursively

splits states in two as the agent discovers significant differences in their expected reward.

The agent thus learns an increasingly complex representation of the state space as and

when observable evidence justifies the increase in complexity. The U-Tree algorithm is

a powerful approach to handling large sequential decision problems. However, there

are three main learning tasks that our model supports that the U-tree algorithm does

not. First, our model accommodates situations where the agent is made aware of an

entirely new possible action, while the U-Tree algorithm assumes that the set of actions

remains fixed. Secondly, our model learns from (qualitative) evidence provided by

a domain expert, as well as evidence from trial and error. Thirdly, our model learns

unforeseen concepts and probabilistic relations among them, while the U-tree algorithm

does not reason about which dimensions define the state space, nor their probabilistic

dependencies. This third difference is related to the second: we ultimately want our

model to enable an agent to learn about the domain and how to behave in it from a

human expert, and it is quite natural for a human to justify why one state is difference

from another on the basis of concepts on which optimal behaviour depends by saying,

for instance “wrapping an item in bubble-wrap makes it less likely to break”. Our model

supports learning from this type of evidence.

As explained in Chapter 5, model-based sequential problems require us to provide

not just a graphical structure that captures the probabilistic dependencies among the

variables defining the hypothesis space, but also to one to exploit the structure present

in the reward and policy functions. To maintain tractability throughout the problem,

our method uses decision trees (Boutilier et al., 2000), but there is a wide literature

on alternative structured representations of rewards and policies (Hoey et al., 1999;

Guestrin et al., 2003; Boutilier et al., 2001; van Otterlo, 2009). The focus of this thesis

however is not on exploring the most efficient structured representations (something

which is often domain-specific) but rather on showing generally how such structured

representations can be built upon to accommodate a hypothesis space which grows with

the agent’s own awareness.

Deep reinforcement learning (Mnih et al., 2015) also aims to learn a suitable abstraction

of the data to enhance convergence toward optimal policies. Deep reinforcement

learning combines deep learning (i.e. a convolutional network or CNN (Bengio, 2013;

Hinton et al., 2006)) with reinforcement learning, and has proven extremely useful (e.g.
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see Chouard (2016)). However, the major successes in deep reinforcement learning

have not so far considered changing state-action spaces in the sense of the examples

discussed in Chapter 1 (e.g., discovering a new genetic trait or possible treatment in

the case of the medical example). Instead, the focus has been on using a large number

(typically, in the millions or tens of millions) of domain trials to re-describe a large

state-action space in terms of abstracted versions that render policy learning more

tractable.

As argued previously however, we believe that without evidence conveyed by an outside

expert, an agent may never find out the parts that are missing from their initial model.

If we wish to accommodate a learning process which allows the integration of expert

advice during learning, then our model for learning must be incremental and be able

to handle updates from qualitative information as well as quantitative information.

Unfortunately, expert evidence about causal relations (“X causes Y”) or preference (“If

C is true, then doing X is better than doing Y”) are inherently symbolic. Adjusting

weights in a sub-symbolic representation like a CNN so that it satisfies certain qualitative

properties is currently an open problem. Another limitation is that implicit models

generated by DRL lack explainability–they are unable to elaborate on why a given

action was recommended over another. Our approach complements methods like

DRL by dynamically building an interpretable model of the decision problem. Such

interpretable models make it easier for the agent to explain the reasons behind a given

decision, and also allow the agent to evaluate its interpretation of expert messages

against its current conceptualisation of the decision problem via the standard logical

technique of model checking.

2.5 Dialogue and Active Learning

There are several areas of research in which expert evidence is used to improve the

performance of a learning agent. In Transfer Learning—where knowledge of the

optimal policy for a source task is used to improve performance on a related target

task (Taylor and Stone, 2009)—the transfer of knowledge is sometimes captured via

an expert “giving advice” to a learner (Torrey et al., 2006). Typically, both the source

and target task must belong to the same domain. If they do not, an explicit mapping

is usually provided from the states and actions in the source task to the states and

actions in the target task. In contrast, our agent incrementally learns a single task, but is
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occasionally made aware of new concepts, which it must learn to accommodate into

its current knowledge, which in turn has been learned from prior evidence. Another

difference is that in transfer learning, the expert advice is all declared before the agent

begins learning. In our model, the agent and expert engage in a dialogue throughout

learning.

Knox and Stone (2009, 2010) use human expert evidence to inform RL, but they

confine this evidence to updating the likely outcomes of actions and their rewards; they

do not support cases where expert evidence reveals information that the agent was

not aware was possible. On the other hand, researchers have developed models for

learning optimal policies via a combination of domain actions and natural language

instructions, where the instructions may include neologisms, whose semantics the agent

must learn (e.g. Liang (2005)). However, this work assumes that the neologism denotes

an already known concept within the agent’s abstract planning language. For example,

on encountering the neologism “block”, the agent’s task is to learn that it maps to the

concept block that is already an explicit part of the agent’s domain model. In contrast,

we support learning optimal policies when the neologism denotes a concept that the

agent is currently unaware of; e.g. to support learning when block is not part of the

agent’s conceptualisation of the domain.

Forbes et al. (2015) use embodied natural language instructions to support teaching a

robot a new skill (a task known as learning by demonstration). Their model learns how

to map a natural language neologism to what might be a novel combination of sensory

values—in this sense, the meaning of the neologism may be an unforeseen concept—

and this novel concept then informs the task of learning new motor controls. In effect,

this work links a rapidly growing body of research on learning how to ground natural

language neologisms in embodied environments (known as the symbol grounding

problem (Siskind, 1996; Hristov et al., 2017) with learning a new skill. What it does

not support is integrating the newly acquired skill into an existing hypothesis space

consisting of other actions, consequences and rewards; so they do not support learning

optimal policies when both this new skill and other actions (and related concepts) are

needed.

Our aim in this thesis is to supply a complimentary set of learning algorithms to this

prior work. Like Forbes et al. (2015), our agent learns from both trial and error and

from instruction. Instead of focussing, as they do, on learning how to execute a new

skill however, we instead focus on learning when it is optimal to execute it. Given
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that we wish to support larger planning tasks, we also broaden the goals to discovering

and learning to exploit arbitrary unforeseen concepts, not just the learning of spatial

concepts that Forbes et al. (2015) are limited to (see also Dobnik et al. (2012)). On

the other hand, natural language ambiguity makes extracting the hidden message from

natural language utterances a highly complex process (Grice, 1975; Bos et al., 2004;

Zettlemoyer and Collins, 2007; Reddy et al., 2016). We bypass this complexity by

using a formal language as the medium of conversation. This formal language can be

broadly construed as the kind of language one uses to represent the output of natural

language semantic parsing (Artzi and Zettlemoyer, 2013). Replacing the expert that

we deploy in our experiments with an expert human would require linking the model

we present in this thesis with existing work on grounded natural language acquisition

and understanding. Additionally, we also bypass learning how to compute referents

that are denoted by the speaker’s message in the visual environment (i.e. we do not

tackle the problem of grounded language acquisition). Instead, when the speaker utters

a neologism, we simply supply the agent with the ability to sense its value in subsequent

states that the agent experiences. Ultimately, to build an agent which learns directly

from natural language input from a human teacher, one would need to combine our

current model (which models how to exploit unforeseen domain factors) with natural

language acquisition and understanding techniques. This is an ambitious task which is

beyond the scope of this thesis, but forms a major focus of our future work.

In the taxonomy of traditional machine learning tasks, interaction with an expert (or

oracle) is often categorised as an instance of active learning (Settles, 2009). In active

learning, rather than passively observing evidence from a sequence of domain trials, a

learning agent is given some control over which kinds of evidence it observes. Often

this control is exercised by requesting evidence from an expert.

Murphy (2001) describes an active learning framework in which the agent can fix the

value of certain state variables in each upcoming observation. This effectively allows

the agent to perform causal interventions, allowing them to more effectively discover the

causal dependencies between variables. Masegosa and Moral (2013) take this further

and allow the agent to ask about explicit edges in the probabilistic structure itself. In

both these papers however, they assume that the set of state variables is fixed and

known in advance. This means, for example, that the expert cannot tell the agent that a

probabilistic dependency exists between a variable that the agent asked about and some

entirely new variable which the agent is currently unaware of. As mentioned previously,
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our model allows for expert evidence which may result in an expansion of the agent’s

current vocabulary. Another minor difference is that, to evaluate which question about

probabilistic dependency will offer the largest information gain, the agent in Masegosa

and Moral (2013) must calculate a probability distribution over all possible probabilistic

structures (or approximate one using monte-carlo sampling methods) using the entire

batch of data observed so far. Such a procedure is expensive and difficult to integrate

into an on-line learning scenario. In contrast, our agent asks questions in response

to conflicts between the current piece of evidence and its current model, or when it

explicitly fails to learn a valid model.

Lakkaraju et al. (2017) tackle learning “unknown unknowns” via interaction with

an oracle. This work addresses a specific type of unawareness: an agent assigns an

incorrect label to a trial with high confidence. Crucially however, they assume that the

correct label for this trial must be a label that the agent is already currently aware of.

In other words, they exclude the option that the hypothesis space itself is incomplete,

which is the type of unawareness that we are interested in.



Chapter 3

Incremental Learning of Bayesian

Networks with Expanding Awareness

In this chapter, we introduce the concept of unawareness as it relates to probabilistic

beliefs. We start by showing how an agent incrementally learns both the probabilistic

structure and parameters of a problem by learning a Bayesian Network. We then show

how an agent can adapt what it has learned so far upon becoming aware of previously

unforeseen variables.

The contribution of this chapter is to take existing incremental methods for learning BNs

and adapt them to account for the discovery of unforeseen variables during learning.

We show through experiments on several well-known BN learning problems that our

learner converges to an accurate model of the underlying distribution (and accurate

representation of that distribution’s structure) even when initially unaware of important

belief variables. Further, by conserving information learned from past data each time

a new belief variable is discovered, our model is able to learn with more consistency

than one which abandons such information to start learning “from scratch” in the newly

expanded hypothesis space.

In later chapters, we build on these initial techniques by applying them to decision

problems where an agent must deal with unawareness of actions and rewards, as well

as just belief variables. Further, we will later build on the abstract notion of “expanding

one’s awareness” outlined in this chapter by providing a concrete mechanism by which

an agent can become aware of unforeseen factors via discussion with an informed

expert.

29
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Figure 3.1: The Asia BN. Arrows between nodes indicate probabilistic dependencies

between variables

We begin by summarizing bayesian networks and techniques to learn them when the

agent is fully aware of all belief variables in the hypothesis space (but is ignorant of

the conditional independence among variables in the domain, and of the probability

distributions). In subsequent chapters, we then extend this problem to one where the

agent begins unaware of relevant variables in the hypothesis space.

3.1 Learning Bayesian Networks with Full Awareness

Bayesian networks (BNs) decompose the state space of a problem into a set of belief

variables X = {X1, . . .Xn}. Each state s is a joint assignment to all variables in X
(i.e., s ∈ v(X )). A BN is a directed acyclic graph (DAG) denoted Pa, and parameters θ

which exploit the conditional independencies between variables in X . For each X ∈ X ,

PaX ∈ Pa is the parent set of X . Given PaX , the value of X is conditionally independent

of all Y ∈ X \PaX which are non-descendants of X . The parameters θX ∈ θ then define

the conditional probability distributions θX = P(X |PaX). Figure 3.1 gives an example

of the Asia network used in some of the experiments at the end of the chapter. We

can see for example that a patient’s chances of getting tuberculosis are independent of

whether they smoke, have lung cancer, etc., if we know whether they have been to Asia

(because Patub = {asia}).
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Given X , we can learn the most likely structure Pa∗ and parameters θ∗ from observed

data D0:t = [d0, . . . ,dt ] (where di ∈ v(X )) by learning P(Pa|D0:t) and P(θ|D0:t ,Pa). A

common way to calculate P(Pa|D0:t) is to use the Bayesian Dirichlet Score (BD-Score)

(Heckerman et al., 1995):

P(Pa|D0:t) ∝ ∏
X∈X

BDt(X ,PaX) (3.1)

BDt(X ,PaX) = P(PaX)∏
j∈v(PaX )

β(Nt
0| j +α0| j, . . . ,Nt

m| j +αm| j)

β(α0| j, . . . ,αm| j)
(3.2)

Here, β(n1, . . . ,nm) is the multivariate beta function, and Nt
X=i|PaX= j is the number

of states in D0:t where X has assignment i and its parents have joint assignment j.1

For example, the term Nt
lung=1|smoke=0 describes the number of trials in D0:t where the

patient has lung cancer, but doesn’t smoke. The αi| j parameters come from the dirichlet

prior over θ and act as a “pseudo-count” when data is sparse:

Dir(θX | j|~α) =
∏i∈v(X)θ

αi| j
i| j

β(α, . . . ,α)
(3.3)

We typically choose the prior P(Pa) to penalize complex structures, as in equation (3.4)

which assigns a cost of ρ < 0.5 for each extra parent:

P(PaX) = ρ
|PaX |(1−ρ)|X \PaX | (3.4)

3.1.1 Reducing the space of “Reasonable” Parent Sets

Unfortunately, evaluating the full posterior of (3.1), or even finding its maximum, is

infeasible for even a moderate number of variables, as the number of possible BNs is

hyper-exponential on the size of X (Tian and He, 2009). To tackle this, most methods

approximate Pa∗ via either local search (Teyssier and Koller, 2005), sampling methods

(Madigan et al., 1995), or by restricting the search space of structures to those considered

1Where the context is clear, we have compressed this notation to Nt
i| j
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reasonable, given evidence so far (Buntine, 1991). For our task, we have another issue—

most BN learning methods (with some notable exceptions (Buntine, 1991; Friedman

and Goldszmidt, 1997; Alcobe, 2005; Yasin and Leray, 2013)) operate once on a single

batch of data, and thus consider collecting the sufficient statistics (i.e., the BD-scores of

each PaX and their associated Ni| j) to be a negligible pre-computed cost. In a decision

problem however, agents gather data incrementally and exploit their current beliefs

during learning, so we must update the sufficient statistics at each time step.

To address these issues, we follow Buntine (1991) by constructing a reasonable parent

lattice PX for each X . Starting from /0, we construct larger parent sets by combining

sets seen so far, and track the highest scoring set according to (3.2). Any parent-set with

a score lower than some proportion κ of the best score is considered “unreasonable”,

and is not expanded further.2 This makes Buntine’s model defeasibly minimal, in the

sense that it assumes that adding further variables to an unreasonable parent set won’t

ever make it reasonable.

Figure 3.2 shows an example lattice for the possible parent sets of X1. Starting from

the empty set, the algorithm first computes the BD-scores of all size 1 parent sets—

{X2},{X3},{X4}, and {X5}. The BD-score of X5 falls below the threshold proportion

κ of the highest scoring parent set X2, so it is marked as “unreasonable” and not con-

sidered further. Next, the algorithm considers all size 2 combinations of the remaining

reasonable parent sets — {X2},{X3}, and {X4}. At this point, {X3,X4} falls below the

minimum threshold, and so is also marked as “unreasonable”. This process contin-

ues until either the lattice is fully expanded, or all remaining leaf nodes are marked

unreasonable.

3.1.2 Finding the Optimal Structure with ILP

Once we have our reduced set PX for each X , we can find the combination of reasonable

parent sets which maximize (3.1) and form a valid DAG. In our task, we will eventually

be learning X , so cannot assume we know a total-ordering ≺ over X (as Buntine (1991)

does), and thus cannot choose each Pa∗X independently. For instance, it might be that

{asia} is locally the most likely parent set for tub, and also that {tub} is the most likely

2In contrast to Buntine (1991), since we do not know ≺ in advance, we also consider all subsets of a
reasonable parent set to be reasonable. This makes it so it is always possible to construct at least one
valid DAG, regardless of how aggressively the search space is pruned.
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{X2}

{X2, X3}{X2, X4}

{X3}

{X3, X4}

{X4} {X5}

{X2, X3, X4}

Ø

Figure 3.2: Parent lattice for X1. Grey nodes are unreasonable

parent set for asia, but we cannot include both Patub = {asia} and Paasia = {tub} in

our final BN without creating a cycle.

Instead, following Bartlett and Cussens (2017), we treat finding Pa∗ as the linear

program given below:

max ∑
X∈X

∑
PaX∈PX

I(PaX → X) ln[BD(X ,PaX)]

s.t. ∑
PaX∈PX

I(PaX → X) = 1 ∀X

∑
X∈C

PaX∩C= /0

I(PaX → X)≥ 1 ∀C ⊆ X

I(PaX → X) ∈ {0,1} ∀X ,PaX

(3.5)

The variables I(PaX → X) denote whether we chose PaX as X’s parent set, while the

constraints ensure each X has only one parent set and that the parent sets form a DAG.

Once we have learned the most likely structure Pa∗, we can learn its most likely

parameters θ∗ via (3.6):

Eθ|D0:t ,Π(θi| j) =
Ni| j +αi| j
N.| j +α.| j

(3.6)

Our method has three main advantages. First, reducing the number of reasonable parent

sets and using the modular BD-score means we can incrementally update the probability

of each PaX using past calculations of (3.2) via (3.7):3

3We include a proof of (3.7) in the appendix.
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BDt(X ,PaX) = BDt−1(X ,PaX)
Nt

i| j +αi| j−1

Nt
.| j +α.| j−1

(3.7)

Second, expressing structure learning as a linear program makes it easy to add extra

structural constraints later (as we do in Chapter 4). Third, each lattice PX implicitly

captures an approximate distribution over each X’s parents.4 The lattice in figure 3.2

for instance approximates the posterior distribution P(PaX1 |D0:t). In Section 3.2, the

agent uses this distribution to conserve information as its awareness of X expands.

Algorithm 1 gives an overview of how the agent updates its current beliefs about Pa∗

and θ∗ given the most recent trial dt . In most time steps, the agent simply incrementally

updates its previous sufficient statistics for each of the reasonable parent sets, then

chooses the combination of parent sets which maximizes the linear program given by

(3.5). However, if a significant amount of time τ has passed, we may wish to update

the set P of reasonable parent sets by re-running the lattice update method described in

Section 3.1.1

Algorithm 1 Updating BN (Fixed Belief Variables)

1: function UPDBN(P t−1,Nt−1
i| j ,dt)

2: if t ≡ 0 (mod τ) then
3: Revise P t ,Nt

i, j, P(PaX |D0:t) via lattice update (Buntine, 1991) (threshold κ)

4: else
5: P t−1← P t

6: Nt
i, j← Update with dt ,Nt−1

i, j for all i ∈ v(X), j ∈ v(PaX),X ∈ X ,PaX ∈ P t
X

7: P(PaX |D0:t)← Calculate via (3.7) for all PaX ∈ P t
X ,X ∈ X

8: Pa∗←Maximize (3.5)

9: θ∗← Calculate via (3.6)

10: return 〈Nt
i, j,P t ,Pa∗,θ∗〉

3.2 Adapting to growing awareness

The previous sections assumed the learner was aware (in advance of learning) of the

full set of belief variables X which define the hypothesis space of possible BNs. In this
4Technically, without ≺, each PX is a distribution over markov blankets for X , but we enforce

acyclicity, so this is not an issue.
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Time X1 X2

0 1 0
...

...
...

t−1 1 0

Time X1 X2 Z

0 1 0 ?
...

...
...

...

t−1 1 0 ?

t 0 0 1

Table 3.1: View of data before and after discovering Z.

section, we drop this requirement.

As an example, suppose the learner is initially aware of only two variables: X 0 =

{X1,X2}, and X 0 ⊂ X +, where X + is the true set of variables. We assume the learner

cannot observe the value of variables it is unaware of. In the medicine example from

the introduction for instance, you wouldn’t be able to assess the presence or absence

of gene X if you were unaware that gene X even exists. As a consequence, this means

at time step 0, the learner observes d0[X 0]—the projection of d0 onto the variables in

X 0. Now suppose at time t, the learner discovers a new variable Z which they were

previously completely unaware of, meaning X t = X t−1∪{Z}. How should the learner

adapt its current beliefs about the likely structure and parameters of the problem to

accommodate this discovery?

The first problem is that the agent’s current distributions over possible parent sets no

longer cover all possible parent sets. For example, the current distribution over PaX1

does not include the possibility that Z is a parent of X1. Worse, since the agent cannot

observe Z’s past values in D0:t , it cannot observe Nt−k
Z=i| j, or Nt−k

X=i| j when Z ∈ PaX

(0 < k ≤ t). The α-parameters involving Z are also undefined, and yet we need these

values to calculate structure probabilities via (3.7) and parameters via (3.6) in the

expanded hypothesis space.

Table 3.1 shows how introducing new variables makes the size of each (observed) state

dynamic, in contrast to standard learning problems where they are static. We could

try to phrase this as a missing data problem: Z was hidden in the past, but will be

visible in future states, so why not estimate the likely value of the missing data using

structural expectation maximization (Friedman, 1998)? However, such methods commit

us to expensive passes over the full batch of data (thus losing incrementality) and also

prevent us from decomposing the likelihood of a BN’s structure as combination of local
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parent-set probabilities.

Alternatively, we could just ignore states with missing information when counts involv-

ing the new variable are required. For example, we could use P(PaX1|Dt:n) to score

PaX1 when Z ∈ PaX1 but use P(PaX1|D0:n) when Z /∈ PaX1 . However, as Friedman and

Goldszmidt (1997) point out, Bayesian scores like (3.1) assume we are evaluating

models with respect to the same data. If two models are compared using different data

sets (even if they come from the same underlying distribution), the learner tends to

favour the model evaluated with the smaller amount of data (since we are typically

unable to compute the normalising factor P(D)). As such, comparing two models with

respect to different sets of data is an open problem.

Instead, our method discards the data D0:t−1 gathered during the learner’s previous

deficient view of the hypothesis space, but conserves the relative posterior probabilities

learned from the old, deficient view of the hypothesis space to construct a prior in the

expanded hypothesis space.

3.2.1 Structure Priors

We start by defining the distribution over the expanded set of parent sets. Upon

discovering the new variable Z at time t, the learner must update the distribution over

the parent sets PaX for each X 6= Z to include parent sets that include Z. Equation

(3.8) constructs a new prior Pt(PaX) using the old posterior (where C is a normalizing

constant):

Pt(PaX) = γPt(PaX |PX)+(1− γ)P0(PaX) (3.8)

Pt(PaX |PX) =
0 if PaX /∈ PX

(1−ρ)
C BDt−1(X ,PaX) if Z /∈ PaX

ρ

C BDt−1(X ,Pa′X) if PaX = Pa′X ∪{Z}

(3.9)

This update preserves the relative likelihood among the parent sets that do not include

Z. It is also maintains our bias towards simpler structures by re-assigning only a small

proportion ρ of the probability mass of a parent set that does not include Z to the parent
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set formed by adding Z to it. To make this concrete, imagine that before discovering

Z, the agent believes {X2} ∈ PX1 and BDt−1(X1,{X2}) = 0.8, with ρ = 0.1. Upon

discovering Z, the agent will update its beliefs to Pt(PaX1 = {X2}|PX1) =
0.9∗0.8

C and

Pt(PaX1 = {X2,Z}|PX1) =
0.1∗0.8

C .

This still leaves us to define a distribution over PaZ—the possible parent sets of the

newly discovered variable Z. The learner has no evidence on Z’s parents at the moment

of Z’s discovery, so defaults to using the initial prior from (3.4).

3.2.2 Parameter Priors

To estimate the parameters θt , we return to the issue of the counts Ni| j and the associated

α-parameters. As before, we wish to avoid the complexity of estimating Z’s past

values. Instead, we throw away the past states D0:t−1 and their counts Nt−1
i| j , but retain

the relative likelihoods they gave rise to by packing these into updated values for the

α-parameters, as shown in (3.10) (where K is a constant):

Nt
X=i|PaX= j = 0 for all i, j,X ,PaX

α
t
X=i|PaX= j =


K
|Z|P( j|θ∗t−1) if X = Z

K
|Z|P(i, j[PaX \Z]|θ∗t−1) if Z ∈ PaX

K ∗P(i, j|θ∗t−1) otherwise

(3.10)

Equation (3.10) summarizes the counts from states D0:t based on inferences from the

previous best BN, then encodes these inferences in the α-parameters of the new pa-

rameter prior. Returning to the Asia example from figure 3.1, imagine we discover a

new binary variable—HIV , which we think might affect a patient’s chances of con-

tracting tuberculosis, and have K = 5. We would then set αt
tub=1|asia=1,HIV=1 equal to

5
2 ∗P(tub = 1,asia = 1) | θ∗t−1). These revised α-parameters ensure that the likelihoods

inferred from past states bias the estimated likelihoods of Pa and of θ when subsequent

states arrive. Indeed, the larger K is, the more conservative the learner will be: i.e.,

the more the probability distribution it learned before discovering Z will influence its

reasoning about dependencies and CPTs after discovering Z.
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Algorithm 2 Learn BN in Expanding Hypothesis Space

1: function LEARN BN(X 0)

2: Initialize P 0,Pa0 via Eq. (3.4)

3: N0
i| j← 0 for all i, j,X ,ΠX

4: for t = 0 . . .maxTime do
5: if new variable Z discovered then
6: X t ← X t−1∪{Z}
7: Pt(PaX)← Update via (3.8) for all PaX ,X ∈ X t−1

8: Pt(PaZ)← Update via (3.4) for all PaZ

9: Nt
i| j,α

t
i| j ← Eq. (3.10) for all i, j,X ,ΠX

10: else
11: 〈X t ,P t ,Nt

i| j,α
t
i| j〉 ← 〈X

t−1,P t−1,Nt−1
i| j ,αt−1

i| j 〉

12: dt ← Generate new state

13: 〈Nt
i, j,P t ,Pat ,θt〉 ← UPDBN(P t ,Nt

i| j,dt)

14: return 〈Pat ,θt〉

3.2.3 Adapting the whole BN

Algorithm 2 outlines how the learner learns the structure and parameters of a BN

incrementally, despite being initially unaware of the full hypothesis space. If the set of

variables the learner is aware of remains stable, the learner updates its beliefs according

to the latest trial as in Algorithm 1. However, if the learner discovers a new variable,

then the learner uses equations (3.8) and (3.10) to conserve what it has learned so far

while expanding its view of the hypothesis space.

We evaluate the accuracy of the learner’s BN against the true BN by using a modified

version of the KL-Divergence between the two distributions:

DX
KL(P ‖ Q) =

1
|v(X \X P)| ∑

s∈v(X )

P(s[X P])

(
log

P(s[X P∩X ])

|v(X \X P)|
− log

Q(s[X Q∩X ])

|v(X \X Q)|

)
(3.11)

Equation (3.11) measures the similarity between distributions P and Q defined over

the sets of variables X P and X Q respectively. The closer DX
KL(P ‖ Q) is to zero, the
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better the proposed distribution Q is at representing P. Unlike standard definitions of

KL-divergence, (3.11) explicitly specifies X —the set of variables defining the state-

space one is measuring over. This is because, in our task, distributions P and Q may

be defined over different sets of variables. Since the distributions do not distinguish

between states where the values of a variable X ′ /∈ X P (or X ′ /∈ X Q respectively) differ,

such differences must be marginalized out in the measurement.

If the interval between discovering new variables is large enough, the conservative

priors created in Algorithm 2 should always provide a more accurate estimate of

the true underlying distribution than a learner which abandons previously learned

information and instead reverts to an uninformative prior upon discovering a new

variable. Proposition 1 below formalizes this notion:

Let BN+ = P(X +|Pa+,θ+) be the distribution over X + given the true BN, and BNt =

P(X t |Pat ,θt) be the distribution over X t given the BN learned by an agent at time t

following algorithm 2.

Further, let k be the interval between new variable discoveries. If the nth variable

is discovered at time kn, let BNkn
¬con = P(X kn|Pakn

¬con,θ
kn
¬con) be the distribution over

X kn given the BN learned a non-conservative learner— one which, upon discover-

ing a new variable, constructs new priors using (3.4), and by setting Ni| j = 0 and

αi| j = (|v(X ∪PaX)|)−1 for all X ,PaX , i, j. The following proposition holds:

Proposition 1. If DX kn

KL (BN+ ‖ BNkn+(k−1)) ≤ DX kn

KL (BN+ ‖ BNkn) for n = 0, . . . ,N−1,

then DX+

KL (BN+ ‖ BNkN)≤ DX+

KL (BN+ ‖ BNkN
¬con)

Outline Proof. First note that for any X ′ ⊆ X +, and any two distributions PA and

PB defined over X ′, if DX ′
KL(BN+ ‖ PA) ≤ DX ′

KL(BN+ ‖ PB), then DX+

KL (BN+ ‖ PA) ≤
DX+

KL (BN+ ‖ PB).

Combined with our initial premise, this implies that the KL-divergence between BN+

and BNkn has been monotonically decreasing at each value of n, and therefore that

DX+

KL (BN+ ‖ BNkN−1)≤ DX+

KL (BN+ ‖ BN0).

Since DX+

KL (BN+ ‖ BN0)=DX+

KL (BN+ ‖ BNkn
¬con) for any n, and since DX+

KL (BN+ ‖ BNkn−1)=

DX+

KL (BN+ ‖ BNkn
con) via the definitions of (3.8) and (3.10), it immediately follows that

DX+

KL (BN+ ‖ BNkN
con)≤ DX+

KL (BN+ ‖ BNkN
¬con).

The above proposition essentially states that (under certain conditions) conservativity
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ensures that on discovering a new variable, you start to learn within the newly expanded

hypothesis space with a bayesian network estimate that is closer to the true probabilistic

belief model than if you don’t adopt conservativity.

3.3 Experiments

Our experiments show that our method converges on an accurate model of the true BN’s

structure and parameters, even when the learner starts unaware of relevant variables.

Further, by conserving probabilistic information as the hypothesis space expands, our

learner maintains accurate models throughout learning, not just at the end of the learning

process (as predicted by Proposition 1).

Our primary evaluation metric is the KL-Divergence as defined in (3.11) over X+

between the true distribution P+ and the distribution Pt defined by the learner’s current

BN.

The other metric we use is to evaluate what the BD-Score (equation (3.1)) of the current

learned BN would have been given the full batch of data D0:T and full awareness X+.

This metric isolates how effective our algorithm is at discovering the inherent structure

of the data in isolation from the learned parameters by assessing how a fully aware

batch learner would rate the current BN.

We test our learner on four well-known BN learning problems: Asia (8 variables, 256

atomic states), Sachs (11 variables, 177147 atomic states), Child (20 variables, ≈ 109

atomic states), and Insurance (27 variables, ≈ 1013 atomic states). 5 Each experiment

runs over 10,000 trials that are generated from the true BN. This is repeated 10 times;

the results are averaged over these 10 simulations. For equations (3.4) and (3.8), we set

ρ = 0.1,γ = 0.99, and for (3.10) we set K = 5. We set the maximum parent-set size to

4, and the time interval and tolerance threshold for the Buntine lattice update to τ = 100

and κ = 0.001 respectively. When testing on a broad range of parameters, we found the

above settings yielded good results (and that changing those parameters did not appear

to alter the main findings reported below).

Our learner begins aware of just one variable (ie., |X 0|= 1), and is then introduced to

a new variable every 250 time steps (so the learner becomes fully aware of the entire

5Full specifications for each of the BNs above are available at
http://www.cs.huji.ac.il/˜galel/Repository/
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Figure 3.3: KL-Divergence of learned BNs from the true distributions

hypothesis space for Insurance, our largest BN, at state 6750).

We also compare our learner against two alternative models to test the effectiveness of

our assumptions. The non-conservative learner does not use equations (3.8) or (3.10) to

conserve information when a new variable is discovered, and instead discards previous

states and the probability distribution over BNs learned from them. This alternative

acts as a baseline model. Our upper-bound model, which we call the full-vocab learner,

starts out fully aware of the hypothesis space (i.e., X 0 = X+), but still has no knowledge

of the true structure or parameters.

3.3.1 Results

Our learner was able to learn an accurate model of the underlying distribution of all 4

BNs, despite being initially unaware of all but one of the variables in the true hypothesis

space. Figure 3.3 shows the KL-divergence between the true BN and the learner’s BN

at each time step. Notice that at any time step where a new variable is introduced, our

learner’s performance doesn’t degrade while the non-conservative agent’s performance



42 Chapter 3. Incremental Learning of Bayesian Networks with Expanding Awareness

0 2000 4000 6000 8000 10000
Time

3.0

2.9

2.8

2.7

2.6

2.5

2.4

2.3

2.2

Lo
g(

BD
e-

Sc
or

e)

1e4 Asia

conservative
fullVocab
noncon

0 2000 4000 6000 8000 10000
Time

9.5

9.0

8.5

8.0

7.5

7.0

Lo
g(

BD
e-

Sc
or

e)

1e4 Sachs

conservative
fullVocab
noncon

0 2000 4000 6000 8000 10000
Time

1.8

1.7

1.6

1.5

1.4

1.3

1.2

Lo
g(

BD
e-

Sc
or

e)

1e5 Child

conservative
fullVocab
noncon

0 2000 4000 6000 8000 10000
Time

2.2

2.1

2.0

1.9

1.8

1.7

1.6

1.5

1.4

1.3

Lo
g(

BD
e-

Sc
or

e)

1e5 Insurance

conservative
fullVocab
noncon

Figure 3.4: BD-Score of learned BNs

degrades considerably before improving again.

The same is also true of the BD-score, as shown in Figure 3.4. This indicates that the

agent is able to learn a probabilistic structure which accurately reflects the underlying

dependencies present in the data. To illustrate, figure 3.5 gives a typical example of the

structure learned by the default agent on the Asia network. As can be seen, the learned

structure is often almost identical to the true underlying BN, with a few minor exceptions.

First, while the key probabilistic dependencies are captured, the learner is often unable

to distinguish the causal directionality of dependencies from passive observation alone:

for example, in figure 3.5b, there is a directed edge from lung cancer to smoking, rather

than the other way around. Another difference is that the agent tends not to commit to

dependencies for which there is too little data: as another example, in figure 3.5b, the

agent does not commit to the dependency between visits to Asia and tuberculosis, as

patients who have actually visited Asia are extremely rare (P(Asia = true) = 0.01).

One discrepancy to note is that, in the long period near the end of each experiment

where the learner experiences a large number of states under the full hypothesis space,

the non-conservative learner eventually achieves marginally better performance than the
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Figure 3.5: Typical structure learned by default agent on Asia task

conservative learner. For example, at t = 10000, the (log) BDe-Score of the conservative

model is−1.345×105, while the non-conservative score is−1.328×105 (A difference

which is statistically significant for p = 1×10−10). There are two likely reasons for

this.

The first reason is that, given enough data, the data alone provides a fairly strong

estimate of the structure and parameters of the true model. A learner with a highly

concentrated prior which makes minor errors (i.e., the prior that the conservative learner

constructs via (3.8)) will take longer to move towards a model favoured by the data than

one with a prior which makes broad uniform predictions.

The second related issue is that while a prior with structural modularity like the BD-

score (i.e., a structural prior which can be decomposed into the sum of priors of

each variable’s parent set) makes learning tractable, it potentially incorrectly penalizes

structures which are actually quite close to the true BN. For example, consider an agent

that is currently aware of two variables—X and Y —and thinks the mostly likely BN

structure is Y → X . Upon discovering a new variable Z, an agent using equation (3.8)

to construct its new prior will initially rate the structure Z → Y → X as higher than

the structure Y → Z→ X . In subsequent chapters, where the agent has direct control

over action variables, or in sequential problems where the agent knows that one set of
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variables always occurs before another set, such issues present less of a problem, as the

agent has additional ordering information to guide its assessments.

3.4 Conclusion

In this chapter, we have provided a method to learn both the structure and parameters of

a Bayesian Network, even when lifting the common assumption the learner is aware

of all relevant belief variables in advance. Through experimentation on several well-

known Bayesian Networks, we have demonstrated that by conserving previously learned

information about structure and parameters, the learner is able to quickly converge on

an accurate model of the problem upon discovery of new variables in the hypothesis

space.

This chapter provides the groundwork for how to adapt a learner’s existing beliefs once

a new variable is discovered, but the explicit mechanisms of how such discoveries take

place was left unspecified. In the next chapter we elaborate on how such discoveries

can be made via conversations with an expert by specifying a dialogue protocol for two

agents with differing levels of awareness about the underlying problem. Further, we

expand our scope to problems where the agent must take actions within the environment,

rather than just passively observing it.



Chapter 4

Structured Decision Problems with

Unawareness

In this chapter, we move from models of belief to decision tasks, where the agent can

take actions and receive rewards. Our agent learns how to behave optimally by learning

a Bayesian Decision Network (DN): i.e., an extension of a Bayesian Networks with

action and a utility (reward) nodes (see Section 4.1.1 for full definition). Once again,

we start with an explanation of how the agent learns such models when it is fully aware

of all relevant factors, then go on to describe how the agent can learn optimal behaviour

when it starts unaware of the true set of belief and action variables, or the scope of the

reward function.

The other main contribution of this chapter is to describe the mechanism by which

the agent overcomes its own unawareness. In the previous chapter, the agent simply

“became aware” of previously unforeseen variables at regular intervals during learning.

In this chapter, we model a scenario closer to human teacher-apprentice learning,

where an agent becomes aware of previously unforeseen actions and belief variables

via discussion with an informed expert. This discussion uses an interaction policy

with dialogue moves which would be quite natural in human teaching and learning

environments.

A key point that is emphasised throughout this chapter is that we can now think of

evidence from both domain trials and expert assistance as giving not only information

about the relative counts of each state, but also monotonic information about the true DN

in the form of a partial description. This means our agent must ensure that its current

45
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model is valid in the sense that it is consistent with all such partial descriptions gathered

so far. In the typical case where the agent is fully-aware of the hypothesis space, such

validity is not much of a concern—the agent simply has to ensure that their current

model is well formed (i.e., that their current model is a directed, acyclic graph). In the

unaware case however, the agent must deal with validity in another sense— it must

ensure that its current model is actually capable of producing the evidence it has seen

so far. As we will see, if the current evidence is inconsistent with the agent’s current

estimate of the hypothesis space, the agent must detect this fact and fix it to overcome

its own unawareness.

The focus of this chapter is on single-step decision tasks. That is, scenarios in which

the agent takes an action based on some initial observations and immediately receives

a final reward based on the outcome of this action. Any repetitions of the task are

not dependent on one another. In the next chapter, we expand our model to handle

sequential decision tasks, where the agent’s actions in previous steps may affect the

relative likelihood of outcomes of future actions, and hence also of potential future

rewards.

4.1 Optimal Behaviour with Full Awareness

In a single stage decision problem, an agent observes some evidence e about its envi-

ronment, takes some action a, then receives some immediate reward R (s) depending

on the state s which resulted from their action.

Our agent’s goal is to learn the policy π+ which, given evidence e, always chooses the

action a which maximizes its expected utility EU(a|e):

EU(a|e) = ∑
s′

P(s′|a,e)R (s′) (4.1)

π+(e) = argmax
π

EU(π(e)|e) (4.2)

If P(s|a,e) or the reward function R are unknown, the agent must learn them via trial

and error. Our agent can balance exploiting its current estimate of the best policy—

π∗—with exploring the domain by using an ε-greedy policy. An ε-greedy policy is one
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where, in all states, the agent acts randomly with probability ε > 0, and acts according

to π∗ with probability 1− ε.

Further, for any policy π, we can measure the expected loss in reward against the true

optimal policy π+ using (4.3)—the policy error

Err(π) = ∑
e

P(e)(EU(π+(e)|e)−EU(π(e)|e)) (4.3)

Unfortunately, if there are a large number of states, then evaluating the expected utility

directly is often intractable. To make the problem tractable, we exploit the inherent

structure of complex decision problems by learning a bayesian decision network.

4.1.1 Bayesian Decision Networks

A Bayesian Decision Network (DN) (Russell and Norvig, 2002) is a BN augmented with

actions and rewards. It is a tuple:

〈A ,X ,R ,Pa,θ〉 (4.4)

Here, A = {A1, . . . ,Am} are the action variables the agent controls (where a full action a

is a member of v(A)). As before, X are the belief variables, but they are now partitioned

into X = B ∪O (B ∩O = /0), where B is the set of variables the agent observes before

taking action, and O are the variables which describe the outcome of that action. The

reward function R : v(scope(R ))→R gives the reward received in each state, where

scope(R ) ⊆ X are the variables which determine the reward.1 The terms Pa and θ

still describe the structure and effect of probabilistic dependencies (as in the definition

of BNs), but now each PaX can also include both belief and action variables (i.e.,

∀X ,PaX ⊂ X ∪A).

As the agent takes actions within the domain, it gathers domain trials D0:t = {d0, . . . ,dt}.
A domain trial at time t is a tuple:

1To restrict the scope of this thesis, we assume that, given full knowledge of the true decision problem,
the agent’s preferences are deterministic on values of some subset of the outcome variables. We also
assume the agent does not have a preference for particular actions, but only a preference for the outcomes
that those actions bring about.
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Figure 4.1: DN for medical example. Rectangles are action variables, ovals are belief

variables, and diamonds are reward nodes

dt = 〈st ,at ,rt〉 (4.5)

Where st = 〈bt ,ot〉,bt ∈ v(B),ot ∈ v(O),at ∈ v(A), and rt = R (st).

Figure 4.1 shows an example DN. Here, the agent chooses assignments for action

variables TOPICAL CREAM and ORAL DRUG based on observing GENE X, then

receives a reward based on outcomes DISEASE, and SIDE EFFECTS. We note that

DNs are essentially a subset of the notation used for influence diagrams (Howard and

Matheson, 2005). Influence diagrams add information arcs from belief variables to

action variables, which show the variables in B that the agent observes before choosing

values for each A ∈ A . For simplicity of explanation, we omit information arcs, and

instead assume all action variables are set simultaneously, with access to observations

of all variables in B .

4.1.2 Learning the Probabilistic Dependencies

To learn the most likely probabilistic structure and parameters—Pa∗ and θ∗, we can

simply reuse the same technique of maximizing the ILP problem (3.5), and computing

the expected parameters via (3.6) as in Chapter 3. The only differences are that we must

add a few additional constraints to the types of structure that constitute a valid DN. For

example, the action nodes are not permitted to have any parents, and the “before” nodes

can only have other “before” nodes as parents (that is ∀B ∈ B,PaB ⊂ B).
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4.1.3 Learning the Reward Function

Given full awareness of X and scope(R ), learning a valid reward function which

conforms to the evidence seen in domain trials D0:t is relatively straightforward. For

each state si that occurs in D0:t , Rt(si) = ri. For unseen states, we default to indifference

(e.g., by setting the reward of unseen states to 0). In the next section, we will see that

when partial unawareness is introduced, this constraint solving problem becomes more

complex.

Given a learned DN, the agent can then choose a policy π∗ which maximizes the expected

utility equation 4.1, where a ∈ v(A) and e ∈ v(B).

4.2 Overcoming Unawareness with Expert Guidance

So far, we’ve assumed our agent was aware of all relevant variables in X ∪A and all

members of scope(R ). We now drop this assumption. From here onward (as in the

previous chapter), we denote the true set of belief variables, actions, and reward scope

by X +,A+, and scope+(R ); we denote the learner’s awareness of them at time t by X t ,

A t , and scopet(R ).

Suppose X + = {X1,X2}, X0 = {X1}, A+ = {A1,A2}, A t = {A1}. We assume the agent

can’t observe the value of variables it is unaware of. Additionally, we assume that an

agent cannot observe the value of a variable at a past time at which it was unaware of

it, even after becoming aware of it. In the medical example from the introduction, if

X2 is particular gene, we assume the agent cannot detect the presence of that gene if it

is unaware it exists. The agent also cannot have preferences that are dependent on the

gene: there is no de-re preference without de-re belief (Cadilhac et al., 2015). We also

assume the agent cannot perform actions it is unaware of (i.e., if the agent is unaware of

variable A2 then it cannot set it to a value other than its default value A2 = 0).2 This

means at time t = 0, the agent does not observe the true trial d0, but rather, its projection

onto X 0 and A0:

〈s0[X 0],a0[A0],r0〉 (4.6)

2This assumption, while reasonable, may not always hold (E.g., an agent may accidentally lean on a
button while unaware that the button is part of the task).
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But awareness of those missing factors may be crucial to learning π+. For example, the

best action may depend upon whether X2 is true, or the optimal policy may sometimes

involve setting A2 to a value other than its default.

The following sections thus answer two main questions. First, how can an agent discover

and overcome its own unawareness? Second, when an agent discovers a new variable,

how can they integrate it into their current model while conserving what they have

learned from past experience?

Overcoming unawareness will be down to a combination of two factors: certain infer-

ences on the part of the learner, which can be summarised roughly as “I’m stuck”, and

which prompt a question whose possible answers will help the learner overcome their

current dilemma, and unsolicited advice from the expert, which in turn occurs when

the learner has been performing the task sufficiently poorly. These are quite natural

kinds of moves one would expect in a scenario where a teacher is interacting with an

apprentice, as the apprentice attempts domain-level actions to solve their task.

4.2.1 Expert Guidance

Our agent can expand its awareness via advice from an expert. Teacher-apprentice

learning is common in the real world, as it allows learners to receive contextually

relevant advice which may inform them of unforeseen concepts.

This thesis assumes the expert is cooperative, sincere and infallible. Further, we

abstract away from the complexity of grounding natural language statements in a formal

semantics and instead assume that the agent and expert communicate via a pre-specified

formal language (though see e.g., Zettlemoyer and Collins (2007) for work on this

problem). We do not, however, assume the expert knows the agent’s beliefs about the

DN.

The formal language used for communication is effectively one in which each well-

formed formula δ acts as a partial description of the true DN, dn+ (formally, dn+ � δ).

In other words, when the agent asks a question, the answer will be a partial description

of the true DN, and when the expert gives unsolicited advice, this will also be a partial

description of the true DN. The model theory of this language is given in the Appendix:

roughly speaking, each model corresponds to a unique DN, and a model satisfies a

formula of this language if and only if that formula is a partial description of the DN.



4.2. Overcoming Unawareness with Expert Guidance 51

We use the variables X e and Ae to express the expert’s current knowledge of our

agent’s awareness (where by “knowledge”, we mean that the expert has concrete and

indefeasible evidence that the agent is aware of the variable; the expert does not build

a belief model of the agent’s awareness, probabilistic or otherwise). An action A only

becomes a member of Ae if the expert has observed the agent setting A to a non-default

value in a past trial, or if the expert has explicitly mentioned A to the agent in a previous

piece of advice. Likewise, a variable X only becomes a member of X e when either the

expert or agent has explicitly mentioned it in a previous piece of dialogue.

As argued in Chapter 1, the goal is to provide a minimal set of communicative acts so

that interaction between the agent and expert resembles dialogue moves that would be

quite natural in a human teacher-apprentice interaction.

Concretely, this means we want our system to have two properties. First, the expert

should mostly allow the agent to learn by themselves, interjecting only when the agent

performs sufficiently poorly, or when they explicitly ask a question. Second, our expert

should be able to give non-exhaustive answers to queries. This is because, in practice, it

is unlikely a human expert will be able to give exhaustive answers to all questions due to

either cognitive bounds or a lack of information. Following the maxims of Grice (1975),

a cooperative speaker should give answers which provide just enough information to

resolve the agent’s current dilemma.

We identify four types of advice, whose combination guarantee the agent eventually

behaves optimally, regardless of initial awareness.

4.2.1.1 Better Action Advice

If the expert sees the agent perform a sub-optimal action, it can tell the agent a better

action to take instead. For example: “When it is raining, take your umbrella instead of

your sun hat”. Our goal is to avoid interrupting the agent every time it makes a mistake,

so we specify the following conditions for when the agent performs poorly enough

to warrant correction: Let t be the current time step, and t ′ be the time the expert last

uttered advice. When (4.7-4.11) hold:
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t− t ′ > µ (4.7)

∑
t ′≤i≤t

EU(π+(bi)|bi)−EU(ai|bi)

t− t ′
> β (4.8)

EU(at |bt)≥ rt (4.9)

∃A ′,a′ ∈ v(Ae∪A ′),EU(a′|bt)> EU(at |bt) (4.10)

@A
′′
,(a′′ ∈ v(Ae∪A ′′),EU(a′′|bt)> E(at |bt)

∧ |A ′′|< |A ′|)
(4.11)

Then the expert will utter advice of the form (4.12):

EU(a′|wb
t )> EU(at [A t ∪A ′]|wb

t ) (4.12)

Equation (4.7) ensures some minimum time µ has passed since the expert last gave

advice, while (4.8) ensures the expert won’t interrupt unless its estimate of the agent’s

policy error is above some threshold β. Together, µ and β define how tolerant the expert

will be to the agent’s poor performance before deciding to give advice. Equation (4.9)

ensures that the expert’s suggested action has an expected reward higher than what

the agent received at time t. Finally, (4.10-4.11) ensure not only that a better action

a′ exists, but also that a′ introduces the minimum amount of potentially unforeseen

action variables A ′ needed to improve the agent’s behaviour. This means there isn’t

another action a′′ which could be advised while revealing fewer unaware variables to the

agent. This follows from our desire to give non-exhaustive advice, by first suggesting

improvements which use concepts the agent is already aware of, rather than introducing

many new action variables all at once.

Equation (4.12)—the expert’s utterance—requires explanation. On first thought, the

expert should utter:

EU(a′|bt)> EU(at |bt) (4.13)

which fully describes bt . But remember that the agent’s awareness B t may be a tiny

subset of B+. Uttering such advice may involve revealing many variables the agent

is currently unaware of. This is exactly the type of cognitively-taxing exhaustive

explanation we wish to avoid.
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Alternatively, the expert could restrict the description to X e, but this could make

the advice false: there may exist a b′ 6= bt where b′[X e] = bt [X e], but EU(at |b′) >
EU(a′|b′).

To address this issue, the expert uses a sense-ambiguous term wb, whose intended

meaning is the true state b (i.e JwbK ∈ v(B+), where JyK is the denotation of y), but

whose default interpretation by the agent is b[B t ]. In words, the expert says “In that

last situation, a′ would have been a better action than at”, which implicitly makes

reference to the state of the world in the previous time step.

By introducing ambiguity, the agent can now interpret (4.12) in two ways. The first is

as a partial description of the true DN (dn+), which is true regardless of what it learns

in future. More formally, if δ is the partial description given by the current piece of

dialogue (or domain) evidence, then dn+ � δ. 3

On hearing (4.12), the agent adds (4.14-4.15) to its list of partial descriptions of the true

DN:

∀A ∈ A ′,A ∈ A+∧∃X ∈ scope+(R ),anc(A,X) (4.14)

∃s,s[B t ] = st [B t ]∧R+(s)> rt (4.15)

Where anc(X ,Y ) means X is the ancestor of Y (i.e., there is a directed path from X to Y

in the true DN):

anc(X ,Y ) = X ∈ PaY ∨ (∃Z,X ∈ PaZ ∧anc(Z,Y )) (4.16)

Equations (4.14-4.15) imply that any variable the expert utters must be relevant to the

problem. In other words, it must exert influence on at least one variable in scope+(R ),

and that there exists some state the agent could have reached which would yield a better

reward than the one it got. In fact, we can enforce all equations of the form (4.14) when

learning Pa∗ by adding the constraint (4.17) to our linear program:

∀Y /∈ scope(R ) : ∑
X∈X

PaX :Y∈PaX

I(PaX → X)≥ 1 (4.17)

3A full specification of syntax and semantics used to partially describe DNs is given in the appendix
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The second way the agent could use (4.12) is by adding its default interpretation of the

advice to its current knowledge:

∀b ∈ B+ : b[B t ] = bt [B t ]⇒ EU(a′|b)> EU(a|b) (4.18)

The agent can then enforce (4.18) by choosing a′ whenever b[B t ] = bt [B t ], regardless of

what seems likely from D0:t . We should now see that even with a cooperative, infallible

expert, even abstracting away issues of grounding natural language, misunderstandings

can still happen due to differences in agent and expert awareness. As the next section

shows, such misunderstandings can reveal gaps in the agent’s awareness and help to

articulate queries whose answers guarantee the agent expands its awareness.

Lemma 1 guarantees the expert’s advice strategy continues to reveal unforeseen actions

to the agent so long as its performance in trials exceeds the expert’s tolerance.

Lemma 1. Consider an agent with awareness At ⊂ A+, and expert following (4.7-4.12).

As k→ ∞, either Err(πt+k)→ c≤ β or the expert utters (4.12) where A ′ 6= /0.

Proof. For finite µ, (t + k)− t ′ > µ as k→ ∞, satisfying (4.7).

Given A t remains fixed, the agent’s policy will eventually converge to some policy π. If

Err(π)< β, we are done. If Err(π)≥ β, then (4.8) will be satisfied.

Since the agent is ε-greedy, at every time step it has a non-zero probability of performing

all actions a ∈ v(At), meaning that eventually Ae = A t . Further, since π 6= π+, there

must exist some b ∈ v(B+) and a′ ∈ v(A+) such that ∀a ∈ A t ,EU(a′|b) > EU(a|b),
thereby satisfying (4.10).

Since the agent is ε-greedy, it is guaranteed to eventually perform a∗= argmaxa∈v(A t)EU(a|b)
in in state b, thus making (4.11) true for a non-empty value of A ′.

(4.7-4.11) are not mutually exclusive, so all four will eventually be true at once, causing

the expert to utter (4.12) for non-empty A ′.

4.2.1.2 Resolving a Misunderstanding

We noted before that the agent’s default interpretation of (4.12) could lead it to misun-

derstand the expert’s intended meaning. To illustrate, suppose the agent receives advice

(4.19) and (4.20) at times t− k and t:
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EU(a|wb
t−k)> EU(a′|wb

t−k) (4.19)

EU(a|wb
t )< EU(a′|wb

t ) (4.20)

While the intended meaning of each statement is true, the agent’s default interpretations

of ws
t−k and ws

t may be identical. That is, bt−k[B t ] = bt [B t ]. From the agent’s perspec-

tive, (4.19) and (4.20) conflict, and thus give the agent a clue that its current awareness

of X + is deficient. To resolve this conflict, the agent asks (4.21) (in words, “which B

has distinct values in bt−k and bt?”) and receives an answer which provides monotonic

information of the form (4.22-4.23):

?λB(B ∈ B+∧ st−k[B] 6= st [B]) (4.21)

B′ ∈ B+ (4.22)

B′ /∈ scope+(R ) =⇒ ∃X ∈ scope+(R ),anc(B′,X) (4.23)

Notice there may be many variables in B+ \B t whose assignments differ in bt−k and bt .

Thus, the expert’s answer can be non-exhaustive. This means the agent must abandon

its previous defeasible interpretations of the form (4.18), but can keep (4.14-4.15), as

these are true regardless of what the true DN is. Lemma 2 guarantees the expert will

eventually reveal new belief variables as long as the agent’s current awareness is such

that misunderstandings are still possible.

Lemma 2. Consider an agent with awareness X t ⊂ X +, A t = A+. If ∃b′,∃b 6=
b′,b[B t ] = b′[B t ] and π+(b) 6= π+(b′), then as k→ ∞, either Err(πt+k)→ c ≤ β, or

the expert utters (4.22) such that B′ /∈ B t

Proof. If the agent converges to some policy π such that Err(π)≤ β, we are done.

Assume a = π+(b) and a′ = π+(b′). Consider that for all k, P(bt+k = b)> 0, and (since

the agent is ε-greedy) P(πt+k(b) = a′)> 0, where a′ = π+(b′).

If Err(π) ≥, then at some time t + k1 where (t + k1)− t ′ > µ and bt+k1 = b the agent

will perform a′, thus satisfying (4.7-4.11) and causing the expert to utter EU(a|wb
t+k1

)>

EU(a′|wb
t+k1

).

By similar reasoning, at some time bt+k2 = b′ the expert will utter EU(a′,wb
t+k2

) >

EU(a,wb
t+k2

).
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Under B t , Jws
t+k1

K = Jws
t+k2

K, so the agent will ask (4.21) with answer B /∈ B t .

4.2.1.3 Unforeseen Rewards

In typical DNs (where we assume the agent starts fully aware of X +,A+, and scope+(R )),

we tend only to think of the trials as providing counts. For an unaware agent, a trial

dt = 〈st ,at ,rt〉 also encodes monotonic information:

∃s,s[X t ] = st [X t ]∧R+(s) = rt (4.24)

This, along with (4.15), constrain the form of R the agent can learn. Recall that

scopet(R ) may be only a subset of scope+(R ), so it might be impossible to construct

an R : v(scopet(R ))→ R satisfying all descriptions of the form (4.24) and (4.15)

gathered so far. Further, those extra variables in scope+(R )\ scopet(R ) may not be

in X t . To resolve this, if the agent fails to construct a valid R , it asks (4.25) (in words,

“which variable X (that I don’t already know) is in scope(R )?”), receiving an answer of

the form (4.26):

?λX(X ∈ scope+(R )
∧

X ′∈scopet(R )

X 6= X ′) (4.25)

X ′′ ∈ scope+(R )∧X ′′ ∈ X+ (4.26)

Again (4.26) may be non-exhaustive. Even so, Lemma 3 guarantees that the agent’s

reward function eventually equals R+.

Lemma 3. Consider an ε-greedy agent with awareness A t =A+, scopet(R )⊆ scope+(R ).

As k→ ∞, there exists a K such that ∀s,∀k ≥ K, Rt+k(s) = R+(s).

Proof. Since A t = A+, and the agent is ε-greedy, then over infinite time the agent will

eventually enter s at some time i, receiving reward R+(s), and update its current reward

function so that Ri(s) = R+(s). If the agent has previously encountered another s′ such

that s[scopet(R )] = s′[scopet(R )] and R+(s) 6= R+(s′), the partial descriptions (4.24)

for s and s′ will conflict. The agent resolves this by asking (4.25), receiving an answer

differentiating s from s′ in R+.
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4.2.1.4 Unknown effect

Recall that, to keep the problem tractable, our agent searches for DNs in the space

of “reasonable” parent sets P . Unfortunately, there might be no valid DN within P
which also satisfies the constraints of the form (4.17). The most obvious case of

this is when a variable X /∈ scopet(R ) has no children in any reasonable DAG (i.e.,

∀Y,∀PaY ∈ PY ,X /∈ PaY ).4 Here, the agent can ask why X is relevant by asking (4.27)

(“what V does X affect directly?”):

?λV (X ∈ PaV ) (4.27)

In response, the expert answers with the name of a variable V ′ which X directly affects:

X ∈ PaV ′ (4.28)

Which imparts the monotonic partial description (4.29-4.31) to the agent:

V ′ ∈ X + (4.29)

X ∈ PaV ′ (4.30)

V ′ /∈ scope+(R ) =⇒ ∃Y ∈ scope+(R ),anc(V ′,Y ) (4.31)

This advice guarantees that the agent which prunes the set of reasonable parents for

each variable will always be able to construct a valid DN, provided its list of reasonable

parents obey the partial descriptions given by (4.30).

4.3 Adapting to Advice with Unforeseen Factors

Section 4.2.1 showed four ways to expand its awareness of X , A , and scope(R ). To

improve on simply restarting learning, we must now say how the agent adapts its beliefs

about Pa and θ when its awareness expands.

4More generally, this can occur whenever there is no directed path from X to scope(R ) via the union
of all members of P
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4.3.1 Adding a new belief variable

As covered in Chapter 3, when the agent discovers a new belief variable Z at time t, its

old distributions over parent sets no longer cover all possible parents. Further, the agent

cannot go back and observe Z’s past values in D0:t−1. Our approach to handling this

issue remains unchanged from Chapter 3—the agent creates new priors for Pa and θ in

the expanded space using equations (3.8) and (3.10) respectively.

4.3.2 Adding a new action variable

When the agent discovers a new action variable A, the same issue arises—the agent

did not consider A as a possible parent to any X ∈ X t−1, so must revise P with A as a

possibility. Unlike for belief variables, however, we don’t need to discard D0:t−1. Since

we assume that the agent cannot influence action variables it is unaware of, we can

simply fill in the default value of A in all past trials D0:t−1.

4.3.3 Expanding the reward function scope

Learning that a variable X is in the scope of R may cause us to revise Pa∗, even if

X ∈ X t−1. This is because expanding scopet(R ) loosens the constraints of the form

(4.17) which may allow us to construct a higher scoring DN structure that was previously

invalid.

4.3.4 The Overall Learning Process

Algorithm 3 outlines the entire learning process described throughout the previous

sections. In most steps, the agent incrementally revises its model based on the latest

trial and current reasonable parents. If enough time τ passes, or the agent’s awareness

expands, the agent makes larger changes to its model, including revising P .

Given algorithm 3, Theorem 1 guarantees our agent is eventually able to learn all the

action and state variables which are relevant to expressing an optimal policy, regardless

of initial awareness. Further, if the structure learning stage does not prune true depen-

dencies from P (which we can ensure by setting κ = 0), then the agent is guaranteed to
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Algorithm 3 Learning DNs with Unawareness

1: Input: A0, X 0, Pa0, θ0, P 0

2: for t = 1 . . .maxTrials do
3: bt ← Generate new state

4: 〈ot ,at ,rt〉 ← ε-GREEDY(bt [X t ])

5: Nt
i| j← Update with bt [X t ],ot [X t ] for all i, j

6: BDt(X ,PaX)← Update via (3.7) for PaX ∈ PX

7: if t ≡ 0 (mod τ) then
8: Revise P t via (Buntine, 1991) lattice update

9: if Exists X with no path to reward via P t then
10: Ask (4.27) and update X t , P t

11: R t ← Update with constraints (4.24, 4.15)

12: if Update to Rt fails then
13: Ask (4.21) and update scopet(R ),X t ,P t

14: if (4.7-4.11) are true then
15: actAdvice← Expert advises (4.12)

16: Update A t , P t according to actAdvice

17: if actAdvice conflicts with past utterances then
18: Ask (4.21) and update X t ,P t

19: if X t−1 6= X t then
20: Update Nt

i| j,αi| j,P ,P(Pa) via (3.4, 3.8, 3.10)

21: 〈Pat ,θt〉 ← Solve (3.5) (with (added constraints 4.17)), and (3.6)

converge on a policy which is within some bound of the true optimal policy for the task.

This bound is dictated by β - the expert’s tolerance for the agent’s mistakes.

Theorem 1. Consider an agent with initial awareness X 0⊆X +,A0⊆A+,scope0(R )⊆
scope+(R ) following algorithm 3 (with κ = 0). As t→ ∞, Err(πt)→ c≤ β.

Proof. By repeatedly applying Theorems 1-3, either Err(πt)→ c≤ β (in which case we

are done), or there exists a K where AK = A+, RK = R+, and X K = Bk∪OK . Here, BK

contains all variables B ∈B+ such that there exist b, and b′ where b[B+\B] = b′[B+\B]

but b[B] 6= b′[B] and π+(b) 6= π+(b′). In other words, 〈X K,AK,R K〉 define a related

decision problem with an identical optimal policy and marginal probability distribution

to the original problem, but for which the agent is fully aware.
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The BD-score is a consistent score, which means that as |D| → ∞, Pa∗ contains all

dependencies present in the true distribution, regardless of initial prior (assuming we

have not over-pruned the search space, which is true in this case because κ = 0). As

a result, as t → ∞, then ∀a ∈ v(A+), ∀b ∈ BK , ∀y ∈ v(scope+(R )), we have that

P(y|a,b,Pa∗t ,θ
∗
t )→ P(y|a,b,Pa+,θ+).

Since our agent’s probabilistic model converges to the true probabilistic distribution,

and because R K = R + and AK = A+, we have that π∗t → π+ and therefore that

Err(π∗t )→ 0

We can also guarantee that an agent following algorithm 3 produces a DN at each time

step which is consistent with all partial descriptions gathered from evidence so far:

Theorem 2. Let δ0:t be the conjunction of all partial descriptions gathered up to time

step t. An agent following algorithm 3 is guaranteed to produce a DN at time step t

such that dnt � δ0:t .

Outline proof. δ0:t contains four kinds of conjuncts:

(i) X ∈ X+,X ∈ A+,X ∈ B+,X ∈ O+,X ∈ scope+(R )

(ii) X ∈ PaY

(iii) ∃s,s[Y ] = si[Y ] such that either R+(s)> ri (as in equation (4.15)) or R+(s) = ri

(as in equation (4.24))

(iv) ∃Y ∈ scope+(R ),anc(X ,Y )

Lines 10, 13, 16, and 18 ensure that conjuncts of type (i) are satisfied, as the agent

immediately updates the sets X t ,A t ,B t ,Ot, and scopet(R ) on receipt of such evidence.

Each conjunct of type (ii) is satisfied by directly including a constraint of the form

∑
PaY :X∈PaY

I(X → PaY ) = 1 in the ILP-maximization at step 21. Alternatively, we can

satisfy this constraint earlier by setting the probability of any PaY for which X /∈ PaY to

0 in steps 6 and 8.

Conjuncts of type (iii) are explicitly used as constraints in computing a valid reward

function in step 11. If it is not possible for the agent to generate a valid reward function

satisfying all type (iii) constraints given its current view of the hypothesis space, then

the evidence received in step 13 will ensure the hypothesis space expands in such a way

as to guarantee a valid reward function (see Lemma 3).
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Conjuncts of type (iv) are satisfied in the ILP-step. The combination of the three

constraints listed in equation (3.5) guarantee the agent will output a parent structure

which is a directed-acyclic graph (see Bartlett and Cussens (2017) for details). The

additional constraint (4.17) ensures that every variable which is not in the scope of the

reward function must have at least one child. By definition, if a directed graph is acyclic

and every non-reward node has at least one child node, then there must exist a path

from every non-reward node to at least one reward node, thus satisfying all conjuncts of

type (iv). Further, if it is not possible to construct such a graph given the current set of

reasonable parents P , then the agent will ask 4.27, whose answer will provide the name

of a variable which is the child of a (currently childless) variable.

4.4 Experiments

Our experiments show that agents following algorithm 3 converge to true optimal policy

in practice, even when using a heuristic which attempts to minimize complexity. We

also show that conserving information improves results. We do not investigate assigning

explicit costs to agent-expert communication, but do show how varying the expert’s

tolerance affects the agent’s performance.

We tested agents on two different types of task. The first was a manually constructed

decision network called the barley problem (inspired by Kristensen and Rasmussen

(2002)). This is a decision problem modelled on crop-farming, in which the agent

must decide on factors such as which grain to plant and how much fertiliser to use,

with the goal of producing a harvest with high yields of healthy (high protein) crops.5

Figure 4.2 shows an illustration of the barley DN. In each experiment, our agent

begins with a simplified awareness of the problem: X 0 = {Yield, Protein, Gross Crops,

Nitrogen, Precipitation, Soil Type }, A0 = {Grain,Fertiliser}, and scope0(R ) =

{Yield,Protein}. In other words, the agent starts out unaware of 56% of the factors that

define the optimal policy in this domain. This task was explicitly designed such that the

agent cannot achieve the optimal policy without considering factors which it is initially

unaware of. For instance, in hot weather, the agent should apply fungicide to crops to

prevent fungus outbreaks, but the agent is initially unaware that the concept of fungus

is even an issue.

5Full specifications for all DNs are included in the appendix
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Figure 4.2: Barley DN

We also tested agents on three randomly generated DNs of increasing size: 12, 24,

and 36 variables. In each, our agent begins with minimal awareness of the true DN

(X 0 = {O1},A0 = {A1}, scope0(R ) = {O1}).

In both sets of experiments the agent acts in T trials, using an ε-greedy policy (ε = 0.1).

We repeat experiments 50 times and average the results.

We use the cumulative reward across trials as our main evaluation metric, which acts

as a proxy for the quality of the agent’s policy over time. To make the results more

readable, we apply a discount of 0.99 at each step, resulting in the metric:

Rdisc
t = rt +0.99∗Rdisc

t−1 (4.32)

We test several variants of our agent to show our approach is effective. The default
agent follows algorithm 3 as is, with parameters κ = 0.001, τ = 100, ρ = 0.1, γ = 0.99,

K = 5.0, µ = 10, β = 0.01 in equations (3.4), (4.7), (4.8), (3.8), and (3.10). The

nonConservative agent does not conserve information about P , Pa, nor θ via (3.8)

or (3.10) when it discovers a new factor. Instead, it discards all trials and reverts to

the original prior of (3.4). We include this agent to show the value of conserving

information as X and A expand. The non-relevant agent is like the default, but does

not include any constraints of the form (4.17) when searching for Pa∗. This means the

agent might learn DNs where variables are completely disconnected. The truePolicy
and random agents start knowing the true DN, and execute an ε-greedy version of

π+, or choose a random action respectively. These agents give an upper/lower bound
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Figure 4.3: Rewards of each agent on Barley DN (T = 1000). Shaded areas represent

standard error from the mean.

on performance. The lowTolerance and highTolerance agents change the expert’s

tolerance to β = 0.001 and β = 0.1. On the largest DN (36 variables), we also run a

few additional tests: the uniform-prior agent replaces the cost of additional parents

in equation (3.4) to ρ = 0.5, while the no-pruning agent replaces the threshold for

reasonable parents in the Buntine lattice update to κ = 0.0. These tests were included

to verify the benefits of the principle of minimality (as briefly discussed in Section 1.3

of the introduction). In other words, the notion that favouring simpler models over

complex ones should result in faster learning times without harming the quality of the

learned DN.

4.4.1 Results and Discussion

Across all tasks, our default agent converges to the optimal policy, despite starting

unaware of factors critical to success. Figures 4.3, 4.5, 4.6 and 4.7 show the cumulative

(discounted) rewards gathered by the default agent compared to the non-conservative,
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Figure 4.4: Size of X and A on Barley DN
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Figure 4.5: Cumulative rewards for Small DN (12 variables, T = 1000 trials)
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Figure 4.6: Cumulative rewards for Medium DN (24 variables, T = 1500 trials)

non-relevant, true-policy, high-tolerance, and low-tolerance agents. The default agent

converges to the optimal policy, and does so faster than its non-conservative counterpart.

This difference is most pronounced in the large DN task, where the agent is required to

expand its awareness to a greater number of unforeseen actions and beliefs to converge

on the optimal policy. In the smaller tasks, learning the probabilistic dependencies

between the smaller number of variables can be done with a relatively small number of

trials, so the ability to conserve previous information is much less important.

The difference in reward compared to the non-relevant agent is smaller than expected.

We suspect this is because actions which exert a strong causal influence over scope+(R )

will be an ancestor to scope+(R ) in the most likely probabilistic structure (Pa∗),

regardless of whether we enforce (4.17). Figure 4.10 illustrates this point with a typical

example DN structure learned by each respective agent. Actions the non-relevant agent

leaves disconnected are those which exert little causal influence over scope+(R ) (and

thus are less likely to have a strong effect on the optimal policy). This means that how

much abandoning connectivity affects performance depends on how noisy the causation

in the domain model is, which we don’t know with certainty in advance.
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Figure 4.7: Cumulative rewards for Large DN (36 variables, T = 3000 trials)

Figures 4.3 to 4.7 also show how the agent’s performance differs when varying the

expert’s tolerance level: with a high tolerance, the agent takes longer to converge

towards a good policy and also tends to learn a (marginally) worse final policy. Figures

4.4 and 4.8 give a clue as to why: Early on, the agent’s policy becomes “good enough”

for the high tolerance expert, meaning the expert does not reveal the last few extra

action variables or beliefs which might help the agent gain small increases in its total

accumulated reward.

We also measured the total run-time of each agent across each task to see if this revealed

any further insights. As Figure 4.9 shows, we found that the non-conservative agent

tended to take longer to compute an updated DN in each time step as compared to

the other agents, despite becoming aware of similar numbers of belief and action

variables. The reason for this is that, by conserving information about the relative

probabilities of parent set structures between discoveries, the default agent is able to

more aggressively prune the set of reasonable parent sets P at each time step. In contrast,

the non-conservative agent resets its structural priors upon each new discovery, meaning

the set of reasonable parent sets tends to remain much larger for a longer period of time.
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Figure 4.8: Size of X and A
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Figure 4.9: Total Run-time of each agent in seconds
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Figure 4.11: Rewards, number of variables, and time taken of agents on the large DN

task, with varying levels of minimality. The shaded areas represent the standard error

from the mean.
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Figure 4.12: Average number of messages sent by the experts of varying tolerances on

the Barley DN.

Figure 4.11 shows the results comparing the rewards, variables learned, and time

taken of the default agent compared to the no-pruning and uniform-prior agents. As

expected, the effect of not pruning the set of reasonable parents is that the run-time is

orders of magnitude longer than for the default agent. In fact, the no-pruning agent is

vastly slower despite typically learning a smaller number of belief variables throughout

learning.6 As for the uniform-prior agent, we found only a marginal difference in

run-time compared to the default agent. This is largely because the initial structural

prior P(Pa) tends to only make a difference in the initial time steps when data is sparse.

Further, despite setting the structural prior to be uniform, there is still an implicit

sense of minimality encoded in the structural posterior (equation (3.1)) itself: since we

integrate over all possible parameter settings, structures with fewer parameters tend to

be a better fit to small amounts of data than complex structures with many parameters.

These experiments therefore verify our initial intuition that assuming minimality would

result in faster run-times without harming the quality of the models learned by the agent.

Figures 4.12 and 4.13 show the number of messages sent from the expert to the agent on

the Barley task, and when each message was sent. The trends shown for these figures

apply across the other DNs as well. For the default setup, the expert offers a correction

in less than 2% of trials, and reveals only 1-2 edges of the true task’s structure over the

course of the experiment. Our system therefore succeeds in its goal to avoid incessant

6The reason the no-pruning agent tends to learn a smaller number of belief variables is because, if all
parent-sets are considered reasonable, then the agent never asks questions of the form (4.27), which cuts
off a potential source of new belief variables.
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Figure 4.13: Average number of messages sent to Conservative versus Non-

Conservative agents on the Barley DN.

interruptions. Most of these corrections arrive in the early trials, then gradually decline

in frequency as the agent learns a policy which gets closer to the true optimal policy.

Note however, that even when the agent has learned the optimal policy, the expert still

occasionally interrupts. This is because the agent is ε-greedy, and so will occasionally

take several random (non-optimal) actions consecutively. We could remedy this by

having the agent announce its intentions in advance, as done in Torrey and Taylor (2013)

(for example, the agent could announce “I am exploring now!” whenever it is about to

take a random action). However, doing so would restrict the generality of agent and

expert’s interaction strategies.

As expected, the lowTolerance expert interrupts the most, while the highTolerance expert

interrupts the least. What is more interesting is that the nonConservative agent receives

more corrections than the conservative agent, but ends up gathering less cumulative

reward, discovering less vocabulary, and being informed of less edges in the true DN.

This is because the non-conservative agent resets its beliefs whenever it discovers a

new action or variable, and so receives corrections for areas of the state space that it

previously already learned, but “forgot”. The conservative agent receives less advice,

but the advice more frequently applies to previously unexplored areas of the state space.
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4.5 Conclusion

This chapter has shown that through a mixture of domain trials and dialogue evidence,

an agent can learn all components of a decision problem. This includes not only the

structure Pa and parameters θ, but also the reward function R , its domain scope(R ),

and the hypothesis space A ∪X itself. Our experiments show that the agent is able to

converge on optimal behaviour despite starting with an incomplete hypothesis space,

and that the design decisions built on the principles of conserving information as new

discoveries are made and minimizing complexity help keep the problem tractable while

guiding the agent to better solutions faster.

In this chapter, we dealt only with single-stage problems, where all actions are taken

in a single step and the final outcomes and rewards are received immediately. In the

next chapter, we look at sequential decision problems, where the problem might take

place over a large number of interdependent steps, and where rewards and transition

probabilities are dependent on the history of the agent’s actions.





Chapter 5

Unforeseen Possibilities in Sequential

Decision Problems

In the previous chapters, we dealt with “single-stage” decision problems, where the

outcome of an agent’s current action was independent of previous states or actions.

However, many real-world decision problems take place over a sequence of related

steps— actions in the past may affect which outcomes (and hence which rewards),

are reachable in the future. The contribution of this chapter is to extend both our

agent’s learning model and the expert’s communication framework to support sequential

decision problems, and once again show that our agent is guaranteed to converge on an

optimal policy in both theory (via formal proofs) and practice (via experiments).

5.1 The Learning Task

We focus on learning complex, episodic, finite state sequential decision problems by

learning Factored Markov Decision Processes (FMDPs). We begin with the formalisms

for learning optimal behaviour in FMDPs where the agent is fully aware of all possible

states and actions, but doesn’t know anything about dependencies among those factors

(let alone conditional probabilities) nor rewards. We then extend the task to one where

the agent starts unaware of relevant variables and actions, and show how the agent

overcomes this unawareness with expert aid.

75
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5.1.1 Episodic Markov Decision Processes

An FMDP is a tuple 〈S ,Ss,Se,A,T ,R 〉, where S and A are (as before), the set of states

and actions;1 Ss ⊆ S are possible starting states of an episode and Se ⊆ S are the end

(terminal) states; T : S ×A×S → [0,1] is the markovian transition function P(s′|s,a)
and R : S →R is the immediate reward function.2 A policy π : S ×A→ [0,1] defining

the probability π(s,a) that the agent will take action a in state s.

When referring to the local time m in episode n, we denote the current state and reward

by sm,n and rm,n = R (sm,n). When referring to the global time t across episodes, we

denote them by st and rt . For episode n, the discounted return is:

Gn =
T

∑
i=0

γ
i ∗ ri,n (5.1)

where 0≤ γ≤ 1 is the discount factor governing how strongly the agent prefers imme-

diate rewards to those further in the future.

The agent’s goal is to learn the true optimal policy π+, which maximizes not just the

agent’s immediate reward, but the expected discounted return across all states. The

value function Vπ(s) defines the expected return when following a given policy π, while

the related action-value function Qπ(s,a) gives the expected return of taking action a in

state s, and thereafter following π:

Vπ(s) = R (s)+ γ ∑
s′∈S

P(s′|s,π(s))Vπ(s′) (5.2)

Qπ(s,a) = R (s)+ γ ∑
s′∈S

P(s′|s,a)Vπ(s′) (5.3)

When T and R are known, π+ can be calculated via value iteration (Sutton and Barto,

1998). Further, as we did for DNs, we can measure the expected loss in discounted

return of following a policy π versus π+ using (5.4), which we refer to as the policy

error. If the agent’s policy is unknown, we can approximate the policy error using (5.5):

1In contrast to previous chapters, we do not factor actions as assignments to a set of variables.
2Other works allow R to depend on the action and/or resulting state (i.e., R : S ×A×S →R), but

we ignore this detail here.
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Err(π) = ∑
s0∈Ss

P(s0)
(
Vπ+(s0)−Vπ(s0)

)
(5.4)

Err(t, t + k) =

(
∑

s0∈Ss

P(s0)Vπ+(s)

)
− ∑

t+k
i=t Gi

k
(5.5)

If all episodes eventually terminate, then (5.5) will converge to (5.4). If we assume as

before that our agent is using an ε-greedy policy (ε > 0), then termination in almost all

episodic FMDPs is guaranteed:

Definition 1 (Proper Policy). A policy π is proper if, from all states s ∈ S , acting

according to π guarantees one eventually reaches some terminal state s′ ∈ Se.

Theorem 3. If a proper policy π exists for a given episodic MDP, then any policy which

is ε-greedy with respect to A is also proper

5.2 Learning FMDPs when fully aware

If T and/or R are unknown, then the agent must estimate their values using the data

D0:t = [d0, . . . ,dt ] gathered from its interaction with the environment. At time t, the

sequential trial dt = 〈st ,at ,st+1,rt+1〉 represents the current state st , the action at , the

resulting state st+1 and the reward rt+1 given on entering st+1. As with DNs, FMDPs

allow one to learn the transition structure of large MDPs by representing states as a joint

assignment to a set of variables X = {X1, . . . ,Xn}. That is, s ∈ v(X ). Similarly, the

reward function is defined as a function R : v(scope(R ))→R, where scope(R )⊆ X
are variables which uniquely determine the reward received in each state. To exploit

conditional independence, T is then represented as a separate dynamic bayesian network

(DBN) (Dean and Kanazawa, 1989) for each action. That is, T = {dbna1, . . . ,dbnan},
where dbna = 〈Paa,θa〉. Here, Paa is a DAG with nodes {X1, . . . ,Xn,X ′1, . . . ,X

′
n} where,

as is standard, node Xi denotes the value of variable Xi ∈ X at the current time step,

while X ′i denotes the value of the same variable at the next time step. For each X ′i ,

Paa
X ′i

defines the parents of X ′i . These are the set of variables on which the value of

X ′i depends. It is assumed that X ′i is independent of all other variables. We also make

the common assumption that our DBNs contain no synchronic arcs Degris and Sigaud

(2010):
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X1 X1'

X2'X2

X3'X3

Figure 5.1: Example 3-variable DBN. An arc from Xi to X ′j means that Xi’s value in the

previous time step influences X j ’s value in the current one

∀i,∀a,Paa
X ′i
⊆ {X1, . . . ,Xn} (5.6)

This structure, along with the associated parameters θa, allow us to write transition

probabilities as a product of independent factors:

P(s′|s,a) = ∏
X∈X

θ
a
s′[X ],s[Paa

X ′ ]
(5.7)

Where θa
X ′=i,Paa

X ′= j denotes the probability of variable X taking on value i given that

the agent performed action a when the variables Paa
X ′ had assignment j in the current

time step.3 Figure 5.1 show an example of a simple 3-variable DBN for a given action a.

Notice, for example, that X2’s value in the current time step is dependent only on the

values of X1 and X2 in the previous time-step.

Exploiting independence among belief variables does not necessarily result in a compact

representation of Vπ, since even those variables which are not part of scope(R ) tend

to become entangled and exert some influence on expected returns as the sequential

problem progresses. We must therefore also exploit the context-specific independencies

between assignments by representing both T and R as decision trees, rather than just

as tables of values.

Figures 5.2a and 5.2b show an example decision tree for a reward function and condi-

tional probability distribution. The leaves are either immediate rewards, or a distribution

over the values of a variable. The non-leaves are test nodes, which perform a binary test

of the form (X = i?) to check whether the variable X takes on the value i in the current

state. Notice in 5.2a that when X = 1 is true, the distribution over X ′ is conditionally

independent of Y .

3When the context is clear, we condense this notation to θa
i, j.
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(b) Reward tree where scope(R ) = {X ,Y}

Figure 5.2: Examples of Decision Trees

Given trials D0:t we can estimate the most likely DBN structure, decision tree structures,

and parameters, then subsequently use these estimates to estimate Vπ+ via a series of

steps.

5.2.1 Estimating DBN structure

We can find the most likely DBN structure Paa∗ using the BD-score, as we did in

previous chapters:

P(Paa|D0:t) = ∏
X∈X

BDt(X ′,Paa
X ′) (5.8)

BDt(X ′,Paa
X ′) = P(Paa

X ′) ∏
j∈v(Paa

X ′)

β(Na
1, j +αa

1, j, . . . ,N
a
m, j +αa

m, j)

β(αa
1, j, . . . ,α

a
m, j)

(5.9)

(5.10)

Here, Na
X ′=i,Paa

X ′= j denotes the number of trials in D0:t where the agent took action a

in a state where variables Paa
X ′ had the joint assignment j, resulting in a state where X

takes on the value i.

In most sequential decision problems, one usually assumes that each of the agent’s

actions affect only a small number of features in the environment. Further, while some

variables are inherently stochastic, it seems sensible to assume that variables which are

not acted upon by the agent are likely to maintain their current value from one time step

to another (Boutilier and Goldszmidt, 1996). We can encode this assumption into the

agent’s prior beliefs about Pa using equation (5.11):
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P(Paa
X ′) = ∏

Y∈Paa
X ′

f (Y,X) ∏
Z /∈ΠX ′

(1− f (Z,X)) (5.11)

f (Y,X) =

ρsame if Y = X

ρdiff otherwise
(5.12)

Where the parameter 0.5 < ρsame < 1 governs how strongly the agent favours making

X a parent of X ′, and parameter 0 < ρdiff ≤ 0.5 determines how averse the agent is to

allowing other variables to affect X ′. As in equation (3.4), equation (5.11) states that the

probability of parent set Paa
X ′ is then the product of each individual parent’s presence or

absence.

As before, if the space of possible DBNs is too large, we can restrict the parent sets

considered reasonable by restricting the maximum in-degree, or using heuristics such

as sparse candidate (Friedman et al., 1999), or the using the structure lattice of Buntine

(1991). However, notice that because of our assumption that the FMDP does not contain

any synchronous arcs, we do not have to worry about whether our final learned structure

will be a DAG, and can therefore simplify the task of finding Paa∗ by finding each Paa
X ′∗

independently.

5.2.2 Estimating conditional probability trees

Given each Paa
X ′ , we can then compute each variable’s most likely conditional probabil-

ity tree structure DTa∗
X using equations (5.13-5.14):

P(DTa
X |Paa

X ′,D0:t) ∝ P(DTa
X)P(D0:t |DTa

X) (5.13)

P(D0:t |DTa
X) = ∏
`∈Leaves(DTa

X )

β(Na
1|`+αa

1|`, . . . ,N
a
m|`+αa

m|`)

β(αa
1|`, . . . ,α

a
m|`)

(5.14)

Here, each leaf node ` ∈ Leaves(DTa
X) is described by its branch label within the

decision tree (i.e., the set of assignments on the path starting from the root of the tree

and ending at `). For example, in Figure 5.2a, the leaf with value X ′ : 〈0.5,0.5〉 has

branch label {X = 0,Y = 0}. Since we have assumed our DBN structure is Paa
X ′ , we

only consider tree structures where all test nodes are members of Paa
X ′ .
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X = 1

Y = 0 Y = 0

L_a L_b L_c L_d

(a) Before transposition

Y = 0

X = 1 X = 1

L_a L_c L_b L_d

(b) After transposition

Figure 5.3: Example of transposing root node X = 1 with Y = 0

Rather than evaluating the probabilities of all possible DT structures each step, we can

cache the relevant Ni|` counts at each node, and incrementally update the most likely

DT as new trials arrive using incremental tree induction (ITI), as show in Algorithm 4.

ITI is described in detail in Utgoff et al. (1997), but broadly works as follows:

When a new trial dt arrives, it starts at the tree’s root and passes through the test nodes

corresponding to dt’s particular assignments. At each node dt touches, UPDATE-INFO

updates the scores (5.13) for each potential test at that node, then marks that node

as being out of date (“stale”), before finally recording dt at the appropriate leaf node.

Updating the test probabilities at each test node may mean that the current test at a

particular node is no longer the most likely one. If so, we replace old test with the new

most probable one, and recursively restructure (via TRANSPOSE-TREE) the decision

tree such that the nodes below this one have valid leaves and data.

Figure 5.3 shows an example DT with leaves La,Lb,Lc, and Ld being transposed in

response to a new domain trial making Y = 0 a more likely test candidate for the root

node than X = 1. Notice that, for many transposition operations, we can exploit shared

nodes further down to avoid recounting domain trials. Full details of the operation of

updates and transpositions in ITI can be found in Utgoff et al. (1997)

5.2.2.1 Handling changing values of Paa
X ′

The above explanation assumed Paa
X ′ remained the same between ITI updates. However,

if a new trial dt makes some alternative structure Paa,t+1
X ′ 6=Paa,t

X ′ more likely via equation

(5.8), then our current DTa
X may be invalid. If this occurs, there are three scenarios to

consider:
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Algorithm 4 Incremental Tree Induction (Utgoff et al. (1997))
function INCREMENTAL-UPDATE(node, example)

ADD-EXAMPLE-TO-TREE(node, example)

ENSURE-BEST-TEST(node)

function ADD-EXAMPLE-TO-TREE(node, example)

if node is a leaf then
node.examples← node.examples∪ example

if node should be converted to decision node then
CONVERT-TO-DECISION-NODE(node)

node.stale← f alse

for all e in node.examples do
if TEST-PASSED(node, e) then

ADD-EXAMPLE-TO-TREE(node.left, e)

else
ADD-EXAMPLE-TO-TREE(node.right, e)

else
UPDATE-INFO(node, example)

node.stale← true

if TEST-PASSED(node, e) then
ADD-EXAMPLE-TO-TREE(node.left, e)

else
ADD-EXAMPLE-TO-TREE(node.right, e)

function ENSURE-BEST-TEST(node)

if node is decision node ∧ node.stale then
bestTest← FIND-BEST-TEST(node)

if bestTest 6= node.currentTest then
TRANSPOSE-TREE(node, bestTest)
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First, if Paa,t+1
X ′ ⊂ Paa,t

X ′ , then all the sufficient statistics we need to update DTa
X ′ are

already present in DT
a,t
X ′ . As an example, suppose at time t we had Paa,t

X ′ = {X ,Y,Z},
but in at time t + 1 we have Paa,t+1

X ′ = {X ,Y}. In the trivial scenario where Z is not

currently being used at any test node in DTa
X ′ , we do not need to make any changes

to the structure of DTa
X ′—we simply remove Z as a candidate test for each node and

we are done. If Z is being used at some test node, then we must replace it with the

next most likely test out of X and Y , triggering a tree re-structuring as outlined in the

previous section. Since we already have the relevant counts and probabilities for these

tests stored at the relevant node, the information we need to conduct this restructuring

is immediately available.

Second, if Paa,t
X ′ ⊂ Paa,t+1

X ′ , this may require more computation. Suppose this time we

have Paa,t
X ′ = {X} and Paa,t+1

X ′ = {X ,Y}. Since we do not have the counts for tests on Y

immediately available at the previous test nodes, we must compute them. Fortunately,

we can do this without a full pass over D0:t , as we already have the counts we need from

the calculation of Paa,t+1’s likelihood. For example, if we wish to compute (5.14) for a

decision node with attribute test “Y = 0?”, then we can compute the required sufficient

statistics (e.g. NX ′=0|Y=0) from a combination of the statistics used to compute (5.8) and

(5.14) (e.g. NX ′=0|X=0,Y=0 +NX ′=0|X=1,Y=0).

Third, if neither Paa,t+1
X ′ ⊂ Paa,t

X ′ nor Paa,t
X ′ ⊂ Paa,t+1

X ′ is true, we can concatenate the

solutions to the first two scenarios—first we remove all the missing variables, then add

in all additional variables.

5.2.3 Estimating the reward tree

We can use ITI to learn a tree structure for R in the same way, with only a few minor

differences. First, we restrict our node test to members of scope(R ), rather than Paa
X ′ .

Second, rather than recording a list of trials at each leaf node, each leaf node ` stores

a set of relevant state/reward pairs SRP` (since we are not interested in storing the

frequencies of duplicate trials):

SRP` = {〈s,r〉|λ(s) = `,〈s′,a,s,r〉 ∈ D0:t} (5.15)

Here, λ(s) is a function which takes a state assignment and returns the leaf to which s

would be assigned in our current DT.
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The third difference is how the agent decides which test to install at each node. We are

no longer learning a probabilistic parameter, so equation (5.13) is unsuitable. Instead,

we wish to choose the tests which will minimize the expected entropy of the reward

received in a given state. Equation (5.16) gives the expected entropy for splitting a leaf

node with test sp:

−
Nsp

|D0:t |
H(Rsp|sp)−

N¬sp

|D0:t |
H(Rsp|¬sp) (5.16)

H(R|sp) = ∑
r∈R

Nr|sp

Nsp
log
(

Nr|sp

Nsp

)
(5.17)

Where Nsp is the number of trials at the current node which pass test sp, N¬sp is the

number which fail it, and Rsp is the set of unique rewards present in states which

pass the test sp (formally, Rsp = {r|〈s,r〉 ∈ srp` ∧ sp(s) == true}). H(R|sp) is the

conditional entropy of possible reward values R given sp, and Nr|sp is the number of

state descriptions which pass the test sp and whose reward is r.

5.2.4 Estimating Vπ+

Once our agent has an estimate of T and R , we can then use structured value iteration

(SVI) (Boutilier et al., 2000)—a variant of value iteration which works with decision

trees instead of tables—to compute a compact representation of Vπ+ . Algorithm 5 shows

an outline of an incremental version of SVI (iSVI) (Degris et al., 2006), which allows

the agent to gradually update its beliefs about the optimal value function in response to

incoming trials. The algorithm takes the current estimate of the reward and transition

functions (Rt and Tt), along with the previous estimate of the optimal value function

(Vt−1), and combines them to produce a new estimate for each state-action function

(Qa
t ), and value function (Vt).

Algorithm 5 Incremental SVI (Degris et al., 2006)

1: function INCSVI(Rt , Tt , Vt−1)

2: ∀a ∈ A : Qa
t ← REGRESS(Vt−1,dbna,Rt)

3: Vt←MERGE({Qa
t : ∀a∈ A}) (using maximization as the combination function)

4: return {Vt ,{∀a ∈ A : Qa
t }}
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X = 1

7 Y = 1

9 10

Qa1
t

X = 1

4 Y = 1

10 6

Qa2
t

X = 1

7 Y = 1

10 10

Vt

Figure 5.4: Example of merging Qa1
t and Qa2

t to form Vt

The first operator REGRESS(Tree(Vt−1),a), takes the value-tree from the previous

iteration, and produces a tree-structured Q-function Qa
t for each possible action a:

Qa
t (s) = ∑

s′
P(s′|s,a)

(
R (s)+ γVt−1(s′)

)
(5.18)

The second operator MERGE({Qa1
t ,Qa2

t , . . . Qan
t ,}) combines each of the Q-functions

at the tth iteration into a single value tree via maximisation. This then represents the

value function Vt over all possible states. Figure 5.4 shows an example of Q-trees Qa1
t

and Qa2
t being merged to produce the latest value function Vt . As with the original value

iteration algorithm, SVI is guaranteed to converge to the true optimal policy, but unlike

regular value iteration, it (in general) produces a more compact description of the final

policy function in substantially less computation time. For full details how the MERGE

and REGRESS function in SVI operate, see Boutilier et al. (2000).

This section took an encapsulated approach to learning T (In contrast to a unified one

in e.g., Degris et al. (2006)). This means we separate the task of finding an optimal

DBN structure from the task of learning each local DT structure. Such an approach

significantly reduces the space of DTs that must be considered, but more importantly,

provides us with posterior distributions P(Paa
X ′ |D0:t) over parent structures. We will

use these posterior distributions in Section 5.3.2 to conserve information when adapting

to new discoveries.
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5.3 Overcoming Unawareness

So far, we’ve assumed our agent was aware of all relevant belief variables in X , all

actions A, and all members of scope(R ). As in previous chapters, we now drop this

assumption. From here onward we denote the true set of belief variables, actions, and

reward scope as X+, A+ and scope+(R ), and the learner’s awareness of them at t as

X t , At , and scopet(R ).

The next sections aims to answer two main questions. First, how does the protocol for

communication between the agent and expert differ in the case of sequential problems

when compared with the interaction we modelled in Chapter 4 for single-shot decision

problems? Second, when an agent discovers a new belief variable or action, how can

they integrate it into their current FMDP model while conserving what they have learned

from past experience?

5.3.1 Expert Guidance

As in the previous chapter, our agent can expand its awareness via advice from an expert,

who is once again cooperative, infallible, and has full knowledge of the true FMDP. The

three types of advice we identify in this section—advice on a better action, resolving a

misunderstanding, and explaining an unexpected reward—are broadly similar to the

ones defined in Chapter 3, and their combination guarantees our agent behaves optimally

in the long run regardless of initial unawareness. However, the conditions under which

the expert utters these types of advice, and the inferences the agent can draw from them

differ slightly due to the sequential nature of the task.

5.3.1.1 Better Action Advice

If the expert sees the agent perform a sub-optimal action, it can tell the agent a better

action it could have taken instead. For example: “When it is raining, take your umbrella

instead of your sun hat”. Again, our goal is to avoid incessantly interrupting the agent

each time it makes a mistake, so we specify the following conditions for when the agent

is performing sufficiently poorly to warrant correction: Let t be the current (global)

time step corresponding to the mth step in the nth episode. Similarly, let t ′, m′, n′ be the
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time the expert last uttered advice. When (5.19-5.21) hold, the expert will utter advice

of the form (5.22):

t− t ′ > µmin (5.19)

Err(n′,n)> β∨m > µmax (5.20)

∃a′ ∈ A+,Qπ+(a
′,sm,n)> Qπ+(am,n,sm,n) (5.21)

Qπ+(w
s
m,n,a

′)> Qπ+(w
s
m,n,am,n) (5.22)

Equation (5.19) ensures some minimum time µmin has passed since the expert last gave

advice (compare this with equation (4.7)). Equation (5.20) ensures the expert won’t

interrupt unless its estimate of the agent’s policy error is above some threshold β (cf

equation (4.8)), or if the agent is unable to reach a terminal state after some reasonable

bound µmax (which is required because the agent’s unawareness of A+ may mean its

current ε-greedy policy is not proper). If episode n is unfinished, the expert estimates the

expected return via the heuristic Gn ≈ ∑
m−1
i=0 γiri,n + γmVπ+(sm,n), i.e., we optimistically

assume the agent will follow π+ from now on. Taken together, µmin,µmax and β describe

the expert’s tolerance towards the agent’s mistakes. Finally, (5.21) ensures a better

action a′ actually exists this step.

Equation (5.22) is the expert’s utterance. In a similar fashion to the previous chapter,

ws
m,n is a sense ambiguous term, whose intended meaning is the true state sm,n but whose

default interpretation by the agent at time t is sm,n[X t ]. The agent can thus interpret this

advice in two ways: The first is as a partial description of the true problem, which is

monotonically true regardless of what it learns in future. On hearing (5.22), the agent

adds (5.23-5.24) to its list of partial descriptions of the true FMDP:

a′ ∈ A+ (5.23)

∃s,s[X t ] = sm,n[X t ]∧Qπ+(s,a
′)> Qπ+(s,am,n) (5.24)

Notice that this differs from the partial description (4.15) from the previous chapter, in

that be can the agent can no longer infer that the expert’s advice entails the existence of

a state with a higher immediate reward. This is because, in a sequential problem, an

action may be better in the current state not because it leads to a better expected reward
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immediately, but because it increases the probability of entering a higher reward state

some time in the future.

Additionally, the agent can choose to add its current default interpretation of the advice

to its accumulated knowledge:

∀s,s[X t ] = st [X t ] =⇒ Qπ+(s[X t ],a′)> Qπ+(s[X t ],a) (5.25)

The agent can then act on the expert’s advice directly by choosing a′ whenever s[X t ] =

sm,n[X t ], regardless of what seems likely from D0:t .

Lemma 4 guarantees the expert’s dialogue strategy for offering unsolicited advice

eventually reveals unforeseen actions to the agent so long as its performance in trials

exceeds the expert’s tolerance.

Lemma 4. Consider an FMDP where π+ is proper, an agent with awareness X t ⊆
X +,At ⊂ A+, and expert acting with respect to (5.19-5.22). If ∃a ∈ image(π+),a /∈ At

then as k→ ∞, either Err(t, t + k)→ c with c≤ β or the expert utters (5.21) such that

a′ /∈ At .

Outline Proof. If Err(t, t + k)→ c ≤ β, we are done. If not, we must consider two

cases—one where an ε-greedy policy over At is proper, and one where it is not. If it

is, (5.20) will eventually be satisfied, since the expert will gather enough samples to

approximate the agent’s policy error (which is above β). Further, we know ∃s,π+(s) =

a′∧a′ /∈ At , and that s is reachable by the agent, so (5.21) will eventually be satisfied.

If the agent’s policy is not proper, the agent may visit some set of states S ′ ⊂ S \Se

infinitely often (thus satisfying (5.20) for finite µmax). Since π+ is proper, there must

exist some s ∈ S ′ such that ∃a′ /∈ At ,∀a ∈ At ,Qπ+(s,a
′) > Qπ+(s,a), thus satisfying

(5.21). In either case, (5.19) will eventually be satisfied for finite µmin. Since (5.19-5.21)

are not mutually exclusive, all three will eventually be true simultaneously, causing the

expert to utter (5.22).

5.3.1.2 Resolving Misunderstandings

We noted before that, just like in the interaction for learning a DN in Chapter 4, the

agent’s defeasible interpretation of expert advice could result in misunderstandings
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about the intended meaning. To illustrate, suppose the agent receives advice (5.26) and

(5.27) at times t− k and t:

Qπ+(w
s
t−k,a)> Qπ+(w

s
t−k,a

′) (5.26)

Qπ+(w
s
t ,a)< Qπ+(w

s
t ,a
′) (5.27)

While the intended meaning of each statement is true, the agent’s default interpretations

of ws
t−k and ws

t may be identical. That is, st−k[X t ] = st [X t ]. From the agent’s perspective,

(5.26) and (5.27) conflict, and thus give the agent a clue that its current awareness of

X+ is deficient. To resolve this conflict, the agent asks (5.28) (in words, “which X has

distinct values in st−k and st?”) and receives an answer of the form (5.29):

?λX(X ∈ X +∧ st−k[X ] 6= st [X ]) (5.28)

X ∈ X+ (5.29)

Notice there may be multiple variables in X + \X t whose assignments differ in st−k and

st . Thus, the expert’s answer can be non-exhaustive, providing the minimum amount of

information to resolve the agent’s conflict without necessarily explaining all components

of the task. This means the agent must abandon its previous defeasible interpretation of

(5.25), but can keep (5.23-5.24), as these are true regardless of known variables. Lemma

5 guarantees the expert will (eventually) reveal new belief variables, provided that the

agent’s unawareness is such that misunderstandings are still possible.

Lemma 5. Consider an FMDP where π+ is proper and an agent with awareness X t ⊂
X+, image(π+) ⊆ At ⊆ A+. If ∃s∃s′ 6= s,s[X t ] = s′[X t ], and π+(s) 6= π+(s′), then as

k→ ∞, either Err(t, t + k)→ c (c≤ β), or the expert utters (5.29) such that X /∈ X t

Outline Proof. The ε-greedy agent is aware of all actions in image(π+), so can visit

all states reachable via π+, including s and s′. If Err(t, t + k)→ c,c≤ β, we are done.

If not, then at some time t + k1 the agent will do a′ in s, causing the expert to utter

Q(ws
t+k1

,a)> Q(ws
t+k1

,a′). Similarly, at some time t +k2, the agent will receive advice

Q(ws
t+k2

,a′)> Q(ws
t+k2

,a). Since st+k1[X t ] = st+k2[X t ], the two pieces of advice appear

to the agent to conflict, so the agent will ask (5.28) with answer X /∈ X t .
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5.3.1.3 Unexpected Rewards

In typical FMDPs (where the agent is assumed fully aware of X +,A+, and scope+(R )),

we tend only to think of the trials as providing counts, but for an unaware agent, a trial

dt = 〈st ,at ,st+1,rt+1〉 also encodes monotonic information:

∃s,s[X t ] = st+1∧R+(s) = rt+1 (5.30)

This constrains the form of R the agent must learn. Recall that scopet(R ), may be only

a subset scope+(R ), so it might be impossible to construct an R : v(scopet(R ))→R

satisfying all descriptions (5.30) gathered so far. Further, those extra variables in

scope+(R )\ scopet(R ) may not be in X t . To resolve this, if the agent fails to construct

a valid reward function, it asks (5.31) (in words, “which variable X (that I don’t already

know) is in scope(R )?”), receiving an answer (5.32):

?λX(X ∈ scope+(R )
∧

X ′∈scopet(R )

X 6= X ′) (5.31)

X ∈ scope+(R )∧X ∈ X + (5.32)

Again, the agent may be unaware of many variables in scope+(R ), so (5.32) may be

non exhaustive. Even so, we can guarantee that the agent’s learned reward function

eventually equals R+:

Lemma 6. Consider an FMDP where π+ is proper and an agent with awareness At ⊆A+,

X t ⊆ X +, scopet(R )⊆ scope+(R ). As k→∞, there exists a K such that for all k≥ K,

Rt+k(s) = R+(s) for all states s reachable using At .

Outline Proof. If s is reachable using At , then as k→ ∞, an ε-greedy agent will eventu-

ally enter s at some time i, receive reward R+(s), and update its current reward function

so that Ri(s) = R+(s). If the agent has previously encountered another s′ such that

s[scopet(R )] = s′[scopet(R )] and R+(s) 6= R+(s′), the partial descriptions (5.30) for

s and s′ will conflict. The agent resolves this by asking (5.31), receiving an answer

differentiating s from s′ in R+.
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5.3.2 Adapting the Transition Function

Section 5.3.1 showed three ways the agent could expand its awareness of X , A, and

scope(R ). If we wish to improve on the naive approach of restarting learning when

faced with such expansions, we must now specify how the agent adapts T and R to

such discoveries.

Adapting T upon discovering a new action a′ at time t is simple: Since the agent

hasn’t performed a′ in any previous trial, it can just create a new DBN, dbna′ , using

the priors outlined in Section 5.2.1. Our new model at time t then becomes T =

{dbnt
a1
, . . .dbnt

an
}∪{dbna′}.

The more difficult issue is adapting T upon discovering a new belief variable Z. The

main problem is that the agent’s current distributions over DBNs no longer cover all

possible parent sets for each variable, nor all DTs. For example, the current distribution

over Paa
X ′ does not include the possibility that Z is a parent of X ′. Worse, since we

assume in general that the agent cannot observe Z’s past values in D0:t , it cannot observe

the true value of Na
Z=i| j, nor Na

X=i|Paa
X ′= j when Z ∈ Paa

X ′ . The α-parameters involving Z

are also undefined, yet we need them to calculate structure probabilities (5.9, 5.13) and

parameters via (3.6).

As done for DNs in the last chapter, our method discards the data gathered during the

learner’s previous deficient view of the hypothesis space, but conserves the relative

posterior probabilities learned from past data to construct new priors for the Paa, DTa

and θa in the expanded belief space.

5.3.2.1 Parent Set Priors

On discovering Z, the agent must update P(Paa
X ′) for each X 6= Z and a ∈ At to include

parent sets containing Z. In (5.33) we construct a new prior P′(Paa
X ′) using the old

posterior (where C is a normalizing constant):

P′(Paa
X ′) =

(1−ρ)P(Paa
X ′|D0:t) if Z /∈ Paa

X ′

ρP((Paa
X ′ \Z)|D0:t) otherwise

(5.33)

This preserves the likelihoods among the parent sets that do not include Z. It also

maintains our bias towards simpler structures by re-assigning only a portion ρ of the
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probability mass to parent sets including Z. To define P(Paa
Z′)—the distribution over

parent sets for the newly discovered variable Z—we default to (5.11), since the agent

has no evidence (yet) concerning Z’s parents.

5.3.2.2 Decision Tree and Parameter Priors

We must also update P(DTa
X |Paa

X ′), and P(θa
X ,Paa

X ′
|Paa

X ′) to accommodate Z. Here, we

return to the issue of the counts Na
i| j and the associated α-parameters. As mentioned

earlier, we wish to avoid the complexity of estimating Z’s past values. Instead, we

throw away the past counts of Na
i| j, but retain the relative likelihoods they gave rise to

by packing these into new α-parameters, as shown in (5.34-5.35):

α
a
X=i|Y= j :=


K

|v(Z∪Y )| if X = Z

K
|v(Y )|P(i, j[Y \Z]|dbnt

a) else
(5.34)

P′(DTa
X ′|Paa

X ′) ∝ ∏
`∈leaves(DTa

X ′)

β(αa
X ′=1|`, . . . ,α

a
X ′=n|`) (5.35)

Equation (5.34) summarizes D0:t via inferences on the old best DBNs, then encodes

these inferences in the new α-parameters. The revised α-parameters ensure the new

tree structure prior and expected parameters defined via (5.35) and (3.6) bias towards

models the agent previously thought were likely. Indeed, the larger the (user-specified)

K parameter is, the more the distributions learned before discovering Z influence the

agent’s reasoning after discovering Z.

5.3.3 Adapting the Reward and Value Functions

On becoming aware that a new Z is part of scope+(R ), the agent may wish to restructure

its reward tree. This is because awareness that Z ∈ scope+(R ) means there are tests of

the form Z = i that the agent has not yet tried which may produce a more compact tree.

In the language of ITI, the current test nodes are “stale”, and must be re-checked to see

if a replacement test would yield a tree with better information gain.

The only added complication here is that, since the agent may have previously unaware

of Z (i.e., Z /∈ X t), we know that the previous set of state-reward descriptions at each

node given by equation (5.15) were actually only partial state-reward descriptions:
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SRP` = {〈s[X t ],r〉|λ(s[X t ]) = `,〈s′[X t ],a,s[X t ],r〉 ∈ D0:t} (5.36)

We can still test on the values of partial state-reward descriptions by following the ITI

convention that any partial description where Z is missing automatically fails any test

on the value of Z. Further, if some future trial d j has a strictly more precise partial

description than some previous trial di (i < j), then can completely replace the partial

state-reward description of di by d j.

Once we have updated T and R , there is no need to make further changes to Vt in

response to a new action a′ or variable Z. In effect, this encodes our conservative

intuition that the true Vπ+ is more likely to be closer to the agent’s current estimate

Vt than some arbitrary value function. The agent essentially assumes (in absence of

further information) that the value of a state is indifferent to this newly discovered factor.

In subsequent trials where the agent performs a′ or observes Z, algorithm 5 ensures

information about this new factor is incorporated into the agent’s value function.

Algorithm 6 outlines how the agent updates T , R , and V in response to new data and

expert advice. Given algorithm 6, Theorem 4 guarantees our agent behaves indistin-

guishably from a near-optimal policy in the long run (where by “near-optimal” we mean

that it is within the bounds β of the expert’s tolerance to the agent’s mistakes), regardless

of initial awareness (provided all X ∈ X + are relevant to expressing the optimal policy).

Theorem 4. Consider an FMDP where π+ is proper and an agent with initial awareness

X 0 ⊆ X +,A0 ⊆ A+, and scope0(R ) ⊆ scope+(R ) acts according to algorithm 6. If

for all X ∈ X +, there exists a pair of states s,s′ such that s[X+ \ X ] = s′[X+ \ X ],

s[X ] 6= s′[X ], and π+(s) 6= π+(s′), then as t→ ∞, Err(0, t)→ c such that c≤ β

Outline Proof. By repeatedly applying Theorems 4 - 6, we have that if Err(0, t) has not

yet converged to c≤ β, then there exists a K where image(π+)⊆ AK , X K = X +, and

RK(s) = R+(s) for all s reachable with AK . Thus X K , AK , RK define a separate MDP

for which the agent is fully aware, but has the same π+ as the original. All episodes

terminate, so the agent’s estimate of T eventually approximates the true transition

function, Vt converges to the Vπ+ , and thus Err(0, t)→ 0.
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Algorithm 6 Learning FMDPs with Unawareness

1: function LEARNFMDPU(A0, X 0, T0, Q0, V0, s0)

2: for t = 1 . . .maxTrials do
3: 〈st ,rt〉 ← ε-GREEDY(st−1, Qt−1, adv0:t−1)

4: 〈Tt ,Rt〉 ← Add 〈st ,rt〉 via (5.9-3.6) & ITI

5: if Update to Rt fails then
6: Z← Ask expert (5.28)

7: 〈scopet(R ),X t〉 ← Append Z to each

8: Rt ← Update via ITI

9: if (5.19-5.21) are true then
10: advt ← Expert advice of form (5.22)

11: if advt mentions action a′ /∈ At−1 then
12: A t ← A t−1∪{a′}
13: Tt ← Tt−1∪{dbna′} made via (5.11)

14: if adv0:t−1 conflicts with advt then
15: Z← Ask expert (5.28)

16: X t ← X t−1∪{Z}

17: if X t−1 6= X t then
18: Tt ← Update via (5.34, 5.9, 5.35, 5.13, 3.6)

19: 〈Vt ,Qt〉 ← INCSVI(Rt ,Tt ,Vt−1)
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5.4 Experiments

Our experiments show that agents following algorithm 6 converge to near-optimal

behaviour in both theory and practice. Further, we show that conserving information

on T and V gathered before each new discovery allows our agent learn faster than one

which abandons this information. We do not investigate assigning an explicit budget to

agent-expert communication, leaving this to future work. However we do show how

varying the expert’s tolerance affects the agent’s performance.

We test agents on two well-known problems: Coffee-Robot and Factory.4 In each, our

agent begins with only partial awareness of X+, A+ and scope+(R ). The agent takes

actions for T time steps, using an ε-greedy policy (ε = 0.1). When the agent enters a

terminal state, we reset it to one of the initial states randomly. We use the cumulative

reward across all trials as our evaluation metric, which acts as a proxy for the quality of

the agent’s policy over time. To make the results more readable, we apply a discount of

0.99 at each step, resulting in the metric Rdisc
t = rt +0.99∗Rdisc

t−1 .

We test several variants of our agent to show the effectiveness of our approach. The

default agent follows algorithm 6 as is, with parameters ρ = 0.1, K = 5.0, µmin = 10,

β = 0.1, µmax = 50 in equations (5.11), (5.33), (5.34), and (5.19-5.21) respectively. The

nonConservative agent does not conserve information about V , nor T via (5.33-5.35)

when a new factor is discovered. Instead, it resets V and T to their initial values. This

agent is included to show the value of conserving past information as X and A expand.

The truePolicy and random agents start with full knowledge of the true FMDP, and

execute an ε-greedy version of π+, or a choose random action respectively. These agents

provide an upper/lower bound on performance. The lowTolerance / highTolerance
agents change the expert’s tolerance to β = 0.01 and β = 0.5.

5.4.1 Coffee Robot

Coffee-Robot is a small sequential problem where a robot must purchase coffee from a

cafe, then return it to their owner. Also, the robot gets wet if it has no umbrella when

it rains. The problem has 6 boolean variables—HUC (user has coffee), HRC (robot

has coffee), R (raining), W (wet), L (location), U (umbrella)— and 4 actions—MOVE,

DELC, BUYC and GETU— making 256 state/action pairs. The terminal states are those

4Full specifications at https://cs.uwaterloo.ca/˜jhoey/research/spudd/index.php

https://cs.uwaterloo.ca/~jhoey/research/spudd/index.php
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Figure 5.5: Cumulative Rewards on Coffee Robot task, T = 1000, averaged over 50

experiments. Shaded areas represent the standard error from the mean.
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Figure 5.6: Cumulative Rewards on Factory task, T = 10000, averaged over 20 experi-

ments. Shaded areas represent the standard error from the mean.

where HUC = 1; initial states are all non-terminal ones. Our agent has initial awareness

A0 = {MOVE}, X 0 = scope0(R ) = {HUC} and discount factor γ = 0.8.5

Figure 5.5 shows each agent’s (discounted) cumulative reward. Despite starting unaware

of factors critical to success, the default agent quickly discovers the relevant actions

and beliefs with the expert’s aid, and converges on the optimal policy. The non-

conservative agent also learns the optimal policy, but takes longer. This shows the value

of conserving T and V on discovering new beliefs. We also see how expert tolerance

affects performance. The agent paired with high tolerance expert learns a (marginally)

worse final policy, but this makes little difference to cumulative reward. Figure 5.7

shows why: The agent learned a “good enough” policy, so the expert doesn’t reveal the

“get umbrella” (GETU) action, which yields only a minor increase in reward. Figure 5.8

5Original setting was γ = 0.9. Changed to make π+ proper.



5.4. Experiments 97

HUC=yes

getu L=office

HRC=no HRC=yes

W=no delc move buyc

R=yes move

U=yes move

move getu

(a) Default Tolerance

HUC=yes

delc L=office

HRC=no HRC=yes

move delc move buyc

(b) High Tolerance

Figure 5.7: Typical final policy depending on tolerance
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Figure 5.8: Awareness of |X +| and |A+| on Coffee Robot

supports this explanation, showing how more tolerant experts reveals less variables over

time.

5.4.2 Factory

Factory is a larger problem (|A+| = 14, X+ = 14, 774144 state/action pairs), which

shows our method works on more realistically sized tasks. Here, an agent must shape,

paint and connect two widgets to create products of varying quality. Some actions (like

bolting) produce high quality products, whereas others (like gluing) produce low quality

products. The agent receives a higher reward for producing goods which match the de-
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Figure 5.9: Comparing the average number of messages sent by the expert on Factory

when paired with a Conservative versus Non-Conservative agent.
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Figure 5.10: Comparing the average number of messages sent by the experts of varying

tolerance on Factory.
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manded quality.6. The terminal states are those where CONNECTED = 1; initial states are

non-terminals where it is possible to connect two components. Our agent’s initial aware-

ness is X 0 = scope0(R ) = {CONNECTED}, A0 = {BOLT, GLUE, DRILLA, DRILLB},
with γ = 0.9. This represents a simplified task where the agent thinks the only goal is

connecting the widgets.

Figure 5.6 shows results similar to previous experiments. The default agent converges

on optimal behaviour, and does so quicker than the non-conservative agent. Varying the

expert’s tolerance now has a larger effect on the rate at which factors are discovered

and on convergence towards the optimal policy (presumably because there are many

more unforeseen variables/actions the agent can discover in this larger problem).

Figures 5.9 and 5.10 break down the messages sent between the agent and expert over

time. These results mirror the findings from section 4.4: The expert provides advice

in only a tiny fraction of trials, agents receive less corrections as the task progresses,

tolerant experts interrupt less frequently, and the non-conservative agent performs more

poorly despite receiving more corrective advice in total.

5.5 Conclusion

This chapter extended our agent-expert framework to sequential decision problems, and

showed that our agent could learn optimal behaviour on both small and large FMDPs,

even when starting unaware of factors critical to success. Echoing the results from

previous chapters, we have shown that conserving one’s beliefs about the transition and

value functions improves the effectiveness of learning.

6Rewards were scaled to range 0.0-1.0 and, to make π+ proper, terminal states which previously gave
0 reward were given a small reward of 0.01.



Chapter 6

Conclusion / Future Work

In this thesis, we have proposed a model-based learning framework for dealing with

both single-stage and multi-step sequential decision tasks. However, unlike traditional

approaches, our learning agent begins unaware of the true actions and belief variables

which are relevant to the problem. Our model exploits two kinds of evidence to discover

and learn to exploit factors that the agent starts out unaware of: as is traditional, the

agent uses evidence from trial and error; and in addition, the learner uses evidence from

an extended conversation that it has with a domain expert, where the expert’s utterances

are contextually relevant to the agent’s latest move: either a dialogue move where the

agent has asked a pertinent question to resolve its current dilemma in inference, which

the expert then answers, or unsolicited advice about better options in a context where

the agent has been performing sufficiently poorly on the domain level task. We have

confined the conversation to these types of moves because our eventual aim is for our

model to support learning optimal behaviours from human teachers in a scenario that is

similar to one where an apprentice interacts with a human teacher.

We showed that our formal protocol for communication between the learner and expert,

while confined to the types of dialogue moves that are natural in a human setting

(although the language is not natural, the type of dialogue acts are!), we were able to

provably guarantee that the agent would eventually converge on optimal behaviour,

despite starting unaware of factors that may be critical to success.

By conducting a range of experiments across various bayesian networks, decision

networks and factored markov decision processes, we showed that our agent model

converged upon optimal behaviour not just in theory, but also in practice. Further, the

101
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experiments justified our intuitions that an agent which conserves information about its

previously learned model upon discovering new unforeseen factors would learn faster

than one which abandoned such information.

This work is takes some of the necessary initial steps in devising an autonomous agent

which can learn in an ever-expanding hypothesis space, and as a result, there are many

fruitful areas in which this work could be extended:

Expanding the Capabilities of the Expert: To restrict the scope of this work, we

placed a number of strong assumptions on the expert and its communication with the

learning agent. However, our ultimate long term goal is to extended such work to have a

human expert assistant. In this case, many of the assumptions that we have made in this

work would have to be lifted. For example, we assume the expert never makes a mistake,

and has full knowledge of the true underlying decision task. Most human experts do

make mistakes, or have only partial knowledge of a problem. Indeed, it is because

humans typically have only partial knowledge, and/or are unable to articulate all their

knowledge precisely and in the absence of sensory prompts, that we modelled our task

as one where the expert offers information ‘piecemeal’, in reaction to the agent’s latest

actions (thereby making the expert’s information relevant, or coherently related, to the

agent’s latest action, whether that action is asking a question, or performing an action in

the domain). But while we support the expert being unable to impart all her knowledge

in advance, we do not yet support that information being fallible. If the expert is fallible,

then our agent would have to weigh the expert’s advice against its own experience, and

possibly revise its beliefs about the expert’s abilities if they are consistently wrong.

There is also room to expand the range of expressibility with which the expert gives

advice. For example, the expert could not only give the advice that one action is better

than another, but also couple this with a partial causal explanation of why one action

is better than another. As discussed throughout previous chapters, this may introduce

further ambiguity due to the relative differences in each speaker’s awareness, as it may

not be clear whether such a causal explanation applies in all cases, or is conditional on

some additional factor that the learning agent is unaware of.

Extending the Complexity of the Tasks: This thesis focussed primarily on discrete,

finite-state decision problems in which variables became fully-observable the moment

the agent became aware of them. However, in many real-world scenarios, a particular
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factor can remain unobservable even after one becomes aware that it is relevant to the

task. Extending such models of unawareness to incorporate the discovery of hidden

variables is a significant challenge.

Another extension would be to consider tasks involving budgeted learning, where

the agent knows it is only able to take a limited number of actions in each task, or

where communication with the expert comes at a cost. Such work would likely involve

evaluated the expected value of information associated with each piece of advice, which

becomes difficult when the agent is potentially unaware of all possible outcomes it

should evaluate over.

Strengthening the Reasoning Abilities of the Learning Agent In our current model,

the agent only asks for advice when there is an explicit conflict between its current

model and the partial descriptions it has gathered from domain and dialogue evidence

so far. However, our agent could potentially be more pro-active, and ask about areas

of the problem where it suspects it is unaware of something. The agent could achieve

this by, for example, looking for structural signatures that indicate the location of a

latent factor (Elidan et al., 2000), or by asking about dependencies for which it has high

uncertainty (Masegosa and Moral, 2013).





Appendix A

The language for partially describing

Decision Networks

The model for learning the true DN (dn+) in Chapter 4 made use of a language L for

partially describing DNs. This language was used in two ways: to represent monotonic

information from evidence, and as a language in which the learner and expert can

communicate about (partial) information about the true DN. Its syntax and semantics

are defined below.

In Chapter 5, we also use a similar language to for partially describing FMDPs. We have

omitted a full specification of this related language to avoid repetition.

A.1 The syntax of the language L

• Terms of the sort: X ,Y . . . are random variable (RV) constants; PaY , X , A , O,

scope(R ), B are Sets of Random Variables (SRV) constants (denoting sets of

random variables in the model). Where Y is an SRV constant, y is a partial-state

assignment (PS) term, denoting a value assignment to each RV constant in Y ;

s is an atomic state (AS) term (denoting a full atomic state in the model). The

language also includes RV variables and AS variables.

• If p is a PS term or an AS term, then it is a well-formed formula (WFF) in L .

• If p is a PS or AS term and X is an SRV constant, then p[X ] is a PS term in L .
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• If X is an RV term and Y is an SRV term, then X ∈ Y is a WFF in L .

• If s is an AS term and n is a number, then R (s) = n and R (s)> n are both WFF

in L .

• Where φ,ψ are WFFs, so are ¬φ, φ∧ψ, ∃sφ, ∀sφ (where s is an AS variable), ∃V φ,

∀V φ, and ?λV φ (where V is an RV variable).

Each model dn for interpreting L corresponds to a (unique) complete DN (see Sec-

tion 4.1.1 for definition). Section A.2 then evaluates the formulae of L as partial

descriptions of dn.

A.2 The semantics of L

Let dn = 〈X dn,Adn,Padn,θdn,R dn〉 be a DN and g a variable assignment function.

• For an RV constant X , JXK〈dn,g〉 = X ; similarly for SRV constants.1 This ensures

that JAK〈dn,g〉, JBK〈dn,g〉 and JOK〈dn,g〉 denote sets of variables in the appropriate

position in the probabilistic structure of dn.

• For an AS variable s, JsK〈dn,g〉 = g(s) where g(s) ∈ v(X dn ∪Adn). For an RV

variable V , JV K〈dn,g〉 = g(V ) ∈ X dn∪Adn.

• For an RV term a and an SRV term b, Ja ∈ bK〈dn,g〉 = 1 iff JaK〈dn,g〉 ∈ JbK〈dn,g〉.

• Where p is a PS term, JpK〈dn,g〉 = p.

• For an AS term s and number n, JR (s) = nK〈dn,g〉 = 1 iff Rdn(JsK) = n (with

JR (s)> nK〈dn,g〉 defined analogously).

• where p and q are AS or PS terms, Jp = qK〈dn,g〉 = 1 iff JpK〈dn,g〉 = JqK〈dn,g〉.

• Where p is an AS or PS term and X an SRV constant, Jp[X ]K〈dn,g〉= JpK〈dn,g〉
[
JX K〈dn,g〉

]
(i.e., the projection of the denotation of p onto the set of variables denoted by X ).

• For formulae φ, ψ: Jφ∧ψK〈dn,g〉= 1 iff JφK〈dn,g〉= 1 and JφK〈dn,g〉= 1; J¬φK〈dn,g〉=

1 iff JφK〈dn,g〉 = 0. Where s is an AS, J∃sφK〈dn,g〉 = 1 iff there is a variable assign-

ment function g′ = g[s/p] such that JφK〈dn,g′〉 = 1.

1If X 6∈ Cdn∪Adn, then JXK〈dn,g〉 is undefined and Definition A.2 ensures that any formula φ featuring
X is such that dn 6|= φ; similarly for propositional terms p featuring a value of a variable that is not a part
of dn.
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• Where V is a RV variable and φ is a formula:

J∃V φK〈dn,g〉 = 1 iff there exists an RV constant X such that Jφ[V/X ]K〈dn,g〉 = 1.

J?λV φK〈dn,g〉 = {φ[V/X ] : X is an RV constant and Jφ[V/X ]K〈dn,g〉 = 1}.

These interpretations yield a satisfaction relation in the usual way: dn |= φ iff there is a

function g such that JφK〈dn,g〉 = 1.
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Proof of Update Formulae (3.7)

Note, the derivation below corrects an error from the original Buntine (1991) paper.

The proof that:

BDt(X ,PaX) = BDt−1(X ,PaX)
Nt

i| j +αi| j−1

Nt
.| j +α.| j−1

(3.7)

Follows from the definition of the multivariate-β function in terms of the Γ-function,

and the recursive structure of Γ:

β(n1, . . .nm) =
∏

m
k=0 Γ(nk)

Γ(∑m
k=0 nk)

(B.1)

Γ(x) = (x−1)Γ(x−1) (B.2)

From equation (3.2), we have:

BDt(X ,PaX) =

P(PaX)∏
j∈v(PaX )

β(Nt
0| j +α0| j, . . . ,Nt

m| j +αm| j)

β(α0| j, . . . ,αm| j)

(3.2)

Lets assume that dt [X ] = i and dt [PaX ] = j. The only difference between BDt(X ,PaX)

and BDt−1(X ,PaX) is between counts Nt
i| j and Nt−1

i| j (specifically, that Nt−1
i| j = Nt

i| j−1),

so we can rewrite (3.2) as:
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BDt(X ,PaX)

= BDt−1(X ,Pa)
Γ(∑m

k=0 Nt−1
k| j )∏

m
k=0 Γ(Nt

k| j)

Γ(∑m
k=0 Nt

k| j)∏
m
k=0 Γ(Nt−1

k| j )

=
Γ((∑m

k=0 Nt
k| j)−1)Γ(Nt

i| j)

Γ(∑m
k=0 Nt

k| j)Γ(N
t
i| j−1)

Then, via (B.2), we have:

Γ((∑m
k=0 Nt

k| j)−1)Γ(Nt
i| j)

Γ(∑m
k=0 Nt

k| j)Γ(N
t
i| j−1)

=
Γ((∑m

k=0 Nt
k| j)−1)(Nt

i| j−1)Γ(Nt
i| j−1)

((∑m
k=0 Nt

k| j)−1)Γ((∑m
k=0 Nt

k| j)−1)Γ(Nt
i| j−1)

=
Nt

i| j−1

(∑m
k=0 Nt

k| j)−1

And therefore that:

BDt(X ,PaX) = BDt−1(X ,PaX)
Nt

i| j +αi| j−1

Nt
.| j +α.| j−1

(3.7)

As required.
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Task Specifications from Experiments

This chapter gives specifications of DNs used in Chapter 4’s experiments. Tables C.1-C.4

correspond to the barley (18 variable), small (12 variable), medium (24 variable) and

large (36 variable) DNs. Since all variables are binary, numbers the column P(X = 1|Pa)

just give probability that X = 1 for each possible assignment to v(Pa) (Going from

left to right, the first number in each row corresponds to the case where all parents

have assignment 0, and the last number corresponds to the case where all parents have

assignment 1). In addition, the numbers in the R (s) column give the reward received

given the corresponding assignment to the variables in scope(R ).

The DNs were randomly generated by the following process: First, to generate a DN

structure, the structural requirements were posed as a constraint programming problem

(e.g that the variables must form a DAG, action variables cannot have parents, all

variables must be connected to the reward node etc.). Then, using an off-the-shelf

constraint programming library,1 we solved for 100,000 solutions, then chose one

randomly. Each set of parameters θX |PaX was then sampled from a dirichlet distribution

with αi = 1 for all i.

For the sake of space, the specifications for the BNs in Chapter 3 and the FMDPs in

Chapter 5 are not included here. However, full specifications of all BNs used in Chapter

3 can be found at http://www.bnlearn.com/bnrepository/, while full specifica-

tions for the coffee and factory FMDPs can be found at https://cs.uwaterloo.ca/

˜jhoey/research/spudd/index.php

1https://developers.google.com/optimization/cp/
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Table C.1: barley DN (18 variables)

X PaX P(X |PaX )

Soil Type /0 0.50

Temperature /0 0.50

Precipitation /0 0.50

Insect Prevalence /0 0.50

Local Concern /0 0.50

Nitrogen Soil Type, Precipitation, Pesticide, Fertiliser 0.40, 0.60, 0.50, 0.70, 0.30, 0.50, 0.40, 0.60,

0.65, 0.85, 0.75, 0.95, 0.55, 0.75, 0.65, 0.85

Gross Crops Harrow, Nitrogen, Grain 0.50, 0.40, 0.80, 0.70, 0.60, 0.50, 0.90, 0.80

Fungus Temperature, Fungicide, Grain 0.20, 0.50, 0.02, 0.04, 0.30, 0.60, 0.03, 0.06

Weeds Temperature, Harrow, Soil Type 0.20, 0.10, 0.02, 0.01, 0.30, 0.15, 0.03, 0.01

Infestation Insect Prevalence, Pesticide 0.10, 0.50, 0.01, 0.05

Yield Gross Crops, Fungus, Weeds, Infestation 0.20, 0.95, 0.10, 0.50, 0.10, 0.70, 0.05, 0.30,

0.05, 0.65, 0.01, 0.20, 0.01, 0.45, 0.01, 0.10

Protein Nitrogen, Fertiliser, Grain 0.50, 0.90, 0.40, 0.80, 0.40, 0.80, 0.30, 0.70

Bad Press Local Concern, Pesticide 0.00, 0.00, 0.01, 0.50

scope(R ) R (s)

Yield, Protein, Fungus, Bad Press 0.75, 0.88, 0.88, 1.00, 0.50, 0.62, 0.62, 0.75,

0.25, 0.38, 0.38, 0.50, 0.00, 0.12, 0.12, 0.25

Table C.2: small DN: (12 Variables)

X PaX P(X |PaX )

B1 /0 0.50

O1 A4 0.23, 0.18

B2 /0 0.84

B3 /0 0.18

O3 A1, A3, B3 0.31, 0.89, 0.87, 0.15, 0.48, 0.21, 0.90, 0.06

B4 B2 0.45, 0.26

O4 A2, B1 0.78, 0.87, 0.12, 0.07

O2 B2, B4, O1 0.04, 0.75, 0.64, 0.07, 0.36, 0.62, 0.69, 0.17

scope(R ) R (s)

O4, O2, O3 0.98, 0.14, 0.70, 0.35, 0.38, 0.98, 0.11, 0.97
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Table C.3: medium DN (24 variables)

X PaX P(X |PaX )

B8 /0 0.05

B6 /0 0.97

B7 /0 0.01

B1 /0 0.72

B4 /0 0.08

B5 /0 0.66

B2 /0 0.78

B3 /0 0.54

O3 A6, B4, B6 0.66, 0.14, 0.99, 0.83, 0.75, 0.71, 0.30, 0.12

O2 A5, A8, B5 0.26, 0.94, 0.67, 0.18, 0.04, 0.63, 0.87, 0.14

O6 A6, B3 0.87, 0.31, 0.48, 0.13

O4 A1, B8 0.27, 0.51, 0.12, 0.73

O8 A4, B2, O4 0.81, 0.51, 0.44, 0.44, 0.34, 0.82, 0.04, 0.56

O1 A2, A7, O3 0.03, 0.47, 0.74, 0.43, 0.59, 0.08, 0.60, 0.57

O7 B7, O6 0.83, 0.68, 0.27, 0.23

O5 A3, B1, O7 0.75, 0.30, 0.25, 0.35, 0.64, 0.30, 0.31, 0.31

scope(R ) R (s)

O1, O8, O5, O2 0.47, 0.95, 1.00, 0.18, 0.26, 0.75, 0.38, 0.76,

0.60, 0.78, 0.02, 0.75, 0.40, 0.32, 0.30, 0.14
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Table C.4: large DN (36 variables)

X PaX P(X |PaX )

B10 /0 0.43

O9 A12 0.53, 0.82

B11 /0 0.59

O8 A2 0.87, 0.19

B12 /0 0.42

B13 /0 0.52

B14 /0 0.76

B15 /0 0.12

O2 A1, A6, A8 0.43, 0.89, 0.00, 0.18, 0.19, 0.76, 0.76, 0.67

B8 /0 0.28

B9 /0 0.26

B6 /0 0.96

B7 /0 0.27

B1 /0 0.99

B4 /0 0.99

B5 /0 0.13

B2 /0 0.77

B3 /0 0.01

O3 B2, B9, O2 0.31, 0.21, 0.71, 0.65, 0.78, 0.17, 0.67, 0.92

O6 A3, B6, B11 0.28, 0.41, 0.55, 0.42, 0.93, 0.58, 0.44, 0.74

O5 A13, B3, B4 0.17, 0.66, 0.93, 0.62, 0.47, 0.08, 0.82, 0.86

O15 A2, A11, O8 0.92, 0.34, 0.25, 0.48, 0.43, 0.25, 0.52, 0.32

O14 A10, B5, B8 0.37, 0.91, 0.75, 0.86, 0.29, 0.33, 0.96, 0.84

O13 A4, A7, B1 0.37, 0.40, 0.74, 0.94, 0.67, 0.70, 0.66, 0.46

O7 B7, B15, O6 0.31, 0.69, 0.17, 0.56, 0.88, 0.40, 0.65, 0.91

O4 A14, O3, O9 0.31, 1.00, 0.59, 0.81, 0.08, 0.20, 0.02, 0.63

O12 B13, B14, O13 0.55, 0.71, 0.61, 0.22, 0.51, 0.90, 0.37, 0.52

O11 A5, B10, O5 0.73, 0.65, 0.42, 0.47, 0.42, 0.34, 0.97, 0.33

O10 A15, B12, O15 0.06, 0.80, 0.42, 0.36, 0.62, 0.97, 0.15, 0.29

O1 A9, O7, O11 0.48, 0.03, 0.14, 0.41, 0.16, 0.64, 0.22, 0.19

scope(R ) R

O1, O4, O14, O10, O12 0.28, 0.19, 0.91, 0.71, 0.68, 0.57, 0.98, 0.86,

0.96, 0.54, 0.19, 0.20, 0.72, 0.61, 0.32, 0.65,

0.64, 0.12, 0.64, 0.67, 0.72, 0.27, 0.05, 0.07,

0.63, 0.09, 0.55, 0.45, 0.19, 0.02, 0.51, 0.13
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