
 
 
 
 
 
 
 
 
 
 
 

 
 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

 

This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



The Lifecycle of Neural Semantic Parsing

Jianpeng Cheng

Doctor of Philosophy

Institute for Language, Cognition and Computation

School of Informatics

University of Edinburgh

2019





Abstract
Humans are born with the ability to learn to perceive, comprehend and communicate

with language. Computing machines, on the other hand, only understand programming

languages. To bridge the gap between humans and computers, deep semantic parsers

convert natural language utterances into machine-understandable logical forms. The

technique has a wide range of applications ranging from spoken dialogue systems and

natural language interfaces. This thesis focuses on neural network-based semantic

parsing.

Traditional semantic parsers function with a domain-specific grammar that pairs

utterances and logical forms, and parse with a CKY-like algorithm in polynomial

time. Recent advances in neural semantic parsing reformulate the task as a sequence-

to-sequence learning problem. Neural semantic parsers parse a sentence in linear

time, and reduce the need for domain-specific assumptions, grammar learning, and

extensive feature engineering. But this modeling flexibility comes at a cost since

it is no longer possible to interpret how meaning composition is performed, given

that logical forms are structured objects (trees or graphs). Such knowledge plays

a critical role in understanding modeling limitations so as to build better semantic

parsers. Moreover, the sequence-to-sequence learning problem is fairly unconstrained,

both in terms of the possible derivations to consider and in terms of the target logical

forms which can be ill-formed or unexecutable. The first contribution of this thesis is

an improved neural semantic parser, which produces syntactically valid logical forms

following a transition system and grammar constrains. The transition system integrates

the generation of domain-general (i.e., valid tree-structures and language-specific predicates)

and domain-specific aspects (i.e., domain-specific predicates and entities) in a unified

way. The model employs various neural attention mechanisms to handle mismatches

between natural language and formal language—a central challenge in semantic parsing.

Training data to semantic parsers typically consists of utterances paired with logical

forms. Another challenge of semantic parsing concerns the annotation of logical forms,

which is labor-intensive. To write down the correct logical form of an utterance, one

not only needs to have expertise in the semantic formalism, but also has to ensure the

logical form matches the utterance semantics. We tackle this challenge in two ways.

On the one hand, we extend the neural semantic parser to a weakly-supervised setting

within a parser-ranker framework. The weakly-supervised setup uses training data

of utterance-denotation (e.g., question-answer) pairs, which are much easier to obtain

and therefore allow to scale semantic parsers to complex domains. Our framework
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combines the advantages of conventional weakly-supervised semantic parsers and neural

semantic parsing. Candidate logical forms are generated by a neural decoder and

subsequently scored by a ranking component. We present methods to efficiently search

for candidate logical forms which involve spurious ambiguity—some logical forms do

not match utterance semantics but coincidentally execute to the correct denotation.

They should be excluded from training.

On the other hand, we focus on how to quickly engineer a practical neural semantic

parser for closed domains, by directly reducing the annotation difficulty of utterance-

logical form pairs. We develop an interface for efficiently collecting compositional

utterance-logical form pairs and then leverage the data collection method to train neural

semantic parsers. Our method provides an end-to-end solution for closed-domain

semantic parsing given only an ontology. We also extend the end-to-end solution to

handle sequential utterances simulating a non-interactive user session. Specifically,

the data collection interface is modified to collect utterance sequences which exhibit

various co-reference patterns. Then the neural semantic parser is extended to parse

context-dependent utterances.

In summary, this thesis covers the lifecycle of designing a neural semantic parser:

from model design (i.e., how to model a neural semantic parser with an appropriate

inductive bias), training (i.e., how to perform fully supervised and weakly supervised

training for a neural semantic parser) to engineering (i.e., how to build a neural semantic

parser from a domain ontology).
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Chapter 1

Introduction

1.1 Natural Language vs Computer Language

Humans are born with the ability to learn to perceive, comprehend, and manipulate

language. They understand utterances in different contexts and are able to produce

and use words and sentences to communicate. Computers, on the other hand, are

designed to understand only programming language. A longstanding goal in artificial

intelligence is thus to develop systems that understand natural language and enable

interactions between computers and humans. The task is challenging for several reasons

• Ambiguity: Natural languages are full of ambiguity, at various levels. An

example of lexical ambiguity is the word apple which can mean a fruit or a

company, depending on the context it occurs. Another example demonstrates

syntactic ambiguity. In the sentence, “John saw the boy with the telescope”. It is

unclear whether John saw the boy by using a telescope, or the boy is carrying a

telescope. The meaning is dependent on whether the preposition with is attached

to John or the boy. As the examples reveal, one of the major problems in natural

language processing is to handle ambiguity. Most ambiguities escape our notice

since humans are very good at resolving them using context and knowledge of

the world. But computers do not have this knowledge, and consequently are not

good at making use of the context. In contrast, computer languages are designed

to be nearly or completely unambiguous, which means that any statement has

exactly one meaning, regardless of context.

• Redundancy: In order to make up for ambiguity and reduce misunderstandings,

natural languages employ a lot of redundancy. Utterances can be paraphrased in
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2 Chapter 1. Introduction

many ways, not necessarily using the most concise expressions. For example, the

longer sentence “The attorney Tom was shot by a lawyer called Cheney in Texas”

can be paraphrased with a sequence of short sentences “Tom is an attorney. He

got shot in Texas, and the shooter’s name is Cheney. Cheney is a lawyer.” We see

that the short sentences exihibt a certain degree of information overlap. Another

example is the user query “Find the nearest Chinese restaurants”. The same

query can be expressed more verbose as “Please help me find the nearest Chinese

restaurants to me”, while the user intention does not change. These kinds of

redundancy complicate the structure of natural language. In comparison, computer

languages are designed to be less redundant and more concise. It is a challenging

problem to resolve lexical and structural mismatches between natural language

and computer language.

• World knowledge: Natural languages are full of proper nouns and definite noun

phrase which represent concepts and entities in the world and the domain of

discourse. For example, “Barack Obama” refers to the former president of the

United States and “Bastille” is a name in a restaurant database. Humans gain

the knowledge from daily life, dialog context or external resources, and use the

knowledge for meaning interpretation. However, computers are not naturally

equipped with this knowledge. To understand natural language, computer programs

need to interact with the world and the domain, acquire and represent knowledge,

and make use of context for interpretation.

To tackle with the challenges in natural language understanding, the thesis adopts

a technique known as semantic parsing.

1.2 Definition of Semantic Parsing

Semantic parsing has emerged as a key technology for bridging the gap between

humans and computers, by converting natural language utterances into machine-understandable

meaning representations. Semantic parsing techniques can be categorized into shallow

and deep types. A shallow form of meaning representation is a case-role analysis

(a.k.a. semantic role labeling), which identifies entities in an utterance and labels them

with roles such as agent, patient, source, and destination (Pradhan et al., 2004; Lang

and Lapata, 2010). Shallow semantic parsing is sometimes known as slot-filling or

frame semantic parsing, since its theoretical basis comes from frame semantics (Baker
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et al., 1998), wherein a word evokes a frame of related concepts and roles. Slot-filling

systems are widely used in virtual assistants together with intent classifiers (Mesnil

et al., 2015), which are mechanisms for identifying the frame evoked by an utterance.

Deep semantic parsing, which is the focus of this thesis, produces precise meaning

representations (a.k.a logical forms) of utterances in predicate logic or other formal

language which supports automated reasoning (Zelle, 1996; Zettlemoyer and Collins,

2005a; Berant et al., 2013a). A logical form can be viewed as the formal language

specification of a computer program which is executable against a real-world environment

such as a knowledge base (KB). The execution result is often called a denotation.

Different from shallow approaches, the output of deep semantic parsing can involve

a certain degree of compositionality. As an example, shallow semantic parsers can

parse utterances like “Show me the weather of Anfield Stadium tonight” by classifying

the intent as “display weather”, and filling slots “target place” with “Anfield

Stadium”, and “target time” with “tonight”. However, they cannot parse arbitrary

compositional utterances like “Show me weather where Team Liverpool is playing

tonight”. Deep semantic parsing attempts to parse such utterances, typically by converting

them to a formal meaning representation language. Table 1.1 shows examples of

natural language utterances, their corresponding logical forms, and denotations. The

first query “What is the longest river in Ohio?” is represented by the logical form

longest(and(type.river, location(Ohio))), which when executed against a database

of US geography returns the answer Ohio River. In the second example, the logical

form count(daughterOf(Barack Obama)) corresponds to the query “How many

daughters does Obama have?” and is executed against the Freebase knowledge base

to return the answer 2.

1.3 Semantic Parsing Applications

Semantic parsing has a wide range of applications centered around human-computer

interaction. Published research work applies semantic parsers on question answering

(Kwiatkowski et al., 2011; Liang et al., 2011), goal-oriented dialog (Wen et al., 2015),

robot control (Matuszek et al., 2012), and interpreting instructions (Chen and Mooney,

2011; Artzi and Zettlemoyer, 2013a), to name just a few.

In practice, semantic parsing has been used as a key component to power commercial

personal assistants, such as the Apple Sir, Google Now, Amazon Alexa and Microsoft

Cortana. Similar technique has also been applied to focused domains such as customer
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Environment: A database of US geography

Utterance: What is the longest river is in Ohio?

Logical form: longest(and(type.river, location(Ohio)))

Denotation: Ohio River

Environment: Freebase

Utterance: How many daughters does Obama have?

Logical form: count(daughterOf(Barack Obama))

Denotation: 2

Table 1.1: Examples of questions, corresponding logical forms, and their answers.

service, help desk, technical support, navigation and home automation (McTear, 2004).

1.4 Research Questions in Semantic Parsing

Semantic parsing presents a collection of interesting research problems which influence

the functionality and design of semantic parsers. This thesis relates to the following

topics.

Model Design for Neural Semantic Parsers Conventional semantic parsers (Zelle,

1996; Zettlemoyer and Collins, 2005a; Wong and Mooney, 2006; Kwiatkowksi et al.,

2010a; Kwiatkowski et al., 2013; Berant et al., 2013b) are defined by a domain-specific

grammar and a machine-learned scoring model. The grammar defines the space of

possible derivations from a sentence to a logical form, and the scoring model is used

to select the best derivation from these possibilities. A chart parsing algorithm is

commonly employed to parse a sentence in polynomial time.

The successful application of recurrent neural networks (Bahdanau et al., 2015;

Sutskever et al., 2014) to a variety of NLP tasks has provided strong impetus to treat

semantic parsing as a sequence transduction problem where an utterance is mapped

to a target meaning representation in string format (Dong and Lapata, 2016; Jia and

Liang, 2016; Kočiský et al., 2016). Neural semantic parsers parse a sentence in linear

time, while reducing the need for domain-specific assumptions, grammar learning, and

more generally extensive feature engineering. But this modeling flexibility comes at a

cost since it is no longer possible to interpret how meaning composition is performed

(i.e., how to obtain a logical form from an utterance with a sequence of interpretable
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steps rather than string concatenation). Such knowledge plays a critical role to build

generalizable semantic parsers, which can exploit compositional patterns with training

data rather than memorizing it. Moreover, without any task-specific knowledge, the

learning problem is fairly unconstrained, both in terms of the possible derivations to

consider and in terms of the target output which can be ill-formed (e.g., with extra or

missing brackets).

Handling Mismatches between Natural Language and Computer Language A

central challenge in semantic parsing is coping with the different ways that logical

predicates can be expressed in natural language. For example, both expressions “which

university did x attend” and “where did x obtain his degree” trigger the logical predicate

education. To tackle with the problem, conventional semantic parsers use a lexicon

which is either manually defined (Angeli et al., 2012; Lee et al., 2014; Berant et al.,

2013b; Reddy et al., 2014, 2016), or learned from natural language utterances paired

with KB (Zettlemoyer and Collins, 2005b, 2007; Kwiatkowksi et al., 2010b; Kwiatkowski

et al., 2011; Artzi and Zettlemoyer, 2013a; Krishnamurthy, 2016). A limitation of this

approach lies in scalability since textual clues indirectly or not related to KB cannot be

exploited.

Some work handles the mismatches between natural language and KB with an

intermediate, task-independent representation. The representation can be the output of

a syntactic parser (Kwiatkowski et al., 2013; Reddy et al., 2014, 2016), or some form

of canonical text representation (Berant and Liang, 2014). While this approach enables

the usage of abundant text data to realize cross-domain knowledge transfer, training is

by no means easy due to lexical and structural mismatches.

Unifying Domain-general and Specific Information Logical forms developed for

downstream applications consist of domain-general and domain-specific information

(Wang et al., 2015). Domain-general aspects are language-specific predicates and

compositional structures that are applicable across domains. For example, in SQL,

the operators SELECT and COUNT are both language-specific and they are applicable

no matter if the database stores information about restaurants or geography. On the

other hand, domain-specific aspects are predicates and entities in a given domain or

grounded to a downstream task. For example, they can be knowledge about an SQL

schema which contains indexes of restaurants or names of mountains. One research

question is therefore how to handle domain-general and domain-specific information
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in semantic parsing a unified way.

Note that there has been work on designing general-purpose logical forms that

capture linguistically-motivated semantic structures of utterances. Examples include

the Groningen Meaning Bank (Bos et al., 2017), Abstract Meaning Representations

(Banarescu et al., 2013), PropBank (Kingsbury and Palmer, 2002), to name just a few.

While these logical forms offer broad coverage, solving downstream tasks still requires

domain-specific knowledge or grounding. In sum, practical semantic parsers inevitably

need to unify domain-general and domain-specific knowledge.

Scaling Neural Semantic Parsing to Larger Domains Early semantic parsers (Zelle,

1996; Zettlemoyer and Collins, 2005a; Wong and Mooney, 2006; Kwiatkowksi et al.,

2010a) have for the most part used machine learning techniques to train on a collection

of utterances paired with annotated logical forms. More recently, weak supervision has

been proposed to alleviate the annotation burden, e.g., training on utterance-denotation

pairs (Clarke et al., 2010; Kwiatkowski et al., 2013; Berant et al., 2013b) or user

feedback (Iyer et al., 2017). These types of weak signal are much easier to obtain

than logical forms and therefore allow to scale semantic parsers to complex domains.

However, weakly-supervised training also introduces challenges since logical forms

are latent and need to be searched from an exponentially large space. The search

procedure is only guided by clues from the weak signal. One specific challenge is that

logical forms can be spurious: a logical form may coincidentally provide the correct

response but not actually match the utterance semantics. Such spurious logical forms

have a negative impact on the training and should be detected.

Building Neural Semantic Parsers from a Domain Ontology As mentioned above,

most existing work on semantic parsing has focused on training with given utterance-

logical form pairs. Assume in practice one wants to build a neural semantic parser for a

new domain where no training data exists in any form, and the only available resource

is a domain ontology (i.e., a collection of entities and relations in the domain). How can

the neural semantic parser be engineered quickly starting almost from scratch? Wang

et al. (2015) propose a functional-driven approach: they use a synchronous grammar

to generate logical forms paired with formal descriptions, which are subsequently

paraphrased by crowd workers to obtain natural utterances. It is worth exploring the

integration of this data collection approach with neural semantic parsers, in order to

develop an end-to-end system for domain service providers.
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Neural Semantic Parsing for Context-dependent Utterances The bulk of existing

work on semantic parsing has focused on single-turn utterances. However, users typically

ask questions or perform tasks in multiple steps, and they often decompose a complex

query into a sequence of inter-related sub-utterances (Iyyer et al., 2017). For instance,

when searching for a restaurant, a user may first ask “which restaurants serve thai

food” followed by “which ones are near me”. Even in cases where users have a well-

defined query in mind, it is not uncommon to ask follow-on questions, in an attempt to

refine their search or because they wish to compare different results (Moe and Fader,

2001; Asri et al., 2017). A research question is therefore to build a neural semantic

parser which handles sequential utterances.

1.5 Thesis Overview

This thesis is about neural semantic parsing, with a focus on the above mentioned

research questions. The thesis covers model design, training and engineering: Specifically,

we propose a neural semantic parser which, during generation, takes into account the

syntactic structure of logical forms, unifies domain-general and specific aspects, and

handles mismatches between natural language and KB. The parser (and its extensions)

can be trained using various supervision signals, such as utterance-logical form pairs

and utterance-denotation pairs. We also look at the more practical side of neural

semantic parsing—how does one quickly build a neural semantic parser from a domain

ontology? We adopt an interface which enables efficient collection of utterance-logical

form pairs, and provide end-to-end solutions for the development of closed-domain

neural semantic parsers. Finally, the end-to-end system is extended to handle sequential

utterances, which exhibit context dependencies. The thesis is structured as follows.

Chapter 2 presents related work on semantic parsing focusing on three dimensions:

semantic formalism, semantic parsing models, and training regimes.

Chapter 3 introduces a novel neural semantic parser that converts natural language

utterances to tree-structured logical forms. A neural sequence-to-tree model is proposed

to produce syntactically valid logical forms following a transition system and grammar

constrains. The transition system integrates the generation of domain-general and

specific aspects in a unified way. Moreover, the model employs various neural attention

mechanism to handle mismatches between natural language and logical predicates.

The neural semantic parser is evaluated on the GEOQUERY dataset, which consists of

utterances paired with logical forms.
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Chapter 4 extends the neural semantic parser to a weakly-supervised setting within

a parser-ranker framework. The framework aims to combine the advantage of conventional

weakly-supervised semantic parsers and neural semantic parsers. Candidate logical

forms are decoded by a neural decoder and subsequently scored by ranking components.

We present methods to efficiently search for candidate logical forms and cope with

spurious logical forms. The parser-ranker framework is evaluated on three datasets

WEBQUESTIONS, GRAPHQUESTIONS and SPADES.

Chapter 5 focuses on how to build a neural semantic parser for closed domains,

from only a domain ontology. Our approach follows and extends the previous work

of Wang et al. (2015). Specifically we build an interface for efficiently collecting

compositional utterance-logical form pairs as a summarization task, and then leverage

the data collection method in training neural semantic parsers. We use this method

to crowd-source semantic parsing data for 6 domains covering company management,

recommendation engines and health-care applications, and present parsing results.

Chapter 6 extends the previous chapter to handle sequential utterances simulating

a non-interactive user session: the user can keep asking questions based on intermediate

denotations. First, the data collection method is extended to collect utterance sequences

which exhibit different co-reference patterns. Then the neural semantic parser is extended

to parse context-dependent utterance sequences in two steps. The first step parses

each utterance into an underspecified logical form which may contain placeholders

of co-reference, while the second step resolves the co-reference. We evaluate both

context-dependent and non context-dependent parsing strategies in the first step. We

use our method to crowd-source session-based semantic parsing data on two domains

and validate the effectiveness of our neural semantic parser on it.

Finally, Chapter 7 summarizes the contributions of this thesis and discusses directions

for future work.



Chapter 2

Related Work

We introduce related work in semantic parsing from three dimensions: semantic formalism,

modeling and training regimes. These are all important aspects in developing semantic

parsers and their related work has a certain amount of overlap.

2.1 Semantic Formalism

Logical forms have played a central role in semantic parsing systems since their developments

in the 1970s (Winograd, 1972a; Woods et al., 1972). The literature is rife with semantic

formalisms which can be used to define logical forms. Previous work has adopted

various types of semantic formalisms which can be largely categorized into procedural

and declarative semantics. Procedural semantics create computer programs which

model actions about how to perform certain activities. Examples of computer programs

used in semantic parsing include instructions sent to robots (Winograd, 1972b; Matuszek

et al., 2013), and database queries such as domain-specific SQL (Zhong et al., 2017;

Iyer et al., 2017) and functional queries (FunQL, Zelle (1995)).

Declarative semantics, on the other hand, define more linguistically motivated

broad-coverage representations based on logic which support logical inference for

meaning interpretation. Examples include Combinatory Categorial Grammar (CCG,

Steedman (2000)), Dependency-based Compositional Semantics (DCS, Liang et al.

(2011)) and Abstract Meaning Representations (AMR, Banarescu et al. (2013)).

There has been long been a debate about what is the most appropriate way to

represent semantics in AI (Winograd, 1975). In fact, most of the semantic parsers

in early eras, such as the LUNAR and the SHRDLU (Winograd, 1972b) involved a heavy

use of domain-specialized procedural representations (Barr, 1980). Such representations

9
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have a modeling advantage (trading off completeness) for downstream tasks, since it

is natural to describe the manipulation of a simple world as programs. This applies to

not only physical process such as robot instructing, but also deductive processes like

playing a game or answering a question in steps. The modeling advantage has been

revealed in recent advances of neural programming: recurrent neural networks have

demonstrated great ability in inducing compositional programs (Reed and De Freitas,

2016; Neelakantan et al., 2016; Cai et al., 2017). For example, they learn to perform

grade-school addition, bubble sort and table comprehension in procedures.

2.2 Semantic Parsing Models

Early semantic parsing systems were purely ruled-based and answered questions in

constrained domains. The LUNAR system (Winograd, 1972b) is designed to handle

questions about moon rocks using a large database. It converts queries into programs

by mapping syntactic fragments to semantic units. The programs are subsequently

executed with a retrieval component. Another example is the SHRDLU system also

designed by Winograd (1972b). The system launches dialogs between the user and

the system-simulated robot to manipulate simple objects on a table. Central to these

systems is the idea of expressing words and sentences as computer programs, and

the execution of programs corresponds to the reasoning procedures. However, the

development of these systems is by no means easy since it requires a large deal of

domain-specific knowledge and engineering. The systems are not able to function

adequately outside the restricted domain for which they are designed.

In reaction to these problems in 1970s, the focus of semantic parsing research

shifts from rule-based methods to empirical or statistical methods, where data and

machine learning plays an important role. Statistical semantic parsers typically consist

of three key components: a grammar, a trainable model, and a parsing algorithm. The

grammar defines the space of derivations from utterances to logical forms, and the

model together with the parsing algorithm find the highest scoring derivation. An

example of early statistical semantic parser is the CHILL system (Zelle, 1996) based

on inductive logic programming (ILP). The system uses ILP to learn control rules

for a shift-reduce parser. To train and evaluate their system, Zelle (1996) create the

GEOQUERY dataset which contains 880 queries to a US geography database. These

queries are paired with annotated logical forms in Prolog. Subsequent work improves

the CHILL system with refined ILP heuristics (Tang and Mooney, 2001).
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Until early 2000, semantic parsing research was still mainly focused on narrow

domains. Besides GEOQUERY, some commonly used datasets were ROBOCUP for

coaching advice to soccer agents (Kitano et al., 1997), and ATIS for air travel information

service (Price, 1990). A that time, statistical approaches for parsing domain-specific

context-free grammars have been largely explored. For example, Kate and Mooney

(2006) propose KRISP, which induces context-free grammar rules that generate logical

forms, and uses kernel SVM to score derivations. Ge and Mooney (2005) propose

SCISSOR, which employs an integrated statistical parser to produce a semantically

augmented parse tree. Each non-terminal node in the tree has both a syntactic and

a semantic label, from which the final meaning representation can be derived. The

WASP system proposed by Wong and Mooney (2007) learns synchronous context free

grammars that generate utterances and logical forms. Parsing is achieved by finding

the most probable derivation that leads to the utterance and recovering the logical form

with synchronous rules. Lu et al. (2008) proposes a generative model for utterances

and logical forms. Similar to Ge and Mooney (2005), they define hybrid trees whose

nodes include both words and logical form tokens. Training is performed with the EM

algorithm. Their model, specifically the generative process, is later extend by Kim and

Mooney (2010) to learn from ambiguous supervision.

The next breakthrough comes with the work of Zettlemoyer and Collins (2005a),

who introduce CCG in semantic parsing. Their probabilistic CCG grammars can deal

with long range dependencies and construct non-projective meaning representations.

A great deal of work follows Zettlemoyer and Collins (2005a) but focuses on more

fine-grained problems such as grammar induction and lexicon learning (Kwiatkowksi

et al., 2010b; Kwiatkowski et al., 2011; Krishnamurthy and Mitchell, 2012; Artzi

et al., 2014; Krishnamurthy and Mitchell, 2015; Krishnamurthy, 2016; Gardner and

Krishnamurthy, 2017) or using less supervision (Artzi and Zettlemoyer, 2013a; Reddy

et al., 2014). As a common paradigm, the class of work first generates candidate

derivations to logical forms governed by the grammar. These candidates derivations

are scored by a trainable model which can take the form of a structured perceptron

(Zettlemoyer and Collins, 2007) or a log-linear model (Zettlemoyer and Collins, 2005a).

Training updates model parameters such that correct derivations obtain higher scores.

During inference, a CKY-style chart parsing algorithm is used to predict the most

likely derivation for an utterance. Another class of work follows similar paradigm but

use lambda-DCS as the semantic formalism (Berant et al., 2013a; Berant and Liang,

2014, 2015). Other interesting work includes joint semantic parsing and grounding
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(Kwiatkowski et al., 2013), parsing context-dependent queries (Artzi and Zettlemoyer,

2013b; Long et al., 2016), and converting dependency trees to logical forms (Reddy

et al., 2016, 2017).

With recent advances in neural networks and deep learning, there is a trend of

reformulating semantic parsing as a machine translation problem, which converts a

natural language sequence into a programming language consequence. The idea is not

novel and has been previously studied with statistical machine translation approaches.

For example, both Wong and Mooney (2006) and Andreas et al. (2013) develop word-

alignment based translation models for parsing queries in the GEOQUERY. However,

the task setup is important to be revisited since recurrent neural networks have been

shown to be extremely useful in context modeling and sequence generation (Bahdanau

et al., 2015). Following this direction, Dong and Lapata (2016) and Jia and Liang

(2016) develop neural semantic parsers which treat semantic parsing as a sequence to

sequence learning problem. Surprisingly, the approach has been proven effectively

on even the small GEOQUERY dataset. Jia and Liang (2016) further introduces a

data augmentation approach to feed neural networks which are data hungry. Their

approach bootstraps a synchronous grammar from existing data and generates artificial

examples as extra training data. State-of-the-art result on the GEOQUERY is obtained

with this approach. Subsequent work of Kočiský et al. (2016) attempts to explore

the logical form space with a generative autoencoder. They bootstraps a probabilistic

monolingual grammar for logical forms, from which unseen logical forms can be

sampled. These samples are used as semi-supervised training data to the autoencoder.

Other related work extends the vanilla sequence to sequence model in different ways,

such as employing two encoder-decoders for coarse-to-fine decoding (Dong and Lapata,

2018), handling multiple tasks with a shared encoder (Fan et al., 2017), parsing cross-

domain queries (Herzig and Berant, 2017) and context-dependent queries (Suhr et al.,

2018), and applying the model to other formalisms such as AMR (Konstas et al., 2017)

and SQL (Zhong et al., 2017; Xu et al., 2017).

The fact that logical forms have a syntactic structure has motivated more recent

work on exploring structured neural decoders to generate tree or graph structures, and

grammar-constrained decoders to make sure the outputs are meaningful and executable.

Our work follows this direction. In Cheng et al. (2017) our parser generates logical

forms recursively with a set of transition operations whose sequence is predicted via

recurrent neural networks. In Cheng et al. (2018) we compare the top-down or bottom-

up generation orders. In both work grammar constrains are used to guide the tree
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generation. Other related work includes Yin and Neubig (2017) who generate abstract

syntax trees for source code with a grammar constrained neural decoder. Krishnamurthy

et al. (2017) introduce a similar neural semantic parser which decodes rules of a

grammar to obtain well-typed logical forms. Rabinovich et al. (2017) propose abstract

syntax networks with a modular decoder, whose multiple submodels (one per grammar

construct) are composed to generate abstract syntax trees in a top-down manner.

2.3 Training Regimes

Various types of supervision have been explored to train semantic parsers, ranging from

full supervision with utterance-logical form pairs to unsupervised semantic parsing

without given utterances. Early work of statistical semantic parsing has mostly used

annotated training data consisting of utterances paired with logical forms (Zelle, 1996;

Ge and Mooney, 2005; Kate and Mooney, 2006; Kate et al., 2005; Wong and Mooney,

2006; Lu et al., 2008; Kwiatkowksi et al., 2010a). Same applies to some of the recent

work on neural semantic parsing (Dong and Lapata, 2016; Jia and Liang, 2016). This

form of supervision is the most effective for training, but is also the most expensive

to obtain. In order to write down a correct logical form, the annotator not only needs

to have expertise in the semantic formalism, but also has to ensure the logical form

matches the utterance semantics and contains no grammatical mistakes. For this reason,

fully supervised training applies more to small and closed domain problems, such as

querying the US geographical database (Zelle, 1996).

Over the past few years, developments have been made to train semantic parsers

with weak supervision from utterance-denotation pairs (Clarke et al., 2010; Liang et al.,

2011; Berant et al., 2013b; Kwiatkowski et al., 2013; Pasupat and Liang, 2015). The

approach enables more efficient data collection, since denotations (such as answers to

a question, responses to a system) are much easier to obtain via crowd-sourcing. For

this reason, semantic parsing can be scaled to handle large, complex and open domain

problems. Examples include the work that learn semantic parsers from question-

answer pairs on Freebase (Liang et al., 2011; Berant et al., 2013b; Berant and Liang,

2014; Liang et al., 2017; Cheng et al., 2017), from system feedback (Clarke et al.,

2010; Chen and Mooney, 2011; Artzi and Zettlemoyer, 2013a), from abstract examples

(Goldman et al., 2018), and from human feedback (Iyer et al., 2017; Lawrence and

Riezler, 2018) or statements (Artzi and Zettlemoyer, 2011). A challenge of weakly

supervised setup is that it renders training more difficult since logical forms need to be
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searched from a latent space. Various techniques have been proposed to cope with this

challenge (Berant et al., 2013b; Pasupat and Liang, 2016; Goldman et al., 2018).

Recent work on semantic parsing starts to seek more clever ways of gathering data

or train the semantic parser with even weaker forms of supervision. In a class of

distant supervision methods, the input is solely a knowledge base and a corpus of

unlabeled sentences. Artificial training data is generated from the given resources. For

example, Cai and Yates (2013) generate utterance paired with logical forms. Their

approach searches for sentences containing certain entity pairs, and assume (with

some pruning technique) the sentences express a certain relation from the KB. In

Krishnamurthy and Mitchell (2012) and Krishnamurthy and Mitchell (2014) whose

authors work with CCG formalism, an extra source of supervision is added. The

semantic parser is trained to produce parses that syntactically agree with dependency

structures. Reddy et al. (2014) generates utterance-denotation pairs by masking entity

mentions in declarative sentences from a large corpus. A semantic parser is then trained

to predict the denotations corresponding to the masked entities. Finally, Poon and

Domingos (2010) and Goldwasser et al. (2011) develop purely unsupervised semantic

parsers trained with only a corpus of sentences (or their dependency structures), using

EM-style algorithms.

In summary, semantic parsing research includes a wide range of topics from formalism

to modeling and training. From the next chapter onwards, we will introduce our neural

semantic parsing framework covering these related topics.



Chapter 3

Fully-supervised Neural Semantic

Parsing

In this chapter, we present a novel neural semantic parser that learns to map an utterance

into a logical form, using annotated utterance-logical form pairs as the training data.

Compared to traditional semantic parsers, the neural semantic parser reduces the amount

of manually engineered features and domain-specific rules, as well as the complexity

of the inference step. Compare to neural sequence-to-sequence models, our semantic

parser generates structured objects with syntactic guarantees. Our presentation starts

with the introduction of Recurrent Neural Networks (RNNs) and Long Short-Term

Memory Networks (LSTMs), which have emerged to become the basic building block

for sequential natural language processing (Section 3.1.1). We then introduce a variant

of the LSTM, namely the stack-LSTM, which enables us to encode and generate more

structured data (e.g., trees and graphs, Section 3.1.2). We also introduce encoder-

decoder models (Section 3.1.3), a popular neural framework for sequence-to-sequence

transduction. Next, we present our semantic parsing method. We start with a discussion

on the choice of logical formulation (Section 3.2.1). We present a generic, transition-

based tree generation algorithm (Section 3.2.2), and then extend the algorithm to suit

the semantic parsing task (Sections 3.2.3). We then provide architectural details of

the neural network that implements the generation algorithm (Section 3.2.4). We

cover how to handle the loose alignments and mismatches between natural language

and logical tokens through various attention mechanisms (Section 3.2.6). Finally, we

present the experiments (Section 3.3) and discussion (Section 3.4).

15
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3.1 Preliminaries

3.1.1 Recurrent Neural Networks and Long Short-Term Memory:

Modeling Sequential Data

A recurrent neural network (RNN) is a class of artificial neural network where connections

between neurons form a directed graph along a sequence. Such a network exhibits

dynamic temporal behavior; the internal state, or the short term memory of the RNN,

makes it suitable to process sequential data. When processing a variable-length sequence

x = (x1,x2, · · · ,xn), the parameters of the RNN are repeatedly used as

ht = s(Wxxt +Whht�1) (3.1)

where h denotes the hidden state of the RNN; Wx and Wh are weight matrices; and s is

the logistic sigmoid function.

Although RNNs can in principle model long-range dependencies, training them is

difficult in practice since the repeated application of a squashing nonlinearity at each

step results in an exponential decay in the error signal through time. A Long Short-

Term Memory (LSTM, Hochreiter and Schmidhuber (1997)) aims to address this issue

with an extra long-term memory “cell” (ct) that is constructed as a linear combination

of the previous hidden state and the input.

Formally, an LSTM processes a variable-length sequence x = (x1,x2, · · · ,xn) by

incrementally adding new content into the memory cell, with gates controlling the

extent to which new content should be memorized, old content should be erased, and

current content should be exposed. At time step t, the memory ct and the hidden state ht

are updated with the following equations:
2
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ct = ft� ct�1 + it� ĉt (3.3)

ht = ot� tanh(ct) (3.4)

where i, f , and o are gate activations; s is the component-wise logistic sigmoid function;

and � is the component-wise product.
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3.1.2 The Stack-LSTM: Modeling Structured Data

The standard LSTM introduced above is a powerful tool for modeling sequential data,

such as the word sequence. However, in some domains data exhibits structures beyond

the sequence level. An example is semantic parsing where the output logical forms

are trees or graphs. In this section, we introduce a variant of the LSTM, called stack-

LSTMs (Dyer et al., 2015), which allows us to model more structured data.

A stack-LSTM augments an LSTM with a “stack pointer”. Similar to a conventional

LSTM, the stack-LSTM always adds new inputs in the right-most position. But differently,

the current location of the stack pointer determines which cell in the stack-LSTM

provides ct�1 and ht�1 when computing the new memory cell contents. In addition

to adding elements to the end of the sequence, the stack-LSTM adopts a pop action

which moves the stack pointer to the previous element (not necessarily the right-most

element). Thus, contents in the stack-LSTM are never overwritten. The push action

always adds new inputs at the end, and pop only updates the stack pointer.

So far we have not yet described how the stack-LSTM enables us to model structured

data. However, intuitions can be gained from the application of stack in general

computer science. The push and pop actions that a stack defines allows it to model

the traversal of trees and graphs. An example is the call stack which interprets and

executes the abstract syntax tree of a computer program. We will describe how we

adopt the stack-LSTM to generate tree-structured objects in Section 3.2.2.

3.1.3 Neural Encoder-Decoders

Many natural language generation tasks deal with the transduction from a source sequence

to a target sequence. Examples include machine translation, abstractive sentence summarization,

text paraphrasing, to name just as few. To tackle with such problems, previous work

proposes a class of encoder-decoder models (Bahdanau et al., 2015) based on RNNs

or LSTMs, which generate the target sequence conditioned on the source.

The encoder converts a variable-length source sequence x = (x1,x2, · · · ,xn) into a

list of context-sensitive embeddings [h1, · · · ,hn]. As a common practice, an LSTM

is used for the conversion and each embedding ht is taken as the hidden state of the

LSTM:

ht = LSTM(ht�1,xt) (3.5)

where the LSTM symbol in the above equation denotes the inherent transformation

function that an LSTM adopts, as described in Section 3.1.1.
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After the source in encoded, the decoder predicts or generates a variable-length

target sequence y = (y1,y2, · · · ,ym) in a sequential order. It is modeled as another

LSTM, which is trained to predict the next token yt given the source x and all the

previously predicted target tokens y=(y1,y2, · · · ,yt�1). These target tokens are assumed

to be memorized by the current state of the decoder LSTM, denoted by gt . In other

words, the decoder defines a probability over the target sequence y by decomposing

the joint probability into the product of the order conditional probabilities:

p(y|x) =
m

’
t=1

p(yt |y1, · · · ,yt�1,x) (3.6)

and each conditional probability is modeled as

p(yt |y1, · · · ,yt�1,x) = f (h1, · · · ,hn,gt) (3.7)

where f is a non-linear function that uses features from both the encoder (i.e., source

sequence) and decoder (i.e., generated target sequence) to predict the probability of the

next target token.

Encoder-decoder models have demonstrated their effectiveness in many sequence

transduction problems, since neural networks are good at context encoding and conditional

generation. However, as we mentioned earlier, the task of semantic parsing involves the

transduction from a text sequence into a tree or graph. To solve the problem, we will

argument the vanilla encoder-decoder model with a stack-LSTM decoder. Before we

introduce the model details, we first discuss the semantic formalism since it determines

how the output is structured.

3.2 Methodology

3.2.1 Recursive Logical Forms

In this chapter, we adopt the functional queries (FunQL) as our semantic formalism.

FunQL is a LISP-style, recursive meaning representation language which maps simple

first order logical forms to functional operators that abstract away from variables and

quantifiers (Kate and Mooney, 2006). The language is also closely related to lambda-

DCS (Liang, 2013), which makes existential quantifiers implicit. Lambda-DCS is

more compact in the sense that it can use variables in cases to handle anaphora and

build composite binary predicates.
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The FunQL logical forms we define contain the following primitive functional

operators. They overlap with simple lambda-DCS (Berant et al., 2013b) but differ

slightly in syntax to ease recursive generation of logical forms. Let l denote a logical

form, JlKK represent its denotation, and K refers to a knowledge base. We write the

denotation as JlK for simplicity.

• Unary base case: An entity e (e.g., Barack Obama) is a unary logical form

whose denotation is a singleton set containing that entity:

JeK = {e} (3.8)

• Binary base case: A relation r (e.g., daughterOf) is a binary logical form

with denotation:

JrK = {(e1,e2) : (e1,r,e2) 2K } (3.9)

• A relation r can be applied to an entity e1 (written as r(e1)) and returns as

denotation the unary satisfying the relation:

Jr(e1)K = {e : (e1,e) 2 JrK} (3.10)

For example, the expression daughterOf(Barack Obama) corresponds to the

question “Who are Barack Obama’s daughters?”.

• count returns the cardinality of the unary set u:

Jcount(u)K = {|JuK|} (3.11)

For example, count(daughterOf(Barack Obama)) represents the question “How

many daughters does Barack Obama have?”.

• argmax or argmin return a subset of the unary set u whose specific relation r is

maximum or minimum:

Jargmax(u,r)K = {e : e 2 u\8e0 2 u,r(e)� r(e0)} (3.12)

For example, the expression argmax(daughterOf(Barack Obama), age) corresponds

to the utterance “Who is Barack Obama’s eldest daughter?”.

• filter returns a subset of the unary set u where a comparative constraint (=,

! =, >, <, �, ) acting on the relation r is satisfied:

Jfilter>(u,r,v)K = {e : e 2 u\ r(e)> v} (3.13)
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For example, the query filter> (daughterOf(Barack Obama), age, 5) returns

the daughters of Barack Obama who are older than five years.

• and takes the intersection of two urinary sets u1 and u2:

Jand(u1,u2)K = Ju1K\ Ju2K (3.14)

while or takes their union:

Jor(u1,u2)K = Ju1K[ Ju2K (3.15)

For example, the expression and(daughterOf(Barack Obama), InfluentialTeensByYear(

2014)) would correspond to the query “Which daughter of Barack Obama was

named Most Influential Teens in the year 2014?”.

The operators just defined give rise to highly compositional logical forms (e.g., count(

and(daughterOf(Barack Obama), InfluentialTeensByYear( 2014 ) ).

The reason for using FunQL in our framework lies in its recursive nature which

allows us to model the process of generating logical form as a sequence of transition

actions, which can be decoded by powerful recurrent neural networks. We extend the

parser to handle non-recursive meaning representations in Chapter 5. We next describe

how our semantic representation is integrated with a transition-based tree-generation

algorithm to produce tree-structured logical forms.

3.2.2 Tree Generation Algorithm

We now describe a generic tree generation algorithm which recursively generates tree

constituents with a set of transition actions. The key insight underlying our algorithm is

to define a canonical traversal or generation order, which generates a tree as a transition

sequence. A transition sequence for a tree is a sequence of configuration-transition

pairs [(c0, t0),(c1, t1), · · · ,(cm, tm)]. In this work, we consider two commonly used

generation orders, namely top-down pre-order and bottom-up post-order.

The top-down system is specified by the tuple c= (Â,p,s,N,P) where Â is a stack

used to store partially complete tree fragments, p is non-terminal token to be generated,

s is the terminal token to be generated, N is a stack of open non-terminals, and P is a

function indexing the position of a non-terminal pointer. The pointer indicates where

subsequent children nodes should be attached (e.g., P(X) means that the pointer is

pointing to the non-terminal X). The initial configuration of the transition system is
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Top-down Transitions
NT(X) ([s|X0],X,e, [b|X0],P(X0))) ([s|X0,X],e,e, [b|X0,X],P(X))
TER(x) ([s|X0],e,x, [b|X0],P(X’))) ([s|X0,x],e,e, [b|X0,x],P(X0))
RED ([s|X0,X,x],e,e, [b|X0,X],P(X))) ([s|X0,X(x)],e,e, [b|X0],P(X0))

Bottom-up Transitions
TER(x) (s,e,x)) ([s|x],e,e)
NT-RED(X) ([s|x],X,e)) ([s|X(x)],e,e)

Table 3.1: Transitions for top-down and bottom-up generation system. Stack Â is

represented as a list with its head to the right (with tail s), same for stack N (with

tail b).

c0 = ([],TOP,e, [],?), where TOP stands for the root node of the tree, e represents an

empty string, and? represents an unspecified function. The top-down system employs

three transition actions defined in Table 3.1:

• NT(X) creates a new subtree non-terminal node denoted by X. The non-terminal

X is pushed on top of the stack and written as X(. Subsequent tree nodes are

generated as children underneath X.

• TER(x) creates a new child node denoted by x. The terminal x is pushed on top

of the stack, written as x.

• RED is the reduce action which indicates that the current subtree being generated

is complete. The non-terminal root of the current subtree is closed and subsequent

children nodes will be attached to the predecessor open non-terminal. Stack-

wise, RED recursively pops children (which can be either terminals or completed

subtrees) on top until an open non-terminal is encountered. The non-terminal is

popped as well, after which a completed subtree is pushed back to the stack as a

single closed constituent, written for example as X1(X2, X3).

We define the bottom-up system by tuple c = (Â,p,s) where Â is a stack used

to store partially complete tree fragments, p is the non-terminal to be generated, and

s is the terminal to be generated. We take the initial parser configuration to be c0 =

([],xl,e), where xl stands for the leftmost terminal node of the tree, and e represents
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an empty string. The bottom-up generation uses two transition actions defined in

Table 3.1:

• TER(x) creates a new terminal node denoted by x. The terminal x is pushed on

top of the stack, written as x.

• NT-RED(X) builds a new subtree by attaching a parent node (denoted by X) to

children nodes on top of the stack. The children nodes can be either terminals or

smaller subtrees. Similarly to RED in the top-down case, children nodes are first

popped from the stack, and subsequently combined with the parent X to form a

subtree. The subtree is pushed back to the stack as a single constituent, written

for example as X1(X2, X3). A challenge with NT-RED(X) is to decide how many

children should be popped and included in the new subtree. In this work, the

number of children is dictated by the number of arguments expected by X which

is in turn constrained by the logical language. For example, from the FunQL

grammar it is clear that count takes one argument and argmax takes two. The

language we use does not contain non-terminal functions with a variable number

of arguments.

Note that although top-down generation is defined by three transition actions, while

bottom-up order applies two transition actions only (since it combines reduce with non-

terminal generation), the amount of action predictions required are the same for the two

systems. The reason is that the reduce action in the top-down system is deterministic

when the FunQL grammar is used as a constraint, which will be described below.

3.2.3 Generating Tree-structured Logical Forms

To generate tree-structured logical forms, we integrate the generic transition actions

with FunQL, whose grammar determines the space of allowed terminal and non-terminal

symbols:

• NT(X) includes transition actions that generates relations NT(relation), and

other domain-general operators in FunQL: NT(and), NT(or), NT(count), NT(argmax),

NT(argmin) and NT(filter). Note that NT(relation) creates a placeholder

for a relation. The relation will be predicted by a domain-specific classifier.

• TER(X) includes two transition actions: TER(relation) for generating relations

and TER(entity) for generating entities. Both transition actions create a placeholder
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Operation Logical form token Stack

NT(count) count count(
NT(and) and count( || and(
NT(relation) daughterOf count( || and( || daughterOf
TER(entity) Barack Obama count( || and( || daughterOf( || Barack Obama

RED count( || and( || daughterOf(Barack Obama)
NT(relation) InfluentialTeensByYear count( || and( || daughterOf(Barack Obama) || InfluentialTeensByYear(
TER(entity) 2014 count( || and( || daughterOf(Barack Obama) || InfluentialTeensByYear( || 2014
RED count( || and( || daughterOf(Barack Obama) || InfluentialTeensByYear(2014)
RED count( || and(daughterOf(Barack Obama), InfluentialTeensByYear(2014))
RED count(and(daughterOf(Barack Obama), InfluentialTeensByYear(2014)))

Table 3.2: Top-down generation of the logical form count(and(daughterOf(Barack

Obama), InfluentialTeensByYear(2014)). Elements on the stack are separated

by || and the top of the stack is on the right.

for a relation or an entity. The relation or entity will be predicted by domain-

specific classifiers.

• NT-RED(X) includes NT-RED(relation), NT-RED(and), NT-RED(or), NT-RED(count),

NT-RED(argmax), NT-RED(argmin) and NT-RED(filter). Again, NT-RED(relation)

creates a placeholder for a relation, which is subsequently predicted by a domain-

specific classifier.

Table 3.2 illustrates the sequence of transition actions employed by our parser in

order to generate the logical form count(and(daughterOf(Barack Obama),

InfluentialTeensByYear(2014)) top-down. Table 3.3 shows how the same logical

form is generated bottom-up. Note that the examples are simplified for illustration

purposes; the logical form is generated conditioned on an input utterance, such as

“How many daughters of Barack Obama were named Most Influential Teens in the

year 2014?”.

Given enough training data, we expect that neural networks are capable of figuring

out the valid action and token sequence that constitutes a valid logical form. However, a

challenge is to ensure the outputs are always well-formed and meaningful, to facilitate

downstream applications. To this end, we incorporate two types of constraints in

our system. The first ones are structural constraints to ensure that the outputs are

syntactically valid logical forms. For the top-down system these constraints include:

• The first transition action must be NT;

• RED cannot directly follow NT;
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Operation Logical form token Stack

TER(entity) Barack Obama Barack Obama

NT-RED(relation) daughterOf daughterOf(Barack Obama)
TER(entity) 2014 daughterOf(Barack Obama) || 2014
NT-RED(relation) InfluentialTeensByYear daughterOf(Barack Obama) || InfluentialTeensByYear(2014)
NT-RED(and) and and(daughterOf(Barack Obama), InfluentialTeensByYear(2014))
NT-RED(count) count count(and(daughterOf(Barack Obama), InfluentialTeensByYear(2014)))

Table 3.3: Bottom-up generation of the logical form count(and(daughterOf(Barack

Obama), InfluentialTeensByYear(2014)). Elements on the stack are separated

by || and the top of the stack is on the right.

• The maximum number of open non-terminal symbols allowed on the stack is 10.

NT is disabled when the maximum number is reached;

• The maximum number of (open and closed) non-terminal symbols allowed on

the stack is 10. NT is disabled when the maximum number is reached.

Tree constraints for the bottom-up system are:

• The first transition action must be TER;

• The maximum number of consecutive TERs allowed is 5;

• The maximum number of terminal symbols allowed on the stack is the number of

words in the sentence. TER is disallowed when the maximum number is reached.

The second type of constraints relate to the FunQL-grammar itself, ensuring that the

generated logical forms are meaningful for execution:

• The type of argument expected by each non-terminal symbol must follow the

FunQL grammar;

• The number of arguments expected by each non-terminal symbol must follow

the FunQL grammar;

• When the expected number of arguments for a non-terminal symbol is reached,

a RED action must be called for the top-down system; for the bottom-up system

this constrain is built within the NT-RED action, since it reduces the expected

number of arguments based on a specific non-terminal symbol.
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3.2.4 Neural Network Realizer

Next we explain how the logical form generation algorithm is realized with a neural

network. The model can be viewed as an encoder-decoder model, where the encoder

is a bidirectional LSTM to encode an utterance sequence, and the decoder is a stack-

LSTM to generate a tree-structured logical form.

Bidirectional LSTM Encoder Utterance x is encoded with a bidirectional LSTM

architecture. A bidirectional LSTM is comprised of a forward LSTM and a backward

LSTM. The forward LSTM processes a variable-length sequence x = (x1,x2, · · · ,xn)

from left to right. For simplicity, we denote the recurrent computation of the forward

LSTM as:
�!
ht =

����!
LSTM(xt ,

��!
ht�1) (3.16)

After encoding, a list of forward representations [
�!
h1,
�!
h2, · · · ,

�!
hn] within the forward

context is obtained. Similarly, the backward LSTM processes the sequence from right

to left, computing a list of token representations [
 �
h1,
 �
h2, · · · ,

 �
hn] within the backward

context as:
 �
ht =

 ����
LSTM(xt ,

 ��
ht+1) (3.17)

Finally, each input token xi is represented by the concatenation of its forward and

backward LSTM state vectors, denoted by hi =
�!
hi :
 �
hi . The list storing token vectors

for the entire utterance x can be considered as a buffer, in analogy to syntactic parsing.

A notable difference is that tokens in the buffer will not be removed since its alignment

to logical form tokens is not pre-determined in the general semantic parsing scenario.

We denote the buffer b as b = [h1, · · · ,hk], where k denotes the length of the utterance.

Stack-LSTM Decoder The generation history, aka partially completed subtrees,

is encoded with a variant of stack-LSTM (Dyer et al., 2015), which also serves as

the decoder for logical forms. Predictions will be subsequently made based on the

generation history and also the utterance. The stack-LSTM captures not only previously

generated tree tokens but also tree structures. We first discuss the stack-LSTM in the

top-down transition system and then present modifications to account for the bottom-

up system.

In top-down transitions, actions NT and TER change the stack-LSTM representation

st which we compute as:

st = LSTM(yt ,st�1) (3.18)

where yt denotes the newly generated non-terminal or terminal token. A RED action

recursively pops the stack-LSTM states as well as corresponding tree tokens on the
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output stack. The popping stops when a non-terminal state is reached and popped,

after which the stack LSTM reaches an intermediate state st�1:t
1. The representation

of the completed subtree u is then computed as:

u =Wu · [pu : cu] (3.19)

where pu denotes the parent (non-terminal) embedding of the subtree, cu denotes the

average of the children (terminal or completed subtree) embeddings, and Wu denotes

the weight matrix. Finally, the subtree embedding u serves as the input to the LSTM

and updates st�1:t to st as:

st = LSTM(u,st�1:t) (3.20)

Figure 3.1 provides a graphical view on how the three transition actions change the

configuration of a stack-LSTM.

In comparison, the bottom-up transition system uses the same TER action to update

the stack LSTM representation st when a terminal yt is newly generated:

st = LSTM(yt ,st�1) (3.21)

Differently, the effects of NT and RED are merged into a NT-RED(X) action. When

NT-RED(X) is invoked, a non-terminal yt is first predicted and then the stack LSTM

starts popping its states on the stack. The number of pops is decided by the amount

of argument expected by yt . After that, a subtree can be obtained by combining

the non-terminal yt and the newly popped terminal tokens, while the stack LSTM

reaches an intermediate state st�1:t . Similar to the top-down system, we compute the

representation of the newly combined subtree u as:

u =Wu · [pu : cu] (3.22)

where pu denotes the parent (non-terminal) embedding of the subtree, cu denotes the

average of the children (terminal or completed subtree) embeddings, and Wu denotes

the weight matrix. Finally, the subtree embedding u serves as the input to the LSTM

and updates st�1:t to st as:

st = LSTM(u,st�1:t) (3.23)

The key difference here is that a non-terminal tree token is never pushed alone to update

the stack-LSTM, but rather as part of a completed subtree that does the update.
1We use st�1:t to denote the intermediate transit state from time step t�1 to t, after terminal tokens

are popped from the stack; st denotes the final LSTM state after the subtree representation is pushed
back to the stack (as explained in the following).
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Figure 3.1: A stack-LSTM extends a standard LSTM with the addition of a stack pointer

(shown as Top in the figure). The example shows how the configuration of the stack

changes when the transition actions NT, TER, and RED are applied in sequence. The

initial stack is presumed empty for illustration purposes. We only show how the stack-

LSTM updates its states, not how subsequent predictions are made which depend not

only on the hidden state of the stack-LSTM, but also on the natural language utterance.

Predictions Given representations of the utterance and generation history, our

model makes two types of predictions pertaining to transition actions and logical form

tokens (see Table 3.2). First, at every time step, the next transition action at+1 is

predicted based on the utterance encoding b and the generation history st :

at+1 ⇠ f (b,st) (3.24)

where f is a neural network that computes the parameters of a categorical distribution

over the action space which is restricted by the constraints discussed in Section 3.2.3.

Next, the logical form token underlying each transition action must be emitted.

When the transition action contains one of the domain-general non-terminals count,

argmax, argmin, and, or, and filter (e.g., NT(count)), the logical form token is

the corresponding non-terminal (e.g., count). When the transition action involves one

of the placeholders entity or relation (e.g., NT(relation), TER(relation) and
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TER(entity)), a domain-specific logical form token yt+1 (i.e., an entity or a relation)

is predicted in a fashion similar to action prediction:

yt+1 ⇠ g(b,st) (3.25)

where g is a neural network that computes the parameters of a categorical distribution

over the token space.

A remaining challenge lies in designing predictive functions f (for the next action)

and g (for the next logical form token) in the context of semantic parsing. We explore

various attention mechanisms which we discuss in the next sections.

3.2.5 Transition Action Prediction

This section explains the exploration of predictive functions f for the next action. To

predict the next action, we compute at each time step t a single adaptive utterance or

buffer representation b̄t with a soft attention mechanism:

ui
t =V T tanh(Wbbi +Wsst) (3.26)

ai
t = softmax(ui

t) (3.27)

b̄t = Â
i

ai
tbi (3.28)

where Wb and Ws are weight matrices and V is a weight vector. We then combine

the representation of the buffer (i.e. the utterance) and the stack (i.e. the generation

history) with a feed-forward neural network (Equation (3.29)) to yield a feature vector

for the generation system. Finally, softmax is taken to obtain the parameters of the

categorical distribution over actions:

at+1 ⇠ softmax(Woa tanh(Wf [b̄t ,st ])) (3.29)

where Woa and Wf are weight matrices.

3.2.6 Logical Token Prediction

This section presents various functions g for predicting the next logical form token

(i.e., a specific entity or relation). A hurdle in semantic parsing concerns handling

mismatches between natural language and logical predicates corresponding to the knowledge

base of interest. For example, both utterances “Where did X graduate from” and

“Where did X get his PhD” would trigger the same predicate education in Freebase.
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Traditional semantic parsers map utterances directly to domain-specific logical forms

relying exclusively on a set of lexicons either predefined or learned for the target

domain with only limited coverage. Recent approaches alleviate this issue by firstly

mapping the utterance to a domain-general logical form which aims to capture language-

specific semantic aspects, after which ontology matching is performed to handle mismatches

(Kwiatkowski et al., 2013; Reddy et al., 2014, 2016). Beyond efficiency considerations,

it remains unclear which domain-general representation is best suited to domain-specific

semantic parsing.

Neural networks provide an alternative solution: the matching between natural

language and domain-specific predicates is accomplished via an attention layer, which

encodes a context-sensitive probabilistic lexicon. This is analogous to the application

of the attention mechanism in machine translation (Bahdanau et al., 2015), which

is used as an alternative to conventional phrase tables. In this work, we consider a

practical domain-specific semantic parsing scenario where we are given no lexicon.

We first introduce the basic form of attention used to predict logical form tokens and

then discuss various extensions as shown in Figure 3.3.

Soft Attention In the case where no lexicon is provided, we use a soft attention

layer similar to action prediction. The parameters of the soft attention layer prior to

softmax are shared with those used in action prediction:

ui
t =V tanh(Wbbi +Wsst) (3.30)

ai
t = softmax(ui

t) (3.31)

b̄t = Â
i

ai
tbi (3.32)

yt+1 ⇠ softmax(Woy tanh(Wf [b̄t ,st ])) (3.33)

which outputs the parameters of the categorical distribution over logical form tokens

(either predicates or entities). When dealing with extremely large knowledge bases

with many predicates or entities, the output space can be pruned and restricted with

an entity lexicon. This method requires us to identity potential entity candidates in

the sentence, and then generate only entities belonging to this subset and the relations

linking them.

Structured Soft Attention Next we explored a structured attention layer (Kim

et al., 2017; Liu and Lapata, 2017) to encourage the model to attend to contiguous

natural language phrases when generating a logical token, while being differentiable.
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The structured attention layer we adopt is a linear-chain conditional random field

(CRF; Lafferty et al. (2001). Assume that at time step t each word in the buffer (e.g.,

the ith word) is assigned an attention label Ai
t 2 {0,1}. The CRF defines p(At), the

probability of the sequence of attention labels at time step t as:

p(At) =
expÂiWf ·y(Ai�1

t ,Ai
t ,bi,st)

ÂA1
t ,··· ,An

t
expÂiWf ·y(Ai�1

t ,Ai
t ,bi,st)

(3.34)

where Âi sums over all words and ÂA1
t ,··· ,An

t
sums over all possible sequences of attention

labels. Wf is a weight vector and y(Ai�1
t ,Ai

t ,bi,st) a feature vector. In this work the

feature vector is defined with three dimensions: the state feature for each word:

ui
t ·Ai

t (3.35)

where ui
t is the word-specific attention score computed in Equation (3.30); the transition

feature:

Ai�1
t ·Ai

t (3.36)

and the context-dependent state feature

ui
t ·Ai�1

t ·Ai
t (3.37)

The outcome of the CRF layer is a list of marginal probabilities (denoted by ai
t)

computed by the forward-backward message passing algorithm (Lafferty et al., 2001):

ai
t = forward-backward(ui

t) (3.38)

Two choices exist regarding how these marginal probabilities (as) should be used

subsequently: since each of the as denotes a word-specific bernoulli distribution, the

first choice is to directly use as to compute an adaptive buffer representation as follows:

b̄t = Â
i

ai
tbi (3.39)

The other choice is to renormalize the word-specific marginal probabilities to yield a

categorial distribution over all words—which is more comparable to the standard soft

attention:

āi
t = softmax(ai

t) (3.40)

and compute the adaptive buffer representation with the renormalized probablities:

b̄t = Â
i

āi
tbi (3.41)
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Objective: Predict the next logical form token given the current stack representation

st and n input word representations in the buffer b1 · · ·bn.

Steps:

1. Compute the logit ui
t of each input word bi as ui

t = V tanh(Wbbi +Wsst). The

logit will be used to compute the first and third feature in y.

2. Forward algorithm: Initialize b(A1
t ) = 1.

For i 2 {2 · · ·n}, Ai
t 2 {0,1}: b(Ai

t) = Â
Ai�1

t 2{0,1}
b(Ai�1

t )⇥ y(Ai�1
t ,Ai

t ,bi,st),

where y is the context-dependent feature vector.

3. Backward algorithm: Initialize g(An
t ) = 1.

For i 2 {1 · · ·(n�1)}, Ai
t 2 {0,1}: g(Ai

t) = Â
Ai+1

t 2{0,1}
g(Ai+1

t )⇥y(Ai
t ,A

i+1
t ,bi,st),

where y is the context-dependent feature vector.

4. Compute the marginal probability ai
t of each input word bi: ai

t = b(Ai
t)⇥ g(Ai

t)

5. Apply soft attention to compute an adaptive buffer representation: b̄t = Âi ai
tbi

6. Predict the next logical token: yt+1 ⇠ softmax(Woy tanh(Wf [b̄t ,st ]))

7. Compute the error and backpropagate.

Figure 3.2: The structured attention model for logical token prediction.

As an empirical choice, we adopted the first choice and ignored the renormalization

step in this work. The adaptive buffer representation is used to compute a distribution

of output logical form tokens:

yt+1 ⇠ softmax(Woy tanh(Wf [b̄t ,st ])) (3.42)

Hard Attention Soft attention learns a probablistic mapping between natural language

and logical tokens. At every time step, every word in the utterance is assigned the

probability of triggering every logical predicate. In order to render the inner workings

of the model more transparent we explore the use of a hard attention mechanism as a

means of rationalizing neural predictions by inducing a lexicon.

At each time step, hard attention computes the attention probability of using a

word xt to predict yt+1:

ui
t =V tanh(Wbbi +Wsst) (3.43)
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utterance: which daughter of Barack Obama was named Most Influential Teens in the year 2014

partially completed logical form: and(daughterOf(Barack Obama),

next logical form token: InfluentialTeensByYear

soft attention over all words in utterance:
whichwhich daughterdaughter ofof BarackBarack ObamaObama waswas namednamed MostMost InfluentialInfluential TeensTeens inin thethe YearYear 20142014

structured attention over a subset of words in utterance:
which daughter of Barack Obama was named Most Influential Teens in the yearMost Influential Teens in the year 2014

hard attention over a single word in utterance:
which daughter of Barack Obama was named as the InfluentialInfluential Teens in the year 2014

bernoulli hard attention over a phrase in utterance:
which daughter of Barack Obama was named as the InfluentialInfluential TeensTeens inin the year 2014

Figure 3.3: Different attention mechanisms for predicting the next logical form token.

The example utterance is which daughter of Barack Obama was named Most Influential

Teens in the year 2014? and the corresponding logical form to be generated

is and(daughterOf(Barack Obama), InfluentialTeensByYear(2014)). The

figure shows attention for predicting InfluentialTeensByYear. Darker shading

indicates higher values.

xt ⇠ softmax(ui
t) (3.44)

The representation of xt denoted by bt is then used to predict the logical token:

yt+1 ⇠ softmax(Woy tanh(Wf [bt ,st ])) (3.45)

As will become clearer in Section 3.2.7, hard attention maximizes a lower bound of

the marginal likelihood of the logical form token (and also the entire logical form). The

objective is differentiable, but it is not tractable without inconvenient independence

assumptions: the computation requires us to sum over all the possible intermediate

“natural language structures”. In Section 3.2.7, we present a sampling-based algorithm

and a baseline method to reduce the variance of the predictor.

Bernoulli Hard Attention A limitation of hard attention lies in selecting a single

word to attend to at each time step. In practice, a logical form predicate is often

triggered by a natural language phrase or a multi-word expression. A way to overcome

this limitation is to compute a bernoulli distribution for every word separately, indicating

the probability of the word being selected. Then an attention label is assigned to each
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word based on this probability (e.g., with threshold 0.5). Let Ai
t 2 {0,1} denote the

attention label of the ith word at time step t. Using the unnormalized attention score ui
t

computed in Equation (3.30), we obtain the probability p(Ai
t = 1) as:

p(Ai
t = 1) = logistic(ui

t) (3.46)

where logistic denotes a sigmoid function.

We compute the adaptive buffer representation as an average of the selected word

embeddings:

b̄t =
1

Âi Ai
t
Â

i
Ai

tbi (3.47)

which is then used to compute a distribution of the output logical form tokens:

yt+1 ⇠ softmax(Woy tanh(Wf [b̄t ,st ])) (3.48)

3.2.7 Training

In the fully supervised setup, the training data consists of utterance-logical form pairs.

Consider utterance x with logical form l whose structure is determined by a sequence

of transition actions a and a sequence of logical form tokens y. Our ultimate goal is

to maximize the conditional likelihood of the logical form given the utterance for all

training data:

L = Â
(x,l)2T

log p(l|x) (3.49)

which can be decomposed into the action likelihood and the token likelihood:

log p(l|x) = log p(a|x)+ log p(y|x,a) (3.50)

Soft attention The above objective consists of two terms, one for the action sequence:

La = Â
(x,l)2T

log p(a|x) = Â
(x,l)2T

n

Â
t=1

log p(at |x) (3.51)

and one for the logical form token sequence:

Ly = Â
(x,l)2T

log p(y|x,a) = Â
(x,l)2T

n

Â
t=1

log p(yt |x,at) (3.52)

These constitute the training objective for fully differentiable neural semantic parsers,

when (basic or structured) soft attention is used.
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Hard attention In the case when hard attention is used for token prediction, the

objective La remains the same but Ly differs. This is because the attention layer is non-

differentiable for errors to backpropagate through. We use the alternative REINFORCE

algorithm (Williams, 1992) for backpropagation. In this scenario, the neural attention

layer is used as a policy predictor to emit attention choice, while subsequent neural

layers are used as the value function to compute a reward—a lower bound of the log

likelihood log p(y|x,a). Let ut denote the (latent) attention choice at each time step t;

we maximize the expected log likelihood of the logical form token given the overall

attention choice for all examples, which by Jensen’s Inequality is the lower bound on

the log likelihood log p(y|x,a):

Ly = Â
(x,l)2T

Â
u
[p(u|x,a) log p(y|u,x,a)]

 Â
(x,l)2T

logÂ
u
[p(u|x,a)p(y|u,x,a)]

= Â
(x,l)2T

log p(y|x,a)

(3.53)

The gradient of Ly with respect to model parameters q is given by:

∂Ly

∂q
= Â

(x,l)2T
Â
u

p(u|x,a)∂ log p(y|u,x,a)
∂q

+ log p(y|u,x,a)∂p(u|x,a)
∂q

= Â
(x,l)2T

Â
u

p(u|x,a)∂ log p(y|u,x,a)
∂q

+ log p(y|u,x,a)∂ log p(u|x,a)
∂q

p(u|x,a)

= Â
(x,l)2T

Â
u

p(u|x,a)


∂ log p(y|u,x,a)
∂q

+ log p(y|u,x,a)∂ log p(u|x,a)
∂q

�

⇡ Â
(x,l)2T

1
N

K

Â
k=1


∂ log p(y|uk,x,a)

∂q
+ log p(y|uk,x,a)

∂ log p(uk|x,a)
∂q

�

(3.54)

which is estimated by the Monte Carlo estimator with K samples. This gradient

estimator incurs high variance because the reward term log p(y|uk,x,a) is dependent

on samples of uk. An input-dependent baseline is used to reduce the variance, which

adjusts the gradient update as:

∂Ly

∂q
= Â

(x,l)2T

1
N

K

Â
k=1


∂ log p(y|uk,x,a)

∂q
+(log p(y|uk,x,a)�b)

∂ log p(uk|x,a)
∂q

�

(3.55)

As baseline, we use the soft attention token predictor described earlier. The effect is

to encourage attention samples that return a higher reward than standard soft attention,
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while discouraging those resulting in a lower reward. For each training case, we

approximate the expected gradient with a single sample of uk.

3.3 Experiments

We evaluate the fully-supervised training setup on the GEOQUERY (Zelle, 1996) dataset,

which contains 880 questions and database queries about US geography. The utterances

are compositional, but the language is simple and vocabulary size small (698 entities

and 24 relations).

Across training regimes, the dimensions of word vector, logical form token vector,

and LSTM hidden state are 50, 50, and 150 respectively. Word embeddings were

initialized with Glove embeddings (Pennington et al., 2014). All other embeddings

were randomly initialized. We used one LSTM layer in forward and backward directions.

Dropout was used on the combined feature representation of the buffer and the stack

(Equation (3.29)), which computes the softmax activation of the next action or token.

The dropout rate was set to 0.5. Finally, momentum SGD (Sutskever et al., 2013) was

used as the optimization method to update the parameters of the model.

Experimental results on GEOQUERY dataset are shown in Table 3.4. The first

block contains conventional statistical semantic parsers, previously proposed neural

models are presented in the second block, whereas variants of TNSP are shown in

the third block. Specifically we build various top-down and bottom-up TNSP using

the three types of attention (soft, hard, and structured attention). We report accuracy

which is defined as the proportion of the utterances that are correctly parsed to their

gold standard logical forms. Amongst various TNSP models, a top-down system with

structured attention performs best. Overall, we observe that differences between top

down and bottom up systems are small; it is mostly the attention mechanism that affects

performance, with hard attention performing worst and structured attention performing

best for both top-down and bottom-up systems. TNSP outperforms previously proposed

neural semantic parsers which treat semantic parsing as a sequence transduction problem

and use LSTMs to map utterances to logical forms (Dong and Lapata, 2016; Jia and

Liang, 2016). TNSP yields performance improvements over these systems when using

comparable data sources for training. Jia and Liang (2016) achieve better results with

synthetic data that expands GEOQUERY; we could adopt their approach to improve

model performance, however, we leave this to future work. Our system is on the same

par with model of Rabinovich et al. (2017) who also ensure their model outputs well-
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Models Accuracy

Zettlemoyer and Collins (2005a) 79.3

Zettlemoyer and Collins (2007) 86.1

Kwiatkowksi et al. (2010a) 87.9

Kwiatkowski et al. (2011) 88.6

Kwiatkowski et al. (2013) 88.0

Zhao and Huang (2015) 88.9

Liang et al. (2011) 91.1

Dong and Lapata (2016) 84.6

Jia and Liang (2016) 85.0 (89.1)

Rabinovich et al. (2017) 87.1

TNSP, soft attention, top-down 86.8

TNSP, soft structured attention, top-down 87.1

TNSP, hard attention, top-down 85.3

TNSP, bernoulli hard attention, top-down 85.5

TNSP, soft attention, bottom-up 86.1

TNSP, soft structured attention, bottom-up 86.8

TNSP, hard attention, bottom-up 85.3

TNSP, bernoulli hard attention, bottom-up 85.3

Table 3.4: Fully supervised experimental results on the GEOQUERY dataset. For Jia

and Liang (2016), we include two of their results: one is a standard neural sequence

to sequence model; and the other is the same model trained with a data augmentation

algorithm on the labeled data (reported in the parenthesis).

formed trees in a top-down manner using a decoder built of many submodels, each

associated with a specific construct in the underlying grammar.

3.4 Summary

In this chapter we propose a fully-supervised neural semantic parser (TNSP) that generates

logical forms from given utterances. Across experiments we observe TNSP performs

competitively while producing meaningful and well-formed logical forms. One characteristic

of the neural semantic parser is that it generates tree-structured representations in

an arbitrarily canonical order, as a sequence of transition actions. We investigated



3.4. Summary 37

two such orders, top-down pre-order and bottom-up post-order. Experimentally, we

observed that pre-order generation provides marginal benefits over post-order generation.

One reason for this is that compared to sibling information which the bottom-up system

uses, parent information used by the top-down system is more important for subtree

prediction.

We explored various attention mechanisms, including soft attention, structured

attention and two variants of hard attention. Quantitatively, we observe that soft

attention outperforms hard attention. Although hard attention offers interpretability of

the induced attention structures but renders training and optimization difficult. The

structured attention layer lies in between the two; it is also differentiable since it

computes the marginal probability of each token being selected with a dynamic programming

procedure. During test, the induced attention structures can be observed with the

Viterbi algorithm. We observe that on GEOQUERY which represents the fully supervised

setting, structured attention only offers marginal gains over soft attention. However,

it should be noted that the structured attention layer at each decoding step requires

the forward-backward algorithm, which has time complexity O(n2) (where n denotes

the utterance length) and therefore slower than soft attention which has linear (O(n))

complexity.

Overall, the neural semantic parser presented in this chapter contributes to a promising

research direction. However, a challenge in fully supervised training setup is to obtain

annotated training data at a large scale, which does not easily scale up to complex

domain. This motivates us to explore weakly supervised alternatives which we introduce

in the next chapter.





Chapter 4

Weakly-supervised Neural Semantic

Parsing

In this chapter, we extend the neural semantic parser described in Chapter 3 to a

weakly supervised setting, which allows us to train with utterance-denotation pairs.

The latter are easier to obtain via crowd-sourcing. The reason is that labeling utterance-

denotations does not require any knowledge about the logical language. For example, it

is easy to provide an answer to the question “How many daughters does Barack Obama

have”, than writing down the corresponding logical form count(daughterOf(Barack

Obama)).

However, training a neural semantic parser in a weakly supervised setup is more

challenging since we do not have access to gold standard logical forms for backpropagation.

Instead, the logical form is modeled as a latent variable and needs to be searched from a

large space. To this end, we propose to integrate the neural semantic parser (presented

in Chapter 3) with a global ranker, formulating a parser-ranker framework (in Section

4.1). The role of the neural parser is to generate a list of candidate logical forms, and

the role of the ranker is to select which candidate to use. This modeling approach is

widely used in conventional semantic parsers trained with weak supervision (Berant

et al., 2013b). To further ease the data collection process and scale semantic parsing

to open domains, we explore an even weaker form of supervision—distant supervision

where denotations are not provided but artificial training data is generated automatically

from declarative sentences crawled from the web. The artificial data is in the form of

utterance-denotation pairs, which can be trained with the parser-ranker framework.

We evaluate and analyze if such artificial data is helpful for a practical question-

answering system (Section 4.2). Finally, we focus on a specific learning challenge

39



40 Chapter 4. Weakly-supervised Neural Semantic Parsing

of our approach—logical forms may involve a certain degree of spuriousness—some

logical forms coincidentally execute to the correct denotation but they do not match the

utterance semantics. We incorporate a generative neural network for detecting spurious

logical forms by scoring how a logical form represents the utterance semantics (Section

4.3).

4.1 The Parser-Ranker Framework

4.1.1 Motivation

Conventional weakly-supervised semantic parsing systems separate the parser from the

learner (Liang, 2016). The parser, which is often chart-based and non-parameterized,

recursively builds derivations for each span of the utterance. The learner, typically a

log-linear model, defines features useful for scoring and ranking the set of candidate

derivations, based on denotations. As mentioned in Liang (2016), the chart-based

parser brings a disadvantage since the system does not support incremental contextual

interpretation, because features of a span can only depend on the sub-derivations in

that span, as a requirement of dynamic programming.

As a departure from chart-based parsers, a neural semantic parser is itself a parametrized

model and is able to leverage global utterance features for decoding. However, training

the neural parser directly with utterance-denotation pairs is challenging since the decoder

does not have access to gold standard logical forms for backpropagation (in other

words, the gold decision at each decision step is not provided). Moreover, it should be

noted that the neural decoder suffers from the label bias problem: it generates logical

forms with local decoding.

The above facts motivate us to extend the neural semantic parser (presented in 3)

with a global ranker to cope with the weak training signal. As mentioned earlier, the

role of the neural parser is to generate a list of candidate logical forms, while the ranker

aims to leverage global features of utterance-logical form-denotation triples to select

which candidate to use for execution during test.

4.1.2 Methodology

Parser We briefly summarize the neural semantic parser described in the previous

chapter. The parser consists of a bidirectional LSTM utterance encoder and a stack-

LSTM decoder that generates tree-structured logical forms. At each time step of the
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decoding, the parser primarily applies soft attention to predict a transition operation

that generates a tree following a canonical order. If the transition operation is one that

generates a relation or an entity placeholder, the parser further predicts a specific token

with either soft, hard, or structured attention, In this way, the most likely logical form

l for the utterance x is generated incrementally as:

log p(l|x) = Â
t

log p(at |x,a1,··· ,t�1,y1,··· ,t�1)+ log p(yt |x,a1,··· ,t ,y1,··· ,t�1) (4.1)

where as denote the sequence of transition operations and ys denote the sequence of

logical form tokens.

Note that in the weakly supervised setting, the parser decodes a list of candidate

logical forms L with beam search, instead of outputting the most likely logical form.

During training, the candidate logical forms are executed to find the set of consistent

ones (denoted by Lc(x)) which lead to the correct denotation. As the training objective,

we could maximize the log-likelihood of the correct denotation z by treating logical

forms as a latent variable:

log p(z|x) = log Â
l2L

p(l|x)p(z|x, l) (4.2)

where L denotes the set of candidate logical forms generated by the neural parser and

l0 denotes any logical form in L. Note that p(z|x, l) equates to 1 if the logical form

executes to the correct denotation and 0 otherwise. For this reason, we can also write

the above equation as

log Â
l2L(c)

p(l|x) (4.3)

where L(c) is the set of consistent logical forms which execute to the correct denotation.

In our experiment, we adopt a variant of the above training objective by directly

maximizing the total log likelihood of consistent logical forms:

Â
l2Lc(x)

log p(l|x) (4.4)

This is an empirical choice.

Ranker As mentioned previously, it is impractical to rely solely on a neural decoder

to find the most likely logical form at run time in the weakly-supervised setting. One

reason is that the decoder incrementally generates logical forms with a sequence of

local decisions. This problem can be alleviate with the introduction of a discriminative
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ranker, which scores logical forms based on global features of utterance-logical form-

denotation triplets.

Specifically we adopt a log linear ranker which computes p(l|x) as

p(l|x) = exp( f (x, l)q)
Âl02L exp( f (x, l0)q)

(4.5)

where L is the entire set of candidate logical forms; f is the feature function that maps

an utterance-logical form pair (and also the corresponding denotation) into a feature

vector; and q denotes the weight parameter of the model.

The training objective of the ranker is similar to the parser (Equation 4.3). However,

the difference lies in how the likelihood p(l|x) is computed. In the parser, the likelihood

(denoted by pf(l|x)) is factorized into a sequence of conditional probablities (Equaition

4.1) and computed with neural parameters f. These conditional probablities are used

to generate logical forms. In comparison, the ranker computes the likelihood (denoted

by pq(l|x)) in a discriminative fashion—the computation is based on a global scoring

function (Equation 4.5) and parameters q.

Training such a system involves the following steps. Given an input utterance,

the neural parser first generates a list of candidate logical forms via beam search. Then

these candidate logical forms are executed and those which yield the correct denotation

are marked as consistent logical forms. The neural parser is then trained to maximize

the likelihood of these consistent logical forms Âl2Lc log p(l|x). Meanwhile, the ranker

is trained to maximize the marginal likelihood of denotations log p(z|x).
Clearly, if the parser does not generate any consistent logical forms, no model

parameters will be updated. A challenge in this training paradigm is the fact that

we rely exclusively on beam search to find good logical forms from an exponential

search space. In the beginning of training, neural parameters are far from optimal,

and as a result good logical forms are likely to fall outside the beam. We alleviate

this problem by performing entity linking (Reddy et al., 2014) which greatly reduces

the search space. We determine the identity of the entities mentioned in the utterance

according to the knowledge base and restrict the neural parser to generating logical

forms containing only those entities.

4.1.3 Experiments

We evaluate our weakly-supervised semantic parser on two datasets: WEBQUESTIONS

(Berant et al., 2013a) and GRAPHQUESTIONS (Su et al., 2016). WEBQUESTIONS
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contains 5,810 question-answer pairs. It is based on Freebase (Bollacker et al., 2008),

a large scale knowledge base created by community members. The questions are

not very compositional (i.e., most questions involve a single relational predicate).

However, they are real questions asked by people on the web. GRAPHQUESTIONS

contains 5,166 question-answer pairs which were created by showing 500 Freebase

graph queries to Amazon Mechanical Turk workers and asking them to paraphrase

them into natural language. The questions there are more compositional than WEBQUESTIONS.

Training and test partitions of the datasets are 0.8 and 0.2, respectively.

We adopt the same training setup as in the fully supervised scenario. The dimensions

of word vector, logical form token vector, and LSTM hidden state are 50, 50, and 150

respectively. Word embeddings were initialized with Glove embeddings (Pennington

et al., 2014). All other embeddings were randomly initialized. We used one LSTM

layer in forward and backward directions. Dropout was used before the prediction

layer with a rate set to 0.5. Momentum SGD (Sutskever et al., 2013) was used as the

optimization method to update the parameters of the model.

As mentioned earlier, we use entity linking to obtain surrogate logical forms which

dramatically reduces the beam search space. For both datasets we perform entity

linking following the procedure described in Reddy et al. (2016). We identify potential

entity spans using seven handcrafted part-of-speech patterns and associate them with

Freebase entities obtained from the Freebase/KG API.1 We use a structured perceptron

trained on the entities found in WEBQUESTIONS and GRAPHQUESTIONS, respectively,

to select the top 10 non-overlapping entity disambiguation possibilities. We treat each

possibility as a candidate entity to construct candidate logical forms with beam search

of size 500, among which we look for the consistent ones.

Recall that in the weakly supervised scenario, our parsing system additionally

includes a discriminative ranker, whose role is to select the final logical form to execute

from a list of candidates generated by the neural semantic parser. As features of the

ranker, we consider the log likelihood outputted by the neural parser, the embedding

cosine similarity between the utterance (excluding stop-words) and the logical form,

the token overlap count between the two, and also similar features between the lemmatized

utterance and the logical form. In addition, we include as features the embedding

cosine similarity between the question words and the logical form, the similarity between

the question words (e.g., what, who, where, whose, date, which, how many, count)

and relations (e.g., president of us, date of birth) in the logical form, and the

1
http://developers.google.com/freebase/

http://developers.google.com/freebase/
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similarity between the question words and answer type as indicated by the last word

in the Freebase relation (Xu et al., 2016). Finally, we add as a feature the length of the

denotation given by the logical form (Berant et al., 2013b). We normalize all features

before feeding them into the ranker.

We include results of different model variants (e.g., different attention, generation

order) as described in the previous chapter. For all Freebase related datasets, we

follow Berant et al. (2013b) and use F1 as the evaluation metric. We report results

on WEBQUESTIONS and GRAPHQUESTIONS in Tables 4.1 and 4.2, respectively. The

first block in the tables groups conventional semantic parsers, the second block presents

related neural models, and the third block variants of our model—the Transition-based

Neural Semantic Parser (TNSP). For fair comparison, we also built a baseline sequence-

to-sequence model enhanced with an attention mechanism (Dong and Lapata, 2016).

On WEBQUESTIONS the best performing TNSP system generates logical forms

based on a top down pre-order while employing soft attention. The same top-down

system with structured attention performs closely. In general we observe that our

semantic parser obtains performance on par with the best symbolic systems (see the

first block in Table4.1). TNSP performs competitively despite not having access to

any linguistically-informed syntactic structure. Regarding neural systems (see second

block in Table 4.1), our model outperforms the sequence-to-sequence baseline and

other related neural architectures using similar resources. Xu et al. (2016) represent the

state of the art on WEBQUESTIONS. Their system uses an end-to-end neural network

for question answering. In addition, they use Wikipedia to prune out erroneous candidate

answers extracted from Freebase. Our model would also benefit from a similar post-

processing.

With respect to GRAPHQUESTIONS, we report F1 for various TNSP models (third

block in Table 4.2), and conventional statistical semantic parsers (first block in Table 4.2).

The first three systems are conventional statistical semantic parsers. The numbers are

reported in Su et al. (2016). Again, we observe that a top-down variant of TNSP with

soft attention performs the best. It is superior to the sequence-to-sequence baseline

and obtains performance comparable to Reddy et al. (2017), which make use of an

external syntactic parser. The model of Dong et al. (2017) is state of the art on

GRAPHQUESTIONS. Their method is trained end-to-end using questions-answer pairs

as a supervision signal together with question paraphrases as a means of capturing

different ways of expressing the same content. Importantly, their system is optimized

with question-answering in mind, and does not produce logical forms.
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Models F1

SEMPRE (Berant et al., 2013a) 35.7

JACANA (Yao and Van Durme, 2014) 33.0

PARASEMPRE(Berant and Liang, 2014) 39.9

AQQU (Bast and Haussmann, 2015) 49.4

AGENDAIL (Berant and Liang, 2015) 49.7

DEPLAMBDA (Reddy et al., 2016) 50.3

SUBGRAPH (Bordes et al., 2014) 39.2

MCCNN (Dong et al., 2015) 40.8

STAGG (Yih et al., 2015) 48.4 (52.5)

MCNN (Xu et al., 2016) 47.0 (53.3)

Sequence-to-sequence 48.3

TNSP, soft attention, top down 50.1

TNSP, hard attention, top down 49.4

TNSP with structured attention, top down 49.8

TNSP, soft attention, bottom up 49.6

TNSP, hard attention, bottom up 48.4

TNSP, structured attention, bottom up 49.5

Table 4.1: Weakly supervised experimental results on the WEBQUESTIONS datasets.

Results with additional resources are shown in parentheses.

When learning from denotations a challenge concerns the handling of an exponentially

large set of logical forms. In our approach, we rely on the neural semantic parser to

generate a list of candidate logical forms by beam search. Ideally, we hope the beam

size is large enough to include good logical forms which will be subsequently selected

by the discriminative ranker. Figure 4.1 shows the effect of varying beam size on

GRAPHQUESTIONS2 (dev set) when training executes for two epochs using the TNSP

soft attention model with top-down generation order is used. We report the number of

utterances that are answerable (i.e., an utterance is considered answerable if the beam

includes one or more consistent logical forms leading to the correct denotation) and

the number of utterances that are correctly answered eventually. As the beam size

2The dataset is chosen as a testbed since it involves more compositional, and difference types of
questions.
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Models F1

SEMPRE (Berant et al., 2013a) 10.8

PARASEMPRE (Berant and Liang, 2014) 12.8

JACANA (Yao and Van Durme, 2014) 5.1

SIMPLEGRAPH (Reddy et al., 2016) 15.9

UDEPLAMBDA (Reddy et al., 2017) 17.6

Sequence-to-sequence 16.2

PARA4QA (Dong et al., 2017) 20.4

TNSP with soft attention, top down 17.3

TNSP with hard attention, top down 16.2

TNSP with structured attention, top down 17.1

TNSP with soft attention, bottom up 16.9

TNSP with hard attention, bottom up 16.8

TNSP with structured attention, bottom up 17.1

Table 4.2: Weakly supervised experimental results on the GRAPHQUESTIONS dataset.

Results with additional resources are shown in parentheses.

increases, the gap between utterances that are answerable and those that are correctly

answered becomes larger. And the curve for correctly answered utterances gradually

plateaus and drops slightly. This indicates a trade-off between generating candidates

that cover good logical forms and picking the best logical form for execution: when

the beam size is large, there is a higher chance for good logical forms to be included

but also for the discriminative ranker to make mistakes.

GRAPHQUESTIONS consists of four types of questions. As shown in Table 4.3, the

first type are relational questions (denoted by relation). An example of a relational

question is what periodic table block contains oxygen; the second type contains count

questions (denoted by count). An example is how many firefighters does the new

york city fire department have; the third type includes aggregation questions requiring

argmax or argmin (denoted by aggregation). An example is what human stampede

injured the most people; the last type are filter questions which requires comparisons

by >, �, < and leq (denoted by filter). An example is which presidents of the

united states weigh not less than 80.0 kg. Table 4.3 shows the number of questions

broken down by type, as well as the proportion of answerable and correctly answered



4.1. The Parser-Ranker Framework 47

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

0.000

0.525
0.575 0.606 0.636 0.645 0.658

0.000

0.1520.195 0.213 0.223 0.226 0.226

beam size

fr
ac

tio
n

of
ut

te
ra

nc
es

answerable utterances
correctly answered utterances

Figure 4.1: Fraction of utterances that are answerable versus those correctly predicted

with varying beam size used by TNSP on the GRAPHQUESTIONS dev set.

Utterance type Number % Answerable % Correctly answered

relation 1938 0.499 0.213

count 309 0.421 0.032

aggregation 226 0.363 0.075

filter 135 0.459 0.096

All 2,608 0.476 0.173

Table 4.3: Breakdown of questions answered by type for the GRAPHQUESTIONS.

questions. As the results reveal, relation questions are the simplest to answer which

is expected since relation questions are non-compositional and their logical forms

are easy to find with beam search. The remaining types of questions are rather difficult

to answer: although the system is able to discover logical forms that lead to correct

denotations during beam search, the ranker is not able to identify the right logical forms

to execute. Aside from the compositional nature of these questions which makes them

hard to answer, another difficulty is that such questions are a minority in the dataset

posing a learning challenge for the ranker to identify them. As future work, we plan to

train separate rankers for different types of questions.
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4.2 Distant Supervision

4.2.1 Motivation

Although weakly supervised training allows us to scale semantic parsing to large open-

domain problems (Kwiatkowski et al., 2013; Berant et al., 2013b; Yao and Van Durme,

2014), the collection of utterance-denotation pairs still relies on crowd-sourcing. A

promising alternative is to train a semantic parser with distant supervision without any

annotated logical forms or denotations (Reddy et al., 2014). In this setting, the training

data is a collection of unlabeled sentences and a knowledge base. Utterance-denotation

pairs are artificially created by replacing entity mentions (which are grounded to KB) in

sentences with variables. Then, the semantic parser is trained to predict the denotation

for the variable that includes the mentioned entity. For example, given the declarative

sentence NVIDIA was founded by Jen-Hsun Huang and Chris Malachowsky, the distant

supervision approach creates the utterance NVIDIA was founded by Jen-Hsun Huang

and blank paired with the corresponding denotation Chris Malachowsky. In some

cases, even stronger constraints can be applied. For example, if the mention is preceded

by the word the, then the correct denotation includes exactly one entity. In general, the

approach converts a corpus of entity-recognized sentences into utterance-denotation

pairs on which a weakly supervised training method can be applied. In this section, we

test our semantic parser in the distant supervision setting; and more importantly, we

evaluate if this approach is useful for practical question answering.

4.2.2 Experiments

To start with, we evaluate our neural semantic parser on the SPADES dataset (Bisk et al.,

2016), which contains 93,319 questions derived from CLUEWEB09 (Gabrilovich et al.,

2013) sentences. Entity mentions in CLUEWEB09 have been automatically annotated

with Freebase entities. Specifically, the questions were created by randomly replacing

an entity with a blank symbol, thus producing sentence-denotation pairs (Reddy et al.,

2014). The sentences include two or more entities and although they are not very

compositional, they constitute a large-scale dataset for neural network training with

distant supervision.

Table 4.4 presents experimental results on SPADES. Previous work on this dataset

has used a semantic parsing framework where natural language is converted to an

intermediate syntactic representation and then grounded to Freebase. Specifically, Bisk
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Models F1

Unsupervised CCG (Bisk et al., 2016) 24.8

Semi-supervised CCG (Bisk et al., 2016) 28.4

Supervised CCG (Bisk et al., 2016) 30.9

Rule-based system (Bisk et al., 2016) 31.4

Sequence-to-sequence 28.6

TNSP with soft attention, top down 32.4

TNSP with hard attention, top down 31.5

TNSP with structured attention, top down 32.1

TNSP with soft attention, bottom up 32.1

TNSP with hard attention, bottom up 30.7

TNSP with structured attention, bottom up 31.4

Table 4.4: Distantly supervised experimental results on the SPADES dataset.

et al. (2016) evaluate the effectiveness of four different CCG parsers on the semantic

parsing task when varying the amount of supervision required. As can be seen, TNSP

outperforms all CCG variants (from unsupervised to fully supervised) without having

access to any manually annotated derivations or lexicons. Again, we observe that a top-

down TNSP system with soft attention performs best and is superior to the sequence-

to-sequence baseline.

The results on SPADES hold promise for scaling semantic parsing by using distant

supervision. In fact, artificial data could potentially help improve weakly supervised

question answering models trained on utterance-denotation pairs. To this end, we use

the entity-masked declarative sentences paired with their denotations in SPADES as

additional training data for GRAPHQUESTIONS. We train the neural semantic parser

with the combined training data and evaluate on the GRAPHQUESTIONS. We use the

top-down, soft-attention TNSP model with a beam search size of 300. During each

epoch of training, the model was first trained with a mixture of the additional SPADES

data and the original training data. Figure 4.2 shows the fraction of answerable and

correctly answered questions generated by the neural semantic parser on GRAPHQUESTIONS.

Note that the original GRAPHQUESTIONS training set consists of 1,794 training examples

and we report numbers when different amounts of SPADES training data are used.

As Figure 4.2 shows, using artificial training data is able to improve the neural
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Figure 4.2: Fraction of answerable and correctly answered utterances in the

GRAPHQUESTIONS when different amounts of the SPADES data are used.

semantic parser on a question answering task to some extent. This suggests that distant

supervision is a promising direction for building practical semantic parsing systems.

Since artificial training data can be abundantly generated to fit a neural parser, the

approach can be used for data argumentation when question-answer pairs are limited.

However, we observe that the maximum gain occurs when 1,000 extra training

examples are used, a size comparable to the original training set. After that no further

improvements are made when more training examples are used. We hypothesize this is

due to the disparities between utterance-denotation pairs created in distant supervision

and utterance-denotation pairs gathered from real users. For example, given the declarative

sentence NVIDIA was founded by Jen-Hsun Huang and Chris Malachowsky, the distant

supervision approach creates the utterance NVIDIA was founded by Jen-Hsun Huang

and blank and the corresponding denotation Chris Malachowsky. However, the

actual question users may ask is Who founded NVIDIA together with Jen-Hsun Huang.

This poses a challenge if the neural network is trained on one type of utterance and

tested on another. We observe that the distribution mismatch outweighs the addition

of artificial data quickly. Future work will focus on how to alleviate this problem by

generating more realistic data with an advanced question generation module.

Another factor limiting performance is that SPADES mainly consists of relational

questions without high-level predicates but GRAPHQUESTIONS does. Examples include
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count, filter and aggregation related questions such as how many firefighters are

employed with the new york city.

4.3 Handling Spurious Logical Forms

4.3.1 Motivation

Weakly-supervised training of the neural parser-ranker system relies on beam search to

find consistent logical forms that execute to the correct answer. In this section we focus

on a specific learning challenge—handling the spurious ambiguity of logical forms.

Typically there are two types of ambiguities. One type comes from the ambiguity

of derivations: two different logical forms can be semantically equaivalent, due to

the commutative property of certain compositional operations. The other type is the so

called spurious ambiguity which we study in this work: some logical forms coincidentally

execute to the correct answer but do not match the utterance semantics. For example,

both logical forms former president(United States) and husband of(Michelle

Obama) gives the same denotation Barack Obama, but only the former corresponds to

the utterance “Who is the former president of the USA”. The spurious logical forms act

as misleading training signals for the neural semantic parser.

In this section we propose a method for removing spurious logical forms by validating

how well a logical form matches the utterance meaning. The intuition is that, a

meaning-preserving logical form should be able to provide a high likelihood of reconstructing

the original utterance, denoted by p(x|l). However, since correct logical forms are not

annotated either, we can not directly compute and maximize p(x|l). To this end, we

propose a generative model to measure this reconstruction likelihood.

4.3.2 Methodology

The Generative Neural Network The model assumes utterance x is generated from

corresponding logical form l, and only the utterance is observable. The objective is

therefore to maximize the log marginal likelihood of the utterance:

log p(x) = logÂ
l

p(x, l) (4.6)
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We adopt neural variational inference Mnih and Gregor (2014) to solve the above

objective, which is equivalent to maximizing an evidence lower bound:

log p(x) = log
q(l|x)p(x|l)p(l)

q(l|x) � Eq(l|x) log p(x|l)+Eq(l|x) log
p(l)

q(l|x) (4.7)

Since our semantic parser performs constrained decoding and always outputs well-

formed logical forms, we assume a uniform prior and the probability p(l) to be a

constant. Thus the above objective can be reduced into:

Eq(l|x) log p(x|l)�Eq(l|x) logq(l|x) = L(x) (4.8)

where the first term computes the reconstruction likelihood p(x|l); and the second term

is the entropy of the approximated posterior q(l|x) for regularization. Specifically,

q(l|x) is computed with an inference module. In our task-specific context, we consider

our semantic parser as the inference module 3. The reconstruction likelihood p(x|l) is

computed with an inverse parser that recovers the utterance x from its logical form l.

We use p(x|l) to measure how well the logical form reflects the utterance meaning;

details of the inverse parser are described as follows.

Inverse Parser: Stack-LSTM Encoder To reconstruct utterance x, logical form l is

first encoded with a stack-LSTM encoder. To do that we deterministically convert

the logical form into a sequence of bottom-up transition operations (see Section 3.2.3),

which correspond to the creation of tree nodes and completion of subtrees. For example,

the transition operations for the logical form count (and (daughterOf (Barack

Obama), InfluentialTeensByYear (2014)) are shown in Table 3.3 as TER(entity),

NT-RED(relation), TER(entity), NT-RED(relation), NT-RED(and), NT-RED(count).

The stack-LSTM sequentially processes the transition operations and updates its

states accordingly. Similar to the bottom-up generation generation, the bottom-up

encoding uses the following two transition operations:

• TER(X) encodes the terminal node denoted by X. The terminal X is pushed on top

of the stack, written as X.

• NT-RED(X) completes the subtree being generated by attaching a parent node

(denoted by X) to children nodes on top of the stack. Children are first popped

from the stack, and subsequently combined with the parent X to form a subtree.

The subtree is pushed back to the stack as a single constituent.
3In the previous section, the output distribution of the semantic parser is denoted by p(l|x).
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and the states of the stack-LSTM changes as follows.

When TER(X) is called, the stack LSTM state gt is updated with the terminal yt as:

gt = LSTM(yt ,gt�1) (4.9)

When NT-RED(X) is called, the non-terminal yt will first be combined with the

terminals or subtrees underneath to compute a subtree encoding:

u =Wu · [yt : c] (4.10)

where yt is the parent (non-terminal) embedding of the subtree, c denotes the average of

the children (terminal or completed subtree) embeddings, and Wu denotes the weight

matrix. After that, the subtree embedding u serves as the input to the LSTM and

updates gt�1:t to st as:

gt = LSTM(u,gt�1:t) (4.11)

Finally, we save a list of terminal, non-terminal and subtree representations [g1, · · · ,gs],

where each representation is the stack-LSTM state at the corresponding time step of

encoding. The list essentially contains the representation of every tree node and the

representation of every subtree (the total number of representations is denoted by s).

Inverse Parser: LSTM Decoder Utterance x is reconstructed with a standard LSTM

decoder attending to the tree nodes and subtree representations. At each time step of

the decoding, attention is performed over decoder state rt and tree node representations

[g1, · · · ,gs]:

vi
t =V 0T tanh(Wg0gi +Wrrt) (4.12)

bi
t = softmax(vi

t) (4.13)

ḡt =
s

Â
i=1

bi
tgi (4.14)

and the probability of the next word is predicted as:

x0t+1 ⇠ softmax(Wx0 tanh(Wf 0 [ḡt ,rt ])) (4.15)

where W s and V 0 are all weight parameters.

Optimization The training objective of the generative neural network (i.e. maximizing

the reconstruction likelihood for meaning-preserving logical forms) is given in Equation

(4.8). Parameters of the neural network include those of the semantic parser (denoted
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by q) and the inverse parser (denoted by f). In order to compute Equation (4.8), the

semantic parser first computes q(l|x), where logical forms l are beam searched from

this distribution. The logical form is fed as the input to the inverse parser to compute

p(x|l).
Differentiating Equation (4.8) with respect to f, we obtain the gradient as:

∂L(x)
∂f

= Eq(l|x)
∂ log p(x|l)

∂f
(4.16)

and the gradient with respect to q is computed as:

∂L(x)
∂q

= Eq(l|x)[(log p(x|l)� logq(l|x))⇥ ∂ logq(l|x)
∂q

] (4.17)

Both gradients involve expectations Eq(l|x) which we estimate with beam-searched

logical forms l. They are from the distribution q(l|x) computed by the semantic parser.

4.3.3 Scheduled Training

The addition of the inverse parser for removing spurious logical forms, the entire

semantic parsing system consists of three components: a parser that generates a logical

forms from an utterance, a ranker that measures the likelihood of the logical form

executing to the correct result, and an inverse parser that scores how the logical forms

are meaning-preserving (i.e., by reconstruction likelihood). We propose to a scheduled

training scheme to balance the two objectives.

Stage 1 : At the beginning of training when all model parameters are far from

optimal, we train only the parser and the ranker: the parser generates a list of candidate

logical forms, from which we find consistent ones and update both the parser and the

ranker.

Stage 2 : We turn on the inverse parser and update all three components in one

epoch. However, the reconstruction loss is only used to update the inverse parser and

we prevent it from back-propagating to the semantic parser. The reason is that at this

point, the parameters of the inverse parser are sub-optimal and we cannot obtain an

accurate approximation of the reconstruction loss.

Stage 3 : We allow the reconstruction loss to back-propagate to the parser, and all

three components are updated normally. At this point, the two training objectives are

both enabled completely: maximizing the likelihood of consistent logical forms and

maximizing the reconstruction likelihood.
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4.3.4 Neural Lexicon Encoding

In this section we propose to further improve the parsing performance by encoding

a lexicon. A lexicon, which covers mappings from knowledge base relations and

entities to natural language phrases, is widely used in conventional chart-based parsers

(Berant et al., 2013b; Reddy et al., 2014). The lexicon is either hard-coded or learned

Krishnamurthy (2016). For example, from a lexicon we know that the president of is

mapped to the predicate president of. We show here how a lexicon can be used to

benefit a neural semantic parser.

The central idea is that each relation or entity can be considered as a single-

node tree-structured logical form. We can therefore pretrain the semantic parser (and

the inverse parser) with these basic logical form-natural language phrase pairs. The

synthetic data act as important prior knowledge to initialize the distribution q(y|x)
and p(x|y). With pre-trained word embeddings capturing linguistic regularities on the

natural language side, we also expect the approach to help the neural model generalize

to unseen natural language phrases quickly. We will experimentally validate the effectiveness

of this approach.

4.3.5 Experiments

In this section we present a series of experiments conducted to evaluate the augmented

weakly-supervised neural semantic parser. We evaluated our model on three Freebase

datasets used earlier: WEBQUESTIONS, GRAPHQUESTIONS and SPADES.

We follow exactly the same setup used in Section 4.1.3. Across training regimes,

the dimensions of word vector, logical form token vector, and LSTM hidden states (for

the semantic parser and the inverse parser) are 50, 50, and 150, respectively. Word

embeddings were initialized with Glove embeddings (Pennington et al., 2014). All

other embeddings were randomly initialized. We used one LSTM layer in forward and

backward directions. Dropout was used before the softmax activation. The dropout

rate was set to 0.5. Finally, momentum SGD (Sutskever et al., 2013) was used as the

optimization method to update the parameters of the model. Entity linking has been

performed following the same procedures described previously.

We list a few variants of our model to study the impact of each component or

method in a controlled experimental setup. We primarily consider the vanilla neural

parser-ranker system (see Section 4.1, denoted by TNSP). The parser is trained to

maximize the likelihood of consistent logical forms. We then compare it with the
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Models F1

Berant et al. (2013a) 35.7

Berant and Liang (2014) 39.9

Berant and Liang (2015) 49.7

Reddy et al. (2016) 50.3

Yao and Van Durme (2014) 33.0

Bast and Haussmann (2015) 49.4

Bordes et al. (2014) 39.2

Dong et al. (2015) 40.8

Yih et al. (2015) 52.5

Xu et al. (2016) 53.3

TNSP 50.1

+ GRANKER 50.2

+ lexicon encoding on GRANKER 51.7

+ lexicon encoding on parser and GRANKER 52.5

Table 4.5: WEBQUESTIONS results for the augmented TNSP.

system augmented with a generative ranker (denoted by GRANKER), introducing a

second objective to maximize the reconstruction likelihood. Finally, we study the

impact of neural lexicon encoding when it is used for the generative ranker, and also

when it is used for the entire system.

Experimental results on WEBQUESTIONS are shown in Table 4.5. We compare

the performance of the TNSP with previous work, including conventional chart-based

semantic parsing models (e.g., Berant et al. (2013a)), information extraction models

(e.g., Yao and Van Durme (2014) ), and more recent neural question-answering models

(e.g., Dong et al. (2015)). The neural models do not generate logical forms but instead

build a differentiable network to solve the question-answering task.

As the results reveal, the vanilla TNSP outperforms the majority of previous work,

especially those with chart-based semantic parsers. The results suggest that neural

networks are powerful tools of generating candidate logical forms in the weakly-

supervised setting, due to its ability of encoding and utilizing sentential context and

generation history. Comparing among various TNSP variants, the addition of a inverse

parser only results in marginal gains. However, with the neural lexicon encoding
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Models F1

SEMPRE (Berant et al., 2013a) 10.80

PARASEMPRE (Berant and Liang, 2014) 12.79

JACANA (Yao and Van Durme, 2014) 5.08

UDEPLAMBDA (Reddy et al., 2017) 17.70

TNSP 17.30

+ GRANKER 17.38

+ lexicon encoding on GRANKER 17.67

+ lexicon encoding on parser and GRANKER 18.22

Table 4.6: GRAPHQUESTIONS results for the augmented TNSP.

Models F1

Unsupervised CCG (Bisk et al., 2016) 24.8

Semi-supervised CCG (Bisk et al., 2016) 28.4

Supervised CCG (Bisk et al., 2016) 30.9

Rule-based system (Bisk et al., 2016) 31.4

Memory networks (Das et al., 2017) 39.9

TNSP 32.4

+ GRANKER 33.1

+ lexicon encoding on GRANKER 35.5

+ lexicon encoding on parser and GRANKER 37.6

Table 4.7: SPADES results for the augmented TNSP.

applied to the inverse parser, we are able to improve the results considerably. We

hypothesize the reason is because the inverse parser adopts an unsupervised training

objective, which could benefit a lot from prior domain-specific knowledge used to

initialize its parameters. When neural lexicon encoding is applied to the semantic

parser as well, the system performance can be further improved. In fact, the only work

we cannot beat is that of Xu et al. (2016), who use external Wikipedia resources to

prune out erroneous candidate answers.

Tables 4.6 and 4.7 present our results on the GRAPHQUESTIONS and SPADES

datasets, respectively. Comparison systems for GRAPHQUESTIONS include two chart-

based semantic parsers (Berant et al., 2013a; Berant and Liang, 2014), an information
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Utterance: which baseball teams were coached by dave eiland

Logical forms preference before and after augmentation:

baseball.batting statistics.player:baseball.batting statistics.team(ent.m.0c0x6v)

baseball.historical coaching tenure.baseball coach:baseball.historical coaching tenure.baseball team(ent.m.0c0x6v)

Utterance: who are coca-cola’s endorsers

Logical forms for comparison:

food.nutrition fact.food:food.nutrition fact.nutrient(ent.m.01yvs)

business.product endorsement.product:business.product endorsement.endorser(ent.m.01yvs)

Utterance: what are the aircraft models that are comparable to airbus 380

Logical forms for comparison:

aviation.aviation incident aircraft relationship.flight destination:aviation.aviation incident aircraft relatio

-nship.aircraft model(ent.m.0qn2v)

aviation.comparable aircraft relationship(ent.m.018rl2)

Table 4.8: Comparison between logical forms preferred by the TNSP before and after

augmentation. Spurious logical forms (red color) receive higher scores than the

semantically-correct counterparts (blue color). The scores of these spurious logical

forms become lower than the counterparts in the augmented TNSP.

extraction model (Yao and Van Durme, 2014), and finally a model based on universal

dependency to logical form conversion (Reddy et al., 2017). For SPADES, we compare

with the method of Bisk et al. (2016) which parses an utterance into a syntactic representation

and then grounded to Freebase; and also Das et al. (2017) who employ memory networks

and external text resources. On both datasets, we observe similar trends as in the

WEBQUESTIONS dataset. The best performing TNSP variant outperforms almost all

previous work.

One claim we made about the extended TNSP is that it reduces the impact of

spurious logical forms during training. Table 4.8 highlights examples of spurious

logical form compared to more semantically-correct counterparts. These spurious

logical forms are assigned higher scores in the vanilla TNSP, but lower scores in the

extended TNSP.
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4.3.6 Discussion

The vanilla neural parser-ranker introduced in Section 4.1 is optimized with consistent

logical forms which lead to correct denotations. Although it achieved competitive

results compared to chart-based parsers, training of the model can be misled by spurious

logical forms. The introduction of the inverse parser aims to alleviate the problem

by scoring how a logical form reflects the utterance semantics. Although the inverse

parser is not directly used to rank logical forms at test time, the training objective

it adopts encourages the parser to generate meaning-preserving logical forms with

higher probability. These probabilities are used as features in the log-linear ranker, and

therefore the inverse parser implicitly affects ranking results. However, it should be

noted that the unsupervised training objective is relatively difficult to optimize, since

there are no constraints to regularize the latent logical forms. This motivates us to

propose a schedule training regime. We see from the results that when trained properly,

the inverse parser and the unsupervised objective indeed bring gains. Moreover, the

neural lexicon encoding method we applied essentially produces synthetic data to

further regularize the latent space. With pretrained word embeddings capturing phrase

similarities, the method also helps the parser to generalize to unseen phrases quickly.

For example, by encoding the mapping between the natural language phrase locate

in and the Freebase predicate fb:location.location.containedby, the parser can

potentially link a new phrase located at to the same predicate.

4.4 Summary

In this chapter we presented a weakly-supervised neural semantic parsing framework.

The framework primarily consists of a neural parser and a log linear ranker. The neural

parser is essentially the model presented in Chapter 3 and the only difference here is

that it generates a list of candidate logical forms, instead of the most likely logical

form. These candidates are subsequently ranked by the log linear model, which can

leverage global features defined over utterance-logical form pairs. Experiments on

question answering datasets reveal the effectiveness of the framework, compared to

conventional weakly-supervised semantic parsers.

To further enhance the scalability of the approach, we move on to distant supervision,

where utterance-denotation pairs are artificially generated from entity-recognized declarative

sentences and a knowledge base. The approach shows promise in improving a practical
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question-answering system, but also reveals a performance bottleneck. This is possibly

due to the distributional mismatch between artificial data and real questions asked by

humans. Future work could focus on better question generation modules to reduce the

mismatch.

Finally, we tackled a particular challenge within weakly supervised semantic parsing—

the search of candidate logical forms which involve a certain degree of spuriousness.

Our solution is based on the fact that correct logical forms should have higher likelihood

of reconstructing their utterances, compared to spurious logical forms which coincidentally

execute to the correct denotation. We introduces another ranking component (i.e., an

inverse parser) to the system for scoring the reconstruction likelihood. Furthermore,

we propose a schedule training regime that balances the impact of the new ranking

component against the old one. We also introduced a neural lexicon encoding approach

to inject prior domain-specific knowledge into neural parameters. We adopted a controlled

experimental setup and presented improved results on the question answering datasets.

Compared to the fully-supervised method described in Chapter 3, the weakly-

supervised setting is more scalable since training data is easier to collect. As a trade-

off, training and optimization under weak signals become more challenging. In the

next chapter, we look at a more practical side of neural semantic parsing and attempt

to directly reduce the annotation burden of quickly eliciting utterance-logical pairs.

This enables us to quickly engineer a neural semantic parser without challenges in

training and optimization.



Chapter 5

Building a Neural Semantic Parser

from a Domain Ontology

In the previous chapter, we explored a weakly-supervised approach which allows us to

train the neural semantic parser with utterance-denotation pairs. While this setting can

potentially scale neural semantic parsing to large and open domains, it introduces new

challenges regarding training and optimization, since logical forms are latent and incur

a large search space. In this chapter, we investigate another approach which directly

reduces the data collection burden for utterance-logical form pairs. It offers a more

practical solution to quickly building a neural semantic parser for close domains.

As mentioned earlier, the primary challenge of labeling an utterance with logical

form is that it requires expert knowledge of the underlying semantic formalism. Annotators

need to be careful enough to ensure the logical form is syntactically and semantically

valid. Moreover, a general challenge is collecting semantic parsing data in any format

is to ensure the utterances have a broad coverage. These utterances are usually human

generated, and could have a limited coverage for domains with a large or dynamic

ontology.

To overcome these challenges, we build on the work of Wang et al. (2015) an

interface for collecting utterance-logical forms, which sidesteps the difficulty of creating

utterances and annotating logical forms. The approach inversely starts from the logical

form space, which computers can understand and explore. We use a grammar to

generate logical forms paired with formal meaning descriptions, which human can

understand and computers can process. These formal descriptions are in the form

of natural language templates, where each template corresponds to a decomposed

fragment of the logical form. The templates can be instantiated and combined to

61
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describe complex human intentions. After the templates are generated, we ask annotators

to summarize them into natural utterances, thereby obtaining utterance-logical form

pairs. The method is discussed in Section 5.1.

A modeling advantage of the proposed data collection method is that it caches the

sequence of grammar rules applied to derive a logical form, in the form of templates.

This enables us to extend the neural semantic parser described in Chapter 3 to handle

arbitrary non-recursive meaning representations: the parser is now fully-supervised

and trained to predict the derivation tree (i.e., rules applied in an order) of the logical

form, which has recursive structures. We explain the modeling details in Section 5.2.

We adopt our data elicitation framework to collect a dataset of 6 domains consisting

of 7,708 utterance-logical form pairs and test our semantic parser on it (Section 5.3).

We provide discussions of our approach in Section 5.4.

5.1 Data Collection Method

5.1.1 Overview

Our data collection method builds on Wang et al. (2015) who advocate crowd-sourcing

as a means of mitigating the paucity of training data for new domains. The basic

idea is to use a synchronous grammar to generate logical forms paired with artificial

utterances which crowdworkers are asked to paraphrase. Their method sidesteps the

difficulty of annotating logical forms directly, while being able to obtain semantic

parsing data with a broad coverage. For example, the logical form argmin(food type(Thai

food), distance) is deterministically mapped to “restaurants with minimum distance

with food type thai”, which will be later paraphrased by crowdworkers into more

naturally sounding English (e.g., “nearest restaurants serving thai food”). Since paraphrasing

is much easier than annotating logical forms, the method allows us to obtain semantic

parsing data accurately and efficiently. However, the readability of these artificial

utterances decreases when the complexity of the querying task and its logical form

increases. Take the following artificial sentence as an example: “find the restaurants

that serve food type of kfc which has minimum price”. The artificial sentence is mapped

from a logical form with compositional depth 3 and it is rather difficult to interpret due

to the ambiguity caused by propositional attachment: it is unclear if “has minimum

price” is used to modify kfc, food or restaurants. Therefore, the approach primarily

targets at utterances exhibiting shallow compositionality often with two predicates and
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entities (Wang et al., 2015).

Our first contribution is to extend the approach of Wang et al. (2015) to handle

more complicated querying tasks which involve complex human intentions. Instead

of representing a logical form with a single artificial sentence, our key insight is to

represent it as a sequence of templates where each template corresponds to a fragment

of the logical form. So the utterance argmin(food type(Thai food), distance) would

be represented with the templates “Result1 = find the [restaurants] where [food type]

is [thai]” and “Result2 = find [Result1] with smallest [distance]”. Iyyer et al. (2017)

show that when expressing a complex querying task, users often employ a set of inter-

related short sentences; such decomposed utterances can potentially handle higher

levels of compositionality. Since templates correspond to specific aspects of the logical

form, they are easier to understand by crowdworkers than a more elaborate auto-

generated utterance representing the entire logical form. Thus the data collection task

is formulated as a task of summarizing templates into natural utterances.

Our method supports two modes of data elicitation, striking a balance between

efficiency and flexibility (see Figure 5.1). In the static mode, our framework first

generates a logical form in the backend, and then looks up and fills in natural language

templates corresponding to the rules used to derive the logical form. Annotators are

then shown these filled templates and are asked to write down a natural language

utterance that summarizes the querying task. In the dynamic mode annotators are given

more flexibility: they can select the templates, fill them, and produce a valid utterance.

This mode is designed for domain-specific labelers to use as an annotation tool. It

gives them freedom to create utterances that can be anticipated in a given domain.

5.1.2 Logical Form Components

Our approach follows Wang et al. (2015) in that it decomposes a logical form into

various constructs. The decomposition allows us to builds a program which generates

meaning representations with broad coverage; and explicitly model the generation

process during parsing. Throughout this chapter, we exemplify our approach with

a database querying task, similar to the previous example (e.g., “nearest restaurants

serving thai food”). All meaning representations are constructed with lambda calculus

representing rules and variables in a computer program that queries a database.

The first construct of logical forms is a class of domain-general rules which stems

from the semantic formalism (e.g., lambda calculus) used by the semantic parser.
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Templates Domain

f ind all restaurants price rating opens now? . . .

f ind o f k f c 5 yes . . .

count number o f elements in rivers 3 no . . .

. . . . . . . . . . . . . . .

↓

static mode

(done by framework) select & fill in (done by annotator)

dynamic mode

↓

Result1 = f ind all restaurants

Result2 = f ind all Result1 whereprice rating is > 5

Result3 = count number o f elements in Result2⏐
⏐
⏐
"

summarize (done by annotator)

How many restaurants have a price rating above 5?
⏐
⏐
⏐
"

Train a neural decomposable parser

Figure 5.1: Building a single-turn semantic parser from scratch on new domains.

Table 5.1 shows the domain-general rules represented with lambda expressions in the

language. They specify various functionalities such as looking up a column in the

database, counting, aggregation, and filtering by condition. These rules are generic

across domains, in the scope of querying a database.

The second construct of logical forms is the class of domain-specific rules which

generate domain-specific predicates or entities. Table 5.2 shows a list of predicates and

entities represented as variables in the language. They are examples from a restaurant

domain, which covers binary predicates for properties (e.g., custom rating), unary

predicates for assertions (e.g., open now), and entities (e.g., restaurant.kfc). These

aspects pertain to a domain-specific ontology.

5.1.3 Annotation Modes

The central idea of the data elicitation framework is to map each meaning representation

to an artificial description, which is incrementally accomplished by mapping derivation

rules of the meaning representation to natural language.
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Category Domain-general rules Description and evaluation

LookupKey ls:(lookupKey (var s)) Looks for the entire set of s

LookupValue lpls:(lookupValue (var s) (var p)) Looks for specific property p of entity s

Filter(property) lslplv:(filter (var s) (var p) = (var v)) Looks for subset of s whose property p equates to some
value v

Filter(assertion) lslp:(filter (var s) (var p) = true) Looks for subset of s which satisfies condition p

Count ls:(size (var s)) Computes the total number of elements in the set s

Sum ls:(sum (var s)) Computes the total sum of numeric elements in the set s

Comparative (<) lslplv:(filter (var s) (var p) < (var v)) Looks for subset of s whose numeric property p is smaller
than some numeric value v

Comparative () lslplv:(filter (var s) (var p)  (var v)) Looks for subset of s whose numeric property p is smaller
than or equal to some numeric value v

Comparative (>) lslplv:(filter (var s) (var p) > (var v)) Looks for subset of s whose numeric property p is larger
than some numeric value v

Comparative (�) lslplv:(filter (var s) (var p) � (var v)) Looks for subset of s whose numeric property p is larger
than or equal to some numeric value v

CountComparative (<) lslplv:((var s) (size (var p)) < (var v)) Looks for subset of s where the cardinality of property p

is smaller than some numeric value v

CountComparative () lslplv:((var s) (size (var p))  (var v)) Looks for subset of s where cardinality of property p is
smaller than or equal to some numeric value v

CountComparative (>) lslplv:((var s) (size (var p)) > (var v)) Looks for subset of s where cardinality of property p is
larger than some numeric value v

CountComparative (�) lslplv:((var s) (size (var p)) � (var v)) Looks for subset of s where cardinality of property p is
larger than or equal to some numeric value v

Superlative (min) lslp:((var s) argmin (var p)) Looks for subset of s whose numeric property p is the
smallest

Superlative (max) lslp:((var s) argmax (var p)) Looks for subset of s whose numeric property p is the
largest

CountSuperlative (min) lslp:((var s) argmin (size (var p))) Looks for subset of s where cardinality of property p is the
smallest

CountSuperlative

(max)
lslp:((var s) argmax (size (var p))) Looks for subset of s where cardinality of property p is the

largest

Table 5.1: Domain-general rules and their descriptions used to define meaning

representations in our experiments

For domain-general rules, our framework maps them into natural language templates

with missing entries. Each template specifies the functionality of a rule, while missing

entries specify the variables which the rule expects. Table 5.3 displays the full collection

of templates for the domain-general rules we used to query a database. These templates

are described in such a way that can be understood by annotators who have no knowledge

of the logical language. Different from more natural descriptions shown in Table 5.1,

templates are precise formal descriptions in a fixed format which is human readable

and also computer processable.

Domain-specific variables are mapped to natural language phrases with a lexicon

specified by the domain manager. This lexicon is the only resource we ask domain



66 Chapter 5. Building a Neural Semantic Parser from a Domain Ontology

Category Domain-specific predicates and entities Description

BinaryPredicate

custom rating Overall rating from customers

price rating Price rating from customers

distance Distance of the restaurant

num reviews Number of reviews from customers

location Location of the restaurant

cuisine Type of food served by the restaurant

open time Open time of the restaurant

UnaryPredicate

open now Is the restaurant is open now?

take away Does the restaurant offer take-away?

reservation Does the restaurant accept reservations?

credit card Does the restaurant accept credit cards for payment?

waiter Does the restaurant have waiter service?

delivery Does the restaurant offer delivery?

kids Is the restaurant suitable for kids?

groups Is the restaurant suitable for groups?

Entity restaurant.kfc KFC

location.oxford street Oxford Street

Table 5.2: Domain-specific predicates and entities from a restaurant domain, covering

binary predicates (properties), unary predicates (assertions) and entities.

managers to provide, for the purpose of describing the domain ontology. Note that

natural language descriptions are important in cases where domain-specific predicates

or entities are not verbalized (for example a predicate may be simply represented as

an index m.001 in the database). Such descriptions must be provided to annotators to

allow for basic understanding, to enable the paraphrasing task. However, we do not

use the lexicon for building a neural semantic parser in this chapter. Table 5.4 displays

a lexicon for the restaurant domain. The natural language descriptions of predicates or

entities are used to instantiate templates.

As shown in Figure 5.1 our framework supports two modes of data collection.

Examples of the two modes are shown in Tables 5.5 and 5.6, respectively.

Static Mode Once a domain manager specifies the necessary domain-specific information

(e.g., restaurant names and properties), our framework obtains utterance-logical form

pairs with the following method:

1. We use a context-free grammar to generate logical forms by sampling domain-
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Category Natural language templates

LookupKey find all of $s

LookupValue find $p of $s

Filter(property) find $s where $p is $v

Filter(assertion) find $s which satisfies $p

Count count number of elements in $s

Sum sum all elements in $s

Comparative(<) find $s with $p < $v

Comparative(>) find $s with $p > $v

Comparative() find $s with $p  $v

Comparative(�) find $s with $p � $v

CountComparative(<) find $s with number of $p < $v

CountComparative(>) find $s with number of $p > $v

CountComparative() find $s with number of $p  $v

CountComparative(�) find $s with number of $p � $v

Superlative(min) find $s with smallest $p

Superlative(max) find $s with largest $p

CountSuperlative(min) find $s with smallest number of $p

CountSuperlative(max) find $s with largest number of $p

Table 5.3: Domain-general rules are associated with natural language templates

specified by our framework.



68 Chapter 5. Building a Neural Semantic Parser from a Domain Ontology

Predicates/entities from database Natural language phrase

custom rating customer rating

price rating price rating

distance distance

num reviews number of customer reviews

location location

cuisine cuisine

open time opening time

open now opens now

take away offers take away

reservation takes reservation

credit card accepts credit card

waiter has waiter service

delivery offers delivery

kids suitable for kids

groups suitable for groups

restaurant.kfc KFC

location.oxford street Oxford Street

Table 5.4: Examples of the lexicon for the restaurant domain.

general and specific rules. The generation is performed in a bottom-up manner,

so that larger pieces of logical forms can be constructed from smaller ones. The

application of each domain-general rule takes as arguments an expected amount

of domain-specific variables or smaller logical forms, and results in a new piece

of meaning.

Table 5.5 shows an example of the generation process. We use grammar constrains

to ensure that all logical forms constructed bottom-up are always syntactically

valid (i.e. variables are type-checked). and semantically correct (i.e., no rules

logically entail or contradict with each other). For example, if the previous

logical form applies a Count rule which returns a number, the next rule cannot

be LookupKey since the expected argument is a database column instead of a

number. If a Filter rule is applied to include only restaurants within 500

meters, it does not make sense to use a subsequent Filter rule to look for

restaurants which are more than 1 kilometers away.

2. For each logical form fragment in the bottom-up derivation, we look up the

corresponding template underlying the domain-general rule that is used to construct
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it. The template has missing entries, which are instantiated with domain-specific

predicates, entities or referent to other templates. In the end, we obtain a sequence

of instantiated templates that describe the task underlying the final logical form.

3. The instantiated templates are displayed to crowdworkers, who are asked to

summarize the task with an utterance. The utterance does not need to be a single

sentence; it can consist of a few sentences or clauses. We set no restriction to

the format of expression. As a result, we collect utterances paired with logical

forms.

Dynamic Mode The dynamic mode offers annotators the flexibility to create logical

forms on their own. We envisage the primary users of our framework in this mode

being professional domain annotators who have a better understanding of (or can

devote more time to) the task. Query-logical form pairs are collected as follows:

1. The framework displays all available templates and a table containing domain

information to the annotator. The table includes natural language descriptions of

all available predicates. However, the list of entities need not be exhaustive, since

it is straightforward to apply entity replacement (for entities of the same type)

to construct more utterance-logical forms from a set of base utterance-logical

forms.

2. The annotator manually selects and fills in a sequence of templates to come up

with a querying task. In this process, logical rules are applied recursively at the

back-end to construct the final logical form.

3. The annotator writes down a natural summary of the querying task and obtains

an utterance-logical form pair.

The two modes of annotation allow to trade efficiency with flexibility. The static

mode only requires annotators to summarize a collection of mature templates to create

datasets quickly. The dynamic mode is an annotation tool which offers annotators the

flexibility to generate their own querying tasks.

5.2 Decomposable Neural Semantic Parsing

Another advantage of our data collection method stems from the fact that it caches

the sequence of logical rules used to obtain a logical form; each rule corresponds to
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1. Bottom-up construction of meaning representations (done by framework)

The first piece of meaning representation is constructed with the domain-general rule:
ls:(lookupKey (var s))

and the domain-specific variable:
type.restaurant

By applying the domain-general rule to the variable, we get the first piece of meaning representation
Result1=(lookupKey (type.restaurant))

The second piece of meaning representation is constructed with the domain-general rule:
lslplv:(filter (var s) (var p) = (var v))

and the domain-specific and coreferential variables:
Result1, rel.cuisine, cuisine.thai

By applying the domain-general rule to the variables, we get the second piece of meaning representation
Result2=(filter (Result1) (rel.cuisine) = (cuisine.thai))

The third piece of meaning representation is constructed with the domain-general rule:
ls:(lookupValue (var s) (var p))

and the domain-specific variables:
restaurant.kfc, rel.distance

By applying the domain-general rule to the variables, we get the third piece of meaning representation
Result3=(lookupValue (restaurant.kfc) (rel.distance))

The final piece of meaning representation is constructed with the domain-general rule:
lslplv:(filter (var s) (var p) < (var v))

and the domain-specific variables:
Result2, rel.distance, Result3

By applying the domain-general rule to the variables, we get the final piece of meaning representation
Result4=(filter (Result2) (rel.distance) < (Result3))

2. Each piece of meaning representation is converted to a canonical representation described by templates. Templates associated with domain-
general rules are instantiated with with domain-specific and coreferential variables (shown in brackets):

Result1 = find all [restaurants]
Result2 = find [Result1] where [cuisine] is [Thai]
Result3 = find [distance] of [KFC]
Result4 = find [Result2] with [distance] < [Result3]

3. The templates are displayed to the annotator, whose job is to summarize them into a pre-defined utterance:
Which restaurant has Thai food and is closer to me than KFC?

Table 5.5: An example of the static mode data collection process for a single-turn

utterance paired with meaning representations.

a decomposable fragment of the logical form. This enables us to extend the neural

semantic parser described in Chapter 3 to handle both recursive and non-recursive

meaning representations: the parser is trained fully-supervised to predict the derivation1

of the logical form, which is recursive and tree(or graph)-structured. See Figure 5.2

1A derivation refers to the sequence of logical rules applied to obtain a logical form.
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1. Instructions, templates (unfilled) from Table 5.3 and domain information (see Table 5.2) are displayed to the annotator.

2. The annotator manually selects and fills in a few templates to come up with a querying task:
Result1 = find all [restaurants]
Result2 = find [Result1] where [cuisine] is [Thai]
Result3 = find [distance] of [KFC]
Result4 = find [Result2] with [distance] < [Result3]

3. While templates are inputted, bottom-up construction of logical forms are performed at the back-end:

The first piece of meaning representation is constructed with the domain-general rule:
ls:(lookupKey (var s))

and the domain-specific variable:
type.restaurant

By applying the domain-general rule to the variable, we get the first piece of meaning representation
Result1=(lookupKey (type.restaurant))

The second piece of meaning representation is constructed with the domain-general rule:
lslplv:(filter (var s) (var p) = (var v))

and the domain-specific and coreferential variables:
Result1, rel.cuisine, cuisine.thai

By applying the domain-general rule to the variables, we get the second piece of meaning representation
Result2=(filter (Result1) (rel.cuisine) = (cuisine.thai))

The third piece of meaning representation is constructed with the domain-general rule:
ls:(lookupValue (var s) (var p))

and the domain-specific variables:
restaurant.kfc, rel.distance

By applying the domain-general rule to the variables, we get the third piece of meaning representation
Result3=(lookupValue (restaurant.kfc) (rel.distance))

The final piece of meaning representation is constructed with the domain-general rule:
lslplv:(filter (var s) (var p) < (var v))

and the domain-specific variables:
Result2, rel.distance, Result3

By applying the domain-general rule to the variables, we get the final piece of meaning representation
Result4=(filter (Result2) (rel.distance) < (Result3))

4. The annotator writes down an utterance that summarizes the querying task they have come up with:
Which restaurant has Thai food and is closer to me than KFC?

Table 5.6: An example of the dynamic mode data collection process for a single-turn

utterance paired with meaning representations.

for an example of the derivation tree.

Overview The decomposable neural semantic parser for derivation trees has a same

architecture as the parser present in Chapter 3.
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Similar to Chapter 3, we encode the input utterance with a bidirectional LSTM and

generate the derivation tree of the logical form with a stack-LSTM. In the generation

process, a sequence of logical rules is predicted following a canonical order. Two

specific modeling choices we adopt in the chapter is top-down, pre-order generation

and soft attention-based prediction due to their superior performance in Chapter 3.

Other variants of the semantic parser presented in Chapter 3 can be applied too.

We reply on the reduce mechanism of stack-LSTM to build larger logical forms

from smaller ones. reduce essentially shows when a subtree generation is completed.

When reduce is called, we apply a beta reduction to the domain general rule represented

by the root of the subtree. In this way, the final logical form can be built recursively.

As an example of the restaurant domain, the space of all logical rules consists of the

general rules in Table 5.1 and the domain-specific ones in Table 5.2. For simplicity, we

denote each rule with a category name as shown in the tables. For domain-specific

rules, we first predict their general category (binary predicate, unary predicate, or

entity) and then the specific predicate or entity choice (with different neural network

parameters). The resulting space of rule predictions is
⇥
LookupKey, LookupValue,

Filter, Count, Sum, Comparative, CountComparative, Superlative, CountSuperlative,

BinaryPredicate, UnaryPredicate, Entity
⇤
. The derivation tree for the logical form

(rendered in red) in Table 5.5 is shown in Figure 5.2. This structure is similar to a

FunQL logical form. For completion of the presentation, we provide details of the

neural semantic parser as follows.

Encoder We encode utterance x = (x1, · · · ,xn) with a bidirectional LSTM encoder,

into a list of token representations [h1, · · · ,hn]. Each representation is the concatenation

of the corresponding forward and backward LSTM states.

Decoder The derivation tree of the logical form is generated with a stack-LSTM

decoder simulating a transition sytem. As shown in Figure 5.2, non-terminal nodes of

the derivation tree are domain-general rules, while terminal nodes are domain-specific

ones. When a non-terminal or terminal rule yt is newly predicted, the stack-LSTM

state, denoted by gt , is updated from its older state gt�1 as an ordinary LSTM:

gt = LSTM(yt ,gt�1) (5.1)

The new state is additionally pushed onto the stack marking whether it corresponds to

a non-terminal or terminal.
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Count

Filter(property)

cuisine.Thairel.cuisineComparative(<)

num.500rel.distanceLookupKey

type.restaurant

Figure 5.2: Derivation tree for the logical form (shown in red) from Table 5.5. Domain-

general rules are represented as non-terminal nodes, using the abbreviations shown

in Table 5.1. For example, Count refers to ls:(call size (var s)). Domain-specific

aspects are represent as terminal nodes.

The generation of the tree nodes is performed in top-down, pre-order and the model

needs to identify when the prediction of a subtree branch is completed—then a beta

reduction step should be applied to the corresponding logical rules. To achieve that,

we rely on the built-in “reduce” mechanism of stack-LSTM and incorporate Reduce as

an additional rule in the rule prediction space: When a subtree branch is “reduced” (or

completely predicted), the states of the stack-LSTM are recursively popped from the

stack until a non-terminal is encountered. This non-terminal state is popped as well,

after which the stack-LSTM reaches an intermediate state denoted by gt�1:t . At this

point, we compute the representation of the completed subtree zt as:

zt =Wz · [pz : cz] (5.2)

where pz denotes the parent (non-terminal) embedding of the subtree, and cz denotes

the average embedding of the children (terminals or already-completed subtrees). Wz

is the weight matrix. Finally, zt serves as input for updating gt�1:t to gt :

gt = LSTM(zt ,gt�1:t) (5.3)

Prediction At each time step of the decoding, the parser first predicts a rule conditioned

on the decoder state gt and the encoder states h1 · · ·hn. We apply standard soft attention

between gt and the encoder states h1 · · ·hn to compute a feature representation h̄t :

ui
t =V tanh(Whhi +Wggt) (5.4)

ai
t = softmax(ui

t) (5.5)

h̄t = Â
i

ai
thi (5.6)
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where V , Wh and Wg are all weight parameters. The prediction of the next rule yt+1 is

computed with a softmax classifier, which takes the concatenated features h̄t and gt as

input:

yt+1 ⇠ softmax(Wy tanh(Wf [h̄t ,gt ])) (5.7)

Recall that for domain-specific or terminal rules, our parser first predicts their high-

level category (binary predicate, unary predicate or entity). Only when yt+1 matches

one of the terminal categories, we further predict a fine-grained predicate or entity,

with another set of neural parameters:

yt+1 ⇠ softmax(Wy0 tanh(Wf 0 [h̄t ,gt ])) (5.8)

where Wy and Wy0 are different weight matrices.

Summary The decomposable neural semantic parser presented above generates the

derivation tree of a logical form, and builds the logical form recursively. This extends

the parser in Chapter 3 to handle both recursive and non-recursive logical forms, as

long as derivations exist. Model-wise, the decomposable neural semantic parser is

a specific variant of the parser in Chapter 3: the tree is generated in top-down and

pre-order; and soft attention is used for all predictions. Other model variants (e.g.,

bottom-up generation, hard and structured attention) described in Chapter 3 can be

transfered here to generate derivation trees, too.

5.3 Experiments

In this section, we first describe how we used our data elicitation framework to obtain

annotations for six domains in the static mode. We then discuss experiments on this

dataset with the semantic parser just described. We finally compare our framework to

Wang et al. (2015), and provide evaluation of the dynamic mode.

5.3.1 Data Collection in Static Mode

Our static-mode data collection focused on six domains, two of which relate to company

management (meeting and employees databases), two concern recommendation engines

(hotel and restaurant databases), and two target healthcare applications (disease and

medication databases).
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#rules 1 2 3 4 All
Domain Q Tp Tk WO Q Tp Tk WO Q Tp Tk WO Q Tp Tk WO Q Tp Tk WO

meeting 378 191 9.1 1.41 570 537 16.20 2.21 254 254 16.2 2.81 46 46 21.37 3.19 1,248 1,028 12.59 2.21
employees 322 240 8.96 1.34 320 319 13.47 2.95 486 486 18.2 3.66 268 268 22.37 3.12 1,396 1,313 15.79 3.12
hotel 170 146 8.99 1.91 358 542 16.86 3.64 542 542 16.86 4.11 433 433 19.89 4.05 1,503 1,479 15.87 4.05
restaurant 132 98 8.14 1.40 301 295 12.74 3.41 495 495 16.74 3.74 311 311 20.02 3.66 1,239 1,199 15.68 3.66
disease 283 212 9.3 1.29 301 455 14.23 3.52 455 455 19.49 5.65 213 213 23.95 4.48 1,252 1,176 16.68 4.48
medication 136 102 8.53 1.31 252 246 11.89 2.35 435 435 16.09 3.17 247 247 20.04 2.91 1,070 1,030 15.05 2.91

Table 5.7: Number of utterances (Q), number of templates (Tp), average number of

tokens (Tk) and token overlap between utterances and templates (WO) per domain and

overall (All).

The dataset was collected with Amazon Mechanical Turk (AMT). Figure A.1 shows

the instructions and web interface of the static mode data collection. Across domains,

the total number of querying tasks (described by templates) that the framework generated

was 7,225. These tasks were sampled randomly (without replacement) to show to

crowdworkers. Each worker saw three tasks per HIT and was paid 0.3$. After removing

repeated utterance-logical form pairs, we collected a semantic parsing dataset of 7,708

examples. The average amount of time annotators spent on each domain was three

hours. We evaluated the correctness of 100 randomly chosen utterances, and the

accuracy was 81%. We did not conduct any manual post-processing as our aim was to

simulate a real-world scenario that handles noisy data.

Table 5.7 shows the number of utterances (Q) we obtained for each domain broken

down according to the depth of compositionality. The table also provides statistics

on the number of templates (Tp) per domain, the average number of tokens (Tk)

per utterance in each domain, and the token overlap (Ov) between the utterances

and the corresponding templates. Overall, we observe that the dataset reveals a high

degree of compositionality across domains. The number of utterances collected at each

compositional level is dependent on the space of predicates in each domain. We also

see that utterance length does not vary drastically among domains even though the

average number of tokens is affected by the verbosity of entities and predicates in each

domain. We use word overlap as a measure of the amount of paraphrasing. We see

that utterances in the disease domain deviate least from their corresponding templates

while utterances in the meeting domain deviate most. This number is affected by the

degree of expert knowledge required for paraphrasing in each domain.

Table 5.8 presents examples of the utterances we elicited for the six domains
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together with their corresponding templates.

Domain Templates Query

meeting R1 = find [location] of [annual review] what location will the annual review take place

meeting R1 = find [location] of [annual review]
R2 = find all [meetings]
R3 = find [R2] where [location] is not [R1]
R4 = find [R3] with smallest number of [attendee]

which meeting is not held in the same venue as annual

review, and attracts the least amount of attendance

employees R1 = find all [employees]
R2 = find [R1] with smallest number of [projects]

which employee is assigned minimum projects

employees R1 = find all [employees]
R2 = find [R1] with [salary] < [5000]
R3 = find [R1] with [salary] > [15000]
R4 = find [R2 or R3] where [division] is [IT]

for those employees in the IT division, who are paid

less than 5000 or more than 15000

hotel R1 = find all [hotels]
R2 = find [R1] where [distance] is [300]
R3 = find [R2] which satisfies [free cancellation]

which hotel is at 300 metres and doesn’t charge a

cancellation fee

hotel R1 = find all [hotels]
R2 = find [R1] where [location] is [oxford street]
R3 = find [R2] where [room type] is [single or double]
R4 = find [R3] which satisfies [has free wifi]

which hotel in oxford has single or double room? the

hotel should has free wifi too

restaurant R1 = find all [restaurants]
R2 = find [R1] with [number of reviews] > [100]
R3 = count elements in [R2]

how many restaurants have more than 100 reviews

restaurant R1 = find all [restaurants]
R2 = find [R1] with [number of reviews] > [500]
R3 = find [R2] with largest number of [cuisine]
R4 = find [R3] which satisfies [has outdoor seatings]

for the restaurants with more than 500 reviews, look

for those with the largest variety of food, and then

those with seats outside

disease R1 = find all [diseases]
R2 = find [R1] with smallest [incubation period]
R3 = find [R2] where [symptom] is not [bleeding]
R4 = count elements in [R3]

how many diseases having the smallest incubation

period don’t result in bleeding

disease R1 = find [symptom] of [fever]
R2 = find all [diseases]
R3 = find [R2] where [symptom] is [R1]
R4 = find [R3] with largest [incubation period]

which disease has the same symptom as fever, and has

the longest incubation period

medication R1 = find all [medications]
R2 = find [R1] which satisfies [for adult only]
R3 = find [R2] where [target symptom] is [bleeding]
R4 = find [R3] where [side effect] is [headache]

what adult medications treat bleeding in exchange for

a headache

medication R1 = find all [medications]
R2 = find [R1] where [target symptom] is [headache]
R3 = find [R2] where [category] is [physician or

pharmacist]
R4 = find [R3] which satisfies [requires prescription]

find the medicine for headache, with a category of

physician or pharmacist; and the medicine requires

prescription

Table 5.8: Examples of templates (filled values shown within brackets), and elicited

utterances across six domains. R is a shorthand for Result.
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5.3.2 Semantic Parsing Results

In the process of building the above dataset, our framework cached the derivations of

logical forms (rules or templates used in sequence). This allowed us to train a neural

semantic parser that generates the logical form by following its derivation.

In our experiments, all LSTMs had one layer with 150 dimensions. The word

embedding size and the rule embedding size were set to 50. A dropout of 0.5 was

used on the input features of the softmax classifiers. Momentum SGD (Sutskever

et al., 2013) was used to update the parameters of the model. We implemented two

baselines, the first is the sequence-to-sequence (S2S) parser (Dong and Lapata, 2016;

Jia and Liang, 2016), while the second is the vanilla sequence-to-tree (S2T) parser

we presented in Chapter 3. Note that the vanilla sequence-to-tree parser generates

peripheral tree-structured outputs with transition actions (NT, TER and RED). This generation

process is interpretable for recursive logical forms whose peripheral tree structures

reveal corresponding derivations, However, it is non-interpretable for non-recursive

logical forms whose peripheral tree structures do not reveal how the logical forms are

obtained.

Model
meeting employees hotel restaurant disease medication

ExM SeM ExM SeM ExM SeM ExM SeM ExM SeM ExM SeM

S2S 37.2 43.2 14.3 17.5 24.5 31.2 21.3 29.0 16.7 23.2 15.5 16.7

S2T 41.2 46.8 21.4 28.2 31.5 43.5 25.4 35.9 22.4 34.4 28.2 33.9

S2D 45.6 54.0 27.8 35.5 39.2 52.6 47.2 49.5 26.9 44.6 35.8 46.2

Table 5.9: Performance on various domains (test set) using exact match (ExM) and

semantic match (SeM).

Table 5.9 shows results on the test set of each domain using exact match as the

evaluation metric (ExM). Our sequence-to-derivation tree model (S2D) yields substantial

gains over the baselines (S2S and S2T) across domains. However, a limitation of

exact match is that different logical forms may be equivalent to the commutativity

and associativity of rule applications (Xu et al., 2017). For example, two subsequent

Filter rules in a logical form are interchangeable. For this reason, we additionally

compute the number of logical forms that match the gold standard at the denotation

level (see SeM in Table 5.9). Again, we find that the sequence to derivation tree model

outperforms related baselines by a wide margin.
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We conducted further experiments by training a single model on data from all

domains, and testing it on the test set of each individual domain. As the results in

Table 5.10 reveal, we obtain gains for most domains on both metrics of exact and

semantic match. Our results agree with previous work (Herzig and Berant, 2017)

which improves semantic parsing accuracy by training a single sequence to sequence

model over multiple knowledge bases. Since domain-general aspects are shared, when

training across domains, the parser receives more supervision cues on discovering

these domain-general aspects from their natural language descriptions.

Domain ExM SeM

meeting (45.6) 48.8 (54.0) 56.8

employees (27.8) 31.7 (35.5) 41.4

hotel (39.2) 41.8 (52.6) 56.1

restaurant (47.2) 33.1 (49.5) 48.8

disease (26.9) 30.7 (44.6) 48.3

medication (35.8) 37.4 (46.2) 51.8

Table 5.10: Sequence-to-derivation tree model (S2D) trained on six domains and

evaluated on the test set of each domain. Results of S2D when trained and tested

on a single domain are shown in parens.

5.3.3 Comparison to Wang et al. (2015)

Our static mode is similar to Wang et al. (2015) in that we also ask crowdworkers

to paraphrase artificial expressions into natural ones. In their approach crowdworkers

paraphrase a single artificial sentence, whereas in our case they are asked to paraphrase

a sequence of templates. We directly evaluated how crowdworkers perceive our templates

compared to single sentences. For each domain we randomly sampled 24 querying

tasks described by templates (144 tasks in total) and derived the corresponding artificial

language using Wang et al. (2015)’s grammar. Artificial sentences and templates were

also paired with a natural language description (generated by us) which explained

the task (see Table 5.13 for examples). Workers were asked to rate how well the

sentence and templates corresponded to the natural language description according to

two criteria: (a) intelligibility (how easy is the artificial language to understand?) and

(b) accuracy (does it match the intention of the task?). Participants used a 1–5 rating
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scale where 1 is worst and 5 is best. We elicited 5 responses per task. Figure A.2 shows

the instructions and web interface of the comparative study.

Domain
Intelligibility Accuracy Combined

S T S T S T

meeting 3.54 3.81 3.86 4.02 3.70 3.91

employee 3.58 4.13 3.48 4.43 3.53 4.28

hotel 3.81 3.96 3.79 4.29 4.12 3.80

restaurant 3.93 4.23 3.80 3.75 3.86 4.13

disease 3.41 3.69 3.68 4.02 3.55 3.86

medication 3.83 3.97 3.83 4.40 3.83 4.19

All 3.96 3.67 3.55 4.03 3.70 4.06

Table 5.11: Comparison between artificial sentences (S; Wang et al., 2015) and

template-based approach (T). Mean ratings are shown per domain and overall.

Combined is the average of Intelligibility and Accuracy. Means are underlined if their

difference is statistically significant at p < 0.05 using a post-hoc Turk test.

Table 5.11 summarizes the mean ratings for each domain and overall. As can be

seen, our approach generally receives higher ratings for Intelligibility and Accuracy.

When both types of ratings are combined, the templates significantly outperform the

individual sentences for all domains but meetings. Table 5.12 shows a breakdown of

our results according to the depth of compositionality. Queries of depth 1 and 2 can

be easily described by one sentence, and our template-based approach has no clear

advantage over Wang et al. (2015). However, when the compositional depth increases

to 3 and 4, templates are perceived as more intelligible and accurate across domains;

all means differences for depths 3 and 4 are statistically significant (p < 0.01). Further

qualitative analysis suggests that our approach receives higher ratings in cases where

the output of the grammar from Wang et al. (2015) involves various propositional

attachment ambiguities. The ambiguities are common when the compositional depth

increases (Example 1 in Table 5.13), when the utterance contains conjunction and

disjunction (Example 2 in Table 5.13), and when a sub-utterance acts as object of

comparison in a longer utterance (Example 3 in Table 5.13).



80 Chapter 5. Building a Neural Semantic Parser from a Domain Ontology

Depth
Intelligibility Accuracy Combined

S T S T S T

1 4.00 4.29 4.05 4.29 4.03 4.26

2 4.11 4.18 4.03 4.18 4.07 4.02

3 3.61 4.09 3.60 4.01 3.58 4.01

4 3.56 4.28 3.35 4.25 3.60 4.10

Table 5.12: Comparison between artificial sentences (S; Wang et al., 2015) and

template-based approach (T) for varying compositionality depths. Mean ratings are

aggregated across domains. Combined is the average of Intelligibility and Accuracy.

Means are underlined if their difference is statistically significant at p < 0.01 using a

post-hoc Turk test.

5.3.4 Data Collection in Dynamic Mode

Next, we provide evaluation of our framework in the dynamic mode which we view as

an annotation tool for domain managers. Because it is not realistic to recruit a large

number of domain managers to participate in our evaluation, we ran this experiment

on AMT with crowdworkers who were paid more to compensate for the increased

workload. For each domain, workers were given unfilled templates and a table describing

naturalized predicates of that domain. They were also given instructions and examples

explaining how to use them. Workers were then asked to chose the templates, fill

them, and write down an utterance summarizing the task. We recruited 50 workers

for each domain (300 in total) and each was asked to complete two tasks in one HIT

worth 1$. Figure A.3 shows the instructions and web interface of the dynamic mode

data collection.

Table 5.14 shows the statistics of the data we obtained. Workers tend to use more

than 3 templates (on average) per task, and the degree of paraphrasing is increased

compared to the static mode which suggests that the dynamic mode provides more

flexibility for annotators to create data. Moreover, across domains, 90% of the logical

forms generated by AMT workers are executable. Although we envisage domain

managers as the main users of the dynamic mode, the result indicates that (with proper

instructions and examples) naive AMT workers can generate meaningful logical forms

to some extent. Inspection of the output failures revealed two common reasons. Firstly,

annotators filled in templates with wrong types. For example, one worker filled the
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Task description Our templates Wang et al. (2015)

We have a database of diseases and

would like to find diseases which

have fever as their symptom. These

diseases should be treatable with

antibiotics. Their incubation period

is longer than a day. If you have such

a disease you should see a doctor.

R1 = find the diseases whose

symptom is fever

R2= find R1 whose treatment is

antibiotics

R3= find R2 whose incubation period

is longer than a day

QR= find R3 which require to see a

doctor

diseases whose

symptom is fever

whose treatment

is aspirin whose

incubation period is

larger than a day which

require to see a doctor

We have a database of diseases

and would like to find diseases

which have fever as their symptom;

amongst them, we would like to

find those with heart disease as

complication. Finally, we want to

find all diseases that can be treated

with antibiotics.

R1= find the diseases whose symptom

is fever

R2= find the diseases whose

complication is heart disease

QR= find R1 and R2 whose treatment

is antibiotics

disease whose symptom

is fever and disease

whose complication

is heart disease whose

treatment is antibiotics

We have a database of diseases.

We would like to first find the

incubation period of fever; and

then find the diseases which have

incubation period longer than fever;

these diseases can be also treated

with antibiotics.

R1= find incubation period of fever

R2= find diseases whose incubation

period is larger than R1

QR= find R2 whose treatment is

antibiotics

diseases whose

incubation period is

larger than incubation

period of fever whose

treatment is antibiotics

Table 5.13: Templates and artificial sentences shown to AMT crowdworkers together

with task description. Examples are taken from the disease domain. R and QR are

shorthands for Result and Query Result, respectively.

LookupKey template with an entity (e.g., find all [annual review]) instead of a database

key; and another worker used Count as the first template followed by Filter, however

type constraints require Filter to take a set of entities as argument instead of a number

(as returned by Count). Secondly, annotators ignored information in the table and

created tasks using non-existing predicates. Since the logical forms can be tested for

their validity automatically, providing feedback on the fly will yield a higher percentage

of executable utterances.
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Domain Tk WO Tp Acc

meeting 16.71 2.83 3.46 0.925

employees 18.64 3.71 3.33 0.938

hotel 16.97 4.08 3.37 0.969

restaurant 17.33 3.72 3.36 0.943

disease 18.95 5.12 3.12 0.925

medication 17.25 3.26 3.15 0.989

Table 5.14: Average number of tokens (Tk), token overlap between utterances

and templates (WO), average number of templates (Tp) and proportion of parsable

templates (Acc) per domain on dynamic mode.

5.4 Summary

In this chapter we provide an end-to-end solution for building a practical neural semantic

parser for closed domains. We developed a template-based data collection framework

for utterance-logical form pairs, which starts from logical form space and formulates

the annotation task as a summarization problem. The framework supports two modes

(static vs. dynamic) that strike a balance between efficiency and flexibility. Compared

to the previous work of Wang et al. (2015), our approach can potentially handle more

complex querying tasks. Quantitative and qualitative analysis is provided to support

this argument.

The data collection framework fits seamlessly with the neural semantic parser

described in Chapter 3. More importantly, it enables us to extend the parser to handle

non-recursive logical forms, by generating their derivation trees. The final logical

forms can be recursively obtained by composing rules in the derivation. With the data

collection framework and the neural semantic parser, one can quickly build a system

to parse domain-specific utterances, involving complex human intentions, and starting

with only a domain ontology. A limitation of the approach is that it does not support

sequential input utterances, which are also common for expressing complex human

intentions. We extend our framework in handling such utterances in the next chapter.



Chapter 6

Neural Semantic Parsing for

Sequential Utterances

The bulk of existing work, including our neural semantic parser presented so far,

has focused on single-turn utterances, ignoring the fact that most natural language

interfaces receive inputs in streams. With complex intentions, users typically ask

questions or perform tasks in multiple steps, and decompose a complex utterance into

a sequence of inter-related sub-utterances (Iyyer et al., 2017). For instance, when

searching for a restaurant, a user may first ask “which restaurants serve thai food”

followed by “which ones are near me”. Even in cases where users have a well-

defined utterance in mind, it is not uncommon to ask follow-on questions, in an attempt

to refine their search or because they wish to compare different results (Moe and

Fader, 2001; Asri et al., 2017). For example, a request following the utterance “which

restaurants serve thai food” could be “of those in oxford street” and “which ones are

in bond street”. A feature of these utterances is that they exhibit context dependencies.

For example, both pronouns those and ones refer to the resultants serve thai food.

In this chapter, we extend the data collection-modeling framework described in

Chapter 5 to handle sequential utterances, which simulate a user session. We consider a

non-interactive setting which the system can present denotations to the user but cannot

generate optimum responses for user interaction. We formulate the sequential semantic

parsing task as parsing each utterance correctly and resolving co-reference between

utterances. The task is challenging due to the many different ways natural language

expresses the same information within the same utterance and across utterances. For

instance, a long utterance can be paraphrased by two short ones; and a single utterance

can exhibit arbitrary degrees of compositionality. A second challenge concerns the

83
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availability of training data.

To this end, we analyze the types of co-reference patterns commonly attested in

sequential utterances (Section 6.1), and extend the data collection method described

in Chapter 5 to crowdsource sequential utterance-logical form pairs which represent

these co-reference patterns. A context-free grammar generates co-referring logical

forms paired with sequential, artificial templates, which are then paraphrased by crowd

workers to obtain natural language utterances (Section 6.2). On the modeling side,

we decompose semantic parsing for sequential utterances into the subtasks of single

utterance parsing and co-reference prediction, each of which is accomplished by a

neural network. The model is described in Section 6.3.

We perform experiments on restaurant and hotel domains, and elicit 15,000 sessions

of utterances for each domain. We show that our neural model is able to accurately

parse sequential utterances. The overall approach allows to quickly build a neural

semantic parser for sequential utterances starting from a domain ontology.

6.1 Patterns of Sequential Utterances

Our first task is to gather sequential semantic parsing data that facilitates modeling.

Sequential utterances can potentially exhibit a rich class of co-reference phenomenon,

either explicit or implicit. However, co-reference in meaning representations is always

explicit with fixed format. We start by analyzing the co-reference patterns in meaning

representations and then proceed to collect examples reflecting these patterns.

We use an ad-hoc, inductive approach which enumerates co-reference patterns in

three consecutive meaning representations as the base cases. Complex co-reference

patterns can be constructed from the base cases. When the interpretation of meaning

representation M2 (with corresponding utterance Q2 and template R2) depends on

meaning representation M1 (with corresponding utterance Q1 and template R1), we

call M2 (and Q2, R2) the consequent, and M1 (and Q1, R1) the antecedent. Coreference

patterns in three consecutive queries are shown in Figure 6.1 and described in more

details below.

Exploitation refers to chain-structured co-reference, where the consequent of the

previous meaning representation is the antecedent of the next utterance. The user

exploits a querying task by incrementally adding constrains. As a result, the next

utterance consistently uses the result of the previous one.

Exploration refers to branch-structured co-reference, where one antecedent has
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Exploitation
Q1: restaurants in oxford street? R1 = find restaurants where location is oxford street

Q2: which cost less than 50? R2 = find [R1] where price < 50

Q3: with car parking? R3 = find [R2]which has car parking

Exploration
Q1: restaurants in oxford street Result1 = find restaurants where location is oxford street

Q2: with chinese food? R2 = find [R1] where food type is chinese

Q3: oxford street restaurants with

thai food?

R3 = find [R1] where food type is thai

Merging
Q1: find chinese restaurants. R1 = find restaurants where food type is chinese

Q2 find thai restaurants. R2 = find restaurants where food type is thai

Q3 chinese or thai restaurants with

car parking?

R2 = find [R1] or [R2] which has car parking

Unrelated
Q1: which restaurants serve chinese

food?

R1 = find restaurants where food type is chinese

Q2: those in oxford street? R2 = find [R1] where location is oxford street

Q3: which restaurants serve thai

food?

R3 = find restaurants where food type is thai

Figure 6.1: Coreference patterns in three consecutive meaning representations or

corresponding utterances. They are represented as nodes; edges are drawn between

co-referring utterances; antecedents are nodes with outgoing edges while consequents

are nodes with incoming edges.

two consequents. The user explores different options or constrains related to the same

antecedent utterance.

Merging is the inverse of exploration, where a consequent utterance has two antecedents.

The user combines two or more previous utterance results with union or intersection.

And the combined result is then used in a subsequent utterance.

Unrelated refers to two unconnected co-reference structures observed in a session.

The user specifies two different querying tasks in the same turn which are not mutually

co-referent.

We expect the four categories mentioned above to cover the majority of co-reference

patterns in sequential meaning representations. However, there exist meanings which

they fail to represent or construct. An example is the following sequential utterances:

“find restaurants in oxford street”, “find restaurants in bond street”, “which of them

serve chinese food”, and finally “how about those in oxford street”. Note that the scope
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of this chapter is to handle the “head” co-reference patterns of sequential meaning

representations, but not solving the long tails. The chapter does not aim to provide a

formalization of co-reference patterns either.

6.2 Data Collection

We extend the data collection method described in Chapter 5 to collect sequential

semantic parsing data which exhibits the above co-reference patterns. Following the

previous chapter, we assume the grammar consists of domain-general rules which

specify functionalities to query a database (Table 5.1). Each domain-general rule is

associated with a template description. Besides, the grammar includes domain-specific

rules to create domain-specific predicates or entities. We expect that a lexicon is

specified to map each predicate or entity to a natural language description (Table 5.2).

In the case of sequential semantic parsing, an additional ingredient of the grammar

includes rules generating co-reference placeholders, which establish an anaphoric link

between two pieces of logical forms (antecedents and consequents). To model co-

reference, we adopt the notion of discourse referents (DRs) and discourse entities

(DEs) from the Discourse Representation Theory (Webber, 1978; Kamp and Reyle,

2013). DRs are referential expressions appearing in utterances which denote DEs,

which are mental entities in the speaker’s model of discourse. The co-referential

placeholders imply the DEs in the antecedent and consequent refer to the same real-

world entity: the entity (or entities) obtained from the execution of the antecedent. In

corresponding utterances, the co-reference is justified by explicit or implicit occurrence

of a pronoun or the DR (e.g., a definite noun phrase) of the consequent. The main

principle in determining whether DRs co-refer is that it must be possible to infer

their relation from the dialog context alone, without using world knowledge. An

example of co-reference indicated by an explicit pronoun is: which restaurant serve

thai food followed by of those which are nearest to me; while for implicit pronoun it

is: which restaurant serve thai food followed by nearest to me; and the co-reference

example with a definite noun phrase is given by: which restaurant serve thai food

followed by thai restaurants nearest to me. The co-referential placeholders in meaning

representations indicate any of the above co-reference phenomenon happening at the

corresponding utterances. In this work, we consider three types of co-reference placeholders.

as shown in Table 6.1. They can be used in place of (type-agreed) domain-specific

entities to construct logical forms.
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ID Description

Coref Refers to a single antecedent

Union coref Refers to union of two antecedents

Intersection coref Refers to intersection of two antecedents

Table 6.1: Co-reference placeholders.

Same as in the single-turn case, at the beginning of sequential data collection,

we request a domain manager (e.g., the person maintaining a restaurant database)

to provide domain-specific details such as restaurant names and properties, and the

lexicon. After that, our method obtains sequential semantic parsing data in the following

steps (also exemplified in Table 6.2):

• As in the single-turn case, we use a context-free grammar to generate logical

forms by sampling domain-general and specific rules. The generation is performed

in a bottom-up manner, so that larger pieces of logical forms can be constructed

from smaller ones. The application of each domain-general rule takes an expected

amount of domain-specific or co-referential variables, and results in a new piece

of meaning. Different from the single-turn case, we allow each meaning representation

to be constructed with one to three domain-general rules, so as to have some

basic level of compositionality. Besides, we consider a rich class of co-reference

patterns in between logical forms.

We introduce three rules which generate different co-referential variables shown

in Table 6.1. For each co-referential variable, we additionally generate its value

by sampling from the list of previously generated logical forms. As mentioned

earlier, an index has been assigned to each logical form (e.g., Result1, Result2)

and this index is used to denote the value of a co-referential variable.

Similar to the single-turn case, we use grammar constrains to ensure that all

logical forms constructed bottom-up are always syntactically valid (i.e. variables

are type-checked). and semantically correct (i.e., no rules logically entail or

contradict with each other). For example, if the previous logical form applies a

Count rule which returns a number, the next rule cannot be LookupKey since the

expected argument is a database column instead of a number. If a Filter rule

is applied to include only restaurants within 500 meters, it does not make sense

to use a subsequent Filter rule to look for restaurants which are more than 1
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1. Bottom-up construction of meaning representations (done by framework)

The first piece of meaning representation is constructed with two domain-general rules:
ls:(lookupKey (var s))

lslplv:(filter (var s) (var p) = (var v)) with corresponding domain-specific variables:
type.restaurant rel.cuisine cuisine.thai

By applying the domain-general rule to the variable, we get:
Result1=(filter (lookupKey (type.restaurant)) (rel.cuisine) = (cuisine.thai))

The second piece of meaning representation is constructed with the domain-general rule:
ls:(lookupValue (var s) (var p))

and the domain-specific variables:
restaurant.kfc, rel.distance

By applying the domain-general rule to the variables, we get the third piece of meaning representation:
Result2=(lookupValue (restaurant.kfc) (rel.distance))

The third piece of meaning representation is constructed with the domain-general rule:
lslplv:((var s) min (var p))

and the domain-specific variables:
Result1, rel.price

By applying the domain-general rule to the variables, we get the final piece of meaning representation:
Result3=((Result1) argmin (rel.price))

The final piece of meaning representation is constructed with the domain-general rule:
lslplv:(filter (var s) (var p) < (var v))

and the domain-specific variables:
Result3, rel.distance, Result2

By applying the domain-general rule to the variables, we get the final piece of meaning representation:
Result4=(filter (Result3) (rel.distance) < (Result2))

2. Each piece of meaning representation is converted to a canonical representation described by templates. Templates associated with domain-
general rules are instantiated with with domain-specific and co-referential variables (shown in brackets):

Result1 = find [restaurants] where [cuisine] is [Thai]
Result2 = find [distance] of [KFC]
Result3 = find [Result1 with smallest ] [price rating]
Result4 = find [Result3] with [distance] < [Result2]

3. The templates are displayed to annotators, whose job is to summarize them into a pre-defined utterance:
Show me Thai restaurants.

How far is KFC?

Cheapest Thai food?

Which are closer than KFC?

Table 6.2: An example of the data collection process for sequential utterances.
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kilometers away.

In the sequential case, we use additional constrains to guarantee the co-reference

relations are valid: our method caches the n most recently generated logical

forms, their consequents and antecedents, and their return types (e.g., the return

type of a Filter is an entity set, while for Count it is a number). For the next

logical form, the grammar can sample terminal-level rules which generate co-

referential variables and their values, following one of the cases below:

1. the co-referential variable is Coref, and its value is one of the previously

generated logical forms whose denotation is type checked and has no consequents.

This results in the Exploitation pattern.

2. the co-referential variable is Coref, and its value is one of the previously

generated logical forms whose denotation is type checked and has other

consequents. This results in the Exploration pattern.

3. the co-referential variable is Union coref or Intersection coref, and

its value is constructed from two previous logical forms whose denotations

are type checked. Moreover, the two logical forms should not exhibit an

Exploitation pattern. This results in the Merging pattern.

4. there is no co-referential variable in the meaning representation. This results

in the Unrelated pattern.

• For each piece of logical form in the sequence, we retrieve the domain-general

rule it uses, and look up the corresponding template. The template has missing

entries, which are instantiated with domain-specific predicates, entities or co-

referential index.

Since each logical form may be constructed with more than one domain-general

rules, there may be a sequence of templates associated with the logical form. We

combine their templates by merging their constrains. For example, two templates

“Result1 = find [restaurants] with [distance] < [500m]”, Result2 = find [Result1]

with [price] > [50$ ] can be merged into “Result1 = find [restaurants] with

[distance] < [500m] and [price] > [50$ ]”. This ensures that every logical form

has exactly one canonical template representation which will be paraphrased by

humans.

• We display the sequence of instantiated templates to crowdworkers. Different

from the single-turn case where crowdworkers summarize all the templates into a
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single utterance, in the sequential case we ask them to paraphrase every template

into an utterance, while expressing the discourse structure of the whole task (by

using implicit or explicit co-reference). This results in a sequence of inter-related

utterances paired with logical forms.

6.3 Non-context Dependent Parsing for Sequential Utterances

On the modeling side, we decompose the sequential neural semantic parsing task into

two steps: generating underspecified logical forms (e.g., (filter (coref) (distance)

< (500))) and determining which utterances are co-referent (e.g., the value of coref

is Result1).

Generating Underspecified Logical Forms In the first step we parse every utterance

in the session into an underspecified logical form containing co-reference placeholders

(see Table 6.1). To accomplish the task we adopt the same decomposable neural

semantic parser introduced in Section 5.2, which generates the derivation tree of each

logical form. The only difference is that the terminal rules of the derivation tree

additionally include co-reference placeholders. In comparison to Section 5.2, the

prediction space of terminal rules is [BinaryPredicate, UnaryPredicate, Entity, Coref,

Union coref, Intersection coref].

Recall that our neural semantic parser consists of a bidirectional LSTM encoder for

utterance encoding and a stack-LSTM decoder that generates the derivation tree of the

output logical form. During each step of the generation process, the model first selects

a terminal or non-terminal rule, or the reduce rule which implies a beta reduction. If a

predicate or entity rule (i.e., BinaryPredicate, UnaryPredicate or Entity) is selected,

the model further predicts a specific predicate or entity choice. Similarly, if a co-

reference rule (i.e., Coref, Union coref or Intersection coref) is selected, we further

predict the detailed co-reference choice. This is accomplished with an intra-attention

network described below.

Co-reference Resolution We rely on an intra-attention network (Cheng et al., 2016;

Parikh et al., 2016) to predict the co-reference relations among utterances: given the

current utterance with the corresponding underspecified logical form (which contains
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co-reference placeholders), the network predicts which of the previous utterances it

co-refers with. Note that the number of predictions is determined by the category of

the placeholder. For the placeholder Coref, we need to select one of the previous

utterances; while for Union coref and Intersection coref, we need two previous

utterances.

We adopt a bidirectional LSTM architecture to encode each utterance similar to

the neural semantic parser described above. Specifically, utterance x of length n is

encoded with a bidirectional LSTM into a list of forward [
�!
h1, · · · ,

�!
hn] and backward

representations [
 �
h1, · · · ,

 �
hn]. We use the concatenation of

�!
hn and

 �
h1 as the overall

utterance representation, denoted by X .

Given utterance x, the previous bidirectional LSTM encoder obtains a list of forward

representations [
�!
h1, · · · ,

�!
hn], and backward representations [

 �
hn, · · · ,

 �
h1]. We use the

concatenation of
�!
hn and

 �
h1 as the utterance representation X , which is fed into the

intra-attention network. This is different from the encoder of the neural semantic

parser, which maintains a list of token representations instead of a single utterance

representation.

Given the current utterance embedding Xc and previous utterance embeddings X1, · · · ,Xc�1,

the intra-attention network computes the relation distribution between Xc and every

previous utterance in the list of [X1, · · · ,Xc�1]. This is accomplished by first computing

a score ui
c for each of the previous utterances in the list, with index i ranging from 1

to c�1:

ui
c =Wv tanh(WiXi +WX Xc) (6.1)

Then, a softmax classifier is used to yield the relational distribution:

ai
c = softmax(ui

c) (6.2)

where the softmax is taken over all the previous utterances in the list; ai
c denotes the

probability that the current utterance Xc co-refers with the ith utterance Xi. W s are

weight parameters. We then select the most probable utterance to replace Coref, or the

top two most probable utterances to construct Union coref or Intersection coref,

thus formulating the complete meaning representation.
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6.4 Context Dependent Parsing for Sequential Utterances

One should note that when parsing sequential (context-dependent) utterances, our

semantic parser presented above does not make an explicit use of context: the generation

of a co-referential placeholder (in an underspecified logical form) replies only on the

given utterance, although the placeholder’s value is predicted within the context. In

the following, we extend the semantic parser to make an explicit use of context when

parsing sequential utterances.

The central idea is to maintain a context vector for the current user session. This

vector is used as an additional feature when generating underspecified logical forms, in

the softmax classifier (Equation 3.29) that predicts transition operations (which include

those generate co-referential placeholders). To compute the context vector, we use the

same intra-attention network described in Equation 6.1. Given the current utterance

xc with representation Xc, the network computes a score ui
c for each of the previous

utterances xi, with representation Xi and the index i ranging from 1 to c�1:

ui
c =Wv tanh(WiXi +WX Xc) (6.3)

We then compute a context representation for the current utterance, denoted by X̄c

ai
c = softmax(ui

c) (6.4)

X̄c = Âai
c ⇤Xc (6.5)

The context representation X̄c is used at every time step when the decoder generates

the derivation tree of xc, by extending Equation 3.29 as:

at+1 ⇠ softmax(Woa tanh(Wf [b̄t ,st , X̄c])) (6.6)

We will experimentally verify if modeling context explicitly is useful for parsing sequential

utterances.

6.5 Experiments

In this section we conduct experiments to collect sequential semantic parsing data on

two domains, and present parsing results.
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6.5.1 Data Collection

As explained previously the dataset we collected contains four co-reference patterns

(see Figure 6.1), which are generated by a semantic grammar. For a user session, we

set the maximum exploitation depth to 5. We also restrict each turn to have at most

one pattern of exploration, merging or unrelated. These four patterns can co-exist with

exploitation, but not with each other. More complex co-reference patterns (e.g., two

explorations in the same turn) are difficult to describe in natural language; they rarely

occur in practice and therefore we do not consider them.

We elicited data for two domains, namely restaurants and hotels, using Amazon’s

Mechanical Turk (AMT). Figure A.4 shows instructions and interfaces for the data

collection task. For each domain and each pattern we generated 3,000 querying tasks

(described by templates). These tasks were sampled randomly (without replacement)

to show to crowdworkers. Each worker saw two tasks per HIT and was paid 0.2$. The

average amount of time annotators spent on each domain was three hours. Finally,

we obtained 12,000 examples for each domain. Table 6.3 shows basic statistics of

the obtained data. These include input and output vocabulary size, the number of

utterances per turn, the number of tokens per utterance, and the word overlap between

the utterance and its corresponding template. As can be seen, the data exhibits a

significant amount of paraphrasing (more than half of the tokens in each template are

paraphrased).

Hotels Restaurants

Input (utterance) vocabulary size 3,813 4,628

Output (logical form) vocabulary size 386 386

#utterances/turn 3.98 4.01

#tokens/utterance 9.30 9.11

#word overlap/utterance 4.22 4.07

Table 6.3: Statistics of the sequential utterance-logical forms.

We evaluated the correctness of 100 randomly sampled turns of utterances (covering

531 utterances in total). Amongst these, 79 turns were correct and the remaining

21 contain wrongly paraphrased utterances. The paraphrasing accuracy for all 531 utterances

was 94.4%. Perhaps unsurprisingly, we found that all mistakes workers made relate to

co-reference. The most common mistake is to ignore co-reference during paraphrasing.
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For example, instead of asking “which ones of these restaurants have thai food”, a

worker may simply write “which restaurants have thai food” which ignores previous

constraints.

Table 6.4 and 6.5 presents examples of the sequential utterances we elicited for the

hotel and restaurant domains together with their co-reference patterns and corresponding

templates.

Domain Pattern Templates Queries

hotel Exploitation R1 = find [hotels] with [price rating]  [$$]
R2 = find [R1] with number of [room type] � [4]
R3 = find [R2] which satisfies [near the sea]
R3 = find [R2] which satisfies [can be reserved]

Which hotels have a price rating of 2 dollar signs or

less?

Can you find which of these have more than 4 different

types of rooms?

Among these, which are located near the sea?

Among these, which takes reservations?

hotel Exploration R1 = find [hotels] with largest number of [customer

reviews]
R2 = find [R1] with [customer rating] � [5 stars]
R3 = find [R1] with [customer rating] � [3 stars]

Show me hotels with the largest number of customer

reviews

Which of those hotels have received a customer rating

of 5 or more stars?

Of the hotels with the largest number of reviews,

which ones have a customer rating of 3 or more stars?

hotel Merging R1 = find [hotels] with largest number of [room type]
R2 = find [R1] with [customer rating] � [5 stars]
R3 = find [R1] with [distance]  [500m]
R4 = find [R2 and R3] which satisfies [car parks]

Which hotel has the most variety of rooms?

Which of these are rated at 5 stars or more?

Which of the previous hotels are within 500 meters to

me?

Of all these hotels with 5 stars or near me, which

offers car parks?

hotel Unrelated R1 = find [hotels] with largest number of [room type]
R2 = find [R1] with smallest [price rating]
R3 = find [hotels] which satisfies [airport shuttle] and

[private bathroom]

What hotels have the largest amount of room types?

Among those, which have the smallest price rating?

Which hotels have an airport shuttle and private

bathroom?

Table 6.4: Examples of co-reference patterns, templates (filled values shown within

brackets) and elicited utterances for the hotel domain. R is a shorthand notation for

Result.

6.5.2 Semantic Parsing Results

Next, we evaluate our neural semantic parser on the collected sequential utterances.

Specifically, each utterance in a session is paired with a meaning representation which

can contain co-reference placeholders. The goal of the parser is to parse every utterance

(and predict the value of co-referential variables) in the session. We adopt the same

experimental setup as in Chapter 5. All LSTMs have one layer with 150 dimensions,

and all word and rule embeddings have size 50. A dropout of 0.5 was used on the input
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Domain Pattern Templates Queries

restaurant Exploitation R1 = find [restaurants] with smallest [price rating]
R2 = find [R1] with largest number of [food type]
R3 = find [R2] which satisfies [good for groups] and

[has waiter service]
R4 = find [R3] with [distance]  [500m]

Show me the cheapest restaurants.

Which of these have the largest variety of food?

Of these, are there any restaurants that are good for

groups and offer waiter service?

Are any of those restaurants within half a kilometer to

me?

restaurant Exploration R1 = find [restaurants] with largest [customer rating]
R2 = find [R1] with [distance]  [500m]
R3 = find [R2] where [food type] is [thai food]
R4 = find [R2] where [food type] is [american food]

Which restaurants have the largest customer ratings?

Which of these restaurant is within 500 meters?

Show me those serves Thai food?

Of the previous restaurants, find the ones which serves

American food instead.

restaurant Merging R1 = find [restaurants] where [location] is

[downtown]
R2 = find [R1] which satisfies [has breakfast]
R3 = find [R1] which satisfies [has lunch]
R4 = find [R2 and R3] with largest number of

[customer reviews]

Show me restaurants located downtown?

Which of these restaurants serve breakfast?

Which restaurants serve lunch?

Of all these restaurants with breakfast or lunch, which

have the most customer reviews?

restaurant Unrelated R1 = find [restaurants] which satisfies [can be

reserved]
R2 = find [R1] which satisfies [take credit card]
R3 = find [R2] with number of [cuisine] > [1]
R4 = find[restaurants] with smallest [price rating]
R5 = find [R4] with largest [customer rating]

which restaurants have reservations option?

which among these restaurants accept credit cards?

among these restaurants find those with multiple types

of cuisine?

which restaurants have the smallest price rating?

which among these restaurants have the largest

customer rating?

Table 6.5: Examples of co-reference patterns, templates (filled values shown within

brackets) and elicited utterances for the restaurant domain. R is a shorthand notation

for Result.

features of the softmax classifiers. We used momentum SGD (Sutskever et al., 2013)

to update model parameters. Recall that we use an intra-attention network to compute

the value of co-referential variables. This network relies on a bidirectional-LSTM to

compute sentence vectors. In our experiments, the weights of this bidirectional-LSTM

is shared with the encoder of the semantic parser (The encoder maintains a list of token

vectors instead of a single sentence vector). We compare our non-context dependent

semantic parser (S2D), and context dependent semantic parser (S2D-context) with the

sequence-to-sequence baseline (S2S).

For evaluation metrics, we primarily consider the parsing accuracy of each individual

utterance (ExM). This accuracy is first averaged within each session and then over

sessions. We additionally consider cases when different sequential utterances lead to

the same results and measure the match at the semantic or denotation level (SeM). We

also categorized the results based on data sessions involving different co-referential
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restaurant Exploitation Exploration Merging Unrelated All

ExM
S2S 46.9 46.2 38.3 38.3 42.0

S2D 72.5 67.7 53.1 54.3 60.2

S2D-context 73.6 68.1 54.6 54.9 62.4

SeM
S2S 23.8 23.2 3.1 3.8 13.1

S2D 42.5 47.1 5.7 7.0 25.1

S2D-context 42.8 47.1 5.8 7.1 25.1

hotel Exploitation Exploration Merging Unrelated All

ExM
S2S 48.3 48.2 43.6 41.5 44.5

S2D 73.8 77.8 65.4 57.2 66.9

S2D-context 73.7 78.0 65.0 59.5 67.0

SeM
S2S 24.6 19.5 6.3 4.1 13.6

S2D 43.7 56.8 11.8 6.7 29.7

S2D-context 43.6 56.8 11.8 7.1 29.8

Table 6.6: Sequential semantic parsing results on the restaurant and hotel domains.

patterns: with exploitation only, and exploitation combined with exploration/merging/unrelated.

Table 6.6 shows the semantic parsing results, which clearly reveal the advantage of

S2D over S2S. We see that the results for semantic match is rather low, indicating that

it is challenging to get all utterances in a session parsed correctly. Comparing among

various sessions, those with merging and unrelated result in the lowest accuracy. To

better understand how the model performs on exploration, merging and unrelated, we

evaluate parsing accuracy (precision, recall and F1) for specific utterances involving

these patterns.

First, for the prediction of the exploration pattern, the precision, recall and F1 are

84.4%, 73.6%, 78.6% respectively for the restaurant domain (87.7%, 71.9%, 79.0% for

the hotel domain). Second, for the prediction of the merging pattern involving union or

intersection, the precision, recall and F1 are 88.6%, 21.4% and 34.5% respectively for

the restaurant domain (94.8%, 43.2% and 59.4% for the hotel domain). The low recall

indicates that most of the union or intersection symbols in the meaning representations

are not correctly discovered. Finally, in the unrelated pattern, we have two independent

sets of querying tasks in one turn. We predict how the model does on predicting

the first utterance of the second querying task, which indicates the model’s ability

in detecting goal shift. As a result, the precision, recall and F1 are 81.9%, 63.8% and
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71.7% respectively for the restaurant domain (82.8%, 68.1% and 74.7% for the hotel

domain). Overall, we see that the parser does fairly well on exploitation, exploration

and unrelated, while it fails to recognize most merging patterns.

Next, we investigate if modeling context is helpful for parsing sequential utterances,

by comparing the results of non-context dependent and context dependent semantic

parsers presented in Table 6.6. We see that across different co-reference patterns,

using explicit context modeling during decoding can lead to improvements of the

sequential semantic parsing task. However, note that all gains are not large. We

think the reason is that a single utterance often provides enough clues to infer an

explicit or implicit co-reference variable. Explicit co-reference comes with indicative

words such as pronouns (e.g., “find restaurants in the oxford street?” followed by

“those with car parks?”), while in utterances with implicit co-reference the querying

object is often missing (e.g., “find restaurants in the oxford street?” followed by

“with car parks?”). It is not difficult for a non-context dependent neural network

to learn these indicative patterns of co-reference from training data. An exception

is when an utterance contains discourse referents (e.g., a definite noun phrase) for co-

reference. The discourse entities denoted by discourse referents refer to the same real

world entities as in the antecedent utterance. An example is “find restaurants in the

oxford street?” followed by “the oxford restaurants with car parks?” In this scenario,

modeling context helps the parser identify a co-referential relation in the consequent

utterance, where “oxford” refers to “oxford street” and “the oxford restaurants” refers

to the denotation of the antecedent utterance.

6.6 Summary

When expressing complex intentions, humans may either use a complete utterance at

once, or incrementally specify a sequence of inter-related utterances. It is therefore

important for neural semantic parsers to handle both types of inputs. In this chapter,

we extend the previously proposed semantic parsing framework to collect and parse

sequential utterances. The approach starts from the logical form space, and generates

inter-related logical forms containing co-reference placeholders. These logical forms

are mapped to formal descriptions and paraphrased by annotators to yield natural

utterances. With the proposed approach, one can quickly build a sequential semantic

parser for closed domains, starting with just a domain ontology.

Our work related to the previous work of Zettlemoyer and Collins (2009), who also
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design a two-stage context-dependent semantic parser that constructs logical forms

containing co-references. Different from our work, their first stage uses a probabilistic

CCG parser to generate incomplete logical forms containing co-reference while the

second stage resolves co-reference by making modifications to logical forms that depend

on the context. Besides, Artzi and Zettlemoyer (2013b) and Long et al. (2016) both

parse context-dependent instructions with chart-based semantic parsers under weak

supervision. Similar to our work, Suhr et al. (2018) proposes a context-dependent

neural semantic parser which maintains a session-level encoder updated after each

turn.

A limitation of our work is that we only simulate the non-interactive scenario where

the system does not generate natural language responses. Future work will be deployed

to study sequential semantic parsing in a conversational agent (Young et al., 2013).



Chapter 7

Conclusions

7.1 Contributions

In this thesis, we introduced a novel neural semantic parser that converts natural language

utterances to logical forms (Chapter 3). The semantic parser has the following novelties.

First, it employs a sequence-to-tree model to generate syntactically valid logical forms

following a transition system and grammar constrains. The outputs are guaranteed

to be executable. Second, the transition system integrates the generation of domain-

general and specific aspects in a unified way. Domain-general aspects are language-

dependent predicates and structures, while domain-specific aspects are relations and

entities defined by a domain ontology. This unification reduces the need of domain-

specific engineering and makes the parser applicable across domains. Third, our neural

semantic parser uses various neural attention mechanism to handle mismatches between

natural language and KB predicates—a central challenge in semantic parsing. The

attention mechanism reduces the need of lexicon learning. Experiment on the fully-

supervised GEOQUERY dataset has demonstrated the effectiveness of our neural semantic

parser.

We extended our neural semantic parser to a weakly-supervised setting within a

parser-ranker framework (Chapter 4). Weakly-supervised training data consists of

utterance-denotation pairs, which are easier to obtain than utterance-logical form pairs.

The framework we proposed combines the merits of conventional and neural semantic

parsing. We reply on the powerful neural network to generate candidate logical forms

via beam search. These candidates are then ranked based on their likelihood of executing

to the correct denotation, and their agreement with the utterance semantics. We present

a scheduled training method, and propose to use a neurally encoded lexicon to inject

99
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prior domain knowledge to the model. Experiments on three Freebase datasets demonstrate

the effectiveness of our neural semantic parser, achieving results within the state-of-

the-art range.

We also delved into a practical side of neural semantic parsing—how does one

quickly build a neural semantic parser from a domain ontology (Chapter 5 and 6). Our

approach follows and extends the previous work of Wang et al. (2015). Specifically we

focused on semantic parsing tasks involving complex human intentions, which can be

expressed by a compositional utterance or a sequence of inter-related utterances. We

first developed an interface for efficiently collecting compositional utterance-logical

form pairs as a summarization task. This is achieved by converting computer-generated

utterances to formal descriptions in the form of templates, which are summarized by

crowd workers into natural utterances. We then leveraged the data collection method to

train a neural semantic parsers which generate derivation trees for logical forms. Next,

the end-to-end system was extended to handle sequential utterances, which exhibit

contextual dependencies. In general, our approach provides an end-to-end solution for

the development of a closed-domain neural semantic parser from scratch.

7.2 Findings

In the research and development of neural semantic parsers, our findings are as follows.

Structure priors and grammar constraints are important in designing executable

neural semantic parsers As described in Chapter 3, our neural semantic parser

generates logical forms following a transition system and grammar constraints. This

ensures the generation is interpretable, and the outputs are always syntactically valid

and executable. Experiments in both fully- and weakly-supervised settings have demonstrated

the effectiveness of structure priors and grammar constraints.

Soft attention is cost-effective in neural semantic parsing In Chapter 3, we compared

soft, hard and structured attention mechanism. All attention aims to learn a mapping

between natural language and logical language. It turns out that soft attention is

the most cost-effective for downstream semantic parsing tasks. Hard and structured

attention renders training more complex but does not always leads to superior performance.
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Ranking helps improve weakly-supervised neural semantic parsing Chapter 4

presented a neural parser-ranker framework for weakly supervised semantic parsing.

We argued that it is not practical to reply solely on a neural parser to greedily decode

the best logical form, given that the parser is trained with weak signal and suffers

from the label bias issue. In comparison, the ranker can leverage global features of

utterance-logical form-denotation triplets to select the best logical form for execution.

Natural language templates act as an effective interface to present machine language

underlying complex tasks In Chapter 5 and Chapter 6, we used a template-based

approach to elicit utterance-logical form pairs. A computer program generates logical

forms which are deterministically mapped to templates and presented to humans. We

experimentally found out that in contrast to Wang et al. (2015)’s method, the readability

of templates maintains when the compositionality of the task increases. The template-

based approach also allows to elicit both single-turn and sequential utterances.

Non-context-dependent neural semantic parsers can parse sequential utterances

well In Chapter 6, we presented both non-context-dependent and context-dependent

neural semantic parsers for sequential utterances. Both can parse an utterance into a

logical form containing co-referential variables, but the former parser does not make

use of previous utterances (a.k.a, context). We experimentally found out that non-

context dependent parsing is quite effective. We hypothesize the reason is that a single

utterance often provides enough clues to infer an explicit or implicit co-reference

variable. Explicit co-reference comes with indicative words such as pronouns (e.g.,

“find restaurants in the oxford street?” followed by “those with car parks?”), while in

utterances with implicit co-reference the querying object is often missing (e.g., “find

restaurants in the oxford street?” followed by “with car parks?”). It is not difficult for a

non-context dependent neural network to learn these indicative patterns of co-reference

from training data. An exception is when an utterance contains discourse referents

(e.g., a definite noun phrase) for co-reference. The discourse entities denoted by

discourse referents refer to the same real world entities as in the antecedent utterance.

An example is “find restaurants in the oxford street?” followed by “the oxford restaurants

with car parks?” In this scenario, modeling context may help the parser identify a co-

referential relation in the consequent utterance, where “oxford” refers to “oxford street”

and “the oxford restaurants” refers to the denotation of the antecedent utterance.
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7.3 Future Work

General-purpose Neural Semantic Parsing In this thesis we demonstrate the effectiveness

of our neural semantic parsers on domain-specific tasks. One direction of future

work is to extend the framework to handle general-purpose meaning representations,

such as the Abstract Meaning Representations (Banarescu et al., 2013), the Groningen

Meaning Bank (Bos et al., 2017) and the Alexa Meaning Representation Language

(Kollar et al., 2018). To handle them, the tree-based generation algorithm presented

in Chapter 3 should be extended to generate graphs. The new algorithm requires

additional transition actions which generate back-referencing links, similar to the co-

reference resolution presented in Chapter 6. This also leads to the question about how

to effectively use general-purpose meaning representations for domain-specific tasks.

Another question yet to be answered is how to leverage the abundant unlabeled text

data to build better general-purpose semantic parsers.

Cross-domain Neural Semantic Parsing An advantage of our modeling framework

is that we decompose logical forms into domain-general and domain-specific aspects,

but model their generation in a unified way. This characteristics allows to build a cross-

domain neural semantic parser where domain-general knowledge is shared (Herzig and

Berant, 2017). In this way, we can leverage cross-domain data to improve the model

component responsible for domain-general aspects. The more ambitious idea would

be to transfer parse structures learned in one or a few domains to another new domain

for zero-short semantic parsing (Herzig and Berant, 2018b). This alleviates the cold

start problem for new domain semantic parsing.

Data Elicitation and Augmentation Central to the success of neural networks is the

availability of a large amount of training data. Two related questions regarding neural

semantic parsing are 1) How can we obtain training data more cheaply and efficiently?

2) How can we bootstrap patterns (e.g., grammars or structures) from existing data?

Future work can be employed to investigate alternative weak and distant supervision

signals, and automatic question generation techniques like back-translation (Sennrich

et al., 2016) and generative neural networks (Guu et al., 2018; Yin et al., 2018).

Semantic Parsing in Conversational Agents Context plays an important role in

understanding user queries. In Chapter 6, we developed a neural semantic parser for

context-dependent utterances. However, we adopted a relatively simple task setup
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where a user continuously generates utterances based on intermediate denotations. But

the system does not need to consider optimum strategies to interact with the user. As

future work, we are interested in designing task-oriented conversational agents with

the aid of semantic parsing techniques.





Appendix A

Amazon Mechanical Turk Interface for

Data Collection

A.1 Instructions and interface for the static mode data

collection of single-turn utterances

A.2 Instructions and interface for the comparative study

between data collected by our approach and Wang

et al. (2015).

A.3 Instructions and interface for the dynamic mode

data collection of single-turn utterances

A.4 Instructions and interface for the static mode data

collection of sequential utterances
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Instructions

Write down a question that summarizes the task (which queries the table)

You will see a table containing information about meetings (e.g., the attendees, the location of the meeting, the date, its duration).
You will also see a list of natural language queries which queries the table and produce an answer. Your job is to write down a natural
language question that summarizes the queries. We provide examples of database queries and questions below. You must read the
examples first, before doing the task.

We have a Table of meeting schedules.

Meeting Schedules

meeting attendee location date start time end time duration
is

important

weekly standup Alice central office jan 2 10 am 3 pm 5 hours no

annual review Bob green cafe jan 3 2 pm 3 pm 1 hour yes

You will be given a task that queries the table, in mutiple steps.  As an example:

Result1 = find all the meetings

Result2 = find Result1 whose date is jan 2

Result3 = find Result2 whose location is not green cafe (Result3 is the final result that we are interested in.)

 

Your job is to write down a question sentence that summarizes the task:

Example of a good solution:  Which meeting takes place in 2nd January and is not held in green cafe?

 

Example of a bad solution:  Which meeting takes place in 2nd January?

Reason: The solution that does not completely summarize the task.

 

Example of a bad solution:  Find the meeting whose date is jan 2 and location is not green cafe.

Reason: The solution copies the original text, which is not a natural question.  For example: it is natural to ask "the earliest meeting", rather than

"meeting whose start time is the smallest". You are encouraged to paraphrase the language to create real-world questions people may ask

naturally. Rich language is encouraged.

---------------------------------------------------------------------------------------------------------------------------------------------

Another example:

Result1 = find all the meetings

Result2 = find Result1 whose date is jan 2

Result3 = count the number of Result2

 

Example of a good solution:  How many meetings take place in 2nd January? 

Another solution: How many meetings are held in 2nd January?

---------------------------------------------------------------------------------------------------------------------------------------------

Now it is your turn.  Again, **you must read the good and bad solutions above**, before starting. You have 3 tasks to do before submit.

First task:

${task1}

Write down a question sentence that summarizes the task:

Figure A.1: Instructions and interface for the static mode data collection.
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Instructions

Compare  two descriptions of the same querying task

You will see below two ways of describing the same query task to a database.  Your job is to rate the two descriptions
on a scale of 1-5, in terms of 1) how easy it is to understand them and 2) how accurately each description matches the
intention of the task.

As an example:

Task: assume we have a database with information about meetings (e.g., who attended the meeting, when the
meeting took place, where, how long it lasted). Furthermore, we want to find out which meetings Alice

attended; the meetings must take place in January. 

Task description 1:

meetings which attendee is Alice which take place in January

Test sentence 2:

Result1 = find meetings which Alice attend

Result2 = find Result1 which take place in January

 

Your first job is to decide which description is easier to understand, ignore typos if any

To do that you will need to rate each description in a scale from 1 (hardest to understand) to 5 (easiest to understand).

Your second job is to decide which one is more accurate to describe the task, ignore typos if any

To do that you will need to rate each description in a scale from 1 (least accurate) to 5 (most accurate).

---------------------------------------------------------------------------------------------------------------------------------------------

Now it is your turn. 

${task1}

Rate how understandable each description is (1 means hardest to understand and 5 easiest):

Put the score in the box

Deseciption 1: 

Description 2:

 

Rate how accurate each description is (1 means least accurate and 5 most accurate):

Put the score in the box

Deseciption 1:

Description 2:

Figure A.2: Instructions and interface for the comparative study between data collected

by our approach and Wang et al. (2015).
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Instructions

Create your querying task based on the given templates and table

You will see a table containing information about meetings (e.g., the attendees, the location of the meeting, the date, its duration).
You will also see a list of templates which can be used to query some entry(s)  of the table. Your job is to create a querying task by
selecting a few templates and fills them in. Finally, you just need to write down a single sentence describing the querying task. You
must read the examples first, before doing the task. It tells you how to use the templates and write down your solution.

  We have a Table of meeting schedules.

Meeting Schedules

meeting attendee location date start time end time duration
is

important

weekly standup Alice central office jan 2 10 am 3 pm 5 hours no

annual review Bob green cafe jan 3 2 pm 3 pm 1 hour yes

.......     (more rows)

 

We also have a collection of templates, which can be used to query some entry(s) of the table.

Templates and instructions

template instruction

find all the __
queries all entries under a key

(e.g., find all the meetings)

find the __ of ___
queries the property of a particular key

(e.g., find the location of weekly standup)

find the __ whose ___ is ___
queries the key whose property satisfies some is-condition

(e.g., find the meeting whose location is green cafe)

find the __ whose ___ is not ___
queries the key whose property satisfies some not-condition

(e.g., find the meeting whose location is not green cafe)

find the __ whose ___ is larger than ___
queries the key whose property satisfies some comparative condition (larger than)

(e.g., find the meeting whose duration is larger than 5 hours)

find the __ whose ___ is smaller than ___
queries the key whose property satisfies some comparative condition (smaller than)

(e.g., find the meeting whose start time is smaller than 2pm)

find the __ whose ___ is largest
queries the key whose property is the largest

(e.g., find the meeting whose duration is largest)

find the __ whose ___ is smallest
queries the key whose property is the smallest

(e.g., find the meeting whose start time is smallest)

count the number of __
count how many elements are there in a set

(e.g., count the number of meeting)

 

 

You task is to create a multi-step querying task for the table, using a collection of templates.  As an example:

First you are asked to create a querying task

Result1 = find all the meetings;             Result2 = find Result1 whose date is jan 2;           Result3 = find Result2 whose location is not green cafe

(Result3 is the final result that we are interested in.)

Next you are asked to write down a single sentence summarizing the querying task

Which meeting takes place in 2nd January and is not held in green cafe?

That's it!

 

Figure A.3: Instructions and interface for the dynamic mode data collection.
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Instructions

Paraphrase a series of broken English queries into well-formed natural language queries

We have a database containing information about restaurants or hotels (e.g., their names, location, cuisine, meals served, room type, price, etc.). We have
also built a computer program which generates queries to this database. Although understandable, the queries are somehwat unnatural and robotic.

Your task is to paraphrase a sequence of  computer-generated queries into a natural ones. You must read the examples first, before doing the task.

An example of our database is shown below. We also provide an example of the computer generated queries in broken English. Your task is to paraprase these queries into natural and
concise ones that a real user may ask. 

Restaurant database used by our computer program

restaurant cuisine location
price

rating

take

credit

card?

outdoor

seating?

kfc fast food city center $ yes no

redbox korean food seashore $$ yes yes

 

Example

Computer

queries
Your paraphrased queries Another example paraphrased queries

Q1=find
the
restaurant
where
meal-
served is
lunch

Which restaurants serve lunch? show me the restaurants that serve lunch?

Q2=find
the Q1
where
distance is
within
1000m

and those near me, no further than 1 km? Which of these restaurants are within a kilometer to me?

Q3=find
the Q2
where
customer-
rating is 3
stars

Of these, find the ones with 3 star rating.

 

Which of these restaurants are rated 3 stars by customers?

Q4=find
the Q2
where
customer-
rating is 4
stars

For the restaurants near me, find those with a 4 star rating. For the restaurants near me, which have 4 star ratings by customers?

The column on the left stores computer generated queries, and the column on the right is for you to fill in. Each computer generated query starts with 'Qx', as an indication of the
query ID. In order to create natural language queries, your answer should take the dependencies between queries into account.  Try to use concise language to express these
dependencies. (e.g, if Q1 asks the restaurants serve lunch, then Q2 can simply starts with 'those are near me?', instead of copying the constrain in Q1 again such as

'which restaurants serve lunch and are near me?'. However, in cases when concise language causes ambiguity, you can still specify the right constrain directly). You
are also recouraged to paraphrase the query as much as you can, in other words, you should not simply copy the broken English query verbatim. 

 

Just image that you are inputting consecutive queries to Yelp!

 

---------------------------------------------------------------------------------------------------------------------------------------------

Now is your turn. You have to paraphrase alll the given queries in the table before submitting your answers. It is about hotels. Please don't press enter before submission!

 

 

 

 

 

 

 

 

 

 

Figure A.4: Instructions and interface for the sequential data collection.
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