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Abstract
Collective Adaptive Systems (CAS) are composed of individual agents with internal

knowledge and rules which organize themselves into ensembles. These ensembles can

often be observed to exhibit behaviour resembling that of a single entity with a clear

goal and a consistent internal knowledge, even when the individual agents within the

ensemble are not managed by any outside, globally-accessible entity.

Because of their lack of a need for centralized control which results in high robustness,

CAS are commonly observed in nature – and for similar reasons are often reflected

in human engineered systems. Researching the patterns of operation observed in such

systems provides meaningful insight into how to design and optimise stable multi-

agent systems capable of withstanding adverse conditions. Formal modelling provides

valuable intellectual tools which can be applied to the problem of analysis of systems

by means of modelling and simulation.

In this thesis we explore the modelling of CAS in which space (topology and distances)

plays a significant role. Working with CARMA (Collective Adaptive Resource-sharing

Markovian Agents) a formal feature-rich language for modelling stochastic CAS, we

investigate a number of spatial CAS scenarios from the realm of urban planning. When

components operate in a spatial context, their behaviour can be affected by where they

are located in that space. For example, their location can influence the speed at which

they move, and their ability to communicate with other components.

Components in CARMA have internal store, and behaviour expressed by Markov pro-

cesses. They can communicate with each other through sending messages on state

transitions in a unicast or broadcast fashion. Simulation with pseudo-random events

can be used to obtain values of measures applied to CARMA models, providing a basis

for analysis and optimisation.

The CARMA models developed in the case studies are data-driven and the results of

simulating these models are compared with real-world data. In particular, we explore

two scenarios: crowd-routing and city transportation systems.

Building on top of CARMA, we also introduce CGP (CARMA Graphical Plugin), a

novel graphical software tool for graphically specifying spatial CAS systems with the

feature of automatic translation into CARMA models. We also supply CARMA with

additional syntax structures for expressing spatial constructs.
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Lay Summary
Collective Adaptive Systems (CAS) are arrangements in which agents interact with

each other in the context of a common environment. These agents are individual enti-

ties possessing internal knowledge (either innate or obtained from observation), as well

as behaviour, which determines the actions they take. They can share their knowledge

with other agents through various means of communication.

Systems like these are called “collective” because they are often analyzed from the

perspective of the whole group of agents acting together, rather than each agent indi-

vidually.

Examples from nature include the flocking of birds, fish swimming in formations

(“schools”) or ants self-managing the operation of a colony. The common feature

of these ensembles is the fact that the involved agents (individual organisms) are to

a large extent homogeneous and have very similar innate behaviour rules. However,

when working in the context of an environment, surrounded by other agents, through

means of communication and observation, they can adjust their own behaviour so that

each agent plays a slightly different, yet significant role in the collective.

CARMA is a formal language designed for expressing models of CAS. It provides

ways to describe agents (in CARMA they are called “components”), their knowledge

and behaviour. It also allows for the specification of the environment in which these

agents operate. CARMA is supplied with a set of tools which are designed to make the

modelling of CAS easier, as well providing the ability to obtain values of measures

applied to the system, using simulation.

The main focus of the work described in this thesis is CAS systems in which physical

space plays an important role.

We extended the syntax of CARMA with constructs tailored for specifying systems

in which the spatial locations of components and their movement through space are

essential factors to the overall performance of the system.

We present the CARMA Graphical Plugin (CGP), an extension of the CARMA Plugin,

supplying the user with the ability to define the model graphically and to automatically

generate CARMA code from the graphical representation.

The first CARMA model we describe is one of mesoscopic (looking at the system from

both individual-agents and collectives perspective) crowd-routing. This is to analyze
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how pedestrian movement through a network of paths affects, and is affected by, con-

gestion. We provide a case study based on The Meadows city park in Edinburgh.

The second model captures a scenario based on an urban transportation system. We

worked with the Transport For Edinburgh company to obtain real data gathered from

city buses in Edinburgh. The simulations run with our model are in a good agreement

with the data.
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Chapter 1

Introduction

What we observe is not nature itself,

but nature exposed to our method of

questioning.

Werner Heisenberg

1.1 Problem statement and scientific contribution

This thesis talks about Collective Adaptive Systems (CAS) and how our current un-

derstanding of their inner workings, combined with existing and novel modelling tools

designed for working with those systems, has the potential to contribute towards cre-

ating better solutions in the areas of urban planning and transportation.

We will mostly consider the stability, scalability, reliability and optimization aspects

of the systems, as we seek to provide modelling tools which allow designers to predict

the behaviour and emergent properties of CAS.

The scientific contribution of this thesis consists of the creation of tools aiding the

analysis of the properties of CAS in which space plays an important role, as well

as utilizing real data in the models created using these novel tools together with pre-

existing ones, in order to demonstrate their applicability to solving real world problems

from the area of CAS modelling. Specifically, the following topics are included in this

thesis:

• the design of a spatial-modelling extension of the CASL language which makes
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Chapter 1. Introduction 2

it more suitable for describing CAS with important spatial aspects (described in

detail in Chapter 3),

• the conception and implementation of Carma Graphical Plugin (CGP), a novel

software tool which is tailor-made for the purpose of graphically specifying CAS

with spatial aspects (described in detail in Chapter 4)

• the conception of two models from the area of urban planning: crowd routing

through a network of paths (described in detail in Chapters 5 and 7), and bus

transportation system (described in detail in Chapter 8), together with the appli-

cation of real world data to these models.

The significance of the scientific contribution of this thesis lies first and foremost in

demonstrating how the theoretical and software-based tools for modelling of CAS

may be applied to real world data in order to obtain meaningful results and thus show-

ing the promising potential of combining highly theoretical modalities such as formal

modelling with substantial concrete problems based on real-world data.

1.2 Structure of this thesis

This thesis is structured as follows:

• Chapter 1: Introduction characterizes the scientific problems the research de-

scribed in this thesis engages in, and places them in the context of real world sce-

narios. It also provides descriptions of the various existing scientific approaches

to solving these problems.

• Chapter 2: Background provides a detailed presentation of the scientific con-

cepts and techniques which we used as the basis of our approach to modelling

and analyzing the real world scenarios, supplied with a collection of examples

from nature and socio-technical systems.

• Chapter 3: Spatial CASL: Extending CASL with syntax for spatial models in-

troduces in detail the specification language for CARMA and describes the exten-

sion of this language which we designed for the purpose of representing models

in which space plays an important role.

• Chapter 4: CARMA Graphical Plugin presents the software tool we designed
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and implemented, building on top of the CARMA tool suite, together with a set

of usage examples.

• Chapter 5: Modelling of pedestrian movement and simple crowd routing conveys

the process and the results of the research undertaken in the subject of crowd

routing using the CARMA language.

• Chapter 6: Data introduces real-world data sources which are used for the re-

search described in the chapters which follow.

• Chapter 7: Data-driven modelling of pedestrian movement is a description of

our data-driven approach to the problem of modelling the behaviour of crowds.

• Chapter 8: Data-driven modelling of urban transportation systems presents the

process and the results of designing and analysing an urban transportation model

created using data obtained from a real-world system.

• Chapter 9: Conclusions offers a summary of the work described in this thesis.

This thesis is about applying formal methods to real world data. This is not an easy

problem to solve, and as such it requires a modular, systematic approach. The work

presented in Chapter 8 was built on the fundaments laid down by the earlier chapters.

We started from the very simple model of pedestrian routing presented in Chapter 5,

which served mainly as a proof of feasibility. We then fused this purely speculative

model with a number of uncomplicated and straightforward assumptions coming from

real-world data (the geographical locations of network nodes and a simple traffic mea-

sure) in Chapter 7. Finally, in Chapter 8 we were able to construct a mature version

of a spatial model in which an assortment of theoretical and software tools come to-

gether with multiple and rich data sources. Perhaps most interestingly, the measures

applied to the simulation of the model can be directly compared with the qualities of

the real-world system measured from data only – proving the assumption which di-

rected our research from the very beginning: that the formal and software tools we

used and extended indeed do work.
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1.3 Collective Adaptive Systems

Collective Adaptive Systems (CAS) [66] is a term used to describe a wide range of

systems that share the following characteristics:

• They consist of a large number of concurrently acting components (often called

‘agents’), which are usually similar to a certain degree, or fall within a number of

classes of similarity (however, they can also be highly heterogeneous), and can

enter or leave the collective at any time (in this sense, such systems are ‘open’).

The agents have the ability to individually control their own behaviour based on

their local knowledge, as opposed to a global knowledge of the whole system,

which they usually do not possess.

• The system is capable of gradually changing its behavior to adapt to a new en-

vironment or to changes within the old environment. This does not necessarily

mean that the agents themselves have evolution-like capabilities, but rather that

the collective as a whole does.

• The structure, environment and properties of the system can often manifest as an

observable emergent behaviour.

There are multiple definitions of CAS, as the term itself is relatively new. An alterna-

tive term with identical abbreviation, ‘Complex Adaptive Systems’, exists and tends

to be used interchangeably with ‘Collective Adaptive Systems’; or to specifically dis-

tinguish those systems which in addition to being collective and adaptive may also

involve sophisticated hierarchy structures and rich dynamic networks of interactions

between components.

Some sources [43] restrict the definition of CAS to only those collectives which are

of a very large scale (with the number of component of the order of magnitude 109).

Others [4] require them to have ‘fractal-like’ properties, that is being comprised of

numerous layers of subsystems, the hierarchy of which can be very complex, fluid and

even chaotic, as opposed to having a well defined, concrete structure.

For the purpose of this thesis, we consider CAS to be those systems which are com-

prised of a number of autonomous agents interacting within the same environment.

An important feature distinguishing CAS from many other systems, especially those

from the arena of human engineering, is that the knowledge is always internal to the
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agent (local), and may not at all times be correct or up-to-date.

This is reflective of many systems observed in nature as well as in human engineered

arrangements. There are inherent limitations imposed on the agents within any real-

world system, making a system where every agent has global and perfect knowledge

difficult to implement in practice. These limitations, such as geographical distance,

physical obstacles and signal noise, are unavoidable in real-world scenarios and must

be taken into account when performing analysis and modelling of these systems.

Because of the fact that no agent can possess the knowledge about the whole system,

in CAS there is often no global management or, in fact, a global goal that the collective

would try to achieve. This is what distinguishes CAS from many human engineered

systems (physical or software-based) in which all components are managed by a spe-

cialized part having a clear goal and access to all other components.

The examples of CAS in which global management is present to a certain degree,

oftentimes come from the areas of socio-technical development. For example, the

performance of a taxi system may largely depend on local decisions (the drivers pick-

ing up passengers from the locations they happen to be at), but in some cases can be

improved by adding elements of an all-knowing global entity that influences these de-

cisions (the taxi dispatch system). These managing entities are not always a required

part of the system and may only be switched on when the overall performance drops

below a certain threshold.

CAS tend to be very robust and highly flexible, and often well equipped for adapting to

unexpected changes. This is because the agents comprising the ensemble are to a large

degree homogeneous, which means that if an agent exits the collective at any time, it

can be easily replaced by another agent.

The emergent behaviour is a phenomenon which can be observed at the level of the

collective, where the whole ensemble seems to be acting as if trying to reach a particu-

lar goal under a global management. The behaviour that emerges during the evolution

of the system comprised of a large number of agents is often complex and can be very

difficult to predict just by analyzing an individual agent’s behaviour – even despite the

ensemble’s homogeneity.

In this thesis we study the CAS having the following features specifically:

• large number of agents
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• homogeneity of agents

• agents’ decisions based on local knowledge

• agents acting and interacting within a common environment

The above characterise the model presented in later chapters of this thesis. Our inter-

ested has been focused on socio-technical examples of CAS such as pedestrian routing

(see 5 and 7) and bus transportation systems (see 8).

1.4 Space in modelling

The process of creating models representing real phenomena consists mainly of ab-

stracting that phenomena; filtering out all the details that either have none or a negligi-

ble amount of influence on the behaviour that we are interested in.

All systems that exist in the real-world are inherently spatial, as all the elements must

exist somewhere in physical space. There are of course systems in which this geo-

graphical placement of elements is not very interesting, for example when analysing

software architectures it is not usually important to know where the computers which

are running the software are located. In some cases however, it is critically important

– co-locating server machines closer to stock exchange buildings in order to minimise

the request/response times is one of the tactics employed by high-frequency traders in

order to outrun their rivals [99].

In the context of designing models of systems, the term ‘space’ has two separate mean-

ings; one of them being the formerly mentioned physical space, while the other is a

more high-level, conceptual understanding of it. When we lay out nodes and connec-

tions of a graph to represent a topology of a given system, we are, whether internally,

in our minds, or externally by drawing it on a whiteboard, laying out these elements in

a two-dimensional space. This way of thinking has remained an intuitive approach em-

ployed in order to untangle complex ideas, in which the mechanisms borrowed from

the physical world: the spatial separation of elements, the connections leading from

one to another, the size, the shapes – often prove great and universally understood

representations of intricate systems.

This thesis is an exercise in exploring and capturing aspects of the spatial approach

to modelling by means of creating software tools tailored for spatial models, as well
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Figure 1.1: The crowds on the Royal Mile in Edinburgh during the Fringe festival1.

as applying them on case studies with spatial features. Specifically, we investigate

the spatially-motivated subclass of Collective Adaptive Systems (CAS) (described in

detail in Chapter 2).

1.5 Crowd behaviour

Research into the behaviour of crowds has remained an active topic of scrutiny across

a variety of scientific fields, and has been approached from many different angles [23,

56, 80].

The three examples of crowd-related case studies listed below, not only have very di-

verse motivations, but are also using distinct and largely unrelated tools and techniques

for approaching the problem:

• The application of fluid physics for the purpose of crowd measurement or pre-

diction [29].

• The simulation of a large multi-agent crowd with realistic behaviour to be ren-

dered in 3D for special effects in movies and video games [96].

• The analysis of the influence of human psychology factors on the collective be-

haviour of a crowd [82].

The motivations for investigating crowd dynamics are numerous. Understanding the

1Photograph downloaded from https://www.edinburghfestivalcity.com/news/
480-numbers-soar-as-fringe-records-big-tickets-increase.

https://www.edinburghfestivalcity.com/news/480-numbers-soar-as-fringe-records-big-tickets-increase
https://www.edinburghfestivalcity.com/news/480-numbers-soar-as-fringe-records-big-tickets-increase
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mechanics of the collective movement of people within a crowd plays a critical role

in designing evacuation schemes for buildings and other enclosed structures. In [78]

a model of crowd evacuation is investigated in the context of large and geometrically

complex buildings, taking into account the influence of crowd congestion on the speed

of individuals. A model based on cellular automata is presented in [97], and the visi-

bility range of agents is taken into account for the purpose of analysing its impact on

overall evacuation speed. [108] offers yet another approach, in which the model is cre-

ated by applying simple behavioural heuristics to each agent within a crowd; several

emergent phenomena on the level of the collective are observed, such as spontaneous

creation of one-way lanes and crowd turbulence at extreme densities.

The problem of evacuation however is not limited to contained spaces, and there are

models representing emergency evacuation schemes for large crowds during religious

mass gatherings, such as Hajj, an annual Islamic pilgrimage to Mecca [75] or crowd

gatherings at Alopi Devi temple of Allahabad, India [101].

Widening scientific insight into how to model and predict the behaviour of crowds

is therefore a worthwhile endeavour, and has the potential of directly contributing to

saving human lives.

Evacuation is not the only context in which the dynamics of crowd movement play

an important role. Congestion of pedestrian routes is a common problem in many

large or tourism-oriented cities around the world, such as Prague [89] and Edinburgh

[11] (see Figure 1.1). Developing and analysing models of these scenarios contributes

towards improving the principles of designing urban pedestrian communication net-

works, bringing forth the creation of the ‘walkable city’ [92]. Densely populated cities

can found their development policies on these principles in order to become better

adapted to handling the flow of large crowds, which can improve the overall quality of

the pedestrian experience. This in turn leads to increasing the number of people who

choose to walk rather than drive, and has a positive impact on the environment, public

health as well as levels of motorway traffic [51, 106].

In this thesis we investigate two case studies of crowd behaviour. In the first one,

described in Chapter 5, we use formal modelling in order to analyse a network of

paths traversed by two groups of pedestrians, travelling in the opposite directions. The

second model, described in Chapter 7, is based on real-world data and regards the flow

of traffic in the Meadows public park in Edinburgh.
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Figure 1.2: Designated bus lane on Earl Grey Street in Edinburgh2.

1.6 Urban Transportation Systems

Public transportation systems of different degrees and complexity are widely employed

in cities around the world. Well-organised and efficient public transportation reduces

traffic and the time spent commuting to work. In addition, more people choosing public

transport rather than personal cars has a positive impact on reducing the number of

vehicles on city roads: lessening their effect on climate change, improving air quality,

and reducing noise pollution.

The planning of transportation systems is a broad area of research, requiring looking

into a number of complex problems and having to balance a variety of contributing

factors such as the design of transit networks, estimating costs and financing, energy

and environmental impact issues and supporting innovative technologies [30].

The process of planning the transit networks, which we look at in Chapter 8 of this

thesis, requires taking decisions regarding the available routes [26, 88], the locations of

bus stops [41, 64], the creation of timetables [54, 55] and the development of the road

infrastructure capable of prioritizing certain vehicles over others [115] (see Figure 1.2).

Broadening the understanding of the observed overall behaviour of the urban trans-

portation system, subject to a number of variables, contributes towards creating new

and better policies for designing such systems.

2Photograph downloaded from https://www.maps.google.co.uk.

https://www.maps.google.co.uk
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One way of achieving this is by building abstract formal models that can be simulated.

The results of these simulations may then be compared with real-data in order to assess

to what degree the model is predictive of the observed behaviour.

The value of having accurate models lies in the fact that the input parameters can then

be tuned in order to predict how a given system might behave under a certain set of

conditions. These conditions may include phenomena such as: road closures, high

traffic congestion or vehicle failures.

Modern urban transportation systems must be designed to have adaptive capabilities

built-in because they need to respond to the unexpected events and circumstances

which unfold as the delivery of the service progresses during the working day. This is

particularly the case for bus services, where timetabled public transport must share the

road network with private transport users who publish no timetable of their journeys

and commuting plans and whose use of the road can depend on variables as diverse as

the weather conditions, public holidays, and sporting events.

Set against this backdrop of hard-to-predict capacity availability of the underlying

network, public transportation service providers must meet local or governmental re-

quirements on quality-of-service as expressed through performance metrics such as

percentiles of on-time departures or arrivals, excess waiting times, buses-per-hour re-

quirements, and other measures [84]. In order to meet quantitative targets such as these,

public transport systems must have both local (point-of-view) and global (locus-of-

control) adaptability, allowing system stakeholders to make both micro-scale service

decisions (such as bus drivers speeding up, slowing down, or waiting at bus stops)

and macro-scale decisions (such as shift operators re-routing buses, cancelling service

instances, or deploying additional buses to cope with an unexpected surge in demand).

Human decision making is both in-the-loop within these systems, typically making lo-

cally autonomous micro-scale decisions, and outside-the-loop, typically making global

macro-scale control decisions. Seen in this way, public transport systems can be

viewed as collective adaptive systems, where (sometimes unexpected) behaviour emerges

from the local interactions between actors in the system who are sharing resources

when collaborating to meet common goals, even as they may be sometimes competing

over resources in their efforts to satisfy individual priorities.

Modern smart transport systems are data-rich, making informed macro-scale decision

making possible. Each vehicle in the fleet is equipped with GPS receivers and com-



Chapter 1. Introduction 11

munications infrastructure to allow them to regularly report their location back to a

vehicle tracking system. This automatic vehicle location (AVL) data provides anyone

with access to the data with real-time oversight of the location of each vehicle in the

fleet, making it possible to design applications which predict bus arrival times, and to

compute metrics which provide statistical summaries of system performance in terms

of key performance indicators which are of interest to system stakeholders.

In Chapter 8 we describe a data-derived stochastic model of bus transportation system

in Edinburgh. The results of simulating the model are in good agreement with similar

measures applied to real-data.



Chapter 2

Background

Those who cannot remember the past

are condemned to compute it.

Steven Pinker, Words and Rules: The

Ingredients of Language

2.1 The motivation behind the exploration of CAS

Collective Adaptive Systems (CAS), introduced in Section 3 of Chapter 1 of this the-

sis, are ensembles of agents acting and interacting within a common environment. The

analysis of systems of this nature has the potential to yield results that might consti-

tute a meaningful contribution to the scientific understanding of a number of research

problems which are currently pursued.

In [66] the authors define the key concepts that play a role in the current exploration of

CAS. These are:

• Purposeful artificial self-organization – the ability of the collective to act as a

whole (‘a superorganism’[109]), in order to achieve a common goal, which is

accomplished by having each individual component following a set of predefined

rules.

• Evolvability – the potential of the system to self-improve in terms of optimizing

the values of its attributes and fine-tuning the existing rules, given that the mech-

anism for the evolutionary process itself is already provided within the environ-

12
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ment (the application and assessment of fit-functions, inheritance of properties

and rules, the occurrence of random mutations).

• Developmental plasticity – starting from a number of identical systems, the evo-

lutionary process can take them into very divergent directions, making it possible

to generate a wide range of distinctive systems where the variables responsible

for these differences are outside the collectives themselves, and are part of the

environments in which the systems have evolved. This property of a system,

however, dramatically decreases its capacity for predicting or controlling the fu-

ture behaviour.

• Stability, scalability, reliability, optimization – these aspects are being investi-

gated and gradually improved from the technological and computational point

of view in order to advance the current solutions for simulating CAS.

The ongoing exploration of CAS has also produced results which are already being

applied in existing technology. Many urban solutions can be modelled as CAS, the

list of examples includes systems such as bikesharing [95], bus-commute [105] or

carpooling [111].

In this thesis we will mostly consider the last point, that is the stability, scalability, re-

liability and optimization of the systems, as we seek to provide modelling tools which

allow designers to predict the behaviour and emergent properties of CAS. The focus of

our research is on socio-technical examples of CAS. These are often systems in which

the agents are autonomous to some degree but at the same time externally managed in

order to ensure a certain goal is met. For example, in the pedestrian routing scenario

presented in Chapters 5 and 7, the pedestrians are capable of deciding which direction

to turn at a road fork, but they are at the same time externally influenced to keep to the

left in order to avoid collisions.

2.1.1 Modelling CAS

Creating and investigating models of systems helps us to understand them better, as

well as to evaluate and predict their performance. The word ‘model’ is a wide-ranging

term that can be used to describe a number of similar but distinct ideas, and the diagram

below (Fig. 2.1) shows the relation between them.

A real world phenomenon (Fig. 2.1 Panel A) is observed, and its conceptual model
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(Fig. 2.1 Panel B) is created by specifying which elements are and which are not a part

of the model, and which aspects of the observed systems are to be put under scrutiny.

The conceptual model usually is not instantiated and is more of a collection of ideas in

the mind of the observer.

The conceptual model can then be translated into a concrete representation, following a

set of specific rules of a chosen modelling language (Fig. 2.1 Panel C). There are many

possible modelling languages to choose from, each of which places its own limitations

on the accuracy of representation of the original system. The choice of the language

is therefore not an arbitrary one, as some of the languages may be more suitable for

representing certain classes of models than others.

The model can then be translated into a runnable computer program (Fig. 2.1 Panel D),

providing the possibility of simulating the performance or acquiring values of various

measures of the system. In this case, the accuracy of representation becomes dependent

on technical possibilities of the machine and underlying software, such as numerical

accuracy, computational power, or semantics of the programming language used for

implementation.

Figure 2.1: A hierarchical view of possible representations of a system as proposed

by [110]. The term ‘modelling’ usually refers to the creation of models which aim to

represent real world systems (as well as models representing different kinds of models),

while ‘simulation’ refers to working with models and computers.
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2.2 Examples of CAS

Examples of CAS can be found within a broad spectrum of problems which involve

large numbers of individual agents interacting with each other in the context of a com-

mon environment.

2.2.1 Socio-technical systems

2.2.1.1 Overview

In urban scenarios, CAS are found in situations where there is a need for making

decisions in real time to optimize the usage of a given service for a large number of

people or devices. This subsection talks about such cases.

In the area of urban planning, bike-sharing systems, as well as carpooling may be

modelled as CAS.

In [60] the authors present four classes of application domains for CAS that are cur-

rently being explored in terms of creating novel software and hardware specialized

solutions:

• Power Management Systems,

• Cloud Computing,

• Telecommunication,

• Wearable Computational Devices.

Such scenarios, when implemented on the technological level, create the need for an-

alytic tools that would provide insight into the inner workings and possible ways of

optimization and further improvement of these systems.

Most of the CAS which belong to the ‘smart cities’ category, require some form of

space (both physical and virtual) to be considered in the model. Concepts like dis-

tances, topologies of routes, one-way roads or zones often play a crucial role in urban

scenarios.
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Figure 2.2: Bike sharing programs by regions of the world [70].

2.2.1.2 Bike-sharing systems

Bike-sharing systems are arrangements in which bicycles are made available (rented)

for use, usually within urban areas. Most commonly, such services are paid, either

per time of use or on a subscription basis, and the bicycles need to be picked up and

returned at a number of specific stations located throughout the city [95].

Adopting a bike sharing system has the potential of bringing forth a number of positive

effects on the city population. One of them is the reduction of traffic levels, noise

and air pollution by lowering the number of personal cars travelling on roads as more

people switch to using bicycles instead.

The first ever attempt at creating a bike-sharing system was undertaken in 1965, in

Amsterdam, but quickly failed due to the bikes being stolen or vandalised [35]. Since

then, a number of different approaches have been tested in different parts of the world,

with varying levels of success. By the end of 2012, over 500 cities in 49 countries have

employed bike-sharing programs [70] (see Fig. 2.2).

Bike-sharing schemes exhibit a lot of features congruent with the features of CAS [95],

such as the locality of the user’s knowledge, as well as the generally large number of

users with homogeneous behaviour.

In the simple scenario, users concurrently interact with the system, having only local

1Photograph downloaded from https://www.ed.ac.uk/files/styles/panel_breakpoints_
theme_uoe_mobile_1x/public/thumbnails/image/img_0804.jpg.

https://www.ed.ac.uk/files/styles/panel_breakpoints_theme_uoe_mobile_1x/public/thumbnails/image/img_0804.jpg
https://www.ed.ac.uk/files/styles/panel_breakpoints_theme_uoe_mobile_1x/public/thumbnails/image/img_0804.jpg
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knowledge of its state. The bike stations where bicycles may be rented or returned have

a limited capacity. The two most common issues arising in this kind of arrangement,

from the perspective of the user, are:

• the nearest station(s) being empty when trying to rent out a bicycle,

• the nearest station(s) being full when trying to return a bicycle.

The global availability of such a system could be greatly improved by giving the users

feedback on the current state of the system to influence their decisions. This can be

realized, for example, by giving the users incentives to return their bike to an empty

station, rather than to the closest station. Similarly, the performance of the system as

a whole can be improved by encouraging people to choose full stations when deciding

which station to rent a bicycle from [45].

2.2.1.3 Carpooling

Carpooling is a mode of transportation in which two or more commuters share one

car in order to reach their destinations [111]. The first carpooling schemes date back

to World War II, when the American government encouraged civilians to share rides

as a means of rationing due to petrol shortages. At the present time, the interest in

supporting carpooling systems stems mostly from their potential positive impact on

the levels of traffic and environmental pollution [40, 77], but other positive effects,

such as promoting the forming of social bonds between people living close to each

other within large cities, have also been investigated [72].

In most carpooling scenarios there are two classes of users interacting within the sys-

tem: drivers looking for passengers to share the cost of the ride with, and passengers

looking for drivers with destinations located nearby their own.

Figure 2.3: Bike-sharing station in the city of Edinburgh1.
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Figure 2.4: Percent of workers aged 16 years or over, carpooling by car, truck or van in

the USA [103].

Examining carpooling arrangements modelled as CAS may provide insight in how

the local goals and decisions made by each user belonging to one of these (internally

largely homogeneous) classes impact the performance of the whole ensemble. The

addition of modern communication technologies, allowing the users to exchange in-

formation adds another layer of complexity to this research problem. Traditionally,

carpools were formed as queues at specific places near major roads where cars could

conveniently stop to pick up additional passengers who wanted to travel in the same

direction. Today additional tools, such as mobile applications, are available providing

mechanisms that attempt to match the prospective ride sharers with each other [25].

2.2.1.4 Swarm robotics

Large groups of homogeneous robots interacting with each other in order to achieve a

common goal are another example of human engineered CAS [62]. The ability of the

swarm to adapt to the changes in the environment in order to optimize the performance

of the whole collective is one interesting aspect of this problem.
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In [73] the authors present a model of a collective foraging scenario, where the robots

are adjusting their behaviour to achieve the most optimal (in terms of energy spent

versus amount food foraged) ratio of foragers to resters.

Swarm robotics have a potential for use in search and rescue scenarios. Following

natural or man-made disasters, early response is crucial for increasing the survival

rate. The dimensions and boundaries of the areas that need to be explored in order

to search for survivors are often unknown as they could have been altered during the

disaster. At the same time, human rescue teams dispatched to the site are themselves

endangered during the exploration of the area. For these reasons, a swarm of robots

that would have the ability to adapt to a largely unknown and possibly still changing

environment could prove very valuable for use in such scenarios [94].

The ability to self-organise is yet another desirable emergent behaviour in swarm

robotics research. Robots may cluster together, forming larger entities, more capa-

ble of achieving specific goals (i.e. being able to deal with spatial barriers such as

stairs and walls), or even form the required spatial structures for other robots to use

in order to explore the environment (i.e. bridges) [102]. This is very much alike the

behaviour of swarms in nature, such as ants or bees, described in greater detail in the

next subsection.

2.2.1.5 Power management systems

In the Power Management Systems scenario, big and small power plants are grouped

together and regarded as belonging to the category of CAS in order to reduce energy

waste that is being generated in presently used solutions. Currently, the control and

management of groups of big power plants is in the hands of several companies, while

small power plants and DERs (Distributed Energy Resources) are not at all externally

controlled. The management of big power plants is realized by rescheduling the desired

production output using a rough estimate once in every 15 minutes. Such a naive

approach to production management does not take advantage of the full capacity of

the system, generating losses associated with the costs of producing and storing the

surplus energy. The main benefit of taking a collective approach to this scenario is

the possibility of optimizing the distribution of energy demands within a network of

power plants. This can be achieved by taking into account the varying characteristics of

each of the power plants and their cost-effectiveness of producing an energy unit and/or
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switching on an inactive unit rather than redirecting the demand to another station [60].

2.2.1.6 Cloud computing and telecommunication

The properties of CAS such as adaptability and open-endedness are highly desirable

in telecommunication and computer networks. Adaptability makes the system flexi-

ble with respect to events that are hard to predict such as power outages or hardware

failures.

These systems are open-ended in the sense that they are able to continue working

efficiently even when one or more of the agents fails, which results in other agents

self-organising into collectively taking over the responsibilities of the failed agent. In

a similar fashion, adding a new agent to such a system should not require any changes

to the existing collective, as it should be able to self-adjust to its new population size.

In [36] the author explores an adaptive routing policy for telecommunication networks

which is reflective of the ant colony optimisation model, derived from nature.

There is ongoing research about how arrangements comprised of smart mobile telecom-

munication devices worn by people could be described as CAS [60, 109].

2.2.2 Nature

Many systems and structures that are present in nature can be represented as CAS

models. Developing and analyzing such models can serve to improve the current state

of scientific knowledge in at least the two following ways: a) by reverse-engineering

the mechanisms found in nature to describe and investigate phenomena that emerge

from evolutionary processes, b) by taking inspiration from nature to find better design

paradigms for use in software-based systems.

These two approaches are closely related and similar in execution. The main difference

between them is the result that is expected from conducting the research. In case a)

the aim is to formally represent an existing system as accurately and precisely as it

is possible (even if there is a possibility of improving its performance by applying

changes), while in case b) the intent is to create a model that performs best in solving

a preexisting problem, which may be completely unrelated to the original context of

the system in nature.
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In the paper [42] the authors describe a number of design patterns for use in software

development, which have been inspired by various systems found in nature. The paper

describes and compares a range of bio-inspired patterns for engineering self-organizing

software-based systems. The patterns have been classified into three groups with re-

spect to their complexity: a) basic patterns, b) composed patterns and c) high-level

patterns.

Figure 2.5: The relation between components of systems found in nature (A) and their

respective computational models (B). Fernandez-Marquez et al [42] propose a compu-

tational metamodel having a middle layer called ‘Infrastructure’ that is required for the

agents to perform actions and interact with the environment. The Infrastructure layer

provides the means for performing simulation of the system, which include hosts having

computational power, and hardware or software sensors and actuators.

Figure 2.5 shows how the elements of a biological model could be mapped into ele-

ments of a computational model.

Basic patterns are created using simple heuristic rules for the agents to follow when

sensing and acting in the environment. For example, if an agent is able to detect the

position of other agents within a certain distance, it can follow rules depending on its

observations of the agents within its neighbourhood radius.

This mechanism is employed in what is perhaps the most famous example of CAS

observed in nature: the flocking behaviour, described in [85]. The author illustrates

how the emergent behavior commonly observed in nature in ensembles such as flocks

of birds, herds of cattle or schools of fish, can be reproduced by aggregating three
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simple heuristic rules at the level of a single agent’s behaviour. The three rules are:

• Separation

• Alignment

• Cohesion

A B

Figure 2.6: Flocking behaviour as a computer simulation (A) and observed in nature (B).

Separation (short range repulsion) is a heuristic rule which ensures that agents do not

crowd together, gravitating towards a single location. From the perspective of the

agent, the rule can be phrased as: ‘if there is another agent within a certain range from

your location, move in the opposite direction to that agent’.

There are of course multiple agents in the collective, so in practice these rules will be

instantiated as forces pulling and pushing the agent in various directions with various

strengths. The final movement will depend on the summation of these forces, together

with those created by the alignment and cohesion rules.

Alignment is a behaviour in which the agent adjusts its direction to be the average

direction of agents within its local neighbourhood.

Cohesion (long range attraction) is very similar to what would have been the opposite

of separation, except the local radius determining the neighbours whose locations are

taken into account when computing the forces is much larger. It is therefore respon-

sible for the agents forming groups, while separation ensures that these groups do not

collapse into single location points.
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Figure 2.7: Three snapshots from a simulation of the flocking behaviour. The for-

mation and joining of sub-groups can be observed here. Video available at http:

//nataliazon.com/wp-content/uploads/2018/03/flocking_nice1.mp4.

When aggregated, these three simple rules produce a very realistic and seemingly com-

plex behaviour that can be observed at the level of the collective, as illustrated in Fig-

ures 2.6 and 2.7.

To an independent observer, this emergent behaviour might give the impression of be-

ing globally planned and controlled by an external agent who possesses the knowledge

about the attributes and actions of every element of the system. In reality, there is no

central supervision - the observed artificial intelligence exhibited by the system is a

feature of the whole collective. This property of multiple-agent systems being able to

make decisions is often referred to as ‘swarm intelligence’ [61].

Swarm intelligence is often associated with certain species of insects: bees, termites

and ants. The Argentine Ant is a species of ants that are capable of finding the shortest

path from the colony nest to a source of food by means of self-organized swarm deci-

sion making [53]. In the experiment conducted by the authors of [53], a colony of ants

was able to find the optimal path when placed in an environment containing their nest

and a source of food, connected by a bridge (see Figure 2.8).

http://nataliazon.com/wp-content/uploads/2018/03/flocking_nice1.mp4
http://nataliazon.com/wp-content/uploads/2018/03/flocking_nice1.mp4
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Figure 2.8: The setup of the experiment conducted by Goss et al in [53]. The bridge

consists of two modules, each of which branches out into two paths, one of them being

longer than the other. In the module closer to the nest, an ant ends up in the shorter

path if it chooses to turn left on the fork, in the second module - if it turns right. After an

initial period of exploring all paths, ants start following the shortest paths exclusively;

a) a single module of the bridge, b) and c) the configuration of ants 4 minutes and

8 minutes after placing the bridge in the environment.

The discovery and analysis of this behaviour inspired researchers to develop a num-

ber of optimization algorithms for problems such as: shortest path finding, routing,

set partition and distributed information retrieval [76]. In the paper [76] the authors

analyze the shortest path algorithm by creating a formal model of the scenario in Bio-

PEPA [100] and investigating what conditions must be satisfied for the emergence of

the swarm-intelligent shortest path mechanism to emerge in stochastic simulation and

fluid flow analysis. Simulating the model under such conditions yields results that can

be compared with results obtained from empirical research described in [53].

Oftentimes the models representing behaviour of swarms of animals restrict their abil-

ity to exchange information with each other. In flocking, an agent adjusts its movement

using information incoming from surrounding agents. This can be seen as the agent

having the concept of its own neighbourhood and exchanging information only with

those agents which belong to that neighbourhood. The neighbourhood is not defined

by a set of points in space but rather moves along with its ‘owner’. It can be spatial,

which means that all the agents within a certain radius distance from the original agent

belong to its neighbourhood. It can also be logical - when the neighbours’ physical
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positions are not important, and so, it is more of a network of all the agents that have

means of communicating with the neighbourhood owner.

A number of other composed and high-level patterns are presented in [42], including:

gradient (a pattern where information is spread in such a way that it conveys the in-

formation about the distance from the sender), gossip (where there is an agreement in

the collective over values of certain parameters even though the information is spread

in a decentralised way), and quorum sensing (a pattern allowing an agent to obtain

information about the density of agents in the system using only local interactions).

2.3 CARMA: Collective Adaptive Resource-sharing Marko-

vian Agents

CARMA is an expressive process calculus which has been developed specifically for

the modelling of CAS. A full description of the language can be found in [48, 74].

Systems that can be represented in CARMA consist of collectives of components (agents)

inside an environment. Agents’ behaviour is represented by Markovian processes. The

future state of the system is only dependent on its current state - the system has no

memory of the sequences of decisions that were taken in order to get to the current

state. In CARMA, agents perform actions, the rate of which is defined by an expo-

nential distribution random variable. If at a given state there are multiple possible

transitions with non-zero rates, the first one to trigger will determine the next state of

the process (this is known as the race condition).

For the purpose of creating models in CARMA one assumes that these Markovian prop-

erties are to some extent present in the considered scenario. The independence of fu-

ture on the past in a CARMA model is achieved by encoding the vital elements from the

system’s evolution past in its current state. For example, in CARMA one can use the

components store to capture a particular value used in a past decision or even use the

store variable to count how many times a particular action was triggered and then use

this knowledge to influence the probabilities of future transitions. CARMA models are

still truly Markovian, as each possible combination of component behaviour’s process

states and component stores’ states is considered a single state in a Markovian pro-

cess describing the whole system. This of course means that CARMA models become
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complex fast with growing number of behaviour states and store fields in the compo-

nents. The Markovian assumption is therefore not realistic for modelling a real world

scenario in a fully detailed and completely accurate manner, but instead is meant for

working with models where certain abstractions are introduced in order to represent

the features of the system that have the prevailing influence on the performance of the

whole collective.

The fact that CARMA works under the Markovian assumption allows the user to not

only accurately represent, but also assess the system in terms of its performance, avail-

ability and dependability by means of simulation using a stochastic simulator, based

on the kinetic Monte Carlo algorithm.

Components, denoted by C, are entities consisting of a store, denoted by γ and a pro-

cess, denoted by P. They can also be inactive, which is denoted by 0:

C ::= 0 | (P,γ)

A collective of components N is defined as follows:

N ::=C | N||N

where N||N denotes two collectives in parallel. The store of an agent represents its

attributes, that is a set of variables associated with that agent. These attributes can

change with time, and can be intuitively regarded as the agent’s knowledge.

The store can be represented as a mapping from the set of attribute names into the set

of basic type values:

γ ::= {a0 = v0, ...,an = vn}

The process represents the agent’s behaviour, and is defined as follows:

P,Q ::= nil | A[X ] | P|Q

where P,Q are processes, A[X ] denotes a process automaton in state X , P|Q is a com-

posite process obtained by executing processes P and Q in parallel, and nil denotes the

inactive process.

Any process can be defined as a composition of processes that are to be executed in

parallel. The atomic process, which cannot be further divided, is either inactive or can

be defined by a process automaton.

The process automaton is defined as the set of its states along with transition rules:
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process P =

X0 : [π0
0]act00.R

0
0 + ...+[πk0

0 ]actk0
0 .Rk0

0
...

Xn : [π0
n]act0n.R

0
n + ...+[πkn

n ]actkn
n .Rkn

n

end process

where:

• π
j
i is a predicate that has to be satisfied by γ before the action can be executed,

• act j
i is a CARMA action,

• R j
i is either a state of the automaton R j

i ∈ {X0, ...,Xn}, the inactive process nil,

which terminates the current process, or the process kill, which destroys the

component

Prefix (.), constant definitions (
def
=), choice (+) and parallel composition (|) can be

expressed in the standard manner by defining P appropriately. Additionally, there is the

nil process which does nothing, the kill process which results in the component being

removed from the collective, and the option of prefixing a process with a predicate

[π]P, in which case the process P can only proceed if the predicate π evaluates to true

using the values of the attributes in the component’s store γ. To improve readability

we sometimes parenthesise the process expression P, writing this term as [π](P). The

meaning is unchanged.

CARMA features attribute-based communication - predicates determine how com-

ponents may send and receive messages when they perform actions. There are four

types of CARMA actions, which vary with respect to the methods of communication

between components:

• broadcast output (α?[π]〈~v〉σ),

• broadcast input (α?[π](~v)σ),

• unicast output (α[π]〈~v〉σ),

• unicast input (α[π](~v)σ)
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where α is the action name, π is the predicate and ~v denotes either the variable to

insert the received values in (in the case of input), or the values that are being sent

(in the case of output). The notation (~v) comes from the fact that it is a vector, that

is a list of basic type variables or values. σ is an update, which defines changes to

make in the values of variables in the component’s store, when the action is executed.

The predicate π needs to be satisfied for a successful synchronization of two agents on

the action. If the predicate evaluates to false, the action can still be performed by the

sender, provided it is of the broadcast output type.

Unicast communication is blocking; the sender cannot output values unless there is

a matching input action which can be performed by another component (this is often

referred to as synchronizing on an action). In contrast, broadcast is not blocking,

and that is why we can use a specific form with a constant false predicate to allow

components to act without interaction with other components, as seen in the example

to follow. The constants true and false in CARMA models are written as> and⊥ here.

The syntax of a non-blocking broadcast on name α is α?[π]〈~v〉σ where π is a predicate

which must be satisfied by all processes wishing to receive this broadcast. The predi-

cate may refer to other components’ stores as well as to the local store (these references

are prefixed by ‘my’, similar to the use of the keyword ‘this’ in Java). This is how the

potential partners for communication are identified. These are the only components

that are able to receive the message. Importantly, even when a component belongs to

this pool of potential receivers which means it is eligible for receiving a certain mes-

sage, the message can become lost with a given probability specified in the evaluation

context.

The vector~v is a vector of values to be communicated; this vector may be empty. The

suffix σ is an update of variables in the local store of a component. A component

refers to an attribute in its own local store by prefixing the name of the attribute with

the word ‘my’ so an update to store the value of x as the new value of my.x is written

as {my.x← x}. As an example, the prefix process term move?k [⊥]〈〉{my.`← k}.M
broadcasts that it is performing a movek action, updates its local ` values, and continues

as the process M. This is an individual action, since the predicate π being set to false

prevents other components from synchronizing on it by triggering an input action of

the same type.

Broadcast output is non-blocking, which means that it will be performed even if
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no other component is able to receive the message. Immediately after the action is

performed, the update block is used to compute the (possible) change in the local

store.

In order to receive a message from a broadcast output, a component must perform the

action type broadcast input. This action is used to receive any messages that have

been sent via the broadcast output. The transmitted values can be used to compute the

predicate.

The environment contains both the global store and an evolution rule which returns a

tuple of four functions (µp,µw,µr,µu) known as the evaluation context. Communica-

tion between sender s and receiver r on action α has both an associated probability

(determined by µp) and a weight (determined by µw). These functions depend on ac-

tion α and both the attribute values of the sender (in the store γs) and the attribute

values of the receiver (in the store γr). The action rate however depends on only the

attribute values in the store of the sender (γs); the attribute values of the receiver do not

affect the rate at which a communication action is performed.

An example rate function in the evaluation context would be the following action-label

dependent rate:

µr(γs,α) =


1.0 if α = low rate action

2.0 if α = normal rate action

5.0 if α = fast rate action

Thus the first three functions in the evaluation context determine probabilities, weights

and rates that supply quantitative information about the behaviour of actions. The

fourth function µu performs global updates, either of the attributes in the global store

or of the collective by adding new components. These updates include the usual ini-

tialisation of variables, incrementing counters, or accumulating totals.

Process prefixes provide value-passing unicast and broadcast communication using

predicates over the attributes in the stores of both the component which is sending

the value and the component which is receiving the value. Communication between

components will only take place if the predicates over both stores evaluate to true. The

value false indicates that no communication partner is needed (when broadcasting).

Furthermore, attribute values can be updated (probabilistically) on completion of an

action.
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2.3.1 CARMA example: the SIR model

SIR (Susceptible Infected Recovered) is a classic example from the field of mathemat-

ical modelling of infectious diseases.

In the simple version of this model, the population size is constant, and each agent

belonging to the population is in one of the following states:

• Susceptible – these agents are vulnerable to the disease, which means they may

become infected if they come in contact with an agent that is already infected

• Infected – these agents are carriers of the disease and may cause susceptible

agents to become infected during contact

• Recovered – an infected agent may become recovered, in which case it is no

longer able to spread the disease by infecting susceptible agents

All agents in the collective are interacting with each other in the context of a common

environment, and there are no spatial obstacles (such as physical distance) preventing

them from coming into contact with one another (as shown in Figure 2.9). This means

that every agent has the same probability of interacting with any other agent, regardless

of where in physical space they are located (as this information is simply not a part of

the model).

A CARMA implementation of the behaviour of an agent in a simple SIR model is shown

in Figure 2.10, and the evolution of the model in time is shown in Figure 2.11. In this

case we use broadcast actions in order to take advantage of their non-blocking nature,

that is we allow several susceptible agents to perform the contact action initiated by

an infected agent, which results in the susceptibles becoming infected. In this simple

scenario, no messages are sent or received when the action is triggered.
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Figure 2.9: A schematic representation of a simple SIR scenario. All agents are equally

likely to come in contact with one another and there is no notion of spatial location.

process P =

S : contact().I

I : contact <>.I + recovery <> [false]?.R

R : nil

end process

Figure 2.10: The behaviour of an agent in a simple SIR model, implemented in CARMA.

‘false’ is a special value designating a spontaneous action (triggerable by a single

agent) when used in place of a broadcast output action’s predicate expression.

The recovery action is an example of a spontaneous broadcast output - there aren’t

any receivers with a matching broadcast input action. A special literal value false

is passed to the predicate in order to signify that no matching receivers are needed.

When an agent reaches the recover state it remains in the system but can no longer

become infected (for example, due to acquired immunity). This is represented by the

idle process nil. We assume that all the actions happen with the same constant rate.

It is worth noting that there exist numerous variations of this model, for example one

in which the recovered agents may lose their immunity to the disease, and become
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susceptible again. Another version, in which the population is not constant, assumes

that infected agents can either recover or die, in which case they are removed from the

system.

Figure 2.11: The population dynamic in a SIR scenario obtained from a CARMA simula-

tion of the model presented in Figure 2.10. The initial populations are: 990 susceptible

and 10 infected agents.

Now let us consider another similar scenario with the addition of locations in space.

For example, agents may move around in a 3x3 grid as shown in Figures 2.12 and 2.13.

In this case we restrict the possibility of coming into contact to only those agents which

are currently residing in the same location. Agents now also have an additional process

in their behaviour, running in a parallel to the one we saw in the previous example. This

allows them to move around in the network by triggering the spontaneous broadcast

output action move. The next node is chosen randomly from the nodes accessible from

the current node.

Figure 2.12 shows a version (labelled ‘version A’) of this scenario in which both pop-

ulations start at the same node. The number of pairs of agents eligible for performing

the contact action together decreases as agents spread through the system. Since they

move in a step-by-step fashion, and have a limited number of next possible nodes to

move to at any given time, it it still rather likely that in the beginning phase of the evo-

lution there will be co-located pairs of susceptible and infected agents in the system.

This results in the initial early growth of the infected population, shown in Figure 2.15.
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In another version of this scenario, (labelled ‘version B’), we modify the initial con-

ditions of the model so that the two populations: susceptible and infected start at the

opposite corners of the spatial graph 2.13. In this case the simulation results (presented

in Figure 2.16) show a much later peak of the infected population, as the infections can

only begin when agents have moved through the graph resulting in infected and sus-

ceptible agents being co-located and capable of performing the contact action together.

0,2 1,2 2,2

0,1 1,1 2,1

0,0 1,0 2,0

S I

990 10

Figure 2.12: A schematic representation of a SIR scenario with locations, version A:

susceptible and infected populations are co-located at the same node at the start of the

system’s evolution.

0,2 1,2 2,2

0,1 1,1 2,1

0,0 1,0 2,0

S

I

990

10

Figure 2.13: A schematic representation of a SIR scenario with locations, version B:

susceptible and infected populations are located at different nodes at the start of the

system’s evolution.
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process P =

R|Q

endprocess

process R =

S : contact(infected loc)[my.loc == infected loc].I

I : contact < my.loc >.I + recovery <> [false]?.R

R : nil

endprocess

process Q =

M : move <> [false]?{my.loc = NewLoc(my.loc)}.M

endprocess

Figure 2.14: The behaviour of an agent in a SIR model with locations, implemented

in CARMA. Processes R and Q are executed in parallel manner within process P. We

ensure that only co-located agents can come into contact with one another by adding a

predicate to the contact action. The susceptible agent uses the value received from the

infected agent in order to determine whether they are co-located or not, before trigger-

ing the action. NewLoc() is a function returning a random location accessible from the

location given as the parameter. ‘false’ is a special value designating a spontaneous

action (triggerable by a single agent) when used in place of a broadcast output action’s

predicate expression.
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Figure 2.15: The population dynamic in a SIR scenario obtained from a CARMA simu-

lation of the model presented in Figures 2.12 and 2.14. The initial populations are: 990

susceptible and 10 infected agents.

Figure 2.16: The population dynamic in a SIR scenario obtained from a CARMA simu-

lation of the model presented in Figures 2.13 and 2.14. The initial populations are: 990

susceptible and 10 infected agents.
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2.3.2 CASL

As is standard for process calculi and algebra, CARMA is the formal and mathemat-

ical language developed for collective adaptive system modelling. However, when it

comes to implementing models and simulating and analysing them, a text-based lan-

guage suitable for input is required. The language accepted by the CARMA Eclipse

Plug-in is called CASL (CARMA Specification Language). It allows for the decla-

ration of components and the environment as in the definition of CARMA but it also

gives additional features that are necessary when making a model concrete for simu-

lation. In particular, it allows for constants and functions to be defined to support the

definition of models. In addition to this, it adds a layer of typed data structures includ-

ing enumerations, record types, and heterogeneous collections such as sets and lists.

This provides a level of type security which is not offered by process calculi with un-

typed value-passing. Furthermore, Chapter 3 introduces the new explicit spatial syntax

for CASL to describe space, an important feature determining the behaviour of many

CAS which was developed as a part of the research presented in this thesis. It allows

the definition of nodes (either as coordinates or names) and links between these nodes.

There is also syntax to support the use of this space, in particular, a way to refer to

both the pre-set and post-set of a node, which then permits a generic definition of mov-

ing components that can traverse over any spatial structure specified. Taken together,

these additional language features in CASL provide a basis for strong static analysis

of models, catching modelling errors at compile-time which would not be detected in

modelling languages without this kind of support for representation of typed data and

spatial structure.

CASL provides a wrapper around the CARMA process calculus adding non-essential

(but useful) features such as data types and data structures, functions, and the ability to

specify real-valued measures of interest over the model. In some modelling languages

measures of interest or Markov reward structures are defined externally to the model

but in CARMA and languages such as CASPA [68], PRISM [69] and ProPPA [52], the

specification of measures of interest and reward structures is included in the modelling

language itself.
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2.3.3 The CARMA Eclipse Plugin

The CARMA Eclipse Plugin [59] is an integrated development environment for CARMA

models. It provides a helpful syntax-aware editor for CASL, implemented in the XText

editor framework. Given a CARMA model, the CARMA Eclipse Plug-in compiles the

model into a set of Java classes which are linked with the CARMA simulator classes to

provide a custom simulator for this specific model. The compiled Java code is executed

to compute the measures of interest from an ensemble of simulation runs. The opera-

tional semantics of CARMA are defined in FUTS (State to Function Labeled Transition

Systems) style [32]. FUTS defines state-transition structures in which each transition

is a triple of the form (s,α,P), where s is the state, α is the transition’s label and P is

the continuation function, which associates a specific value to state s′ (for example the

rate of the action performed in order to reach state s′ from s).

CARMA defines the semantics of each model as a time-inhomogeneous continuous-

time Markov chain (ICTMC). The behaviour of these ICTMCs is simulated using the

CARMA Eclipse Plug-in.

2.3.4 The analysis of CARMA models

Probabilistic model checking is a procedure that can be used in order to find out

whether a specific property (expressed using probabilities) is true or false in a model

of a stochastic system. It is applied for the purpose of verifying specifications based on

probabilities, which can for example be expressed by statements like ”the probability

of the bus arriving less than 2 minutes late is at least 50%” or ”the chance of five buses

breaking on the same day is at most 0.5%”.

The problem of applying probabilistic model checking to a specific model is often

solved by numerical approaches, in which the desired measures are computed in an

iterative (approximate) manner. There is a number of existing algorithms that have

been devised for this purpose [21].

Statistical probabilistic model checking [71], based on simulation with random sam-

pling using methods such as Monte Carlo experiments, is an alternative approach to

numerical probabilistic model checking. The simulation results discussed in this the-

sis have been obtained by using the CARMA simulator which implements the standard

kinetic Monte Carlo statistical probabilistic algorithm. The algorithm is used to select
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the next simulation event to fire and draws from the appropriate weighted random num-

ber distribution to determine the duration of the event. The simulation state is updated

as specified by the event which was fired and the simulation proceeds forward until a

pre-specified simulation stop time is reached. This is a standard approach and research

is being made on how to improve these methods in order to speed up the simulation of

complex models.

The measure functions defined by the modeller are passed into the simulation environ-

ment and provide a view onto the raw simulation results at intervals which are specified

by the modeller. The Apache Commons Math Library is used within the Plug-in to per-

form statistical analysis of the data. The Simulation Laboratory View provided by the

CARMA Eclipse Plug-in acts as an electronic laboratory notebook, recording details of

the simulation studies which have been performed.

Simulation experiments are composed and launched from the user interface via the

CARMA Simulation View. Results are plotted directly into the Experiments Results

View or saved to a file for post-processing.

2.4 Other existing modelling approaches

In this thesis we focus specifically on CAS models written in the CARMA modelling

language, as CARMA was the tool of choice for the purpose of supporting the under-

taken research. It has been extensively used by disparate groups of users in the field

of formal modelling, and there are a number of existing well documented CARMA use

cases in the literature [74]. The existence of this relatively wide CARMA user commu-

nity, the ongoing development (at the time of planning of this thesis) of the language

under the auspices of the QUANTICOL project, as well as the robust software toolkit

available for the language made it an excellent candidate for the tool of choice needed

in order to conduct the research presented in this thesis.

There are a number of other tools and approaches available for modelling and analysis

of CAS we have considered. The purpose of this section is to provide some background

information on potential alternative approaches.

• PEPA [58] (Performance Evaluation Process Algebra) In many ways PEPA can

be considered the predecessor to CARMA. It is an earlier, less sophisticated

modelling language developed within the same scientific community, and the
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authors of CARMA mention it as one of the stochastic proces algebras the de-

velopment of which provided lessons and experience later utilised when design-

ing CARMA [24]. In PEPA, components undertake actions, which are assumed

to have durations. The durations are represented by a random variable drawn

from a negative exponential distribution. The components may synchronise on

actions, but they do not have the ability to exchange messages. An extension

of PEPA designed for working with biological systems, BioPEPA, was proposed

in [27].

• ProPPA [52] (Probabilistic Programming Process Algebra) is a formal language

based on Bio-PEPA, developed for working with models of dynamic stochastic

systems. It includes the information about uncertainty in the model and allows

for this uncertainty information to be refined through observation.

• MultiVeStA [104] is a statistical analysis tool which was designed with the in-

tention of making it suitable for easy integration with discrete event simulators.

An extension of MultiVeStA for the CARMA simulator is described in [49].

• PRISM [69] is one of the existing probabilistic model checkers. Its software

implementation is as of March 2019 maintained and kept up to date. PRISM

was designed for the purpose of working with various types of models, such as

discrete-time Markov chains (DTMCs), continuous-time Markov chains (CTMCs),

Markov decision processes (MDPs), probabilistic automata (PAs) and proba-

bilistic timed automata (PTAs). It also supports extensions of these models,

such as costs and rewards.

• STORM [34] is a probabilistic model checker, featuring the analysis of Markov

chains and MDPs (discrete and continuous). It is compatible with, among others,

the PRISM modelling language.

• CASPA [20] (Causality-Based Abstraction for Security Protocol Analysis) is a

model checker designed for the purpose of proving properties of cryptographic

protocols such as secrecy and authenticity properties. In CASPA, a given Marko-

vian stochastic process algebra specification of a model is represented by multi-

terminal binary decision diagrams (MTBDDs).
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Spatial CASL: Extending CASL with

syntax for spatial models

Smart data structures and dumb code

works a lot better than the other way

around.

Eric S. Raymond

3.1 Overview of CASL

CASL is a specification language [48], built on top of the CARMA language, to provide

a richer syntax with the aim of making the process of creating models easier for users

who are unfamiliar with process algebra and similar formal notation. In CARMA, the

expressions defining environments as well as the components interacting within them,

are abstract from the details, which are necessary in the context of a concrete spec-

ification that is required, for example, to provide an input for the simulator. These

details includes definitions of data types, structures standard functions and operators.

In addition to that, supplying a syntax that follows a standard programming code style

makes it easier to understand and learn by those who are not experts in formal lan-

guages. CASL provides a concrete textual syntax, which is in many ways similar to

the syntax of high level programming languages, such as Java or Python, appropriate

for being handled by software tools designed for parsing the models, type checking,

static analysis, model checking and simulation.

40
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The basic syntax constructs found in CASL (excluding constructs relating to space):

• Basic data types

– bool for boolean values

– int for integers

– real for real values

– location for spatial locations

• Complex data types

– enumerations are sets of named values

– records can be used for declaring aggregated data structures, consisting of a

sequence of typed fields

– collections include lists (sequences of values of the same type) and sets (un-

ordered lists which do not include duplicate elements) and provide structures

for storing homogeneous data

• Literal expressions

– none, used to refer to an undefined value

– boolean literal, one of the two constant values true and false

– integer literal, a base-10 integer represented by a non-empty sequence of dig-

its, i.e. an element in (0..9)+

– real literal, a floating point value represented by an element in (0..9)∗.(0..9)+

• Reference expressions

– my, used to refer to a variable in the local store, from the context of the com-

ponent encapsulating that store

– global, used to refer to a variable in the global store of the environment

– sender, used in the context of a message (an action with data), to refer to the

local store of the component from whom the action is output

– receiver, used in the context of a message, to refer to the local store of the

component for whom the action is input
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• Arithmetic expressions

– standard arithmetic operators: +, -, * and /, are used to combine integer and

real expressions

– casting operators - to convert integer values into real values (and vice versa),

two cast operators int(e) and real(e) can be used (they are based on the

standard casting operators from the java.lang Java package)

– built-in constants and functions - CASL provides a set of expressions for

commonly used constants, for example the values of the π number and Eu-

ler’s number, as well as functions, such as the trigonometric functions and the

square and cube root of a value

– now is a special expression referring to the current time in the simulation

• Boolean expressions

– standard comparison operators(==, !=, <, <=, >, >=) can be used to build

boolean expression of the form e1 op e2, where op is the operator

– standard boolean operators (||, &&, !) can be used to compute disjunction,

conjunction and negation of a boolean expression

– the conditional operator (e1 ? e2 : e3) when evaluated, this expression

is equal to e2 if e1 is true, otherwise it is e3

• Operations on collections CASL is equipped with a set of expressions that can

be used to perform the standard operations on collections such as insertion and

retrieval of values. In addition to that, the user can use the exist and filter

functions to check if the elements in the collection satisfy a particular predicate,

as well as to query the collection in order to retrieve the set of values satisfying a

particular predicate (using the function filter).

• Random expressions

– sampling random values - the RND keyword returns a random variable in the

interval [0,1), while the NORMAL(e1, e2) function returns a normally dis-

tributed variable with the mean e1 and variance e2

– random selection can be performed using the U(e1, ..,en) expression to

obtain an element uniformly selected from the set of values e1, ..,en, or
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using the select(e1,e2) expression, in which e1 is a collection while e2 is

an expression that is used to compute the probability to select each element in

e1

• Components A parametrized component prototype provides the general struc-

ture of a component that can be instantiated inside the system definition block.

The definition of a component prototype consists of three blocks: the store, the

behaviour and the initial configuration.

– the store defines the data structures for keeping the values comprising the local

knowledge of the component

– the behaviour defines the Markovian processes that are specific to the con-

sidered components - the CASL syntax for defining those is analogous to the

CARMA syntax for defining processes, described in the previous paragraph

– the initial configuration defines the initial states of the processes defined in

the behaviour block

• System definitions

– the collective block contains expressions that can be used for instantiating

components

– the environment block provides structures for defining the global properties of

the environment, such as: store (the globally accessible knowledge), prob

(probabilities of actions), weight (weights for actions that alter the probability

if more than one action can be triggered), rate (rates of actions), update (the

update to be applied on the global store after each action is triggered)

•Measures Measures are expressions used to probe the simulation results to obtain

specific desired values. These can be directly referenced variables from the model

definition, or they can comprise multiple values processed into statistics, using a

variety of available syntax constructs.

• Other standard elements CASL provides the standard Java-like syntax for declar-

ing a variety of elements that are commonly found in programming languages,

such as:

– variable declaration, with or without value assignment

– value assignment
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– if-then-else

– for loop

– return

– block

3.2 Additional syntax for describing space

Textual formal languages are a powerful tool for the specification and analysis of com-

plex systems. Many of them do not include an explicit representation of space in their

syntax – CASL being an example. In this section we describe Spatial CASL - the addi-

tional syntax dedicated for the specification of space, which was designed as an exten-

sion of CASL. The addition of syntax constructs specifically designed for describing

space is motivated by the fact that most of the scenarios that have been implemented

in CARMA have some spatial aspects.

3.2.1 Locations in space

A new basic type, location, was added to provide a type for referring to a location in

space.

The space in which the system operates can be defined as a graph, the nodes of which

represent possible locations, and the edges represent connections between these loca-

tions.

A new kind of block, space, was introduced to provide a way of defining sets of

general properties of the spatial structure of the model. A single CASL document can

have multiple space definitions, one of which may be selected for use (instantiated) in

the model within the system block.

In the subsections below we present each of Spatial CASL features in detail.

3.2.2 Space block name and parameters

The space block must be named and can be parametrized with a list of typed values:
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1 space <name >(<type_1 > <name_1 >,...,<type_n > <name_n >) {

2 ...

3 }

The name associated with the space would usually describe the kind of space that is

being defined in that block, for example 3dGrid or HexagonalGrid.

3.2.3 Universe

Each space is associated with an universe, which can be intuitively understood as the

coordinate system used in the space definition. The universe is defined as a sequence

of typed fields:

1 universe < <type_1 > <name_1 >,...,<type_n > <name_n > >;

For most two-dimensional spaces, the universe consists of two values, storing the x

and y coordinates on the Cartesian plane. For particular kinds of regular spaces, for

example the hexagonal grid, an alternative coordinate system might be more useful. An

example of this is the hexagonal grid, which can be elegantly defined over a 3-valued

coordinate system, as shown in Fig. 3.1.

Figure 3.1: The 3-value based coordinate system of the hexagonal grid.
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Figure 3.2: Konigsburg Graph

3.2.4 Nodes

The nodes block contains the declarations of nodes (which must form a subset of the

nodes in the universe) that are used in the model. This structure was introduced

to provide a way of adding limits to the spatial graph, since spaces generated by the

universe declaration contain infinite numbers of nodes.

Nodes are declared via the <node_def> statement. This statement can be used to as-

sign an (optional) name to each node and the corresponding position in the coordinate

system of the universe:

1 <name_1 >[e_1 ,...,e_n];

For example, the declaration of the graph corresponding to the classical Konigsburg

bridge scenario of Fig.3.2 has the following form:

1 space Konigsburg {

2 nodes {

3 A;

4 B;

5 C;

6 D;

7 }

8 ...

9 }

If a particular location is assigned to each node, the same example can be defined as:

1 space Konigsburg {

2 universe<int x, int y>;

3 nodes {
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4 A[0,0];

5 B[0,-1];

6 C[0,1];

7 D[1,0];

8 }

9 ...

10 }

Nodes can also be unnamed, or the names can serve as labels to differentiate between

different classes of nodes (in which case multiple nodes share the same name), like in

the following example:

1 space OfficeBuilding {

2 universe<int x, int y>;

3 nodes {

4 [0,0];

5 [0,-1];

6 [0,1];

7 [1,0];

8 Ground[0,3];

9 Ground[2,3];

10 Level1[0,0];

11 Level1[2,0];

12 Level1[2,1];

13 }

14 ...

15 }

In order to uniquely reference a node, the same construct as the one declaring it in the

nodes block, must be used.

Nodes can be also defined using the following iterative statements:

1 for x from e_1 by e_2 to e_3 {

2 <node_def >

3 }

1 for x in e {

2 <node_def >

3 }

1 if e {

2 <node_def >
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3 } else {

4 <node_def >

5 }

For example, in a square grid with the origin at its centre, the nodes are defined in the

following way:

1 space SquareGrid(int width , int height) {

2 universe <int x, int y>;

3

4 nodes {

5 for x from -width/2 to width/2{

6 for y from -height/2 to height/2{

7 [x, y];

8 }

9 }

10 }

11 ...

12 }

The special location type, as well as the universe and space definitions provide an

additional error-checking mechanisms for the model. Node which have not been de-

clared in the nodes block inside the space definition, cannot be assigned to an attribute

of the location type.

3.2.5 Areas

Areas are constructs designed to provide a way of associating collections of nodes with

labels.

For example, in a power grid scenario, the modeller might want to differentiate be-

tween nodes containing a power plant and a node containing a power consumer.

1 space SquareGrid(int width , int height) {

2 universe <int x, int y>;

3

4 nodes {

5 for x from -width/2 to width/2{

6 for y from -height/2 to height/2{

7 [x, y];

8 }
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9 }

10 }

11 areas{

12 plants{

13 [0,0];

14 [2,2];

15 }

16 consumers{

17 for x from -width/2 to width/2{

18 for y from -height/2 to height/2{

19 [x, y];

20 }

21 }

22 }

23 }

24 }

In a more abstract scenario, the distinction between certain graphical structures of the

graph, such as the corners, diagonal and the border of the regular grid, might be desired.

This can be obtained in the following way:

1 space grid( int width , int height ) {

2 universe <int x, int y>;

3 nodes {

4 for x from 0 to width {

5 for y from 0 to height {

6 [x,y];

7 }

8 }

9 }

10 areas {

11 corner {

12 [0,0];

13 [width -1,0];

14 [0,height -1];

15 [width -1,height -1];

16 }

17 diagonal {

18 for i from 0 to min(width ,height) {

19 [i,i];

20 }

21 }
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22 border {

23 for i from 0 to width {

24 [i,0];

25 [i,height -1];

26 }

27 for j from 0 to height {

28 [0,j];

29 [height -1,j];

30 }

31 }

32 }

33 ...

34 }

Areas can be used in models when a node needs to satisfy certain properties (be of a

certain kind) in order to be a candidate for the next node in the sequence of a compo-

nents’ movements. For example, in an evacuation scenario, some nodes may belong

to the area ‘dangerous’ and others to the area ‘safe’. A component’s behaviour may

be then specified in such a way that it is never allowed move from a ‘safe’ node to a

‘dangerous’ one:

1 A = move[newLocation.safe || currentLocation.dangerous](newLocation)

.{my.currentLocation := newLocation;}.A;

3.2.6 Connections

The connections block provides ways of instantiating the edges of the spatial graph,

and associating them with labels and values. These are especially useful in scenarios

with mobile components, whose ability to traverse a certain path might depend on a

set of predicates over the connections comprising that path. One such example is the

carpooling scenario, in which cars with the number of passengers higher than a certain

value are allowed to move over fast road lanes, while other cars can only move over

slow road lanes. A connection can be declared either explicitly or using expressions

relating to the positions of nodes.

The -> operator is used to define a directed connection, and the <-> operator is used

to define an undirected connection:
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1 connections {

2 node1 -> node2;

3 node1 <-> node2;

4 }

1 connections {

2 for i from 0 to width -1 {

3 for j from 0 to height -1 {

4 [i,j] <-> [i+1,j];

5 [i,j] <-> [i,j+1];

6 }

7 }

8 }

Each connection can be associated with a set of features. These features can be later

used in evaluation of predicates for component movement. For example, in the car-

pooling scenario, if a connection is associated with the feature fastLane=true, only

cars having a particular number of passengers aboard will be allowed to use them.

The features of the space’s connections can be defined using the following syntax:

1 connections {

2 node1 -> node2 {fastLane = true, weight = 1.0};

3 node1 <-> node2 {fastLane = false, weight = 0.5};

4 }

In the above example we use boolean fields to identify the connection type, as there

are only two types of connections in this particular model. If a scenario requires the

model to distinguish between multiple types of connections, an integer field can be

used instead in order to store the connection’s unique identifier. Currently, CASL does

not support string variables, but if these are included in the future, a more human-

friendly connection’s name could be held in such a variable in a similar way.

3.2.7 Location and connection expressions

The Spatial CASL syntax is also equipped with a set of expressions to access the data

relating to space:

• l.post: indicates the locations in the postset of location l;
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• l.pre: indicates the locations in the preset of l;

• l.name: indicates the location name;

• l.xi: refers to the element xi of the position of l;

• l.area: is a boolean expression that can be used to check if location l is part of

the area area;

• locations: indicates the set of all locations;

• area_name: is used to access the set of locations with label area_name;

• edgeValues(loc1, label, loc2): returns the value associated with the feature

label of the connection loc1->loc2;

Below is an example of how connections and their expressions can be used in the

definition of a components’ movement through a graph. We assume that the component

can only move to another location if there exists a connection from its current location

to the location it is attempting to move to. Using the Spatial CASL syntax, this can be

easily obtained with the action predicate, in the following way:

1 A = move[newLocation in my.currentLocation.post](newLocation).{my.

currentLocation := newLocation;}.A;

Additionally, we may suppose that the agent is allowed to move along a connection,

only if that connection’s features satisfy certain properties, like so:

1 A = move[newLocation in my.currentLocation.post && 1.0 in edgeValues

(my.currentLocation , weight , newLocation)](newLocation).{my.

currentLocation := newLocation;}.A;

3.3 The merits of Spatial CASL

Before Spatial CASL existed, models with locations and connections needed to hard-

code these within CASL functions, as shown in Listing 3.1. This was usually done by

defining functions that would take two locations as an argument. For every connection

one would want to define between two given nodes, there had to be a case within that

function which would return true if these two locations were given in the function call.

In the case of a dense network this quickly explodes into many lines of repetitive and

hard to maintain CARMA code.
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Listing 3.1: Carma code snippets showing one possible way of encoding spatial infor-

mation in CASL

fun bool ExistsPath(int xFrom , int yFrom , int xTo, int yTo){

if (xFrom == 0 && yFrom == 0 && xTo == 1 && yTo == 1){

return true;

}

if (xFrom == 0 && yFrom == 0 && xTo == 1 && yTo == 2){

return true;

}

if (xFrom == 1 && yFrom == 1 && xTo == 1 && yTo == 2){

return true;

}

...

else return false;

}

component Mover(int x, int y, process Z){

store{

attrib x :=x;

attrib y :=y;

attrib nx :=0; //next x

attrib ny :=0; //net y

}

behaviour{

A = [ExistsPath(my.x, my.y, 1, 1)]

choose_x1y1*[false]<>{my.nx := 1; my.ny := 1;}.M

+ [ExistsPath(my.x, my.y, 2, 1)]

choose_x2y1*[false]<>{my.nx := 2; my.ny := 1;}.M

+ [ExistsPath(my.x, my.y, 0, 0)]

choose_x0y0*[false]<>{my.nx := 0; my.ny := 0;}.M

+ [ExistsPath(my.x, my.y, 1, 2)]

choose_x1y1*[false]<>{my.nx := 1; my.ny := 2;}.M

...
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+ [AtGoalA(my.x,my.y)]finish*[false]<>.kill; //

remove agent when at goal

M = move*[false]<>{my.x:=my.nx;my.y:=my.ny;}.A;

}

init{Z}

}

With Spatial CASL the definition of the spatial structures is more dense and contained

within the scope of the block of code designated for this purpose, as shown in List-

ing 3.2. There are no global functions holding encoded data, now the data has a des-

ignated non-generic structure to be held within. In addition to that, the behaviour can

be simplified by introducing the choose action. This is an action which involves mes-

sage exchange between agents and nodes in the system (both represented by CARMA

components). Its predicate, nodeLocation in my.current.post uses the new post

operator to automatically involve only those nodes that are within the reach of the agent

at its current node. This eliminates the need for the ExistsPath function, seen in the

previous example. In addition to that the behaviour definition of the Mover component

remains unchanged, regardless of the changes in the definition of the spatial network

over which it moves. In the previous example, a change to the definition of the Mover’s

behaviour, following a change in the definition of space, would have been necessary.

Listing 3.2: Carma code snippets showing Spatial CASL structures

space Indexed2DGrid (){

universe <int id, int x, int y>

nodes {

[0,6,7];

[1,6,4];

[2,1,2];

[3,3,1];

[4,6,0];

[5,9,1];

[6,12,2];

}

connections {

[0,6,7] -> [1,6,4];
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[1,6,4] -> [0,6,7];

[1,6,4] -> [2,1,2];

[1,6,4] -> [3,3,1];

[1,6,4] -> [4,6,0];

[5,9,1] -> [1,6,4];

[5,9,1] -> [4,6,0];

[5,9,1] -> [6,12,2];

[6,12,2] -> [1,6,4];

[6,12,2] -> [1,6,4];

[6,12,2] -> [5,9,1];

}

areas {

}

}

component Mover(location start , location goal , process Z){

store{

attrib location current := start;

attrib location goal := goal;

attrib location next := start;

}

behaviour{

ReadyToChoose =

choose*[nodeLocation in my.current.post]

(nodeLocation){my.next := nodeLocation;}.

ReadyToMove;

ReadyToMove =

move*[false]<my.current , my.next >

{my.current := my.next;}.ReadyToArrive;

ReadyToArrive =

[my.current == my.goal]arrive*<>.kill

+ continue*[false]<>.ReadyToChoose;

}

init{Z}

}



Chapter 4

CARMA Graphical Plugin

I have all the tools and gadgets. I tell

my son, who’s a producer, ‘You

never work for the machine; the

machine works for you.’

Quincy Jones

4.1 Introduction

Formal modelling languages provide powerful tools for modelling the behaviour of

a system. They are most commonly implemented in a textual form, the precise and

unambiguous nature of which supports the motivation of creating explicit and accurate

descriptions of a given system. However, text-based system specifications tend to grow

significantly in length and intricacy when large systems are considered. This results in

the development of models which are not easy to understand and work with even for

users who have experience in the particular modelling language.

Graphical approaches to formal modelling provide an alternative way of building sys-

tem specifications [90], which has a number of advantages over the text-based manner.

It is more intuitive, especially when working with systems in which the geographi-

cal or conceptual locations of elements play a significant role, to be able to lay out

these components graphically. By doing so, as an immediate by-product of the process

of graphical model creation, we also obtain a schematic visual representation of the

system, one which is often created separately and at a later stage, when dealing with

56
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textual models. Graphical representations, such as plots, graphs, charts and schematics

are commonly produced to illustrate the concepts behind particular instances of mod-

els, as well as to present the results obtained by means of simulation. The reason why

these approaches are so commonly used, in contrast to, for example, text filled tables

for data representation, is because they are easier and faster to read and understand.

By allowing the modellers to work graphically, we are in effect bringing these positive

aspects of graphical representation from the later stages of model analysis to the earlier

stages.

Examples of such systems, described in greater detail in Chapter 2, can be found across

a broad spectrum of domains. In this work however, we focused specifically on systems

coming from the realm of urban planning.

The CARMA Graphical Plugin (CGP) is a software tool designed for the purpose of

graphical specification of CAS. CGP is especially useful for working with those CAS

in which the physical locations of agents and other model elements play an important

role in the modelling and subsequent analysis of the system.

In this setting, systems often contain components whose movement in space is re-

stricted in some way. Vehicles and pedestrians are generally moving along predefined

routes imposed by the environment, such as streets or paths. CGP was developed for

the purpose of working with such systems with constrained movement.

4.2 Existing graphical modelling languages and tools

There are a number of existing graphical approaches to modelling systems and archi-

tectures. They can be classified in the following way:

• Graphical languages for modelling software architecture

• Graphical languages for modelling algorithms and processes

• Graphical languages for modelling behavioural aspects of multi-agent systems

• General purpose object-oriented graphical languages

It is important to note that these categories are not exclusively disjunctive, and many

of the languages belonging to one class may be applied to problems from another.
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4.2.1 Graphical languages for software architecture and require-

ments

Architecture Description Languages (ADLs) [6] are a family of modelling languages

used for specifying conceptual models of software architectures. There are many ex-

isting implementations of ADLs, and most of them have a graphical syntax. Notable

examples include: ABACUS [1], a modelling language equipped with a comprehen-

sive set of software tools implemented in HTML5, and Build Your Own ADL (byADL)

[7], which consists of a metamodel that can be used for generating ADLs tailored for

specific business needs.

Behavior Trees [87, 107] are a formal, graphical language often used to express the

stakeholder requirements for software systems. This approach provides an intuitive

graphical tree notation. Individual trees represent units of requirements, and can later

be merged into a model representing the whole system.

4.2.2 Graphical languages for modelling algorithms and processes

A flowchart [2] is a graphical representation of an algorithm or a (stepwise) process.

In a flowchart, different kinds of boxes are used for representing different kinds of

expressions. These boxes are then connected with arrows to illustrate the progression

through the algorithm. The two main classes of boxes are activities and decisions.

Activities denote the execution of a particular operation, while decisions branch out

through multiple outgoing arrows, the choice of which depends on satisfying a partic-

ular condition.

Business Process Model and Notation (BPMN) [5] is a graphical approach to specify-

ing business processes. The graphical aspect of this modelling tool is realized through

Business Process Diagrams (BPD), a flowchart-like schematic representation from the

domain of business management. The main aim for creating BPMN was to provide a

uniform standard that could be easily understood by business stakeholders.
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4.2.3 Graphical languages for modelling behavioural aspects of

multi-agent systems

Petri nets [81] are a modelling language used for the description of distributed systems.

A petri net is comprised of places and transitions, which are linked through arcs. Input

places have an outgoing arc, connecting it to a transition, and output places have an

arc incoming from a transition. In addition to that, there are tokens distributed among

the places. The triggering (firing) of a certain transition depends on whether there are

sufficient tokens in its input places.

4.2.4 General purpose object-oriented graphical languages

Perhaps the most widely used graphical modelling language is the Unified Modelling

Language (UML) [44]. UML is an extremely flexible tool, providing modellers with an

extensive range of elements that can be used to represent conceptual, software-based

and physical components of a system, as well as different types of connections estab-

lishing relationships between them. UML is in itself objective (every UML element is

an abstract class with no superclass), and it is also specifically tailored for specifying

object-oriented models. The advantages and disadvantages of UML both stem from

the same feature of the language: its extremely rich and broad collection of basic el-

ements. Almost any system can be expressed in UML, and more often than not, in

more than one way. Because of this vastness of choice, UML models have a tendency

to become large and over-complicated with time. In addition to that, modellers hav-

ing different levels of familiarity with its syntax, or even simply different modelling

styles, may produce very different realizations of the same system. UML however

remains the standard for graphical modelling approaches and many narrower-scoped

implementations have stemmed from it in response to its shortcomings [63, 86, 93].

Integration DEFinition (IDEF) [79] is a family of modelling languages which were

created with the aim of being generic, neutral and reusable. The sub-modules of IDEF

are indexed with a suffix and each has a specific modelling application. For example,

IDEF0 deals with function modelling, IDEF1 is designed for information modelling

(including IDEF1X which specializes in database design problems), IDEF4 for object-

oriented design and IDEF5 for ontology description capture. Among these, IDEF0 and

IDEF5 have a graphical representation.
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4.2.5 Graphical languages for spatial information

In this chapter we focus on designing a graphical language for the purpose of repre-

senting spatial information. There are a number of existing systems of this kind, the

examination of which has helped us understand what features should be included in

CGP.

Geographical Information Systems (GIS) [28] are systems designed for working with

spatial data, mainly geographical data. A GIS is a rich framework which consists of

tools and specifications relating to storing, manipulating, representing and analysing

spatial data. For example, it classifies geographical objects in terms of their desired

digital representation into subsets such as discrete objects (i.e. buildings, landmarks)

and continuous data fields (i.e. elevation or rainfall). These digital data representations

are then mapped to graphical references such as raster and vector images. A GIS

applies composition to graphical primitives (points, lines and polygons) in order to

construct graphical representations of the stored information. A number of graphical

representation of specific spatial features are defined, such as shading and contour lines

to represent altitude.

In [33], the authors identify the key elements for spatial analysis and divide these into

four classes: basic primitives, spatial relationships, spatial statistics and spatial data

infrastructure. A subset of these elements is relevant to this thesis scope and consists

of: place, attributes, objects, multiple properties of places, fields, topology, distance,

direction, neighbourhood, spatial metadata. The building blocks of spatial analysis

are identified and consist of models which allow to represent the spatial information,

as well as geometric operations for modifying the models and queries for applying

measures.

Google Maps [12] is a widely used system for graphical representation of spatial data.

We used the API provided by this service in order to obtain the information about the

geographical locations of points in interest (see Chapter 6).

4.2.6 CGP among other graphical modelling tools

CGP, being an extension of CARMA, can be classified as a graphical tool for modelling

the behavioural aspects of multi-agent systems. It differs from the languages described
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above in its strong focus on the movement mechanics and spatial distribution (topology

and distances) of the agents within the collective.

4.3 The two perspectives of graphical model represen-

tation

In order to design a graphical language suitable for modelling a concrete set of prob-

lems (which in this case are CAS) there are a number of things that one needs to

consider.

One of them is the possibly divergent interests of potential users of the tool. The

graphical tool forms an additional layer in the hierarchy of model types (see Fig. 4.1).

Because of that, the process of designing it should be considered from at least two

disparate points of view - those of modellers viewing the version of the system through

layers on top of and underneath the new graphical model layer (see Fig. 4.1). In this

case, the two layers are ‘conceptual model’ and ‘modelling language representation’.

Figure 4.1: A hierarchical view of possible representations of a system, including the

new graphical layer.

When trying to instantiate a conceptual model, the modeller tries to represent all of
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its aspects as closely as it is possible to the original. The graphical tool can therefore

be a great aid when representing space, however it may also limit the flexibility and

accuracy of the original model in order to support translation into formal language

notation, or even, to some degree, in order to impose a simplification of the original

idea. For example, in the bike sharing scenario [95], bike stations are distributed within

various places of an urban area, which can be accessed by their geographic coordinates,

represented by real numbers.

A good simplification (one that reduces the complexity while not diverging too far

from the original) of this system, is to restrict the stations’ locations to a regular grid,

superimposed on a map of the examined area.

For the purpose of this research, the modelling language of choice is CARMA. One

of the planned capabilities of the graphical tool is to be able to generate syntactically

correct CARMA code files from the graphically specified input. Because of that, the

same assumptions that the structure of the CARMA language might force us to make

about the model will also be embedded in the graphical language, and thus the same

limitations will be imposed on the modeller.

These limitations might not be pronounced in the visualisation, nevertheless the user

will need to remember that the provided specification will ultimately be translated into

CARMA, where these limitations are present. For example, it might not be obvious just

from looking at the graphical view, that CARMA actions are probabilistic, however this

is a piece of information that the modeller needs to take into account while specifying

the chosen system.

4.4 Graphical and textual input

Another important point is the fact that the graphical layer is not going to be a complete

representation of the model, which means that the conceptual model cannot be simply

replaced by the graphical model in order to provide input for CARMA code generation

(as depicted in Fig.4.1 by two inputs to the CARMA layer). This is because some

features of models must be fully customisable, in order to provide the user with the

ability to accurately represent a broad spectrum of systems. These features include

constructs like functions and actions.

In CARMA the textual syntax allows the user to specify a mathematical or logical
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expression of any complexity to be used in definitions of functions or predicates. A

mathematical or logical expression can be easily translated into code for the purpose

of computation. It is neither easy nor intuitive to work with such concepts graphically,

and therefore it is best to leave the user with the ability to define them directly as

CARMA code, possibly in a text editor embedded in the graphical GUI of the proposed

tool.

4.5 Systems with restricted movement

There are many examples of CAS in which the components not only move through

physical space, but at the same time obey specific sets of movement rules.

For example, in bus systems, we can distinguish components that never change their

location (bus stops), components whose movement follows a specific path (buses), as

well as components that can move without additional restrictions (bus repair service

vehicles, pedestrians).

Other urban transport systems (such as carpooling, trams and bike-sharing) also have

components subject to one or more movement restrictions.

An important characteristic of these systems is that the spatial locations of individual

components can have a significant influence on the performance of the collective as a

whole. We can classify these effects into two categories: direct and indirect influence.

• A direct influence is observed when an agent is allowed (or forbidden) to perform

specific actions based on the values of its location attributes.

• An indirect influence is not related to the state of an individual component but

is instead imposed by the environment or the state of the whole system. One

common example of this is a situation in which the time taken to traverse a path

connecting two points is proportional to the distance between the locations of

the two points in space.

When working with the CGP we focus on systems in which the movement of compo-

nents is constrained to follow certain routes in space, each route defined by a path.

More precisely, we consider systems which have the following properties:
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1. The environment of the system contains the definition of one or more paths (rep-

resented by graphs) which specific groups of components can traverse in order

to change their location.

2. Components can be classified into one of three groups based on their ability to

move in space:

(a) Stationary components – their location attributes are constant.

(b) Path-bounded components – can only move along specified paths, their

location attribute values belong to the set of node locations of nodes within

the specified paths.

(c) Free components – can freely change their location attribute to any value

(but are still bound by the environment’s definition of space, i.e. a grid).

3. The spatial locations of components within the system contribute either directly

or indirectly to measures calculated during model evaluation.

In other words, we are interested not only in the topological arrangements of the loca-

tions of components but also in the distances between nodes.

4.5.1 Example: The Meadows city park

The Meadows city park in Edinburgh and its surrounding area provide a good example

of an environment in which different classes of components obey specific movement

restrictions (see Figure 4.2). Motor vehicles, bikes and pedestrians can all move along

roads surrounding the park. In addition to this, there are paths that only bikes and

pedestrians can use.

This classification can go a level further if we also consider the fact that roads have

special lanes for buses, taxis and service vehicles to use. In addition to that, some

roads that lack pavement space do not allow pedestrian movement. Some, but not

all, of the paths inside the park have separate bike lanes; this results in the cyclists

being able to move at a higher speed. Some rules may not be enforced by law, but are

generally accepted in most urban scenarios. For example, pedestrians moving along

congested paths are more likely to keep to a particular side (in Britain - to the left),

which increases the overall throughput of the path (we further explore this mechanism

of crowd-routing in Chapter 5).
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Examples of systems with constrained movement from outside the realm of urban plan-

ing include heterogeneous computer networks, secure computer networks, animal mi-

gration networks, and many others.

4.6 Representing Space Graphically

It is no coincidence that maps are made by drawing the shapes of the elements observed

in a specific location, rather than, say, providing a list of GPS coordinates of the points

that make up those shapes. Human minds are very visually oriented and it is generally

much easier for us to grasp locations and distances when they are laid down in the form

of a drawing (even with the extra scale factor that we need to take into account), than

it would be if we were instead provided with a long list of numbers and associations,

defining the nodes and edges of shapes comprising the area.

The CARMA suite provides a great toolset for working with CAS. CASL is a textual

language for system specification. The aim of the work described in this chapter was

to enrich the CARMA toolset with a Graphical User Interface (GUI) for an additional,

more intuitive way of specifying CAS which have components obeying movement

restriction rules.

The following subsections outline the key elements available to the modeller in our

graphical editor; essentially these are a graphical interface for specifying components,

paths and movement rules, as well as a drag-and-drop palette for laying down the

Figure 4.2: An aerial view of the Meadows City Park in Edinburgh. The roads are

coloured in purple, and the paths are coloured in green. (Screen-shot from Google

Maps.)
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Figure 4.3: A screenshot of the graphical interface for path and components layout.

graphical elements at specific locations in space.

4.6.1 Paths

Paths are graphically represented by graphs consisting of nodes, connected by edges.

Nodes are placed on a grid which is an unbounded 2D plane, tessellated by rectangles

to define grid points. To reflect their placement on grid points every node has a location

attribute which is a coordinate in two-dimensional space. The edges in a path graph are

directed and coloured (see Fig. 4.3). The direction of an edge constrains movement

on that edge to be in that direction. The colour of an edge constrains the types of

components which can move along the edge.

The graphical palette allows the user to instantiate nodes, and the paths connecting

them, by laying out the nodes on the grid. From the user’s point of view, the creation

of path node instances is very similar to the creation of component instances.

The edges of this graphical representation are translated into CASL connections in

the process of code generation. For clarity, in this thesis the word ‘edges’ is used

when referring to the graphical elements connecting nodes in the graphical specifi-

cation and ‘connections’ when referring to the CASL model elements. The relation

between edges and connections is very straightforward - each edge from the graphical

model is represented by a connection in the CASL model.

The relationship between graphical nodes, CASL locations and CASL components

is of a slightly more complicated nature. Path nodes are distinct from components,

and their instances are processed differently for the purpose of CASL code generation.

In CARMA, there is only one type of agent - the component. Every component has

a store and behaviour, and these can be defined by the user with no restrictions. In
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graphical scenarios, we can categorise these components into two classes: those who

visit (mobile components) and those who are visited (nodes). In CARMA, both kinds

are represented using the component template. When instantiated in this way, within

each of the classes we can observe a set of common design patterns and features.

• Nodes have data structures for storing information about their (immutable) loca-

tion (stored as the location type from Spatial CASL) as well as their current

(or: minimum, maximum) occupancy. Their behavior involves managing the

flow of mobile components; advertising themselves to potential visitors and reg-

istering incoming and outgoing components.

• Mobile components are usually the main subject of the analysis. Their inner

mechanics may be very complex depending on the particular model. However,

on the level of movement through space (which is what CGP is concerned with),

they share a number of similarities. The internal knowledge must include their

current (variable) location as well as the next, potential location, together with

behaviour structures for making the choice about which location should be the

next one. They should also know their start and goal location, for the purpose of

implementing their ways of entering and exiting the system. Additionally, there

needs to be a transition that updates the components’ current and next location

variables, in order to realize their movement through the nodes.

4.6.2 Nodes

In CGP, nodes are coloured, and components may be restricted to be able to visit only

specific colours of nodes. Visiting a node from the perspective of a component means

that the component will assume the same value of location attributes as the node.

As mentioned before, at the level of CASL code, nodes are just another kind of CARMA

component. Their behaviour is automatically generated and provides a mechanism for

mobile components to choose, visit, and leave a given node.

It is important to note that the use of the term ‘node’ in the context of CGP is distinct

from the ‘node’ discussed in Chapter 3 as an additional element of Spatial CASL syn-

tax. In Spatial CASL, nodes are specific locations belonging to the defined universe,

which can be used in CASL expressions when specifying the model. In the context

of CGP nodes are higher-level compund entities encoded in CASL with the use of
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Figure 4.4: One real-world scenario in which the current state of a component changes

its movement rules is when an unmarked police car becomes a privileged vehicle by

turning on a siren.

components and locations.

4.6.3 Components

The user can specify a component type using structured input. The name and appear-

ance of the component can be defined as well as the processes defined in the compo-

nent, its allowable path and non-movement actions (see Fig. 4.5).

Once a component type has been defined, instances of that component type can then

be placed within the graphical layout (by drag-and-drop). Component instances of the

same type differ only in the values of their attributes, and therefore can be represented

by identical symbols. Their placement on the grid determines their location attribute.

The state of a component, given by the value of one of its attributes, can determine if

that instance is allowed to move on a particular path.

For example, the user can specify a Car component with the states NORMAL and PRIVILEGED.

This reflects a real-world scenario in which an unmarked police car (which most of

the time follows the same rules as normal cars do) may become a privileged vehicle

by turning on a siren (as illustrated in Fig. 4.4). In this example, instances of the

Car component in the state NORMAL are able to travel along paths labelled ROAD LANE,

while instances in the state PRIVILEGED are able to use both ROAD LANE and BUS LANE

paths. This mechanism applies to other scenarios from the area of urban planning,

for example the movement of ambulance vehicles in their normal and privileged state.

This particular case study has been modelled in CARMA and described in [47].
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Figure 4.5: A screenshot of the graphical interface for defining component, node and

edge prototypes.

4.7 Translating the graphical specification into CASL

code

There is usually more than one possible way of specifying a particular model in CASL.

In order to decide on a specific representation, one must answer the following ques-

tions:

• Which real-world elements are to be represented by constants?

• Which real-world elements are variables or functions?

• Which real-world elements are autonomous agents with internal states and be-

haviour?

For example, the node of a spatial network, as specified in the graphical input, can be

translated into something as simple as an integer constant. Each component capable of

visiting nodes would then need to have a variable field in their internal store, to keep

the value of the node they are currently located at. If the component is only allowed

to visit a subset of nodes, there needs to be an additional predicate on the movement

action which ensures that the node value belongs to the set of values that the component
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invoking the action is allowed to visit. This version of CASL representation was used

in the first version of CGP.

This approach, however, has a number of limitations. Two important features, which

the method described above is lacking, are first the ability of nodes to store data and

second to control the number of incoming and outgoing visitors. Those features have

proved to be a very useful mechanism in systems where traffic plays an important role.

The strength of this approach is the ability of the incoming components to use the

information shared by the node to either slow down their movement rate (which they

might do, for example, in response to high congestion levels, simulating the slowing

down of movement in traffic jams), or to realize a variety of routing behaviours, the

simplest of which is to choose the least congested node among the available ones.

For this reason, in the CASL code generated by CGP from the graphical input, nodes

are represented by CARMA components, rather than by any other simpler structure.

4.8 Example scenario

Examples of systems that can be defined in the CARMA graphical editor include net-

works of paths. Each path is specified by a directed graph. Nodes can belong to more

than one graph. In this case, a component at a node may have a choice over the avail-

able paths, depending on the location, the type of the component, or the state of the

instance, as explained above.

4.8.1 CARMA model representation

To represent a scenario defined in CGP using CASL code, the following CARMA com-

ponents are created:

• Agent components

• Generator components

• Node components

Agent components represent the mobile agents in the system, specified through the

CGP interface, in this case: Bike, Car, Pedestrian and Rollerblader.
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For each agent component, a singleton generator component is created, having the

name <NameOfAgent>Generator. It is responsible for handling the creation of new

instances of a particular agent type in the system. In a trivial scenario, it triggers the

instantiating of a single agent with a constant rate. In cases where a more complex

behaviour is desired, the rate at which new agents are created may be defined using a

non-trivial function whose parameters may include values of measures of the current

state of the system. For example, if roads are highly congested with cars, more people

may choose to travel by bike, and so the rate at which new Bike components are

introduced to the system will increase.

For every type of node defined through the CGP interface, a node component is added

to the CASL model. The basic purpose of node components is to provide the infras-

tructure for registering and unregistering visitors (agent components). In addition to

that, in scenarios where agent components have to choose the next node to visit among

those which are accessible through connections, the propensity of choosing one node

over another can be adjusted using the value of the probability of the choose action.

All nodes constantly advertise themselves, trying to synchronize with agents on the

choose action in order to send out their location, which the agent can then move to. In

simple scenarios, the probability of receiving a particular node’s choose message may

be constant – in which case all nodes are equally likely to be selected. In a more com-

plex system, the probability is defined by a function, and may depend, for example, on

the current value of occupancy at the available nodes, or the physical distance between

the agent and the node.

Figure 4.6 is a schematic representation of eight stages of a typical CGP-generated

system. In stage 1, the BusGenerator component performs three actions. The first

two change only its internal state and store. They invoke a globally accessible func-

tion which randomly assigns two locations to be the start and goal location of a Bus

component. Once this preparation is done, the BusGenerator component performs

an action which results in a global update of the whole system – instantiating a new

Bus component. At the same time, the BusGenerator component changes its internal

state, to make sure that before instantiating another Bus component, the start and goal

locations are going to be randomly determined once again.

During stage 2, the newly created Bus component performs its first action. It checks
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Figure 4.6: The evolution of a simple CGP system.

whether it happens to already be at its goal location. In this case it is not - and there-

fore it continues, changing its internal state to one in which it is able to perform the

register action (stage 3).

4.8.1.1 Movement rules for connections

One example of a system with components that have movement constraints is an urban

environment with four types of path-bounded components: Bike, Car, Pedestrian

and Rollerblader, which move within the environment using paths of the following

three types: Pavement, Road, Cyclepath.

Components access to these paths is shown in the table below:
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Component: Pavement Road Cyclepath

Bike

Car

Pedestrian

Rollerblader

In this example, the ability of a component to move along a path segment of a specific

type depends only on the type of the component, not its attribute values. There is only

one type of node, and all components are allowed to visit them.

Listing 4.1: The generated CASL code for the Rollerblader component.

component Rollerblader(location start , location goal ,

real startTime , process Z) {

store {

attrib location currentLoc = start;

attrib location goalLoc = goal;

attrib location nextLoc = start;

attrib location previousLoc = start;

attrib real startTime = startTime;

}

behaviour {

ReadyToChoose =

choose*

[((nodeLoc.NODE) &&

(edgeValues(currentLoc , Pavement , nodeLoc)

|| edgeValues(currentLoc , Cyclepath , nodeLoc)))]

(nodeLoc){my.nextLoc = nodeLoc;}.ReadyToMove;

ReadyToMove = move*[false]

<my.currentLoc , my.nextLoc >

{my.previousLoc = my.currentLoc;

my.currentLoc = my.nextLoc;}.ReadyToUnregister;

ReadyToUnregister = unregister[(my.currentLoc == nodeLoc)]

(nodeLoc).ReadyToArrive;
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ReadyToArrive =

[(my.currentLoc == my.goalLoc)] arrive*[false].kill

+

[(my.currentLoc != my.goalLoc)] continue*.

ReadyToRegister;

ReadyToRegister =

register[(my.currentLoc == nodeLocation)]

(nodeLocation).ReadyToChoose;

}

init {

Z

}

}

Listing 4.1 shows the CASL code for the definition of the Rollerblader component,

having the appropriate movement rules. Figure 4.7 is a schematic depiction of the

internal behaviour of each component with movement rules in a CGP system. These

movement rules are realized through the five internal states generated automatically by

CGP:

• ReadyToArrive

• ReadyToRegister

• ReadyToChoose

• ReadyToMove

• ReadyToUnregister

When a new component enters the system, it starts in the state ReadyToArrive.

4.8.1.2 Movement rules for nodes

In the previous example all nodes were of the same kind, N. We can now extend that

scenario by introducing a new type of node (BusStop) as well as a new type of com-

ponent (Bus) and connection (BusLane).
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Below is the updated table showing the movement rules for every component:

Component: Pavement Road Cyclepath BusLane N BusStop

Bike

Car

Pedestrian

Rollerblader

Bus

All components are by default allowed to visit N type nodes, but now there is a special

type of node, the BusStop, that only Bus and Pedestrian components can be located

at.

4.8.1.3 Movement rules for component states

Finally, we can add another kind of movement rule to the system - one that depends on

the current internal state of a component. The table below shows the movement rules

for a Car component having two possible states: NORMAL and PRIVILEGED.

Component: Pavement Road Cyclepath BusLane N BusStop

Car

(NORMAL)

Car

(PRIVILEGED)

Component

State 1 State 2 State N

Movement
States 1

Movement
States 2

Movement
States N

...

...

High-level
states

Low-level
(CARMA)

states

Figure 4.7: Component behaviour in CGP systems with movement rules.

So far we only discussed CARMA model states in the context of realizing the movement

cycle. This creates just a single template-like CARMA model, of no immediate value in
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terms of applying it to real world scenarios. In order to make this template useful, we

also need to consider a new layer of states; high-level states, the transitions in and out

of which may be completely independent of the transitions within the movement cycle.

This gives us full flexibility with regard to what kind of moving component our system

involves. Are they cars, carrying passengers, visiting petrol stations and looking for

parking lots? Are they swarms of ants probing locations for pheromones left by their

fellow workers? These types of behaviours can be specified at a higher level than the

mechanics of movement through space, shared among those very different real-wold

systems, which we described in the previous sections.

In any CARMA model, the behaviour is always comprised of a number of states and

transitions between them; there is no explicit way of organizing the states into a hier-

archical structure. In contrast, in the discussed scenarios the states can be conceptually

organized into low-level (movement cycle) and high-level ones. This allows us to de-

fine systems in which high-level states, specified through the CGP interface, can be

given different sets of movement rules.

The low-level states are only enough for components in which the internal sets of

movement rules remain unchanged during the evolution of the system (see an example

in Fig.4.6).

In more sophisticated cases, for example in the scenario of the police car that changes

its state between NORMAL and PRIVILEGED (shown in Fig.4.4), more low-level states

are needed to fully express the component’s behaviour (both the states of the movement

cycle as well as the states of the car). This is solved by creating a set of low-level states

which realize the movement mechanics for each high-level state defined in CGP. In the

case of the police car with two high-level states, the total number of low-level CARMA

states generated for the component is ten.

The hierarchical structure of component behaviour in CGP is shown in Fig.4.7.

In the CARMA model, each high-level state is associated with a namespace that the

low-level states can belong to. This is realized using a prefix with movement cycle state

names (for example, PRIVILEGED ReadyToMove). This allows for different movement

behaviour in components with more than one high-level state.

Listing 4.2: The generated CASL code for the ReadyToChoose movement cycle state

of the Car component.

NORMAL_ReadyToChoose =
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choose*[((nodeLoc.NODE) && (true in edgeValues(currentLoc ,

Road , nodeLoc)))]

(nodeLoc){my.nextLoc = nodeLoc;}.NORMAL_ReadyToMove;

PRIVILEGED_ReadyToChoose =

choose*[((nodeLoc.NODE) &&

(true in edgeValues(currentLoc , Road , nodeLoc)

|| (true in edgeValues(currentLoc , BusLane , nodeLoc)))]

(nodeLoc){my.nextLoc = nodeLoc;}.PRIVILEGED_ReadyToMove;

4.9 The CGP in use

In this chapter we have presented a newly-developed software tool which assists with

the creation of CARMA models of systems in which location, movement and topology

play a significant role. CAS by their nature are large-scale systems so concepts such

as location, separation, distance and movement very often have roles to play in their

models.

By concentrating on location and movement, our graphical modelling tool provides

a convenient separation of concerns between the spatial aspects of a model (such as

location, proximity and movement) and the dynamic aspects of a model (such as at-

tribute and state update, communication, and synchronization). We believe that this

separation can be helpful in allowing the modeller to focus their attention on particular

aspects of the model in isolation.

One could argue that CGP is a strictly domain-specific tool, having evolved from mod-

els of urban scenarios involving mobile components traversing roads. However, we

can abstract the movement and location specific features from these case studies, and

find similar mechanisms in other, not directly related domains.

For example, in nature, ants often move along specific paths (path-bounded movement)

designated by the trail of pheromones left by their fellow workers [31]. The intensity

of pheromones influences the ant’s likelihood of choosing a particular path. This is

similar to a crowd routing scenario in which high congestion on a particular path may

influence a pedestrian’s likelihood of choosing that path over another. This scenario

is also particularly interesting, because the stationary components (path nodes) are
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dynamically created (when an exploring ant establishes a route to a food source) and

removed (when the source of food is depleted), through the interaction with mobile-

components.

A different scenario involves smart grids [46], distributed networks of electricity gen-

eration, storage and usage. Distance, topology, and the current state of the grid nodes

all play an important role on the movement of energy in the system.

Our graphical model-generation tool handles all of the low-level aspects of location

representation such as placement on a co-ordinate system and the consistent handling

of co-ordinate values throughout the model. This level of detail is often tedious and

error-prone to maintain manually so we believe that the model generation approach

also benefits modellers here.

We published the preliminary version of CGP in [114]. We demonstrated the usage of

CGP in the work published in [50], as described in detail in Chapters 5 and 7 of this

thesis. This gave us insights into the dynamics of crowd routing, and provides some

validation of the correctness of the transformation of our graphical design into running

code. The CGP was also presented during the QUANTICOL Project Final Review in

Lucca, Italy on 23rd of May 2017.

4.10 Potential for future work

CGP could be greatly improved by adding additional layers of graphical specification.

Mobile components form a hierarchical structure in which all elements extend one su-

perclass. The superclass contains the implementation of the low-level mechanics of

movement. Any component extending that class (for example, using UML-style class

boxes and inheritance relation arrows) would therefore be a mobile component and

have the capacity to define its own additional high-level behaviour. This behaviour,

rather than being added at the level of generated CASL code may also be graphi-

cally laid out in the form of graphs representing Markovian processes. Going one step

further, such a component could be extended again, adding more layers to the hier-

archy of behavioural patterns. The process of generating CASL code would consist

of “flattening out” the inheritance tree into a set of individual CARMA components

with complicated, intricate behaviour that would be otherwise very difficult to develop

manually.



Chapter 5

Modelling of pedestrian movement

and simple crowd routing

Walking into the crowd was like

sinking into a stew – you became an

ingredient, you took on a certain

flavour.

Margaret Atwood,

The Blind Assassin

5.1 Introduction

In this chapter we explore the dynamics of pedestrian movement through a network

of paths. This could be a specific part of a city, a pedestrianised network of lanes,

or paths through a large park. The defining feature of our example is that there are

essentially two groups of pedestrians that start on opposite sides of the network who

wish to traverse the paths to get to the side opposite to where they started. This scenario

could arise in a city where there are two train stations on opposite sides of the central

business district serving the eastern and the western suburbs of the city, and a number

of people who commute from the west work close to the east station and vice versa.

79
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During rush hour in the morning and afternoon, people want to traverse the park or

lanes as quickly as possible so that they are not late, and we wish to investigate what

features enable these pedestrians to pass through the network efficiently. If there are

multiple paths, it would seem in advance that it makes sense to use some paths for

one direction and other paths for the other direction. This raises the question of what

routing or information such as signs is sufficient for the two groups of pedestrians to

separate out onto different paths.

This chapter presents an initial investigation into the modelling of this scenario, and

we demonstrate how this can be achieved using the CARMA modelling language and

its software tools: CARMA Eclipse Plugin and CARMA Graphical Plugin (see Chapters

2 and 4), considering different possibilities for the network.

The model presented in this chapter is a simple and preliminary conception which we

extend further in Chapters 7 and 8.

5.2 Automatic code generation

The CARMA Graphical Plugin (CGP), described in detail in Chapter 4 of this thesis,

was designed for the purpose of working with models of CAS and allows the user to

specify the structure of movement in a model by laying out graphical symbols on a

plane [114]. The editor generates CARMA code from the graph which the user has

defined. In addition to normal attributes, such as the identifier and start time, CARMA

components which are defined in this way have a set of distinguished attributes to

specify their current location in space.

Each CARMA component in the model may have its mobility restricted to a given set

of paths through the graph defined by the user. Paths in this context are subgraphs of

the user-defined graph consisting of a set of uniform vertices connected by directed,

coloured edges. At any given time in the system’s evolution, the location attributes of

a component instance must be equal to the location of one of the nodes belonging to

the subgraph where that component is restricted. A component can change its location
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attributes only if there exists a path from its current node to the new node, and if this

path belongs to the subgraph where the mobility of this component is restricted. This

is realised through providing a separate ExistsPath function for each subgraph.

In the work described in this chapter we used a version of CGP where nodes are not

represented by CARMA components, they are identifiable through the location vari-

ables of a mobile component instead. The topology of the network is encoded within

the ExistsPath function that accepts two location parameters (each encoded by a pair

of integer coordinates) and returns a boolean value. If there exists a connection from

the first to the second location, the function returns true, otherwise it returns false.

Component actions query these functions during the execution of their predicates, and

can modify the component’s location attributes accordingly, in the update block. For

each node which can be accessed by a particular component type, a movement action

must be included in the component’s behaviour. If the node can be accessed by a

component in more than one state, the action must be specified separately for each

state.

In systems with complex mobility restriction graphs, topology-defining functions, as

well as component behaviour blocks may require a large number of cases in the def-

inition. This function definition is automatically generated by the CGP, freeing the

modeller from the task of manually producing this CGP model code.

5.3 Basic Pedestrian model

5.3.1 Overview

The CARMA model is illustrated in Figures 5.1 and 5.2. It assumes that there are two

types of pedestrians, A and B, and that P and Q are variables of type pedestrian.
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The two classes of pedestrians, A and B, reflect the desired direction in which a par-

ticular pedestrian would like to move. In our simple model, all pedestrians starting

at the location A want to get to location B and vice versa. This is a considerably

simplified representation, however in its general properties it is not unlike a situation

common in large cities, in which at any given location we abstract the flow of crowd

to a 1-dimensional movement, distinguishing only between pedestrians moving to and

from the city centre, and ignoring all the other directions.

The two Arrival components generate pedestrians at two different locations (on oppo-

site sides of the graph), and the pedestrians move from their origin side to the opposite

side. Once a pedestrian has reached its goal, the count for that type of pedestrian is in-

cremented and the time taken for traversal is added to the total time so that the average

traversal time can be calculated for each pedestrian type.

The model is parameterised by a number of functions that capture the graph informa-

tion and are generated automatically as described above.

• ExistsPath(P,x,y, i, j) is a Boolean function that determines if an edge exists

between a pedestrian’s current position and another node in the graph, hence a

move?i j action can only occur when such an edge exists.

• AtGoal(P,x,y) is a Boolean function that checks if the pedestrian has reached

its goal, hence the finish action fin? can only occur once the destination has been

reached. After this the pedestrian does not move any more.

• ArrivalRate(P) determines the arrival rate for each type of pedestrian.

• Startx(P) and Starty(P) define the initial location of a new pedestrian depending

on its type.

A function that is not directly related to the graph structure is MoveRate(P,x,y, i, j, . . .)

which determines the rate of movement along a particular edge, and can take additional

parameters which can affect this rate such as the current count of other pedestrians of



Chapter 5. Modelling of pedestrian movement and simple crowd routing 83

the same or different type. We use the following definition that uses the numbers of

pedestrians of the other type at the target node to reduce the movement rate.

MoveRate(P,x,y, i, j,Ai j,Bi j) =

moveA/(Bi j +1) if P = A

moveB/(Ai j +1) if P = B

where Ai j are the number of A pedestrians at the target node and Bi j are the number of B

pedestrians at the target node, and moveQ is a basic movement rate for each pedestrian

type. The values of Ai j and Bi j can be used in this context as they can be accessed

within the environment block’s scope in CASL by using the measure expressions

to determine the number of Pedestrians having particular locations assigned to their

current and next location store variables. The definitions of rates for each action are

also defined in the environment block, which is where the values of Ai j and Bi j are

ultimately used.
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Store of Pedestrian component:

P pedestrian type — an enumeration with values A and B

x current x coordinate

y current y coordinate

stime time of arrival

Behaviour of Pedestrian component:

Ped def
= ∑(i, j)∈V

[
ExistsPath(P,x,y, i, j)

](
move?i j[⊥]〈〉{my.x← i,my.y← j}.Ped

)
+
[
AtGoal(P,x,y)

](
fin?[⊥]〈〉.nil

)
Initial state of Pedestrian component: Ped

Store of Arrival component:

P pedestrian type

Behaviour of Arrival component:

Arr def
= arrive?[⊥]〈〉.Arr

Initial state of Arrival component: Arr

Figure 5.1: The Pedestrian and Arrival components
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Constants:

V set of coordinate pairs representing nodes in the graph

Measures:

averageP average time for traversal by pedestrians of type P

Global store:

countP number of P pedestrians to complete traversal

totalP total time for all completed P pedestrian traversals

Evolution rule functions:

µp(γs,γr,α) = 1

µw(γs,γr,α) = 1

µr(γs,α) =


ArrivalRate

(
γs(P)

)
if α = arrive?

MoveRate
(
γs(P),γs(x),γs(y), i, j, . . .

)
if α = move?i j

λfast otherwise

µu(γs,α) =



{}
,
(
Pedestrian,{P← γs(P),x← Startx(γs(P)),y← Starty(γs(P)),stime← now}

)
if α = arrive?{

countγs(P)← countγs(P)+1, totalγs(P)← totalγs(P)+(now− γs(stime))
}
,0

if α = fin?{}
,0 otherwise

Collective:

PedAB def
=

(
Arrival,{P 7→ A}

)
‖
(
Arrival,{P 7→ B}

)
Figure 5.2: Environment and collective

Figure 5.2 specifies the four functions (µp,µw,µr,µu) known as the evaluation context.

Probabilities and weights on activities are not used in this model so the µp and µw

functions are trivially constant functions.
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height 1, width 1: 1×1 height 1, width 2: 1×2

height 2, width 1: 2×1 height 2, width 2: 2×2

Figure 5.3: Four model instances of increasing size and complexity: height indicates

the number of crossbar elements from top to bottom and width the number of crossbar

elements from left to right.

5.3.2 Model instances

Four instances of this CARMA model are shown in Figure 5.3.

These show instances of the general CARMA model (the topology is the same as in

the previous section) with increasing size and shape complexity and the same rates for

traversing an edge. It is important to note that the central repeating features of the path

network are the cross-bars in the centre of the network. In the simplest instance we

have only one cross-bar and we describe this instance as having height 1 and width 1,

representing it as instance 1×1. The height of an instance is the number of cross-bar

elements from top to bottom, and the width is the number of cross-bar elements from

left to right. As the cross-bar structure is repeated we have instances 1×2 (which has

height 1 and width 2), 2× 1 (which has height 2 and width 1), and 2× 2, depending

where the additional structure is added into the network.

An increase in the width of the network has the obvious consequence that journeys
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across the network take longer. An increase in the height of the network has the con-

sequence that pedestrians are offered an increased choice of routes, with the implicit

consequence that individual paths are less congested (because there are more of them

on offer). The edges are equally long and thus the time to traverse them is the same

under comparable conditions.

In each instance of the network of paths there are two sub-networks which restrain the

movement of the pedestrians of type A and type B. Pedestrians of type A are restricted

to the red sub-network and must cross the network from left to right. Pedestrians of

type B are restricted to the blue sub-network and must cross the network from right to

left. The networks illustrated in Figure 5.3 are symmetric but this is of no particular

significance and it would pose no difficulty to work with networks which were not

symmetric, which we will show with the Meadows example later in this thesis (see

Chapter 7).

These graphs were drawn in the CGP and CARMA code was generated from it, includ-

ing all necessary instances of the ExistsPath, AtGoal, and ArrivalRate functions and

applications of these in predicate guards on processes.

5.3.3 Limitations

It is important to remember that the model presented in this chapter is a highly simpli-

fied abstraction of a speculative scenario and does not represent any specific real-life

system.

For example, it assumes that only two types of agents exist, one for each direction of

travel. There is only one start and one goal location for each of these agent types. At

any node that offers a choice as to which node to move towards next, the potential

choices are equally likely to be triggered (with the exception of the updated model

presented in Section 5.4.2, where congestion information influences this probability).

This is untrue of real-life systems, as one can imagine a large number of possible

factors that could influence such decision, for example the relative location of the next
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node with respect to the goal node, or the length of the connection.

The four instances of the model explored in this chapter are highly regular and sym-

metrical, and all the connections are assumed to be of equal length. It is also important

to note that the overlapping of the connections has no effect on the movement and traf-

fic, and such crossings are not considered as true junctions in the scope of this model,

but rather as pairs of connections completely separated from each other.

5.3.4 Analysis and results

We analysed our CARMA model using the CARMA Eclipse Plugin (see Chapter 2).

We designed a suite of experiments to explore the behaviour of the model. To provide

a baseline for average travel time we investigated the travel time in the presence of only

one type of pedestrian (thereby giving a model which has no congestion). Thereafter

we investigated the models with congestion in the presence or absence of pedestrian

routing.

We adapted a very simple routing mechanism in which at the start node all Pedestrians

always choose the left most node as their next destination. All decisions taken at

further nodes were not affected. This simple routing technique is similar to an attempt

at decreasing pedestrian congestion seen in many real-world systems, where signs are

placed next to busy pedestrian lanes with directions such as ‘Keep to the left’. It is

important to note that this is a simple and naive mechanism - every single Pedestrian

unfailingly follows the guideline at the first node – so all Pedestrians travelling in the

same direction end up travelling on the same connection towards their second node,

at which point they all ‘forget’ the keep-to-the-left rule and start behaving exactly the

same way as they do, for all nodes, in the scenario with no routing at all. This means

that the connections in the middle of the structure (not connected to the start node)

are still likely to have a number of pedestrians travelling each way, contributing to

congestion.
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When routing is present, only one starting route has a non-zero rate, and the non-zero

rate is assigned in order to direct pedestrians away from each other.

Model Nodes Connections LoC

1x1 6 8 208

1x2 8 12 248

1x3 10 16 288

2x1 8 13 258

2x2 11 20 328

2x3 14 27 398

3x1 10 18 308

3x2 14 28 408

3x3 18 38 508

Figure 5.4: The number of lines of CARMA code per model structure. Left, for small

values of width and height. Right, for larger values of width and height.

We used the CGP to automatically create CARMA code models. Fig. 5.4 shows how

the number of lines of CARMA code grows with model structure complexity.

The results from our experiments are presented in Figure 5.5. We have three results (no

congestion, routing, and no routing) for each of the four model instances considered

(1×1, 1×2, 2×1, and 2×2).

An inspection of the results shows that, unsurprisingly, for any structure the best av-

erage travel times are obtained when there is no congestion in the network. As antici-

pated, networks with greater height have lower average travel times because they have

greater capacity, due to the inclusion of additional routes (thus 2×1 results are better

than 1×1 results, and 2×2 results are better than 1×2 results).

Finally, we see that routing is always advantageous, especially so in the case of narrow

networks where congestion in experienced most (i.e. in the 1×1 structure and the 1×2

structure).
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5.4 Modelling congestion influence from microscopic

and macroscopic perspectives

5.4.1 Overview

This section investigates another approach to modelling the movement of pedestrians

through networks of paths by taking an approach to this spatial modelling which com-

bines certain aspects of microscopic and macroscopic modelling.

Modelling approaches can be classified as microscopic, mesoscopic and macroscopic.

In the case of microscopic models, each pedestrian is modelled individually, and is typ-

ically located in two-dimensional space. This can be done through agent-based models,

cellular automata, magnetic force models or social force models [23, 56, 80]. For cel-

lular automata, discrete two-dimensional space (a grid or lattice) is used, whereas the

other approaches consider continuous space.

In contrast, macroscopic models consider densities of pedestrians rather than individ-

Figure 5.5: Average travel time results from the experiments on structure and network

usage.
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uals at specific locations in space. They are typically defined by partial differential

equations, allowing for the continuous variation of time as well as location in space.

The difference between the microscopic and macroscopic perspective is therefore usu-

ally considered in the context of how important for the analysis it is to track and dis-

tinguish between the local knowledge and behaviour of each agent individually, versus

the collective influence they have on the performance of the system.

One can combine these two distinct ways of looking at systems in a number of dif-

ferent ways. In [37], the authors present an extension of Generalised Stochastic Petri

Nets (GSPN) with ‘tagged tokens’. In GSPN, tokens are indistinguishable, so it is

not possible to track a specific one during the evolution of the system (a macroscopic

approach). Adding tags to one or more tokens allows for microscopic analysis of its

position and movement through the net. For example, Bellomo and Bellouquid define

a multi-scale model, where micro-scale interactions are described [22]. These lead

to a kinetic model from which macroscopic equations can be obtained by considering

asymptotic limits. This means that the macroscopic description emerges from the mi-

croscopic interactions rather than being defined a priori. An alternative use is where

physical and logical groups of pedestrians are used within the simulation [98].

This combined approach is a middle ground between considering a discrete (micro-

scopic) model of individual movement in two-dimensional space or a continuous (macro-

scopic) model based on partial differential equations (PDEs) where both change over

time and change over space are described by continuous quantities. Another approach

to modelling the dynamic interaction of populations, such as species of molecules

in biology, is the mean field/fluid approximation technique that assumes that popula-

tions are well-mixed and makes no spatial distinctions. This would not be useful for

the type of pedestrian modelling considered here which is inherently spatial. This is

because the techniques mentioned above are based on high level abstraction, which,

albeit providing good optimization for large scale simulations, removes the possibility

of examining the behaviour of individual agents – the decisions they make at each fork

of the communication network. In our model, the behaviour at the level of individual

is being influenced by the observation of a subgroup of the collective.
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In other words, in our approach, the model components which represent pedestrians

act as individual decision-making entities when they make probabilistic choices about

their future movement and function as a collective population mass when we con-

sider how they impede the movement of other pedestrians. Neither of these views

of model components (as individual entities or as population mass) is dominant and

the model needs to make use of both views to represent how congestion arises along

paths and how it impedes the progress of individuals. Together the two views allow us

to represent intelligent density-dependent movement which captures the behaviour of

decision-making individuals adapting to continuously-changing information about the

collective to which they belong.

What distinguishes this model from the one presented in the previous section is the

ability of a pedestrian to choose what they do to next. In contrast to the model presented

in the previous sections, the Pedestrian component now has an explicit choice which

results in assigning a next node to a variable in its store.

To summarize, we consider the Pedestrian components from the microscopic perspec-

tive when modelling their decision-making capabilities, while at the same time looking

at them from the macroscopic perspective when modelling the influence their move-

ments through the network has on other pedestrians, i.e. the congestion.

Our modelling approach is reminiscent of approaches described by the term meso-

scopic in the field of modelling of molecular phenomena, in particular, diffusion of

molecules in three-dimensional space. In this domain, microscopic and macroscopic

are used as above. In the former, individual molecules are modelled in three-dimensional

space, including their collisions; and in the latter, PDEs are used to describe changes

in density of the molecular species involved. An alternative approach is to assume

well-mixedness and use stochastic simulation or ODEs based on the Chemical Mas-

ter Equation (CME) to describe the changes in quantities of chemical species but this

does not take space into account. The mesoscopic approach involves dividing three-

dimensional space into areas of volume known as voxels, and the CME (or suitable

approximations) assume that within each voxel, species are well-mixed and then can

be used to express this interaction. However, this approach takes into account the

fact that some molecules will move between voxels, and determines this based on a
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Reaction-Diffusion Master Equation (RDME) [38, 39].

We take a similar approach, although without defining a master equation. We consider

pedestrians moving along paths but we do not model the individual movement of each

pedestrian as they are moving along the path, only as they move from one path segment

to another. Their movement within a path segment is determined by an exponentially-

distributed duration and this duration is state-dependent, is the sense that it is dependent

on the number of pedestrians on that path segment.

In our focus on pedestrian movement along a network of paths, we consider that each

pedestrian has only local information about the number of pedestrians on path seg-

ments, and they wish to get to their destination as efficiently as possible. An obvious

approach to take when presented with the choice of two paths (that both lead to the

destination) is to take the one with the least oncoming pedestrian traffic, although in

very crowded situations, considering the pedestrian traffic flow in their current direc-

tion of travel may be important as well. The network of paths could be a specific part

of a city, a pedestrianised network of lanes, or paths through a large park.

As with our earlier model, there are two groups of pedestrians starting on opposite

sides of the network who wish to traverse the paths to get to the other side (opposite

to where they started). Consider again the scenario arising in a city where there are

two train stations on opposite sides of the central business district serving the eastern

and the western suburbs of the city, and a number of people who commute from the

west work close to the east station and vice versa. During rush hour in the morning

or evening, people want to traverse the park or lanes as efficiently as possible, and we

wish to investigate what features of the network of paths help towards this goal. If there

are multiple paths, it would seem in advance that it makes sense to use some paths for

one direction and other paths for the other direction. This raises the question of what

routing information – such as signage – is sufficient for the two groups of pedestrians

to separate out onto different paths. Even for this first basic model our experiments

demonstrate that this is not as straightforward as one may at first think.
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5.4.2 The updated model

Our CARMA model of pedestrian movement is presented in Figures 5.6 and 5.7. There

are still two types of pedestrian, A and B, and we again have P and Q are variables of

type pedestrian. The two Generator components generate pedestrians at two different

locations (on opposite sides of the graph), and the pedestrians move from their origin

side to the opposite side. Pedestrian behaviour is split into two alternating processes.

When at a node pedestrians are in the state Choose. After the next edge has been

chosen, pedestrians go to the state Move. Once a pedestrian has reached its goal, the

count for that type of pedestrian is incremented (countP in Figure 5.7) and the time

taken for traversal is added to the total time so that the average traversal time can be

calculated for each Pedestrian type. These variables are global and form part of the

environment.
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Store of Pedestrian component:

P pedestrian type

` current location

n` next location

stime time of arrival

Behaviour of Pedestrian component:

Choose def
= ∑k∈V

[
ExistsPath(P, `,k)

](
choosePath?k [⊥]〈〉{my.n`← k}.Move

)
+
[
AtGoal(P, `)

](
fin?[⊥]〈〉.nil

)

Move def
=
(
move?[⊥]〈〉{my.`←my.n`}.Choose

)

Initial state of Pedestrian component: Choose

Store of Generator component:

P pedestrian type

Behaviour of Generator component:

Arr def
= arrive?[⊥]〈〉.Arr

Initial state of Generator component: Arr

Figure 5.6: The Pedestrian and Generator components of the basic model
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Constants:
V set of coordinate pairs representing nodes in the graph

λP arrival rate for pedestrians of type P

moveP movement rate for pedestrians of type P

Measures:
averageP average time for traversal by pedestrians of type P

Global store:
countP number of P pedestrians that have completed the traversal

totalP total time for all completed P pedestrian traversals

Evaluation context:
µp(γs,γr,α) = 1

µw(γs,γr,α) = 1

µr(γs,α) =



ArrivalRate
(
γs(P)

)
if α = arrive?

MoveRate
(
γs(P),γs(`),k,A`,k,B`,k

)
if α = move?k

ChooseRate
(
γs(P),γs(`),k,A`,k,B`,k

)
if α = choosePath?

k

λfast otherwise

µu(γs,α) =



{}
,
(
Pedestrian,{P← γs(P), `← Start(γs(P)),

stime← now}
)

if α = arrive?{
countγs(P)← countγs(P)+1, totalγs(P)← totalγs(P)+(now− γs(stime))

}
,0

if α = fin?{}
,0 otherwise

Collective:
PedAB def

=
(
Generator,{P 7→ A}

)
‖
(
Generator,{P 7→ B}

)

Figure 5.7: Environment and collective of the basic model
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• ExistsPath(P, `,k) is a Boolean function that determines if an edge exists be-

tween a pedestrian’s current position ` and another node k, hence a move?k action

can only occur when such an edge exists.

• AtGoal(P, `) is a Boolean function that checks if the pedestrian has reached its

goal, hence the finish action fin? can only occur once the destination has been

reached. After this the pedestrian does not move any more.

• ArrivalRate(P) is a function that returns λP, the arrival rate for pedestrians of

type P. These rates are defined as constants in Figure 5.7.

• Start(P) defines the initial location of a new pedestrian depending on its type.

A function that is not directly related to the graph structure is MoveRate(P, `,k,A`,k,B`,k)

which determines the rate of movement along a particular edge (`,k), and can take ad-

ditional parameters that can affect this rate such as the current count of other pedestri-

ans of the same or different type. We use the following definition that uses the numbers

of pedestrians of the other type on the current edge to reduce the movement rate.

MoveRate(P, `,k,A`,k,B`,k) =

moveA/(B`,k +1) if P = A

moveB/(A`,k +1) if P = B

where A`,k is the number of A pedestrians on the edge and B`,k is the number of B

pedestrians on the edge, and moveP is a basic movement rate for each pedestrian type.

Another function is ChooseRate(P, `,k,A`,k,B`,k) which determines the rate (in effect,

the probability) of choosing a particular edge (`,k) for the next move. Similar to the

definition of MoveRate, our definition takes into account the number of pedestrians of

the other type on that edge, such that pedestrians will favour edges with lower traffic.

ChooseRate(P, `,k,A`,k,B`,k) =

fast/(B`,k +1) if P = A

fast/(A`,k +1) if P = B
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where A`,k is the number of A pedestrians on the edge and B`,k is the number of B

pedestrians on the edge. It is assumed that decisions are made relatively quickly, thus

we use a constant factor fast ≥ 100 to make choosePath?k a fast action.

We have chosen to work with these functions as they meet our expectations of the

behaviour of pedestrians in these circumstances.

Figure 5.7 specifies the four functions (µp,µw,µr,µu) known as the evaluation context.

Probabilities and weights on activities are not used in this model so the µp and µw

functions are trivially constant functions.

As mentioned above, the model is a combination of the microscopic and macroscopic

perspective. Each edge in the graph represents a path segment, and the path segment

that each pedestrian is on is determined by their current and next position. The model

only records that they are on a specific path segment and there is no explicit knowledge

about where on the path segment a pedestrian is, only a time duration for traversing the

segment. This is an abstraction that allows for efficient modelling as it is not necessary

to know the specific location when traversing a path segment.

5.4.3 Design of experiments

The instances of the model are identical with regards to the topology of the network,

and presented in Figure 5.3.

The two main parameters which influence the behaviour of the model are the move-

ment rates and arrival rates. Since the movement rates depend on congestion, it was

important to set plausible base rates for the non-congested case. Therefore, parame-

ters were calibrated under the assumption that all links are equidistant (approximately

100m long) and using the results of a study conducted by [57], which suggests an

expected pedestrian speed of 1.34m/s under normal conditions.

Having set base rates for pedestrian movement, then the focus of the experiments was
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to investigate traffic under different arrival rates, i.e. different numbers of pedestrians

in the network. In a first experiment arrival rates are low, which should lead pedestrians

to pass through the network smoothly. In a second experiment arrival rates are doubled,

which we expect to cause more congestion in the network and thus longer average

travel times.

So far, arrival rates of both pedestrian groups had been equal. Therefore, we conducted

a third experiment, in which we explored how the arrival rate of pedestrian type A

affects the average travel time of B. In order to do that, the arrival rate of A was set to

s∗arrivalRateB, s ∈ {1,2,3,4,5}.

5.4.4 Analysis

We are able to obtain values for the length of time it takes each pedestrian to traverse

the whole system, even though our approach abstracts away from the details of where

each pedestrian is on a path segment. We can then compare on average how long it

takes different types of pedestrian to move from their entrance point to their exit point

for different scenarios.

The results from our first two experiments are presented in Figure 5.8. For each ex-

periment we have three results (no congestion, routing, and no routing) for each of the

four model instances considered (1×1, 1×2, 2×1, and 2×2). Figure 5.8a shows the

results for low overall traffic. An inspection of the results shows that, unsurprisingly,

for any structure the best average travel times are obtained when there is no conges-

tion in the network. As anticipated, networks with greater height have shorter average

travel times because they have greater capacity, due to the inclusion of additional routes

(thus 2× 1 results are better than 1× 1 results, and 2× 2 results are better than 1× 2

results). In these networks routing is advantageous, whereas when applying routing to

narrow (low height) networks, the opposite behaviour is observed, in fact routing leads

to an increase in the average travel time. Similar results were obtained for the case of

high traffic, which are displayed in Figure 5.8b. Here, where average travel times in

narrow networks are already extremely high in the absence of routing, they increase
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(a) Low traffic (b) Higher traffic

Figure 5.8: Average travel time results from the experiments on structure and network

usage

t=1000

(a) Without routing

t=1000

(b) With routing

Figure 5.9: Congestion on network edges at time t = 1000 for the 2×2 topology

even more when routing is present. The observation that routing increases travel time

is contradictory to our expectations and this is discussed further below.

Congestion in the 2× 2 network is illustrated in Figures 5.9a and 5.9b. Red and blue

arrows indicate direction of movement of the two pedestrian types. The overall number

of pedestrians on a particular edge is represented by line width, while the proportion of

A and B on an edge is represented by arrow length. When there is no routing present,

congestion especially occurs near start and end nodes where all paths connect. All

other edges (the ones closer to the center of the network) are less congested, since

traffic is equally split over all possible paths. In comparison to that, when routing is

enabled, pedestrian groups are guided away from each other, such that most edges are

only used by one pedestrian group. Congestion occurs only near start and end points
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Figure 5.10: Average travel time of B against arrival rate of A

and on the main diagonal, as not all individuals choose the path with lowest traffic.

The results of our third experiment on the 2×2 network are shown in Figure 5.10. It

can be seen that an increase in the amount of pedestrian type A leads to a significant

slowdown of pedestrian type B, whereas the average travel time of type A rises only

slightly. Using pedestrian routing helps to reduce average travel time in all cases.

5.4.5 Discussion

As mentioned above, some of the results we obtained were counter-intuitive, and dif-

fered from our expectations. In fact, it turns out that our expectations were incorrect as

we had not fully appreciated one particular aspect of our model. Namely, that the func-

tions that determine which path to choose and how fast movement is possible along a

path are dependent on local information. In the case of movement speed, it is reason-

able just to use the quantity of other pedestrians to determine this. However, for the

choice of path, using only the local information of the paths that can be chosen imposes

a notion of visibility onto the model, which can also be used to infer the topography of

the landscape over which the paths are defined.
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2 3

4 5

1 6

t=1000

Figure 5.11: Congestion of edges for 1×1 network (left) and illustration of path visibility

and how it may affect choice (right)

Consider the 1×1 model as given in Figure 5.11, a pedestrian entering from the right

(node 6) in the routing case, will be directed along the upper branch (to node 3) and

one entering from the left (node 1) will be directed along the upper branch (to node

4). This pedestrian at node 4 will then have a choice between the upper (to node 3) or

lower branch (to node 5), both of which will appear reasonable because there will be

little oncoming traffic on either. In fact, on the lower path there will be none, because

of the routing applied to pedestrians to the right, but on the other path, traffic will also

be low, so some proportion of pedestrians will take the upper path to node 3 and then

take a very long time to reach node 6 because they will be facing the full flow of all

pedestrians coming in other direction, and their average time to traverse the last link

increases, as does the average time for the pedestrians that are traversing their first link.

Hence routing causes some pedestrians to take a path that looks good but in practice

is not (node 4 to 3). This does not occur to the same extent in the 2×n cases because

even though a similar poor choice can be made, it will have a less pronounced effect.

The reason why this occurs is that looking at only the next paths ahead does not

give complete information. This situation is reflective of network routing mechanisms

where each node has only local information (for example, network of queues with local

balancing, described in [67]).

This situation arises when pedestrians have limited visibility on the paths ahead. To

obtain better pedestrian flow, there are a number of solutions including signposting

at the point where the poor choice is made, and allowing path look-ahead of more

than one path segment so that congestion further ahead can be seen. Another way to

consider this is to view the paths as being laid over a landscape that is hilly – the poor

choice is made because the hilly landscape prevents a pedestrian from seeing further



Chapter 5. Modelling of pedestrian movement and simple crowd routing 103

ahead as illustrated in Figure 5.11.

These results differ from those obtained from the model described in the first part of

this chapter and in the paper [112], where we did not observe this counter-intuitive

behaviour. The explanation for this is the fact that our model now uses path congestion

to determine behaviour rather than node congestion as in the prior work. The change

was made to reflect human behaviour better; however, it also gave us an improved

understanding of model behaviour, and a more general model could then be developed

which captures explicit notions of visibility.

The model and our results demonstrate that modelling which combines the micro-

scopic and macroscopic perspectives is possible for this pedestrian movement scenario.

Moreover, by abstracting from the specific location a pedestrian is at a path segment,

we ensure that the simulation of the model is feasible, both in terms of model size and

time required for simulation.

5.5 Conclusions

We have demonstrated a simple model of pedestrian movement over a number of dif-

ferent graphs, to illustrate the modelling of spatial aspects of CAS. The CGP allowed

us to automatically generate the CARMA code for different networks which simplified

the task, and allowed our pedestrian components to be generic in nature. Our initial

experiments have considered situations with and without congestion as well as with

and without explicit routing of pedestrians as they enter the network.

From the work presented in this chapter we learnt that even a simple system in which

movement in physical space plays an important role may require a complex and large

CASL code representation. The tools presented in Chapters 3 and 4 proved remarkably

valuable for the purpose of encoding these spatial networks as well as automatic code

generation, which ratifies our confidence in their usefulness and versatility.
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5.6 Future work

There are many directions for future work. For example, another group of pedestrians

could also be introduced, namely, tourists, and the focus would be on efficient traversal

of the network during afternoon rush hours when commuters want to get home quickly

and tourists wish to sightsee, and hence move slowly.

We are also interested in identifying when the model shows emergent behaviour, in

the sense that different groups of pedestrians use different paths through the network

in response to environmental cues such as information about congestion or routing

suggestions (rather than explicit routing).

Following this work, we investigated another case study, analysing a model of crowd

behaviour based on real-world data. It is described in detail in Chapter 7 of this thesis.



Chapter 6

Data

If you torture the data long enough, it

will confess.

Ronald Coase

6.1 Introduction

In the work described later in Chapters 7 and 8, we follow the data-driven approach.

In particular, there are two ways in which data was used:

• To be compared with the results of model simulation,

• To create accurate representations of systems during the process of modelling.

The main strength of the data-driven approach lies in the fact that any tool or model cre-

ated or evaluated using data is likely to produce meaningful results that provide insight

into the real-world scenario which is being modelled. In addition to that, working with
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data requires a high level of attention to detail and forethought with regard to computa-

tional complexity and quality of the available data; the undertaken research must deal

with problems such as data cleaning and filtering, as well as optimization of the model

size and complexity. Without taking data into account, one runs the risk of producing

models which have no straightforward application to any real-world problems. Even

when artificial models are created to exemplify the performance of the analysis tool, it

is no guarantee that the particular kind of data needed for the simulation is available or

will ever be. Because of all this, using real-world data remained a strong motivation

throughout the process of producing the research comprising this thesis.

6.2 The Meadows city park bike counter

The Meadows is a large public city park located in Edinburgh, Scotland. Most of the

park area consists of open grassland, with tree-lined paths crossing it in various direc-

tions. Some of these paths are to be shared between pedestrians and cyclists; others

have designated cycle lanes. The Middle Meadow Walk is a wide path connecting the

south of the park (adjacent to Argyle Place) with the three-way intersection of Teviot

Place, Forrest Road and Lauriston Place streets. Middle Meadow Walk has a cycle

lane, and is not available for motorized vehicles, except for privileged ones. It is an

important route for cyclists leading from the south of the city towards the city centre.

The bike counter [13] (see Fig. 6.3) is located in the northern part of the Middle

Meadow Walk, slightly to the north of where Simpsons Lane connects to it. It collects

data 24/7, and increases its counter every time a bike passes it in either direction. The

current and historical data gathered from the device can be accessed at [10].

The City of Edinburgh Council has published an open dataset of the bike counts col-

lected from this device on their website [9]. This dataset differentiates between counts

of cyclists travelling in the north and south directions, giving an indication of the in-

tensity and direction of traffic at different times of the day.

1https://i.rcahms.gov.uk/canmore/d/SC00760475.jpg

https://i.rcahms.gov.uk/canmore/d/SC00760475.jpg
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Figure 6.1: An aerial view of the Meadows City Park in Edinburgh 1.

Figure 6.2: The data available at the City of Edinburgh Council Website [9] shows how

the traffic of bicycles changes at different times of the day for bikes travelling towards:

Channel 1–the south (from city centre) and Channel 2–the north (towards city centre).
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Figure 6.3: The bike counter device located by The Middle Meadow Walk in Edinburgh.

Photographs downloaded from [13].

By analysing this data (see Fig. 6.2) we can approximate the rush hours on an average

day. The value of counted bikes peaks around 8:00 - 9:00 am in the morning, and then

again in the afternoon at 5:00 - 6:00 pm, in the opposite direction.

6.3 Google Maps

Google Maps is a geographic mapping service provided by Google [12].

The Google Maps system uses latitude and longitude values in accordance with the

World Geodic System 1984 (known also under the names: WGS84 and EPSG:4326),

established in 1984 and last revised in 2004 [3].

WGS84 assumes all geographic data points lie on the surface of an oblate spheroid.

Each point can be uniquely referenced by its latitude and longitude values. Because

latitude and longitude are expressed as angles 2, we decided to convert them using the

Universal Transverse Mercator (UTM) projection [91] in order to obtain the x and y

values in the context of a cartesian coordinate system on a plane. This conversion is

made for the reason of optimisation: it is less computationally complex to compute

distances between points in cartesian coordinate system than it is in the WGS84 [8].

2Latitude is the angle between the equatorial plane and the line that passes through the point. Lon-
gitude is the angle between the reference meridian to another meridian that passes through the point.
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Figure 6.4: The Meadows public park in Edinburgh. We used Google Maps for obtaining

the latitude and longitude of selected points.

The UTM coordinate system assigns to each point two values: easting and northing

(expressed in the unit of metres, and referred to as ‘x’ and ‘y’ in this thesis), as well

as its 2-dimensional Zone Number (see Fig. 6.5). The values of easting and northing

coordinates are unique within each zone, but not globally unique - for this reason one

needs to be extra cautious when dealing with systems geographically located in more

than one zone. In the case studies presented in this thesis, we used geographical data

from the UTM Zone 30U exclusively.

The translation from WGS84 coordinates to UTM coordinates was made at the time of

data collection as part of data pre-processing.
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Figure 6.5: The UTM Zone Grid in Europe 3.

6.4 Transport for Edinburgh

The Transport for Edinburgh company [18] has provided us with access to the REST

API that can be used to obtain data gathered from their bus and tram system. The data

used for the purpose of the research described in this thesis is relevant to the routes,

timetables and live vehicle locations of bus services provided by Lothian Buses [14], a

bus operator within the Transport for Edinburgh company. The data consists of JSON-

formatted text files which can be requested from the following endpoints:

• stops (the latest information on bus and trams stops served by Transport for

Edinburgh [18], including fields such as name of the stop, available services,

destinations, and its geographical location)

• services (the information on each available service’s name, destination, routes,
3https://commons.wikimedia.org/wiki/File:LA2-Europe-UTM-zones.png

https://commons.wikimedia.org/wiki/File:LA2-Europe-UTM-zones.png
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and stops)

• timetables (the full timetable information per stop, including the list of services

with corresponding departure times)

• journeys (the list of expected stops and corresponding departure times for a

given service leaving from a particular start stop at a particular time and arriving

at a particular destination point)

• stop-to-stop timetables (timetables in the form of journeys between two stops

which share a route, for a requested time)

• service status (up-to-the-minute information about disruptions affecting ser-

vices in real time)

• live vehicle locations (real time information on the position of currently active

vehicles)

6.5 Tom Tom Traffic Flow

Tom Tom Traffic Flow [16] is a service provided by the Tom Tom company, dedicated

to providing traffic information in a number of large cities around the world. The

service offers live traffic data as well as historic traffic data gathered from Tom Tom

GPS devices in vehicles on roads.

The traffic data is available in the following three formats:

• Live Traffic Level: a measure of traffic level per time, expressed as a percent-

age, and described on the service website [16] [17] as ‘Indication of the current

severity of traffic congestion on monitored roads in the city area compared to the

normal expected congestion level.’
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Figure 6.6: The average speed of a vehicle in The City of Edinburgh, expressed as a

fraction of the optimal speed. The data shows a congestion peak at 9 am and a smaller

congestion peak at 5 pm. On that particular day, the optimal vehicle speed was equal

to 25.5 mph (41 km/h), represented by 1.0 on the graph above.

• Live Traffic Speed: a measure of the average vehicle speed in the unit of km/h,

per time. The service also provides a value of ‘optimal speed’, that is the average

speed of vehicles when no traffic is present.

• Live Traffic Reports: provides information on the causes of increased conges-

tion, classified into three categories: roadworks, jams and closures.

In our model, we used the data from the Live Traffic Speed service, as presented in

Fig. 6.6. To reduce the likelihood that an incident (roadwork, closure) not included in

the simulation would affect the results, we used data from a day in which all the causes

of increased congestion were categorised as “jams” in the Live Traffic Reports service.

Other existing traffic APIs which could have been used for the purpose of obtaining

the information about congestion include Google Traffic [12] (an extension of Google

Maps that displays traffic conditions in real time) and HERE Traffic [19] (a traffic

information provider for commercial purposes). Google Traffic is free but does not
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provide historical information – only real time data, whereas HERE Traffic does pro-

vide such historical data but it is a paid product. For these reasons Tom Tom Traffic

Flow was chosen as the source of the traffic information used in the work presented in

this thesis.

6.6 Conclusions

In this chapter we learnt about the sources of data which are used to create and analyse

the models described in the later chapters of this thesis.

The data from the Meadows city park bike counter was involved in the work presented

in Chapter 7. We used the information about the cycle traffic trends observed from the

data collected by this device in order to form assumptions about the traffic of pedestri-

ans in the park.

We sampled specific locations in the Meadows city park using the Google Maps API

in order to obtain their geographical coordinates (latitude and longitude). These were

translated into planar coordinates and constituted the nodes of the spatial graph form-

ing the basis of the model presented in Chapter 7. The spatial locations of these nodes

were also used to compute distances between each pair of connected nodes, and these

distances were factored into the rates of the movement actions of the CARMA compo-

nents in the model (in order to represent the fact that a longer path takes more time to

traverse).

The model presented in Chapter 8 was heavily based on the data obtained from the

Transport for Edinburgh company. In the process of creating the model, we used the

information about the spatial locations of the bus stops, the sequences of stops within

routes as well as the live vehicle location data (this data was collected over a period

of five days). Tom Tom Traffic Flow historical congestion data was used in the model

in Chapter 8 in order to introduce a realistic estimate of the traffic conditions that are

present in the real-world system.



Chapter 7

Data-driven modelling of pedestrian

movement

A straight line may be the shortest

distance between two points, but it is

by no means the most interesting.

The Third Doctor

7.1 Introduction

The case study we present in this chapter provides a model of an existing network of

pedestrian paths and cyclepaths in the Meadows public park in Edinburgh, Scotland.

The work presented in this chapter builds upon what we described earlier in Chap-

ter 5 and provides a foundation for further work presented in Chapter 8.

In order to include real data in the analysis, we re-designed the model from Chapter 5

so that it is based on a real-world scenario. It now uses CGP-like node representation

style in which each node in the spatial network is represented by a CARMA component
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- this made the model more concise and allowed us to capture more types of measures

to the system, as the component nodes were able to keep information in their store

(such as the number of Pedestrians currently at a given node, whereas in the basic

model we could only directly measure the number of pedestrians at an edge). This sce-

nario involves a more complex spatial network from the ones discussed in Chapter 5.

Perhaps the most interesting difference here is that in the basic model Pedestrians only

move in one general direction (from left-most node to the right-most node and vice

versa). For a Pedestrian at any given node, regardless of which node ends up being

chosen as the one to move to next, the realisation of this movement step will always

result in bringing the Pedestrian closer to the goal. This is no longer true in the case

of the model presented in this chapter. The Pedestrians now have the ability to choose

any node connected to the current one, even when moving to the new node would re-

sult in the Pedestrian being further from the goal node than before. This means that

potentially in this model it could happen that some Pedestrians never manage to reach

their goal and are therefore condemned to wander the paths of the Meadows forever

(it is however very unlikely as the distance to the goal takes part in influencing the

probability of a Pedestrian choosing one node over another). This is impossible, by

design, in the basic model from Chapter 5.

The aim of modelling this scenario was to explore the extent of expressiveness of the

CARMA language, rather than to compare the model’s predictions to data. This is

because data suitable for such a comparison are not available.

Unlike the basic models described in Chapter 5, we based this case study on real-

world geographic data. We used the Google Maps API to obtain the location of 20

path lane intersections in The Meadows area (see Fig. 6.4) and used these to generate

the structure of connections and nodes in the model.

In the models presented in Chapter 5 the start and finish (goal) location of each pedes-

trian is predetermined by the graph representing the network of the paths. In the more

complex example of the Meadows, multiple start and finish locations are allowed and

all connections are bidirectional. For this reason, in order to mimic the behaviour of

the real system, in which commuters cross the park with the intention to get from one

place to another, each Pedestrian is assigned a start and finish location when they first
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appear in the modelled system. The probability of choosing a given location as a start

or a finish (goal) location for a given component depends on the time of the day to re-

flect the data published by the City of Edinburgh, obtained from the bike counter (see

Chapter 6). We used a sum of Gaussian functions to represent these traffic changes

throughout the day, which is a reasonable fit to the available data.

Store of PathNode component:

nodeL location of node

arrived number of pedestrians that have arrived at this node as a goal

timeSum sum of times taken by pedestrians arriving at this node as a goal

Behaviour of PathNode component:

Advert def
= choose?[>]〈my.nodeL〉.Advert

Arrive def
= arrive?[my.nodeL = arrL](arrL,startTime)

{my.arrived←my.arrived+1, timeSum := timeSum+(now− startTime)}.Arrive

StartAssign def
= assignStart?[⊥]〈my.nodeL〉.StartAssign

GoalAssign def
= assignGoal?[⊥]〈my.nodeL〉.GoalAssign

Initial state of PathNode component: Advert | Arrival | StartAssign | GoalAssign

Figure 7.1: The PathNode component of the Meadows model
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Store of Pedestrian component:

startL start location

goalL goal location

currL current location

nextL next location

prevL previous location

stime time of arrival

Behaviour of Pedestrian component:

Choose def
= choose?[` in my.currL.post](`){my.nextL← `}.Move

Move def
= move?[⊥]〈my.currL,my.nextL〉{my.prevL←my.currL,my.currL←my.nextL}.Arrive

Arrive def
= [my.currL = my.goalL]arrive[>]〈my.goalL,my.stime〉.kill+

continue?[⊥]〈〉.Choose

Initial state of Pedestrian component: Arrive

Store of Generator component:

startL start location

goalL goal location

Behaviour of Generator component:

AssignStart def
= assignStart?[>](start){my.startL← start}.AssignGoal

AssignGoal def
= assignGoal?[>](goal){my.goalL← goal}.Spawn

Spawn def
= spawn?[⊥]〈〉.AssignStart

Initial state of Generator component: AssignStart

Figure 7.2: The Pedestrian and Generator components of the Meadows model
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Space:
Nodes set of coordinate pairs representing nodes in the graph

Connections set of node pairs representing edges in the graph

Distances a two-dimensional lookup table of pre-computed distances between pairs of nodes

Measures:

traffic(n1,n2) the number of pedestrians whose current location is n1 and next location is n2

arrived(n) the number of pedestrians who finished their route at the node n

Evaluation context:

µp(γs,γr,α) =



Prgoal
(
γs(nodeL),now

)
if α = assignGoal?

Prstart
(
γs(nodeL),now

)
if α = assignStart?

Prchoose
(
γs(nodeL),γr(currL),γr(nextL).goal,

traffic(γr(nextL),γr(currL)
)

if α = choose?

1 otherwise

µw(γs,γr,α) = 1

µr(γs,α) =



Ratespawn
(
now

)
if α = spawn?

Ratemove
(
γs(currL),γs(nextL),

traffic(γs(nextL),γs(currL)
)

if α = choose?

λfast otherwise

µu(γs,α) =


/0,
(
Pedestrian,{startL← γs(startL),goalL← γs(goalL),stime← now}

)
if α = spawn?{}

,0 otherwise

Initial collective:

Meadows def
=

(
Generator, /0

)
‖
(
PathNode,{nodeL 7→ Nodes1 }

)
‖ . . . ‖

(
PathNode,{nodeL 7→ Nodesp }

)

Figure 7.3: Environment and evaluation context of the Meadows model
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The definitions of the components are shown in Fig. 7.1 and 7.2. The definition of the

environment, evaluation context, and the collective of the CARMA model are shown in

Fig. 7.3.

In particular, the evolution rule involves a number of functions that are described in the

next subsections and shown in Fig. 7.4, 7.6, 7.7, 7.8.

7.2 Spawning new Pedestrians

7.2.1 Spawn rate

The rate at which new Pedestrians arrive into the modelled system depends on the

current time of the day, to reflect the changing intensity of traffic. The real-world data

from the city bike counter shows a trend of increasing bike traffic in the rush hours

(Fig. 6.2). The average bike traffic increases in one direction in the morning hours,

and in the opposite direction in the late afternoon, this presumably being the result of

people travelling to and from the city centre for work. It also shows a small increase

around midday (lunchtime).

Ratespawn(t) = (N (t,µ1, σ2)+N (t,µ2, σ2)+N (t,µ3, σ2)+0.1) ·C,

where: N (t,µ, σ2) = 1
σ
√

2πσ2 e
(t−µ)
2σ2 ,

σ = 60min, µ1 = 540min, µ2 = 750min, µ3 = 1020min, C = 400.0.

Figure 7.4: The rate at which new components arrive in the system depends on the

hour of the day. The three values of the mean of the Gaussian function µ1,µ2, µ3,

represent three time points of the day: 9 am, 12.30 am and 5 pm, respectively, in the

unit of minutes. σ is the standard deviation of the Gaussian function with mean µi. C

is a dimensionless scaling factor, introduced in order to obtain a realistic spawn rate

value.
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In our model we used a traffic intensity pattern loosely based on these observations

from the real-world data. The function we used is a sum of three Gaussian functions

having the standard deviation of 1 hour and the means at 9:00 am, 12:30 pm, and 5:00

pm, respectively. The reason for using this simplified function of traffic intensity for

the first version of the model, over one that fit more accurately to the data, is that it

made the influence of the traffic intensity on the results of the simulation more visible

and easy to control. The spawn rate formula is shown in Fig. 7.4 and Fig. 7.5 shows

the original data from the bike counter as well as the spawn rate function.

7.2.2 Spawn locations

Examination of the real-world data from the city bike counter suggests that new bikes

arriving into the modelled system should not be uniformly distributed at all possible

entry points, at all times of the day. In the morning rush hours, cyclists are much more

likely to be travelling in one direction and in the afternoon rush hour, the opposite.

The bike counter, from which this data has been obtained, is located in the north part

of The Middle Meadow Walk, the widest path through the Meadows, connecting the

south-most and the north-most parts of the park (see Fig. 6.4). There is no available

Figure 7.5: This graph shows the data from the bike counter, discussed in detail in

section 6.2. In addition, the Ratespawn function (See Fig. 7.6) is shown in green.
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data about the traffic changes on all of the other paths in the park, however based on

everyday observations, we have assumed the two extreme points of our model of The

Middle Meadow Walk to be the most likely entry points to the modelled system for

the Pedestrian components during the rush hours. In our model, every time a new

Pedestrian component is introduced to the modelled system, it is assigned a start and a

goal location. New Pedestrian components are instantiated as a result of the Generator

component performing the spawn? action, which uses the start and goal location values

saved in the store of the Generator component. At each location there is a PathNode

component, which attempts to perform two actions assignGoal? and assignStart?, in

order to communicate with the Generator component and update the values of the

start and goal location in its store with the PathNode’s location. The probability of

receiving this message (µp, see Chapter 2) can vary for each location, and the resulting

value of start or goal location is determined by the PathNode component that manages

to communicate with the Generator component first. As a result, multiple PathNodes

compete with one another in order to decide which one will become the start or the

Prgoal(nloc, t) =



N (t,µ1, σ2) ·C+1.0 if nloc = 0,

N (t,µ3, σ2) ·C+1.0 if nloc = 20,

1.0 if nloc ∈ [2,3,5,6,7,8],

0.0 otherwise.

Prstart(nloc, t) =



N (t,µ1, σ2) ·C+1.0 if nloc = 20,

N (t,µ3, σ2) ·C+1.0 if nloc = 0,

1.0 if nloc ∈ [2,3,5,6,7,8],

0.0 otherwise.

where: N (t,µ, σ2) = 1
σ
√

2πσ2 e
(t−µ)
2σ2 ,

σ = 60min, µ1 = 540min, µ3 = 1020min, C = 10.0.

Figure 7.6: The two values of the mean of the Gaussian function µ1, µ3, represent

two time points of the day: 9 am and 5 pm, respectively, in the unit of minutes. σ is

the standard deviation of the Gaussian function. C is a dimensionless scaling factor,

introduced in order to obtain a realistic propensity value.
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Ratemove(nfrom,nto,Trfc(nto,nfrom)) =


1

Dstn(nfrom,nto)
if Trfc(nto,nfrom) = 0

1
Dstn(nfrom,nto) ·Trfc(nto,nfrom)

otherwise.

where:

Trfc(nto,nfrom) is the number of pedestrians travelling from nto to nfrom

(These are travelling in the opposite direction to the pedestrian evaluating this function),

Dstn(nfrom,nto) is the distance between nto and nfrom.

Figure 7.7: The rate at which components move from current to the next node depends

on the traffic on the edge between the current and the next node, in the opposite direc-

tion. This model only reflects the case where only the people travelling in the opposite

direction slow the pedestrian down.

goal location of the new Pedestrian instance. The probability of performing a particular

broadcast output action in CARMA is computed using a propensity function associated

with each communication candidate. The propensity function can be parametrized

using values from the store of the sender and the receiver as well as on the global

store of the modelled system. In the presented model we used the propensity functions

shown in Fig. 7.6. All of the possible entry locations nloc ∈ [0,2,3,5,6,7,8,20] (see

Fig. 6.4) have the propensity value ≥ 1.0. Other locations have the propensity value

of 0.0, which means that they are never chosen as the start or goal location. Two

particular locations, loc0 and loc20, situated at the extreme points of the model of The

Middle Meadow Walk have a propensity that varies over the time of the day, as shown

in Fig. 7.6. In this way, when spawning a Pedestrian, the propensity of assigning

location loc0 (most-north) as the start location reaches its peak at 5:00 pm and as the

goal location - at 9:00 am. For location loc20 (most-south) this trend is reversed, i.e.,

the propensity of it being assigned as the start location of a new Pedestrian is highest

at 9:00 am and as the goal location - at 5:00 pm. We used the Gaussian function (see

Fig. 7.6) to model this increase in propensity.

7.3 Movement and routing

A Pedestrian component is always trying to reach its goal location (see Fig. 5.6). In

order to do that, it performs a sequence of actions, which changes its state in the cycle
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Prchoose(nnext ,ncurr,ngoal) =



Dstnd

Trfc(nnext ,ncurr)
if Trfc(nnext ,ncurr)> 0

and Dstnd ≥ 0,

−1
Dstnd ·Trfc(nnext ,ncurr)

if Trfc(nnext ,ncurr)> 0

and Dstnd < 0,

−1
Dstnd

if Trfc(nnext ,ncurr) = 0

and Dstnd < 0,

Dstnd if Trfc(nnext ,ncurr) = 0

and Dstnd ≥ 0.

where:

ncurr,ngoal ,nnext are the current, goal and (prospective) new location of a Pedestrian component,

Dstnd = Dstn(ncurr,ngoal)−Dstn(nnext ,ngoal),

Dstn(n1,n2) is the distance between two given nodes,

Trfc(nnext ,ncurr) is the number of pedestrians whose current

location is nnext and next location is ncurr.

Figure 7.8: The propensity of choosing a particular node as the next location.

RC

RM RA nil

choose?

move? arrive

continue?

Figure 7.9: The states of the process of the Pedestrian component. RC is Ready-

ToChoose, RM is ReadyToMove, RA is ReadyToArrive, and reaching the nil state is

equivalent to the component being removed from the system.

shown in Fig. 7.9. The behaviour of a Pedestrian component in the Meadows model

is very similar to that of the Pedestrian component in the basic model (see Fig. 7.1).

A path is chosen after which the move takes place. There is also a check to see if the

final destination has been reached. When the Pedestrian component is in the ReadyTo-

Choose state, it must perform the choose? action, which will determine the next node

which the component will change its current location to.

In a fashion similar to the way the start and goal locations are chosen before a new

Pedestrian is created, multiple PathNode components compete with each other to de-
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cide which one of them is going to synchronize with the Pedestrian component on the

choose? action, determining the next location for the Pedestrian to move to.

The propensity of synchronising with a particular PathNode on the choose? action is

given by the function shown in Fig. 7.8. The propensity is calculated for each potential

next node. This formula was chosen in order to model the intention of the Pedestrian

component to move towards its goal node, while at the same time avoiding routes with

heavy congestion. Let us first consider the case when the value of traffic is 0 (there are

no other Pedestrian components travelling along the same connection). In that case,

the propensity depends only on the value of the Dstn factor. Dstnd is a measure of

how much closer the Pedestrian will get to its goal node, by moving to the next node.

It is computed by calculating the difference between the Pedestrians distance to its

goal from the current node and from the next potential node. If the value of Dstnd is

positive, the current node is further from the goal node than the next potential node -

and so, moving to the next node is desired since it brings the Pedestrian closer to its

goal. The propensity value of such a move is proportional to the potential decrease in

distance from the goal, represented by Dstnd . If the value of Dstnd is negative, moving

to the next potential node takes the Pedestrian further away from its goal node, and so

the propensity value associated with this move is inversely proportional to the value of

Dstnd .

The same relationship between the value of Dstnd and of propensity is also used in

the case when there is a non-zero traffic on the connection to the potential node. The

propensity of choosing a node is always inversely proportional to the measured traffic.

The graph structure of the network of paths is incorporated into the system using a

different approach than in the basic model. Rather than invoking the ExistPath function

in order to determine whether two nodes are connected by an edge or not, a special

expression from the space syntax available in the newest version of CASL is used.

The locA in locB.post expression evaluates to a boolean value which is true if the locA

location is in the post set of the locB location, and false otherwise.

The predicate of the choose? action uses the above syntax to ensure that there exists an

edge from the Pedestrian component to the PathNode component which the Pedestrian
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is attempting to synchronize with.

If there is more than one PathNode in the postset of the Pedestrian component location,

a given PathNode is more likely to be chosen over another if it is closer to the goal node

of the Pedestrian, and less likely to be chosen if the edge between the current location

of the Pedestrian leading to that node has more traffic than the edge leading to the other

node.

This introduces a form of routing - Pedestrian components are more likely to choose

paths with less traffic.

The distances between nodes are pre-computed and are encoded into the model in the

form of a globally accessible two-dimensional look-up table. When the Pedestrian

component arrives in its goal node, it is removed from the system.

Moving from one node to another is a CARMA action. The rate of the action was

chosen to reflect the delay caused by the distance between two nodes, as well as the

congestion on the path leading from one node to another (see Fig.7.7). The value of

the distance as well as the value of the measured traffic are inversely proportional to

the resulting rate of the movement action. This means that, for example, on average a

Pedestrian will traverse two 50 m long paths in the same time as it would traverse a

single 100 m long path.

7.4 Results

We simulated the model for the following two cases:

1. all the connections are available to the Pedestrians,

2. one of the segments (the middle segment of the Middle Meadow Walk, the edge

between nodes 1 and 4) is closed, for example because of having been flooded.
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The scenarios described above are two possible example situations to explore. If re-

quired, the model can be easily adapted to different path closure situations.

The results presented in Fig. 7.17 are dependent on the shape of the network of paths

as well as the constants in the formulas. At any node a Pedestrian has to make a

decision, which in our system is modelled by the stochastic nature of CARMA actions.

The outcome depends on how congested the potential model lanes are, as well as on

how preferable the next node is in terms of its distance from the goal location. Varying

the weights of these two factors can have an influence on the behaviour in the system.

For each of the two scenarios we obtained snapshots of the state of the systems at

four times of the day: t ∈ [9,13,17,21] (hours). The snapshots presented in Fig. 7.10–

7.17 show average amounts of Pedestrian components on graph edges measured in

the time period (t − δ, t + δ), where δ = 1hour. The two colours of arrows denote

two opposite directions of the movement of Pedestrian components. The length of an

arrow represents the proportion of Pedestrian components travelling in one direction

and Pedestrian components travelling in the other direction to the total number of

Pedestrian components on that edge. The total number of Pedestrian components on a

given edge is represented by the arrow’s thickness.

7.4.1 Discussion

The results show that in the initial scenario, a large portion of Pedestrian components

in the modelled system choose to travel along the Middle Meadow Walk lane. This is

not surprising as our goal and start assigning functions are designed in such a way that

most of the Pedestrians would have started either at the North-most or South-most end

of the Middle Meadow Walk and would be heading towards the other end. The Middle

Meadow Walk constitutes the shortest, most optimal (if traffic is not an issue) route

between these two points. There are of course a number of new Pedestrian components

arriving into the system at different nodes along the edges of the Meadows, but the

frequency with which they are spawned is much lower. The number of Pedestrian

components who are travelling along the Middle Meadow Walk in the North direction
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is roughly the same as the number of Pedestrian components travelling in the South

direction, at most time snapshots. It is also noticeable that Pedestrian components

who started their journey at either of the Middle Meadow Walk ends, when presented

with the first decision point (and do not choose to continue travelling along the Middle

Meadow Walk at that point) are most likely to choose the connection first to the right

(for those travelling South-wise) or to the left (for those travelling North-wise) of the

Middle Meadow Walk. This is true for both groups of Pedestrian components, as from

both directions such choice brings them closer to what is the goal node to most of

them (the opposite end of the Middle Meadow Walk to the one they started at) than

any other alternative connection does. The spread of Pedestrians with respect to which

direction they are travelling in at any given connection is relatively uniform throughout

the network, at all snapshot points.

In the second scenario, the closure of the central segment of the model of The Middle

Meadow Walk forces Pedestrian components to choose a different path instead. This

increases the traffic on the nearby lanes, however the lanes that are farther away are not

significantly affected, as the traffic disperses through the network more evenly after a

number of movement steps. It is visible from the results that in this case Pedestrian

components are still more likely to choose certain connections at their first decision

point, namely the connection first to the right (for those travelling South-wise) or to

the left (for those travelling North-wise) of the Middle Meadow Walk.
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Figure 7.10: Scenario (1) at time t = 9

Figure 7.11: Scenario (2) at time t = 9
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Figure 7.12: Scenario (1) at time t = 13

Figure 7.13: Scenario (2) at time t = 13
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Figure 7.14: Scenario (1) at time t = 17

Figure 7.15: Scenario (2) at time t = 17



Chapter 7. Data-driven modelling of pedestrian movement 131

Figure 7.16: Scenario (1) at time t = 21

Figure 7.17: Scenario (2) at time t = 21
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7.5 Conclusions

In this chapter we learnt how to apply a formal model in CARMA to a scenario which

is to a certain degree based on real world data. Developing and analysing this model

illustrates the usage of the CARMA language and its software suite for the purpose

of developing models based on real data. At present, the only data on the Meadows

city park available for analysis is the geographic data from the Google Maps API and

the bike count data from the City Council, measured at a single point in the park. If

real world data measuring pedestrian traffic at a number of locations around the park

becomes available, it may be used to parametrise the presented model, which would

allow us to evaluate the predictive power of the model.



Chapter 8

Data-driven modelling of urban

transportation systems

A developed country is not a place

where the poor have cars. It’s where

the rich use public transport.

paraphrased from Enrique Penalosa,

former Mayor of Bogotá, Colombia

8.1 Introduction

In this chapter we present a model of an urban transportation system. We compare

aspects of real data collected from a city bus system in the city of Edinburgh, UK,

with the results of simulations of the model constructed in the CARMA language. The

simulations show results which are in good agreement with the real-world data, leading

us to believe that the model could have useful predictive powers and thus provide an

environment for experimentation with possible changes to the design of the system.

This model builds upon the two simpler models presented in Chapters 5 and 7. It

133
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takes advantage of lessons which have been learned from these models and provides

the proof of concept of applied formal modelling by utilising a large and rich source

of real world data. The main thing that differs this model from the one presented in

Chapter 7 is how heavily based on data it is. We also for the first time in this thesis

compare the results of the simulation with real data to assess how well the model

represents the real-world system.

Deeper insights into the causes of various types of system behaviour can be obtained

by combining data from several independent open data sources. This combination of

data sets provides a different perspective on the use of the road network, allowing us

to make a more detailed model which would not be possible if working from a single

source of data. For the model in this chapter, we have combined Automatic Vehicle Lo-

cation (AVL) data which was obtained from the Transport for Edinburgh company [18]

with long-run average data on traffic intensity from the Tom Tom satellite navigation

service [16]. These are two genuinely independent data sources, the real-time vehicle

location system on the buses does not provide data to the Tom Tom network, which

harvests data from their own propriety hardware installed in private vehicles. The data

sources used in our research are described in detail in Chapter 6.

In order to analyse a real-world example of a problem in this domain, we constructed a

formal model of the system of interest in the modelling language CARMA and studied it

via simulation. In contrast to logic-based explicit state-space analysis approaches, such

as probabilistic model-checking [65] with model-checkers such as PRISM [69] and

Storm [34] (see 2.4), simulation provides no absolute guarantees of correct behaviour

but it scales to allow the construction of very detailed spatial models of systems such

as the location-accurate bus route which we have modelled here.

8.2 Related work

There is a number of existing approaches to stochastic modelling of urban transporta-

tion systems. In [105] the authors describe utilize Bio-PEPA in order to develop a

method that allows for checking how well bus providers are fulfilling their agree-
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ments set with respect to allowable delays in departures. They propose an alternative

timetable the implementation of which would result in less potential delays. In [84],

the authors use Monte Carlo simulation techniques as well as time series analysis in

order to construct methods for evaluating specific metrics of overall bus sytem perfor-

mance, based on the information about ‘headways’ (the time between subsequent bus

arrivals). There is existing research relating to conceptually similar problems from the

area of urban transport, mainly bike-sharing [83]. The paper talks about how to de-

sign optimal placement of bike sharing stations for such a system, and gives examples

based on 11 cities worldwide.

The work presented in this chapter differs from these existing approaches in that it

combines the spatial data about the locations of road nodes and bus stops with the

temporal data from bus timetables and also factors in traffic information coming from

a completely separate data source.

8.3 Locations

8.3.1 Coordinate system

In our model, we use locations extracted from the real data provided to us by Transport

for Edinburgh. The easting and northing coordinates are expressed in the units of

metres, and so are all the distances in the presented paper, unless stated otherwise. The

detailed description of pre-processing of this data can be found in Chapter 6.

8.3.2 Data types

Each location in the model is represented by the tuple (id,x,y). The id of a location

is a unique identifier of a given location.
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In the data from the Transport for Edinburgh API, locations are represented using lati-

tude and longitude values from a continuous domain, as the buses move continuously

and a given bus can be found using GPS at any location at the time of sampling. In

our model, we represent movement as sequences of steps between discrete locations.

These consist of locations of bus stops as well as any number of points on the way

between two adjacent stops.

8.3.2.1 Looking up data inside the model

The location data within the model is usually requested in the same sequence as a bus

would traverse these points on its journey. For example, if a given model contains only

those locations that represent a stop, each Bus component would attempt to look them

up one by one in the order in which they appear on that particular service’s timetable.

For this reason we map the original bus stop unique identifiers from the API sourced

data into a different set of unique identifiers associated with a particular CARMA model

name-space domain. In this way, we can ensure that for each service, the identifiers

of locations which the bus is due to traverse, are represented by incrementing integers.

This means that, conveniently, if a given bus is currently at the location with id==i, its

next location has the identifier id==i+1.

Records in CARMA are indexed, and in our model the index represents the id of a given

location. There are two records, x and y, for storing the x- and y- coordinate values of

each location.

8.4 Departures

In our model, new Bus components need to be instantiated with a rate that reflects the

departures of buses from the initial stop in the real data. A common pattern shared

by the timetables shows buses departing less frequently in the morning and evening

hours, and more frequently during the day, however the exact pattern of departures
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differs from service to service.

In the CARMA system, we model the departure timetables using a function which

returns a transition rate for triggering an action that results in instantiating a new Bus

component at a starting location. This rate should be dependent on the time of the day

in a way that reflects the data in the timetables.

In order to obtain the rate of transition for the Bus component instantiation, we will

use a function that returns the period of bus departure occurrences given a certain time

of the day. This function is calculated from the list of departure times on a timetable

(there is a timetable for every given day of the week, service and destination).

One way to calculate an approximate value of the period of bus departure events, is

to look at the differences between consecutive bus departures in a certain range of

time around the time for which the period is being calculated. For example, when

calculating the frequency of bus departures at 12 am, we take a mean of the time

differences between consecutive buses departing between 9 am and 3 pm.

Another approach is to calculate a weighted average of the differences between bus

departure times, with the weight being proportional to the time difference between the

considered departures and the time of sampling. For example, when calculating the

frequency of bus departures at 12 am, we take into account all of the time differences

between consecutive buses that can be calculated from the available data. However

the closer their time is to 12 am, the higher the weight associated with their value

when calculating the average. In other words, this formula is a weighted average of

differences between consecutive bus departure events and the weight is the distance [in

the unit of time] between the average value of the two departures whose difference we

are calculating, and the point of sampling.

The comparison of the two methods described above is presented in Fig. 8.1. The

graph is based on the timetables of two stops which are the starting locations of service

number 5 to Hunter’s Tryst. The early morning departures start at Brunstane, while the

rest of departures start at The Jewel. The vertical lines represent actual departure times,

as sampled from the timetables.
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Figure 8.1: The period of bus departures per time of day calculated using a simple

average over 3 hours, and using the weighted average method.

Figure 8.2: The internal state diagram of the Bus component.

In the simulation results presented later in this paper, we used a model based on the

period function generated using the weighted average method.

8.5 Movement

8.5.1 Changing locations

In the presented model, a Bus is a CARMA component having two states, ‘ON ROAD’

and ‘AT STOP’. The state graph representing its behaviour is shown in Fig. 8.2.
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In the ‘ON ROAD’ state, the Bus component can perform a transition which, depend-

ing on the value of the predicate expression, has two possible outcomes:

• the Bus component updates its store to reflect its new location; or

• the Bus component is removed from the system.

In the CARMA model this is represented by two actions, move? and f inish?. Perform-

ing either of them results in exiting the ‘ON ROAD’ state. If the move? action is

triggered, the bus enters the ‘AT STOP’ state. In the other case, the bus has reached its

destination, and the component is removed from the system.

In this manner, each of the Bus components traverses a number of locations on its

route, until arriving at the destination. The continuous nature of movement of real-

world vehicles is modelled using this step-based discrete approach.

When in the state ‘AT STOP’, the Bus component needs to perform the handleStop?

action in order to transition to the ‘ON ROAD’ state. This action simulates the ad-

ditional waiting time a bus takes when passengers are leaving and boarding. This

transition’s rate depends on the kind of location the bus is currently at. When in this

state, the bus component can be in one of the two situations:

• the current location in the store is a stop

• the current location in the store is a point on the route but not a stop.

If the location is just a point on the route and not a bus stop, the action has a fast rate,

which means its delay time can be ignored and we may assume that it is triggered

instantaneously. In the other case, the rate has a constant value which reflects the

waiting time.

The elements of the model in CARMA, are shown in Figures 8.3 and 8.4.
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Store of Bus component:

startL (const) start location

startTime (const) start time

goalL (const) final location

currL current location

Behaviour of Bus component:

MOVE def
= [currL 6= goalL]move?[⊥]〈my.currL〉{my.currL := my.currL+1}.WAIT

+ [currL == goalL]finish?[⊥]〈startTime〉.kill
WAIT def

= [isStop(currL)]handleStop?[⊥]〈〉.MOVE

+ [isroutePoint(currL)]handleRoutePoint?[⊥]〈〉.MOVE

Initial state of Bus component: MOVE

Values passed to Bus component’s store on initialization: startL,startTime,goalL

Store of BusGenerator component:

startL (const) start location for new Buses

goalL (const) goal location for new Buses

Behaviour of BusGenerator component:

GEN def
= generate?[⊥]〈my.startL,my.goalL〉.GEN

Initial state of Bus component: GEN

Values passed to Bus component’s store on initialization: startL,goalL

Figure 8.3: The Bus and BusGenerator components of the Lothian buses model. The

move, finish and generate spontaneous actions broadcast a message even though

no component will receive it - the content of the message can be accessed from the

environment and is used to compute the rate for these actions as well as for updating

the global store.
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Evaluation context:

µp(γs,γr,α) = 1

µw(γs,γr,α) = 1

µr(γs,α) =



Ratemove
(
now,γs(currL)

)
if α = move?

Rategenerate
(
now

)
if α = generate?

λstop if α = handleStop?

λroutePoint if α = handleRoutePoint?

1 otherwise

µu(γs,α) =


/0,
(
Bus,{startL← γs(startL),startTime← now,goalL← γs(goalL),currL← γs(startL)}

)
if α = generate?{}

,0 otherwise

Initial collective:

Meadows def
=

(
BusGenerator, /0

)

Figure 8.4: Environment and evaluation context of the model of Lothian Buses. For

routes with multiple initial stops, such as the one in our example, there are multiple

BusGenerator components one for each stop at which buses start their journey. λstop

and λroutePoint are constants chosen to reflect the fact that a bus takes longer time at a

bus stop than at a regular route point.

8.5.2 Speed

The average speed at which a bus is moving is modelled by adjusting the rates of the

move? and handleStop? actions of the Bus component in the CARMA system.

The rate of the move? action depends on the distance between the current and next

location as well as the current value of traffic. The handleStop? action has a constant
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rate, but it only results in delays in locations which are stops.

8.6 Limitations of the CARMA implementation

Because of the limitations that the syntax of CASL imposes on defining measures,

the data obtained for the analysis could not be extracted directly from the CARMA

simulation in the usual way. Each CARMA model for the purpose of simulation is

translated to the Java programming language. This is done automatically, each time a

CARMA file is saved in the Eclipse IDE.

One set of data that is not directly available through CASL, is the exact values of store

variables of all components in the system, at any given time. In CASL, it is only

possible to define measures that return the average, minimum or maximum from the

set of sampled values. In order to obtain the complete data, sampled at each step of

the simulation, the generated Java project was post-processed to save the following

information, after each Bus component performs an action:

• bus identifier

• current time

• bus start time

• bus current location (x, y)

This post-processing was performed automatically using Python scripts.

The prototype versions of this model were developed using CGP and Spatial CASL.

In order to make it feasible to run the simulation with the full data we needed to ap-

ply a number of optimizations to these models, mainly pre-computing most compu-

tationally heavy values such as distances between graph nodes. These were stored in
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lookup tables indexed with location unique identifiers for fast lookup. We assigned

these identifiers to the locations in such a way that the following always holds true:

curentLoc+ 1 = nextLoc. This was possible as the progression of a Bus through the

system of nodes is always sequential and there are no decision points in the system,

as to which node to move to next. This allowed us to simplify the implementation

further by replacing the locations with an integer that was incremented every time the

Bus changed location which had a great impact on the overall simulation time of the

system.

8.7 Application of the model

8.7.1 Real world data source

The Transport for Edinburgh company [18] has provided us with access to the REST

API that can be used to obtain data gathered from their bus system. The data used

for the purpose of this research is relevant to the routes, timetables and live vehicle

locations of bus services provided by Lothian Buses [14], a bus operator within the

Transport for Edinburgh company. The data source is described in detail in Chapter 6

of this thesis.

8.7.1.1 Locations and points on routes

The objects ascribed location values are either bus stops or points on the route. The

points on the route are included to preserve the shape of the bus route, which, when

reconstructed using only stop locations may be missing important information such as

road turns. In this thesis the term ‘points on routes’ is used to collectively refer to bus

stops as well as other points the route whose locations are included in the Transport for

Edinburgh API data. In the API data, each location is represented by its geographical

latitude and longitude.
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8.7.1.2 Bus stops

Apart from their locations, bus stops have been additionally given a unique identifier

and a name, for example ‘Shandwick Place’.

8.7.1.3 Services

The services API endpoint provides information about all the existing services -

including their names, destinations, and routes.

8.7.1.4 Live vehicle locations

The live vehicle locations endpoint of the Transport for Edinburgh Open Data API

provides snapshots of the bus system at the time of request. This information includes

the geographical location of all the currently active buses, as well as the next stop on

their journey.

8.7.2 Traffic

We used data obtained from The Tom Tom Traffic Flow [16] service in order to esti-

mate traffic values. This data source is described in detail in Chapter 6.

To lessen the probability that an incident (roadwork, closure) not included in the sim-

ulation would affect the results, we used data from a day in which all the causes of

increased congestion were categorised as ‘jams’ in the Live Traffic Reports service.
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Figure 8.5: The route of service number 5 to Hunter’s Tryst, stops are indicated by white

circles. Screenshot taken from Lothian Buses Network Maps webpage [15].

8.7.3 Instance of the model: Service number 5 to Hunter’s Tryst

In order to create an instance of the model, we used data collected from buses on

the route of Lothian Buses’ service number 5 to Hunter’s Tryst, using the weekday

timetables (that is, excluding Saturdays, Sundays and Bank Holidays).

This route has 124 points on routes, 58 of which are stops.

We applied the same measures to the data obtained from the Lothian Buses API and

from the simulation of our CARMA model.

We compare the real-world data with the model using the number of active buses per

time of day. This measure depends on two aspects of the system:
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• the frequency at which new buses are introduced into the system

• the length of time a bus remains in the system.

In this case, both of these characteristics are time-dependent and at the same time

independent of each other.

The results obtained from the simulation correspond well to the real-world data. The

greatest disagreement can be observed in the initial stage of the system evolution

(morning hours). This discrepancy may be explained by the artefacts of the real data:

many vehicles that are to start their service only later in the day appear as active in

the system as soon as the GPS mechanism is switched on. In the presented graphs we

removed the buses that appear as active before the first departure time of the timetable,

however further and more selective data cleaning needs to be performed to eliminate

this inconsistency in the later morning hours.

An interesting observation can be made about the influence of the traffic on the number

of active buses. In the simulation instance without traffic (i.e. the speed depends

only on the distances), shown in dark blue in Fig. 8.6, the number of active buses

is underestimated in the time ranges 9:00 am - 11:30 am, 4:00 pm - 9:00 pm and

overestimated between 2:00 pm and 3:00 pm. In the simulation with traffic (shown

in dark red), the trend seems to be reversed for the time ranges 9:00 am - 11:30 am

and 2:00 pm - 3:00 pm. This means that if the influence of traffic was smaller by a

particular amount, the simulation would fit the data with greater accuracy. The reason

for the traffic to have a smaller influence on buses, than it has on other vehicles (those

equipped with Tom Tom GPS devices, which are the source of the traffic information)

is probably the fact that buses can travel along privileged bus lanes. If we assume that

a majority of vehicles used by Tom Tom for data gathering do not travel in such lanes,

this discrepancy can be explained by the lower average speed of those vehicles than

that of buses.

Between 7:45 pm and 12:00 am the inclusion of traffic seems to have a negligible effect

on the simulation, and the active buses count is underestimated by both simulation

instances in the time range 7:30 pm - 9:30 pm.
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Figure 8.6: The number of active buses versus the time of day, observed in the real

data, simulation with traffic and simulation without traffic.
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Figure 8.7: The average journey length for each pair of bus stops on the route arriving

at the destination stop between 5:30 pm and 6:30 pm (data).

Figure 8.8: The average journey length for each pair of bus stops on the route arriving

at the destination stop between 5:30 pm and 6:30 pm (simulation).
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Figure 8.9: The absolute difference between data and simulation journey times for each

pair of bus stops on the route arriving at the destination stop between 5:30 pm and 6:30

pm.

Figure 8.10: The relative difference between data and simulation journey times for each

pair of bus stops on the route arriving at the destination stop between 5:30 pm and 6:30

pm. This was calculated using the formula Di f f a,b =
abs(a−b)
max(a,b) .
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In the last time segment, both simulation instances seem to align with the real-data

results very well.

An hour long snapshot of the system taken between 5:30 pm and 6:30 pm can be seen

in Fig. 8.7, 8.8, 8.9, and 8.10. The x and y axes represent bus stops, which are indexed

with integers, and sorted by the order they appear along the route. The colour of

each pixel represents the average journey time from the stop designated by the x-axis

value to the stop designated by the y-axis value. The striped pattern of discontinuities,

which can be observed on all plots, are more pronounced in the simulation results.

This is because they are the results of accumulated delayed or early departures of a

bus from consecutive bus stops on the journey. In real life, when a bus arrives at the

stop too early, the driver waits until the timetable departure time before continuing,

minimising the overall value of headway. In this simulated model that mechanism was

not represented. For this reason, we can observe that on some journeys, the duration

times have been shifted for all consecutive arrival stops.

8.8 Conclusions

In this chapter we presented a model of urban transportation scheme and compared the

results obtained from analysing this model through means of simulation with the real-

world data. We were able to demonstrate the expressive capabilities of the CARMA

language and its suite of tools. We showed how various types of data obtained from

multiple sources can be combined together in order to create a representation which

yields simulation results that are in good agreement with measures applied to the real-

data only.

In contrast to existing models from the literature that are conceptually similar [83, 84,

105] our model deals with a large and varied source of data and combines multiple

types of it in a single model.
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Conclusions

In this thesis we explored various aspects of the process of modelling and analysis

of Collective Adaptive Systems (CAS) in which the spatial location of components

contributes in a significant way to the overall behaviour of the system.

We chose to work with the CARMA process calculus and its suite of software tools,

which are specifically tailored for investigating CAS case studies.

The work described in this thesis applies formal and theoretical means to data and uses

software-engineering and simulation in order to produce results that aim to broaden

our understanding of existing real-world case studies.

9.1 The scientific contributions

The scientific contribution of this thesis consists of the creation of tools aiding the

analysis of the properties of CAS in which space plays an important role, as well

as utilizing real data in the models created using these novel tools together with pre-

existing ones, in order to demonstrate their applicability to solving real world problems

151
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from the area of CAS modelling.

Chapter 3 describes the work undertaken to extend CASL with a supplementary syn-

tax designed specifically for working with spatial systems. The addition of spatially-

oriented syntactic constructs allowed us to abstract the spatial aspects away from the

models and tailor appropriate data structures suitable for representing systems in which

they occur. This provides the modeller with the ability to create cleaner, highly concise

and more readable models by avoiding the need of explicitly specifying many aspects

of the spatial infrastructure.

The creation of CGP, described in Chapter 4 was another step towards creating more

user friendly tools for specifying spatial systems. The contribution here consisted of

designing a graphical representation for CAS with movement and implementing this

approach in the form of a plug-in tool to the Eclipse IDE which can be used to auto-

matically generate CASL code from graphical input.

The first model presented in this thesis, in Chapter 5, describes a crowd routing sce-

nario assuming the flow of pedestrians moves from one designated node to another

designated note, through networks of connections having various sizes and complexity.

The analysis of this simple model allowed us to assess the expressiveness of CARMA

for the purpose of describing similar types of real-world scenarios. The results ob-

tained from simulating the model were in accordance with an intuitive understanding

of the effects of congestion on the throughput of crowd movement – in all experiment

cases the average times of travel were lowest when there was no congestion present.

Networks having greater height showed better performance, which is the result of them

having greater capacity, specifically in the context of the first step of a pedestrian’s

movement, where the pedestrian has one more node available when deciding which

node to move to next.

In Chapter 7, building on top of the first basic model, we have formulated a data-driven

model of a system of pedestrian movement as a collective adaptive system where the

actions of some participants within the system are influenced by the actions (or even the

presence) of others. We approached the creation of a more detailed and more realistic

model by building on the experience which we gained in creating a basic model with
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simple and regular symmetric structure. The insights obtained from this basic model

directed our attention to likely issues with the more realistic model, and deepened our

understanding of the effects of local decisions on global behaviour.

The degree of self-awareness in the system gained through the (local) recognition and

attempted avoidance of congestion in the network by the participants within the system

itself makes the problem different in character from a traditional network-flow problem

where data is routed through a network without even local knowledge of congestion

ahead. Adaptive systems naturally give rise to phenomena such as these where the de-

cisions of one participant are influenced by the decisions of another seemingly entirely

independent participant and the longer-term consequences of a decision are usually

infeasible to predict at the time of making the decision, and it may even be difficult to

understand the path from decision to consequence in retrospect.

The suite of experiments which we carried out on the models presented here, and the

many variants of these which were created in the model development process, provided

us with a convincing demonstration of the applicability of the CARMA modelling tools

to a modelling problem with aspects of microscopic and macroscopic perspectives and

evidence of the practical effectiveness of the CARMA process calculus as an intellec-

tual vehicle for expressing intelligent density-dependent movement across an arbitrary

network topology.

We made extensive use of the CGP together with the CASL language, which enriches

the core CARMA process calculus with additional language features thereby making it

possible to express large models cleanly by using data types and data structures to rep-

resent structured information in the model, allowing the model to be statically checked

for model coherence at compile-time. This eliminated a raft of potential modelling er-

rors, streamlining the process of model creation. CASL additionally supports arbitrary

function definitions for the propensity functions which give rise to probability distribu-

tions over model actions, allowing us to model user behaviour accurately; and general

rate functions, allowing us to model timing behaviour accurately. In addition, it pro-

vides spatial data structures, allowing us to represent physical separation and distance

accurately.
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We used the CGP for the purpose of automatically generating CASL code from graph-

ical input, for the purpose of instantiating the four presented scenarios.

In Chapter 8 we applied the CARMA process calculus to model an urban transportation

system. The challenges of this technique originate from the continuous nature of the

real-world data being represented in a discrete and stochastic modelling environment.

The patterns one might expect to observe when viewing the system from a high-level

and simplified perspective, are often distorted by numerous factors that influence the

real-world data. For this reason, a stochastic model will always be an abstract rep-

resentation of the considered system. The challenge therefore is to extract a generic

paradigm that can describe a given instance with a satisfiable accuracy, while at the

same time remaining applicable to a range of other instances.

The simulations based on the presented modelling approach result in patterns which

are in good agreement with those observed in the real data. An interesting feature of

the Transport for Edinburgh transportation system which emerged from comparing the

data with simulation, is the fact that traffic influences buses to a lesser extent than other

vehicles (presumably because of the existence of bus lanes).

This good agreement between simulation results produced by the model and real-world

behaviour means that experiments with the model can be used to effectively evaluate

potential modifications to the real-world system, or to check the accuracy of other

descriptions, as in [105].

The significance of the scientific contribution of this thesis lies first and foremost in

demonstrating how the theoretical and software-based tools for modelling of CAS

may be applied to real world data in order to obtain meaningful results and thus show-

ing the promising potential of combining highly theoretical modalities such as formal

modelling with substantial concrete problems based on real-world data.
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9.2 Limitations

There are a number of limitations to consider with respect to the work described in this

thesis.

We chose to work with the CARMA formal modelling language, which means that one

must think of the modelled systems under the Markovian assumption, i.e. the future of

the system’s evolution depends only on its current state and the transitions have rates

described by the exponential distribution.

Our extension of CASL, Spatial CASL, although providing structures much more suit-

able for representing spatial elements, is not capable of representing all aspects of

physical space in a realistic way. One aspect that is not considered in Spatial CASL is

the physical size of the elements. The locations in Spatial CASL are points on a plane

and do not have a size of their own. They also have infinite capacity for co-locating

agents (and there is also no concept of an agent’s physical size). Areas in Spatial CASL

are defined as collection of nodes and not continuous fields, and are only labelled with

a name. There are a number of situations in which the ability to define a continuous

area with features described by functions depending on the location within the area

would be advantageous. For example, one can think of a spatial field with features

whose values change smoothly over the whole area, in a gradient-like fashion.

Using Spatial CASL and CGP, one can construct a spatial graph that is non-planar,

i.e. cannot be represented on a plane with no connections crossing (see graphs from

Chapter 5 in Fig. 5.3). This is impossible in real-world scenarios without adding a

third dimension representing elevation (one can think of tunnels and bridges). Such

three dimentional spatial structures cannot currently be represented by CGP models.

The tool for working with CASL code was developed as an extension to the Eclipse

IDE and the simulator was written in Java. Without a doubt the largest limitation of

the CARMA Eclipse plugin we encountered is that at the time of writing, CASL does

not support reading input data files and only implements a small subset of standard data

structures such as vectors and arrays (but not, for example, dictionaries). This makes



Chapter 9. Conclusions 156

working with models based on data extremely difficult, since all the data one wants to

include in a model has to be hard-coded in the CASL file itself. With large data this

yields large CASL code files, which the Eclipse parser was not designed to deal with.

Most CASL files with the size in the order of magnitude of 10k+ lines are simply

too large for the parser to handle and result in long periods of unresponsiveness or

crashes of the software. In addition to that the implementation of CASL is of a rather

preliminary nature and not robust in terms of translating CARMA models into Java,

and will often result in Java programs that crash with exceptions without providing

any logs or a way of attaching a debugger during a simulation run (in order to do that

one would need to check out the repository of the CASL implementation itself, rather

than install it as a Eclipse plugin).

The work presented in Chapter 7 brings this model closer to reality but it is still highly

abstract and because of the lack of availability of data we could not compare its perfor-

mance to that of the real-world system, in order to assess its feasibility as a predictive

tool.

During the work on the model presented in Chapter 8 we pushed the CARMA Eclipse

plugin to its limits, learning how much data it is feasible to encode in the model itself

and still allow for the Java code to be generated and the simulation to finish within a

reasonable amount of time. From the code generation perspective, it would have not

been difficult to generate a CARMA model including all the buses and routes in the

network, but it is simply not possible to simulate such a large and complex CARMA

model currently.

9.3 Further work

There is a lot of potential for future work in relation to the work presented in this thesis.

Specifically, the following future work projects could be identified:

• Extending Spatial CASL with the ability to handle more data structures (espe-

cially spatial ones, such as continuous gradient fields mentioned in the previous
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section) and with the ability to read input data files.

• Making CGP more robust, adding the ability to import graphical arrangements

of elements from data files and adding a graphical editor for modifying the be-

haviour of components.

• Creating a pedestrian routing model heavily based on a real-world scenario and

comparing the simulation results with measures applied to real data.

• Creating a model of a bus network that includes all buses and routes in the sys-

tem, and takes into account the existence of (or lack of) special privileged bus

lanes, as well as traffic information based on location (as some areas are more

likely to be congested than others).
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List of Abbreviations

Abbreviations

ADLs Architecture Description Languages

API Application Programming Interface

AVL Automatic Vehicle Location

BPD Business Process Diagram

BPMN Business Process Model and Notation

CARMA Collective Adaptive Resource-Sharing Markovian Agents

CAS Collective Adaptive Systems

CASL CARMA Specification Language
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CGP CARMA Graphical Plugin

DERs Distributed Energy Resources

GPS Global Positioning System

GUI Graphical User Interface

IDEF Integration DEFinition

SIR Susceptible Infected Recovered

UML Unified Modelling Language

UTM Universal Transverse Mercator (projection)

WGS84 World Geodic System 1984
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[57] D. HELBING, I. FARKÁS, P. MOLNAR, AND T. VICSEK, Simulation of

pedestrian crowds in normal and evacuation situations, in Pedestrian and

evacuation dynamics, M. Schreckenberg and S. D. Sharma, eds., Springer,

Berlin, 2002, pp. 21–58.

[58] J. HILLSTON, PEPA: Performance enhanced process algebra, University of

Edinburgh, Department of Computer Science, 1993.

[59] J. HILLSTON AND M. LORETI, CARMA eclipse plug-in: A tool supporting

design and analysis of collective adaptive systems, in Quantitative Evaluation

of Systems - 13th International Conference, QEST 2016, Quebec City, QC,

Canada, August 23-25, 2016, Proceedings, G. Agha and B. V. Houdt, eds.,

vol. 9826 of Lecture Notes in Computer Science, Springer, 2016, pp. 167–171.

[60] J. HILLSTON, J. PITT, M. WIRSING, AND F. ZAMBONELLI, Collective

Adaptive Systems: Qualitative and Quantitative Modelling and Analysis

(Dagstuhl Seminar 14512), Dagstuhl Reports, 4 (2015), pp. 68–113.

[61] M. HINCHEY, R. STERRITT, AND C. ROUFF, Swarms and swarm intelligence,

Computer, 40 (2007), pp. 111–113.

[62] O. HOLLAND AND C. MELHUISH, Stigmergy, self-organization, and sorting

in collective robotics, Artificial life, 5 (1999), pp. 173–202.

[63] Z. HUSSAIN, N. GROMOV, AND I. TODORAN, SOA Integration Modeling: An

Evaluation of How SoaML Completes UML Modeling, in 2011 15th IEEE

International Enterprise Distributed Object Computing Conference

Workshops(EDOCW), vol. 00, 08 2011, pp. 57–66.
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