
Managing the Memory Hierarchy in GPUs

Saumay Dublish
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute of Computing Systems Architecture

School of Informatics

University of Edinburgh

2018

Abstract
Pervasive use of GPUs across multiple disciplines is a result of continuous adaptation

of the GPU architectures to address the needs of upcoming application domains. One

such vital improvement is the introduction of the on-chip cache hierarchy, used primarily

to filter the high bandwidth demand to the off-chip memory. However, in contrast to

traditional CPUs, the cache hierarchy in GPUs is presented with significantly different

challenges such as cache thrashing and bandwidth bottlenecks, arising due to small

caches and high levels of memory traffic. These challenges lead to severe congestion

across the memory hierarchy, resulting in high memory access latencies. In memory-

intensive applications, such high memory access latencies often get exposed and can

no longer be hidden through multithreading, and therefore adversely impact system

performance.

In this thesis, we address the inefficiencies across the memory hierarchy in GPUs

that lead to such high levels of congestion. We identify three major factors contributing

to poor memory system performance: first, disproportionate and insufficient bandwidth

resources in the cache hierarchy; second, poor cache management policies; and third,

high levels of multithreading. In order to revitalize the memory hierarchy by addressing

the above limitations, we propose a three-pronged approach. First, we characterize the

bandwidth bottlenecks present across the memory hierarchy in GPUs and identify the

architectural parameters that are most critical in alleviating congestion. Subsequently,

we explore the architectural design space to mitigate the bandwidth bottlenecks in a

cost-effective manner. Second, we identify significant inter-core reuse in GPUs, present-

ing an opportunity to reuse data among the L1s. We exploit this reuse by connecting

the L1 caches with a lightweight ring network to facilitate inter-core communication of

shared data. We show that this technique reduces traffic to the L2 cache, freeing up the

bandwidth for other accesses. Third, we present Poise, a machine learning approach

to mitigate cache thrashing and bandwidth bottlenecks by altering the levels of multi-

threading. Poise comprises a supervised learning model that is trained offline on a set

of profiled kernels to make good warp scheduling decisions. Subsequently, a hardware

inference engine is used to predict good warp scheduling decisions at runtime using

the model learned during training. In summary, we address the problem of bandwidth

bottlenecks across the memory hierarchy in GPUs by exploring how to best scale,

supplement and utilize the existing bandwidth resources. These techniques provide an

effective and comprehensive methodology to mitigate the bandwidth bottlenecks in the

GPU memory hierarchy.

i

Lay Summary

Our day-to-day life revolves around the marvels of computational progress. Ranging

from small-scale devices such as smart phones and fitness trackers to large-scale services

such as search engines and cloud computing — all are rooted in the tremendous progress

made by the computer industry. Over the last decade, a lot of this progress is credited

to the success of Graphics Processing Units or GPUs. Recent advancements have led

to significant improvements in the graphics performance, which is evidenced by high

resolution games and realistic animation films. In addition, modern GPUs have also

greatly influenced general-purpose areas such as artificial intelligence and healthcare.

Modern GPUs pose several challenges to computer architects. These challenges can

be explained through a restaurant analogy. In older times, restaurant kitchens lacked

modern storage equipments to preserve perishable products. Therefore, chefs had to

repeatedly visit the distant grocery stores to buy raw materials for their recipes. With the

advent of in-house storage facilities such as refrigerators, number of trips to the grocery

stores could be reduced by storing or caching perishable groceries more proximately.

A problem arises when large number of chefs pose conflicting storage needs. In such

a scenario, shared storage proves to be insufficient in terms of capacity as well as the

available parallelism in accessing the shared storage. This results in large queues and

congestion at the refrigerators (and even at the grocery stores). For a given amount

of storage and floorspace, the congestion problem can be addressed primarily in three

ways. Firstly, by allowing multiple chefs to access the storage at the same time; for

instance, by adding independent doors to each shelf in the refrigerator. Secondly, by

encouraging chefs to cooperatively share common products to avoid redundant trips to

the refrigerator by multiple chefs for the same items. Thirdly, by limiting the number

of chefs so that their storage demand matches the available kitchen resources, while

also ensuring constant food supply to the customers. Similar to the restaurant scenario,

where multiple chefs process raw food by following a recipe, GPUs have multiple

processors that crunch raw data by following a set of instructions. GPUs retrieve this

data from storage elements such as proximate caches and distant memories, and then

pour it into the computational machinery inside the GPU to complete a task. Similar

to food stores, shared memory resources in GPUs also suffer from severe congestion.

In this thesis, we address the high levels of congestion in GPUs and propose three

solutions, analogous to the solutions proposed for the restaurant problem. In effect, we

investigate ways to efficiently manage the shared memory resources in GPUs.

ii

Acknowledgements

I would like to express my deep gratitude to my advisor, Prof. Nigel Topham, for his

guidance, advice and kindness throughout my graduate studies. Nigel gave me the

freedom and encouragement to explore new problems, which was vital in enabling me

to mature as a researcher. He always had the time and utmost patience whenever I

needed advice and direction in my research. I am extremely grateful for his mentorship.

I would like to thank my co-advisor, Dr. Vijay Nagarajan, for his invaluable counsel.

His confidence in my abilities and constant encouragement during the highs and lows of

my graduate studies kept me motivated, and inspired me to pursue meaningful research.

The door to his office was always open for discussions and brainstorming, which proved

extremely useful in shaping my work. I am very grateful to him for all the guidance and

support.

I would like to thank Dr. Boris Grot for being part of the annual review committee

and providing valuable advice and suggestions. I also thank Prof. Michael O’Boyle and

Dr. Robert Mullins for being on my viva panel and making it a memorable experience.

I thank several members of ICSA who provided valuable feedback, suggestions and a

space to improve my ideas. I would like to specially thank Arpit Joshi, Cheng-Chieh

Huang, José Cano Reyes, Marco Elver, Priyank Faldu and Rakesh Kumar for their

valuable help and support, both technical and otherwise. I also thank several anonymous

reviewers from the Computer Architecture community who provided valuable feedback

and suggestions, which was crucial in improving my work. Furthermore, I am grateful

for the School of Informatics PhD Scholarship and Saranu International Research

Scholarship in enabling my PhD study.

I would like to thank all my friends who offered me their joyous company during my

time in Edinburgh. Their friendship helped me cruise through the years of my graduate

studies, and made each and every moment spent here memorable.

Finally, I would like to express my profound gratitude to my parents, Geeta Dublish

and Rajeev Dublish, for providing me with the values, guidance and unwavering

support throughout my life. It is difficult to imagine reaching this juncture without

their enormous love and sacrifices. I also thank my brother, Tushar Dublish, for his

incredible support and assistance throughout my graduate studies.

iii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Saumay Dublish)

iv

Dedicated to my parents

v

Table of Contents

1 Introduction 1
1.1 The Problem . 2

1.1.1 Inadequate Bandwidth Resources 2

1.1.2 Poor Cache Management . 3

1.1.3 High Thread-level Parallelism 4

1.1.4 Implications of Bandwidth Bottlenecks 4

1.1.5 Summary . 5

1.2 Contributions . 5

1.2.1 Cost-effective Scaling of Bandwidth Resources 6

1.2.2 Cooperative Caching for L1 Caches 6

1.2.3 Managing Thread-level Parallelism 7

1.2.4 Summary . 7

1.3 Published Work . 9

1.4 Organization . 9

2 GPU Computing 11
2.1 Programming Model . 12

2.2 GPU Architecture . 14

2.2.1 Warp Scheduling . 15

2.2.2 GPU Memory Hierarchy . 16

2.2.3 Memory Coalescing . 19

3 Evaluating and Mitigating Bandwidth Bottlenecks 21
3.1 Overview . 21

3.2 Background . 24

3.2.1 Baseline Architecture . 24

3.2.2 Simulation Framework . 24

vi

3.2.3 Workloads . 25

3.3 Motivation . 26

3.3.1 Limits of Latency Tolerance in GPUs 26

3.3.2 Performance Impact of Reducing Congestion 27

3.4 Dissecting the Bandwidth Bottleneck 28

3.4.1 Implications of Congestion 29

3.4.2 Causes of Congestion . 33

3.5 Consolidating the Design Space . 35

3.5.1 Off-chip Memory . 36

3.5.2 L2 Cache . 37

3.5.3 L1 Cache . 37

3.6 Design Space Exploration . 37

3.6.1 Results . 38

3.6.2 Summary . 40

3.7 Cost-Benefit Analysis . 41

3.7.1 Cost-effective Design Space 41

3.7.2 Asymmetric Crossbar . 42

3.7.3 Results with Cost-effective Configuration 42

3.8 Related Work . 43

3.8.1 Cache Bypassing and Request Reordering 43

3.8.2 On-chip Networks in GPUs 46

3.8.3 Design Space Exploration 47

3.9 Conclusion . 48

4 Cooperative Caching for GPUs 50
4.1 Overview . 50

4.2 Background . 53

4.2.1 Baseline Architecture . 53

4.2.2 Workloads . 55

4.3 Need for Cooperation . 55

4.3.1 Inter-core Reuse . 56

4.3.2 Efficacy of Cooperation . 57

4.4 Cooperative Caching . 58

4.4.1 Analytical Model . 59

4.4.2 Architecture . 60

vii

4.4.3 Shadow Tags . 62

4.4.4 Request Throttler . 63

4.4.5 Working Example . 64

4.5 Evaluation . 65

4.5.1 Implementation . 65

4.5.2 Experimental Setup . 66

4.5.3 Results . 66

4.5.4 Hardware Cost . 70

4.5.5 Sensitivity Analysis . 71

4.5.6 Discussion . 73

4.6 Comparative Study . 74

4.6.1 Increasing L2 Banks . 74

4.6.2 Sharing Tracker . 75

4.6.3 Clustered Sharing . 76

4.6.4 Summary . 77

4.7 Related Work . 77

4.7.1 Cooperative Caching in CMPs 77

4.7.2 Ring Network . 77

4.7.3 Shadow Tags . 79

4.7.4 Cache Management . 79

4.7.5 Thread Block Scheduling . 81

4.8 Conclusion . 82

5 Managing Thread-level Parallelism 83
5.1 Overview . 83

5.2 Background . 86

5.2.1 Baseline Architecture . 86

5.2.2 Supervised Learning . 86

5.3 Motivation . 87

5.3.1 Cache-Conscious Wavefront Scheduling 87

5.3.2 Priority-based Cache Allocation 88

5.3.3 Pitfalls in Prior Techniques 89

5.3.4 Summary . 90

5.4 Poise: A System Overview . 91

5.5 Machine Learning Framework . 91

viii

5.5.1 Analytical Model . 92

5.5.2 Feature Vector Representation 97

5.5.3 Training Methodology . 101

5.5.4 Regression Model . 102

5.6 Hardware Inference Engine . 103

5.6.1 Prediction Stage . 103

5.6.2 Correction Stage . 104

5.6.3 Warp Scheduler . 105

5.6.4 Summary . 106

5.7 Evaluation . 106

5.7.1 Workloads . 106

5.7.2 Regression Model Evaluation 106

5.7.3 Experimental Methodology 108

5.7.4 Performance . 109

5.7.5 L1 Cache Hit Rate . 110

5.7.6 Average Memory Latency 110

5.7.7 Sensitivity Study . 111

5.7.8 Case Study . 113

5.7.9 Hardware Overheads . 114

5.7.10 Discussion . 115

5.8 Related Work . 115

5.8.1 Cache Management and Warp Scheduling 115

5.8.2 Machine Learning in Systems 117

5.9 Conclusion . 118

6 Conclusion 120
6.1 Contributions . 120

6.1.1 Scaling the Bandwidth Resources 121

6.1.2 Supplementing the Bandwidth Resources 121

6.1.3 Utilizing the Bandwidth Resources 122

6.2 Critical Analysis . 122

6.2.1 Ease of Adoption . 123

6.2.2 Portability . 124

6.2.3 Evaluation Methodology . 124

6.2.4 Other Inefficiencies in the Memory Hierarchy 125

ix

6.3 Future Work . 125

6.4 Concluding Remarks . 127

Bibliography 128

x

List of Figures

1.1 Typical bandwidth hierarchy in GPUs 3

1.2 Proposed three-pronged approach to address the bandwidth bottlenecks

across the memory hierarchy in GPUs. Bandwidth demand is repre-

sented by blue arrows; reduction in bandwidth demand is represented

by crossed red arrows; and scaled or additional bandwidth resources

are represented by red blocks. 8

2.1 CUDA program structure . 12

2.2 System-level architecture of a typical GPU 15

2.3 Baseline GPU architecture . 16

3.1 Issue-stall cycles, Average Hit Latencies to L2 (L2-AHL) and Average

Memory Latencies (AML) for memory-intensive applications. 22

3.2 Performance variation with increasing L1 miss latency. 26

3.3 Occupancy levels in L2 access queue during the usage lifetime 28

3.4 Occupancy levels in DRAM access queue during the usage lifetime . 29

3.5 Illustrating the effects of structural hazards 31

3.6 Issue-stall cycle distribution depicting stalls due to data hazards (data-

MEM and data-ALU), structural hazards (str-MEM and str-ALU) and

fetch hazard (fetch). 32

3.7 DRAM bandwidth efficiency . 33

3.8 L2 stalls due to back pressure from interconnect (bp-ICNT) and DRAM

(bp-DRAM) and contention on L2 data port, cache lines and MSHRs. 34

3.9 L1 stalls due to contention on cache lines and MSHRs, and back pres-

sure from L2 cache (bp-L2). 35

3.10 IPC gain with 4× design-point scaling of bandwidth resources in L1,

L2, DRAM and synergistically across different levels. 38

3.11 Core frequency variation on real GTX 480 GPU. 39

xi

3.12 Performance gain with cost-effective configurations in order of increas-

ing or equal cost overheads, normalized to the baseline architecture. . 42

4.1 (a) L1-Miss: L1 cache miss rates (b) L1-Replication: Percentage of L1

misses cached in remote L1 caches. 51

4.2 Heatmaps indicating inter-core reuse by cores on the x-axis for data

cached on the cores on the y-axis. Dark spots in the heatmaps indicate

high reuse between the corresponding cores at their x and y coordinates. 56

4.3 Speedup of cooperation with varying remote L1 access latencies. . . . 58

4.4 Cooperative Caching Network. 60

4.5 Working of the Cooperative Caching Network with Request Throttling. 65

4.6 Speedup for applications with µRC > 10 67

4.7 Percentage improvement in IPC for applications with µRC < 3 67

4.8 Percentage reduction in L1 to L2 traffic 68

4.9 Normalized average memory latency 69

4.10 Normalized core stall cycles . 69

4.11 Normalized off-chip memory traffic 70

4.12 Energy dissipation with CCN . 71

4.13 Speedup with varying L1 cache size 71

4.14 Speedup with link latencies of 1, 3 and 5 cycles 72

4.15 Speedup with varying SIMD lanes 73

4.16 Speedup with 2× L2 banks and CCN 74

4.17 Ideal speedup with L1 cache clusters 76

5.1 Cache footprint with maximum warps and reduced warps 84

5.2 Static profiling of ii kernel #112 . 89

5.3 System-level architecture of Poise 91

5.4 L1 hit rate comparison for p and N− p warps 94

5.5 Correlation between speedup and µp/np with p = 1 and N = 24 96

5.6 L1 hit rate distribution. 99

5.7 Scoring performance peaks to avoid cliffs 102

5.8 Poise Warp Scheduler architecture 105

5.9 Performance normalized to GTO . 109

5.10 Overall L1 hit rate . 110

5.11 Average Memory Latency (AML) normalized to GTO 110

5.12 Sensitivity to L1 cache size . 111

xii

5.13 Sensitivity to search stride (εN , εp) 112

5.14 Sensitivity to removing a feature xi from X 112

5.15 Comparing static and Poise executions 113

xiii

List of Tables

3.1 Baseline architecture parameters for GPGPU-Sim 24

3.2 List of workloads. P∞: Speedup with infinite bandwidth memory sys-

tem; PDRAM: Speedup with a baseline cache hierarchy and infinite band-

width DRAM. 25

3.3 Consolidated design space showing baseline, scaled (4×) and cost-

effective configurations. 36

4.1 Baseline architectural parameters for GPGPU-Sim 53

4.2 Benchmark characterization: (a) PerfX - speedup with perfect memory

(b) µRC - percentage of total L1 load misses that have reusable data on

a remote L1. 54

4.3 CCN parameters . 66

5.1 Baseline architecture parameters for GPGPU-Sim 86

5.2 Variables derived from the analytical model 98

5.3 Feature Vector (X) and Feature Weights (α; β) 100

5.4 Training and evaluation workloads 107

5.5 Poise parameters . 107

6.1 Relative overhead of adoption for the proposed schemes indicated by H

(highest), M (moderate) and L (lowest). 124

xiv

Chapter 1

Introduction

In the past decade, the journey of GPUs in transforming the computing landscape has

been phenomenal. Initially used to render graphics for computer games, GPUs are

now at the centre of major advancements in areas ranging from artificial intelligence to

enterprise computing. As a result, GPUs have proven to be of substantive significance

in the world of general-purpose computing, emerging as a formidable alternative to

traditional single-threaded processors.

Wide contrast in the performance of CPUs and GPUs derives from a fundamental

difference in the design philosophies of these architectures. CPUs are heavily optimized

for single-threaded performance, dedicating a substantial portion of the die area to

storage units, such as caches, for faster data access. In contrast, GPUs are heavily

multithreaded and dedicate most of the die area to compute units, making them more

tolerant to memory latencies of individual threads. In such multithreaded architectures,

however, memory bandwidth poses a much bigger challenge as high levels of multi-

threading present a high demand on the off-chip memory bandwidth. This has led to

the introduction of deeper memory hierarchies in modern GPUs, comprising multilevel

caches, to filter the bandwidth demand to off-chip memory. However, compared to

CPUs, the cache hierarchy in GPUs encounter significantly different demands and bot-

tlenecks due to considerably higher volumes of memory traffic. As a result, the adoption

of conventional cache hierarchy in GPUs has triggered significant research efforts to

address these new bottlenecks and to ensure a well performing memory system, which

is crucial for the future success of GPUs.

1

Chapter 1. Introduction 2

1.1 The Problem

The caches in GPUs are much smaller in comparison to CPU caches, in line with

the throughput-oriented nature of GPUs. For instance, Intel’s Haswell processor [55]

features over 8 MB of on-chip memory that is shared by a handful of threads. In contrast,

NVIDIA’s Kepler GPU [116] features only around 2 MB of on-chip memory that is

shared by tens of thousands of threads. Consequently, small caches and large number

of threads in GPUs can lead to high cache miss rates and cache thrashing [66, 67, 132].

Due to poor cache performance, the cache hierarchy does not adequately filter the

bandwidth demand to off-chip memory. In addition, the cache hierarchy exposes its own

bandwidth limitations in sustaining such high levels of memory traffic [139]. As a result,

the bandwidth implications of the entire memory hierarchy, including caches, pose a

severe challenge to GPU performance and warrants investigation [76]. In the remainder

of this section, we briefly present the principal factors that lead to bandwidth bottlenecks

across the memory hierarchy in GPUs and discuss their performance implications. Later,

in subsequent chapters, we delve into more details about these challenges.

1.1.1 Inadequate Bandwidth Resources

A typical memory hierarchy comprises small and fast first-level caches closest to the

processors, and progressively larger and slower caches at the lower levels of the memory

hierarchy. The aggregate bandwidth provided by each memory level also tapers as

we go lower in the memory hierarchy, and is depicted by the bandwidth pyramid in

Figure 1.1. This is because each level filters the bandwidth demand to the lower level,

and consequently the lower levels require only a fraction of bandwidth of the higher

levels. Therefore, appropriate allocation of bandwidth resources to each level of the

memory hierarchy, i.e., shaping the bandwidth pyramid, is critical for a well-performing

memory system.

In GPUs, the off-chip bandwidth continues to scale with upcoming memory tech-

nologies such as High Bandwidth Memories (HBM), providing high bandwidth to inject

memory responses into the cache hierarchy. In addition, the number of GPU cores

continue to grow, increasing the bandwidth demand on the cache hierarchy. However,

the conventional cache hierarchy adopted by GPUs is under-provisioned in bandwidth

resources (such as on-chip interconnect, peripheral buffers, etc.) to handle such high vol-

umes of memory traffic. As a result, the bandwidth hierarchy is becoming increasingly

imbalanced, leading to growing congestion across the memory hierarchy — specifically

Chapter 1. Introduction 3

Register File

L1

L2

DRAM

D
e

cre
asin

g B
an

d
w

id
th

Figure 1.1: Typical bandwidth hierarchy in GPUs

the caches. Therefore, a key challenge is to investigate the distribution of bandwidth de-

mand and the resultant bottlenecks across the memory hierarchy in GPUs, and evaluate

the design space to provision the cache hierarchy with appropriate bandwidth resources,

thereby mitigating the bandwidth bottlenecks.

1.1.2 Poor Cache Management

Typically, GPUs exhibit high cache miss rates, indicating that the cache performance

is far from perfect. This is partly because current GPU cache management techniques

are unable to utilize these caches effectively. One such inefficiency in current GPU

cache management policies is the repeated access to the shared L2 cache from different

L1 caches for the same data, arising due to inter-core data reuse. Such a policy is a

common occurrence in CPUs and is generally benign for performance when L1 miss

rates are low. In such cases, it does not excessively deplete the memory bandwidth.

In GPUs, however, such a policy is corrosive to the overall performance due to high

L1 miss rates. As a result, for memory-intensive applications, where performance is

constrained by memory bandwidth, such a policy aggravates the bandwidth issue by

repeated memory requests for data already cached elsewhere at the same level in the

memory hierarchy. Evidently, the policies that are suitable for CPUs may not be suitable

for GPUs. Therefore, it is critical to address the inefficiencies of the existing cache

management policies in GPUs to ensure effective usage of scarce bandwidth resources.

Notably, the inefficient usage of caches in GPUs is even more alarming considering

that the die area they occupy might otherwise be used to implement additional GPU

Chapter 1. Introduction 4

cores, which arguably hold much more importance to throughput-oriented computing

systems. For this to be an effective trade-off, the efficiency of the cache hierarchy must

be maximized.

1.1.3 High Thread-level Parallelism

GPUs employ a Single-Instruction Multiple-Threads (SIMT) execution model, which

requires a large number of threads to execute a set of similar instructions. Due to the

abundance of parallel work available in such systems, set of threads that encounter a

long latency memory operation are replaced by another set of threads that are ready

to resume execution, while the pending memory operations are completed. Therefore,

GPUs rely on a high degree of thread-level parallelism (via multithreading) to hide

the long latency of memory operations. Often, in compute-intensive applications

where long latency memory operations are infrequent, increasing the number of threads

available for multithreading continues to improve the latency hiding ability of GPUs.

However, in memory-intensive applications where memory instructions account for

a significant fraction of the total instructions, increasing the number of threads often

leads to a considerable increase in demand for memory resources such as caches and

memory bandwidth. Consequently, the high demand for memory resources overwhelms

the memory hierarchy and leads to poor memory system performance, giving rise

to problems such as cache thrashing and bandwidth bottlenecks. As a result, these

side-effects adversely affect system performance, thereby diminishing the benefits of

parallelism.

The problems of cache thrashing and bandwidth bottlenecks can be mitigated by

reducing the level of multithreading in the GPUs. However, the optimal level of

multithreading may vary significantly across different applications and architectures,

and therefore naively restricting multithreading can adversely affect throughput. Due

to this tension between thread-level parallelism and memory system performance, and

its direct impact on cache performance and bandwidth demand, balancing these two

properties poses a significant challenge.

1.1.4 Implications of Bandwidth Bottlenecks

Due to the bandwidth bottlenecks arising out of the above challenges, there can be severe

congestion across the memory hierarchy in GPUs. Such high levels of congestion lead

to increased average memory latencies, and this has three major implications. Firstly, in

Chapter 1. Introduction 5

memory-intensive applications, due to insufficient computation to mask high memory

latencies, such latencies appear in the critical path of system performance. Secondly,

high latencies of outstanding miss requests lead to prolonged contention for cache

resources such as Miss Status Holding Registers (MSHRs) and replaceable cache

lines. This effect increases memory latencies even further, as succeeding requests

get serialized and have to wait for outstanding misses to complete and relinquish the

resources. And thirdly, back pressure from a congested lower level further throttles

the cache pipeline and prevents it from operating at peak throughput, exacerbating the

bandwidth limitation in the cache hierarchy. The combination of the above factors

forces the cores to stall, leading to performance degradation.

1.1.5 Summary

In summary, we identify that the bandwidth bottleneck across the memory hierarchy

is a significant problem in modern GPUs; this is the key issue that we address in this

thesis. There are three principal factors that lead to bandwidth bottlenecks: firstly, the

growing bandwidth imbalance in the memory hierarchy; secondly, inefficient cache

management; and thirdly, high levels of thread-level parallelism. In memory-intensive

applications, these factors lead to high congestion in the memory hierarchy, thereby

adversely impacting performance.

1.2 Contributions

In this thesis, we propose the following three-pronged approach to address the band-

width bottlenecks arising out of the issues discussed in the previous section. Firstly,

we characterize the memory hierarchy with respect to the bandwidth bottlenecks and

propose cost-effective scaling of bandwidth resources. Secondly, we propose a coop-

erative caching mechanism for L1 caches to improve the caching efficiency in GPUs

with respect to the bandwidth demand on the lower levels. And thirdly, we propose a

machine learning technique to adaptively balance thread-level parallelism and memory

system performance. We discuss these strategies briefly in the remainder of this section,

followed by detailed evaluation and discussion in the subsequent chapters.

Chapter 1. Introduction 6

1.2.1 Cost-effective Scaling of Bandwidth Resources

In this proposal (detailed in Chapter 3), we address the challenge of rising imbalance in

the bandwidth hierarchy in GPUs, which is discussed in Section 1.1.1. We characterize

the bandwidth bottlenecks present across the memory hierarchy in GPUs and quantify

the stalls throughout the memory hierarchy. We use this characterization to identify

the architectural parameters that are most critical in alleviating congestion. We explore

the architectural design space to mitigate the bandwidth bottlenecks and show that the

performance improvement achieved by mitigating the bandwidth bottleneck in the cache

hierarchy can exceed the speedup obtained by a memory system with a baseline cache

hierarchy and High Bandwidth Memory (HBM) DRAM. This signifies the importance

of resolving bandwidth bottlenecks in the cache hierarchy, in comparison to simply

increasing off-chip memory bandwidth.

We also show that addressing the bandwidth bottleneck in isolation, at specific

levels, can be sub-optimal and can even be counter-productive. Therefore, we show

that it is imperative to resolve the bandwidth bottlenecks synergistically across different

levels of the memory hierarchy. With the insights developed in this proposal, we

perform a cost-benefit analysis and identify cost-effective configurations of the memory

hierarchy that effectively mitigate the bandwidth bottlenecks. We conclude this study

by presenting a cost-effective configuration that comprises an asymmetric crossbar

alongside scaled peripheral resources such as buffers and MSHRs. We show that our

final configuration achieves a performance improvement of 29% on average, with a

minimal area overhead of 1.5%, compared to the baseline modern GPU.

1.2.2 Cooperative Caching for L1 Caches

In this proposal (detailed in Chapter 4), we aim to address an inefficiency in the

traditional cache management techniques, which is discussed in Section 1.1.2. We

identify significant data reuse across different GPU cores, presenting an opportunity

to reuse data among the L1 caches. By sharing data among L1s, we aim to reduce the

pressure on the shared L2 bandwidth, thereby reducing the memory access latencies that

lie in the critical path. We show how data reuse can be exploited via an L1 Cooperative

Caching Network (CCN), thereby supplementing the existing bandwidth resources and

reducing demand on the shared L2 bandwidth. In the proposed architecture, we connect

the L1 caches with a lightweight ring network to facilitate inter-core communication of

shared data. We show that this technique reduces traffic to the L2 cache by an average

Chapter 1. Introduction 7

of 29%, freeing up the shared L2 bandwidth for other accesses. We also show that CCN

reduces the average memory latency by 24%, thereby reducing core stall cycles by

26% on average. This translates into an overall performance improvement of 14.7% on

average (and up to 49%) for applications that exhibit reuse across L1 caches. In doing

so, CCN incurs a nominal area and energy overhead of 1.3% and 2.5% respectively.

Notably, the performance improvement with our proposed CCN compares favourably

to the performance improvement achieved by simply doubling the number of L2 banks

by up to 34%.

1.2.3 Managing Thread-level Parallelism

In this proposal (detailed in Chapter 5), we address the adverse effect of high thread-level

parallelism on memory system performance, which is discussed in Section 1.1.3. We

present Poise, a novel approach that alters the warp scheduling mechanism in the GPU

to balance thread-level parallelism and memory system performance. Poise achieves

this by adding a set of two knobs to the warp scheduler. The first knob determines

the number of warps that can pollute the cache in order to improve memory system

performance, while the second knob determines the overall thread-level parallelism

in order to maximize the multithreading available in the system. Poise determines

these warp scheduling decisions using the following two major components: a machine

learning framework and a hardware inference engine. The machine learning framework

comprises a supervised learning model that is trained offline on a large set of profiled

kernels to make good warp scheduling decisions. This is achieved by learning a mapping

from a set of application and architectural features, to the warp scheduling decisions

that led to the best performance for a kernel. At runtime, the hardware inference engine

collects these features periodically using hardware performance counters, and uses the

mapping that was learned during training to dynamically predict good warp scheduling

decisions. As a result, Poise achieves a performance improvement of up to 2.94× and a

harmonic mean speedup of 46.6%, over the baseline greedy-then-oldest warp scheduler.

It also outperforms the prior state-of-the-art warp scheduler by an average of 15.1%,

while incurring minimal hardware overheads in contrast to prior techniques.

1.2.4 Summary

In this thesis, we investigate the bandwidth implications of the different levels of the

memory hierarchy and demonstrate how the current policies breach the latency tolerance

Chapter 1. Introduction 8

L1 L1 L1

L2

DRAM

(a) Baseline bandwidth hierar-

chy when high bandwidth de-

mand causes a bottleneck.

L1 L1 L1

L2

DRAM

(b) Scaling the existing band-

width resources in the cache

hierarchy.

L1 L1 L1

L2

DRAM
X XX X

(c) Supplementing the exist-

ing bandwidth resources in the

cache hierarchy.

L1 L1 L1

L2

DRAM

X XX X X XX X X XX X

X X
X X XX XX

(d) Utilizing the existing band-

width resources by reducing

the bandwidth demand.

Figure 1.2: Proposed three-pronged approach to address the bandwidth bottlenecks

across the memory hierarchy in GPUs. Bandwidth demand is represented by blue

arrows; reduction in bandwidth demand is represented by crossed red arrows; and

scaled or additional bandwidth resources are represented by red blocks.

property of GPUs by causing congestion across the memory hierarchy. The baseline

bandwidth hierarchy is represented in Figure 1.2a where high demand on the memory

hierarchy leads to a bandwidth bottleneck. Note that we omit register files from the

discussion as they are often underutilized for general-purpose applications [1, 121] and

are seldom a bandwidth bottleneck. We propose a three-pronged approach to address the

problem. Firstly, we investigate how to best scale the existing bandwidth resources in

the GPU through characterization and design space exploration (Figure 1.2b). Secondly,

we investigate how to best supplement the existing bandwidth resources through a

cooperative caching network for L1 caches (Figure 1.2c). And thirdly, we investigate

how to best utilize the existing bandwidth resources by balancing thread-level parallelism

and memory system performance (Figure 1.2d).

Chapter 1. Introduction 9

1.3 Published Work

Some of the contents of this thesis have appeared in the following publications:

• S. Dublish, Student Research Poster: Slack-Aware Shared Bandwidth Manage-

ment in GPUs, ACM SRC, The 25th International Conference on Parallel Archi-

tectures and Compilation Techniques (PACT), Haifa, Israel, September 11-15,

2016.

— Appears in Chapter 6 (Section 6.3).

• S. Dublish, V. Nagarajan and N. Topham, Characterizing Memory Bottlenecks in

GPGPU Workloads, IEEE International Symposium on Workload Characteriza-

tion (IISWC), Providence, Rhoda Island, USA, September 25-27, 2016.

— Appears in Chapter 3.

• S. Dublish, V. Nagarajan and N. Topham, Cooperative Caching for GPUs, ACM

Transactions on Architecture and Code Optimization (TACO), 13(4), 39, Decem-

ber 2016.

— Appears in Chapter 4.

• S. Dublish, V. Nagarajan and N. Topham, Evaluating and Mitigating Bandwidth

Bottlenecks Across the Memory Hierarchy in GPUs, IEEE International Sympo-

sium on Performance Analysis of Systems and Software (ISPASS), Santa Rosa,

USA, April 23-25, 2017.

— Appears in Chapter 3.

1.4 Organization

The remainder of this thesis is organized as follows: Chapter 2 provides a background

about GPU computing. Chapter 3 presents a characterization of bandwidth bottlenecks

in the memory hierarchy of GPUs and evaluates the design space for cost-effective

scaling of the bandwidth resources. Chapter 4 evaluates the reuse patterns for general-

purpose applications and presents CCN, a Cooperative Caching Network for L1 caches

in GPUs. Chapter 5 presents Poise, a warp scheduling policy to balance multithread-

ing and memory system performance, consequently lowering the demand for shared

Chapter 1. Introduction 10

bandwidth resources in the memory hierarchy. Chapter 6 concludes the thesis by sum-

marizing the findings and contributions of this work as well as exploring the scope for

future work.

Chapter 2

GPU Computing

Consumer graphics hardware started gaining attention as early as the 1980s — at the

time used primarily in arcade and console gaming devices. In the initial years, industry

efforts were focused towards enabling 2D graphics through a variety of video cards

and graphic adaptors [29, 48, 156]. Later, during the 1990s, further progress in the

graphics industry ushered in an era of 3D graphics and revolutionized computer graphics.

Throughout that decade, graphics hardware companies such as ATI (now acquired by

AMD), 3Dfx and NVIDIA dominated most of the consumer graphics industry. With the

turn of the century, NVIDIA introduced GeForce 256 [42] — the first commercially

available Graphics Processing Unit or GPU. In 2006, after a series of architectural

revamps and modifications, NVIDIA introduced the G80 series GPUs. It featured the

Unified Shader architecture — an array of unified and similar compute hardware units in

a GPU, in contrast to traditional graphics pipeline units with specialized functions such

as rasterization and pixel shading [104] — adding momentum to the rise of general-

purpose computing on GPUs, often known as GPGPU. The success of GPUs was fuelled

further by the introduction of CUDA (maintained by NVIDIA) and OpenCL (maintained

by the Khronos Group) — the parallel computing platform and programming models

that bolstered the general-purpose ecosystem around GPUs. CUDA and OpenCL

enabled GPUs to be used pervasively by the high performance computing community

across different domains by allowing users to conveniently express the parallelism in

their applications using these programming platforms. As a result, the current generation

of GPUs have not only pushed the gaming industry forward by leaps and bounds, but

have also emerged as a cornerstone of high performance computing for a variety of

general-purpose application domains.

In this chapter, we delve into the finer details of modern GPU computing and provide

11

Chapter 2. GPU Computing 12

Grid Thread Block Warp Thread

Figure 2.1: CUDA program structure

the necessary background for the remainder of this thesis. Note that we restrict our

discussion to NVIDIA GPUs as these are arguably the most prevalent discrete GPUs in

the industry. However, as GPUs from other vendors feature similar architectural features,

memory system organization and programming models, we expect our observations to

be applicable to other GPU architectures as well. In the remainder of this chapter, we

first present the CUDA programming model in Section 2.1, followed by an overview of

a modern NVIDIA GPU architecture in Section 2.2.

2.1 Programming Model

In a typical CPU-GPU system with a discrete GPU, the CPU is referred to as the host

and executes the serial or modestly data parallel sections of the application, whereas

the GPU is referred to as the device and executes the highly data parallel sections

of the applications. CUDA — formerly an acronym for Compute Unified Device

Architecture — is the standard parallel computing platform and programming model

developed by NVIDIA for its GPUs [32]. Figure 2.1 depicts a typical program structure

in CUDA. A CUDA program consists of data parallel structures called kernels that

comprise tens of thousands of threads. The host CPU launches the kernel on the device

GPU as a multidimensional grid of threads. Within a kernel, the large number of

threads are organized into structured blocks of computation known as thread blocks.

A device-level hardware scheduler in the GPU schedules the thread blocks to the

different GPU cores for execution. The policy to schedule thread blocks on GPU

cores can have a considerable impact on performance and has been evaluated in prior

work [75, 96, 154, 155, 102].

The maximum number of thread blocks that can be co-scheduled on each GPU core

at a given time is governed by the occupancy constraints specified by the vendor on

Chapter 2. GPU Computing 13

various system resources such as registers and threads. Therefore, the number of thread

blocks available for multithreading is restricted by the demand for constrained resources

posed by each thread block. Nevertheless, such a policy accords dynamism to GPUs in

determining the number of thread blocks that can be scheduled concurrently on each

GPU core, instead of restricting it to a constant number. As a result, it grants users

the flexibility to examine the trade-off between a smaller number of thread blocks per

GPU core, where each thread block is allotted higher resources, and a higher number

of thread blocks per GPU core, where each thread block is allotted fewer resources.

Expert programmers try to optimize their programs in order to maximize resource

usage without significantly sacrificing the degree of multithreading available on each

GPU core present in form of thread blocks [118, 83]. In addition, several mechanisms

have been proposed to relieve the programmer from the burden of computing the best

trade-off between the number of thread blocks and the resources allotted to each thread

block [13, 134, 135, 152, 105, 14, 164, 159].

The different thread blocks in a kernel are executed independently and can be

scheduled in any order. While threads within a thread block can be synchronized using

a barrier synchronization primitive in CUDA called syncthreads(), threads across

different threads blocks cannot be directly synchronized using similar programming

primitives. However, different thread blocks can communicate and collaborate implicitly

through the global memory. In addition, synchronization across thread blocks can

generally be enforced through the CPU by terminating and relaunching the kernel at

the desired synchronization points. However, such coarse CPU-driven thread block

synchronization occurs at a significant cost of additional communication between the

host and the device [147]. Several recent proposals have discussed methodologies to

extend or improve the existing synchronization primitives in GPUs through schemes

pertaining to GPU barrier synchronization [41, 160, 147, 114, 163, 168] and scope

synchronization [122, 142, 6], among others.

Each thread block consists of several smaller group of threads called warps — the

smallest granularity for scheduling threads within a GPU core. The threads within

a warp execute in a Single-Instruction Multiple-Threads (SIMT) fashion where the

hardware functional units execute the same instruction across multiple threads of a warp

in lockstep before moving to the next instruction. Instructions executed by the hardware

are called SIMD instructions, i.e., Single-Instruction Multiple-Data. SIMD instructions

operate on a vector of data, instead of scalar data items. The length of the vector is

known as the SIMD width.

Chapter 2. GPU Computing 14

In the case of control flow instructions, such as conditional branches, threads within

a warp may take different execution routes after resolving their branch condition.

This phenomenon is referred to as warp divergence. In such a scenario, hardware

executes the divergent sets of threads sequentially until they converge and continue

lockstep execution. High levels of control flow divergence often sacrifices the benefits

of parallelism, and this has been addressed extensively in prior work [45, 113, 133, 39].

In most CUDA-enabled GPU architectures, warp divergence also prevents the divergent

group of threads from communicating and sharing data due to their sequential execution.

The recent Volta architecture, however, supports independent thread scheduling by

maintaining per-thread scheduling resources (such as the program counter), instead of

per-warp scheduling resources. This gives finer thread scheduling control and allows

divergent threads to execute instructions in an interleaved fashion, enabling fine-grained

communication and synchronization between threads within a divergent warp [108].

Volta still follows the SIMT execution model as the same instruction is executed by

all active threads in a warp at any point in time, albeit with more flexible interleaving

between divergent threads.

2.2 GPU Architecture

A typical GPU consists of several functional units organized as a set of highly multi-

threaded and pipelined cores that are referred to as Streaming Multiprocessors or SMs.1

Figure 2.2 depicts a system-level diagram of a typical GPU. Each SM comprises a

unified shader pipeline consisting of fetch, decode, issue, execution and write-back

stages. The fetch stage retrieves the warp instructions from the instruction buffers,

while the decode stage resolves the operands and their associated dependencies. The

dependency between operands is recorded through a scoreboarding mechanism. The

scoreboard tracks the read-after-write (RAW) and write-after-write (WAW) dependency

hazards within and across warps by reserving registers for the decoded destinations

that require updating. If a subsequent instruction reads or writes a reserved register, a

dependency is flagged, which is then resolved at the write-back stage on completion of

the pending memory operation. Figure 2.3 illustrates these stages diagrammatically in

greater detail. More architectural details can be found in [141].

1In this thesis, we use the terms “core” and “SM” interchangeably, when referring to GPUs.

Chapter 2. GPU Computing 15

L2 Banks
D

R
A

M

C
h

an
ne

l

L2 Banks
D

R
A

M

C
h

an
ne

l

L2 Banks

D
R

A
M

C

h
an

ne
l

L2 Banks

D
R

A
M

C

h
an

ne
l

L2 Banks

D
R

A
M

C

h
an

ne
l

L2 Banks

D
R

A
M

C

h
an

ne
l

L2 Banks

D
R

A
M

C

h
an

ne
l

L2 Banks

D
R

A
M

C

h
an

ne
l

Interconnect

SM SM SM SM

SM SM SMSM SMSMSM SM

L1D SharedL1D Shared L1D SharedL1D Shared L1D SharedL1D Shared L1D SharedL1D Shared

L1D SharedL1D SharedL1D SharedL1D Shared

Interconnect

Figure 2.2: System-level architecture of a typical GPU

2.2.1 Warp Scheduling

Each SM consists of multiple hardware warp schedulers (not shown in the figures).

After the decode stage, a warp scheduler selects a warp from a pool of active warps

and issues them to the functional units, i.e., floating-point unit (FPU) or load-store unit

(LSU). A warp is termed active only when there exists a warp instruction that has all

the operands required for execution and the scoreboard detects no dependency hazard

with any outstanding memory operation. Once an active warp instruction is issued, it is

scheduled and executed in lockstep on the appropriate functional units, depending on the

instruction type. These functional units comprise multiple lanes of compute (floating-

point) and memory (load-store) pipelines. Furthermore, if the scoreboard detects a

dependency hazard with a pending memory operation, the corresponding warps are

descheduled and forced to stall. Such warps are referred to as inactive warps. The

inactive warps do not participate in multithreading until the pending memory operations

are completed. In such a scenario, the warp scheduler selects a warp from the pool of

active warps to replace the stalled inactive warp and allows continued execution, thereby

overlapping the latency of pending memory operations. When the pending memory

operations are completed, the missing operands are made available, thereby triggering

the write-back stage for pending memory instructions. As a result, the formerly reserved

registers are released and dependency hazards at the scoreboard are resolved. However,

in the event when no active warps are available, the functional units are forced to stall

Chapter 2. GPU Computing 16

Fetch

Decode

Issue LSU

Inst

MSHR

Instruction Cache

L1 Caches

L1 Miss Queue

Inst. Miss Queue

Response FIFO

In
te

rco
n

n
e

ct

Crossbar
Injection Port

SM

MSHR

FPU

L2 access queue

L2 response
queue

L2 Bank

L2 miss queue

to DRAM

from DRAM

DRAM response
queue

MSHR

Memory Partition

Data

Shared

Texture
Constant

L1

Figure 2.3: Baseline GPU architecture

and multithreading no longer hides the latency of outstanding memory operations. As a

result, memory latencies appear in the critical path and directly impact performance.

Memory-intensive applications are more susceptible to such a scenario due to the high

frequency of memory instructions that can potentially lead to a long latency memory

operation.

2.2.2 GPU Memory Hierarchy

Modern GPUs feature a memory hierarchy with impressively diverse memory units,

catering to a wide spectrum of request types supported by GPUs. We now explore the

different levels of the memory hierarchy and discuss some of their individual properties.

More details can be found in [141, 32].

Register Files. In each SM, multi-banked register files occupy the highest level in

the memory hierarchy to enable fast context switching between warps [113, 1, 111].

The register file is indexed by warp id and register id, and is used to store private data for

thousands of concurrent threads under execution. Typical modern GPUs, such as Kepler,

feature up to 65,536 32-bit registers per SM which amounts to 256 KB of register file

per SM. This is in stark contrast to traditional multiprocessors which feature only a few

hundred (or fewer) registers in the register file.

L1 Caches. The next level in the memory hierarchy is formed by the private caches

within the SM. These caches (enumerated below) include read-write memories such as

Shared Memory and L1 Data Cache, and read-only memories such as Constant Cache,

Texture Cache and Instruction Cache.

Chapter 2. GPU Computing 17

1. Shared Memory: The shared memory is allocated explicitly by the programmer

at thread block granularity and acts like a scratchpad for the programmer. The

shared memory data is private to the thread block for which it is allocated.

CUDA provides the shared memory space specifier to declare and allocate

shared memory in the device code. Shared memory is heavily banked to allow

simultaneous access to data for all threads of a warp in a single cycle. However,

poor memory access patterns can lead to bank conflicts, thereby serializing the

accesses and slowing down the warps [50, 165, 68].

2. L1 Data Cache: The L1 data cache is primarily used for caching global memory

accesses.2 Global memory is declared in CUDA using the device memory

space specifier and can be accessed globally by all threads of a grid. The scope of

global memory also extends to the host, and therefore host and device can transfer

data in the global memory space. Furthermore, the L1 data caches are non-

coherent and employ write-through, no-write-allocate policies for global memory

accesses. This implies that a write in the global memory space is performed

directly in the shared L2 cache, bypassing (on a write miss) or evicting (on a

write hit) the L1 data cache. However, GPUs support a weak memory consistency

model [40, 4], and therefore shared data in the remaining L1 data caches is not

invalidated upon a write, potentially allowing other SMs to continue reading stale

data from their respective L1 data caches. Therefore, to access the most recent

data in the global memory space, the programmer or the compiler must explicitly

bypass (and invalidate) the L1 data caches that can cache potentially stale data

and must read directly from the L2 cache.

In addition to global memory accesses, the L1 data cache also supports local

memory accesses. Local memory is private to each thread and is declared in

CUDA using the local memory space specifier. The L1 data cache employs

a write-back, no-write-allocate policy for local memory accesses. Compilers

use local memory space for a thread when there are not enough registers in the

register file to store private thread data.

3. Constant Cache: The constant cache is used for caching constant memory ac-

cesses. The constant memory is declared in CUDA using the constant

memory space specifier. Constant memory is read-only memory and can be

accessed by all threads of a grid. Similar to global memory space, the scope
2In the remaining chapters, we refer to L1 data cache simply as L1 cache, unless otherwise specified.

Chapter 2. GPU Computing 18

for constant memory extends to the host, allowing host and device to transfer

read-only data in the constant memory space. Constant memory is typically used

when all threads of a warp read from the same memory location and the data is

not expected to change over the course of execution.

4. Texture Cache: The texture cache is used for caching texture memory accesses.

The texture memory is a read-only memory that provides a global scope and

is assigned using device functions [32]. Typically, texture memory is used in

scenarios when threads of a warp issue reads to contiguous memory addresses,

exhibiting high spatial locality.

5. Instruction Cache: The instruction cache is a read-only cache accessed during the

fetch stage by each warp. A warp that has a valid instruction in the instruction

cache fills the instruction buffer and eventually proceeds to the decode stage.

However, in case of a miss in the instruction cache, a memory request is generated

and the corresponding warp is descheduled if there are no more instructions to be

decoded in the instruction buffer for that warp.

L2 Cache. The private caches are backed by a shared L2 cache that adopts a

write-back, write-allocate policy for L2 write requests. As shown in Figure 2.3, L2

cache is organized into multiple banks. A group of L2 banks form a memory partition

sharing a common channel to the off-chip DRAM. The requests to the L2 cache enter

the memory partition through the L2 access queues. Upon a read hit, the L2 cache line

is read out through the data port in the L2 cache into the L2 response queues. On a

read miss, a cache line is reserved in the L2 cache and a read to the DRAM is issued

through the L2 miss queue. When a fill request is received from the DRAM through the

DRAM response queue, the reserved cache line is filled and a subsequent fill request is

generated for the L1 cache, if required.

Interconnection Network. Each L2 cache bank communicates with the cores

through a crossbar interconnection network. There are separate interconnection net-

works for the request path (cores to L2 cache) and the response path (L2 cache to cores).

The request path carries read requests and write requests, whereas the response path

carries read responses and write acknowledgements. The crossbar transfers packets

at the granularity of flits. In an uncongested memory system, L2 cache has an access

latency of around 120 cycles from the L1 cache for non-texture accesses [141]. How-

ever, congestion and queueing delays due to bandwidth limitations can considerably

increase the latency to access the L2 cache and DRAM. For instance, due to large cache

Chapter 2. GPU Computing 19

line size, it often takes around 4-5 cycles just to push a single cache line through the

crossbar router at 32-byte flit granularity. As a result, for memory-intensive applications

that present a high demand on the interconnect, the cumulative queueing delay to push

multiple cache lines can be considerably high.

Graphics DRAM. The shared L2 cache is further backed by an off-chip graphics

DRAM or GDDR that has an additional access latency of around 100 cycles, excluding

the arbitration delays within the DRAM. Each memory partition has a memory channel

with an independent DRAM command scheduler queue where the DRAM requests wait

until the corresponding memory access commands are scheduled to the DRAM. DRAM

scheduler employs a FR-FCFS (First-Row First-Come-First-Serve) scheduling policy

to select a new request from the scheduler queue. Furthermore, each memory partition

is associated with multiple DRAM chips, where each DRAM chip is organized into

multiple banks. Multiple banks of a DRAM chip share a common bus that determines

the peak memory bandwidth of the DRAM. Values for the above DRAM parameters

used in this thesis are listed in Table 3.1 in the next chapter.

2.2.3 Memory Coalescing

Bandwidth is a critical resource in throughput-oriented architectures such as GPUs.

Therefore, GPUs employ several mechanisms to reduce the bandwidth demand on the

memory hierarchy. One such important technique is known as memory coalescing. As

threads in a warp operate on a vector of data, each thread can potentially generate an

independent memory request. When such threads generate highly regular memory

accesses, i.e., to consecutive words in the memory, all accesses span across a few cache

lines only. In such a scenario, the load-store unit coalesces the memory requests that fall

within the same cache line into a single request to the memory hierarchy. For instance,

when a warp with 32 threads access 4-byte words starting from a 128-byte aligned

address, all the addresses fall within a single cache line, assuming 128-byte cache line

size. As a result, 32 threads of a warp generate a single, highly coalesced memory

request. This phenomenon is known as memory coalescing. Such regular access patterns,

combined with memory coalescing, improve memory bandwidth by allowing multiple

loads to be serviced by fewer memory requests. In a different scenario, where threads

access words at 128-byte offset, warp generates 32 different memory requests — one

for each thread of the warp — significantly depleting memory bandwidth. Such access

patterns are known to exhibit high memory divergence [33, 136, 60, 84]. Programmers

Chapter 2. GPU Computing 20

often try to optimize the memory access patterns to reduce memory divergence in order

to maximize bandwidth [83].

After coalescing memory requests in the load-store unit, GPUs exploit another

opportunity to reduce the bandwidth demand on the memory hierarchy. This is done

through Miss Status Holding Registers (MSHRs) in the L1 and L2 caches. MSHRs

are fully-associative arrays and are used to track outstanding memory requests. For

every cache miss in progress, an MSHR entry is allocated in the corresponding cache.

Subsequent accesses to the pending cache lines are merged into an existing MSHR

entry that corresponds to the same address. Therefore, it eliminates redundant memory

requests to the lower levels of the memory hierarchy for cache lines that are already

being fetched. In other words, for every miss at the L1 and L2 caches, corresponding

MSHR entries are searched for an outstanding request for the same cache line. If no

existing entry is found, a new MSHR entry is created to track the new cache miss in

progress. However, if an entry is found in the MSHRs, the new cache miss is merged

with an existing MSHR entry that corresponds to the same cache line. Once the pending

memory request is serviced, the associated MSHR entries are freed and warps associated

with all the merged requests are serviced. Limiting the number of MSHR entries also

limits the maximum number of memory requests that can be in-flight at any time in the

memory system. Therefore, MSHRs determine the peak bandwidth demand that each

level of the memory hierarchy can pose on the lower levels of the memory hierarchy.

Chapter 3

Evaluating and Mitigating Bandwidth

Bottlenecks

In comparison to the traditional multiprocessors, GPUs present significantly different

requirements to the memory system. This is largely because of the throughput-oriented

nature of GPUs — a marked departure from the single-threaded and latency-oriented

processors. In GPUs, a large number of requests are made to each level of the memory

hierarchy in order to sustain the enormous parallelism in GPU cores. However, with

increasing off-chip bandwidth with newer memory technologies (such as HBMs) on

one side, and increasing number of streaming multiprocessors on the other side, the

intermediate cache hierarchy appears to be under-provisioned to handle such high

volumes of memory traffic. As a result, the bandwidth bottleneck — traditionally

limited to the off-chip memory — is distributed across the entire memory hierarchy,

including the cache hierarchy. This motivates us to further evaluate and understand the

bandwidth bottlenecks in GPUs so that we can provision the memory hierarchy with

adequate bandwidth resources and ensure a well-performing memory system.

3.1 Overview

In this chapter, we aim to characterize the severity of the bandwidth problem posed

by the three levels of the memory hierarchy, viz., private L1s, shared L2 and off-chip

memory, and also characterize the role of their peripheral network elements such as

interconnects and buffers. We show that due to bandwidth bottlenecks, there is severe

congestion between the L1 and L2, as well as between the L2 and off-chip memory.

As discussed in Chapter 1, such high levels of congestion lead to increased memory

21

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 22

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

bfs
cfd

dw
t2d

hybridsort

lavaM
D

leukocyte

nn nw sradv1

sradv2

sc bfs’
lbm

sad
stencil

ii m
m

pvr
ss AVG

 100

 200

 300

 400

 500

 600

 700

 800

Is
s
u

e
 S

ta
ll

(%
)

L
a

te
n

c
y

Stall L2-AHL AML

Figure 3.1: Issue-stall cycles, Average Hit Latencies to L2 (L2-AHL) and Average Memory

Latencies (AML) for memory-intensive applications.

latencies, which has three major implications. Firstly, in memory-intensive applications,

due to insufficient computation to mask high memory latencies, such latencies appear

in the critical path of system performance. Secondly, high latencies of outstanding

miss requests lead to prolonged contention of cache resources such as Miss Status

Holding Registers (MSHRs) and replaceable cache lines. This effect increases the

memory latencies even further as succeeding requests get serialized and have to wait

for outstanding misses to complete and relinquish the resources. And thirdly, back

pressure from a congested lower level further throttles the cache pipeline and prevents

it from operating at peak throughput, exacerbating the bandwidth limitation in the

cache hierarchy. A combination of the above factors force the cores to stall, leading to

performance degradation. In Figure 3.1 we show that a set of representative memory-

intensive applications, run on a simulated GTX 480 GPU, exhibit high average memory

latencies (AML; 452 cycles on average) and spend a considerable fraction of application

run time in a stalled state (62% on average) waiting for memory operations to complete.

Additionally, high average L2 hit latencies (L2-AHL; 303 cycles on average) indicate

that there is considerable congestion between the private L1 and the shared L2 cache,

and therefore suggests that the high average memory latencies are due to bandwidth

limitations in both the cache hierarchy and to off-chip memory.

In order to reduce congestion in the memory system, we explore several design

choices at each level of the memory hierarchy and evaluate their efficacy in alleviating

the bandwidth bottleneck. We conduct a design space exploration and show that solving

the problem in isolation, at specific levels of the memory hierarchy, can give sub-

optimal results and can even be counter-productive, only creating even more congestion

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 23

elsewhere in the memory system. For instance, we observe that to prevent throttling

of the L1 cache, increasing the L1 bandwidth by increasing the number of MSHR

entries to handle more outstanding misses can lead to performance degradation due

to even higher congestion between L1 and L2. We verify this observation on a real

GTX 480 GPU chip by increasing the core frequency, effectively increasing the L1

request rate, and observe a performance degradation (detailed discussion in Section 3.6).

On the other hand, matching the increased bandwidth demand of L1 at the L2 cache

significantly improves performance, and this even exceeds the performance achieved by

a memory system with baseline cache hierarchy and High Bandwidth Memory (HBM)

DRAM. Therefore, in order to efficiently solve the bandwidth bottleneck, we show that

it is imperative to address the bandwidth demands of different memory levels in tandem

and provide a synergistic solution. Additionally, we use the insights developed in this

chapter to perform a cost-benefit analysis and propose efficient ways to mitigate the

bandwidth bottlenecks at different levels of the memory hierarchy. Overall, this chapter

expands the understanding of the bottlenecks across the GPU memory hierarchy and

serves as a guide for architects and programmers to optimally scale bandwidth of the

memory hierarchy and write bandwidth-sensitive programs, respectively.

Organization: The remainder of this chapter is organized as follows. Section 3.2

presents the evaluation methodology and infrastructure adopted in this chapter. Sec-

tion 3.3 motivates the need for this study by showing that the bandwidth bottlenecks

across the memory hierarchy in GPUs breach the latency tolerance property of GPUs by

causing congestion. Section 3.4 quantifies the congestion levels across the GPU memory

hierarchy and explores the architectural causes. Section 3.5 present the various design

choices in the memory system to mitigate the bandwidth bottlenecks, derived from the

characterization of congestion across the memory hierarchy. Section 3.6 evaluates the

efficacy of mitigating the bandwidth bottlenecks through guided design space explo-

ration. Section 3.7 identifies cost-effective configurations of the memory hierarchy and

shows that synergistic scaling of L1 and L2 cache resources can reasonably match or

even exceed the benefits of an HBM DRAM, leading to a performance improvement of

up to 29% on average with a minimal area overhead of 1.5%. Section 3.8 discusses the

relevant related work. Section 3.9 concludes the chapter by summarizing the findings

and results.

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 24

Table 3.1: Baseline architecture parameters for GPGPU-Sim

Parameter Value

Core 15 SMs, Greedy-then-oldest (GTO) scheduler

Clock frequency Core @ 1.4 GHz; Crossbar/L2 @ 700 MHz

Threads per SM 1536

Registers per SM 32768

Shared Memory 48 KB

L1 Data Cache 16KB, 128B line, 4-way, LRU, write-evict,

32 MSHR entries, 8-entry miss queue

Interconnect Crossbar, Fly-topology, 32B flit size

L2 Cache 768 KB, 128B line, 8-way, LRU, write-back,

12 banks, 32 MSHRs, 8-entry miss queue,

32B data port width, 8-entry request queue

DRAM GDDR5 DRAM, Command clock 924 MHz, FR-FRCFS

384 bits net buswidth, 6 Memory Partitions,

2 DRAM chips/partition, 32-bits buswidth/chip,

8 bytes burst length, 16 DRAM banks/chip

DRAM Timing Constraints CCD = 2, RRD=6, RCD=12, RAS=28, RP=12,

RC=40, CL=12, WL=4, CDLR=5, WR=12

3.2 Background

In this section, we describe the evaluation framework used in the rest of the chapter.

This includes the target architecture, simulation framework and target workloads.

3.2.1 Baseline Architecture

In this study, we consider a baseline GPU architecture similar to NVIDIA’s Fermi

architecture [115, 141]. Notably, as the organization of the memory hierarchy is fairly

consistent across different architectures, we expect our observations to be applicable to

Kepler and Maxwell as well.

3.2.2 Simulation Framework

We model a GTX 480 Fermi GPU on a cycle-accurate simulator GPGPU-Sim (v3.2.2) [10]

with the baseline architectural parameters listed in Table 3.1. We use GPUWattch [98]

to compute the area and power in our experiments. GPGPU-Sim shows a high perfor-

mance correlation of over 97% against a Fermi GPU [141] and has been widely used in

prior works [132, 1, 121, 139, 5], and therefore reliably represents our findings.

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 25

Table 3.2: List of workloads. P∞: Speedup with infinite bandwidth memory system; PDRAM:

Speedup with a baseline cache hierarchy and infinite bandwidth DRAM.

Suite Benchmark Abbreviation P∞ PDRAM

1 MapReduce Matrix Multiplication mm 4.90 1.01

2 Parboil Lattice-Boltzman Method lbm 3.40 1.87

3 MapReduce Similarity Score ss 3.23 1.00

4 Rodinia Nearest Neighbour nn 3.11 1.84

5 Rodinia Hybrid Sort hybridsort 3.10 1.24

6 Rodinia Computational Fluid cfd 3.08 1.06

7 MapReduce Page View Rank pvr 2.89 1.01

8 Rodinia Breadth-First Search bfs 2.84 1.00

9 Rodinia Particle Potential lavaMD 2.70 1.00

10 Rodinia Stream Cluster sc 2.70 1.13

11 Parboil Breadth-First Search bfs’ 2.10 1.00

12 MapReduce Inverted Index ii 1.98 1.00

13 Rodinia Speckle Reduction sradv1 1.51 1.19

14 Rodinia Speckle Reduction sradv2 1.49 1.08

15 Rodinia Needleman-Wunsch nw 1.43 1.09

16 Parboil PDE Solver stencil 1.23 1.20

17 Rodinia Wavelet Transform dwt2d 1.20 1.14

18 Parboil Sum of Absolute Differences sad 1.16 1.09

19 Rodinia Tracking Microscopy leukocyte 1.08 1.00

Average 2.37 1.15

3.2.3 Workloads

For the purpose of this study we use applications from three major general-purpose

benchmark suites, viz., Rodinia (v3.0) [27], MapReduce [57] and Parboil [146]. In

Table 3.2, we list the memory-intensive benchmarks sorted by the speedup shown on an

infinite bandwidth memory system (P∞). We also show the performance improvement

observed on a memory system with baseline cache hierarchy and an infinite bandwidth

DRAM (PDRAM). We discuss the observations regarding P∞ and PDRAM in detail in

Section 3.3.2.

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 26

 0

 1

 2

 3

 4

 5

 6

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

Performance plateau

IP
C

 (
n

o
rm

a
liz

e
d

 t
o

 b
a

s
e

lin
e

)

L1 miss latency

cfd
dwt2d

leukocyte
nn
nw
sc

lbm
ss

Figure 3.2: Performance variation with increasing L1 miss latency.

3.3 Motivation

In this section, we motivate the need to investigate the bandwidth bottlenecks in GPUs

and discuss the potential benefits of mitigating congestion.

3.3.1 Limits of Latency Tolerance in GPUs

Multithreaded processors employ massive thread-level parallelism (TLP) to hide mem-

ory latencies. As discussed in Section 2.2.1, upon encountering an instruction that is

waiting on a long latency memory operation, the corresponding warp is descheduled

and an active warp (if any) is scheduled, thereby overlapping the latency of mem-

ory operation. Therefore, GPUs are usually tolerant to memory latencies. However,

memory-intensive applications often run into memory misses causing all of the warps

to stall due to pending memory instructions. In such a case, miss latencies get exposed

due to lack of sufficient overlapping computation, and therefore lie in the critical path,

adversely impacting performance.

Figure 3.2 shows the impact of memory latencies on performance, using a represen-

tative set of benchmarks from Table 3.2. In this study, we modify the memory hierarchy

of the baseline architecture (described in Table 3.1) so that all the L1 miss responses

are returned with a fixed and pre-determined latency that is varied in the simulator and

is represented on the x-axis. The resultant performance is plotted on the y-axis which is

normalized to the performance of the baseline architecture.

We observe that for most benchmarks such as nn, sc and lbm, the performance

remains fairly tolerant to modest L1 miss latencies. This is because the cores are

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 27

able to effectively overlap such latencies with the execution of independent operations,

in line with the philosophy of multithreaded architectures. However, when memory

latencies are higher, there is a direct impact on performance, indicating that such high

latencies lie in the critical path. For instance, IPC for nn reduces modestly from 3.3×
to 3.03× (normalized to baseline IPC) on varying the miss latencies from 0 to 250

cycles. However, further increasing the L1 miss latencies rapidly degrades performance,

reducing the IPC by 1.9× in the next 250 cycles. Furthermore, other benchmarks

such as leukocyte and dwt2d are sensitive to even lower latencies, indicating inefficient

thread-level parallelism.

We make two major observations about the baseline memory latencies, i.e., the point

on the x-axis where the performance curve intercepts the baseline IPC of 1× (shaded

region), and therefore matches the average memory latency of the baseline architecture.

First, the baseline memory latencies are significantly higher than the latencies of

performance plateau (or peak performance) for most benchmarks. Therefore, the

baseline performance is well beyond the effective operating range of latency tolerance.

And second, the baseline memory latencies are also significantly higher than the ideal

access latencies of L2 (120 cycles) and DRAM (additional 100 cycles via L2). This

suggests that there is considerable congestion in the memory system since traversing the

memory system takes significantly higher latencies than the minimum memory access

latencies of L2 and DRAM. In summary, the above results indicate that there exists a

significant opportunity to improve performance by reducing the latencies incurred due

to congestion in the memory hierarchy.

3.3.2 Performance Impact of Reducing Congestion

In Table 3.2, we have shown the speedup obtained with an infinite bandwidth memory

system (P∞) and observed an average performance improvement of 2.37×. In such a

case, L1 miss requests do not suffer any congestion-related slowdown in the memory

system and only incur the minimum memory access latencies of 120 cycles to L2 (for

non-texture accesses) and another 100 cycles to off-chip memory for L2 miss requests.

Therefore, the speedup can be mapped to Figure 3.2 between the latency range of 120

to 220 cycles, with the average memory latency depending on the L2 miss rate. We also

show the performance improvement with an infinite bandwidth DRAM appended to a

baseline cache hierarchy (PDRAM). In such a case, L1 miss requests suffer congestion-

related slowdown only in the cache hierarchy and access the off-chip memory with

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 28

 0

 0.2

 0.4

 0.6

 0.8

 1

m
m

lbm
ss nn hybridsort

cfd
pvr

bfs
lavaM

D

sc bfs’
ii sradv1

sradv2

nw stencil

dw
t2d

sad
leukocyte

AVG
U

s
a

g
e

 L
if
e

ti
m

e

(L
2

 a
c
c
e

s
s
 q

u
e

u
e

)

(0-25%) [25-50%) [50-75%) [75-100%) 100%

Figure 3.3: Occupancy levels in L2 access queue during the usage lifetime

a constant 100 cycle latency without incurring any congestion or timing limitations

in the DRAM. In this case we notice an average performance improvement of only

1.15×, which is considerably lower than the average P∞, which includes an infinite

bandwidth to both caches as well as DRAM. A comparatively lower performance

improvement for PDRAM suggests that the existing bandwidth bottleneck in the cache

hierarchy plays a crucial role in increasing the miss latencies, thereby slowing down

memory-intensive applications. In the subsequent sections, we investigate the cause of

such high congestion in the memory system, focusing not only on the off-chip memory

but also on the cache hierarchy since it is critical for performance. We also analyse

the finer implications of congestion that cause performance degradation. Using these

insights, we explore the opportunities to reduce the congestion-related latencies and

show how they translate to performance improvements.

3.4 Dissecting the Bandwidth Bottleneck

In a typical memory hierarchy, the bandwidth demand tapers down the memory sys-

tem [148]. In principle, this is because each level filters the bandwidth demand to the

lower level, and therefore the lower levels require only a fraction of bandwidth of the

higher levels. However, if the bandwidth provided by the lower level is insufficient to

service the bandwidth demand of the higher level, requests queue up in the memory

system due to the bandwidth skew between the adjacent levels of the memory. This

can lead to congestion in the network between the two levels, and as a consequence,

requests in the higher level will have to wait for longer durations to get serviced.

In Figure 3.3 and Figure 3.4, we quantify the congestion between adjacent memory

levels through an occupancy histogram of access queues to L2 and DRAM respectively.

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 29

 0

 0.2

 0.4

 0.6

 0.8

 1

m
m

lbm
ss nn hybridsort

cfd
pvr

bfs
lavaM

D

sc bfs’
ii sradv1

sradv2

nw stencil

dw
t2d

sad
leukocyte

AVG
U

s
a

g
e

 L
if
e

ti
m

e

(D
R

A
M

 a
c
c
e

s
s
 q

u
e

u
e

)

(0-25%) [25-50%) [50-75%) [75-100%) 100%

Figure 3.4: Occupancy levels in DRAM access queue during the usage lifetime

The stacked bars for each benchmark indicate the occupancy levels in the access queue,

aggregated throughout the usage lifetime of the queue. We define usage lifetime as the

time when the queues are occupied by at least one request. The occupancy histogram of

the buffers between the adjacent memory levels serve as a measure of the bandwidth

skew, indicating the degree of congestion between the two levels. In Figure 3.3 we note

that on average, the access queues to L2 are full (indicated by the 100% occupancy

bar in black) for 46% of their usage lifetime. Such high congestion aligns with the

observation of high L2 access latencies. Similar to the congestion between L1 and L2,

high bandwidth demand of L2 misses and low DRAM service rate causes the DRAM

access queues to get full leading to congestion between the two levels. In Figure 3.4 we

note that on average, DRAM access queues are full for 39% of their usage lifetime.

3.4.1 Implications of Congestion

Limited bandwidth to traverse the memory system and queuing delays due to congestion

lead to high memory latencies. Such high latencies are critical to system performance

and cause performance degradation (as shown in the post-plateau region in Figure 3.2).

In this subsection, we delve further into the finer implications of high latencies (and

congestion) and show how it leads to performance degradation. We summarize the

results in Figure 3.6.

Data and Fetch Hazards: When a warp encounters an instruction that is waiting on

a pending memory (or compute) operation due to a data dependency, it is descheduled

and no longer participates in thread-level parallelism. This condition is known as a

data hazard. Once the pending memory (or compute) operation completes, the data

dependency is resolved and the warp is allowed to resume execution. Since floating-

point operation latencies are fairly small, the majority of data hazards are caused by

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 30

pending loads [82]. When all warps are descheduled due to data hazards, which is often

the case in memory-intensive applications, the core is forced to stall. In such a scenario,

memory latencies contribute directly to stall cycles and govern how soon a warp can be

released from a data hazard to continue execution.

Since instruction cache misses share the congested memory system with irregular

data misses, high memory latencies drain the instruction buffers, thereby descheduling

the warp at instruction fetch. This is known as a fetch hazard. High instruction cache

misses can cause the fetch buffer to drain for all warps. This causes the core to stall

until the instruction misses complete and the warp resumes decoding.

Structural Hazards: High miss latencies can lead to prolonged contention for

limited cache resources that are used to maintain the context of outstanding miss

requests. This prevents the cache from sending new miss requests to the lower level

in the memory system. This condition is known as a structural hazard. This further

adds to the miss latency since the new misses get serialized, as they have to wait for

the pending requests to complete and relinquish the resources. A structural hazard can

occur due to a lack of free MSHR entries in a cache to hold the context of a new miss

request. Alternatively, since Fermi employs an allocate-on-miss policy for reserving

new cache lines, a structural hazard can also be caused due to a lack of replaceable

cache lines in a cache set if all cache lines are reserved by pending miss requests.

Memory Back Pressure: In a congested memory system, due to the inability of

network queues to accept new requests, preceding queues get full. This cascading

effect of congestion percolates up to the higher levels of the memory hierarchy and

is known as memory back pressure. When memory back pressure reaches the higher

level cache, it manifests as a structural hazard due to a lack of free entries in cache miss

queues, and therefore prevents the cache from issuing a new miss request. For instance,

back pressure from slow off-chip memory fills up the DRAM scheduler queue, in turn

causing the L2 miss queues to get full. This leads to a structural hazard in the L2 cache

as it cannot issue a new miss, thereby stalling the entire L2 cache pipeline. The back

pressure eventually percolates up to the L1 cache and throttles core performance.

Discussion: Apart from further increasing the miss latencies, structural hazards

(due to lack of cache resources or back pressure) have the following two major effects.

• Increased hit latencies. As structural hazards stall the cache pipeline, they prevent

the succeeding requests from accessing the cache even if such requests are cache hits.

This results in higher latencies for cache hits.

• Restricted parallelism on cores. A structural hazard in the load-store unit can

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 31

Mem Fetch

MSHR Size: 2

 Cycles (t) 1 2 3 4 5 6 7 8 9 10 11 12 13

 MSHR

 Issue

 Mem Op MISS MISS
FILL

MISS HIT
FILL FILL

ALU Op

Mem Fetch

MSHR Size: 2+

Cycles (t) 1 2 3 4 5 6 7 8 9

MSHR

 Issue

Mem Op MISS MISS
FILL

MISS
FILL

 ALU Op

FILL
HIT

LD r1, [0x0100]

LD r2, [0x0200]

LD r3, [0x0300]

MULT r7, r6, r5

MISS

MISS

MISS

Instruction Stream

Issue Stall

LD r4, [0x0400] HIT

I3I1 I2 I3 I4 I5

I1

I2

I3

I4

I5

I1 I2 I3 I4 I5

Figure 3.5: Illustrating the effects of structural hazards

cause all warps to stall when they attempt a memory instruction. This prevents the

independent instructions in the instruction stream from getting issued, as the preceding

memory instructions are waiting for the structural hazard to resolve, resulting in a false

dependency. This serialization of memory and compute instructions prevents the core

from hiding any further memory latencies, and thus performance suffers.

In Figure 3.5, we illustrate the above two scenarios with the help of an example.

In the first case, we assume an MSHR with two entries, thereby allowing only two

outstanding misses. Whereas in the second case, we assume a higher number of MSHRs

that do not pose a structural limitation. For the sake of simplicity, we assume 6 cycles

memory latency for an L1 load miss and 4 cycles for an ALU operation. In the first

case, upon encountering the first two load misses, i.e., I1 and I2 , the MSHR gets full

and can no longer accept any more misses. Since I3 is also a miss, it encounters a

structural hazard and therefore stalls the L1 cache pipeline, in turn stalling the load-

store unit (LSU). A succeeding cache hit in I4 needs to wait to access the L1 cache

as there is a blocking I3 waiting for prior misses to relinquish the MSHR resources.

Therefore, I4 gets serialized with the outstanding misses leading to a higher hit latency

of I4 . Additionally, a successive multiplication instruction, I5 , needs to wait in the

instruction queue as the previous instruction from the same warp is pending at the issue

stage. This structural dependency forces the execution units to remain stalled despite an

independent multiplication instruction in the instruction stream. Therefore, I4 proceeds

with the hit only at t = 8, after the response for the first load relinquishes an MSHR

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 32

 0

 20

 40

 60

 80

 100

m
m

lbm
ss nn hybridsort

cfd
pvr

bfs
lavaM

D

sc bfs’
ii sradv1

sradv2

nw stencil

dw
t2d

sad
leukocyte

AVG
Is

s
u

e
 S

ta
ll

D
is

tr
ib

u
ti
o

n
 (

%
)

data-MEM data-ALU str-MEM str-ALU fetch

Figure 3.6: Issue-stall cycle distribution depicting stalls due to data hazards (data-MEM

and data-ALU), structural hazards (str-MEM and str-ALU) and fetch hazard (fetch).

entry and unblocks the LSU. Thereafter, multiplication begins at t = 9 completing the

execution at t = 12. In contrast, in the second scenario with no structural hazards, all

independent instructions are issued successively. I4 results in a hit at t = 4 and ALUs

begin computation at t = 5, completing the execution at t = 8. Note that in real systems,

the miss latencies exceed hundreds of cycles, thereby magnifying the effect of such

structural hazards.

Summary: In Figure 3.6, we demonstrate the distribution of the core’s issue-stall

cycles and attribute the cause of stall to one of the following reasons: data hazard due

to a pending memory (data-MEM) or compute (data-ALU) operation; structural hazard

due to resource contention in memory unit (str-MEM) or compute unit (str-ALU); and

fetch hazard due to lack of instructions in the fetch buffer (fetch). As different warps can

encounter different hazards in the same cycle, we consider a stall cycle as a data hazard

when no warp can be issued due to existing data dependencies and the corresponding

functional units do not pose a structural limitation for at least one warp. Similarly, a

stall cycle is considered as a structural hazard when at least one warp, without any

data dependencies, can be issued but is forced to stall due to resource contention in

the corresponding functional units. We note that structural hazards from the memory

stage form a major portion of the stalls with an average of 71% of issue-stall cycles.

Data hazards due to pending memory instructions and fetch hazards contribute to 15%

and 8% of issue-stall cycles on average, respectively. On average, data and structural

hazards due to arithmetic units form very small portions of the issue-stall cycles, i.e.,

5.5% and 0.5% respectively.

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 33

 0

 20

 40

 60

 80

 100

m
m

lbm
ss nn hybridsort

cfd
pvr

bfs
lavaM

D

sc bfs’
ii sradv1

sradv2

nw stencil

dw
t2d

sad
leukocyte

AVGD
R

A
M

 b
a

n
d

w
id

th
 e

ff
ic

ie
n

c
y
 (

%
)

Figure 3.7: DRAM bandwidth efficiency

3.4.2 Causes of Congestion

In the previous sections, we observed that there is high congestion across the mem-

ory hierarchy due to distributed bandwidth bottlenecks, which leads to performance

degradation. In order to understand the design space for mitigating congestion, we now

explore the detailed causes of congestion by analysing each memory level in detail.

Off-chip Memory: Off-chip memory has been studied widely in the context of band-

width utilization [112, 79]. DRAM timing constraints, such as activate and precharge

delays, prevent DRAM from operating at peak throughput. Such constraints lead to low

bandwidth efficiency in the DRAM, i.e., the ratio of time when DRAM is transferring

data on the memory bus to the time when there is at least one pending request in the

DRAM scheduler queue. Therefore, a bandwidth efficiency of 100% would mean that

the DRAM is always operating at peak throughput. As shown in Figure 3.7, in our

experiments we observe a low average bandwidth efficiency of 41% and a maximum of

65% for stencil.

To improve bandwidth efficiency, several schemes have been proposed such as

improving row-buffer locality [169], bank-level parallelism [112] and prioritizing read-

over-writes [131]. For instance, as the overhead of opening a new row is high, reordering

requests to access an already opened row leverages row-buffer locality, thereby improv-

ing DRAM throughput. Bank-level parallelism is exploited by concurrently accessing

different banks in a DRAM chip, thereby masking the timing constraints across banks.

Prioritizing read requests over writes minimizes the performance critical latencies of

reads by trading off write latencies as they are not timing critical.

L2 Cache: Since L2 cache interacts with both DRAM at the lower level and L1

cache at the higher level, a myriad of factors can clog the L2 cache. Firstly, structural

hazards due to a lack of MSHRs or non-replaceable cache lines can block the L2

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 34

 0

 20

 40

 60

 80

 100

m
m

lbm
ss nn hybridsort

cfd
pvr

bfs
lavaM

D

sc bfs’
ii sradv1

sradv2

nw stencil

dw
t2d

sad
leukocyte

AVG
L

2
 S

ta
ll

D
is

tr
ib

u
ti
o

n

bp-ICNT port cache mshr bp-DRAM

Figure 3.8: L2 stalls due to back pressure from interconnect (bp-ICNT) and DRAM

(bp-DRAM) and contention on L2 data port, cache lines and MSHRs.

pipeline. Secondly, memory back pressure due to congestion in the DRAM access

queues can stall the L2 miss queue, creating another structural hazard at the L2 cache.

Thirdly, a busy L2 data port, due to an ongoing cache line fill from DRAM or an

ongoing read of an L2 cache line, can cause port contention, forcing the subsequent

L2 hits to wait before another cache line can be read. And finally, as L2 responses are

injected into the crossbar at the granularity of flits (or network packets), it can take

several cycles to inject an entire cache line. This forces the L2 responses to wait for

long durations in the L2 response queue, eventually asserting back pressure on the L2.

In Figure 3.8 we quantify the L2 cache stalls due to the above factors. We note

that on average, structural hazards due to a lack of MSHR entries and replaceable

cache lines contribute to 3% and 8% of L2 cache stalls. Memory back pressure from

DRAM contributes to 35% of total stalls, whereas L2 data port contention leads to

12% of stall cycles on average. Back pressure from L2 response queues due to slow

crossbar injection rate leads to 42% of L2 stalls on average, and is thus the main cause

of congestion at the L2 cache.

L1 Cache: We perform a similar analysis for L1 cache to determine the principal

factors that stall the L1 cache pipeline. L1 cache can stall due to structural hazards

on MSHRs as well as due to non-replaceable cache lines, similar to L2 cache. Also

structural hazard due to back pressure from L2 can stall the L1 cache pipeline. In

Figure 3.9 we quantify the impact of such parameters. We note that on average, MSHR

and cache line contention contribute to 41% and 11% of total L1 stalls and L2 back

pressure is responsible for 48% of L1 stalls. Therefore, back pressure from L2 appears

as the major cause in throttling the L1 cache, followed by MSHR contention and cache

contention.

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 35

 0

 20

 40

 60

 80

 100

m
m

lbm
ss nn hybridsort

cfd
pvr

bfs
lavaM

D

sc bfs’
ii sradv1

sradv2

nw stencil

dw
t2d

sad
leukocyte

AVG
L

1
 S

ta
ll

D
is

tr
ib

u
ti
o

n

cache mshr bp-L2

Figure 3.9: L1 stalls due to contention on cache lines and MSHRs, and back pressure

from L2 cache (bp-L2).

Summary: The above discussion provides insight into the reasons behind the stalls

in the memory system, and therefore serves as a guiding tool in adjusting the design to

best mitigate high congestion between different levels of the memory hierarchy. We

also observe the relative importance of parameters across caches. For instance, we note

that the scarcity of MSHRs in L1 caches has a huge impact as they contribute to 41% of

L1 stalls on average. On the other hand, MSHRs in L2 do not block the L2 cache as

they contribute to only 3% of L2 stalls. We also note that back pressure contributes to a

significant proportion of stall cycles at both L1 and L2 caches.

3.5 Consolidating the Design Space

In this section, we use insights from the above analysis to consolidate the design

parameters that can be effective in mitigating congestion in the memory hierarchy. In

the previous section, we observed that stalls at different levels of the memory hierarchy

prevent caches (and cores) from operating at peak throughput. However, removing

all such stalls and operating at peak throughput may not always alleviate congestion

as the peak throughput itself can be a limiting factor. Therefore, we classify the

microarchitectural parameters into the following two categories:

1) Type ‘=’: Parameters that minimize stalls, allowing for the caches and cores to

operate at peak throughput.

2) Type ‘+’: Parameters that increase the peak throughput.

In the following subsections, we identify such parameters for the above categories

and summarize our architectural design space in Table 3.3.

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 36

Table 3.3: Consolidated design space showing baseline, scaled (4×) and cost-effective

configurations.

Design Parameter Type Baseline value Scaled value (4×) Cost-effective

(a) DRAM

Scheduler queue = 16 entries 64 entries 16 entries

DRAM Banks = 16 banks/chip 64 banks/chip 16 banks/chip

Bus width + 384 bits 1536 bits 384 bits

(b) L2 Cache

L2 miss queue = 8 entries 32 entries 32 entries

L2 response queue = 8 entries 32 entries 32 entries

MSHR = 32 entries 128 entries 32 entries

L2 access queue = 8 entries 32 entries 32 entries

L2 data port + 32 bytes 128 bytes 32 bytes

Flit size (crossbar) + 32+32 bytes 128+128 bytes 16+48 bytes

L2 banks + 12 banks 48 banks 12 banks

(c) L1 Cache

L1 miss queue = 8 entries 32 entries 32 entries

MSHR (L1D) = 32 entries 128 entries 48 entries

Memory pipeline width = 10 40 40

3.5.1 Off-chip Memory

The baseline architecture employs a First-Ready First-Come-First-Serve (FR-FCFS)

scheduling policy that prioritizes accesses to an already opened DRAM row from a

pool of pending requests in the scheduler queue to achieve higher row-buffer hits. To

maximize the benefit of FR-FCFS scheduling, we increase the scheduler queue size

and allow the DRAM to search in a larger pool of pending requests and schedule more

row-buffer hits. Maximizing row-buffer hits allows the DRAM to operate closer to the

peak DRAM throughput, increasing the bandwidth efficiency. In order to maximize

bank-level parallelism, we increase the number of banks per DRAM chip while keeping

the size of the DRAM constant. This reduces the number of rows per bank and therefore

spreads the accesses to different banks, thereby increasing concurrency. Finally, to

increase the peak throughput of DRAM, we increase the bus width of each DRAM chip.

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 37

3.5.2 L2 Cache

To prevent throttling of L2 cache due to back pressure from DRAM, we increase the L2

miss queue size to allow more L2 misses to be buffered in the access path to DRAM.

Similarly, we increase the size of the L2 response queue to mitigate the back pressure

from the response network. To reduce structural hazards due to cache resources, we

increase the MSHRs. Stalls due to lack of non-replaceable cache lines can be resolved

by increasing the capacity or associativity of L2 cache. However, such parameters

reduce the miss traffic to the lower level, thereby altering the bandwidth demand. Since

we focus on performance of the memory system given a fixed bandwidth demand, we do

not alter these parameters as it leads to an unfair comparison in the context of bandwidth

bottlenecks. Instead, we increase the L2 access queue size to allow more requests to

be buffered at a stalled L2, avoiding back pressure to L1 cache. Therefore, all the

above parameters allow L2 (and higher levels) to operate closer to the peak throughput.

Finally, to increase the peak throughput of L2, we increase the L2 data port width,

crossbar flit size and L2 banks. We also note that other design parameters, such as L2

and crossbar frequencies, also achieve the goal of mitigating congestion. However, we

restrict ourselves to representative parameters that demonstrate the effect of increasing

the L2 bandwidth.

3.5.3 L1 Cache

We reduce the impact of back pressure from L2 cache by increasing the L1 miss queue

size. We also increase the MSHR entries to reduce the structural hazards. Similar to L2,

we do not increase the capacity and associativity of the L1 cache to mitigate cache line

contention. Instead, we increase the width of the memory pipeline on the core to allow

the load-store unit to buffer more pending cache requests. The above parameters prevent

the core from throttling, thereby allowing it to operate closer to the peak throughput.

3.6 Design Space Exploration

In this section, we evaluate the design space by scaling the bandwidth of different levels

of the memory hierarchy through the architectural knobs listed in Table 3.3. As a typical

HBM [56] provides up to 4× bandwidth compared to GDDR5 DRAM, we evaluate

similar factor of scaling in other levels of the memory.

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 38

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

m
m

lbm
ss nn hybridsort

cfd
pvr

bfs
lavaM

D

sc bfs’
ii sradv1

sradv2

nw stencil

dw
t2d

sad
leukocyte

AVG

IP
C

 (
n

o
rm

a
liz

e
d

 t
o

 b
a

s
e

lin
e

)

L1 L2 DRAM L1+L2 L2+DRAM All
2.98x 3.15x

Figure 3.10: IPC gain with 4× design-point scaling of bandwidth resources in L1, L2,

DRAM and synergistically across different levels.

3.6.1 Results

In Figure 3.10, we demonstrate the results obtained by scaling the design parameters by

a factor of 4×. We begin by discussing the performance improvement from increasing

the bandwidth in independent levels of the memory hierarchy. Later, we discuss the

combined effects of increasing the bandwidth across adjacent memory levels, followed

by scaling the bandwidth across the entire memory hierarchy.

L1 Cache: On increasing the L1 resources, we see an average performance im-

provement of 4%. We observe the maximum speedup of 240% for sc followed by a

speedup of 16% for c f d. The reason for the observed speedup lies in the fact that

increased resources reduce the structural hazards on L1 cache. This results in better

overlap of memory operations with computation and lower latencies of cache hits, as

illustrated in Figure 3.5.

On the other hand, for some other benchmarks, the performance drops when the

L1 resources are increased. For instance, mm and ii suffer a slowdown of 33% and

25% respectively. This is because, although increasing the L1 resources allows the L1

cache to operate at peak throughput, at the same time it also leads to higher congestion

between L1 and L2, as the increased bandwidth demand of L1 is not matched by the

bandwidth provided by L2. Since higher congestion causes greater interleaving of

requests from different cores, requests from the same core (and therefore same warps)

get more sparse in the memory system, thereby delaying the tail request of a warp.

Since a core can resume execution only on receiving all the memory requests generated

by a warp, it causes significantly higher stalls as none of the cores can resume execution

any earlier than baseline. Additionally, we also notice a significantly higher L2 miss rate

for applications showing slowdown. For instance, the L2 miss rate increases from 16%

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 39

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

1.2 1.3 1.4 1.5 1.6

IP
C

 (
n
o
rm

a
liz

e
d
 t
o
 b

a
s
e
lin

e
)

Core Frequency (GHz)

nn
hybridsort

sradv2
bfs
cfd

leukocyte

Figure 3.11: Core frequency variation on real GTX 480 GPU.

to 58% for mm and from 15% to 62% for ii. This is also due to higher interleaving of

request streams from different cores that exhibit low inter-core locality, thereby causing

cache thrashing and destroying the intra-core locality in the L2 cache.

We verify the above behaviour on a real GTX 480 GPU by increasing the core

frequency for representative benchmarks and note a performance degradation of up to

10%, as shown in Figure 3.11. Increasing the core frequency is analogous to increasing

the L1 cache resources as it increases the request rate (or bandwidth demand) from

L1 to L2. Interestingly, performance improves on reducing the core frequency as the

reduced bandwidth demand by L1 resonates well with the bandwidth offered by L2.

L2 Cache: By scaling the L2 cache resources, we observe an average performance

improvement of 59%. We observe the maximum speedup of 266% for mm, which is

also the most bandwidth-sensitive application. A significant performance improvement

by scaling the L2 parameters signifies the criticality of the L2 bandwidth to the overall

system performance.

Off-chip Memory: Upon increasing the DRAM bandwidth, we observe an average

performance improvement of 11%. We observe the maximum speedup of 61% for

lbm followed by a speedup of 60% for nn. Note that the improved DRAM bandwidth

matches the bandwidth offered by High Bandwidth Memory (HBM) and is representa-

tive of HBM performance. We note that the average improvement is in close proximity

to the performance improvement of 15% obtained on a memory system with baseline

cache hierarchy and an infinite bandwidth DRAM (average PDRAM). However, it is

considerably less than the performance improvement achieved on increasing the L2

cache bandwidth.

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 40

L1 and L2 Cache: Upon synergistically increasing the bandwidth of the cache

hierarchy, we observe an average performance improvement of 69%. We note that it

is higher than the sum of gains obtained by improving the bandwidth in both cache

levels independently, i.e., 4% from L1 and 59% from L2. We observe in mm that

even though increasing the L1 bandwidth alone resulted in performance degradation of

33%, increasing the L1 bandwidth with L2 results in a performance improvement of

276%, which is even higher than the 266% obtained by increasing the L2 bandwidth

alone. A similar effect is seen in ss. We can therefore conclude that despite a slowdown

on increasing the structural resources at L1, synergistic scaling of L1 and L2 results

in a much higher performance improvement, which is greater than the standalone

improvement of L2. We also observe that the average speedup by mitigating the

bandwidth bottleneck in the cache hierarchy (69%) is significantly better than the

speedup obtained by a memory system with baseline cache hierarchy and an HBM

DRAM (11%).

We note an exception for ii, where combined scaling of L1 and L2 led to a lower

speedup when compared to standalone scaling of L2 cache. However, we verify in

our experiments that on further increasing the L2 bandwidth, synergistic scaling starts

giving better results. This indicates that for ii, the increased L2 bandwidth in Figure 3.10

is not yet sufficient for the increased bandwidth demand of L1.

L2 and Off-chip Memory: We observe an average performance improvement of

76% upon increasing the bandwidth at both L2 and DRAM. It is worth noting this is in

close proximity to the average speedup obtained by synergistically scaling the L1 and

L2 bandwidth (69%).

All Memory Levels: We observe an average performance improvement of 90% on

increasing the bandwidth of the cache hierarchy as well as the off-chip memory.

3.6.2 Summary

We conducted a limited design space exploration on architectural parameters relevant to

the memory bandwidth in GPUs. We observed an average speedup of 4%, 59% and

11% on increasing the bandwidth of L1, L2 and DRAM alone. We further observed

an average speedup of 69% and 76% on increasing the combined bandwidth of L1-L2

and L2-DRAM. Finally, we observed an average speedup of 90% on increasing the

bandwidth of the entire memory system. Therefore, we demonstrate the criticality of

cache hierarchy in mitigating congestion. We also demonstrate that synergistic scaling

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 41

yields better results than increasing the bandwidth of the memory levels independently.

And finally, we show that mitigating congestion in the cache hierarchy exceeds the

benefit obtained by a memory system with HBM DRAM.

3.7 Cost-Benefit Analysis

In Section 3.5, we classified the architectural design space into two categories: Type

‘=’ and Type ‘+’. Later, we evaluated the effect of scaling these parameters by a factor

of 4×. However, such scaling across all parameters is typically not practical due to

cost overheads. Therefore, we qualitatively analyse the cost versus benefit associated

with the parameters in the design space and arrive at a cost-effective configuration to

scale the bandwidth across the memory hierarchy. We summarize the cost-effective

configuration parameters in Table 3.3.

3.7.1 Cost-effective Design Space

Type ‘=’ parameters listed in Table 3.3 typically include buffers and MSHRs, and enable

the memory levels to operate closer to the peak throughput. Buffers are simple structures

and present minimal overhead in scaling. However, MSHRs are fully associative arrays

and indexing high number of requests can be expensive. Since we have already observed

in Figure 3.8 that L2 seldom stalls due to MSHR contention, we consider increasing

MSHRs only in the L1 cache.

Type ‘+’ parameters in the cache hierarchy such as crossbar flit size, L2 data port

width and L2 banks are more complex than simple buffers and MSHRs, and therefore

incur considerable cost in scaling. As shown in Figure 3.8, L2 data port only contributes

to 12% of total L2 stalls on average. Due to its low contribution to the overall L2 stalls,

we do not consider it for scaling. On the other hand, back pressure from interconnection

network contributes to 42% of L2 stalls on average. While both L2 banks and flit size

improve interconnect bandwidth and resolve such stalls, we do not consider increasing

the L2 banks. This is because each L2 bank has an independent port to the crossbar;

therefore, increasing the L2 banks would lead to higher number of routers in the crossbar,

in turn increasing the router area. In addition, router at the cores would need to arbitrate

over higher number of destinations, increasing the energy demands of the crossbar.

Instead, we only increase the flit size of the crossbar as it increases the point-to-point

bandwidth without significantly increasing the router area or arbitration energy.

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 42

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

m
m

lbm
ss nn hybridsort

cfd
pvr

bfs
lavaM

D

sc bfs’
ii sradv1

sradv2

nw stencil

dw
t2d

sad
leukocyte

AVG

IP
C

 (
n

o
rm

a
liz

e
d

 t
o

 b
a

s
e

lin
e

) 16+48 16+68 32+52 HBM

3.04x
2.97x

3.03x

Figure 3.12: Performance gain with cost-effective configurations in order of increasing or

equal cost overheads, normalized to the baseline architecture.

3.7.2 Asymmetric Crossbar

The baseline crossbar offers a uniform flit size of 32 bytes for all nodes between core-

to-L2 as well as L2-to-core. However, the bandwidth demand of the reply network

(L2-to-core) is higher than that of the request network (core-to-L2). This is because

the majority of request packets are load requests that amount to only 8 byte packets,

whereas the majority of reply packets are load responses that amount to 128 byte cache

lines. Although write requests in the request network present a higher bandwidth

demand, such requests are relatively infrequent and the latency for such requests is

not in the critical path of system performance. Therefore, we consider an asymmetric

crossbar with lower request bandwidth (16 bytes) and higher reply bandwidth (48

bytes), henceforth referred to as the 16+48 crossbar configuration. Note that we do not

increase the net area of the crossbar as the total number of point-to-point wires in the

16+48 crossbar are same as the baseline 32+32 crossbar. We also discuss other crossbar

configurations such as 16+68 and 32+52 with minor cost overheads over the baseline

architecture.

3.7.3 Results with Cost-effective Configuration

As shown in Figure 3.12, for the 16+48 cost-effective configuration summarized in

Table 3.3, we observe an average performance improvement of 23.4%. It exceeds

the average performance improvement of 11% with HBM. We note an exception for

lavaMD which shows a performance drop of 37%. This is because lavaMD is limited

at L1 by the L2 back pressure (Figure 3.9) which gets aggravated due to reduced flit size

in the request network. Even increasing the interconnect reply bandwidth does not cause

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 43

much benefit as it is limited at L2 by the data port width (Figure 3.8). Additionally, in

our experiments we note that a standalone asymmetric crossbar without scaling other L1

and L2 parameters result in a lower speedup of 15.5%, thus emphasizing the importance

of synergistic scaling.

We also evaluate 16+68 and 32+52 cost-effective configurations and observe a

performance improvement of 29% and 25.7% respectively. While both the above

crossbar configurations have equal point-to-point connections in total, we notice higher

reward in investing more bandwidth in the reply network due to its higher bandwidth

demand.

Overhead: We use GPUWattch [98] to estimate the area of our proposed architec-

ture. We first compute the additional storage required in the cost-effective configuration

for buffers and MSHRs. We assume each buffer entry to be 128 byte wide, while each

miss queue and MSHR entry to be 8 byte wide. This results in a net storage overhead

of 94 KB and amounts to an area overhead of 6.9 mm2 at 40 nm technology, computed

using existing values in GPUWattch. This amounts to an overall increase in the die area

by 0.98% with respect to the baseline processor area of 700 mm2. We do not report

power overhead as it is minimal and within the margin of error of the simulator.

The baseline 32+32 interconnection network occupies a total area of 27 mm2,

while the wires contribute to 11.6 mm2. Therefore, on increasing the point-to-point

connections by 20 bytes in 16+68 and 32+52 crossbar, we incur an additional overhead

of 3.62 mm2. Therefore, along with overhead of buffers and MSHRs, the above two

configurations result in a net area overhead of around 1.5%.

3.8 Related Work

In this section, we discuss prior work related to the proposals discussed in this chapter.

3.8.1 Cache Bypassing and Request Reordering

Several prior schemes have been proposed for GPUs to reduce the performance impact

of bandwidth bottlenecks and high memory access latencies. Some of these schemes

pertain to bypassing congested memory resources, while others include reordering

memory requests to maximize cache performance and minimize bandwidth demand.

Jia et al. [70] proposed a memory request and prioritization buffer (MRPB) where they

bypass the L1 cache when high contention is detected due to memory back pressure or

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 44

structural hazards at the L1 cache. This helps prevent stalling of the memory pipeline

and reduces the impact of congestion and bandwidth bottlenecks on performance. They

also propose reordering of memory requests from different warps and thread blocks

to improve the locality in the access stream. Through such reordering, requests from

the same source, such as warp or thread block, are grouped together to minimize cache

thrashing as they are expected to have higher locality. The new order of requests allows

for more cache-friendly access patterns, thereby improving cache performance. Li

et al. [99] proposed a more proactive way of cache bypassing, rather than reactively

bypassing the cache upon detecting congestion. In order to do so, they detect the locality

in the access stream and allow the L1 cache to be used only for requests with high reuse

and short reuse distances. The remaining accesses bypass the L1 cache proactively,

thereby reducing cache thrashing and circumventing congestion. In their scheme, the

reuse characteristics are maintained and preserved by decoupled tag and data arrays in

the L1 cache. Xie et al. [161] proposed a coordinated static and dynamic scheme to

perform cache bypassing. At compile time, they determine the loads that demonstrate

high locality and mark such loads to be allocated in the cache. On the other hand, loads

with poor locality are marked to bypass the cache. At runtime, the hardware uses the

above prior knowledge about locality characteristics to bypass or allocate the cache.

However, loads with moderate locality characteristics are selectively bypassed for a

fraction of thread blocks, where this balance is determined dynamically on the basis

of cache contention and resource congestion. Furthermore, Chen et al. [28] proposed

a hybrid scheme with coordinated cache bypassing and warp throttling (CBWT). In

their scheme, they enable cache bypassing on detecting high contention for cache

resources, thereby protecting cache lines with high reuse to reduce cache thrashing.

In addition, they monitor the NoC latencies and enable dynamic warp throttling when

high congestion in the memory system is observed. They do so by iteratively altering

the number of warps by hill climbing to optimize NoC latencies, thereby regulating

congestion. More recently, Lee and Wu [94] proposed Ctrl-C, an instruction-based

scheme that detects the reuse characteristics at per-instruction granularity and alters

the bypass aggressiveness accordingly for each instruction. Similarly, Koo et al. [86]

proposed APCM, an instruction-based scheme to not only bypass, but also to protect

cache lines using instruction locality characteristics. In their scheme, they detect

streaming access patterns in a single warp and use that to bypass the L1 cache for

similar instructions from the remaining warps. In addition, they detect instruction

sequences that show high tendency for reuse, such as loops, and protect high locality

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 45

cache lines in the L1 cache only for the duration of these instruction sequences.

Sethia et al. [139] recognized memory back pressure as a significant problem in

GPUs. In their scheme, they allow memory requests to continue accessing the L1 cache

despite a stalled LSU. This helps in resolving false dependencies and serialization

caused by structural hazards and memory back pressure, thereby allowing the hidden

hit-under-miss requests to access the L1 cache without explicitly waiting for the back

pressure to resolve. In turn, this helps in reducing the hit latencies and improving hit

rate in the L1 cache. They also proposed a scheduling policy where memory requests

from a single warp are issued to the memory system, instead of issuing memory requests

from all warps. This helps in enabling at least one warp to be serviced quickly so that

it can resume execution. On similar lines, Kim et al. [82] explored an opportunity

where independent instructions in a warp that follow the dependent instruction can be

executed while the warp is waiting for outstanding memory accesses to complete. This

is in contrast to baseline scheme where warps are descheduled on encountering the

first dependent instruction that is waiting on a pending operation. Subsequently, they

proposed pre-execution of such newly extracted independent instructions in the warp.

The output of such instructions is stored temporarily in renamed physical registers. This

pre-executed output is then utilized in the actual execution sequence, thereby preventing

write-after-write and write-after-read hazards that might occur due to reordering. This

improves the latency hiding ability of the GPU due to higher opportunities to overlap

memory latencies.

In summary, the above cache bypassing and request reordering schemes allow GPUs

to circumvent the stalls arising due to bandwidth bottlenecks or reduce the bandwidth

demand by improving cache performance. In contrast, our focus in this chapter is to

mitigate the stalls (not circumvent the stalls) by improving the bandwidth resources,

for a given bandwidth demand and cache performance (not reducing the bandwidth

demand). Given the huge bandwidth bottleneck in current GPUs, we expect above

techniques to be complimentary to our proposed cost-effective design space. Several

other proposals related to cache management and warp scheduling aim to maximize

cache utilization to reduce the bandwidth demand by capturing locality in the caches

and reducing thrashing. These proposals are presented and discussed in the subsequent

chapters (see Section 4.7 and Section 5.8).

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 46

3.8.2 On-chip Networks in GPUs

In the field of interconnection networks, several prior studies have recognized the

importance of NoC bandwidth in GPUs. Bakhoda et al. [11] proposed a checkerboard

organization of the mesh network where routers alternate between full-routers and

half-routers. A full-router provides full connectivity between all ports in a 2D mesh,

whereas a half-router limits the connectivity, thereby simplifying router design to

exploit many-to-few and few-to-many traffic pattern in GPUs. Kim et al. [80] proposed

DA2mesh, a cost-effective design to reduce congestion by increasing the NoC frequency

in GPUs, while maintaining the same channel width. They assume a mesh topology

for the interconnection network in their study. They also identify the criticality of

response network with respect to bandwidth demand. Subsequently, they propose a

heterogeneous NoC which consists of non-identical request and response networks. For

the request path, they employ the baseline 2D mesh, whereas for the response path, they

propose a direct all-to-all network overlaid on mesh with direct connections between

memory controllers and SMs. Direct connections reduce arbitration, thereby simplifying

the router and relaxing critical path requirements, allowing higher router frequency.

On similar lines, Mishra et al. [110] identified that a single monolithic interconnection

network is not suitable for CPU applications with divergent needs. Therefore, they

proposed heterogeneous and multiple interconnection networks, individually customized

for latency-sensitive and bandwidth-sensitive applications. The bandwidth-sensitive

design provides a wider but low frequency network, whereas latency-sensitive design

provides a narrower but high frequency network. While this chapter focusses on

different bandwidth demands for request and response path within the same application,

the above work is similar in the fact that it identifies the need for heterogeneity in

designing interconnection networks based on divergent bandwidth demands. Ziabari

et al. [175] evaluated the design space across different network topologies for GPU

workloads. They proposed independent and parallel networks for reply and response,

while also eliminating L1-to-L1 connections for energy efficiency — this is used as

a baseline in this chapter. In addition, they also recognized the lower bandwidth

demand of the request network in comparison to the response network. Therefore,

they proposed an asymmetric NoC architecture by shrinking the width of the request

network to improve energy efficiency. In our work, we share the above observation

about asymmetric bandwidth requirements for request and response networks. However,

we perform a design space exploration across the entire memory hierarchy, going

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 47

beyond interconnection networks. Thereafter, we motivate a synergistic improvement

of bandwidth across the memory hierarchy, i.e., an asymmetric interconnection network

alongside improvements to other bandwidth resources across the memory hierarchy

as well, such as MSHRs and buffers. Zhao et al. [173] also exploited the asymmetry

in bandwidth requirements for request and response networks. While using a mesh

network as baseline, they proposed cfNOC, a conflict-free design consisting of column-

independent token mesh for the request network. This leads to simplified router design

by removing input buffers, VC allocator and switch allocator from baseline router

design in the request network, thereby reducing the hardware cost. In a subsequent

work, Zhao et al. [172] demonstrated that the response network is often congested and

leads to high queuing latency for GPGPU workloads. They proposed HRCnet, which

consisted of a ring-chain network for the response path. They show that the proposed

ring network allows for higher channel width, without increasing the overall bisection

bandwidth. Therefore, HRCnet results in lower queueing latencies and scales gracefully

under high injection rates, providing a better alternative to 2D mesh networks in GPUs.

In contrast to the above prior techniques, we motivate a synergistic treatment of the

bandwidth bottleneck in GPUs.

3.8.3 Design Space Exploration

In prior work, analytical models have been proposed to explore the architectural design

space and construct balanced memory hierarchies with respect to bandwidth. Sun et

al. [148] proposed Moguls, an analytical model to optimize the memory hierarchy design

by quickly exploring the design space suitable for an application. The model computes

the optimum bandwidth, cache levels and cache capacity to match the bandwidth

demand of an application. Gulur et al. [52] proposed ANATOMY, a queuing theory

based analytical model to study the off-chip memory design space in multicores. In

their model, they first capture the key workload characteristics, such as memory access

locality and bank-level parallelism, that are relevant to model the memory system

performance. Thereafter, these workload characteristics are evaluated with a simple

queuing model of the off-chip memory across different configurations and design

choices to estimate memory system performance. In contrast to the above proposals, we

investigate the finer parameters that lead to congestion in the existing memory hierarchy.

Therefore, we go beyond off-chip memory by including parameters such as MSHRs,

interconnect bandwidth, etc., that lead to congestion in a given memory hierarchy. In

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 48

addition, we mitigate congestion without changing the cache capacity and the number

of memory levels, i.e., maintaining a fixed bandwidth demand. Therefore, proposals

that alter the bandwidth demand are orthogonal to our work.

O’Neil and Burtscher [121] evaluated the performance bottlenecks in GPUs due to

control flow divergence and memory access irregularity. They also examined the impact

of cache size, latency and bandwidth, as well as main memory latency and bandwidth.

They observed a trend that GPUs are more sensitive to L2 bandwidth than DRAM

bandwidth for irregular workloads, an observation also made in our work. However, in

our work, we perform a more fine-grained analysis of the microarchitectural bottlenecks.

Additionally, we go beyond examining the bandwidth trends in the memory hierarchy,

and propose a cost-effective design space based on the insights about stalls in the

memory hierarchy. Alsop et al. [5] proposed GSI, a GPU stall inspector to identify

source of stalls in tightly coupled heterogeneous CPU-GPU architectures, in contrast to

discrete GPUs as done in our work.

3.9 Conclusion

In this chapter, we evaluate the bandwidth limitations posed by the memory hierarchy

in GPUs. We observe that the bandwidth bottlenecks are distributed across the entire

memory hierarchy and are not just limited to the off-chip memory. We also observe that

bandwidth bottlenecks lead to high congestion in the memory hierarchy, in turn leading

to high latencies that appear in the critical path. We characterize the stalls across the

memory hierarchy and isolate the causes of congestion at each memory level.

After a rigorous characterization of the bandwidth bottlenecks, we identify the

key architectural parameters across the memory hierarchy that prevent the different

levels from operating at peak throughput or inherently limit the peak throughput. Using

these architectural knobs, we perform a design space exploration and demonstrate that

increasing bandwidth in isolation at specific levels of the memory hierarchy can be

sub-optimal, and can even lead to performance degradation. We also demonstrate that

the performance improvement obtained by synergistically improving the bandwidth of

the cache hierarchy surpasses the speedup achieved by a memory system with baseline

cache hierarchy and HBM DRAM. Finally, using the insights developed in this work, we

perform a cost-benefit analysis and identify cost-effective configurations of the memory

hierarchy to best mitigate the bandwidth bottlenecks. Our cost-effective configuration

comprises an asymmetric crossbar, alongside other architectural optimizations that

Chapter 3. Evaluating and Mitigating Bandwidth Bottlenecks 49

allow L1 and L2 to operate closer to the peak throughput. We show that our final

configuration achieves a performance improvement of 29% on average with a minimal

area overhead of 1.5%. In summary, this chapter provides a methodology to improve

the bandwidth of the memory hierarchy by quantifying the bandwidth bottlenecks and

investing resources at the most potent bottlenecks in a cost-effective manner.

Chapter 4

Cooperative Caching for GPUs

GPUs are no longer perceived as accelerators solely for graphic workloads, and now

cater to a much broader spectrum of applications. The massive compute power of

modern GPUs and recent innovations in their architecture [115, 116] have helped

unleash the latent potential of several non-graphical applications. The cache hierarchy

— adopted from traditional CPUs — is one such innovation to capture the locality needs

of upcoming applications and advance the pervasiveness of GPUs. However, the cache

management policies that are suitable for CPUs may not be suitable for GPUs, evident

from the high cache miss rates seen on many GPUs. One such inefficiency in current

GPU cache management policies is the repeated access to the shared L2 cache from

different L1 caches for same data, arising due to inter-core data reuse. Such a policy

is a common occurrence in CPUs and is generally benign for performance when L1

miss rates are low, as it does not excessively deplete the memory bandwidth. In GPUs,

however, such a policy is corrosive to the overall performance due to high L1 miss rates.

As a result, for memory-intensive applications, where performance is constrained by

memory bandwidth, such a policy aggravates the bandwidth issue by repeated memory

requests for data already cached elsewhere at the same level in the memory hierarchy.

Therefore, it is critical to address the inefficiencies of the existing cache management

policies in GPUs to ensure effective usage of scarce bandwidth resources.

4.1 Overview

In this chapter, we aim to reduce the congestion across the memory hierarchy in GPUs

by addressing the bandwidth aspect of inefficient cache management. The presence of

such inefficiency in cache management is indicated by the high L1 cache miss rate, as

50

Chapter 4. Cooperative Caching for GPUs 51

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

b+tree

cfd
hotspot

lud
sradv1

sc cutcp

tpacf

km pvr
ss w

c

%

L1-Miss
L1-Replication

Figure 4.1: (a) L1-Miss: L1 cache miss rates (b) L1-Replication: Percentage of L1

misses cached in remote L1 caches.

shown in Figure 4.1 for a variety of general-purpose applications run on a simulated

GTX 480 GPU. As discussed in Chapter 3, high L1 miss rates lead to increased pressure

on L2 bandwidth, thereby increasing memory access latencies due to congestion in the

L2 access path. In our experiments (discussed later in Section 4.5), we observe that

due to congestion in the L1-L2 interconnect and L2 access queues, L2 accesses take

up to 2-3× more cycles compared to the minimum access latency of L2. Due to lack

of sufficient independent operations in memory-intensive applications to overlap such

high memory access latencies, increased latencies to the lower level get exposed and

appear in the critical path, reducing system performance. In Chapter 3, we identified

the critical bandwidth bottlenecks across the memory hierarchy in GPUs and explored

the architectural parameters that can be scaled to alleviate the bandwidth bottlenecks.

However, given the large magnitude of the bandwidth bottleneck, indicated in Table 3.2

by the potential speedup of 2.37× shown in absence of any congestion, the problem

requires redressal at multiple fronts. Therefore, in this chapter, we aim to reduce the

congestion in the memory hierarchy by improving the aggregate caching efficiency of

the L1 cache, thereby reducing the demand on the shared L2 bandwidth.

Observation: In streaming applications, cores work on independent data with little

or no overlap in the working dataset. However, in general-purpose applications we

observe a considerable potential for data reuse across different cores. Figure 4.1 shows

that a significant percentage of miss requests generated by L1s is for data already

present on a non-local (or remote) L1 cache. If we can exploit this reuse within the L1s,

duplicate requests to the shared L2 can be potentially eliminated. This would result in

reduced congestion and faster lower level access for the remaining requests.

Proposal: In this chapter, we propose a Cooperative Caching Network (CCN) for

Chapter 4. Cooperative Caching for GPUs 52

L1 caches in GPUs to improve the aggregate efficiency of the L1 cache hierarchy in

filtering requests to the L2 cache. In our proposed scheme, we connect the private

L1 caches in a lightweight ring network to facilitate communication of reusable data

among the L1 caches. In doing so, we reduce the average memory access latency due

to the following two reasons. Firstly, a fraction of L1 load misses, with reusable data

cached on remote L1s, can now completely bypass the high latency access path to L2;

they are instead serviced by the CCN with significantly lower latencies (42 cycles on

average based on our experiments) as compared to the L2 roundtrip access latencies,

or simply L2 access latencies (which is ∼300 cycles due to congestion). Secondly,

cooperatively sharing reusable data within the L1 caches via the CCN reduces the traffic

to L2 cache. This relieves the pressure on the interconnect as well as on the L2 access

queues, thereby reducing the L2 access latencies (by 78 cycles on average). Thus, CCN

provides a faster access to L2 for miss requests that do not find a sharer in the CCN.

In effect, our proposed architecture services a portion of L1 misses collaboratively

within the L1 caches with much lower latencies than the L2 access latency. This

leads to less congestion in the L2 access path, thereby accelerating the response from

memory for requests that do not find a reusable copy in remote L1 caches. However,

in the absence of reuse (such as in streaming applications), unsuccessful probes in

the CCN adds an additional overhead to the L1 load misses. In such cases, due to no

reduction in congestion, the CCN overhead is not ameliorated, and this results in an

overall performance penalty. Therefore, in our final scheme we propose CCN-RT, a

Cooperative Caching Network with Request Throttling. It dynamically adapts to the

coarse-grained reuse patterns exhibited by the application, bypassing the CCN when

there is little or no reuse.

Organization: The remainder of the chapter is organized as follows. Section 4.2

provides an overview of the baseline architecture for our study and characterizes the

workloads. Section 4.3 investigates the reuse patterns and provides a fresh insight

into the inter-core reuse patterns within the GPUs by profiling the communication

characteristics over a diverse range of GPGPU applications. Furthermore, we assess

the efficacy of cooperative caching in GPUs. Section 4.4 presents CCN, a Cooperative

Caching Network for L1 caches in GPUs that is cognizant of the inter-core reuse.

Section 4.5 evaluates the architecture and proposed optimizations to our baseline

proposal. We show that CCN reduces the overall bandwidth demand to L2 cache by

servicing reusable requests via the CCN, boosting performance for memory-intensive

applications that show high levels of sharing across L1s. With our final proposal

Chapter 4. Cooperative Caching for GPUs 53

Table 4.1: Baseline architectural parameters for GPGPU-Sim

Parameter Value

Core 15 SMs, Greedy-then-oldest (GTO) scheduler

Clock frequency Core @ 1.4 GHz; Interconnect/L2 @ 700 MHz

Threads per SM 1536

Warp width 32

SIMD lane width 32

Registers per SM 32768

Shared Memory 48 KB

L1 Data Cache 16KB, 128 byte line, 4-way, LRU, write-through, no-write-allocate

L2 Cache 768 KB, 128 byte line, 8-way, LRU, write-back, 12 banks

DRAM GDDR5 DRAM, 6 channel, 64-bits per channel, 924 MHz

CCN-RT, we show an average performance gain of 14.7% for applications that exhibit

reuse, while being benign to applications with no reuse. We also reduce the average

memory latency by 24%, L1 to L2 traffic by 29% and core stall cycles by 26%. Our

proposal incurs nominal area and energy overheads of 1.3% and 2.5% respectively.

Section 4.6 compares CCN with prior techniques. Section 4.7 discusses the related

work and positions our findings in the current state-of-the-art. Section 4.8 concludes

the chapter by summarizing the findings and contributions of this work.

4.2 Background

In this section, we outline the necessary background for this chapter that includes the

baseline architecture and the evaluated workloads.

4.2.1 Baseline Architecture

In this study, we consider a baseline similar to NVIDIA’s Fermi architecture. Our

baseline GPU consists of 15 SMs, each with a 32 lane SIMD unit. As discussed in

Chapter 2, each core consists of a private L1 data cache, shared memory (scratchpad)

and read-only instruction, texture and constant caches. Private caches of a core are

backed by a shared L2 cache that has an access latency of 120 cycles for non-texture

accesses in an uncongested memory system. The L1 data caches are non-coherent

and employ write-through, no-write-allocate policies. The baseline parameters are

summarized in Table 4.1.

Chapter 4. Cooperative Caching for GPUs 54

Table 4.2: Benchmark characterization: (a) PerfX - speedup with perfect memory (b)

µRC - percentage of total L1 load misses that have reusable data on a remote L1.

S.No. Suite Benchmark ABV. Dataset PerfX µRC

1 MapReduce Matrix Multiplication mm 768 × 768 data points 9.86 4%

2 MapReduce Similarity Score ss 1024 × 256 data points 6.18 28%

3 Rodinia Computational Fluid cfd 200000 elements 6.17 51%

4 MapReduce Page View Rank pvr 21 MB 5.93 32%

5 Rodinia Stream Cluster sc 16384 points; 256 dimension 5.49 18%

6 Rodinia Breadth-First Search bfs’ 1000000 nodes 5.18 3%

7 Rodinia Wavelet Transform dwt2d 1024 × 1024 4.96 7%

8 Parboil Lattice-Boltzmann Method lbm 120 × 120 × 150 data points 4.49 0%

9 MapReduce K-Means km 10000 × 3 data points; 24 clusters 3.85 24%

10 Rodinia Hybrid Sort sort 4194304 floating points 3.68 1%

11 Parboil Breadth-First Search bfs 8500000 nodes 3.57 6%

12 Rodinia Particle Potential lavaMD 7 × 7 × 7 boxes 2.81 1%

13 Parboil 2-D Histogram histo 10000 × 4 dimension 2.63 1%

14 MapReduce String Match sm 4 MB 2.52 3%

15 Rodinia Cardiac Myocyte myocyte 100 instances 2.38 1%

16 Rodinia Needleman-Wunsch nw 2048 × 2048 data points 2.31 8%

17 Rodinia Graph Traversal b+tree 10000 nodes 2.21 25%

18 MapReduce Inverted Index ii 28 MB 2.19 2%

19 Rodinia Particle Filter pfloat 128 × 128 × 10 2.15 8%

20 Rodinia Tracking Microscopy leukocyte 176 MB 1.88 1%

21 MapReduce Word Count wc 96 KB 1.86 54%

22 Parboil Sum of Absolute Diff. sad 52 KB vs. 52 KB frame 1.76 3%

23 Rodinia Speckle Reduction sradv1 512 × 512 data points 1.74 15%

24 Rodinia Speckle Reduction sradv2 2048 × 2048 data points 1.70 16%

25 Parboil Cartesian Gridding mri-g 61 MB 1.49 2%

26 Rodinia K-Means kmeans 204800 data points; 34 features 1.47 0%

27 Rodinia Matrix Decomposition lud 2048 × 2048 data points 1.27 28%

28 Parboil PDE Solver stencil 512 × 512 × 64 input 1.23 6%

29 Rodinia Heart Wall Tracking heartwall 49 MB 1.19 0%

30 Rodinia Back Propagation backprop 65536 input nodes 1.10 3%

31 Rodinia Thermal Modeling hotspot 512 × 512 data points 1.07 29%

32 Parboil Coulombic Potential cutcp 96604 atoms 1.00 78%

33 Parboil MRI Reconstruction mri-q 64 × 64 × 64 data points 1.00 0%

34 Parboil Angular Correlation tpacf 10391 data points 1.00 19%

Chapter 4. Cooperative Caching for GPUs 55

4.2.2 Workloads

For the purpose of this study, we use CUDA applications from three major general-

purpose benchmark suites, viz., Rodinia (v3.0) [27], MapReduce [57] and Parboil [146].

We categorize the benchmarks according to their sensitivity to the memory hierarchy.

Table 4.2 lists the benchmarks sorted by the speedup (PerfX) shown on a perfect memory

system that has zero access latency to lower level memories and infinite bandwidth

between memory hierarchies on a Fermi GPU.

A program is said to be memory-intensive if it comprises several instructions requir-

ing long latency memory operations. As seen in the previous chapter, the performance

of memory-intensive applications is usually bounded by the bandwidth to lower level

memories. Therefore, applications with higher PerfX are considered as memory-bound

or memory-sensitive applications as the magnitude of speedup on a perfect memory

system essentially indicates the gravity of bandwidth problem in the benchmarks.

4.3 Need for Cooperation

Graphics and general-purpose workloads exhibit different memory access patterns.

In traditional graphics applications, kernels typically operate on independent data of

streaming nature. As a result, different thread blocks are executed in considerable

isolation. On the other hand, general-purpose applications show varying amounts of

reuse within the thread blocks and also at the boundaries with neighbouring thread

blocks. For instance, in scientific application such as computation of Coulombic

Potential (cutcp), atoms are organized in a 3D lattice. A sub-group of atoms constitute

a thread block and the entire lattice is divided into multiple thread blocks. In order to

compute the potential difference on the atoms at the edges and corners of a sub-lattice

(or thread block), coulombic potential contributed by atoms from surrounding sub-

lattices needs to be read, which requires sharing and reuse of data among neighbouring

thread blocks. When such thread blocks are scheduled on different cores on a GPU,

it results in inter-core reuse. In current GPUs, reuse across thread blocks on different

cores can only be exploited by localizing the data on the L2 cache and not any closer.

But in doing so, cores have to incur the congestion delays in L1-L2 interconnect, as

well as the delays in the L2 access queues. Thus, for those applications that are bounded

by the bandwidth to the lower level, it degrades overall performance by clogging the

access path to the L2 cache.

Chapter 4. Cooperative Caching for GPUs 56

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

S
H

A
R

E
R

S

REQUESTING CORES

(a) cutcp

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

S
H

A
R

E
R

S

REQUESTING CORES

(b) dwt2d

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

S
H

A
R

E
R

S

REQUESTING CORES

(c) km

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

S
H

A
R

E
R

S

REQUESTING CORES

(d) tpacf

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

S
H

A
R

E
R

S

REQUESTING CORES

(e) pvr

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

S
H

A
R

E
R

S

REQUESTING CORES

(f) pfloat

LOW HIGH

(g) Reuse Score

Figure 4.2: Heatmaps indicating inter-core reuse by cores on the x-axis for data cached

on the cores on the y-axis. Dark spots in the heatmaps indicate high reuse between the

corresponding cores at their x and y coordinates.

4.3.1 Inter-core Reuse

In order to quantify the degree of temporal and spatial reuse of global data between

thread blocks, we analyse the L1 miss traffic of each core. In Table 4.2, we show the

Reuse Coefficient (µRC), which is the percentage of miss requests received by the L2

cache from private L1 caches for addresses that reside remotely on at least one L1 cache.

We see a maximum µRC of up to 78%, and an average of 14% across all benchmarks.

High µRC for some benchmarks indicates that reuse requests from L1 caches form a

large portion of traffic to L2. It is worth noting that we only consider it as reuse if the

load miss address is cached on a remote L1 at the time of the miss.

In Figure 4.2 we further characterize the inter-core reuse patterns at the granularity

of each core with every other core, providing deeper insight into the reuse dynamics.

For brevity, we show the set of distinct observed patterns and omit those that replicate

the patterns shown here. The x-axis indicates the cores that incur an L1 load miss and

Chapter 4. Cooperative Caching for GPUs 57

the y-axis indicates the sharers for that miss. A dense area in the heat map at coordinate

(x,y) indicates that a high proportion of load miss requests by core-x are cached by the

L1 at core-y. For instance, cutcp shows a prominent reuse of data cached at a distance of

4 cores from the location of the miss; dwt2d shows a strong reuse between neighbours;

km shows a gradual decline in reuse as we go further from the core; and tpacf shows

considerable levels of reuse across all cores.

4.3.2 Efficacy of Cooperation

We have shown in the previous section that for general-purpose applications there is

considerable reuse across L1 caches. We refer to those load requests as reuse requests

that miss in the local L1 but hit in a remote L1. By removing such reuse requests

(also quantified as µRC) from the pool of total misses going to the L2 cache, we can

reduce the pressure on L2 bandwidth. In order to assess the efficacy of reducing the

bandwidth demand on the overall performance, we begin by examining the performance

improvement when reuse requests do not congest the access path to L2. In these cases,

reuse requests are instead serviced cooperatively within the L1s with varying remote L1

access latencies, or reuse latencies. Since applications with low µRC are not expected

to show any change, we focus on benchmarks with high µRC. Later, we demonstrate

the effect of our final proposal on applications with low or zero µRC as well.

Figure 4.3 shows the speedup due to cooperation, and demonstrates a noticeable

improvement in performance, specifically for memory-intensive applications with high

µRC. For instance, cfd and pvr show performance improvements of up to 73% and 38%

respectively. Both of these applications are severely bounded by the memory bandwidth

and at the same time exhibit high reuse. On the other hand, despite high reuse in cutcp

and hotspot, there is no significant gain in IPC since bandwidth is not critical for these

benchmarks.

Another key observation in this study pertains to the variation of performance as a

function of remote L1 access latency. We observe that the performance improvement in

the region between 0-80 cycles is fairly stable, with the average IPC gain only changing

from 21.5% to 18.8%. This is because in this region, latencies to remote L1s can be

effectively hidden by multithreading on the cores. Moreover, reduced congestion in

the L2 access path and faster responses to reuse requests (compared to L2 accesses)

improves the average number of active warps on the cores. This boosts the ability of

the cores to further mask the memory access latencies. Due to these effects, reuse

Chapter 4. Cooperative Caching for GPUs 58

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600

Stable
 reuse latency

 range

L2 access latency range

Exposed latency range
IP

C
 i
m

p
ro

v
e

m
e

n
t

(%
)

Remote L1 access latency

b+tree
cfd

hotspot
lud
sc

cutcp
pvr
ss

AVG

Figure 4.3: Speedup of cooperation with varying remote L1 access latencies.

latencies up to 80 cycles are effectively hidden by multithreading and do not determine

the execution time. However, on further increasing the reuse latencies, performance

improvement starts to degrade more rapidly. In fact, the IPC gain returns to nearly 0%

when the reuse latencies are varied in the range of L2 access latencies (around 300

cycles). This is because latencies for reuse requests get increasingly exposed and can

no longer be hidden by multithreading, despite reduced congestion.

In summary, these initial results indicate that for memory-bound applications, when

there is considerable reuse of data across L1 caches, cooperation among the private L1

caches can result in a considerable speedup (up to 21.5% on average). Notably, the

observed performance improvement is fairly stable in the reuse latency range of 0-80

cycles.

4.4 Cooperative Caching

In the previous sections, we observed a potential for cooperative caching on GPUs

and assessed its efficacy. We now propose a cooperative caching framework to use the

private L1 data caches in an aggregate manner. We begin by formalizing the above

discussion and analysing the parameters that contribute to the L2 access latencies for

L1 miss requests. Later, we propose a cooperative caching scheme and discuss the

architectural details.

Chapter 4. Cooperative Caching for GPUs 59

4.4.1 Analytical Model

Here we present a simple analytical model to explain the conditions under which reuse

delivers a performance gain. Firstly, in the absence of cooperation between L1s, let

lO be the average memory latency to access the shared L2 cache. Secondly, with

cooperation between L1s, let hreuse be the fraction of L1 misses that hit in a remote L1

cache. Furthermore, let lreuse be the average hit latency for accesses to remote L1s. As

a consequence of reduced congestion in the L2 access path due to remote L1 hits, let

δcong be the reduction in L2 access latency. And finally, let δoverhead be the cooperation

overhead borne by those requests that do not have a shared copy. Therefore, the new

average memory latency to L2 upon enabling cooperation, lC, can be obtained via

Equation 4.1.

lC = (lO−δcong +δoverhead) (1−hreuse)+ lreuse hreuse (4.1)

lreuse < lO

δoverhead < δcong

Criteria for useful cooperation (4.2)

In order to derive gain from cooperative caching, lC must be minimized. Therefore,

remote L1 accesses for reuse requests must take less time than a normal L2 access, i.e.,

lreuse < lO. Additionally, we have already seen in Figure 4.3 that the maximum gain from

cooperation is sustained in the lower reuse latency range, i.e., lreuse ∈ (0,80). Finally,

for the remaining L2 accesses, the cooperation overhead must be less than the benefit

obtained from reducing the congestion in the L2 access path, i.e., δoverhead < δcong. A

combination of above conditions will result in a lower average L2 access latency, i.e.,

lC < lO.

How should we go about implementing the cooperative caching framework? Follow-

ing the approach of traditional multicores, a central directory in the L2 cache [91, 2, 74]

can be used to store information about the sharers. However, maintaining a directory

as part of the L2 will not mitigate the existing bandwidth problem in accessing the

L2, and instead, will only worsen it. This is because the additional control and update

traffic to the central directory will further increase the bandwidth demand to the L2

cache. Alternatively, an approach along the lines of cooperative caching schemes for

CPUs [23, 24, 59] may be used. Such schemes aim to minimize hop latencies to find a

sharer and retrieve data using a highly interconnected network of L1 caches. However,

since we have demonstrated that we have a considerable leeway of around 80 cycles to

fetch the shared data from a remote L1, such an aggressive scheme to find a sharer is an

overkill for GPUs.

Chapter 4. Cooperative Caching for GPUs 60

Cooperative Caching Network

CB0

RT

CB2

Core-0

RT STL1

Core-1

STL1RT

Interconnect

ReqQ-0

RespQ-0

ReqQ-1

RespQ-1

CB1
L1 ST

Core-2

ReqQ-2

RespQ-2 From Core 3

Towards Core 3

From Core 14

Towards Core 14

L2 BankL2 BankL2 Bank

Request Channel

Response Channel

Figure 4.4: Cooperative Caching Network.

In view of the above discussion, we propose a lightweight ring-based Cooperative

Caching Network. A ring topology is the lowest degree network and requires the fewest

number of inter-core connections. It is also lowest in terms of logical complexity

and power consumption as all core-to-core connections will be near-neighbour, and

therefore, the wires will be short. In addition, all routers in a ring are simple multiplexers,

which are more energy efficient than complex crossbar routers. As we have shown that

GPUs can tolerate reuse latencies gracefully up to 80 cycles, a ring topology appears to

be a cost-effective solution, as it allows us to trade-off higher latencies for simplicity

and short wires, i.e., lower power consumption and die-area cost.

4.4.2 Architecture

In our proposed scheme, we facilitate the communication between neighbours by

connecting the private L1 caches in a ring via our Cooperative Caching Network (CCN).

The CCN comprises two different channels, viz., request channel and response channel.

The request channel comprises a network of Request Queues or ReqQ while the response

channel comprises a network of Response Queues or RespQ. As shown in Figure 4.4,

each L1 has an independent pair of the aforementioned queues to allow the cache to

participate in cooperative caching. The L1 caches interact with their home queues

via CCN Buffers (CB), which hold the tag and Core-ID for the load misses, until the

Chapter 4. Cooperative Caching for GPUs 61

CCN is ready to accept a request. A new miss request, after allocating a cache line

in the L1 cache as done in the baseline architecture, enters the local Request Queue.

Thereafter, it travels around the request channel by hopping on other Request Queues

and probing the different L1 caches on its way. If a remote copy is found in one of the

nodes, the response from the hit node is sent back to the requesting core in a similar

way by hopping in the reverse direction via the Response Queues at each core. Finally,

after reaching the requesting core, the previously allocated cache line is filled with the

response data and the miss is serviced. Note that a remote L1 copy is considered for

sharing only if it is not pending on a cache-fill for the requested data at the time of

lookup. In other words, hits-under-miss on outstanding miss requests are not considered

for sharing in the CCN.

More specifically, upon incurring an L1 miss for global data and subsequently

allocating a cache line in the L1 cache, each core pushes the miss tag information into

its CB along with the Core-ID, where the request waits until the corresponding ReqQ

is ready to accept a new request. At every cycle, valid entries at the head of the ReqQ

lookup the corresponding L1 cache (if it is not the home core of that request) before

hopping on to the next ReqQ. If the request travels back to the requesting core without

a reuse copy, it is finally sent to L2. However, if a sharer is found, the sharing core

enqueues the response to its RespQ. The response travels back to the requesting core

and fills the allocated cache line in the L1 cache, thereby avoiding an L2 access. If

request queues get full due to congestion, the CB eventually stops accepting new miss

requests. In such a scenario, the L1 load misses go directly to L2 until the CCN can

start accepting new requests again.

Prioritization Policy for Queues: Each queue in the CCN has a corresponding

input multiplexer to select one of the entries out of the two possible input sources. In

the request channel, a ReqQ can either accept a new miss request from the home core

via CB, or a forwarded request from a preceding ReqQ. In our proposal, we prioritize

an older request (from ReqQ) over a new one (from CB). This helps in preventing over-

subscription of CCN to new L1 misses by allowing the previously accepted requests

to pass-through. Therefore, it minimizes the roundtrip overhead (δoverhead) in CCN for

subscribed requests. Repeated unsuccessful attempts to inject a new request in the CCN

due to the above prioritization, thus causes the CB to get full and hence, deflects the L1

misses directly to L2, allowing the CCN to recover from congestion.

In response queues, however, we prioritize a new cache response (from Core) over an

older response (from RespQ). This is because response queue latencies do not contribute

Chapter 4. Cooperative Caching for GPUs 62

to δoverhead but contribute to the reuse latencies lreuse, which has comparatively more

relaxed requirements (shown in Figure 4.3). More importantly, if the response of a

new remote hit is not accepted by the response queue, the tag entry at the head of the

corresponding ReqQ that caused the hit is not popped, potentially stalling the entire

request network and increasing the δoverhead in the request channel.

CCN Memory Consistency: The CCN mechanism conforms to the existing mem-

ory consistency model supported by Fermi. CUDA provides two types of load instruc-

tions [128] — a normal load cached at L1 (ld.ca) and a direct load to L2 bypassing the

L1 (ld.cg). Due to the write-through, no-write-allocate policy of the L1 cache, a write

causes the matching cache line in L1 to be invalidated, thereby causing the most recent

value to reside in L2. However, due to a weak memory model [40, 4] and absence

of coherence in GPUs, an ld.ca accessing L1 on a different core can return a stale

value. Litmus tests [4] have shown that due to weak consistency, an ld.ca load may

return a stale value on the same core as well, even if preceded by an ld.cg to the same

address (CoRR). CCN adopts similar weak memory ordering semantics for ld.ca loads;

indeed, an L1 miss can return a stale value by snooping other cores via CCN, instead

of reading the L2 which may have the latest value. However, since a baseline GPU

guarantees reading the most recent value for ld.cg loads, CCN does not intercept such

loads, and hence, does not further weaken the memory model. In other words, when

the programmer or the compiler uses ld.cg loads to bypass the L1, the current memory

model ensures the most recently written value is returned — a correctness guarantee

also provided by CCN.

4.4.3 Shadow Tags

Since each L1 now services additional tag lookups for CCN requests, such remote

lookups could affect the performance of local cache accesses. To eliminate the interfer-

ence of remote lookups on local requests, we duplicate the tags of the L1 data cache in a

separate set of Shadow Tags (ST) adjacent to each L1. The shadow tags always contain

an identical copy of the L1 tags, which is achieved by always writing tag updates to

both sets of tags simultaneously. As a result, concurrent reads at independent addresses

can then take place to L1 tags and shadow tags, from the local core and remote lookups

respectively. Therefore, the shadow tags decouple the performance of each local cache

from interference of CCN traffic. However, if a shadow tag lookup succeeds, then the

remote access makes a regular L1 access to retrieve the data it needs. This steals a cycle

Chapter 4. Cooperative Caching for GPUs 63

from the L1 data cache, which is taken into account in our performance model.

Overhead: For the largest L1 data cache configuration of 48 KB with 128 byte line

size, we require 24 upper address bits per tag, assuming 40-bit physical addresses [115],

plus one valid bit. As the L1 data cache is 4-way set-associative, the shadow tags are

arranged as 96 sets of four 25-bit tags in 96×100 single-ported tag memory.

Way 0 Way 1 Way 2 Way 3

V0 Tag0[39:16] V1 Tag1[39:16] V2 Tag2[39:16] V3 Tag3[39:16]

Therefore, the net storage overhead of the shadow tags is 1200 bytes per SM,

amounting to a total of 17.5 KB for a 15 core GPU that we consider in our study.

Although, each remote access has to be checked in multiple shadow tags, these shadow

tag memories are small and can be constructed from low-leakage high-density bit-cells

without impacting the overall cycle time of the ring interconnect.

4.4.4 Request Throttler

In order to prevent those cores that do not exhibit any inter-core reuse from congesting

the CCN, we introduce a Request Throttler (RT) at each core. The purpose of RT is to

throttle the requests from entering the CCN when prior routing of misses to CCN proves

to be below a threshold level of effectiveness. In such scenarios, RT diverts the remote

lookup requests directly to L2 cache. In order to do this, each RT periodically samples

the CCN performance parameters and at the end of the sampling period, computes the

success rate in routing its load misses to CCN during the sampling interval. The success

rate is determined by the ratio of hits in the CCN to the total number of requests injected

in the CCN by the corresponding L1 cache. If the success rate is below the threshold,

the L1 cache bypasses the CCN until the next sampling interval, and performs the load

miss by sending the request directly to L2 cache. However, the shadow tags of the

throttled cores still participate in the lookup for other requests in the CCN.

To illustrate the working of RT further, we define the sampling interval as tS and the

periodicity of sampling as tP where tS << tP. Therefore, the entire period of execution

is logically divided into multiple epochs of duration tP. We also define Hmin as the

minimum hit rate required in the CCN in order to derive a benefit from cooperation. At

the beginning of an epoch of interval tP, each core begins by routing the load misses

to CCN for a fixed sampling duration of tS. During the tS interval, RT collects the

Chapter 4. Cooperative Caching for GPUs 64

statistics about the number of requests injected in the CCN (Ntotal) and the number of

hits observed for its requests (Nhits). At the end of the sampling duration, RT computes

the hit rate (hreuse) in the CCN, i.e., hreuse = Nhits/Ntotal . If hreuse > Hmin, RT continues

to inject requests in the CCN for the remaining duration of (tP - tS) in the current epoch.

On the other hand, if hreuse < Hmin, RT disables the routing of requests to CCN for the

remaining duration of the epoch. After the current epoch ends, Nhits and Ntotal are reset

and RT repeats the entire process again for the new epoch. Therefore, with the help of

RT, we improve the average success rate of sending a load miss to CCN by preventing

those cores from cooperating that are not working on potentially reusable data, during

specific epochs of execution.

4.4.5 Working Example

In this section, we further illustrate the working of CCN. Figure 4.5 shows the flow

of requests within the CCN. In this example, Core-0 incurs a load miss for a global

data in its private L1 cache and allocates a cache line in the L1 cache. In the baseline

architecture, this L1 miss would be directly routed to the L2 cache. However, with

our scheme, the miss request can either go to the CCN or to the L2 cache. RT takes

this decision for that particular core on the basis of the statistics collected over the

most recent sampling interval, tS. In this example, we assume that hreuse for Core-0

and Core-1 suggests healthy reuse (> Hmin), and therefore these cores continue to use

CCN. However, Core-2 observes a low reuse in the recent tS interval, thereby routing

all requests directly to the L2 cache in the current epoch.

In order to service a miss at Core-0 via the CCN, the tag and Core-ID of the load

request are pushed 1 onto the corresponding CCN Buffer, CB0. Based on the input

prioritization policy for ReqQ, the new tag waits in CB0 until it acquires priority and

is accepted 2 by the ReqQ-0. Upon reaching the head of ReqQ-0, the miss request

does not perform a lookup in the ST of Core-0 as it is the home core of the miss

request, and therefore it is directly passed to ReqQ-1 3 . Upon reaching the head of

ReqQ-1, it performs a lookup 4 in ST of Core-1. Assuming it is a hit in Core-1, the

ST receives the cache line from the corresponding L1 cache and enqueues the response

5 in RespQ-1, if the RespQ-1 is not full. On the other hand, if the RespQ-1 is full, the

response is stalled, thereby preventing the tag at the head of the ReqQ-1 from getting

popped. Once the response reaches the head of the queue at RespQ-1 and acquires

priority to enter the next queue, it is pushed into RespQ-0 6 . Since Core-0 is the home

Chapter 4. Cooperative Caching for GPUs 65

CB0

RT

CB2

Core-0

RT STL1

Core-1

STL1RT
1

2

3

4

Interconnect

ReqQ-0

RespQ-0

ReqQ-1

RespQ-1

CB1
L1 ST

Core-2

ReqQ-2

RespQ-2

5

6
7

From Core 3

Towards Core 3

From Core 14

Towards Core 14

L2 BankL2 BankL2 Bank

X

hreuse < Hmin

Figure 4.5: Working of the Cooperative Caching Network with Request Throttling.

core of the response, the new entry to RespQ-0 is bypassed to the head of the queue and

the response is serviced 7 by filling the allocated cache line in the L1 cache of Core-0,

hence completing the request-response cycle.

4.5 Evaluation

In this section, we discuss the implementation of our proposed architecture and demon-

strate the results.

4.5.1 Implementation

For the purpose of this study, we implement and evaluate two flavours of our proposed

architecture, i.e., CCN-B and CCN-RT. CCN-B is our baseline CCN architecture which

includes a pair of queues and shadow tags at every node of the network. Whereas

in CCN-RT, we add the request throttling feature to the baseline CCN architecture.

Table 4.3 summarizes the design parameters for CCN-B and CCN-RT.

In our implementation, we choose the sampling interval and the periodicity of

sampling as 1 million and 10 million instructions respectively. This is based on the

observation that most benchmarks show a single-phase sharing across the entire appli-

cation. Hence, it allows us to sample for a short duration to get a fairly accurate hint

Chapter 4. Cooperative Caching for GPUs 66

Table 4.3: CCN parameters

Parameter Value

CCN Buffer 8-entry, 30 bits per entry (26 bits Tag + 4 bits Core-ID)

Request Queue 8-entry, 30 bits per entry

Response Queue 8-entry, ∼128 bytes per entry (cache line + Core-ID)

CCN ring 4-byte request channel; 32-byte response channel; 1.4 GHz

Shadow Tag 1200 bytes size (modelled upon 48 KB L1 data cache)

tS 1 million instructions

tP 10 million instructions

Hmin 0.05 (5 percent hits)

for a large duration that follows the sampling interval. Furthermore, on the basis of

our sensitivity studies, we select the threshold hit rate (Hmin) as 5%, i.e., the minimum

number of hits required to derive benefit from cooperative caching. We also observe

in our experiments that small 8-entry Request and Response Queues provide optimal

results. Lastly, the request and response channels in CCN are configured to flow in

opposite direction. This is because our experiments show that in such a case, servicing

reuse requests takes an average of 10 hops compared to a fixed 15 hops when both the

channels propagate in the same direction.

4.5.2 Experimental Setup

We model the Cooperative Caching Network on GPGPU-Sim (version 3.2.2) [10] to

simulate a Fermi-like GPU with the configuration parameters listed in Table 4.1. For

energy and area simulations, we use GPUWattch [98], a McPAT based power model

integrated in GPGPU-Sim. All CCN transactions have been modelled at cycle-by-cycle

accuracy in the simulator which includes queuing delays in the request and response

channels, CCN congestion and L1 cycle stealing by shadow tag accesses. We run all

the benchmarks to completion, or until they execute 16 billion instructions, whichever

comes first.

4.5.3 Results

We begin by evaluating the overall performance improvement with our proposed

schemes for benchmarks that exhibit inter-core reuse (µRC > 10). We also show

Chapter 4. Cooperative Caching for GPUs 67

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

b+tree

cfd
hotspot

lud
sradv1

sc cutcp

tpacf

km pvr
ss w

c
AVG

IP
C

 (
n

o
rm

a
liz

e
d

)

baseline CCN-B CCN-RT ideal

Figure 4.6: Speedup for applications with µRC > 10

-6

-5

-4

-3

-2

-1

 0

 1

 2

bfs’
heartw

all

sort
km

eans

lavaM
D

leukocyte

m
yocyte

histo
lbm

m
ri-g

m
ri-q

ii AVG

-11.5IP
C

 i
m

p
ro

v
e

m
e

n
t

(%
)

CCN-B CCN-RT ideal

Figure 4.7: Percentage improvement in IPC for applications with µRC < 3

the neutrality of our scheme for benchmarks with little or no reuse (µRC < 3). Later we

assess the finer parameters for the former set of benchmarks, as applications with inter-

core reuse are the primary motivation for this study. We do not show the benchmarks

between this range, as results of the above categories are good indicators of the trend in

the rest of the benchmarks. We also compare the results of our proposed schemes, i.e.,

CCN-B and CCN-RT, against an ideal cooperative caching configuration that services

all of the remote hits with zero latency, without incurring any overheads of cooperative

caching.

Performance: In Figure 4.6, we show the speedup with CCN-B and CCN-RT

for applications that exhibit reuse. Over the baseline configuration, we observe an

average improvement of 14.5% with CCN-B and 14.7% with CCN-RT. Memory-bound

applications such as cfd, ss and pvr show higher speedup compared to non-memory-

bound applications as they are more sensitive to bandwidth bottlenecks. b+tree shows a

higher improvement than ideal case due to the timing variations in scheduling warps.

Such an aberration is also caused by a higher number of hits-under-miss on cache lines

Chapter 4. Cooperative Caching for GPUs 68

 10

 20

 30

 40

 50

 60

 70

 80

b+tree

cfd
hotspot

lud
sradv1

sc cutcp

tpacf

km pvr
ss w

c
AVG

R
e

d
u

c
ti
o

n
 i
n

 L
1

 t
o

 L
2

 t
ra

ff
ic

 (
%

) CCN-B CCN-RT ideal

Figure 4.8: Percentage reduction in L1 to L2 traffic

allocated for on-going remote L1 accesses, which does not occur in the ideal scenario

due to zero cycle latency for remote L1 accesses.

We also assess the impact of cooperative caching on applications that show little or

no reuse. For such applications, cooperative caching adds an extra roundtrip overhead

of going through the CCN. This is because due to low µRC, most requests end up going

to L2 cache after an unsuccessful traversal in the CCN. In such cases, Request Throttler

helps in preventing the L1 misses from incurring the CCN overhead when there is little

or no reuse. In Figure 4.7, we show that with CCN-B, we see a degradation of up to

11.5% and an average degradation of 1.7% compared to the baseline GPU. However,

with CCN-RT, the maximum degradation reduces to 1.5% with an overall average of

0.1%.

L2 Cache Bandwidth Demand: In Figure 4.8, we demonstrate the effectiveness of

our proposed technique in mitigating the L2 cache bandwidth bottleneck. On average,

CCN-RT reduces the traffic to L2 cache by 29% compared to the baseline GPU. It is in

close proximity to the ideal-case average of 33% indicating that most of the reuse hits

on remote L1 caches are captured by the proposed architecture. The minimal difference

between CCN-B and CCN-RT demonstrates that, while throttling diverts most of the

non-reuse traffic directly to L2 cache, it does not reduce the number of potential hits in

the CCN. If it would divert useful reuse requests to L2 cache, bypassing the CCN, then

we would see a lesser reduction in L2 traffic with CCN-RT compared to CCN-B.

Average Memory Latency (AML): In Figure 4.9, we see an average reduction

of 24% in AML with our proposed CCN-RT architecture for applications that show

reuse. We observe that cutcp shows the maximum reduction of 65% in AML due to

a high µRC of 78%. However, it does not translate into performance gain due to its

non-memory-bound nature.

Chapter 4. Cooperative Caching for GPUs 69

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

b+tree

cfd
hotspot

lud
sradv1

sc cutcp

tpacf

km pvr
ss w

c
AVG

A
M

L
 (

n
o

rm
a

liz
e

d
)

baseline CCN-B CCN-RT

Figure 4.9: Normalized average memory latency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

b+tree

cfd
hotspot

lud
sradv1

sc cutcp

tpacf

km pvr
ss w

c
AVG

C
o

re
 s

ta
ll

c
y
c
le

s
 (

n
o

rm
a

liz
e

d
)

baseline CCN-B CCN-RT ideal

Figure 4.10: Normalized core stall cycles

Core Stall Cycles: We observed in the above results that performance is gained by

mitigating the bandwidth problem (indicated by L2 traffic), and by servicing the misses

in less time (indicated by AML). This is because cores now spend less time waiting for

memory. Therefore, we assess the impact of our proposal on the total number of cycles

for which the cores are stalled. In Figure 4.10, we observe a significant reduction in core

stall cycles for memory-bound applications such as cfd and sc, while no degradation is

seen for non-memory-bound applications like cutcp and tpacf. On average, we reduce

the core stall cycles by 26%, which is in close proximity to the ideal reduction of 28%.

Off-chip Memory Traffic: In order to dissociate the effects of L2 and off-chip

bandwidths on the overall performance gain, we analyse the change in off-chip memory

traffic. As shown in Figure 4.11, we see that for most applications there is no visible

difference in the traffic to off-chip memory, indicating that the entire performance

improvement can be attributed to the mitigation of bandwidth bottleneck between

private L1s and the shared L2. Therefore, it can be inferred for most benchmarks that in

the baseline architecture without CCN, the reuse requests mostly hit in the L2 cache,

Chapter 4. Cooperative Caching for GPUs 70

 0.8

 0.9

 1

 1.1

 1.2

b+tree

cfd
hotspot

lud
sradv1

sc cutcp

tpacf

km pvr
ss w

c
AVGO

ff
-c

h
ip

 m
e

m
o

ry
 t

ra
ff

ic
 (

n
o

rm
a

liz
e

d
)

baseline CCN-B CCN-RT ideal

Figure 4.11: Normalized off-chip memory traffic

thereby burdening the L2 cache bandwidth with duplicate requests. However, in sc we

notice a reduction in DRAM traffic by 12% with CCN-RT. This indicates that for sc a

significant portion of reuse requests to L2 also misses in the L2 cache, adding to the

DRAM traffic. As a result, upon removing the reuse requests to L2 cache with the help

of CCN in sc, not only the traffic to L2 cache is reduced, but also the traffic to DRAM

is reduced. Therefore, the performance benefit in sc with CCN-RT can be attributed not

only to the mitigation of L2 bandwidth bottleneck, but also to the mitigation of DRAM

bandwidth bottleneck.

Summary: In the above results, we observed that for applications which exhibit

reuse, we are able to reduce the traffic to L2 cache by 29% while also reducing the

average memory latency by 24%. As a consequence of the above improvements,

we reduce the average core stall cycles by 26%, which translates into an average

performance improvement of 14.7%.

4.5.4 Hardware Cost

Area: We use GPUWattch [98] to estimate the area of our proposed architecture.

We use the existing components in GPUWattch to model the CCN components, after

appropriate scaling wherever necessary. CCN adds an area overhead of 4.38 mm2 for

the ring interconnect and the shadow tags (corresponding to the largest L1 data cache

configuration) at 40 nm technology. Other storage units such as CCN Buffers and

Request/Response Queues add another 4.82 mm2. This amounts to an overall increase

in die area by 1.3% compared to the baseline processor area of 700 mm2.

Energy: With CCN, cores are stalled for fewer cycles, thereby reducing the leakage

power. In addition, fewer packets require routing at the energy-inefficient crossbar

Chapter 4. Cooperative Caching for GPUs 71

 0.84

 0.88

 0.92

 0.96

 1

 1.04

 1.08

 1.12

b+tree

cfd
hotspot

lud
sradv1

sc cutcp

tpacf

km pvr
ss w

c
AVG

E
n

e
rg

y
 (

n
o

rm
a

liz
e

d
)

baseline CCN-RT

Figure 4.12: Energy dissipation with CCN

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

b+tree

cfd
hotspot

lud
sradv1

sc cutcp

tpacf

km pvr
ss w

c
AVGIP

C
 (

n
o

rm
a

liz
e

d
 t

o
 r

e
s
p

.
b

a
s
e

lin
e

s
) baseline-16/48 CCN-16L1 CCN-48L1

Figure 4.13: Speedup with varying L1 cache size

routers. Also, lower traffic to L2 leads to lower energy consumption by the NoC.

However, high shadow tag lookups for remote cache accesses normalizes other energy

gains of the CCN, resulting in an average energy overhead of 2.5% (Figure 4.12).

4.5.5 Sensitivity Analysis

L1 Cache Size: As Fermi offers configurable L1 cache sizes of 16 KB and 48 KB,

we analyse the sensitivity of our proposal to L1 cache size. As shown in Figure 4.13,

with an L1 cache size to 48 KB we observe an average IPC gain of 20.6% with CCN,

compared to 14.7% with CCN with 16 KB L1 (over their respective baselines with

CCN). This is due to the following reason: although increasing the L1 cache size

reduces the number of capacity/conflict misses, thereby reducing the opportunities to

find remote L1 hits in the CCN, we observe that a larger L1 significantly increases

the likelihood of finding a remote L1 sharer for a compulsory miss. Therefore, due to

significant increase in utility of CCN for compulsory misses on increasing the L1 size

(which dominates the decrease in utility of CCN due to lower conflict/capacity misses),

we observe a higher improvement in performance with larger L1s.

Chapter 4. Cooperative Caching for GPUs 72

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

b+tree

cfd
hotspot

lud
sradv1

sc cutcp

tpacf

km pvr
ss w

c
AVG

IP
C

 (
n

o
rm

a
liz

e
d

)

baseline 1-cycle 3-cycles 5-cycles

Figure 4.14: Speedup with link latencies of 1, 3 and 5 cycles

Link Latency and Frequency: In this study, we analyse the performance impact

of interconnect latencies for every hop on the CCN ring. This is done by varying the

core-to-core transfer latency from 1-5 cycles (i.e., 15-75 cycles to traverse the entire

ring). For a 700 mm2 chip, each hop is approximately 3.5 mm of on-chip distance, and

therefore 1-5 cycles at 1.4 GHz is a reasonable window to complete the transfer [15]. It

is worth noting that varying the CCN link latency also captures the effect of running the

CCN ring at a fraction of core frequency. Therefore, this study shows the performance

variation on using the CCN ring at up to 1/5th the core frequency (280 MHz).

In Figure 4.14, we see that for most applications, the IPC gain is fairly resilient

to increasing link latencies (or decreasing ring frequencies). For instance, cfd shows

a marginal reduction of 1% when the latency increases from 1 to 5 cycles. Only a

minority of applications show visible reductions in the gain as link latency increases.

For example, the IPC gain of b+tree drops from 31% to 19%, although it still maintains

a modest overall improvement in performance. On average, we see IPC improvements

drop from 14.7% to 13.6% as latency is increased from 1 to 3 cycles, settling further

at 11.2% when the link latency is increased to 5 cycles. These results indicate that our

proposed scheme is fairly robust to increasing latencies in the ring interconnect (as well

as increasing distance between the neighbouring cores).

SIMD Lane Width: Each core in NVIDIA’s Fermi GPU consists of a 32-lane SIMD

unit, each lane capable of executing one floating-point or arithmetic instruction per

clock. In this study, we analyse the impact on CCN of increasing the SIMD lane width.

In Figure 4.15, we plot the performance gain with CCN-RT on baseline configuration

with varying SIMD lane width of 32 (ccn-32), 64 (ccn-64), 128 (ccn-128) and 192

(ccn-192), each normalized to their respective baselines. On average, the performance

gain drops modestly from 14.7% to 13.6% on increasing the SIMD lane width from

32 to 64, settling further at 11.4% and 10.2% with SIMD lane widths of 128 and

Chapter 4. Cooperative Caching for GPUs 73

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

b+tree

cfd
hotspot

lud
sradv1

sc cutcp

tpacf

km pvr
ss w

c
AVGIP

C
 (

n
o

rm
a

liz
e

d
 t

o
 r

e
s
p

.
b

a
s
e

lin
e

s
) baseline ccn-32 ccn-64 ccn-128 ccn-192

Figure 4.15: Speedup with varying SIMD lanes

192 respectively. Although the minor reduction in CCN gain is due to the increased

latency tolerance provided by additional SIMD lanes, cooperative caching continues

to provide considerable benefits for memory-intensive applications. This is due to the

fact that by increasing the number of SIMD lanes or the compute capability of the

cores, only compute-bound applications are expected to show significant speedups and

a higher overlap of memory latencies with computation. In contrast, memory-intensive

applications lack independent instructions and continue to be constrained by memory

resources. Therefore, additional compute resources for memory-intensive applications

provides only limited additional latency tolerance to the cores due to which cooperative

caching continues to be useful in reducing memory latencies that lie in the critical path.

However, some benchmarks such as lud and km also show momentary improvement

in performance gain with CCN on increasing the SIMD lane width. We observe that

this is because with wider SIMD lanes, higher number of threads perform memory

instructions on each cycle, issuing higher number of requests that may exhibit reuse,

thereby amplifying the utility of CCN in reducing the traffic that could lead to even

higher congestion.

4.5.6 Discussion

In future, scalability of the CCN can be addressed by a hierarchical implementation of

the proposed ring network [61, 129]. A sub-CCN-ring that contains the requesting core

can inquire other sub-CCN-rings in parallel, thereby decomposing the serial latency

of traversing the high number of cores into concurrent transactions to multiple rings.

In addition, as coherent caches are imminent with future architectures [109, 127, 143],

CCN can also act as a substrate for implementing cache coherence by providing a means

for inter-core communication.

Chapter 4. Cooperative Caching for GPUs 74

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

b+tree

cfd
hotspot

lud
sradv1

sc cutcp

tpacf

km pvr
ss w

c
AVG

IP
C

 (
n
o
rm

a
liz

e
d
)

bank12 bank24 bank12/CCN bank24/CCN

Figure 4.16: Speedup with 2× L2 banks and CCN

4.6 Comparative Study

In this section, we perform a quantitative and qualitative comparison of CCN with

alternative techniques that address the bandwidth bottleneck in GPUs.

4.6.1 Increasing L2 Banks

An alternative technique to increase the bandwidth to L2 is to increase the number

L2 banks. However, increasing the banks only reduces the congestion in the access

path to L2 whereas CCN, in addition to reducing pressure on L2 bandwidth, provides

a significantly faster response for a fraction of miss requests. In our experiments, we

observe that CCN services the reuse requests in 42 cycles (lreuse) on average, for 29%

misses (hreuse) that hit in CCN. For the remaining L2 accesses, CCN adds a roundtrip

overhead of 54 cycles (δoverhead). It also reduces the congestion overhead to L2 by 78

cycles (δcong). Considering that the average L2 access latency without the CCN is 300

cycles (lO) and substituting the above values in Equation 4.1, the average L2 access

latency with CCN is computed to be 208 cycles (Equation 4.3).

lC(CCN) = (300−78+54)×0.71+(42)×0.29 = 208 (4.3)

lC(2×) = (300−80+0)×1.0 = 220 (4.4)

lC(CCN/2×) = (300−117+54)×0.71+(42)×0.29 = 180 (4.5)

However, increasing the L2 banks only reduces δcong (though marginally more than

CCN for some benchmarks), but requires all accesses to go through the L2 access latency,

albeit via reduced congestion. Upon substituting corresponding values in Equation 4.1,

the reduced L2 access latency is computed to be 220 cycles (Equation 4.4). As a result,

Chapter 4. Cooperative Caching for GPUs 75

in Figure 4.16 we observe an average performance improvement of 10.2% upon a 2×
increase in L2 banks from 12 to 24. In contrast, CCN implemented with 12-bank L2

configuration shows a higher improvement of 14.7% (with cfd performing 34% better

with CCN than with 2× L2 banks).

Importantly, CCN is partly orthogonal to increasing the banks at L2. This is because,

in addition to reducing the δcong further, CCN adds the benefit of faster access to reuse

requests. The average L2 access latency in Equation 4.1 for a CCN architecture on a 24

L2 banks configuration is computed to be 180 cycles (Equation 4.5). In Figure 4.16,

our experiments show an average performance improvement of 23.5% with both the

techniques combined.

With respect to the cost, increasing the L2 banks would require higher number of

ports in the crossbar. As the area of a crossbar increases polynomially on increasing the

ports, the area overhead will be significant. Energy demands also increase significantly

as each router is more complex and need to arbitrate on higher number of nodes. In

contrast, CCN only require simple multiplexers at each router and scales well with

respect to area and energy overheads. Alternatively, increasing the L2 data path width to

provide more L2 bandwidth would also be area intensive as it entails increasing the area

of 15×12 core-to-L2 connections in the crossbar, making the crossbar much bulkier. In

contrast, CCN only requires 15 core-to-core connections. As core-to-L2 connections

are typically longer (in addition to being higher) than core-to-core connections in CCN,

there is a higher overhead in scaling the former.

4.6.2 Sharing Tracker

Tarjan and Skadron [149] proposed a scheme to exploit reuse within the private caches

by using a Sharing Tracker, a decomposed version of the coherence directory. It aims to

reduce the off-chip memory bandwidth demand by diverting DRAM accesses to private

caches that contain a shared copy. Although we adopt a similar intuition to reuse shared

copies in private caches, our aim is to reduce the bandwidth demand to the shared cache

(and not the DRAM as in [149]). This is because in recent GPU architectures, exploiting

reuse does not considerably reduce off-chip memory traffic (as shown in Figure 4.11),

and hence a common directory in shared cache is not expected to show any benefit since

there are not many off-chip memory accesses that it can avoid. In fact, since accessing

and maintaining the sharing tracker in L2 cache adds to the bandwidth demand to L2

without relieving pressure on off-chip bandwidth, it will only exacerbate the problem

Chapter 4. Cooperative Caching for GPUs 76

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

b+tree

cfd
hotspot

lud
sradv1

sc cutcp

tpacf

km pvr
ss w

c
AVG

IP
C

 (
n

o
rm

a
liz

e
d

)

baseline cluster03 cluster05 CCN

1.73

Figure 4.17: Ideal speedup with L1 cache clusters

by increasing L2 access latencies, thereby worsening the performance with respect

to baseline. For those architectures where off-chip memory traffic is also reduced by

exploiting sharing within private caches, CCN achieves the same, but in addition, it

also reduces the traffic to L2 (which we have shown to be critical to performance), and

therefore provides a significant advantage over a directory approach.

4.6.3 Clustered Sharing

Keshtegar et al. [77] proposed an architecture to enable restricted sharing within core

clusters. However, we have shown in Figure 4.2 that while some benchmarks show

higher reuse with neighbouring cores, others show a uniform sharing with all cores. In

Figure 4.17, we show the ideal performance improvement (with no sharing overheads)

obtained by sharing within cache clusters and we compare it with an ideal case of CCN

(sharing among all cores). We observe an average performance gain of 4% and 8% with

ideal clusters of 3 and 5 L1s respectively, compared to an average performance gain

of 21% with ideal CCN. This suggests that for most benchmarks, upon restricting the

sharing within cache clusters, SMs lose out on a large portion of reuse possibilities.

Moreover, the cluster-based proposal by Keshtegar et al. employs a mesh-type

network within a cluster and scales polynomially with the number of cores. Therefore,

we expect the area overhead of clusters to exceed the area of ring-based connections in

CCN which scales linearly with the number of cores. Furthermore, in current GPUs,

SMs are placed linearly around the central L2 cache [115, 116], and therefore, clusters

would require longer wires to connect the far-ends of a cluster as compared to only

near-neighbour connections in CCN.

Chapter 4. Cooperative Caching for GPUs 77

4.6.4 Summary

In this section, we have shown that CCN fares well in comparison with alternative

techniques. CCN performs better than simply increasing the number of L2 banks while

also being partly orthogonal to the latter technique. Sharing tracker is expected to show

negative performance gain with the baseline architecture; and restricted sharing within

cache clusters significantly reduces the opportunity to capture inter-core reuse.

4.7 Related Work

While sharing across L1 caches is a common occurrence in multiprocessors, as em-

phasized by the prevalent use of sophisticated coherence infrastructure, we derive

significant benefits by exploiting L1 sharing for GPGPU workloads, a property atypical

in GPUs. Additionally, in contrast to earlier works [73, 167] where only the off-chip

memory bandwidth is considered critical to performance, we identify the criticality

of mitigating congestion in the on-chip cache hierarchy between L1 and L2 cache. In

the following subsections, we further discuss several prior works related to the ideas

presented in CCN and cite their key differences.

4.7.1 Cooperative Caching in CMPs

In the realm of CMPs, Chang and Sohi [23, 24] proposed cooperative caching by

adapting the coherence infrastructure. Subsequently, Herrero et al. [59] proposed a

scalable distributed cooperative caching scheme by re-designing the coherence engine

to provide distributed directories. Both schemes aim to provide aggressive latency and

capacity benefits for on-chip caches in CMPs. However, since GPUs are relatively more

tolerant to latencies, in this chapter we address the problem pertaining to bandwidth in

GPUs. In addition, a directory-based scheme is not directly portable to GPUs due to the

lack of coherence infrastructure, and therefore our solution proposes an independent

lightweight network.

4.7.2 Ring Network

Ring topologies have been used extensively in commercial multiprocessors to provide

low cost inter-core communication. Intel’s Larrabee [138] employs a bidirectional ring

network to allow on-chip communication between latency-sensitive CPU cores, coherent

Chapter 4. Cooperative Caching for GPUs 78

L2 caches and other blocks with each link being 64 bytes wide (net width of 128 bytes).

Xeon-Phi [31] also uses bidirectional rings with each ring comprising three independent

rings, viz., a 64 bytes data block ring for data transactions, an address/command ring,

and an acknowledgement ring for coherence and flow control messages (net width >128

bytes). In contrast, CCN enables bidirectional communication between latency-tolerant

GPU cores by connecting the incoherent L1 caches in a ring. Due to relaxed latency

constraints in CCN compared to prior ring interconnects in multiprocessors, the bus

width for inter-core transfers is smaller with each link being 8 bytes and 32 bytes

wide respectively (net width of 40 bytes). Therefore, our proposal exploits the latency-

tolerance property of multithreaded cores to provide low cost inter-core communication

through a lightweight ring network.

Furthermore, Campanoni et al. [20] proposed a ring cache for HELIX-RC that acts

as a distributed first-level cache, preceding the private L1 cache. Each ring node has

a cache array to cache shared data and satisfies the loads and stores received from its

attached core. To avoid coherence complications, memory addresses are permanently

mapped to the nodes of the ring cache. In contrast, each node in the CCN ring network

comprises a shadow tag array, needed only for lookups and not for storage of shared data.

Subsequent loads to the shared data via CCN are performed directly in the corresponding

L1 caches since there is no separate data array for the ring nodes. Therefore, the nodes in

the CCN ring network are lighter than nodes in the ring cache proposed in HELIX-RC.

In parallel to the work presented in this chapter [35], Zhao et al. [174] proposed

LA-LLC, a mechanism to exploit inter-core locality by using latent bidirectional core-to-

core connections in the 2D mesh network, which they consider as a baseline NoC in their

study. In their proposal, they maintain sharing information in the L2 cache lines, and

redirect requests back to a remote L1 cache if a sharer is detected, via the bidirectional

request network. Subsequently, the remote core sends the shared data to the requesting

core through core-to-core connections in the response network. However, modern

GPUs often employ unidirectional networks for request and response paths where

core-to-core connections do not exist [141], requiring us to introduce a lightweight ring

for core-to-core connections in this work. Furthermore, introducing fully-connected

crossbar or mesh routers with core-to-core connections can be expensive with respect to

area and energy overheads, as such routers scale polynomially with respect to hardware

overheads with increasing connections between nodes.

Chapter 4. Cooperative Caching for GPUs 79

4.7.3 Shadow Tags

Prior proposals such as Piranha [12] and Niagara [85] have replicated tag structures of

the private L1 caches at the shared L2 cache. Such duplicate L1 tags stored centrally in

the L2 cache are typically used to construct partial sharing information, thereby reducing

indirections to the coherence engine. Duplicate tag structures are also used to reduce

redundant write-back traffic to L2 cache from multiple L1s that cache the same shared

data. However, in CCN we replicate the tags adjacent to the corresponding L1 caches

and do not complicate the L2 cache control. It is used only to prevent deterioration

of L1 cache performance due to remote lookups. Moreover, tag updates to shadow

tags incur minimum communication overhead in CCN due to physical proximity of L1

caches and shadow tags.

4.7.4 Cache Management

In the field of GPUs, prior proposals such as Sharing Tracker [149] and cluster-based

schemes [77] (discussed previously in Section 4.6) exploit reuse within GPU cores

via central directory and clustered caches, respectively. Several other schemes have

been proposed for GPUs to improve the effective on-chip cache capacity, reduce cache

thrashing and improve locality in L1 and L2 caches. Rhu et al. [130] proposed a locality-

aware memory hierarchy which adaptively adjusts the memory access granularity to

prevent over-fetching, providing better off-chip bandwidth utilization. Furthermore, Li

et al. [101] proposed a tag-split cache to enable fine storage granularity to improve cache

utilization, while keeping a coarse access granularity to avoid excessive cache requests.

Tarjan et al. [150] proposed a scheme to tolerate memory miss latencies for SIMD cores

by masking out threads in a warp which are waiting on data and allowing other threads to

continue execution, hence utilizing the idle execution slots. Rogers et al. [132] proposed

a scheduling policy to minimize cache thrashing by monitoring the lost locality in the

L1 data cache. Jia et al. [69] presented a taxonomy for memory access locality and

proposed a compile-time algorithm to selectively utilize the L1 caches. Narasiman et

al. [113] proposed large warp architecture and a two-level warp scheduling technique

to make effective use of resources on GPU. Jog et al. [72] proposed a thread block

aware scheduling policy to improve the cache hit rates of L1 cache. Choi et al. [30]

employed techniques such as write buffering and read bypassing to reduce DRAM

traffic and improve the L2 cache utilization, thereby addressing the bandwidth constraint

between shared cache and DRAM. There has also been work on cache management

Chapter 4. Cooperative Caching for GPUs 80

policies for heterogeneous CPU-GPU architectures. Yang et al. [166] proposed a CPU-

assisted prefetching scheme to improve the GPU memory latencies by localizing the

data in the LLC cache. Lee and Kim [93] proposed a TLP-aware cache management

policy to effectively utilize the LLC for general-purpose workloads. Broadly, the above

cache management proposals focus on reducing the miss rate of independent caches

by improving cache utilization. In contrast, CCN reduces the collective bandwidth

demand of L1 on L2 by diverting some of the misses to remote L1s, without necessarily

reducing miss rate of independent L1 caches. Hence, the above mentioned techniques

that reduce the miss rate of individual caches are expected to be orthogonal to our work.

Given the severity of the memory bottleneck in GPUs (as indicated by the magnitude

of PerfX in Table 4.2), no technique alone solves the entire problem, and hence such

orthogonal techniques can be used in conjunction with CCN.

In order to mitigate the severity of cache thrashing, several cache bypassing tech-

niques have also been proposed1. In CPUs, Gaur et al. [47] proposed a bypass policy to

selectively fill the exclusive last-level cache with evicted cache blocks from the higher

level. Further, Duong et al. [38] proposed a policy to protect reusable cache lines

from eviction with a dynamically computed Protected Distance, and bypass the miss

requests upon lack of unprotected cache lines in a set. In GPUs, high multithreading

and low on-chip cache capacity per thread present additional challenges due to severe

cache thrashing. Chen et al. [28] proposed a dynamic cache management policy that

combines L1 cache bypassing and throttling. In their proposed scheme, warp throttling

prevents over-saturation of on-chip cache resources while cache bypassing prevents

cache contention, requiring lower number of warps to be throttled in comparison to

standalone warp throttling schemes. Li et al. [99] proposed a locality-driven cache

bypassing scheme that uses reuse frequency in a decoupled and extended tag memory

to allow allocation in the data memory for only those cache lines that exhibit high reuse.

In summary, these cache bypassing schemes in GPUs improve cache utilization by

reducing cache thrashing of individual L1 caches. By preventing eviction of cache lines

with high reuse, it helps in eliminating repeated reuse requests from the same L1 cache

to the L2 cache. However, in our proposed technique, we eliminate the reuse requests

from different L1 caches to the L2 cache. In other words, cache bypassing techniques

reduce intra-core reuse requests that access the L2 cache, whereas our proposed tech-

nique reduces inter-core reuse requests that access the L2 cache. Therefore, we expect

1Some of the cache bypassing techniques discussed here have also been discussed in the related work
for Chapter 3, but succinctly included here for completeness in the current context.

Chapter 4. Cooperative Caching for GPUs 81

our proposal to be complimentary to cache bypassing techniques as both techniques

help in reducing mutually exclusive set of requests to the L2 cache.

4.7.5 Thread Block Scheduling

Inter-core reuse, as shown in this chapter, arises due to sharing of data across different

thread blocks (TB) that are scheduled on different SMs. This reuse can also be captured

by scheduling such thread blocks, that share data, on the same SM. Li et al. [102]

proposed a software-based scheme to exploit inter-TB locality by manipulating thread

block scheduling. In their proposal, they cluster the thread blocks that are expected to

exhibit inter-TB locality and schedule them concurrently or consecutively on the same

SM, thereby exploiting reuse through the private L1 cache. While their proposal does

not require any hardware changes, it limits the thread blocks that can reuse data amongst

each other. This is because only a few thread blocks can be scheduled on the same

SM due to occupancy constraints of each SM, thereby limiting the extent of inter-TB

reuse. In Section 4.6.3, we have already shown that limiting sharing within a cluster

of SMs (or a cluster of thread blocks) reduces the opportunities for sharing and can be

sub-optimal. Moreover, data within thread blocks on an SM can be shared only through

a small L1 data cache, whereas inter-core sharing proposed in this chapter spans across

multiple L1 caches, thereby increasing the sharing opportunity due to higher effective

on-chip storage that participates in sharing.

Several hardware approaches have also been proposed to alter the thread block

scheduling policy to improve performance. Kayiran et al. [75] proposed DYNCTA to

regulate the number of thread blocks available on each SM. DYNCTA modifies the

thread-level parallelism in the system at the granularity of thread blocks, on the basis of

some observable application characteristics, in order to mitigate resource contention.

However, it is not aimed at harvesting inter-TB locality. Lee et al. [96] also proposed to

reduce the number of thread blocks available on each SM to reduce resource contention.

In addition, they also aim to extract inter-TB locality by scheduling consecutive thread

blocks on the same SM. It is based on the observation that sequential thread blocks are

more likely to share data. As a result, it restricts inter-TB locality to be harnessed only

within a handful of consecutive thread blocks that are assigned on the SM. However,

as observed in the heatmaps shown in Figure 4.2, reuse is not limited to neighbouring

SMs (or neighbouring thread blocks) and shows different patterns across different

applications. Therefore, restricted sharing between neighbouring thread blocks is again

Chapter 4. Cooperative Caching for GPUs 82

expected to be sub-optimal. More recently, Wang et al. [155] proposed LaPerm, a

thread block scheduling mechanism that schedules parent and child thread blocks on

the same SM to maximize parent-child locality. Therefore, they target only a special

type of inter-TB locality in their scheme, and is more restrictive than CCN.

4.8 Conclusion

In this chapter, we address an inefficiency in the management of L1 caches in GPUs.

We show that as a consequence of high L1 miss rates, high traffic to L2 cache leads

to a bandwidth bottleneck between L1 and L2, which in turn leads to high L2 access

latencies. In memory-intensive applications, multithreading is unable to hide such high

latencies, making it critical for performance.

For general-purpose applications, we discover considerable potential for data reuse

within the L1 caches. We exploit this opportunity to reduce the miss traffic to the L2

cache, and thereby reduce the L2 cache bandwidth demand. To achieve this, we present

a Cooperative Caching Network which services the L1 load misses cooperatively via a

lightweight ring network. We show that GPUs can tolerate reuse latencies gracefully

up to 80 cycles, and therefore a ring topology appears to be a cost-effective solution,

as it allows us to trade-off higher latencies for simplicity and short wires, i.e., lower

power consumption and die-area cost. We also use shadow tag memory, adjacent to

each L1 data cache, to decouple the local L1 cache performance from remote L1 cache

tag lookups. For applications that do not exhibit any inter-core reuse, we detect the

lack of sharing at runtime and prevent the L1 miss requests from incurring the CCN

overhead, sending them directly to the L2 cache. For applications that exhibit reuse,

our technique improves the IPC by 14.7% while being neutral to applications that show

little or no reuse. We likewise reduce the traffic to L2 cache by 29%, and reduce the

average memory latency by 24%. As a result, we reduce the total core stall cycles by

26%. Alongside the above improvements, CCN presents an area and energy overhead

of 1.3% and 2.5% respectively, and compares favourably with alternative techniques

that address the bandwidth issue.

Chapter 5

Managing Thread-level Parallelism

GPUs are increasingly used in upcoming application domains such as Deep Learning,

Autonomous Driving and Medical Diagnosis. In such emerging applications, high

degrees of thread-level parallelism (via multithreading) are normally required. However,

the consequent increase in demand for memory resources, such as caches and memory

bandwidth, gives rise to problems such as cache thrashing [66, 67] and bandwidth

bottlenecks [36]. Mitigating the above problems by reducing multithreading, however,

comes at the cost of restricting parallelism. Due to this tension between thread-level

parallelism (TLP) and memory system performance, balancing the two properties to

maximize system throughput poses a significant challenge in GPUs.

5.1 Overview

In GPUs, L1 data cache is one of the most scarce memory resources, and is therefore

most vulnerable to cache thrashing. To improve the L1 caching efficiency, several warp

scheduling techniques have been proposed that limit the degrees of multithreading.

For instance, warp throttling techniques [132, 133] have been effective in mitigating

cache thrashing by limiting the number of warps that can execute on an SM at a

given time. However, by restricting parallelism, shared system resources such as on-

chip interconnects and DRAM may become underutilized. Previously, to address the

above limitations, Priority-based Cache Allocation (PCAL) [100] has been proposed,

classifying warps into two categories, which are referred in this chapter as follows:

1. Monitored warps: Warps that are needed to maintain a sufficient degree of paral-

lelism in the system, without being directly concerned about cache performance.

83

Chapter 5. Managing Thread-level Parallelism 84

Maximum warps

Cache Thrashing

W1W1

L1 cache

W2W2 W3W3 W4W4

W1W1 W2W2 W3W3 W4W4

W1

L1 cache

W2 W3 W4

W1 W2

Monitored warps

Cache-polluting Warps

X

Figure 5.1: Cache footprint with maximum warps and reduced warps

2. Cache-polluting warps: A smaller subset of the above monitored warps that are

allowed to make allocations and evictions in the L1 cache, in order to maximize

cache performance.

The above categorization is depicted in Figure 5.1. In summary, this categorization

provides a set of two knobs that can be used to fine-tune TLP and memory system

performance, thereby reducing cache thrashing and alleviating bandwidth bottlenecks.

However, in order to arrive at the optimal number of monitored warps, PCAL employs

traditional methods such as iterative hill climbing (detailed discussion in Section 5.3).

Such an approach suffers from two major limitations: firstly, hill climbing techniques

are susceptible to local optima; and secondly, iterative search can take a long time to

converge, particularly in hardware. For these reasons, PCAL is limited in its effective-

ness.

Goal: The key goal of this work is to find a good balance between TLP and

memory system performance, and to do so expeditiously in hardware. To achieve

this balance, we borrow the basic intuition from PCAL to classify warps into two

categories, i.e., monitored warps and cache-polluting warps, and use them as knobs

to maximize throughput. However, we depart from previous search techniques to find

a good composition of warps in each category, overcoming the shortcomings of prior

proposals. Note that throughout this chapter, we refer to this dual category of warps as

a warp-tuple.

Proposal: In this chapter, we propose Poise, a different approach to balance TLP

and memory system performance via the warp scheduling mechanism. Poise comprises

two major components — a statistical machine learning framework and a hardware

inference engine. The machine learning framework uses a supervised learning model,

that is trained offline on a set of profiled kernels using sample input-output pairs. The

training set comprises the warp-tuple that resulted in the best performance for a kernel

(the output), and the corresponding set of architectural and application features of that

Chapter 5. Managing Thread-level Parallelism 85

kernel (the input). The input features are carefully chosen using a detailed analytical

model. Thereafter, we use a regression model to learn a mapping from the selected

architectural and application features, to the chosen warp-tuple. The learned mapping is

provided to the hardware via the software or the compiler.

At runtime, the hardware inference engine samples the architectural and application

features using hardware performance counters, and uses the mapping that was learned

during training to dynamically predict the chosen warp-tuple. To safeguard against

statistical errors in prediction, the inference engine performs a focused heuristic search

in the near vicinity of the prediction to find a better warp-tuple, if any. This adds

resiliency to Poise against minor statistical errors arising from the machine learning

framework. The final warp-tuple is used by the warp scheduler to alter the number

of monitored warps and cache-polluting warps, in order to improve memory system

performance, while also maximizing system throughput.

Across a set of benchmarks that were unseen during training, Poise achieves a

harmonic mean speedup of 46.6% (up to 2.94×) over the baseline greedy-then-oldest

(GTO) warp scheduler that employs maximum number of warps. It also outperforms

the prior state-of-the-art warp scheduler, PCAL, by an average of 15.1%.

Organization: The remainder of this chapter is organized as follows. Section 5.2

provides the necessary background relevant to this work. Section 5.3 motivates the

problem of balancing thread-level parallelism and memory system performance in GPUs

and illustrates the shortcomings of prior techniques. Section 5.4 presents a system-level

overview of our proposed Poise mechanism. Section 5.5 presents the machine learning

framework in form of an analytical model and a regression model. The analytical model

is used to reveal the most representative architectural and application features that

should be used for learning. The regression model learns a mapping from the revealed

application and architectural features to the warp-tuples that yield best performance.

Section 5.6 presents a hardware inference engine to predict good warp-tuples based on

the observed runtime features and the learned mapping, which is used to alter scheduling

decisions dynamically. Section 5.7 evaluates the proposed mechanism and presents the

results. Section 5.8 presents the related work and Section 5.9 concludes the work by

summarizing our key contributions and results.

Chapter 5. Managing Thread-level Parallelism 86

Table 5.1: Baseline architecture parameters for GPGPU-Sim

Parameter Value

SMs 32

Clock frequency Core @ 1.4 GHz; Crossbar/L2 @ 700 MHz

Schedulers per SM 2, greedy-then-oldest (GTO) scheduler

Max warps per SM 48 (24 per scheduler)

Max threads per SM 1536

SIMD width 32

Registers per SM 32768

Shared Memory 48 KB

L1 Data Cache 16KB, 128B line, 4-way,

LRU, Hash Set-Indexed, 32 MSHR entries

Interconnect 32×24 Crossbar, Fly-topology, 32B flit

L2 Cache 2 MB, 24 banks, 8-way, 128-byte line, LRU

DRAM GDDR5 DRAM @ 924 MHz, 6 Memory Partitions, 384 bits buswidth

5.2 Background

In this section, we provide the necessary background for this chapter with a brief

discussion about the baseline architecture and supervised learning.

5.2.1 Baseline Architecture

In this study, we consider a baseline modelled on a modern GPU, comprised of 32 SMs,

16 KB L1 data cache and 2 MB L2 cache. Each SM can support up to 1536 concurrent

threads and up to 48 warps. There are 2 warp schedulers per SM for high throughput

issue. Each warp scheduler equally distributes the scheduling load and manages a

maximum of 24 warps each at any given time. The baseline parameters are summarized

in Table 5.1.

5.2.2 Supervised Learning

Supervised learning is a machine learning technique, which uses a training set com-

prising a set of input-output pairs, and constructs a mapping from the input to the

output by analysing the training data. The learned mapping is used to make predictions

or inferences about the output on unobserved input data. The set of input variables

Chapter 5. Managing Thread-level Parallelism 87

that are used for training are often referred to as the feature vector. In this work, the

input feature vector comprises a set of observable properties of the architecture and

application; and the output comprises the warp-tuple that results in the optimal (or

near-optimal) performance for a kernel (discussed in Section 5.5.2).

Feature Selection: The accuracy of the model depends highly on the selection of the

feature vector. While correlation techniques [54, 22] and genetic algorithms [3, 92] are

commonly used for selecting a set of representative features, domain knowledge can be

leveraged by constructing robust theoretical models [125, 16] to discover a reliable set

of features (as shown in Section 5.5.1). This can help reduce the dimensionality of the

feature vector to truly representative features and significantly improve the prediction

accuracy.

Regression Analysis: Supervised learning algorithms such as Generalized Linear

Models (GLM) borrow heavily from statistics [43, 44], and are often referred to as

statistical machine learning algorithms [90, 19]. In this work, we use Negative Binomial

regression [117] from the family of Generalized Linear Models. In this regression model,

the output follows a negative binomial distribution. The learned mapping from the input

to the output is expressed through a set of feature weights for each corresponding input

in the feature vector. The logarithm of the output is expressed as a weighted sum of

input features (as shown in Section 5.5.4).

5.3 Motivation

Since the wide adoption of on-chip memory hierarchies in GPUs [49, 116], several warp

scheduling techniques have been proposed to maximize cache performance. In this

section, we discuss two prior state-of-the-art techniques and analyse their limitations.

Consequently, we motivate the need for an alternative approach that addresses prior

shortcomings. We discuss other related and orthogonal techniques in Section 5.8.

5.3.1 Cache-Conscious Wavefront Scheduling

Rogers et al. [132] proposed Cache-Conscious Wavefront Scheduling (CCWS), a warp

throttling technique to adaptively limit the number of warps, thereby reducing cache

thrashing. In their scheme, they maintain Lost Locality Score (LLS) for each warp that

indicates the potential cache hits lost by each warp due to cache thrashing. This is done

by employing a victim tag array (VTA), which is a modified version of the victim cache.

Chapter 5. Managing Thread-level Parallelism 88

VTA stores the tag and warp information for the cache lines evicted by the L1 cache.

For every L1 miss, the VTA is probed and the LLS is incremented if the load request

hits in the VTA. Warps with higher LLS, above a cumulative cutoff, are given exclusive

access to the L1 cache. The remaining warps with lower LLS are prevented from issuing

load instructions in order to reduce cache thrashing. Due to the high hardware overhead

of CCWS, the authors also discuss Static Warp Limiting (SWL), an offline profiling

based technique to determine the appropriate extent of throttling for each benchmark.

This is done by characterizing each benchmark for every possible level of throttling,

and selecting the number of warps that led to best performance. They also note that

static SWL outperforms dynamic CCWS due to the runtime overheads of the latter. In

SWL, however, every new benchmark needs to be profiled as it does not utilize any

prior knowledge acquired from other benchmarks.

5.3.2 Priority-based Cache Allocation

While CCWS successfully improves cache performance by reducing cache thrashing, it

severely restricts the thread-level parallelism in the GPU. Li et al. [100] observed that

throttling also leads to under-utilization of shared system resources. Consequently, they

proposed Priority-based Cache Allocation (PCAL) to decouple parallelism and cache

performance. In their scheme, they classify warps into two categories — referred in this

chapter as monitored warps and cache-polluting warps. Firstly, monitored warps are

a group of warps that are allowed to participate in the overall multithreading and are

used to meet the high parallelism needs of an application. Secondly, cache-polluting

warps are a subset of monitored warps that have full cache privileges and are allowed

to make allocations and evictions in the L1 cache. Cache-polluting warps are controlled

to maintain satisfactory levels of cache performance. Throughout this chapter, we refer

to the number of monitored warps as “N” and the number of cache-polluting warps as

“p”. PCAL aims to find a balance between TLP and cache performance by varying N

and p.

In the proposed scheme, PCAL starts by employing the CCWS policy to find

the right level of initial throttling. Taking the result of CCWS as the starting point,

PCAL performs a search in the {N, p} solution space. First, p is varied in parallel

across different SMs for a specified duration of sampling. Thereafter, different SMs

determine the best performing p through parallel voting. The parallel voting mechanism

is managed by a finite-state machine and selects the p that led to best performance. The

Chapter 5. Managing Thread-level Parallelism 89

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

p
 (

c
a

c
h

e
-p

o
llu

ti
n

g
 w

a
rp

s
)

N (monitored warps)

speedup

slowdown

CCWS
PCAL

MAX

_
_

(a) Navigating the solution space

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

IP
C

 (
n

o
rm

a
liz

e
d

)

N (monitored warps)

p = N p = 1

Performance

Valley

CCWS

PCAL

MAX
_
_

_
_

(b) Performance peaks and valleys

Figure 5.2: Static profiling of ii kernel #112

best performing p chosen through voting is applied to all SMs. The selected number

of cache-polluting warps are maintained until some SM suffers a drop in performance

that is greater than a predefined threshold, at which point SMs trigger another round

of sampling and parallel voting. Next, the number of monitored warps, N, are selected

through an iterative search by hill climbing. To achieve this, the PCAL control unit

monitors the shared resources and starts increasing N by one warp at a time if the shared

resource utilization is below a certain threshold. The monitored warps are increased as

long as SMs observe a threshold level of performance improvement in every iteration.

Similar to CCWS, the authors propose both static and dynamic flavours of PCAL, and

show that static outperforms dynamic, due to the runtime overheads of the latter, as was

observed in CCWS.

5.3.3 Pitfalls in Prior Techniques

In Figure 5.2 we show the above techniques in action for a kernel from the ii benchmark

and analyse the shortcomings of PCAL and CCWS. The simulation methodology is

illustrated later in Section 5.7.3. Firstly, Figure 5.2a explores the {N, p} solution space

by offline profiling of the kernel across the entire region. Here, the x-axis represents

the number of monitored warps (N), while the y-axis represents the number of cache-

polluting warps (p, where p≤ N). The green and red colour of the circles in the graph

represents speedup and slowdown respectively, observed for a warp-tuple indicated by

coordinates (N, p); whereas, the radius of the circle is proportional to the magnitude of

speedup or slowdown. Additionally, Figure 5.2b shows a plot for two specific values

Chapter 5. Managing Thread-level Parallelism 90

of p from the prior {N, p} solution space, i.e., p = N and p = 1, and demonstrates the

performance variation in each.

As shown in Figure 5.2a, CCWS binds p with N, and thereby takes values only

on the diagonal line p = N. Consequently, CCWS technique results in a speedup of

7% at (2,2), which is the peak performance point on the diagonal. In contrast, PCAL

decouples p from N, and searches the two-dimensional space. To implement this search,

PCAL first uses CCWS to arrive at (2,2). Thereafter, it performs a parallel search in

p (converging to p = 1) and an iterative hill climbing in N (converging to N = 2). In

effect, PCAL converges to (2,1), resulting in a speedup of 35%. However, we note that

the maximum speedup across the entire {N, p} region is 45%, observed at (15,1).

While the inefficiency of CCWS is due to its restrictive coupling of N and p, the

sub-optimality of PCAL can be explained due to the following reasons. As shown in

Figure 5.2b, the hill climbing in p = 1 (green line), starting from the CCWS point

at N = 2 (on the x-axis), gets trapped at a local optimum at N = 2 due to a nearby

performance valley at N = 4. Consequently, PCAL does not transition to the global

optimum at N = 15. Therefore, when there are multiple performance peaks in the

{N, p} solution space, as is the case in GPUs [53], PCAL becomes prone to a local

optimum point that is nearest to the starting point. Moreover, even in the absence

of performance valleys, if the starting point is far from the performance peaks (as is

the case in the above example), it would require multiple iterations to converge on a

solution. Therefore, adaptive hardware implementations lead to poor results compared

to their static counterparts, as was already observed in dynamic CCWS and PCAL.

5.3.4 Summary

In summary, prior techniques are limited in their ability to efficiently span the {N, p}
solution space and there are two primary reasons for this. Firstly, conventional methods

such as hill climbing are prone to local optimums, and therefore lead to sub-optimal

solutions. Secondly, dynamic implementation of prior techniques present considerable

time and sampling overheads leading to further degradation in the efficiency of these

approaches. Therefore, in this work, we propose an alternative technique to arrive at

a well-performing warp-tuple {N, p}, avoiding the shortcomings of prior techniques

discussed above.

Chapter 5. Managing Thread-level Parallelism 91

Feature Vector

Regression

Model

Analytical Feature Extractor

B
e
st

 t
u
p
le

Training KernelsTraining Kernels

T
ra

in
in

g
 K

e
rn

el
s

T
ra

in
in

g
 K

e
rn

el
s

Target

{N, p}

Machine Learning

Framework

Hardware Inference

Engine

Learned

Mapping

Run time features
P

red
ictio

n

C
o

rre
cto

r

Inference

Poise Performance Counters

Execution KernelExecution Kernel

Predicted

{N, p}

Poise

Final

{N, p}

to warp

 scheduler

Feature Vector

Regression

Model

Analytical Feature Extractor

B
e
st

 t
u
p
le

Training Kernels

T
ra

in
in

g
 K

e
rn

el
s

Target

{N, p}

Machine Learning

Framework

Hardware Inference

Engine

Learned

Mapping

Run time features
P

red
ictio

n

C
o

rre
cto

r

Inference

Poise Performance Counters

Execution Kernel

Predicted

{N, p}

Poise

Final

{N, p}

to warp

 scheduler

Figure 5.3: System-level architecture of Poise

5.4 Poise: A System Overview

We now present Poise, a different approach for balancing thread-level parallelism and

memory system performance. Figure 5.3 depicts the system-level architecture of Poise.

It is comprised of the following two major components, which are discussed in detail in

subsequent sections.

1. A statistical machine learning framework, where we use a supervised regression

model to perform offline training on a set of profiled kernels in the training set.

During training, we learn a mapping from a set of application and architectural

features to the warp-tuple {N, p} that yields best performance.

2. A hardware inference engine, where we sample the runtime features, online,

using hardware performance counters, and predict good warp-tuples {N, p} for

previously unseen kernels, using the mapping that was learned during training.

As a result, this strategy drastically reduces the time and overheads involved in

finding a good initial solution. Thereafter, we perform a focused heuristic search

in the near vicinity of the predicted warp-tuple to find a better warp-tuple, if any,

thereby offsetting statistical prediction errors, which are inherent in any machine

learning algorithm.

5.5 Machine Learning Framework

In this section, we present our machine learning methodology. We begin by extracting

the salient architectural and application features that should be used for training. To

Chapter 5. Managing Thread-level Parallelism 92

identify such features, correlation techniques are often used in machine learning. How-

ever, in computer architecture, we argue for a theoretical exploration of the features to

better reason about the accuracy of the developed machine learning framework. It also

enables portability across different architectures by providing the theoretical tools to

model the variable characteristics. Therefore, we first develop an analytical model to

reveal the feature space, and then use those features for training.

5.5.1 Analytical Model

Fundamentally, GPUs employ the following two types of concurrency to hide the long

latency of memory accesses. Firstly, via instruction concurrency which is attained by

the execution of independent instructions between a memory load and its usage within a

warp. Secondly, via warp concurrency which is attained by the execution of independent

instructions from other warps, i.e., thread-level parallelism. More specifically, when a

warp encounters an instruction that is dependent on a pending load, it is replaced with

another warp that has a stream of independent instructions. Thus, these two mechanisms

help in keeping the functional units busy when there is sufficient independent work

within or across warps [83, 124]. The importance of considering both sources of

concurrency mentioned above, i.e., warp concurrency and instruction concurrency, has

been emphasized in recent work [153].

In an application, if a typical load and its use are not separated by sufficient indepen-

dent instructions from the same warp (low instruction concurrency), then higher TLP is

required in order to hide latencies (high warp concurrency). However, owing to practical

limits on number of warps, each warp would quickly arrive at the dependent instruc-

tion and wait for pending memory loads to complete. Therefore, in such applications,

load miss latencies determine when the dependencies within a warp can be resolved

and appear in the critical path. Such applications are referred to as memory-sensitive

applications, where improving the memory system performance is more useful than

simply increasing the number of warps, as the latter has limited benefit due to a lack of

independent instructions. Therefore, instead of operating at the maximum number of

warps, memory-sensitive applications require a sophisticated balance between TLP and

memory system performance.

In this section, the overarching goal of the analytical model is to mathematically

depict the memory latencies that appear in the critical path for memory-sensitive

applications and lead to stalls. The initial formulation in our analytical model borrows

Chapter 5. Managing Thread-level Parallelism 93

from standardized prior work in this area. Hong and Kim [62] proposed an analytical

framework called MWP-CWP. In their model, they formulate the execution time based

on different architectural and application metrics such as memory-level parallelism and

instruction-level parallelism. Later, Sim et al. [140] proposed GPUPerf that comprised

of an analytical model extending the MWP-CWP model. In their work, they capture

the cache effects using the prior AMAT model [58] and include other optimizations

such as instruction mix and memory-level parallelism. We include the lessons from

the above analytical models with appropriate changes and reasonable simplifications to

tailor it for memory-sensitive applications. Later, using the initial formulation as the

starting point, we analyse how the stall cycles are impacted upon varying the number

of monitored warps and the number of cache-polluting warps. Finally, we extract the

key observable parameters deduced from the analysis and use them to train a regression

model.

Maximum warps: To model the miss latencies in a baseline system with maximum

warps N, let mo be the average L1 miss rate on an SM. Furthermore, let Lo be the

average memory latency for an individual L1 miss request. Then, upon executing a load

instruction concurrently across N warps on an SM, the effective memory latency for the

load miss can be expressed by Tmem through Equation 5.1. Here, Kmshr is the number of

MSHR entries in the L1 cache and accounts for memory-level parallelism. Note that

we assume each warp instruction generates a single, highly coalesced memory request.

Also, the ceil function indicates that the effective latency grows as integer multiples of

Lo.

Tmem = Lo×
⌈

N×mo

Kmshr

⌉
(5.1)

Tbusy = N×ho× Id×Tpipe (5.2)

Tstall = max {Tmem−Tbusy, 0} (5.3)

Next, we model the available slack on an SM to hide the effective memory latency.

Let ho (= 1−mo) be the average L1 hit rate for an SM. These L1 hits enable the warps to

make forward progress on dependent instructions (due to resolved data dependencies),

thereby contributing to the busy cycles on the SM. Let Id be the number of additional

instructions in a warp that are now eligible for execution due to a cache hit, until it

encounters the next dependency hazard and stalls the warp again. Then the cycles for

which the functional units on an SM are kept busy can be expressed by Tbusy through

Equation 5.2. Here, Tpipe is the average number of cycles for pipelined execution of a

Chapter 5. Managing Thread-level Parallelism 94

L1
 H

it
 R

at
e

p warps N-p warps

ho

hp

hnp

Baseline

Δhp/o

Δhnp/o

L1
 H

it
 R

at
e

p warps N-p warps

ho

hp

hnp

Baseline

Δhp/o

Δhnp/o

Figure 5.4: L1 hit rate comparison for p and N− p warps

warp instruction on the corresponding functional units. It is noteworthy that the inde-

pendent instructions from a warp (irrespective of a load hit or a miss) contribute to the

parallelism on an SM and keep the functional units busy. However, as mentioned earlier,

memory-sensitive applications have only a few independent instructions, allowing us to

ignore its effect for simplicity. Finally, the number of stall cycles on an SM when the

high latency of memory operations get exposed and appear in the critical path, can be

expressed by Tstall in Equation 5.3.

Reduced warps: We now consider a scenario when only a subset of warps, p (≤N),

can pollute the L1 cache, while the remaining (N− p) warps can only reuse the cache

lines allocated by the p cache-polluting warps. In a general case, p warps experience an

improved L1 hit rate of hp while the remaining (N− p) non-polluting warps experience

a reduced hit rate of hnp. This is shown diagrammatically in Figure 5.4. In such a

case, the effective memory latency for concurrent misses across N warps, for a load

instruction, can be expressed by T ′mem through Equation 5.4, where mp = 1−hp and

mnp = 1−hnp. Note that L′ denotes the new average memory latency due to a different

level of congestion in the memory system, emerging from the change in the overall

L1 miss rate. Similarly, the number of cycles when the functional units on the SM are

busy doing useful work, can be expressed by T ′busy through Equation 5.5. Therefore, the

number of stall cycles in this case can be expressed by T ′stall through Equation 5.6.

T ′mem = L′×
⌈

mnp (N− p)+ mp p
Kmshr

⌉
(5.4)

T ′busy = { p hp + (N− p) hnp } Id Tpipe (5.5)

T ′stall = max {T ′mem−T ′busy,0} (5.6)

Speedup criteria: For a warp-tuple {N, p} to result in speedup, the resultant stall

Chapter 5. Managing Thread-level Parallelism 95

cycles must be lower than the baseline scheme. Therefore, using the above equations,

the criteria for speedup can be expressed through Equation 5.7.

T ′stall < Tstall =⇒ ∆Tbusy
∆Tmem

> 1
}

Criteria for speedup

where,

∆Tbusy = T ′busy−Tbusy

∆Tmem = T ′mem−Tmem

(5.7)

At this point, we define µ as the coefficient of goodness of a warp-tuple {N, p} in

reducing the stalls cycles compared to the baseline. A higher µ leads to lower stalls,

in turn leading to better performance. Using Equation 5.7, µ can be mathematically

defined through Equation 5.8.

µ =
∆Tbusy

∆Tmem
=⇒ For speedup, µ > 1 (5.8)

On further simplification, µ can be expressed through Equation 5.9 using Equa-

tions 5.1–5.6. Note that we drop the ceil function in ∆T X
mem for simplicity, without

significant loss in accuracy.

µ =
∆T p

busy +∆T np
busy

∆T np
mem +∆T p

mem

where,

∆T X
busy = x (hx−ho) Id Tpipe

∆T X
mem = 1

Kmshr
x (mx L′−mo Lo)

}
X ∈ {p, np}
x ∈ {p, N-p}

(5.9)

To ensure performance improvement for a warp-tuple {N, p}, the criteria for

speedup given by µ > 1, can be met conservatively if both conditions in Equation 5.10

are met.

µp/np =
∆T p

busy

∆T np
mem

> 1 µnp/p =
∆T np

busy

∆T p
mem

> 1 (5.10)

µp/np = TpipeKmshr

(
p

N− p

)(
Id ∆hp/o

mnp L′−mo Lo

)
(5.11)

Chapter 5. Managing Thread-level Parallelism 96

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

syr2k

bfs
bicg

cfd
m

vt
atax

pvr
ss syrk

ii m
m

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

IP
C

 (
n

o
rm

a
liz

e
d

)

µ
p
/n

p
 (

n
o

rm
a

liz
e

d
)

IPC

IPC trend

µp/np

µp/np trend

Figure 5.5: Correlation between speedup and µp/np with p = 1 and N = 24

On simplifying, we can represent µp/np through Equation 5.11 where ∆hp/o is (hp−
ho). Due to symmetrical nature of µnp/p, it is expected to yield similar proportionality

as µp/np and is therefore omitted for brevity. Therefore, we define µp/np as the objective

function that we wish to maximize for a bivariate warp-tuple {N, p}.
Correlation with Speedup: In order to measure the correctness of our analytical

model, we measure the correlation between the objective function (µp/np) and the

speedup across different memory-sensitive applications. The expectation is that bench-

marks with higher values of µp/np should demonstrate higher speedups. For the purpose

of this evaluation, we select a warp-tuple with N = 24 and p = 1, and compare the

speedup against a baseline configuration with N = p = 24. In Figure 5.5, we show IPC

normalized to baseline on the y-axis, and benchmarks sorted in the ascending order

of speedup on the x-axis. We also show the value of µp/np (normalized to syr2k) and

observe an upward trajectory similar to speedup, albeit non-linear. Therefore, in addi-

tion to the actual data points, we also show linear trends in IPC and µp/np by plotting

the respective data points linearly using linear regression [157]. We observe similar

upward trends for both IPC and µp/np. To quantify the correlation, we measure Pearson

correlation coefficient and observe a high value of 0.87 (out of 1.0) between the actual

data points of the objective function and the speedup for benchmarks in Figure 5.5,

indicating a strong positive correlation between the two metrics. In summary, we ob-

serve good correlation between performance speedup and µp/np. Therefore, we expect

Equation 5.11 to be a reliable approximation of our objective function.

Limitations of the Analytical Model: In this work, the intent of the analytical

model is not to intricately model the GPU but only to expose the relevant features

Chapter 5. Managing Thread-level Parallelism 97

by modelling steady-state first-order behaviour. This is because we are ultimately

interested in identifying the proportionalities for regression, and not in solving the

objective function for exact solutions — allowing room for reasonable simplifications.

In that spirit, the model presented in this section is a simplistic approximation of

latency hiding in GPUs. For instance, we do not account for dependency latencies due

to pending arithmetic instructions. Such latencies would also need to be hidden by

parallelism to reduce stall time, just like memory latencies. However, we focus only on

the stall cycles contributed by memory latencies as our modifications pertain to memory

system performance (and not arithmetic performance), thereby impacting only memory

latencies (and not arithmetic latencies). Therefore, it is eliminated for brevity, but can

be easily included for completeness.

Similarly, we assume highly coalesced memory access patterns with minimal mem-

ory divergence. In case of high memory divergence, the number of memory requests

would increase the burden on memory bandwidth, thereby reducing memory-level

parallelism due to bandwidth bottlenecks. This would lead to an increase in average

memory access latencies. In our model, we already consider memory access latencies

observed in a congested memory system (Lo and L′), and not the minimum memory

access latencies in an uncongested memory system. Therefore, the consequence of

high memory divergence is captured indirectly due to an increase in Lo and L′ with

increasing congestion.

Finally, we execute PTX level code due to the limitations of the simulation infrastruc-

ture. A lower level SASS execution would include the effects of compiler optimizations

such as instruction reordering, which may alter the number of independent instructions

in the dependency chains. This is a limitation of our analytical model. However, the

impact of this limitation is expected to be less for memory-sensitive applications where

the independent instructions are few.

5.5.2 Feature Vector Representation

The accuracy of a machine learning model depends highly on the feature vector rep-

resentation. A low dimensional feature vector with truly representative features is

most desirable, as it increases the reliability of the predictions made by the model.

Therefore, we leverage domain knowledge to construct a feature vector, through the

analytical model discussed in Section 5.5.1. As we have observed that our objective

function reliably represents performance, we now extract the salient architectural and

Chapter 5. Managing Thread-level Parallelism 98

Table 5.2: Variables derived from the analytical model

(a) Objective Function Variables

Variable Description

Tpipe Cycles for pipelined execution of a warp instruction

Kmshr No. of MSHR entries per L1 cache

ho Net L1 hit rate for the baseline system (= 1 – mo)

hp L1 hit rate for p warps for {N, p} tuple (= 1 – mp)

hnp L1 hit rate for N− p warps for {N, p} tuple (= 1 – mnp)

h′ Net L1 hit rate for {N, p} tuple (= 1 – m′)

∆hp/o Improvement in hit rate for p warps (= hp – ho)

Lo Average memory latency for the baseline system

L′ Average memory latency for {N, p} tuple

Id Average no. of instructions between two different data hazards

(b) Proportionality derived from the Objective Function

Variable Description

R Reuse Distance

ηo Intra-warp hit rate for the baseline system

η′ Intra-warp hit rate for {N, p} tuple

η′−ηo Intra-warp hits that could not be captured initially in

the baseline with maximum warps due to cache thrashing

∆hp/o Proportional to η′−ηo

ho−ηo Inter-warp hit rate for baseline system

In Average no. of instructions between two global loads (∼ Id)

application characteristics that influence the objective function. To do so, we first make

a few observations about the variables that are present in Equation 5.11 and are listed

in Table 5.2a. We note that the objective function increases with higher hp over the

baseline ho (represented by ∆hp/o). Conducive conditions for a high hp arise when the

warps can utilize the cache better in the absence of thrashing. Therefore, there must

be enough locality within the warp itself (indicated by intra-warp locality) and the

footprint of warps must fit in the cache in the absence of thrashing (indicated by reuse

distance).

We illustrate the above criteria through an example in Figure 5.6 for a warp-tuple

configuration where p = 1 and N = 24. The hit rate for p warps (hp) is indicated by the

green bar; the hit rate for (N− p) warps (hnp) is indicated by the red bar; and the hit rate

Chapter 5. Managing Thread-level Parallelism 99

 0

 0.2

 0.4

 0.6

 0.8

 1

L
1
 H

it
 R

a
te

p warps
N - p warps

Baseline

Intra-warp
 97 %

Inter-warp
 3 %

(a) ii (R = 236)

 0

 0.2

 0.4

 0.6

 0.8

 1

L
1
 H

it
 R

a
te

p warps
N - p warps

Baseline

Intra-warp
 77 %

Inter-warp
 23 %

(b) b f s (R = 1136)

 0

 0.2

 0.4

 0.6

 0.8

 1

L
1
 H

it
 R

a
te

p warps
N - p warps

Baseline

Intra-warp
 40 %

Inter-warp
 60 %

(c) syr2k (R = 240)

 0

 0.2

 0.4

 0.6

 0.8

 1

L
1
 H

it
 R

a
te

p warps
N - p warps

Baseline

Intra-warp
 2 %

Inter-warp
 98 %

(d) c f d (R = 3161)

Figure 5.6: L1 hit rate distribution.

for all warps in baseline system (ho) is indicated by the blue line. In this figure, we also

highlight the different reuse characteristics such as inter-warp hits and intra-warp hits

(as a percentage of total L1 hits in the baseline), and reuse distance (R). We observe that

ii and syr2k show a high ∆hp/o. This is explained by the presence of high intra-warp

locality (97% and 40% intra-warp hits respectively) and low reuse distance (R≤ 240),

presenting enough opportunity to better utilize the cache in the absence of thrashing.

However, b f s and c f d have high reuse distance (R = 1136 and 3161 respectively),

and therefore, we observe low ∆hp/o due to continued thrashing caused by the large

cache footprint of the warp. Note that if all intra-warp hits are captured in baseline

(ho), then there is no future opportunity to capture more intra-warp hits, despite the

favourable reuse characteristics that we have discussed above. Therefore, a good proxy

for the remaining opportunity to capture intra-warp locality is the difference between

intra-warp hits at p = 1 (lowest thrashing) and p = 24 (maximum thrashing). A higher

remaining opportunity will yield a higher ∆hp/o. We summarize this proportionality

between ∆hp/o and reuse characteristics in Table 5.2b.

Next, we observe in Equation 5.11 that the objective function increases with lower

Chapter 5. Managing Thread-level Parallelism 100

Table 5.3: Feature Vector (X) and Feature Weights (α; β)

Features: X Formulation α (for output N) β (for output p)

x1 ho 0.517687 3.786126

x2 h′ -0.000261 0.483576

x3 ηo 7.209138 -6.386444

x4 η′ -5.977480 10.320107

x5 (η′−ηo)
2 -8.906397 -6.533500

x6 In(η
′−ηo)

2 1.976725 -0.900944

x7 (L′m′−moLo)
2/105 0.004668 0.079856

x8 1 (constant intercept) 1.667111 -2.189887

degradation in hit rate for (N− p) warps (indicated by the denominator term). Such a

condition arises when the (N− p) warps continue to utilize the cache lines allocated by p

warps, despite losing their own ability to allocate and evict cache lines. Therefore, there

must be enough locality across warps (indicated by inter-warp locality). In Figure 5.6,

we observe that syr2k and c f d have high inter-warp hits (60% and 98% respectively),

and therefore, (N − p) warps show minimal reduction in hit rate. However, ii and

b f s have lower inter-warp hits (3% and 23% respectively), and therefore, observe a

considerable drop in hit rate for (N− p) warps. Notably, the most favourable conditions

for speedup are present for syr2k, i.e., high change in hit rate for p warps and low

change in hit rate for (N− p) warps.

Finally, we note that Id can be difficult to compute due to complex data dependency

chains. Moreover, in memory-sensitive benchmarks, the different dependent instructions

are expected to be in proximity to their preceding load instructions (due to a scarcity of

intermediate independent instructions). Therefore, the number of instructions between

two dependent instructions (Id) can be approximated by the number of instructions

between two global loads, represented as In in Table 5.2b.

Summary: The above analysis revealed several factors that influence the objective

function. We summarize the final feature vector X in Table 5.3. The feature weights in

the table will be discussed in detail in Section 5.5.4. Note that the polynomial degree for

each feature is chosen after sensitivity analysis, in line with general practice in machine

learning. Additionally, the variables that depend on the choice of p and N (such as h′,

η′, L′ and mnp) are measured at a fixed reference point in the two-dimensional {N, p}
solution space, i.e., (1, 1); the rest are measured at baseline (24, 24). In summary, the

Chapter 5. Managing Thread-level Parallelism 101

above feature vector X, constructed by sampling at two fixed reference points in the {N,

p} solution space, provides sufficient substrate to learn about the behaviour of N and p

that lead to good performance.

5.5.3 Training Methodology

Scoring Performance Peaks: For supervised learning, we prepare a training dataset

that is comprised of profiled kernels from memory-sensitive benchmarks and is used to

learn a mapping from the input feature vector X (summarized in Table 5.3) to a target

warp-tuple {N, p}. To select this target warp-tuple, an obvious candidate would be

the point in the {N, p} solution space that leads to highest performance. However, a

prediction error could result in a prediction that is a small distance from the target warp-

tuple. Consequently, when the performance peak lies in the vicinity of performance

cliffs, a small prediction error can have a negative impact on performance. In such

cases, training for a target warp-tuple that lies in a good neighbourhood, even with

slightly lower speedup than the global optimum, is expected to yield better results.

Therefore, we propose a scoring system in which each point in the solution space is

assigned a score, which is the weighted sum of performance at the point itself as well

as the performance at neighbourhood points.

In our scoring system, the weight assigned to a neighbourhood point is inversely

proportional to the distance from the point under evaluation. Therefore, to evaluate the

score of a point (a, b) in the solution space, the speedup for that point is assigned a

weight of ω0; the speedup for points at a distance of 1 unit in either N or p are assigned

a lower weight of ω1; and the speedup for diagonal points at a distance of 1 unit in both

N and p are assigned a further lower weight of ω2. Therefore, the score of point (a, b)

can be expressed by Equation 5.12, where Sx,y represents the speedup at a coordinate

(x, y) in the solution space. Consequently, the target warp-tuple for each kernel is the

point in the solution space that has the highest score, instead of the point that has the

highest performance. Note that the scores are normalized to the number of neighbours,

to account for missing neighbours at the boundary points.

score(a, b) = ∑
i∈{−1,0,1}

∑
j∈{−1,0,1}

ω|i|+| j| Sa+i,b+ j (5.12)

In Figure 5.7, we illustrate the utility of the proposed scoring system by analysing

the performance profile of two kernels from the ii benchmark profiled across the {N,

Chapter 5. Managing Thread-level Parallelism 102

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10 12 14 16 18 20

p
 (

c
a

c
h

e
-p

o
llu

ti
n

g
 w

a
rp

s
)

N (monitored warps)

speedup

slowdown

Max Performance

Max Score

(a) Static profile of ii kernel#34

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10 12 14 16 18 20

p
 (

c
a

c
h

e
-p

o
llu

ti
n

g
 w

a
rp

s
)

N (monitored warps)

speedup

slowdown

Max Performance

Max Score

(b) Static profile of ii kernel#35

Figure 5.7: Scoring performance peaks to avoid cliffs

p} solution space. In Figure 5.7a, the best performance peak is at (6, 5) resulting in a

speedup of 8%. However, at any lower N, performance cliffs start to appear (indicated

by red circles). Therefore, the scoring system gives a lower score to (6, 5) due to nearby

performance cliffs. Instead, the best score is computed at (8, 8) which presents a safer

zone for prediction, even though the target speedup is revised to a lower value of 6%.

Similarly, in Figure 5.7b, the performance peak occurs at (11, 4) with a speedup of 15%.

However, due to performance cliffs at any lower p or higher N, the best score is instead

computed for (7, 6), which presents a slightly lower speedup of 14%, but makes for a

safer prediction point. Therefore, such scoring of the performance peaks reduce the

likelihood of our target being around performance cliffs so that even with prediction

errors, we maintain satisfactory level of performance.

Scaling the Target Warp-tuple: We note that different kernels have different

organization of warps, and thereby vary in the maximum number of warps available to

the scheduler. Therefore, after obtaining the warp-tuple with best score in the {N, p}
solution space, we appropriately scale the target N and p to the maximum number

of warps that are supported per scheduler, i.e.,24. This ensures uniform bounds for

the target warp-tuple in the training data. Later, in the inference stage, we perform

appropriate reverse scaling for the predicted warp-tuple.

5.5.4 Regression Model

For regression analysis, we use Negative Binomial regression from the family of Gener-

alized Linear Models (GLM). The rationale for using Negative Binomial regression is

Chapter 5. Managing Thread-level Parallelism 103

three fold. Firstly, it is used to predict discrete, non-negative target variables, aligning

with our requirement for predicting N and p. Secondly, it allows for overdispersion, i.e.,

the variance can exceed the mean of the predicted outcome. This allows more flexibility

than the alternate Poisson regression, where the mean is always equal to the variance.

Thirdly, it is lightweight due to modest training time and dataset needed to converge to

a solution. In contrast, larger models such as Deep Neural Networks are much more

computationally intensive, require greater training time and dataset to converge, and are

more prone to overfitting [151, 89, 144].

ln(N) =
8

∑
i=1

αixi ln(p) =
8

∑
i=1

βixi (5.13)

Using Negative Binomial regression, we construct a log-linear link function to map

from the feature vector X, to the target N and p. The link functions can be expressed

through Equation 5.13 where xi belongs to the feature vector X; whereas αi and βi

are the weights for feature xi, learned using the regression for N and p, respectively.

The learned weights for each feature are summarized in Table 5.3. We evaluate the

regression model in Section 5.7.2.

5.6 Hardware Inference Engine

In this section, we present the architecture for Poise’s Hardware Inference Engine

(HIE). It performs the following two primary functions at runtime: online prediction for

the chosen warp-tuple, and course correction in order to offset any statistical error in

predictions.

5.6.1 Prediction Stage

In this stage, HIE dynamically predicts the initial values of N and p that should lead to

good performance. To perform such predictions, it requires the feature weights (α and

β) that were learned offline during training, and the feature vector (X) that needs to be

composed at runtime. At the beginning of kernel execution, the feature weights can be

transferred to HIE by the software or the compiler via constant memory. Subsequently,

predictions are performed at a periodicity of Tperiod cycles, and this duration is referred

to as an inference epoch. At the beginning of each inference epoch, HIE reconstructs

the feature vector dynamically using hardware performance counters. This is done

Chapter 5. Managing Thread-level Parallelism 104

by collecting the features listed in Table 5.3 at two locations in the {N, p} solution

space, i.e., (24, 24) and (1, 1), as was done during training. A modified warp scheduler,

discussed in Section 5.6.3, steers the system to each of these warp-tuples for feature

reconstruction.

At each of the above two points, HIE performs the following tasks. Firstly, the kernel

is executed for Twarmup cycles to minimize the crossover effects of changing N and p.

Thereafter, performance counters sample the required features for a duration of Tf eature

cycles. Finally, after sampling at both (1, 1) and (24, 24), the link functions (described

in Equation 5.13) are used to compute a prediction for N and p. Once the prediction is

made, it is appropriately reverse scaled to counter the prior scaling done during training.

The final predicted warp-tuple is again fed to the warp scheduler, before moving on

to the correction stage. The predictions are reset at the end of each inference epoch

or at the end of the kernel, whichever comes first. As an optimization, if In is found

to be greater than a cut-off Imax, then HIE prematurely terminates the inference (and

subsequent correction) after sampling at (24, 24). This is to detect compute-intensive

kernels that have very few loads (high In), and are best run with maximum warps at a

warp-tuple (24, 24), due to their insensitivity to cache performance.

5.6.2 Correction Stage

As with any machine learning algorithm, Negative Binomial regression has an inherent

error distribution in the prediction outcome. At runtime, we have an opportunity to

offset this statistical error and improve the effectiveness of the prediction. Therefore,

in this stage, HIE scans the near vicinity of the predicted warp-tuple by performing a

neighbourhood search through gradient ascent. This is done by sampling for Tcorrect

cycles, after warmup, on either side of the current point at a variable stride (or offset).

If the performance at the current location is found to be higher than either neighbours,

the stride length is reduced by half. Therefore, as the confidence in the current location

increases, the search stride reduces. We terminate the search once the stride length

reaches 0. Alternatively, if either neighbour is found to be a higher performance point,

the current location is changed to that of the best performing neighbour, and the search

is repeated with same stride by searching neighbours around the new location.

In summary, HIE starts by correcting N with an initial stride length of εN , while

keeping p same as the initial prediction. This is followed by correcting p with an

initial stride of εp, while keeping N same as the most recently corrected value. After

Chapter 5. Managing Thread-level Parallelism 105

(N, p) tuple

Warp Scheduler Queue

Warp ID Monitor
bit

Pollute
bit

O
ld

es
t

1
1
1
1
1
1

1
1
1
0
0
0

0
0

0
0

O
ld

es
t

1
1
1
1
1
1

1
1
1
0
0
0

0
0

0
0

La
te

st

L1 Cache

LOAD[b]

Pollute: 0

LOAD[b]

Pollute: 0

LOAD[a]

Pollute: 1

LOAD[a]

Pollute: 1

Hardware
Inference

Engine

Feature weights

Constant
Memory

W0

Wp-1

...

...

WMAX

WN-1

W1

...

W0

Wp-1

...

...

WMAX

WN-1

W1

...

N pN p

A
llo

cate O
n

R

ea
d M

iss
B

ypa
ss O

n
R

ea
d M

iss
A

llo
cate O

n

R
ea

d M
iss

B
ypa

ss O
n

R
ea

d M
iss

Figure 5.8: Poise Warp Scheduler architecture

converging for both N and p, kernel executes at the final corrected warp-tuple for the

remainder of the current inference epoch. It is worth noting that the initial predicted

value from the inference stage is likely to be in the near-neighbourhood of the global

optimum. Therefore, compared to prior techniques, Poise is less likely to get trapped

at a local optimum. In addition, the increased likelihood of being in close proximity

to higher performing points reduces the overall correction time to arrive at the final

solution.

5.6.3 Warp Scheduler

In order to use a warp-tuple {N, p} so as to change the number of monitored and cache-

polluting warps, we modify the existing GTO warp scheduler. The current scheduler

has a queue to track the order in which new warps become active to participate in

multithreading. As shown in Figure 5.8, we add an additional monitor bit to each

entry in the warp scheduler queue, which is set as 1 for N oldest warps. The modified

warp scheduler arbitrates (or monitors) only these N warps in a greedy-then-oldest

fashion, instead of arbitrating all warps as done in baseline. Furthermore, we also add a

pollute bit, which is set as 1 for p oldest warps. As done in PCAL, each load request is

appended with the pollute bit of the corresponding warp before sending the memory

request to the cache hierarchy. On a load miss, the L1 cache-controller uses the pollute

bit in the memory request to determine whether to reserve a cache line for the load

request or not. Loads without polluting privileges can still access the L1 and incur a

cache hit; however, in case of a miss, the corresponding request is forwarded to the L2

without reserving a cache line in the L1.

Chapter 5. Managing Thread-level Parallelism 106

5.6.4 Summary

As shown in Figure 5.8, the software or the compiler provides the trained feature weights

to the HIE via constant memory. During each inference epoch, HIE constructs the

feature vector to make a prediction by sampling the relevant performance counters. This

requires the warp scheduler to alter the number of monitored and cache-polluting warps,

based on the output from HIE at different times. The modified warp scheduler uses the

desired N and p values to set the monitor bits and pollute bits in the warp scheduler

queue. While the monitor bit determines whether a warp participates in scheduling, the

pollute bit determines the privilege of the corresponding load request to reserve cache

lines in L1 cache.

5.7 Evaluation

We now discuss our methodology for evaluating Poise and demonstrate the results.

5.7.1 Workloads

For the purpose of this study, we use memory-sensitive applications from four major

general-purpose benchmark suites, viz., Rodinia [27], MapReduce [57], Polybench [51]

and Graph suite [162]. We consider an application as memory-sensitive if the speedup

with a 64× larger L1 cache (Pbest) is greater than 40%. Such benchmarks are listed in

Table 5.4, sorted by normalized Pbest . The benchmarks are split into completely disjoint

sets for training (3 workloads; 277 kernels) and evaluation (11 workloads; 346 kernels),

as is shown in Table 5.4. It is worth noting that the evaluation workloads were unseen

during training. We run all benchmarks either to completion or until they execute 4

billion instructions, whichever comes first.

5.7.2 Regression Model Evaluation

We perform the regression analysis using Statsmodels [137], a python-based statistical

modelling tool. For the regression, we select only those kernels from the training

set that meet certain threshold criterion. This is to ensure that training is done on

statistically significant data points. For instance, kernels chosen for training must

demonstrate at least a threshold level of performance improvement at their target warp-

tuple. Furthermore, in our experiments, we observe that infrequent predictions are

Chapter 5. Managing Thread-level Parallelism 107

Table 5.4: Training and evaluation workloads

Suite Benchmark Abbrv. # Kernels Pbest

Training Set

1 Graph Graph Coloring gco 12 3.43

2 MapReduce Page View Rank pvr 248 2.07

3 Graph Component Label ccl 17 1.49

Evaluation Set

1 Polybench Symmetric rank-2k operations syr2k 1 14.13

2 Polybench Symmetric rank-k operations syrk 1 9.03

3 MapReduce Matrix Multiplication mm 23 6.20

4 MapReduce Inverted Index ii 118 5.94

5 Polybench Scalar and Vector Multiplication gsmv 2 3.23

6 Polybench Matrix Vector Product mvt 1 2.97

7 Polybench BiCGStab Linear Solver bicg 2 2.93

8 MapReduce Similarity Score ss 164 2.85

9 Polybench Matrix Transpose atax 2 2.73

10 Rodinia Breadth-First Search b f s 24 1.55

11 Rodinia K-Means kmeans 8 1.42

Table 5.5: Poise parameters

Parameter Description Value

ω0,ω1,ω2 Performance scoring weights 1, 0.50, 0.25

Tperiod Inference periodicity 200,000 cycles

Twarmup Warmup duration 2,000 cycles

Tf eature Sampling duration for feature collection 10,000 cycles

Tcorrect Sampling duration for correction 4,000 cycles

Imax Cut-off for instructions between global loads 49

εN Search stride for N 2

εp Search stride for p 4

Threshold speedup Speedup for training kernels ≥ 1.5%

Threshold cycles Execution cycles for training kernels at baseline ≥ 10,000 cycles

Threshold hit rate L1 hit rate for training kernels at N = 1, p = 1 > 0 %

sufficient to capture most of the performance improvement. Therefore, to prevent

frequent predictions during kernel execution, the inference period is intended to be

larger in comparison to the time needed to construct a prediction. As a result, we

Chapter 5. Managing Thread-level Parallelism 108

collect features only for 24,000 cycles (2,000 cycles for warmup and 10,000 cycles

for sampling at each of the two points in the solution space). It amounts to only 12%

of the entire prediction period (200,000 cycles). Therefore, a good initial prediction

accuracy would allow us to find a good performing warp-tuple expeditiously within

12% of the execution time in every inference epoch, followed by the correction phase to

further improve performance. The various timing and threshold parameters for Poise

are derived after detailed sensitivity analysis, and are summarized in Table 5.5.

For a preliminary evaluation of the model, we measure the offline prediction accu-

racy of the model against unseen profiled kernels from the evaluation set. We observe a

mean prediction error of 16% and 26% for N and p, respectively. At runtime, Poise’s

HIE allows for correcting these prediction errors. Note that due to higher statistical

error in p compared with N, the search stride to correct prediction errors in p is chosen

to be higher than the search stride for N, i.e., εp is 4 and εN is 2.

5.7.3 Experimental Methodology

We model a modern GPU on a cycle-accurate simulator, GPGPU-Sim (v3.2.2) [10],

based on the architectural parameters listed previously in Table 5.1. For energy and

area simulations, we use GPUWattch [98], a McPAT-based power model integrated in

GPGPU-Sim. We compare Poise with different techniques that are summarized below:

GTO: It represents the baseline greedy-then-oldest warp scheduler, with maximum

allowable warps enabled per SM.

SWL: It represents the Static Warp Limiting policy [132] from the CCWS scheduler,

which is discussed in Section 5.3.1. In SWL, the optimal number of warps per scheduler

are determined through static profiling of benchmarks, which does not incur any runtime

overheads. Therefore, our comparison with the CCWS scheduler is conservative in

favour of CCWS.

PCAL-SWL: It represents the Priority-based Cache Allocation policy [100] dis-

cussed in Section 5.3.2. To determine the initial starting point, SWL (static scheme) is

chosen instead of CCWS (dynamic scheme) to eliminate the initial runtime overheads.

Therefore, our comparison with the PCAL scheduler is conservative in favour of PCAL.

Static-Best: It represents the configuration when each kernel in an application is

run at the best performing warp-tuple. It is determined by offline profiling of all kernels

in the {N, p} solution space. Therefore, it represents the statically optimal performance

of a benchmark derived at kernel granularity.

Chapter 5. Managing Thread-level Parallelism 109

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

syr2k

syrk
m

m
ii gsm

v

m
vt

bicg
ss atax

bfs
km

eans

H
-M

ean

IP
C

 (
n

o
rm

a
liz

e
d

 t
o

 b
a

s
e

lin
e

 G
T

O
)

GTO SWL PCAL-SWL Poise Static-Best
3.0 2.94 3.362.47 2.47

Figure 5.9: Performance normalized to GTO

5.7.4 Performance

In Figure 5.9, we demonstrate the performance of Poise normalized to the baseline GTO

scheduler for evaluation set workloads. We show that Poise achieves a harmonic mean

speedup of 46.6% (and up to 2.94× for mm). In contrast, we observe a speedup of 31.5%

with PCAL-SWL and 21.8% with SWL. Therefore, on average, Poise outperforms

PCAL-SWL by 15.1% (up to 141.1% for mm), and SWL by 24.8% (up to 49.4% for

syrk). Overall, Poise performs better than PCAL because of the following reasons.

Firstly, Poise is able to predict a good initial warp-tuple expeditiously, using the learned

model. Secondly, the near-neighbour search in Poise around the predicted warp-tuple is

less likely to be trapped at a local optimum as it is expected to be closer to the global

optimum, unlike PCAL. We also observe that Static-Best achieves a harmonic mean

speedup of 52.8%, surpassing Poise only by 6.2%. This performance gap between

Poise and Static-Best can be attributed to the prediction errors in the regression model,

and the slight correction overhead to offset such errors at runtime. Notably, for some

benchmarks, such as atax, gsmv, mvt and syrk, Poise even surpasses the performance

of Static-Best. We observe that these applications have monolithic kernels instead of

several smaller kernels (as shown in Table 5.4); as a result, Poise is able of capture

the slight dynamic phase changes within the large monolithic kernels by performing

predictions at regular intervals. However, these phases go undetected in Static-Best,

where profiling is done at coarse kernel granularity.

Finally, we note that for a few scenarios such as syr2k and bicg, SWL or PCAL-

SWL perform better than Poise. This happens when the global optimum lies within

(or close to) the narrow reach of the SWL, i.e., the N = p region in the solution space.

As both of these schemes use a static SWL profiler, they get a head start by finding (or

getting close to) the global optimum without incurring any runtime overheads.

Chapter 5. Managing Thread-level Parallelism 110

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

syr2k

syrk
m

m
ii gsm

v

m
vt

bicg
ss atax

bfs
km

eans

A-M
ean

L
1

 H
it
 R

a
te

 (
%

)

GTO SWL PCAL-SWL Poise Static-Best
93.43

Figure 5.10: Overall L1 hit rate

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

syr2k

syrk
m

m
ii gsm

v

m
vt

bicg
ss atax

bfs
km

eans

A-M
ean

A
M

L
 (

n
o

rm
a

liz
e

d
 t

o
 b

a
s
e

lin
e

 G
T

O
)

GTO SWL PCAL-SWL Poise Static-Best

Figure 5.11: Average Memory Latency (AML) normalized to GTO

5.7.5 L1 Cache Hit Rate

In Figure 5.10, we compare the absolute L1 hit rate for different techniques. We observe

that Poise achieves an average L1 hit rate of 40.1%, in contrast to 27.1% with PCAL-

SWL, 37.7% with SWL, and 20.6% with baseline GTO. Therefore, in caching efficiency,

Poise outperforms PCAL-SWL by 13%, SWL by 2.4%, and GTO by 19.5%. Notably,

SWL comes close to Poise in L1 hit rate, however, at the cost of significant reduction in

system performance. Lastly, Poise comes close to the L1 hit rate of 43.6% achieved

with Static-Best, indicating the effectiveness of Poise in mitigating cache thrashing.

5.7.6 Average Memory Latency

To evaluate the performance of the shared memory system, we measure the average

memory latencies (AML) incurred by L1 misses. In Figure 5.11, we observe that Poise

increases the AML by only 1.1% over the baseline GTO scheduler. In contrast, PCAL-

SWL increases the AML by 32.4%. This is because of the lower L1 hit rate in PCAL-

SWL compared to Poise, which increases the memory traffic and aggravates congestion,

thereby leading to high memory latencies. On the other hand, SWL decreases the AML

Chapter 5. Managing Thread-level Parallelism 111

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

syr2k

syrk
m

m
ii gsm

v

m
vt

bicg
ss atax

bfs
km

eans

H
-M

eanIP
C

 (
n
o
rm

a
liz

e
d
 t
o
 r

e
s
p
e
c
ti
v
e
 b

a
s
e
lin

e
)

Poise+16KB Poise+32KB Poise+64KB
5.3 5.7 5.0

Figure 5.12: Sensitivity to L1 cache size

by 10.7% but significantly underestimates the number of monitored warps, indicated by

the low speedup. Interestingly, AML with Static-Best increases by 14.1%, indicating

that with optimal warp-tuples, SMs can tolerate a higher AML compared to the baseline.

In summary, we observe that Poise provides a good balance between TLP (indicated

by speedup) and cache performance (indicated by L1 hit rate), without under-utilizing

or over-utilizing shared memory resources (indicated by AML).

5.7.7 Sensitivity Study

L1 Cache Size: The training for Poise was performed on a GPU with 16 KB L1

cache, alongside a hash set-indexing function for L1. We now alter the architectural

parameters of the evaluation platform, while using the previously trained regression

model. For evaluation, we employ a linear set-indexing function for L1 and vary the L1

cache size. In Figure 5.12, we observe that with a 16 KB L1 cache, Poise maintains a

considerable harmonic mean speedup of 48%. Even on increasing the L1 cache size

significantly by up to 4× (64 KB), we observe a harmonic mean speedup of 36.7%.

Therefore, Poise continues to deliver performance improvements even with considerably

larger caches. This also highlights the severity of the cache thrashing problem in GPUs.

In summary, we observe that Poise remains effective even with changes to critical

architectural features, such as L1 cache capacity and indexing, despite being trained on

a different baseline.

Search Stride: In Figure 5.13, we vary the stride lengths for N and p, represented

by (εN , εp), which are used to perform a neighbourhood search in the correction phase.

We note that without any corrections for the predicted values of N and p, i.e., stride of (0,

0), Poise achieves a harmonic mean speedup of 23% (up to 3.12×). Therefore, relying

Chapter 5. Managing Thread-level Parallelism 112

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

syr2k

syrk
m

m
ii gsm

v

m
vt

bicg
ss atax

bfs
km

eans

H
-M

ean

IP
C

 (
n

o
rm

a
liz

e
d

 t
o

 b
a

s
e

lin
e

 G
T

O
) (0, 0) (1, 1) (2, 2) (2, 4) (4, 4)

3
.1

3
.0

2
.9

2
.9

2
.8

Figure 5.13: Sensitivity to search stride (εN , εp)

 0.6

 0.7

 0.8

 0.9

 1

 1.1

syr2k

syrk
m

m
ii gsm

v

m
vt

bicg
ss atax

bfs
km

eans

H
-M

ean

IP
C

 (
n

o
rm

a
liz

e
d

 t
o

 P
o

is
e

)

X(all) −x7 −x6 −x5 −x4 −x3
0

.3
6

0
.3

7
0

.4
4

0
.3

7

Figure 5.14: Sensitivity to removing a feature xi from X

purely on predictions, with no correction mechanism, Poise still achieves a higher

speedup than SWL, while remaining only 8.5% short of PCAL-SWL performance, on

average. On increasing the search stride to (1, 1) and (2, 2), we observe the harmonic

mean speedup of 43.6% and 45.7% respectively, which settles at 45% for a search stride

of (4, 4). Therefore, we note that for most benchmarks, such as syr2k and ii, increasing

the stride length results in improvement at first, but it saturates or wears off with longer

strides. However, a stride of (2, 4) gives the best speedup of 46.6% on average. This is

due to the lower prediction error in N compared to p (as seen in Section 5.7.2), thereby

requiring higher correction only in the latter.

Training Features: We now examine the effect of removing a feature, xi, from the

feature vector X, and retraining the regression model. The resulting execution speedup

with such a model is shown in Figure 5.14, normalized to the case when all features are

used for training. In each of these cases, no correction is done to the initial predictions,

so as to measure the change in actual prediction accuracy. Also, we omit x1 and x2

as they are represented in x7 and show a similar trend. We observe that on removing

Chapter 5. Managing Thread-level Parallelism 113

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 2 4 6 8 10 12 14 16 18 20 22 24

p
 (

c
a

c
h

e
-p

o
llu

ti
n

g
 w

a
rp

s
)

N (monitored warps)

speedup

slowdown

MAX

(a) Static profile of b f s

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 2 4 6 8 10 12 14 16 18 20 22 24

p
 (

c
a

c
h

e
-p

o
llu

ti
n

g
 w

a
rp

s
)

N (monitored warps)

Warp samples
Predicted Tuple

Corrected Tuple

(b) Poise execution of b f s

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 2 4 6 8 10 12 14 16 18 20 22 24

p
 (

c
a

c
h

e
-p

o
llu

ti
n

g
 w

a
rp

s
)

N (monitored warps)

speedup

slowdown

MAX

(c) Static profile of ii

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 2 4 6 8 10 12 14 16 18 20 22 24

p
 (

c
a

c
h

e
-p

o
llu

ti
n

g
 w

a
rp

s
)

N (monitored warps)

Warp samples
Predicted Tuple

Corrected Tuple

(d) Poise execution of ii

Figure 5.15: Comparing static and Poise executions

a feature, the harmonic mean slowdown, compared to the case when all features are

used for training, varies from 1.5% for x7 to 21.7% for x6. We also note that highly

memory-sensitive applications are most adversely impacted by the removal of a feature,

emphasizing the importance of the proposed features. In summary, best performance is

shown when all features are used for training.

5.7.8 Case Study

We now present a case study for two representative benchmarks, b f s and ii, from

the evaluation set of benchmarks. Through this study, we qualitatively illustrate the

accuracy of Poise in predicting good performing warp-tuples on previously unseen

benchmarks. In Figure 5.15a, we show the static performance profile for b f s. It

Chapter 5. Managing Thread-level Parallelism 114

indicates a general trend suggesting that the speedup improves with lower values of N

and p (green circles), with the best performing warp-tuple at (5, 5). It also indicates

that there is an aversion to higher values of N and moderate-to-high values of p (red

circles). Next, in Figure 5.15b we show the different warp-tuples chosen by Poise at

runtime during the multiple prediction and correction phases throughout the execution.

The predicted warp-tuples are indicated by ‘+’ sign, whereas the warp-tuples generated

after correction are indicated through the shaded coordinates. Therefore, we observe

that most predictions are in the high performance zone, i.e., in close proximity of the

best performing warp-tuple at (5, 5). Furthermore, Poise successfully steers the system

away from the low performance zones (red circles in Figure 5.15a), thereby correctly

detecting the general affinities in a previously unseen benchmark.

Similarly, in Figure 5.15c, we observe that the ii benchmark shows an affinity for

low values of p and low-to-moderate values of N (indicated by the larger radius of the

green circles). The best performing warp-tuple in the static profile is found at (3, 1).

In Figure 5.15d, we observe that multiple predictions made by Poise at runtime lead

to low values of p and low-to-moderate values of N, steering the system to the good

performing regions in the solution space. For the prediction errors (indicated by some

predictions for higher values of p), Poise performs the necessary corrections at runtime,

which are traced through the shaded areas in Figure 5.15d.

5.7.9 Hardware Overheads

Poise requires four 32-bit performance counters per SM to collect runtime features such

as intra-warp hits, total L1 hits, AML and the number of compute instructions per load

instruction. These performance counters provide sufficient substrate to construct the

entire feature vector described in Table 5.3. Poise also requires arithmetic resources to

compute the link function. However, the existing arithmetic units on the SM can be used

for this purpose as they are often idle in memory-sensitive applications due to high stall

cycles, thereby obviating the need for any extra hardware. Finally, Poise requires one

finite-state machine (FSM) per SM to manage the transition from prediction stage to

correction stage in HIE, and to perform this periodically. In our design, we observe that

the FSM requires 7 states for the hardware inference engine, thereby requiring two 3-bit

state registers per SM for maintaining the states, in addition to minor combinational

logic which can be borrowed from the idle execution units. In total, Poise poses a

minimal storage overhead of 536 bytes, i.e., less than 0.01% of chip area, estimated

Chapter 5. Managing Thread-level Parallelism 115

using the existing parameters in McPAT. The minor energy consumption of the above

registers is within McPATs margin of error, and therefore, not reported. In summary,

Poise is extremely lightweight in terms of hardware overhead. In contrast, dynamic

PCAL and CCWS implementations require CCWS-like hardware, including victim tag

arrays, presenting greater hardware overheads [132, 100].

5.7.10 Discussion

We now briefly discuss few issues pertaining to the applicability of Poise.

Portability: In this work, we evaluate Poise on a modern GPU. For similar multi-

threaded architectures, the feature vector is expected to remain the same, and require

only the feature weights to change. Therefore, Poise can be adapted to similar multi-

threaded architectures by retraining the regression model and generating new feature

weights. As these feature weights are provided to the hardware through the software or

the compiler, it entails no changes in the hardware.

Need for Poise: With recent support for multi-kernel execution on GPUs, different

kernels executing on different SMs can present varied requirement for thread-level

parallelism. In such scenarios, the adaptive nature of Poise allows it to tailor the

scheduling decisions for each SM. This is also useful in multi-chip GPUs [9] or server

GPUs [63] where applications with significantly diverse parallelism and memory system

needs might be collocated on the same GPU.

5.8 Related Work

In this section, we discuss prior work related to the ideas discussed in this chapter.

5.8.1 Cache Management and Warp Scheduling

In addition to the state-of-the-art warp scheduling techniques discussed in Section 5.3,

several cache management schemes have been proposed to improve caching efficiency1.

Li et al. [99] used reuse frequency and reuse distance to bypass the L1 for low locality

accesses, using decoupled L1 data and tag arrays. Xie et al. [161] proposed locality-

driven cache bypassing at the granularity of thread blocks. In contrast to bypassing

1The cache management, cache bypassing and warp scheduling techniques discussed here have also
been discussed in the related work for prior chapters, but succinctly included here for completeness in
the current context.

Chapter 5. Managing Thread-level Parallelism 116

schemes, we not only improve cache performance, but also alter the levels of multi-

threading. Furthermore, Chen et al. [28] proposed a coordinated cache bypassing and

warp throttling scheme. However, similar to PCAL, they iteratively alter the number

of warps by hill climbing to optimize NoC latencies. Therefore, it suffers from the

same limitations as PCAL that were discussed in Section 5.3.3. On similar lines, Khairy

et al. [78] proposed a coarse-grained cache bypassing scheme where the entire L1

or L2 cache is bypassed for all accesses if the cache miss rate exceeds a predefined

threshold. They also proposed a dynamic warp throttling scheme using core sampling,

where different SMs employ different number of warps during the sampling period and

vote for the best level of throttling at the end of the sampling. However, it is a single

dimensional warp throttling scheme and suffers from the same limitations as SWL.

More recently, Lee and Wu [94] proposed an instruction-based scheme to track low

reuse memory instructions and bypass requests from such instructions. Similarly, Koo

et al. [86] proposed an instruction-based scheme to not only bypass, but also to protect

cache lines using instruction locality characteristics. In contrast, Poise is a warp-level

scheme, and therefore, can be applied orthogonally to instruction-level schemes, given

the large magnitude of the problem in GPU caches.

Previously, Rogers et al. [133] proposed divergence-aware warp scheduling to

capture intra-warp locality in loops. Jia et al. [69] presented a taxonomy for memory

access locality and proposed a compile-time algorithm to selectively utilize the L1

caches. Narasiman et al. [113] proposed large warp architecture to dynamically create

warps to mitigate penalty due to control flow divergence. Jog et al. [72] proposed a

two-level warp scheduling technique to prevent the warps from reaching a long latency

memory operations at the same time. Xie et al. [161] proposed a framework to extract

locality information about the loads, and consequently make cache bypassing decisions

to restrict the number of thread blocks that can access the cache. Kim et al. [82]

proposed to utilize the long latency stalls by pre-executing instructions that are not in

the dependency chain of the stalled instructions. Oh et al. [119] maximize the utilization

of cache lines by prioritizing warps based on their load instruction characteristics. Tarjan

et al. [150] proposed a scheme to tolerate memory miss latencies for SIMD cores by

masking out threads in a warp that are waiting on data and allowing other threads to

continue execution, hence utilizing the idle execution slots.

Chapter 5. Managing Thread-level Parallelism 117

5.8.2 Machine Learning in Systems

In the realm of compilers, machine learning based techniques have been extremely

useful in the areas of autotuning and compiler optimizations. Stephenson et al. [145]

used genetic algorithms to find effective compiler optimizations by searching in the

solution space of priority functions (or cost functions). They perform training by

populating the model with different expressions of the priority function. Expressions

that lead to the best performing code are considered fit and selected for crossovers,

thereby populating the next generation of expressions. This methodology helps in

generating good application-specific and general-purpose heuristics. Agakov et al. [3]

proposed a methodology to speedup compiler optimizations for embedded platforms.

They use machine learning to focus the search on those areas of the optimization space

that are most profitable with respect to performance. This is done by correlating new

programs with previously observed programs and using prior information to focus the

optimization search. In the above work, authors employ Principal Component Selection

[17] to select a set of static code features and use independent distribution and Markov

models to perform learning. In a subsequent work, Cavazos et al. [21] proposed the use

of hardware performance counters to capture dynamic features, instead of static features,

to determine good compiler optimizations. They select all hardware performance

counters available in the architecture. However, a limitation of the above work is the

inability to discover new features that do not natively exist as performance counters,

but if included, might be suitable in improving the model. On similar lines, Park et

al. [123] proposed a machine learning model to learn good polyhedral optimizations

using dynamic behaviour of a program observed via hardware performance counters,

thereby avoiding an extensive heuristic search. Fursin et al. [46] proposed MILEPOST

GCC, a self-optimizing compiler based on machine learning to optimize programs for

evolving hardware, such as configurable embedded processors. In our work, we address

an architectural optimization problem. In contrast to the compiler optimization space,

the architectural optimization space discussed in our work is much smaller. However,

as we perform dynamic optimizations in hardware using runtime features, conventional

iterative search techniques still pose a significant runtime penalty, as was shown in

Section 5.3.3. Therefore, despite the difference in shape and size of the optimization

space, speeding up architectural optimizations proves to be useful in our scenario as well.

Furthermore, to alleviate the black box nature of the machine learning framework, we

select application and architectural features by harnessing domain knowledge through

Chapter 5. Managing Thread-level Parallelism 118

an analytical model, instead of using automated feature selectors.

Application of machine learning in computer architecture has been picking up in the

recent years. Jiménez and Lin [71] proposed a dynamic branch predictor based on the

perceptron — the simplest neural network. In their scheme, they replace the existing

two-bit saturating counter with a perceptron predictor. The predictor is trained by

learning the correlation between the outcome of prior branches in the global history and

the outcome of the current branch. Predictions are made by retrieving the appropriate

perceptron weights through the branch address and using the runtime global history

register as the input to the perceptron. İpek et al. [65] applied reinforcement learning to

adaptively change DRAM scheduling decisions, instead of employing rigid scheduling

policies. The adaptive memory controller aims to perform optimal actions, under a given

system state, that maximizes the long-term reward of those actions. Liao et al. [103] used

machine learning to optimize memory prefetch decisions in datacenters by detecting the

varying application needs through hardware performance counters. Machine learning

has also been employed to predict performance and power trends to avoid running

full cycle-accurate simulations. İpek et al. [64] built a design space model to predict

the performance impact of architectural changes, saving considerable simulation time.

Lee and Brooks [92] proposed a methodology to discover efficient configurations of

reconfigurable microarchitectures over a large adaptive space of microarchitectural

parameters. In their methodology, they employ a collection of techniques such as

sparse sampling (to minimally navigate the design space), regression-based predictive

modelling (to learn about the performance impact of design changes without extensive

simulations), and genetic algorithm (for combinatorial optimization of designs). Wu

et al. [158] used clustering algorithms and machine learning in GPGPUs to estimate

power and performance trends, using previously observed scaling behaviours. Bitirgen

et al. [18] used machine learning to predict coordinated resource allocation decisions

for shared resources in a CMP in order to optimize system-level performance.

5.9 Conclusion

In the computer architecture community, the use of machine learning to solve architec-

tural problems has been oddly limited, compared to other fields. Few reasons for this

limited use is the bulky nature of sophisticated models such as Deep Neural Networks,

that generate prohibitively large feature weight matrices with high storage needs, and

present high computational demands for training and inference. These factors make

Chapter 5. Managing Thread-level Parallelism 119

them difficult to use and adopt in architectures, where on-chip resources are often

severely limited. Moreover, a black box nature of these techniques, due to a lack of

mathematical models to justify their performance, often makes it difficult for architects

to argue about their effectiveness across different architectures and applications.

In this chapter, we propose Poise, a combination of machine learning and hardware

techniques, to balance thread-level parallelism and memory system performance in

GPUs. In the machine learning framework, we present a supervised learning model that

is trained offline on a large set of profiled kernels. It learns a mapping from a set of

application and architectural features, to good warp scheduling decisions that led to best

performance. This learned mapping is provided to the hardware through the software

or the compiler in form of feature weights. At runtime, a hardware inference engine

on the SM composes the feature vector, and uses the learned mapping to dynamically

predict good warp scheduling decisions. To offset any statistical errors in prediction,

the inference engine performs a neighbourhood search in the vicinity of the prediction.

We evaluate Poise on disjoint set of benchmarks that were unseen during training, and

observe a performance improvement of up to 2.94× and a harmonic mean speedup

of 46.6% over the baseline GTO warp scheduler. Poise also outperforms the prior

state-of-the-art warp scheduler by up to 141.1%, and an average of 15.1%.

In summary, we demonstrate a mechanism to achieve considerable accuracy and

sophistication with a lightweight regression model. To arrive at a small, yet effective

model, we apply domain knowledge through analytical reasoning, thereby considerably

shrinking the feature vector to truly representative features. Therefore, our proposed

technique drastically reduces the computational and storage needs of the learned model,

making it suitable for architectural use. To further reduce the cost of adoption, we

provide a software interface to change the feature weights, retaining the flexibility to

retrain the model for newer applications. Through the above considerations, Poise

demonstrates an effective way of applying machine learning to drive architectural

decisions.

Chapter 6

Conclusion

In this thesis, we investigate the challenges arising due to the bandwidth bottlenecks

present across the memory hierarchy in GPUs, with a particular focus on the cache

hierarchy. We isolate three major factors that lead to the bandwidth bottlenecks: dis-

proportionate bandwidth resources across the memory hierarchy; inefficient cache

management policies; and high levels of thread-level parallelism. We show that the

above factors lead to severe congestion across the memory hierarchy, leading to a

breach in the latency tolerance property of the GPUs. This is because the high memory

latencies arising due to congestion can no longer be hidden by multithreading and start

to appear in the critical path of system performance.

To address and mitigate the bandwidth bottlenecks, we propose a three-pronged

approach: cost-effective scaling of the existing bandwidth resources guided by an

extensive characterization of the bandwidth bottlenecks; supplementing the existing

bandwidth resources through an L1 cooperative caching network which exploits the

presence of inter-core reuse in GPUs; and better utilizing the existing bandwidth

resources by regulating the levels of multithreading and reducing cache thrashing. In

Section 6.1, we further elaborate on the contributions made in this thesis, followed by a

critical analysis of our proposals in Section 6.2. In Section 6.3, we conclude the chapter

with a discussion on future research directions.

6.1 Contributions

In this section, we summarize and discuss the contributions made in the preceding

chapters of this thesis.

120

Chapter 6. Conclusion 121

6.1.1 Scaling the Bandwidth Resources

In Chapter 3, we show that bandwidth in the cache hierarchy is increasingly burdened

due to the SMs injecting large volumes of memory requests on one side, and the high

bandwidth off-chip memory injecting large volumes of memory responses on the other

side. We further observe that the existing cache hierarchy is under-provisioned with

respect to bandwidth resources to handle such high levels of memory traffic, resulting in

significant levels of congestion. Therefore, we characterize the presence the bandwidth

bottlenecks across the memory hierarchy in GPUs, including the cache hierarchy. This

marks a departure from the traditional treatment of the bandwidth bottleneck where it is

known to reside primarily in the off-chip memory. We quantify the stalls throughout

the memory hierarchy and identify the architectural parameters that play a critical role

in leading to a congested memory system. From the design space revealed by the

characterization, we propose cost-effective configurations of the memory hierarchy

to alleviate the bandwidth bottlenecks. We show that the performance improvement

achieved by addressing the bandwidth bottleneck in the cache hierarchy often exceeds

the speedup obtained by a memory system with a baseline cache hierarchy and HBM

DRAM. We also show that scaling the bandwidth resources in isolation at specific

levels of the memory hierarchy can be sub-optimal and can even be counter-productive.

Therefore, we emphasize the need to resolve the bandwidth bottlenecks synergistically

across different levels of the memory hierarchy.

6.1.2 Supplementing the Bandwidth Resources

In Chapter 4, we identify significant inter-core reuse in GPUs for general-purpose

applications. The existing cache management policy aggravates the bandwidth bot-

tleneck by sending duplicate memory requests for shared data that is already cached

elsewhere at the same level in the memory hierarchy. Therefore, we use this opportunity

to reuse data among L1 caches and reduce the bandwidth demand on the shared L2

cache. Furthermore, we show that there is a considerable leeway of around 80 cycles to

fetch the shared data from a remote L1 cache, obviating the need for an aggressive or

latency-sensitive scheme to share data. Therefore, we propose a Cooperative Caching

Network (CCN) where we connect the L1 caches with a lightweight ring network to

facilitate inter-core communication of shared data. The ring topology is lowest in

terms of logical complexity and power consumption as all core-to-core connections are

near-neighbour, and therefore, the wires are short. In addition, CCN scales linearly with

Chapter 6. Conclusion 122

the increasing number of nodes, in contrast to the existing crossbar between L1 and

L2 which scales polynomially. Therefore, the proposed cooperative caching network

provides a cost-effective way to supplement the existing bandwidth between the L1 and

L2 cache levels by exploiting the reuse characteristics of general-purpose applications.

6.1.3 Utilizing the Bandwidth Resources

In Chapter 5, we note that high levels of multithreading are normally desired in up-

coming application domains. However, in memory-intensive applications, it causes

severe contention for cache resources leading to cache thrashing, thereby aggravating

the bandwidth bottleneck due to high cache miss rates. Therefore, we address the

challenge of maintaining satisfactory levels of memory system performance without

significantly sacrificing thread-level parallelism, in contrast to pure throttling schemes

which severely limits parallelism. To this end, we propose a combination of machine

learning and architecture techniques to dynamically determine the best warp scheduling

decisions. Through these decisions, the warp scheduler alters the degree of thread-level

parallelism in the system, and independently alters the number of warps appropriate

to maintain satisfactory level of cache performance. The proposed mechanism, Poise,

has two major components: a machine learning framework and a hardware inference

engine. In the machine learning framework, we first use an analytical model to reveal the

architecture and application features that influence the best warp scheduling decisions.

Subsequently, we use a supervised learning model — trained offline on a set of profiled

kernels — to learn a mapping from the set of extracted features to the best warp schedul-

ing decisions. At runtime, the hardware inference engine collects the architecture and

application features that were used during training, and uses the learned mapping to

predict good warp scheduling decisions on previously unseen workloads. Therefore,

Poise dynamically regulates the degree of thread-level parallelism in the GPU, and also

independently improves the L1 caching efficiency by mitigating contention for cache

resources. As a result, it reduces the high levels of memory requests sent to the lower

levels of the memory hierarchy, thereby mitigating congestion.

6.2 Critical Analysis

In this section, we perform a critical analysis of the proposals presented in the prior

chapters.

Chapter 6. Conclusion 123

6.2.1 Ease of Adoption

The proposed mechanisms pose different thresholds for adoption in the future GPU

architectures. Some of the metrics that determine such a threshold are hardware

overheads, scalability and verification effort. We briefly evaluate our proposed schemes

using the above metrics and argue about the comparative ease of adoption in the future

architectures. The analysis is summarized in Table 6.1.

Hardware Overheads: Among the proposed mechanisms, cost-effective scaling

and Cooperative Caching Network pose an area overhead of 1.5% and 1.3% respectively.

On the other hand, Poise poses a minimal area overhead of less than 0.1%, as it only

includes performance counters and finite-state machines. However, it is noteworthy

that Poise does require one-off offline training of the regression model on a set of

representative workloads, and minor software or compiler changes to communicate the

learned feature weights to the hardware inference engine.

Scalability: The proposed cost-effective scaling uses an asymmetric crossbar,

among other changes, which limits scalability due to the polynomial increase in cost

incurred by the crossbar with increasing number of SMs. In contrast, the ring net-

work proposed in Cooperative Caching Network scales linearly with respect to area

and energy, and therefore it is a lucrative architectural choice for supplementing the

bandwidth resources in the memory hierarchy. In CCN, however, the latency overhead

of traversing the rings increases significantly with larger rings. Therefore, hierarchical

implementation of the proposed ring networks can be used, thereby decomposing the

serial latency of traversing the high number of nodes into concurrent transactions to

multiple hierarchical rings. Finally, Poise scales linearly with respect to area and en-

ergy with increasing number of SMs. Moreover, due to independent warp schedulers

on each SM, Poise does not pose any additional latency constraint in larger systems

(unlike CCN), and therefore scales best among the proposed solutions. However, as

the underlying architecture changes, Poise might require re-training of the regression

model to account for a possible shift in the balance between thread-level parallelism

and memory system performance arising out of architectural scaling.

Verification Effort: The proposed cost-effective scaling poses the least verification

cost. This is because we restrict our design space exploration to existing architectural

parameters rather than introducing new architectural components. As the existing con-

figuration of the memory hierarchy is already verified, it would require minimal effort

to verify the scaled configurations of the memory hierarchy. On the other hand, the

Chapter 6. Conclusion 124

Table 6.1: Relative overhead of adoption for the proposed schemes indicated by H

(highest), M (moderate) and L (lowest).

Metric Cost-effective scaling Cooperative Caching Network Poise

Hardware Overhead H M L

Scaling Overhead H M L

Verification Effort L H M

Cooperative Caching Network poses a significant verification cost due to an additional

interconnection network. Some of the new scenarios to be verified are network dead-

locks, protocol correctness, and timing correctness for the ring network and shadow

tag arrays. Finally, Poise poses an intermediate and nominal verification effort as the

majority of the hardware changes are restricted to the hardware warp scheduler.

6.2.2 Portability

In this thesis, we restrict our evaluation to NVIDIA GPUs as they are the most prevalent

discrete GPUs, arguably holding the highest market share in the said domain. Conse-

quently, we also restrict ourselves to CUDA programming model that is proprietary to

NVIDIA platforms. However, we expect that the bandwidth bottlenecks are a pervasive

problem present across different GPU architectures. This is indicated by the apparent

success of high bandwidth memories such as GDDR5 and HBMs across architectures

from different vendors. In fact, the recent introduction of High Bandwidth Cache

Controller in AMD’s Vega Architecture [7] indicates that the bandwidth bottleneck

across the cache hierarchy is also attracting attention, and is not an isolated problem

limited to NVIDIA GPUs. In summary, this thesis proves to be an effective primer to

evaluate and mitigate the bottlenecks, subject to modification of the proposals based on

the constraints of the underlying architecture.

6.2.3 Evaluation Methodology

In this thesis, we use a widely adopted cycle-accurate simulation based evaluation

methodology — a general practice in architecture research. This is because of the expo-

nential cost and time required to evaluate the architectural modifications in real chips,

rendering it impractical. In addition, lack of standardized and open-source Register

Transfer Level (RTL) IP modules for GPUs presents another limitation. Therefore, we

Chapter 6. Conclusion 125

restrict ourselves to simulation infrastructures, trading off accuracy and cost for speed

and ease of evaluation. However, it is noteworthy that we do bolster our proposals with

sufficient intuitive reasoning and analytical modelling to ensure good reproducibility of

results on real GPU chips.

Additionally, we simulate GPU architectures similar to Fermi (used in Chapter 3 and

Chapter 4) and Kepler (used in Chapter 5) architectures. The more recent architectures,

such as Maxwell and Pascal, are not currently supported due to the limitation of the

existing simulation infrastructure available for academic research in the domain of

GPUs. However, as the basic organization of the memory hierarchy is fairly consistent

across different architectures, we expect our observations to be applicable to newer

generations of GPUs as well.

6.2.4 Other Inefficiencies in the Memory Hierarchy

In this thesis, we address a few inefficiencies in the memory hierarchy pertaining

to inadequate bandwidth resources in the cache hierarchy, poor cache management

policies and high levels of multithreading. While we show that these inefficiencies

are extremely critical, they are by no means an exhaustive list of factors that lead to

bandwidth bottlenecks. There are several other limiting factors that can be addressed to

improve the memory system performance. Some of these techniques include the usage

of data compression [126, 88, 97] and changing the memory access granularity [130, 8]

to reduce the bandwidth demand, DRAM scheduling mechanisms to improve off-chip

bandwidth utilization [169, 87, 25, 26] and cooperative management of the shared

bandwidth resources [37, 73].

6.3 Future Work

In this thesis, we focus on managing the GPU memory hierarchy with respect to

bandwidth bottlenecks and aim to mitigate the congestion. As the number of SMs

continue to grow and workloads continue to diversify, traditional organization of the

memory hierarchy might become increasingly outdated. While we address some of

the inefficiencies in the existing memory hierarchy, rethinking other assumptions and

design decisions from traditional multiprocessors that may be suboptimal for GPUs is

crucial and a potential research direction. One such possible area of research is in the

domain of interconnection networks. With increasing number of nodes and considerably

Chapter 6. Conclusion 126

higher request rates, traditional crossbar networks become highly saturated and lead

to significantly higher queuing latencies, in addition to the polynomial growth in area

and power. While recent research has shown promising results with low cost ring-like

architectures in CPUs and GPUs [120, 95, 81, 172], it still remains an open problem

for future research.

Another possible area of research is to explore the joint design space of multiple

techniques that address different inefficiencies in GPUs. As future applications are

expected to present an even higher demand on shared resources across the memory

hierarchy, a collective redressal of the problem from multiple fronts is essential. For

instance, in this thesis we explore efficient ways to scale, supplement and utilize the

existing bandwidth resources in GPUs. Collectively, they form a large design space

which can be tailored to synergistically address the bandwidth bottlenecks. Therefore, it

is an important area of research to investigate the best ways to combine such techniques

and harness the benefits of different proposals in a cost-effective manner.

In Chapter 4, we address the bandwidth implication of repeated accesses to the L2

cache for data shared across different cores. Such a policy not only leads to duplicate

accesses to the L2 cache, but also leads to significant replication of data across private

L1 caches. Storing duplicate data across different L1 caches reduces the effective

on-chip storage provided by the already scarce L1 caches. A future research direction,

therefore, is to explore sophisticated schemes that build upon the Cooperative Caching

Network to reduce the redundancy in the on-chip storage. Such a scheme can improve

the utilization of on-chip storage by selectively duplicating remote L1 data in a local L1

cache only when it exhibits high intra-core reuse, and prohibiting replication of remote

L1 data if it is expected to show low intra-core reuse.

In Chapter 5, we focus on mitigating cache thrashing in the L1 cache, as it is one of

the most scarce on-chip memory resource in GPUs. However, with growing workload

sizes, lower levels of the memory — such as the shared L2 cache — will begin to

suffer from cache thrashing as well, appearing as a potential bottleneck. Therefore,

cache management policies that consider L1 and L2 caches collectively as a critical

resource, is a potential area of research. For instance, with L2 cache becoming a critical

resource, future machine learning based techniques can focus on optimally distributing

the working set across both L1 and L2 caches, in contrast to focusing only on L1.

Therefore, finding the optimal composition of warps with respect to their abilities to

pollute the different levels of the memory hierarchy is an interesting research direction.

GPUs are increasingly used in datacenters and cloud computing, where different

Chapter 6. Conclusion 127

SMs on a GPU may be executing different kernels from separate applications. In such a

scenario, different SMs may pose varying need for shared resources. For instance, the

shared memory resources — such as the on-chip and off-chip memory bandwidth —

would appear more performance critical to SMs with few or no active warps, in contrast

to SMs with sufficient active warps. Therefore, when such disparate SMs are present

during the same epoch of execution, the criticality of the available memory bandwidth

varies for different SMs. In the existing policy, however, a pending memory request

tries to acquire a fraction of the shared memory bandwidth as soon as it is conceived,

while being oblivious to the relative criticality of the shared bandwidth across other

SMs. This is because each SM employs a greedy policy to acquire the shared bandwidth

in order to maximize its own bandwidth utilization, thereby excessively depleting

the shared bandwidth and causing congestion. It is analogous to the Tragedy of the

Commons, a problem in economics where a strategy best for an individual in using an

unregulated common resource may not yield the most optimal outcome for the group. In

the recent years, microeconomics concepts such as Game Theory have found increasing

application to solve similar problems in systems research [170, 106, 107, 171]. In

GPUs, the problem of managing the shared system resources such as bandwidth and

cache capacity falls under the same ambit of shared resource management. Therefore, a

promising future direction is to further explore the use of microeconomic concepts to

solve the above problems in GPUs.

6.4 Concluding Remarks

In this thesis, we draw attention to some of the inefficiencies in GPUs that lead to

poor memory system performance. In the future, with increasing use of GPUs across

diverse application domains and continual growth in workload complexity, the burden

on the memory system is expected to rise even further. We hope that our work helps in

understanding and addressing some of these problems, and motivates further research

in this direction.

Bibliography

[1] M. Abdel-Majeed and M. Annavaram. Warped Register File: A Power Efficient

Register File for GPGPUs. In Proceedings of the 2013 IEEE 19th International

Symposium on High Performance Computer Architecture, HPCA ’13, pages 412–423,

Washington, DC, USA, 2013. IEEE Computer Society.

[2] M. E. Acacio, J. González, J. M. Garcı́a, and J. Duato. Owner Prediction for

Accelerating Cache-to-cache Transfer Misses in a cc-NUMA Architecture. In

Proceedings of the 2002 ACM/IEEE Conference on Supercomputing, SC ’02, pages

1–12, Los Alamitos, CA, USA, 2002. IEEE Computer Society Press.

[3] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’Boyle, J. Thom-

son, M. Toussaint, and C. K. I. Williams. Using Machine Learning to Focus Iterative

Optimization. In Proceedings of the International Symposium on Code Generation

and Optimization, CGO ’06, pages 295–305, Washington, DC, USA, 2006. IEEE

Computer Society.

[4] J. Alglave, M. Batty, A. F. Donaldson, G. Gopalakrishnan, J. Ketema, D. Poetzl,

T. Sorensen, and J. Wickerson. GPU Concurrency: Weak Behaviours and Program-

ming Assumptions. In Proceedings of the Twentieth International Conference on

Architectural Support for Programming Languages and Operating Systems, ASPLOS

’15, pages 577–591, New York, NY, USA, 2015. ACM.

[5] J. Alsop, M. D. Sinclair, R. Komuravelli, and S. V. Adve. GSI: A GPU Stall

Inspector to Characterize the Source of Memory Stalls for Tightly Coupled GPUs.

In IEEE International Symposium on Performance Analysis of Systems and Software,

ISPASS 2016.

[6] J. Alsop, M. S. Orr, B. M. Beckmann, and D. A. Wood. Lazy Release Consis-

tency for GPUs. In 2016 49th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), pages 1–14, Oct 2016.

128

Bibliography 129

[7] AMD Radeon: Vega Architecture. https://radeon.com/en-us/vega-

architecture/, 2017.

[8] A. Arunkumar, S. Y. Lee, and C. J. Wu. ID-cache: Instruction and Memory

Divergence Based Cache Management for GPUs. In 2016 IEEE International

Symposium on Workload Characterization (IISWC), pages 1–10, Sept 2016.

[9] A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi, O. Villa, A. Jaleel,

C.-J. Wu, and D. Nellans. MCM-GPU: Multi-Chip-Module GPUs for Continued

Performance Scalability. In Proceedings of the 44th Annual International Symposium

on Computer Architecture, ISCA ’17, pages 320–332, New York, NY, USA, 2017.

ACM.

[10] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt. Analyzing

CUDA Workloads Using a Detailed GPU Simulator. In ISPASS, pages 163–174.

IEEE, 2009.

[11] A. Bakhoda, J. Kim, and T. M. Aamodt. Throughput-Effective On-Chip Networks

for Manycore Accelerators. In Proceedings of the 2010 43rd Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO ’43, pages 421–432, Wash-

ington, DC, USA, 2010. IEEE Computer Society.

[12] L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer, B. Sano,

S. Smith, R. Stets, and B. Verghese. Piranha: A Scalable Architecture Based on

Single-chip Multiprocessing. In Computer Architecture, 2000. Proceedings of the

27th International Symposium on, pages 282–293, June 2000.

[13] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A. Rountev,

and P. Sadayappan. A Compiler Framework for Optimization of Affine Loop Nests

for GPGPUs. In Proceedings of the 22nd Annual International Conference on

Supercomputing, ICS ’08, pages 225–234, New York, NY, USA, 2008. ACM.

[14] M. M. Baskaran, J. Ramanujam, and P. Sadayappan. Automatic C-to-CUDA

Code Generation for Affine Programs. In Proceedings of the 19th Joint European

Conference on Theory and Practice of Software, International Conference on Com-

piler Construction, CC’10/ETAPS’10, pages 244–263, Berlin, Heidelberg, 2010.

Springer-Verlag.

https://radeon.com/en-us/vega-architecture/
https://radeon.com/en-us/vega-architecture/

Bibliography 130

[15] B. M. Beckmann and D. A. Wood. Managing Wire Delay in Large Chip-

Multiprocessor Caches. In Proceedings of the 37th Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO 37, pages 319–330, Washington, DC,

USA, 2004. IEEE Computer Society.

[16] M. Bennasar, Y. Hicks, and R. Setchi. Feature Selection Using Joint Mutual

Information Maximisation. Expert Syst. Appl., 42(22):8520–8532, December 2015.

[17] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,

Inc., New York, NY, USA, 1995.

[18] R. Bitirgen, E. İpek, and J. F. Martinez. Coordinated Management of Multiple

Interacting Resources in Chip Multiprocessors: A Machine Learning Approach. In

Proceedings of the 41st Annual IEEE/ACM International Symposium on Microarchi-

tecture, MICRO 41, pages 318–329, Washington, DC, USA, 2008. IEEE Computer

Society.

[19] P. Bodik, R. Griffith, C. Sutton, A. Fox, M. I. Jordan, and D. A. Patterson. Statisti-

cal Machine Learning Makes Automatic Control Practical for Internet Datacenters.

In Workshop on Hot Topics in Cloud Computing (HotCloud 09), 2009.

[20] S. Campanoni, K. Brownell, S. Kanev, T. M. Jones, G.-Y. Wei, and D. Brooks.

HELIX-RC: An Architecture-compiler Co-design for Automatic Parallelization of

Irregular Programs. In Proceeding of the 41st Annual International Symposium on

Computer Architecuture, ISCA ’14, pages 217–228, Piscataway, NJ, USA, 2014.

IEEE Press.

[21] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. F. P. O’Boyle, and O. Temam.

Rapidly Selecting Good Compiler Optimizations Using Performance Counters. In

Proceedings of the International Symposium on Code Generation and Optimization,

CGO ’07, pages 185–197, Washington, DC, USA, 2007. IEEE Computer Society.

[22] G. Chandrashekar and F. Sahin. A Survey on Feature Selection Methods. Comput.

Electr. Eng., 40(1):16–28, January 2014.

[23] J. Chang and G. S. Sohi. Cooperative Caching for Chip Multiprocessors. In

Proceedings of the 33rd Annual International Symposium on Computer Architecture,

ISCA ’06, pages 264–276, Washington, DC, USA, 2006. IEEE Computer Society.

Bibliography 131

[24] J. Chang and G. S. Sohi. Cooperative Cache Partitioning for Chip Multiprocessors.

In Proceedings of the 21st Annual International Conference on Supercomputing, ICS

’07, pages 242–252, New York, NY, USA, 2007. ACM.

[25] N. Chatterjee, M. O’Connor, G. H. Loh, N. Jayasena, and R. Balasubramonian.

Managing DRAM Latency Divergence in Irregular GPGPU Applications. In Proceed-

ings of the International Conference for High Performance Computing, Networking,

Storage and Analysis, SC ’14, pages 128–139, Piscataway, NJ, USA, 2014. IEEE

Press.

[26] N. Chatterjee, M. O’Connor, D. Lee, D. R. Johnson, S. W. Keckler, M. Rhu,

and W. J. Dally. Architecting an Energy-Efficient DRAM System for GPUs. In

2017 IEEE International Symposium on High Performance Computer Architecture

(HPCA), pages 73–84, Feb 2017.

[27] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron.

Rodinia: A Benchmark Suite for Heterogeneous Computing. In Proceedings of the

2009 IEEE International Symposium on Workload Characterization, IISWC ’09,

pages 44–54, Washington, DC, USA, 2009. IEEE Computer Society.

[28] X. Chen, L. W. Chang, C. I. Rodrigues, J. Lv, Z. Wang, and W. M. Hwu. Adaptive

Cache Management for Energy-Efficient GPU Computing. In 2014 47th Annual

IEEE/ACM International Symposium on Microarchitecture, pages 343–355, Dec

2014.

[29] R. L. Cheng. Video Game Console. US Design Patent 271311S, Dec 1983.

[30] H. Choi, J. Ahn, and W. Sung. Reducing Off-chip Memory Traffic by Selective

Cache Management Scheme in GPGPUs. In Proceedings of the 5th Annual Workshop

on General Purpose Processing with Graphics Processing Units, GPGPU-5, pages

110–119, New York, NY, USA, 2012. ACM.

[31] G. Chrysos. Intel Xeon Phi Coprocessor - The Architecture. Technical report,

Intel Corporation, 2012.

[32] CUDA C Programming Guide. http://docs.nvidia.com/cuda/cuda-c-

programming-guide/, 2016.

[33] J. W. Davidson and S. Jinturkar. Memory Access Coalescing: A Technique for

Eliminating Redundant Memory Accesses. In Proceedings of the ACM SIGPLAN

http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/

Bibliography 132

1994 Conference on Programming Language Design and Implementation, PLDI ’94,

pages 186–195, New York, NY, USA, 1994. ACM.

[34] S. Dublish, V. Nagarajan, and N. Topham. Characterizing Memory Bottlenecks in

GPGPU Workloads. In Proceedings of the 2016 IEEE International Symposium on

Workload Characterization, IISWC ’16, Providence, Rhode Island, USA, 2016.

[35] S. Dublish, V. Nagarajan, and N. Topham. Cooperative Caching for GPUs. ACM

Trans. Archit. Code Optim., 13(4), December 2016.

[36] S. Dublish, V. Nagarajan, and N. Topham. Evaluating and Mitigating Bandwidth

Bottlenecks Across the Memory Hierarchy in GPUs. In 2017 IEEE International

Symposium on Performance Analysis of Systems and Software, ISPASS, Santa Rosa,

CA, USA, April 2017.

[37] S. Dublish. Student Research Poster: Slack-Aware Shared Bandwidth Manage-

ment in GPUs. In Proceedings of the 2016 International Conference on Parallel

Architectures and Compilation, PACT ’16, pages 451–452, New York, NY, USA,

2016. ACM.

[38] N. Duong, D. Zhao, T. Kim, R. Cammarota, M. Valero, and A. V. Veidenbaum.

Improving Cache Management Policies Using Dynamic Reuse Distances. In Proceed-

ings of the 2012 45th Annual IEEE/ACM International Symposium on Microarchi-

tecture, MICRO-45, pages 389–400, Washington, DC, USA, 2012. IEEE Computer

Society.

[39] A. ElTantawy, J. W. Ma, M. O’Connor, and T. M. Aamodt. A Scalable Multi-path

Microarchitecture for Efficient GPU Control Flow. In 2014 IEEE 20th International

Symposium on High Performance Computer Architecture (HPCA), pages 248–259,

Feb 2014.

[40] CUDA by example - Errata, June 2014, 2014.

[41] W. C. Feng and S. Xiao. To GPU Synchronize or Not GPU Synchronize? In

Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pages

3801–3804, May 2010.

[42] GeForce 256: The World’s First GPU. http://www.nvidia.co.uk/page/

geforce256.html, 1999.

http://www.nvidia.co.uk/page/geforce256.html
http://www.nvidia.co.uk/page/geforce256.html

Bibliography 133

[43] J. Fox. Applied Regression Analysis and Generalized Linear Models. SAGE

Publications, 2008.

[44] J. Friedman, T. Hastie, and R. Tibshirani. Regularization Paths for Generalized

Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1):1–22,

2010.

[45] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt. Dynamic Warp Formation

and Scheduling for Efficient GPU Control Flow. In Proceedings of the 40th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 40, pages 407–

420, Washington, DC, USA, 2007. IEEE Computer Society.

[46] G. Fursin, C. Miranda, O. Temam, M. Namolaru, E. Yom-Tov, A. Zaks, B. Mendel-

son, E. Bonilla, J. Thomson, H. Leather, C. Williams, M. O’Boyle, P. Barnard,

E. Ashton, E. Courtois, and F. Bodin. MILEPOST GCC: Machine Learning based

Research Compiler. In GCC Summit, Ottawa, Canada, June 2008.

[47] J. Gaur, M. Chaudhuri, and S. Subramoney. Bypass and Insertion Algorithms

for Exclusive Last-level Caches. In Proceedings of the 38th Annual International

Symposium on Computer Architecture, ISCA ’11, pages 81–92, New York, NY, USA,

2011. ACM.

[48] Intel 82720: Graphics Display Controller. Datasheet, 1983.

[49] P. Glaskowsky. NVIDIA’s Fermi: The First Complete GPU Computing Architec-

ture. Technical report, NVIDIA, 2009.

[50] C. Gou and G. N. Gaydadjiev. Elastic Pipeline: Addressing GPU On-chip Shared

Memory Bank Conflicts. In Proceedings of the 8th ACM International Conference

on Computing Frontiers, CF ’11, pages 3:1–3:11, New York, NY, USA, 2011. ACM.

[51] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos. Auto-

tuning a High-level Language Targeted to GPU Codes. In Innovative Parallel

Computing, pages 1–10, May 2012.

[52] N. Gulur, M. Mehendale, R. Manikantan, and R. Govindarajan. ANATOMY: An

Analytical Model of Memory System Performance. In The 2014 ACM International

Conference on Measurement and Modeling of Computer Systems, SIGMETRICS

’14, pages 505–517, New York, NY, USA, 2014. ACM.

Bibliography 134

[53] Z. Guz, E. Bolotin, I. Keidar, A. Kolodny, A. Mendelson, and U. C. Weiser.

Many-Core vs. Many-Thread Machines: Stay Away From the Valley. Computer

Architecture Letters, 8(1):25–28, 2009.

[54] M. A. Hall. Correlation-based Feature Selection for Machine Learning. PhD

thesis, The University of Waikato, 1999.

[55] P. Hammarlund, A. J. Martinez, A. A. Bajwa, D. L. Hill, E. G. Hallnor, H. Jiang,

M. Dixon, M. Derr, M. Hunsaker, R. Kumar, R. B. Osborne, R. Rajwar, R. Singhal,

R. D’Sa, R. Chappell, S. Kaushik, S. Chennupaty, S. Jourdan, S. Gunther, T. Piazza,

and T. Burton. Haswell: The Fourth-Generation Intel Core Processor. IEEE Micro,

34(2):6–20, 2014.

[56] HYNIX HBM. https://www.skhynix.com/, 2017.

[57] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang. Mars: A MapReduce

Framework on Graphics Processors. In Proceedings of the 17th International Con-

ference on Parallel Architectures and Compilation Techniques, PACT ’08, pages

260–269, New York, NY, USA, 2008. ACM.

[58] J. L. Hennessy and D. A. Patterson. Computer Architecture, Fifth Edition: A

Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 5th edition, 2011.

[59] E. Herrero, J. González, and R. Canal. Distributed Cooperative Caching. In

Proceedings of the 17th International Conference on Parallel Architectures and

Compilation Techniques, PACT ’08, pages 134–143, New York, NY, USA, 2008.

ACM.

[60] J. Hestness, S. W. Keckler, and D. A. Wood. A Comparative Analysis of Mi-

croarchitecture Effects on CPU and GPU Memory System Behavior. In 2014 IEEE

International Symposium on Workload Characterization (IISWC), pages 150–160,

Oct 2014.

[61] M. A. Holliday and M. Stumm. Performance Evaluation of Hierarchical Ring-

Based Shared Memory Multiprocessors. IEEE Trans. Computers, 43(1):52–67,

1994.

[62] S. Hong and H. Kim. An Analytical Model for a GPU Architecture with Memory-

level and Thread-level Parallelism Awareness. In Proceedings of the 36th Annual

https://www.skhynix.com/

Bibliography 135

International Symposium on Computer Architecture, ISCA ’09, pages 152–163, New

York, NY, USA, 2009. ACM.

[63] GPUs for Cloud Servers. https://www.ibm.com/cloud/gpu, 2017.

[64] E. İpek, S. A. McKee, R. Caruana, B. R. de Supinski, and M. Schulz. Efficiently

Exploring Architectural Design Spaces via Predictive Modeling. In Proceedings

of the 12th International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS XII, pages 195–206, New York, NY,

USA, 2006. ACM.

[65] E. İpek, O. Mutlu, J. F. Martı́nez, and R. Caruana. Self-Optimizing Memory

Controllers: A Reinforcement Learning Approach. In Proceedings of the 35th

Annual International Symposium on Computer Architecture, ISCA ’08, pages 39–50,

Washington, DC, USA, 2008. IEEE Computer Society.

[66] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, Jr., and J. Emer.

Adaptive Insertion Policies for Managing Shared Caches. In Proceedings of the 17th

International Conference on Parallel Architectures and Compilation Techniques,

PACT ’08, pages 208–219, New York, NY, USA, 2008. ACM.

[67] A. Jaleel, H. H. Najaf-abadi, S. Subramaniam, S. C. Steely, and J. Emer. CRUISE:

Cache Replacement and Utility-aware Scheduling. In Proceedings of the Seventeenth

International Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS XVII, pages 249–260, New York, NY, USA, 2012.

ACM.

[68] V. Jatala, J. Anantpur, and A. Karkare. Scratchpad Sharing in GPUs. ACM Trans.

Archit. Code Optim., 14(2):15:1–15:29, May 2017.

[69] W. Jia, K. A. Shaw, and M. Martonosi. Characterizing and Improving the Use of

Demand-fetched Caches in GPUs. In Proceedings of the 26th ACM International

Conference on Supercomputing, ICS ’12, pages 15–24, New York, NY, USA, 2012.

ACM.

[70] W. Jia, K. A. Shaw, and M. Martonosi. MRPB: Memory Request Prioritization

for Massively Parallel Processors. In 2014 IEEE 20th International Symposium on

High Performance Computer Architecture (HPCA), pages 272–283, Feb 2014.

https://www.ibm.com/cloud/gpu

Bibliography 136

[71] D. A. Jiménez and C. Lin. Dynamic Branch Prediction with Perceptrons. In

Proceedings of the 7th International Symposium on High-Performance Computer

Architecture, HPCA ’01, pages 197–, Washington, DC, USA, 2001. IEEE Computer

Society.

[72] A. Jog, O. Kayiran, N. Chidambaram Nachiappan, A. K. Mishra, M. T. Kandemir,

O. Mutlu, R. Iyer, and C. R. Das. OWL: Cooperative Thread Array Aware Scheduling

Techniques for Improving GPGPU Performance. In Proceedings of the Eighteenth

International Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS ’13, pages 395–406, New York, NY, USA, 2013. ACM.

[73] A. Jog, O. Kayiran, A. Pattnaik, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R.

Das. Exploiting Core Criticality for Enhanced GPU Performance. In Proceedings

of the 2016 ACM SIGMETRICS International Conference on Measurement and

Modeling of Computer Science, Antibes Juan-Les-Pins, France, June 14-18, 2016,

pages 351–363, 2016.

[74] S. Kaxiras and G. Keramidas. SARC Coherence: Scaling Directory Cache Coher-

ence in Performance and Power. IEEE Micro, 30(5):54–65, September 2010.

[75] O. Kayiran, A. Jog, M. T. Kandemir, and C. R. Das. Neither More Nor Less:

Optimizing Thread-level Parallelism for GPGPUs. In Proceedings of the 22nd

International Conference on Parallel Architectures and Compilation Techniques,

pages 157–166, Sept 2013.

[76] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco. GPUs and

the Future of Parallel Computing. IEEE Micro, 31(5):7–17, September 2011.

[77] M. M. Keshtegar, H. Falahati, and S. Hessabi. Cluster-based Approach for Im-

proving Graphics Processing Unit Performance by Inter Streaming Multiprocessors

Locality. IET Computers & Digital Techniques, March 2015.

[78] M. Khairy, M. Zahran, and A. G. Wassal. Efficient Utilization of GPGPU Cache

Hierarchy. In Proceedings of the 8th Workshop on General Purpose Processing

Using GPUs, GPGPU-8, pages 36–47, New York, NY, USA, 2015. ACM.

[79] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter. ATLAS: A Scalable and

High-performance Scheduling Algorithm for Multiple Memory Controllers. In IEEE

Bibliography 137

16th International Symposium on High-Performance Computer Architecture (HPCA),

pages 1–12, Jan 2010.

[80] H. Kim, J. Kim, W. Seo, Y. Cho, and S. Ryu. Providing Cost-effective On-chip

Network Bandwidth in GPGPUs. In 2012 IEEE 30th International Conference on

Computer Design (ICCD), pages 407–412, Sept 2012.

[81] H. Kim, G. Kim, S. Maeng, H. Yeo, and J. Kim. Transportation-network-inspired

Network-on-Chip. In 2014 IEEE 20th International Symposium on High Performance

Computer Architecture (HPCA), pages 332–343, Feb 2014.

[82] K. Kim, S. Lee, M. K. Yoon, G. Koo, W. W. Ro, and M. Annavaram. Warped-

preexecution: A GPU Pre-execution Approach for Improving Latency Hiding. In

2016 IEEE International Symposium on High Performance Computer Architecture

(HPCA), pages 163–175, March 2016.

[83] D. B. Kirk and W.-m. W. Hwu. Programming Massively Parallel Processors: A

Hands-on Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

1st edition, 2010.

[84] J. Kloosterman, J. Beaumont, M. Wollman, A. Sethia, R. Dreslinski, T. Mudge, and

S. Mahlke. WarpPool: Sharing Requests with Inter-warp Coalescing for Throughput

Processors. In 2015 48th Annual IEEE/ACM International Symposium on Microar-

chitecture (MICRO), pages 433–444, Dec 2015.

[85] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way Multithreaded

Sparc Processor. IEEE Micro, 25(2):21–29, March 2005.

[86] G. Koo, Y. Oh, W. W. Ro, and M. Annavaram. Access Pattern-Aware Cache

Management for Improving Data Utilization in GPU. In Proceedings of the 44th

Annual International Symposium on Computer Architecture, ISCA ’17, pages 307–

319, New York, NY, USA, 2017. ACM.

[87] N. B. Lakshminarayana, J. Lee, H. Kim, and J. Shin. DRAM Scheduling Policy for

GPGPU Architectures Based on a Potential Function. IEEE Computer Architecture

Letters, 11(2):33–36, 2012.

[88] S. Lal, J. Lucas, and B. Juurlink. E2MC: Entropy Encoding Based Memory Com-

pression for GPUs. In 2017 IEEE International Parallel and Distributed Processing

Symposium (IPDPS), pages 1119–1128, May 2017.

Bibliography 138

[89] S. Lawrence, C. L. Giles, and A. C. Tsoi. Lessons in Neural Network Training:

Overfitting May be Harder than Expected. In Proceedings of the Fourteenth National

Conference on Artificial Intelligence and Ninth Innovative Applications of Artificial

Intelligence Conference, AAAI 97, IAAI 97, July 27-31, 1997, Providence, Rhode

Island., pages 540–545, 1997.

[90] G. Lebanon. Riemannian Geometry and Statistical Machine Learning. PhD thesis,

Carnegie Mellon University, Pittsburgh, PA, USA, 2005. AAI3159986.

[91] A. R. Lebeck and D. A. Wood. Dynamic Self-invalidation: Reducing Coherence

Overhead in Shared-memory Multiprocessors. In Proceedings of the 22Nd Annual

International Symposium on Computer Architecture, ISCA ’95, pages 48–59, New

York, NY, USA, 1995. ACM.

[92] B. C. Lee and D. Brooks. Efficiency Trends and Limits from Comprehensive

Microarchitectural Adaptivity. In Proceedings of the 13th International Confer-

ence on Architectural Support for Programming Languages and Operating Systems,

ASPLOS XIII, pages 36–47, New York, NY, USA, 2008. ACM.

[93] J. Lee and H. Kim. TAP: A TLP-aware Cache Management Policy for a CPU-GPU

Heterogeneous Architecture. In Proceedings of the 2012 IEEE 18th International

Symposium on High-Performance Computer Architecture, HPCA ’12, pages 1–12,

Washington, DC, USA, 2012. IEEE Computer Society.

[94] S. Y. Lee and C. J. Wu. Ctrl-C: Instruction-Aware Control Loop Based Adap-

tive Cache Bypassing for GPUs. In 2016 IEEE 34th International Conference on

Computer Design (ICCD), pages 133–140, Oct 2016.

[95] J. Lee, S. Li, H. Kim, and S. Yalamanchili. Design Space Exploration of On-

chip Ring Interconnection for a CPU-GPU Heterogeneous Architecture. J. Parallel

Distrib. Comput., 73(12):1525–1538, December 2013.

[96] M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and S. Ryu. Improving GPGPU

Resource Utilization Through Alternative Thread Block Scheduling. In 2014 IEEE

20th International Symposium on High Performance Computer Architecture (HPCA),

pages 260–271, Feb 2014.

[97] D. Lee, M. O’Connor, and N. Chatterjee. Reducing Data Transfer Energy by

Exploiting Similarity within a Data Transaction. In 2018 IEEE 24th International

Symposium on High Performance Computer Architecture (HPCA), Feb 2018.

Bibliography 139

[98] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M. Aamodt,

and V. J. Reddi. GPUWattch: Enabling Energy Optimizations in GPGPUs. In

Proceedings of the 40th Annual International Symposium on Computer Architecture,

ISCA ’13, pages 487–498, New York, NY, USA, 2013. ACM.

[99] C. Li, S. L. Song, H. Dai, A. Sidelnik, S. K. S. Hari, and H. Zhou. Locality-Driven

Dynamic GPU Cache Bypassing. In Proceedings of the 29th ACM on International

Conference on Supercomputing, ICS ’15, pages 67–77, New York, NY, USA, 2015.

ACM.

[100] D. Li, M. Rhu, D. R. Johnson, M. O’Connor, M. Erez, D. Burger, D. S. Fussell,

and S. W. Redder. Priority-based Cache Allocation in Throughput Processors. In 2015

IEEE 21st International Symposium on High Performance Computer Architecture

(HPCA), pages 89–100, Feb 2015.

[101] L. Li, A. B. Hayes, S. L. Song, and E. Z. Zhang. Tag-Split Cache for Efficient

GPGPU Cache Utilization. In Proceedings of the 2016 International Conference on

Supercomputing, ICS ’16, pages 43:1–43:12, New York, NY, USA, 2016. ACM.

[102] A. Li, S. L. Song, W. Liu, X. Liu, A. Kumar, and H. Corporaal. Locality-

Aware CTA Clustering for Modern GPUs. In Proceedings of the Twenty-Second

International Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS ’17, pages 297–311, New York, NY, USA, 2017. ACM.

[103] S.-w. Liao, T.-H. Hung, D. Nguyen, C. Chou, C. Tu, and H. Zhou. Machine

Learning-based Prefetch Optimization for Data Center Applications. In Proceed-

ings of the Conference on High Performance Computing Networking, Storage and

Analysis, SC ’09, pages 56:1–56:10, New York, NY, USA, 2009. ACM.

[104] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla: A

Unified Graphics and Computing Architecture. IEEE Micro, 28(2):39–55, March

2008.

[105] Y. Liu, E. Z. Zhang, and X. Shen. A Cross-input Adaptive Framework for

GPU Program Optimizations. In 2009 IEEE International Symposium on Parallel

Distributed Processing, pages 1–10, May 2009.

[106] Q. Llull, S. Fan, S. M. Zahedi, and B. C. Lee. Cooper: Task Colocation with

Cooperative Games. In 2017 IEEE International Symposium on High Performance

Computer Architecture (HPCA), pages 421–432, Feb 2017.

Bibliography 140

[107] Q. Llull. Microeconomic Models for Managing Shared Datacenters. PhD thesis,

Duke University, 2017.

[108] Luke Durant, Olivier Giroux, Mark Harris and Nick Stam. Inside Volta: The

Worlds Most Advanced Data Center GPU. https://devblogs.nvidia.com/

inside-volta/, 2017.

[109] M. M. K. Martin, M. D. Hill, and D. J. Sorin. Why On-chip Cache Coherence is

Here to Stay. Commun. ACM, 55(7):78–89, July 2012.

[110] A. K. Mishra, O. Mutlu, and C. R. Das. A Heterogeneous Multiple Network-

on-chip Design: An Application-aware Approach. In 2013 50th ACM/EDAC/IEEE

Design Automation Conference (DAC), pages 1–10, May 2013.

[111] S. Mittal. A Survey of Techniques for Architecting and Managing GPU Register

File. IEEE Transactions on Parallel and Distributed Systems, 28(1):16–28, Jan 2017.

[112] O. Mutlu and T. Moscibroda. Parallelism-Aware Batch Scheduling: Enhancing

Both Performance and Fairness of Shared DRAM Systems. In Proceedings of the

35th Annual International Symposium on Computer Architecture, ISCA ’08, pages

63–74, Washington, DC, USA, 2008. IEEE Computer Society.

[113] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu, and

Y. N. Patt. Improving GPU Performance via Large Warps and Two-level Warp

Scheduling. In Proceedings of the 44th Annual IEEE/ACM International Symposium

on Microarchitecture, MICRO-44, pages 308–317, New York, NY, USA, 2011.

ACM.

[114] R. Nasre, M. Burtscher, and K. Pingali. Atomic-free Irregular Computations on

GPUs. In Proceedings of the 6th Workshop on General Purpose Processor Using

Graphics Processing Units, GPGPU-6, pages 96–107, New York, NY, USA, 2013.

ACM.

[115] NVIDIA’s Next Generation CUDA Compute Architecture: Fermi. Technical

report, NVIDIA, 2009.

[116] NVIDIA’s Next Generation CUDA Compute Architecture: Kepler GK110. Tech-

nical report, NVIDIA, 2012.

https://devblogs.nvidia.com/inside-volta/
https://devblogs.nvidia.com/inside-volta/

Bibliography 141

[117] C. M. O’Brien. Negative Binomial Regression, Second Edition by Joseph M.

Hilbe. International Statistical Review, 79(3):483–484, 2011.

[118] CUDA Occupancy Calculator. https://developer.download.nvidia.com/

compute/.../CUDA_Occupancy_calculator.xls.

[119] Y. Oh, K. Kim, M. K. Yoon, J. H. Park, Y. Park, W. W. Ro, and M. Annavaram.

APRES: Improving Cache Efficiency by Exploiting Load Characteristics on GPUs.

In 43rd ACM/IEEE Annual International Symposium on Computer Architecture,

ISCA 2016, Seoul, South Korea, June 18-22, 2016, pages 191–203, 2016.

[120] H. Oi and N. Ranganathan. A Comparative Study of Bidirectional Ring and

Crossbar Interconnection Networks. In in Proceedings of the 1998 International

Conference on Parallel and Distributed Processing Techniques and Applications

(PDPTA’98), 883–890, Las Vegas, 1998.

[121] M. A. O’Neil and M. Burtscher. Microarchitectural Performance Characterization

of Irregular GPU Kernels. In Workload Characterization (IISWC), 2014 IEEE

International Symposium on, pages 130–139, Oct 2014.

[122] M. S. Orr, S. Che, A. Yilmazer, B. M. Beckmann, M. D. Hill, and D. A. Wood.

Synchronization Using Remote-Scope Promotion. In Proceedings of the Twentieth

International Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS ’15, pages 73–86, New York, NY, USA, 2015. ACM.

[123] E. Park, L. N. Pouche, J. Cavazos, A. Cohen, and P. Sadayappan. Predictive

Modeling in a Polyhedral Optimization Space. In International Symposium on Code

Generation and Optimization (CGO 2011), pages 119–129, April 2011.

[124] Paulius Micikevicius. Performance Optimization: Programming

Guidelines and GPU Architecture Reasons Behind Them. http://on-

demand.gputechconf.com/gtc/2013/presentations/S3466-Programming-

Guidelines-GPU-Architecture.pdf, 2013.

[125] Z. Pawlak. Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer

Academic Publishers, Norwell, MA, USA, 1992.

[126] G. Pekhimenko, E. Bolotin, N. Vijaykumar, O. Mutlu, T. C. Mowry, and S. W.

Keckler. A Case for Toggle-aware Compression for GPU Systems. In 2016 IEEE

https://developer.download.nvidia.com/compute/.../CUDA_Occupancy_calculator.xls
https://developer.download.nvidia.com/compute/.../CUDA_Occupancy_calculator.xls
http://on-demand.gputechconf.com/gtc/2013/presentations/S3466-Programming-Guidelines-GPU-Architecture.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3466-Programming-Guidelines-GPU-Architecture.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3466-Programming-Guidelines-GPU-Architecture.pdf

Bibliography 142

International Symposium on High Performance Computer Architecture (HPCA),

pages 188–200, March 2016.

[127] J. Power, A. Basu, J. Gu, S. Puthoor, B. M. Beckmann, M. D. Hill, S. K.

Reinhardt, and D. A. Wood. Heterogeneous System Coherence for Integrated

CPU-GPU Systems. In Proceedings of the 46th Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO-46, pages 457–467, New York, NY, USA,

2013. ACM.

[128] Parallel Thread Execution ISA, Version 4.3. http://docs.nvidia.com/cuda/

parallel-thread-execution, 2016.

[129] G. Ravindran and M. Stumm. A Performance Comparison of Hierarchical Ring-

and Mesh- Connected Multiprocessor Networks. In Proceedings of the 3rd IEEE

Symposium on High-Performance Computer Architecture, HPCA ’97, pages 58–,

Washington, DC, USA, 1997. IEEE Computer Society.

[130] M. Rhu, M. Sullivan, J. Leng, and M. Erez. A Locality-aware Memory Hier-

archy for Energy-efficient GPU Architectures. In Proceedings of the 46th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO-46, pages 86–

98, New York, NY, USA, 2013. ACM.

[131] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens. Memory

Access Scheduling. In Proceedings of the 27th Annual International Symposium

on Computer Architecture, ISCA ’00, pages 128–138, New York, NY, USA, 2000.

ACM.

[132] T. G. Rogers, M. O’Connor, and T. M. Aamodt. Cache-Conscious Wavefront

Scheduling. In Proceedings of the 2012 45th Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO-45, pages 72–83, Washington, DC, USA,

2012. IEEE Computer Society.

[133] T. G. Rogers, M. O’Connor, and T. M. Aamodt. Divergence-aware Warp Schedul-

ing. In Proceedings of the 46th Annual IEEE/ACM International Symposium on

Microarchitecture, MICRO-46, pages 99–110, New York, NY, USA, 2013. ACM.

[134] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W.-

m. W. Hwu. Optimization Principles and Application Performance Evaluation of

a Multithreaded GPU Using CUDA. In Proceedings of the 13th ACM SIGPLAN

http://docs.nvidia.com/cuda/parallel-thread-execution
http://docs.nvidia.com/cuda/parallel-thread-execution

Bibliography 143

Symposium on Principles and Practice of Parallel Programming, PPoPP ’08, pages

73–82, New York, NY, USA, 2008. ACM.

[135] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.-Z. Ueng, J. A. Stratton,

and W.-m. W. Hwu. Program Optimization Space Pruning for a Multithreaded GPU.

In Proceedings of the 6th Annual IEEE/ACM International Symposium on Code

Generation and Optimization, CGO ’08, pages 195–204, New York, NY, USA, 2008.

ACM.

[136] J. Sartori and R. Kumar. Branch and Data Herding: Reducing Control and

Memory Divergence for Error-Tolerant GPU Applications. IEEE Transactions on

Multimedia, 15(2):279–290, Feb 2013.

[137] S. Seabold and J. Perktold. Statsmodels: Econometric and Statistical Modeling

with Python. In 9th Python in Science Conference, 2010.

[138] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins,

A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and P. Hanrahan.

Larrabee: A Many-core x86 Architecture for Visual Computing. In ACM SIGGRAPH

2008 Papers, SIGGRAPH ’08, pages 18:1–18:15, New York, NY, USA, 2008. ACM.

[139] A. Sethia, D. Jamshidi, and S. Mahlke. Mascar: Speeding Up GPU Warps by

Reducing Memory Pitstops. In 2015 IEEE 21st International Symposium on High

Performance Computer Architecture (HPCA), pages 174–185, Feb 2015.

[140] J. Sim, A. Dasgupta, H. Kim, and R. Vuduc. A Performance Analysis Framework

for Identifying Potential Benefits in GPGPU Applications. In Proceedings of the 17th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

PPoPP ’12, pages 11–22, New York, NY, USA, 2012. ACM.

[141] GPGPU-Sim Manual. http://gpgpu-sim.org/manual, 2014.

[142] M. D. Sinclair, J. Alsop, and S. V. Adve. Efficient GPU Synchronization With-

out Scopes: Saying No to Complex Consistency Models. In 2015 48th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 647–

659, Dec 2015.

[143] I. Singh, A. Shriraman, W. W. L. Fung, M. O’Connor, and T. M. Aamodt. Cache

Coherence for GPU Architectures. 2014 IEEE 20th International Symposium on

High Performance Computer Architecture (HPCA), 0:578–590, 2013.

http://gpgpu-sim.org/manual

Bibliography 144

[144] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.

Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach.

Learn. Res., 15(1):1929–1958, January 2014.

[145] M. Stephenson, S. Amarasinghe, M. Martin, and U.-M. O’Reilly. Meta Opti-

mization: Improving Compiler Heuristics with Machine Learning. In Proceedings

of the ACM SIGPLAN 2003 Conference on Programming Language Design and

Implementation, PLDI ’03, pages 77–90, New York, NY, USA, 2003. ACM.

[146] J. A. Stratton, C. Rodrigrues, I.-J. Sung, N. Obeid, L. Chang, G. Liu, and W.-

M. W. Hwu. Parboil: A Revised Benchmark Suite for Scientific and Commercial

Throughput Computing. Technical Report IMPACT-12-01, University of Illinois at

Urbana-Champaign, Urbana, March 2012.

[147] J. A. Stuart and J. D. Owens. Efficient Synchronization Primitives for GPUs.

CoRR, abs/1110.4623, 2011.

[148] G. Sun, C. Hughes, C. Kim, J. Zhao, C. Xu, Y. Xie, and Y. K. Chen. Moguls:

A Model to Explore the Memory Hierarchy for Bandwidth Improvements. In 38th

Annual International Symposium on Computer Architecture (ISCA), 2011, pages

377–388, June 2011.

[149] D. Tarjan and K. Skadron. The Sharing Tracker: Using Ideas from Cache Coher-

ence Hardware to Reduce Off-Chip Memory Traffic with Non-Coherent Caches. In

Proceedings of the 2010 ACM/IEEE International Conference for High Performance

Computing, Networking, Storage and Analysis, SC ’10, pages 1–10, Washington,

DC, USA, 2010. IEEE Computer Society.

[150] D. Tarjan, J. Meng, and K. Skadron. Increasing Memory Miss Tolerance for

SIMD Cores. In Proceedings of the Conference on High Performance Computing

Networking, Storage and Analysis, SC ’09, pages 22:1–22:11, New York, NY, USA,

2009. ACM.

[151] J. V. Tu. Advantages and Disadvantages of Using Artificial Neural Networks

versus Logistic Regression for Predicting Medical Outcomes. Journal of Clinical

Epidemiology, 49(11):1225 – 1231, 1996.

[152] S.-Z. Ueng, M. Lathara, S. S. Baghsorkhi, and W.-m. W. Hwu. CUDA-Lite:

Reducing GPU Programming Complexity. In Languages and Compilers for Parallel

Computing, pages 1–15, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

Bibliography 145

[153] V. Volkov. Understanding Latency Hiding on GPUs. PhD thesis, EECS Depart-

ment, University of California, Berkeley, Aug 2016.

[154] J. Wang, N. Rubin, A. Sidelnik, and S. Yalamanchili. Dynamic Thread Block

Launch: A Lightweight Execution Mechanism to Support Irregular Applications on

GPUs. In Proceedings of the 42Nd Annual International Symposium on Computer

Architecture, ISCA ’15, pages 528–540, New York, NY, USA, 2015. ACM.

[155] J. Wang, N. Rubin, A. Sidelnik, and S. Yalamanchili. LaPerm: Locality Aware

Scheduler for Dynamic Parallelism on GPUs. In Proceedings of the 43rd Interna-

tional Symposium on Computer Architecture, ISCA ’16, pages 583–595, Piscataway,

NJ, USA, 2016. IEEE Press.

[156] T. E. Westberg, C. S. Rode, and B. G. Burns. Video Computer System including

Multiple Graphics Controllers and Associated Method. US Patent 4862156A, Aug

1989.

[157] Wolfram Mathworld. Least Squares Fitting. http://mathworld.wolfram.

com/LeastSquaresFitting.html, 2018.

[158] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou. GPGPU

Performance and Power Estimation Using Machine Learning. In 2015 IEEE 21st

International Symposium on High Performance Computer Architecture (HPCA),

HPCA ’15, Burlingame, CA, USA, 2015.

[159] P. Xiang, Y. Yang, and H. Zhou. Warp-level Divergence in GPUs: Characteriza-

tion, Impact, and Mitigation. In 2014 IEEE 20th International Symposium on High

Performance Computer Architecture (HPCA), pages 284–295, Feb 2014.

[160] S. Xiao and W. Chun Feng. Inter-block GPU Communication via Fast Barrier

Synchronization. In IPDPS, pages 1–12. IEEE, 2010.

[161] X. Xie, Y. Liang, Y. Wang, G. Sun, and T. Wang. Coordinated Static and

Dynamic Cache Bypassing for GPUs. In 21st IEEE International Symposium on

High Performance Computer Architecture, HPCA 2015, Burlingame, CA, USA,

February 7-11, 2015, pages 76–88, 2015.

[162] Q. Xu, H. Jeon, and M. Annavaram. Graph Processing on GPUs: Where are the

bottlenecks? In 2014 IEEE International Symposium on Workload Characterization

(IISWC), Oct 2014.

http://mathworld.wolfram.com/LeastSquaresFitting.html
http://mathworld.wolfram.com/LeastSquaresFitting.html

Bibliography 146

[163] S. Yan, G. Long, and Y. Zhang. StreamScan: Fast Scan Algorithms for GPUs

Without Global Barrier Synchronization. In Proceedings of the 18th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPoPP ’13, pages

229–238, New York, NY, USA, 2013. ACM.

[164] Y. Yang, P. Xiang, J. Kong, and H. Zhou. A GPGPU Compiler for Memory

Optimization and Parallelism Management. In Proceedings of the 31st ACM SIG-

PLAN Conference on Programming Language Design and Implementation, PLDI

’10, pages 86–97, New York, NY, USA, 2010. ACM.

[165] Y. Yang, P. Xiang, M. Mantor, N. Rubin, and H. Zhou. Shared Memory Multi-

plexing: A Novel Way to Improve GPGPU Throughput. In Proceedings of the 21st

International Conference on Parallel Architectures and Compilation Techniques,

PACT ’12, pages 283–292, New York, NY, USA, 2012. ACM.

[166] Y. Yang, P. Xiang, M. Mantor, and H. Zhou. CPU-assisted GPGPU on Fused

CPU-GPU Architectures. In Proceedings of the 2012 IEEE 18th International

Symposium on High-Performance Computer Architecture, HPCA ’12, pages 1–12,

Washington, DC, USA, 2012. IEEE Computer Society.

[167] A. Yazdanbakhsh, B. Thwaites, H. Esmaeilzadeh, G. Pekhimenko, O. Mutlu, and

T. C. Mowry. Mitigating the Memory Bottleneck With Approximate Load Value

Prediction. IEEE Design Test, 33(1):32–42, Feb 2016.

[168] A. Yilmazer and D. Kaeli. HQL: A Scalable Synchronization Mechanism for

GPUs. In 2013 IEEE 27th International Symposium on Parallel and Distributed

Processing, pages 475–486, May 2013.

[169] G. L. Yuan, A. Bakhoda, and T. M. Aamodt. Complexity Effective Memory

Access Scheduling for Many-core Accelerator Architectures. In Proceedings of the

42Nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO

42, pages 34–44, New York, NY, USA, 2009. ACM.

[170] S. M. Zahedi and B. C. Lee. REF: Resource Elasticity Fairness with Sharing

Incentives for Multiprocessors. In Proceedings of the 19th International Confer-

ence on Architectural Support for Programming Languages and Operating Systems,

ASPLOS ’14, pages 145–160, New York, NY, USA, 2014. ACM.

Bibliography 147

[171] S. M. Zahedi, Q. Llull, and B. C. Lee. Amdahl’s Law in the Datacenter Era: A

Market for Fair Processor Allocation. In 2018 IEEE 24th International Symposium

on High Performance Computer Architecture (HPCA), Feb 2018.

[172] X. Zhao, S. Ma, C. Li, L. Eeckhout, and Z. Wang. A Heterogeneous Low-cost

and Low-latency Ring-Chain Network for GPGPUs. In 2016 IEEE 34th International

Conference on Computer Design (ICCD), pages 472–479, Oct 2016.

[173] X. Zhao, S. Ma, Y. Liu, L. Eeckhout, and Z. Wang. A Low-cost Conflict-free NoC

for GPGPUs. In Proceedings of the 53rd Annual Design Automation Conference,

DAC ’16, pages 34:1–34:6, New York, NY, USA, 2016. ACM.

[174] X. Zhao, Y. Liu, A. Adileh, and L. Eeckhout. LA-LLC: Inter-Core Locality-

Aware Last-Level Cache to Exploit Many-to-Many Traffic in GPGPUs. IEEE

Computer Architecture Letters, 16(1):42–45, Jan 2017.

[175] A. K. Ziabari, J. L. Abellán, Y. Ma, A. Joshi, and D. Kaeli. Asymmetric NoC

Architectures for GPU Systems. In Proceedings of the 9th International Symposium

on Networks-on-Chip, NOCS ’15, pages 25:1–25:8, New York, NY, USA, 2015.

ACM.

