
 
 
 
 
 
 
 
 
 
 
 

 
 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

 

This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



Restoring the balance between stuff and

things in scene understanding

Holger Caesar
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute of Perception, Action and Behaviour

School of Informatics

University of Edinburgh

2018





Abstract

Scene understanding is a central field in computer vision that attempts to detect objects

in a scene and reason about their spatial, functional and semantic relations. While

many works focus on things (objects with a well-defined shape), less attention has

been given to stuff classes (amorphous background regions). However, stuff classes

are important as they allow to explain many aspects of an image, including the scene

type, thing classes likely to be present and physical attributes of all objects in the

scene. The goal of this thesis is to restore the balance between stuff and things in scene

understanding. In particular, we investigate how the recognition of stuff differs from

things and develop methods that are suitable to deal with both. We use stuff to find

things and annotate a large-scale dataset to study stuff and things in context.

First, we present two methods for semantic segmentation of stuff and things. Most

methods require manual class weighting to counter imbalanced class frequency distri-

butions, particularly on datasets with stuff and thing classes. We develop a novel joint

calibration technique that takes into account class imbalance, class competition and

overlapping regions by calibrating for the pixel-level evaluation criterion. The second

method shows how to unify the advantages of region-based approaches (accurately de-

lineated object boundaries) and fully convolutional approaches (end-to-end training).

Both are combined in a universal framework that is equally suitable to deal with stuff

and things.

Second, we propose to help weakly supervised object localization for classes where

location annotations are not available, by transferring things and stuff knowledge from

a source set with available annotations. This is particularly important if we want to

scale scene understanding to real-world applications with thousands of classes, without

having to exhaustively annotate millions of images.

Finally, we present COCO-Stuff – the largest existing dataset with dense stuff and

thing annotations. Existing datasets are much smaller and were made with expensive

polygon-based annotation. We use a very efficient stuff annotation protocol to densely

annotate 164K images. Using this new dataset, we provide a detailed analysis of the

dataset and visualize how stuff and things co-occur spatially in an image. We revisit

the question whether stuff or things are easier to detect and which is more important

based on visual and linguistic analysis.
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Chapter 1

Introduction

Evolution has endowed human beings with outstanding capabilities for perceiving and

understanding their visual surroundings. These capabilities are seemingly trivial and

effortless: We do not require conscious effort to see and understand our environment.

Scene understanding as a part of computer vision attempts to equip computers with

similar vision capabilities. Modeling and training a vision system turns out to be ex-

tremely challenging: Infinitely many 3D scenes can project to the same 2D image.

And since each pixel in an image might depend on each other pixel, we face a com-

binatorial explosion that poses challenges given limited computational resources and

training data. Fortunately we can use priors to constrain the number of likely scenarios.

This idea is closely related to the concept of unconscious inference (von Helmholtz,

1867), that humans unconsciously base their visual understanding of incomplete data

on assumptions made from prior experience.

As humans we tend to think of the world as a set of entities (Adelson, 2001; Feld-

man, 2003) (person, car, chair) with a position, orientation and attributes such as shape

and color. These countable things often form a composition of parts and we know how

to grasp and manipulate them. We rarely focus on the amorphous background materi-

als (ceiling, grass, water) that lack a characteristic size and shape. These uncountable

stuff regions have no parts and it is therefore not clear how to grasp and manipulate

them. However, stuff matters1. We use the presence of walls, floors and ceilings to

create a mental 3D representation of a room. We use texture and lighting cues to per-

ceive scale and orientation of surfaces. Stuff classes like road, path and water are

used for navigation by humans and robots alike. Other stuff classes like wall and bush

may limit the navigable free space. Material properties like friction and viscosity are

1 “What would childhood be without mud, snow, or peanut butter?” (Adelson, 2001)

1



2 Chapter 1. Introduction

important attributes in path planning that affect speed, energy consumption and safety.

Optical, mechanical, and chemical descriptors are abundant in advertising and con-

vincing materials are essential to create a realistic impression in computer graphics

and art (Adelson, 2001). We also prime our understanding based on contextual cues:

Cows are likely to be found on grass, giraffes are not likely to be found on water. One

might even argue that our focus on things is an artefact of the industrialized world, as

most things are man-made (Cheng et al., 2012). For early humans stuff classes may

have been more important than things. Stuff and things are closely related to perceptual

grouping and Gestalt psychology (Wertheimer, 1923; Kanizsa, 1979). In linguistics, a

similar concept is the mass and count distinction (Cheng, 1973; Fieder et al., 2014).

In computer vision things have received a lot of attention: Early research in the

1960s-70s focused on primitive shape detection (Duda and Hart, 1972) and template

matching (Vanderbrug and Rosenfeld, 1977). Such methods are typically unable to

generalize to real-world images. In the 2000s, researchers achieved significant break-

throughs in face (Viola and Jones, 2001) and pedestrian detection (Dalal and Triggs,

2005). For the detection of these thing classes, the spatial composition of parts plays

an important role. A few years later, researchers were able to generalize to datasets

with realistic images and train object detectors for dozens of thing classes and bench-

mark their results against the community (Everingham et al., 2015). The advent of

large-scale datasets and deep learning methods in the 2010s pushed the performance

to previously unexpected levels for hundreds of classes (Krizhevsky et al., 2012; Rus-

sakovsky et al., 2015).

Meanwhile stuff classes have received less attention: Early work focused on tex-

ture classification (Brodatz, 1966). Recent works look at materials in real-world im-

ages (Bell et al., 2015), but without consideration for their semantics. The fairly young

task of semantic segmentation (He et al., 2004; Long et al., 2015) fills this gap by

classifying each pixel in an image using stuff and thing classes. Early semantic seg-

mentation dataset had stuff and thing annotations (Shotton et al., 2006; Liu et al.,

2011). Unfortunately this changed over time and currently the most popular seman-

tic segmentation dataset (PASCAL VOC 2012 (Everingham et al., 2015), according to

Appendix A) only covers thing classes. Therefore semantic segmentation is recently

sometimes perceived as a minor refinement of object (thing) detection.

This observed gap between stuff and things in computer vision has a profound

impact. We see multiple reasons for this gap: 1) Differences in human perception of

stuff and things as described above. 2) The difficulty in defining, distinguishing and



1.1. Stuff and things 3

delineating different stuff classes. 3) A lack of datasets and sophisticated models to

learn stuff and things and their interactions. In this work we attempt to restore the

balance between stuff and things in scene understanding. We present guidelines how

to distinguish stuff and things and describe their characteristics. We devise methods

for semantic segmentation of stuff and things. We show how stuff can be used to find

things and vice versa. Finally, we create the largest existing dataset to study stuff and

things in context.

1.1 Stuff and things

Before we present the problem statement and general approach of this thesis, we dis-

cuss the nature of stuff and things. The literature provides several aspects of stuff

and things, including: (1) Shape: Things have characteristic shapes (car, cat, phone),

whereas stuff is amorphous (sky, grass, water) (Forsyth et al., 1996; Xiao et al., 2010;

Ion et al., 2011; Tighe and Lazebnik, 2013a; Uijlings et al., 2013; Mottaghi et al., 2013;

Endres and Hoiem, 2010; Dai et al., 2015b). (2) Size: Things occur at characteristic

sizes with little variance, whereas stuff regions are highly variable in size (Forsyth

et al., 1996; Adelson, 2001; Heitz and Koller, 2008). (3) Parts: Thing classes have

identifiable parts (Wang and Yuille, 2015; Felzenszwalb et al., 2010), whereas stuff

classes do not (a piece of grass is still grass, but a wheel is not a car). (4) Instances:

Stuff classes are typically not countable (Adelson, 2001) and have no clearly defined

instances (Dai et al., 2015b; Hariharan et al., 2014; Tighe et al., 2014). (5) Texture:

Stuff classes are typically highly textured (Forsyth et al., 1996; Heitz and Koller, 2008;

Tighe and Lazebnik, 2013a; Dai et al., 2015b).

The above aspects of stuff and things form guidelines rather than an accurate defi-

nition. Feldman (2003) takes a similar approach and concludes that “although each of

these properties contributes to the perception of [things], none is, in and of itself, es-

sential”. The same author even argues that things are not primarily an objective aspect

of how the world is structured, but rather a product of “how our subjective perceptual

interpretations are organized”. Hence some classes can be interpreted as both stuff

and things: A large number of people is sometimes considered a crowd (Hoiem et al.,

2005a; Everingham et al., 2010; Hariharan et al., 2014). The foliage of a tree looks like

stuff, but some people consider tree a thing, as it has a characteristic branch skeleton

and various parts (e.g. root, trunk, branches, leaves). The class table has a character-

istic size and shape and forms a composition of parts, which would make it a thing.
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However, in some photographs tables are pictured as a surface from above, so that ma-

terials and texture become more important, similar to the stuff class floor. Ultimately

the categorization of a semantic category as stuff or thing is a useful simplification to

analyze certain characteristics of these semantic categories.

The term object is often used synonymously with thing (Alexe et al., 2010; Feld-

man, 2003; Dai et al., 2015b) (cf. objectness (Alexe et al., 2010), object detection (Gir-

shick et al., 2014)). Other scholars use the term object as an instance of a semantic

class, which may be a stuff or thing class (Liu et al., 2011; Sun et al., 2013; Brahmb-

hatt et al., 2017). In this work we use the latter and more general definition of object,

except for established concepts (like object detection).

1.2 Problem statement and general approach

As pointed out above, stuff has received less attention than things due to actual and

perceived differences between both. We identify several areas where stuff has achieved

less attention. In particular, we investigate how the recognition of stuff differs from

things and develop methods that are suitable to deal with both. We present methods

to efficiently scale the learning of stuff and things and annotate a large-scale dataset

to study stuff and things in context. We use stuff to find things and analyze how stuff

and things co-occur spatially in an image. We revisit the question whether stuff or

things are easier to detect and which is more important based on visual and linguistic

analysis. Our goal is to rectify the imbalance and to restore the balance between stuff

and things.

Scene understanding is a central field in computer vision that attempts to detect

objects in a scene and reason about their spatial, functional and semantic relations. We

use semantic segmentation as a representative scene understanding task to learn stuff

and thing classes. Semantic segmentation is the task of classifying each pixel in an

image into a set of predefined semantic classes. It is an extremely challenging task

because the label of a pixel typically depends on many other pixels, and possibly the

entire image. Multiple images of the same object can differ widely in appearance due

to modifications in position, orientation, pose, scale, lighting, and texture. The appear-

ance of an object may also differ significantly from another instance of the same class

(intra-class variation). Another problem in semantic segmentation is class imbalance

in the image or pixel frequency distribution. The learning algorithm needs to take care

of class imbalance, e.g. by loss weighting or subsampling. Some datasets only have
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sparse annotations for thing classes (Everingham et al., 2015; Lin et al., 2014). These

classes are sampled to have a similar distribution, thereby limiting the class imbalance

problem. Other datasets cover the entire image with dense stuff and thing annotations,

but typically contain only a few canonical stuff classes and many rare thing classes (Liu

et al., 2011; Mottaghi et al., 2014). In this context the problem of class imbalance is

particularly relevant as rare thing classes would otherwise be ignored. Furthermore,

stuff and things often occur in a contained-in relationship (cow standing on grass, air-

plane flying in the sky). Instead of looking at smaller patches, a region-based approach

allows us to classify both regions in their entirety. With proper calibration, the overlap

between container and contained region can then be resolved. In this thesis we present

semantic segmentation methods that automatically take into account class imbalance,

class competition and overlapping regions (Chapter 3).

Semantic segmentation methods can be roughly categorized in two types of ap-

proaches: Fully convolutional methods (Long et al., 2015) operate directly on the

pixel-level. Region-based methods (Girshick et al., 2014) operate on regions. Fully

convolutional methods are conceptually simple and efficient and allow for straight-

forward end-to-end training. Region-based methods produce crisp object boundaries.

We try to combine the advantages of both by enabling to train a region-based method

end-to-end. Traditionally, region-based approaches are particularly used for things, as

they produce crisp object boundaries and enforce helpful priors on the object location.

Using multi-scale regions, these approaches are able to capture a thing instance at its

canonical scale. On the contrary, stuff has less clearly defined boundaries and no spe-

cific part configuration. It has neither instances nor a canonical scale and a piece of

stuff is still stuff (see Sec. 1.1). Our approach allows for a unified treatment of stuff

and things by capturing both at their most discriminative scale, which may correspond

to the canonical scale for things. Furthermore, optimizing for instances or regions is

suboptimal for semantic segmentation. To address this issue, we present a new tech-

nique that allows us to train directly for the pixel level, which is particularly helpful for

stuff as it does not have instances. To summarize, we present a unified region-based

approach for both stuff and thing classes that enables end-to-end training (Chapter 4).

Most modern methods for semantic segmentation require a lot of data for train-

ing. Annotating a single image with pixel-level labels can take up to an hour (Cordts

et al., 2016). Therefore we need new paradigms both for annotating datasets and learn-

ing more efficiently. Instead of carefully annotating each object by drawing a tightly

enclosing polygon around it, we can use weaker levels of supervision, such as image-
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level labels (weakly supervised learning). These types of annotations are cheaper to

annotate and we can retrieve huge datasets from social media sites where users provide

tags and captions. When annotations are scarce, we can furthermore use domain trans-

fer from one task to another. This is particularly interesting in the context of stuff and

things. Existing datasets typically have only a few canonical stuff classes that cover

the majority of the surface and many rare thing classes that cover only small portions

of the image. Hence we suggest to focus on the frequent stuff classes and transfer their

knowledge across tasks and datasets. Using contextual relations, stuff can then be used

to find thing classes (Heitz and Koller, 2008). This can also be seen in a context of

curriculum learning (Bengio et al., 2009) and lifelong learning (Thrun, 1996), where

we introduce “different concepts at different times, exploiting previously learned con-

cepts to ease the learning of new abstractions” (Bengio et al., 2009). In this thesis we

present multiple techniques for efficient annotation and learning under different levels

of supervision (Chapter 3, 5 and 6).

To be able to study stuff and things in context, we need a large scale dataset with

a suitable type of annotation. Existing datasets are too small in terms of number of

classes and number of images (Shotton et al., 2006; Brostow et al., 2009; Liu et al.,

2011; Silberman et al., 2012) or have an unfavorable frequency distribution with a few

canonical stuff classes and many rare thing classes (Liu et al., 2011; Mottaghi et al.,

2014; Zhou et al., 2017b). As part of this thesis we present a new large-scale dataset

for stuff and things, called COCO-Stuff. The efficient annotation protocol exploits the

characteristics of stuff – particularly the difficulty in accurately outlining stuff regions

like trees and bushes. Furthermore it makes use of existing very accurate thing anno-

tations. Contrary to most existing datasets with stuff and thing classes, COCO-Stuff

has a similar granularity and frequency distribution for both stuff and things. This alle-

viates the previously mentioned problem of class imbalance between stuff and things.

Once we have such a dataset, we can analyze the spatial relations between stuff and

things, their relative importance and their role in semantic segmentation (Chapter 6).

This will bring us closer to our ultimate goal of restoring the balance of stuff and things

in scene understanding.
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1.3 Thesis plan

This section gives a plan of the thesis and summarizes its contributions:

• We describe the motivation for this thesis, a definition of the problems we ad-

dress, as well as the characteristics of stuff and things (Chapter 1).

• We give an overview of semantic segmentation and related tasks, deep learning,

evaluation criteria as well as problems and approaches in semantic segmentation

with respect to stuff and things. We also discuss how to efficiently scale up

existing annotation and learning approaches and give an overview of how stuff

and things were previously used in the literature (Chapter 2).

• We present two semantic segmentation methods which outperformed the state-

of-the-art in class-accuracy at the time of publication on the SIFT Flow dataset

(Liu et al., 2011). Both methods are developed with a focus on class imbalance,

competition between classes, overlapping regions and training for the pixel-

level evaluation criterion. We provide an in-depth analysis of the strengths and

weaknesses of these methods. To promote further research, the code for these

and other methods has been published at https://github.com/nightrome/

matconvnet-calvin (Chapter 3 and 4).

• We show how to transfer stuff and things across domains and improve results in

weakly supervised object localization on classes where location annotations are

not available (Chapter 5).

• We build the largest existing dataset of stuff and things and use it to analyze stuff

and things in context. We also co-organized the COCO Stuff Segmentation and

COCO Panoptic Segmentation challenges and workshops in 2017 and 2018 to

help promote the COCO-Stuff dataset and the mission of this thesis to a broader

community (Chapter 6).

• We present additional unpublished works (Chapter 7), as well as ideas for future

work (Chapter 8). We conclude this thesis by summarizing our findings (Chap-

ter 9). As an appendix to the thesis, we present statistics of the largest existing

collection of semantic segmentation papers (Appendix A).

https://github.com/nightrome/matconvnet-calvin
https://github.com/nightrome/matconvnet-calvin
http://cocodataset.org/#stuff-challenge2017
http://cocodataset.org




Chapter 2

Background

This chapter presents the background knowledge and related work of this thesis. Re-

lated work specific to only certain chapters can be found in those chapters. We give

a broad overview over semantic segmentation and deep learning and review efficient

annotation and learning schemes. Furthermore we present datasets and methods for

stuff and things and describe how they are used in previous works.

2.1 Semantic segmentation

Semantic segmentation is the task of classifying each pixel in an image into a set of

predefined semantic classes, which can be stuff or things. An alternative view is that

semantic segmentation consists of two subtasks: localization and classification. In the

localization subtask we segment the semantic regions of an image. In the classification

subtask we assign a label to each segmented region. The two alternative views are

particularly linked to the different types of approaches: fully convolutional and region-

based (Sec. 2.1.3). Semantic segmentation is a supervised learning task that typically

requires pixel-level class labels at training time. Synonyms for semantic segmenta-

tion include semantic image segmentation, semantic (image) labeling, semantic object

parsing, scene parsing, scene labeling, scene segmentation and scene understanding

(although it generally has a broader meaning). In Appendix A we show that the term

semantic segmentation is the most frequently used of these synonyms.

Semantic segmentation is closely related to other tasks that combine localization

and classification. Object detection is the task of localizing each thing in an image

and drawing a tightly enclosing bounding box around it. Instance segmentation com-

bines aspects of semantic segmentation and object detection: The goal is to predict a

9
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Figure 2.1: Comparison of the different segmentation tasks. Image taken from Kirillov

et al. (2018).

pixel-level mask for each thing instance. This task was first made popular under the

name Simultaneous Detection and Segmentation (Hariharan et al., 2014). Semantic

segmentation may cover stuff and thing classes, whereas object detection and instance

segmentation only cover things. A recent task called panoptic segmentation (Kirillov

et al., 2018) unites semantic segmentation and instance segmentation. Each pixel is

assigned both a semantic label and an instance id. For stuff classes, which do not have

instances (see Sec. 1.1), the instance id is set to a dummy value. This holistic stuff

and thing task is aligned with the goal of this thesis – to restore the balance between

stuff and things. Fig. 2.1 shows an image and the desired outputs for the semantic

segmentation, instance segmentation and panoptic segmentation tasks.

2.1.1 Evaluation criteria

In Table 2.1 we present the evaluation criteria commonly used in semantic segmenta-

tion. Early works use pixel accuracy to measure the percentage of correctly classified

pixels in a dataset (He et al., 2004; Gould et al., 2009). Synonyms for pixel accuracy

are global accuracy and (per-pixel) classification rate. This metric is simple and intu-

itive and can be directly trained for using a standard cross-entropy log-loss. However

it is not ideal for datasets with class imbalance. The SIFT Flow (Liu et al., 2011)

dataset has 33 classes, but the class sky covers 26.7% of the pixels. This means that a
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dummy classifier that always outputs sky will achieve a pixel accuracy of 26.7%, while

ignoring 97.0% of the classes.

Later works use class accuracy – the average of the per-class pixel accuracies – as

an additional metric (Ladicky et al., 2009; Tighe and Lazebnik, 2010; Farabet et al.,

2013). Synonyms for class accuracy are mean accuracy, class-average pixel accuracy,

average per-class accuracy and average per-class rate. By giving the same importance

to each class, this metric penalizes ignoring classes. Therefore a dummy classifier tht

outputs only one label can only achieve a class accuracy of 1/C for a dataset with C

classes, e.g. 3.0% on SIFT Flow. A neural network can be trained to optimize for

class accuracy by using an inverse class frequency-weighted cross-entropy log-loss.

In practice class accuracy tends to saturate less quickly than pixel accuracy, making

it easier to compare different methods, e.g. on SIFT Flow the state-of-the-art has

advanced by +78% relative on class accuracy and +12% relative on pixel accuracy

from 2010 (Tighe and Lazebnik, 2010) to 2015 (Long et al., 2015). One problem of

the class accuracy metric is that it does not directly take into account false negatives.

This means that a classifier will assign disproportionately high scores to rare classes

to increase their true positive rate, while only very slightly decreasing the true positive

rate of frequent classes. We call this behavior “overshooting”. As an example, on SIFT

Flow it is beneficial to predict entire sky regions as bird, as bird is rare and small in

size, but likely to be surrounded by sky.

Everingham et al. (2015) suggest to use the Intersection-over-Union (IOU) crite-

rion for semantic segmentation, also known as the Jaccard index. Compared to the

IOU criterion used in object detection, in semantic segmentation IOU is computed

over all pixels belonging to a certain class in an image instead of boxes. Furthermore

they ignore object instances by treating all pixels of a class in an image as a single

mask. Hence this measure is useful for semantic segmentation of stuff and things,

as stuff does not have instances (see Sec. 1.1). The formula for mean IOU in Ta-

ble 2.1 shows that – compared to pixel accuracy and class accuracy – it includes false

negatives, thereby explicitly penalizing the overshooting behavior described above.

Optimizing directly for mean IOU is hard as it is a non-decomposable performance

measure (Ranjbar, 2013), which means that it cannot be decomposed into a sum of

per-pixel measurements. However several authors have attempted to approximate the

mean IOU measure: Cogswell et al. (2014); Rahman and Wang (2016) use proba-

bilistic approximations of IOU. Instead of using the predicted and ground-truth labels,

they compute the intersection and union of the pixel probabilities for the respective
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classes. This loss function can be optimized using standard Stochastic Gradient De-

scent (SGD). Other works use Conditional Random Fields (CRF) (Nowozin, 2014) or

Markov Random Fields (MRF) (Ranjbar, 2013) to optimize IOU. For a more detailed

overview we refer the reader to Rahman and Wang (2016). Some authors regard the

frequency of a class in a dataset as a measure of its importance (e.g. person is frequent

in PASCAL VOC (Everingham et al., 2015) and COCO (Lin et al., 2014)). Frequency

weighted (FW) IOU (Long et al., 2015) takes this into account by weighting the per-

class IOUs by their frequency.

Cordts et al. (2016) point out that the (global) mean IOU measure is “biased toward

object instances that cover a large image area”. They therefore also use an instance-

based IOU metric, which is “weighted by the ratio of the class’ average instance size

to the size of the respective ground-truth instance”. This is justified as they focus

particularly on individual traffic participants in an autonomous driving scenario (e.g.

car, person). However the metric requires instance annotations and therefore excludes

stuff, which does not have instances. Other scholars have argued that a suitable eval-

uation metric should be normalized per image. This takes into account images with

highly varying numbers of instances (e.g. in ADE20K there are up to 279 instances

per image (Zhou et al., 2017b)). It also gives the same importance to images with

varying image resolution. Furthermore plotting the histogram of a per-image metric

allows us to understand whether one method has advantages over another method on

all images or only on a specific subset (Csurka et al., 2013). Other types of evaluation

metrics focus on the performance on instance or region boundaries. Kohli et al. (2009)

present an evaluation metric on trimaps, which are the band-like regions surround-

ing an object boundary. They compute the metric for different widths. To collapse

the boundary measures for different widths into a single value, Csurka et al. (2013)

propose an F1-measure on binarized segmentation maps with a given distance error

tolerance to decide “whether a boundary point has a match or not”. While contour-

based evaluation criteria are useful for things, they are less applicable for stuff. In fact,

due to the difficulty of accurately delineating a stuff region (e.g. bush), the boundary

pixels may be the least reliable in the ground-truth annotation.

To summarize, we presented and discussed the evaluation criteria used in seman-

tic segmentation. The most suitable evaluation criterion is highly dependent on the

application and no single criterion is able to satisfy all requirements. In Sec. 3.6 and

Chapter 8 we will discuss other options for suitable evaluation criteria.
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Metric Formula

Pixel accuracy ∑c TPc
∑c TPc+FPc

Class accuracy 1/C ∑c
TPc

TPc+FPc

Mean IOU 1/C ∑c
TPc

TPc+FPc+FNc

FW IOU ∑c
Pc
P

TPc
TPc+FPc+FNc

Table 2.1: Semantic segmentation evaluation criteria. TPc indicates true positives, FPc false

positives, Pc all positives and FNc false negatives of a class c ∈ [1 . . .C]. P indicates the total

number of pixels.

2.1.2 Popular deep learning architectures in computer vision

The term deep learning describes a family of machine learning methods that involve

learning data representations. Deep learning has had an immense impact on semantic

segmentation and as such we describe the fundamentals here, before presenting leading

methods for semantic segmentation in Sec. 2.1.3. Deep learning replaces the traditional

two-step pipeline of feature extraction and classification (or regression) with a single

step. The depth refers to the number of trainable layers chained together in a neural

network. Deep learning achieved its breakthrough in computer vision in the early

2010s due to several enabling factors:

• Convolutional Neural Networks (CNN) (LeCun et al., 1990) and a collection of

technical elements that reduce overfitting and allow to train particularly deep

networks: rectified linear units (ReLU) (Nair and Hinton, 2010), dropout (Hin-

ton et al., 2012), batch normalization (Ioffe and Szegedy, 2015) and residual

connections (He et al., 2016).

• Dedicated hardware for highly parallelizable operations such as Graphics Pro-

cessing Units (GPU) and Tensor Processing Units (TPU). Application Program-

ming Interfaces such as CUDA (Nickolls et al., 2008) and OpenCL (Stone et al.,

2010) allow the user to directly interface with this dedicated hardware.

• Public availability of large-scale datasets with semantic labels for hundreds of

classes and millions of images (e.g. ImageNet by Russakovsky et al. (2015)).
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Many works have shown that pretraining for image classification on ImageNet

results in a network whose internal feature representation is able to generalize to other

tasks and datasets (Razavian et al., 2014; Girshick et al., 2014; Donahue et al., 2014;

Long et al., 2015). A common procedure is then to use the learned network weights

as an initialization of the lower layers and then finetune the network for the target

task. Saito et al. (2017) show that pretraining on ImageNet even helps for the stuff

class road, despite ImageNet containing mostly things. This ability to generalize and

transfer knowledge brings us closer to curriculum learning (Bengio et al., 2009) and

lifelong learning (Thrun, 1996).

Network architectures. Deep neural networks are often described as black boxes

due to their high complexity with millions of parameters (Girshick et al., 2015; Chen

et al., 2016a). However certain design choices have proven successful for certain tasks

and requirements (such as low memory footprint and energy consumption). Generally

speaking a backbone architecture that achieves better results in image classification is

also very likely to achieve better results in semantic segmentation. Here we present the

most popular backbone architectures used in the literature:

• LeNet by LeCun et al. (1990) is considered the first CNN architecture and was

used for digit classification. It uses normalized images of size 16×16 as inputs

and outputs 10 values, one per class. The network has 5 layers, which typically

consist of a convolutional filter, a squashing function and a non-overlapping local

averaging and subsampling operator.

• AlexNet by Krizhevsky et al. (2012) is considered the first deep network ar-

chitecture to be successful at general image classification. It won the ILSVRC

2012 image classification challenge (Russakovsky et al., 2015). Fig. 2.2 shows

an overview of the architecture. It takes an RGB image of size 224× 224 as

input and outputs 1000 values, one per class. The network has 60 million pa-

rameters and is therefore vastly bigger than previous networks. It consists of

5 convolutional layers and 3 fully connected layers. The final outputs are pro-

duced via a 1000-way softmax, which produces a distribution over the class

labels. Some convolutional layers are followed by overlapping max pooling lay-

ers. The network uses ReLUs (Nair and Hinton, 2010) to speedup training and

Local Response Normalization to improve generalization. It also makes use of

dropout (Hinton et al., 2012) to randomly drop activations, which serves as a

model averaging step and reduces the test error.
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Figure 2.2: AlexNet deep learning network architecture. Image taken from Krizhevsky

et al. (2012).

• VGG by Simonyan and Zisserman (2015) refers to several network architectures

with 11 to 19 layers, the most popular being VGG-16 with 138 million param-

eters. It won the first and second place in the ILSVRC 2014 localization and

classification challenges (Russakovsky et al., 2015). VGG is based on AlexNet,

but increases the depth and replaces all convolutions (up to size 11× 11) with

3× 3 convolutions. It thus shows that even very small filters can achieve ex-

pressiveness, if they are stacked sufficiently deep. This reduces the number of

parameters and allows for deeper networks overall. VGG also does not make

use of Local Response Normalization, as for their network it results in more

parameters without any improvements in performance.

• GoogLeNet by Szegedy et al. (2015) is a 22-layer incarnation of the Incep-

tion architecture. It won the ILSVRC 2014 classification and detection chal-

lenges (Russakovsky et al., 2015). The idea is to increase the width and depth

of a network, while keeping the computational budget constant. It is based on

the Hebbian principle and the idea of multi-scale processing. The network is

a stacked cascade of identical building blocks – so called Inception modules.

Fig. 2.3 shows the layout of one Inception module. Each Inception module con-

catenates the output of a 1×1, a 3×3 and a 5×5 convolution block and a 3×3

max pooling layer. To avoid a steady increase in the feature size, 1×1 convolu-

tions are used before each convolutional block to reduce the feature dimension-

ality. Occasional max pooling layers are further used to downsample the feature

maps. This results in a state-of-the art network with 12x fewer parameters than

AlexNet.

• Residual Network (ResNet) by He et al. (2016) addresses the degradation prob-
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Figure 2.3: Inception block used in GoogLeNet. Image taken from Szegedy et al.

(2015).

lem, that “with the network depth increasing, accuracy gets saturated [...] and

then degrades rapidly.” It won the first place in the ILSVRC 2015 classification,

detection and localization challenges (Russakovsky et al., 2015). The idea is that

for each layer (i.e. a sequence of convolution, ReLU and another convolution),

they learn the residual function with reference to the layer input. This achieves

much deeper networks of 101 and 152 layers, while having a lower complexity.

Fig. 2.4 compares the VGG-19 architecture to a 34 layer architecture with and

without residual connections. For image classification on the 32× 32 images

of CIFAR-10 (Krizhevsky and Hinton, 2009) they even present a network with

1000 layers.

2.1.3 Semantic segmentation approaches

Modern semantic segmentation methods can be categorized in two types of approaches:

Fully convolutional methods (Long et al., 2015) operate directly on the pixel or (rect-

angular) patch level. Region-based methods (Girshick et al., 2014) operate on regions.

These regions are designed to cover whole objects and are often created before the se-

mantic segmentation model operates. Some works combine both, e.g. by pooling fully

convolutional features over regions in a post-processing step (Farabet et al., 2013).

Earlier works in semantic segmentation often use image retrieval techniques instead of

directly learning a classifier (Tighe and Lazebnik, 2010, 2013a; George, 2015). How-
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Figure 2.4: Comparison of the VGG-19 architecture to a 34 layer architecture with and

without residual connections. Image taken from He et al. (2016).



18 Chapter 2. Background

Figure 2.5: Overview of the semantic segmentation architecture of Farabet et al. Image

taken from Farabet et al. (2013).

ever the unit of retrieval is still a patch or region.

2.1.3.1 Fully convolutional approaches

For the fully convolutional approach the idea is to directly learn a mapping from image

pixels to class labels. The output is an image which assigns a class label to each pixel in

the input image. This results in a single model, usually directly optimized end-to-end

for the task at hand.

The seminal work of Farabet et al. (2013) foresaw many of the later trends in se-

mantic segmentation, as shown in Fig. 2.5. They present a fully convolutional network

that is slid over an image at multiple scales of a Laplacian pyramid. It uses various

post-processing techniques such as superpixel pooling, a segmentation tree over super-

pixels and a Conditional Random Field (CRF). This is the first work that successfully

applies CNNs to semantic segmentation, instead of using hand-crafted features. How-

ever, it is still missing many components of modern works: The three-stage CNN used

by the authors is very shallow and it does not use most of the bells and whistles of

modern architectures (see Sec. 2.1.2), such as ReLU and dropout. The network is not

pretrained for image classification, which is usually a good initialization of the net-

work. The patchwise training procedure is arguably less efficient due to redundant

computations. Furthermore, while the CNN is trained end-to-end, the post-processing

steps are not.

As the first work of its kind, Long et al. (2015) define the Fully Convolutional

Network (FCN), a network where all layers only depend on relative spatial coordinates:

yi j = fks
(
{xs+δi,s j+δ j}0≤δi,δ j<k

)
, (2.1)
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Figure 2.6: Replacing fully connected layers with 1× 1 convolutional layers as done

in the Fully Convolutional Network (Long et al., 2015) architecture. Image taken from

Long et al. (2015).

where yi j is the layer output, fks is the function that determines the layer type (con-

volution, pooling, activation function, etc.), s is the stride and xi j determines the data

vector at location (i, j). As visualized in Fig. 2.6, the authors give a recipe how to

convert a classification network into a network for dense prediction, by replacing the

fully connected layers with 1× 1 convolutions, which satisfy Eq. 2.1. This is much

more efficient and it allows the network to process arbitrary input sizes, contrary to

most classification networks which require a fixed input size (see Sec. 2.1.2). Reusing

state-of-the-art networks also allows them to profit from pretraining for image classifi-

cation. After converting the network, the authors present a series of improvements for

semantic segmentation. The network outputs are upsampled to the input size using a

deconvolution layer. The deconvolution layer is initialized to bilinear interpolation, but

refined during training of the network. They also use skip connections to fuse outputs

of deep and shallow layers with different strides. This lets the network “make local

predictions that respect global structure”. As such the skip connections are a learned

nonlinear alternative to the multi-scale processing in Laplacian pyramids.

Deeplab by Chen et al. (2015a) is based on FCN, but uses atrous convolutions to

avoid the reduction in spatial resolution incurred by max-pooling. Atrous convolu-

tions (Holschneider et al., 1990; Sermanet et al., 2014) (also known as dilated convo-
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lutions (Yu and Koltun, 2016)) are a generalization of regular convolutions. The rate

parameter r defines the upsampling factor of a convolutional filter, with zeros between

filter values. For r = 1 we have regular convolutions. Setting r 6= 1 allows us to control

the spatial resolution of the feature maps. Fig. 2.7 shows an example of a standard

convolution with downsampling and upsampling (top) and an atrous convolution with

r = 2 (bottom). While standard convolutions perform sparse feature extraction on a low

resolution feature map, atrous convolutions perform dense feature extraction on a high

resolution feature map. Although the effective filter size increases, atrous convolutions

have the same number of parameters as regular convolutions. In practice the authors

use a hybrid approach that combines atrous convolutions and fixed bilinear interpola-

tion to achieve a good efficiency/accuracy trade-off. Furthermore, to make the network

invariant to scale, the authors present a technique called Atrous Spatial Pyramid Pool-

ing (ASPP). ASPP avoids the computational overhead of rerunning the entire network

for each scale, by computing atrous convolutions with different rates and fusing the

score maps by taking the maximum response across scales. Using the fully connected

CRF by (Krähenbühl and Koltun, 2011), they are able to recover the detailed local

structure of the segmentation. While Deeplab applies the CRF as a post-processing

step, recent works train the CNN and CRF jointly and end-to-end (Lin et al., 2016b;

Zheng et al., 2015; Liu et al., 2016; Chen et al., 2015b; Schwing and Urtasun, 2015).

In particular, Zheng et al. (2015); Schwing and Urtasun (2015) propose unrolling the

CRF mean-field iterations to enable end-to-end training.

Many semantic segmentation works can be described as encoder-decoder networks

(Long et al., 2015; Noh et al., 2015; Ronneberger et al., 2015; Hong et al., 2015, 2016;

Paszke et al., 2017; Badrinarayanan et al., 2017). Encoder-decoder networks are re-

lated to the information bottleneck method in machine learning (Tishby et al., 2000).

Fig. 2.8 shows the U-Net (Ronneberger et al., 2015) architecture as an example of an

encoder-decoder architecture. The encoder progressively reduces image resolution at

each layer. By doing so it learns to abstract from the image and ignore noise, keeping

only features that preserve the maximum relevant information about the pixel labels.

The decoder learns to upsample and localize the segmentation. As pointed out in re-

lation to FCNs, this view is particularly appealing in the context of pretraining. The

encoder weights can be copied from the pretrained network. The decoder weights can

be initialized to perform bilinear upsampling. Many architectures have symmetric en-

coder and decoder networks (Noh et al., 2015; Hong et al., 2015; Badrinarayanan et al.,

2017). In Badrinarayanan et al. (2017) the decoder uses pooling indices computed in



2.1. Semantic segmentation 21

Figure 2.7: Comparison of standard convolution with downsizing and atrous convolu-

tion. Image taken from Chen et al. (2015a).

the max-pooling steps of the encoder to route the semantic information to its accurate

location in the image. Hong et al. (2015) take this one step further and completely de-

couple the classification (encoder) and segmentation (decoder) networks. This allows

them to perform semi-supervised learning as the segmentation network only requires

very few annotated images for training. However, we would like to stress that this

encoder-decoder view has its limits. When all layers of the network are finetuned,

there is no guarantee of this separation of labor between encoder and decoder and both

parts may be involved in classification and segmentation.

Fully convolutional methods are also related to the sliding-window concept in ob-

ject detection (Heitz and Koller, 2008; Chen et al., 2015a; Gadde et al., 2016).

2.1.3.2 Region-based approaches

Region-based approaches classify image regions: In a preprocessing step, a large num-

ber of region proposals are generated per image. These region proposals are designed

to tightly cover all objects in the image. For each region proposal local features are

extracted. These region features are classified. Each pixel is assigned the label with

the highest score of all regions that include the pixel. Region-based methods enforce

strong location priors on a classifier. Contrary to the dense sliding-window paradigm
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Figure 2.8: The U-Net architecture – an example of an encoder-decoder architecture.

Image taken from Ronneberger et al. (2015).

of fully convolutional approaches, region-based approaches sparsely sample the pos-

sible image locations. Therefore methods that use dense rectangular patches are not

considered region-based.

Early region proposal methods create non-overlapping oversegmentations (so-call-

ed superpixels) of an image, e.g. by treating image segmentation as a graph parti-

tioning problem – the so-called normalized cuts (Shi and Malik, 2000). However, the

resulting superpixels are non-overlapping and all have the same scale. Typically each

superpixel does not cover the whole object, but rather only a piece of it. Alexe et al.

(2010) present a generic objectness measure that quantifies how likely it is for a rect-

angular region to cover any thing class. They show that, for most objects, there is at

least one sampled box that covers it wholly. They also sample bounding boxes from

an image according to the objectness distribution. While some methods only produce

bounding boxes (Alexe et al., 2010; Rahtu et al., 2011; Manen et al., 2013; Zitnick and

Dollár, 2014; Cheng et al., 2014), free-form region proposal methods produce masks

that can more precisely characterize the spatial extent of an object (Carreira and Smin-

chisescu, 2010; Endres and Hoiem, 2010; Uijlings et al., 2013; Arbeláez et al., 2014;

Krähenbühl and Koltun, 2014; Rantalankila et al., 2014). If required, bounding boxes
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can then be computed that tightly surround these free-form proposals. The first work in

this line, Carreira and Sminchisescu (2010), provides a framework to generate figure-

ground object hypotheses, by solving a sequence of constrained parametric min-cut

problems (CPMC) on the pixels. The segments are then ranked according to graph,

region and Gestalt properties. The use of Gestalt properties like continuity and con-

vexity can be seen as an extension of the objectness (Alexe et al., 2010) measure from

bounding boxes to free-form regions. While presented primarily for things, the authors

of CPMC stress that their method is general and can rank stuff and things. Endres and

Hoiem (2010) propose a related approach, but employ a learned affinity measure be-

tween superpixels instead of pixels. They use a structured learning approach on a

maximum marginal relevance measure. As a region representation they combine sev-

eral cues related to object and occlusion boundaries. They furthermore learn a simple

pixel-level model of the “stuff-like” background and use geometry classes (vertical,

porous, solid and sky), which are noted to “often correspond to object and background

classes”. Then they encode the differences in color and texture between object and

local background or global background. The resulting region proposals are only suit-

able for things. Fig. 2.9 shows the Selective Search algorithm by Uijlings et al. (2013),

a hierarchical bottom-up grouping of an initial oversegmentation that is particularly

diverse and captures all scales.

The next step is to extract features for each region. In the pre-CNN era fea-

tures were typically handcrafted (Ojala et al., 2002; Lowe, 2004; Shotton et al., 2009;

Carreira et al., 2012). Local Binary Patterns (Ojala et al., 2002) are a multiresolu-

tion and rotation invariant texture classification filter that compares a pixel value to

its neighbors and computes a normalized histogram. Scale Invariant Feature Trans-

form (SIFT) (Lowe, 2004) is a keypoint descriptor that is invariant to scale, transla-

tion, rotation and (partially) to illumination changes. SIFT computes a normalized

orientation histogram of the gradients of a local neighborhood of a keypoint. To use

SIFT in semantic segmentation, keypoint locations can be sampled densely across the

image region. Carreira et al. (2012) present a second-order pooling of SIFT and LBP

features over CPMC region proposals, by computing the average or maximum of the

outer products of the feature descriptors. After feature enrichment and descriptor nor-

malization, they classify the descriptors using a Support Vector Machine (Cortes and

Vapnik, 1995). Later Ionescu et al. (2015) showed how to peform matrix backpropa-

gation in a CNN, which enables global structured matrix computation layers, such as

second-order pooling and normalized cuts.
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Figure 2.9: Selective Search bottom-up grouping of superpixels. We can see an image

(top left), the ground-truth boxes (top right), the oversegmentation at multiple levels of

the hierarchy (bottom left) and the final region proposals (bottom right). Image taken

from Van de Sande et al. (2011).

Girshick et al. (2014) achieved a breakthrough in object detection by combining

Regions with CNNs (R-CNN). Part of its success is attributable to harnessing pretrain-

ing for image classification on ImageNet (Krizhevsky et al., 2012) and then finetuning

for object detection. They show how to crop and warp parts of an image that cor-

respond to a rectangular region proposal to a fixed square size, as required by the

network (Fig. 2.10, top). In the case of free-form proposals, one strategy is to com-

pute the features on the region’s foreground mask, by subtracting the mean image of

the whole dataset from the background pixels. They use Selective Search proposals

for object detection and CPMC proposals for semantic segmentation. After a non-

maximum suppression step, the features are classified either via the classification layer

of the network or via an additional Support Vector Machine (Cortes and Vapnik, 1995).

Following standard practice, the authors use the network trained for object detection to

classify regions and then assign to each pixel the label with the highest classification

score, which achieved state-of-the-art performance on semantic segmentation at the

time of publication.

Fast R-CNN (Girshick, 2015) yields a large speedup over R-CNN, by extracting

convolutional features only once per image and applying a region-of-interest (ROI)
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Figure 2.10: The Regions with CNN (R-CNN) method (top) and its successor Fast R-

CNN. Image taken from Gonzalez-Garcia (2017).

pooling layer after the convolutional filters (Fig. 2.10, bottom). The ROI pooling layer

takes an arbitrarily sized input, scales it to a 7× 7 grid and applies max-pooling to

each of the grid cells. Since the ROI pooling layer is partially differentiable with

respect to the inputs, the whole network can be trained end-to-end. They also replace

the SVM by the classification layer of the network, which yields equally good results

and a simpler and faster end-to-end trainable pipeline. Besides the classification score

output, the network also outputs a bounding box regression offset for each of the object

classes. This bounding box regression step is used to correct the input bounding box,

conditioned on the classification label output by the network. They show that the

resulting multi-task loss further improves the result as both tasks influence each other

through a shared representation in the earlier layers of the CNN. The authors of Fast

R-CNN do not apply it to the problem of semantic segmentation, but we show in Sec. 4

that this is a promising approach.

Faster R-CNN (Ren et al., 2015) eliminates the remaining bottleneck of Fast R-

CNN – the extraction of region proposals outside the network. It introduces a Region

Proposal Network (RPN) that shares convolutional features with the classification net-

work and therefore enables “nearly cost-free region proposals” generated inside the

network. The RPN is technically a Fully Convolutional Network (FCN) (Long et al.,

2015) with two convolutional layers that predicts an objectness score and the regressed

bounds for a constant number of rectangular region proposals per image location. The

proposals are then ranked according to their objectness score and only the highest

scoring proposals are used in the Fast R-CNN part of the network. Using only 300

proposals, the authors are able to outperform Fast R-CNN with competing proposal
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algorithms with 2,000 proposals. While the idea of Faster R-CNN is elegant, training

it is not trivial and requires alternating between training the RPN and the Fast R-CNN

component. Furthermore the region proposals generated by the RPN are rectangular,

which is not suitable for semantic segmentation (see related experiments in Table 4.4).

Mask R-CNN (He et al., 2017a) is an extension of Faster R-CNN that adds a third

branch that outputs the free-form object mask for each detection. This makes it par-

ticularly suited for the task of instance segmentation, but semantic segmentation and

human pose estimation are also possible. The mask branch is itself an FCN that pre-

dicts an m×m mask for each ROI and each class. The actual mask of an ROI is then

the one selected by the classification branch of the network. This is crucial, as it differs

from the common practice when applying FCNs to semantic segmentation. Typically

these approaches use a per-pixel softmax and a multinomial cross-entropy loss, which

leads to competition between the masks of different classes. In Mask R-CNN they use

a per-pixel sigmoid and a binary loss, which defers the competition until after the clas-

sification stage and allows both branches to execute in parallel. Another improvement

over Fast(er) R-CNN is that Mask R-CNN uses ROIAlign instead of ROI pooling.

While ROI pooling quantizes the convolutional feature map into bins, ROIAlign uses

continuous bins and bilinear interpolation. This better preserves the spatial correspon-

dence between inputs and outputs.

2.1.4 Key challenges in semantic segmentation

In this section we cover key topics related to semantic segmentation that are recurring

throughout this thesis.

2.1.4.1 Competition

A key difference between object detection and semantic segmentation is the degree of

competition between classes. In object detection there is relatively little competition

between classes, as two heavily overlapping ground-truth boxes may tightly enclose

two objects of different classes (e.g. a person sitting on a chair). However, a typical

detection framework like R-CNN (Girshick et al., 2014) uses a softmax layer that nor-

malizes the prediction scores of all classes to sum to one. Additionally the use of a set

of one-vs-all linear SVMs also introduces some element of competition. But this form

of competition is based on the idea that a box that looks like one class is unlikely (but

not impossible) to contain another class. While this may be true in the majority of the
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cases, there may also be attracting contextual forces between classes (such as a person

wearing a backpack as shown in Fig. 6.8). Looking at the most common evaluation

measure in detection – mean Average Precision (mAP) – we see that competition plays

no role. It is merely the average of the per-class Average Precision values. For its com-

putation a box is considered a correct detection if the ratio between the intersection

and the union of the predicted and the ground-truth box is at least 0.5 (Everingham

et al., 2015). Including an incorrect box for a particular class in the predictions does

not reduce performance on any of the other classes. In constrast, in semantic segmen-

tation each pixel is assigned a single class label. Hence there is competition between

the classes for each pixel.

The problem of class competition is particularly pronounced on semantic segmen-

tation datasets with class imbalance. If all classes occur with the same pixel-level

frequency, their prediction scores can be naively compared without additional calibra-

tion. But when some classes are a factor of 104 less frequent than others (e.g. in SIFT

Flow (Liu et al., 2011)), the classifier will simply ignore them. While this may be

acceptable for some applications (e.g. in entertainment, product recognition), it may

have disastrous consequences in others (e.g. cancer detection, autonomous driving).

Class competition is particularly relevant in the context of region-based semantic

segmentation approaches. Here thousands of region proposals may partially overlap

and cover objects with different class labels. For each pixel we need to figure out which

regions contain it and which is the highest scoring label assigned to those regions. This

label is then assigned to that pixel. In this thesis we present two methods that tackle the

problems of class competition, class imbalance and overlapping regions, by training for

the final evaluation criterion, instead of a proxy measure (see Sec. 3 and 4).

One approach to deal with competition in object detection is to use non-maximum

suppression (NMS). As an example, Girshick et al. (2014) greedily reject every box

that has an IOU overlap larger than a threshold with a higher scoring box that has al-

ready been selected. Similar procedures can be traced back to at least 1994 (Burel and

Carel, 1994; Hosang et al., 2017). Although this may in theory be applied jointly be-

tween classes, it is usually done within each class independently (Felzenszwalb et al.,

2010; Girshick et al., 2014) or only on the positive class in binary classification (Dalal

and Triggs, 2005; Malisiewicz et al., 2011). Hence it is a different form of compe-

tition. Henderson and Ferrari (2016) show how to train an object detection network

with NMS, which enables end-to-end training (see also Sec. 2.1.4.2). Hosang et al.

(2017) show that NMS itself can be learned by a CNN, by introducing a special loss
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that penalizes multiple detections of the same object. This way they remove the tra-

ditional handcrafted procedure. Xiao et al. (2010) state that NMS is not important for

stuff: “While it is reasonable to require that one chair should generate one detection,

a forest can generate an arbitrary number of smaller forest scenes”. The authors focus

on scenes (e.g. beach, forest) instead of objects, but they state that scenes behave like

stuff, as they have unspecified spatial extent.

2.1.4.2 End-to-end training

The term end-to-end training is very popular in deep learning (He et al., 2017a; Hender-

son and Ferrari, 2016; Ren and Zemel, 2017; Caesar et al., 2016b), although the exact

definitions may vary. We define end-to-end training as being able to backpropagate

the gradients of a loss function all the way through the network to update all trainable

parameters. This definition excludes approaches like R-CNN (Girshick et al., 2014),

which consist of a CNN and an SVM that are trained separately, to optimize differ-

ent criteria. It also excludes post-processing steps like superpixel pooling and sepa-

rately trained CRFs (Farabet et al., 2013). There are different opinions as to whether

methods that rely on traditional region proposals (as opposed to Region Proposal Net-

works (RPN) (Ren et al., 2015)) are end-to-end trainable. We argue that a layer (i.e.

the region proposal method) that has no trainable parameters (cf. ReLU, dropout) and

does not block the flow of gradients (as there are no layers before the region proposal

method) does not affect the ability for end-to-end training. Furthermore, a method like

Faster R-CNN (Ren et al., 2015) is end-to-end trainable despite the RPN. The fact that

the training alternates between training the RPN and the Fast R-CNN component is an

artefact of the optimization technique and the initialization, it is not an architectural

issue.

End-to-end training is generally considered to be highly desirable from a machine

learning point of view. Instead of training consecutive parts of a network to optimize

different losses, it makes more sense to define a single network that optimizes the

final loss, which typically achieves a higher performance. If the network is hard to

optimize in its entirety, auxiliary losses can be used (cf. Szegedy et al. (2015)). From

an engineering point of view end-to-end training is also highly desirable. If we adapt

a traditional multi-stage pipeline to a new dataset or task, all design choices need to

be reevaluated. End-to-end trainable networks require much less human (re-)design

effort. This is particularly the case due to strong generalization abilities of deep CNNs.

Finetuning allows the network to adapt to new scenarios with very few new training
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samples.

2.1.4.3 Context

An important topic in object detection and semantic segmentation is image context.

Context helps to reduce ambiguities by exploiting spatial co-occurrence statistics. Con-

text can be roughly divided into local object context and global image context.

A straightforward approach to local context is to increase the size of the box or

mask of an object to include surrounding pixels. The effective receptive field size of

a CNN typically covers significant portions of the image (e.g. 228× 228 pixels for

VGG in Ren et al. (2015)). In R-CNN (Girshick et al., 2014) the authors use two

representations for semantic segmentation – features of the actual object mask and

features extracted from the entire bounding box surrounding the mask. They show

that both representations are complementary, which shows the advantage of local con-

text. Several works cover an object at multiple scales, thus combining local and global

context. Mostajabi et al. (2015) present zoom-out features for semantic segmentation.

They extract features from a “sequence of nested regions of increasing extent” from

SLIC (Achanta et al., 2012) superpixels to upscaled copies of the superpixels and even-

tually the entire image (Fig. 2.11). Lim et al. (2009) proceed in a similar bottom-up

fashion by constructing a region tree from the image contours using the method of Ar-

beláez et al. (2009). However their concept of region ancestry does not just extract

features over upscaled versions of a superpixel, but finds discriminative parts, objects

and scenes. They then learn the importance of different ancestral regions and types of

features for different classes. Some works explicitly model the context between dif-

ferent objects. Bilen et al. (2014a) use a latent SVM model to learn an object and its

context in terms of spatial location and appearance. Heitz and Koller (2008) present

a graphical model that explicitly uses stuff to find things. Other works use attention

mechanisms. Chen et al. (2016a) and Fan et al. (2010) weight the importance of the

predictions at different scales with an attention mechanism. Ren and Zemel (2017) use

a spatial recurrent attention model to successively segment instances in a human-like

counting process. Finally, Alexe et al. (2012b) and Gonzalez-Garcia et al. (2015) use

active search strategies in object detection to sequentially choose the next window to

evaluate, which results in a substantial reduction of the number of classifier evalua-

tions.

On the other hand many works use global image context. Oliva and Torralba (2001)

model the gist of a scene using a spatial envelope model that covers spectral and
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Figure 2.11: Zoom-out features. Image taken from Mostajabi et al. (2015).

coarsely localized information, but no specific information about objects in the image.

Hoiem et al. (2008) model the interplay of objects in the scene and geometry of the

scene. They then estimate the likely object size and location and manage to reduce the

missed detection rate by up to 40% over the baseline while fixing the number of false

positives. Perhaps the most important techniques to include context in semantic seg-

mentation are Conditional Random Fields (CRF) and Markov Random Fields (MRF).

For computational reasons most works only use unary and pairwise terms among pixels

or superpixels (Shotton et al., 2006; Verbeek and Triggs, 2007; Ladicky et al., 2010a;

Farabet et al., 2013; Chen et al., 2015a; Zheng et al., 2015). Some authors present effi-

cient techniques for higher-order terms, defined over pixels (Komodakis and Paragios,

2009), superpixels (Kohli et al., 2009; Arnab et al., 2016), detections (Arnab et al.,

2016) or segmentation instances (Arnab and Torr, 2016). These higher-order terms

attempt to assign the same label to all pixels in a pattern, superpixel, detection or seg-

mentation instance. Kohli et al. (2009) enforce superpixel label consistency as a soft

constraint. Komodakis and Paragios (2009) present pattern-based potentials, which

allow for efficient message passing for a sparse set of patterns. Pattern-based poten-

tials can be seen as a generalization of Pn Potts potentials and exemplar-based priors.

Without special consideration, CRFs often exert merely a spatial smoothing effect on

the pixel labels, thereby accidentally removing small predictions. Rother et al. (2004)

use contrast-sensitive potentials to improve localization. Deeplab (Chen et al., 2015a)

uses the fully connected CRF of Krähenbühl and Koltun (2011), with enables efficient
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inference on the pixel-level and captures fine-edge details. As an alternative to CRFs,

Chen et al. (2016a) present domain transform, an edge-preserving filtering method.

Gadde et al. (2016) propose a bilateral inception module that propagates edge-aware

information and allows for long-range interaction between pixels. Finally, a number of

works slide a spatial Recurrent Neural Network (RNN) over an image and aggregate

context. This is particularly useful for long-range or even global context. Shuai et al.

(2016) place a directed acyclic graph RNN for context aggregation between encoder

and decoder. Bell et al. (2016) use an RNN only outside the region of interest, while

using skip connections inside the region to extract features at multiple scales. Yan et al.

(2016) develop ReNet Long-Short Term Memory (LSTM) layers to aggregate context

before application of a Fully Convolutional Network, which results in “full-image re-

ceptive fields”. Byeon et al. (2015) go one step further and carry out classification,

segmentation and context integration with LSTM networks.

2.2 Efficient annotation and learning schemes

Before presenting efficient annotation and learning schemes, we begin by describing

the status quo of dataset annotation in semantic segmentation and object detection. Se-

mantic labels are either predefined (Cordts et al., 2016; Caesar et al., 2018) or they are

free-form text labels (Tighe and Lazebnik, 2010; Mottaghi et al., 2014), which means

that an annotator can add missing labels. In semantic segmentation annotators draw the

outlines of an object mask with a polygon annotation tool (e.g. LabelMe (Russell et al.,

2008)). This typically takes between a few minutes and one hour per image (Lin et al.,

2014; Cordts et al., 2016). In object detection annotators draw only an axis-aligned

bounding box per object. This typically takes less than a minute per box (Su et al.,

2012). The method is then trained with the same level of supervision that it outputs

(e.g. fully supervised object detection is trained with boxes to predict boxes).

2.2.1 Efficient annotation

Many works have attempted to make annotation more time or cost efficient. A straight-

forward approach to reduce annotation time is by labeling superpixels instead of pixels

or polygons (Yamaguchi et al., 2012; Galasso et al., 2012; Pont-Tuset et al., 2015),

especially in video segmentation. We annotate superpixels in Sec. 6, which leads to

a significant speedup while achieving the same quality of annotations. An indispens-
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able tool to create large-scale datasets is crowd-sourcing. While small datasets are

often created by in-house expert annotators (Brostow et al., 2009; Xiao et al., 2010;

Everingham et al., 2015), that is not feasible for large-scale datasets with millions of

images. Crowd-sourced annotations bring their own problems: Annotators need to be

instructed and trained for the task. This is more difficult than for in-house annotators,

possibly due to the heterogeneous educational, cultural and language background of

crowd-sourced workers. Furthermore, crowd-sourced workers are typically paid per

image and therefore have no incentive to spend a lot of time on the instructions. They

also need to be closely supervised to deliver acceptable quality. This may be due to

a lack of identification with the goals of the scientific project or an incentive to max-

imize profit by delivering poor quality. The most important tool to filter annotators

is to occasionally compare their answers to known answers to “gold-standard” ques-

tions (Su et al., 2012). Furthermore a complex task should be divided into atomic and

simple subtasks. As an example, to annotate COCO (Lin et al., 2014), the authors use

the following tasks: 1) label the categories present in an image 2) mark all objects 3)

segment each object. Eventually the resulting annotations are noisier than with expert

annotators. Therefore multiple annotators are required to verify or redo each others

work until they achieve consensus (Lin et al., 2014; Caesar et al., 2018). When the

label space is large, asking a user about the presence of each object class in an image is

extremely time consuming. Deng et al. (2014b) show how to significantly reduce the

time consumption, when the labels are correlated, sparse and naturally form a hierar-

chy. Their algorithm proceeds through the label hierarchy and dynamically selects the

next query.

Several works use human-in-the-loop or interactive annotation methods to speedup

annotation. Rother et al. (2004) present Grabcut, which requires an annotator to draw

only a loose rectangle around an object. It automatically infers objects mask by solving

a graph cut optimization that takes into account texture and edge information. Touch-

Cut (Wang et al., 2014) requires a single touch or click from an annotator. It uses a

level set method to fuse edge, texture and geometry sampled around the touch point.

This technique can be extended from image to video segmentation. Castrejon et al.

(2017) present Polygon-RNN, which is a recurrent neural network that predicts the

next point of a polygon at each step of the annotation. The annotator can then correct

a predicted point if necessary. Papadopoulos et al. (2016) propose a scheme for train-

ing object detectors which only requires annotators to verify bounding boxes produced

automatically by the learning algorithm. This is substantially faster while delivering
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detectors that are almost as good as in the fully supervised case.

2.2.2 Image-level annotations

An alternative to fully supervised learning is weakly supervised learning, where a

method is trained with a lesser level of supervision than it outputs. Unless specified,

this thesis refers to weakly supervised learning when training from image-level labels

instead of boxes or masks. This level of annotation is much less time-consuming as

objects do not have to be localized in the image. In fact, the web provides an almost

unlimited and free resource for image-level tags. However special consideration needs

to be taken for particularly noisy labels (Raykar et al., 2009; Cinbis et al., 2014; Zhang

et al., 2015b). In practice the performance of weakly supervised approaches is typ-

ically about 60% to 80% of the fully supervised performance (Pathak et al., 2015a;

Hoffman et al., 2014).

Weakly supervised semantic segmentation is a hard task, as priors need to be en-

coded in the method that could otherwise be learned from data in the fully supervised

case. Therefore region-based approaches (Sec. 2.1.3.2) are important in the weakly

supervised setup (Vezhnevets et al., 2011, 2012; Zhang et al., 2014; Xu et al., 2014;

Caesar et al., 2015; Zhang et al., 2015b; Krapac and Segvic, 2016), as they typically

assign a single label to each superpixel or region. Depending on the type of regions

used this may enforce priors on spatial smoothness as well as coherent texture, edges

and color. This does not mean that fully convolutional approaches (Sec. 2.1.3.1) do

not have such priors, but they are more implicit (e.g. in the large receptive fields or in

post-processing with a CRF). Given a suitable initialization, most weakly supervised

region-based works alternate between two steps: relabeling of the regions and retrain-

ing of the classifier (Vezhnevets et al., 2011, 2012; Xu et al., 2014; Caesar et al., 2015;

Zhang et al., 2015b). Vezhnevets et al. (2012) define a CRF over superpixels, using a

maximum expected agreement model and an algorithm based on Gaussian processes to

solve it. Using CNNs, perhaps the simplest weakly supervised approach is the Multiple

Instance Learning (MIL) (Dietterich et al., 1997) technique of Pathak et al. (2015b).

They use an FCN and identify the highest scoring pixel in the heat map of the classes

present in the image. They then compute a standard cross-entropy log-loss on those

highest scoring pixels. This means that they only check whether all image-level labels

are present in the prediction, but not whether other classes are absent. Furthermore this

method is very sensitive to the initialization of the network. Without initialization by
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pretraining for whole image classification, the network converges to a solution that out-

puts only the most common class (typically background). It should be noted that such

pretraining does not invalidate the weakly supervised protocol, as pretraining requires

only image-level labels. It also shows again that pretraining and finetuning are a useful

tool to transfer knowledge of low-level filters of the CNN across domains and tasks.

Bearman et al. (2016) improve upon this loss formulation by including an additional

image-level label absence term that penalizes high scores for predicted classes that are

not in the ground-truth annotations of that image. Kolesnikov and Lampert (2016) in-

troduce the Seed Expand Constrain (SEC) model (Fig. 2.12) that follows three guiding

principles: to seed a model with weak localization cues, to expand the object based on

information about which classes can occur in an image and to constrain the segmen-

tations to coincide with object boundaries. Figuring out the spatial extent of an object

is perhaps the biggest challenge in weakly supervised semantic segmentation. Stuff

classes have “unspecified spatial extent” (Xiao et al., 2010), which may exacerbate

the problem. While edges in the image may be sufficient to delineate things, stuff is

more dependent on texture and we require a larger area to compute reliable statistics.

On the other hand, Ion et al. (2011) argue that “inference is harder to constrain for

[things], which [require] longer-range interactions among groups of measurements”.

Bearman et al. (2016) include an objectness prior (Alexe et al., 2010) in their train-

ing loss to accurately infer the spatial extent of things. Similar in spirit to objectness,

but without the need to train an external objectness measure, Saleh et al. (2016) use

a built-in foreground-background prior. They assume that a network pretrained for an

object recognition task learns to focus on things and their parts, rather than stuff. Oh

et al. (2017) use saliency to estimate prior knowledge on the object extent and image

statistics. Tokmakov et al. (2016) incorporate unsupervised motion cues and train from

weakly labeled videos. Zhang et al. (2015b) use label co-occurrence statistics. Bilen

et al. (2014b) use vertical symmetry and mutual exclusion terms to encode domain

specific knowledge in weakly supervised object detection. Papandreou et al. (2015);

Pathak et al. (2015a) use class-specific constraints, such as a foreground-background

bias, encouraging a minimum or maximum number of pixels with a particular label

and size constraints.

Several authors have presented frameworks that use varying levels of supervi-

sion (Hong et al., 2015; Papandreou et al., 2015; Xu et al., 2015a; Javanmardi et al.,

2016). These works fully annotate a small subset of the images and use lesser amounts

of supervision or none at all for the remaining images. Dehghani et al. (2017) train a
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Figure 2.12: The SEC model. Image taken from Kolesnikov and Lampert (2016).

target network in a weakly supervised fashion, but use an additional confidence net-

work that is trained on a small set of fully supervised data. The confidence network is

a meta learner used to calibrate the learning rate of the target network for each batch.

This way noisy annotations receive a lower learning rate.

It should be noted here that objectness or saliency measures and foreground-back-

ground biases are particularly successful on thing-only datasets (Everingham et al.,

2015). In this work we attempt to do away with this recent narrow focus on things in

weakly supervised learning (see Chapter 3 and 5) and restore the balance between stuff

and things.

2.2.3 Other forms of annotation

Weakly supervised learning is not restricted to image-level annotations. A number of

different forms of supervision have been proposed. For training object detectors, Pa-

padopoulos et al. (2017b) ask annotators to click on the center of an imaginary bound-

ing box of the object. They propose a method to derive a bounding box from these

clicks. This is much faster and close to the performance of manually drawn boxes.

Papadopoulos et al. (2017a) avoid the cognitive load of the bounding box drawing task

by clicking on four extreme points of an object. This is faster than the traditional way

of drawing bounding boxes, while delivering the same quality of boxes. Papadopoulos

et al. (2014) record human eye tracks of annotators instructed to find an object and

derive approximate bounding boxes from these fixations.

In semantic segmentation, several authors use box supervision instead of masks

(Dai et al., 2015a; Khoreva et al., 2017). Bearman et al. (2016) use point annotations

for stuff and things in semantic segmentation. In the Seed Expand Constrain frame-

work (see Sec. 2.2.2) this would be equivalent to providing ground-truth for the seed
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step. Others use scribbles/squiggles that are one of the most user-friendly ways of

interacting and favored for annotating stuff that has no well-defined shape (Xu et al.,

2015a; Bearman et al., 2016; Lin et al., 2016a). We hypothesize that compared to

points, squiggles come at a similar annotation cost, but provide additional information

about the spatial extent of an object.

Finally, a plethora of works use image captions to learn about the objects in the

image (Ozcan et al., 2011; Guillaumin et al., 2008; Vinyals et al., 2015). Similar to

image tags, these can be efficiently mined from the web, while taking into account

possible noise in the labels. Contrary to image tags, captions come with additional

information regarding the relations between and attributes of stuff and things in the

image.

Furthermore, some methods are trained in an unsupervised way, i.e. without la-

bels. Sankaranarayanan et al. (2017); Yi et al. (2017); Zhu et al. (2017) perform unsu-

pervised domain transfer using Generative Adversarial Networks (GAN). Saito et al.

(2017) show that they can learn a model of the road class in car-based imagery simply

from location priors (the road is assumed to be at the bottom center of the image).

Self-supervised learning is a variant of unsupervised learning where labels are “manu-

factured” through unlabeled data (Larsson et al., 2017). Papazoglou and Ferrari (2013)

use motion boundaries to separate foreground objects from the background in a video.

Doersch et al. (2015) extract random pairs of images patches and learn to predict the

position of one image patch relative to another. Fernando et al. (2017) use odd-one

out learning to identify one unrelated item in a set, e.g. multiple videos in correct and

one video in incorrect temporal order. Larsson et al. (2017) convert color images to

grayscale and then use colorization to restore the original color image. Networks that

are trained in a self-supervised way are often useful initialization for other tasks and

may one day remove the need for pretraining with image-level labels.

2.3 Stuff and Things

In this section we look at the role of stuff and things in existing datasets and give a

brief overview of works that use stuff. For a definition of stuff and things please refer

to Sec. 1.1.
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2.3.1 Datasets

Here we present existing dataset that include stuff labels, things labels or both. In

Sec. 6.3.3 we compare these datasets to our new dataset COCO-Stuff.

Stuff-only datasets. Early stuff datasets (Brodatz, 1966; Dana et al., 1999; Lazeb-

nik et al., 2005; Caputo et al., 2010) focused on texture classification and had simple

images completely covered with a single textured patch. The more recent Describable

Textures Dataset (Cimpoi et al., 2014) instead collects textured patches in the wild,

described by human-centric attributes. A related task is material recognition (Sha-

ran et al., 2014; Bell et al., 2013, 2015). Although the recent Materials in Context

dataset (Bell et al., 2015) features realistic and difficult images, they are mostly re-

stricted to indoor scenes with man-made materials. For the task of semantic segmen-

tation, the Stanford Background dataset (Gould et al., 2009) offers pixel-level annota-

tions for seven common stuff categories and a single foreground category (confounding

all thing classes). All stuff-only datasets above have no distinct thing classes, which

make them inadequate to study the relations between stuff and thing classes.

Thing-only datasets. These datasets have bounding box or outline-level annotations

of things, e.g. PASCAL VOC (Everingham et al., 2015), ILSVRC (Russakovsky et al.,

2015) and COCO (Lin et al., 2014). They have pushed the state-of-the-art in Computer

Vision, but the lack of stuff annotations limits the ability to understand the whole scene.

Stuff and thing datasets. Some datasets have pixel-wise stuff and thing annota-

tions (Table 2.2). Early datasets like MSRC 21 (Shotton et al., 2006), NYUD (Silber-

man et al., 2012), CamVid (Brostow et al., 2009), KITTI (Geiger et al., 2012) and

SIFT Flow (Liu et al., 2011) annotate less than 50 classes on less than 5,000 im-

ages. More recent large-scale datasets like Barcelona (Tighe and Lazebnik, 2010),

LM+SUN (Tighe and Lazebnik, 2013b), PASCAL Context (Mottaghi et al., 2014),

Cityscapes (Cordts et al., 2016) and ADE20K (Zhou et al., 2017b) annotate tens of

thousands of images with hundreds of classes. The Barcelona (Tighe and Lazebnik,

2010) dataset comes with an additional binary stuff/thing label that is “somewhat ar-

bitrary” according to (Tighe and Lazebnik, 2011) (see also Sec. 1.1). PASCAL Con-

text (Mottaghi et al., 2014) complements the PASCAL VOC (Everingham et al., 2015)

dataset with stuff (and thing) labels, similar to COCO-Stuff and COCO. We compare

our COCO-Stuff to these datasets in Sec. 6.3.3.
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Dataset Images Classes
Stuff

classes
Thing
classes

Year

MSRC 21 591 21 6 15 2006

KITTI 203 14 9 4 2012

CamVid 700 32 13 15 2008

Cityscapes 25,000 30 13 14 2016

SIFT Flow 2,688 33 15 18 2009

Barcelona 15,150 170 31 139 2010

LM+SUN 45,676 232 52 180 2010

PASCAL Context 10,103 540 152 388 2014

NYUD 1,449 894 190 695 2012

ADE20K 25,210 2,693 1,242 1,451 2017

COCO-Stuff 163,957 172 91 80 2018

Table 2.2: An overview of datasets with pixel-level stuff and thing annotations. COCO-

Stuff, which we present in Chapter 6, is the largest existing dataset with dense stuff

and thing annotations. The number of stuff and thing classes are estimated given the

definitions in Sec. 6.2. Sec. 6.3.3 shows that COCO-Stuff also has more usable classes

than any other dataset.

2.3.2 Usage of stuff and things

Hundreds of works in the literature have been using the distinction between stuff and

things. The majority of them use it to analyze datasets or results on specific classes.

Several works present statistics that show that stuff covers the majority of the pixels

in an image (Tighe and Lazebnik, 2013a; Mottaghi et al., 2013, 2014; Zhang et al.,

2015a). Some argue that stuff is easier to segment than things (Tighe and Lazebnik,

2010; Ion et al., 2011; Liu et al., 2011; Tighe and Lazebnik, 2013a; Tighe et al., 2014;

Zhang et al., 2015a; Xu et al., 2015a; Zhou et al., 2017b), to which we present a

counter-example in Sec. 6.4.3.

Some works explicitly learn stuff and things in their method. Tighe and Lazebnik

(2013a) use a superpixel-based retrieval method for stuff and an object detector for

thing instances. Interestingly, they show that training a thing detector only for thing

classes achieves a lower performance than when training it for both, stuff and things.

Ladicky et al. (2010b); Kim et al. (2012); Sun et al. (2013) use higher order potentials
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in a CRF to enforce label consistency between hypotheses of thing detections and stuff

segments. Sun et al. (2013) additionally model the geometric relationships (e.g. above,

in front) between things and assume that stuff regions form the background. Dai et al.

(2015b) present a convolutional feature masking approach for joint stuff and thing

segmentation. The only difference between stuff and things in this approach is the

different type of region proposals: While things use the raw segments, stuff proposals

are generated using a segment pursuit approach to use the largest possible proposal

that is still pure in terms of stuff labels. Brahmbhatt et al. (2017) present a two-stream

network called StuffNet. One stream of the network (Deeplab) is trained to segment

stuff, the other (Faster R-CNN) is trained to detect things. They show that the joint

stuff-thing features improve thing detection. They suggest to train stuff segmentation

only once and transfer to other datasets, which is an idea also promoted in this thesis.

In a similar fashion, Zhou et al. (2017b) use a two-stream network called Cascade

Segmentation Module. The stuff stream outputs stuff classes and a generic objectness

term. The thing stream segments things and only those pixels with a high objectness

are taken into account. Both streams are merged to produce the final output. It should

be noted that these methods make the distinction between stuff and things explicit.

Tighe et al. (2014) point out that in future work they would prefer to explore ways that

do not to rely on a hard things-vs-stuff split.

Others have shown that stuff is a useful contextual cue to detect things and vice

versa (Rabinovich et al., 2007; Heitz and Koller, 2008; Kim et al., 2012; Mottaghi

et al., 2014; Shi et al., 2017a). Heitz and Koller (2008) distinguish between stuff-stuff,

thing-thing and stuff-thing context and focus on the latter. In Sec. 5 we use all of these,

as well as second order (stuff-thing-thing) transfer. Finally, Xie et al. (2016) annotate

urban street scenes using different protocols for stuff and things. They annotate things

(car, caravan, box) as cuboids and ellipsoids in 3D and stuff (road, sidewalk, grass) as

2D polygons from a bird’s eye view that are then extruded into 3D.





Chapter 3

Joint calibration for semantic

segmentation

3.1 Introduction

Semantic segmentation is the task of assigning a class label to each pixel in an image

(see Fig. 3.1 and Sec. 2.1). In the fully supervised setting, we have ground-truth labels

for all pixels in the training images. In the weakly supervised setting, class labels are

only given at the image-level. We tackle both settings in a single framework which

builds on region-based classification.

Our framework addresses three important problems common to region-based se-

mantic segmentation. First of all, objects naturally occur at different scales within an

image (Carreira and Sminchisescu, 2010; Uijlings et al., 2013). Performing recogni-

tion at a single scale inevitably leads to regions covering only parts of an object which

may have ambiguous appearance, such as wheels or fur, and to regions straddling over

multiple objects, whose classification is harder due to their mixed appearance. There-

fore many recent methods operate on pools of regions computed at multiple scales,

which have a much better chance of containing some regions covering complete ob-

jects (Plath et al., 2009; Carreira and Sminchisescu, 2010; Carreira et al., 2012; Li

et al., 2013; Hariharan et al., 2014; Girshick et al., 2014; Zhang et al., 2015b). How-

ever, this leads to overlapping regions which may lead to conflicting class predictions

at the pixel-level. These conflicts need to be properly resolved.

Secondly, classes are often imbalanced (Farabet et al., 2013; Tighe and Lazebnik,

2013a; Vezhnevets et al., 2011; Kekeç et al., 2014; Xu et al., 2014; Yang et al., 2014;

Long et al., 2015; Sharma et al., 2014, 2015; Xu et al., 2015a; Mostajabi et al., 2015;

41
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Boat, Rock, Sea, Sky

Weakly
supervised

Fully
supervised

Sky, Building

Figure 3.1: Semantic segmentation is the task of assigning class labels to all pixels in

the image. During training, with full supervision we have ground-truth labels of all pixels.

With weak supervision we only have labels at the image-level. For more information

refer to Sec. 2.1.

Byeon et al., 2015; Shuai et al., 2015): cars and grass are frequently found in images

while tricycles and gravel are much rarer. Due to the nature of most classifiers, without

careful consideration these rare classes are largely ignored: even if the class occurs in

an image the system will rarely predict it. Since class frequencies typically follow a

power law distribution, this problem becomes increasingly important with the modern

trend towards larger datasets with more and more classes.

Finally, classes compete: a pixel can only be assigned to a single class (e.g. it

cannot belong to both sky and airplane). To properly resolve such competition, a

semantic segmentation framework should take into account predictions for multiple

classes jointly.

In this chapter we address these three problems with a joint calibration method

over an ensemble of SVMs, where the calibration parameters are optimized over all

classes, and for the final evaluation criterion, i.e. the accuracy of pixel-level labeling,

as opposed to simply region classification (Plath et al., 2009; Girshick et al., 2014; Har-

iharan et al., 2014). While each SVM is trained for a single class, their joint calibration

deals with the competition between classes. Furthermore, the criterion we optimize for

explicitly accounts for class imbalance. Finally, competition between overlapping re-

gions is resolved through maximization: each pixel is assigned the highest scoring

class over all regions covering it. We jointly calibrate the SVMs for optimal pixel la-

beling after this maximization, which effectively takes into account conflict resolution

between overlapping regions. Experiments on the popular SIFT Flow (Liu et al., 2011)

dataset show a considerable improvement over the state-of-the-art at the time of first

publication of this work (Caesar et al., 2015) in both the fully and weakly supervised

setting (+6% and +10%, respectively).
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This chapter is an updated version of our paper published at the British Machine

Vision Conference 2015 (Caesar et al., 2015). Later we added results using Fast R-

CNN instead of R-CNN and VGG-16 instead of AlexNet (see Sec. 2.1.2 and 2.1.3.2).

In Sec. 3.5 we contextualize this work in the literature and in Sec. 3.6 we present future

work.

3.2 Related work

Early works on semantic segmentation used pixel or patch based features over which

they define a Condition Random Field (CRF) (Shotton et al., 2009; Verbeek and Triggs,

2007). Many modern successful works use region-level representations, both in the

fully supervised (Boix et al., 2012; Carreira et al., 2012; Hariharan et al., 2014; Gir-

shick et al., 2014; Li et al., 2013; Plath et al., 2009; Tighe and Lazebnik, 2010, 2011;

Tighe et al., 2014; Yang et al., 2014; Sharma et al., 2014, 2015; George, 2015; Mosta-

jabi et al., 2015) and weakly supervised (Vezhnevets et al., 2011, 2012; Xu et al.,

2014; Zhang et al., 2014; Xu et al., 2015a; Zhang et al., 2015b) settings. A few re-

cent works use CNNs to learn a direct mapping from image to pixel labels (Farabet

et al., 2013; Sharma et al., 2014, 2015; Pinheiro and Collobert, 2014, 2015; Shuai

et al., 2015; Zheng et al., 2015; Papandreou et al., 2015; Schwing and Urtasun, 2015;

Lin et al., 2016b), although some of them (Farabet et al., 2013; Sharma et al., 2014,

2015) use region-based post-processing to impose label smoothing and to better re-

spect object boundaries. Other recent works use CRFs to refine the CNN pixel-level

predictions (Zheng et al., 2015; Schwing and Urtasun, 2015; Lin et al., 2016b; Chen

et al., 2015a; Papandreou et al., 2015). For more information we refer the reader to

Chapter 2. In this work we focus on region-based semantic segmentation, which we

discuss in light of the three problems raised in the introduction.

Overlapping regions. Traditionally, semantic segmentation systems use superpix-

els (Boix et al., 2012; Tighe and Lazebnik, 2010, 2011; Tighe et al., 2014; Yang

et al., 2014; George, 2015; Mostajabi et al., 2015; Sharma et al., 2014, 2015), which

are non-overlapping regions resulting from a single-scale oversegmentation. How-

ever, appearance-based recognition of superpixels is difficult as they typically capture

only parts of objects, rather than complete objects. Therefore, many recent methods

use overlapping multi-scale regions (Carreira and Sminchisescu, 2010; Carreira et al.,

2012; Hariharan et al., 2014; Girshick et al., 2014; Li et al., 2013; Plath et al., 2009;
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Zhang et al., 2015b). However, these may lead to conflicting class predictions at the

pixel-level. Carreira et al. (2012) address this simply by taking the maximum score

over all regions containing a pixel. Both Hariharan et al. (2014) and Girshick et al.

(2014) use non-maximum suppression, which may give problems for nearby or inter-

acting objects (Li et al., 2013). Li et al. (2013) predict class overlap scores for each

region at each scale. Then they create superpixels by intersecting all regions. Finally,

they assign overlap scores to these superpixels using maximum composite likelihood

(i.e. taking all multi-scale predictions into account). Plath et al. (2009) use classifi-

cation predictions over a segmentation hierarchy to induce label consistency between

parent and child regions within a tree-based CRF framework. After solving their CRF

formulation, only the smallest regions (i.e. leaf-nodes) are used for class prediction.

In the weakly supervised setting, most works use superpixels (Vezhnevets et al., 2011,

2012; Xu et al., 2014, 2015a) and so do not encounter problems of conflicting pre-

dictions. Zhang et al. (2014) use overlapping regions to enforce a form of class-label

smoothing, but they all have the same scale. A different Zhang et al. (2015b) use

overlapping region proposals at multiple scales in a CRF.

Class imbalance. As the PASCAL VOC dataset (Everingham et al., 2010) is rel-

atively balanced, most works that experiment on it did not explicitly address this is-

sue (Boix et al., 2012; Carreira et al., 2012; Hariharan et al., 2014; Girshick et al.,

2014; Li et al., 2013; Plath et al., 2009; Long et al., 2015; Pinheiro and Collobert, 2015;

Zheng et al., 2015; Schwing and Urtasun, 2015; Lin et al., 2016b; Chen et al., 2015a).

On highly imbalanced datasets such as SIFT Flow (Liu et al., 2011), Barcelona (Tighe

and Lazebnik, 2010) and LM+SUN (Tighe and Lazebnik, 2013a), rare classes pose a

challenge. This is observed and addressed by Tighe and Lazebnik (2013a) and Yang

et al. (2014): for a test image, only a few training images with similar context are used

to provide class predictions, but for rare classes this constraint is relaxed and more

training images are used. Vezhnevets et al. (2011) balance rare classes by normal-

izing scores for each class to range [0,1]. A few works (Mostajabi et al., 2015; Xu

et al., 2014, 2015a) balance classes by using an inverse class frequency weighted loss

function.

Competing classes. Several works train one-vs-all classifiers separately and resolve

labeling through maximization (Carreira et al., 2012; Hariharan et al., 2014; Girshick

et al., 2014; Li et al., 2013; Plath et al., 2009; Tighe and Lazebnik, 2013a; Mostajabi

et al., 2015; Pinheiro and Collobert, 2015). This is suboptimal since the scores of
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different classes may not be properly calibrated. Instead, Tighe and Lazebnik (2010,

2013a) and Yang et al. (2014) use Nearest Neighbor classification which is inherently

multi-class. In the weakly supervised setting appearance models are typically trained

in isolation and remain uncalibrated (Vezhnevets et al., 2011, 2012; Zhang et al., 2014;

Xu et al., 2014, 2015a). To the best of our knowledge, Boix et al. (2012) is the only

work in semantic segmentation to perform joint calibration of SVMs. While this en-

ables to handle competing classes, in their work they use non-overlapping regions.

In contrast, in our work we use overlapping regions where conflicting predictions are

resolved through maximization. In this setting, joint calibration is particularly impor-

tant, as we will show in Sec. 3.4. As another difference, Boix et al. (2012) address

only full supervision whereas we address both full and weak supervision in a unified

framework.

3.3 Method

3.3.1 Model

We represent an image by a set of overlapping regions (Uijlings et al., 2013) described

by CNN features (Girshick et al., 2014) (Sec. 3.3.4). Our semantic segmentation model

infers the label op of each pixel p in an image:

op = argmax
c, r3p

σ(wc · xr, ac,bc) (3.1)

As appearance models, we have a separate linear SVM wc per class c. These SVMs

score the features xr of each region r. The scores are calibrated by a sigmoid function

σ, with different parameters ac,bc for each class c. The argmax returns the class c with

the highest score over all regions that contain pixel p. This involves maximizing over

classes for a region, and over the regions that contain p.

During training we find the SVM parameters wc (Sec. 3.3.2) and calibration pa-

rameters ac and bc (Sec. 3.3.3). The training of the calibration parameters takes into

account the effects of the two maximization operations, as they are optimized for the

output pixel-level labeling performance (as opposed to simply accuracy in terms of

region classification).
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3.3.2 SVM training

Fully supervised. In this setting we are given ground-truth pixel-level labels for all

images in the training set (Fig. 3.1). This leads to a natural subdivision into ground-

truth regions, i.e. non-overlapping regions perfectly covering a single class. We use

these as positive training samples. However, such idealized samples are rarely encoun-

tered at test time since there we have only imperfect region proposals (Uijlings et al.,

2013). Therefore we use as additional positive samples for a class all region proposals

which overlap heavily with a ground-truth region of that class (i.e. Intersection-over-

Union greater than 50% (Everingham et al., 2010)). As negative samples, we use all

regions from all images that do not contain that class. In the SVM loss function we

apply inverse frequency weighting in terms of the number of positive and negative

samples.

Weakly supervised. In this setting we are only given image-level labels on the train-

ing images (Fig. 3.1). Hence, we treat region-level labels as latent variables which are

updated using an alternated optimization process (as in (Vezhnevets et al., 2011, 2012;

Xu et al., 2014; Zhang et al., 2015b; Xu et al., 2015a)). To initialize the process, we use

as positive samples for a class all regions in all images containing it. At each iteration

we alternate between training SVMs based on the current region labeling and updating

the labeling based on the current SVMs (by assigning to each region the label of the

highest scoring class). In this process we keep our negative samples constant, i.e. all

regions from all images that do not contain the target class. In the SVM loss function

we apply inverse frequency weighting in terms of the number of positive and negative

samples.

3.3.3 Joint calibration

We now introduce our joint calibration procedure, which addresses three common

problems in semantic segmentation: (1) conflicting predictions of overlapping regions,

(2) class imbalance, and (3) competition between classes.

To better understand the problem caused by overlapping regions, consider the ex-

ample of Fig. 3.2. It shows three overlapping regions, each with different class predic-

tions. The final goal of semantic segmentation is to output a pixel-level labeling, which

is evaluated in terms of pixel-level accuracy. In our framework we employ a winner-

takes all principle: each pixel takes the class of the highest scored region which con-

tains it. Now, using uncalibrated SVMs is problematic (second row in Fig. 3.2). SVMs
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Figure 3.2: The first row shows multiple region proposals (left) extracted from an image

(right). The following rows show the per-class SVM scores of each region (left) and

the pixel-level labeling (right). Row 2 shows the results before and row 3 after joint

calibration.

are trained to predict class labels at the region-level, not the pixel-level. However,

different regions have different area, and, most importantly, not all regions contribute

all of their area to the final pixel-level labeling: Predictions of small regions may be

completely suppressed by bigger regions (e.g. in Fig. 3.2, row 3, the inner boat region

is suppressed by the prediction of the complete boat). In other cases, bigger regions

may be partially overwritten by smaller regions (e.g. in Fig. 3.2 the boat region par-

tially overwrites the prediction of the larger boat+sky region). Furthermore, the SVMs

are trained in a one-vs-all manner and are unaware of other classes. Hence they are

unlikely to properly resolve competition between classes even within a single region.

The problems above show that without calibration, the SVMs are optimized for the

wrong criterion. We propose to jointly calibrate SVMs for the correct criterion, which

corresponds better to the evaluation measure typically used for semantic segmentation

(i.e. class accuracy). We do this by applying sigmoid functions σ to all SVM outputs:

σ(wc · xr, ac,bc) = (1+ exp(ac ·wc · xr +bc))
−1 (3.2)

where ac,bc are the calibration parameters for class c. We calibrate the parameters of

all classes jointly by minimizing a loss function L(o, l), where o is the pixel labeling

output of our method on the full training set (o = {op; p = 1 . . .P}) and l the ground-

truth labeling.
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We emphasize that the pixel labeling output o is the result after the maximization

over classes and regions in Eq. 3.1. Since we optimize for the accuracy of this final

output labeling, and we do so jointly over classes, our calibration procedure takes into

account both problems of conflicting class predictions between overlapping regions

and competition between classes. Moreover, we also address the problem of class

imbalance, as we compensate for it in our loss functions below.

Fully supervised loss. In this setting our loss directly evaluates the desired perfor-

mance measure, which is typically class accuracy (Sec. 2.1.1) (Tighe and Lazebnik,

2010; Sharma et al., 2014; Yang et al., 2014; Farabet et al., 2013; Long et al., 2015)

L(o, l) = 1− 1
C

C

∑
c=1

1
Pc

∑
p; lp=c

[lp = op] (3.3)

where lp is the ground-truth label of pixel p, op is the output pixel label, Pc is the

number of pixels with ground-truth label c, and C is the number of classes. [·] is 1

if the condition is true and 0 otherwise. The inverse frequency weighting factor 1/Pc

deals with class imbalance.

Weakly supervised loss. Also in this setting the performance measure is typically

class accuracy (Vezhnevets et al., 2011, 2012; Xu et al., 2015a; Zhang et al., 2015b).

Since we do not have ground-truth pixel labels, we cannot directly evaluate it. We do

however have a set of ground-truth image labels li which we can compare against. We

first aggregate the output pixel labels op over each image mi into output image labels

oi =∪p∈mi op. Then we define as loss the difference between the ground-truth label set

li and the output label set oi, measured by the Hamming distance between their binary

vector representations

L (o, l) =
I

∑
i=1

C

∑
c=1

1
Ic
|li,c−oi,c| (3.4)

where li,c = 1 if label c is in li, and 0 otherwise (analog for oi,c). I is the total number

of training images. Ic is the number of images having ground-truth label c, so the

loss is weighted by the inverse frequency of class labels, measured at the image-level.

Note how also in this setting the loss looks at performance after the maximization over

classes and regions (Eq. 3.1).

Optimization. We want to minimize our loss functions over the calibration param-

eters ac,bc of all classes. This is hard, because the output pixel labels op depend on

these parameters in a complex manner due to the max over classes and regions in
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Figure 3.3: Our efficient evaluation algorithm uses the bottom-up structure of Selective

Search region proposals to simplify the spatial maximization. We start from the root

node and propagate the maximum score with its corresponding label down the tree.

We label the image based on the labels of its superpixels (leaf nodes).

Eq. 3.1, and because of the set-union aggregation in the case of the weakly supervised

loss. Therefore, we apply an approximate minimization algorithm based on coordinate

descent. Coordinate descent is different from gradient descent in that it can be used on

arbitrary loss functions that are not differentiable, as it only requires their evaluation

for a given setting of parameters.

Coordinate descent iteratively applies line search to optimize the loss over a single

parameter at a time, keeping all others fixed. This process cycles through all parameters

until convergence. As initialization we use constant values (ac =−7, bc = 0). During

line search we consider 10 equally spaced values (ac in [−12,−2], bc in [−10,10]).

This procedure is guaranteed to converge to a local minimum on the search grid.

While this might not be the global optimum, in repeated trials we found the results to

be rather insensitive to initialization. Furthermore, in our experiments the number of

iterations was roughly proportional to the number of parameters.

Efficient evaluation. On a typical training set with C = 30 classes, our joint calibra-

tion procedure evaluates the loss thousands of times. Hence, it is important to evaluate

pixel-level accuracy quickly. As the model involves a maximum over classes and a

maximum over regions at every pixel, a naive per-pixel implementation would be pro-

hibitively expensive. Instead, we propose an efficient technique that exploits the nature
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of the Selective Search region proposals (Uijlings et al., 2013), which form a bottom-

up hierarchy starting from superpixels. As shown in Fig. 3.3, we start from the region

proposal that contains the entire image (root node). Then we propagate the maximum

score over all classes down the region hierarchy. Eventually we assign to each super-

pixel (leaf nodes) the label with the highest score over all regions that contain it. This

label is assigned to all pixels in the superpixel. To compute class accuracy, we nor-

mally need to compare each pixel label to the ground-truth label. However since we

assign the same label to all pixels in a superpixel, we can precompute the ground-truth

label distribution for each superpixel and use it as a lookup table. This reduces the run-

time complexity for an image from O(Pi ·Ri ·C) to O(Ri ·C), where Pi and Ri are the

number of pixels and regions in an image respectively, and C is the number of classes.

Why no Platt scaling. At this point the reader may wonder why we do not simply

use Platt scaling (Platt, 1999) as is commonly done in many applications. Platt scaling

is used to convert SVM scores to range [0,1] using sigmoid functions, as in Eq. 3.2.

However, in Platt scaling the parameters ac,bc are optimized for each class in isolation,

ignoring class competition. The loss function Lc in Platt scaling is the cross-entropy

function

Lc (σc, l) =−∑
r

tr,c log(σc(xr))+(1− tr,c) log(1−σc(xr)) (3.5)

where N+ is the number of positive samples, N− the number of negative samples, and

tr,c =
N++1
N++2 if lr = c or tr,c = 1

N−+2 otherwise; lr is the region-level label. This loss

function is inappropriate for semantic segmentation because it is defined in terms of

accuracy of training samples, which are regions, rather than in terms of the final pixel-

level accuracy. Hence it ignores the problem of overlapping regions. There is also no

inverse frequency term to deal with class imbalance. We experimentally compare our

method with Platt scaling in Sec. 3.4.

3.3.4 Implementation details

Region proposals. We use Selective Search (Uijlings et al., 2013) region proposals

using a subset of the “Fast” mode: we keep the similarity measures, but we restrict

the scale parameter k to 100 and the color-space to RGB. This leads to two bottom-up

hierarchies of one initial oversegmentation (Felzenszwalb and Huttenlocher, 2004).

Features. We show experiments with features generated by two CNNs (AlexNet

(Krizhevsky et al., 2012), VGG-16 (Simonyan and Zisserman, 2015)) using the Caffe
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implementations (Jia, 2013). We use the R-CNN (Girshick et al., 2014) framework

for AlexNet, and Fast R-CNN (Girshick, 2015) for VGG-16, in order to maintain high

computational efficiency. Regions are described using all pixels in a tight bounding

box. Since regions are free-form, Girshick et al. (2014) additionally propose to set

pixels not belonging to the region to zero (i.e. not affecting the convolution). However,

in our experiments this did not improve results so we do not use it. For the weakly

supervised setting we use the CNNs pre-trained for image classification on ILSVRC

2012 (Russakovsky et al., 2015). For the fully supervised setting we finetune them

on the training set of SIFT Flow (Liu et al., 2011) (i.e. the semantic segmentation

dataset we experiment on). For both settings, following Girshick et al. (2014) we use

the output of the FC6 layer of the CNN as features.

SVM training. Like Girshick et al. (2014) we set the regularization parameter C to a

fixed value in all our experiments. The SVMs minimize the L2 loss for region classifi-

cation. We use hard-negative mining to reduce memory consumption.

3.4 Experiments

Datasets. We evaluate our method on the challenging SIFT Flow dataset (Liu et al.,

2011). It consists of 2488 training and 200 test images, pixel-wise annotated with

33 class labels. The class distribution is highly imbalanced in terms of overall region

count as well as pixel count. As evaluation measure we use the popular class accuracy

measure (Tighe and Lazebnik, 2010; Tighe et al., 2014; Yang et al., 2014; Farabet et al.,

2013; Long et al., 2015; Sharma et al., 2015; Pinheiro and Collobert, 2014; Vezhnevets

et al., 2012; Xu et al., 2015a; Zhang et al., 2015b). For both supervision settings we

report results on the test set.

Fully supervised setting. Table 3.1 evaluates various versions of our model in the

fully supervised setting, and compares to other works on SIFT Flow. Using AlexNet

features and uncalibrated SVMs, our model achieves a class accuracy of 28.7%. If we

calibrate the SVM scores with traditional Platt scaling results do not improve (27.7%).

Using our proposed joint calibration to maximize class accuracy improves results sub-

stantially to 55.6%. This shows the importance of joint calibration to resolve conflicts

between overlapping regions at multiple scales, to take into account competition be-

tween classes, and generally to optimize a loss mirroring the evaluation measure.

Fig. 3.4 (column “SVM”) shows that larger background regions (i.e. sky, building)
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Method Class acc.

Byeon et al. (2015) 22.6%

Tighe and Lazebnik (2010) 29.1%

Pinheiro and Collobert (2014) 30.0%

Shuai et al. (2015) 39.7%

Tighe and Lazebnik (2013a) 41.1%

Kekeç et al. (2014) 45.8%

Sharma et al. (2014) 48.0%

Yang et al. (2014) 48.7%

George (2015) 50.1%

Farabet et al. (2013) 50.8%

Long et al. (2015) 51.7%

Sharma et al. (2015) 52.8%

Ours SVM (AlexNet) 28.7%

Ours SVM+PS (AlexNet) 27.7%

Ours SVM+JC (AlexNet) 55.6%

Ours SVM+JC (VGG-16) 59.2%

Souly et al. (2017) 46.7%

Lin et al. (2017) 53.4%

Cheng et al. (2017) 53.6%

Hu et al. (2017) 58.6%

Ngan Le et al. (2017) 61.0%

Fan and Ling (2018) 61.1%

Caesar et al. (2016b) 64.0%
Huang et al. (2017a) 64.0%

Table 3.1: Class accuracy in the fully supervised setting. We show results for our

model on the test set of SIFT Flow using uncalibrated SVM scores (SVM), traditional

Platt scaling (PS) and joint calibration (JC). We also compare to other works published

before (top) and after (bottom) the initial release of our paper (Caesar et al., 2015).
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Method Class acc.

Vezhnevets et al. (2011) 14.0%

Vezhnevets et al. (2012) 21.0%

Zhang et al. (2014) 27.7%

Xu et al. (2014) 27.9%

Zhang et al. (2015b) 32.3%

Xu et al. (2015a) 35.0%

Xu et al. (2015a) (transductive) 41.4%

Ours SVM (AlexNet) 21.2%

Ours SVM+PS (AlexNet) 16.8%

Ours SVM+JC (AlexNet) 37.4%

Ours SVM+JC (VGG-16) 44.8%

Shi et al. (2017b) 23.8%

Shi et al. (2017b) (transductive) 31.2%

Table 3.2: Class accuracy in the weakly supervised setting setting. We show results for

our model on the test set of SIFT Flow using uncalibrated SVM scores (SVM), traditional

Platt scaling (PS) and joint calibration (JC). We also compare to other works published

before (top) and after (bottom) the initial release of our paper (Caesar et al., 2015).

swallow smaller foreground regions (i.e. boat, awning). Many of these small objects

become visible after calibration (column “SVM+JC”). This issue is particularly evi-

dent when working with overlapping regions. Consider a large region on a building

which contains an awning. As the surface of the awning is small, the features of the

large region will be dominated by the building, leading to strong classification score

for the building class. When these are higher than the classification score for awning

on the small awning region, the latter gets overwritten. Instead, this problem does not

appear when working with superpixels (Boix et al., 2012). A superpixel is either part

of the building or part of the awning, so a high scoring awning superpixel cannot be

overwritten by neighboring building superpixels. Hence, joint calibration is particu-

larly important when working with overlapping regions.

Using the deeper VGG-16 CNN the results improve further, leading to our final

performance 59.2%. At the time of publication of our paper (Caesar et al., 2015), this

result outperformed the state-of-the-art (Sharma et al., 2015) by 6.4%. Since then, the

state-of-the-art has improved to 64.0% (Caesar et al., 2016b; Huang et al., 2017a)
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Image Ground-truth SVM SVM+JC

Figure 3.4: Fully supervised semantic segmentation on SIFT Flow. We present uncali-

brated SVM results (SVM) and jointly calibrated results (SVM+JC), both with VGG-16.
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Image Ground-truth SVM (AlexNet) SVM+JC (AlexNet) SVM+JC (VGG16)

Figure 3.5: Weakly supervised semantic segmentation on SIFT Flow. We present un-

calibrated SVM results (SVM) with AlexNet, jointly calibrated results (SVM+JC) with

AlexNet, and with VGG-16.
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Regions Class acc.

Felzenszwalb and Huttenlocher (2004) 43.4%

Uijlings et al. (2013) 55.6%

Table 3.3: Comparison of single-scale (Felzenszwalb and Huttenlocher, 2004) and

multi-scale (Uijlings et al., 2013) regions using SVM+JC (AlexNet).

Weakly supervised setting. Table 3.2 shows results in the weakly supervised set-

ting. The model with AlexNet and uncalibrated SVMs achieves an accuracy of 21.2%.

Using traditional Platt scaling the result is 16.8%, again showing it is not appropri-

ate for semantic segmentation. Instead, our joint calibration almost doubles accuracy

(37.4%). Using the deeper VGG-16 CNN results improve further to 44.8%.

Fig. 3.5 illustrates the power of our weakly supervised method. Again rare classes

appear only after joint calibration. We compare to the state-of-the-art at the time of

publication our our paper (Caesar et al., 2015): We outperform Xu et al. (2015a)

(35.0%) by 9.8% in this setting. Xu et al. (2015a) additionally report results on the

transductive setting (41.4%), where all (unlabeled) test images are given to the algo-

rithm during training. Since the initial publication of our paper, Shi et al. (2017b)

released new results, both in the regular (23.8%) and transductive setting (31.2%).

Neither matches our best result.

Region proposals. To demonstrate the importance of multi-scale regions, we also

analyze oversegmentations that do not cover multiple scales. To this end, we keep

our framework the same, but instead of Selective Search (Uijlings et al., 2013) region

proposals we used a single oversegmentation using the method of Felzenszwalb and

Huttenlocher (2004), for which we optimize the scale parameter. As Table 3.3 shows,

Selective Search regions outperform the oversegmentation by a good margin of 12.2%

in the fully supervised setting. This confirms that overlapping multi-scale regions are

superior to non-overlapping oversegmentations.

CNN finetuning. As described in 3.3.4 we finetune our network for detection in the

fully supervised case. Table 3.4 shows that this improves results by 6.2% compared to

using a CNN trained only for image classification on ILSVRC 2012.
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Finetuned Class acc.

no 49.4%

yes 55.6%

Table 3.4: Effect of CNN finetuning in the fully supervised setting using SVM+JC

(AlexNet).

3.5 Discussion

In this section we present preliminary studies that we conducted to find suitable region

proposals. We discuss why region proposal are suitable to find stuff and things. Then

we give an overview of later works that have been inspired by our original paper (Cae-

sar et al., 2015).

Region proposal evaluation. In preliminary studies we evaluated the quality of

leading region proposal methods (Carreira and Sminchisescu, 2010; Uijlings et al.,

2013; Arbeláez et al., 2014; Krähenbühl and Koltun, 2014; Rantalankila et al., 2014)

on the SIFT Flow dataset (Liu et al., 2011). We compared the region proposals to re-

gions (connected components) extracted from the segmentation ground-truth. The two

metrics used were Mean Average Best Overlap (MABO) and recall at an IOU of 0.5.

We found that Selective Search (Uijlings et al., 2013) outperforms all other methods

on both metrics at ≥ 300 region proposals per image. We hypothesize that we need at

least this number of region proposals for our method to cover all objects at multiple

scales. Due to these observations we believe that Selective Search proposals are well

suited for semantic segmentation.

Region proposals and stuff. Here we discuss why region proposal based methods

are not just suitable for things, but also for stuff. Several authors point out that their

proposal methods are suitable for stuff and things (Carreira and Sminchisescu, 2010;

Uijlings et al., 2013), while others are specifically designed for thing classes (Endres

and Hoiem, 2010; Zitnick and Dollár, 2014). We observe that suitable methods tend to

1) cover most of the image 2) take into account regions of homogeneous texture and

3) use diversification techniques to cover a variety of different proposals. Revisiting

the region proposal evaluation experiments presented earlier, we found that the perfor-

mance on both metrics is significantly higher for stuff than for thing classes. While the

type of images and the granularity of the stuff and thing classes in SIFT Flow play a

role here (see Sec. 6.4), this empirically shows that region proposals are indeed suitable
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for stuff. Furthermore we note that the SIFT Flow dataset was specifically chosen for

our experiment, as it covers stuff and thing classes and has a long tail label distribution

which is typical for such datasets.

Later works inspired by ours. Two works appearing after our BMVC 2015 pa-

per (Caesar et al., 2015) have been inspired by it. Zhu et al. (2016) present a sys-

tem for weakly supervised facial analysis that uses a calibration technique for binary

SVMs. They use a softmax function to enable the system to deal with multi-class and

mixed-class problems. Bulo et al. (2017a) use a loss max-pooling layer to adaptively

re-weight the contributions of each pixel based on the observed loss. This targets both

inter- and intra-class imbalance.

3.6 Future work

In this section we present future work related to this chapter.

Multi-class classification. In Sec. 3.3 we use a separate one-vs-all SVM classifier

for each class. Instead of training an SVM for each class, we could also train a single

multiclass SVM. For a target label y and model parameters wy, Crammer and Singer

(2001) propose the following linear multi-class hinge loss l(y):

l(y) = max
(

0,1+max
t 6=y

wtx−wyx
)

(3.6)

We assume that this significantly speedups training, while achieving a comparable

level of performance. However, the use of a multi-class classifier does not address the

problems described in Sec. 3.3.3 and joint calibration remains essential.

Speeding up joint calibration. A limitation of the work presented in this chapter is

its poor scalability to a huge number of classes, which is very important for our overall

project. One reason for this is the use of one-vs-all Support Vector Machines (SVM)

which have to be trained separately for each class. In a first step to overcome this

limitation, we replace SVMs trained on CNN features with the final layer activations

of the CNN (Girshick, 2015). By moving from R-CNN (Girshick et al., 2014) to Fast

R-CNN (Girshick, 2015), we are able to further speed up network training and testing

by avoiding redundant computation on convolutional layers. We also speed up the joint

calibration component that uses a sigmoid to calibrate per-class scores. In this work

we suggested a coordinate descent scheme to optimize one sigmoid parameter at a
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time. To parallelize this sequential algorithm, we let a number of threads optimize one

sigmoid parameter each. The resulting solution is the one with the highest validation

set performance of all partial solutions. This algorithmic modification allows for a

more efficient implementation and results in a 400x speedup for large-scale datasets

with about 200 classes. Future work could focus on further speeding up the region

proposal extraction and network training.

Apply joint calibration to other methods. As future work one could apply the joint

calibration technique as a post-processing step to current state-of-the-art methods, in-

cluding fully convolutional approaches (see Sec. 2.1.3.1). For datasets with class im-

balance this should yield significant improvements in metrics that give the same weight

to all classes (see Sec. 2.1.1). Even in the case of a balanced dataset, optimizing the

slope of the sigmoid function is crucial to take into account class competition and (if

applicable) overlapping regions. As an analogy to end-to-end training, our method

allows for approximate “to-the-end” training of any metric. This is particularly inter-

esting for the mean IOU metric, where no closed form solution exists to compute the

gradients (see Sec. 2.1.4.2).

Per-class evaluation metrics In Sec. 2.1.1 we discussed commonly used evaluation

criteria for semantic segmentation. In Sec. 2.1.4.1 we introduce the challenges related

to class competition and class imbalance. In this chapter we presented a method that is

able to calibrate any semantic segmentation method for the final evaluation criterion.

But what is the performance of the underlying method independent of its calibration?

Can we compute performance metrics that do not take into account class imbalance

and class competition? It turns out that we can use existing metrics from other tasks –

such as mean Average Precision (mAP) – on the pixel-level. To compute the AP for a

particular class, we sort all pixels by their score for that class and compute the precision

at each score threshold. Unfortunately this is computationally expensive. For the test

set of our COCO-Stuff dataset (see Sec. 6), this requires sorting and storing about 1010

scores per class. Online sorting algorithms and random subsampling may be able to

speedup this process and find suitable approximations. Furthermore, precision can be

computed per image and then aggregated over the entire dataset, to avoid having to

store the scores for every pixel. Future work could evaluate whether this is a useful

metric for semantic segmentation and how to efficiently compute it for large datasets.

This approach will make the submissions of semantic segmentation challenges more

comparable, as the metric cannot be altered by class reweighting via cross-validation.
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It also allows the creator of a new semantic segmentation method to focus on one

class at a time, just as in object detection. Similarly, it may allow us to design and

evaluate branches of a network that are specific to stuff or things (Zhou et al., 2017b;

Brahmbhatt et al., 2017), without the performance of one set of classes being altered

by the other.

3.7 Conclusion

We addressed three common problems in semantic segmentation based on region pro-

posals: (1) overlapping regions yield conflicting class predictions at the pixel-level; (2)

class imbalance leads to classifiers unable to detect rare classes; (3) one-vs-all classi-

fiers do not take into account competition between multiple classes. We proposed a

joint calibration strategy which optimizes a loss defined over the final pixel-level out-

put labeling of the model, after maximization over classes and regions. This tackles all

three problems: joint calibration deals with multi-class predictions, while our loss ex-

plicitly deals with class imbalance and is defined in terms of pixel-wise labeling rather

than region classification accuracy. As a result we take into account conflict resolution

between overlapping regions. In the fully supervised setting, our method outperformed

the state-of-the-art on the SIFT Flow dataset (Liu et al., 2011) at the time of publica-

tion (Caesar et al., 2015), but it has been surpassed since then. In the weakly supervised

setting, our work still outperforms the state-of-the-art on SIFT Flow today.
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Region-based semantic segmentation

with end-to-end training

4.1 Introduction

We address the task of semantic segmentation, labeling each pixel in an image with

a semantic class. Currently, there are two main paradigms: classical region-based

approaches (Boix et al., 2012; Caesar et al., 2015; Carreira et al., 2012; Dai et al.,

2015b; George, 2015; Girshick et al., 2014; Hariharan et al., 2014; Li et al., 2013;

Mostajabi et al., 2015; Plath et al., 2009; Sharma et al., 2014, 2015; Tighe and Lazeb-

nik, 2010, 2013a; Tighe et al., 2014; Yang et al., 2014; Mottaghi et al., 2014) and,

inspired by the Convolutional Neural Network (CNN) revolution, fully convolutional

approaches (Chen et al., 2015a; Dai et al., 2015a; Eigen and Fergus, 2015; Farabet

et al., 2013; Hariharan et al., 2015; Long et al., 2015; Noh et al., 2015; Pinheiro and

Collobert, 2014; Zheng et al., 2015).

In the fully convolutional approach the idea is to directly learn a mapping from

image pixels to class labels using a CNN (see Sec. 2.1.3.1). This results in a single

model, directly optimized end-to-end for the task at hand, including the intermediate

image representations (i.e. the hidden layers in the network). However, the spatial sup-

port on which predictions are based are fixed-size square patches of the input image.

Intuitively, this is suboptimal since: (I) Objects are free-form rather than square, so ide-

ally the intermediate representations should take this into account. (II) Objects do not

have a fixed size, but occur at various scales. Hence many patches either cover pieces

of multiple objects and mix their representations, or cover a piece of an object, which

is sometimes difficult to recognize in isolation (e.g. a patch on the belly of a cow).

61
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Figure 4.1: Fully convolutional methods typically produce fuzzy object boundaries, as

illustrated here by examples from Eigen and Fergus (2015).

An additional problem is that fully convolutional methods typically make predictions

at a coarse resolution, which often results in inaccurate object boundaries (Chen et al.,

2015a; Eigen and Fergus, 2015; Farabet et al., 2013; Hariharan et al., 2015; Noh et al.,

2015; Zheng et al., 2015). Fig. 4.1 illustrates this on example outputs of Eigen and

Fergus (2015).

In the region-based approach, the image is first segmented into coherent regions,

which are described by image features (Boix et al., 2012; Caesar et al., 2015; Carreira

et al., 2012; Dai et al., 2015b; George, 2015; Girshick et al., 2014; Hariharan et al.,

2014; Li et al., 2013; Mostajabi et al., 2015; Plath et al., 2009; Sharma et al., 2014,

2015; Tighe and Lazebnik, 2010, 2013a; Tighe et al., 2014; Yang et al., 2014) (see

Sec. 2.1.3.2). Typically many regions are extracted at multiple scales (Caesar et al.,

2015; Carreira et al., 2012; Dai et al., 2015b; Girshick et al., 2014; Hariharan et al.,

2014; Li et al., 2013; Plath et al., 2009; Sharma et al., 2014, 2015), capturing complete

objects and canonical object parts (e.g. faces) which in turn facilitates recognition.

Furthermore, the segmentation process delivers regions which follow object bound-

aries quite well. However, these methods generally first extract region features and

then train a classifier optimized for classifying regions rather than for the final seman-

tic segmentation criterion (i.e. pixel-level labeling) (Caesar et al., 2015; Carreira et al.,

2012; Dai et al., 2015b; Girshick et al., 2014; Hariharan et al., 2014; Li et al., 2013;

Plath et al., 2009). Hence, while these methods benefit from the power of multi-scale,

overlapping regions, they cannot be trained end-to-end for semantic segmentation.

In this work we want the best of both worlds. We propose a region-based seman-

tic segmentation model with an accompanying end-to-end training scheme based on

a CNN architecture (Fig. 4.2c). To enable this we introduce a novel, differentiable

region-to-pixel layer which maps from regions to image pixels. We insert this layer
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before the final classification layer, enabling the use of a pixel-level loss which allows

us to directly optimize for semantic segmentation. Conceptually, our region-to-pixel

layer ignores regions which have low activations for all classes and which therefore do

not impact the final labeling. This is in contrast to all multi-scale region-based methods

where such regions incorrectly affect training (Caesar et al., 2015; Carreira et al., 2012;

Dai et al., 2015b; Girshick et al., 2014; Hariharan et al., 2014; Li et al., 2013; Plath

et al., 2009). Additionally, we introduce a differentiable Region-of-Interest pooling

layer which operates on the final convolutional layer in the spirit of Fast R-CNN (Gir-

shick, 2015), but which is adapted for free-form regions like (Dai et al., 2015b; Sharma

et al., 2014, 2015). Note how we use region proposals from a separate pre-processing

stage. By end-to-end we mean training all parameters for the final pixel-level loss,

rather than for region classification (see Sec. 2.1.4.2).

To summarize, our contributions are: (1) We introduce a region-to-pixel layer

which enables full end-to-end training of semantic segmentation models based on

multi-scale overlapping regions. (2) We introduce a Region-of-Interest pooling layer

specialized for free-form regions. (3) At the time of publication of our ECCV 2016

paper (Caesar et al., 2016b), we obtained state-of-the-art results on the SIFT Flow and

the PASCAL Context datasets, in terms of class accuracy. Our approach delivers crisp

object boundaries, as demonstrated in Fig. 4.5 and Sec. 4.4.3. This chapter is a mod-

ified version of our paper published at the European Conference on Computer Vision

2016 (Caesar et al., 2016b). In Sec. 4.5 we contextualize this work in the literature

and in Sec. 4.6 we present future work. We release the source code of our method at:

https://github.com/nightrome/matconvnet-calvin

Relation to Chapter 3. In Chapter 3 we presented a technique to calibrate a region-

based method “to-the-end” for the pixel-level evaluation criterion. In this chapter we

improve upon this approach by mapping from pixels to regions and allowing for end-

to-end training of the entire framework. If trained for a suitable loss, both methods

takes into account three problems of region-based semantic segmentation: overlap-

ping regions, class imbalance and class competition (see Sec. 3.1). This improvement

allows us to drastically simplify our method and remove Support Vector Machines

and the joint calibration step. It also leads to a significantly higher performance (see

Sec. 4.4.2).

https://github.com/nightrome/matconvnet-calvin
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4.2 Related Work

4.2.1 Region-based semantic segmentation

Region-based semantic segmentation methods first extract free-form regions (Carreira

and Sminchisescu, 2010; Uijlings et al., 2013; Endres and Hoiem, 2010; Arbeláez

et al., 2014) from an image and describe them with features. Afterwards a region

classifier is trained. At test time, region-based predictions are mapped to pixels, usually

by labeling a pixel according to the highest scoring region that contains it. Region-

based methods generally yield crisp object boundaries (Boix et al., 2012; Caesar et al.,

2015; Carreira et al., 2012; Dai et al., 2015b; George, 2015; Girshick et al., 2014;

Hariharan et al., 2014; Li et al., 2013; Mostajabi et al., 2015; Plath et al., 2009; Sharma

et al., 2014, 2015; Tighe and Lazebnik, 2010, 2013a; Tighe et al., 2014; Yang et al.,

2014; Mottaghi et al., 2014). Fig. 4.2b shows a prototypical architecture for such an

approach (which we modernized by basing it on Fast R-CNN (Girshick, 2015)). We

discuss several aspects below.

Multi-scale vs single-scale regions. Several region-based methods use an overseg-

mentation to create small, non-overlapping regions (Boix et al., 2012; George, 2015;

Mostajabi et al., 2015; Tighe and Lazebnik, 2010, 2013a; Tighe et al., 2014; Yang

et al., 2014). Intuitively however, objects are more easily recognized as a whole than

by looking at small object parts individually. The inherent multi-scale aspect of recog-

nition is adequately captured in many recent works using multi-scale, overlapping re-

gions (Caesar et al., 2015; Carreira et al., 2012; Dai et al., 2015b; Girshick et al., 2014;

Hariharan et al., 2014; Li et al., 2013; Plath et al., 2009; Sharma et al., 2014, 2015).

Training criterion. The final criterion is pixel-level prediction of class labels. How-

ever, we use overlapping regions whose predictions are in competition with each other

on the pixel level. Typically, many methods initially ignore this by simply training a

classifier to predict region labels (Caesar et al., 2015; Carreira et al., 2012; Dai et al.,

2015b; Girshick et al., 2014; Hariharan et al., 2014; Li et al., 2013; Plath et al., 2009),

which is different from semantic segmentation (Sec. 4.3.1). At test time one labels a

pixel by simply taking the maximum over all regions containing it (Caesar et al., 2015;

Carreira et al., 2012; Dai et al., 2015b; Girshick et al., 2014; Hariharan et al., 2014).

A few works partially addressed the mismatch between training and test time through

a post-processing stage using graphical models (Li et al., 2013; Plath et al., 2009) or
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by joint calibration (Caesar et al., 2015). However, none of them does full end-to-end

training.

Region representations. Most older works use hand-crafted region-based features

(Boix et al., 2012; Carreira et al., 2012; George, 2015; Li et al., 2013; Plath et al.,

2009; Tighe and Lazebnik, 2010, 2013a; Tighe et al., 2014; Yang et al., 2014) often

based on (Carreira et al., 2012; Tighe and Lazebnik, 2010). More recent works instead

use the top convolutional layers of a pre-trained CNN (e.g. Krizhevsky et al. (2012);

Simonyan and Zisserman (2015)) as feature representations (Caesar et al., 2015; Dai

et al., 2015b; Girshick et al., 2014; Hariharan et al., 2014; Mostajabi et al., 2015;

Sharma et al., 2014, 2015). These representations can be free-form respecting the

shape of the region (Dai et al., 2015b; Girshick et al., 2014; Hariharan et al., 2014;

Mostajabi et al., 2015; Sharma et al., 2014, 2015) or simply represent the bounding

box around the region (Caesar et al., 2015; Girshick et al., 2014). Furthermore regions

can be cropped out from the image before being fed to the network (Girshick et al.,

2014; Hariharan et al., 2014; Mostajabi et al., 2015) or one can create region repre-

sentations from a convolutional layer (Dai et al., 2015b; Sharma et al., 2014, 2015),

termed Region-of-Interest (ROI) pooling (Girshick, 2015) or Convolutional Feature

Masking (Dai et al., 2015b). CNN representations become more powerful when fur-

ther trained for the task. In Caesar et al. (2015); Girshick et al. (2014); Hariharan

et al. (2014) they train CNNs, but for the task of region classification, not for semantic

segmentation.

4.2.2 Fully convolutional semantic segmentation

Fully convolutional methods learn a direct mapping from pixels to pixels, which was

pioneered by Shotton et al. (2009) in the pre-CNN era. Early CNN-based approaches

train relatively shallow end-to-end networks (Farabet et al., 2013; Pinheiro and Col-

lobert, 2014), whereas more recent works use much deeper networks whose weights

are initialized by pre-training on the ILSVRC (Russakovsky et al., 2015) image classi-

fication task (Chen et al., 2015a; Dai et al., 2015a; Eigen and Fergus, 2015; Hariharan

et al., 2015; Long et al., 2015; Noh et al., 2015; Zheng et al., 2015). The main insight

to adapt these networks for semantic segmentation was to re-interpret the classification

layer as 1x1 convolutions (Sermanet et al., 2014; Long et al., 2015). A prototypical

model is illustrated in Fig. 4.2a.
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Square receptive fields. All fully convolutional methods have receptive fields of

fixed shape (square) (Chen et al., 2015a; Dai et al., 2015a; Eigen and Fergus, 2015;

Farabet et al., 2013; Hariharan et al., 2015; Long et al., 2015; Noh et al., 2015; Pinheiro

and Collobert, 2014; Zheng et al., 2015). However, since objects are free-form this may

be suboptimal.

Multi-scale. Recognition is a multi-scale problem, which is addressed by using two

strategies: (I) Multi-scale representations. Using skip-layer connections (Bishop, 1995;

Ripley, 1996), representations from different convolutional layers can be combined

(Eigen and Fergus, 2015; Hariharan et al., 2015; Long et al., 2015; Pinheiro and

Collobert, 2014). This leads to multi-scale representations of a predetermined size.

(II) Multi-scale application. In Hariharan et al. (2015); Noh et al. (2015) they train

and apply their method on multi-scale, rectangular image crops. However, this results

in a mismatch between training time, where each crop is considered separately, and

test time, where predictions of multiple crops are combined before evaluation.

Fuzzy object boundaries. It is widely acknowledged that fully convolutional ap-

proaches yield rather fuzzy object boundaries (Chen et al., 2015a; Eigen and Fergus,

2015; Farabet et al., 2013; Hariharan et al., 2015; Noh et al., 2015; Zheng et al., 2015).

A variety of strategies address this. (I) Multi-scale. The multi-scale methods dis-

cussed above (Eigen and Fergus, 2015; Hariharan et al., 2015; Long et al., 2015; Noh

et al., 2015; Pinheiro and Collobert, 2014) include a fine scale resulting in improved

object boundaries. (II) Conditional Random Fields (CRFs). CRFs are a classical tool

to refine pixel-wise labelings and are used as post-processing step by (Chen et al.,

2015a; Farabet et al., 2013; Noh et al., 2015; Zheng et al., 2015). Notably, Zheng

et al. (2015) reformulate the CRF as a recurrent neural network (CRF-RNN) enabling

them to train the whole network including convolutional layers in an end-to-end fash-

ion. (III) Post-processing by region proposals. Finally, Farabet et al. (2013) averages

pixel-wise network outputs over regions from an oversegmentation.

4.2.3 Our method.

We propose a model based on free-form, multi-scale, overlapping regions. We design a

partially differentiable region-to-pixel layer enabling end-to-end training for semantic

segmentation. Additionally we introduce a ROI pooling layer, which is free-form (Dai

et al., 2015b; Sharma et al., 2014, 2015) yet also differentiable (Girshick, 2015).
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4.3 Method

Sec. 4.3.1 presents a baseline model that is representative for modern region-based

semantic segmentation (Caesar et al., 2015; Dai et al., 2015b; Girshick et al., 2014;

Hariharan et al., 2014) (Fig. 4.2b), and explains its shortcomings. Sec. 4.3.2-4.3.5

present our framework, which addresses these issues (Fig. 4.2c).

4.3.1 Region-based semantic segmentation

Model. Fig. 4.2b presents a typical region-based semantic segmentation architecture.

It modernizes Caesar et al. (2015); Dai et al. (2015b); Girshick et al. (2014); Hariharan

et al. (2014) by using the Region-of-Interest pooling layer of Girshick (2015). We use

this model as a baseline in our experiments (Sec. 4.4).

The input to the network are images and free-form regions (Uijlings et al., 2013).

The image is fed through several convolutional layers. A Region-of-Interest pool-

ing layer (Girshick, 2015) creates a feature representation of the tight bounding boxes

around each region. These region features are then fed through several fully connected

layers and a classification layer, followed by a softmax, resulting in region-level pre-

dictions. At test time, these predictions are mapped from regions to pixels: each pixel

p is assigned the label op with the highest probability over all classes and all regions

containing p:

op = argmax
c

max
r3p

softmax
c

Sr,c (4.1)

Here Sr,c denotes the classifier scores for region r and class c (i.e. activations of the

classification layer).

Training. The training procedure searches for the network parameters that minimize

a cross-entropy log-loss L over regions:

L = −∑
c

1
R

R

∑
r=1

yr,c log softmax
c

Sr,c (4.2)

Here R indicates the number of regions in the training set and yr,c ∈ {0,1} is a ground-

truth label indicating whether region r has label c. The network is trained with Stochas-

tic Gradient Descent (SGD) with momentum. To update the network weights, one

needs to compute the partial derivatives of the loss with respect to the weights. These

derivatives depend on the partial derivatives of the loss with respect to the outputs of

the respective layer.
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a) Fully Convolutional architecture

b) Modern region-based architecture (baseline model)

c) Our architecture
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Figure 4.2: Overview of three semantic segmentation architectures. We show only

layers with trainable parameters, softmax and loss layers. We omit all pre- and post-

processing steps. a) shows the class of fully convolutional architectures that are end-to-

end trainable, but do not have regions. b) shows the baseline model, representative for

modern region-based architectures. It is not end-to-end trainable for the desired pixel

labeling criterion. c) shows our suggested architecture, which pools activations of each

region in a free-form manner, maps the region-level predictions to pixels and computes

a loss at the pixel level. Hence our method combines regions and end-to-end training.

Our main contributions are highlighted by orange boxes.
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Problems. A first problem arises because the softmax is applied before pixel assign-

ment in Eq. 4.1: (I) regions with low but highly varying activation scores are unsure

about the class, but can still yield high probabilities due to the softmax. Intuitively, this

means that such non-discriminative regions can wrongly affect the final prediction.

More importantly, since maxr3p occurs at test time (Eq. 4.1), but not at training

time (Eq. 4.2), the pixel-wise evaluation criterion at test time is different from the

region-level optimization criterion at training time. This has several consequences:

(II) While during training all regions affect the network, at test time most regions

are ignored. (III) It is unclear what are good region training examples for achieving

good performance at test time: Are positive examples only ground-truth regions? Or

should we use also region proposals which partially overlap with the ground-truth?

And with what threshold? What overlap are negative proposals allowed to have to

count as negative examples? Hence one has to select overlap thresholds for positive and

negative examples empirically using test time evaluations. (IV) Regions with different

size have the same weight. (V) The network is not trained end-to-end for semantic

segmentation, but for the intermediate task of region classification instead. Hence both

the classification layer and the representation layers will be suboptimal for the actual

semantic segmentation task.

4.3.2 End-to-end training for region-based semantic segmentation

Model. To combine the paradigms of region-based semantic segmentation and end-

to-end training, we map from regions to pixels as in Eq. 4.1, but before the softmax

and loss computation on a pixel-level:

op = argmax
c

softmax
c

max
r3p

Sr,c (4.3)

This region-to-pixel layer is shown in Fig. 4.2c. It brings two benefits. At training

time, having the region-to-pixel layer before the loss enables optimizing a pixel-level

loss. Furthermore, having the region-to-pixel layer before the softmax ensures that the

class score for each pixel is taken from the region with the highest activation score,

hence each class can be recognized at its appropriate scale.

Training. In Eq. 4.2 the baseline model computes a cross-entropy log-loss on the

region-level. Here instead we compute a log-loss on the pixel-level:

L = −∑
c

1
P

P

∑
p=1

yp,c logsoftmax
c

Sp,c (4.4)
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Here P indicates the number of pixels in the training set, yp,c ∈ {0,1} indicates whether

pixel p has ground-truth label c, and Sp,c = maxr3p Sr,c is the pixel-level score for class

c. As in Sec. 4.3.1 we train the network using SGD. To determine the partial derivatives

of our region-to-pixel layer, we observe that it does not have any weights and we only

need to compute the subgradients of the loss with respect to the region-level scores

Sr,c:

∂L
∂Sr,c

= ∑
p∈r | r=argmaxr′3p′ Sr′,c

∂L
∂Sp,c

(4.5)

This means that for each class we map each pixel-level gradient to the region with the

highest score among all regions that include the pixel. If multiple pixels per class map

to the same region, their gradient contributions are summed.

Advantages. Our model addresses all problems raised in Sec. 4.3.1: (I) Pixels are

always labeled according to the relevant region with the highest activation score for

that class. (II) Regions which do not affect the pixel-level prediction are ignored during

training. (III) Since we evaluate pixels there is no need to assign class labels to regions

for training. (IV) The pixel-level loss is agnostic to different sizes of region proposals.

(V) We train our method end-to-end for the actual semantic segmentation criterion,

resulting in properly optimized classifiers and region representations.

4.3.3 Pooling on free-form regions

Model. While the baseline model classifies free-form regions, their feature represen-

tations are computed on the bounding box. This is suboptimal as the regions can take

highly irregular shapes. We propose here a free-form Region-of-Interest (ROI) pooling

layer which computes representations taking into account only pixels actually in the

region (Fig. 4.2c):

SR
i,d,r = max

j | φ( j)= i, δ j,r =1
SC

j,d (4.6)

Here SR
i,d,r is the ROI pooling activation for ROI coordinate i, channel d and region r.

For each ROI coordinate and channel we maximize over the corresponding coordinate

j in the convolutional map SC
j,d , considering only points inside the region, i.e. δ j,r = 1.

The mapping φ from convolutional map coordinates to ROI ones is done as in Girshick

(2015); He et al. (2014), but operates on a free-form region rather than a bounding box.
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Training. During the forward pass the highest scoring convolutional map coordinate

π(i,d,r) for each ROI coordinate and channel is computed as:

π(i,d,r) = argmax
j | φ( j)= i, δ j,r =1

SC
j,d (4.7)

We use the technique of Girshick (2015) to backpropagate through the pooling layer,

computing the subgradients of the loss with respect to each coordinate in the last con-

volutional feature map. For each coordinate and channel in the ROI pooling output of

a region, the gradients are passed to the convolutional feature map coordinate with the

highest activations during the forward pass:

∂L
∂SC

j,d
= ∑

r
∑

i | π(i,d,r)= j

∂L
∂SR

i,d,r
(4.8)

Advantages. Our free-form region representations focus better on the region of in-

terest, leading to purer representations. Additionally, they solve a common problem

with bounding boxes: when objects of two classes occur in a contained-in relationship

(i.e. a bird in the sky), their free-form region proposals degenerate to the same bound-

ing box. Hence higher network layers will receive two identical feature vectors for two

different regions covering different classes. This leads to confusion between the two

classes, both at training and test time.

Incorporating region context. Several works have shown that including local re-

gion context improves semantic segmentation (Dai et al., 2015b; Girshick et al., 2014;

Hariharan et al., 2015), as many object classes appear in a characteristic context (e.g.

a lion is more likely to occur in the savanna than indoors). We take into account re-

gion context by performing ROI pooling also on their bounding boxes using Girshick

(2015). Hence we combine the advantages of using context with the advantages of

free-form region representations.

As shown in Fig. 4.3, we combine region and bounding box representations using

one of two strategies: (I) Tied weights. We use the same fully connected layers with

the same weights for both region and bounding box representations and add the cor-

responding activations scores after the classification layers. Hence the number of net-

work parameters stays the same and the region and its context are handled identically.

(II) Separate weights. We concatenate the representations of region and bounding box

before applying the consecutive fully connected layers. This strategy roughly dou-

bles the total number of weights of our overall network architecture, but can develop

separate classifiers for each representation.
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Figure 4.3: We combine free-form region representations, which focus on the appear-

ance of the region itself, with bounding box based representations, which also capture

context. We combine them using tied weights (above) and separate weights (below).

Since ROI pooling on bounding boxes and free-form regions are both differen-

tiable, the combined representations are also differentiable and allow for end-to-end

training. We compare all representations experimentally (Table 4.4).

Relation to Girshick (2015); Girshick et al. (2014); Dai et al. (2015b). Girshick

(2015b) use a differentiable ROI pooling layer in Fast R-CNN for bounding boxes only.

Girshick et al. (2014) use free-form regions in R-CNN for semantic segmentation. For

each region proposal they set the color values of the background pixels to zero. In

our scheme we do not alter the image pixels of the input but pool exclusively over

pixels inside the region. Dai et al. (2015b) perform Convolutional Feature Masking on

the last convolutional feature map, followed by a Spatial Pyramid Pooling layer (He

et al., 2014), but did not backpropagate through this layer. Both Dai et al. (2015b);

Girshick et al. (2014) combined free-form and bounding box representations. Only Dai

et al. (2015b) took representations after the convolutional layers, but their model was

not able to perform backpropagation. Both Dai et al. (2015b); Girshick et al. (2014)

optimized for region classification instead of semantic segmentation.
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4.3.4 Attention to rare classes

Pixel-level class frequencies are often imbalanced (Caesar et al., 2015; Mostajabi et al.,

2015; Sharma et al., 2014, 2015; Tighe and Lazebnik, 2013a; Yang et al., 2014; Eigen

and Fergus, 2015; Farabet et al., 2013; Kekeç et al., 2014; Byeon et al., 2015; Shuai

et al., 2015). This is typically addressed by using an inverse class frequency weighting
1
Pc

(Mostajabi et al., 2015; Sharma et al., 2014; Eigen and Fergus, 2015; Farabet et al.,

2013). Since we have a pixel-level loss, we can simply plug this into Eq. 4.4. However,

we found that rare classes lead to large weight updates resulting in exploding gradients

and numerical problems. To avoid these issues, we re-normalize the inverse frequency

weights by a factor Z so that the total sum of weights for each training image is 1:

1
Z ∑

c

1
Pc

P

∑
p=1

yp,c = 1. (4.9)

4.3.5 Efficient evaluation of the pixel-level loss

Evaluating the loss for each pixel separately is computationally expensive and redun-

dant, because different pixels belonging to the same highest scoring region for a class

are assigned the same score Sr,c. Hence we partition the set of region proposals for

a training image into a set of non-overlapping, single-class regions using the ground-

truth. We then reformulate Eq. 4.4 into an equivalent loss in terms of these regions.

This reduces the cost of loss evaluation by a factor 1000.

4.4 Experiments

4.4.1 Setup

Datasets. We evaluate our method on two challenging datasets: SIFT Flow (Liu

et al., 2011) and PASCAL Context (Mottaghi et al., 2014). SIFT Flow contains 33

classes in 2688 images. The dataset is known for its extreme class imbalance (Liu

et al., 2011; Farabet et al., 2013; Eigen and Fergus, 2015). We use the provided fixed

split into 2488 training images and 200 test images.

PASCAL Context provides complete pixel-level annotations for both things and

stuff classes in the popular PASCAL VOC 2010 (Everingham et al., 2015) dataset. It

contains 4998 training and 5105 validation images. As there is no dedicated test set

available, we use the validation images exclusively for testing. We use the 59 classes
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plus background commonly used in the literature (Dai et al., 2015b,a; Long et al., 2015;

Zheng et al., 2015).

Evaluation measures. For a detailed overview of the evaluation measures, we refer

the reader to Sec. 2.1.1.

Network. We use the popular classification network VGG-16 (Simonyan and Zisser-

man, 2015) pre-trained for image classification on ILSVRC 2012 (Russakovsky et al.,

2015). We use the layers up to CONV5, discarding all higher layers, as the basis of our

network. We then append a free-form ROI pooling layer (Sec. 4.3.3), a region-to-pixel

layer, a softmax layer and pixel-level loss (Sec. 4.3.2, Fig. 4.2c). To include local con-

text, we combine region and entire bounding box using separate weights (Sec. 4.3.3).

Regions. We use Selective Search (Uijlings et al., 2013), which delivers three sets of

region proposals, one per color space (RGB, HSV, LAB). During training we change

the set of region proposals in each mini-batch to have a more diverse set of propos-

als without the additional overhead of having three times as many regions. We use

region proposals with a minimum size of 100 pixels for SIFT Flow, and 400 pixels

for PASCAL Context. This results in an average of 370 proposals for SIFT Flow and

150 proposals for PASCAL Context, for each of the three color spaces. Additionally

we use all ground-truth regions at training time. This is especially important for very

small objects that are not tightly covered by region proposals.

Training. The network is trained using Stochastic Gradient Descent (SGD) with mo-

mentum. For 20 epochs we use a learning rate of 1e-3, followed by 10 epochs using

learning rate 1e-4. All other SGD hyperparameters are taken from Fast R-CNN (Gir-

shick, 2015). We use either an inverse-class frequency weighted loss (referred to as

balanced below) or a natural frequency weighted loss (imbalanced).

4.4.2 Main results

SIFT Flow. We compare our method to other works on SIFT Flow test in Table 4.1.

We first compare in the balanced setting, which takes rare classes into account. Hence

we train our model for the loss described in Sec. 4.3.4 and compare to methods us-

ing class accuracy. We achieve 64.0%, which substantially outperformed the state-

of-the-art at the time of publication of our paper (Caesar et al., 2016b), including the

fully convolutional method (Eigen and Fergus, 2015) by +8.3% and the region-based
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method (Caesar et al., 2015) by +8.4%. Since the publication of our paper, only Huang

et al. (2017a) have matched our results in terms of class accuracy.

We also compare in the imbalanced setting using pixel accuracy, which mainly

measures performance on common classes. Hence we train our model for the loss in

Eq. 4.4. This yields a competitive 84.3% pixel accuracy, outperforming most previous

methods, and coming close to the state-of-the-art at the time of publication of our pa-

per (Eigen and Fergus, 2015) (86.8%). Since then, the state-of-the-art in pixel accuracy

has further increased to 89.3% (Fan and Ling, 2018).

PASCAL Context. We also evaluate our method on the recent PASCAL Context

dataset (Mottaghi et al., 2014). In Table 4.2 we show the results using either a bal-

anced or an imbalanced loss. Our balanced model achieves 49.9% class accuracy,

outperforming the only work that reported results for that measure at the time of publi-

cation of our paper, (Long et al., 2015), by +3.4%. At the same time, our imbalanced

model achieved competitive results on pixel accuracy (62.4%) and reasonable results

on mean IOU (32.5%). Since the publication of our paper (Caesar et al., 2016b), the

state-of-the-art has improved significantly on all three metrics.

Qualitative analysis. Fig. 4.4 and 4.5 show example labelings generated by our

method on SIFT Flow test and PASCAL Context validation. Notice how our method

accurately adheres to object boundaries, such as buildings (Fig. 4.4e, 4.4h), birds

(Fig. 4.5a, 4.5c) and boat (Fig. 4.5i). This is one of the advantages of using a region-

based approach. Furthermore, our method correctly identifies small objects like pole

(Fig. 4.4a) and the streetlight (Fig. 4.4d). This is facilitated by our method’s ability to

adaptively select the scale on which to do recognition. Finally, notice that our method

sometimes even correctly labels parts of the image missing in the ground-truth, such

as fence (Fig. 4.4d) and cat whiskers (Fig. 4.5d).

4.4.3 Extra analysis

Accuracy at object boundaries. Following Kohli et al. (2009); Krähenbühl and

Koltun (2011), we evaluate the performance on image pixels that are within 4 pixels of

a ground-truth object boundary. We compare our method to the MatConvNet (Vedaldi

and Lenc, 2015) reimplementation of Fully Convolutional Networks (FCN) (Long

et al., 2015) in Table 4.3. On SIFT Flow test, FCN-16s obtains 37.9% class accu-

racy on boundaries, while our method gets to 57.3%. When evaluated on all pixels
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Method Class Acc. Pixel Acc.

Byeon et al. (2015) 22.6 68.7

Gould et al. (2014) 25.7 78.4

Tighe and Lazebnik (2010) 29.4 76.9

Pinheiro and Collobert (2014) 30.0 76.5

Gatta et al. (2014) 32.1 78.7

Singh and Kosecka (2013) 33.8 79.2

Shuai et al. (2015) 39.7 80.1

Tighe and Lazebnik (2013a) 41.1 78.6

Kekeç et al. (2014) 45.8 70.4

Sharma et al. (2014) 48.0 79.6

Yang et al. (2014) 48.7 79.8

George (2015) 50.1 81.7

Farabet et al. (2013) 50.8 78.5

Long et al. (2015) 51.7 85.2

Sharma et al. (2015) 52.8 80.9

Caesar et al. (2015) 55.6 -

Eigen and Fergus (2015) 55.7 86.8

Ours 64.0 84.3

Souly et al. (2017) 46.7 83.4

Lin et al. (2017) 53.4 88.1

Cheng et al. (2017) 53.6 86.4

Hu et al. (2017) 58.6 88.0

Ngan Le et al. (2017) 61.0 84.7

Fan and Ling (2018) 61.1 89.3

Huang et al. (2017a) 64.0 87.8

Table 4.1: Evaluation on SIFT Flow test. We show results for our model trained for

either a balanced or an imbalanced loss. We also compare to other works published

before (top) and after (bottom) the publication of our paper (Caesar et al., 2016b). If

multiple results are given, we report the maximum result for each metric.
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Method Class Acc. Pixel Acc.
Mean
IOU

Carreira et al. (2012) - - 18.1

Dai et al. (2015b) - - 34.4

Long et al. (2015) 46.5 65.9 35.1

Dai et al. (2015a) - - 35.7

Zheng et al. (2015) - - 39.3
Dai et al. (2015a) (add. boxes) - - 40.5

Ours 49.9 62.4 32.5

Park et al. (2017) 52.0 - 39.7

Bansal et al. (2017) 51.5 - 41.4

Abdulnabi et al. (2017) 53.5 73.0 42.1

Lin et al. (2017) 53.9 71.5 43.3

Shen et al. (2017) - - 44.4

Fan and Ling (2018) 57.7 75.1 45.3

Chen et al. (2017) - - 45.7

Hu et al. (2017) 56.6 73.5 45.8

Hung et al. (2017) - 73.8 46.5

Huang et al. (2017b) 57.2 75.3 48.1

Table 4.2: Evaluation on PASCAL Context validation. We show results using a balanced

and an imbalanced version of our method. We also compare to other works published

before (top) and after (bottom) the publication of our paper (Caesar et al., 2016b). If

multiple results are given, we report the maximum result for each metric. Results for

Carreira et al. (2012) are taken from the errata of Mottaghi et al. (2014). Dai et al.

(2015a) train using additional bounding box annotations.



78 Chapter 4. Region-based semantic segmentation with end-to-end training
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Figure 4.4: Example labelings on SIFT Flow test. We show an image, the ground-truth

labeling and the output of our balanced model.
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Figure 4.5: Example labelings on PASCAL Context validation. We show an image, the

ground-truth labeling and the output of our imbalanced model.
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Boundaries Full image

FCN-16s 37.9 49.3

Ours 57.3 64.0

difference +19.4 +14.7

FCN-16s 34.0 48.1

Ours 38.9 49.9

difference +4.9 +1.8

Table 4.3: Class accuracy at object boundaries on SIFT Flow test (top) and PASCAL

Context validation (bottom). Improvements on boundaries are consistently larger than

on full images.

ROI pooling
Class
Acc.

bounding box 62.3

region 62.8

region + box tied weights 63.4

region + box separate weights 64.0

bounding box purely rect. 59.3

Table 4.4: Results on SIFT Flow test using free-form pooling, bounding box pooling or

both. We also report results when regions are rectangular even in the region-to-pixel

layer (purely rectangular).

in the image, FCN-16s brings 49.3%, vs 64.0% by our method. Hence, our method

is +19.4% better on boundaries and +14.7% on complete images. Analogously, on

PASCAL Context we get +4.9% on boundaries and +1.8% on complete images. Since

our improvements are consistently larger on object boundaries, we conclude that our

method is especially good at capturing them, compared to the basic FCN architecture

(Fig. 4.2a).

End-to-end training. Our region-to-pixel layer enables end-to-end training of region-

based semantic segmentation models. We analyze how this end-to-end training influ-

ences performance, by comparing the baseline model (Fig. 4.2b) to our model (Fig.

4.2c). To isolate the effect of end-to-end training, in both models we perform ROI

pooling on the bounding box only. Hence all components of the two models are iden-
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tical, apart from the region-to-pixel layer and the loss they are trained for. On SIFT

Flow test the baseline model achieves a pixel accuracy of 60.9%, compared to our

83.7%. We conclude that end-to-end training yields considerable accuracy gains over

the baseline architecture in Fig. 4.2b.

Softmax before max. Our application of the max before the softmax (Eq. 4.3) en-

ables us to recognize each object at its appropriate scale (Sec. 4.3.2). However, using

the softmax before the max (Eq. 4.1) yields an alternative model. Interestingly, on SIFT

Flow test our proposed order outperforms the alternative by +8.7% class accuracy.

Importance of multi-scale regions. We argue that overlapping, multi-scale regions

are important to unleash the full potential of region-based methods. To show this, we

train and test our model with non-overlapping regions (Felzenszwalb and Huttenlocher,

2004). This yields 60.0% class accuracy on SIFT Flow test, which is below the results

when using multi-scale overlapping regions (64.0% class accuracy).

Free-form versus bounding box representations. We analyze the influence of the

different representations resulting from different ROI pooling methods (Sec. 4.3.3).

Keeping all else constant, we compare (I) free-form ROI pooling, (II) bounding box

ROI pooling, (III) their combination with tied weights and (IV) their combination with

separate weights. Results are shown in Table 4.4.

Free-form representations perform +0.5% better than bounding box representa-

tions, demonstrating that focusing accurately on the object is better. Their combina-

tion does even better, yielding another +0.6% gain with tied weights (same number of

model parameters) and +0.6% with separate weights. Hence both representations are

complementary and best treated separately.

In all above experiments the region-to-pixel layer operates on free-form regions.

To verify the importance of the free-form regions themselves, we perform an extra

experiment using purely rectangular regions (both in the region-to-pixel layer and dur-

ing ROI pooling). This lowers class accuracy by -4.7%, demonstrating the value of

free-form regions.

4.5 Discussion

In this section we discuss later works that have been inspired by our ECCV 2016 (Cae-

sar et al., 2016b) paper and compare our results to other methods released since the
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publication of our paper.

Later works inspired by ours. Two have built on our paper. Liu et al. (2017) use

a more specialized version of our free-form ROI pooling to detect ships using rotated

bounding boxes. Lee et al. (2017) extend the concept of free-form ROI pooling to

semantic lines in an image (e.g. symmetry, horizontal, diagonal and vertical lines).

Comparison to other methods. He et al. (2017b) run our published code on other

datasets and compare it to 13 leading methods including their own, FCN (Long et al.,

2015), Deeplab (Chen et al., 2015a), CRF-RNN (Zheng et al., 2015). They use a

multi-view approach to combine several images of the same scene, which is an advan-

tage over the single-view setup used by our method. Despite that, the results rank our

method first on the SUN3D (Xiao et al., 2013) dataset and second on the NYUDv2 (Sil-

berman et al., 2012) dataset in terms of class accuracy. This shows that our method is

also suitable for highly cluttered indoor scenes, which it was not designed for. Fig. 4.6

shows a qualitative comparison of the results. Contrary to other methods, our method

produces crisp object boundaries, particularly on the straight edges of the doors in im-

ages 3 and 4. Furthermore our method tends to favor small and rare classes, such as

the lamp on the left in image 2, which is partially occluded and therefore missed by

most other methods.

As pointed out in Sec. 4.4.2, our class accuracy results on SIFT Flow (Liu et al.,

2011) have only been matched by one method (Huang et al., 2017a) after the publica-

tion of our ECCV 2016 (Caesar et al., 2016b) paper. This shows the potential of our

approach that is optimized end-to-end for the final pixel-level evaluation criterion. It

may also be an indicator that performance on this dataset is converging and that larger

datasets are required, particularly when dealing with class imbalance. In Sec. 6 we

present a new large scale dataset that is more than 60x bigger than SIFT Flow.

4.6 Future work

In this section we present future work related to this chapter.

Atrous convolutions. Max poolings after convolutional layers are responsible for

the reduction in resolution in CNNs. Atrous convolutions have had a big impact on

semantic segmentation (see Sec. 2.1.3.1). They allow for dense feature extraction on

high resolution feature maps, instead of sparse feature extraction on low resolution
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Figure 4.6: Comparison of the results of leading semantic segmentation methods on the

NYUDv2 (Silberman et al., 2012) dataset. We show four example images, the desired

ground-truth (GT) labeling and the outputs of seven methods. E2S2 is the method

presented in this chapter. The last two methods correspond to the methods of He et al.

(2017b). Some methods were remove to increase readability. Image modified from He

et al. (2017b).



4.7. Conclusion 83

feature maps. As part of future work we propose to integrate atrous convolutions into

region-based methods. We expect a further increase in performance. However it should

be noted that the authors of Deeplab (Chen et al., 2015a) use a combination of atrous

convolutions and bilinear interpolation to achieve a good efficiency/accuracy trade-off.

Region Proposal Networks. Although region proposals have proven to be beneficial

in many applications, they are subject to frequent criticism. Note that our method is

not limited to any particular region proposal algorithm, but in Sec. 4.3.5 we achieve

significant speedups for bottom-up proposal methods. Several works mention region

proposal computation as a bottleneck at test time (Ren et al., 2015; Redmon et al.,

2016). Therefore Faster R-CNN (Ren et al., 2015) introduces a Region Proposal Net-

work that shares convolutional features with the detection network and enables nearly

cost-free region proposals (see Sec. 2.1.3.2). Future work could focus on the integra-

tion of Region Proposal Networks into our method.

Instance segmentation. In recent years, the instance segmentation task (see Sec. 2.1)

has received a lot of attention. Mask R-CNN (He et al., 2017a) has shown that region-

based methods can achieve state-of-the-art performance on this task. Our ECCV

2016 (Caesar et al., 2016b) work builds on Fast R-CNN (Girshick, 2015), which is

a predecessor of Mask R-CNN (He et al., 2017a). Hence future work could modify

our method accordingly and apply it to instance segmentation. In Sec. 4.4.3 we have

shown that end-to-end training yields considerable accuracy gains over a baseline ar-

chitecture. It would be interesting to compare whether the gains are equally big when

using ROIAlign (He et al., 2017a) instead of ROI pooling.

4.7 Conclusion

We propose a region-based semantic segmentation model with an accompanying end-

to-end training scheme based on a CNN architecture. This architecture combines the

advantages of crisp object boundaries and adaptive, multi-scale representations found

in region-based methods with end-to-end training directly optimized for semantic seg-

mentation found in fully convolutional methods. We achieve this by introducing a

differentiable region-to-pixel layer and a differentiable free-form ROI pooling layer.

In terms of class pixel accuracy, our method outperformed the state-of-the-art at the

time of publication on two datasets, achieving 49.9% on PASCAL Context and 64.0%

on SIFT Flow.





Chapter 5

Weakly supervised object localization

using things and stuff transfer

5.1 Introduction

The goal of object class detection is to place a tight bounding box on every instance

of an object class. Given an input image, many object detectors (Girshick et al., 2015;

Girshick, 2015; Cinbis et al., 2014, 2016) first extract object proposals (Alexe et al.,

2010; Uijlings et al., 2013; Zitnick and Dollár, 2014) and then score them with a clas-

sifier to determine their probabilities of containing an instance of the class. Manually

annotated bounding boxes are typically required for training (full supervision).

Annotating bounding boxes is tedious and time-consuming. In order to reduce the

annotation cost, many previous works learn the detector in a weakly supervised set-

ting (Bilen et al., 2014b, 2015; Cinbis et al., 2016; Deselaers et al., 2010; Russakovsky

et al., 2012; Siva and Xiang, 2011; Song et al., 2014a,b; Shi and Ferrari, 2016), i.e.

given a set of images known to contain instances of a certain object class, but without

their locations. This weakly supervised object localization (WSOL) bypasses the need

for bounding box annotation and substantially reduces annotation time.

Despite the low annotation cost, the performance of WSOL is considerably lower

than that of full supervision. To improve WSOL, various advanced cues can be added

(see Sec. 2.2), e.g. objectness (Deselaers et al., 2010; Alexe et al., 2012a; Cinbis et al.,

2016; Siva and Xiang, 2011; Tang et al., 2014; Shi and Ferrari, 2016), which gives an

estimation of how likely a proposal contains an object; co-occurrence among multi-

ple classes in the same training images (Shi et al., 2012); object size estimates based

on an auxiliary dataset with size annotations (Shi and Ferrari, 2016); and appearance

85
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Figure 5.1: An overview of our things and stuff transfer (TST) method. We acquire the 1)

segmentation model 2) co-occurrence relation and 3) similarity relation from the source

A and transfer them to the target B . We use the segmentation model to generate two

maps: thing (T ) and stuff (S) maps; each of them contains one score (R) map and

one label (L) map. The knowledge of class similarity and co-occurrence is specifically

transferred as weighting functions to the thing and stuff label maps. Based on the

transferred knowledge, we propose three scoring schemes (label weighting, contrast

weighting, and area weighting) to propagate the information from pixels to proposals.

The rightmost image column illustrates some highly ranked proposals in the image by

gradually adopting the three schemes.

models transferred from object classes with bounding box annotations to new object

classes (Guillaumin and Ferrari, 2012; Hoffman et al., 2014; Rochan and Wang, 2015).

There are two types of classes that can be transferred from a source set with manu-

ally annotated locations: things and stuff (see Sec. 1.1). Things have a specific spatial

extent and shape (e.g. helicopter, cow, car), while stuff does not (e.g. sky, grass,

road). Current transfer works mostly focus on transferring appearance models among

similar thing classes (Guillaumin and Ferrari, 2012; Rochan and Wang, 2015; Hoffman

et al., 2014) (things-to-things). In contrast, using stuff to find things (Heitz and Koller,

2008; Lee and Grauman, 2011) is largely unexplored, particularly in the WSOL setting

(stuff-to-things).

In this chapter, we propose to help WSOL for classes where location annotations

are not available, by transferring things and stuff knowledge from a source set with

available annotations. The source and target classes might share similar appearance

(e.g. bear fur is similar to cat fur) or appear against similar background (e.g. horse and

sheep appear against grass). To exploit this, we acquire three types of knowledge from

the source set: a segmentation model trained on both thing and stuff classes; similarity

relations between target and source classes; and co-occurrence relations between thing
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and stuff classes in the source. The segmentation model is used to generate thing and

stuff segmentation maps on a target image, while the class similarity and co-occurrence

knowledge help refining them. We then incorporate these maps as new cues into a

multiple instance learning framework (MIL) (Dietterich et al., 1997), propagating the

transferred knowledge from the pixel level to the object proposal level.

In extensive experiments, we show that our method: (1) improves over a standard

MIL baseline on three datasets: ILSVRC (Russakovsky et al., 2015), COCO (Lin et al.,

2014), PASCAL VOC 2007 (Everingham et al., 2010); (2) outperforms the things-to-

things transfer method (Rochan and Wang, 2015) and recent WSOL methods (Bilen

and Vedaldi, 2016; Cinbis et al., 2016; Wang et al., 2015) on VOC 2007; (3) outper-

forms another things-to-things transfer method (LSDA by Hoffman et al. (2014)) on

ILSVRC.

This chapter is a modified version of our paper published at the International Con-

ference on Computer Vision 2017 (Shi et al., 2017a). The first author is Miaojing Shi.

However, I was responsible for acquiring the source knowledge (see Sec. 5.4): the seg-

mentation model, the similarity and co-occurrence relations. Furthermore I ran some

of the experiments and was involved in all steps of the paper creation process, except

its initial conception.

5.2 Related work

Weakly supervised object localization. In WSOL the training images are known to

contain instances of a certain object class but their locations are unknown. The task is

both to localize the objects in the training images and to learn a detector for the class.

Due to the use of strong CNN features (Girshick et al., 2014; Krizhevsky et al.,

2012), recent works on WSOL (Bilen et al., 2015; Cinbis et al., 2016; Song et al.,

2014a; Wang et al., 2015; Bilen and Vedaldi, 2016; Shi and Ferrari, 2016) have shown

remarkable progress. Moreover, researchers also tried to incorporate various advanced

cues into the WSOL process, e.g. objectness (Cinbis et al., 2016; Deselaers et al.,

2010; Siva and Xiang, 2011; Tang et al., 2014), object size (Shi and Ferrari, 2016),

co-occurrence (Shi et al., 2012) among classes, and transferring appearance models of

the source thing classes to help localize similar target thing classes (Guillaumin and

Ferrari, 2012; Rochan and Wang, 2015; Hoffman et al., 2014). This chapter introduces

a new cue called things and stuff transfer (TST), which learns a semantic segmentation

model from the source on both things and stuff annotations and transfers its knowledge
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to help localize the target thing class.

Transfer learning. The goal of transfer learning is to improve the learning of a target

task by leveraging knowledge from a source task (Pan and Yang, 2010). It is intensively

studied in image classification, segmentation and object detection (Aytar and Zisser-

man, 2011, 2012; Tommasi et al., 2010; Lampert et al., 2009; Rohrbach et al., 2010;

Ott and Everingham, 2011; Stark et al., 2009). Many methods use the parameters of

the source classifiers as priors for the target model (Aytar and Zisserman, 2011, 2012;

Tommasi et al., 2010). Other works (Lampert et al., 2009; Rohrbach et al., 2010) trans-

fer knowledge through an intermediate attribute layer, which captures visual qualities

shared by many object classes (e.g. striped, yellow). A third family of works transfer

object parts between classes (Aytar and Zisserman, 2012; Ott and Everingham, 2011;

Stark et al., 2009), e.g. wheels between cars and bicycles.

In this work we are interested in the task where we have the location annotations

in the source and transfer them to help learn the classes in the target (Shi et al., 2012;

Kuettel et al., 2012; Rochan and Wang, 2015; Guillaumin and Ferrari, 2012; Lee and

Grauman, 2011; Heitz and Koller, 2008). We categorize the transfer into two types: 1)

Things-to-things. Guillaumin and Ferrari (2012) transferred spatial location, appear-

ance, and context information from the source thing classes to localize the things in the

target; Shi et al. (2012) and Rochan and Wang (2015) follow a similar spirit to Guil-

laumin and Ferrari (2012); while Kuettel et al. (2012) instead transferred segmentation

masks. 2) Stuff-to-things. Heitz and Koller (2008) proposed a context model to utilize

stuff regions to find things, in a fully supervised setting for the target objects; Lee and

Grauman (2011) also made use of stuff annotations in the source to discover things in

the target, in an unsupervised setting.

Our work offers several new elements over these: (1) we encode the transfer as

a combination of both things-to-things and stuff-to-things; (2) we propose a model to

propagate the transferred knowledge from the pixel level to the proposal level; (3) we

introduce a second order transfer, i.e. stuff-to-things-to-things.

5.3 Overview of our method

In this section we define the notations and introduce our method on a high level, pro-

viding some details for each part.
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Notations. We have a source set A and a target set B . We have every image pixelwise

annotated for both stuff and things in A ; whereas we have only image-level labels for

images in B . We denote by AT the set of thing classes in A , and at an individual

thing class; analogue we have AS and as for stuff classes in A and BT and bt for thing

classes in B . Note that there are no stuff classes in B , as datasets labeled only by thing

classes are more common in practice (e.g. PASCAL VOC (Everingham et al., 2015),

ImageNet (Russakovsky et al., 2015), COCO (Lin et al., 2014)).

Method overview. Our goal is to conduct WSOL on B , where the training images are

known to contain instances of a certain object class but their locations are unknown.

A standard WSOL approach, MIL, treats images as bags of object proposals (Diet-

terich et al., 1997; Alexe et al., 2010; Uijlings et al., 2013; Zitnick and Dollár, 2014)

(instances). The task is both to localize the objects (select the best proposal) in the

training images and to learn a detector for the target class. To improve MIL, we trans-

fer knowledge from A to B , incorporating new cues into it.

Fig. 5.1 illustrates our transfer. We first acquire three types of knowledge in the

source A (Sec. 5.4): 1) a semantic segmentation model (Sec. 5.4.1), 2) the thing class

similarities between A and B (Sec. 5.4.2) and 3) the co-occurrence frequencies be-

tween thing and stuff classes in A (Sec. 5.4.3). Afterwards, we transfer the knowledge

to B (Sec. 5.5). Given an image in B , we first use the segmentation model to generate

the thing (T ) and stuff (S) maps of it (Sec. 5.5.1). T contains one score map (R) and

one label (L) map, so does S. The segmentation model transfers knowledge generi-

cally to every image in B . Building upon its result, we propose three proposal scoring

schemes: label weighting (LW, Sec. 5.5.2), contrast weighting (CW, Sec. 5.5.3), and

area weighting (AW, Sec. 5.5.4). These link the pixel level segmentation to the pro-

posal level score. In each scheme, two scoring functions are proposed separately on

thing and stuff maps. We combine the three schemes to provide an even better proposal

score to help MIL (Sec. 5.5.5).

Scoring schemes. LW transfers the similarity and co-occurrence relations as weight-

ing functions to the thing and stuff label maps, respectively. Since we do not have stuff

annotations on B , we conduct the co-occurrence knowledge transfer as a second-order

transfer by finding the target class’ most similar thing class in A . We believe that the

target class should appear against a similar background with its most similar class. For

example, in Fig. 5.1 target class bear’s most similar class in A is cat, LW up-weights

the cat score on T and its frequently co-occurring tree score on S.
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LW favors small proposals with high weighted scores. To counter this effect, we

introduce the CW score. It measures the dissimilarity of a proposal to its surroundings,

measured on the thing/stuff score maps (Fig. 5.3). CW up-weights proposals that are

more likely to contain an entire object in T or an entire stuff region in S.

Finally, the AW score encourages proposals to incorporate as much as possible of

the connected components of pixels on a target’s K most similar classes in A (e.g.

Fig. 5.1: the cat area in the T map). While CW favors objects in general, AW focuses

on objects of the target class in particular.

5.4 Acquiring knowledge from the source A

5.4.1 Segmentation model

We employ the popular fully convolutional network (FCN-16s) (Long et al., 2015) to

train an end-to-end semantic segmentation model on both thing and stuff classes of A .

Given a new image, the FCN model is able to predict a likelihood distribution over

all classes at each pixel. Notice that the FCN model is first pretrained for image clas-

sification on ILSVRC 2012 (Russakovsky et al., 2015), then fine-tuned for semantic

segmentation on A . While it is possible that some of the target classes are seen during

pretraining, only image-level labels are used. Therefore the weakly supervised setting

still holds for the target classes.

5.4.2 Similarity relations

We compute the thing class similarities V (at ,bt) between any thing class pair (at ,bt).

We propose two similarity measures to compute V as follows:

Appearance similarity. Every image in A or B is represented by a 4096-dimensional

CNN feature vector covering the whole image, using the output of the FC7 layer of the

AlexNet CNN architecture (Krizhevsky et al., 2012). The similarity of two images is

the inner product of their feature vectors. The similarity VAPP(at ,bt) is therefore the

average similarity between images in at and images in bt .

Semantic similarity. We compute the commonly used Lin similarity (Lin, 1998)

VSEM(at ,bt) between two nouns bt and at in the WordNet hierarchy (Fellbaum, 1998).
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5.4.3 Co-occurrence relation

We denote by U(as,at) the co-occurrence frequency of any stuff and thing class pair

(as,at) in A . This frequency is computed and normalized over all the images in A .

5.5 Transferring knowledge to the target B

This section transfers the source knowledge to the target set B . In this set, we have

access only to image-level labels, but no location annotations. We call the classes that

are listed on the image-level label list target classes. Given a new image of class bt ,

we first use the FCN model trained on A to generate the thing (T ) and stuff (S) seg-

mentations separately (Sec. 5.5.1). Then we introduce three proposal scoring schemes

to propagate the information from pixel level to proposal level (Sec. 5.5.2 – 5.5.4).

Finally we combine the three scoring schemes into a single window score (Sec. 5.5.5).

The scoring scheme parameters are learned in Sec. 5.5.6.

5.5.1 Generating thing and stuff segmentations

We apply the trained FCN model (Sec. 5.4.1) to a target image in B . Usually, the

output semantic segmentation is obtained by maximizing over all the class scores at

each pixel (Long et al., 2015; Chen et al., 2015a; Eigen and Fergus, 2015; Farabet

et al., 2013; Noh et al., 2015; Pinheiro and Collobert, 2014). In this chapter, we instead

generate two output segmentations, one for things T and one for stuff S. We denote i

as the i-th pixel in the image. We use RT = {rT
i } and LT = {lT

i } to denote the score

(R) and label (L) maps for T . They are generated by keeping the maximum score and

the corresponding label over all the thing classes AT at each pixel i. Similar to RT and

LT , RS = {rS
i } and LS = {lS

i } are generated by keeping the maximum score over all the

stuff classes AS at each pixel.

Fig. 5.1 shows an example of a bear image (target). The thing and stuff maps are

produced by the semantic segmentation model. The R heatmaps indicate the proba-

bility of assigning a certain thing or stuff label to each pixel. Building upon these

heatmaps, we propose three proposal scoring schemes to link the pixel level result to

the proposal level score (Sec. 5.5.2 – 5.5.4). These try to give high scores to proposals

containing the target class.
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cat

potted
plant

wall

bt: bear RT V(li
T, bt)

bt: baby bed RS U(li
S, NN(bt))

Figure 5.2: Label weighting example. Top: thing label weighting (class bear ); bottom:

stuff label weighting (class baby bed). RT and RS denote the thing and stuff score

heatmaps, respectively; while V (lT
i ,b

t) and U(lS
i ,NN(bt)) denote the thing and stuff

label weighting heatmaps. We illustrate some proposals in each image. We print the

dominantly predicted labels in the proposals to show how label weighting favors bt ’s NN

class in thing maps and its frequently co-occurring stuff class in stuff maps.

5.5.2 Label weighting (LW)

Because bear is more similar to cat than to table, we want to up-weight the proposal

area in the thing map if it is predicted as cat. Meanwhile, because bear frequently

appears against tree, we also want to up-weight the proposal area in the stuff map if it is

predicted as tree. To do this, we transfer the knowledge of similarity and co-occurrence

relations acquired in the source to the target class (bear), and use both relations to

modulate the segmentation scores in T and S. Both relations and segmentation scores

play a role in the label weighting proposal scoring scheme.

Thing label weighting. We can generate a thing label weighting map depending on

how close the predicted class lT
i at pixel i in LT is to the target class bt . The thing label

(lT
i ) weight is given by the class similarity score V (lT

i ,b
t) (Sec. 5.4.2). In Fig. 5.1 the

target class bear is more similar to cat than to table. If a pixel is predicted as cat, then

we assign a high label weight, otherwise we assign a low one.
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Stuff label weighting. We do not have stuff annotations in B . To conduct the stuff

label weighting, we first find bt’s most similar thing class in AT according to a simi-

larity relation V (we denote it by NN(bt)). We believe that bt should appear against a

similar background (stuff) as its most similar thing class NN(bt). We employ the co-

occurrence frequency U(lS
i ,NN(bt)) of NN(bt) as the corresponding stuff label weight

for lS
i at pixel i as stuff label weighting LS.

In Fig. 5.1, cat frequently co-occurs with trees, and so does bear. So, if a certain

pixel is predicted as tree, it gets assigned a high stuff label weight.

Proposal scoring. To score the proposals in an image, we multiply the label weights

V (lT
i ,b

t) and U(lS
i ,NN(bt)) with the segmentation scores rT

i and rS
i at each pixel. The

weighting scheme is conducted separately on T and S. Given a window proposal w,

we average the weighted scores inside w:

LWt(w,αt) = f ( 1
|w|∑i∈w rT

i V (lT
i ,b

t),αt)

LWs(w,αs) = f ( 1
|w|∑i∈w rS

i U(lS
i ,NN(bt)),αs)

(5.1)

where |w| denotes the size of w (area in pixels). We apply an exponential function

f (x) = exp(α · x) to both thing and stuff LWs, αt and αs are the parameters.

Fig. 5.2 offers two examples (bear and baby bed) for our thing and stuff label

weighting schemes. The red proposal in the top row is mostly classified as a cat and

the green proposal as a potted plant. Both proposals have high scores in the thing score

map RT , but the red proposal has a higher thing label weight V (lT
i ,b

t), because cat is

more similar to bear than to potted plant. In contrast, the green proposal in the bottom

row has low scores in RS but a high label weight U(lT
i ,NN(bt)), as baby bed co-occurs

more frequently with wall.

Notice that the thing label weighting can be viewed as a first-order transfer where

the information goes directly from the source thing classes to the target thing classes.

Instead, the stuff label weighting can be viewed as second-order transfer where the

information first goes from the source stuff classes to the source thing classes, and then

to the target thing classes. To the best of our knowledge, such second-order transfer

has not been proposed before.

5.5.3 Contrast weighting (CW)

The LW scheme favors small proposals with high label weights, which typically cover

only part of an object (top right image in Fig. 5.1). To counter this effect, contrast
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Figure 5.3: Contrast weighting example. An image of a tape player and some of its

window proposals (left). CWt is computed on the thing score map Rt (right). The red

proposal has a higher contrast CWt (with its surrounding dashed ring) than the green

one.

weighting (CW) measures the dissimilarity of a proposal to its immediate surrounding

area on the thing/stuff score maps. It up-weights proposals that are more likely to

contain an entire object or an entire stuff region.

The surrounding Surr(w,θ) of a proposal w is a rectangular ring obtained by en-

larging it by a factor θ in all directions (Alexe et al., 2010) (Fig. 5.3, the yellow ring).

The CW between a window and its surrounding ring is computed as the Chi-square

distance between their score map (R) histograms h(·)

CW(w,θ) = χ
2(h(w),h(Surr(w,θ))) (5.2)

We apply the CW scheme on both RT and RS and obtain CWt(w,θt) and CWs(w,θs).

In Fig. 5.3 the red proposal has a higher CWt score compared to the green one.

5.5.4 Area weighting (AW)

Thing area weighting. Fig. 5.4 gives an example of an electric fan and its semantic

segmentation map. Its 3-NN classes in terms of appearance similarity (Sec. 5.4.2) are

table, chair and people. Between the white and yellow proposals, the CW scheme

gives a bigger score to the white one, because its contrast is high. Instead, the yellow

proposal incorporates most of the electric fan area, but is unfortunately predicted as

table and chair. The thing area weighting scheme helps here boosting the yellow

proposal’s score. We find the K-NN classes of bt in AT by using one of the similarity



5.5. Transferring knowledge to the target 95

measures in Sec. 5.4.2. Given a window w, we denote by Area(w,bt) the segment areas

of any K-NN(bt) inside w; while Area(O(w),bt) is the area that expands the current

segments to their connected components O(w) inside and outside w. We measure the

area ratio between the segments and their corresponding connected components:

Ratiot(w) =
Area(w,bt)

Area(O(w),bt)
(5.3)

If none of the K-NN classes occurs in w, we simply set Ratiot to zero. Throughout

this chapter, K is set to 3.

Stuff area weighting. In Fig. 5.4 among the three proposals, the green one is the best

detection of the fan. However, its score is not the highest according to LWt , CWt and

AWt , as it contains some stuff area (wall) surrounding the electric fan. A bounding box

usually has to incorporate some stuff area to fit an object tightly, as objects are rarely

perfectly rectangle-shaped. We propose to up-weight a window w if stuff occupies a

small but non-zero fraction of the window. We denote with Ratios(w) the percentage

of stuff pixels in window w.

For thing and stuff area weighting we apply a cumulative distribution function

(CDF) of the normal distribution

AWt(w,µt ,σt) = CDF(Ratiot(w)|µt ,σt)

AWs(w,µs,σs) = CDF(Ratios(w)|µs,σs)
(5.4)

where µt and σt are the mean and standard deviation. We choose µt = µs = 0 and σt ,

σs are free parameters (Sec. 5.5.6).

5.5.5 Combining the scoring schemes

For each proposal in an image, the above scoring schemes can be independently com-

puted, each on the thing and stuff map. The scoring schemes tackle different problems,

and are complementary to each other. This sections combines them to give our final

TST (things and stuff transfer) window score W .

All the scoring functions on the thing map are multiplied together as a thing score

W t = LWt ∗CWt ∗AWt . This gives a higher score if a proposal mostly contains a

target thing labeled as present in that image. Similarly, we have the stuff score W s =

LWs ∗CWs ∗AWs, which gives a higher score if a proposal mostly contains stuff. To

combine the thing and stuff scores, we simply subtract W s from W t

W =W t−W s (5.5)
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Figure 5.4: Area weighting example. An image of an electric fan (left) and its semantic

segmentation (right). Thing area weighting favors the yellow proposal compared to the

white one, as it incorporates most of the connected component area of table and chair.

Stuff area weighting further favors the green proposal as it allows certain stuff area in a

proposal as the surrounding area of electric fan.

5.5.6 Parameter learning

In the WSOL setting, we do not have the ground-truth bounding box annotations in the

target set B . Thus we learn the score parameters αt , αs, θt , θs, σt and σs on the source

set A , where we have ground-truth, by optimizing for the proxy measures described in

Sec. 5.10. We train the semantic segmentation model on the train set of A , and then

apply it to the val set of A . For each image in the val set, we rank all its proposals using

(5.5). We jointly learn the score parameters by maximizing the performance over the

entire validation set of A .

5.6 Overall system

In WSOL, given the target training set in B with image-level labels, the goal is to

localize the object instances in it and to train good object detectors for the target test

set. We explain here how we build a complete WSOL system by building on a MIL

framework and incorporating our transfer cues into it.

Basic MIL. We build a Basic MIL pipeline as follows. We represent each image in

the target set B as a bag of object proposals extracted using Edge Boxes (Zitnick and

Dollár, 2014). They return about 5,000 proposals per image, likely to cover all objects.

Following Girshick et al. (2014); Bilen et al. (2014b); Song et al. (2014a,b); Wang et al.
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(2015), we describe the proposals by the output of the FC7 layer of the AlexNet CNN

architecture (Krizhevsky et al., 2012). The CNN model is pre-trained for whole-image

classification on ILSVRC (Russakovsky et al., 2015), using the Caffe implementa-

tion (Jia, 2013). This produces a 4,096-dimensional feature vector for each proposal.

Based on this feature representation for each target class, we iteratively build an SVM

appearance model (object detector) in two alternating steps: (1) Re-localization: in

each positive image, we select the highest scoring proposal by the SVM. This pro-

duces the positive set which contains the current selection of one instance from each

positive image. (2) Re-training: we train the SVM using the current selection of pos-

itive samples, and all proposals from the negative images as negative samples. As

in Deselaers et al. (2010); Siva and Xiang (2011); Cinbis et al. (2016); Guillaumin

and Ferrari (2012); Tang et al. (2014), we also linearly combine the SVM score with

a general measure of objectness (Alexe et al., 2010; Zitnick and Dollár, 2014). This

leads to a higher MIL baseline.

Incorporating things and stuff transfer (TST). We incorporate our things and stuff

transfer (TST) into Basic MIL by linearly combining the SVM score with our proposal

scoring function (5.5). Note how the behavior of (5.5) depends on the class similarity

measure used within it (either appearance or semantic similarity, Sec. 5.4.2).

Deep MIL. Basic MIL uses an SVM on top of fixed deep features as the appearance

model. Now we change the model to fine-tune all layers of the deep network during

the re-training step of MIL. We take the output of Basic MIL as an initialization for

two additional MIL iterations. During these iterations, we use Fast R-CNN (Girshick

et al., 2015).

5.7 Experiments

5.7.1 Datasets and evaluation protocol

We use one source set A (PASCAL Context) and several different target sets B in turn

(ILSVRC-20, COCO-07 and PASCAL VOC 2007). Each target set contains a training

set and a test set. We perform WSOL on the target training set to localize objects

within it. Then we train a Fast R-CNN (Girshick, 2015) detector from it and apply it

on the target test set.
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Method APP SEM

Basic MIL 39.7

DT ≈ Rochan and Wang (2015) (transfer only) 15.0 -

DT + MIL ≈ Rochan and Wang (2015) (full) 39.5 -

TST 46.7 46.0

Basic MIL + Objectness (Zitnick and Dollár, 2014) 47.6

DT ≈ Rochan and Wang (2015) (transfer only) 34.5 -

DT + MIL ≈ Rochan and Wang (2015) (full) 49.1 -

TST 52.7 52.5

Deep MIL + Objectness (Zitnick and Dollár, 2014) 48.4

TST 54.0 53.8

TST + ILSVRC-dets - 55.1

Table 5.1: CorLoc on ILSVRC-20; DT: direct transfer; DT+MIL: direct transfer plus MIL.

TST is our method; ILSVRC-dets: Sec. 5.7.2, last paragraph. The transfers are guided

by either appearance (APP) or semantic (SEM) class similarity.

Class monk pizz rabb stra tpla turt wiro whal Avg. (8)

LSDA 22.9 27.6 40.2 6.8 19.1 31.9 8.6 20.3 22.2

Deep MIL+Obj. 18.0 29.7 32.8 19.6 27.0 27.0 5.9 2.9 20.4

+TST (APP) 23.8 32.5 40.7 24.8 28.6 25.1 9.9 5.1 23.8

+TST (SEM) 22.9 31.2 45.2 18.7 30.3 28.2 8.1 6.2 23.9

+ ILSVRC-dets 24.5 33.9 44.5 18.4 28.4 32.1 9.9 5.7 24.7

Class ant bbed bask bear burr butt cell cmak efan elep gfis gcar Avg. (20)

LSDA - - - - - - - - - - - - -

Deep MIL+Obj. 39.2 24.2 0.2 13.0 16.5 28.9 29.7 8.9 39.1 34.4 9.1 40.3 22.3

+TST (APP) 39.9 31.0 0.6 16.8 11.3 32.2 32.0 6.0 34.9 38.4 13.6 65.1 25.6

+TST (SEM) 34.1 26.8 0.6 19.7 16.8 31.7 32.6 8.6 31.2 37.2 11.5 57.8 25.0

+ ILSVRC-dets 34.1 24.7 3.3 21.5 18.6 35.1 32.6 9.1 32.9 38.8 11.1 58.5 25.9

Table 5.2: mAP performance on the test set of ILSVRC-20. All our methods start from

DeepMIL with objectness. For comparison we show the performance on the 8 classes

common to our target set and that of LSDA (Hoffman et al., 2014) (top) and the 12

remaining classes not evaluated by LSDA (bottom).
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Evaluation protocol. We quantify localization performance in the target training set

with the CorLoc measure (Bilen et al., 2015; Cinbis et al., 2016; Deselaers et al., 2010;

Shi et al., 2015; Wang et al., 2015; Bilen and Vedaldi, 2016). We quantify object

detection performance on the target test set using mean Average Precision (mAP). As

in most previous WSOL methods (Bilen et al., 2014b, 2015; Cinbis et al., 2014, 2016;

Deselaers et al., 2010; Russakovsky et al., 2012; Siva and Xiang, 2011; Song et al.,

2014a,b; Wang et al., 2015), our scheme returns exactly one bounding box per class

per training image. At test time the object detector is capable of localizing multiple

objects of the same class in the same image (and this is captured in the mAP measure).

Source set: PASCAL Context. PASCAL Context (Mottaghi et al., 2014) augments

PASCAL VOC 2010 (Everingham et al., 2010) with class labels at every pixel. As

in Mottaghi et al. (2014), we select the 59 most frequent classes. We categorize them

into things and stuff. There are 40 thing classes, including the original 20 PASCAL

classes and new classes such as book, cup and window. There are 19 stuff classes, such

as sky, water and grass. We train the semantic segmentation model (Sec. 5.4.1) on the

train set of A and set the score parameters (Sec. 5.5.6) on the val set, using the 20

PASCAL classes from A as targets.

Target set: ILSVRC-20. The ILSVRC (Russakovsky et al., 2015) dataset originates

from the ImageNet dataset (Deng et al., 2009), but is much harder (Russakovsky et al.,

2015). As the target training set we use the train60k subset (Girshick et al., 2014)

of ILSVRC 2014. As the target test set we use the 20k images of the validation set.

To conduct WSOL on train60k, we carefully select 20 target classes: ant, baby-bed,

basketball, bear, burrito, butterfly, cello, coffee-maker, electric fan, elephant, goldfish,

golfcart, monkey, pizza, rabbit, strainer, tape-player, turtle, waffle-iron and whale.

ILSVRC-20 contains 3,843 target training set images and 877 target test set images.

This selection is good because: (1) they are visually considerably different from any

source class; (2) they appear against similar background classes as the source classes,

so we can show the benefits of stuff transfer; (3) they are diverse, covering a broad

range of object types.

Target set: COCO-07. The COCO 2014 (Lin et al., 2014) dataset has fewer object

classes (80) than ILSVRC (200), but more instances. COCO is generally more difficult

than ILSVRC for detection, as objects are smaller (Lin et al., 2014). There are also

more instances per image: 7.7 in COCO compared to 3.0 in ILSVRC (Lin et al., 2014).
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We select 7 target classes to carry out WSOL: apple, giraffe, kite, microwave, snow-

board, tennis racket and toilet. COCO-07 contains 11,489 target training set images

and 5,443 target test set images.

Target set: PASCAL VOC 2007. The PASCAL VOC 2007 (Everingham et al., 2015)

dataset is one of the most important object detection datasets. It includes 5,011 training

(trainval) images and 4,952 test images, which we directly use as our target training

set and target test set, respectively. For our experiments we use all 20 thing classes in

VOC 2007. Since the thing classes in our source set (PASCAL Context) overlap with

those of VOC 2007, when doing our TST transfer to a target class we remove it from

the sources. For example, when we transfer to dog in VOC 2007, we remove dog from

the FCN model trained on PASCAL Context.

5.7.2 ILSVRC-20

Table 5.1 presents results for our method (TST) and several alternative methods on

ILSVRC-20.

Our transfer (TST). Our results (TST) vary depending on the underlying class sim-

ilarity measure used, either appearance (APP) or semantic (SEM) (Sec. 5.4.2). TST

(APP) leads to slightly better results than TST (SEM). We achieve a +7% improvement

in CorLoc (46.7) compared to Basic MIL without objectness, and +5% improvement

(52.7) over Basic MIL with objectness. Hence, our transfer method is effective, and

is complementary to objectness. Fig. 5.5 shows example localizations by Basic MIL

with objectness and TST (APP). We present a detailed ablation study of the LW, AW

and CW scores in the supplementary material in Sec. 5.10.

Comparison to direct transfer (DT). We compare here to a simpler way to transfer

knowledge. We train a fully supervised object detector for each source thing class.

Then, for every target class we find the most similar source class from the 40 PASCAL

Context thing classes, and use it to directly detect the target objects. For the appearance

similarity measure (APP) all NN classes of ILSVRC-20 are part of PASCAL VOC and

PASCAL Context. Therefore we have bounding box annotations for these classes.

However, for the semantic similarity measure (SEM) not all NN classes of ILSVRC-

20 are part of PASCAL VOC. Therefore we do not have bounding box annotations

for these classes and cannot apply DT. DT is similar to the ‘transfer only’ method

in Rochan and Wang (2015) (see Sec. 4.2 and Table 2 in Rochan and Wang (2015)).
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As Table 5.1 shows, the results are quite poor as the source and target classes are

visually quite different, e.g. the most similar class to ant according to APP is bird;

while for waffle-iron, it is table; for golfcart, it is person. This shows that the transfer

task we address (from PASCAL Context to ILSVRC-20) is challenging and cannot be

solved by simply using object detectors pre-trained on the source classes.

Comparison to direct transfer with MIL (DT+MIL). We improve the direct transfer

method by using the DT detector to score all proposals in a target image, and then

combining this score with the standard SVM score for the target class during the MIL

re-localization step. This is very similar to the full method of Rochan and Wang (2015)

and is also close to Guillaumin and Ferrari (2012). The main difference from Rochan

and Wang (2015) is that we train the target class’ SVM model in an MIL framework

(Sec. 5.6), whereas Rochan and Wang (2015) simply trains it by using proposals with

high objectness as positive samples.

As Table 5.1 shows, DT+MIL performs substantially better than DT alone, but it

only slightly exceeds MIL without transfer, again due to the source and target classes

being visually different (+1.5% over Basic MIL with objectness). Importantly, our

method (TST) achieves higher results, demonstrating that it is a better way to transfer

knowledge (+5% over Basic MIL with objectness).

Deep MIL. As Table 5.1 shows, Deep MIL improves slightly over Basic MIL (from

47.6 to 48.4, both with objectness). When built on Deep MIL, our TST transfer raises

CorLoc to 54.0 (APP) and 53.8 (SEM), a +5% improvement over Deep MIL (confirm-

ing what we observed when building on Basic MIL). Table 5.2 shows the mAP of Deep

MIL and our method (TST) on the test set. The observed improvements in CorLoc on

the training set nicely translate to better mAP on the test set (+3.3% over Deep MIL).

Comparison to LSDA (Hoffman et al., 2014). We compare to LSDA (Hoffman et al.,

2014), which trains fully supervised detectors for 100 classes of the ILSVRC 2013

dataset (sources) and transfers to the other 100 classes (targets). We report in Table 5.2

the mAP on the 8 classes common to both their target set and ours. On these 8 classes,

we improve on Hoffman et al. (2014) by +1.7% mAP while using a substantially

smaller source set (5K images in PASCAL Context, compared to 105K images in their

100 source classes from ILSVRC 2013).

Furthermore, we can also incorporate detectors for their 100 source classes in our

method, in a similar manner as for the DT+MIL method. For each target class we use
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turtle               tape-player                    goldfish                      elephant                       monkey 

baby-bed basketball     bear              burrito                butterfly             cello         whale          rabbit

Figure 5.5: We show localizations on ILSVRC-20 of Basic MIL with objectness (blue)

and our TST (APP) method (green).

Method training (CorLoc) test (mAP)

Deep MIL + Obj. 15.8 9.1

+TST (SEM) 18.0 11.0

+TST (APP) 18.8 11.3

Table 5.3: CorLoc and mAP on COCO-07. Objectness (Zitnick and Dollár, 2014) is

added on top of the baseline. TST (SEM) and TST (APP) are separately added to the

baseline with objectness.

the detector of the 3 most similar source classes as a proposal scoring function during

MIL’s re-localization step. We choose the SEM measure to guide the transfer as it is

fast to compute. This new scoring function is referred to as ILSVRC-dets in Table 5.1

and 5.2. When using the ILSVRC-dets score, our mAP improves further, to a final

value +2.5% better than LSDA (Hoffman et al., 2014).

5.7.3 COCO-07

Table 5.3 presents results on COCO-07, which is a harder dataset. Compared to Deep

MIL with objectness, our transfer method improves CorLoc by +3.0% and mAP by

+2.2% (APP). We present a detailed ablation study of the LW, AW and CW scores in

the supplementary material in Sec. 5.10.
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5.7.4 PASCAL VOC 2007

Table 5.4 presents results on PASCAL VOC 2007. As our baseline system, we use

both objectness and multifolding (Cinbis et al., 2016) in Deep MIL. This performs at

50.7 CorLoc and 28.1 mAP. Our transfer method TST strongly improves CorLoc to

59.9 (+9.2%) and mAP to 33.8 (+5.7%).

Comparison to Rochan and Wang (2015). They present results on this dataset in

a transfer setting, by using detectors trained in a fully supervised setting for all 200

classes of ILSVRC (excluding the target class). Adopting their protocol, we also use

those detectors in our method (analog to the LSDA comparison above). This leads to

our highest CorLoc of 60.8, which outperforms Rochan and Wang (2015), as well as

recent WSOL works (Wang et al., 2015; Bilen and Vedaldi, 2016; Cinbis et al., 2016)

(which do not use such transfer) at the time of publication of our ICCV 2017 (Shi

et al., 2017a) paper. For completeness, we also report the corresponding mAPs. Our

mAP 34.5 matches the result of Bilen and Vedaldi (2016) based on their ’S’ neural

network, which corresponds to the AlexNet we use. They propose an advanced WSOL

technique that integrates both recognition and detection tasks to jointly train a weakly

supervised deep network, whilst we build on a weaker MIL system. We believe our

contributions are complementary: we could incorporate our TST transfer cues into

their WSOL technique and get even better results.

Finally, we note that our experimental protocol guarantees no overlap in either

images nor classes between source and target sets (Sec. 5.7.1). However, in general

VOC 2007 and PASCAL Context (VOC 2010) share similar attributes, which makes

this transfer task easier in our setting.

5.8 Future work

In this section we present future work related to this chapter.

Finding stuff. We used stuff and things in first- and second-order transfer to find

things. We have not used this model to find stuff, primarily because the object local-

ization task is not suitable for stuff classes. Future work could investigate this option

in semantic segmentation. Most components of this work can be adapted to semantic

segmentation of stuff and things. The LW, CW and AW weighting schemes can be

modified to use masks instead of boxes (see Sec. 5.5.2, 5.5.3 and 5.5.4). To compute
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Method ILSVRC-dets CorLoc mAP

Wang et al. (2015) 48.5 31.6

Bilen and Vedaldi (2016) (S) 54.2 34.5
Cinbis et al. (2016) 54.2 28.6

Rochan and Wang (2015) X 58.8 -

Deep MIL + Obj. + MF 50.7 28.1

+TST (SEM) 59.9 33.8

+TST (SEM) X 60.8 34.5

Table 5.4: Performance on PASCAL VOC 2007. We start from Deep MIL with object-

ness (Zitnick and Dollár, 2014) and multifolding (Cinbis et al., 2016) as a baseline. Then

we add our method TST (SEM) to it. Rochan and Wang (2015) do not report mAP. (S)

denotes the S model (roughly AlexNet) in Bilen and Vedaldi (2016), which corresponds

to the network architecture we use in all experiments. ILSVRC-dets indicates using

detectors trained from ILSVRC during transfer.

the final segmentation, we can follow the standard protocol of computing the class with

the highest score for each pixel.

End-to-end training. A recurring theme in this thesis is end-to-end training (see

Sec. 2.1.4.2 and Chapter 3 and 4). End-to-end training typically leads to higher perfor-

mance and requires less (re-)engineering efforts. Future work could modify the part of

our model that transfers knowledge to the target set (see the box on the right in Fig. 5.1)

to enable end-to-end training. This requires converting our three weighting schemes

(see Sec. 5.5.2, 5.5.3 and 5.5.4) into differentiable layers in a neural network. Addi-

tionally, one could modify our method to learn our entire model end-to-end, including

the source knowledge (see Sec. 5.4). While this may yield higher performance on the

target dataset it is trained for, it presumably decreases the performance on other target

datasets. Currently we determine the model weighting parameters via cross-validation

on a held-out set (see Sec. 5.5.6). Future work could learn those parameters to reduce

the manual tuning effort required when adapting our method to new datasets.

Annotation time and performance. In Sec. 5.7.2 we have shown that our method

outperforms LSDA (Hoffman et al., 2014) in that particular setting. We use 21x

less source images for training than LSDA, albeit with a stronger form of super-

vision (segmentations versus boxes). Future work could compare both methods in
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terms of the trade-off between annotation time and performance. Another factor to

take into account is that both methods use different source datasets. While PASCAL

Context (Mottaghi et al., 2014) has stuff and thing annotations, ILSVRC 2013 (Rus-

sakovsky et al., 2015) only contains things. Particularly interesting is the question how

the performance scales to much larger source datasets (such as COCO-Stuff in Chap-

ter 6). We hypothesize that our method scales better, as we also use non appearance-

based cues (semantic similarity in Sec. 5.4.2 and co-occurrence in Sec. 5.4.3) and a

more accurately delineated source set.

5.9 Conclusion

We present weakly supervised object localization using things and stuff transfer. We

transfer knowledge by training a semantic segmentation model on the source set and

using it to generate thing and stuff maps on a target image. Class similarity and co-

occurrence relations are also transferred and used as weighting functions. We devise

three proposal scoring schemes on both thing and stuff maps and combine them to pro-

duce our final TST score. We plug the score into an MIL pipeline and show significant

improvements on the ILSVRC-20, VOC 2007 and COCO-07 datasets. We compare

favorably to two previous transfer works (Rochan and Wang, 2015; Hoffman et al.,

2014).

5.10 Supplementary material

This supplemental material complements the chapter in two aspects: 1) We provide the

proxy measures to detail the parameter learning process of our method. 2) We conduct

an ablation study to demonstrate the contribution of each component in the proposed

system.

5.10.1 Proxy measures

We propose two proxy measures to jointly learn the score parameters by maximizing

the performance over the entire validation set in A (Sec. 5.5.6):

1. Rank: the highest rank of any proposal whose intersection-over-union (IOU)

with ground-truth bounding box is > 0.5.
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2. CorLoc@1: the percentage of images in which the highest scoring proposal lo-

calizes an object of the target class correctly (IOU > 0.5).

These two measures characterize well whether a proposal scoring function gives a

higher score to the target objects than to other proposals. Hence they are good proxy

measures for their usefulness within MIL. The behavior of the proposal scoring func-

tions (Eqn. 5.5) depends on the class similarity measure used within them. Referring

to Sec. 5.4.2, the guided similarities can be either appearance (APP) or semantic simi-

larity (SEM).

Results. We notice that roughly the same parameters are obtained from both criteria.

Now we test how well they work on two of our target sets: ILSVRC-20 and COCO-

07. We gradually add each proposal scoring scheme from Sec. 5.5.2 – 5.5.4 and denote

them by +LW, +CW, and +AW in Fig. 5.6. Both Rank and CorLoc@1 are gradually

improved: using APP we achieve the highest CorLoc@1: 22.9 on ILSVRC-20 and

6.2 on COCO-07; and the highest Rank: 0.94 on ILSVRC-20 and 0.89 on COCO-07.

SEM is lower than APP: 19.2 and 4.3 in terms of CorLoc@1, and 0.94 and 0.83 in

terms of Rank, on ILSVRC-20 and COCO-07, respectively. Comparing our proposal

scoring schemes with a modern version of objectness (Zitnick and Dollár, 2014), we

see that both perform similarly well. In Sec. 5.7.2 and 5.7.3 we integrate our scheme

with objectness and achieve a big improvement (+5%), which shows that both are

complementary.

5.10.2 Ablation study

We report here an ablation study to offer the justification of each component in our

proposed system. We incorporate the LW, AW and CW scores (Sec. 5.5.2 – 5.5.4) sep-

arately into the Basic MIL framework (Sec. 5.7.1). We report experiments on ILSVRC-

20 in Table 5.5 in the same protocol as in Table 5.1 (guided by appearance similarity

APP column). The three scores bring +0.9%, +3.3%, and +3.2% CorLoc on top of

Basic MIL’s 39.7%. This demonstrates that each individual score brings an improve-

ment. Moreover, we also tried combining multiple scores: LW+CW reaches 44.0%,

AW+CW reaches 45.8%, and using all three scores AW+LW+CW gives us the highest

CorLoc 47.6%. Here we can see that LW brings an additional improvement of +1.8%

when added to AW+CW. This shows that by carefully designing and integrating each

component into our system, we are able to boost the overall performance over each

individual component or any two of them.



5.10. Supplementary material 107

0.83

0.46

0.93
0.81

0.94
0.83

0.96 0.92

0

0.2

0.4

0.6

0.8

1

ILSVRC-20 COCO-07

Rank (SEM)

+LW +CW +AW Objectness

0.83

0.47

0.92 0.880.94 0.89
0.96 0.92

0

0.2

0.4

0.6

0.8

1

ILSVRC-20 COCO-07

Rank (APP)

+LW +CW +AW Objectness

0.4 0.4

11.9

5.1

22.9

6.2

22.5

10.4

0

5

10

15

20

25

ILSVRC-20 COCO-07

CorLoc@1 (APP)

+LW +CW +AW Objectness

0.5 0.4

11.9

3.3

19.2

4.3

22.5

10.4

0

5

10

15

20

25

ILSVRC-20 COCO-07

CorLoc@1 (SEM)

+LW +CW +AW Objectness

Figure 5.6: Proxy measures on ILSVRC-20 and COCO-07. Our transfer is guided by

the appearance similarity (top: APP) as well as the semantic similarity (bottom: SEM).

Performance is measured by Rank (left) and CorLoc@1 (right).

Method LW CW AW CorLoc

Basic MIL

39.7

+ 40.6

+ 43.0

+ 42.9

+ + 44.0

+ + 45.8

+ + + 47.6

Table 5.5: Ablation study on ILSVRC-20. LW: label weighting; CW: contrast weighting;

AW: area weighting. We start from Basic MIL and incorporate LW, CW, AW, or any of

their combination into it. We report the CorLoc.





Chapter 6

COCO-Stuff: Thing and stuff classes

in context

6.1 Introduction

Most of the recent object detection efforts have focused on recognizing and localizing

thing classes, such as cat and car. Such classes have a specific size (Forsyth et al.,

1996; Heitz and Koller, 2008) and shape (Forsyth et al., 1996; Tighe and Lazebnik,

2013a; Uijlings et al., 2013; Mottaghi et al., 2013; Endres and Hoiem, 2014; Dai et al.,

2015b), and identifiable parts (e.g. a car has wheels). Indeed, the main recognition

challenges (Everingham et al., 2015; Russakovsky et al., 2015; Lin et al., 2014) are all

about things. In contrast, much less attention has been given to stuff classes, such as

grass and sky, which are amorphous and have no distinct parts (e.g. a piece of grass is

still grass). In this chapter we ask: Is this strong focus on things justified?

To appreciate the importance of stuff, consider that it makes up the majority of our

visual surroundings. For example, sky, walls and most ground types are stuff. Fur-

thermore, stuff often determines the type of a scene, so it can be very descriptive for

an image (e.g. in a beach scene the beach and water are the essential elements, more

so than people and volleyball). Stuff is also crucial for reasoning about things: Stuff

captures the 3D layout of the scene and therefore heavily constrains the possible loca-

tions of things. The contact points between stuff and things are critical for determining

depth ordering and relative positions of things, which supports understanding the re-

lations between them. Finally, stuff provides context helping to recognize small or

uncommon things, e.g. a metal thing in the sky is likely an aeroplane, while a metal

thing in the water is likely a boat. For all these reasons, stuff plays an important role

109
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A large long train on a steel track.
A blue and yellow transit train leaving the station.

A train crossing beneath a city bridge with brick towers.
A train passing by an over bridge with a railway track (..).

A train is getting ready to leave the train station.

Figure 6.1: (left) An example image, (middle) its thing annotations in COCO (Lin et al.,

2014) and (right) enriched stuff and thing annotations in COCO-Stuff. Just having

the train, person, bench and potted plant does not tell us much about the context of

the scene, but with stuff and thing labels we can infer the position and orientation of

the train, its stuff-thing interactions (train leaving the station) and thing-thing interac-

tions (person waiting for a different train). This is also visible in the captions written

by humans. Whereas the captions only mention one thing (train), they describe a

multitude of different stuff classes (track, station, bridge, tower, railway), stuff-thing

interactions (train leaving the station, train crossing beneath a city bridge) and spatial

arrangements (on, beneath).

in scene understanding and we feel it deserves more attention.

In this chapter we introduce the COCO-Stuff dataset, which augments the popular

COCO (Lin et al., 2014) with pixel-wise annotations for a rich and diverse set of 91

stuff classes. The original COCO dataset already provides outline-level annotation

for 80 thing classes. The additional stuff annotations enable the study of stuff-thing

interactions in the complex COCO images. To illustrate the added value of our stuff

annotations, Fig. 6.1 shows an example image, its annotations in COCO and COCO-

Stuff. The original COCO dataset offers location annotations only for the train, potted

plant, bench and person, which are not sufficient to understand what the scene is about.

Indeed, the image captions written by humans (also provided by COCO) mention the

train, its interaction with stuff (i.e. track), and the spatial arrangements of the train

and its surrounding stuff. All these elements are necessary for scene understanding

and show how COCO-Stuff offers much more comprehensive annotations.

This chapter makes the following contributions: (1) We introduce COCO-Stuff,
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which augments the original COCO dataset with stuff annotations. (2) We introduce an

annotation protocol for COCO-Stuff which leverages the existing thing annotations and

superpixels. We demonstrate both the quality and efficiency of this protocol (Sec. 6.3).

(3) Using COCO-Stuff, we analyze the role of stuff from multiple angles (Sec. 6.4):

(a) the importance of stuff and thing classes in terms of their surface cover and how

frequently they are mentioned in image captions; (b) the spatial relations between stuff

and things, highlighting the rich contextual relations that make COCO-Stuff unique;

(c) we compare the performance of a modern semantic segmentation method on thing

and stuff classes.

This chapter is a modified version of our paper published at the Computer Vi-

sion and Pattern Recognition (CVPR) 2018 (Caesar et al., 2018) conference. Hoping

to further promote research on stuff and stuff-thing contextual relations, we release

COCO-Stuff and the trained segmentation models online1.

6.2 Related Work

Defining things and stuff. For a definition of stuff and things we refer the reader

to Sec. 1.1. For examples of the role of stuff and things in the literature, as well as

existing datasets, we refer the reader to Sec. 2.3.

Annotating datasets. For an overview of efficient technique for dataset annotation

and learning, we refer the reader to Sec. 2.2. In this work we introduce a new an-

notation protocol to obtain high quality pixel-wise stuff annotations at low human

costs by using superpixels and by exploiting the existing detailed thing annotations

of COCO (Lin et al., 2014) (Sec. 6.3.2).

6.3 The COCO-Stuff dataset

The Common Objects in COntext (COCO) (Lin et al., 2014) dataset is a large-scale

dataset of images of high complexity. COCO has been designed to enable the study

of thing-thing interactions, and features images of complex scenes with many small

objects, annotated with very detailed outlines. However, COCO is missing stuff an-

notations. In this chapter we augment COCO by adding dense pixel-wise stuff an-

notations. Since COCO is about complex, yet natural scenes containing substantial

1http://calvin.inf.ed.ac.uk/datasets/coco-stuff

https://github.com/nightrome/cocostuff
http://calvin.inf.ed.ac.uk/datasets/coco-stuff
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Figure 6.2: Annotated images from the COCO-Stuff dataset with dense pixel-level an-

notations for stuff and things. To emphasize the depth ordering of stuff and thing classes

we use bright colors for thing classes and darker colors for stuff classes.

areas of stuff, COCO-Stuff enables the exploration of rich relations between things

and stuff. Therefore COCO-Stuff offers a valuable stepping stone towards complete

scene understanding.

Fig. 6.2 presents several annotated images from the COCO-Stuff dataset, showcas-

ing the complexity of the images, the large number and diversity of stuff classes, the

high level of accuracy of the annotations, and the completeness in terms of surface cov-

erage of the annotations. We have annotated all 164K images in COCO 2017: training

(118K), val (5K), test-dev (20K) and test-challenge (20K).

6.3.1 Defining stuff labels.

COCO-Stuff contains 172 classes: 80 thing, 91 stuff, and 1 class unlabeled. The 80

thing classes are the same as in COCO (Lin et al., 2014). The 91 stuff classes are

curated by an expert annotator. The class unlabeled is used in two situations: if a label

does not belong to any of the 171 predefined classes, or if the annotator cannot infer

the label of a pixel.

Before annotation, we choose to predefine our label set. This contrasts with a

common choice in semantic segmentation to have annotators use free-form text la-

bels (Tighe and Lazebnik, 2010, 2013b; Mottaghi et al., 2014). However, using free-

form labels leads to several problems. First of all, it leads to an extremely large number

of classes, many having only a handful of examples. This makes most classes unusable

for recognition purposes, as observed in (Mottaghi et al., 2014; Zhou et al., 2017b).

Furthermore, different annotators typically use several synonyms to indicate the same
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class. These need to be merged a posteriori (Tighe and Lazebnik, 2010; Xiao et al.,

2014). Even after merging, classes might not be consistently annotated. For example,

PASCAL Context (Mottaghi et al., 2014) includes the classes bridge and footbridge,

which are in a parent-child relationship. If one image has bridge annotations and an-

other image has footbridge annotations, both can describe the same concept (i.e. foot-

bridge), or the bridge can be another type of bridge and therefore describe a different

concept. Similarly, in SIFT Flow (Liu et al., 2011) some images have field annotations,

whereas others have grass annotations. These concepts are semantically overlapping,

but are neither synonymous nor in a parent-child relationship. A region with a grass

field could be annotated as grass or as field depending on the annotator.

To prevent such inconsistencies, we decided to predefine a set of mutually exclu-

sive stuff classes, similarly to how the COCO thing classes were defined. Additionally,

we organized our classes into a label hierarchy, e.g. classes like cloth and curtain have

textile as parent, while classes like moss and tree have vegetation as parent (Fig. 6.3).

The super-categories textile and vegetation have indoor and outdoor as parents, respec-

tively. The top-level nodes in our hierarchy are generic classes stuff and thing.

To choose our set of stuff labels, the expert annotator used the following criteria:

stuff classes should (1) be mutually exclusive; (2) in their ensemble, cover the vast

majority of the stuff surface appearing in the dataset; (3) be frequent enough; (4) have

a good level of granularity, around the base level for a human. However, these criteria

conflict with each other: if we label all vegetations as vegetation, the labels are too

general. On the other extreme, if we create a separate class for every single type of

vegetation, the labels are too specific and infrequent. Therefore, as shown in Fig. 6.3,

for every super-category like vegetation, we explicitly list its most frequent subclasses

as choices for the annotator to pick (e.g. straw, moss, bush and grass). And there is

one additional subclass vegetation-other to be picked to label any other case of vege-

tation. This achieves the coverage goal, while avoiding to scatter the data over many

small classes. For some super-categories (floor, wall and ceiling) we are particularly

interested in the material they are made of. Therefore we include the material type

in the class definition (e.g. wall-brick, wall-concrete and wall-wood). This enables

further analysis of the materials present in a scene.

Our label set fulfills all design criteria (1-4): (1) the mutual exclusivity of labels is

by design and enforced through having annotators only use the leaves of our hierarchy

as labels (Fig. 6.3). For the other criteria we need to look at pixel-level frequencies

after dataset collection: (2) only 6% of the pixels are unlabeled, which is satisfac-
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Figure 6.3: The stuff label hierarchy of the COCO-Stuff dataset. Stuff classes are

divided into outdoor and indoor, each further divided into super-categories (e.g. floor,

plant), and finally into leaf-level classes (e.g. marble floor, grass). The labels used by

the annotators form the leaf nodes of the tree. Furniture classes can be interpreted as

either things or stuff, depending on the imaging conditions. A full list of descriptions is

available online1.

https://github.com/nightrome/cocostuff/blob/master/labels.md
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person

snow

Figure 6.4: Example of a) an image, b) the superpixel-based stuff annotation and c)

the final labeling. The annotator can quickly annotate large stuff regions (snow) with

a single mouse stroke using a paintbrush tool. Thing (person) annotations are copied

from the COCO dataset. The transparency of each layer can be regulated to get a

better overview. This approach dramatically reduces annotation time and yields a very

accurate labeling, especially at stuff-thing boundaries.

tory; (3, 4) interestingly, all our stuff classes have pixel frequencies in the same range

of the COCO thing classes (Fig. 6.5) and they also follow a similar distribution and

granularity (Fig. 6.3). Intuitively, having both thing and stuff classes follow similar

distributions makes the dataset well suited to analyze stuff-thing relations.

6.3.2 Annotation protocol and analysis

Protocol. We developed a very efficient protocol, specialized for labeling stuff cla-

sses at the pixel-level. We first partition each image into 1,000 superpixels using

SLICO (Achanta et al., 2012), which adheres very well to boundaries and gives su-

perpixels of homogeneous size (Fig. 6.4). Superpixels remove the need for manually

delineating the exact boundaries between two regions of different classes. As superpix-

els respect boundaries, it is enough to mark which superpixels belong to which class,

which is a lot faster to do. Moreover, the evenly spaced and sized SLICO superpixels

result in a labeling task natural for humans (as opposed to superpixel algorithms which

yield regions that greatly vary in size (Felzenszwalb and Huttenlocher, 2004)). We

accelerate the annotation process by providing annotators a size-adjustable paintbrush

tool, which enables labeling large regions of stuff very efficiently (Fig. 6.4b).

We improve annotation efficiency even further by leveraging the highly accurate
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Figure 6.5: Pixel-level frequencies for some of the classes in the trainval set of COCO-

Stuff. For clarity, we show about 1/8 of all classes. We can see that stuff and thing

classes follow a similar pixel frequency distribution.

thing outlines available from COCO (Lin et al., 2014) (Fig. 6.4c). We show annotators

images with thing overlays, and pixels belonging to things are clamped and unaffected

by the annotator’s brush. This results in a lightweight experience, where the annotator

merely needs to select a stuff class (like snow) and brush over the foreground object.

In fact, because of the high annotation accuracy of COCO things, our technique results

in extremely precise stuff outlines at stuff-thing boundaries, often beyond the accuracy

of superpixel boundaries.

As a final element in our protocol, we present our stuff labels to the annotators

using the full hierarchy. In initial trials we found that, compared to presenting them

in a list, this reduces the look-up time of labels significantly. This annotation pro-

tocol yields an annotation time of only three minutes to annotate stuff in one of the

COCO images, which are very complex (Fig. 6.2). We release the superpixels and the

annotation tool online to allow for further analysis.

We annotated 10K images with our protocol using in-house annotators. After-

wards, we collaborated with the startup Mighty AI to adapt our protocol for crowd-

sourcing and annotate all remaining images of COCO-Stuff.
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Analysis of superpixels. We study here the quality-speed trade-off of using super-

pixels. We ask a single annotator to annnotate 10 COCO images three times, once for

each of three different modalities: (1) superpixel annotation, as we do for COCO-Stuff;

(2) polygon annotation, the de facto standard (Cordts et al., 2016; Mottaghi et al., 2014;

Zhou et al., 2017b) and (3) freedraw annotation, which consists of directly annotating

pixels with a very accurate size-adjustable paintbrush tool, but without aid from su-

perpixels. The freedraw annotations attempt to get as close to pixel-level accuracy as

possible, and we use them as ground-truth reference in this analysis.

Table 6.1 shows the results for superpixel, polygon and freedraw annotation. Com-

pared to the freedraw reference, polygons and superpixels are much faster (1.5x and

2.8x). Computing pixel-level labeling agreement w.r.t. freedraw reveals that both poly-

gons and superpixels lead to very accurate annotations (96%-97%). We also asked the

annotator to re-annotate the images with the same modality, enabling to measure ‘self

agreement’. Interestingly the self agreement of freedraw is in the same range as the

agreement of superpixels and polygons w.r.t. freedraw. This shows that the differences

across annotation modalities are of similar magnitude to the natural variations within

a single modality, even by a single annotator. Hence, all three modalities are about as

accurate.

Furthermore we simulate our stuff annotation protocol on two other datasets which

were originally annotated with polygons: SIFT Flow (Liu et al., 2011) and PASCAL

Context (Mottaghi et al., 2014). For each image we label each superpixel with the

majority stuff label in the ground-truth annotations. We then overlay the existing thing

annotations. This protocol achieves 98.3% agreement with the ground-truth on SIFT

Flow and 98.4% on PASCAL Context. These findings show that superpixel annota-

tion is faster than conventional polygon annotation, while providing almost the same

annotations.

We found that a dominant factor for the differences in annotation time across im-

ages is their boundary complexity. Boundary complexity is defined as the ratio of

pixels that have any neighboring pixel with a different semantic label (as in the bound-

ary evaluation in Caesar et al. (2016b); Kohli et al. (2009); Krähenbühl and Koltun

(2011)). Fig. 6.6 analyzes the relationship between boundary complexity and annota-

tion time of an image using different annotation modalities. The linear trendlines show

that there is a clear correlation between annotation time and boundary complexity. We

can see that the slopes of the freedraw and polygon annotation trendlines are 3.4x and

2.0x steeper than for superpixels. This is one of the main reasons why superpixels
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Modality Speedup
Reference
agreement

Self
agreement

Superpixels 2.8 96.1% 98.7%

Polygons 1.5 97.3% 97.0%

Freedraw 1.0 - 96.6%

Table 6.1: A quantitative comparison of different stuff annotation modalities. We

use freedraw annotation as a reference in the ’Speedup’ and ’Reference agreement’

columns. The self-agreement between repeated runs of the same annotation modality

decreases with weaker constraints on the possible labelings.

yield such big improvements in annotation time on average.

Analysis of thing overlays. We analyze thing overlays in terms of the annotation

speedup they bring and the quality they lead to. For this we perform superpixel and

freedraw annotation with and without thing overlays. We achieve significant speedups

when using thing overlays with freedraw annotation (1.8x) and also with superpixel

annotation (1.2x). Furthermore, the agreement of superpixel annotation w.r.t. the free-

draw reference is identical with and without thing overlays (96.1% in both cases). This

shows that thing overlays achieve a significant speedup without any loss in quality.

Moreover, 46.8% of the boundary pixels in COCO-Stuff have a neighboring pixel

that belongs to a thing class. Therefore using thing overlays significantly decreases the

boundary complexity and leads to a larger speedup for freedraw annotation than for

superpixel annotation.

Across-annotator agreement. Following Zhou et al. (2017b); Cordts et al. (2016)

we annotate 30 images by 3 annotators each. For each image we compute the label

agreement between each pair of annotators and average over all pairs. The mean label

agreement in COCO-Stuff is 73.6%, compared to 66.8% for ADE20K (Zhou et al.,

2017b).

6.3.3 Comparison to other datasets.

COCO-Stuff has the largest number of images of any semantic segmentation dataset

(164K). In particular, MSRC 21 (Shotton et al., 2006), KITTI (Geiger et al., 2012),

CamVid (Brostow et al., 2009), SIFT Flow (Liu et al., 2011) and NYUD (Silberman
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Figure 6.6: Annotation time versus image boundary complexity. Each circle indicates

an image annotated using one of three modalities. The trendlines show that annotation

time for some modalities increases faster with boundary complexity than for others.

et al., 2012) all have less than 5,000 images (Table 2.2). COCO-Stuff is also much

richer in both the number of stuff and thing classes than MSRC 21 (Shotton et al.,

2006), KITTI (Geiger et al., 2012), CamVid (Brostow et al., 2009), Cityscapes (Cordts

et al., 2016) and SIFT Flow (Liu et al., 2011). Compared to the Barcelona (Tighe and

Lazebnik, 2010) and LM+SUN (Tighe and Lazebnik, 2013b) datasets, it has 3× and

2× more stuff classes, respectively.

PASCAL Context (Mottaghi et al., 2014) and ADE20K (Zhou et al., 2017b) are the

most similar datasets to COCO-Stuff. On the surface they appear to have a very large

numbers of classes (540 and 2,693), but in practice most classes are rare. The authors

of those datasets define a set of classes deemed usable for experiments (i.e. the most

frequent 60 classes in PASCAL Context and 150 classes in ADE20K). In Fig. 6.7 we

show the number of stuff classes that occur in at least x images, for varying thresholds

x, on the trainval sets of three datasets. COCO-Stuff has more usable stuff classes than

PASCAL Context and ADE20K for any threshold, e.g. for x = 1,000, there are 5 stuff

classes in PASCAL Context, 20 in ADE20K and 84 in COCO-Stuff. This means that

92% of the stuff classes in COCO-Stuff occur in at least 1,000 images. Furthermore,

both PASCAL Context and ADE20K use free-form label names, which lead to anno-

tations at different granularities and hence ambiguities, as discussed in Sec. 6.3.1. In

contrast, in COCO-Stuff all labels are mutually exclusive and at a comparable level
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Figure 6.7: The number of stuff classes occurring in at least x images for varying thresh-

olds of x. Solid lines indicate the full datasets, dashed lines the versions with only usable

classes. Statistics are computed on the trainval sets of three datasets.

of granularity. Finally, PASCAL Context and ADE20K are annotated with overlap-

ping polygons. Hence some pixels have multiple conflicting labels at the boundaries

between things and stuff. In COCO-Stuff instead, each pixel has exactly one label.

To conclude, COCO-Stuff is a very large dataset of highly complex images. It has

the largest number of usable stuff and thing classes with pixel-level annotations. More-

over, by building on COCO it also has natural language captions, further supporting

rich scene understanding.

6.4 Analysis of stuff and things

In this section we leverage COCO-Stuff to analyze various relations between stuff

and things: we analyze the relative importance of stuff and thing classes (Sec. 6.4.1);

study spatial contextual relations between stuff and things (Sec. 6.4.2); and analyze

the behavior of semantic segmentation methods on stuff and things (Sec. 6.4.3). To

preserve the integrity of the test set annotations, all experiments in this section are run

on the trainval set of COCO-Stuff.
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Level Stuff Things

Pixels 69.1% 30.9%

Regions 69.4% 30.6%

Caption nouns 38.2% 61.8%

Table 6.2: Relative frequency of stuff and thing classes in pixel-level annotations and

caption nouns in COCO-Stuff.

6.4.1 Importance of stuff and things

We quantify the relative importance of stuff and things using two criteria: surface cover

and human descriptions.

Surface cover. We measure the frequencies of stuff and thing pixels in the COCO-

Stuff annotations. Table 6.2 shows that the majority of pixels are stuff (69.1%). We

also compute statistics for the labeled regions in COCO-Stuff, i.e. connected compo-

nents in the pixel annotation map. We use such regions as a proxy for class instances,

as stuff classes do not have instances. We see that 69.4% of the regions are stuff and

30.6% things.

Human descriptions. Although stuff classes cover the majority of the image sur-

face, one might argue they are just irrelevant background pixels. The COCO dataset

is annotated with five captions per image (Lin et al., 2014), which have been written

explicitly to describe its content, and therefore capture the most relevant aspects of the

image for a human. To emphasize the importance of stuff for scene understanding, we

also analyze these captions, counting how many nouns point to things and stuff respec-

tively. We use a Part-Of-Speech (POS) tagger (Toutanova et al., 2003) to automatically

detect nouns. Then we manually categorize the 600 most frequent nouns as stuff (e.g.

street, field, water, building, beach) or things (e.g. man, dog, train), ignoring nouns

that do not represent physical entities (e.g. game, view, day).

Table 6.2 shows the relative frequency of these nouns. Stuff covers more than a

third of the nouns (38.2%). This clearly shows the importance of stuff according to the

COCO image captions.
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train car tv person road wall-tile backpack snowboard

Figure 6.8: Spatial context visualizations. (Top) Each disc is for a different reference

class and shows the most likely other class at each direction and distance bin. (Bottom)

The conditional probabilities of the most common class in each bin, as a measure

of confidence. The values are normalized for each reference class and range from

low (blue) to high (red). We also show examples for classes with high (person) and

low (snowboard) mean entropy.

6.4.2 Spatial context between stuff and things

Methodology. We analyze spatial context by considering the relative image position

of one class with respect to another. For simplicity, here we explain how to compute

the spatial context for one particular reference class, i.e. car (Fig. 6.8, second column).

The explanation is analogous for all other classes. For every image containing a car,

we extract a set of car regions, i.e. connected components of car pixels in the annota-

tion map. Next we compute a histogram of image pixels surrounding the car regions,

with two spatial dimensions (distance, angle) and one dimension for the class label.

To determine in which spatial bin a certain pixel lands, we (1) compute the distance

between the pixel and the nearest point in the car region (normalized by image size);

(2) compute the relative angle with respect to the center of mass of the car region.

Results. Fig. 6.8 shows the spatial context of eight reference classes. This visualiza-

tion reveals several interesting contextual relations. Trains are typically found above

railroads (thing-stuff). TVs are typically found in front of persons (thing-thing). Tiled

walls occur above tiled floors (stuff-stuff), and roads are flanked by persons on both

sides (stuff-thing). Note that these contextual relations are not necessarily symmetric:

most cars appear above a road, but many roads have other things above them.

For each reference class and spatial bin we also show the conditional probability

of the most likely other class as a measure of confidence (Fig. 6.8, bottom). In most

cases the highest confidence is in regions above (sky, wall, ceiling) or below (road,

pavement, snow) the reference region, but rarely to the left or right. Since vertical
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relations are mostly support relations (e.g. ‘on top of’), this suggests that support is

the most informative type of context. For some classes the highest confidence region is

also very close to the reference region, often indicating that another object is attached

to the reference one (person close to backpack).

As the figure shows, some classes have a rich and diverse context, composed of

many other classes (e.g. tv, road), while some classes have a simpler context (e.g.

snowboards always appear in the middle of snow). We quantify the complexity of a

reference class as the entropy of the conditional probability distribution, averaged over

all other classes and spatial bins. The classes with highest mean entropy are wood,

metal and person, and those with the lowest are snowboard, airplane and playingfield.

On average, we find that stuff classes have a significantly higher mean entropy than

things (3.40 vs. 3.02), showing they appear in more varied contexts. We also find

that the mean entropy is rather constant over distances (small: 3.21, big: 3.23) and

directions (left: 3.19, right: 3.18, down: 3.20, up: 3.15).

Comparing the mean entropy of different datasets, taking into account all classes,

we find that COCO-Stuff has the highest (3.22), followed by the 60 usable classes of

PASCAL Context (2.42), the 150 usable classes of ADE20K (2.18) and SIFT Flow

(1.20). This shows the contextual richness of COCO-Stuff.

6.4.3 Semantic segmentation of stuff and things

We now analyze how a modern semantic segmentation method (Chen et al., 2015a)

performs on COCO-Stuff. We compare the performance on stuff and thing classes and

hope to establish a baseline for future experiments on this dataset.

Protocol. We use the popular DeepLab V2 (Chen et al., 2015a) based on the VGG-

16 network (Simonyan and Zisserman, 2015) pre-trained on the ILSVRC classification

dataset (Russakovsky et al., 2015). We use the following experimental protocol: train

on the 118K training images and test on the 5K val images. To evaluate performance

we use four criteria commonly used in the literature (Long et al., 2015; Eigen and

Fergus, 2015; Caesar et al., 2016b): (1) pixel accuracy is the percentage of correctly

labeled pixels in the dataset, (2) class accuracy computes the average of the per-class

accuracies, (3) mean Intersection-over-Union (IOU) divides the number of pixels of

the intersection of the predicted and ground-truth class by their union, averaged over

classes (Everingham et al., 2015), (4) frequency weighted (FW) IOU is per-class IOU

weighted by the pixel-level frequency of each class.
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Results for all images and classes. Table 6.3 shows the results using all images

(row “118K (train)”). DeepLab achieves an mIOU of 33.2% over all classes. A detailed

comparison of leading methods can be found online1.

Benefits of a large dataset. One reason for the recent success of deep learning meth-

ods is the advent of large-scale datasets (Russakovsky et al., 2015; Ionescu et al., 2015;

Zhou et al., 2017b). Inspired by Sun et al. (2017), we want to test whether the perfor-

mance of semantic segmentation models plateaus at current dataset sizes or whether it

benefits from larger datasets. Following the above protocol, we train multiple DeepLab

models with different amounts of training data, keeping all training parameters fixed.

Table 6.3 shows the resulting performance on the validation set (rows from 1K to

118K). We can see that for all metrics, performance significantly increases as the train-

ing set grows. We hypothesize that even deeper network architectures (He et al., 2016)

could benefit even more from large training sets.

Is stuff easier than things? Several works found that stuff is easier to segment than

things (Tighe and Lazebnik, 2010; Ion et al., 2011; Liu et al., 2011; Tighe and Lazeb-

nik, 2013a; Tighe et al., 2014; Zhang et al., 2015a; Xu et al., 2015a; Zhou et al., 2017b).

We argue that this is due to their choice of dataset, rather than a general observation.

Most datasets only include a small number of very frequent and coarse-grained stuff

classes, such as sky and grass (Table 2.2). In contrast, COCO-Stuff features a larger

number of relevant stuff labels at a similar level of granularity as the existing thing

labels. It has a similar number of stuff and thing classes, and a similar pixel frequency

distribution for both (see Fig. 6.5).

As Table 6.3 (bottom) shows, on COCO-Stuff DeepLap performs substantially bet-

ter on thing classes than on stuff. This shows that stuff is harder to segment than things

in COCO-Stuff, a dataset where both stuff and things are similarly distributed. There-

fore we argue that stuff is not generally easier than things.

6.5 Impact of COCO-Stuff

In this section we discuss the impact of our COCO-Stuff paper and dataset. We present

works that are inspired by COCO-Stuff and briefly mention two segmentation chal-

lenges.

https://github.com/nightrome/cocostuff
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Training
images

Class
accuracy

Pixel
accuracy

Mean
IOU

FW
IOU

1K 24.1% 46.1% 15.9% 31.0%

5K 33.8% 52.7% 23.1% 37.5%

10K 36.9% 54.6% 25.5% 39.6%

20K 40.2% 57.5% 28.6% 42.6%

40K 43.0% 61.1% 31.4% 45.7%

80K 44.9% 63.4% 32.9% 47.4%

118K (train) 45.1% 63.6% 33.2% 47.6%

stuff 33.5% 58.2% 24.0% 45.6%

things 58.3% 75.7% 43.6% 58.4%

Table 6.3: Rows 1K to 118K: Performance of Deeplab V2 with VGG-16 with varying

amounts of training data. We can see that for all metrics, performance significantly

increases for larger datasets. Last two rows: Performance of the same model on stuff

and thing classes using all 118K training images in COCO.

Later works inspired by ours. We released an earlier version of the COCO-Stuff

dataset with 10K images (Caesar et al., 2016a) in December 2016. Since then, COCO-

Stuff has quickly become a standard benchmark for semantic segmentation (Shuai

et al., 2017; Wang et al., 2017; Bulo et al., 2017b; Hu et al., 2017). Yoo et al. (2017)

study the tasks of objectness estimation and semantic segmentation using a compound

eye camera inspired by insects. They then transform the images in COCO-Stuff to

simulate a compound eye camera view. Du and Davis (2017) use COCO-Stuff for

portrait segmentation and editing. Smith et al. (2017) explore the linguistic distinction

between mass and count nouns in the visual modality. Although related, they find that

these do not strictly correspond to our stuff and thing categories, as some borderline

stuff classes are countable (e.g. mountain, tree). Using their own dataset, they find that

mass classes exhibit a lower intra-image and inter-image variance in CNN activations

than count classes. We assume that this insight also applies to stuff and thing classes

and future work could try to find semantic segmentation methods that take this into

account. Furthermore, COCO-Stuff may become one of the default datasets for the

panoptic segmentation task (Kirillov et al., 2018) (see Sec. 2.1). This task requires

knowing the depth ordering between thing instances, which are currently being anno-

tated by Kirillov et al. (2018).
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COCO challenges. To help promote the COCO-Stuff dataset and the mission of this

thesis to a broader community, we conduct segmentation challenges open to the public.

At ICCV 2017 we launched a new track for COCO Stuff Segmentation, as part of the

Joint Workshop of the COCO and Places Challenges. At ECCV 2018 we will launch

the COCO Panoptic Segmentation challenge as part of the Joint COCO and Mapillary

Recognition Challenge Workshop.

6.6 Future work

In this section we present future work related to this chapter.

Linguistic analysis of stuff and things. In Sec. 6.4.1 we studied the importance

of stuff and things in image captions, counting how many nouns point to things and

stuff respectively. As future work we envision a more detailed study of the linguistic

role of stuff and things. The captions in Fig. 6.1 seem to indicate that things often

form the subject of the sentence, thereby taking an active role. Stuff on the contrary

seems to be the object of the sentence, taking a passive role. Future work could study

these relations and try to find exceptions to this rule. It would be interesting to look

at the subject in captions for images that do not contain any things. Furthermore,

one could study the prepositions linking particular stuff-thing, thing-thing and stuff-

stuff pairs (e.g. cow on grass). Finally, stuff and things are very related to the mass

and count (Cheng, 1973; Fieder et al., 2014) distinction in linguistics. It would be

interesting to see whether the human annotators that wrote the captions only use count

quantifiers (a, two, few) for things and mass quantifiers (much, little, an amount of) for

stuff. Closely related, one could look at the use of singular and plural nouns and nouns

that are only have a singular form (grass).

Human-in-the-loop annotation for stuff. Many human-in-the-loop annotation sche-

mes result in a reduced annotation time, while achieving a comparable level of quality

to traditional annotation schemes (see Sec. 2.2.1). Future work could investigate how

suitable methods like Polygon RNN (Castrejon et al., 2017) are for stuff annotation.

Polygon-RNN is a recurrent neural network that repeatedly predicts the next point of a

polygon along the boundary of a thing instance. If necessary, the annotator can correct

a predicted point, which in turn updates the prediction of other points. It is not clear

whether such a method can be adapted to stuff annotation, as stuff has neither clearly

defined boundaries nor instances (see Sec. 1.1). Precisely because of this problem we

http://cocodataset.org/#stuff-challenge2017
http://cocodataset.org
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use our superpixel-based stuff annotation protocol in Sec. 6.3.2. Future work could

create a human-in-the-loop version of our protocol, where a classifier predicts the la-

bels for each superpixel and the user can correct them, thereby triggering an update of

the labels of other superpixels. Although the SLICO (Achanta et al., 2012) superpixels

that we use are essentially parameter-free, the desired number of superpixels per image

is one parameter, which we fixed to 1000. A human-in-the-loop scheme could let the

user define this parameter per image or even for each part of the image.

Hierarchy-aware semantic segmentation. In Sec. 6.3 we present the label hierar-

chy of COCO-Stuff, which augments the existing hierarchy in COCO (Lin et al., 2014).

For many applications of semantic segmentation, mislabelings between semantically

related classes (e.g. wall-stone and wall-concrete) are less critical than mislabelings

between semantically unrelated classes (e.g. sky and water). Semantic segmenta-

tion on COCO-Stuff may benefit from hierarchy-aware approaches such as Deng et al.

(2014a) which model mutual exclusion, overlap and subsumption relations between

classes in a label relation graph. Furthermore hierarchical evaluation may help to scale

up classification to thousands of classes, as only a subset of the classes needs to be

evaluated at each level of the hierarchy.

6.7 Conclusion

We introduced the large-scale COCO-Stuff dataset. COCO-Stuff enriches the COCO

dataset with dense pixel-level stuff annotations. We used a specialized stuff annota-

tion protocol to efficiently label each pixel. Our dataset features a diverse set of stuff

classes. In combination with the existing thing annotations in COCO it allows us to

perform a detailed analysis of stuff and the rich contextual relations that make our

dataset unique. We have shown that (1) stuff is important: Stuff classes cover the ma-

jority of the image surface and more than a third of the nouns in human descriptions of

an image; (2) many classes show frequent patterns of spatial context, and stuff classes

appear in more varied contexts than things; (3) stuff is not generally easier to segment

than things; (4) the larger training set that COCO-Stuff offers improves the semantic

segmentation performance.





Chapter 7

Additional works

In this chapter we present additional topics that we worked on as part of this thesis.

These are unpublished works and we point out the potential for future work.

7.1 ImageNet-Stuff: Augmenting ILSVRC with stuff

Chapters 3 and 5 use image-level tags to learn under weak supervision. Image-level

tags are cheaper to annotate and therefore allow us to scale our learning more effi-

ciently (see Sec. 2.2.1). Several works crawl the web to learn from noisy image-level

tags (Fergus et al., 2005; Ferrari and Zisserman, 2007; Vijayanarasimhan and Grau-

man, 2008; Li and Fei-Fei, 2010; Modolo and Ferrari, 2017) or add additional annota-

tions to create fully labeled datasets (Deng et al., 2009; Lin et al., 2014; Everingham

et al., 2015; Zhou et al., 2017a). Datasets crawled from the web typically have only a

few labels per image, compared to the exhaustive image-level annotations required by

most weakly supervised semantic segmentation methods. To demonstrate the feasibil-

ity of weakly supervised semantic segmentation, most works use datasets labeled at the

pixel-level and then extract image-level tags from them (Vezhnevets et al., 2011; Xu

et al., 2015a; Kolesnikov and Lampert, 2016). This means that these methods do not

actually save any annotation time, which is the purpose of weakly supervised learn-

ing. Furthermore, we found that directly annotating actual image-level labels results in

additional problems. To study these problems, we annotated a medium-scale dataset

called the ImageNet-Stuff dataset. The dataset creation, experiments, results and future

work are presented below.

Dataset creation. ImageNet-Stuff is a precursor to COCO-Stuff. When we created

the ImageNet-Stuff dataset in 2014, ILSVRC (Russakovsky et al., 2015), which is

129
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based on ImageNet, was arguably the most important challenge in object detection.

We build on the challenge dataset and augment the existing bounding boxes for 200

thing classes with image-level stuff annotations. We sample 20K images from the 60K

images added to ILSVRC in 2014. These images have about 4.5 stuff classes per image

and are therefore well suited to study stuff and things in context.

Image-level annotations. To create the image-level stuff annotations we design a

special protocol. We show an image to the annotator, but mask the bounding boxes of

all known things during the annotation process using a semi-transparent black color.

This lets an annotator focus on the stuff regions. The annotation process is crowd-

sourced using the CrowdFlower platform. For this reason we need to drastically sim-

plify the annotation process. The instructions explicitly tell the annotators to annotate

“background regions”, rather than giving definitions of stuff and things (see Sec. 1.1).

Due to the language barrier, we decide to replace lengthy instructions by example

images with correct and incorrect answers. Preliminary experiments show that this im-

proves the resulting annotations. On average 3.8 annotators annotate the same image.

By measuring the label agreement between different annotators, we can estimate the

correctness of a label. The relative frequencies can also tell us how relevant the label

is for that particular image.

The annotation of a single image with on average 4.2 labels takes 48s (median) and

we pay an hourly wage of 3.5 USD (median). Note that the mean annotation time per

image amounts to 74s, because we do not control when crowd-sourced workers take a

break. During internal test runs we also saw that annotators frequently like to go back

to the instruction examples to compare their work to the guidelines. Papadopoulos

et al. (2014) report hourly payments of about 16 USD for expert annotators, which

tend to work more concentrated. Xu et al. (2015b) report hourly payments of 6 USD

for letting crowd-sourced users play a game. Su et al. (2012) report a median of 26s

for the drawing of a bounding box. This means that for us annotating an image with a

single stuff tag takes about 44% of the time that it takes annotators in Su et al. (2012)

to draw a bounding box, which is arguably more time consuming. We did not choose

to restrict the possible answers for the user to a predefined set. We let the annotator

specify the label names as free-form text. This allows the annotator to add missing

labels. But as described in Sec. 6.3, it has the disadvantage of producing ambiguous

and semantically overlapping classes. Therefore we need to carefully review, filter and

merge these free-form labels in the next step.
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Figure 7.1: Image-level annotations overlaid on example images of the ImageNet-Stuff

dataset. The images shown are selected to include instances of the car class. All

known thing instances are masked with a black box. Together with the ground-truth

image-level tags, we show the absolute frequency that indicates how many annotators

used the same label or synonyms thereof.

Label filtering. In the next step we filter the image-level labels. Starting from all

labels (308,744), we remove duplicates per image (286,748) and list all unique la-

bels (18,751). We perform automatic spell-checking on all labels and review all mis-

spellings manually (4,251). In the case of an object being specified by an attribute (e.g.

muddy floor), we also use the object and the attribute as separate labels. The resulting

4,059 unique labels that occur at least 5 times are manually categorized as stuff, things

or other. The thing classes are removed. The stuff classes are manually categorized

into natural (261), man-made (313) and hybrid categories (33). The other classes are

categorized into materials (83) and attributes (250). A total of 940 classes remain. The

200 most common stuff classes all occur at least 80 times. Fig. 7.1 shows example

images from the ImageNet-Stuff dataset that are known to have the car class inside

them. As described above, all known thing instances are masked with a black box.

Looking at the image-level stuff labels, we can see that most images contain the stuff

class road. This indicates that there is a strong co-occurrence between car and road.
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Figure 7.2: Example images and their pixel-level annotations on the ImageNet-Stuff

dataset. We can see the complexity and diversity of the images that cover stuff and

things. The annotations include even fine details.

Pixel-level annotations. As discussed in Sec. 2.2.1, we can train semantic segmen-

tation using large amounts of data with image-level labels. To perform a meaningful

evaluation of our method we require at least a small test set annotated at the pixel-

level. The collection of image-level annotations takes little time, is easy and can be

distributed to many annotators. Collection of pixel-level annotations is very costly,

difficult to explain and therefore typically done by in-house expert annotators (Ever-

ingham et al., 2015; Mottaghi et al., 2014; Cordts et al., 2016). We let 4 students

annotate 500 validation and 500 test images in ImageNet-Stuff with polygons for 200

stuff and 200 thing classes. Using a modified version of the LabelMe (Russell et al.,

2008) annotation tool, the annotators draw polygons for each class in the image. Given

the large number of classes, not all classes can be shown to or memorized by the anno-

tators. Instead we showed only the classes known to be present in the image from

the image-level annotations gathered above. Fig. 7.2 shows example images from

ImageNet-Stuff and their pixel-level annotations. The quality of the annotations is

very high and even fine details are annotated. For the image-level annotations we find

that it takes on average 1.2 minutes to annotate an image at a cost of 0.03 GBP. For the

pixel-level annotations the average is 10.1 minutes for an image at a cost of 2.0 GBP.

The differences in price, time and quality are mainly due the aspect of crowd-sourcing

versus in-house annotation.

Experiments. To evaluate the usefulness of and identify possible issues with learning

from weakly annotated datasets, we run preliminary experiments on the stuff classes

of the ImageNet-Stuff dataset. We ignore the thing classes to focus on learning from
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weak annotations. For fully supervised experiments we use FCN-32s by Long et al.

(2015). For weakly supervised experiments we train the same FCNs using the image-

level loss of Bearman et al. (2016). The three experiments are as follows: 1) Fully

supervised: Train on 500 pixel-level annotated images. 2) Weakly supervised: Train

on 19,000 image-level annotated images. 3) Semi supervised: Fully supervised initial-

ization, then weakly supervised fine-tuning. Note that the despite its name, the semi-

supervised experiment actually uses more annotated images than the fully supervised

experiment (19,500). None of the networks is pretrained on ImageNet (Krizhevsky

et al., 2012). All experiments are evaluated in terms of class accuracy on the same 500

test images. We find that the fully supervised setup achieves a class accuracy of 13.2%,

weakly supervised at most 5.3% and semi supervised 16.1%. The results in the fully

supervised case are straightforward, but not the best, as only 500 images are used to

train the 200 stuff classes, which clearly is not sufficient. The weakly supervised case

shows that training with noisy image-level labels gives bad results, although still 10x

better than random chance. The results fluctuate a lot depending on the initialization

and the randomly selected mini-batches. The semi supervised results are the most in-

teresting. Despite the weakly supervised annotations being 2x cheapter than the fully

supervised ones, they significantly increase the performance of the fully supervised

scenario by +2.9%.

The results show that there is still a long way to go. Labels are often noisy and

incomplete. Future work could try to find a way to deal with noise (Zhang et al.,

2015b) and incorporate the confidence scores retrieved from the number of annotators

that agree on a single label. We observe that many of the ground-truth image-level

tags are not present in the image in the same way as when extracted from pixel-level

annotations. Examples include occlusion, semi-transparency (e.g. windows, raindrops,

fences) and even non-material classes (e.g. sunlight, humidity), although the latter were

successfully filtered in the previous step. We will need to handle such cases, e.g. by

explicitly modeling occlusions. Inspecting the resulting segmentations, we find that

they often consist of many small patches. We assume that additional constraints on the

spatial extent of the object will alleviate this problem. Furthermore we stress that the

fully labeled annotations in the semi supervised case are only used as an initialization.

Using recent state-of-the-art methods with ImageNet pretraining and strong priors (see

Sec. 2.2.1), we hope to achieve the same performance in the weakly supervised case.

Annotating and learning from ImageNet-Stuff influenced many of the design de-

cisions for COCO-Stuff. In particular, the 91 stuff labels in COCO-Stuff are derived
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from the most common labels in ImageNet-Stuff. We realized that the polygon anno-

tation protocol (used for the test set) is not efficient on stuff classes, where boundaries

are hard to delineate. From our experiments we also concluded that current methods

are not ready to use real weakly annotated datasets. Future work could try to focus

more closely on the differences between weakly and fully annotated datasets.

7.2 Automatic photo popups from stuff and things

In Chapter 6 we presented the largest existing dataset for stuff and things. We studied

the spatial context relations of stuff and things in 2D. However, analyzing the context

of a 3D scene in a 2D image is ambiguous. If a car is directly above a road in 2D, it

may be above or next to the road in 3D. It may touch the road or be far away. Therefore

we propose to lift the 2D images of COCO-Stuff into 3D space, to be able to study stuff

and things without ambiguity. This is often referred to as a 3D popup model.

Early works on automatic photo popup creation have shown impressive results

(Criminisi et al., 2000; Hoiem et al., 2005b; Delage et al., 2006; Saxena et al., 2008),

but typically use a lot of simplifying assumptions, such as a flat ground and vertical

walls and are restricted to indoor images. Hoiem et al. (2005b) use geometric la-

bels (horizontal, vertical, sky) and superpixels as a prior on uniformly labeled regions.

Saxena et al. (2008) use more sophisticated occlusion boundaries and monocular depth

information.

Our approach. Similar to most related methods, we fit a plane to each semantic

region. We improve upon these methods by looking at the semantic labels of the image,

especially in relation to the differences between stuff and things. We hypothesize that

some classes are likely to be vertical (building, person, car), horizontal (road, grass) or

porous (rock, bush). We estimate the support relations (Silberman et al., 2012; Guo and

Hoiem, 2013) between regions (e.g. person on bench) and “stitch” together the ground

and vertical planes, thereby enforcing depth continuity and refining depth and normal

estimates. Preliminary experiments show that with enough images these relations can

be learned. The camera model is defined by camera height and viewing angle, which

also define the ground plane.

We harness recent deep learning methods for depth and normal estimation from

monocular images. Gathering ground-truth depth data (e.g. with a laser scanner) is ex-

pensive and most datasets only include indoor scenes (Silberman et al., 2012). In our
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case it is even impossible, as the images in COCO and hence COCO-Stuff are gathered

from the web. Zoran et al. (2015); Chen et al. (2016b) train depth estimation methods

from ordinal relationships between two points. These can be annotated efficiently by

humans and Chen et al. (2016b) publish a large-scale dataset with ordinal relationships,

which is not restricted to indoor images. Combined with the dense depth annotations

on the NUYD (Silberman et al., 2012) dataset, they achieve state-of-the-art perfor-

mance on both indoor and outdoor depth estimation. We use the pretrained models of

Chen et al. (2016b) on COCO-Stuff. We define an energy function that includes all of

the local and global constraints mentioned above. We first optimize the orientation and

then the translation of each region plane using grid search. Then we update the local

camera parameters and loop until convergence. We annotate 100 images with ordinal

relationships to find suitable model parameters via cross-validation.

Preliminary results. Fig. 7.3 shows preliminary results of our photo popup method.

We can see that our method nicely deals with the ground, vehicle and background.

Future work will try to focus on improving the model, e.g. by allowing for arbitrary

rotation and translation and dealing with more complex images with multiple ground

planes. We observe that sometimes an object can cut through the ground-plane, which

should not be possible. We also plan to speed up the inference procedure. Similar to

Hoiem et al. (2008), using the known real-world height of commonly occurring thing

classes (e.g. person) in COCO, we plan to estimate the scale of stuff and things in the

scene. Furthermore, the knowledge of vanishing points (Li et al., 2010) might improve

our model.

The resulting 3D models will allow us to study stuff and things in context in 3D.

They will also allow us to query a large-scale dataset for stuff and thing classes by

viewpoint, scale, depth, orientation and 3D spatial relations between classes. This will

improve the understanding of the characteristics of stuff classes and allow us to train

semantic segmentation with additional levels of annotation.

7.3 Cycle consistency in semantic segmentation

Beyond traditional evaluation metrics. In Sec. 2.1.1 we discussed existing evalua-

tion criteria for semantic segmentation. We presented their advantages and disadvan-

tages and pointed out that no single criterion is able to satisfy all possible requirements.

In fact, we hypothesize that end-to-end learning leads to methods “overfitting” to the
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Figure 7.3: Preliminary results of our photo popup method. Red lines show the normals

of the ground plane sampled at multiple locations to indicate the camera model.

criterion they are optimized for. Similarly on the conceptual level, methods that overfit

to the criterion used in the most important semantic segmentation challenges are more

likely to be selected. This may have adverse affects on the real-world applicability of

leading methods. A variation of this idea is known in other fields as Goodhart’s law:

“When a measure becomes a target, it ceases to be a good measure.” (Strathern, 1997)

Here we present a new idea that removes the need for the somewhat arbitrary eval-

uation criterion on the output of the semantic segmentation method. We argue that a

good segmentation is one that reconstructs the original image well. The segmentation

can be seen as a semantic compression of the image. This is visualized in Fig. 7.4. A

semantic segmentation method assigns a label to each pixel in an image. The image

can be “reconstructed” from the pixel labels, which is called image synthesis. Note

that a huge number of images map to the same segmentation, as each object can vary
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Figure 7.4: The concept of cycle consistency (Zhu et al., 2017) in semantic segmenta-

tion. Semantic segmentation assigns a label to each pixel in an image. Image synthesis

is used to generate plausible images conditioned on the pixel labels. The original and

the synthesized image should be as similar as possible.

in appearance. Our approach replaces the evaluation criterion on the segmentation

with an evaluation criterion on the image, which is arguably easier to find. Zhu et al.

(2017) use the L1 distance between the synthesized image and the original image. Fu-

ture work will try to find more suitable criteria that allow pixel values to differ while

preserving the semantics. For example, if a blue car is synthesized instead of a red

car this should not affect the criterion. This idea is closely related to the concepts of a

cycle consistency loss (Zhu et al., 2017) and dual learning (Yi et al., 2017). Zhu et al.

(2017) use the cycle consistency loss to translate an image from a source to a target

domain in absence of paired examples. To the best of our knowledge related concepts

have not been used in semantic segmentation.

Application to weakly supervised learning. Cycle consistency is particularly use-

ful in weakly supervised semantic segmentation. In Sec. 7.1 we discuss that even a

weakly annotated dataset requires a test set with pixel labels to evaluate performance.

Using a cycle consistency evaluation criterion, performance can be evaluated on the

synthesized images, removing the need for pixel-level labels. Regardless of the evalu-

ation criterion, optimizing cycle consistency can also be seen as a useful prior on the

generally underconstrained problem of weakly supervised semantic segmentation (see

Sec. 2.2.2 on related priors).

Our approach. Now we present early work that attempts to optimize a weakly super-

vised semantic segmentation network for cycle consistency. For the semantic segmen-

tation step in Fig. 7.4 we use a state-of-the-art method, such as a Deeplab (Chen et al.,

2017). Image synthesis is usually done with Generative Adversarial Networks (GAN)

(Goodfellow et al., 2014) that consist of a generator that synthesizes images and a dis-

criminator that attempts to distinguish real and fake images. We use the Conditional
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Figure 7.5: Overview of our proposed cycle consistency framework with 3 components

and their respective outputs and losses: segmenter, generator and discriminator.

GAN (Mirza and Osindero, 2014) of Isola et al. (2016) to condition the image synthesis

on the pixel labels. We chain the two networks together by passing the segmentation

outputs as inputs to the GAN. As shown in Fig. 7.5, we now have three components:

a segmenter that predicts semantic classes, a generator that synthesizes images and a

discriminator that decides whether an image is real or fake. Each component has its

own loss and the total loss can be any combination of the three. Since we train the

whole network end-to-end, we expect semantic segmentation and image synthesis to

benefit from each other.

A modification of our approach may be able to perform unsupervised semantic

segmentation. The segmenter can be trained exclusively for image reconstruction, in-

stead of the segmentation log-loss. By enforcing additional smoothness priors on the

output labeling, the segmenter might be forced to learn semantically coherent regions.

However, even if that is the case, the resulting segmentations are only accurate up to a

permutation of labels.

Preliminary results. Here we present preliminary results of our approach. At the

current stage our method is facing several issues, which future work will try to address:

Collusion between segmenter and generator. Fig. 7.6a shows an example, where

we train the entire framework in an unsupervised way only for image reconstruction

and not for semantic segmentation. We are able to perform a near-perfect reconstruc-

tion, although only two classes appear in the segmentation. This is because the seg-

menter tends to encode the image in the semantic class scores, such that the generator

can perform a perfect pixel-level reconstruction. This is not surprising, as the scores

have a higher dimensionality than the RGB image (C 64-bit channels for C classes,

compared to 3 8-bit channels).
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We propose to address this issue by introducing a bottleneck in the network. We

present class labels to the generator, instead of the class scores. However since the

argmax function is non-differentiable and we cannot backpropagate gradients through

it. We circumvent this by propagating the labels directly to the class with the highest

score. Fig. 7.6b shows results for a fully supervised version of our framework. The

image reconstruction method now only sees the labels as shown in the third column

and the segmenter can no longer pass on information through the class scores. This is

visible in the black background labels at the bottom of the image. Whereas the initial

version was able to reconstruct cars in that region, the more “semantic” second version

only produces gray-colored noise.

Insufficient quality of image reconstruction methods. GANs have achieved break-

through successes in image synthesis. However, for the time being they only work well

on specific datasets. These datasets have a fixed spatial setup and low visual variabil-

ity, e.g. front-facing building facade views (Tyleček and Šára, 2013) or car-mounted

camera images (Cordts et al., 2016) are commonly used in the literature. They also

tend to have the same semantic classes present in every image, which is detrimental

to weakly supervised learning: if the same two classes occur in most of the images,

how will the learner be able to tell them apart, given only image-level labels? In fact,

our experiments show that GANs do not work well on datasets that work well for

weakly supervised methods and vice versa. We expect future work to resolve most

of the problems of GAN training (e.g. mode collapse (Goodfellow et al., 2014; Ar-

jovsky et al., 2017)) and weakly supervised semantic segmentation (sensitivity to bad

initialization (Pathak et al., 2015b,a)).

Lack of stuff annotations. As pointed out in Sec. 2.2.1 most recent weakly super-

vised works operate on the PASCAL VOC (Everingham et al., 2015) datasets. In these

datasets only things are annotated and the background is assigned a single label. As

shown in Fig 7.6c this leads to poor image reconstruction, as only about 27% of the

pixels have a label. In fact, the network learns to always surround animals with a green

background, although that is not generally the case. Fig 7.6d presents an example

trained and tested on the MSRC 21 (Shotton et al., 2006) dataset. It includes dense

stuff and thing labels and is therefore more suitable for image reconstruction. Future

work will experiment on densely labeled datasets like PASCAL Context (Mottaghi

et al., 2014) and COCO-Stuff (Caesar et al., 2018).
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Figure 7.6: Cycle consistency examples. Each example shows an image, its ground-

truth semantic labels, the segmenter outputs and the reconstructed images. The first

row shows an unsupervised example where due to the collusion between segmenter

and generator the image is reconstructed perfectly, despite the labels not being “se-

mantic”. The following rows show working examples of the training for cycle consistency

priors. For simplicity these are trained under full supervision.



Chapter 8

Future work

In this chapter we present potential future work. Note that future work specific to each

paper can be found in the respective chapters (see Sec. 3.6, 4.6, 5.8 and 6.6).

8.1 Applications for stuff and things

In Chapter 1 we discussed the importance of stuff and things for many different appli-

cations. Building on a large collection of related works (Forsyth et al., 1996; Adelson,

2001; Xiao et al., 2010; Endres and Hoiem, 2010; Ion et al., 2011; Tighe and Lazebnik,

2013a; Uijlings et al., 2013; Mottaghi et al., 2013; Feldman, 2003; Dai et al., 2015b),

we studied stuff and things and devised new methods and datasets related to stuff and

things. As future work we propose to apply our insights, models and datasets to new

applications beyond semantic segmentation and object detection. While the role of

context has been studied in detail for most applications, we believe that many fields

could benefit from making the distinction between stuff and things explicit.

As an example application, crowd counting (Wu and Nevatia, 2005; Chan et al.,

2008; Wang and Wang, 2011; Zhang et al., 2019; Liu et al., 2018) is the task of es-

timating the number of people in a crowd from an image. This task is related to

object detection, but we are not interested in the actual outlines of a person. Fur-

thermore, since persons are often heavily occluded, special techniques are required,

such as density estimation (Chan et al., 2008; Zhang et al., 2019). One challenge of

this task are false positive person “detections” in areas with high frequency patterns

(such as windows in buildings). Using stuff, future work may be able to discard these

false positives. But not all stuff classes should be treated equally. While some stuff

classes specifically exclude the presence (or limit the number) of persons, others are

141
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frequently found below or next to a person (see our spatial context study in Sec. 6.4.2).

Our COCO-Stuff dataset (see Chapter 6) features both, stuff annotations and complex

COCO (Lin et al., 2014) images with dozens of persons annotated at the instance-level

(see Fig. 6.2), and is therefore suitable to study these relations.

Another application where stuff may be beneficial is object or person tracking

(Gavrila and Davis, 1996; Ioffe and Forsyth, 2001; Forsyth et al., 2005; Andriluka

et al., 2008; Breitenstein et al., 2009). Specific stuff classes may define where a person

can go (grass or pavement) and where it cannot (fence or wall). Furthermore, the type

of stuff may even limit the speed at which a person is able to move (water). These

insights may also be useful to the task of autonomous driving. Autonomous vehicles

need to create a 3D model of their surroundings, both visible and beyond. Stuff and

thing classes are essential to create this model and model the intentions of all other

actors in the scene.

8.2 Performance differences between stuff and things

In Sec. 6.4.3 we compare the performance of a standard semantic segmentation method

on stuff and thing classes. We find that the performance is higher on thing than on

stuff classes. Other authors make the opposite observation on other datasets (Tighe

and Lazebnik, 2010, 2013a; Tighe et al., 2014; Liu et al., 2011; Ion et al., 2011). To

understand why that is the case, future work could control for the different criteria

of stuff and things (see Sec. 1.1). This idea is inspired by Shelhamer et al. (2016),

where they mask parts of the images used in semantic segmentation. These masks

are applied on foreground or background pixels at training or test time. Foreground

roughly corresponds to thing classes and background to stuff classes. They show that

masking the background only leads to minor decrease in performance. Interestingly

they achieve decent performance when only using black and white images, that show

only the shape of the object.

We envision a detailed ablation test of how the performance of a semantic segmen-

tation method is affected by the individual criteria that define stuff and things. For that

purpose we suggest to modify certain aspects of the images at training and test time

and measure the performance on the test set. The modifications need not be limited

to masking, but can include any form of editing and composition of new images (e.g.

using Generative Adversarial Networks conditioned on segmentation maps (Mirza and

Osindero, 2014)). We suggest the following modifications, closely inspired by the stuff
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and thing criteria in Sec. 1.1:

1. Shape: Controlling for shape is not trivial. We can alter things to limit the effects

of shape, e.g. by taking crops of thing instances or blurring the boundaries be-

tween different objects. Alternatively we can add shapes to stuff, e.g. by adding

artificial but characteristic boundaries to each stuff class.

2. Size: To control for region size, we can subsample images with particular re-

gion sizes, mask out subregions, scale existing regions or compose entirely new

images.

3. Parts: To control for the effect of parts, we can disassemble the part composition

of thing instances and reassemble them in a random manner (cf. bag of words

and bag of feature representations (Belongie et al., 2001; Lowe, 2004)). This

would not remove parts, but at least destroy their common spatial configuration.

Furthermore we can compose images consisting only of a single part, to alleviate

the effect of co-occurrence relations between parts. However, we need to make

sure that the parts used are not characteristic of multiple thing classes (wheels

can be found in cars and bikes).

4. Instances: It is not clear how to modify things to lose the instances and count-

ability property, other than the modifications mentioned above.

5. Texture: We can remove the characteristic texture of stuff classes. Similar to

Shelhamer et al. (2016), we can set the stuff classes to a single color. Alterna-

tively we can add specific textures to each thing class, e.g. by copying from a

stuff class.

The main difficulty with the modifications suggested above is that the image needs

to “look realistic” to the network, i.e. follow the same distribution. Otherwise the

network can easily spot and learn the modifications. Furthermore it may be helpful to

look at the per-class performance to figure out which criteria are important for partic-

ular classes.

8.3 Towards lifelong learning

Current approaches in scene understanding are catered directly for the problem they are

trying to solve. New datasets are annotated from scratch, instead of including existing

datasets. New methods are trained from scratch, instead of exploiting existing trained
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models (with the notable exception of ImageNet pretraining (Krizhevsky et al., 2012)).

If artificial intelligence is to become more human-like, we need to be able to benefit

from previous knowledge.

Several works have shown that even larger datasets are beneficial to train existing

methods (see Sun et al. (2017) and Chapter 6). Computational resources available for

a certain budget are often assumed to increase exponentially over time (cf. Moore’s

law (Moore, 1965)). Therefore we expect future models to grow superlinearly in terms

of the number of trainable parameters and required data. On the contrary, with tradi-

tional approaches there is no reason why human annotated datasets should grow super-

linearly. Hence we propose to combine the data annotation efforts of various groups to

create a single larger dataset. This requires standardization of annotation formats, the

classes to be used and their license. Instead of releasing a single version of the dataset,

datasets can grow continuously in size (see the SUN datasets (Xiao et al., 2010)) and

new types of annotations can be added to existing datasets (such as our stuff annota-

tions and the keypoints and captions added to COCO (Lin et al., 2014)). Furthermore,

by democratizing access to the annotation tools, a larger public may become annota-

tors (see the web interface of LabelMe (Russell et al., 2008)). To motivate such a larger

public, proper incentives are essential, e.g. Von Ahn and Dabbish (2004) let annotators

play a game against each other to annotate an image. Eventually the proliferation of

cheap sensors in electronic devices will give us abundant data, but likely with noisy

labels and lesser forms of supervision. The user should be particularly incentivized to

annotate regions of an object where annotations are scarce.

Current CNNs require a large amount of manual engineering of the architecture for

the task at hand. Approaches such as Convolutional Neural Fabrics (Saxena and Ver-

beek, 2016) automatically select the optimal architecture for a given task. For such pur-

poses a publicly available catalog of Neural Network layers and other machine learning

tricks may be beneficial. Similarly a catalog of generic knowledge sources and priors

may be useful to be able to benefit from prior experience. Generic knowledge and

priors both help to make learning more data efficient. Curriculum learning (Bengio

et al., 2009) has been shown to improve generalization, by presenting easy examples

first during training. We propose to use curriculum learning to start from generic stuff

classes and then learn more fine-grained subclasses. Similarly, we could go from a

generic objectness (Alexe et al., 2010) measure to thousands of rare objects with only

few training samples available. Alternatively, like Lee and Grauman (2011) we could

use objectness as an indicator of difficulty for thing instances and present samples in
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decreasing order of objectness. Such schedules could also successively decrease the

level of supervision and increase the expected level of noise in the presented samples.

We envision an online learning approach that is closer to how humans learn. Instead of

training on all samples at once, new data could be added repeatedly. One problem we

face when fine-tuning neural networks to a new domain is catastrophic forgetting (Mc-

Closkey and Cohen, 1989). Machine learning will need to devise new methods to allow

machines to reuse prior knowledge. Furthermore embodiment of artificial intelligence

and the ability to interact with the environment seem essential to learn strong priors

(such as the knowledge of gravity and other basic laws of physics) and develop a more

human-like intelligence. All of these will bring us closer to the long-term goals of

curriculum learning (Bengio et al., 2009) and lifelong learning (Thrun, 1996).





Chapter 9

Conclusion

Here we give an overview of the core insights of this thesis:

• In the past, stuff has received less attention than things. We give a definition of

stuff and things and their actual and perceived differences. We discuss why stuff

and things are essential and why it is important to restore the balance between

stuff and things in scene understanding (Sec. 1). Furthermore we present impor-

tant background knowledge for this thesis and how stuff and things have been

used in the literature (Sec. 2).

• Region-based approaches for semantic segmentation have a great potential. How-

ever three essential problems need to be taken into account, particularly when

looking at stuff and thing classes together: class imbalance, class competition

and overlapping regions. We presented a technique that optimizes for an arbi-

trary evaluation criterion and thereby takes into account all of these problems

(Sec. 3).

• Fully convolutional methods are conceptually simple and efficient and allow for

end-to-end training. Region-based methods produce crisp object boundaries. We

combine the advantages of both by enabling to train a region-based method end-

to-end. Region-based approaches with multi-scale regions are able to capture

thing instances at their canonical size and stuff regions at their most discrimi-

native scale. Using a novel region-to-pixel layer enables us to classify stuff and

things directly at the pixel-level. It thus presents a unified approach to learn stuff

and things end-to-end (Sec. 4).

• Standard fully supervised learning approaches do not scale well to thousands of
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classes. Therefore we require techniques like weakly supervised learning and

domain transfer to learn efficiently and reuse existing knowledge. In this context

prior knowledge becomes essential to solve a heavily underconstrained prob-

lem. We show that the knowledge of stuff and things forms an excellent source

of generic knowledge. This knowledge can be transferred across domains, us-

ing similarity relations and co-occurrence to work as contextual and appearance

forces (Sec. 5).

• We require large-scale datasets to be able to study stuff and things in context.

Therefore we gathered the largest existing dataset with a dedicated protocol for

stuff and things. This enables new insights regarding the annotation protocol,

relative importance, spatial context and role of stuff and things in semantic seg-

mentation (Sec. 6).

We hope that this thesis will raise awareness for the importance of stuff classes in

human perception and computer vision. By sharing our insights, methods and datasets

with the public, we want to spur further research on stuff and things and eventually

restore the balance between stuff and things in scene understanding.



Appendix A

Survey of semantic segmentation

papers

For this thesis we survey the semantic segmentation literature. We create records of ev-

ery paper we found that presents semantic segmentation experiments. Furthermore we

note which datasets they use in their experiments, excluding special purpose datasets,

that are limited to faces, birds, horses, flowers, medical images or 3D semantic seg-

mentation. If there are multiple versions of the same paper, such as pre-releases on

arXiv.org and conference papers, we use only the latest version. We acknowledge that

this collection is not unbiased, but stress that this is the largest existing collection on

the web1. Last updated on March 7, 2018, the collection includes 356 papers and 43

datasets. Without replicating the entire collection here, we present some insightful

statistics below.

Task names. In Sec. 2.1 we presented the various synonyms for the task of semantic

segmentation. Given our collection of papers that are known to include semantic seg-

mentation experiments, we gather statistics from their titles to see how they name this

task. The results are as follows: 133 papers use semantic segmentation, 20 papers use

scene parsing, 17 use semantic image segmentation, 12 scene labeling and 11 the more

general scene understanding. Furthermore, the mean publication year of semantic seg-

mentation is 4 to 10 months higher than of any of the other synonyms. This shows what

we already suspected, that semantic segmentation was a very heterogeneous field in its

infant years, but that it has achieved significant standardization recently. Particularly

the work of Long et al. (2015) contributed to this standardization, in terms of the task

name, default method and the evaluation metrics used.
1See https://github.com/nightrome/really-awesome-semantic-segmentation
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Venue WACV ICRA NIPS BMVC PAMI ECCV ICCV CVPR arXiv

Papers 7 7 7 13 14 19 21 55 156

Table A.1: Publication venues and the number of papers published there.

Publication venues. Now we analyze the venue (conference, journal or arXiv) that

each paper was published in. Table A.1 shows the venues with more than 5 papers.

Compared to other fields, there are many more conference than journal (only PAMI)

publications. We hypothesize that this is due to the field moving forward very quickly,

which is more inline with the short turnaround time of conferences. The bulk of the

papers in our collection are so far exclusively published on arXiv. Some of these

papers may be published at conferences or journals soon. Publishing of pre-releases

on arXiv is a recent trend that was not the case before 2014, according to this data.

We hypothesize that this is another sign of the fast pace of this field, where new ideas

are often published even before extensive experiments are available and long before

acceptance in a conference or journal.
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Figure A.1: The number of papers that experiment on a dataset accumulated over time.

Dataset importance. We present statistics of the number of papers in our collection

that include experiments on a particular dataset. Fig. A.1 gives an overview of the 7

most commonly used datasets. We exclude the year 2018, as it is not over yet. We ob-
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serve an exponential rise in the number of papers from 4 in 2007 to 139 in 2017 alone.

However we do not predict this trend to continue, as there are now diminishing returns

in terms of performance on most datasets and other tasks like instance segmentation

and panoptic segmentation (see Sec. 2.1) are gaining more interest.

We can see that MSRC (Shotton et al., 2006) is the only very early dataset still in

use, but that the community is increasingly interested in large-scale datasets. PASCAL

VOC 2012 (Everingham et al., 2015) has established itself as the standard benchmark

for semantic segmentation, despite not having stuff labels. This reinforces the main

message of this thesis, that there is an imbalance between stuff and things in semantic

segmentation. In terms of general purpose stuff and thing datasets, SIFT Flow (Liu

et al., 2011) is the most popular dataset. Recently, self-driving car datasets are rapidly

attracting interest (Brostow et al., 2009; Cordts et al., 2016). These cover at least some

very common stuff classes, such as road and building.





Appendix B

List of acronyms

ASPP - Atrous Spatial Pyramid Pooling

AW - Area Weighting

CNN - Convolutional Neural Network

CPMC - Constrained Parametric Min-Cuts

CDF - Cumulative Distribution Function

CRF - Conditional Random Field

CUDA - Compute Unified Device Architecture

CW - Contrast Weighting

FCN - Fully Convolutional Network

GPU - Graphics Processing Unit

IOU - Intersection Over Union

LBP - Local Binary Pattern

LSDA - Large Scale Detection Through Adaptation

LW - Label Weighting

mAP - mean Average Precision

MIL - Multiple Instance Learning

MRF - Markov Random Field

R-CNN - Regions with CNN features

ReLU - Rectified Linear Unit

ROI - Region Of Interest

RNN - Recurrent Neural Network

RPN - Region Proposal Network

SEC - Seed Expand Constrain

SIFT - Scale Invariant Feature Transform
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SVM - Support Vector Machine

TPU - Tensor Processing Unit

VGG - Visual Geometry Group

WSOL - Weakly Supervised Object Localization
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