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Abstract

Continuous-time Markov chains have long served as exemplary low-level models for an
array of systems, be they natural processes like chemical reactions and population fluctu-
ations in ecosystems, or artificial processes like server queuing systems or communication
networks. Our interest in such systems is often an emergent macro-scale behaviour, or
phenomenon, which can be well characterised by the satisfaction of a set of properties.
Although theoretically elegant, the fundamental low-level nature of Markov chain models
makes macro-scale analysis of the phenomenon of interest di�cult. Particularly, it is not
easy to determine the driving mechanisms for the emergent phenomenon, or to predict
how changes at the Markov chain level will influence the macro-scale behaviour.

The di�culties arise primarily from two aspects of such models. Firstly, as the number
of components in the modelled system grows, so does the state-space of the Markov
chain, often making behaviour characterisation untenable under both simulation-based
and analytical methods. Secondly, the behaviour of interest in such systems is usually
dependent on the inherent stochasticity of the model, and may not be aligned to the
underlying state interpretation. In a model where states represent a low-level, primitive
aspect of system components, the phenomenon of interest often varies significantly with
respect to this low-level aspect that states represent.

This work focuses on providing methodological frameworks that circumvent these
issues by developing abstraction strategies, which preserve the phenomena of interest. In
the first part of this thesis, we express behavioural characteristics of the system in terms
of a temporal logic with Markov chain trajectories as semantic objects. This allows us
to group regions of the state-space by how well they satisfy the logical properties that
characterise macro-scale behaviour, in order to produce an abstracted Markov chain.
States of the abstracted chain correspond to certain satisfaction probabilities of the logical
properties, and inferred dynamics match the behaviour of the original chain in terms of
the properties. The resulting model has a smaller state-space which is interpretable in
terms of an emergent behaviour of the original system, and is therefore valuable to a
researcher despite the accuracy sacrifices.



x

Coarsening based on logical properties is particularly useful in multi-scale modelling,
where a layer of the model is a (continuous-time) Markov chain. In such models, the layer
is relevant to other layers only in terms of its output: some logical property evaluated
on the trajectory drawn from the Markov chain. We develop here a framework for
constructing a surrogate (discrete-time) Markov chain, with states corresponding to layer
output. The expensive simulation of a large Markov chain is therefore replaced by an
interpretable abstracted model. We can further use this framework to test whether a
posited mechanism could be the driver for a specific macro-scale behaviour exhibited by
the model.

We use a powerful Bayesian non-parametric regression technique based on Gaussian
process theory to produce the necessary elements of the abstractions above. In particular,
we observe trajectories of the original system from which we infer the satisfaction of
logical properties for varying model parametrisation, and the dynamics for the abstracted
system that match the original in behaviour.

The final part of the thesis presents a novel continuous-state process approximation
to the macro-scale behaviour of discrete-state Markov chains with large state-spaces.
The method is based on spectral analysis of the transition matrix of the chain, where we
use the popular manifold learning method of di�usion maps to analyse the transition
matrix as the operator of a hidden continuous process. An embedding of states in
a continuous space is recovered, and the space is endowed with a drift vector field
inferred via Gaussian process regression. In this manner, we form an ODE whose
solution approximates the evolution of the CTMC mean, mapped onto the continuous
space (known as the fluid limit). Our method is general and di�ers significantly from
other continuous approximation methods; the latter rely on the Markov chain having
a particular population structure, suggestive of a natural continuous state-space and
associated dynamics.

Overall, this thesis contributes novel methodologies that emphasize the importance
of macro-scale behaviour in modelling complex systems. Part of the work focuses on
abstracting large systems into more concise systems that retain behavioural characteristics
and are interpretable to the modeller. The final part examines the relationship between
continuous and discrete state-spaces and seeks for a transition path between the two which
does not rely on exogenous semantics of the system states. Further than the computational
and theoretical benefits of these methodologies, they push at the boundaries of various
prevalent approaches to stochastic modelling.



Lay Summary

Processes from chemical reactions and population fluctuations in ecosystems to server
queuing systems, are well described by non-deterministic (stochastic) formal models
known as Markov chains. Our interest in such systems is often an emergent macro-scale
behaviour, or phenomenon, which can be characterised by the satisfaction of a set of
properties. Although theoretically elegant, the fundamental low-level nature of Markov
chains makes the analysis of such phenomena of interest di�cult. Particularly, it is not
easy to determine the driving mechanisms for the emergent phenomenon, or to predict
how changes at the Markov chain level will influence the macro-scale behaviour.

The di�culties arise primarily from two aspects of such models. Firstly, as the number
of components in the modelled system grows, so does the state-space of the Markov
chain, often making behaviour characterisation untenable under both simulation-based
and analytical methods. Secondly, in a model where states represent primitive aspects of
system components, the phenomenon of interest often varies significantly with respect to
this low-level aspect that states represent.

This work focuses on providing methodological frameworks that circumvent these
issues by developing abstraction strategies, which preserve the phenomena of interest.
To begin with, we express behavioural characteristics of the system in terms of logical
properties, verifiable on simulations of the Markov chain model. This allows us to group
states according to their probability of satisfying the logical properties that characterise
macro-scale behaviour, in order to produce a simplified (abstracted) Markov chain. We
similarly abstract Markov chains which are parts of an overarching multi-scale system;
our abstraction aims to preserve any output which is relevant to other parts of the system
for the emergence of some macro-scale behaviour of interest. The final part of the thesis
presents a novel continuous-state process approximation to the macro-scale behaviour of
discrete-state Markov chains with large state-spaces.

Overall, this thesis contributes novel methodologies that emphasize the importance
of macro-scale behaviour in modelling complex systems. Further than the computational
and theoretical benefits of these methodologies, they push at the boundaries of various
prevalent approaches to stochastic modelling.
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Chapter 1

Introduction

1.1 Overview
Stochastic dynamical systems are ubiquitous in nature. It is therefore desirable to
model such systems mathematically to facilitate understanding, prediction, and control.
Markov chains are often a natural choice for modelling these systems — the properties
of memoryless-ness and non-teleology, where system evolution is not driven by any
past experience or future goal but only the present state, are particularly attractive for
physical models. There exist many variations of Markov chains, di�ering in either the
interpretation of time or the nature of possible configurations (states) available to the
system. Most of this thesis builds upon the continuous-time Markov chain (CTMC)
model, with a finite discrete set as the state space and exponentially distributed transition
times for each possible transition from state to state.

Description of a physical system in this formalism often produces very large state
spaces if the system has a large number of possible configurations, making subsequent
analysis of the system particularly onerous. These large models are usually a result of a
theoretical, reductionist-driven understanding of the system, translated into the Markov
chain formalism. In reality, many a time the interest is for a particular behaviour emerging
from this low-level model, which may be described by a simpler, phenomenological model
of the original system.

1.2 Context
This work follows in the spirit of many others to establish connecting links between system
descriptions at di�erent levels. This has been achieved in numerous fields, the most
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notable example of which is the use of statistical ensembles to relate microscopic particle
states and dynamics to macroscopic thermodynamic states and dynamics. However,
such connexions are notoriously di�cult to achieve in complex systems with non-linearly
interacting components.

Di�culties aside, there is significant literature on coarsening CTMCs. These are
attempts to reduce the state-space of a CTMC by partitioning the original set of states
into macro-states. For exact coarsening, the Markov chain must be lumpable: a property
which imposes strict conditions on the partitioning with respect to the transition rates
between aggregated states (Kemeny and Snell, 1960). It is in general not trivial to
determine whether a chain is lumpable, or given that it is, to find appropriate partitions.
To address this, there have been e�orts to develop approximate methods (Abate et al.,
2015; Buchholz and Kriege, 2014; Dayar and Stewart, 1997; Franceschinis and Muntz,
1994) with a focus on analytic bounds for the coarsening accuracy. Such methods are
completely agnostic to downstream use of the chain, so that the coarsening is solely
driven by the transition structure of the chain, not the utility of the coarsening. This
imposes a heavy burden on the methods since they lack any sort of extrinsic guidance to
construct the partitioning and coarse dynamics.

On the other side of the spectrum, we have approximations of a di�erent nature:
continuous state approximations. Instead of looking at reducing the size of the state-space,
such approximations allow for a continuous relaxation of the discrete states (or some
dimensions of the states). This allows one to construct continuous distributions over the
state-space, parametrised by a small set of variables evolving over time (Kurtz, 1971;
Schnoerr et al., 2017b). It is often computationally e�cient to analyse the behaviour
of a system in this fashion, and one can derive a shrinking approximation error to the
true distribution under scaling. The latter advantages are the prime reasons for the
wide application of such methods in chemical reaction networks, where particle numbers
tend to be high enough to warrant a continuous state-space model. However, chemical
reaction networks are highly structured systems, with obvious choices for the continuous
state-space and dynamics. As a result, methods for the evolution of the approximating
continuous distributions have a constrained application domain on CTMCs that can be
expressed in a chemical reaction network formalism.

1.3 Contribution
In this thesis we circumvent many of the analytical issues that plague such systems by
adopting a phenomenological stance. We formalise macro-scale behaviour of interest that
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the system exhibits using logical properties interpreted on the low-level description. This
allows us to examine the mechanisms responsible for that behaviour in the system, and so
to construct surrogate abstracted models with a statistically consistent behaviour. The
abstracted models have the benefit of a concise state-space and dynamics, interpretable
in terms of the logical properties used to capture the behaviour of interest. In the same
vein, we regard continuous approximations to discrete systems as abstractions, where
the driving mechanism is a continuous relaxation of the state-space and dynamics of
the discrete system. We are then able to develop a method for constructing continuous
approximations for arbitrary discrete-state CTMCs, by utilising statistical tools from
machine learning to infer the underlying continuous relaxation to the state-space and
dynamics.

1.4 Structure
Some structure is often useful. We begin by laying out the fundamental definitions and
theoretical tools in Chapter 2, necessary for the work that follows. In Chapter 3 we
present an approach for coarsening a discrete state CTMC based on satisfaction of logical
properties defined on CTMC trajectories. In Chapter 4 we utilise a similar coarsening in
the context of a multi-scale system; we propose a framework to develop interpretable
statistical surrogates for CTMCs which are layers in an overarching multi-scale model.
The statistical surrogates are simpler chains which reflect a mechanistic link for observed
behaviour at di�erent scales in the model. The focus in Chapter 5 is the generalisation of
continuous-state approximations to discrete-state CTMCs. We present a novel method for
recovering a continuous relaxation of the state-space and endowing it with deterministic
dynamics, which relies on statistical methods for inference. We highlight the connexion
it bears to the classical fluid limit approximation and demonstrate its applicability
on systems not amenable to the classical approximation. Finally, we end with some
concluding remarks and future directions for this work in Chapter 6.





Chapter 2

Background

2.1 A sample of probability theory
One cannot talk about contemporary probability theory and stochastic processes without
talking about Kolmogorov. Andrei Nikolaevich Kolmogorov (1903–1987) made contribu-
tions across the entire realm of mathematics, but was particularly instrumental in laying
the foundations of probability theory as it is understood today. In 1933 he published
Grundbegri�e der Wahrscheinlichkeitsrechnung (The Foundations of Probability Theory),
his axiomatic construction of probability theory building on Borel’s earlier work with
measure theory, which was to be revered by the mathematical community for bringing
probability theory under the fold of pure mathematics. Many useful results stemmed
from this to form the rich canopy of probability theory we stand under today. Some of
these were rigorous proofs or necessary conditions for empirically derived equations used
by physicists for years (Fokker-Planck, Chapman, Smoluchowski, etc.). Kolmogorov’s
contribution to the study of non-deterministic systems cannot be overstated.

We present here the three axioms. Consider a set of outcomes �, containing all
possible outcomes of an experiment1. Take F to be the event space2 containing every
possible set of outcomes E, including �. We say that the function P (E) œ R assigns
probability to each event E if the following are true:

(i) P (E) Ø 0, ’E œ F ;

(ii) P (�) = 1;
1The notion of an experiment, or trial, is that used in probability theory here; it implies a procedure

that can be infinitely repeated and each time results in a random outcome from a well-defined set.
2The event space F contains sets that form a closed system under the union and intersection set

operations — i.e. it is a ‡-algebra.
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(iii) any countable sequence (Ei)iœN, of non-overlapping sets (Ei fl Ej = ÿ ’i ”= j),
satisfies P (fiiEi) = q

i P (Ei).

These three are all the axioms necessary3 to define a tuple (�, F, P ) that satisfies them
as a probability space, with � the sample space (the set of all possible outcomes), F the
set of events (sets of outcomes), and P : F æ RØ0 the probability function mapping
events to probabilities.

Since Kolmogorov there have been others to formalise probability in di�erent ways,
often motivated by a Bayesian approach4 (see Cox’s theorem and de Finetti’s theorem).
Some of these alter the axioms above slightly, but for most cases the axiomatic bases
remain consistent in terms of their implications regarding probability calculus. Hence,
beyond these historical and philosophical aspects presented in the early sections of this
work we shall follow the edict ‘Let us calculate’ as issued by Leibniz, and be content.
There is a discussion to be had about the connexion of data to probability theory that is
touched upon in Section 2.3. Markov systems as presented here are a purely theoretical
construction abiding by the laws of probability calculus, and therefore we can suspend
our worries until we are confronted with the task of fitting such models to real data
(observations of Nature).

2.2 Markovian systems
Much of this work is concerned with constructing approximations to a wide class of
systems characterised by Markovian dynamics. We therefore find it useful to revise
here some of the fundamental theory for Markov processes in general, and in particular
continuous-time Markov chains (CTMCs).

The theory of Markov chains was largely established by Andrei Andreevich Markov,
and hence bears his name today (Basharin et al., 2004). The endeavour started as an
attempt to correct a claim by Pavel Alekseevich Nekrasov, that independence is necessary
for a collection of random variables to obey the weak law of large numbers. Fuelled by
this, and in close conversation with Alexander Alexandrovich Chuprov, Markov first
formalised the concept of a simple (first-order) binary state chain in a seminal paper

3Trivial but useful consequences to note are: (i) for Ē = � \ E, P (Ē) = 1 ≠ P (E); and (ii) P (ÿ) = 0.
4In his preface to a Russian translation of Bernoulli’s On the Law of Large Numbers (O Zakone

Bolshikh Chisel by Yu. V. Prokhorov in 1986) Kolmogorov writes: "The cognitive value of probability
theory lies in the establishment of strict regularities resulting from the combined e�ects of mass random
phenomena. The very notion of mathematical probability would have been fruitless if it were not realized
as the frequency of a certain result under repeated experimentation. That is why the works by Pascal
and Fermat can be viewed as only the prehistory of probability, while its true history begins with J.
Bernoulli’s law of large numbers."
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(Markov, 1906), which was expanded by the time of publication (1907) to describe a
general countable, finite, discrete state-space. Requiring ergodicity, Markov proved first
that the Weak Law of Large Numbers (WLLN) and later that the Central Limit Theorem
(CLT) hold for a sequence of chain-dependent random variables.

In 1913, Markov published the third edition of his textbook celebrating the 200th
anniversary of the WLLN by Bernoulli (1713), where we find the first application of
Markov chains: modelling a letter sequence as a binary state Markov chain (vowel /
consonant). Markov constructed transition probabilities for vowel to vowel (p1 = 0.128)
and consonant to vowel (p2 = 0.663) for A. S. Pushkin’s poem “Eugeny Onegin” (20,000
letters), and further calculated the stationary vowel distribution (p = 0.432). He did the
same for S. T. Aksakov’s novel “The Childhood of Bagrov, the Grandson” of 100,000
letters. Today these are but trivial applications of Markov chains, as their application
abounds in almost every quantitative field of study.

The definitions and derivations given below follow those found in (Gardiner, 2009;
Norris, 1998), and we refer the reader to those texts for more detail where it might be
lacking.

2.2.1 Memoryless-ness

The defining property of Markovian systems is that they are memoryless. This implies
that given the current state of such a system, one has maximal information about its
possible evolution. Any additional information about the history of the system, i.e. past
events, has no bearing on predictions about the future. Mathematically, consider a
system whose state is a time-dependent random variable X(t), which we observe to take
values xi œ � at some times ti œ [0, Œ) = RØ0, where � is an arbitrary state-space, and
i œ {0, 1, 2, . . . } = N0 is an index such that ti+1 Ø ti. We assume that the system is fully
described by the set of joint probability densities p(x0, t0; x1, t1; x2, t2; . . . ). Then
the following statement

p(xi, ti; xi+1, ti+1; . . . | xj, tj; xj≠1, tj≠1; . . . ) = p(xi, ti; xi+1, ti+1; . . . | xj, tj) (2.1)

for i Ø j, expresses the fact that when considering the future, only the most recent
condition is relevant and any further information about the past can be discarded without
loss. This is the Markov property or Markov assumption, and is the basis of a Markov
process. It follows from this that any joint conditional probability can be broken down
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into a product:

p(x0, t0; x1, t1; . . . ; xn, tn) = p(x0, t0)
nŸ

i=1
p(xi, ti | xi≠1, ti≠1), (2.2)

which is relevant in our investigation of how probability distributions over the state-space
evolve over time in such a system.

2.2.2 Discrete-time Markov chains

We first look at discrete-time, where a random variable X(n) = Xn evolves over fixed
time steps n œ N0. Transitions in a discrete-time Markov chain (DTMC) are described
by a stochastic matrix P = (pij : i, j œ I), where each row is a discrete probability
distribution over the countable state-space I. An initial probability distribution fi over I

is a probability distribution for the random variable X0, defining initial state probabilities
for the DTMC.

Definition 2.2.1. A collection of random variables {Xn}nœN0 constitutes a discrete-time
Markov chain with initial distribution fi and stochastic matrix P (DTMC(fi, P )), if and
only if it satisfies

(i) P (X0 = i) = fii, and

(ii) P (Xn+1 = j | Xn = i, . . . , X0 = k) = P (Xn+1 = j | Xn = i) = pij.

In the above: Xn takes values from a countable state-space I = {1, 2, 3, . . . }; fi is a
probability distribution over I, such that q

iœI fii = 1; and P = (pij : i, j œ I) is a
stochastic matrix, with q

jœI pij = 1.

There are two discrete aspects in a DTMC, which we can relax to be continuous. A
continuous-time setting gives rise to continuous-time Markov chains (CTMCs), where
the time between transitions is also a random variable. A continuous state-space I can
be trivially accommodated by replacing the transition matrix with a stochastic kernel;
however, many of the results and properties we rely upon, such as that the chain converges
to a stationary distribution if it is ergodic, are not trivially carried over5. Finally, a
Markov process is a stochastic process which satisfies the Markov assumption. It is usually
defined over a continuous-time domain and can in general take values from a continuous
state-space — the other two cases (DTMCs and CTMCs) are encompassed in this general
class.

5Theodore Harris defined recurrence conditions which are su�cient for the existence of stationary
distributions in general state-space Markov processes (Baxendale, 2011). Such processes are termed
Harris recurrent.
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2.2.3 Continuous-time Markov chains

Here the discrete-time gives way to a continuous-time domain t œ RØ0, but we retain the
discrete, countable state-space I. A system in some state i œ I will jump to a di�erent
state j œ I after some time Si. Satisfaction of the Markov property demands that the
time already spent in a state i does not a�ect the remaining time in that state. If the
countable state-space is injected in R, a time-dependent random variable X(t) œ I which
is a continuous-time Markov chain will be a càdlàg function of time. The stochastic
process X(t) is also known as a jump process. There are di�erent equivalent definitions
one can give for a continuous-time Markov chain; we give here the one in terms of its
jump chain and holding times as given by Norris (1998).

Definition 2.2.2. Let X(t), t œ RØ0, be a right-continuous process with values in a
countable set I. Let Q be a Q-matrix on I with jump matrix �, such that:

Qij œ RØ0 ’i ”= j, (2.3)
Qii = ≠

ÿ

j ”=i

Qij © ≠Q(i) ’i, (2.4)

and

�ij =

Y
_]

_[

Qij/Q(i) if i ”= j · Qii ”= 0,

0 otherwise.
(2.5)

The process X(t) is a continuous-time Markov chain with initial state distribution fi and
generator matrix Q (CTMC(fi, Q)), if it satisfies:

(i) P (X(0) = i) = fii; and

(ii) X(t) = Yn for qn+1
k=0 Sk Ø t Ø qn

k=0 Sk, such that its jump chain {Yn}nœN0 is a
DTMC(fi, �), S0 = 0, and for each n Ø 1, Sn | Yn≠1 is an exponentially distributed
variable with rate parameter Q(Yn≠1).

This definition emphasises the so-called holding times (also residence, or sojourn
times), i.e. the random time that the system spends into any one state. The exponential
distribution of the holding times is a simple consequence of the Markovian nature of the
process; it also naturally suggests an exact algorithm to sample trajectories of CTMCs
by drawing repeatedly exponential random numbers. This consideration forms the basis
of the celebrated Gillespie’s algorithm, widely used in the field of systems biology and
known as the stochastic simulation algorithm (SSA) (Gillespie, 1977). Note that if there
are no possible transitions out of a state k (i.e. Qkk = 0) then k is an absorbing state,
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and the process will eventually end up in one such state if it exists to remain there for
all future times; chains with absorbing states are not ergodic.

Population continuous-time Markov chains

A special case of such systems is population CTMCs, where the state-space is organised
along populations. Population CTMCs (pCTMCs) are frequently used in many scientific
and engineering domains; we will use here the notation of chemical reactions as it is
widespread and intuitively appealing.

Definition 2.2.3. A population CTMC is a continuous-time Markov chain with a discrete
state-space I, and an associated transition rate matrix Q. Each state in I counts the
number of entities of each type or species in a population, › œ {N0}m for m species.
Transitions in this space occur according to the rates given by Q.

The transitions can be regarded as occurrences of chemical reactions, written as

mÿ

i=1
ri–êi

k–≠æ
mÿ

i=1
si–êi, – œ {1, . . . , R}, (2.6)

where the index – runs over the allowed reactions. In a reaction –, ri– particles of species
êi are consumed and si– particles of the species are created (species unit vectors are
orthonormal: Èêi|êjÍ = ”i,j). The transition rate q(›, ›Õ) between state › = qm

i=1 xi–êi

and state ›Õ, is given by

q(›, ›Õ) =

Y
____]

____[

≠ q
– ·–(›) ’› = ›Õ,

q
–œA ·–(›), ’› ”= ›Õ · |A| > 0,

0 otherwise;

(2.7)

where ·– is the propensity function for reaction –, and A is the set of all reactions where

›Õ =
mÿ

i=1
(xi– ≠ (si– ≠ ri–)) êi ’– œ A.

The propensity function ·–(›) of reaction – is derived from combinatorial considerations
according to the kinetic laws governing the system. For the usual mass action kinetics,
the propensity function of reaction – for state › = qm

i=1 xi–êi is given by

·–(›) = k–�
mŸ

i=1

xi–!
�ri–(xi– ≠ ri–)! ,
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where � is the system size and k– is the macroscopic reaction rate constant of reaction
–. The transition rates q(›, ›Õ) reconstruct the rate matrix Q of the CTMC.

Remark. In these definitions we have not specifically guarded against exploding CTMCs,
non-ergodic chains, non-minimal chains and other such exotic creatures. We acknowledge
their existence but let them lie while we explore the rest of the menagerie.

2.2.4 Markov processes

As a generalisation of continuous-time and continuous state-space systems we find
stochastic processes; when these satisfy the Markov assumption, they are Markov processes
and are amenable to analysis which often yields solutions or partial solutions to questions
one can ask about the process. As we shall see, much of the analysis runs in the same
line as that of Markov chains, and we can in fact formulate a CTMC as a Markov process
where the measure integral is a step function with steps on the values of I.

We have already defined a general Markov process in Section 2.2.1. Here we impose an
additional condition that the paths of the stochastic Markov process X(t) be continuous.
Continuous sample paths will allow us to derive di�erential equations to analyse the
system and are therefore desirable. Even though the continuity condition may not be
strictly true for the system in question, if the violations are small enough it can be a
very good approximation.

Definition 2.2.4. Let X(t) be a time-dependent random variable, which we observe
to take values xi œ � at some times ti œ RØ0, where � ™ Rn is a state-space, and
i œ {0, 1, 2, . . . } = N0 is an index such that ti+1 Ø ti. We assume that the system is fully
described by the set of joint probability densities p(x0, t0; x1, t1; x2, t2; . . . ). Then
X(t) is a continuous Markov process if it satisfies:

(i) the Markov property:

p(xi, ti; xi+1, ti+1; . . . | xj, tj; xj≠1, tj≠1; . . . ) = p(xi, ti; xi+1, ti+1; . . . | xj, tj)

for j Ø i, and

(ii) Lindeberg’s condition:

lim
�tæ0

I
1

�t

⁄

|x≠z|>‘
p(x, t + �t | z, t) dx

J

= 0 (2.8)

for any ‘ > 0 and uniformly in z, t, �t.
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Lindeberg’s condition demands that the probability of finding z = X(t + �t) farther
than a distance ‘ of x = X(t), will vanish faster than �t. Markov jump processes like
pCTMCs violate the condition, since

P (X(t + �t) | X(t) = z) = u(z) eQ�t = u(z)
Œÿ

k=0

Qk(�t)k

k! ,

where P (X(t)) is now a row vector which represents the probability mass function over
the countable state-space of the CTMC at time t, and u(z) = ”x,z is a row vector which
represents state z. Brownian motion, on the other hand, satisfies the continuity condition
while being nowhere di�erentiable(!)

2.2.5 The Chapman-Kolmogorov equation

Chapman and Kolmogorov independently derived the equation which relates conditional
probability distributions for di�erent random variables of a Markov process to each other.
Considering variables in a general stochastic process {xi} and as a consequence of the
third axiom, we have that

p(x2, t2) =
⁄

p(x1, t1; x2, t2) dx1 =
⁄

p(x2, t2 | x1, t1) p(x1, t1) dx1, and (2.9)

p(x2, t2 | x0, t0) =
⁄

p(x2, t2 | x1, t1; x0, t0) p(x1, t1 | x0, t0) dx1. (2.10)

The first equation is often referred to as marginalisation, where we reduce a probability
distribution over a set of variables S to one over a subset of S. The second equation
expresses that the same is possible for conditional probability distributions over a set S.

Introducing the Markov assumption to the stochastic process, where ti+1 Ø ti such
that p(x2, t2 | x1, t1; x0, t0) = p(x2, t2 | x1, t1), we now have that

p(x2, t2 | x0, t0) =
⁄

p(x2, t2 | x1, t1) p(x1, t1 | x0, t0) dx1, (2.11)

which is the Chapman-Kolmogorov equation (CKE). For a discrete state-space the integral
becomes a matrix multiplication:

P (x2, t2 | x0, t0) =
ÿ

x1

P (x2, t2 | x1, t1) P (x1, t1 | x0, t0). (2.12)
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Under assumptions related to the continuity of the process given below, one can
derive the di�erential Chapman-Kolmogorov equation (dCKE)

ˆt p(z, t | y, tÕ) = ≠
ÿ

i

ˆi [Ai(z, t) p(z, t | y, tÕ)]

+
ÿ

i,j

1
2ˆiˆj [Bij(z, t) p(z, t | y, tÕ)]

+
⁄

[W (z | x, t) p(x, t | y, tÕ) ≠ W (x | z, t) p(z, t | y, tÕ)] dx, (2.13)

where the operators ˆt, ˆi are the di�erential operators ˆ
ˆt ,

ˆ
ˆzi

respectively, and t Ø tÕ.
The quantities Ai, Bij (generally space-time dependent) relate to continuous motion

in dimensions i, j of the state-space of the process, whereas the function W (x | z, t)
relates to discontinuous motion (jumps), such that it must vanish ’x ”= z for a continuous
process to emerge. These quantities are defined below in terms of the conditions the
process must satisfy.

Conditions and implications

There are three conditions required to bring the original CKE to the di�erential form
above, and additional initial and boundary conditions that must be satisfied for the
existence of non-negative solutions to such a dCKE. The three conditions are that ’ ‘ > 0:

(i)
lim

�tæ0
p(x, t + �t | z, t)/�t = W (x | z, t)

uniformly in x, z, t for |x ≠ z| Ø ‘;

(ii)
lim

�tæ0

1
�t

⁄

|x≠z|<‘
dx (xi ≠ zi) p(x, t + �t | z, t) = Ai(z, t) + O(‘) ;

and

(iii)

lim
�tæ0

1
�t

⁄

|x≠z|<‘
dx (xi ≠ zi)(xj ≠ zj) p(x, t + �t | z, t) = Bij(z, t) + O(‘) ;

where the last two are uniform in z, ‘, t. The initial condition

p(z, t | y, t) = ”(y ≠ z)
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following from how probability density distributions are defined, and additional boundary
conditions are necessary so that for a specific A(x, t), p.s.d. B(x, t), and non-negative
W (x | y, t), the solution to the dCKE exists, is non-negative, and satisfies the CKE.
Gardiner points out that the boundary conditions are di�cult to specify in the full
equation, but for the Fokker-Planck equation (when W (x | z, t) = 0) it is possible to
do so. Notice that higher-order quantities taken in the same manner as in the last two
conditions necessarily vanish if those conditions are satisfied.

We now examine the three conditions above and link general Markov processes
(described by the dCKE) to CTMCs (described by the Master equation), di�usion
processes (the Fokker-Planck equation), and deterministic processes (Liouville’s equation).

Jump processes: the Master equation
Assume that Ai(z, t) = Bij(z, t) = 0 so that the dCKE reduces to:

ˆt p(z, t | y, tÕ) =
⁄

[W (z | x, t) p(x, t | y, tÕ) ≠ W (x | z, t) p(z, t | y, tÕ)] dx; (2.14)

we term this the Master equation (ME). The first order in �t approximation to the
solution,

p(z, t + �t | y, t) = ”(y ≠ z)
5
1 ≠ �t

⁄
W (x | y, t) dx

6
+ W (z | y, t) �t,

suggests that sample paths of this process will consist entirely of discontinuous jumps
from time to time with no continuous change, hence the term pure jump process.

When the function W (x | z, t) is non-zero only at integer values, the ME becomes

ˆtP (n, t | nÕ, tÕ) =
ÿ

m

[W (n | m, t)P (m, t | nÕ, t) ≠ W (m | n, t)P (n, t | nÕ, tÕ)] ,

which is clearly a pure jump process, or a CTMC(fi, Q(t)) with the state-space indexed by
integers. In the latter formalism, W (m | n, t) = Qnm(t) and P (n, t | nÕ, tÕ) = PnÕn(t | tÕ)
such that the second term in the sum vanishes since q

m Qnm(t) = 0 by definition, and
we are left with

ˆtP (t | tÕ) = P (t | tÕ) Q(t). (2.15)
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Di�usion processes: the Fokker-Planck equation
Assume that W (z | x, t) = 0 so that the dCKE reduces to:

ˆt p(z, t | y, tÕ) = ≠
ÿ

i

ˆi [Ai(z, t) p(z, t | y, tÕ)]

+
ÿ

i,j

1
2ˆiˆj [Bij(z, t) p(z, t | y, tÕ)] , (2.16)

which was already known as the Fokker-Planck equation (FPE). This partial di�erential
equation (PDE) describes the forward evolution in time of a probability distribution over
space for what is known mathematically as a di�usion process. NB: there is a distinction
between the mathematical object termed di�usion process and the natural phenomenon
(e.g. Brownian motion, the Wiener process, and Brownian motion of particles), although
the former can often be used as satisfactory model of the latter. In the FPE, A(z, t) is
the drift vector and B(z, t), which is necessarily p.s.d., is the di�usion matrix.

* * *

To relate the FPE to a physical process and its origins, we turn to a phenomenon that
has long sought an explanation and accurate mathematical description: pedesis6. In the
early 5th century BCE, the task of interpreting the world, and in essence all critical (or
other) thinking, was subsumed under ‘philosophy’; under this umbrella, theories of matter,
cosmological origins, politics, etc. abounded in the Hellenistic period. One of these was
the atomic hypothesis, proposed by Leucippus and his student Democritus. The two
philosophers suggested that all matter is composed of small, indivisible7, indestructible
units which are eternally in motion, separated by void (empty space). Of course these
ideas were far from the precise theories we have today. Since epistemology8 and the
scientific method were at best fledgling notions, the atomic hypothesis was left untested,
as many other theories of the time. The idea resurfaced a few times throughout history
and found particular favour with John Dalton, who in 1808 formed a consistent theory
of matter based on his and others’ experimental works; he hypothesised the existence
of small particles constituting matter and combining to form more complex structures,
giving rise to the established empirical laws for chemical reactions of the era. This formed

6An Ancient (and Modern) Greek word for ‘jumping’, p†dhsic in this context refers to the jitter
observed in the trajectories of di�using particles.

7The greek word for indivisble, ätomon, is where the theory gets its name.
8Epistemology had in fact occupied Democritus. He proposed that knowledge is not easily acquired

since sensory information is biased, inaccurate, and cannot be trusted, however all evidence we have of
the world comes from them. Reasoning has therefore the di�cult task of figuring out the ‘truth’ from
the corrupted account the senses provide.
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the modern theory of atoms, although the community had not yet been convinced of its
reality beyond a convenient framework.

In 1827, botanist Robert Brown sought to determine whether the erratic motion9

of particles released from pollen grains and suspended in water were indicative of ‘life’.
Having observed the same motion in experiments with inorganic matter, he concluded
otherwise. However, the problem of mathematically describing Brownian motion, as it
was termed, and relating it to physical quantities (i.e. mean squared displacement of a
particle after time t, and its relationship to a di�usion constant and Avogadro’s number)
remained to garner the attention of Albert Einstein. In 1905, Einstein published his
elegant treatment of the problem in a paper that essentially gave birth to stochastic
modelling. His solution is so valuable because it rests upon the assumptions that: (i) the
system is being driven by collective microscopic e�ects which (ii) are so complicated that
their e�ect on the macroscopic scale (i.e. the pollen grain particle) can be modelled by
independent probabilistic events (impacts). These assumptions allow for the analysis of
such stochastic processes and are satisfied by many a physical system; we even pretend
they are satisfied when we know otherwise10. Despite some simplifying assumptions
(continuous time approximated by small discrete intervals), Einstein constructed special
case examples for the FPE, the CKE, and the Kramers-Moyal approximation of a
stochastic process containing jumps with a continuous one. Marian Smoluchowski derived
similar results independently and published them the following year, taking up the mantle
of developing the theory of Brownian motion and verifying experimentally many of the
theoretical results put forth by Einstein and himself.

After reading Einstein’s results, Paul Langevin was convinced that he had an easier
way to derive them. In 1908, Langevin published a paper starting from his eponymous
equation, which is now interpreted as a stochastic di�erential equation (SDE) — the
journey is examined in (Naqvi, 2005) and outlined here. The starting (Langevin) equation
was the usual equation of motion for a particle moving in a viscous medium, perturbed
by a random variable ÷:

m
d2x

dt2 = ≠6fiµa
dx

dt
+ ÷. (2.17)

He proceeded to multiply by x and take ensemble averages, which gave rise to the quantity
È÷xÍ. Perhaps because he wanted to re-derive the results of Einstein, he had no qualms

9The same motion had been gracefully described by the Roman poet and philosopher Lucretius in
his well-known scientific poem ‘On the nature of things’ (c. 60 BCE), musing on the motion of dust
particles in a sunbeam.

10The Black-Scholes pricing model essentially models the price of a financial instrument over time as
a di�usion process. In reality, the di�usion assumptions are egregiously violated as it is unlikely for the
fluxuations to be ”-correlated and the price to follow Markovian dynamics.
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in making the following argument: “ About the complementary force ÷, we know that it
is indi�erently positive and negative and that its magnitude is such that it maintains the
agitation of the particle, which the viscous resistance would stop without it,” and that
therefore “the average value of the term ÷x is evidently null by reason of the irregularity
of the complementary forces ÷”. After this it becomes almost trivial to reach Einstein’s
results by utilising the equipartition theorem. However, this reasoning collapses under
appropriate scrutiny and in fact produces nonsensical results when carried over to the
quantity Èv÷Í. It was Ornstein who produced the correct derivation in a series of papers11,
starting from the results of Mrs de Haas-Lorentz and formally integrating the velocity
v in time to produce, not only the stationary limit of the rate of change of the mean
squared distance zŒ = limtæŒ d Èx2Í /dt associated to Einstein’s di�usion constant D,
but also that it evolves in time according to

z(t) Ã 1 ≠ e≠–t.

These primitive versions of stochastic calculus and di�erential equations eventually
crystallised into Itô calculus, which usually interprets the noise ÷ in the stochastic
di�erential equation as the derivative of the Wiener process, such that È÷(t)÷(s)Í = ”(t≠s)
as Ornstein earlier found necessary. An Itô SDE of the form

dx(t) = a(x(t), t) dt + b(x(t), t) dW (t) (2.18)

is to be interpreted in terms of the stochastic integral

x(t) = x(t0) +
⁄ t

t0
a(x(tÕ), tÕ) dtÕ +

⁄ t

t0
b(x(tÕ), tÕ) dW (tÕ), (2.19)

where the last term is an integral of b(x(tÕ), tÕ) with respect to a sample path of the
standard Wiener process. There are a couple of interesting things to note at this point.
Firstly, the derivative of the Wiener process dW (t) is associated with the term ÷(t)dt

of the Langevin equation 2.17; however, recall that the Wiener process, even though
continuous, is nowhere di�erentiable, which leaves us with a paradox. We escape this
by saying that the SDE is to be interpreted only in terms of its integral, adequately
defined in terms of the mean square limit of a partial sum (with similarity to a Riemann
sum). Secondly, the requirement that È÷(t)÷(s)Í = ”(t ≠ s) and that it integrates to a

11In his derivations, Ornstein appears to have also (inadvertently) developed delta calculus by
constructing the function ”(x) = 0 for x ”= 0, with the property

s Œ
≠Œ ”(x)dx = 1. The function was later

introduced with due attention by Dirac and hence now bears his name.
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continuous process implies that the process must indeed be the Wiener process. This
”-autocorrelation is a theoretical construction which physically cannot occur since it
implies infinite bandwidth for ÷(t). Regardless, it is a useful idealisation which is termed
white noise (since its frequency spectrum is flat, as for white light). The Gaussian nature
of ÷(t) is orthogonal to its spectrum but is often assumed.

Using Itô’s formula for change of variables in an SDE, we can construct an associated
FPE equation. Starting from the general multi-variable Itô SDE

dx(t) = µ(x(t), t) dt + ‡(x(t), t) dW (t), (2.20)

we have that the conditional probability density p := p(x, t | x0, t0) obeys the FPE

ˆtp = ≠
ÿ

i

ˆi [µi(x, t)p] + 1
2

ÿ

i,j

ˆiˆj

;Ë
‡(x, t)‡€(x, t)

È

ij
p

<
. (2.21)

Note that the last term in the FPE implies that it is not unique to the SDE — we can
construct the same FPE for an SDE with noise scaling ‡̃ = ‡U , where UU€ = I, so that
‡̃‡̃€ = ‡‡€. The forward and backward FPEs can be considered to be a result of path
integrals (intuitively a weighted sum of all possible realisations of the stochastic process
described by an Itô SDE) expressed by the Feynman-Kac formula. The latter also allows
calculation of solutions to some PDEs by stochastic simulation of the associated process.

Deterministic processes: Liouville’s equation
Finally we take both B(z, t), W (z | x, t) = 0 in the dCKE 2.13 so that only the term

A(z, t) remains. In this case, all stochasticity is lost in the dynamics and we are left with
deterministic trajectories for specified initial conditions. The evolution of a probability
distribution p(z, t | x, tÕ) over initial conditions obeys the PDE

ˆp(z, t | x, tÕ)
ˆt

= ≠
ÿ

i

ˆ

ˆzi
[Ai(z, t) p(z, t | x, tÕ)] , (2.22)

which is a special case of the Liouville equation in classical statistical mechanics. This
tracks the trajectories of an ensemble of particles, each of which is the solution of the
ODE

dx(t) = A(x(t), t) dt.

Starting from a single state, p(z, 0 | y, 0) = ”(z ≠ y), the distribution at time t will
be p(z, t | y, 0) = ”(z ≠ x(t)) (still a delta function). If the function A(x, t) is highly



2.3 Statistics 19

variable in x the process might be chaotic, such that uncertainty in initial conditions is
amplified in time.

This concludes our examination of various processes as special cases of the dCKE.
Note that in general, none of the components of the dCKE have to vanish, giving rise to
a di�usion process with jumps.

2.3 Statistics
There seems to be an intimate link between probability theory and non-deterministic
observations of Nature. Non-deterministic here means that we (experimenters or re-
searchers) cannot exactly predict observations of a phenomenon, because of one or more
of the following: (i) we lack su�cient information about the experimental set-up; (ii) we
lack su�cient computational power to process all relevant information to produce exact
predictions; (iii) parts of the data generation procedure (otherwise) introduce ambiguity.

To instantiate the above take the example of Brownian motion, as it pertains to
the motion a massive particle (e.g. pollen grain) exhibits, amidst a sea of other lighter
particles (e.g. water molecules). We generally cannot exactly predict the trajectory of
the pollen grain because: (i) we do not have the position and momentum of every single
molecule that will influence it; (ii) even if we did, the computational power required to
apply the appropriate models (Newtonian mechanics) would be enormous, or non-existent
for large enough systems; (iii) measuring particle positions is subject to ambiguity from
the apparatus, Newtonian mechanics are only approximate models of reality (as is almost
certainly every theoretical model of reality), and if we imagine our particles to become
light enough so that quantum mechanical models become relevant, the ambiguity is
inherent in the model.

How might one address these problems? The lack of information can be quantified as
a source of ambiguity, and properly propagated in our predictive model to accompany
our predictions. Depending on the level of accuracy required of the prediction, this might
not even be necessary as the results will not substantially change to warrant it. The
processing power problem can in cases be solved by enslaving the many aspects that
need to be considered, to a summary description that they obey. For instance, statistical
mechanics models of Brownian motion consider the e�ect of many light molecules to be
reasonably close to random forces generated by a white Gaussian process, characterised
by zero mean and a scaling co-e�cient. This is not exactly right, in fact we know it is
inaccurate, but it serves as an excellent approximation and makes our prediction task
tractable. The last problem of other sources of ambiguity can be similarly addressed:
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we can try to quantify the ambiguity source (e.g. measurement errors can reasonably be
expected to be samples from a zero-mean Gaussian distribution) and take it into account
when making predictions. In short, it might be fruitful to look towards a machinery that
parsimoniously captures the ambiguity under the many forms it comes in, such that we
can tractably make predictions for non-deterministic processes: that is statistics.

The natural question that arises then is how to correctly characterise the stochastic
process that generates a set of observed data. This spawned a debate that is still ongoing,
of what probability really is aside from the mathematical object. The prevailing schools of
thought are: (i) Bayesianism, based on the view that probability corresponds to degrees
of belief of a rational agent; and (ii) frequentism, which views probability as a ratio of
outcomes in the limit of infinite repetitions of the experiment. Both views have merits
and reasonable arguments, and both have a number of more nuanced doctrines embraced
by various researchers (purposefully or inadvertently).

2.3.1 The problem of induction

Let us begin in 1739, with the great David Hume. In his A Treatise of Human Nature
published that year, he raised what became known as the problem of induction12 (PoI)
which to this day remains unresolved. Hume was a Scottish philosopher when the country
was going through its enlightenment period; a staunch Empiricist and Sceptic like others
in his time, his problem was how humans come to form ‘ideas’ which generalise beyond the
‘experiences’ producing them13. This process is not reasonably (deductively) warranted
and beyond the obvious fallacies it produces14, it lacks a su�cient driving principle other
than induction itself. The issue strikes at the heart of causal inference since, as Hume
notes, discovery of causal relations is based on observations of Nature and therefore on
induction. In fact, a Uniformity Principle, which assumes that the same causal laws that
governed past experiences will do so for future ones, underpins all causal inference. The
Uniformity Principle relates to de Finetti’s exchangeability theorem, a cornerstone of
predictive Bayesian inference.

The PoI is also deeply linked to philosophy of science because both examine how
one should draw correct conclusions from observations. This becomes especially harder

12Hume was not the first to harbour such concerns. The Pyrrhonian Sceptic philosopher Sextus
Empiricus posed the same (or a very much related) problem in the 2nd century. Hume’s name has
however, become inextricably linked to the problem and his form of argument is more widely known so
we follow him.

13After repeatedly observing an e�ect associated with the properties of an object, one assumes that
all objects with similar properties will have the same e�ect.

14Black swans could and indeed did exist, even if they remained unobserved for a long time.
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when the process is assumed to be non-deterministic (stochastic). As noted by Lawrence
et al. (2010, chapter 5) in A Brief Introduction to Bayesian Inference, this problem was
originally understood as simply a measurement issue. The paradigm set by Newton’s
Principia Mathematica was that the observations one has are simply the truth, which
was to be captured by a set of deterministic laws, corrupted by an imperfect measuring
process (noise / error). If one could model the noise, one could test agreement between
a theory and observations to some degree of accuracy. Further, one could reduce the
noise by improving the measurement process. This reductionist approach of deterministic
truth and stochastic measurement error soon became insu�cient to deal with the many
demands made of science: before long the study of large ensemble systems gave birth to
statistical mechanics, building a statistical bridge from microscopic classical mechanics
to macroscopic laws; quantum mechanics, the most accurate microscopic description we
have of matter to date, is a probabilistic model tested using statistics; and finally, modern
physics, biology, and social science only have access to a multitude of distant e�ects
(and hence observations corrupted by other factors) of causal models being examined,
heavily relying on statistics to guide them to truth. Statistics and probability theory has
entrenched its position in modern science, and in doing so has empowered us to study
even more non-trivial systems and test more precise models.

As usual, the power comes at a price. It is no longer trivial to assess whether a
hypothesis is supported by observation. The mainstream mode of ideal scientific progress,
introduced by Karl Popper partly as a solution to the PoI, is that researchers propose
theories that make empirically refutable predictions. If the prediction does not agree
with empirical observations the theory can be cast aside as ‘false’, and the cycle starts
anew. Combined with an Occam’s razor argument (the more powerful and simpler
theory should be tested before competing ones), the theories are refined through this
process in a manner similar to Descarte’s discarding of ‘bad apples’ in a basket of ideas,
slowly producing a more accurate model of the world. This seems reasonable, but if the
predictions are non-deterministic, a statistical framework is needed to assess consistency
in finite datasets. The proposal-rejection cycle bears some resemblance to frequentist
inference15, whereby implications of hypotheses are tested against empirical evidence,
and the former rejected if found inconsistent. Things to note are that all hypotheses
are assumed to eventually be proven false, and that we only have the power to reject
hypotheses, not to accept them.

15Popper himself was an advocate of the propensity interpretation of probability, with implications on
how one can treat model parameters.
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Thomas Kuhn, on the other hand, described the progress of scientific research in a
less idealised manner. He suggested that a set of exemplars (problems-solutions) serve
as ideal examples to follow in the course of normal science; the collection of concepts
and practices that dominates an era of research is the prevailing paradigm. This goes on
with minor adjustment, until enough problems arise that are not (su�ciently) addressed
by the paradigm. A new paradigm emerges and the cycle goes on. In this paradigm
shift, all former evidence is re-interpreted in light of the new concepts that form the new
paradigm, signifying a scientific revolution. Subject to debate, there is claim (Salmon,
1990) that Kuhn’s account better aligns with the Bayesian framework of belief updating.

Regardless of one’s preference between philosophies of science, it is apparent that
statistical theory has a seminal function in the process of learning (or inference) from
observation, and hence in the process of science. We look at the two prevailing statistical
ideologies for inference here, frequentism and Bayesianism, and motivate their usage in
this work. Other attempts have been made to interpret probability, some also aiming to
provide a solution to the PoI, but they are mostly marginal.

2.3.2 Frequentism

The frequentist approach to probability is that there is a true set of parameters ◊ú,
which fully characterises the stochastic process generating the data. The researcher
then constructs unbiased estimators ◊̂ of these parameters (usually maximum likelihood
estimators of moments) potentially associated with confidence intervals, and asks questions
of the nature “are certain parameter values consistent with my data?”, or on a higher level
“is a certain model (with a certain set of parameters) consistent with my data?”. This
kind of inquiry is known as hypothesis testing and the answer is usually given in terms of
p-values, or goodness-of-fit tests. The researcher rests easy upon the knowledge that, in
the limit of infinite data, the unbiased estimators will converge on the true parameters
(◊̂ æ ◊ú) and false models will appear inconsistent with the data. The frequentist methods
to parameter inference were advocated by Neyman, Pearson, Fisher, and others, as a
response to the Bayesian framework that preceded them. Venn, Reichenbach and von
Mises developed an interpretation of probability consistent with these methods and by
making great use of frequency arguments. Frequentists wanted to lift inference out of
the domain of ‘subjective’ beliefs upon which the Bayesian framework is based, and into
an ‘objective’ basis, agnostic of the particular researcher’s or community’s beliefs. It has
been argued (Colquhoun, 2014) that their e�orts, coupled with publication incentives,
have instead driven many fields of science to the ‘reproducibility crisis’ that plague them
today.
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2.3.3 Bayesianism

The Bayesian framework began with the work of an English clergyman and scholar,
the Reverend Thomas Bayes. In 1764, an essay by Bayes (likely written to address
the PoI as Zabell (1989) suggests) was published posthumously by his friend Richard
Price. The essay treated a special case of the inference problem: having observed a
series of binary values, random outcomes of successive Bernoulli trials with the same
success probability p, what is the value of p? The novelty was that Bayes treated the
uncertain quantity p as a random variable with an associated density function over the
[0, 1] domain (uniform in Bayes’ case) before observing the outcomes. Hence, the rules
of probability were applied to yield a conditional distribution for p after observing the
trials. Laplace later generalised this to arbitrary generative distributions and used the
Principle of Indi�erence to influence his choice of prior distributions. Considerations of
how to construct adequate priors set di�erent schools of Bayesians apart.

In the Bayesian paradigm, probabilities reflect the degrees of belief that the researcher
holds about the world. Ideally, the Bayesian agent will have a prior probability distribu-
tion over a domain of all possible realities �. The agent is required to be rational, which
in this context implies that it obeys the axioms of probability, and additionally that it
constructs appropriate priors in the objective school. Therefore, after observing some
data D, it updates its beliefs and calculates a posterior distribution according to Bayes’
theorem. This concept is expressed in the following equation:

p(◊ | D) = p(D | ◊) p(◊)
p(D) , (2.23)

where p(◊) is the prior, p(D | ◊) is the likelihood (i.e. given some value of ◊ œ �, the
probability of generating the observations under the model), and p(◊ | D) is the posterior
distribution. The denominator p(D) has many aliases, including evidence, marginal
likelihood, or in the parlance of statistical mechanics, partition function. There are
two interesting things about this object: (i) it does not depend on ◊, and so acts as
a normalisation constant to the numerator so that

s
� d◊ p(◊ | D) = 1; (ii) perhaps

counter-intuitively, its value is not 1. The latter point warrants unpacking. One would
expect the probability of observing the data to be 1 — after all, we have observed the
data and no one can argue with that. However, this quantity expresses the (subtly
di�erent) probability of observing the data under the model considered. That is to say,
under all the possible realities the Bayesian agent considers, it gives the probability of
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observing such data. Mathematically,

p(D) =
⁄

�
d◊ p(D | ◊) p(◊)

which ensures that the posterior is a normalised probability distribution. The evidence is
often the problematic part of Bayesian inference, as calculation of this constant for most
complicated likelihoods is analytically intractable, and a slew of approximation methods
exist to estimate posteriors without explicitly calculating it.

As in the frequentist setting, we can extend the Bayesian framework to include various
models considered and guide us to the right one. Where we had p-values and rejection
of inconsistent hypotheses at certain significance thresholds, we now have posterior
distributions that ascribe more probability mass to the more likely hypotheses. When
one wishes to make a prediction for unobserved variables in the Bayesian framework,
instead of picking a single value of ◊ or a single model, one takes a weighted sum from
all possible realities considered according to their posterior distribution. After observing
data D, with the likelihood p(D | ◊) and prior p(◊), the Bayesian constructs a predictive
distribution for unobserved data DÕ,

p(DÕ | D) =
⁄

�
d◊ p(DÕ | ◊) p(◊ | D).

Common criticisms levied against frequentist inference include the susceptibility of
maximum likelihood estimators (MLEs) to outliers, the arbitrary nature of regularisation
procedures to deal with the former, the dependence of any conclusions on the sampling
scheme, and others. Criticisms on Bayesian inference include the prior specification
problem (often the prior is a convenient mathematical object that serves more as a
regularisation device than an accurate representation of the beliefs of the researcher),
the intransigence of the agent in the face of data originating from a model outside its
belief domain (the agent will never decide that none of its beliefs are probable), and the
fact that objective beliefs do not translate to invariant uninformative priors.

We recognise the shortcomings of both paradigms, and opt for the following in most
of the thesis. First, we posit our assumptions about the generating process in a Bayesian
framework, which keeps track of regularisation choices and allows us to leverage the
many powerful and flexible inference techniques available. After inference, we attempt
to validate what we learned by generating synthetic data from the inferred model and
comparing their statistics to the evidence. This is a kind of goodness-of-fit test and the
entire methodology follows the suggestions of Gelman and Shalizi (2013) in some sense.
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2.3.4 Gaussian processes

Gaussian processes (GPs) as a de-noising tool were first proposed in a rudimentary form
by Wiener and Kolmogorov independently in the 1940s. Initially used for time-series
filtering and smoothing, they were extended in the 1960s by Matheron and Krige for geo-
statistics (kriging as spatial field estimation) and later further generalised as a regression
tool within the realm of statistics and machine learning by O’Hagan, Neal, Williams, and
Rasmussen. The history is traced in (Cressie, 1990). The treatment below follows the
established text by Rasmussen and Williams (2006) to provide an adequate background
for GPs and their usage in this thesis. No explicit algebraic results are derived here,
since they can be found in (Rasmussen and Williams, 2006).

A Gaussian process is a stochastic process {f(t)}tœT , where any finite subset of the
collection of random variables in the process (f(s))s1...snœT = (f(t1), f(t2), . . . , f(tn)) is a
multivariate normal variable. A GP can therefore be thought of as a normal distribution
over an infinite-dimensional separable Hilbert space H, where each dimension is a point
in the domain of the process. A sample of the Gaussian process is a sample from that
normal distribution over H. The mean and covariance of the GP can be defined to
represent a particular distribution over functions, which makes the GP a valuable tool in
Bayesian inference. We write

f(·) ≥ GP(m(·), k(·, ·))

where m : T æ R is the mean function, and k : T ◊ T æ R is the covariance kernel
of the normal distribution over H. The support space of the distribution, H, can be
constructed to be a dense subspace of L2(T ) by choosing an appropriate kernel k(·, ·) to
be the inner product on H (e.g. the squared exponential ‘Gaussian’ kernel). For such
cases we say that the GP is a universal approximator — it can approximate any function
in L2(T ) arbitrarily well.

Remark. A GP with a covariance kernel k(t, tÕ) = ”t,tÕ is the Gaussian ‘white’ noise, and
its time integral is the standard Wiener process which is also a (non-stationary) GP.

An isometry between infinite-dimensional separable Hilbert spaces allows us to view
the GP as a linear combination of a (countable) orthonormal basis. As such, a continuous
function f(t) over a compact domain T can be composed as

f(t) =
ÿ

i

–i„i(t)
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where {„i}iœN is an arbitrary complete orthonormal basis of H (e.g. the Fourier basis).
This shift in perspective conveniently transforms GPs to a tool for Bayesian linear
regression with basis functions, where the prior over the coe�cients is a normal distribution
– ≥ N (0, �p). The choice of kernel encodes this prior as well as the choice of basis
functions, since k(t, tÕ) = „(t)€�p„(tÕ) where „(t) is an eigenfunction basis for H. Note
that the number of basis functions is unlimited, and so the prior distribution may be
over almost all continuous functions in a compact domain, in contrast to Bayesian linear
regression. In practice we can represent the result of the GP regression as a linear
combination of as many basis functions as there are observations; the representation is
either finite and changes with observations, or infinite and fixed.

Therefore, for a set of stochastic observations D = {(ti, yi)}N
i=1 where ti œ T is the

input value and yi œ Y the output, we construct a Bayesian model with latent variable
the function f : T æ R. A Gaussian process f ≥ GP(m(·), k(·, ·)) serves as a prior
probability distribution over the possible latent functions and we can use Bayes’ theorem
to recover a posterior distribution for the output function g : T æ Y. In practice we
only evaluate the distribution of the output at some particular point(s) in the domain,
yı = g(tı), tı œ T . With t = (ti)N

i=1, y = (yi)N
i=1, and f = (f(ti))N

i=1, we write this as

p(yı | tı, D) =
⁄

p(yı | fı) p(fı | tı, D) dfı,

where
p(fı | tı, D) =

⁄
p(fı | tı, t, f) p(y | f) p(f | t)

p(y | t) df .

The integration may appear daunting, but for certain cases it becomes quite man-
ageable. For instance, a Gaussian likelihood p(y | f) = N (y; f, ‡2) allows the use
of standard results for integrating products of Gaussian distributions and makes all
operations analytically tractable; the output distribution remains Gaussian. A delta
likelihood implies noiseless observation of the latent function and is also tractable and
results in a Gaussian output distribution. Other likelihoods (e.g. a probit likelihood
for classification) require approximation methods to produce output distributions, most
commonly Laplace’s method, or expectation-propagation (EP), which often present
accuracy or computational challenges. Another issue is that this method scales poorly
with the number of observations considered16 and so a number of approximation methods
exist to deal with a large dataset.

16For N observations, the standard GP regression with Gaussian likelihood incurs a memory cost of
O

!
N2"

, and a complexity of O
!
N3"

for the required Cholesky decomposition, with an additional cost of
O

!
N2"

for the predictive mean and variance at a test point respectively.
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2.4 Logic and modelling
As noted by Hodges (2018), there may not appear to be a direct link between modelling
and logic. Logic is a manner by which various relations can be determined to hold or not
between various objects. When speaking of formal logic, the logic consists of a formal
language, in which relations or formulae are defined; a deductive system, which dictates
how one is to reason and draw conclusions; and a semantics, which interprets arbitrary
elements of the logic as elements of a particular domain, and so allows one to determine
satisfaction of formulae for a given interpretation.

The theory of logic runs deep, originating from Aristotle and branching through the
ages into many refinements and flavours (Shapiro, 2009). A major branch is that of
mathematical logic, stemming from some early ideas of Leibniz and heavily developed
during the 19th and 20th century. The main development consisted of the e�orts of
Bolzano, Boole, Cantor, Carnap, Dedekind, Frege, and Peano, to name but a few, to
ground known mathematics on logical principles. By 1920, Whitehead and Russell brought
together most of these results in the expansive volumes of Principia Mathematica, in
which they derived many areas of mathematics from elementary logical notions; Logicism,
as it became known, was popularised in the English speaking world largely due to them.
The work of Carnap followed after a couple of decades, containing an interpretation
of probability as a logical concept — the degree of confirmation of a hypothesis by a
piece of evidence — and so provided much of the philosophical grounding for alternatives
to frequentism to emerge (including the Bayesianism account discussed above, a more
subjective interpretation of logical probability). Problems with Logicism arise and are
circumvented time and again by variations of the main theme, but the practical outcome
is that logic has now earned a reputable place in mathematics, from logical probability to
Tarski’s work setting the standard for truth definition in most model-theoretic languages.

A link between Logic and Modelling may be discerned, when we consider how Logicism
succeeds in its endeavours. The mathematical objects we take for granted (e.g. numbers,
lines, etc.) are derived as logical objects that satisfy a set of relations between them
(Russell, 1993). Whether the object has an interpretation in the real world is irrelevant —
it exists only as a logical abstraction, relevant to all objects that may satisfy the relations
that define it. Similarly, modelling is a logical abstraction for natural phenomena. A
model should satisfy certain relations as the object being modelled would satisfy them,
but agreement is only guaranteed for a subset of all possible relations: there may be
conditions in which the model fails to retain all relationship status. If the model is
perfect, then every possible relation will be satisfied in agreement with the modelled
object.
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We are here reminded of Hume’s empiricism: any form of knowledge from Nature
stems from a collection of sensory experiences (phenomena); and the more radical form
of the argument in phenomenalism: Nature is nothing further than that collection of
phenomena. Such phenomena, or relations, include measurements and sensory experiences
(perceptions). In this thesis, we embrace the notion of modelling as the agreement in
satisfaction of a partial set of relations of the original object, and produce abstractions
that agree with respect to a set of logical formulae pertaining to a phenomenon of interest.
The title of the thesis reflects this — albeit somewhat redundantly, for what else could
modelling be but phenomenological?

2.4.1 Formal modelling and verification for CTMCs

Reasoning about behavioural properties of dynamical systems is a central goal of formal
modelling. Recent years have witnessed considerable progress in this direction, with
the definition of formal languages (Ciocchetta and Hillston, 2009; Danos et al., 2007)
and logics (Donzé and Maler, 2010) which enable compact representations of dynamical
systems, and mature reasoning tools to model-check properties in an exact (Kwiatkowska
et al., 2011) or statistical way (Jha et al., 2009; Younes and Simmons, 2006).

Metric interval temporal logic

In much of this thesis we will make use of Metric interval Temporal Logic (MITL) to
examine the behaviour of pCTMCs, as introduced by Maler and Nickovic (2004). We are
particularly interested in properties that can be verified on single trajectories, and assume
metric bounds on the trajectories, so that they are observed only for a finite amount of
time. MITL o�ers a convenient way to formalise such specifications and we therefore
revise it here. Its syntax is described as follows using common grammar notation:

„ ::= tt | µ | ¬„ | „1 · „2 | „1U[T1,T2]„2,

where tt is the true formula, conjunction and negation are the standard boolean con-
nectives, and the time-bounded until U[T1,T2] is the only temporal modality, with the
variables Ti taking values from the temporal domain [0, T ]. Atomic propositions µ are
boolean predicates, extended in time.

Since our domain of interpretation is (population) CTMCs, we let the variables
in the formulae take values either from the temporal domain, or from the domain of
trajectories that the chain draws from (Maler and Nickovic, 2004). A MITL formula is
interpreted over a function of time x, and atomic propositions µ are boolean predicate
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transformers: they take a real valued function x(t), x : [0, T ] æ Rn, as input, and
produce a boolean signal s(t) = µ(x(t)) as output, where s : [0, T ] æ {tt, ff}. As
customary, boolean predicates µ are (non-linear) inequalities on population variables,
that are extended point-wise to the time domain. More temporal modalities, such as
the time-bounded eventually and always, can be defined in terms of the until operator:
F[T1,T2]„ © ttU[T1,T2]„ and G[T1,T2]„ © ¬F[T1,T2]¬„.

MITL formulae evaluate as true or false on individual trajectories; when trajectories
are sampled from a stochastic process, the truth value of a MITL formula is a Bernoulli
random variable. Computing the probability of such a random variable is a model
checking problem. Model checking for MITL properties evaluated on trajectories from a
CTMC requires the computation of transient probabilities; despite major computational
e�orts (Kwiatkowska et al., 2011), this is seldom possible exactly due to state-space
explosion. Statistical model checking (SMC) methods circumvent such problems by
adopting a Monte Carlo perspective: by drawing repeatedly and independently sample
trajectories, one may obtain an unbiased estimate of the truth probability, and statistical
error bounds can be obtained by employing either frequentist or Bayesian statistical
approaches (Jha et al., 2009; Younes and Simmons, 2006). It should be pointed out
that such bounds do not carry the same guarantees as numerical results obtained say
by transient analysis; however, simply by drawing more samples one may reduce the
uncertainty in the bounds arbitrarily.

Armed with such tools for examining relations (logical properties) of a CTMC, we
may now attempt to emulate satisfaction of a certain set of properties pertaining to
a behaviour of interest that the system manifests. We can thus construct statistically
adequate surrogate models which: are better interpretable in terms of satisfaction of
logical properties, are often less demanding of resources, and retain the relevant behaviour
in a specified range of conditions.





Chapter 3

Coarsening discrete systems

When we examine a system we often wish to assess particular elements of the system
behaviour; this is especially the case in quantitative fields, where we have come to
characterise the behaviour of a system by a set of measurable properties. As a result,
the questions we ask when examining a system can commonly be expressed in terms of
satisfaction probabilities of logical properties p(„). For instance, a positive Lyapunov
exponent indicates that a system is chaotic, low entropy implies a concentrated proba-
bility distribution, and infection rates determine how sustainable diseases are within a
population.

This makes it possible to substitute the original system with one which will give
similar answers to similar questions of property satisfaction, but which is cheaper to
query. The result is that experiments probing the behaviour of the system become less
costly, and the approximation might substitute the original system in situations where
only a coarse measure of p(„) is needed. With this in mind we propose a methodological
framework to achieve the construction of such substitutes in the case of continuous-time
Markov chain (CTMC) systems.

Many issues arise in the attempt to coarsen the state-space of a Markovian system,
most notably the loss of its defining characteristic, the Markov property. To illustrate,
consider a CTMC which describes a dynamical system. An attempt to partition the
states of such a CTMC to construct macro-states for a new CTMC which is exactly
consistent with the original will fail, unless certain conditions for lumpability are met.
If the system is not lumpable, transition rates from a macro-state to another will be
dependent on sojourn times. Further, the macro-state sequence and time spent in past
macro-states will contain additional information about the future, since they will have
implications about the parts of the macro-states visited. In summary the dynamics
describing the evolution of the system through macro-states will no longer be Markovian,
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since the original states (in terms of which a Markovian dynamics describes system
evolution) will be inaccessible after coarsening.

Broadly speaking, state-space reduction can be achieved by either model simplification,
usually by abstracting some system behaviours into a simpler system, or state aggregation,
often by exploiting symmetries or approximate invariances. A prime example of model
simplification is the technique of time-scale separation, which replaces a large system
with multiple weakly dependent sub-systems (Bortolussi et al., 2015a; Gunawardena,
2014; Jacobi, 2012; Rödenbeck et al., 2001). Most aggregation methods are instead based
on grouping di�erent states which are similar in terms of their transition probabilities.
This idea is at the core of approximate lumpability, which extends the exact lumpability
relationship by aggregating states based on a pre-defined metric on the outgoing exit
rates (Abate et al., 2015; Buchholz and Kriege, 2014; Deng et al., 2011; Milios and
Gilmore, 2015; Tschaikowski and Tribastone, 2015).

However, if we are only interested in certain aspects of the state (e.g. whether it
satisfies a particular property „(x)), we might sacrifice some accuracy in the macro-scale
dynamics for a coarser, more e�cient model (Hoel, 2017; Wolpert et al., 2014).

In this chapter we propose a novel state-space reduction paradigm by shifting the
focus from the infinitesimal properties of states (i.e. their transition rates) to the global
properties of trajectories. Namely, we seek to aggregate states that yield behaviourally
similar trajectories according to a set of pre-defined logical specifications. Intuitively,
two states will be aggregated if trajectories starting from either state exhibit similar
probabilities of satisfying the logical specifications. We define a statistical algorithm
based on statistical model checking and Gaussian Process emulation to define this
behavioural similarity across the whole state-space of the system. We then propose a
dimensionality reduction and clustering pipeline to aggregate states and define reduced
(non-Markovian) dynamics. To illustrate our approach, we give a running example of
model reduction for the Susceptible-Infected-Recovered-Susceptible (SIRS) model, a
non-linear stochastic system widely used in epidemiology. This work was published in
Proceedings of Quantitative Evaluation of Systems (QEST) 2016 (Michaelides et al.,
2016).1

1Dimitrios Milios, Jane Hillston and Guido Sanguinetti provided general feedback and advice in the
development of the material, and edited the manuscript. Dimitrios Milios also contributed Figures 3.5
and 3.6.
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3.1 Population models
We will consider population models here, formalised by population CTMCs (pCTMCs)
as defined previously (Definition 2.2.3). Such models have the convenient trait of a
naturally ordered state-space, which we can leverage to e�ciently estimate the satisfaction
probability of logical statements, or properties, comprised of (temporal) conditions on
species counts. Because of the highly structured nature of pCTMCs, where transition
rates scale linearly within each ordering dimension (species concentration), we expect
that regression methods from machine learning such as a Gaussian process (GP) will
competently approximate a function over the state-space. This function should map initial
states to property satisfaction probabilities, with relatively few observations (sample
trajectories of the original system from simulation). In principle, the ordered state-space
condition could be lifted, and the GP emulation replaced by complete statistical model
checking (SMC) for estimating satisfaction probabilities for each initial state of the system.
However, this would become extremely costly for systems with larger state-spaces, or
for a larger set of properties which would require more samples to accurately estimate
satisfaction probabilities. We therefore retain our attention on pCTMC models here, and
in particular an SIRS model.

Example 1.1 We introduce our running example, the Susceptible-Infected-Recovered-
Susceptible (SIRS) model of epidemic spreading. The SIRS model is a discrete stochastic
model of disease spread in a population, where individuals in the population can be in
one of three states, Susceptible, Infected and Recovered. There are di�erent variations of
the model, some open (individuals can enter and exit the system), others with individuals
relapsing to a susceptible state after having recovered. Here, we consider a relapsing,
closed system, which evolves in a discrete, 2-dimensional state-space, where dimensions are
the number of Susceptible and Infected individuals in the population (Recovered numbers
are uniquely determined since the total population is constant). We also introduce a
spontaneous infection of a susceptible individual with constant rate, independent of the
number of infected individuals, to eliminate absorbing states.

With a population size of N , states in the 2D space can be represented by x =
(S, I), S œ {0, · · · , N}, I œ {0, · · · , N ≠ S} for a total of (N + 1)(N + 2)/2 states. The
chemical reactions for this system are:

• infection S + I
–≠æ 2I;

• spontaneous infection S
—/5≠≠æ I;
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• recovery I
—≠æ R;

• relapsing R
—≠æ S.

We set the infection rate – = 0.005, recovery rate — = 0.01, and population size
N = S + I + R = 100, for a total of 5151 states in this SIRS system. Sample trajectories
of the system were simulated using the Gillespie algorithm.

3.2 Behaviour through logical properties
We formally specify trajectory behaviours by using temporal logic properties. We are
particularly interested in properties that can be verified on single trajectories, and assume
metric bounds on the trajectories, so that they are observed only for a finite amount of
time. Metric Interval Temporal logic (MITL) (Maler and Nickovic, 2004) as introduced
in Section 2.4.1 o�ers a convenient way to formalise such specifications.

Example 1.2 MITL formulae can be used e�ectively to obtain behavioural characteri-
sations of the system’s trajectory. We turn again to the SIRS model to illustrate this
concept.

Assume one may want to express a global bound on the virulence of the infection, so
that the fraction of infected population never exceeds ⁄. This can be done by considering
the formula „1, defined as

„1 ::= G[0,100](I < ⁄N) (3.1)

which translates to:

„1(x) =

Y
_]

_[

tt if It < ⁄N ’t œ [0, 100],

¬tt otherwise.

Statistical model checking of this formula is trivial: one simply draws a trajectory using
Gillespie’s algorithm, and monitors that the maximal number of infected does not exceed
the specified threshold in the [0, 100] interval.

3.3 High level method description
We first present a high-level description of the proposed methodology; the technical
ingredients will be introduced in the following subsections. Figure 3.1 provides an intuitive
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roadmap of the approach. The overarching idea is to provide a state-space aggregation
algorithm which uses behavioural similarities as an aggregation criterion.

The input to the approach is a CTMC model and a set of MITL formulae „1, . . . , „n

which define the behavioural traits we are interested in. We formalise some of the key
concepts through the following definitions.

Definition 3.3.1. A coarsening map C for a CTMC M is a surjective map

M : S ≠æ R, (3.2)

from the state-space S of M to a finite set R, such that card(S) Ø card(R).

Definition 3.3.2. The macro-states of the coarsened system are the elements of the
image of the coarsening map C.

Therefore, the set of all macro-states is a partition of the set of initial states S, where
each element in the partition is a macro-state. In general, there is no way to retrieve
the initial state configuration of the system only from information of the macro-state
configuration, i.e., the coarsening entails an information loss.

We illustrate the various steps of the proposed procedure in Figure 3.1. The first step
is to take a sample of possible initial states; we then evaluate the joint satisfaction of the
n formulae, given a particular state as initial condition. This implicitly defines a map

� : S æ
I

r œ R2n :
ÿ

i

ri = 1, ri Ø 0 ’ i

J

(3.3)

which associates each initial state with the probability of each possible satisfaction
pattern of the n formulae (the standard probability simplex for 2n possible outcomes).
Notice that all of the 2n possible truth values are needed to ensure correlations between
properties are captured. Constructing such a property map by exhaustive exploration of
the state-space is clearly computationally infeasible; we therefore evaluate it (by SMC)
on a subset of possible initial states, and then extend it using a statistical surrogate, a
Gaussian Process (Figure 3.1 top).

The property representation contains the full information over the dependence of the
properties of interest on the initial state. It can be endowed with an information-theoretic
metric by using the Jensen-Shannon divergence (JSD) between the resulting probability
distributions. However, the high dimensionality and likely very non-trivial structure of the
property representation may make this unwieldy. We therefore propose a dimensionality
reduction strategy which maintains approximately the metric structure of the property
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Initial state space
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Figure 3.1 The sequence of transformations from space to space are shown in the figure.
States from the original state-space (blue circles 1-3) are projected to „-space according
to satisfaction rate of set properties (found via simulation of the system). MDS is used to
project from „-space to a space where the square root of the Jensen-Shannon divergence
(JSD) of „ satisfaction probability distributions between states is preserved as Euclidean
distance (in the figure, JSD[P„(2) Î P„(3)] < JSD[P„(1) Î P„(2)], JSD[P„(1) Î P„(3)] so
states 2, 3 are placed closer together than 1). The states are then clustered to produce
macro-states. Out-of-sample states (red cross) can be projected to „-space, using GP
imputation to estimate satisfaction probabilities. MDS extension allows projecting from
„-space to the JSD space without moving the sampled states. The most likely cluster for
the state to belong to (nearest centroid) is the macro-state it belongs to.
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representation using Multi-Dimensional Scaling (MDS; Figure 3.1 middle). MDS will also
have the advantage of automatically identifying potentially redundant characterisations,
as implied for example by logically dependent formulae.

The low-dimensional output of the MDS projection can then be visually inspected
for groups of initial states (macro-states) with similar behaviours with respect to the
properties. This operation is a coarsening map, which can also be automated by using a
variety of clustering algorithms.

The model dynamics induce, in principle, a dynamics on this reduced space R. In
practice, such dynamics will be non-Markovian and not easily expressible in a compact
form; we propose a simple, simulation-based alternative definition which re-uses some of
the computation performed in the previous steps to define an empirical, coarse-grained
dynamics on the macro-states.

3.4 Satisfaction probability as a function of initial
conditions

The starting point for our approach consists of embedding the initial state-space into
the property space, „-space. This is achieved by computing satisfaction probabilities
for the 2n possible truth patterns of the n properties we consider. As in general these
satisfaction probabilities can only be computed via SMC, this is potentially a tremendous
computational bottleneck. To obviate this problem, we turn the computation of the
property map into a machine learning problem: we evaluate the 2n functions on a (sparse)
subset of initial states, and predict their values on the remaining initial states using a
Gaussian process (GP).

We previously introduced Gaussian processes in Section 2.3.4 as a powerful non-
parametric universal approximator for smooth functions. In the present setting, the input-
output relationship is the property map from initial states to satisfaction probabilities of
the properties. This function is defined over a discrete space, but we can use the population
structure of the pCTMC to embed the state-space S in a (subset) of RD for some D.
We can then treat the problem as a standard classification problem for 2n classes over a
continuous input space, learning a function f„ : RD æ

Ó
r œ R2n : q

i ri = 1, ri Ø 0 ’ i
Ô
.

Remark GPs have previously been used to explore the dependence of the satisfaction
probability of a formula on model parameters in the so-called Smoothed Model Checking
approach (Bortolussi et al., 2016). There, the authors proved a smoothness result which
justified the use of smoothness-inducing GPs for the problem. It is easy to see that such
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smoothness does not hold in general for the function f„; for example, the probability of
satisfying the formula x(0) > N has a discontinuity at x = N . However, since we only
ever evaluate f„ on a discrete set of points, the lack of smoothness is not an issue, as
a continuous function can approximate arbitrarily well a discontinuous function when
restricted to a discrete set.

Example 1.3 We exemplify this procedure on the SIRS example. We consider here
three properties of interest: the global bound encoded in formula „1 defined in equation
(3.1), and two further properties encoded as

„2 ::= F[0,60]G[0,40](0.05N Æ I Æ 0.2N), (3.4)
„3 ::= F[30,50](I > 0.3N). (3.5)

Satisfaction of „2 requires that the infection has remained within 5 to 20% of the
total population for 40 consecutive time units, starting anytime in the first 60 time units;
satisfaction of „3 requires that the infection peaks at above 30% between time 30 and
time 50.

The property map in this case would have an 8-dimensional co-domain, representing
the probability of satisfaction for each of the 23 possible truth values of the three formulae.
Figure 3.2 plots the probability of satisfaction for the three formulae individually, as
we vary the initial state. In this case, 10% of all possible initial states were randomly
selected and numerically mapped to the property space via SMC, while the satisfaction
probabilities for the remaining 90% were imputed using GPs. We see that throughout
most of the state-space the second property has low probability. Also it is of interest to
observe the strong anti-correlation between the first and third properties: intuitively, if
there is very high probability that the infection will be globally bounded below 40% of
individuals, it becomes more di�cult to reach a peak at above 30%.

3.5 Dimensionality reduction of behaviours
Once states are mapped onto „-space, reducing dimensionality of this space is useful to
remove correlations and redundancies in the properties tracked. Properties may often
capture similar behaviour, leading to strong correlations in their satisfaction probability.
Reducing the dimensionality of the property space mostly retains the information of
how behaviour di�ers from state to state, eliminating redundancies. Moreover, reduced
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dimensional mappings can aid practitioners to visually identify structures within the
state-space of the system.

In order to quantify the similarity of di�erent initial states with respect to property
satisfaction, the square root of the Jensen–Shannon divergence (root-JSD) between
the probability distributions of property satisfaction is used as a metric. JSD is an
information theoretic symmetric measure of similarity between probability distributions

— the higher the di�erence between the distributions, the higher JSD is. Between two
distributions, P, Q, JSD is defined as

JSD[P Î Q] = 1
2(KL[P Î M ] + KL[Q Î M ]),

where M = (P + Q)/2 the average of the distributions, and KL[P Î Q] = q
i P (i) log P (i)

Q(i) ,
the Kullback-Leibler divergence.

The JSD enables us to derive a matrix of pairwise distances in property space
between di�erent initial states. Such a distance is not Euclidean, and is defined in
the high-dimensional property space. To map the initial states in a more convenient,
low-dimensional space, we employ a dimensionality reduction technique known as Multi-
Dimensional Scaling (MDS) (Borg and Groenen, 2005).

MDS has its roots in the social science literature; it is a valuable and widely used tool
in psychology and similar fields where data is collected by assessing similarity between
pairs.

Given some points X = (x1, . . . , xI) in an n-dimensional space, metric MDS finds
the position of corresponding points Z = (z1, . . . , zI) in an m-dimensional space, where
usually m < n, such that a given metric is optimally preserved between the points. In
the most common case, (also known as Torgerson–Gower scaling or Principal Component
Analysis), the metric to be preserved is the Euclidean distance, and is preserved by
minimisation of a loss function. The loss function L (generally called stress) is optimised
over point locations Z, zi œ Rm, where

L(z1, . . . , zI) =
S

U
ÿ

ij

(d(xi, xj) ≠ Îzi ≠ zjÎ)2
q

lk d2(xl, xk)

T

V
1/2

,

and d(zi, zj) is the dissimilarity measure between points xi, xj; the norm Î·Î denotes the
Euclidean norm.

For the classical MDS case, the chosen dissimilarity is the Euclidean distance in the
original space. The minimisation can then be achieved by eigenvalue decomposition of a
distance matrix of the (normalised) points XX€, and subsequently reconstructing the
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points from the m largest (eigenvector, eigenvalue) pairs. This results in Z, a projection
of the points to an m-dimensional space, where Euclidean distance is optimally preserved.
In general and especially for a large number of points, a numerical optimisation algorithm
is usually employed to find a solution.

In vanilla MDS, the projection is defined statically for the available data points and
needs ab initio re-computation if new points become available. In (Bengio et al., 2004),
the method is extended to new points by constructing a new dissimilarity matrix of new
points to old ones, by which the projection of new points will be consistent to that of the
old points. The kernel for this new matrix achieves this by replacing the means required
for centring with expectations over the old points; such that for points x, y œ X

K̃(x, y) = ≠1
2

A

d2(x, y) ≠ 1
I

ÿ

xÕ
d2(xÕ, y) ≠ 1

I

ÿ

yÕ
d2(x, yÕ) + 1

I2
ÿ

xÕ,yÕ
d2(xÕ, yÕ)

B

,

where K̃(x, y) is the kernel used for the dissimilarity matrix, is replaced by

K̃(a, b) = ≠1
2

A

d2(a, b) ≠ Ex[d2(x, a)] ≠ ExÕ [d2(b, xÕ)] + Ex,xÕ [d2(x, xÕ)]
B

,

where a can be an out-of-sample point (a /œ X, b œ X).
This reconstructs the dissimilarity matrix for the original points exactly, and allows

us to generalise to out-of-sample points and find their positions in the embedding learned,
as described in Bengio et al. (2004). Extending MDS allows us to create macro-states
based on samples of points, and then project new points on the space created by MDS
to find in which clusters they belong.

Example 1.4 We have introduced three properties in Equations (3.1), (3.4) and (3.5),
and the associated property map. This has an eight-dimensional co-domain, but already
some of its properties can be gleaned by the three-dimensional plot of the single-formula
probabilities shown in Figure 3.2. Particularly, these reveal strong negative correlations,
indicating that MDS may prove fruitful.

Figure 3.3 shows the states projected to a 2D space where proximity implies similar
probability distribution over property satisfaction. This was achieved using MDS to
project the states, with the square root of the JSD (root-JSD) used as the metric to be
preserved as Euclidean distance in the new 2D space. Aspects of the state distribution
in „-space (Figure 3.2) are preserved, with the states of high probability satisfaction for
property „2 appearing further from the connected outline (bottom left group in Figure
3.3).
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Figure 3.2 Left: Projection of states in „-space via SMC (trajectory simulations for each
initial state). Notice the non-trivial state distribution structure. Right: Projection of
states in „-space using SMC for 10% of the states, and GP regression to estimate P („)
for the rest 90% of states (red crosses).

3.6 Clustering and structure discovery
The MDS projection enables us to visually appreciate the existence of non-trivial struc-
tures within the state-space, such as clusters of initial states that produce similar
behaviours with respect to the property specification. Our intuition is that such struc-
tures should form the basis to define macro-states of the system, groups of states that
will exhibit similar satisfaction probabilities for the properties defined. To automate this
process, we propose to use a clustering algorithm to define macro-states. Since our goal
is to group states with similar behaviours, we adopt k-means clustering (Bishop, 2006a),
which is based on the Euclidean distance of the states in the MDS space (representative
of the root-JSD between the probability satisfaction distributions). k-means requires
specification of the desired number of clusters (the k parameter); this allows the user
to select the level of coarsening required. Figure 3.4 shows the clusters produced in the
reduced MDS space for the running SIRS model example, where we set the number of
clusters k = 10.

3.7 Constructing coarse dynamics
Once states have been grouped into macro-states, a major question is how to construct
dynamics for the now coarsened system. The coarsened system naturally inherits dynamics
from the original (fine-grained) system; however, such dynamics are non-Markovian, and
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Figure 3.3 Left: P („1, „2, „3) estimated via SMC for each state. MDS was then used to
project them from an 8D to a 2D space. Right: GP estimates of P („1, „2, „3) for 90% of
states (red crosses) produce an almost identical MDS projection.

in general fully history dependent so that transition probabilities would have the form

p(kÕ, t | k, h) = p(kÕ | k, t, h) p(t | k, h), (3.6)

where h denotes the history of the process. Simulating such a non-Markovian system is
very di�cult and likely to be much more computationally expensive than simulating the
original system.

We therefore seek to define approximate dynamics which are amenable to e�cient
simulation, but still capture aspects of the non-Markovian dynamics. The most natural
approximation is to replace the system with a semi-Markov system: transitions are still
history-independent, but the distribution of sojourn times is non-exponential. We write

p(kÕ, t | k, h) ¥ p(kÕ | k, t) p(t | k), (3.7)

where we dropped the dependence on h. To evaluate the sojourn-time distribution, we
resort to an empirical strategy, and construct a distribution of sojourn times by re-using
the simulated trajectories of the fine system that were drawn to define the coarsening.
In other words, once a clustering is defined, we retrospectively inspect the trajectories to
construct a histogram distribution of sojourn times, approximating p(t | k).

A possible drawback of this semi-Markov approximation is that it may introduce
transitions which are actually impossible in the original state-space. This is because
states were clustered based on behaviour rather than transition rates, and therefore states
that are actually quite far in the original state-space may end up being clustered together.
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Figure 3.4 The states were clustered in the space created by the MDS projection and
coloured accordingly, using k-means (10 clusters). Since the Euclidean distance in this
space is representative of distance in probability distributions over properties, states with
di�erent behaviour should be in di�erent clusters.

Since the identity of the original states is lost after the coarse graining, impossible
transitions may be introduced.

Retrospectively inspecting whole system trajectories, rather than agnostically exam-
ining cluster transitions of the original system with a uniform initial state distribution
within the cluster, ameliorates this problem. Similarly, estimates of p(kÕ | t, k) are
produced from the same trajectories; these are the macro-state transition frequencies
in each bin of the sojourn time probability histogram. This method avoids a lot of
impossible trajectories one might generate, if the above probabilities were estimated
by sampling randomly from initial states in a macro-state and looking at when the
macro-state is exited and to which macro-state the system transitions. Assuming the
original system has a steady state, the empirical dynamics constructed here capture this
steady state macro-state distribution; however, accuracy of transient dynamics su�ers,
and the coarsened system enters the steady state faster than the original system.

Steady state consistency We show here how the coarsened dynamics has a steady
state consistent with the original dynamics. Conditional probability distributions for the
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original CTMC obey the solution to the dCKE:

p(X(t + s) = Xj|X(t) = Xi) = [esQ]ij ’t,

where X(t) is the state of the process at time t, and [esQ]ij is the ij entry of the matrix
exponential of sQ. Note that transition probabilities for elapsed time s are invariant
with respect to t, implying stationary dynamics. When we coarsen, the state alphabet
{Xi | i = 1, . . . , N} is surjectively mapped to {Yj | j = 1, . . . , M}, with M < N . The
mapped probability distribution at any time t is

p(Y (t) = Yj) =
ÿ

i:Xi ‘æYj

p(X(t) = Xi),

with Y (t) the macro-state of the coarsened system at time t, and where the sum runs
through all states Xi that map to macro-state Yj.

Exact transition probabilities in the macro-scale are given by

p(Y (t + s) = Yl | Y (t) = Yk) =
ÿ

j:Xj ‘æYl

ÿ

i:Xi ‘æYk

p(X(t + s) = Xj | X(t) = Xi)
p(X(t) = Xi | Y (t) = Yk)

=
ÿ

j:Xj ‘æYl

ÿ

i:Xi ‘æYk

[esQ]ij
A

p(X(t) = i)
q

m:Xm ‘æYk
p(X(t) = Xm)

B

,

which is a sum of all transitions from states of one macro-state to states of another,
weighted by the relative probability of being in each state of the macro-state at time
t. We observe that the necessary weighting by p(X(t) = Xi | Y (t) = Yk), given by the
last term in brackets, introduces a dependence on t in the dynamics so that they are no
longer stationary in the macro-scale.

However, consider the limit t æ Œ when the system is in steady state, limtæŒ p(X(t) =
Xi) = [fiŒ]i. Then the transition probability between macro-states is

lim
tæŒ

p(Y (t + s) = Yl | Y (t) = Yk) =
ÿ

j:Xj ‘æYl

ÿ

i:Xi ‘æYk

[esQ]ij
A

[fiŒ]iq
m:Xm ‘æYk

[fiŒ]m

B

,
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which is stationary in t. Further, the steady state fĩŒ over the macro-states, is given by

[fĩŒ]l = lim
tæŒ

p(Y (t + s) = Yl) = lim
tæŒ

ÿ

k

p(Y (t + s) = Yl | Y (t) = Yk)p(Y (t) = Yk)

=
ÿ

k

ÿ

j:Xj ‘æYl

ÿ

i:Xi ‘æYk

[esQ]ij
A

[fiŒ]iq
m:Xm ‘æYk

[fiŒ]m

B
ÿ

n:Xn ‘æYk

p(X(t) = Xn)

=
ÿ

k

ÿ

j:Xj ‘æYl

ÿ

i:Xi ‘æYk

[esQ]ij[fiŒ]i =
ÿ

j:Xj ‘æYl

[esQ€
fiŒ]j

=
ÿ

j:Xj ‘æYl

[fiŒ]j ,

which is consistent to the steady state of the original CTMC mapped to the macro-states.

Example 1.5 We illustrate and evaluate the quality of the coarsened trajectories
with respect to the original ones on the SIRS example. In particular, we examine the
probability distribution over the macro-states at di�erent times in the evolution of
the system. The macro-state distribution has been estimated empirically by sampling
trajectories using the Gillespie algorithm for the fine system, and our coarse simulation
scheme for the coarsened system. We have then constructed histograms to capture the
distribution of the categorical random variables that represent the macro-state. Finally,
we measure the histogram distance between histograms obtained from the fine and the
coarse systems. Figure 3.5 depicts the evolution of the macro-state histograms over time.
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Figure 3.5 Evolution of the macro-state histograms over time. Credit to Dimitrios Milios.
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Quality of approximation In order to put any distance between empirical distribu-
tions into context, this has to be compared with the corresponding average self-distance,
which is the expected distance value when we compare two samples from the same
distribution. In this work, we estimate the self-distance using the result in Cao and
Petzold (2006): given N samples and K bins in the histogram, an upper bound for
the average histogram self-distance is given by

Ò
(4K)/(fiN). In our example, we have

K = 10 histogram bins, which are as many as the macro-states. In practice, a distance
value smaller than the self-distance implies that the distributions compared are virtually
identical for a given number of samples. In Figure 3.6, we see the estimated distances for
N = 10000 simulation runs for times t œ [0, 150]. It can be seen that the steady-state
behaviour of the system is captured accurately, as the majority of the distances recorded
after time t = 60 lie below the self-distance threshold. However, the transient behaviour
of the system is not captured as accurately. Upon a more careful inspection of the shape
of the histograms in Figure 3.5, we see that the coarsened system simply converges more
quickly to steady-state.

Figure 3.6 Evolution of the macro-state histogram distances over time. Credit to Dimitrios
Milios.

Computational savings State-space coarsening results in a more e�cient simulation
process, since the coarse system is characterised by lower complexity as opposed to
the fine system. We demonstrate these computational savings empirically in terms of
the average number of state transitions invoked during simulation. More specifically,
we consider a sample of 5000 trajectories of the fine and the coarse system. We have
recorded 320 ± 25 initial state transitions on average in each trajectory of the fine system,
compared to 56 ± 31 macro-state transitions in trajectories of the coarsened system. The
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number of transitions in the coarse system is an order of magnitude lower than in the fine
one, owing to the reduction of states in the system from a total of 5151 to 10 (the number
of macro-states). Clearly, our procedure, particularly the GP imputation, incurs some
computational overheads. Table 3.1 presents the computational savings of using GPs to
estimate satisfaction probability distributions for most states, instead of exhaustively
exploring the state-space. All simulations were performed using a Gillespie algorithm
implementation, taking 1000 trajectories starting at each examined state, running on 10
cores.

Table 3.1 Real running times for simulations of varying sample size (percentage of
state-space) and GP estimation of remaining states.

Sample size GP & MDS
time (s)

Simulation
time (s)

Total
time (s)

Percentage of
exhaustive total time
(Total time/8516s)

100% 1616* 6900 8516 100%
50% 1133 3450 4583 54%
40% 884 2760 3644 43%
30% 595 2070 2665 31%
20% 354 1380 1734 20%
10% 170 690 860 10%

* No GP was performed here, just the MDS.

3.8 Discussion
We presented a novel approach to the coarsening of a CTMC, in order to gain a
stochastic process with a much smaller state-space. Unlike previous approaches to CTMC
aggregation, which are based on structural properties of the state-space, our approach is
based on property satisfaction, allowing the coarse-grained system to focus on abstracting
the dynamics in terms of aspects of behaviour that are important in the modelling
study. The further steps are to identify key clusters of states in property space, or a
lower-dimensional representation of it, and approximate the transition dynamics between
them. For example, this approach might be used within multi-scale modelling to reduce
the state-space of a lower level model before embedding in a higher-level representation
(see Chapter 4).

Common aggregation techniques, such as (approximate) lumpability, often impose
stringent conditions on the symmetries and transition rates within the original state-space.
Moreover, the macro-states produced can be di�cult to interpret when the reduction is
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applied directly at the state-space level (i.e. without a corresponding bisimulation over
transition labels). In contrast, the property-based approach allows macro-states to be
defined by high-level behaviour, rather than them emerging from an algorithm applied
to low-level structure.

The GP regression we employed for estimating satisfaction probability of properties
for out-of-sample states proved quite accurate; simulation estimates for 10% of the states
were su�cient to reconstruct the state distribution in the space defined by the probability
of property satisfaction, „-space, without substantial loss of structure. Therefore, the
proposed approach may be helpful in e�ectively understanding the behavioural structure
of large and complex Markovian systems, with implications for design and verification.

Initial experiments on a simple system show that our approach can be practically
deployed, with considerable computational savings. The approach induces coarsened
dynamics which empirically match the original system’s dynamics in terms of steady-state
behaviour. However, the recovery of transient coarse-grained dynamics poses more of
a challenge and this will provide a focus for future work. In particular, we will seek
to explore the possibility of quantifying the information lost through the coarsening
approach, at least asymptotically, for systems which admit a steady state. Exploring
the scalability of the approach on more complex, higher dimensional examples will also
be an important priority. In general, we expect our approach to be beneficial when
simulation costs dominate the overheads incurred by the GP regression approach. This
condition will be mostly met for systems with moderately large state spaces but complex
(e.g. sti�) dynamics. For extremely large state spaces, the cubic complexity (in the
number of retained states) of GP regression may force users to adopt excessively sparse
sub-sampling schemes, and it may be preferable to replace the GP regression step with
alternative schemes with better scalability. Exploration of these computational trade-o�s
would likely prove insightful for the methodology.



Chapter 4

Statistical abstraction for
multi-scale spatio-temporal systems

Science is often tasked with examining natural or artificial systems characterised by
spatial dependence and complex dynamics. The complexities that these characteristics
induce on the emergent system behaviour mean that detailed models are often constructed
in order to study them through simulation. This approach has been used extensively in
applications ranging from cyber-physical systems to collective adaptive systems of human
behaviour and to cellular systems. Nevertheless there is still room for advancement
through automating the ability to recover simpler models that still capture the dynamics
with su�cient faithfulness, but which may have a lower computation cost. This is
especially true for systems involving onerous stochastic simulations (Dada and Mendes,
2011; Gilbert et al., 2015).

We consider here a general framework which encompasses a large class of spatio-
temporal systems. In this framework, multiple identical agents are distributed in space
over an external field. The agents perceive the field locally and perform internal stochastic
computations to determine their subsequent behaviour, such that their actions are
influenced by their environment. We also allow the agents to act locally upon the
external field, enabling the latter to become a medium for signals between agents. This
framework subsumes a wide range of systems, from swarm robots performing a task in
space, to bacteria exploring a nutrient field, or agents responding to distress signals.

In this chapter, we propose a method to replace expensive stochastic parts of the
model with input-output maps estimated via a machine learning procedure. We focus on
a particular macro-scale behaviour as output from the model, and devise a statistical
abstraction of the system in order to produce a simpler system which preserves the macro-
scale behaviour. Crucially, we do not care for the detailed internal state of the model, but
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only an abstracted version su�cient to capture its qualitative behaviour. The abstracted
state is formalised as the satisfaction output of a set of logical properties evaluated
on the original state. We estimate the necessary input-output relation by learning a
parameters-to-behaviours regression map using Gaussian Process (GP) regression. Our
work is motivated by earlier work on using GPs to learn e�ective characterisations of
system behaviour (Bortolussi et al., 2015b, 2016; Michaelides et al., 2016).

This work was published in the span of two papers: an initial publication (Michaelides
et al., 2017) appeared in Proceedings of Quantitative Evaluation of Systems (QEST) 2017,
followed by an invited extension to appear in Transactions on Modeling and Computer
Simulation (TOMACS).1 The extended version as presented here adapts the statistical
framework to also handle agent-environment interactions, thereby closing the information
loop and allowing for environment-mediated agent-agent interactions. To illustrate our
framework we construct abstractions for two biological systems which exhibit chemotaxis
in the macro-scale: the bacterium Escherichia coli and the social amoeba Dyctostelium
discoideum. The former follows positive chemical concentrations in search of nutrient-rich
environments, and the latter responds to signals emitted by other amoebae to aggregate
into clusters; both of which are forms of chemotaxis.

The rest of the chapter is organised as follows: we start with some background
on spatio-temporal systems (Section 4.1). The general framework for our statistical
abstraction methodology is presented in Section 4.2, followed by a brief discussion of
related work in Section 4.3. We then present two case studies describing applications
of the abstraction on a model of E. coli chemotaxis and a model of D. discoideum
aggregation (Sections 4.4 and 4.5 respectively), which exemplify the methodology and
provide results assessing the quality and e�ciency of the abstraction. We conclude with a
discussion on the utility of the method and closing remarks about prospective expansion
of the work (Section 4.6).

4.1 Background

4.1.1 Spatio-temporal agent models

We start by defining the class of spatio-temporal agent models we will consider in this
paper. Let D be a spatial domain (usually a compact subset of Rn with n = 2, 3),
and let [0, T ] be the temporal interval of interest. We define the spatio-temporal field

1Jane Hillston and Guido Sanguinetti provided feedback and advice in the development of the
material, and edited the manuscript.
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f : D ◊ [0, T ] æ R to be a real-valued function defined on the spatial and temporal
domains of interest. A spatio-temporal agent model is a triple (D, f, A) where A is a
collection of point agents whose location follows a stochastic process which depends on the
spatio-temporal field. Note that even though we realise that this is not the most general
case, as agents may be spatially extended, or directly interact with each other, a form of
agent-agent interaction is feasible within this framework. As illustrated through the case
study of a D. discoideum model in Section 4.5, the agents may a�ect the evolution of
the spatio-temporal field — this allows the field to transmit signals from agent to agent,
enabling interaction.

4.1.2 Multi-scale models

In many practical situations, one is interested in modelling not only the movement of the
agents, but also the mechanism through which sensing and decision making is carried
out within each agent. This naturally leads to structured models with distinct layers of
organisation, with behaviour in each layer informing the simulation that takes place at
the layer above or below. We will assume that the internal workings of the agent are
also stochastic, and we model them here as a Markov chain with a discrete state-space.

In the first case-study presented (Section 4.4), the internal workings of an agent are
modelled by a population Continuous Time Markov Chain (pCTMC). Note that the
pCTMC is the internal model for a single agent here, not for multiple agents. In the
second case-study (Section 4.5), the internal workings of a cell are modelled by a Discrete
Time Markov Chain (DTMC).

4.1.3 Simulating multi-scale systems

Multi-scale spatio-temporal systems are in general amenable to analytical techniques only
in the simplest of cases. For the vast majority of real-world models, simulation-based
analysis is the only option to gain behavioural insights.

Simulation of spatio-temporal systems typically employs nested algorithms: having
chosen a time discretisation for the spatial motion (which is assumed to have the slower
time-scale), a spatial step is taken. Then, the value of the external field is updated,
and the internal model is run for the duration of a given time-step with the new rates
(corresponding to the updated value of the external field). A sample from the resulting
state distribution then determines the velocity of the agent for the next time-step.

Clearly, this iterative procedure, while asymptotically exact (in the limit of small
time discretisation), is computationally very demanding. This has motivated several
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lines of research in recent years (Bortolussi et al., 2015b; Goutsias, 2005; Haseltine and
Rawlings, 2002; Rao and Arkin, 2003).

4.2 Methodology for statistical abstraction
In a multi-scale system, output from a set of processes in one layer in the system is
passed as input to another layer; these processes are often computationally expensive.
We present a methodology to abstract away such a set of processes and replace them with
a more e�cient stochastic map from the input to the output, governed by an underlying
probability function. We approximate this probability function using Gaussian processes
after observing many input-output pairs from the processes to be abstracted. The output
consists of truth evaluations of properties expressed in logical formulae, which capture
some behaviour of the system that is to be preserved by the abstraction.

4.2.1 Statistical abstraction framework

Consider a Markov chain S, which given an initial state s0, running time �t, and input
q œ RD which completely determines transition rates, generates a trajectory s[0,�t]. At
each time step n in the simulation of a multi-scale system, the trajectory s(n)

[0,�t] is checked
for satisfaction of a logical property resulting in output y(n) = f

1
s(n)

[0,�t]

2
, y(n) œ {€, ‹}.

For the next time step, the last state in the Markov chain is kept as the new initial
state (i.e. s(n)

0 = s(n≠1)
�t ), and with new input q(n) œ RD to determine transition rates the

process is repeated. This layer of the multi-scale system can therefore be described as a
set of operations at each time step n:

S
1
s(n)

0 = s(n≠1)
�t , �t, q(n)

2
= s(n)

[0,�t]; (4.1)

f
1
s(n)

[0,�t]

2
= y(n). (4.2)

Note that we consider a single property here for simplicity (so a single binary value), but
one could generalise to multiple properties, and hence, to a multi-valued output. This
output then becomes input to a higher layer in the multi-scale system.

Our goal is to construct a system S̃ that is cheaper to simulate, whose output will be
consistent with the original system S. Since the system is stochastic, consistent refers
to having the same probability distribution for the output random variable y(n) given
the same input q(n) and following previous output y(n≠1). Fundamentally, we seek to
approximate the (generally) non-Markov process of outputs {y(n)} with a Markov one.
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To describe the abstracted system, we write:

S̃
1
y(n≠1), q(n)

2
= y(n). (4.3)

Replacing the initial state s(n)
0 = s(n≠1)

�t input with the previous output y(n≠1) allows us
to substitute the whole layer of fine operations (4.1, 4.2) with the cheaper abstracted
system S̃ (4.3), unburdening the multi-scale system. We regard this abstracted system
to be a stochastic map from the internal state of the system, now abstracted to the
last output y(n≠1), and some external input q(n), to a new output y(n). The latter being
a discrete random variable, the task is to estimate a probability distribution over the
output domain from which to sample the output. Since we expect this distribution
to depend upon the previous output y(n≠1) and external input q(n), we use Gaussian
process regression with an appropriate observation likelihood to estimate an underlying
probability function �(y, q) which governs the output of S̃.

It follows that the abstraction will become more accurate the faster the Markov chain
S mixes, since dependence on the initial state of the chain will no longer matter — in fact,
for fast enough mixing times relative to �t, one could even drop the output feedback and
produce the stochastic output y only given the input q. Thus, we expect the abstraction
to work particularly well for components of a system which equilibrate faster than others.
For the cases we present below, notice that the internal agent dynamics which determine
motility are faster than the changes in the environmental input that a�ect them.

In our general construction, the output of the system is taken to be a combination
of boolean satisfaction values for a set of properties. Owing to its discrete nature, the
resulting abstraction could be interpreted as a discrete-time Markov chain (DTMC) whose
state-space is comprised of every output combination. Our task is then to determine
transition rates for this DTMC to make its paths consistent with output of the original
system. If one wishes to increase accuracy, the DTMC can be made to be of a higher
order. A higher-order DTMC means that a longer output history is retained and a�ects
the next output, and can therefore be expected to better approximate the original output
dynamics. In the two examples presented here, we construct a first-order DTMC for the
first case and a second-order DTMC for the second case.

4.2.2 Approximating the underlying probability function

There are many approaches one could take to infer the probability function �(y, q),
necessary for the abstraction. Here we make use of Gaussian processes (GPs), a non-
parametric regression method introduced in Section 2.3.4.
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GPs are universal function approximators. The choice of covariance kernel determines
the prior over the space of functions considered, and thus a�ects how many observations
are required to get a good estimate of the underlying function.2 However, given enough
observations, a GP with an appropriate kernel will approximate any function within
a particular family arbitrarily well. Here we make use of the squared exponential, or
Gaussian, kernel

k(x, xÕ) = ‡2 exp
5
≠1

2(x ≠ xÕ)€M(x ≠ xÕ)
6

,

where ‡ is a scalar amplitude hyperparameter which indicates the magnitude of variation
in the function, and M = diag(¸)≠2 is a diagonal matrix which scales each input dimension
by a characteristic length-scale, indicative of how correlated the output is along that
dimension. Intuitively, functions that exhibit more frequent variations along a dimension
i are more probable when ¸i is smaller, and functions with larger amplitudes of variation
are more probable when ‡2 is larger. We refer to (Rasmussen and Williams, 2006) for a
comprehensive account of GPs.

Since training observations are binary samples of a Bernoulli distribution (satisfaction
true or false of logical properties) or samples of a categorical distribution (in the case
of multiple properties), but GPs regress over a continuous unbounded variable, some
adjustments to the standard GP regression must be made for correct evaluation of the
underlying probability function �. GP regression with its many variations for di�erent
problem tasks is well described in (Rasmussen and Williams, 2006). The necessary
adjustments which we adopt here are found in the Gaussian process classification (GPC)
section of the book, and essentially amount to identifying that the class probability
function is �, where the class is the property satisfaction outcome. A detailed explanation
can be found in Appendix A.1.

As discussed, GP regression is a statistical approach to approximate an unknown
function based on a finite set of input-output instantiations. The quality of this approxi-
mation is a�ected by a number of factors, including model choices such as the covariance
function, but naturally the prime determinant of approximation quality is the amount
of data available. In this application, since the data is generated by model simulations,
we have a degree of control on how much data is available. In practice, however, it is
extremely di�cult to estimate a priori the size of the data-set required for a certain

2If an oracle allowed observation of the function at any point in the input domain, we would be able
to actively reduce our uncertainty over it as desired (i.e. we could take observations where we deem
lower uncertainty necessary). In the application cases presented here the system is observed through
entire simulations, and so we do not have this power.
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accuracy; in the case study in Section 4.4 we present a practical empirical strategy to
address this problem.

4.3 Related work
When it comes to abstracting stochastic systems, there is a wide literature of methods
to consider. For the cases where the system is solely defined in terms of a population
continuous-time Markov chain (pCTMC) found normally at large counts, the chemical
Langevin equation provides an approximation for the whole process, while systematic
approximation methods for the moments of the distribution of the process existed since
the 60s (Gillespie, 2000; Kurtz, 1971; van Kampen, 1961). Both approaches have seen
considerable improvement over the last decades, increasing their range of applicability
(Schnoerr et al., 2017b). Other approaches to the problem of e�ciently solving biochemical
systems attempt to gradate species’ concentration levels to discrete intervals (Ciocchetta
and Hillston, 2009; Palaniappan et al., 2017), thereby reducing the state-space of the
underlying CTMC to be solved, or employ time-scale separation if possible (Bortolussi
et al., 2015b; Goutsias, 2005; Haseltine and Rawlings, 2002; Rao and Arkin, 2003).

All of the above are firmly situated in the domain of pCTMCs and are agnostic to
the demands made of the process downstream — whether the pCTMC is checked for
reaching a particular value, or having maintained a value for a particular duration in
some time interval, does not a�ect the approximation these methods will yield. We take a
more holistic view in this work and consider the system to be abstracted as a component
of a larger multi-scale system. As such, only a particular aspect of the component is
relevant to the multi-scale system, and it is this aspect which our abstraction attempts
to preserve.

We take the relevant component output to be the evaluation of a logical property
on a stochastic trajectory drawn from a Markov chain, which comprises the internal
process of the component to be abstracted. The transition rates of the chain depend on
some input the component receives, and this enables us to utilise results in (Bortolussi
et al., 2016) to estimate the output given the input via the method of Gaussian process
regression.

4.4 The case of E. coli chemotaxis
Foraging is a central problem for microbial populations. The bacterium Escherichia coli
will normally perform a random walk within a spatial domain where nutrient concentration
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is constant (e.g. a Petri dish). When presented with a spatially varying nutrient field, a
phenomenon known as chemotaxis arises. As the bacterium performs a random walk in
the nutrient field encountering changing nutrient levels, its sensory pathway e�ectively
evaluates a temporal gradient of the nutrients (or ligands) it experiences; the walk is
biased so that the bacterium experiences a positive temporal gradient more often than
not (Berg et al., 1972; Sourjik and Wingreen, 2012; Vladimirov et al., 2008). Since
the bacterium is moving in the field, the temporal gradient is implicitly translated into
a spatial one, so the bacterium drifts toward advantageous concentrations. Implicitly
translating a temporal gradient to a spatial one through motion is necessary for the
bacterium cell, because its body size is too small to allow for e�ective calculation of the
spatial gradient of a chemical field at its location. As a result, we can safely regard the
bacteria as point-like agents.

Motor control in E. coli An E. coli cell achieves motility by operating multiple
flagellum/motor pairs (F/M), which can either drive it straight (subject to small Brownian
perturbation), or rotate it in place. Thus, the cell can either be ‘tumbling’ (re-orienting
itself while stationary) or ‘running’ (propelling itself forward while maintaining direction)
at any time (Figure 4.1: left, centre). The motility state, RUN/TUMBLE, of the cell is
determined by the number of flagella found in particular conformations. The model in
(Sneddon et al., 2012) suggests three possible conformations for a flagellum: curly (C),
semicoiled (S) and normal (N). The associated motor is modelled as a stochastic bistable
system, which rotates either clockwise (CW) or counter-clockwise (CCW). Changes in
motor rotation induce conformational changes on the associated flagellum. Transition
rates between motor states are given by rate parameters k+ and k≠ for transitions CW
æ CCW and CCW æ CW, respectively. The possible transitions between flagellum/
motor states are summarised in the schematic diagram in Figure 4.1 (right). E. coli
normally has of the order of ten flagella and associated motors; the dynamics of the pair
flagellum/motor population therefore lends itself to be easily described as a pCTMC. The
k± transition rates depend on the temporal gradient evaluated by the chemotaxis pathway,
and represent the functional interface of the bacterium with its external environment.

The classical mathematical model for the sensory response of the cell to external
ligand concentration changes is provided by the Monod-Wyman-Changeux (MWC) model
(Hansen et al., 2008; Sneddon et al., 2012; Sourjik and Berg, 2004). The model considers
sensor clusters which signal information about ligand concentration changes to the motors,
by triggering a biochemical response in the cell (phosphorylation of the CheY protein
which binds to the motors) a�ecting the switching rates of rotation direction, k±.
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C, CW S, CW
N, CCWk+             k-
µ
k+       

Figure 4.1 The two motility modes of an E. coli cell. Left: the F/M are in CCW
conformations, forming a helical bundle and propelling the cell. Centre: the F/M are
in CW conformations, breaking the bundle apart and causing the cell to re-orient in
place. Right: CTMC for a single F/M, with three conformation states and transition
rates k±(m, L) and fixed µ = 5s≠1.

The full MWC model is still highly complex; in practice, we follow (Sneddon et al.,
2012) and adopt a simplified model of sensory response to describe the dependency of
motor rates k± on ligand concentrations. This involves resolving the CheY signalling
pathway to the single variable m, which represents the methylation state of the ligand
receptors and whose stochastic evolution is dependent on the ligand concentration L.
Since m depends on past L concentrations the cell has been in, one may think of it as
a chemical memory of sorts which encodes the value of L at previous times. The time
comparison window is determined by how fast methylation happens — faster methylation
leads to a shorter memory.

Sneddon et al. (2012) then resolve the entire dependency chain of the chemotaxis
pathway to Equations (4.4) and (4.5). The motor switching rates k±(m, L) are given by
the deterministic equation

k± =Ê · exp
I

±
C

g0
4 ≠ g1

2

A
Yp(m, L)

Yp(m, L) + KD

BDJ

, (4.4)

where

Yp(m, L) =– ·
C

1 + e‘0+‘1m ·
A

1 + L/Ko�
TAR

1 + L/Kon
TAR

BnTAR

·
A

1 + L/Ko�
TSR

1 + L/Kon
TAR

BnTSRD≠1

.

The methylation process can be naturally modelled as a birth / death process with rates
depending on ligand concentration; again following (Sneddon et al., 2012) we take a fluid
approximation of this, yielding the Ornstein-Uhlenbeck (OU) process:

dm

dt
= ≠1

·
(m ≠ m0(L)) + ÷m(t). (4.5)
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In the above stochastic di�erential equation (SDE), ÷m = ‡m

Ò
2/·�(t), �(t) is the

normally distributed random process with 0 mean and unit variance, ‡m is the standard
deviation of fluctuations in the methylation level, and m0(L) is an empirically derived
function whose output is the methylation level required for full adaptation at the current
external ligand concentration L. The adaptation rate · , determines how fast methylation
occurs and so, how long the ‘chemical memory’ of previous L values is in the system.
The constants · , along with mb0 and – involved in the m0(L) function (see (Sneddon
et al., 2012)), fully parametrise the methylation evolution. See (Vladimirov et al.,
2010) for reported values of constants used in Equation (4.4) and (Frankel et al., 2014;
Sneddon et al., 2012) for a detailed derivation of the results. Equations (4.4) and (4.5)
couple the transition rates of the pCTMC in Figure 4.1: Right, with the external ligand
concentrations, and therefore fully describe the internal model of the E. coli chemotactic
response.

4.4.1 Simulating chemotaxis in E. coli

Simulations of the E. coli model outlined proceed along the general lines discussed above.
Given a value of the ligand field and a characteristic time-step �t, we draw samples of
the SDE (4.5) using the Euler-Maruyama method, a standard method for simulating
SDEs.

In the F/M pCTMC system and following the reaction equation style, each species rep-
resents a di�erent F/M conformation for a total of three species ((NCCW ), (SCW ), (CCW ))
and ten agents (10 F/M pairs). States of the pCTMC count how many F/M (agents)
there are of each conformation (species). As visualised in Figure 4.1 (right), the following
transitions (reactions) occur:

(S_CW ) µ≠æ (C_CW ), (C_CW ) k+≠æ (N_CCW ),

(S_CW ) k+≠æ (N_CCW ), (N_CCW ) k≠≠æ (S_CW ).
(4.6)

Note that in the above rate transitions there are dependencies on both external (L) and
internal (m) states: k±(m, L), where L is an external input to the system (the external
chemoattractant concentration at the time) and m is the current methylation level
(sampled from the OU process in Equation 4.5 every �t). Instead, the rate transition for
(S_CW ) æ (C_CW ) is fixed, µ = 5s≠1.

Using the exact Gillespie algorithm (Gillespie, 1977), we then simulate the internal
pCTMC for a length of time �t to draw a sample configuration of the flagella/motors
system. Formally, trajectories of length �t are checked against a property specifying the
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motility state for the cell (RUN/TUMBLE),

„RUN(s) = (N Ø 2) · (S = 0), (4.7)

where s = (S, C, N) is the last state of the flagellum/motor pairs in the CTMC trajectory
(each element of the vector counts how many F/M pairs there are in each conformation).
The logical property above evaluates to true (1) if a given cell state s has more than 2
F/M in the normal conformation and none in the semicoiled conformation; otherwise, it
evaluates to false (0).

The spatial location of the bacterium is then updated according to a simple rule:
if the sampled internal state corresponds to RUN, the agent moves rectilinearly and
updates its position r̨ Ω r̨ + v̨ · �t, where v = 20µm/s, the speed of the bacterium.
Otherwise, if the internal state corresponds to TUMBLE, the agent remains still and its
velocity is updated v̨ Ω R(◊) · v̨, where R(◊) is the standard 2D unitary rotation matrix
through an angle ◊, and ◊ is a tumbling angle sampled from a Gamma distribution as
reported in Sneddon et al. (2012).

The above simulation scheme, outlined in Algorithm 1 (Appendix A.2), produces a
chemotactic response to a ligand gradient. It takes ≥ 270s to simulate a single cell
trajectory of tend = 500s with a time-step �t = 0.05.

4.4.2 Abstracting the E. coli chemotaxis pathway

Following the abstraction framework put forth in Section 4.2.1, we associate the original
system S with the pCTMC system of F/M conformations (Equations 4.6), along with
the OU methylation process in Equation 4.5. The input starting state s0 is the last F/M
state of the pCTMC, and the last methylation level m. The simulation time T is the
variable �t introduced earlier, which is also used for the integration step-size of the OU in
the Euler-Maruyama scheme. The transition rates k± are calculated using the variables
m and L, the last methylation level and external ligand concentration at the position of
the cell, respectively. The output of this system, st, is then a sampled pCTMC trajectory
and new methylation level. Finally, the run property (4.7) is evaluated on (the last state
of) the drawn pCTMC trajectory and the output determines whether the cell ‘runs’ or
‘tumbles’.

In observing the truth value of property „RUN for the state of the pCTMC at regular
intervals of �t, we cast the original pCTMC model (S) into a DTMC (Figure 4.2). This
DTMC has only two states, „RUN œ {€, ‹}, and transition probabilities depending on
the transition rates k±, µ, of the original pCTMC.



60 Statistical abstraction for multi-scale spatio-temporal systems

Á =1 Á =0

p (Á
h+1
 =0j Á

h
 =1)

p (Á
h+1
 =0j Á

h
 =0)p (Á

h+1
 =1j Á

h
 =1)

p (Á
h+1
 =1j Á

h
 =0)

Figure 4.2 DTMC with two states, „RUN œ {€, ‹}. The transition probabilities depend
on internal methylation level m and external ligand concentration L.

Since this is only a two-state DTMC, the state at the next time-step conditioned on
the current one can be modelled as a Bernoulli random variable:

„Õ | „ ≥ Bernoulli(p = p„Õ=1|„(m, L)), (4.8)

where „, „Õ are the „RUN DTMC states at time-steps h, h + 1 respectively. Also,
the boolean {‹, €} truth values of the properties have been mapped to the standard
corresponding integers {0, 1} for mathematical ease.

We recognise that a single step transition of this DTMC („Õ | „, m, L) is the output yÕ |
y, q produced by the abstracted layer S̃(y, q). Identifying the corresponding probability
function p„Õ=1|„(m, L) as the underlying governing function �(y, q) completes the setting
of E. coli chemotaxis model abstraction to the methodology framework given above
(Section 4.2.1). Note that the OU process for methylation is retained in the abstracted
model as a parallel running process in the same layer of the multi-scale system. The OU
process output m, together with the ligand concentration L (output of a di�erent layer
in the multi-scale system), constitute the input q. The altered simulation scheme for
this abstracted model is outlined in Algorithm 2 (Appendix A.2). Notice how Steps 5, 6
there replace the more expensive Steps 22, 23 in Algorithm 1 (Appendix A.2).

Philosophical remark One may observe that our method requires choosing which
parts of the model to abstract using our framework, and this is at the modeller’s discretion.
In this case, for instance, asking of the method to abstract a large pCTMC modelling
the methylation process might be feasible, but redundant, as we already know of a very
e�cient abstraction for it: the Langevin SDE for the OU process. It is therefore beneficial
and desirable to aid the method where possible because we have particular insight. This
agency reflects our focus on inquiring whether a particular interpretation of an accurate
micro-scale model may provide a useful mechanism for observed macro-scale behaviour,
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especially in areas where domain knowledge is lacking. In this sense, the nature of the
attempted abstraction puts di�erent questions to the model.

Constructing � in E. coli chemotaxis A central part of our abstraction method-
ology is estimating an underlying probability function �, which is used to produce
a stochastic output. In our E. coli example model, a single DTMC transition („Õ |
„, m, L) corresponds to the output yÕ | y, q produced by the stochastic mapping
S̃(y, q). Therefore, S̃(„, (m, L)) consists of sampling from a Bernoulli distribution
Bernoulli(p = p„Õ=1|„(m, L)) where p„Õ=1|„(m, L) is the underlying probability function
�(y = „, q = (m, L)) in the general formalism.

We approximate �(y, q) = p„Õ=1|„(m, L), using GPs trained on observations from
micro-trajectories, i.e. trajectories of the fine F/M pCTMC system which are then mapped
onto the property space, „ œ {0, 1}, to serve as training data. The nature and training of
the GPs is described in Section 4.2.2. Note that the Bernoulli distribution likelihood, used
here for Gaussian process classification (GPC), is a special case result because of both
the binary y = „ output and the single observation of transitions at a particular (m, L)
parametrisation.3 Lifting these restrictions would result in the more general multinomial
distribution likelihood.

Observations are gathered from simulation of the original system, and are therefore
generated as follows. At a given (m, L) the pCTMC with transition rates k±(m, L) is at
a state s0 which maps onto „(s0). After a time �t, the same CTMC is found at a state
s�t, which maps onto „(s�t). An observation „(s�t) | „(s0), m, L is in this way recorded
for every parametrisation (m, L) the bacterium has visited in the micro-trajectories.

Since the output of S̃ is binary (y = „ œ {0, 1}) we construct two probability functions
�„(m, L) = p„Õ=1|„(m, L). Each is approximated with a separate GPC function, where
�0(m, L) is trained on observations of transitions originating from the ‘TUMBLE’ state
(p„Õ=1|„=0(m, L)) and �1(m, L) using transitions from the ‘RUN’ state (p„Õ=1|„=1(m, L)).
Notice that we need not estimate separate functions for „Õ = {0, 1}, since p„Õ=1|„(m, L) =
1 ≠ p„Õ=0|„(m, L). Having access to these underlying probability functions we are now
able to sample the DTMC at any parametrisation (m, L) the bacterium finds itself in, by
using the function estimate for p„(m, L) despite not having observations at that m, L.

The function p„Õ=1|„(m, L) is particularly challenging for GPs. This is due to a
sharp boundary in the m, L domain, where there is a transition from p„Õ=1|„(m, L) ¥ 0
to p„Õ=1|„(m, L) ¥ 1. The bacterium has a steady state very close to this boundary,

3It is highly unlikely to have more than a single transition since (m, L) are continuous values that
constantly change for the bacterium.
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determined by the motor bias mb0, and that is where they are most often found. Therefore,
accurate estimation of this boundary is crucial for this problem. Furthermore, the low
probability of finding bacteria away from the boundary (in a relatively smooth ligand
field) gives a very narrow window of where the function is observed. To get a better overall
estimate, we sporadically perturb the position of bacteria in the micro-trajectory phase
of collecting observations, such that the bacterium finds itself producing observations
away from the boundary for a while, before the system returns close to steady state again.
Despite these di�culties, we produce a good reconstruction of the underlying functions
p„Õ=1|„=0 and p„Õ=1|„=1 over the m, L domain (see Figure 4.3).

Figure 4.3 The probability functions p„Õ=1|„(m, L) (left: „ = €, right: „ = ‹) produced
by the GP with hyperparameters ln(¸) = (3.5, ≠2.5) and ln(‡) = 5, 100 inducing points
(FITC approximation), and 10,000 observations (black circles for „Õ = €, cyan crosses
for „Õ = ‹). The steep boundary is accurately captured, producing a sharp, switch-like
transition from the run domain to the tumble domain.

The function estimates shown in Figure 4.3 were obtained by using information from
10,000 simulation runs to construct a data set for GP regression. It is an interesting
question how robust our results are against changes in the choice of number of training
simulations. To assess this, we repeated the full analysis (including the one to be discussed
in the next section) with 5,000, 2,000 and 1,000 training points. This exercise resulted in
very similar overall results for 5,000 training simulations; however, for 2,000 and 1,000
simulations a significant deterioration of the approximation quality became apparent.

While it is di�cult to a priori decide on the number of training points, a useful
empirical diagnostic can be obtained by observing plots of the probability function
p„Õ=1|„(m, L). Figure 4.4 shows clearly that, while the left-hand plot (corresponding to
5,000 training points) still retains a good approximation of the probability function,
the middle and particularly right-hand panels (corresponding to 2,000 and 1,000 points
respectively) give an inaccurate reconstruction where the areas far from the boundary
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Figure 4.4 Sensitivity of the estimate of the probability function p„Õ=1|„=1(m, L) when
varying the number of training points (left: 5,000, middle: 2,000, right: 1,000). The
middle and left figures clearly show insu�cient exploration of the property space, resulting
in an inaccurate estimation of the probability function. Particularly and especially away
from the transition boundary, there are not enough cyan observations causing the function
to revert to the mean prior (observe colour di�erence near the edges).

region reverts heavily to the prior GP mean. The latter is due to a lack of su�cient
observations belonging to the minority class (these are the cyan crosses for the plotted
p„Õ=1|„=1(m, L) in Figure 4.4); the p„Õ=1|„=1(m, L) ¥ 1 domain, mostly populated by
positive observations (black circles), is a�ected to a lesser degree.

4.4.3 Results

When assessing performance of our method for statistical abstraction, there are two
things of interest: accuracy and computational savings. Accuracy refers to how similar
behaviour of the abstracted system is to the behaviour of the original system. In our
case of chemotaxis in E. coli, this is seen by comparing population distributions in a
ligand field, resulting from simulations using the original fine system and the abstracted
one. We also compare run and tumble duration distributions as another metric of how
closely we approximate the output and the behaviour of the original model.

Learning the transition probability functions for the dual-state DTMC enabled us to
simulate bacteria using our abstracted model on a host of di�erent ligand field profiles.
Beyond comparing bacteria population distributions under the original Gaussian ligand
field used for learning (see L1 below), we did the same for a linear and dynamic field
(L2, L3 below), using the same learned functions p„Õ=1|„(m, L), „ œ {0, 1}.
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The ligand fields tested were:

L1(r̨) = 0.1 · exp
Ë
≠0.5(r̨€�≠1r̨)

È
, � = 3 · I2; (4.9)

L2(r̨) = max
A

10≠5, 0.1 ≠ 0.05
Ò

(Ar̨)€Ar̨

B

, A =
Q

a1/5 0
0 1/2

R

b ; (4.10)

L3(r̨, t) = 0.1 · exp
Ë
≠0.5(r̨€�(t)≠1r̨)

È
, �(t) = 3(t/50 + 1) · I2. (4.11)

In the fields above, the maximum value is 0.1 (units are mM) and this peak concentration
is at r̨ = (0, 0). The field L2 is a static, non-isotropic, linear field, whereas L3 is a
dynamic field: a Gaussian spreading out over time, similar to what one might expect
to be produced by a di�using drop of nutrients. As expected, as long as the stimulus
concentrations and their spatial gradients are within the region observed in training, the
population distributions show consistency with those produced when simulating using the
original full model (see the discussion on accuracy evaluation below, as well as Table 4.1
and Figure 4.5).

Computational cost savings Computational savings are given empirically here by
comparing running times of simulations for both systems. A hundred (100) cells are
simulated in each of the ligand fields, for a time tend = 500s and a time-step of �t = 0.05.
Therefore, one million (1000000) iterations of the main while loop in Algorithms 1, 2
(Appendix A.2) are compared in the reported speed-up factor (Table 4.1). We observe
a speed-up factor of ≥ 8, reducing running times from ≥ 460m to ≥ 60m. Table 4.1
reports speed-up factors for each ligand field experiment.

The reported factor values do not include the costs paid for training the GP and
producing the training data. It takes ≥ 4min to train GPs for both �„ functions, and
≥ 10min for producing 20000 observations of pCTMC transitions from the original fine
system (10000 training points for each �„ function). The relatively low times compared
to simulation times, combined with the fact that one only pays this once, upfront, make
these costs negligible.

Accuracy evaluation To evaluate how closely results from the abstracted model are
compared to the original one, we applied the Kolmogorov-Smirnov (KS) two-sample test
(Chakravarty et al., 1967) to the population distributions of the two models at several
time-points in the simulation, as well as to the distributions of running and tumbling
duration. We have 100 samples from each population distribution since we simulated 100
cells. However, in the case of ‘Run’ and ‘Tumble’ duration distributions we have ≥ 60000



4.4 The case of E. coli chemotaxis 65

observations from each, because we aggregate observations from the entire trajectory;
we choose a random 1000 sample of these to perform the KS test.4 In light of these
di�culties, a di�erent test which quantifies the distance between the two distributions
(e.g. Jensen-Shannon divergence) might be more useful here, but that requires analytic
forms of the distributions.

Inspecting Table 4.1 we find no KS distance higher than 0.2 indicating very similar
distributions, as supported by the associated high p-values. The latter do not allow
rejecting the null hypothesis with the current sample, which is that the samples originate
from the same distribution. An exception is the ‘Tumble’ duration distributions in the
L1 ligand field, where the somewhat higher KS distance of the large sample sizes gives
an exaggerated p-value (see footnote 4).

We note how even in the case of the dynamic L3 field, the resulting population
behaviour of the abstracted model is preserved without any additional training necessary.
The fact that the original training occurred in a static field does not a�ect the ability of
the abstract model to cope with a dynamic one.

Table 4.1 KS two-sample test statistics, where the first (top) value reports KS distance
and the second (in brackets, bottom) the associated p-value. One sample came from 100
trajectories of fine E. coli system simulations, and the other from 100 abstracted system
simulations. The first four columns show KS test results of original and abstracted
bacterial population distances from peak concentration at various times t (shown in
Figure 4.5). ‘Run’ and ‘Tumble’ columns compare the distributions of run and tumble
durations respectively for 1000 samples from each system. The last column reports the
observed speed-up factor based on running times and normalising for core utilisation.

Field t = 125s t = 250s t = 375s t = 500s Run Tumble Speed-up ◊
Gaussian: 0.110 0.160 0.170 0.160 0.039 0.101
L1(r̨) (0.556) (0.140) (0.099) (0.140) (0.425) (7 · 10≠5) 7.8
Linear: 0.010 0.150 0.170 0.130 0.022 0.014
L2(r̨) (0.677) (0.193) (0.100) (0.344) (0.967) (0.100) 9.4
Dynamic 0.140 0.070 0.140 0.080 0.047 0.039
Gaussian: L3(r̨, t) (0.261) (0.961) (0.261) (0.894) (0.214) (0.425) 8.9

4 We sub-sample because the KS test p-value depends heavily on sample size. Even if two distributions
generating samples might be very close, in the limit of an infinite sample size one approaches the true
distributions. In such a case, the KS test will reject that the two samples were produced by the same
distribution, returning lower p-values as sample size increases (for the same KS distance). We do
not expect to produce the same distributions here since we are making approximations, so comparing
p-values for very large sample sizes is not of interest.
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Figure 4.5 Empirical distributions for the distance of 100 bacteria from peak of L1 ligand
field at di�erent times t of the simulation. Left: original full system simulations. Right:
abstracted system simulations.

4.5 Closing the information loop
The E. coli model we abstracted had a one-way flow of information: the environment
a�ected the agent state, but the agents had no e�ect on the state of the environment
layer. Here, we demonstrate the method on a model which closes this information loop
by having agents influencing their immediate environment (local interactions) which
additionally allows for agent-agent interaction with the environment layer acting as a
conduit for signalling. Dictyostelium discoideum (commonly slime mould) is a species of
amoeba which naturally displays such behaviour, making models thereof a suitable choice
for our abstraction framework. These single-cell organisms live in colonies, where they
are in close proximity to many other members of the species. They exhibit agent-agent
interaction through emission and response to a particular chemical. This triggers a
chemotactic response which enables the amoebae to aggregate into multi-cellular groups,
which is beneficial to their survival under starvation conditions, as well as a natural part
of their reproductive cycle.

The chemotactic behaviour of the amoebae exhibits all the hallmarks of a multi-level
spatio-temporal system where agents can also communicate with each other through
environmental signals. In keeping with our general philosophy, our angle of attack is
to choose a detailed model of the individual cell’s motility response and abstract it, so
that the emergent aggregation behaviour in the population is still observed. Extensive
observations at cell level have shown that D. discoideum move by extending tentacle-
like cell wall deformities called pseudopodia, and shifting themselves in that direction
(Bosgraaf and Haastert, 2009; Haastert, 2010). Based on this general principle, there
are various approaches to model the trajectories produced by such a mechanism. Here,
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Figure 4.6 Average (blue) and standard deviation (red) of distance from peak ligand
concentration for a population of 100 E. coli over a time of 500s. Left: original full system
simulations. Right: abstracted system simulations. Rows (top to bottom): L1, L2, L3
ligand fields respectively.

we opt to work with discrete models where the cells take indivisible steps towards a
particular direction. Other approaches exist where the cell is taken to perform continuous
stochastic motion with correlations, as in (Li et al., 2011).

It has been further well observed that in the absence of environmental stimuli, the
angle at which the next pseudopodium is extended relative to the current one follows a
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symmetric probability distribution over (≠fi, fi), centred at 0. This causes the amoebae
to explore their environment by performing isotropic random walks in the long run.
However, the angle probability distribution shifts in the presence of a cyclic Adenosine
Mono Phosphate (cAMP) chemical gradient to induce a drift in the random walk aligned
to the gradient. When D. discoideum cells fall into starvation they emit this chemical
which di�uses through space and reaches other nearby amoebae (Haastert and Bosgraaf,
2009; Robertson and Grutsch, 1981). In response, the sensing amoebae emit more
cAMP which relays the signal further, and also begin to chemotax towards the cAMP
source. The amoebae eventually congregate into a multicellular pseudoplasmodium — a
slug-like structure which behaves as a single organism, giving the population under the
starvation conditions a better chance of survival. The slug collective moves as one to
find environmentally favourable conditions, where it settles and begins a reproductive
process (Robertson and Grutsch, 1981).

The model we abstract is an amalgamation of two other models, one focusing on
the internal workings of the amoeba to induce motility by Eidi (2017), and the other
focusing on cAMP emission and response cycles by Calovi et al. (2010). The former
provides a discrete-time Markov chain (DTMC) formalism where directions in which the
cell moves are states of the chain, and the transition probabilities depend on the sensed
cAMP gradient. The latter provides an e�cient method to compute the cAMP chemical
field at a point in space and time “(x, t), by utilising a Green’s function (GF) method to
solve the di�usion equation with degradation. Having melded the two models, we verify
that the aggregation behaviour between the agents under cAMP emission is consistently
observed and show that it is preserved in the abstraction.

We postulated that the motion of the amoeba cells can be well approximated by a
simple Markovian process: a Bernoulli trial which determines the alignment of the next
pseudopodium to be extended with respect to the cAMP gradient, based on the latest kind
of pseudopodium (split/ de novo) and its alignment to the direction of the cAMP gradient.
Pseudopodia can either be a result of splitting the current pseudopodium, or a de novo
extension unrelated to the current one. The two kinds induce probability distributions
over the possible extension angles of the next pseudopod with respect to the cAMP
gradient. Since this dynamics is more complex than the simple run/tumble dynamics
of the E. coli model, and the agent layer model in (Eidi, 2017) is already considerably
simplified, we do not expect the abstraction to yield significant computational gains.
Nevertheless, it is still a useful proof of principle of our methodology, and illustrates
how additional insights can be gained through identifying the necessary properties for
preserving the qualitative behaviour of this model, which rests upon interaction between
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agents. We find that we retain the influence of agents on the environment and observe
that the agent-environment-agent communication results in the macro-scale behaviour of
aggregating amoebae for the abstracted model as well, albeit with some loss in accuracy.

4.5.1 Original model

The original model consists of two layers, the environment layer and the internal agent
(D. Discoideum cell) layer. The two are coupled such that output from one layer is
the input to the other layer and vice versa. The environment layer takes as input the
cAMP emission history from each amoeba cell, and evaluates cAMP concentration and
its gradient at all agent positions. This serves as input to the internal agent layer, which
picks a direction for the cell to move and updates its position accordingly; it also updates
the cAMP emission history for the cell with the latest cAMP emission value.

Environment layer The model laid out in (Calovi et al., 2010) for cAMP di�usion
in space and the corresponding methodology is taken as the environment layer we
use. Following the authors, we describe cAMP di�usion with degradation and emitting
sources through the coupled di�erential equations of Martiel and Goldbeter (1987) (MG
equations):

ˆt“(x, t) = kt

h
—(x, t) ≠ ke“(x, t) + DÒ2“(x, t), (4.12)

—(x, t) =
Nÿ

j=1
—j(t) exp

5
≠ 4

‡2 (x ≠ xj)2
6

, (4.13)

d—j

dt
= „(flj, “j) ≠ (ki ≠ kt)—j,

dflj

dt
= f2(“j)(1 ≠ flj) ≠ f1(“j)flj, (4.14)

where f1, f2, „, and Yj are defined as:

f1(“j) = k1 + k2“j

1 + “j
, f2(“j) = k≠1 + ⁄1k≠2“j

1 + ⁄1“j
, (4.15)

„(flj, “j) =
⁄2 + Y 2

j

⁄3 + Y 2
j

◊ 1800, Yj = flj“j

1 + “j
, (4.16)

and xj is the location of the jth amoeba in Cartesian coordinates. The cAMP con-
centration field is given by “(x, t), which evolves according to the partial di�erential
equation (PDE) (4.12). The term —(x, t) describes the emission of cAMP from every cell,
and ≠ke“(x, t) models the chemical’s natural degradation. Constants used in the above
equations are fixed (Table A.1 Appendix A.3, as given in (Calovi et al., 2010)).
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The last couple of di�erential equations (Eqs. (4.14)) describe intracellular concentra-
tion and the ratio of active cAMP receptors of the jth amoeba respectively. These are
intracellular processes independent within each cell, and so we implement them in the
internal agent layer of our model.

To solve Equation (4.12), we implement a Green’s function method5 as in (Calovi
et al., 2010), and produce the solution

“(x, t) =
Nÿ

j=1

⁄ t

0

cj(s)
22d

exp [≠ke(t ≠ s)]
dŸ

k=1

S

Uerf
Q

a lj,k + R‡Ò
4D(t ≠ s)

R

b ≠ erf
Q

a lj,k ≠ R‡Ò
4D(t ≠ s)

R

b

T

V ds,

(4.17)
where cj(s) = kt

2h—j(s) is the amount of cAMP created by the jth amoeba at time t ≠ s,
and lj,k is the distance between jth amoeba and x on the k Cartesian coordinate.

Despite the integration in time in Equation (4.17) which necessitates the use of
numerical integration techniques, it is still a more e�cient solution to calculate than
alternative finite element techniques for integrating the PDE (4.12). The latter require
discretisation of space to a fine resolution (comparable to amoeba cell size) and would
scale accordingly, whereas Equation (4.17) scales linearly with the number of amoebae.
Additionally, the natural degradation of cAMP allows us to only keep a finite history of
the emission from every agent, and limits the integration time required for achieving a
good enough value for the concentration field.

Agent layer The intracellular set of processes takes as input the concentration and
gradient of cAMP at the cell’s location and determines the cell’s cAMP emission rate
and its direction for the next �t time step. The MG Equations 4.14 model the emission
rate evolution and are solved in a forward Euler manner as shown below.

Formally, the agent layer comprises of a set of equations:

st = S(st≠1, Ò“t≠1
j ), (4.18)

—t
j = —t≠1

j + �t
Ë
„(flt≠1

j , “t≠1
j ) ≠ (ki ≠ kt)—t≠1

j

È
, (4.19)

flt
j = flt≠1

j + �t
Ë
f2(“t≠1

j )(1 ≠ flt≠1
j ) ≠ f1(“t≠1

j )flt≠1
j

È
, (4.20)

5A well-known method for solving a partial di�erential equation (PDE), the GF is the inverse of
the linear di�erential operator in the PDE; it is therefore the solution G(x, y, t, s) of the PDE at (x, t)
when driven by a point source ”(x ≠ y, t ≠ s). In the case of the di�usion equation with degradation, the
solution for a point source is analytically known. Since the operator is linear, one can then reconstruct
the solution to the PDE with the actual source f(x, t) by superposition of the GF solutions for every
point source in the domain of space and time — i.e. computing

s
dydsG(x, y, t, s)f(y, s). See (Butkov,

1995) for a comprehensive exposition.
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where the last two equations are forward Euler methods for Eqs. 4.14, the superscripts
t œ N denote time steps, and S is a step on a Markov chain. The Markov chain has state
space I = {(s1, s2)} where si œ {0, 1, 2, 3, 4, 5} signifies the angle ◊ = si(2fi/6) of a step
taken by the cell, with respect to the horizontal axis in a 2D space. The state space
consists of tuples of step directions since both the latest step and the one taken before it
are necessary to correctly describe the cell’s motion. The transition probabilities satisfy
the condition st

2 = st≠1
1 that the second element of the tuple is the previous step direction.

They also shift according to ◊rel(si, Ò“), the angle between a potential step direction
and the cAMP gradient Ò“, in order to bias the next step direction to align with the
cAMP gradient. As modelled in (Eidi, 2017), the bias is a linear superposition of the
term ‘ cos(◊rel(si, Ò“)) on the four si directions other than the latest step direction of
the cell and the one directly opposite it. Picking an appropriate ‘ = 0.04, we retain the
probability conditions for the transition probabilities of the Markov chain, 0 Æ pik Æ 1
and q

j pik = 1, ’ik. The result is transition probabilities pik = p0
ik + ‘ cos(◊rel(sk, Ò“))

where p0
ik are the unbiased transition probabilities. Note that these states are tuples of

step directions, and so the di�erence between consecutive steps is relevant in determining
probabilities for the next step direction.

Simulation scheme We perform simulations of the original model presented above
with the following set-up: we initialise 250 agents at random positions drawn from a
uniform distribution over a 0.0625mm2 square with centre (0, 0). We set �t = 0.3m
and iterate between executing processes in the environment layer (evaluating the cAMP
concentration and gradient at the agents’ positions), and executing processes in the
internal agent layer (updating the agents’ positions and cAMP emissions). The simulation
ends at tend = 30m, at which point the agents have congregated into one or more clusters.
Initial values for the internal agent parameters are —0

j = 0, and fl0
j drawn from a uniform

distribution U [0, 1] for each j agent.

4.5.2 Abstracted model

Our aim is to find appropriate logical properties evaluated on the states such that their
satisfaction probabilities can be used to correctly recreate the motility characteristics of
D. discoideum cells. Guided by the biological theory used to craft the model by Eidi, we
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formalise the abstracted internal agent model with the following equations:

st = S̃
1
st≠1, st≠2, Ò“t≠1

j

2
, (4.21)

where S̃
1
st≠1, st≠2, Ò“t≠1

j

2
= Categorical(p„); (4.22)

„ ≥ Bernoulli
1
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1
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1
st≠1

1 , Ò“t≠1
j

222
, (4.23)

with Bernoulli outcomes 1 for |◊rel(st
1, Ò“t≠1

j )| < fi/2 (extension will be aligned to cAMP
gradient), or 0 otherwise (not aligned); and

y =

Y
_]

_[

1 for |◊rel(st≠1
1 , st≠1

2 )| < fi/2 (split extension),

0 otherwise (de novo extension).
(4.24)

The above describes the process of receiving an input (st≠1, Ò“t≠1
j ) and going through

the steps of: (1) evaluating whether the current pseudopod extension is of a split or de
novo nature (y œ {1, 0}); (2) using the appropriate learned stochastic function �y to
sample whether the next pseudopod will be within fi/2 rad from the cAMP gradient
direction („); and finally (3) determining the direction of the next pseudopod by picking
from a categorical distribution of the possible directions with event probability vectors
p„. The vectors p„ are constructed as follows:

p„ = [r1, · · · , r6], (4.25)

with elements

ri =

Y
_______]

_______[

1/Z if
A

i ”= st≠1
1

B

·
A1

„ = 1 · |◊rel(i, Ò“t≠1
j )| Æ fi/2

2
‚

1
„ = 0 · |◊rel(i, Ò“t≠1

j )| Ø fi/2
2B

,

0 otherwise,

where Z is a normalisation constant such that q
i ri = 1. The conditions for the elements

of p„ imply that two consecutive steps cannot be taken in the same direction (i ”= st≠1
1 ),

and that for „ = 1 the step must be in an angle within fi/2 rad relative to the gradient
Ò“t≠1

j and vice versa for „ = 0. If these conditions are not met for a step direction i,
no probability mass is given (ri = 0). Note also that the probability mass is distributed
equally amongst allowed directions (1/Z), violating the original model’s rule that a step
directly opposite the last one has a constant probability of occurring (1/21) which is
una�ected by the perceived cAMP gradient. The abstracted system is essentially a
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second-order DTMC with transition rates dependent on an external input, the cAMP
gradient.

Finally, we retain the forward Euler method for solving the MG di�erential equations
for cAMP emission (Equations 4.19, 4.20):

—t
j = —t≠1

j + �t
Ë
„(flt≠1

j , “t≠1
j ) ≠ (ki ≠ kt)—t≠1
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È
, (4.26)
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j )(1 ≠ flt≠1
j ) ≠ f1(“t≠1

j )flt≠1
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. (4.27)

As before, the probability functions �y(◊rel(st≠1
1 , Ò“t≠1

j )) for y œ {1, 0} are approxi-
mated by GPs trained on original model observations (Figure 4.7). However, the two
functions here do not correspond to the satisfaction value „ of the property being ap-
proximated by the GP, but a di�erent one. E�ectively we define two separate properties
to achieve a good abstraction: one for whether the current pseudopod was a split or de
novo extension (y œ {1, 0}), used to di�erentiate which stochastic function �y is used;
and another of whether the next extension will be aligned to the cAMP gradient („ = 1
if st

1 within fi/2 rad of Ò“t≠1
j , 0 otherwise). Because of the two di�erent properties,

this abstraction is not simply a reduction of the original Markov chain to one with less
states as the one for E. coli was, but rather a re-defined set of processes making use of
learned stochastic functions to estimate needed probabilities for preserving the motility
behaviour. As in our previous abstraction of the E. coli model, the same input to the
layer is needed to produce the same output, so we can replace the original internal model
with the abstracted one.

This D. discoideum model abstraction involves re-interpreting the original 30 state
Markov chain producing 6 discrete possible outcomes for the internal agent layer, as
chained functions. The first function takes as input the nature of the current pseudopod
(split / de novo) and its angle relative to the cAMP gradient ◊rel(st≠1

1 , Ò“t≠1
j ), and

stochastically determines whether the next step will be within fi/2 rad of the cAMP
gradient; the second function takes this decision and (stochastically) converts it to one of
6 possible directions for the next pseudopod which are consistent with the decision. The
conversion to direction in the latter function happens through categorical distributions
with fixed probability vectors which do not depend on the angle ◊rel — i.e. the first
function removes the dependence of the layer output on the relative angle and split / de
novo nature of pseudopod. Given „, the satisfaction of the alignment to cAMP gradient
for the next step, we have all the necessary information to produce the internal layer’s
output.
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Figure 4.7 �y=1 left, �y=0 right. Black crosses are observed outcomes from simulation
of the original system. Red dots are the (nine) inducing points used for the FITC
approximation. The curves show how the satisfaction probability of „ (whether the next
step will be aligned to the cAMP gradient), is inferred to respond to the relative angle
between the cosine of current step and the gradient: cos

1
◊rel(st≠1

1 , Ò“t≠1
j )

2
. As can be

seen, the nature of the current pseudopod (split y = 1, or de novo y = 0) produces
significantly di�erent curves.

4.5.3 Results

As before, we present results of both the accuracy and computational costs of the
abstracted model with respect to the original one, after running twenty simulations of
each model. In the original model, the internal agent layer amounted to sampling a
single transition in a discrete-time Markov chain of e�ectively 30 states but with only
5 possible transitions from each state. Transition probabilities had to be re-evaluated
before each sampling according to environmental input, but the whole layer has low
computational costs. The abstracted model instead takes as input a binary satisfaction
for a logical property and a continuous value œ [≠1, 1) and outputs one of 5 possible
values (corresponding to the 5 permitted transitions from each state of the DTMC)
stochastically. Due to the low computational cost of the original layer, we do not expect
significant gains from the abstraction; we therefore focus on recovery of the emergent
behaviour dependent on non-linear interaction e�ects between parts of the model which
we are abstracting.

The macro-scale phenomenon we wish to retain here is the aggregation of agents,
which we attempt to quantify for comparison purposes. To that end, we construct an
empirical distribution of the agents’ locations over space through the use of Gaussian
kernel density estimators (KDE) (Bishop, 2006b), at various times in the evolution of
both systems, as seen in Figures 4.8, 4.9. An inspection of Figures 4.8, 4.9 shows that
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qualitatively both the original and the abstracted model show an aggregation behaviour
into a major cluster within the time-frame of the experiment. Since there is a single
cluster forming and the uniform distribution was centred at (0, 0), we expect that the
distribution of the agents’ distance from the centre is a good proxy for quantifying
aggregation of the population.

To get a quantitative measure of the agreement between original and abstracted
model, we pool the results of 20 simulations and compare the histogram distributions of
agent distance from the origin at di�erent time points. Figure 4.10, left panel, shows the
first two statistics (mean and standard deviation) of the distance of the agents from the
origin as a function of time for both models. This figure shows an excellent statistical
agreement between the two models, even though the rate of aggregation seems slightly
higher in the abstracted model than the original one. We can gain some insights into the
origin of this discrepancy by looking at the histogram of agent distance from origin at
the end of the simulation time, shown in Figure 4.10, right panel. This shows that, while
the bulk and the mode of the distribution are well matched between the two models, the
original model distribution has a heavier tail than the abstracted one. A potential cause
of these deviations is that the choice of property matched (Eq. 4.23) does not contain
su�cient information to precisely match the macro-scale behaviour, particularly in terms
of rarer events. This points to a need for an automatic property construction method,
which is something to be explored in future work.

Running times for a simulation were 219 ± 6min and 249 ± 8min for the
original and abstracted system respectively. Experiments were run on a server
machine with 48 CPU cores working in parallel. Note that most resources went towards
evaluating the integral in Eq. (4.17) for each agent at every step. As expected, the
abstraction does not yield computational gains for this model. We can attribute this to the
small size of the original model and the overhead of producing predictions from a trained
GP. This illustrates a fundamental trade-o� within our abstraction approach: while the
approach is generally applicable, the wisdom of applying such an abstraction depends
on the specific model. In particular, when the internal agent layer is straightforward to
simulate, the additional overheads of the GP abstraction can nullify the computational
advantages stemming from using a simpler system.

4.6 Discussion
In many domains, ranging from cyber-physical systems to biological and medical processes,
consideration of spatio-temporal aspects of behaviour is essential. However, this comes



76 Statistical abstraction for multi-scale spatio-temporal systems

Figure 4.8 Original model, 250 agents (black dots) in a 0.0625mm2 space at di�erent
times. Background intensity field shows the KDE estimation of population distribution
density. Note how the agents begin to aggregate to one major cluster by t = 15min.
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Figure 4.9 Same as Figure 4.8 for abstracted model. Note here that the agents begin to
aggregate sooner than the original model. By t = 15min, what will be the final major
cluster has already formed.
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Figure 4.10 Results from all 20 experiments were pooled together and treated as a
single population for this analysis to increase sample size. Individual experiments are
consistent with the pooled results. Left: original and abstracted model mean distance
of D. discoideum agents from origin (blue triangles and orange circles respectively) and
standard deviation (error bars) over time. It can be seen that the population moves
towards the origin as the system evolves, which reflects the aggregating tendencies of both
models. Deviations exist (abstracted model aggregates faster), but general behaviour is
retained. Right: density histogram of the pooled populations at the last time step of the
simulation. One should note that despite the closeness in median values, the heavier tail
of the original model distribution is much diminished in the abstraction.

at great computational expense. We have presented a methodology that allows layers of
a computationally intensive multi-scale model to be replaced by more e�cient abstract
representations. This is a stochastic map, constructed based on some exploratory
simulations of the full model and GP regression. Our results show that we are able to
achieve significant speed-up without sacrificing accuracy. This establishes a framework
for such statistical abstraction on which we plan to elaborate in future work.

It should be noted that the specifics of the abstraction are not automatically deter-
mined by this framework, but are left to the researcher. Having to manually specify
the abstraction introduces an element of flexibility, since di�erent abstractions may
be tested and so one can see which are suitable and produce accurate approximations,
indicating that pertinent elements of the original model are preserved in the coarsening.
Additionally, there may be various valid ways to coarsen a model, depending on what the
focus of the inquiry is. On the other hand, it shifts some of the burden of abstracting
the model to the researcher, who has to find a suitable set of properties which capture
the output behaviour of the layer to be abstracted.

Complete automation is commonly embraced by other methodologies, where every
abstraction choice may be driven by accuracy metrics. We sacrifice complete automation
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in this work for the ability to examine di�erent kinds of fundamental models and assess
various abstraction mechanisms. Since the era of modern science, the task has largely
been to determine a minimal set of laws that concisely describe the range of phenomena
observed. As such, fundamental equations at di�erent levels of nature abound and
mechanisms to bridge the various gaps, accompanied by ways to validate them, are in
high demand. Our framework allows validation of an existing mechanism, but does not
generate the mechanism itself — an abstraction framework which automatically produced
interpretable mechanisms would solve many problems.

Our choice of application case studies illustrates well the importance that such an
automated abstraction framework would have. While the E. coli chemotaxis model
presents an obvious avenue for accurate abstraction, the D. discoideum model considered
here does not have an obvious set of properties to act as a conduit from micro- to
macro-scale behaviour. Specifically, the D. discoideum model consisted of a DTMC with
states corresponding to directions of agent motion. Abstracting it required re-interpreting
the model as motion dictated by a set of relevant properties; namely, the property of
whether the cell produced a split or de novo pseudopod last, determined whether or not
the next pseudopod direction would be aligned to the cAMP gradient sensed by the cell.
The process of re-interpretation might not produce a particularly useful abstraction in
terms of computational e�ciency, but it is valuable in understanding the processes in
the layer and the relevant information flow through them.

Because the properties necessary for an accurate abstraction have to be manually
defined, we can also use this abstraction framework to evaluate consistency of the original
model with other higher-level models which have di�erent assumptions. For instance, we
first attempted to replace the agent layer of the D. discoideum model with a stochastic
function which receives as input whether the current pseudopod was a split or de novo
nature and produces output of whether the next one will be a result of split or de novo,
akin to the E. coli case. This is a simpler abstracted model than the one we presented,
and is supported by the literature (Haastert and Bosgraaf, 2009; Li et al., 2008). The
result was a population of agents which did not display aggregation and instead retained
their original uniform distribution in space, or even slightly di�used. We can therefore
assert that the original model by Eidi used here cannot be cast down to a simple first
order two-state discrete Markov chain (split / de novo being the two states) which has
transition probabilities dependent on the output. The property of whether the next
step is aligned to the cAMP gradient (beyond split / de novo) is relevant and cannot
be discarded. This raises the question of which is the better model for D. discoideum
motility, since other models claim to achieve similar aggregation behaviour with simple
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split / de novo models. Failure to reconcile models in this manner is indicative of inherent
di�erences in the models, which may prove useful in assessing their veracity with respect
to reality.

Future work avenues include, for example, allowing more properties to be expressed and
using them to guide the abstraction to capture more complex behaviours. Additionally,
we could infer abstracted model parameters or underlying functions from real data,
instead of synthetic ones. Finally, one would ideally like to have a way to infer suitable
properties for preserving a particular macro-scale behaviour. As seen in the case of the
D. discoideum model, this is not trivial to achieve and often the properties fall short of
accurately reproducing the behaviour. An automatic way to construct these properties
would relieve the researcher from having to make the choice, and might reveal further
insights to the models abstracted.



Chapter 5

Continuous approximations to
discrete systems: the geometric
fluid approximation

Continuous-time Markov chains (CTMCs) have emerged over the last two decades as an
especially powerful class of models to capture the intrinsic discreteness and stochasticity
of a range of systems, from artificial processes to biochemical reactions at the single cell
level. The ensuing cross-fertilisation of methods originating from various application
fields has produced great advancements in the analysis of such discrete stochastic systems.

Despite the unquestionable success of these e�orts, scaling formal analysis techniques
to larger systems remains a major challenge, since such systems usually result in very large
state-spaces, making subsequent analysis particularly onerous. In most cases, retrieving
the evolution of the state distribution, while theoretically possible (by solving the
Chapman-Kolmogorov equations), in practice is prohibitively expensive. These hurdles
also a�ect statistical techniques based on Monte Carlo sampling, since trajectories from
CTMCs with a large state-space typically exhibit very frequent transitions and therefore
require the generation of a very large number of random numbers. A popular alternative
is therefore to rely on model approximations, by constructing alternative models which
in some sense approximate the system’s behaviour. In the special case of CTMCs
with a population structure (pCTMCs), fluid approximations replacing the original
dynamics with a deterministic set of ordinary di�erential equations (ODEs) have seen
great success, due to their scalability and their well understood convergence properties
(Darling and Norris, 2008; Hillston, 2005; Kurtz, 1971). Such approximations rely on the
particular structure of the state-space of pCTMCs; to the best of our knowledge, fluid
approximations for general CTMCs have not been developed.
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In this chapter of the thesis, we propose a general strategy to obtain a fluid approxi-
mation for any CTMC. Our approach utilises manifold learning approaches, popular in
machine learning, to embed the transition graph of a general CTMC in a Euclidean space.
A powerful Bayesian non-parametric regression method complements the embedding,
by inferring a drift vector field over the Euclidean space to yield a continuous process,
which we term the geometric fluid approximation. Crucially, we show that in a simple
pCTMC case our geometric fluid approximation is consistent with the standard fluid
approximation. Empirical results on a range of examples of CTMCs without a population
structure show that our approach captures well the average behaviour of the CTMC
trajectories, and can be useful to solve e�ciently approximate reachability problems. This
work is published on arXiv (Michaelides et al., 2019) and is currently under review for
publication in Proceedings of the Royal Society A: Mathematical, physical and engineering
sciences.1

5.1 Background theory and related work
Bearing in mind Definitions 2.2.2 and 2.2.3 given in Chapter 2 for a CTMC and population
CTMC (pCTMC) respectively, we briefly review here the foundations of the fluid
approximation for pCTMCs (Darling and Norris, 2008; Gardiner, 2009; Norris, 1998),
and highlight the specific aspects that render them amenable to such a construction.

5.1.1 Continuous relaxation and the fluid limit
As discussed in Chapter 2, the Markovian nature of CTMCs naturally provides an exact
sampling algorithm for drawing CTMC trajectories: the stochastic simulation algorithm
(SSA), or Gillespie’s algorithm (Gillespie, 1977). The same Markovian nature also leads to
a set of ordinary di�erential equations (ODEs) governing the evolution of the single-time
marginal state probability, the celebrated Chapman-Kolmogorov equations (CKE), which
in the case of pCTMCs go under the name of Master equation, also reviewed in Chapter 2.
Unfortunately, such equations are rarely practically solvable, and analysis of CTMCs is
often reliant on computationally intensive simulations.

In the case of pCTMCs, a more concise description in terms of the collective dynamics
of population averages is however available. Starting with the seminal work of van
Kampen (1961), and motivated by the interpretation of pCTMCs as chemical reaction
systems, several approximation schemes have been developed which relax the original

1Jane Hillston and Guido Sanguinetti provided feedback and advice during the development process,
and edited the manuscript.
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pCTMC to a continuous stochastic process (introduced in Section 2.2.4); see (Schnoerr
et al., 2017b) for a recent review of the most prominent approximations.

In this work, we are primarily interested in the so-called fluid approximation, which
replaces the pCTMC with a set of ODEs, which capture the average behaviour of the
system. Fluid approximations have been intensely studied and their limiting behaviour
is well understood, providing specific error guarantees. There are two characteristics of a
pCTMC which are instrumental to enabling the fluid approximation. Firstly, there is a
natural interpretation of the states as points in a vector space, where each dimension
represents a species. Secondly, a drift vector field can be naturally defined by extending
the propensity function to be defined on the whole vector space, which is a polynomial
function of the number of agents of each type (i.e. polynomial function of the elements
of the system state vector).

Established guarantees Following Darling and Norris (2008), we examine and for-
malise the aspects of pCTMCs which render them especially amenable to the fluid
approximation. As mentioned, the first is that pCTMC state-spaces are countable and
there exists an obvious ordering. We can therefore write a trivial linear mapping from
the discrete, countable state-space I to a continuous Euclidean space x : I æ Rd, where
d is the number of agent types in the system.

The second aspect is that rates of transition from each state to all others (i.e. elements
of the Q-matrix) can be expressed as a function of the state vector x. A drift vector —(›)
can be defined as

—(›) =
ÿ

›Õ ”=›

(x(›Õ) ≠ x(›)) q(›, ›Õ),

for each › œ I. Since q(›, ›Õ) is some parametric function of ›, ›Õ in pCTMCs (due to the
indistinguishable nature of the agents) the definition of the drift vector can be extended
over the entire Euclidean space Rd to produce the drift vector field b(x) : U æ Rd, where
U ™ Rd. There is then a set of conditions given in (Darling and Norris, 2008) that must
be satisfied by these elements to bind the error of the fluid approximation to the Markov
process. The conditions ensure that:

The first exit time from a suitably selected domain of the Euclidean mapping of the
Markov chain state-space U , converges in probability to the first exit time of the fluid
limit.

Canonical embedding of pCTMCs In the canonical embedding for continuous
relaxation of pCTMCs, we construct an E µ Rd Euclidean space, where each dimension
corresponds to the concentration of each species in the system, i œ {1, . . . , m}. The



84 Continuous approximations to discrete systems: the geometric fluid approximation

states are then uniformly embedded in continuous space [0, 1]m œ E at intervals 1/ni by
x(›) = ui/ni, where › represents the population q

i uiêi. Further, N = |I| = r
i ni, is a

scale parameter which defines xN(›), qN(›, ›Õ) and —N(›) for any such pCTMC of size
N . The motivation is that in the limit of N æ Œ, the distance between neighbouring
states will vanish in the embedding, and jump sizes will similarly vanish, producing an
approximately continuous trajectory of the system in the continuous concentration space.

In (Darling, 2002), we find how the canonical embedding above satisfies the conditions
given in (Darling and Norris, 2008), and that the approximation error shrinks as the scale
parameter N grows. Specifically, the authors show that there exists a fluid approximation
(deterministic trajectory) to the x-mapped pCTMC, whose error diminishes in N , under
the conditions that:

• initial conditions converge, i.e. ÷a œ U, a ”= x(›0) such that

Pr [ÎxN(›0) ≠ aÎ > ”] Æ Ÿ1(”)/N, ’” > 0;

• mean dynamics converge as N æ Œ, i.e. b̃ : U æ Rd is a Lipschitz field independent
of N , such that

sup
›

Î—N(›) ≠ b̃(xN(›))Î æ 0 as N æ Œ;

• noise converges to zero as N æ Œ, i.e. that,

sup
›

Y
]

[
ÿ

›Õ ”=›

qN(›, ›Õ)

Z
^

\ Æ Ÿ2N, and

sup
›

Y
]

[Î—N(›)/qN(›)Î2 +
ÿ

›Õ ”=›

ÎxN(›Õ) ≠ xN(›)Î2qN(›, ›Õ)/qN(›)

Z
^

\ Æ Ÿ3N
≠2,

where Ÿ1(”), Ÿ2, Ÿ3 are positive constants, q(›) = q
›Õ ”=› q(›, ›Õ), and the inequalities hold

uniformly in N .
There are many ways to satisfy the above criteria, but a common one (used in

pCTMCs) is “hydrodynamic scaling”, where the increments of the N -state Markov
process mapped to the Euclidean space are O(N≠1) and the jump rate is O(N).
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5.2 Methodology
As discussed in the previous section, the fluid approximation of pCTMCs is critically
reliant on the structure of the state-space of pCTMCs being isomorphic to a lattice in
Rn. It further relies on transition rates being a function of the state’s position in the
lattice. This enables the definition of a drift vector field, which can be then naturally
extended to the whole ambient space and, under mild assumption, leads to convergence
under suitable scaling. Neither of these ingredients are obviously available in the general
case of CTMCs lacking a population structure.

In this section, we describe the proposed methodology for a geometric fluid approxi-
mation for CTMCs. We motivate our approach by describing an exact, if trivial, general
embedding of a CTMC’s state-space into a very high-dimensional space. Such an embed-
ding however a�ords the non-trivial insight that suitable approximate embeddings may
be obtained considering the spectral geometry of the generator matrix. This provides an
unexpected link with a set of techniques from machine learning, di�usion maps, which
embed graphs into Euclidean spaces. The geometry of di�usion maps is well studied, and
their distance preservation property is particularly useful for our purpose of obtaining a
fluid approximation.

Di�usion maps however provide only one ingredient to a fluid approximation; they
do not define an ODE flow over the ambient Euclidean space. To do so, we use Gaussian
Process regression: this provides a smooth interpolation of the dynamic field between
embedded states. Smoothness guarantees that nearby states in the CTMC (which are
embedded to nearby points in Euclidean space by virtue of the distance preservation
property of di�usion maps) will have nearby drift values, somewhat enforcing the pCTMC
property that the transition rates are a function of the state vector.

This two-step strategy provides a general approach to associate a deterministic flow on
a vector space to a CTMC. We empirically validate that such flow indeed approximates
the mean behaviour of the CTMCs on a range of examples in the next section. Prior to
the empirical section we prove a theorem showing that, in the special case of pCTMCs
of birth/ death type, a related construction to our geometric fluid approximation is
consistent to the canonical fluid limit construction.

5.2.1 Eigen-embeddings of CTMCs

Trivial embedding of CTMCs Consider a CTMC with initial distribution fi and
generator matrix Q, on countable state-space � µ N. The single time marginal pt over �
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at time t of the process obeys the CKE:

ˆtpt = Q€pt, (5.1)

where pt is a column vector. Given an arbitrary embedding of the states in some
continuous space, x : � æ Rd, the projected mean ÈxtÍ = X€pt, obeys:

ˆtÈxtÍ = X€ˆtpt = X€Q€pt

= X€Q€X≠€X€pt (5.2)
= X€Q€X≠€ÈxtÍ, (5.3)

where Xij refers to the j œ {1, . . . , d} coordinate of state i œ �. In general, step (5.2) is
only possible for XX≠1 = I, with I the |�| ◊ |�| identity matrix (i.e. with d = |�|).

We note that choosing the trivial embedding X = I (i.e. each state mapped to the
vertex of the probability (|�| ≠ 1)-simplex), equates the fluid process to the original CKE:

ˆtÈxtÍ = Q€ÈxtÍ. (5.4)

The fluid approximation For any embedding y : � æ Rd, the standard fluid approx-
imation defines the drift at any state y(i) © yi, i œ �, to be:

—(yi) =
ÿ

j ”=i

(yj ≠ yi)Qij

=
ÿ

j ”=i

yjQij ≠ yi

ÿ

j ”=i

Qij

=
ÿ

j ”=i

yjQij + yiQii

= [QY ]i, (5.5)

where Y is a |�| ◊ d matrix, and —(yi) is the ith row of QY .
In order to extend the drift over the entire space Rd, we let q(yt, yj) = q

i Qijy€
i yt

be the transition kernel between any point yt œ Rd and any state yj, j œ �. Then we
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naturally define the continuous vector field b to be

b(yt) =
ÿ

j

yjq(yt, yj)

=
ÿ

j

yj

ÿ

i

Qijy
€
i yt

= Y €Q€Y yt. (5.6)

Trivially, Y = I yields the original CKE as shown above,

ˆtyt = b(yt) = Y €Q€Y yt = Q€yt. (5.7)

If embedded states U are eigenvectors of Q = U�U≠1, then the mean of the mapped
process ÈutÍ is given by

ÈutÍ = U€pt

= U€U≠€et�U€fi

= et�U€fi, (5.8)

where fi = p0, the initial state distribution. Similarly, in the fluid approximation with
q(yt, yj) = q

i Qijy€
i yt, and y0 = U€fi, one has

yt = et�U€Uy0

= et�U€UU€fi. (5.9)

We can therefore claim the following: in the case of U€U = I, or for a symmetric
Q = U�U€, the fluid approximation process is exactly equivalent to the projected mean.
This suggests that an approximate, low dimensional representation might be obtained
by truncating the spectral expansion of the generator matrix of the CTMC. Spectral
analysis of a transport operator is also the approach taken by di�usion maps, a method
which is part of the burgeoning field of manifold learning for finding low-dimensional
representations of high-dimensional data.

Markov chain as a random walk on a graph Another avenue to reach the same
conclusion is to consider the CTMC as a random walk on an abstract graph, where
vertices represent states of the chain, and weighted directed edges represent possible
transitions. From this perspective, it is natural to seek an embedding of the graph in a
suitable low-dimensional vector space; it is well known in the machine learning community
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that an optimal (in a sense specified in Section 5.2.2) embedding can be obtained by
spectral analysis of the transport operator linked to the random walk on the graph. We
expect that if the graph geometry is a discrete approximation of some continuous space,
the latter will serve well as a continuous state-space for a fluid limit approximation, when
endowed with an appropriate drift vector field to capture the non-geometric dynamics in
the graph.

5.2.2 Di�usion maps

A natural method to embed the CTMC states in continuous space for our purposes is
di�usion maps (Coifman et al., 2008; Coifman and Lafon, 2006; Coifman et al., 2005;
Nadler et al., 2006a,b). This is a manifold learning method, where the authors consider
a network defined by a symmetric adjacency matrix, with the goal of finding coordinates
for the network vertices on a continuous manifold (as is usually the case with similarities
of points in high-dimensional spaces).

Di�usion on a manifold The method follows from taking the normalised similarities
to be the transition kernel of a di�usion process, evolving on a hidden manifold M µ Rp

where the network vertices lie and with a smooth boundary ˆM. Resting on this,
a family of di�usion operators are constructed which can be spectrally analysed to
yield coordinates for each vertex on the manifold. The continuous operators which are
theoretically constructed are assumed to be approximated by the analogous discrete
operators which are constructed from data. The method can be thought to optimally
preserve the normalised di�usion distance of the di�usion process on the high-dimensional
manifold, as Euclidean distance in the embedding. Di�usion distance between two vertices
x0, x1 at time t is defined to be the distance between the probability densities over the
state-space, each initialised at x0, x1 respectively, and after a time t has passed:

D2
t (x0, x1) = Îp(x, t|x0) ≠ p(x, t|x1)Î2

L2(M,w),

where L2(M, w) is a Hilbert space in which the distance is defined, with w(x) = 1/„0(x),
the inverse of the steady-state distribution „0(x) = limtæŒ p(x, t|x0, 0).

Di�usion with drift for asymmetric networks The methodology of di�usion maps
has been extended in (Perrault-Joncas and Meil�, 2011) to deal with learning manifold
embeddings for directed weighted networks. Given an asymmetric adjacency matrix,
the symmetric part is extracted and serves as a discrete approximation to a geometric
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operator on the manifold. Spectral analysis of the relevant matrix can then yield
embedding coordinates for the nodes of the network. In the same manner as for the
original formulation of di�usion maps a set of backward evolution operators are derived,
the two relevant ones being:

≠ ˆt = H(–)
aa = � + (r ≠ 2(1 ≠ –)ÒU) · Ò, (5.10)

and ≠ ˆt = H(–)
ss = � ≠ 2(1 ≠ –)ÒU · Ò. (5.11)

The operators are parametrised by –, which determines how a�ected the di�usion
process on the manifold is by a sampling potential, U . Choosing – = 1 allows us to
spectrally analyse a discrete approximation to the Laplace-Beltrami operator � = H(–=1)

ss ,
separating it from the density dependent term ≠2(1 ≠ –)ÒU · Ò in the di�usion operator
H(–)

ss .

Di�usion maps for CTMCs For an arbitrary CTMC(fi, Q), we regard Q œ RN◊N

to be a discrete approximation of the operator H(–)
aa . However, it is unclear how one

can extract the geometrically relevant component � under a hidden potential U and
parameter –. In practice, therefore, we assume a uniform measure on the manifold, i.e.
constant U , which renders Q a discrete approximation of Haa = � + r · Ò (the choice of
– no longer matters); further, we take the sampling transition kernel corresponding to
this operator to be composed of a symmetric and anti-symmetric part (without loss of
generality) which renders limNæŒ(Q + QT )/2 = �. This contains the relevant geometric
information about the network, with the first k + 1 eigenvectors of the operator used as
embedding coordinates in a k-dimensional Euclidean space (ignoring the first eigenvector
which is trivial by construction). A detailed exposition of the method as it relates to our
purposes of embedding a Markov chain network can be found in Appendix B.1.

It should be noted that, while di�usion maps have been used to construct low-
dimensional approximations of high-dimensional SDEs (Coifman et al., 2008), and to
embed a discrete-time Markov chain in continuous space with an accompanying advective
field (Perrault-Joncas and Meil�, 2011), doing the same for a continuous-time Markov
chain has not been attempted. Distinctively, the focus of that work was not to clear a path
between discrete and continuous state Markov processes, but rather the low-dimensional
embedding of processes or sample points. In terms of the convenient table presented in
(Nadler et al., 2006b) and restated here in Table 5.1, we seek to examine the omitted
entry that completes the set of Markov models; this is the third entry added here to the
original table, taking N < Œ and the limit ‘ æ 0 to be the case of a CTMC with finite
generator matrix Q.
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Table 5.1 Resulting random walk (RW) or processes from the limiting cases of number
of vertices N and time step parameter ‘ in the di�usion maps literature (Nadler et al.,
2006b). We highlight the addition of the third entry for CTMCs to complete the set.

Case Operator Stochastic Process
‘ > 0
N < Œ

finite N ◊ N
matrix P

RW in discrete space
discrete in time (DTMC)

‘ > 0
N æ Œ

operators
Tf , Tb

RW in continuous space
discrete in time

‘ æ 0
N < Œ

infinitesimal generator
matrix Q œ RN◊N

Markov jump process; discrete in
space, continuous in time

‘ æ 0
N æ Œ

infinitesimal
generator Hf

di�usion process
continuous in space & time

5.2.3 Gaussian processes for inferring the drift vector field

Di�usion maps provide a convenient way to embed the CTMC graph into a Euclidean
space E; however, the push-forward CTMC dynamics is only defined on the image of the
embedding, i.e. where the embedded states are. In order to define a fluid approximation,
we require a continuous drift vector field to be defined everywhere in E. A natural
approach is to treat this extension problem as a regression problem, where we use the
push-forward dynamics at the isolated state embeddings as observations. We therefore
use Gaussian processes (GPs) to infer a smooth function b : E æ Rd that has the
appropriate drift vectors where states lie.

Gaussian process regression Suppose we observe evaluations f = (f(t1), . . . , f(tn))
of the (otherwise hidden) drift vector field, at points t = (t1, . . . , tn) of the continuous
state-space. Given the di�usion maps embedding x : � æ U µ Rd, we construct the drift
vectors

—(›) =
ÿ

›Õ ”=›

(x(›Õ) ≠ x(›)) q(›, ›Õ),

’ › œ �. We then take x(›i) © ti and —(›i) © b(x(›i)) © f(ti) to be observations of the
drift vector field b(x) : U æ Rd which is to be inferred over the whole continuous space.

By imposing an appropriate prior distribution over a family of vector fields, we are
able to perform Bayesian inference to obtain a posterior distribution over that family of
fields, consistent with our observations. The problem is addressed via Gaussian process
regression, where the prior is the distribution given by the kernel. Prediction of the
function value fı at an unobserved domain point tı, conditioning on observations f at
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points t, is given in terms of the distribution:

fı | f , t ≥
⁄

p(fı | tı, t, f) p(f | t) df .

Since the integral involves only normal distributions, it is tractable and has a closed
form solution, which is again a normal distribution. The observations may also be
regarded as noisy, which will allow the function to deviate from the observed value in
order to avoid extreme fluctuations. Use of an appropriate noise model (Gaussian noise),
retains the tractability and normality properties. The mean of the predictive distribution
is used as a point estimate of the function value, as customary. This is the classical
Gaussian process regression setting introduced in Chapter 2, Section 2.3.4; we refer the
reader to (Rasmussen and Williams, 2006) for a comprehensive account of the theory
and implementation details.

In our case, the choice of kernel and its hyperparameters is critical, especially when
the density of states is low. In the limit of infinite observations of the function, the
Gaussian process will converge to the true function over T , if the function is in the
space defined by the kernel, regardless of the hyperparameters chosen (Rasmussen and
Williams, 2006). However, the number of states we embed is finite and so the choice of
an appropriate prior can greatly aid the Gaussian process in inferring a good drift vector
field. Here, we use the standard squared exponential kernel with a di�erent lengthscale
for each dimension, and select hyperparameters which optimise the likelihood of the
observations2. The optimisation is performed via gradient descent since the gradient for
the marginal likelihood is available.

5.2.4 Consistency result

The geometric fluid approximation scheme is applicable in general to all CTMCs; it
is therefore natural to ask whether it reduces to the standard fluid approximation on
pCTMCs. We have the following result for a related construction, the unweighted
Laplacian fluid approximation.

Theorem 5.2.1. Let C be a pCTMC, whose underlying transition graph is a multi-
dimensional grid graph. The unweighted Laplacian fluid approximation of C coincides
with the canonical fluid approximation in the hydrodynamic scaling limit.

The proof (see Appendix B.1.2) relies on the explicit computation of the spectral
decomposition of the Laplacian operator of an unweighted grid graph (K≥opotek, 2017),

2This procedure is in the family of point-approximations known as empirical Bayes methods.
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and appeals to the universal approximation property of Gaussian Processes (Rasmussen
and Williams, 2006). We conjecture that the conditions for fluid approximation for such
a pCTMC will also be satisfied by our geometric fluid approximation.

Intuitively, away from the boundaries of the network, the coordinates of the embedded
states approach the classical concentration embedding, where each dimension corresponds
to a measure of concentration for each species. As the network grows (i.e. allowing larger
maximum species numbers in the state-space of the chain) states are mapped closer
together, reducing jump size, but preserving the ordering. The spacing of states near
the centre of the population size is almost regular, approaching the classical density
embedding, and the GP smoothing will therefore converge to the classical extended drift
field.

5.3 Empirical observations
Experimental evidence of our geometric fluid approximation is necessary to give an
indication of the method’s validity, and a better intuition for its domain of e�ectiveness.
We apply the geometric fluid approximation to a range of CTMCs with di�ering structure,
and present the experimental results in this section. The CTMC models we used are
defined in Section 5.3.1.

There is no absolute way to assess whether the method produces a good approximation
to the true probability density evolution; we therefore focus on two comparisons: how
close the geometric fluid trajectory over time is to the empirical mean of the original
CTMC, mapped on the same state-space (Section 5.3.2); and how close the first-passage
time (FPT) estimate from the fluid approximation is to the true FPT cumulative density
function (estimated by computationally intensive Monte Carlo sampling; Section 5.3.4).

Further, we demonstrate in Section 5.3.3 how the method is applicable to a subset of
the CTMC graph, such that only a connected region of the state-space is embedded. This
may result in fluid approximations for graphs whose global structure is not particularly
amenable to embedding in a low-dimensional Euclidean space, and so is useful for gauging
the behavioural characteristics of the system near a section of the state-space.

In all figures in this section, red lines are solutions of our geometric fluid approximation,
obtained via numerical integration of the drift vector field as inferred by GP regression,
and blue lines are the mean of CTMC trajectories mapped to the embedding space, which
were obtained via Gillespie’s exact stochastic simulation algorithm (SSA) (Gillespie,
1977). Finally, in figures showing trajectories on the di�usion maps (DM) manifold, grey
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line intersections are embedded states (the grey lines being the possible transitions, or
edges of the network).

5.3.1 Models

We examine an array of models to assess the applicability domain of our method. The
models are defined below and empirical comparisons for each are presented throughout
this section.

Two species birth-death processes This model describes two independent birth-
death processes for two species, and serves as a basic sanity check. The CTMC graph
has a 2D grid structure and in this sense resembles the system in Theorem 5.2.1. In the
usual chemical reaction network notation, we write:

ÿ 10≠æ A, A
1/2≠≠æ ÿ,

ÿ 10≠æ B, B
1/2≠≠æ ÿ,

for the two species A, B, and note that there is a system size variable N = 30 such
that the count for each species nA, nB cannot exceed N ; this produces a finite-state
CTMC that can be spectrally decomposed and embedded. Note further that the birth
process involves no particles here, and so transitioning from state s = (nA, nB) to state
sÕ = (nA + 1, nB) (or from s = (nA, nB) to sÕ = (nA, nB + 1)) occurs at the same rate of
10/N per second ’ nA, nB. Conversely, death processes are uni-molecular reactions, such
that transitioning from s = (nA, nB) to sÕ = (nA ≠ 1, nB) occurs at a rate of (1/2)nA per
second ’ nA, nB, as the chemical reaction network interpretation dictates.

Two species Lotka-Volterra model This is a Lotka-Volterra model of a predator-
prey system. Allowed interactions are prey birth, predators consuming prey and repro-
ducing, and predator death. The interactions with associated reaction rates are defined
below in the usual chemical reaction network notation:

R
b=1/2≠≠≠æ 2R,

R + F
c=1/10≠≠≠≠æ 2F,

F
d=1/3≠≠≠æ ÿ,
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where prey is represented by species R (rabbits) and predators by species F (foxes), with
maximum predator and prey numbers of N = 30.

SIRS model We describe a widely used stochastic model of disease spread in a fixed
population, wherein agents can be in three states: susceptible, infected, and recovered
(S, I, R) and a contagious disease spreads from infected individuals to susceptible ones.
After some time, infected individuals recover and are immune to the disease, before losing
the immunity and re-entering the susceptible state. We define a pCTMC for the process
as follows:

S + I
ki=0.1≠≠≠æ 2I,

I
kr=0.05≠≠≠≠æ R,

R
ks=0.01≠≠≠≠æ S,

where the constants (ki, kr, ks) have been chosen such that the ODE steady state
is reached some time after t = 100s. The state of the pCTMC at time t is X(t) =
(S(t), I(t), R(t)), where S(t) refers to the number of agents in state S at time t, and so
on for all species.

Genetic switch model This is a popular model for the expression of a gene, when
the latter switches between two activation modes: active and inactive (Larsson et al.,
2019; Vu et al., 2016). While active, the gene is transcribed into mRNA at a much faster
rate than while inactive (factor of ≥ 10). The gene switches between the two modes
stochastically with a slow rate. We have the following reactions:

P
10≠4

Ω≠æ P̄

P
1≠æ A + P,

P̄
0.1≠æ A + P̄ ,

A
0.05≠≠æ ÿ,

where species A represents the mRNA, and the active and inactive modes of the gene
are represented by species P and P̄ respectively, with a maximum count of 1. Despite
being able to express this model in the usual chemical reaction network language, we
emphasize that the binary nature of the switch prohibits usual scaling arguments for
reaching the fluid limit.
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5.3.2 Assessing fluid solution and mean trajectory in embed-
ding space

In our geometric fluid approximation, we create a map using directed di�usion maps
to embed the CTMC states into a Euclidean space of small dimensionality, and use
Gaussian process regression to infer a drift vector field over the space. The resulting
continuous trajectories, which we refer to as the geometric fluid approximation, are in
this section compared to average trajectories of the CTMC systems, projected on the
same space. The latter are obtained by drawing 1000 trajectories of the CTMC using the
SSA algorithm, and taking a weighted average of the state positions in the embedding
space.

Our geometric fluid approximation does well for pCTMC models, where we know that
the state-space can be naturally embedded in a Euclidean manifold. This is especially
true for systems like the independent birth-death processes of two species, which do not
involve heavy asymmetries in the graph structure. The more the structure deviates from
a pCTMC and the more asymmetries in the structure, the larger the deviations we expect
from the mean SSA trajectory. Additionally, we expect large deviations in the case of
bi-modal distributions over the state-space, as is the general case for fluid approximations.
This is because the latter are point-mass approximations of a distribution, and so are
naturally more suited to approximate uni-modal, concentrated densities.

Two species birth-death processes As a sanity check, we examine how our method
approximates the mean trajectory of the trivial system of two independent birth-death
processes described above. The true distribution for such a system is uni-modal in the
usual concentration space, and the graph has the structure of a 2D grid lattice. As
shown in Figure 5.1, the geometric fluid approximation is very close to the empirical
mean trajectory, which supports our consistency theorem.

Lotka-Volterra model We perform our geometric fluid approximation for the non-
trivial case of a Lotka-Volterra system, which models a closed predator-prey system
as described above. The asymmetric consumption reaction distorts the grid structure
representative of the Euclidean square two species space. Therefore, the manifold
recovered is the Euclidean square with shrinkage along the consumption dimension —
more shrinkage is observed where predators and prey numbers are higher, since this implies
faster consumption reactions. We observe in Figure 5.2 that the fluid estimate keeps
close to the mean initially and slowly diverges; however, the qualitative characteristics of
the trajectory remain similar.
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Figure 5.1 Independent birth-death process for two species, showing the fluid solution (red)
and the projected mean evolution (blue). Left: embedded state-space and trajectories
in R2, where grid structure is preserved and species counts are in orthogonal directions.
Right: fluid and mean SSA trajectories along embedded dimensions over time.

Figure 5.2 A two species Lotka-Volterra model, showing the fluid solution (red) and
the projected mean evolution (blue) slowly diverging from each other. The qualitative
behaviour of both is similar as they begin to perform the oscillations typical of this
system.
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SIRS model The SIRS model gives us the opportunity to compare trajectories in the
embedding space of the geometric fluid, with trajectories in the concentration space used
by the standard fluid approximation. We observe in Figure 5.3 good agreement with the
empirical mean trajectory for both fluid methods.

The classical fluid trajectory (Figure 5.3a) is attainable in terms of the concentration
of each species; it evolves according to coupled ODEs:

ds

dt
= ksr(t) ≠ ki

N
i(t)s(t), (5.12)

di

dt
= ki

N
i(t)s(t) ≠ kri(t), (5.13)

dr

dt
= kri(t) ≠ ksr(t), (5.14)

where x(t) = (s(t), i(t), r(t)) = (S(t), I(t), R(t))/N , and N œ N>0 is the total
population. Increasing N linearly scales the ODE solution without a�ecting the dynamics;
the SSA average converges to the ODE solution as N æ Œ. Similarly, Figure 5.3b shows
the fluid solution in R3 obtained by our geometric fluid approximation.

(a) Trajectories of the SIRS model in the space
of species counts, each line tracks the count of
a species in the system. The classical ODE so-
lution (red) for the three species closely follows
the simulation average trajectory (blue).

(b) Trajectories of the SIRS model in R3,
where each line tracks the evolution along a
dimension d of the DM embedding. The fluid
solution (red) closely follows the simulation
average trajectory (blue), as in 5.3a. Note that
these dimensions are no longer interpretable
as counts of each species.

Figure 5.3 Trajectories of the SIRS model with states embedded in continuous space
µ R3: 5.3a the classical embedding to concentration space; 5.3b our embedding with
di�usion maps and Gaussian process regression for estimating the drift.
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Genetic switch model The model of a genetic switch is a departure from the usual
pCTMC structure, since the binary switch introduces very slow mixing between two
birth-death processes each with a di�erent fixed point. The bi-modality of the resulting
steady-state distribution is problematic to capture for any point-mass trajectory, and
quickly leads to divergence of the fluid trajectory from the mean. With the particularly
slow switching rate of 10≠4s≠1, our method produces fluid trajectories close to the mean
trajectory for up to 100s, mostly because the mixing is very slow and the distribution
remains relatively concentrated for a long time (Figure 5.4). However, with the faster
rate of 5 · 10≠3s≠1, our fluid approximation quickly diverges from the mean trajectory
(Figure 5.5), as the expected result of faster mixing.

Figure 5.4 The genetic switch model with switching rate 10≠4s≠1, showing the fluid
solution (red) and the projected mean evolution (blue) keeping close to each other.
Transitions from the set of states at d1 = ≠0.1 (inactive mode) to the set of states at
d1 = 0.1 happen very rarely, which is reflected by the mean SSA trajectory.

pCTMC perturbations It is expected that the method will perform well for CTMCs
that are in some sense similar to a pCTMC, but cannot be exactly described by a chemical
reaction network. We therefore demonstrate how the method performs for perturbations
of a Lotka-Volterra system. To achieve the perturbation, we add noise to every existing
transition rate (non-zero element of Q) of the Lotka-Volterra system we had above. The
perturbed transition matrix Qper is described in terms of the Lotka-Volterra matrix QLV

by

[Qper]ij =

Y
_]

_[

[QLV ]ij + |÷ij|, if [QLV ]ij > 0,

0 otherwise,
(5.15)
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Figure 5.5 The genetic switch model with a faster switching rate (5 · 10≠3s≠1), showing
how the fluid solution (red) diverges from the projected mean evolution (blue) after
t ¥ 20s; the qualitative aspects of the trajectory remain similar.

for all i ”= j, where ÷ij ≥ N (0, 0.52), and [Qper]ii = q
j[Qper]ij as usual. The projection

in Figure 5.6 shows that our method performs reasonably well near the pCTMC regime,
where no classical continuous state-space approximation method exists.

Figure 5.6 The two species Lotka-Volterra model, with noise added on all transition rates.
This is a perturbed pCTMC that is not amenable to classical continuous approximation
methods. The fluid solution (red) is close to the projected mean trajectory (blue) away
from the boundary.

A di�erent kind of perturbation is achieved by randomly removing possible transitions
of the original pCTMC. This amounts to setting some o�-diagonal elements of the Q

matrix to 0, and re-adjusting the diagonal so that all rows sum to 0. In order to avoid
creating absorbing states or isolated states, we remove transitions randomly with a
probability of 0.1. Our method performs reasonably under both kinds of perturbations,
as seen in Figure 5.7.
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Figure 5.7 A two species Lotka-Volterra model, perturbed by both noisy transition rates
and random removal of transitions. The fluid solution (red) remains similar to the
projected mean trajectory (blue) away from the boundary.

5.3.3 Embedding a subset of the system

The empirical success of the method on perturbed pCTMC systems encouraged further
exploration in cases where there is no global continuous approximation method, but the
CTMC graph has regions which resemble a pCTMC structure, or are otherwise suitable
for embedding in a continuous space. Consequently, we sought to embed only a subset of
the state-space of a CTMC. Embedding state-space subsets can be useful for CTMCs
that have a particularly disordered global structure (e.g. require many dimensions, or
have areas on the manifold with low density), but which may contain a (connected)
region of the state-space that better admits a natural embedding. Additionally, one
could introduce co�n states near the boundary of a pCTMC to apply the method on
reachability problems.

A subset includes every reachable state within r transitions from a selected root state
sr, denoted as �(sr, r). Transitions from or to states outside the selected subset are
ignored, and the remaining Q matrix is embedded in R2. The drift vectors on boundary
states lack all components of transitions outside the subset, and so the probability
flux is inaccurate on the boundary. Figure 5.8 shows the Lotka-Volterra model subset
�(sr = (R = 5, F = 9), r = 8), embedded in R2. We can see that the behaviour near the
root state is close to the projected sample mean evolution, despite the boundary issues.

5.3.4 First passage times

Another common quest of such approximation techniques is estimating the first passage
time (FPT) distribution for a target subset of states of the Markov chain. Literature on
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Figure 5.8 Embedding the subset �(sr = (R = 5, F = 9), r = 8) of the two species
Lotka-Volterra model. The fluid solution (red) remains similar to the projected mean
trajectory (blue) away from the boundary, despite the boundary inaccuracies of the
probability flux.

this is rich — there has been significant e�ort in this direction, utilising both established
probability evolution methods and constructing new theoretical methods tailored to this
problem (Darling and Siegert, 1953; Hayden et al., 2012; Schnoerr et al., 2017a). The
former is possible since FPT estimation can be formulated as the classical problem of
estimating how the probability distribution over the state-space evolves for a modified
version of the Markov chain in question.

Specifically, consider a Markov chain with rate matrix Q for the state-space I. Let
B ™ I be a set of target states for which we want to estimate the distribution for the
FPT · , given some initial state ›0 œ I \ B. The FPT cumulative density function (cdf)
is equivalent to the probability mass on the set B at time · , if every state in B is made
absorbing. In this manner, many methods for approximating probability density evolution
over the state-space of a CTMC can also be used to approximate FPT distributions.

The fluid proximity approach A natural avenue to estimate the FPT when a fluid
approximation to the CTMC exists, is to consider how close the fluid solution is to the
target set B. The classical fluid approximation usually relies on population structured
CTMCs, where the target set is often a result of some population ratio threshold (e.g. all
states where more than 30% of the total population is of species A: NA/N > 0.3). Since
the set is defined in terms of population ratios, it is trivial to map threshold ratios to
the continuous concentration space where the pCTMC is embedded, and hence define
corresponding concentration regions. The time at which the fluid ODE solution enters
that region of concentration space is then an approximation for the FPT cdf. The latter
will of course be a step function (from 0 to 1) since the solution is the trajectory of
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a point mass. Keeping the same threshold ratios for the target set, and scaling the
population size N should drive the true FPT cdf towards the fluid approximation. If
more moments of the probability distribution are approximated (for instance in moment
closure methods) one can derive bounds for the FPT cdf; these can be made tighter as
higher order moments are considered, as shown in (Hayden et al., 2012).

In our case, the fluid ODE solution only tracks the first moment of the distribution
which implies a point mass approximation. Additionally, we have done away with the
population structure requirement, such that thresholds for defining target sets are no
longer trivially projected to the continuous space where we embed the chain. The latter
challenge is overcome by considering the Voronoi tessellation of the continuous space,
where each embedded state serves as the seed for a Voronoi cell. We then say that the
fluid solution has entered the target region if it has entered a cell whose seed state belongs
in the target set B. Equivalently, the solution is in the target region when it is closer
(with Euclidean distance as the metric) to any target state than to any non-target state.

Checking which is the closest state is computationally cheap, and so we can produce
FPT estimates at little further cost from the fluid construction. Results for the SIRS
model, the Lotka-Volterra and perturbed Lotka-Volterra models follow.

FPT in the SIRS model We define a set of barrier states in the SIRS model,
B = {(S, I, R) | R/N Ø 1/10}, and examine the FPT distribution of the system into
the set B, with initial state X(0) /œ B. Note that the trivial scaling laws for this model,
owing to the fixed population size, makes it simple to identify corresponding barrier
regions in concentration space: b = {(s, i, r) | r Ø 1/10}. We can therefore compare the
fluid solution FPT estimate to the empirical CDF (trajectories drawn by the SSA), as
well as to our own fluid construction with an embedding given by di�usion maps and a
drift vector field estimated via a Gaussian process. Figure 5.9 shows that our approach
is in good agreement with both the empirical mean FPT and the classical fluid result.

FPT in the Lokta-Volterra model Here we embed the Lotka-Volterra model, and
define the barrier set of states B = {(R, F ) | 0.6N > F Ø 0.2N} for which we estimate
FPT cdfs, with initial state X(0) = (0.3, 0.7)N , for various system sizes N = {30, 40, 50}.

We show in Figure 5.10 (left) how our fluid construction estimates an FPT close
to the SSA cdf. This is expected when embedding a structured model such as the
Lotka-Volterra, where two dimensions are adequate to preserve the network topology
and the Gaussian process can well approximate the continuous drift vector field. Finally,
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Figure 5.9 First passage time cdfs for the SIRS model with di�erent populations. The
classical solution gives the same estimate for all N , to which the SSA estimates converge
as N æ Œ. Naturally, both the classical and our estimates are single step functions,
since we approximate the probability distribution evolution by a point mass. We are
consistently close to both the SSA and classical fluid CDFs.

we show in Figure 5.10 (right) that a good estimate of the FPT is recovered for the
perturbed Lotka-Volterra, which is no longer a chemical reaction network.

5.4 Conclusion
CTMCs retain a central role as models of stochastic behaviour across a number of scientific
and engineering disciplines. For pCTMCs, model approximation techniques such as fluid
approximations have played a central role in enabling scalable analysis of such methods.
These approximations, however, critically rely on structural features of pCTMCs which
are not shared by general CTMCs. In this chapter, we presented a novel construction
based on machine learning which extends fluid approximation techniques to general
CTMCs. Our new construction, the geometric fluid approximation, is (with certain
hyperparameters) equivalent to classical fluid approximations for a class of pCTMCs;
empirically, the geometric fluid approximation provides good quality approximations in a
number of non-trivial case studies from epidemiology, ecology and systems biology.
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Figure 5.10 First passage time cdfs for the Lotka-Volterra model, with B = {(R, F ) |
0.6N > F Ø 0.2N}. Left: unperturbed LV model; the fluid CDF step function crosses
the SSA cdf at ≥ 0.4≠0.5, which is a reasonable estimate for a point mass approximation.
Right: LV model perturbed by both noisy transition rates and random removal of
transitions; the fluid CDF estimate is consistently close to the SSA CDF as the system
size N increases.

Some potential paths forward become apparent under the lens of this work. Firstly,
our method might be optimised to accommodate particular structures of CTMCs, for
example by designing specific kernels for the GP regression part. This might be an
e�ective way to incorporate domain knowledge and further improve the quality of the
geometric approximation.

Secondly, we can extend this methodology by approximating the di�usion matrix
field as well as the drift vector field. This would enable us to define a di�usion process
on the manifold and so construct an approximating pdf rather than a point mass. An
evolving pdf will be comparable to solutions produced by Van Kampen’s system size
expansion, moment closure methods, and the chemical Langevin equation for the case of
CTMCs representing chemical reaction networks.

Finally, we have shown how the geometric fluid approximation can be used for
estimating first passage times. In general, it would be interesting to extend this component
to define methodologies to approximate more complex path properties, such as temporal
logic formulae which are often encountered in computer science applications (Bortolussi
et al., 2016; Milios et al., 2018).



Chapter 6

Conclusions and future directions

Science is an ongoing endeavour to construct logically cohesive and concise interpretations
for observations of the world. To this end, scientific models which predict these phenomena
act as the necessary interpretations, providing insight and enabling behavioural control.
As such, Markovian processes are the scientific models par excellence, since they have
the desirable property of encoding all information necessary to predict the future in the
current state, which is often what is observed of the world.

In the quest of ever more accurate mechanistic models, the reductionist motif of
examining the elements that constitute a system has been exceedingly successful. That
is mostly because these smaller elements, when isolated, exhibit behaviour which admits
a minimal mathematical description for a much wider range of conditions. Despite
the unquestionable e�ectiveness of reductionism, analysis of large systems becomes
untenable when the system comprises of many parts. Coarser models are therefore
valuable to predict larger scale phenomena at su�cient accuracy; and indeed many
statistical bridges have been cast to connect microscopic models to macroscopic models
which (approximately) retain the Markov property.

Resisting these e�orts are systems like CTMCs with unstructured state-spaces and
transition rates, where properties of macro-scale behaviour are highly non-linear with
respect to any state representation; complex systems, where system elements interact
creating powerful feedback loops; or even structured CTMCs like chemical reaction
networks, which are small enough to evade the usual statistical approximations that take
e�ect at larger sizes.

In this thesis, we have developed novel frameworks in an e�ort to bridge the various
scales of such systems. Particularly, we focused on coarsening discrete systems according
to satisfaction of a set of logical properties which pertain to an emergent behaviour of
interest. Further, we used statistical tools to infer dynamics on the coarsened state-space
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which are approximately Markovian or semi-Markovian. While our method produces
a consistent abstraction in the steady state, we have seen that the transient behaviour
su�ers. A valuable extension would be to develop corrections for the abstracted dynamics
to better capture the transient dynamics.

Using similar principles, we abstracted layers of multi-scale systems which rely on
CTMCs. Owing to a non-parametric regression method for inference of the abstracted
dynamics, the abstracted layers have a consistent output to the original layers over a wide
range of layer inputs, while retaining a clear interpretation for the abstraction mechanism.
We have established that abstractions work well if the underlying CTMC equilibrates fast
with respect to the abstraction mechanism, and expect that inaccuracies in the output
can be minimised by introducing a higher order Markov abstraction. It would therefore
be worthwhile to further investigate and clarify the relationship between the order of the
Markov chain used in the abstraction mechanism, and the output accuracy.

Finally, we shifted our gaze to the deterministic continuous approximation for discrete
chemical reaction networks, known as the fluid limit. We introduced here the geometric
fluid approximation which is applicable to arbitrary CTMCs, without the need of an a
priori interpretation for the states: a requirement for the classical fluid approximation to
embed states in a continuous space and define dynamics. Our construction allows us to
obtain a point-mass approximation in continuous space to the probability distribution of
the CTMC evolving in time. There are many paths to pursue further from this work.
One could derive dynamics for higher moments of the distribution in continuous space,
in order to make the approximation more informative and better assess its accuracy.
Also, our construction relates transition rate similarity to state similarity, by encoding
distances between states as di�usion distances. This enables estimation techniques over
the parameter space of the CTMC to be applied over the continuous state-space in which
we embed, since trajectories with neighbouring initial states are expected to be similar.
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Appendix A

Supplementary material for the
statistical abstraction framework

A.1 Gaussian process classification details
In mathematical language, we observe the mapping we wish to approximate at N points
of its domain, D = {(Xi, yi)}N

i=1 where Xi œ X is the input value and yi the output. In
our case, the output is a binary value of the property evaluation yi œ {€ = 1, ‹ = 0}.
We denote the collection of all {Xi}N

i=1 = X and {yi}N
i=1 = y. Given D, we would like

to infer the underlying probability function � : X æ [0, 1] which we assume to give the
probability parameter of the Bernoulli distribution generating the observations y:

y | X ≥ Bernoulli(p = �(X)). (A.1)

To learn � from D observations, the GP assumes the existence of a latent function
f : X æ R which we pass through an inverse-probit transformation to bring it within
Bernoulli parameter domain range [0, 1], such that �(Xi) = �(f(Xi)), where � : R æ
[0, 1] is the cumulative distribution function of the standard normal distribution N (0, 1).
This forms the likelihood of the Bernoulli parameter being approximated (�(·)) given the
latent function f(·). In fact, the GP assumes a whole distribution over possible latent
functions; this is a multivariate normal defined by our choice of covariance structure
(kernel k(·, ·)) and mean function m(·), denoted as f(·) ≥ GP(m(·), k(·, ·)). Considering
only the collection of function values f = [f(Xi)]Ni=1 where we have observations X, our
prior distribution becomes a finite-dimensional Gaussian f | X ≥ N (m, K), where bold
letters denote the functions evaluated at each observation Xi or Xi, Xj pair. We proceed
to condition on outputs y to obtain a posterior distribution over the latent functions
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through standard Gaussian distribution results.

p(yi | Xi, f(·)) = Bernoulli(�(Xi)) = �(f(Xi))yi(1 ≠ �(f(Xi)))1≠yi , (A.2)
giving posterior p(f | D = X, y) Ã p(y | f)p(f | X). (A.3)

To predict �(Xú) at an unobserved domain point Xú not in D, we take a weighted
average of all possible values of �(f(Xú)) under the posterior distribution of latent
function values �(Xú) = È�(f(Xú))Ífú|D,xú , where for notational simplicity fú = f(Xú).

�(Xú) =
⁄

�(fú)p(fú | D, xú)dfú, (A.4)

where p(fú | D, xú) =
⁄

p(fú | X, f , xú)p(f | D) df . (A.5)

GP regression with its many variations for di�erent problem tasks is well described
in Rasmussen and Williams (2006). The necessary adjustments which we adopt here are
found in the Gaussian process classification (GPC) section of the book, and essentially
amount to identifying that the class probability function is �, where the class is the
property satisfaction outcome. Standard results make the integrals in Eqs. A.4-A.5
analytically tractable if we approximate the posterior p(f | D) with a Gaussian. To
do this, we use Minka’s Expectation-Propagation (EP) technique because it is more
accurate than the alternative Laplace approximation. Further, we use fully independent
training conditional (FITC) approximation Snelson and Ghahramani (2006) to allow a
large number of observations to be considered for learning the underlying function, while
maintaining a low cost of predicting at any point of the domain. The approximation
essentially replaces the original training data (input-output set) with a smaller set of
inducing points (dummy input-output set) which is constructed from the former and used
in prediction; these inducing points produce a conditional distribution over functions that
is close to the one produced by conditioning on the real data. It relies on a rank-reduced
approximation of the original covariance matrix.
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A.2 Simulation schemes for E. coli model

A.2.1 Simulation scheme for original E. coli model

See Algorithm 1.

A.2.2 Simulation scheme for abstracted E. coli model

See Algorithm 2

A.3 Constants of D. discoideum model

Table A.1 Table of fixed constants for the D. Discoideum model. These are used in
Equations 4.12-4.16 and taken from Calovi et al. (2010), where their physical interpretation
is also examined.

Parameter Value Parameter Value
⁄1 10 ki 1.7 min≠1

⁄2 0.18 kt 0.9 min≠1

⁄3 463.5 ke 5.4 min≠1

k1 0.036 min≠1 ‡ 0.01 mm
k≠1 0.36 min≠1 D 0.024 mm2/min
k2 0.666 min≠1 h 0.025
k≠2 0.00333 min≠1
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Algorithm 1 Simulation scheme for the E. coli model, based on full simulation of
the pCTMC describing F/M conformation changes. Below, · , mb0, – are constants
which parametrise the model (see Sneddon et al. (2012)), and �t is the fixed simulation
time-step.

1: function Run(r̨, v̨, �t)
2: r̨ Ω r̨ + v̨ · �t
3: return r̨
4: end function
5:
6: function Tumble(v̨, �t)
7: ◊ ≥ �(shape = 4, scale = 18.32) Û Sample tumbling angle from distribu-

tion given in Sneddon et al. (2012).
8: v̨ Ω R(◊) · v̨ Û R(◊) is a 2D rotation matrix through

angle ◊.
9: return v̨

10: end function
11:
12: function OU-Euler-Maruyama(m, L, �t)
13: m̄ Ω MeanMeth(L, mb0, –) Û Mean methylation level m̄(L, mb0, –)

as in Frankel et al. (2014); Sneddon
et al. (2012).

14: m Ω m +
Ë
�t/·(m̄ ≠ m) + ‡m

Ò
2/·dW (�t)

È

15: return m
16: end function
17:
18: procedure SimulateFineEcoliCell(tend)
19: t Ω 0
20: while t < tend do
21: L Ω L(r̨, t) Û The ligand field L value, at the cell’s

location r̨.
22: s Ω pCTMC(s, m, L, �t) Û Drawing F/M pCTMC trajectory of

length �t, with parameters k±(m, L)
and initial state the last pCTMC state
of the cell.

23: Â Ω „RUN(s) Û Evaluating the „RUN on (the final state
of) the pCTMC trajectory.

24: if Â then
25: r̨ Ω Run(r̨, v̨, �t)
26: else
27: v̨ Ω Tumble(v̨, �t)
28: end if
29: m Ω OU-Euler-Maruyama(m, L, �t) Û Evolving methylation.
30: t Ω t + �t
31: end while
32: end procedure
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Algorithm 2 Simulation scheme for the abstracted E. coli model, based on GP approxi-
mation for the RUN/TUMBLE probability. Steps 5, 6 here replace the expensive Steps
22, 23 in Algorithm 1.

1: procedure SimulateAbstractedEcoliCell(tend)
2: t Ω 0
3: while t < tend do
4: L Ω L(r̨, t)
5: p Ω GPÂ(m, L)
6: Â ≥ Bernoulli(p)
7: if Â then
8: r̨ Ω Run(r̨, v̨, �t)
9: else

10: v̨ Ω Tumble(v̨, �t)
11: end if
12: m Ω OU-Euler-Maruyama(m, L, �t)
13: t Ω t + �t
14: end while
15: end procedure





Appendix B

Supplementary material for the
Geometric Fluid Approximation

B.1 Di�usion maps for Markov chains
There exists extensive literature examining the implications of di�usion maps, as well as
their limitations and strengths (Coifman et al., 2008; Coifman and Lafon, 2006; Coifman
et al., 2005; Nadler et al., 2006a,b). What follows is therefore not an attempt to re-derive
these results or convince the reader of the validity of the method, but rather to set
notation and highlight the aspects that are relevant to our purposes. The exposition
below is also necessary to act as a foundation for the results of Perrault-Joncas and Meil�
(2011) that build upon the original concept of di�usion maps as put forth by Coifman,
Lafon, Nadler, and Kevrekidis.

B.1.1 Undirected graphs

In (Coifman et al., 2008; Nadler et al., 2006a), the authors consider a family of density-
normalised (i.e. anisotropic) symmetric kernels

k(–)
‘ (x, y) = k‘(x, y)

p–
‘ (x)p–

‘ (y)

characterising the distance between high-dimensional points x, y œ M ™ Rp, and with
non-uniform density p(x) = e≠U(x). The kernel used here is the radial basis function
k‘(x, y) = exp(≠d(x, y)2/‘), which provides a similarity between points based on the
Euclidean distance d in the original space. The density-normalising factor p–

‘ (x) depends
on the manifold density, p‘(x) =

s
k‘(x, y)p(y)dy, and the choice of the power – leads
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to transition kernels of di�erent di�usion process operators (see below). Indeed, p‘(x) is
a local density estimate at x, and for a unit normalised kernel we have

lim
‘æ0

p‘(x) = p(x) + ‘�p(x) + O
1
‘3/2

2
.

For a finite set of points we can construct an adjacency matrix whose elements are
given by the kernel, for a network with points as nodes and weighted undirected edges.

Assuming that the points were sampled by observing a di�usion process in the space
M, the authors then take the forward Markov transition probability kernel to be

M (–)
f (x|y) = Pr [x(t + ‘) | x(t) = y] = k(–)

‘ (x, y)
d(–)

‘ (y)
,

where d(–)
‘ (y) =

s
M k(–)

‘ (x, y)p(x)dx is the graph Laplacian normalisation factor. Since
this is the transition probability for the putative continuous di�usion process evolving in
the space M, the (forward) infinitesimal di�usion operator of the process is given by

ˆ

ˆt
= H(–)

f = lim
‘æ0

S

UT (–)
f ≠ I

‘

T

V ,

where I is the identity operator, and T (–)
f is a (forward) transport operator defined as

T (–)
f [„](x) =

s
M M (–)

f (x|y)„(y)p(y)dy, which evolves a function „ : M æ R according
to M (–)

f and the manifold measure p(y) = e≠U(x).
By asymptotic expansion of the relevant integrals, they show that the forward and

backward operator pair is

H(–)
f = � ≠ 2–ÒU · Ò + (2– ≠ 1)(ÎÒUÎ2 ≠ �U), and (B.1)

H(–)
b = � ≠ 2(1 ≠ –)ÒU · Ò (B.2)

respectively.
We then regard the adjacency matrix W of a given network to be a discrete approx-

imation of the transition kernel k‘ defined over continuous space. From that, we can
construct discrete (in time and space) approximations to the di�usion operators H– above
by performing the necessary normalisations. To retrieve the embedding coordinates for
each network vertex one needs to spectrally analyse the approximation to the di�usion
operator, taking the 1 to k + 1 eigenvectors {Âj}d

j=1 ordered by the associated eigenvalues
{≠⁄j}d

j=1 with ⁄0 = 0 > ≠⁄1 Ø ≠⁄2 Ø · · · Ø ≠⁄d, to be the vertices’ coordinates in
the first k < d dimensions of the embedding. The first eigenvector is discarded as a
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trivial dimension where every vertex has the same coordinate by construction. Thus, the
k-dimensional di�usion map at time t is defined as:

�t
k(x) :=

1
e≠⁄1tÂ1(x), e≠⁄2tÂ2(x), . . . , e≠⁄ktÂk(x)

2
,

where we have discarded Â0 associated with ⁄0 = 0 as a trivial dimension. The time
parameter t refers to the di�usion distance after time t which is preserved as Euclidean
distance in the embedding space. Trivially, as t æ Œ all network nodes are mapped to
the same point since the di�usion distance vanishes.

The parameter – adjusts the e�ect that the manifold density has on the di�usion
process. Choosing – = 1 recovers the Laplace-Beltrami operator � as the backward
di�usion operator, if the points approximately lie on a manifold M µ Rd. Thus, the
di�usion map corresponds to an embedding of the points una�ected by the manifold
density (such that if two di�erent networks were sampled from the same manifold M
but with di�erent densities, we would recover consistent positions of the points on M).
Choosing – = 0 is equivalent to the Laplacian eigenmaps method which preceded di�usion
maps (Belkin and Niyogi, 2003). If the vertices are sampled uniformly from the hidden
manifold, Laplacian eigenmap becomes equivalent to analysing the Laplace-Beltrami
operator, and so constructing a di�usion map with – = 1 and with – = 0 will recover
the same embedding (Coifman and Lafon, 2006).

Consider now an Itô stochastic di�erential equation (SDE) of the form

ẋ = µ(x) + ‡ẇ, (B.3)

where wt is the d-dimensional Brownian motion. A probability distribution over the
state-space of this system „(x, t) with condition „(x, 0) = „0(x), evolves forward in time
according to the Fokker-Planck (FP) equation, also known as the Kolmogorov forward
equation (KFE):

ˆt„(x, t) = ≠
ÿ

i

ˆi [µi(x)„(x, t)] +
ÿ

i

ÿ

j

ˆiˆj

51
2‡i‡j„(x, t)

6
, (B.4)

with the sums running over all d dimensions and ˆi denoting partial derivatives with
respect to the ith dimension (ˆi = ˆ/ˆxi) (Gardiner, 2009). Similarly, the probability
distribution Â(y, s) for s Æ t and condition Â(y, t) = Ât(x) satisfies

≠ˆsÂ = µ · ÒÂ + 1
2‡‡€�Â, (B.5)
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where the di�erentiations are with respect to y. Terms in the backward FPE become
directly identifiable with the backward operator H(–)

b if we take ‡ =
Ô

2I and µ =
2(1 ≠ –)ÒU .

The original formulation of di�usion maps, as described above, assumes a symmetric
kernel k‘(x, y) = k‘(y, x). Given a CTMC with a symmetric generator matrix Q, the
methodology laid out so far would be su�cient to recover an embedding for the states
on a continuous compact manifold M, on which we can define an SDE approximation to
the Markov jump process of the CTMC. Encouragingly, it has also been shown that the
jump process would satisfy the reflecting (no flux) conditions on the manifold boundary
ˆM, as required by a di�usion FP operator defined on such a manifold — i.e. for a point
x œ ˆM where n is a normal unit vector at x, and a function Â : M æ R,

ˆÂ(x)
ˆn

-----
ˆM

= 0.

B.1.2 Embedding unweighted, undirected, grid graphs

Taking the case of a pCTMC produced by a particular class of chemical reaction networks,
we show that the embedding produced by Laplacian eigenmaps (Belkin and Niyogi, 2003)
(equivalent to di�usion maps with – = 0) for the unweighted, undirected transition
matrix, is consistent in some respect to the canonical (manual) embedding for the fluid
limit of chemical reaction systems. This implies that we ignore any density information
of the vertices (states) on the manifold, and any directional component. We will later
return to how this information a�ects our results.

Laplacian eigenmaps embedding Assume that we have symmetric similarity matrix
W between n points. We construct the Laplacian matrix L = D ≠ W , with Dii = q

j Wji.
The Laplacian eigenmaps algorithm solves the minimisation problem

argmin
�€D�=I

1
2

ÿ

i,j

Îy(i) ≠ y(j)Î2
2 Wij (B.6)

= argmin
�€D�=I

Tr(�€L�), (B.7)

where y(i) is the ith row of �, and the constraint �€D� = I serves to exclude the trivial
solution of mapping everything to the same point. The solution � œ Rn◊m is a matrix
with each column vector corresponding to the m-dimensional coordinate embedding of
each datum (m < n). It is shown that the solution to the problem is the eigenvector
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matrix corresponding to the m lowest eigenvalues of Ly = ⁄Dy, excluding the ⁄ = 0
solution.

This emphasis on preserving local information allows us to appropriate the algorithm
for embedding the network of states without having to calculate global state separation.
For a CTMC described by a transition matrix Q, we transform Q to be an adjacency
matrix between the nodes (states) of the network (CTMC) by placing an undirected edge
of weight 1 between states which are separated by a single transition and 0 otherwise:

Wij = 1 ≠ ”0,Qij ”0,Qji . (B.8)

If the network is connected and m (the dimensionality for the embedding space) is
picked appropriately, the algorithm will attempt to preserve local dimensions and therefore
global ones if the network fits in that m space. If m is chosen higher than necessary,
some states which are far apart might be placed closer together in the embedding, but
local distances will still be preserved.

The unweighted Laplacian fluid approximation The proof for Theorem 5.2.1 is
laid out here. It involves the construction of an undirected, unweighted graph with
adjacency matrix W from the Q matrix of a specific kind of pCTMCs, as shown above.
Explicit eigenvectors of the Laplacian L of this graph give analytic coordinates for the
vertices of Q in some space Rd. A drift vector field is inferred on this space using
Gaussian process regression, from Q and the embedding coordinates. We show from these
how conditions for a fluid approximation are met, as stated in Chapter 5, Section 5.1.1.
Specifically, we show how initial conditions converge, mean dynamics converge, and noise
converges to zero (via Taylor expansion of the relevant analytic coordinates), in the
same way as in the canonical embedding of such a pCTMC resulting from hydrodynamic
scaling.

Theorem 5.2.1 Let C be a pCTMC, whose underlying transition graph is a multi-
dimensional grid graph. The unweighted Laplacian fluid approximation of C coincides
with the canonical fluid approximation in the hydrodynamic scaling limit.

Proof. We examine a particular case of pCTMCs, produced by allowing reactions that
only change the count of a single species per reaction. This produces an adjacency
matrix W for the network of states describing a grid network in d dimensions. Following
the derivation for the eigenvectors of the Laplacian L of such a network presented in
(K≥opotek, 2017), we find that the lowest eigenvalue ⁄1 (excluding ⁄0 = 0) is degenerate
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(⁄1 = ⁄{2,...,d}), and associated with d eigenvectors vj, j œ {1, . . . , d}. Their elements are

vj,[x1,...,xd] = cos
A

fi

nj

3
xj ≠ 1

2

4B

(B.9)

where the index [x1, . . . , xd] is the mapping of the node to its integer grid coordinates.
Therefore, the embedded coordinate of a node in dimension j is cos(fi/nj(xj ≠ 1/2)),
where xj œ {1, . . . , nj} is the integer grid position of the node in that j dimension. We
observe that away from the boundaries (i.e. near the centre of the grid x ¥ n/2) and
for large n, the argument of cos is near fi/2, so we approach the linear part of cos. This
means that near the centre states are almost uniformly distributed, as in the canonical
embedding.

We define the volume �U ([x1, . . . , xd]) for a state with grid coordinates [x1, . . . , xd] in
the network, to be the volume of the polygon (n-orthotope) whose vertices are that state
and the next state along each grid dimension:

�U([x1, . . . , xd]) =
Ÿ

j

1
vj,[x1,...,xj+1,...,xd] ≠ vj,[x1,...,xj ,...,xd]

2
(B.10)

=
Ÿ

j

C

cos
A

fi

2nj
(2xj + 1)

B

≠ cos
A

fi

2nj
(2xj ≠ 1)

BD

. (B.11)

We then observe that limnæŒ �U = 0 for all states; this satisfies the convergence condition
of initial states for a fluid approximation.

We define dynamics by means of a drift field ÈbÍ : U æ Rd. The function is inferred
using Gaussian process regression, b(·) | Q ≥ GP(m(·) | Q, k(·, ·) | Q), such that it is a
Lipschitz field. This satisfies the convergence condition of mean dynamics for a fluid
approximation. In the canonical embedding of a pCTMC, the drift vector field is a
polynomial function fp œ L2(U) over the concentration space. Away from the boundaries,
the Laplacian embedding approaches this canonical embedding. As n æ Œ, the inferred
field in this region will tend to the same polynomial function:

ÈbÍ æ fp ,

as the Gaussian process can approximate any function in L2(U) arbitrarily well.



B.1 Di�usion maps for Markov chains 127

Finally, the conditions for noise converging to zero are trivially met, since embedding
distances “ are at most O(n≠1):

“ = cos
A

fi

2nj
(2xj + 1)

B

≠ cos
A

fi

2nj
(2xj ≠ 1)

B

= 1 ≠ 1
2!

A
fi

2nj
(2xj + 1)

B2

+ 1
4!

A
fi

2nj
(2xj + 1)

B4

≠ . . .

≠ 1 + 1
2!

A
fi

2nj
(2xj ≠ 1)

B2

≠ 1
4!

A
fi

2nj
(2xj ≠ 1)

B4

+ . . .

= O
1
n≠1

j

2
,

and n = q
j nj, such that “2 = O(n≠2).

Thus the criteria for fluid approximation of this pCTMC are satisfied. Further, for
some region of the state-space and in the limit of infinite states, this construction is
consistent with the embedding and dynamics recovered by hydrodynamic scaling, the
canonical fluid approximation of a pCTMC. This concludes our proof.

B.1.3 Directed graphs

Our focus necessarily shifts to embedding an arbitrary CTMC with no symmetry condition
on Q. Following Perrault-Joncas and Meil� (2011) assume that we observe a graph G,
with nodes sampled from a di�usion process on a manifold M with density p = e≠U and
edge weights given by the (non-symmetric) kernel k‘. The directional component of the
kernel is further assumed to be derived from a vector field r on M without loss of kernel
generality. As the authors saliently put it: “The question is then as follows: can the
generative process’ geometry M, distribution p = e≠U , and directionality r, be recovered
from G?”

In the same manner as for the original formulation of di�usion maps a set of backward
evolution operators are derived, the two relevant ones being:

≠ ˆt = H(–)
aa = � + (r ≠ 2(1 ≠ –)ÒU) · Ò, and (B.12)

≠ ˆt = H(–)
ss = � ≠ 2(1 ≠ –)ÒU · Ò. (B.13)

To construct this family of operators, the kernel is first decomposed into its symmetric
h‘(x, y) = h‘(y, x) and anti-symmetric a‘(x, y) = ≠a‘(y, x) parts,

k(–)
‘ (x, y) = k‘(x, y)

p–
‘ (x)p–

‘ (y) = 1
p–

‘ (x)p–
‘ (y) [h‘(x, y) + a‘(x, y)] ,
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and further normalised according to either the asymmetric1 d(–)
‘ (x) =

s
M k(–)

‘ (x, y)p(y)dy,
or symmetric out-degree distribution d̃(–)

‘ (x) =
s

M h(–)
‘ (x, y)p(y)dy (where h(–)

‘ (x, y) =
h‘(x, y)/(p–

‘ (x)p–
‘ (y)) as the notation implies). The subscript indices denote the type of

kernel used to construct the operator and the out-degree distribution used to normalise it
(such that Haa associates to the full asymmetric kernel k(–)

‘ normalised with asymmetric
degree distribution d(–)

‘ (x), and so on).
Discrete approximations for these operators can be constructed for an asymmetric

kernel matrix of distances between N high-dimensional points, W œ RN◊N . The
symmetric matrix H(1)

ss œ RN◊N can be extracted and the necessary eigen-decomposition
carried out to yield an embedding, where limNæŒ H(1)

ss = H(1)
ss = �. However, given

the infinitesimal generator of a CTMC Q, we do not have access to W, but rather to
the discrete approximation of the final evolution operator, limNæŒ Q = H(–)

aa . In order
to recover the initial kernel matrix W that gave rise to Q, we take – = 0, a uniform
measure on the manifold U(x) = 0 =∆ p(x) = 1, and a small value for ‘. This makes
the transformations from W‘ to Q reversible, since

Q = lim
‘æ0

C
T (–=0)

‘ ≠ I
‘

D

, and (B.14)

T (–=0)
‘ = D≠1W‘, such that (B.15)

W‘ = D(I + ‘Q) for ‘ æ 0. (B.16)

In the above, D is a diagonal matrix which forces the diagonal of W‘ to be 1, as expected
from a distance-based kernel matrix. The final step (I+‘Q) is the familiar uniformisation
procedure which approximates a CTMC with a DTMC. The choice of ‘ < (maxi |Qii|)≠1

determines the quality of approximation.2

Once the kernel matrix W‘ is recovered we can proceed to construct the operators
� = H(1)

ss and
1
H(0)

aa ≠ H(1)
ss

2
= (r ≠ 2ÒU) · Ò, which are used to embed the state-space

on a manifold M œ Rd, and endow it with the advective field in the KBE µ = (2ÒU + r),
respectively.

1Asymmetric is used here to express lack of symmetry — compare with anti-symmetric used to
express a‘(x, y) = ≠a‘(y, x).

2In theory the smaller ‘ is, the better approximation; in practice, we must make a choice of ‘ which
will introduce an error: the kernel similarity will be 0 between some states, when it should be >0 for
‘ > 0.


