

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Towards a Programmable and Virtualized

Mobile Radio Access Network Architecture

Xenofon Foukas
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute of Computing Systems Architecture

School of Informatics

University of Edinburgh

2018

Abstract

Emerging 5G mobile networks are envisioned to become multi-service environments,

enabling the dynamic deployment of services with a diverse set of performance re-

quirements, accommodating the needs of mobile network operators, verticals and over-

the-top service providers. The Radio Access Network (RAN) part of mobile networks

is expected to play a very significant role towards this evolution. Unfortunately, such

a vision cannot be efficiently supported by the conventional RAN architecture, which

adopts a fixed and rigid design. For the network to evolve, flexibility in the creation,

management and control of the RAN components is of paramount importance. The key

elements that can allow us to attain this flexibility are the programmability and the vir-

tualization of the network functions. While in the case of the mobile core, these issues

have been extensively studied due to the advent of technologies like Software-Defined

Networking (SDN) and Network Functions Virtualization (NFV) and the similarities

that the core shares with other wired networks like data centers, research in the domain

of the RAN is still in its infancy.

The contributions made in this thesis significantly advance the state of the art in

the domain of RAN programmability and virtualization in three dimensions. First, we

design and implement a software-defined RAN (SD-RAN) platform called FlexRAN,

that provides a flexible control plane designed with support for real-time RAN control

applications, flexibility to realize various degrees of coordination among RAN infras-

tructure entities, and programmability to adapt control over time and easier evolution

to the future following SDN/NFV principles. Second, we leverage the capabilities of

the FlexRAN platform to design and implement Orion, which is a novel RAN slicing

system that enables the dynamic on-the-fly virtualization of base stations, the flexible

customization of slices to meet their respective service needs and which can be used in

an end-to-end network slicing setting. Third, we focus on the use case of multi-tenancy

in a neutral-host indoors small-cell environment, where we design Iris, a system that

builds on the capabilities of FlexRAN and Orion and introduces a dynamic pricing

mechanism for the efficient and flexible allocation of shared spectrum to the tenants.

A number of additional use cases that highlight the benefits of the developed systems

are also presented. The lessons learned through this research are summarized and a

discussion is made on interesting topics for future work in this domain. The prototype

systems presented in this thesis have been made publicly available and are being used

by various research groups worldwide in the context of 5G research.

iii

Lay Summary

The rapid increase in the network traffic demands of mobile devices in recent years

has created the need for a transition towards a next generation of mobile networks,

frequently referred to as 5G networks. In contrast to previous mobile network gen-

erations like 4G, where the network infrastructure was composed of sophisticated

hardware boxes specifically designed to provide high quality broadband services to

users, 5G networks will be composed of reprogrammable hardware like commodity

servers. This change will allow 5G networks to simultaneously support a multitude of

diverse services including critical communications, massive broadband and machine-

type communications through the automated and dynamic creation of multiple virtual

networks over the common underlying infrastructure.

Perhaps the most critical part of the mobile network architecture, which is also

expected to undergo this change is the radio access network or RAN, that is responsible

to provide the wireless access to users. In contrast to the other parts of the mobile

network infrastructure, the RAN presents certain unique challenges in realizing the

aforementioned 5G vision, due to its role on managing the wireless spectrum that is

made available to the users in real-time.

The goal of this thesis is to provide novel solutions in order to enable the multi-

service capabilities envisioned for 5G in the context of the RAN. As a result, in the first

part of the thesis, we present a platform called FlexRAN that introduces programmabil-

ity in the RAN, taking into consideration the unique characteristics of the RAN and

allowing the modification of its behavior on-the-fly. Building on the FlexRAN platform,

the second part of the thesis focuses on the problem of how to efficiently share the

RAN infrastructure among multiple tenants like mobile network operators and vertical

industries. To this end, a system called Orion is developed that provides such multi-

service capabilities for the RAN, while ensuring that the co-located services of tenants

meet their requirements. Finally, in the third part of the thesis, we consider the specific

use case of mobile access in indoor spaces and the problem of efficiently sharing the

available spectrum among multiple competitive network tenants. We design a system

called Iris , that builds on the capabilities of FlexRAN and Orion and introduces a dy-

namic pricing mechanism for the distribution of the spectrum to the tenants. All the

designs presented in the thesis are accompanied by concrete prototype system imple-

mentations in order to highlight their benefits.

iv

Acknowledgements

I would first like to thank my supervisor Mahesh K. Marina for all his support and

guidance throughout my PhD. Not only did he teach me how to do quality research

and always strive for the best result, but also taught me how to enjoy the process and

find balance in my personal and professional life. He is a true mentor for me in every

sense of the word.

I am also very thankful to my second supervisor, Kimon Kontovasilis for his guid-

ance and for all the helpful discussions that greatly influenced the outcome of my

research. A special thanks goes to Navid Nikaein for his invaluable help during the

first steps of my PhD.

I am grateful to my thesis examiners Paul Patras and Jacobus Van der Merwe for

their time and effort as well as for their valuable feedback and for making my thesis

defense a very pleasant and intellectually stimulating experience. Also, many thanks

to Myungjin Lee for all his instructive comments during my annual reviews, which

helped me improve the quality of my work.

Throughout my PhD, I have been very fortunate to work next to and collaborate

with some amazing colleagues, Mohamed Kassem, Galini Tsoukaneri, Saravana Rathi-

nakumar, Valentin Radu, Rajkarn Singh and Mah-Rukh Fida.

I owe so much to Dimitris, Kostas, Spiros, Agis, my sister Vasiliki and to the rest

of my friends and family for helping me take my mind off my work when I needed

it the most. My deepest gratitude goes to my parents Nikos and Fotini. Both starting

and finishing my PhD would have been impossible without the unconditional love and

support they have shown me throughout all of these years.

Last, but definitely not least, a huge thanks goes to Maria for being there for me

both in the good and the bad moments and for always helping me stay positive. She

truly made this PhD a unique experience and she is one of the main reasons that I will

remember this period of my life so fondly.

v

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified. Part

of the material used for the contributions made by my thesis has been published in the

papers listed below. For the FlexRAN work, the contribution of my co-authors, other

than my supervisors, is limited to helping with the implementation of the respective

software.

• Xenofon Foukas, Navid Nikaein, Mohamed M. Kassem, Mahesh K. Marina,
and Kimon Kontovasilis. “FlexRAN: A Flexible and Programmable Platform

for Software-Defined Radio Access Networks.” In Proceedings of the 12th Inter-

national on Conference on emerging Networking Experiments and Technologies

(CoNEXT), ACM, 2016.

• Xenofon Foukas, Mahesh K. Marina, and Kimon Kontovasilis. “Orion:

RAN Slicing for a Flexible and Cost-Effective Multi-Service Mobile Network

Architecture.” In Proceedings of the 23rd Annual International Conference on

Mobile Computing and Networking (MobiCom), ACM, 2017.

(Xenofon Foukas)

vi

Στη μνήμη του πατέρα μου

In memory of my father

vii

Contents

1 Introduction 1
1.1 History of Mobile Networks . 1

1.2 Towards 5G Mobile Networks . 2

1.3 The Role of Radio Access Networks in 5G 6

1.4 Thesis Contributions . 7

1.4.1 Programmability and Softwarization in the RAN 8

1.4.2 Isolated and Efficient Virtualization of the RAN 9

1.4.3 Shared Spectrum Mobile Access For Neutral-Host Indoor Small-

Cell Environments . 11

1.5 Thesis Organization . 15

2 Background 17
2.1 Overview of LTE . 17

2.1.1 High-level Architecture . 17

2.1.2 Radio Access Network Architecture 19

2.2 Emerging Mobile Network Trends and Technologies 22

2.2.1 Software-Defined Networking 22

2.2.2 Network Functions Virtualization 23

2.2.3 Cloud RAN . 24

2.2.4 Heterogeneous Networks and Small Cell Deployments 26

3 Related Work 27
3.1 Software-Defined Radio Access Networks 27

3.2 Network Slicing . 29

3.3 Shared Spectrum Indoor Small-Cell Neutral-Host Environments . . . 31

4 FlexRAN: A Software-Defined Radio Access Network Platform 35
4.1 Introduction . 35

ix

4.2 FlexRAN Overview . 36

4.3 FlexRAN Design & Implementation 38

4.3.1 Design Challenges . 38

4.3.2 FlexRAN Agent API . 38

4.3.3 FlexRAN Controller Architecture 40

4.3.4 Northbound API and Applications 49

4.4 System Evaluation . 49

4.4.1 Comparison to Vanilla OAI 49

4.4.2 Scalability . 50

4.4.3 Control channel latency impact 53

4.4.4 Control delegation performance 54

4.5 FlexRAN Use Cases . 55

4.5.1 Interference Management 55

4.5.2 Mobile Edge Computing . 57

4.5.3 RAN Sharing & Virtualization 60

4.6 Discussion . 62

4.6.1 Other Example Use Cases 62

4.6.2 Adaptability Beyond LTE 62

4.7 Conclusions . 64

5 Orion: A RAN Slicing System 65

5.1 Introduction . 65

5.2 Orion Overview . 66

5.3 System Design & Implementation 68

5.3.1 Base Station Hypervisor . 68

5.3.2 Virtual Control Plane . 77

5.3.3 End-to-End Network Slicing 78

5.3.4 Implementation . 80

5.4 Evaluation . 82

5.4.1 Scalability . 82

5.4.2 Comparison with the State-of-the-Art 83

5.4.3 Impact of Communication Channel 86

5.5 Case Studies . 87

5.5.1 Isolation Capabilities . 87

5.5.2 Flexible Radio Resource Allocation 88

x

5.5.3 Deployment in an End-to-End Setting 89

5.6 Multi-Service Slices Extension . 91

5.7 Conclusions . 93

6 Iris: Shared Spectrum Access for Neutral-Host Small-Cell Deployments 95

6.1 Introduction . 95

6.2 Iris Dynamic Pricing Mechanism . 96

6.2.1 Requirements and Overview 96

6.2.2 System Model . 97

6.2.3 Problem Formulation . 100

6.2.4 Deep Reinforcement Learning Solution 102

6.3 Iris System Architecture . 104

6.3.1 Design . 104

6.3.2 Implementation . 106

6.4 Experimental Evaluation . 109

6.4.1 Evaluation Setup . 109

6.4.2 Characterizing Iris Shared Spectrum Management 111

6.4.3 Comparison with Alternative Approaches 116

6.4.4 Iris Deployment Feasibility 119

6.5 Conclusions . 120

7 Conclusions and Future Work 123

7.1 Conclusions . 123

7.1.1 Software-Defined Radio Access Networks 124

7.1.2 RAN Slicing . 124

7.1.3 Multi-tenancy in Indoor Small-cell Deployments with Shared

Spectrum . 125

7.2 Limitations and Future Work . 125

7.2.1 FlexRAN: A Software-Defined Radio Access Network Platform 125

7.2.2 Orion: A RAN Slicing System 126

7.2.3 Multi-Tenancy in a Neutral Host Environment 127

A Work and Publications 131

A.1 Work related to FlexRAN . 131

A.2 Work related to Orion . 132

A.3 Other works . 132

xi

B FlexRAN Protocol Specification 133
B.1 FlexRAN header . 133

B.2 Common Structures . 134

B.3 Discovery and maintenance messages 152

B.4 Error reporting messages . 152

B.5 eNB configuration messages . 153

B.6 Statistics and measurement report messages 155

B.7 Controller command messages . 157

B.8 Asynchronous messages . 158

B.9 Control delegation messages . 159

B.10 Time indication messages . 161

C DDPG Algorithm 163

Bibliography 165

xii

List of Figures

1.1 Forecast of global volume of mobile data traffic per month (Source:

Cisco VNI Mobile, 2017). 3

1.2 Key 5G use cases requirements. In this illustration, the further the

distance of a requirement is from the center, the more important it is to

the use case. 5

1.3 High-level idea of network slicing for various types of services. 5

2.1 High-level overview of LTE architecture 18

2.2 Air interface and backhaul protocol stack of an eNB 19

2.3 LTE frame structure . 21

2.4 Key ideas underlying the SDN paradigm 22

2.5 NFV high-level reference architecture. 24

2.6 High-level overview of C-RAN . 25

2.7 General description of functional split options (Source: 3GPP TR 38.801

) . 25

2.8 Example of heterogeneous network 26

4.1 High-level schematic of the FlexRAN platform. 37

4.2 The architecture of a FlexRAN Agent. 41

4.3 Structure of a policy reconfiguration message. 43

4.4 Components of the FlexRAN master controller and its interface to the

application layer. 48

4.5 Flow of information for updating the RIB. 48

4.6 Comparison of vanilla OAI to FlexRAN 50

4.7 Signaling overhead for the communication between the master and the

agent using the FlexRAN protocol. 51

4.8 Utilization of master TTI cycle and memory footprint (16 UEs/eNB). 53

4.9 Effect of latency and scheduling ahead time on downlink throughput. . 53

xiii

4.10 Downlink throughput of UE during frequent downlink scheduler pol-

icy reconfigurations . 55

4.11 Throughput benefits of optimized eICIC. 57

4.12 Rate adaptation of DASH vs FlexRAN assisted DASH and correspond-

ing buffer sizes. 59

4.13 Policy reconfiguration for MVNO management 61

5.1 High-level architecture of Orion. 67

5.2 Architecture of the Orion Base Station Hypervisor. 69

5.3 Resource partitioning between 2 slices for the LTE downlink schedul-

ing example. 71

5.4 Mapping of PRBs to vRRBs in the context of LTE. 73

5.5 Illustration of Orion uplink/downlink radio resource virtualization ab-

stractions in the context of LTE. 74

5.6 Orion uplink/downlink radio resource virtualization abstractions in the

context of 5G NR – Flexible TTI and sub-carrier spacing numerology. 76

5.7 Flexible control plane composition enabled by Orion. 78

5.8 Virtual control plane of a slice in Orion. 79

5.9 Interactions among components involved in an end-to-end network

slicing setting. 79

5.10 Orion CPU and memory consumption scaling. 83

5.11 Comparison of Orion with FLARE and FlexRAN with varying number

of slices. 84

5.12 Breakdown of resource requirements for Orion vs FlexRAN 85

5.13 Network requirements for the interaction of the Hypervisor with the

virtual control plane when not co-located. 87

5.14 Isolation of RAN slices in terms of radio resources and control func-

tions (scheduling). 88

5.15 Benefit of Orion’s flexible radio resource allocation. 89

5.16 Performance impact of Core-eNB latency and radio resource alloca-

tion policy/guarantees for low and high offered loads (load values in

parentheses on x-axis). 90

5.17 Extension of Orion to support multi-service slices. 92

5.18 Video streaming performance in MVNO-managed vs. OTT-optimized

control of flows. 93

xiv

6.1 Schematic of Iris neutral-host system architecture. 105

6.2 Iris agents involved in dynamic pricing mechanism. 106

6.3 RRU equipment used for the prototype, composed of an SDR unit

(right) and a basic compute unit (left). 107

6.4 Daily traffic profile of tenants and spectrum availability profile over a

day at the neutral-host. 110

6.5 Learning behavior of pricing policy agent for cells with different levels

of congestion and loads. 112

6.6 Behavior of Iris dynamic pricing mechanism for varying number of

tenants. 114

6.7 Behavior of Iris dynamic pricing mechanism under different reward

function parameters and dynamic tenant policy changes. 114

6.8 Impact of spectrum acquisition cost. 115

6.9 Comparison of Iris with alternative approaches. 117

6.10 Hourly breakdown of tenants’ total disutility and average price se-

lected by neutral-host. 118

6.11 Service differentiation among tenants with Iris and other approaches. . 119

6.12 Execution time for single training step of Iris and bandwidth require-

ments for Irisagents message exchanges. 120

xv

List of Tables

1.1 Global mobile devices and connections growth (Source: Cisco VNI

Mobile, 2017) . 3

4.1 Type of function calls in FlexRAN Agent API. 40

4.2 Measurements of max TCP throughput and max sustainable bitrate of

video stream for various CQI levels. 58

5.1 Per slice context maintained by the Hypervisor. 70

5.2 Allocation of channel bandwidth among slices. Both Orion and FlexRAN

use shared spectrum for all slices. 84

6.1 Summary of Iris model parameters. 97

6.2 Tenant profiles with different parameterizations of the generic dis-utility

function and the resulting behaviors. 111

xvii

Acronyms

5G NR 5G New Radio.

ABS Almost-Blank Subframe.

ARQ Automatic Repeat Request.

BBU Baseband Processing Unit.

C-RAN Cloud RAN.

CBRS Citizen Broadband Radio Service.

CCE Control Channel Element.

CMI Control Module Interface.

CoMP Coordinated Multipoint.

CQI Channel Quality Indicator.

D2D Device-to-Device.

DAS Distributed Antenna System.

DECOR Dedicated Core Network.

DRX Discontinuous Reception.

E-UTRAN evolved UMTS Terrestrial Radio Access Network.

eICIC Enhanced Inter-Cell Interference Coordination.

eNB eNodeB.

EPC Evolved Packet Core.

xix

FDD Frequency Division Duplexing.

GTP GPRS Tunneling Protocols.

HARQ Hybrid Automatic Repeat Request.

HetNet Heterogeneous Network.

HSS Home Subscriber Service.

IDS Intrusion Detection System.

KPI Key Performance Indicator.

LSA Licensed Shared Access.

LTE Long-Term Evolution.

M2M Machine-to-Machine.

MAC Medium Access Control.

MANO Management and Orchestration.

MCS Modulation and Coding Scheme.

MDP Markov Decision Process.

MEC Mobile Edge Computing.

MIMO Multiple-Input Multiple-Output.

MME Mobility Management Entity.

mmWave millimeter Wave.

MNO Mobile Network Operator.

MOCN Multi-Operator Core Network.

MORAN Multi-Operator RAN.

MVNO Mobile Virtual Network Operator.

NAS Non-Access Stratum.

xx

NFV Network Functions Virtualization.

NFVI NFV Infrastructure.

OAI OpenAirInterface.

OFDM Orthogonal Frequency Division Multiplexing.

OTT Over-The-Top.

P-GW Packet Data Network Gateway.

PDCP Packet Data Convergence Protocol.

PDU Protocol Data Unit.

PHY Physical Layer.

PRB Physical Resource Block.

QoS Quality of Service.

RaaS RAN-as-a-Service.

RAN Radio Access Network.

RAT Radio Access Technology.

RB Resource Block.

RE Resource Element.

RIB RAN Information Base.

RLC Radio Link Control.

RRC Radio Resource Control.

RRU Remote Radio Unit.

RTT Round-Trip Time.

S-GW Serving Gateway.

SAS Spectrum Access System.

xxi

SC-FDMA Single-Carrier Frequency Division Multiple Access.

SD-RAN Software-Defined RAN.

SDN Software-Defined Networking.

SLA Service Level Agreement.

SON Self Organizing Network.

TDD Time Division Duplexing.

TTI Transmission Time Interval.

UE User Equipment.

VNF Virtual Network Function.

vRAN virtual RAN.

vRIB virtual RAN Information Base.

vRRB virtual Radio Resource Block.

VSF Virtual Subsystem Function.

xxii

Chapter 1

Introduction

1.1 History of Mobile Networks

Mobile wireless networks have been a disruptive technology in the context of the

telecommunications industry, since they have revolutionized the way to communicate,

alleviating the need for a fixed wired connection and allowing communication on-the-

go. Mobile networks have come a very long way in a very short time, forming a major

part of the telecommunications market with reports forecasting a further increase of

their significance in the near future [110, 34]. This is due to the constant introduction

of new capabilities, which go beyond the basic voice and messaging communication

and aim to provide support for many novel use cases in various domains of our lives,

including health, entertainment, industrial and home automation, vehicular communi-

cation etc. To better understand the direction in which mobile networks are moving, it

would be interesting to provide a brief overview of their evolution so far.

Mobile networks are distinguished into generations (conventionally denoted by a

number preceding a capital G), with each generation characterized by a set of features

that either introduces new capabilities to the network or enhances and extends those

offered by previous generations. As the baseline, we can consider the first generation

of mobile networks or 1G, which was initially launched in Japan by NTT in 1979 and

only provided voice services based on analog radio transmission techniques.

While 1G was the first true cellular mobile network architecture, it presented ma-

jor limitations in terms of the number of users that it could support. As a result, the

second generation of cellular technologies (or 2G) was released in the beginning of

the 90s. This generation was characterized by the digitization and compression of

speech, supporting a larger number of mobile users connected to the network. More-

1

2 Chapter 1. Introduction

over, 2G networks introduced for the first time data services for mobiles, initially with

the hugely popular feature of SMS text messages and later with the implementation of

GPRS (the so-called 2.5G), which introduced a new packet-switched domain.

The major rise of personal computers and the Internet during the 90s created a need

for a further evolution of mobile networks in order to support high-speed data trans-

fers and inter-communication of mobile devices with the Internet. As a result, a third

generation of mobile networks (or 3G) appeared in the early 2000s, providing higher

data rates that could reach up to 21.6Mbps. This evolution enabled the appearance of

a number of applications over 3G networks, including mobile Internet access, video

calls, mobile TV, GPS etc.

The applications enabled by 3G and the emergence of smartphones in the 2000s

had a major impact in the telecommunications market, leading to a very high adoption

rate of mobile devices by users. This increase in the scale of mobile networks, along

with the need for significant improvements in the Quality of Service (QoS) of users led

to Long-Term Evolution (LTE), which formed the fourth generation (or 4G) of mobile

networks, was released commercially just before 2010 and is still the most widespread

mobile network architecture. Among others, 4G was the first generation to introduce

all-IP packet switched networks that supported peak downlink data rates of more than

100Mbps in mobility conditions and greatly improved the spectral efficiency of the

radio interface to support more simultaneous users per cell.

1.2 Towards 5G Mobile Networks

The brief overview presented in the previous section only highlights the most impor-

tant milestones in the evolution of the mobile networking industry. However, it clearly

demonstrates that one of the key driving factors behind the transition from one gen-

eration to the next is the increasing demand for mobile services, which requires an

improvement in the network capabilities and performance, in order to support more

users and to provide them with an improved QoS.

Most interestingly, the aforementioned observation is still very relevant when con-

sidering the current 4th generation of mobile networks, with the demands of the mobile

networking ecosystem changing once again. Mobile network traffic is experiencing an

unprecedented growth in recent years and this trend is expected to continue in the fore-

seeable future. As Figure 1.1 illustrates, and just as an indication of the magnitude

of this demand, Cisco forecasts that mobile traffic is expected to increase from 7 Ex-

1.2. Towards 5G Mobile Networks 3

2016 2017 2018 2019 2020 2021
0

10

20

30

40

50

60

E
x

a
b

y
te

s
 p

e
r

M
o

n
th

 7 EB

 11 EB

 17 EB

 24 EB

 35 EB

 49 EB

47% CAGR 2016-2021

Figure 1.1: Forecast of global volume of mobile data traffic per month (Source: Cisco

VNI Mobile, 2017).

abytes per month in 2016 to 49 Exabytes per month in just 5 years time, accounting

for a growth rate of 47%.

Table 1.1: Global mobile devices and connections growth (Source: Cisco VNI Mobile,

2017)

8 Billion
Mobile Devices

(2016)

11.6 billion
Mobile Devices

(2021)

CAGR 2016-2021

Smartphones 3.04 4.988 10.4%

Non-smartphones 3.28 1.508 -14.4%

M2M 0.8 3.364 33.2%

Phablets 0.56 1.16 15.7%

Tablets 0.16 0.348 16.8

PCs 0.16 0.232 7.7%

Other portable
Devices

0.008 0.0116 7.7%

This growth in the mobile network traffic is related both to the expected increase

in the number of connected mobile devices as well as to the type of traffic that these

devices are expected to generate. More specifically, as shown in Table 1.1, the number

of globally connected mobile devices is expected to increase from 8 billion in 2016 to

11.6 billion in 2021. At the same time, the share of non-smartphone devices is expected

to significantly drop in favor of smartphones, phablets and tablets, while Machine-to-

Machine (M2M) communications are expected to obtain a very large portion of the

4 Chapter 1. Introduction

market share.

These new trends in the mobile ecosystem also lead to significant changes regard-

ing the performance requirements that mobile networks need to fulfill. For example,

the increased adoption of smartphone over non-smartphone devices is followed by a

demand for an improvement of the user data rate and the spectral efficiency of the

network. This is because the use of the mobile phone is no longer just for voice calls

and short messages, but also for social networking, viewing high quality multimedia

content (e.g. HD video streaming and high-resolution images), gaming, etc. Similarly

the significant rise of M2M communications introduces new requirements that must be

met in terms of energy efficiency, latency, etc.

Due to the aforementioned changes, it has already become apparent that the capa-

bilities offered by 4G networks are no longer adequate to cover the newly emerging

requirements of the mobile ecosystem. This drives the need for an evolution towards

the next generation of 5G mobile networks and has ultimately led to a new wave of re-

search with the main goal of improving the network performance. In this context, there

have been a number of indicative new goals to be achieved at an operational level [64],

including:

• 1000 times higher mobile data volume per geographical area

• 10-100 times more connected devices

• 10-100 times higher data rates

• 10 times lower energy consumption

• End-to-end latency that is below 1ms

• Ubiquitus 5G access

Similarly to previous generations, in order to move from 4G to 5G and to achieve these

Key Performance Indicator (KPI) oriented goals there is a need to introduce technolog-

ical innovations in terms of the involved Radio Access Technologies (RATs), network

protocols etc. This has given rise to a number of new hot topics of research in the

domain of mobile networks, including millimeter Wave (mmWave) communications,

massive Multiple-Input Multiple-Output (MIMO), Device-to-Device (D2D) commu-

nications, Heterogeneous Networks (HetNets) etc.

Complementary to this performance-oriented view of 5G networks and following

the observations drawn from Table 1.1 there also exists a service-oriented view, based

on which, the 5G network is expected to cater to a wide range of services differing in

their requirements and types of devices. For example, the ITU and 5G-PPP have identi-

fied three broad use case families; enhanced mobile broadband, massive machine-type

1.2. Towards 5G Mobile Networks 5

Data rate

User Data rate

Spectrum Efficiency

Connection Density

Latency Mobility

Power Efficiency

Traffic Density

Reliability

Machine-to-Machine Critical Communications Mobile Broadband

Figure 1.2: Key 5G use cases requirements. In this illustration, the further the distance

of a requirement is from the center, the more important it is to the use case.

communications and critical communications. Within those, it is possible to define

several specific use cases [104] ranging from general broadband access with global

coverage to specialized networks for sensors or extreme mobility. The stark differ-

ences between these use cases translates to a set of heterogeneous requirements that

can be seen in Figure 1.2. Meeting these requirements calls for the network to take

different forms depending on the service in question, leading naturally to the notion of

slicing the network on a per-service basis.

Figure 1.3: High-level idea of network slicing for various types of services.

Realizing this service-oriented view of 5G networks requires a radical rethink of the

mobile network architecture to turn it into a more flexible and programmable fabric that

6 Chapter 1. Introduction

can be used to simultaneously provide a multitude of diverse services over a common

generic underlying infrastructure. To achieve this, a concept widely considered as a

key feature of the 5G architecture is network slicing, which is the capability to create

end-to-end logical networks spanning both the Radio Access Network (RAN) and the

core and tailored for a specific service’s needs as illustrated in Figure 1.3. In contrast to

this, the architecture of previous mobile network generations followed a one-size-fits-

all approach, with the main goal being the optimization of mobile broadband services.

This makes slicing a characteristic unique to the 5G environment and arguably a legacy

that 5G networks will leave behind for future generations of mobile networks.

1.3 The Role of Radio Access Networks in 5G

In light of the imminent changes expected towards 5G, the RAN part of the mobile

network architecture, is expected to be one of the main focuses of attention. This is

natural, considering the fact that the RAN is the most complex part of the network

infrastructure that significantly differs from conventional IP networks. Among others,

it has to deal with a number of very significant problems in terms of coverage, inter-

ference and mobility management, energy efficiency of the connected devices etc. To

add to this, the RAN has always been one of the major bottlenecks of mobile networks

in terms of capacity [18], which constitutes a significant problem when scaling the

network to more connected users and devices with increased throughput requirements.

Due to the aforementioned reasons, it comes as no surprise that some of the biggest

technological innovations when moving from one mobile network generation to the

next take place in the RAN, with 5G being no exception to this.

In terms of the physical layer and more generally the radio interface, a new RAT

called 5G New Radio (5G NR) is being considered to complement the existing radio

interfaces [118]. 5G NR is expected to help in reducing the network latency by bring-

ing a new and more flexible radio resource grid. It is also specifically designed with

the goal of introducing support for technologies like mmWaves and massive MIMO,

which are expected to greatly boost the network capacity. These new additions will

form a part of a wider multi-RAT environment, which is expected to enable ubiquitous

access to mobile devices as well as to cater the diverse requirements of the heteroge-

neous services that must be supported in the context of 5G.

The 5G RAN is also expected to evolve in terms of its architecture in order to be

able to accommodate the increasing demands that arise from the proliferation of mobile

1.4. Thesis Contributions 7

devices. The densification of the RAN using small-cell deployments for the increase of

the network’s capacity, as well as the centralization of its processing in a Cloud RAN

(C-RAN) deployment for improved coordination among the cells are some of the most

prominent changes that are expected to take place in 5G. Furthermore, the emerging

paradigm of Mobile Edge Computing (MEC) is expected to bring services closer to

the edge, allowing them to tap into the data as well as the processing and storage

capabilities offered by the RAN [62]. This will relieve some of the stress posed to the

mobile core by serving part of the generated traffic locally in the RAN, while at the

same time it can lead to significant latency reductions for delay-sensitive services.

Apart from the performance improvements that the aforementioned changes are

expected to bring in various aspects of the RAN (throughput, latency, capacity etc) it

is equally important for future RANs to provide inherent support for network slicing

to accommodate the multi-service capabilities envisioned in the context of 5G. The

conventional RAN architecture found in current 4G networks is characterized by a

rigid design and cannot efficiently accommodate a diverse set of services with different

requirements and characteristics. It is therefore critical to re-shape the RAN into a

more flexible and adaptable component of the mobile network architecture.

1.4 Thesis Contributions

Motivated by the need for creating a multi-service environment, we try to address the

question of what changes are required in the RAN to introduce the desired flexibil-

ity. We argue that softwarization and virtualization are key technologies towards this

direction, as is evident by the major success of Software-Defined Networking (SDN)

and Network Functions Virtualization (NFV) in solving similar problems in the wired

networking domain. Towards this direction, in this thesis we make the following high-

level contributions:

• Create a platform for introducing programmability in the RAN.

• Design and implement a virtualized and sliceable RAN system.

• Build on the above two contributions and focus on the emerging paradigm of

neutral-hosts in small cell deployments, considering a novel dynamic pricing

mechanism for the allocation of virtualized radio resources.

8 Chapter 1. Introduction

In the remainder of this section, we elaborate on these three contributions and their

respective challenges. A complete list of publications and activities related to the con-

tributions of this thesis can be found in Appendix A.

1.4.1 Programmability and Softwarization in the RAN

SDN is among the key technologies considered in the context of evolving mobile net-

works. SDN has gained significant traction over the past decade, mainly in the context

of data centers and wired networks. This is brought about by paradigm shifting ideas

underlying SDN, which are the separation of the control from the data plane through

a well-defined API (e.g., OpenFlow), the consolidation of the control plane and the

flexibility introduced to the network through its programmability. These fundamental

SDN ideas can contribute towards addressing various challenges faced by current and

future mobile networks. Not surprisingly, there has been considerable research inter-

est in software-defined mobile networks in recent years, with much of the early work

focusing on mobile core, given its similarity to wired networks (e.g., [66],[100]).

The RAN part of mobile networks arguably offers even greater opportunities to

benefit from SDN ideas. One reason is that strategies and technologies being adopted

to improve spectrum efficiency and scale system capacity — cell densification, use

of multiple radio access technologies (e.g., LTE and WiFi), use of advanced PHY

techniques like Coordinated Multipoint (CoMP), etc. — require a high level of co-

ordination among base stations, which SDN can naturally enable. As another reason,

softwarization of control in mobile networks, especially in the RAN, not only allows

easier evolution to the future through programmability but also enables a wide range of

use cases and novel services. At the same time, a Software-Defined RAN (SD-RAN)

design is challenging given the unique nature of wireless resources to be managed

and the stringent timing constraints associated with some key RAN control operations

(e.g., radio resource scheduling). Existing SD-RAN work, although abundant (e.g.,

[56], [11], [29], [142]), is largely conceptual with no implemented solution that re-

searchers can use as a reference to evaluate their SD-RAN designs and to assess the

benefit of new SD-RAN enabled services.

Based on these observations, we develop FlexRAN that to the best of our knowl-

edge is the first open-source SD-RAN platform, thereby filling the above mentioned

void. FlexRAN incorporates an API to separate control and data planes that is tailored

for the mobile RAN. The FlexRAN controller design and implementation factors in the

1.4. Thesis Contributions 9

need to make real-time RAN control applications feasible. Moreover, FlexRAN is de-

signed with flexibility, programmability and ease of deployment in mind. FlexRAN

offers a great degree of flexibility to easily and dynamically realize different degrees

of coordination among base stations reflecting centralized to fully distributed modes

of operation. It offers programmability at two levels, one in the form of RAN control/-

management applications that can be built over the FlexRAN controller and the other

within the controller to be able to update the implementation of any control function

on the fly. FlexRAN is also transparent to the end-devices, aiding easier deployment and

evolution.

Specifically, for this thread of work in the context of the thesis, we make the fol-

lowing contributions:

• Realizable SD-RAN design in the form of FlexRAN. FlexRAN incorporates an API

(FlexRAN Agent API) for clean separation of control and data planes in the RAN.

Its hierarchical master-agent controller architecture is well suited for real-time

RAN control operations while allowing reprogrammability and reconfigurability

via its features of virtualized control functions and control delegation following

NFV principles.

• Implementation of FlexRAN over the OpenAirInterface (OAI) LTE platform [106]

is shown to be efficient, to the extent that the use of FlexRAN is imperceptible to

an end user device compared to using vanilla OAI, even when considering the

time critical radio resource scheduling operations. We also thoroughly char-

acterize the FlexRAN performance behavior under different network conditions,

varying number of mobile devices, and in the presence of control delegation.

• We show results from using FlexRAN in a diverse set of use cases relevant to

current and future mobile networks, namely interference management, mobile

edge computing and RAN sharing. This demonstrates the ease with which new

applications and services can be realized with FlexRAN, thereby its effectiveness

as an SD-RAN platform. We also discuss additional use cases that FlexRAN can

enable.

1.4.2 Isolated and Efficient Virtualization of the RAN

Since a one-size fits all architecture is unlikely to be suitable for the diverse use cases

that future mobile networks are expected to support, realizing the service-oriented 5G

10 Chapter 1. Introduction

vision in a cost-effective manner necessitates a flexible mobile network architecture

that can turn the physical infrastructure into multiple slices, one per service instance.

Each slice in such an architecture is an end-to-end virtualized network instance, span-

ning both the core and RAN, and is tailored in terms of resources to meet the re-

quirements of the service in question. Here resources comprise of different types

including computing, network, storage, radio, access hardware and Virtual Network

Functions (VNFs). Unsurprisingly, most prominent 5G architectural visions embrace

slicing [104, 107, 120, 12, 41, 121], building on its earlier success in multi-experiment

testbed infrastructures such as PlanetLab [33] and multi-tenant data centers. As virtual-

ization and softwarization (via SDN and NFV) are key slicing enablers, research proto-

types and operational systems using virtualization technologies and SDN/NFV princi-

ples have started to appear, especially in the mobile core [115, 66, 100, 90, 16, 117, 46].

In fact, an early form of core slicing called Dedicated Core Network (DECOR) is al-

ready specified by the 3GPP standards [6].

In this part of the thesis, the focus is on RAN slicing which refers to the ability to

dynamically create and manage virtual RANs, each customized to meet the require-

ments of an end-to-end service. RAN slicing is a challenging problem that is only

starting to receive attention. The key difficulty is that the RAN virtualization and ap-

portionment into different slices should satisfy two key objectives: (1) to ensure slice

independence (functional isolation) so that tenants maintain full control of their slices

to be able to tailor them to meet the respective service requirements; (2) to flexibly

and adaptively share RAN resources (radio, processing, memory, networking), among

different slice owners (or tenants), so that the RAN infrastructure is used as efficiently

as possible, without violating objective (1).

Previous work on RAN slicing represents extreme points in the design space and

therefore has managed to only partially address the aforementioned objectives. One

approach originating in RAN sharing focuses mainly on efficient sharing of radio re-

sources with no support for functional isolation, giving the infrastructure provider full

visibility and control over slices [46, 105, 43]. The other approach puts the isolation at

the center stage without considering the efficient use of resources [103, 102].

With respect to this problem, the key contribution of this thesis is Orion, which to

our knowledge is the first RAN slicing system that provides functional isolation among

slices while facilitating efficient sharing of the RAN resources. The design of Orion

makes an explicit distinction between the infrastructure provider and service providers

(slice owners), providing mechanisms that allow flexible and adaptive provisioning of

1.4. Thesis Contributions 11

resources to slices based on their requirements. Each slice can manipulate its allocated

resources in a virtualized form completely independently, and similarly customize its

control plane as per the service needs. The Base Station Hypervisor in Orion plays

a key role in achieving this by virtualizing the radio resources via a novel set of abstrac-

tions introduced in this work and by having the control plane of each slice operating in

an isolated container over it, exploiting the control and data plane separation provided

by the FlexRAN platform. Moreover, Orion’s design allows the control planes of slices to

be composed flexibly and independently, employing different levels of centralization,

effectively leading to a more efficient utilization of the RAN resources and simplifying

the coordination of base stations where and when required.

In summary, in this part of the thesis regarding the virtualization of the RAN, we

make the following contributions:

• Present a realizable RAN slicing design in the form of Orion, that enables both

the functional isolation among slices, as well as the efficient utilization of the

underlying RAN resources via the novel Hypervisor component and by facili-

tating the flexible composition of the control planes of individual slices.

• Introduce a novel set of abstractions for the virtualization of the radio resources

that is applicable to both current (LTE) and future (5G NR) RANs.

• Provide a concrete implementation of Orion, building over the OAI LTE plat-

form [106] and exploiting the capabilities of the FlexRAN platform. This is ac-

companied by a detailed experimental evaluation of the various aspects of the

system that highlight its performance and scalability as well as its various capa-

bilities compared to the state-of-the-art solutions.

• Present an extended form of Orion that supports Over-The-Top (OTT) service

providers and demonstrating its benefits.

1.4.3 Shared Spectrum Mobile Access For Neutral-Host Indoor Small-

Cell Environments

Much of the traffic demand in 5G networks is expected to be from indoors, amount-

ing to 80% as of 2014 according to a Gartner study and expected to rise to over 95%

by the time 5G gets deployed [99]. However, indoor mobile coverage has tradition-

ally been an issue. Distributed Antenna Systems (DAS) aimed at addressing this is-

sue had little success, due to high deployment costs. Deployment of small cells on

12 Chapter 1. Introduction

the other hand is a relatively more promising means to address the coverage issue

and scale the infrastructure with user density/demand. Indeed, making cells smaller

and denser has historically been the biggest contributor to capacity scaling of cellu-

lar networks [144]. Despite this potential, indoor small cell deployments have been

hampered due to operator concerns over deployment costs (initial capex for infras-

tructure deployment and return on that investment) and issues such as site access and

backhaul. As a result, seamless mobile access is hardly a reality with users forced to

hop between areas with WiFi coverage for high-speed wireless data access in indoor

environments with high data demand (e.g., enterprises, campuses, public spaces such

as airports and malls). Recently there is an emerging consensus around the notion of

a “neutral-host” [9, 53, 94] to simplify the deployment process of indoor small-cell

networks. The essential idea is that a third party entity (the neutral-host) takes on the

responsibility of deploying and managing the small cell infrastructure, which is shared

by multiple operators for a fee, offering small-cells as a service. The neutral-host be-

comes the only entity that needs to liase with the site owner and address issues such

as power and backhaul, relieving the operators of deploying their own infrastructure

and dealing with associated issues. As virtualization is a natural means for sharing the

small-cell infrastructure across several operators, the neutral-host concept also aligns

well with the 5G vision of supporting a diverse array of services across different Mo-

bile Virtual Network Operators (MVNOs) and verticals via network slicing. From this

perspective, the neutral-host provides each operator a virtual RAN (vRAN) spanning

the area of the indoor environment it covers and this vRAN in turn becomes part of the

operator’s end-to-end network solution, including its existing core network or a cloud

realization of the core. However, a vanilla realization of the neutral-host concept that

serves just traditional Mobile Network Operators (MNOs) bringing their own licensed

spectrum offers limited incentives for the neutral-host and operators alike.

We envision that the potential of the neutral-host’s infrastructure sharing capability

would be significantly amplified through access to a pool of spectrum that is dynami-

cally shared among operators. Firstly, traditional MNOs would be able to gain access

to additional spectrum for offloading purposes. Secondly, by removing the require-

ment to possess licensed spectrum (which typically only a handful of operators have),

it allows new non-traditional operators into the fray, who may come with innovative

revenue models differing from the traditional subscription-based model (e.g., provid-

ing free access that is monetized by advertising and analytics a la Internet services and

free mobile apps). Lastly, the neutral-host can increase its revenue generation oppor-

1.4. Thesis Contributions 13

tunities, by serving a wider array of operators and offering dynamic spectrum sharing

capabilities. In fact, there is more support around the neutral-host model following the

3GPP defined Multi-Operator Core Network (MOCN) form of network sharing that

requires use of common spectrum shared between operators [9].

The neutral-host’s common (and dynamic) spectrum pool could in principle be

made up of licensed spectrum pooled from different traditional MNOs, unlicensed

spectrum or shared access spectrum. Regarding the latter, recent regulatory develop-

ments below 6 GHz allow sharing of lightly used spectrum held by legacy or public-

sector incumbents (e.g., radars) via tiered spectrum access models [45, 109], offering

substantial amounts of spectrum at a lower acquisition cost compared to licensed spec-

trum and without the complex coexistence issues of unlicensed spectrum. The Citizen

Broadband Radio Service (CBRS) in the US [98] is a case in point, allowing the shared

use of the 3.5 GHz band via a three-tier access model. A cloud-based management en-

tity called Spectrum Access System (SAS) orchestrated by the regulator ensures that

when higher tier users need to use the spectrum, they get interference protection from

lower tier ones. Licensed Shared Access (LSA) model for spectrum sharing [93] that

is promoted for some bands in Europe, especially in its dynamic form, is another such

relevant development. In view of the above, we consider the scenario where the neutral

host is powered by shared access spectrum in the style of CBRS or LSA.

The focus of this chapter is on addressing the challenges that arise with respect to

managing access to shared spectrum in an indoor neutral-host small-cell environment.

Firstly, as the neutral-host needs to support multiple (traditional and non-traditional)

operators all competing in offering the same type of service to users, it should facilitate

service differentiation over rival tenants and control over their share of resources with-

out requiring direct/explicit interaction or complex coordination protocols among ten-

ants. These are key real world concerns from the operators perspective to incentivize

their participation in neutral-host small cells [9]. Secondly, the neutral-host needs to

support the dynamic and efficient sharing of the spectrum among the tenants as per the

relative value they attach to the spectrum. Given the competitive nature of the environ-

ment, tenants should be able to adopt their own spectrum allocation policies, without

having to reveal any private information regarding their business model to the neutral-

host or the other tenants. Thirdly, spectrum acquisition incurs a time-varying cost for

the neutral-host depending on the amount of shared spectrum acquired to meet the

overall demand. This cost needs to be recouped from the tenants in a dynamic manner

as any pre-agreed static fee would either overcharge the tenants or put the neutral-host

14 Chapter 1. Introduction

in losses. Fourthly, using shared spectrum implies that strict Service Level Agreements

(SLAs) may be infeasible for the tenants depending on the spectrum availability dy-

namics, so tenants should accordingly be served respecting this constraint. Last but

not least, the spectrum management mechanism employed by the neutral host should

be realizable in the context of a practical neutral-host small-cell system architecture.

To this end, we propose Iris, a practical shared spectrum access architecture for

indoor neutral-host small cells enabled by a novel dynamic pricing mechanism that

mediates access to time-varying shared spectrum by diverse tenants. The design ra-

tionale of Iris reflects the underlying intention to incentivize both the neutral-host and

operators to participate.

In summary, in this part of the thesis we make the following contributions:

• We propose a dynamic pricing mechanism to regulate the demand from multiple

tenants in real-time, allowing tenants to retain full control over the amount of

resources to obtain and allocate amongst their users, while allowing the neutral-

host to recover its dynamic spectrum acquisition costs. The main difficulty for

our proposed approach lies in deciding on the price at any time instant, given

that tenant behaviors are hidden from the neutral host. To resolve this issue, we

leverage recent advances in deep reinforcement learning and continually observe

the behavior of tenants through their actual radio resource allocation data to train

a neutral-host agent on the price decision process.

• To demonstrate the practicality of the proposed approach, we leverage the vir-

tualization capabilities of Orion and embed the dynamic pricing mechanism in a

prototype neutral-host system that follows C-RAN and RAN slicing design prin-

ciples. To our knowledge, this is the first concrete implementation considering

the idiosyncrasies of indoor small-cell deployments and incorporating market

mechanisms for shared spectrum management.

• We conduct extensive experimental evaluations using the prototype implemen-

tation of Iris, showing a number of aspects including: its learning behavior; com-

parable performance to an optimal but impractical alternative; superiority of Iris

with respect to static pricing and representative state of the art spectrum sharing

approach; and its feasibility in practice.

Overall, Iris makes a significant advance with respect to the state of the art in two

key respects: (1) the proposed dynamic pricing based shared spectrum management

1.5. Thesis Organization 15

mechanism for an indoor neutral-host small-cell setting addresses the concerns of all

entities (tenants and the neutral host) such as service differentiation among tenants

and spectrum acquisition cost recovery for the neutral host, compared to existing ap-

proaches [71, 50, 146]; (2) Relative to existing neutral-host designs [44, 32, 47], it

proposes a design that accounts for the peculiarities of spectrum sharing and the in-

door small-cell environment, along with a concrete implementation.

1.5 Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2 provides a background on the basic concepts behind mobile networks,

software-defined networking and (network) virtualization. In this context, the most

prevalent and emerging technologies that are relevant to the focus of this thesis are

outlined and their main capabilities and limitations are briefly discussed.

Chapter 3 makes a thorough examination of the literature related to softwarization

and virtualization in the RAN. It also discusses the shortcomings of the most relevant

works, explaining why solutions like the ones presented in the following chapters are

required.

Chapter 4 investigates the challenges in introducing flexible and real-time pro-

grammability capabilities in the RAN part of mobile networks. In this context, the

detailed design and concrete implementation of the FlexRAN SD-RAN platform is pre-

sented. This is coupled with evaluation results and a discussion of use cases that can

be enabled by FlexRAN . This content of this chapter is focused on the work presented

in [46].

Chapter 5 considers the problem of introducing virtualization capabilities in the

RAN in order to enable a flexible and efficient sharing of the underlying infrastruc-

ture. Building on the softwarization concepts and capabilites established by FlexRAN

in the previous chapter, the Orion RAN slicing system is presented, along with a con-

crete prototype implementation and evaluation results. Finally, an extension of Orion is

presented for accommodating the needs of OTT service providers. The content of this

chapter if focused on the work presented in [47].

Chapter 6 investigates the benefits of virtualization for the use case of multi-

tenancy in a neutral-host indoor small-cell environment with shared spectrum. The

dynamic pricing mechanism of Iris for the allocation of shared spectrum to tenants

is presented, along with a system architecture that embeds this mechanism alongside

16 Chapter 1. Introduction

cloud-RAN and RAN slicing design principles. Leveraging the virtualization capabil-

ities enabled by Orion, a prototype implementation of Iris is presented, accompanied by

evaluation results.

Chapter 7 concludes this thesis, summarizing the work presented and discussing

the limitations of the contributions as well as possible directions for future research.

Chapter 2

Background

This chapter provides a detailed background of the mobile network technologies that

are studied in the context of this thesis. While the issues discussed in the following

chapters are oriented towards problems that are very important in the context of the 5G

RAN, the LTE network architecture is used throughout the thesis as a reference for the

design of the proposed solutions and as the basis for concrete implementations of the

corresponding systems. Towards this end, Section 2.1 provides a high-level overview

of the LTE mobile network architecture, followed by a more detailed discussion on the

RAN-side protocols and mechanisms that are significant in the context of the thesis.

Following this discussion, Section 2.2 focuses on presenting technologies and emerg-

ing mobile network trends that are expected to play a major role in the evolution of

mobile networks towards 5G. It should be noted that the list of items presented here is

not exhaustive, but rather focuses on aspects of 5G, which are relevant to the problems

addressed in the thesis.

2.1 Overview of LTE

2.1.1 High-level Architecture

A high-level overview of the core and the RAN architecture of LTE is illustrated in Fig-

ure 2.1. The RAN part of the network is called the evolved UMTS Terrestrial Radio

Access Network (E-UTRAN), while the network core is known as the Evolved Packet

Core (EPC). The E-UTRAN, which will be so forth called the LTE RAN, is composed

of a number of base stations called eNodeBs (eNBs), which are responsible for provid-

ing the wireless link to the User Equipment (UE). The eNBs are interconnected using

17

18 Chapter 2. Background

the so-called X2 interface, which is used for their coordination, for performing data

transfers during handover operations etc. Each eNB is connected to the core network

both through a control plane (S1-MME) and a user plane (S1-u) interface.

Figure 2.1: High-level overview of LTE architecture

The EPC is a (fixed) backhaul network that is composed of a number of entities re-

sponsible for managing and routing the mobile traffic. The Serving Gateway (S-GW)

is an entity that acts as a switch and is responsible for forwarding the user traffic within

the EPC. The Packet Data Network Gateway (P-GW) is an entity that is similar to the

S-GW and acts as a gateway responsible for routing traffic in and out of the EPC, e.g.

to the Internet or in some other external private network. The Mobility Management

Entity (MME) is responsible for handling operations related to the mobility and the

security of the UEs (authentication, UE attachment, handovers etc.), while the Home

Subscriber Service (HSS) is a database containing subscriber-related information. Fig-

ure 2.1 also depicts the names of all the interfaces used in the EPC for signaling and

traffic exchanges among the various entities. The dashed lines represent interfaces that

are used for signaling (control) operations, while the solid lines represent interfaces

that are used for user data traffic.

UE data are transmitted to and from the eNBs and within the EPC through virtual

“pipes”, called bearers. Bearers are essentially virtual end-to-end connections with

pre-defined QoS levels, with each bearer encapsulating one or more user flows. A UE

can have a number of active bearers, depending on the number of connections that it

has established and its QoS requirements (e.g. guaranteed or non-guaranteed bitrates).

Finally, all the traffic traversing the LTE network is encapsulated in a group of IP-based

communication protocols called GPRS Tunneling Protocols (GTP). More specifically,

the GTP-c protocol is used within the EPC to carry signaling traffic, while the GTP-

u protocol is used for carrying user data within the EPC and between the LTE RAN

2.1. Overview of LTE 19

and the EPC. Any incoming traffic to the mobile network (e.g. IP flows) is always

encapsulated into the GTP-u protocol.

2.1.2 Radio Access Network Architecture

Since the main focus of this work is on the RAN, it is important to present a more

detailed view of the LTE RAN protocol stack, as well as a brief description of the

physical layer design for the air interface.

2.1.2.1 LTE RAN Protocol Stack

A simplified version of an eNB protocol stack is presented in Figure 2.2. The illustrated

protocols can be distinguished into two categories; protocols of the air interface and

protocols that are used for the communication with the EPC.

Figure 2.2: Air interface and backhaul protocol stack of an eNB

Following a top-down approach, the air interface protocol stack consists of:

• Radio Resource Control (RRC) – This is a control protocol that among others

is responsible to decide on the cell-related information to broadcast, the estab-

lishment of secure connections with the UEs, handovers, paging as well as the

configuration of UEs for measurements related to mobility, QoS etc.

• Packet Data Convergence Protocol (PDCP) – This is the higher L2 sub-layer of

the air interface protocol stack and is responsible to provide functionalities like

ciphering and integrity protection (both RRC messages and data traffic), as well

as in-sequence delivery, duplicate detection and retransmission of data traffic.

20 Chapter 2. Background

• Radio Link Control (RLC) – This is the middle L2 sub-layer that is responsible to

transport PDCP Protocol Data Units (PDUs) to the lower layer. It offers different

modes of operation for the transmission of PDUs, where among others it can

provide Automatic Repeat Request (ARQ) error correction, concatenation and

segmentation of PDUs, in-sequence delivery etc.

• Medium Access Control (MAC) – This is the lowest L2 sub-layer, which is re-

sponsible for making the scheduling decisions for the transmission of the data

over the air interface. Among others it is responsible to handle the prioritization

of the scheduling of data originating from different logical channels of the same

UE, the dynamic scheduling between UEs, the retransmission of lost or corrupt

data through Hybrid Automatic Repeat Request (HARQ) error correction etc.

• Physical Layer (PHY) – This layer is responsible to carry control and data in-

formation from the MAC to the air interface. It is also responsible to perform

operations like link adaptation, power control, cell search and measurements of

UE signal quality.

On the backhaul of the mobile network, we can distinguish the following protocols:

• S1AP/GTP-u – These protocols are used by the eNB for the transmission of con-

trol messages to/from the MME (S1AP) and for the transmission of encapsulated

user data to/from the S-GW (GTP-u).

• SCTP/UDP – SCTP is the transport layer protocol used for the transmission of

S1AP related data, while UDP is normally used as the transport layer protocol

for GTP-u traffic.

• IP – The EPC is an all-IP network, meaning that IP is used as the network pro-

tocol for the communication among the EPC entities and the eNBs.

• L1/L2 – The specification of LTE does not provide strict guidelines regarding

the use of L1/L2 protocols on the backhaul side. In the simplest case, the com-

munication could be performed using Ethernet, however other approaches, like

microwave communications could also be employed.

2.1. Overview of LTE 21

2.1.2.2 Physical Layer Design

LTE uses Orthogonal Frequency Division Multiplexing (OFDM) on the downlink and a

precoded version of OFDM called Single-Carrier Frequency Division Multiple Access

(SC-FDMA) on the uplink.

Figure 2.3: LTE frame structure

A simplified version of the structure of an LTE frame is illustrated in Figure 2.3.

Each frame is composed of 10 subframes, which in turn are composed of 2 slots. A

Resource Block (RB) is the smallest unit of resources that can be allocated to a user

and is 180kHz wide in frequency and 1 slot long in time. In the frequency dimen-

sion, each RB is divided into 12 sub-carriers (15kHz each) and in the time dimension,

each slot is composed of 6 or 7 OFDM symbols, depending on whether a normal or

extended cyclic-prefix is used for mitigating inter-symbol interference. The minimum

data carrier of the LTE frame is the Resource Element (RE), which is 1 subcarrier x 1

OFDM symbol. The amount of RBs that are available in the resource grid can vary de-

pending on the available bandwidth. For example, in the case of 5MHz of bandwidth,

25 RBs are available in each subframe, while in the case of 20MHz, there are 100 RBs

available.

Each slot in LTE is 0.5ms long, resulting in subframes that are 1ms long and frames

with a duration of 10ms. The MAC scheduler of the air interface is responsible to

make its scheduling decisions and perform its scheduling operations within a period

of a Transmission Time Interval (TTI) that is equal to the duration of a subframe, i.e.

1ms long. Obviously, this makes scheduling in LTE a real-time operation with very

strict time constraints. Missing a scheduling deadline can lead to the degradation of

the system’s performance in terms of the throughput experienced by UEs.

Given the aforementioned frame structure, two types of frames are supported in

LTE for the transmission of data; (i) Type 1 uses Frequency Division Duplexing (FDD),

22 Chapter 2. Background

where the uplink and downlink are separated by frequency and (ii) Type 2 uses Time

Division Duplexing (TDD), where uplink and downlink are separated in time, i.e. dif-

ferent subframes are used for the uplink/downlink operations over the same frequen-

cies.

2.2 Emerging Mobile Network Trends and Technologies

2.2.1 Software-Defined Networking

The SDN approach allows the management of network services through the abstraction

of lower level functionality. Instead of dealing with low level details of network devices

regarding the way that packets and flows are managed, network administrators now

only need to use the abstractions available in the SDN architecture. The way that this

is achieved is by decoupling the control plane from the data plane following the layered

architecture illustrated in Figure 2.4.

Figure 2.4: Key ideas underlying the SDN paradigm

At the bottom layer we can observe the data plane, where the network infrastruc-

ture lies. In the context of SDN these devices have been stripped of all control logic

(e.g., routing algorithms) simply implementing a set of forwarding operations for ma-

nipulating network data packets and flows, providing an abstract open interface for

the communication with the upper layers. In the SDN terminology these devices are

2.2. Emerging Mobile Network Trends and Technologies 23

commonly referred to as network switches.

Moving to the next layer we can observe the control plane, where an entity referred

as the controller lies. This entity encapsulates the networking logic and is responsible

for providing a programmatic interface to the network, which is used to implement

new functionality and perform various management tasks. The control plane of SDN

is ripped entirely from the network device and is considered to be logically centralized,

while physically it can be either centralized or decentralized residing in one or more

servers, which control the network infrastructure as a whole.

At the top of the SDN stack lies the application layer, which includes all the appli-

cations that exploit the services provided by the controller in order to perform network-

related tasks like load balancing, network virtualization etc. One of the most important

features of SDN is the openness it provides to third-party developers through the ab-

stractions it defines for the easy development and deployment of new applications in

various networked environments from data centers to wireless and cellular networks.

Moreover, the SDN architecture eliminates the need for dedicated middleboxes like

firewalls and Intrusion Detection Systems (IDSs) in the network topology, as it is now

possible for their functionality to be implemented in the form of software applications

that monitor and modify the network state through an API provided by the controller.

Obviously, the existence of this layer adds great value to SDN, since it gives rise to a

wide range of opportunities for innovation, making SDN a compelling solution both

for researchers and the industry.

Finally, the communication of the controller to the data plane and the application

layer can be achieved through well-defined interfaces (APIs). We can distinguish two

main APIs in the SDN architecture: i) a southbound API, like OpenFlow ([95]), for

the communication between the controller and the network infrastructure; and ii) a

northbound API defining an interface between the network applications and the con-

troller. This is similar to the way communication is achieved among the hardware, the

operating system and the user space in most computer systems.

2.2.2 Network Functions Virtualization

NFV is a carrier-driven initiative with a goal to transform the way that operators archi-

tect networks by employing virtualization related technologies like virtual machines

and containers, to virtualize network functions such as switches, routers, IDSs and

NATs so that they can run in software. Through the introduction of virtualization it

24 Chapter 2. Background

is possible to run these functions over generic industry-standard high volume servers,

switches and storage devices instead of using proprietary purpose-built network de-

vices. This approach reduces operational and deployment costs, since operators no

longer need to rely on expensive proprietary hardware solutions. Finally, flexibility in

network management increases as it is possible to quickly modify or introduce new

services to address changing demands.

Figure 2.5: NFV high-level reference architecture.

A generic high-level NFV architecture can be seen in Figure 2.5, based on the NFV

framework of ETSI ([54]). At the bottom layer, we can observe the NFV Infrastructure

(NFVI), which is composed of the hardware resources. These resources are generally

distinguished into Compute, Network and Storage resources, which are abstracted and

virtualized through a virtualization layer. The virtualized resources can then be al-

located for the use of different VNFs that reside at the top of the architecture (e.g.

firewalls, routers etc.). Finally, an NFV Management and Orchestration (MANO) en-

tity is responsible for the on-boarding of network services, their life-cycle management

as well as for the management of the underlying NFVI resources.

2.2.3 Cloud RAN

The C-RAN ([31]) is a concept that has attracted a great deal of attention because

of the way it manages to centralize RAN computational resources. The centralized

processing enabled by this architecture allows the C-RAN to deal with complex coor-

2.2. Emerging Mobile Network Trends and Technologies 25

dination issues that are becoming increasingly important in the context of 5G, like that

of interference and mobility management in dense network settings.

Figure 2.6: High-level overview of C-RAN

In order to achieve this, multiple sites are connected to a datacenter where the base-

band processing is performed using a pool of Baseband Processing Units (BBUs), as

illustrated in Figure 2.6. The signals are transmitted from Remote Radio Units (RRUs)

to the datacenter over a fronthaul network composed of high-speed transmission lines

(e.g. fibers or microwaves in the case of line of sight).

PDCP
Low-
RLC

High-
MAC

Low-
MAC

High-
PHY

Low-PHY

PDCP
Low-
RLC

High-
MAC

Low-
MAC

High-
PHY

Low-PHY

Option 5Option 4 Option 6 Option 7Option 2Option 1

RRC

RRC

RF

RF

Option 8

Data

Data

High-
RLC

High-
RLC

Option 3

Figure 2.7: General description of functional split options (Source: 3GPP TR 38.801)

Depending on the functionality that needs to be centralized, the functions of the

RAN protocol stack can be split into different levels, with the lower layer functions

(e.g. PHY and MAC) residing at the RRUs and the higher layer ones (e.g. RLC/PDCP

and RRC) residing at the BBUs. Depending on the functional split configuration, the

centralization of the processing comes with a trade-off in terms of the network’s effi-

ciency and the cost for the implementation of the fronthaul link. Since no functional

split is ideal for all deployment scenarios due to the cost-efficiency trade-off, 3GPP

specifies a number of splits that could be adopted, as illustrated in Figure 2.7.

26 Chapter 2. Background

2.2.4 Heterogeneous Networks and Small Cell Deployments

With the term HetNet we refer to radio access networks that present heterogeneity in

the size and the placement of the cells within the same radio access technology.

Figure 2.8: Example of heterogeneous network

Generally, we can distinguish the cells in macro and small cells, as illustrated in

Figure 2.8. A macro cell is a high-powered cell that has traditionally been used to cover

large areas with a range of up to 20km. Small cells are low-powered radio access nodes

operating in licensed and/or unlicensed spectrum and have a much smaller range of up

to 2km. In the context of LTE, these are usually deployed in an unplanned manner in

densely populated areas with the goal of increasing the spectral capacity by offloading

traffic or by patching areas with bad signal quality. Small cells can be further distin-

guished in micro (2km range), pico (200m range) and femto (10m range) cells. The

latter are usually found indoors in homes and offices and are closed-type cells allow-

ing access only to a predefined group of subscribers. The co-existence of various small

cells within the area of a macro cell is one of the most common causes for interfer-

ence in HetNets. This leads to the need for interference management among the cells,

through various coordinated techniques commonly known as Enhanced Inter-Cell In-

terference Coordination (eICIC). In the context of this thesis and for the remaining

chapters, the term small cell will be used to refer to pico and femto cells with very

small ranges.

Chapter 3

Related Work

This chapter gives an overview of the literature related with the problems discussed

in the context of this thesis, building on the concepts and the background material

presented in Chapter 2. The works that are most relevant to the contributions of this

thesis are listed, explaining the challenges that they try to address as well as their

shortcomings, which drive the need for the novel solutions presented in the following

chapters.

3.1 Software-Defined Radio Access Networks

SDN in the Mobile Core

Software-defined control of mobile networks has received substantial attention from

the research community in recent years with both academia and industry recognizing

its benefits and proposing ways to integrate SDN principles to operational mobile net-

works [79]. Owing to the similarity between mobile core and wired networks much

of the cellular SDN research to date focuses on the core part of mobile networks. The

focus of this body of work [66],[100], [16], [117], [115], [90], [36], [88] is on novel

control designs based on SDN and NFV to address key core network issues of traffic

and mobility management, and enable mobile networks to scale in the presence of high

volumes of traffic.

SDN in the RAN

While the scope of some of the above mentioned works includes the RAN, none of

them address radio resource management, a vital aspect of the RAN and the focus of

27

28 Chapter 3. Related Work

our work. RAN radio resource management is unique in the type of resources man-

aged and the stringent timing constraints associated with some of the key functions

(e.g., scheduling). In the last few years, there have been several high-level conceptual

works on SD-RANs that do consider the radio resource management aspect [56], [11],

[29], [142], [141], [10], [14]. SoftRAN [56] is among the earliest of these works. It

introduced the idea of a big base station abstraction aimed at turning dense network

deployments into sparse ones through the separation of the control and the data plane.

In SoftRAN, control functions are statically separated into central and distributed ones

based on their time criticality and their requirement for a centralized network view

(e.g., centralized handovers and distributed downlink scheduling). Later works out-

line several potential SD-RAN designs, targeting different applications and settings.

Similarly to SoftRAN, these works consider the tradeoffs between cost and efficiency

for the control of the RAN and accordingly propose designs that follow either a hi-

erarchical approach as in SoftRAN (e.g., [11], [29], [142]), where different layers of

controllers are responsible for different operations based on their time criticality, or a

fully centralized approach (e.g., [141], [10], [14]) where all the processing (L1/2/3) is

performed centrally at a cloud data center.

A common and key limitation of the aforementioned SD-RAN works, which serves

as the main motivation of our work, is that none of them have been implemented (and

thus do not consider the associated challenges such as real-time control in their de-

signs) nor do they tackle the issue of separating the control and data planes in the RAN

in a practical and concrete manner. Moreover, none of these works offer mechanisms

to make control in the RAN adaptive and flexible by allowing a dynamic functional

split (e.g., centralized to distributed scheduling and vice versa) depending on the de-

ployment scenario and the constraints posed by the underlying network conditions at

any given point in time. Finally, not all of the proposed SD-RAN architectures are

transparent to the UEs, with some designs proposing the introduction of programma-

bility even at the UE-level (e.g., [142], [20]), raising backward compatibility concerns

for legacy devices.

The only concrete implementation of a programmable SD-RAN platform similar

in spirit to our work is 5G-EmPOWER [119]. However, this work mainly focuses on

enabling programmability and providing mobility and power management abstractions

for WiFi. In terms of mobile network technologies like LTE, it does not consider the

challenges of critical real-time control operations like scheduling, only providing high-

level APIs focusing on the monitoring and coarse-grained control of base stations.

3.2. Network Slicing 29

Other Works on RAN Control and Programmability

There are also works in the literature that are relevant from a RAN programmability

perspective but can be viewed as complementary to our focus on a SD-RAN platform

capable of performing radio resource management. For example, RadioVisor [57]

deals with the challenge of radio resource virtualization in the RAN, allowing indi-

vidual SD-RAN controllers to manage their own isolated slices. OpenRadio [17] and

PRAN [139] deal with data plane programmability and how new wireless protocols

can be implemented on-the-fly programmatically. Finally, the work of Tsagkaris et

al. [134] proposes a software-defined framework for Self Organizing Networks (SON)

that simplifies the management of SON functions via a controller based on SDN prin-

ciples.

3.2 Network Slicing

RAN Slicing

State of the art on RAN slicing can be traced back to the earlier works on active RAN

sharing [49, 145, 35, 108, 124]. Broadly speaking, two approaches under the names

of MOCN and Multi-Operator RAN (MORAN) have been considered. While both

approaches imply the use of separate core networks for each participating operator,

MOCN allows for spectrum sharing among operators while MORAN requires dedi-

cated spectrum for each. Relatively, more attention has been given in the literature

to the MOCN approach (e.g., [76, 89, 59]), which has been standardized for LTE in

Release 8. NVS [76] is a representative example. Note that the use of the term virtual-

ization in some of these works is somewhat misleading as it refers only to the UE per-

ceived performance isolation (i.e. throughput) among operators sharing the RAN radio

resources and not on the functional isolation and corresponding performance isolation

of the slices’ virtual network functions in terms of the required computing resources

(processing, memory, networking). However, functional isolation is additionally es-

sential in the RAN slicing context. The major focus of these works is on the design

of efficient radio resource scheduling algorithms while considering certain guarantees

for operators. The fact that radio resource sharing is also relevant for efficient RAN

slicing is reflected in the more recent algorithmic work in this thread [68, 92, 51, 26].

This body of work is complementary to our focus on systems support for RAN slicing.

In fact, we employ the NVS scheduling algorithm in our prototype to highlight the

30 Chapter 3. Related Work

efficient radio resource use feature of Orion.

From a systems perspective, RAN sharing oriented slicing (with no functional iso-

lation among slices) has been explored through the use of the FlexRAN SD-RAN plat-

form [46, 78, 105, 43], which is presented in Chapter 4 and we include in our com-

parative evaluations. Network slicing is enabled with FlexRAN by programmatically

defining the way in which the radio resources need to be allocated among the con-

nected UEs based on the requirements of the slice they belong to. A unified control

plane, which is controlled by a single entity (usually the infrastructure provider), is

responsible to perform the corresponding control operations. This approach can be

limiting, since the capabilities of the slices are fully dependent on the types of control

functions that are bundled in the control plane of FlexRAN . In contrast, Orion allows

independent and fully customizable control planes for each slice so that slice owners

can flexibly introduce their own functionality in the RAN and tailor their slice as per

the needs of their service.

To accommodate this need for slice customizability, the other RAN slicing ap-

proach taken in the literature seeks full isolation (by running the virtual base station

instance of a slice within a Docker container for example) but assumes dedicated radio

hardware and spectrum per slice [103, 102], bearing some similarity to the MORAN

form of RAN sharing in that resource sharing among slices is limited at best to comput-

ing, memory and storage resources. This has the downside of inefficient use of radio

resources and foregoing potential statistical multiplexing gains. The work presented in

[107] also takes the same approach, although the focus there is on the idea of a network

store for VNFs to aid in dynamic network slicing. On a more general note, wireless

virtualization overview and position papers like [143, 57, 82, 10] advocate functional

isolation, which strengthen the motivation for the approach we take in Orion to have an

isolated and customizable control plane for each slice.

In terms of radio resource virtualization, recent works in the domain of RAN slic-

ing [57, 82, 78, 52] have advocated the need for abstractions that decouple the control

plane decisions from the physical radio resource grid. However, the abstractions pre-

sented in these works are high-level and do not consider the constraints that can be

imposed by the physical layer (e.g., frequency-dependencies in scheduling). The ab-

stractions introduced in Orion for radio resource virtualization not only overcome these

limitations but are also generic in that they are applicable to both current LTE and

future 5G NR air interface technologies.

3.3. Shared Spectrum Indoor Small-Cell Neutral-Host Environments 31

Mobile Core Slicing

There has been significant progress on mobile core slicing to the point that it is fairly

mature and also made its way into 3GPP standards in a basic form under the name of

DECOR [6]. Virtualization of core network functions combined with the use of ma-

ture virtualization technologies (e.g., KVM [75], LXC [60], Docker [96], VLANs [15,

127]) have led to systems that realize core network slicing [103, 107, 74]. Even the

possibility of EPC as a service over the cloud has been explored [133]. Several re-

search proposals leveraging NFV in the core appeared in the recent past, aimed at its

optimization for better scalability (e.g., [16]), customization for particular use cases

(e.g., [132]) and in general making it more flexible (e.g., [117]).

Management and Network Orchestration

The end-to-end nature of services create the need for a MANO entity responsible for

realizing end-to-end slices spanning the core and the RAN as well as their life-cycle

management to ensure compliance with their service requirements. This has led to

MANO oriented research work [131] and several open-source MANO framework im-

plementations (e.g., OSM [42], ONAP [84]). More pertinent to our work, the authors

of Proteus [131] acknowledge the lack of a flexible RAN slicing solution and therefore

consider use cases that focus on innovations around the mobile core. Orion fills this

void. We present how Orion can be used in an end-to-end slicing context by interfacing

with any of the MANO solutions mentioned above.

3.3 Shared Spectrum Indoor Small-Cell Neutral-Host En-

vironments

Neutral-host system designs and specifications

A number of recent designs consider multi-tenancy support in mobile RANs that are

applicable to the indoor neutral-host small cell setting. Perhaps the ones most relevant

are: Orion [47], SESAME [44] and ESSENCE [32]. However, these works do not

consider the use of shared spectrum and its implications.

In terms of specifications targeting the neutral-host setting, nFAPI [129] is the most

relevant one. It specifies a functional split at the MAC layer. Each virtual operator gets

a VNF implementing the protocols from the MAC layer and above and a physical

32 Chapter 3. Related Work

network function for the PHY. In contrast to our work, nFAPI tenants do not share

a common pool of spectrum that is dynamically distributed in real-time. Instead, a

coarse grained approach is taken, where each physical network function is assigned its

own chunk of spectrum (shared or licensed). Another closely related specification is

MulteFire [101], which is a form of LTE deployment in unlicensed bands. In contrast

to our work, the focus of MulteFire is on the air interface and the ways to enable

co-existence with other technologies operating over unlicensed spectrum (e.g. WiFi).

Spectrum allocation mechanisms

Radio resource sharing in the neutral-host context can be seen as a specific scenario

of the more general problem of RAN slicing. Many algorithmic works in the domain

of RAN slicing [126, 25, 76, 77, 65] focus on solving optimization problems that con-

sider the available resources and the slices’ SLAs, to decide the optimal allocations

either at the base station level (e.g., [76, 65]) or at the RAN level (e.g., [77, 25, 126]).

However, these works do not consider the shared spectrum acquisition cost incurred to

the neutral-host and rely on the centralized allocation of resources, assuming the prior

knowledge of the tenants’ valuation for the spectrum by the infrastructure provider.

Shared spectrum allocation has been considered in settings where participants can

deploy infrastructure independently [27, 70, 87], as well as in the neutral-host con-

text [72]. However, as in RAN slicing, these works assume centralized allocation

schemes that rely on SLAs or require pre-defined agreements among the operators and

the spectrum provider regarding the operators’ access to the spectrum (e.g., through

static priorities or proportionally to the load of the operators).

Market Mechanisms

The work in [19] proposes a spectrum allocation mechanism in which revenue max-

imization for the infrastructure provider is also factored in, but again in the context

of SLA-based service provisioning, which is limiting for our shared spectrum setting.

More similar in spirit to this work, dynamic pricing has been considered in auction-

based shared spectrum allocation mechanisms [50, 146]. However, these mechanisms

are impractical from an implementation point of view, by making simplified assump-

tions regarding the way the spectrum can be shared among the tenants [50] or by re-

quiring the involvement of the users’ UEs to the auction [146]. Moreover, they do not

consider the shared spectrum acquisition cost of the neutral-host; a problem that would

3.3. Shared Spectrum Indoor Small-Cell Neutral-Host Environments 33

require to dynamically decide on the appropriate level of the reserve price for the tenant

bids to ensure that the neutral-host does not experience losses. From this perspective,

the mechanism we present for dynamic pricing will be an essential component of any

auctioning based mechanism for the target setting.

Dynamic Pricing in Other Contexts

Dynamic pricing in mobile networks also appears in the literature for the interaction

among operators and end-users (e.g. in TUBE [58]). In these schemes, prices can vary

throughout the day and are usually announced to the end-users on the previous day.

This allows users to decide on their network access pattern for the coming day. The

goal there is to incentivize the users to shift their demand into periods of the day when

the network is less congested. However, such schemes cannot be readily applied in this

work, since the end-user demand cannot be directly controlled by the neutral-host, but

rather from the tenants.

Finally, this work shares some similarities with the problem of demand-response in

smart-grids, where electricity providers need to control the network load and to match

the users’ demand with their supply, maximizing their utility. Dynamic pricing has

been shown as an effective mechanism in this context (e.g. [80, 85]). It is also relevant

to mention that reinforcement learning has been successfully used in this context for

the adjustment of prices and allocation of power to consumers (e.g. [138, 73, 111]),

although the time granularity of the considered solutions in that domain is significantly

coarser compared to ours (hours or even days).

Chapter 4

FlexRAN: A Software-Defined Radio

Access Network Platform

4.1 Introduction

In this chapter, we focus on the first problem considered in the context of this thesis,

regarding the softwarization and programmability of the RAN. As already explained

in Section 1.4.1, introducing software-defined capabilities in the RAN to create a so-

called SD-RAN architecture, can greatly improve its flexibility and adaptability, allow-

ing its behavior to be modified on-the-fly.

However, the differences in the nature of the RAN compared to wired networks, in-

troduce new challenges in terms of the software-defined control. This is due to the fun-

damentally different nature of the controlled resources (radio resource blocks vs flows)

and the stringent time constraints posed by critical control operations like scheduling.

These challenges, along with the fact that no concrete SD-RAN implementation ex-

isted to date, led us in the creation of the FlexRAN platform, which, to our knowledge,

is the first concrete prototype platform of its kind.

In this chapter, we provide an in-depth discussion regarding the design of FlexRAN

and how the mechanisms that it introduces help us overcome the aforementioned chal-

lenges. The concrete implementation of the FlexRAN platform provides a tool that can

prove very useful for research and experimentation not just in the domain of the SD-

RAN, but also of 5G more generally, due to the various applications and use cases that

it can enable. This is something that will be demonstrated not just in this chapter, but

also in Chapter 5, since FlexRAN acted as an enabler for the implementation of the Orion

RAN slicing system.

35

36 Chapter 4. FlexRAN: A Software-Defined Radio Access Network Platform

This chapter begins by first providing an overview of FlexRAN in Section 4.2. It

then proceeds in presenting the details of its design and implementation in Section 4.3,

followed by an evaluation of the system’s performance in Section 4.4. A number of

concrete and diverse use cases that demonstrate the benefits of FlexRAN are presented

in Section 4.5, accompanied by evaluation results. Finally, a further discussion on

additional use cases of FlexRAN and its applicability to other radio access technologies

beyond LTE is made in Section 4.6.

4.2 FlexRAN Overview

This section gives a high-level overview of the FlexRAN SD-RAN platform. We present

FlexRAN in the context of LTE for concreteness and to match with its current imple-

mentation, using the LTE terminology of eNBs and UEs for base stations and mobile

devices. It is however important to note that there is nothing LTE-specific that FlexRAN

assumes, thus its design is general and equally suitable for future mobile RAN archi-

tectures.

Figure 4.1 provides a high-level schematic of the FlexRAN platform, which is made

up of two main components: the FlexRAN Control Plane and the FlexRAN Agent
API. The control plane follows a hierarchical design and is in turn composed of a

Master Controller that is connected to a number of FlexRAN Agents, one for each

eNB. The agents can either act as local controllers with a limited network view and

handling control delegated by the master, or in concert with other agents and the master

controller. The control and data plane separation is provided by the FlexRAN Agent API

which acts as the southbound API (a la OpenFlow) with the FlexRAN control plane on

one side and the eNB data plane on the other side.

The FlexRAN Protocol facilitates communication between the master controller and

the agents by allowing a two-way interaction between them. In one direction, the

agent sends relevant messages to the master with eNB statistics, configurations and

events, while in the other direction the master issues control commands that define

the operation of the agents. In contrast to typical SDN controllers found in the wired

domain, the FlexRAN controller has been designed with support for time critical RAN

operations (e.g., MAC scheduling) in mind. Due to this real-time aspect and in order

to fully utilize the power of FlexRAN, in the ideal case the communication channel

between the agents and the master would be a high-bandwidth and low-latency channel

(e.g., optical fiber path). However it should be noted that this is not a hard constraint,

4.2. FlexRAN Overview 37

Figure 4.1: High-level schematic of the FlexRAN platform.

as the system provides flexibility to operate in non-ideal networking conditions with a

small impact on its performance and capabilities (see Section 4.3.3.1).

The centralization in the control of the radio resources offered by FlexRAN might

appear to share some similarities with the control offered by older mobile architectures

like for instance the Radio Network Controller controlling the NodeBs at the RAN of

UMTS. However, in contrast to such architectures, FlexRAN proposes a unique design

that introduces great flexibility in the way in which the network is managed and con-

trolled. More specifically, as it will be discussed in-depth in the following sections, the

FlexRAN agents allow the control of the RAN operations to be delegated to the agents

by the controller when the underlying network conditions demand it, while it also al-

lows network operators to easily modify the operation of the RAN in order to support

new functionality based on their requirements, making the RAN evolvable.

Note that Figure 4.1 does not include a UE, reflecting the fact that FlexRAN is trans-

parent to UEs. The FlexRAN agent ensures that any command issued by the master

that would affect the operation of a UE will be passed to the eNB, which will in turn

apply the modification using the RAN technology standard in use (LTE protocol in our

implementation). This transparency ensures the evolvability of the system, since new

LTE and FlexRAN protocol extensions can be implemented at the RAN without caus-

ing backwards compatibility issues for users and without disrupting the use of their

devices with constant updates to enable support of new network features. As long as a

UE adheres to the LTE standard, it will be fully compatible with the FlexRAN platform.

On top of the master controller lies a northbound API, which allows RAN control

38 Chapter 4. FlexRAN: A Software-Defined Radio Access Network Platform

and management applications to modify the state of the network infrastructure (eNBs

and UEs) based on the statistics and events gathered from the eNBs in the FlexRAN

control plane. Such applications could vary from simple monitoring applications that

obtain statistics reporting which can be used by other apps (e.g., mobile edge com-

puting app) to more sophisticated applications that modify the state of the RAN (e.g.,

MAC scheduler).

4.3 FlexRAN Design & Implementation

4.3.1 Design Challenges

As already discussed, in order for FlexRAN to be an effective SD-RAN platform, it

should resolve a number of challenges:

• Separation of the control from the data plane in a clean and programmable way.

• Adaptive and flexible RAN control with support for a dynamic control function

placement depending on the deployment scenario and the constraints posed by

the underlying network conditions.

• Support for the deployment of network applications over the controller, consid-

ering critical real-time applications (e.g. a MAC scheduler).

In the following subsections, we describe the way in which we overcame these

challenges through the detailed description of the components that make up the FlexRAN

platform (Figure 4.1) as well as their implementation details over the OAI LTE soft-

ware platform. We present our design in a bottom-up manner, starting with the FlexRAN

Agent API.

4.3.2 FlexRAN Agent API

All the access stratum protocols of LTE (RLC/MAC, PDCP, RRC) can be decomposed

into two parts; the control part that makes the decisions for the radio link and the action

part that is responsible for applying those decisions. For example, the control part of

the MAC makes scheduling decisions (resource block allocation, Modulation and Cod-

ing Scheme (MCS) etc.), while the action part applies them. Similarly, part of the logic

of the RRC protocol decides on UE handovers, while the actual handover operation re-

quires RRC to perform the corresponding action. Based on this taxonomy, FlexRAN

4.3. FlexRAN Design & Implementation 39

separates the RAN control plane from the data plane by detaching the control logic

from the action and consolidating all the control operations in a logically centralized

controller, which in FlexRAN comprises of Master Controller and Agents interacting via

the FlexRAN Protocol (see Figure 4.1). As a result, eNBs only handle the data plane to

perform all the action-related functions (e.g., applying scheduling decisions, perform-

ing handovers, applying power control commands, (de)activating component carriers

in carrier aggregation).

To control and manage the eNB data plane, we introduce the FlexRAN Agent API,

which defines a set of functions that constitute the southbound API of FlexRAN and are

the primary enabler for software-defined control of the RAN. These functions allow

the control plane to interact with the data plane in five ways: (1) to obtain and set con-

figurations like the UL/DL bandwidth of a cell; (2) to request and obtain statistics like

transmission queue sizes of UEs and SINR measurements of cells; (3) to issue com-

mands to apply control decisions (e.g., calls for applying MAC scheduling decisions,

performing handovers, activating secondary component carriers); (4) to obtain event

notifications like UE attachments and random access attempts; and (5) to perform a

dynamic placement of control functions to the master controller or the agent (e.g. cen-

tralized scheduling at the master controller or local scheduling at the agent-side). These

API calls can be invoked either by the master controller through the FlexRAN protocol

using the message handler and dispatcher entity residing at the agent side (Figure 4.2)

or directly from the agent if control for some operation has been delegated to it. The

API calls are currently defined using the C language. A detailed list of the function

call types is shown in Table 4.1.

Through the FlexRAN Agent API it becomes possible to develop two types of appli-

cations: (1) applications related to the control and management of the RAN resources

like schedulers, interference and mobility managers etc. (e.g. by controlling resource

block allocations, MCS, handovers and Discontinuous Reception (DRX) cycles) and

(2) applications relying on the monitoring of the RAN resources to make more sophis-

ticated decisions (e.g. adaptive video streaming based on Channel Quality Indicator

(CQI), resource-block allocations for RAN sharing, etc.) (see Sections 4.5 and 4.6.1).

It should be noted that FlexRAN does not deal with the control of flows in the wired

domain and therefore does not directly support related applications like routing. To

enable this, FlexRAN should be coupled with corresponding flow-control solutions, like

an OpenFlow-based SDN controller.

40 Chapter 4. FlexRAN: A Software-Defined Radio Access Network Platform

Call Type Description Target Example outcomes of calls

Configuration

(Synchronous)
Get/Set configurations of target

eNB/Cell/UE/

Logical Channel

eNB ID, Number of cells,

Cell id, UL/DL bandwidth,

Number of antenna ports, RNTIs,

UE transmission mode

Statistics

(Asynchronous)
Request/reply statistics reporting. List of cells/UEs

Transmission queue size,

CQI measurements,

SINR measurements

Commands

(Synchronous)
Apply control decisions

Agent Control Modules

(See Section 4.3.3.1)

Scheduling decisions,

DRX commands,

Handover initiation

Event-triggers

(Asynchronous)

Notify control plane about changes

in the data plane
Master Controller

Initiation of TTI,

UE attachment,

Random access attempt,

Scheduling requests

Control Delegation

(Synchronous)

Push control functions and modify

their behavior at the agent side

Agent Control Modules

(See Section 4.3.3.1)

Swap DL scheduler or

mobility manager,

Modify threshold of

signal quality

for handover initiation

Table 4.1: Type of function calls in FlexRAN Agent API.

4.3.3 FlexRAN Controller Architecture

4.3.3.1 FlexRAN Agent

In this subsection, we elaborate on the different subcomponents of the FlexRAN Agent

architecture shown in Figure 4.2.

Virtualized Control Functions. To allow flexible and programmable control of the

RAN infrastructure, the FlexRAN Agent provides a number of eNB Control Modules as

illustrated in Figure 4.2. These modules reflect a logical separation of the control op-

erations that an eNB in the standard LTE architecture has to perform on the radio side

and can be seen as a set of individual control subsystems, each targeting a specific area

of control. Since the LTE standard (the technology supported by our current imple-

mentation) already provides a precise definition and scope for such control operations

through the Access Stratum protocols (RRC, MAC/RLC, PDCP), FlexRAN adopts the

same structure for the agent’s control modules, with each module providing function-

ality according to the scope of its corresponding LTE protocol (e.g., MAC/RLC control

module for scheduling, RRC control module for the radio resource control).

Each control module is in turn composed of a well-defined set of functions called

Virtual Subsystem Functions (VSFs). The VSFs implement the action that needs to

be taken by the agent during a corresponding operation. As an example, consider the

4.3. FlexRAN Design & Implementation 41

Figure 4.2: The architecture of a FlexRAN Agent.

MAC control module which is broadly responsible for various scheduling operations

of the eNB. For each of the scheduling operations (e.g., UE specific downlink and

uplink scheduling, broadcast scheduling), FlexRAN defines a VSF that designates how

the agent should behave for the corresponding operation. For instance, the UE specific

downlink scheduling VSF could designate that the agent should forward the scheduling

decision sent by the master controller to the data plane or that the agent should make

its own decision based on a higher-level policy defined by the master.

The number and type of VSFs that each control module supports is defined through

a Control Module Interface (CMI), which essentially allows the agent to abstract the set

of operations of each control module from their corresponding implementations. In this

way, the agent reacts to a specific event (e.g., time for downlink scheduling) without

having to worry about the underlying implementation of the operation. Through this

design decision, the FlexRAN agent becomes very flexible, programmable and extensi-

ble since new operations can be introduced simply by extending the CMI, while at the

same time the functionality of these operations can easily be redefined in a technology-

agnostic manner via the abstract FlexRAN Agent API. As already discussed, a message

handler and dispatcher entity residing at the agent side (see Figure 4.2) is responsible

to receive FlexRAN protocol messages from the FlexRAN master controller and forward

42 Chapter 4. FlexRAN: A Software-Defined Radio Access Network Platform

them to be handled by the appropriate VSF of the corresponding control module using

the FlexRAN Agent API.

Control Delegation. FlexRAN allows the master controller to assume control of the

underlying infrastructure and orchestrate its operation by making and pushing control

decisions at a very fine time granularity (per subframe). While this is a feature that

is essential when considering centralized time-critical applications (e.g., coordinated

remote scheduling of eNBs), such fine grained control is not always desirable nor even

possible. For example, FlexRAN enabled small cells may not all be connected to the

master via a high-speed backhaul (e.g., optical fiber link), making the exchange of all

the required FlexRAN protocol messages (MAC statistics, scheduling decisions, event

notifications, etc.) at a subframe granularity a very challenging task. In such cases, it

is preferable to let the individual agents make time-critical decisions as per the policy

specified by the master.

A naive way to achieve this would be to identify a set of hardcoded policies at

the agent for each delegated operation. For example, the agent might offer a local

scheduler with two policies (round-robin and proportional fair) to choose from. If the

master chooses to delegate scheduling to an agent due to an unsuitable master-agent

communication channel (e.g., high latency), it would have to choose among the avail-

able hardcoded policies. However, such a mechanism can be very limiting since it does

not allow the modification of the agent’s behavior at runtime nor its extension with new

functionality in the future. FlexRAN avoids this via two complementary mechanisms:

VSF updation and policy reconfiguration.

VSF updation This mechanism exploits the control function virtualization feature de-

scribed above and allows the master to modify the behavior of the VSFs of a control

module on-the-fly by ”pushing” new code to the agent over the FlexRAN protocol. This

code is actually a callback assigned to one of the CMI function calls that corresponds

to a specific control module - VSF pair. The callback function is able to access and

modify the underlying eNB data plane using the FlexRAN agent API discussed in Sec-

tion 4.3.2. A VSF update FlexRAN protocol message designates the name of the control

module and the VSF that the new code is intended for and contains the actual code in

the form of a shared library that has been compiled against the agent architecture. The

pushed code is initially stored in a cache memory at the agent-side until the master

decides to modify the behavior of the corresponding VSF. The agent cache can store

many different implementations for a specific VSF, which the master can swap at run-

4.3. FlexRAN Design & Implementation 43

time. As an example, considering the case of the downlink UE scheduling VSF, the

master could push two schedulers to the agent, a local proportional fair scheduler and

a stub for a centralized remote scheduler, which it could switch at runtime (e.g., based

on the network conditions).

Policy reconfiguration This mechanism is complementary to VSF updation since it

allows the master to swap the agents’ VSFs and reconfigure their parameters at run-

time. A policy reconfiguration FlexRAN protocol message indicates the VSFs to be

modified using YAML syntax (Figure 4.3). At the top level, the control module name

is indicated, followed by a sequence of VSFs to be modified, each composed of two

(optional) sections; behavior and parameters. The behavior section is used for swap-

ping VSFs, i.e., it is an instruction to the agent to link a specific CMI function call

to one of the callbacks stored at its cache through the VSF updation mechanism. The

parameters section indicates a list of parameters that can be modified for the specific

VSF. These parameters act as a public API that the controller can modify and can

either refer to a single value or a sequence of values (e.g., an array). The available

parameters depend on the VSF implementation (e.g., two scheduler implementations

could have different sets of parameters based on their functionality).

Figure 4.3: Structure of a policy reconfiguration message.

The control delegation capabilities through the virtualization of control functions

offered by FlexRAN follow the NFV principles and indeed bring runtime service func-

tion chaining capabilities to the RAN by adding a virtualization layer over the RAN

infrastructure and allowing the flexible placement of RAN control functions closer or

further away from the base station based on the networking conditions, the available

computing resources and the requirements of the operator in terms of performance.

However, it should be noted that such capabilities relevant to the RAN are yet to be

considered by NFV standards specifications, like that of ETSI NFV.

44 Chapter 4. FlexRAN: A Software-Defined Radio Access Network Platform

An important issue when considering control delegation via the above mechanisms

is concerned with the security implications that might arise from pushing new VSFs

to the agent which modify the behavior of the eNB. One way to deal with this is to

force the agent to accept only code that is signed from a trusted authority, similarly

to how third-party device drivers for an operating system need to be verified before

installation. Since FlexRAN targets a critical part of the mobile infrastructure, getting

certification from trusted authorities is expected to become a common practice for

developers of VSFs; one could also envision an online VSF store similar to mobile

app stores. Another measure to limit the effects of unwanted behavior from the VSFs

is to allow the control modules of the agent to run in a sandboxed mode, where each

VSF will need to ask for permissions to use the various parts of the FlexRAN agent API,

similarly to how Android apps request the permission of the user to access different

services of their device. In this way, the network operator could quickly identify VSFs

that present an unexpected behavior.

eNB Report and Event Management. One of the responsibilities of the FlexRAN

agent is to provide statistics reports and event notifications to the master for the var-

ious control modules (e.g., transmission queue sizes and random access attempts for

the MAC module, radio bearer statistics and reference signal received power mea-

surements for the RRC module). The master can use the FlexRAN protocol to make

asynchronous requests for such reports and notifications and the FlexRAN agent is re-

sponsible to register these requests and to notify the master through the Reports &

Events Manager (illustrated in Figure 4.2) once the results are available.

FlexRAN supports three types of reports: one-off, periodic and triggered. A one-

off report is sent by the agent to the master only once as a reply to its initial request,

while a periodic report is sent at fixed intervals that are designated in the initial request

sent by the master, using the TTI as a time reference for the length of the interval. A

triggered report is sent by the agent aperiodically and only when there is a change in

the contents of the requested report. Similarly, the master can choose whether or not

to be notified for a specific event occurring at the eNB by registering for it at the agent

using the FlexRAN protocol. These statistics reports offer high level of flexibility in

tuning the level of interaction between the agents and the master, thereby the degree

of coordination. For example, triggered reports of MAC statistics is required for a

remote scheduler deployed at the master. However, if the scheduling application of the

controller is intended to be used as a non-real time application at a more coarse-grained

timescale as a hypervisor of a local agent-side scheduler, the master can only request

4.3. FlexRAN Design & Implementation 45

periodic or even one-off reports.

Extending OAI with FlexRAN. We implement the FlexRAN platform over OAI [106].

OAI is (to our knowledge) the most complete open-source LTE software implemen-

tation. As such, it provides the right base to realize FlexRAN. Recall that the focus of

FlexRAN is to achieve software based control of a mobile RAN that is totally decoupled

from the data plane. Since we use LTE as the concrete setting for our implementation,

it essentially involves using the implementation of FlexRAN as the LTE RAN control

plane over the data plane implementation that is retained from the base OAI. To achieve

this, we had to bypass the control plane of OAI, which does not clearly separate con-

trol and data planes, and then interface it with FlexRAN via the newly defined FlexRAN

Agent API. This clean separation offered by FlexRAN simplifies the development of

control applications, which now appear as modules completely separated from the data

plane (based on OAI in the current implementation); this is not possible with the stan-

dard LTE RAN and therefore even with vanilla OAI. Although in our implementation

the FlexRAN Agent resides over the OAI eNB data plane, it is important to note that

FlexRAN as a whole (including the FlexRAN Agent) is a separate entity allowing the

agent to be realized even on a physically different machine.

All the FlexRAN Agent Management Modules (Figure 4.2) and the FlexRAN Agent

API were implemented from scratch, creating a basic agent stub that could be enriched

with functionality through the implementation of the FlexRAN Control Modules identi-

fied earlier in this section. For our prototype the focus was on the RLC/MAC control

module, due to the significant challenges that it presents in terms of its stringent time

constraints. For this module, the appropriate CMI was identified and the correspond-

ing scheduling VSFs were implemented. Even though the functionality related to these

VSFs was already present in OAI, the involved control and data plane operations were

tightly coupled, which was counter to the intention behind FlexRAN. To overcome this,

the OAI eNB source code was refactored to allow the separation of the eNB data plane

from the control logic as per the design of FlexRAN and all the required function calls

were added to the FlexRAN Agent API to support this separation. For example, function

calls were added to the API to obtain data plane MAC/RLC related information like

transmission queue sizes of UEs, along with calls for applying scheduling decisions.

To better highlight the effort required for this prototype implementation, more than

10000 lines of code were written for the agent management modules and Agent API

and more than 6000 lines of original OAI code were refactored to support the control

and data plane separation.

46 Chapter 4. FlexRAN: A Software-Defined Radio Access Network Platform

The FlexRAN agent API, as well as the CMIs are written in C, while the whole

eNB/agent implementation currently supports x64 and ARM Linux systems. As a

consequence, any VSF written for an OAI FlexRAN agent currently needs to be imple-

mented in C and compiled against this architecture. The agent is multi-threaded with

one thread responsible for the management of reports and events, one for dispatching

the incoming protocol messages to the control modules and calling the corresponding

VSFs, and two for the asynchronous network communication with the master con-

troller.

4.3.3.2 FlexRAN Protocol

The abstract communication channel is another feature of the FlexRAN agent (Fig-

ure 4.2) for the interactions of the agent with the master. The main FlexRAN agent

components communicate and exchange protocol messages with the master through an

asynchronous interface that abstracts the communication operations. The communica-

tion channel implementation can vary (socket-based, pub/sub, etc.) depending on the

master that the agent is interfacing with. It should be noted that the interface between

the master and the agent needs to be asynchronous as the agent may need to perform

certain operations in specific time intervals (e.g., a scheduling decision per TTI) while

protocol messages from the master can arrive in asynchronously (e.g., receiving a re-

quest for a measurement report). In the current implementation, TCP is used for the

communication of the agents with the master and the exchange of protocol messages.

The protocol messages are implemented using Google Protocol Buffers [2], which pro-

vides an optimized platform-neutral serialization mechanism and allows the expression

of protocol messages in a language-agnostic manner. A detailed specification of the

protocol messages can be found in Appendix B.

4.3.3.3 FlexRAN Master Controller

The master controller (Figure 4.4) constitutes the brain of the FlexRAN control plane

as it manages the operation of the FlexRAN agents. In FlexRAN, we employ a custom

design for the master instead of using a conventional OpenFlow-based one and this is

for two reasons: (1) the nature of control in the RAN is tied to a significant extent to the

control of radio resources which cannot be effectively captured by the flow abstraction;

(2) the RAN presents a requirement for the support of real-time applications with very

quick reaction times, a feature not essential for SDN control in the wired domain.

4.3. FlexRAN Design & Implementation 47

Management of network information. The RAN Information Base (RIB) is a key

component that maintains all the statistics and configuration related information about

the underlying network entities, i.e. UEs, eNBs and FlexRAN agents. The RIB is always

loaded in memory for improved performance and is structured as a forest graph. The

root node of each tree in this forest is an agent associated with the master, while the

nodes of the second level are the cells associated with a specific agent/eNB. Finally,

the leaves of the trees are the UEs associated to a specific (primary) cell. It should

be noted that the current implementation of the RIB does not provide any high-level

abstraction for the stored information, revealing raw data to the northbound API.

Support for real-time applications. The applications as well as the Events Notifica-

tion Service of the master consult the RIB to perform any operation, but they do not

modify the RIB directly. Instead they issue control commands through the northbound

interface, which indirectly affect the RIB state through the modifications performed to

the eNB data plane and the agent state. These modifications are reflected back to the

master through the statistics reports and event notifications sent by the agents. Only

the RIB Updater component of the master can update the RIB with the information

received from the agents (Figure 4.5). This design decision improves the support of

real-time applications (e.g., MAC scheduler) that must be non-blocking in order to

meet their time constraints (e.g., a TTI for the scheduler). Allowing all components

to modify the RIB could give rise to write conflicts, negatively affecting the system

performance. Having just a single writer (the RIB Updater) and multiple readers helps

avoid this problem. The update frequency of the RIB depends on the way the FlexRAN

agent reporting and event notification mechanism is configured by the master.

Since the FlexRAN controller is designed to support real-time RAN applications,

a Task Manager is responsible for handling all the tasks (both applications and core

management modules) running on the master. More specifically, it is responsible to

start, stop and pause applications; to assign priorities to running services and to allow

them to execute based on their time constraints. For example, the Task Manager would

assign a very high priority to a centralized MAC scheduler running on the master,

whereas a non time-critical monitoring application would get a lower priority. To sup-

port real-time control, the Task Manager is implemented as a non-preemptive thread

running in an infinite loop and operating in cycles of length equal to a TTI, where each

cycle is composed of two slots — one for the execution of the RIB Updater (e.g., 20%

of the TTI) and the other for the execution of the applications as well as the Event

Notification Service threads (e.g., 80% of the TTI). This guarantees the mutual ex-

48 Chapter 4. FlexRAN: A Software-Defined Radio Access Network Platform

Figure 4.4: Components of the FlexRAN master controller and its interface to the appli-

cation layer.

Figure 4.5: Flow of information for updating the RIB.

clusion of the reads and writes in the RIB and allows the applications to operate in a

non-blocking mode while accessing the RIB, ensuring the real-time operation of the

controller.

Master controller implementation. The master controller is implemented from scratch

using C++ and currently supports x64 Linux systems (kernel≥ 3.14 for support of real-

time applications). The master can operate in a non real-time mode, supporting only

applications that are not time-critical, with the advantage of being more lightweight.

The Task Manager in the non-real time mode does not enforce a strict duration of the

cycle as tasks are not scheduled with a real-time priority and thus could take longer

than a TTI.

4.4. System Evaluation 49

4.3.4 Northbound API and Applications

RAN control and management applications in the application layer communicate with

the master through the northbound interface (Figure 4.4), which allows the applica-

tions to monitor the infrastructure through the information obtained from the RIB and

apply their control decisions through the agent control modules. The applications run

as threads and use the FlexRAN Application API (currently in C++) to register with the

Registry Service of the master, access the RIB and send control messages to the agents.

Applications can be divided into two categories: (periodic or event-based). Periodic

applications employ a periodic execution pattern (e.g,, a periodic scheduler) whereas

the execution of event-based applications is triggered by specific events (e.g., a mobil-

ity manager that expects changes in the received signal strength of a UE to react). The

Events Notifications Service of the master controller notifies the applications (mainly

of the event-based type) about any changes that might have occurred on the agent side.

Some applications could fall into both categories and it is ultimately the application

developer who would choose the appropriate execution pattern.

4.4 System Evaluation

In this section we evaluate the engineering decisions and the design choices behind

FlexRAN. For the experiments, a FlexRAN master controller was deployed, in which one

or more agent-enabled eNBs (depending on the experiment) were connected through

dedicated Gigabit Ethernet connections. Each eNB was also connected to a machine

acting as the EPC, running the corresponding EPC software implementation (openair-

cn [112]). All the test machines were equipped with quad-core Xeon CPUs at 3.4GHz

and 16GB of RAM. Depending on the experiment, the testbed was used either in emu-

lation mode (emulated PHY layer and emulated UEs) or with a real RF front-end (Ettus

B210 USRP) and a physical UE (Nexus 5 smartphone). All the experiments were con-

ducted with the same eNB configuration, namely FDD with transmission mode 1 and

10MHz bandwidth in band 5. For all the experiments in this section, and unless stated

otherwise, TCP traffic was generated using iperf to saturate the network.

4.4.1 Comparison to Vanilla OAI

We begin by investigating the overhead introduced to an eNB by the addition of the

FlexRAN agent in terms of memory and CPU utilization (Figure 4.6a) comparing a

50 Chapter 4. FlexRAN: A Software-Defined Radio Access Network Platform

vanilla OAI eNB and a FlexRAN-capable eNB in two cases; one with the system in

idle state and one with a UE connected and generating traffic to saturate the network.

The memory and CPU utilization are measured using standard information provided

by Linux distributions, i.e. memory information provided by the top tool and CPU

utilization obtained by measuring the jiffies allocated to the RAN-related processes

and dividing this value with the total jiffies of all the CPUs for all system processes

during the course of the experiment. As we can observe, there is a very slight increase

in the memory footprint and the CPU utilization in the FlexRAN case, due to the threads

used for the operation of the agent and the protocol messages exchanged with the

FlexRAN master controller. Despite the aforementioned overhead incurred from the

FlexRAN agent, the communication of the eNB with the UE is fully transparent, with

the UE experiencing the same service quality in its connection as with the vanilla OAI

(Figure 4.6b).

0

1

2

M
e

m
o

ry
 F

o
o

tp
ri

n
t

(G
B

)

1.26 1.26 1.29 1.31

No UE

Vanilla OAI

UE No UE

OAI + FlexRAN

UE
0

5

10

C
P

U
 U

ti
li

z
a

ti
o

n
 (

%
)

4.03

8.91

4.2

9.02

(a) Normalized CPU utilization (8-cores) and

memory footprint with(out) UE

Downlink Uplink
0

5

10

15

20

25

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

Vanilla OAI

OAI+FlexRAN

(b) Downlink and Uplink throughput compar-

ison

Figure 4.6: Comparison of vanilla OAI to FlexRAN .

4.4.2 Scalability

Next, we evaluate how FlexRAN scales as the number of eNBs and UEs increases. For

these experiments we used OAI in emulation mode with the PHY layer abstracted in

order to perform tests with a large number of UEs. It is noted that this choice has

a minimum effect on the obtained results, since the focus of our evaluation was on

operations occurring above the PHY which were unaffected by the emulation.

4.4. System Evaluation 51

4.4.2.1 Controller-agent signaling overhead

One very important element regarding the scalability of FlexRAN is the network over-

head incurred by the FlexRAN protocol, especially when support for real-time applica-

tions is required. For this, we measured the signaling overhead between the agent and

the master in the demanding case of deploying a centralized scheduling application and

for a varying number of UEs using the iftop network monitoring tool. To study the sys-

tem’s scalability, we tested a scenario with the worst case configuration signaling-wise,

where statistics reports were sent from the agent to the master every TTI, the central-

ized scheduler undertook all scheduling decisions at a TTI granularity and the master

was fully synchronized with the agent at a TTI level using the appropriate FlexRAN pro-

tocol synchronization messages. During the experiment uniform downlink UDP traffic

was generated for all the UEs, in order to force the centralized scheduler to frequently

send scheduling decisions to the agent.

The agent-to-master network overhead for 50 UEs can reach 100 Mb/s (Figure 4.7a).

The main source of this overhead are the periodic statistics reports (buffer status re-

ports, CQI measurements etc.) followed by the master-agent synchronization mes-

sages, with the overhead of the agent management related messages being negligible.

One important thing to notice is that the agent-to-master signaling overhead increases

sublinearly with the number of connected UEs due to the aggregation of relevant in-

formation in the FlexRAN protocol messages (e.g. list of UE status reports) and their

optimized serialization by the Google Protocol Buffers library.

10 20 30 40 50

Number of UEs

0

20

40

60

80

100

S
ig

n
a
li
n

g
 o

v
e
rh

e
a
d

 (
M

b
/s

)

Agent management

Master-agent sync

Stats reporting

20 40
0

0.05

0.1

(a) Agent-to-master

10 20 30 40 50

Number of UEs

0

1

2

3

4

5

S
ig

n
a
li
n

g
 o

v
e
rh

e
a
d

 (
M

b
/s

)

Agent management

Master commands

20 40
0

5
×10

-3

(b) Master-to-agent

Figure 4.7: Signaling overhead for the communication between the master and the

agent using the FlexRAN protocol.

52 Chapter 4. FlexRAN: A Software-Defined Radio Access Network Platform

In the case of the master-to-agent signaling (Figure 4.7b), the overhead is much

lower compared to the previous case (less than 4Mbps) and comes almost entirely

from the scheduling decisions sent by the centralized scheduler. In contrast to the

previous case, this overhead is increasing with a higher rate as the number of UEs goes

up. The reason is that the larger the number of UEs, the less resources are available for

scheduling each UE and therefore more TTIs will be required for scheduling, leading

to an increase in the overall number of scheduling decisions sent by the controller to

the agent.

The aforementioned results show that FlexRAN is suitable even in demanding sce-

narios like multi-cell scheduling on a per-TTI basis, where depending on the deploy-

ment (macro or small-cell) the agent can be connected to the master either through a

dedicated high-bandwidth channel (e.g. optical fibers) or through a lower bandwidth

channel (e.g. a VDSL connection). In practice, the controller will apply policies or

delegate the scheduling to the agent, which will significantly reduce the network over-

head. This overhead could be further reduced through agent configuration changes. For

example, by setting the periodicity of the MAC reports to 2 TTIs, this overhead could

be reduced to almost half without any significant impact on the system’s performance.

Other methods that could be considered to reduce this overhead could be compression

algorithms for the protocol messages or event-triggered instead of periodic message

transmissions.

4.4.2.2 Master controller resources

Using the previous setup, we measured (Figure 4.8) the requirements of the master

in computing resources and memory for a varying number of connected agents (16

UEs/eNB). As already discussed, the master operates in TTI cycles, where part of each

cycle is allocated to the execution of applications (80% in this experiment) and the

rest to the execution of the core components of the master. As we can observe, the

operation of the master is lightweight, with only a small fraction of the total cycle

being actually utilized. The execution time of the core components increases as we

add more agents, mainly due to the increase in the updates that need to be performed

by the RIB updater. The memory footprint of the master is also very small and its

increase is mainly related to the increase of the RIB size.

4.4. System Evaluation 53

0 1 2 3

Number of FlexRAN agents

0

0.2

0.4

0.6

0.8

1

C
P

U
 t

im
e
 (

m
s
)

4

6

8

10

M
B

Apps

Core Components

Idle Time

Memory Footprint

Figure 4.8: Utilization of master TTI cycle

and memory footprint (16 UEs/eNB).

0 20 40 60

RTT delay (ms)

0

20

40

60

80

S
c
h

e
d

u
le

 a
h

e
a
d

 (
s
u

b
fr

a
m

e
s
)

0

5

10

15

20

25

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

Figure 4.9: Effect of latency and schedul-

ing ahead time on downlink throughput.

4.4.3 Control channel latency impact

One very important aspect for real-time control in FlexRAN is the impact of the control

channel latency between the master and the agent. To test its effect we used a phys-

ical UE scheduled in the downlink by a centralized scheduling application running at

the master. The scheduler was implemented so that it could be parametrized to make

scheduling decisions n subframes ahead of time, meaning that the scheduler would

observe the MAC state (transmission queue sizes of UEs, signal quality etc) at sub-

frame x and would issue a scheduling decision that should be applied by the data plane

in subframe x+ n. The scheduling decision will be valid and can be applied by the

agent only if its designated time is greater than the latency in the master-agent control

channel.

Based on this setup we modified the schedule ahead parameter of the application

and the latency in the control channel using the netem tool [48] and measured the UE

downlink throughput for various configurations (Figure 4.9). As we can observe, the

lower triangular region of the figure depicts a throughput of 0, indicating that for these

configurations the UE was unable to complete network attachment. This is due to

the one-way delay of the control channel being greater than the schedule ahead time,

meaning that scheduling decisions always miss their deadline. Moreover, the control

channel delay affects the synchronization between the master and the agent, since the

agent subframe reported to the master is always outdated by an offset equal to half the

Round-Trip Time (RTT). Since the scheduler relies on this outdated value to make a

scheduling decision, the scheduling ahead time should take it into account. Assuming

54 Chapter 4. FlexRAN: A Software-Defined Radio Access Network Platform

a symmetrical RTT, the schedule ahead time should be set to a value that is at least

equal to it; half to make up for the outdated subframe value reported by the agent and

half to ensure that the scheduling decision will be valid at the time it arrives to the

agent.

In the upper triangular region we have all the cases in which the controller appli-

cation successfully manages to schedule the UE. In this case the application is able to

schedule the UE even for a control channel with a very high latency, as long as the

schedule ahead parameter is configured properly. As the RTT delay and the sched-

ule ahead time increases, the throughput gradually drops. One reason for this is that

higher RTT delays make the information stored in the RIB (e.g. CQI measurements)

more outdated, leading to wrong scheduling decisions (e.g. due to a bad MCS choice)

that could affect the throughput. Moreover, for increased values of the schedule ahead

parameter, the scheduler needs to make predictions further into the future, while mak-

ing assumptions about the outcome of previous transmissions for which it has not yet

received any feedback. Depending on the use case and on the scheduling performance

requirements, one could choose to either use approximation methods like scheduling

ahead of time to mitigate the effect of latency or to delegate control to the agents for the

time critical functions that are affected by this latency as long as coordinated operation

among the eNBs is not a hard constraint.

4.4.4 Control delegation performance

Since control delegation is one of the most important features of FlexRAN we evaluated

the mechanisms of VSF updation and policy reconfiguration in terms of efficiency and

service continuity. For this experiment we used the same setup as in Section 4.4.3,

starting with a centralized scheduler running as an application at the master. At the

same time, we built an equivalent (in terms of functionality) local scheduler, as a VSF

for the MAC control module of the agent, using the FlexRAN agent API. The experi-

mental scenario involved the pushing of this code to the agent using the FlexRAN pro-

tocol and the dynamic switching between the local and the remote scheduler through

the policy reconfiguration mechanism.

Using this setup, we tested the downlink throughput of the attached UE, while

swapping the local and the remote schedulers with various frequencies down to the TTI

level (1ms), and observed the same application performance of 25 Mbps, as illustrated

in Figure 4.10. The code is pushed to the agent-side only once and is stored in its

4.5. FlexRAN Use Cases 55

local cache meaning that no additional overhead is incurred for the control delegation.

Moreover, the absolute VSF load time required to swap between the local and remote

scheduler is very small (˜103ns) and therefore does not disrupt service continuity as it

only forms an insignificant fraction of the overall TTI.

1 10 100 500

DL scheduling VSF swapping period (ms)

0

5

10

15

20

25

30

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Figure 4.10: Downlink throughput of UE during frequent downlink scheduler policy re-

configurations

4.5 FlexRAN Use Cases

To date, the lack of an implemented SD-RAN platform meant that there was no way

to actually study SD-RAN benefits and use cases. To demonstrate the usefulness of

FlexRAN towards this end, we now present diverse use cases that SD-RANs in general

and FlexRAN in particular can enable.

4.5.1 Interference Management

One of the ways to cope with the requirement for higher throughput in the RAN is

the creation of HetNets composed of multiple small cells within the area of a macro

cell. However, such dense network deployments are more susceptible to interference.

One proposed solution is eICIC [38] that introduces the concept of Almost-Blank Sub-

frames (ABSs) during which the macro cells are muted to allow small-cells to transmit

user traffic. Even though eICIC is one effective way to manage interference, the semi-

static configuration of ABSs can lead to an underutilization of the radio resources when

small cells are idle. To remedy this, we consider an optimized eICIC mechanism that

allows the macro-cell to exploit periods of inactivity of the small-cells to transmit to

56 Chapter 4. FlexRAN: A Software-Defined Radio Access Network Platform

UEs even during ABSs as long as no small-cell is transmitting at the same time. Such

a mechanism requires a high-level of coordination among cells which cannot be eas-

ily achieved using the traditional X2 interface [30] [13]. To deal with this, we build a

downlink UE scheduling application over FlexRAN that exploits its consolidated control

plane to implement this optimized eICIC mechanism.

Specifically, we implemented a centralized scheduler application on top of the mas-

ter and two different types of local agent-side downlink schedulers, one for the macro-

cell and one for the small-cells of a region. During a non-ABS, the macro-cell eNB

performs the scheduling using its agent-side scheduler, while the agent-side schedulers

of the small-cells remain inactive exactly as in a normal eICIC case. However, during

an ABS the centralized scheduler at the master performs a coordinated UE scheduling

of all cells and decides whether the macro or the small cells should be scheduled, al-

ways giving priority to the small-cells. The scheduling decisions are then pushed to

the agents using the FlexRAN protocol and are applied by the agent-side schedulers that

during an ABS act as stubs of the centralized scheduler.

Two agent-enabled OAI eNBs were used, one acting as a macro-cell and one

as the small-cell, both running in emulation mode over the same physical machine.

The reason we resorted to emulation over the same machine is that eICIC requires

a microsecond-level synchronization of eNBs, which was not supported by our hard-

ware. Moreover, due to a limitation of the current OAI implementation, the association

of UEs over different eNBs is not supported in emulation mode when the PHY is ab-

stracted. This forced us to use the more computationally intensive full-PHY emulation

mode of OAI (that involves convolution of the real PHY signal with an emulated-

channel in real time) and to limit the number of emulated UEs used for this experiment

to 4.

One UE was associated with the small-cell and three were associated with the

macro-cell. Downlink UDP traffic was generated uniformly for all the UEs and the

overall network throughput was measured (Figure 4.11a) in three cases: (i) an uncoor-

dinated case, where each eNB performed scheduling independently, (ii) a simple eICIC

use case with 4 ABSs and (iii) the optimized eICIC use case with the same ABS config-

uration as case (ii). The optimized eICIC use case almost doubled the overall network

throughput over the uncoordinated scenario and had an improvement of about 22%

over the simple eICIC scenario. The reason for the difference between the two eICIC

use cases is that while the small-cell throughput remains the same (Figure 4.11b), the

throughput of the macro-cell increases under optimized eICIC because the ABS not

4.5. FlexRAN Use Cases 57

used by the small-cell are assigned by the centralized scheduling application to the

macro-cell.

0

2

4

6

8
N

e
tw

o
rk

 T
h

ro
u

g
h

p
u

t
(M

b
/s

)

Uncoordinated

eICIC

Optimized eICIC

(a) Downlink network throughput in uncoordi-

nated, simple and optimized eICIC.

Small Cell Macro Cell
0

1

2

3

4

5

C
e

ll
 T

h
ro

u
g

h
p

u
t

(M
b

/s
) Optimized eICIC

eICIC

(b) Overall macro and small cell downlink

throughput for simple and optimized eICIC.

Figure 4.11: Throughput benefits of optimized eICIC.

4.5.2 Mobile Edge Computing

For our second use case, we consider FlexRAN as a deployment platform for MEC ap-

plications. MEC allows developers and content providers to deploy their services over

the network edge. This presents many benefits including ultra-low latency, high band-

width and real-time access to radio network information which can be used by applica-

tions for optimization purposes [62]. Such applications are expected to be deployed in

a centralized manner and therefore doing this using the conventional LTE architecture

becomes a challenging task. Moreover, their deployment assumes the existence of a

programmable network, which is naturally enabled by FlexRAN.

In this context, we show how the consolidated control plane and the real-time net-

work information provided by FlexRAN can be beneficial for services such as video

streaming. To show this, we used the DASH [130] streaming service and studied the

effects of fluctuating a mobile’s signal strength to the video streaming bitrate adapta-

tion performed by the DASH reference client [37]. The idea of the experiment is that

the channel quality reported by the UEs to the eNB through a CQI value (in the range

[0,15]) indicates the MCS that the scheduler should use for the data transmissions of

a UE and therefore has a direct impact in its highest achievable throughput. Knowing

58 Chapter 4. FlexRAN: A Software-Defined Radio Access Network Platform

this can allow the streaming service to make smarter decisions regarding the optimal

bitrate compared to a case when only transport layer information is available.

In order to obtain reproducible results, we emulated the fluctuations of the channel

quality between the eNB and the UE and measured the maximum achievable TCP

throughput of a physical UE for various fixed CQI values. Moreover, for the same CQI

values, we used the reference DASH client and the available test videos that it offered,

to measure the maximum sustainable bitrate of a video stream (i.e. a bitrate that would

never lead to buffer freezes) for the offered bitrate levels. The measurement results

(Table 4.2) indicate that the TCP throughput needs to be greater (even double) than the

video bitrate in order to always maintain a high quality; this is consistent with related

observations in the literature [135].

CQI TCP Throughput (Mbps) Max sustainable bitrate (Mbps)

2 1.63 1.4

3 2.2 2

4 3.3 2.9

10 15 7.3

Table 4.2: Measurements of max TCP throughput and max sustainable bitrate of video

stream for various CQI levels.

We used FlexRAN to implement a simple MEC application that uses the RIB to

obtain real-time information about the CQI values of the attached UEs. The application

computes an exponential moving average of the UE CQI and maps it to the optimal

video bitrate based on the measurements of Table 4.2. The bitrate is then forwarded

through an out-of-band channel to a modified version of the DASH reference client

where it is used to adapt the video stream’s quality. To simplify things, we performed

the experiment in an ideal setting, where the channel quality fluctuation was the only

cause for a change in the bitrate (a single UE attached to the network with the DASH

video being the only source of traffic).

For our experiment, we considered two cases. In the first, we used a video [3]

with three bitrates (1.2, 2 and 4 Mbps) and we introduced a small variation in the CQI

value (from 3 to 2 and vice versa). In the second, we used a 4K video [4] with six

available bitrates (2.9, 4.9, 7.3, 9.6, 14.6 and 19.6 Mbps) in which the CQI value was

changed drastically (from 10 to 4 and vice versa). In both cases, we measured the

bitrate selected by the default and the FlexRAN-assisted players in comparison to the

maximum achievable TCP throughput, as well as their buffer sizes (Figure 4.12). In the

4.5. FlexRAN Use Cases 59

first case (Figure 4.12a), the default player always kept the bitrate at the lowest value

(1.2 Mbps), even in times when the available throughput increased by 40%, meaning

that the change in channel quality did not become apparent to the transport layer. On

the other hand, the FlexRAN-assisted player exploited the information obtained by the

RAN and managed to better adapt to the changing network conditions. Therefore, even

though neither player experienced buffer freezes, the default player underutilized the

available resources. In the second case (Figure 4.12b), the default player aggressively

attempts to increase the bitrate when the CQI increases, setting it to 19.6 Mbps, even

though the maximum achievable throughput is 15 Mbps. This quickly results in TCP

congestion, leading the player to significantly lower the bitrate (lower than the max

sustainable bitrate) in order to adapt, while the video buffer is frequently empty (e.g.

sec 5-30). This has a significant impact to the Quality of Experience (QoE), since an

empty buffer means that users experience video freezes. On the other hand, the MEC

application running over FlexRAN can quickly identify the maximum sustainable bitrate

(7.3 Mbps) given the CQI measurements observed at the RIB and does not follow the

same aggressive behavior as the default player, leading to a more stable video stream

that avoids buffer freezes.

0 50 100

Time(s)

1

2

3

4

5

6

B
it

ra
te

/T
h

ro
u

g
h

p
u

t
(M

b
/s

)

0

5

10

15

20

25

B
u

ff
e
r

s
iz

e
 (

s
)

Max Throughput

Assisted-DASH bitrate

DASH bitrate

Assisted-DASH buffer

DASH buffer

(a) Low throughput variability

0 50 100

Time(s)

0

10

20

30

B
it

ra
te

/T
h

ro
u

g
h

p
u

t
(M

b
/s

)

0

20

40

60

80

100

B
u

ff
e

r
s

iz
e

 (
s

)

Max Throughput

Assisted-DASH bitrate

DASH bitrate

Assisted-DASH buffer

DASH buffer

(b) High throughput variability

Figure 4.12: Rate adaptation of DASH vs FlexRAN assisted DASH and corresponding

buffer sizes.

The MEC application and the metrics considered in the experiments of this use

case are intended to highlight the benefits of an SD-RAN design by focusing on QoE

aspects that are linked to the smooth play of video streams (avoiding video freezes),

in line with the philosophy and the experimental methodology of works like [140].

However, an SD-RAN design could also be exploited to improve the QoE of users in

60 Chapter 4. FlexRAN: A Software-Defined Radio Access Network Platform

other ways, like for example through the content-aware schedulers in [81] and [113],

that correlate the video quality with the content of the video. It should be noted that

in such cases, the perceived benefits of the users in terms of QoE could be evaluated

through different quality metrics like PSNR or SSIM, rather than the use of bitrates

and buffer sizes.

4.5.3 RAN Sharing & Virtualization

A side effect from the densification of cells is the increase of the infrastructural CAPEX

and OPEX. This leads to the creation of new business models, where multiple MNOs

share the same passive infrastructure such as masts and backhaul links in order to

save costs. On top of that, a second level of active sharing can happen, where MNOs

share the network equipment as well as provide wholesale access to MVNOs, allowing

them to provide voice and data services using part of the available resources [35].

However, this can pose a significant challenge for the management of the RAN, since

the requirements of operators in terms of the radio resources and the applied policies

of scheduling and mobility management can constantly change based on the needs

of their subscribers and the underlying setting. The control and management of such

operations can be greatly simplified through the introduction of programmability in the

RAN.

Based on this, we used FlexRAN as an enabler of active RAN sharing and on-

demand resource allocation over an LTE network. More specifically, exploiting the

capabilities of FlexRAN , we implemented a downlink UE scheduler for the agent-side

that supports the dynamic introduction of new MVNOs to the RAN and the on-demand

modification of the scheduling policy per operator. An application running at the mas-

ter exploits the policy reconfiguration mechanism of FlexRAN to modify the parame-

ters of the agent-side scheduler (scheduling policy and number of resource blocks per

MVNO). To test this and in order to be able to support a large number of UEs, we

used a single agent-enabled OAI eNB in emulation mode with the PHY abstraction

enabled. We configured the agent-based scheduler to support one MVNO that shared

the available resources with the RAN’s MNO.

For our first experiment, each operator was assigned 5 UEs for which uniform UDP

downlink traffic was generated, while the percentage of radio resource blocks allocated

to each operator was dynamically adjusted based on their requirements. The results in

terms of the total throughput per operator are illustrated in Figure 4.13a. Initially,

4.5. FlexRAN Use Cases 61

the MNO was allocated 70% of the radio resources and the MVNO was allocated the

remaining 30%. At 10s, the master controller application sent a policy reconfiguration

message, setting the available resources of the MNO to 40% and of the MVNO to 60%,

simulating a brief requirement for additional resources for the MVNO. Then, at 140s,

the application sent a second policy reconfiguration message that re-adjusted the radio

resources so that 80% were allocated to the MNO.

0 50 100 150

Time (s)

0

2

4

6

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

MNO

MVNO

(a) Dynamic allocation of resources

0 200 400 600

Throughput (Kb/s)

0

0.2

0.4

0.6

0.8

1

C
D

F

MNO (Fair)

MVNO (Group-based)

(b) CDF of UE throughput based on scheduler

Figure 4.13: Policy reconfiguration for MVNO management

As a second experiment, we implemented an agent-side scheduler supporting a

fair scheduling policy and a group-based policy of premium and secondary users, with

70% of the resources allocated to the premium users and the rest to the secondary. One

MNO and one MVNO was employed, where the MNO was assigned the fair policy

and the MVNO the group-based one. Each operator was allocated half of the available

radio resources and was assigned 15 UEs. In the group-based MVNO case, nine UEs

belonged to the premium group and the remaining six acted as secondary users. We

generated uniform UDP downlink traffic for all the UEs and measured the throughput

of each UE per operator. The results are illustrated in the CDFs of Figure 4.13b. In

the case of the MNO, all the UEs had a throughput of about 380Kb/s due to their fair

scheduling policy. On the other hand, in the case of the MVNO, UEs assigned to the

premium group had a throughout of about 450Kb/s, while the UEs of the secondary

group achieved a throughput of less than 200Kb/s.

It should be noted that the active RAN sharing use case considered here is one of

the extreme but not ideal design points for RAN slicing. In Chapter 5, a more ideal

form of RAN slicing that can provide both functional and performance isolation among

slices will be presented in the form of Orion.

62 Chapter 4. FlexRAN: A Software-Defined Radio Access Network Platform

4.6 Discussion

4.6.1 Other Example Use Cases

Here we make a brief discussion on a non-exhaustive list of further use cases that were

currently not implementable due to the limitations posed either by the OAI platform

underlying FlexRAN or by the current LTE specifications.

Mobility Management. In current practice, handover decisions mainly rely on the

signal strength of mobile devices. However, the centralized network view offered by

FlexRAN could enable more sophisticated mobility management mechanisms that con-

sider additional factors, e.g., the load of cells or use-driven resource requirements of

mobile devices, leading to an optimization of the device-network associations.

Device Centric Networking. Another interesting application of FlexRAN could be in

the domain of device-centric networking [21]. In this, the association of mobile de-

vices is decoupled from the cell, e.g. by using different cells for control and data

traffic, simplifying the adoption of new communication paradigms like D2D. While

realizing such a paradigm would also require changes in the physical layer, its de-

ployment could greatly be simplified through the centralized control of FlexRAN, as

it inherently involves the coordinated control of multiple network nodes, e.g. control

traffic through one cell and data traffic through another.

Spectrum Sharing. Shared spectrum access is seen as a promising solution that al-

lows operators to cope with the high increase of mobile data traffic. One spectrum

sharing mechanism that is of particular interest to MNOs is LSA [69]. It enables in-

cumbents not concerned with civilian wireless and mobile data communications to

authorize other users (e.g. the MNOs) to access all or part of the spectrum allocated to

them for designated periods of time and in designated places based on some agreement.

An LSA controller dynamically manages the access to the shared spectrum based on

these agreements. Such an operation could easily be implemented as an application on

top of FlexRAN.

4.6.2 Adaptability Beyond LTE

As already discussed in Section 4.2, FlexRAN was presented in the context of LTE

for concreteness and to match its current implementation. However, the design and

the mechanisms supported by FlexRAN are not LTE-specific and are therefore equally

4.6. Discussion 63

suitable for future mobile RAN architectures. More specifically, the mechanisms of

virtualized control functions and control delegation are technology-agnostic and use

API calls and protocol messages that are completely decoupled from the underlying

technology. The main difference that these mechanisms would present in the context

of another technology is that the number and type of the control modules and VSFs on

the agent side would change to reflect the capabilities and needs of the new technology

(e.g. no PDCP module for WiFi). However, the mechanisms of policy reconfiguration

and VSF updation make no assumption about the exact type and structure of the control

modules at the agent side, allowing the controller to designate it on the fly based on

the underlying implementation (see Figure 4.3).

Apart from the technology agnostic part of the agent API, FlexRAN also requires

a number of technology specific API calls. For example, LTE requires scheduling

commands which are not applicable and therefore are not required in the WiFi domain.

This means that for FlexRAN to be fully compliant with other technologies, the FlexRAN

Agent API needs to be extended with additional function calls specifically tailored for

the domain of interest, closely resembling the idea of device drivers found in operating

systems. The more extended the API is for a specific technology, the more capabilities

are offered for the control of the underlying RAT. It should also be noted that the

FlexRAN protocol has been structured in such a way that it could be easily extended to

support new messages that are technology specific without affecting the functionality

of the existing ones.

Another important issue is the extensibility of FlexRAN in future 5G fronthaul ar-

chitectures where base stations are expected to adopt a C-RAN design, with RRUs

decoupled from the BBUs and connected through a fronthaul link (e.g. optical fibers)

[30]. In such an architecture, the functional split between the RRU and the BBU is

expected to play a significant role, depending on the capacity and the latency of the

fronthaul link. The design of FlexRAN could be adopted in such an architecture, where

the data plane and the agents could be placed on the RRU side and the control plane

could be consolidated at the master residing at the BBU. Based on the quality of the

fronthaul link, the control delegation features of FlexRAN could be exploited to perform

a dynamic and adaptive functional split of the control operations while retaing the real-

time deadlines. For example, in case of a high latency fronthaul link, the master could

delegate control of the time critical PHY and MAC operations to the RRU, while in

case of a low latency link all operations could be residing at the BBU side.

64 Chapter 4. FlexRAN: A Software-Defined Radio Access Network Platform

4.7 Conclusions

In this chapter we have presented FlexRAN, a flexible and programmable SD-RAN

platform. FlexRAN enables the separation of the control from the data plane through a

custom-tailored southbound API, while providing inherent support for real-time RAN

applications. FlexRAN offers significant benefits to the RAN, including the flexibil-

ity to dynamically modify the degree of coordination among base stations to realize

both distributed and centralized modes of operation and the programmability to adapt

control over time turning the RAN into an evolvable network. All these while be-

ing transparent to end-devices, simplifying its deployment and promoting innovation

both for the industrial and the academic research community. The implementation of

FlexRAN over the OAI LTE platform and our evaluation results confirm the feasibility

of its deployment even when considering time critical operations like MAC schedul-

ing. The effectiveness of FlexRAN as an SD-RAN platform was highlighted through a

diverse set of use cases in the context of current 4G and future 5G networks, focusing

on interference management, mobile edge computing and RAN sharing.

Chapter 5

Orion: A RAN Slicing System

5.1 Introduction

The softwarization capabilities introduced in the RAN through FlexRAN can help in

improving the flexibility and the adaptability of the network in terms of its control

and coordination, while allowing the use of generic hardware to achieve this. How-

ever, these capabilities alone are not enough to enable the multi-service environment

envisioned in the context of 5G, where multiple slices, with very diverse performance

requirements must co-exist over a common underlying infrastructure, sharing the avail-

able resources.

In this chapter, we focus on the problem of introducing virtualization capabilities in

the RAN in order to enable the slicing of the network based on the diverse needs of the

deployed services. As already stated in Section 1.4.2, RAN slicing is at a premature

stage, with the main challenge being that apart from computing, storage and network

resources, the limited radio resources need to also be virtualized and assigned to the

slices. This must be achieved while guaranteeing the functional and performance iso-

lation between tenants and the infrastructure provider, and among tenants themselves,

so that these tenants can maintain full control and independence of their slices to tailor

them to their respective service requirements.

Focusing on this problem, this chapter presents Orion, which in our knowledge

is the first RAN slicing system that provides full functional and performance isola-

tion, while also facilitating the efficient sharing of the radio and spectrum resources.

To achieve this, among others, Orion leverages the software-defined capabilities of

FlexRAN and introduces a novel set of abstractions for the virtualization of the radio

resources among tenants. The concrete implementation of Orion can be a useful tool

65

66 Chapter 5. Orion: A RAN Slicing System

for further research and experimentation in 5G, since, combined with existing slicing

solutions for the mobile core, it can act as an enabler of end-to-end mobile network

slicing.

This chapter begins by providing a high-level overview of Orion in Section 5.2.

This is followed by a detailed presentation of the design and implementation aspects

of the system in Section 5.3 and a thorough evaluation of its performance compared to

the state-of-the-art in Section 5.4. The benefits and the capabilities of Orion are further

investigated through a set of case studies in Section 5.5. Finally, the extensions in the

design of Orion in order to support OTT service providers are discussed in Section 5.6,

accompanied by a set of evaluation results that demonstrate the added benefits of the

system’s extended form.

5.2 Orion Overview

The core contribution of this chapter, Orion, is a novel RAN slicing system design that

is in line with the spirit of network slicing and the needs of a flexible and cost-effective

multi-service mobile network architecture – isolation among multiple virtual networks

provides the necessary flexibility to customize and control a slice, whereas efficient

sharing of the underlying physical infrastructure allows supporting diverse services in

a cost-effective manner. Simultaneously being able to satisfy both these concerns of

functional isolation between slices and efficient resource use in the context of the RAN

is the main, as yet unresolved, challenge addressed by Orion.

Towards this end, Orion’s design (Figure 5.1) explicitly distinguishes the infrastruc-

ture provider from the service providers (the slice owners). The infrastructure provider

is the owner of physical base stations, comprising of hardware resources (i.e., radio

equipment, processing, memory, and network) and a chunk of spectrum. While it can

be realized either via dedicated specialized hardware or in a cloud environment us-

ing re-programmable hardware (e.g., C-RAN BBUs and RRUs), each physical base

station in our model supports a single RAT, meaning that all radio and spectrum re-

sources available at the base station can be exploited through a shared physical layer.

Note that, for concreteness in the description of Orion’s design and implementation, we

consider LTE as the underlying RAT and downlink scheduling as a running example

throughout.

The Base Station Hypervisor that sits over the physical layer is the heart of

Orion’s design. It is the component used for managing RAN slices, for ensuring their

5.2. Orion Overview 67

Figure 5.1: High-level architecture of Orion.

full isolation – control logic for functional isolation and resources for performance

isolation, as well as facilitating efficient sharing of underlying physical resources.

Essentially, the Hypervisor binds the individual and isolated slices to the physical

infrastructure, providing them with a virtual view of the underlying radio resources

via a novel set of abstractions and the data plane state as well as applying their state

changes over the physical data plane by mapping virtual to physical resources. The

Hypervisor is part of the infrastructure provider’s software infrastructure to support

RAN slicing. The infrastructure provider is also responsible for admission control.

Service providers (e.g., MVNOs and verticals) in Orion realize their RAN slices

through the creation of virtual base stations over the Hypervisor. Each virtual base

station is a composition of a virtual control plane, responsible for managing data plane

state that is revealed to it by the Hypervisor. The virtual control plane of a slice is

effectively a local RAN-level slice controller running as a separate process, responsi-

ble to tailor the functionality and manage the allocation of resources to UEs associated

with the slice as if it was operating using its own dedicated infrastructure. The virtual

control plane is also responsible for implementing the control protocols required for

the communication and coordination of the virtual base station with the rest of the mo-

bile infrastructure (e.g., S1 and X2 interfaces in LTE). This means that all operations

defined for a given mobile network architecture can be supported by slices (including

roaming) so long as the appropriate interfaces and messages are implemented as part

68 Chapter 5. Orion: A RAN Slicing System

of the respective virtual control planes. Note that although we discuss the data plane

aspect both in our design and implementation, our primary focus expectedly is on the

control plane. Following SDN principles, our design assumes control-data plane sepa-

ration that is now widely accepted in the mobile networking domain [79, 115, 142, 46].

The communication of the slices’ virtual control planes with the Hypervisor is

message-based and happens through independent physical/virtual communication chan-

nels. This approach allows the deployment of slices either over the same physical

machine as their Hypervisor or over separate physical machines. It also gives the

flexibility to slice owners to compose their control planes using different levels of

centralization to enable coordination based on their services’ needs, independently of

other slices.

The design of Orion provides strong isolation guarantees while allowing efficient

resource sharing. First, since each of the slice controllers is running as a separate

process, isolation among controllers in terms of memory and CPU can be achieved by

employing well known OS and process virtualization techniques, like virtual machines

(e.g., KVM) or containers (e.g., LXD and Docker). Second, the Hypervisor is the sole

entity responsible for handling actual radio resources which it distributes among slices

after virtualizing them, ensuring isolation from a radio resource perspective. Third, it

can internally facilitate efficient resource use via a suitable allocation algorithm that

also considers slices SLAs and underlying physical conditions. Additionally, from a

UE perspective, the whole slicing operation is transparent, with each slice appearing

as a different MVNO as in RAN sharing.

5.3 System Design & Implementation

This section details the key components of Orion: Base Station Hypervisor and

Virtual Control Plane of a slice.

5.3.1 Base Station Hypervisor

The Base Station Hypervisor (Figure 5.2) acts as the intermediary between the

data plane of the physical base station and the virtual control planes of slices. The

Hypervisor communicates with the data plane via an API to access and modify the

data plane state (e.g., obtain signal quality measurements and transmission queue sizes

of UEs, apply scheduling decisions, etc.). The Hypervisor is responsible for allocat-

5.3. System Design & Implementation 69

Figure 5.2: Architecture of the Orion Base Station Hypervisor.

ing physical radio resources to slices with respect to their SLAs, transforms them into

virtualized resources that are revealed to virtual control planes of slices in an isolated

manner. On the other direction, slices use the provided virtual resources for their con-

trol plane operations and send their commands (e.g., scheduling decisions) back to the

Hypervisor, which then translates them to a physical representation and applies them

to the data plane. We now detail the internals of the Hypervisor.

5.3.1.1 Slice Context Manager

Prior to a slice’s creation, the slice owner comes to an agreement on the required ser-

vice type with the infrastructure provider, subject to admission control. This is for-

mally translated into a slice service description that includes two elements:

An SLA that identifies the service requirements of the slice owner (e.g., average

throughput, resource blocks). Orion does not restrict the SLA parameters and instead

provides a flexible framework to implement suitably tailored mechanisms for admis-

sion control and fine-grained resource allocation.

A list of UE identifiers required for the mapping of UEs to slices. Any unique iden-

tifier provided by the UE during the attachment process could be used.

The Slice Context Manager (Figure 5.2) is responsible for the life-cycle man-

agement of slices at the base station. Each slice is associated with a context (Table 5.1)

capturing the slice’s capabilities and current state. Apart from the slice’s SLA, this

70 Chapter 5. Orion: A RAN Slicing System

Slice Context

Slice id

UE identifier lookup function

Current slice SLA/policy settings

UEs currently connected to the slice

Communication channel configuration to slice local controller

Bookkeeping on usage of physical resources

Table 5.1: Per slice context maintained by the Hypervisor.

context keeps track of the active UEs on the slice, stores the configuration of the com-

munication channel between the Hypervisor and the slice’s virtual control plane, and

all data structures for bookkeeping operations related to the use of physical resources

by the slice in the past and present. The Slice Context Manager can obtain the iden-

tifiers of the UEs belonging to the slice from the management plane through a lookup

function, further explained in Section 5.3.3.

Upon request for creation of a new slice, the Slice Context Manager does ad-

mission control. By checking the number of active slices, their SLAs and activity

(through their context), and using an admission control policy adopted by the infras-

tructure provider (e.g., along the lines of [76]), either the slice is admitted with a cor-

responding context created, or rejected due to insufficient resources.

5.3.1.2 Radio Resource Manager

The Radio Resource Manager is responsible for the allocation of physical radio re-

sources among co-located slices in a flexible and efficient manner, while ensuring slice

isolation. While this is dependent on the nature of each resource, Orion adopts the

principle that any physical radio resource meant for individual UEs can also be allo-

cated among slices in an isolated fashion, because, by definition, they can be quantized

and assigned to specific UEs. Such resources include radio resources allocated for

downlink/uplink user and control traffic as well as for paging.

As an example, consider downlink LTE scheduling, involving two types of radio

resources: (i) RBs for transmission of user traffic and (ii) Control Channel Elements

(CCEs), essentially a set of OFDM symbols, for transmission of the corresponding

scheduling decisions. Due to their nature, these resources can be dynamically allo-

cated to individual slices based on various criteria, like their SLAs, the channel con-

ditions experienced by UEs in the slice etc. On the other hand, physical resources

used either for the transmission of cell-related information (e.g., broadcast) or in a

5.3. System Design & Implementation 71

(a) Resource Blocks (b) Control Channel Elements

Figure 5.3: Resource partitioning between 2 slices for the LTE downlink scheduling

example.

contention-based manner (e.g., random access) should not be allocated to slices be-

cause concurrent modifications from multiple slice control planes could lead to con-

flicts. Such resources are exclusively managed by the Hypervisor as discussed later

in this section.

Orion provides a generic framework for the dynamic allocation of radio resources,

which allows the implementation of different radio resource allocation mechanisms to

fulfill different types of SLAs. Any allocation algorithm implemented in Orion would

have inputs in the form of the physical radio resource grid and the context informa-

tion of the active slices. The radio resource allocation process occurs periodically

once every allocation window of duration t. At the beginning of each window, the

Radio Resource Manager obtains the bookkeeping information and the SLAs of all

the active slices from the Slice Context Manager. Through this information, and

with the current cell configuration and allocation mechanism implemented, the Radio

Resource Manager decides a splitting of the available radio resources among slices

for the upcoming window. For each type of partition-able radio resource, it fills a two

dimensional array that expresses the slice assignments of resources through a generic

representation of the resource in the time and frequency domain. As an example, Fig-

ure 5.3 illustrates LTE downlink scheduling for 2 slices. Each column represents a

1ms LTE subframe in TTI units and each row the corresponding resource in the fre-

quency domain (RBs in Figure 5.3a and OFDM symbols in Figure 5.3b). The tabulated

numbers correspond to the ids of the slices to which the resources were allocated.

The decision of the Radio Resource Manager is forwarded to the Slice Context

Manager to update the context of slices with allocated resources. Note that the Slice

Context Manager and Radio Resource Manager can be seen to provide the func-

72 Chapter 5. Orion: A RAN Slicing System

tionality of the 5G network slice broker introduced in the context of the 3GPP network

sharing management architecture in [124]. When the slices’ control planes make the

scheduling decisions based on a virtualized and isolated form of their allocated re-

sources via the Virtualization Manager, the Radio Resource Manager translates

and updates the base station data plane state through the control-data plane API, and

keeps track of the physical resources used by slices (via context updates) to inform the

allocation in upcoming windows.

5.3.1.3 Virtualization Manager

The Virtualization Manager (Figure 5.2) directly interacts with the virtual control

plane of slices, maintaining slice isolation in terms of physical network resources.

The interaction occurs through dedicated slice communication channels managed by

an asynchronous interface. Besides, the Virtualization Manager undertakes two

main tasks: (i) presenting an abstract view of radio resources to slices by mapping

physical to/from virtual resources at runtime; (ii) presenting a virtual/abstract view of

the data plane state to slices. The challenge for this component is to realize these tasks

in a manner that does not compromise slice isolation.

Abstracting radio resources To ensure radio resource isolation, the Virtualization

Manager, creates a virtualized view of the radio resources tailored to each slice, by ob-

taining the map of resources assigned by the Radio Resource Manager from the slice

contexts. This virtualized view omits all resources not dedicated to a slice, including

resources for random access, broadcasting, resources used only by the physical layer

(e.g., for reference signals) and those allocated to other slices. It also omits the exact

placement of the resources in the resource grid along the frequency dimension and

instead reveals an abstract representation to the slices’ control planes. On one hand,

this allows the control planes of slices to directly and independently view and control

the radio resources allocated to them, which can be dynamically re-assigned to dif-

ferent slices over time. On the other hand, by withholding the frequency dimension,

potential inference and manipulation of resources allocated to a slice by other slices

is prevented, keeping in mind that different tenants could in fact be direct competi-

tors. It should be noted that this inference issue is not present in RAN sharing or in

a static radio resources allocation setup. In the RAN sharing case, a single entity (the

infrastructure provider) performs all the control operations and thus the exact usage

of the resources is ‘hidden’ from the slice owners, while in the other case, the radio

5.3. System Design & Implementation 73

Figure 5.4: Mapping of PRBs to vRRBs in the context of LTE.

resources are statically assigned to slices, providing no visibility to the resources of

other co-located slices.

For the case of downlink/uplink UE data transmissions, one of the main challenges is

how to reveal the virtualized radio resources to slices so that they can be allocated to the

UEs in the most flexible way and keeping in mind that the slices must be completely

unaware of the physical resource grid layout, while at the same time respecting the

allocation constraints imposed by the physical layer. Such constraints include group-

based allocations, where more than one Physical Resource Block (PRB) must be used

as the minimum allocation unit for a UE (e.g., as specified in some types of LTE allo-

cations [8]). Other constraints include frequency dependencies that might arise in the

radio resource allocation process, where the use of a certain PRB limits the scheduling

of a UE to only a subset of all the available resources. Such frequency dependencies

are very common in many radio resource allocation schemes, like for example in the

type 1 downlink resource allocation of LTE [8] or in scheduling schemes where fre-

quency hopping is employed for frequency diversity gains (e.g., in some types of LTE

uplink allocation [8]).

In order to deal with these issues, Orion introduces two abstractions for the virtualiza-

tion of the radio resources, i.e., the virtual Radio Resource Block (vRRB) and the vRRB

pool.

The vRRB is the fundamental radio resource abstraction employed by Orion. Each

vRRB is characterized by a capacity, used to indicate the amount of data that it can

hold. Capacity is expressed as the number of OFDM symbols contained in the vRRB

and can be directly translated into a number of bits by the virtual control planes of

slices based on the MCS used. A vRRB can aggregate the OFDM symbols of one

or more PRBs, after omitting symbols used for control channels and reference signals.

74 Chapter 5. Orion: A RAN Slicing System

(a) vRRB and vRRB pool abstractions for LTE

resource grid

(b) Abstractions of Figure 5.5a from

the slices’ point of view

Figure 5.5: Illustration of Orion uplink/downlink radio resource virtualization abstractions

in the context of LTE.

This aggregation allows Orion to group together PRBs that must be used as a single unit,

meaning that the capacity among different vRRBs can vary, as illustrated in Figure 5.4

(vRRBs of one or two PRBs).

The Hypervisor aggregates and reveals the vRRBs to slices in the form of vRRB

pools, where different sets of pools exist for the uplink and downlink. In each sub-

frame, each slice can be assigned zero, one or more pools for downlink and corre-

spondingly for uplink, each containing at least one vRRB. For example, in Figure 5.5a,

slice 1 has two vRRB pools, while slice 2 has only one. A slice can only view and al-

locate the vRRBs that are available in its pools (Figure 5.5b), with the only constraint

being that a UE can only be allocated vRRBs from the same pool. For example, in

Figure 5.5, a UE belonging to slice 1 can only be allocated resources from the red or

yellow pool, but not both. The aggregation of vRRBs to pools captures the aforemen-

tioned frequency dependencies, since RBs that are mutually exclusive for a UE are

assigned to different pools by the Hypervisor.

It should be noted that the abstractions of Orion are suitable both for current LTE as

well as for future 5G NR networks, since both are based on OFDM and have the same

fundamental frame structure [118]. The main difference is that NR is expected to sup-

port a more flexible resource grid, in which the number of TTIs and the sub-carrier

5.3. System Design & Implementation 75

spacing of the RBs in a subframe can vary (Figure 5.6) to support the diverse require-

ments of services and to provide support for mmWave communications [114]. In this

context, the physical grid layout of the radio resources is one additional dimension that

the Hypervisor should consider for mapping the physical resources to vRRBs. For

example, for the FDD downlink grid presented in Figure 5.6, a low data rate service

without latency constraints should be allocated vRRBs 2 to 5 by the Hypervisor to

maximize efficiency, while a low-latency service should be allocated vRRBs 6 and 7.

In contrast to the resources used for user traffic, control resources are provided in a

simpler form, where the Hypervisor indicates to the virtual control planes of slices the

role and amount of the assigned control resources through a message-based API. On

the downlink, a virtual control plane can find out through this API how many CCEs are

available for transmitting the scheduling decisions of its UEs, the resources available

for sending uplink power control instructions as well as the resources available for

uplink resource grants. On the uplink, this involves the TTIs in which a UE of the slice

could report its signal measurements, so that it can be configured correspondingly by

the higher layers of its virtual control plane (e.g., RRC).

The Virtualization Manager, besides presenting virtualized resources to slices,

also performs the reverse mapping from slices’ decisions over virtual resources to their

physical counterparts. This involves consulting the context of the slices and perform-

ing all transformations required so that a command issued by the virtual control plane

of a slice can be realized by the physical layer. Referring again to the example of LTE

downlink scheduling, this mapping would involve a modification of the virtual control

plane’s scheduling decision to convert the vRRB allocation into a physical one, and

the merging of the scheduling decisions from different slices into a single scheduling

decision for the physical layer. Similarly, it would require the conversion of CCEs

from the virtual to the physical form.

Virtualizing the data plane state To apply its control logic, a slice must be aware

of its data plane state besides the resources allocated to it. Another task for the

Virtualization Manager is to reveal the relevant data plane state to slices in an

isolated manner, guaranteeing that any type of information related to specific UEs or

their flows will be reported only to the corresponding slice. This virtualization in the

data plane state ensures the isolation of data plane operations among slices, since the

control plane of each slice is unaware of the data plane aspects that are relevant to the

UEs of other co-located slices. Examples of relevant UE information include signal

76 Chapter 5. Orion: A RAN Slicing System

Figure 5.6: Orion uplink/downlink radio resource virtualization abstractions in the context

of 5G NR – Flexible TTI and sub-carrier spacing numerology.

quality measurements, transmission queue sizes and number of flows (bearers in LTE)

as well as event notifications like the (de)activation of a UE, the establishment of new

flows, scheduling requests, etc. Given that the frequency domain is abstracted from the

resource grid of slices, any UE-specific information related to the frequency domain

is reported to the slice in an abstract form. As an example, relating to signal quality

measurements and to the more fine-grained sub-band CQI reports that LTE can pro-

vide, the Virtualization Manager furnishes the measurements in the context of the

vRRBs rather than the actual frequencies, through suitable mapping.

Apart from UE specific information, the Virtualization Manager also informs slices

about cell-related configuration information like resource block sizes, supported trans-

mission modes, nominal transmission power of base station, etc. Since all slices need

to be aware of this information and in order to ensure a conflict-free operation of the

physical base station, all such cell-related information is provided to slices in a read-

only form, while the infrastructure provider retains the exclusive privilege for making

changes, when needed.

5.3.1.4 UE Association Manager

The UE Association Manager (Figure 5.2) associates UEs with slices in two steps:

(i) the discovery of slices by UEs via the physical base station; (ii) the mapping of UEs

to slices. To achieve this, the UE Association Manager interacts with the broadcast

5.3. System Design & Implementation 77

and random access processes of the base station, which are internal to the Hypervisor

and not revealed to slices.

To aid in discovery, the UE Association Manager obtains the active slices from

the Slice Context Manager. This information is then broadcasted by the base sta-

tion. In the context of LTE, this can be done as in RAN sharing, where the base station

broadcasts the list of PLMN ids, indicating all the MVNOs that are present. When a

UE discovers a cell from its slice, it initiates the random access process. If successful,

the attachment process begins and the UE is expected to send a unique identification

(e.g., IMSI in LTE). Using this unique identifier, the UE Association Manager maps

the UE to the appropriate slice by consulting the UE lookup function (Table 5.1) avail-

able for each slice through the Slice Context Manager. Once the correct slice is

identified, the UE Association Manager updates the list of active UEs in the con-

text of that slice. The corresponding virtual control plane is notified about the event

through the Virtualization Manager and from that point on takes up control of the

UE (authentication, establishment of flows, scheduling, etc.). The attachment process

is fully transparent to UEs in the sense that no changes are required to the protocols

and signaling messages used for the interaction between the base station and the UEs.

5.3.2 Virtual Control Plane

As already alluded to in Section 5.2, Orion isolates the memory and processing re-

sources of slices by separating their virtual control planes from each other and the

Hypervisor, thereby achieves functional isolation. Virtual control planes of slices

in Orion are separate processes that exchange messages with the Hypervisor through

dedicated communication channels. This separation allows slice deployment in a fully

isolated manner using OS virtualization technologies, like containers and virtual ma-

chines, to enforce limits in terms of the allocated amount of memory and CPU.

A virtual control plane of a slice can be associated with multiple physical base sta-

tions (through their Hypervisors). Thus, the virtual control planes of individual slices

can be composed independently and flexibly, like in the example of Figure 5.7 for the

case of two slices. As it can be seen, control plane centralization can be introduced

into different regions of the RAN for each of the slices, based on the corresponding

service’s needs. This approach gives the flexibility to slice owners to enable RAN co-

ordination (for load balancing, improved mobility management, etc.) when and where

required. At the same time, it also enables an efficient utilization of the available com-

78 Chapter 5. Orion: A RAN Slicing System

Figure 5.7: Flexible control plane composition enabled by Orion.

puting resources for the placement of the slices’ virtual control planes as demonstrated

later through experiments in Section 5.4.2.

The communication between the virtual control plane of a slice and the Hypervisor

is asynchronous (Figure 5.8). To perform its operations, the control plane obtains the

state of the virtual data plane and resources from the Hypervisor and stores it locally

in a virtual RAN Information Base (vRIB). In its simplest form, the vRIB contains data

structures with a raw representation of the virtual data plane state.

The vRIB can be both read and written by the slice’s control plane, so changes due

to control operations are first reflected in the vRIB. To maintain its consistency, the

vRIB state is periodically synchronized with the Hypervisor via its Virtualization

Manager and an asynchronous interface. Since the virtual control plane of slices and

the Hypervisor can be deployed either on the same or on separate physical machines,

depending on the setup and the available resources, the synchronization frequency of

the vRIB can be tuned to the characteristics of the communication channel.

5.3.3 End-to-End Network Slicing

We now discuss how Orion can be integrated in an end-to-end network slicing setting.

The virtualization of various components making up the slice (including network func-

tions) is key to enabling flexible component placement over the network infrastructure

through a MANO entity, based on the needs of the service corresponding to the end-to-

end slice. This is certainly not a hurdle for Orion as its components can be turned into

VNFs. For a complete solution, it is also very important to investigate the interactions

of the Orion components with the management plane and with the other components

making up the slice. These interactions and the entities involved are depicted in Fig-

ure 5.9, where each number-annotated arrow represents an interaction required for the

5.3. System Design & Implementation 79

Figure 5.8: Virtual control plane of a slice in Orion.

right instantiation, operation and management of a slice throughout its life-cycle.

Figure 5.9: Interactions among components involved in an end-to-end network slicing

setting.

Starting from the RAN and before the deployment of any slice, the MANO must

deploy the VNFs of the physical base stations and the Orion Hypervisor for the RAT

of choice (I1). This VNF is expected to outlive the slices’ VNFs. Management

of slices should occur through an appropriate interface between the MANO and the

Hypervisor (I2). The orchestration of a slice by the MANO involves the creation,

migration and destruction of the Orion virtual control plane VNF (I3), as well as of

the core network VNFs (I4) (e.g., LTE EPC components). While a slice is active, its

core network VNFs interact with the Hypervisor for the user plane (I6) and with the

virtual control plane for the control plane operations (I7), while the Hypervisor VNF

80 Chapter 5. Orion: A RAN Slicing System

also communicates with the slice’s virtual control plane (I5). A Slice Information Ser-

vice is required on the management plane, so that the Slice Context Manager in

the Hypervisor can locate the information required for the mapping of UEs to slices

(I8). This resembles the role of the HSS in LTE, but storing slice-related registration

information instead.

Figure 5.9 also illustrates that the Orion VNFs are deployed over an edge cloud near

the RF front-end, while the core network VNFs can be deployed either at the edge or

in a central cloud, depending on the slice’s requirements. For example, control plane

VNFs (e.g., MME) could be centralized to simplify control/management, while data

plane VNFs (e.g., S-GW) could be placed closer to the user [40]. Similarly, different

slices could employ different core network VNF setups, optimized for their particular

use case (e.g., as in [132] for M2M traffic). The flexible placement of VNFs, coupled

with the capabilities offered by Orion for the customization of the RAN, allow the

creation of flexible slices adapted to the service needs.

5.3.4 Implementation

We developed a prototype implementation of Orion, following the design described so

far in this section and considering LTE as the RAT. The Orion Hypervisor was imple-

mented from scratch in C. For the interaction of the Hypervisor with the base station

data plane, we leveraged the control–data plane API of FlexRAN that was presented in

Chapter 4.

Our implementation provides full support for the virtualization of downlink radio

resources, with the Hypervisor creating a single vRRB pool per slice in each sub-

frame (equal to a TTI of 1ms in LTE), with each of its vRRBs corresponding to a

group of PRBs (2, 3 or 4 based on the bandwidth of the cell). This is because OAI

currently supports resource allocation type 0 on the downlink, in which, based on the

LTE specification [8], resource blocks can be assigned to UEs only in groups of 2, 3 or

4 blocks depending on the available spectrum.

The identifier used for mapping UEs to slices is the IMSI stored in the SIM card

of UEs. This is sent to the MME of the network by UEs during their attachment using

the Non-Access Stratum (NAS) protocols of LTE and is normally not visible to the

eNB. Therefore, the RRC layer of OAI was modified to capture the relevant signal-

ing messages, obtain these ids and pass them to the UE Association Manager of the

Hypervisor. OAI was further modified to allow core networks (EPCs) of different

5.3. System Design & Implementation 81

slices to be connected over the same eNB. This required enabling the association of

the MMEs, HSSs and S/P-GWs of different slices with the same eNB as well as the

redirection of newly attached UEs to the correct core network by the UE Association

Manager both for signaling and user traffic. Once a UE completes the random access

process, its signaling messages are directed to the correct MME so that it can be au-

thenticated by the corresponding slice’s HSS and a bearer can be established with the

slice’s S/P-GW. From that point on, all the UE traffic goes through the core network

of the hosting slice.

The current implementation allows expressing the SLA parameters stored in the

context of active slices (Table 5.1) in three ways: (i) a fixed allocation of resource

blocks; (ii) an average of the aggregate amount of resource blocks allocated to the

slice over a window of 100ms; and (iii) an average target throughput for the slice over

a window of 100ms. For the second and the third case, the current implementation

uses the NVS radio resource allocation algorithm [76]. It should also be noted that

admission control is not the main focus of this work so for the purpose of this study a

first come, first served policy is employed for the admission of slices.

To realize the virtual control plane of slices, we implemented a modified version of

the FlexRAN controller that operates over the abstract virtual resources presented by the

Hypervisor and also with an enhanced RIB structure that supports write primitives.

Given that the virtual control planes of slices can be deployed either locally or over

a networked setting, we implemented two types of channels for message exchanges

with the Hypervisor: one TCP-based channel optimized for a minimum message ex-

change delay in a network setting and one optimized for inter-process communication

using ZeroMQ [61]. The appropriate type is specified in the slice’s service descrip-

tion during the creation of the slice and the proper communication channel is deployed

accordingly. Moreover, depending on the type of deployment, the synchronization of

the Hypervisor with the vRIB must also be optimized. Towards this end, in the cur-

rent implementation with inter-process communication the vRIB is fully synchronized

with the Hypervisor every 1ms, while in a networked setting, only the time critical

parts of the vRIB (virtual resource allocations, time synchronization in subframes) are

synchronized at this rate, with the rest synchronized infrequently every 4ms.

Finally, we created VNFs for the Hypervisor and the virtual control plane of Orion

using Juju charms, enabling their deployment over an OpenStack-based environment

and allowing usage of Orion with any OpenStack-compatible MANO framework (e.g.,

OSM).

82 Chapter 5. Orion: A RAN Slicing System

5.4 Evaluation

In this section, we quantitatively study Orion’s resource consumption in different sce-

narios and benchmark it against other proposed RAN slicing solutions. We also ex-

amine the impact of the communication channel between the Hypervisor and the

slice control plane. For the experiments, we used 2 Intel Xeon machines (E3-1245

@ 3.4GHz, 16GB RAM each) and 1 Intel i7 machine (5557U @ 3.10GHz, 8GB of

RAM) for deploying physical base stations, the Orion Hypervisor and the virtual con-

trol planes of slices, depending on the specific experiment. All machines have Ubuntu

16.04 with a low-latency kernel and had support for Docker v1.13.1 [96], allowing the

Orion components (Hypervisor, slice control planes) to be deployed in isolated contain-

ers. The core part of the network was deployed on an additional Intel-based machine

(i7-4770R @ 3.2GHz, 8GB RAM), running the openair-cn open source EPC imple-

mentation [112]. For the RF front-end of physical base station, we used Ettus USRP

B210 SDR boards and for UEs, up to 4 physical units (LG Nexus 5 and Samsung

Galaxy Note 4 and 2 Huawei E3372 LTE dongles).

5.4.1 Scalability

Here we quantify how Orion scales in terms of the processing and memory require-

ments. To assess the overhead incurred for the virtualization operations performed

by the Orion Hypervisor, we used a setup where each slice had 20 assigned (emu-

lated) UEs and the available spectrum was saturated with TCP traffic. The results in

Figure 5.10a show that, apart from the initial overhead associated with the first slice,

the addition of extra slices incurs a small and almost constant incremental overhead,

both in terms of CPU and memory. This increase is mainly due to the Hypervisor’s

Virtualization Manager operations (construction of the virtual resource grids of

slices, synchronization with slices’ virtual control planes). The initial bigger increase

observed after the creation of the first slice is due to the activation of the asynchronous

interface as well as the periodic execution of the Radio Resource Manager for the

allocation of resources to slices, which is inactive when there are no slices. The actual

number of slices that can be supported by a physical base station depends both on the

Hypervisor overhead presented here and on the physical layer requirements, which

can greatly vary depending on where the most demanding physical layer operations

occur (e.g., at the baseband processing unit or at a remote radio head).

Next we turn our attention to the virtual control plane of a slice and quantify its

5.4. Evaluation 83

0 1 2 3 4

Number of slices

0

1

2

3

4

5

C
P

U
 U

ti
li
z
a
ti

o
n

 (
%

)

35

40

45

50

M
e
m

o
ry

 (
M

B
)

(a) Hypervisor overhead (4-core CPU and 20

UEs/slice)

0 10 20

Number of UEs

0

2

4

6

8

10

C
P

U
 U

ti
li
z
a
ti

o
n

 (
%

)

8

10

12

14

16

M
e
m

o
ry

 (
M

B
)

(b) Virtual control plane overhead (2-core

CPU)

Figure 5.10: Orion CPU and memory consumption scaling.

overhead with a varying number of UEs (0 to 20) which increases linearly with the

number attached UEs (Figure 5.10b). The increases in the memory consumption are

mainly due to the additional information stored in the vRIB as more UEs get attached

and the memory required for the message exchanges with the Hypervisor. The initial

sharp rise in the memory consumption is due to the creation of the UE-related part

of the vRIB, once the first UE gets attached. The rise in CPU utilization is a result

of the communication with the Hypervisor for the synchronization of the vRIB and

from the scheduling of the attached UEs. However, the overhead is still fairly modest,

meaning that the virtual control planes of multiple slices could be deployed side-by-

side over the same physical machine (e.g., over an edge cloud data-center) without

scaling issues. For example, in the commodity machine used for these experiments, at

least eight slice control planes could be deployed without any issues.

5.4.2 Comparison with the State-of-the-Art

Here we compare the overall memory and processing requirements of Orion versus

the state-of-the-art virtualization and RAN sharing solutions from the literature. One

representative approach is FLARE, the RAN slicing solution proposed in [103, 102],

which ensures isolation by deploying different instances of OAI over Docker contain-

ers and each slice is statically assigned a dedicated chunk of spectrum. The other

alternative approach is represented by FlexRAN [46, 105, 43], which as was shown in

Section 4.5.3 can provide RAN slicing capabilities following a RAN sharing approach

but without functional isolation. It should be noted that, like Orion, both FLARE and

84 Chapter 5. Orion: A RAN Slicing System

Slices

System
FLARE FlexRAN Orion

1 5MHz 5MHz 5MHz

2 5MHz/slice 10MHz 10MHz

3
5MHz for slices 1,2

10MHz for slice 3
20MHz 20MHz

Table 5.2: Allocation of channel bandwidth among slices. Both Orion and FlexRAN use

shared spectrum for all slices.

1 2 3

Number of Slices

0

2

4

6

8

T
o

ta
l

C
P

U
 U

ti
li

z
a

ti
o

n
 (

%
)

FLARE

FlexRAN

Orion

(a) CPU Utilization (10 cores)

1 2 3

Number of Slices

0

0.5

1

1.5

2

2.5

3

3.5

M
e
m

o
ry

 (
G

B
)

FLARE

FlexRAN

Orion

(b) Memory footprint

Figure 5.11: Comparison of Orion with FLARE and FlexRAN with varying number of

slices.

FlexRAN are built using OAI as their basis. Therefore, any performance differences

among them come mainly from the design choices of each system regarding how to

perform RAN slicing; a fact that makes this comparison fair.

We design an experiment to compare Orion with these two alternatives for a varying

number of slices, where each slice has TCP traffic (mimicking an aggregate demand

from a set of UEs) to a single physical UE. Each slice was allocated spectrum according

to the configuration of Table 5.2 for fairness. Three physical machines were used

for this experiment as compute nodes for the various components required for each

architecture. To capture the overall system performance, we measured the aggregate

resources required for all the RAN components of each architecture across all physical

machines. For the CPU utilization, this meant measuring the jiffies allocated to the

RAN-related processes of each architecture over a constant number of 10 CPU cores

(the total number of cores of all physical machines) and dividing this value with the

total jiffies of all the CPUs for all system processes during the course of the experiment.

We see from Figure 5.11a that Orion has relatively higher CPU requirements com-

5.4. Evaluation 85

FlexRAN Orion
0

2

4

6

8

T
o

ta
l
C

P
U

 U
ti

li
z
a
ti

o
n

 (
%

)

FlexRAN Orion
0

0.5

1

1.5

2

M
e

m
o

ry
 (

G
B

)

FlexRAN Agent + Data Plane

FlexRAN Controller

Hypervisor + Data Plane

Slice 1 Controller

Slice 2 Controller

Slice 3 Controller

(a) Comparison of Orion and FlexRAN for 3

slices (1 UE/slice)

0 1 5 10 20

Number of UEs per slice

0

5

10

15

20

25

30

C
P

U
 U

ti
li
z
a
ti

o
n

 (
%

)

FlexRAN

Orion (Slice 1)

Orion (Slice 2)

Orion (Slice 3)

(b) Control plane CPU Utilization (2 cores)

Figure 5.12: Breakdown of resource requirements for Orion vs FlexRAN .

pared to the FlexRAN case, which is expected due to the Hypervisor’s operation and

the unavoidable cost to pay for the additional control plane processes that must be

deployed as new slices are added. On the other hand, Orion starts with higher CPU re-

quirements than FLARE, but soon becomes more lightweight, due to the fact that each

new FLARE slice requires the deployment of a complete protocol stack, including the

very demanding (CPU-wise) physical layer. Since in Orion all slices share the same

physical layer, its overhead comes mainly from the Hypervisor and the slices’ virtual

control planes, which, as shown earlier, are fairly lightweight. The same observations

and for the same reasons can be made for the memory consumption (Figure 5.11b),

with Orion performing significantly better compared to FLARE and marginally worse

compared to FlexRAN .

Since both Orion and FlexRAN are composed of a number of different network func-

tions (Hypervisor/physical layer and virtual control planes in Orion; Agent/data plane

and controller in FlexRAN), it is insightful to break down the results of Figure5.11 in

order to understand their differences. This is illustrated in Figure5.12a for three slices.

As it can be observed, the Orion virtual control planes and the FlexRAN controller con-

sume a negligible amount of memory. On the other hand, in terms of CPU utilization,

Orion’s biggest impact comes from the physical layer and the Hypervisor, but, in con-

trast to memory, a significant contribution is also made from the virtual control planes

of slices. In the FlexRAN case, the base station network function (FlexRAN Agent and

data plane) has the biggest CPU utilization, also with a significant contribution from

the controller.

One important thing to notice is that while some components of both systems,

86 Chapter 5. Orion: A RAN Slicing System

namely the Orion Hypervisor and the FlexRAN Agent, are placed near the base station

and are effectively monolithic components regardless of the number of deployed slices,

this analogy is not carried over to the other network functions. While in the case

of FlexRAN the controller is also a monolithic component, Orion provides individual

control planes to slices. Apart from the functional isolation that this ensures, it also

enables a better utilization of the underlying resources through the flexible placement

of the control plane functions over the available compute nodes. We illustrate this point

through an experiment in which three slices are deployed using Orion and FlexRAN and

the overall control plane CPU utilization is measured for a varying number of UEs per

slice. Results shown in Figure 5.12b indicate that Orion always performs slightly worse

than FlexRAN , however this overhead is compensated by the fact that the control plane

can be broken down into three functions that can be flexibly placed over different CPU

cores or even completely different compute nodes; something that FlexRAN is unable

to do.

5.4.3 Impact of Communication Channel

We now assess Orion’s requirements for the communication between a slice control

plane and the Hypervisor (in terms of bandwidth and latency) for their deployment in

a networked setting. Understanding these requirements is very important from an end-

to-end perspective for deploying the components of Orion as VNFs, since the orches-

tration entity needs to be aware of the physical constraints regarding their placement

as part of the overall network service description.

To measure the bandwidth requirements of the control channel, we varied the num-

ber of UEs for a slice over the physical base station with 5MHz spectrum. In this

experiment, UEs continuously had traffic to keep the slice at full load. The highest

overhead was incurred for messages sent by the Hypervisor towards the control plane

of the slice (Figure 5.13a), for the synchronization of the vRIBs and for the provision

of the slice with virtual radio resources. The overall bandwidth requirements for this

setup did not exceed 20Mbps, implying that such a scenario is feasible in practice.

To study latency constraints, we used a similar setup but with a single COTS UE

attached to the slice. We used netem [48] to set the latency between the Hypervisor

and the slice’s virtual control plane and measured the drop in the maximum achievable

throughput for the UE compared to a co-located deployment. Figure 5.13b shows that

networked deployment of Orion is efficient only when the latency remains below 2ms.

5.5. Case Studies 87

0 5 10 15 20

Number of UEs

0

2

4

6

8

10

12

S
ig

n
a
li
n

g
 O

v
e
rh

e
a
d

 (
M

b
p

s
) Hypervisor-to-control plane

Control plane-to-hypervisor

(a) Signaling bandwidth requirements

0 1 2 3 4 5

Latency (ms)

0

0.2

0.4

0.6

0.8

M
a

x
 t

h
ro

u
g

h
p

u
t

d
ro

p
 f

a
c

to
r

(b) Effect of signaling latency on maximum

throughput

Figure 5.13: Network requirements for the interaction of the Hypervisor with the virtual

control plane when not co-located.

This constraint could be relaxed to an extent with some optimizations (e.g., HARQ

reporting optimizations) but a co-located deployment is preferable if possible. The

slice controller could also be made distributed and hierarchical, so that time-critical

scheduling operations can be handled at or near the physical base station, while other

operations can be placed flexibly at other locations.

5.5 Case Studies

5.5.1 Isolation Capabilities

We demonstrate the ability of Orion to provide radio resource and functional isolation,

which is not possible with RAN sharing oriented slicing approaches [46, 43]. In this

experiment, 2 slices with proportional fair downlink schedulers were created and stat-

ically allocated 5MHz of spectrum in equal shares by the Hypervisor. Initially, we

connected 2 physical UEs (one per slice) and performed a throughput measurement to

both using iperf, ensuring ideal channel conditions. As shown in instance t1 of Fig-

ure 5.14, the Hypervisor guarantees the radio resource isolation so that each slice can

obtain only half of the available radio resources, leading to an equal throughput for the

UEs. Further aspects of this isolation of radio resources are demonstrated in instances

t2 and t3 of Figure 5.14 where more UEs are added to the slices and where each UE

is constrained by the Hypervisor to the radio resources allocated within its slice. For

88 Chapter 5. Orion: A RAN Slicing System

example, in instance t2 the performance of UE3 remains unaffected by the addition of

UE2 since UE2 belongs to a different slice.

0 2 4 6 8

Throughput (Mbps)

Slice 2

Slice 1

Slice 2

Slice 1

Slice 2

Slice 1

Slice 2

Slice 1 UE 1

UE 2

UE 3

UE 4

t1

t2

t3

t4

Figure 5.14: Isolation of RAN slices in terms of radio resources and control functions

(scheduling).

Finally, the inter-slice functional isolation is illustrated in instance t4 of Figure 5.14.

The scheduler in the virtual control plane of slice 2 was replaced with a class-based

scheduler allocating 70% of the resources to UEs in class 1 and the rest to class 2.

In the experiment, UE3 and UE4 were assigned to class 1 and class 2, respectively.

As shown in Figure 5.14, the change in the control plane of slice 2 only affects the

throughput of the UEs belonging to that slice, leaving the control plane and the UEs of

slice 1 completely oblivious.

5.5.2 Flexible Radio Resource Allocation

We now demonstrate the flexibility offered by Orion for dynamic radio resource allo-

cation and how it can be used for efficiently utilizing the spectrum among co-existing

slices. We created 2 slices, each with an average aggregate throughput requirement

of 14Mbps. As a baseline, we considered FLARE, with each slice statically allo-

cated 5MHz of spectrum. For the same scenario, we employed Orion with a pool of

10MHz for both slices and implemented the radio resource allocation using the algo-

rithm of [76]. In the beginning of each allocation window, the resources were allocated

to slices based on their effective traffic rate and on their average throughput require-

ment.

We connected 1 UE on slice 1 and 3 UEs on slice 2 and we used the D-ITG traffic

generator [22] to generate TCP flows in slice 1. Specifically, we created a TCP flow

with a constant rate of 2Mbps. On top of it, we sporadically created some short-lived

flows (20s each), capable of attaining various rates (4-12Mbps). In slice 2, all the

5.5. Case Studies 89

0 50 100 150 200

0

5

10

15

20
Slice 1

Offered load

FLARE

Orion

0 50 100 150 200

Time(s)

5

10

15

20

25
Slice 2

FLARE

Orion

T
h

ro
u

g
h

p
u

t(
M

b
p

s
)

(a) Instantaneous slice throughput in static

(FLARE) vs dynamic resource allocation

(Orion).

Slice 1 Slice 2
0

5

10

15

20

A
v

e
ra

g
e

 T
h

ro
u

g
h

p
u

t
(M

b
p

s
) FLARE

Orion

(b) Average throughput achieved through

static and dynamic spectrum use.

Figure 5.15: Benefit of Orion’s flexible radio resource allocation.

connected UEs accessed a DASH-based video streaming service to stream a video

offering a wide range of bitrates. Using this setup, we measured the instantaneous

(Figure 5.15a) and the average (Figure 5.15b) aggregate throughput achieved by each

slice in FLARE and Orion for a period of 240s. As observed, for slice 1, both FLARE

and Orion give similar results, fully covering the offered load and respecting the SLAs

of slice 1 for up to 14Mbps of average aggregate throughput.

For slice 2, however, Orion is seen to perform much better than FLARE, dynam-

ically reallocating the idle resources from slice 1 and allowing the UEs in slice 2 to

stream videos with a higher bitrate. FLARE, unlike Orion, is spectrum-limited and can-

not go beyond 14Mbps at any point in time, irrespectively of what happens in slice 1.

The flexibility of Orion comes without compromising slice SLAs. When slice 1 requires

all of its expected resources (e.g., 210-230s in Figure 5.15a), the Radio Resource

Manager allocates fewer radio resources to slice 2, so the aggregate throughput of this

slice drops.

5.5.3 Deployment in an End-to-End Setting

Here we highlight the capability of Orion to be deployed in an end-to-end network

slicing setting and the effect of the slice configuration to overall performance in terms

of throughput and delay. For this experiment we created 3 slices, each composed of

VNFs for an EPC (HSS, MME, S/P-GW) and a virtual base station deployed over

90 Chapter 5. Orion: A RAN Slicing System

0

20

40

60
O

n
e

-w
a

y
 A

v
e

ra
g

e
 D

e
la

y
 (

m
s

)

Slice 1
(0.5Mbps)

Slice 2
(0.5Mbps)

Slice 3
(3Mbps)

0

1

2

3

A
v

e
ra

g
e

 T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

(a) Low offered load

0

200

400

O
n

e
-w

a
y

 A
v

e
ra

g
e

 D
e

la
y

 (
m

s
)

Slice 1
(2Mbps)

Slice 2
(2Mbps)

Slice 3
(8Mbps)

0

5

10

A
v

e
ra

g
e

 T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

(b) High offered load

Figure 5.16: Performance impact of Core-eNB latency and radio resource allocation

policy/guarantees for low and high offered loads (load values in parentheses on x-axis).

Orion. For slices 1 and 3, the S/P-GW VNFs of the EPC were placed on hosts 1 hop

away from the eNB, to reduce the delay of the EPC–eNB communication as much

as possible (less than 0.3ms). For slice 2, we deployed the S/P-GW VNF on a host

connected to the eNB through a 20ms delay link (emulated with netem [48]) to reflect

the placement of the mobile core functionality far from the eNB (e.g., in a central

cloud). The eNB in this experiment was allocated 5MHz of spectrum, supporting a

total rate of 14Mbps in ideal channel conditions. Finally, the Orion Hypervisor was

configured so that slice 1 was guaranteed a static allocation of 4 RBs per subframe

(maximum achievable throughput of 2Mbps), while slices 2 and 3 were guaranteed an

average throughput of 2 and 8Mbps respectively, performing the allocation using the

algorithm in [76].

In this setup, we used the D-ITG traffic generator [22] to generate downlink UDP

traffic with exponentially distributed packet inter-arrival times and measured slice per-

formance in terms of average throughput and delay. Initially, the load offered to slices

was kept low, compared to the slices’ SLA guarantees, and all slices manage to support

the traffic demand (Figure 5.16a). Moreover, we can observe that the average packet

delay for slice 2 was higher than that of slices 1 and 3 by about 20ms, something ex-

pected considering the (emulated) ‘far from eNB’ placement of the core functions for

slice 2.

Next, we re-run the experiment, increasing the load offered to slices to reach their

limit (Figure 5.16b). As we can observe, all slices still achieve an average through-

put close to their offered load, which was expected since their load remains within the

5.6. Multi-Service Slices Extension 91

guaranteed limits. However, while the average delay of slice 1 stays at the same level,

the average delay of slices 2 and 3 is over 200ms. The reason is that the static alloca-

tion used for slice 1, although inflexible, ensures stricter delay guarantees, as arriving

packets could always be served without queuing for long. On the other hand, the flex-

ible dynamic allocation of radio resources to the other slices guarantees the average

throughput, but this was done over 100ms windows (as described in Section 5.3.4),

rather than per subframe. In such almost saturating traffic conditions the packets are

more likely to experience a longer waiting time in the slice queues, increasing the

average delay.

5.6 Multi-Service Slices Extension

The design of Orion enables RAN slicing in cases where the UE has a 1:1 relationship

with the slice (e.g., MVNOs and verticals). However, deployment of OTT services

as distinct slices breaks this assumption and control decisions among slices cannot be

guaranteed to be conflict-free. To overcome this, we propose an extension to Orion in

the form of service containers, which targets slices offering multi-service capabilities

(e.g., an MVNO with OTT services).

The idea behind service containers is that an OTT service provider agrees with an

MVNO to assume control of the flows corresponding to its service through its own

isolated functions deployed over the virtual control plane of the slice. This concept

is similar in spirit to the 3GPP Service Capability Exposure Function [7] and with

research works like [123], where an API is defined for the interaction of applications

with the mobile network to modify the service level or to obtain information about the

network state. The deployment of service containers over the base stations of MVNOs

can enhance this model with real-time control and monitoring capabilities, enabling

the further optimization of OTT applications.

The design of this extension (Figure 5.17) inherits the design principles discussed

in Section 5.3. Service containers are deployed as processes over the virtual control

plane of a slice, each with its own isolated memory and processing resources. The

virtual control plane of the slice is extended with a Northbound API, enabling the

exchange of information between the MVNO and the service provider. Using the API,

a service can obtain information about the flows of UEs assigned to it (available UE

flows, transmission queue sizes, signal quality etc.), as well as about the (abstracted)

radio resources available for it. On the other direction, the service can issue scheduling

92 Chapter 5. Orion: A RAN Slicing System

Figure 5.17: Extension of Orion to support multi-service slices.

decisions, indicating how its allocated resources should be distributed among its flows.

A Service Manager sitting between the virtual control plane of the MVNO and the

Northbound API is responsible to map flows to services, distribute the abstract radio

resources to the containers and perform access control, ensuring that service containers

can only access information and radio resources related to their serving flows.

In order to demonstrate the benefits of service containers, we consider the example

of a DASH-based adaptive bitrate video streaming service provider for which a service

container was developed and deployed over Orion for monitoring and scheduling the

video flows of streaming UEs. The control function of this container is composed

of a monitoring and a scheduling component. The monitoring component observes

the CQI of the UEs that are streaming videos and provides real-time feedback to the

video streaming client about the maximum sustainable bitrate that a UE can achieve

given its CQI. Based on that feedback, the client readjusts the bitrate of the video to

avoid freezes. The scheduling component makes the scheduling decisions (priority

and MCS) for the video flows of the UEs by communicating with the video streaming

clients every second and observing the buffer size of each video stream. Flows of

video streams with lower buffer sizes are given a higher priority, on the premise that

such flows need faster treatment to avoid buffer freezes.

For our evaluation, we considered a scenario with 2 UEs streaming a video [97]

using the DASH reference client [37]. UE 1 had a fixed optimal signal quality and

for UE 2 we introduced a big drop of the signal quality at t = 35s and then a big

increase at t = 75s. Results obtained when the service container was active and man-

aging the video flows (Figure 5.18b) are compared against the regular non-assisted

5.7. Conclusions 93

0 20 40 60 80 100

Time (s)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

B
it

ra
te

 (
M

b
p

s
)

0

10

20

30

40

50

60

70

80

90

B
u

ff
e
r

S
iz

e
 (

s
)

UE1 Bitrate

UE2 Bitrate

UE1 Buffer Size

UE2 Buffer Size

(a) MVNOs managed

0 20 40 60 80 100

Time (s)

0

2

4

B
it

ra
te

 (
M

b
p

s
)

0

10

20

30

40

50

60

70

80

90

B
u

ff
e

r
S

iz
e

 (
s

)

UE1 Bitrate

UE2 Bitrate

UE1 Buffer Size

UE2 Buffer Size

(b) OTT cross-layer optimized

Figure 5.18: Video streaming performance in MVNO-managed vs. OTT-optimized con-

trol of flows.

DASH service with the MVNO being responsible for scheduling all flows through a

proportional-fair scheduler (Figure 5.18a). When the signal quality of UE 2 changes

suddenly, the non-assisted mechanism fails to adapt fast, leading to buffer freezes. In

comparison, the cross-layer optimized control of flows enabled by the service contain-

ers allowed the bitrate to adjust more appropriately and to avoid stalls in the video

stream, thus improving the overall quality of the service.

This example is merely intended to demonstrate the capabilities enabled by service

containers for OTTs, by allowing them to make control decisions using information

unavailable to a non application-aware MVNO. More sophisticated control mecha-

nisms could also be employed, like the cross-layer optimization mechanism for video

delivery in [67] or the content-aware schedulers in [81] and [113].

5.7 Conclusions

We have presented Orion, a flexible RAN slicing architecture. Orion slices can be de-

ployed dynamically over the network infrastructure, co-existing in a fully isolated

manner in terms of radio resources and control functions. At the same time, Orion

facilitates efficient radio resource sharing among slices. A prototype implementation

of Orion was developed for LTE, with the performance evaluation indicating that it is

a lightweight and flexible RAN virtualization solution. Orion’s capabilities were high-

lighted through a number of use cases, revealing its suitability for future multi-service

mobile networks.

Chapter 6

Iris: Shared Spectrum Access for

Neutral-Host Small-Cell Deployments

6.1 Introduction

The design of Orion that was presented in Chapter 5 can enable the creation of iso-

lated slices over a generic underlying network infrastructure that can be shared among

multiple tenants. However, as explained in Section 1.4.3, while the radio resource allo-

cation mechanism provided by Orion is designed so that it can accommodate the needs

of tenants with strict performance guarantees (e.g. in a setting of verticals), it can be

limiting in scenarios where providing SLAs is not possible or desirable.

In this chapter, we focus into one such emerging use case in the context of indoor

small-cell deployments with shared spectrum. We propose a system called Iris, that acts

as a framework for enabling multi-tenancy by leveraging the virtualization capabilities

of Orion. The main challenge in this scenario is that, given the absence of SLAs and

the similarity of the provided services, tenants need to have a way to differentiate and

compete in the market. In this context, we propose extension to the capabilities of the

Orion Hypervisor through an alternative radio resource allocation mechanism based

on dynamic pricing. Such a mechanism can provide more control to the tenants of the

network, allowing them to dynamically request and allocate resources based on their

valuations.

This chapter begins by presenting a modeling framework for the dynamic pricing

mechanism of Iris in Section 6.2. This mechanism is embedded into a holistic sys-

tem design specifically tailored for multi-tenant indoor small-cell deployments that is

presented in Section 6.3, along with the system’s concrete implementation. Finally,

95

96 Chapter 6. Iris: Shared Spectrum Access for Neutral-Host Small-Cell Deployments

a thorough evaluation of Iris is presented in Section 6.4, characterizing the behavior

and the performance of Iris’s dynamic pricing mechanism and comparing it against

alternative pricing mechanisms.

6.2 Iris Dynamic Pricing Mechanism

This section describes the core component of Iris – its dynamic pricing mechanism –

starting with the requirements the mechanism should meet.

6.2.1 Requirements and Overview

1. The price set by the neutral-host per unit of spectrum should seek to match the

spectrum supply with the tenants’ demand. A high price can lead to underutilization of

resources. A low price, on the other hand, comes in the way of service differentiation

among tenants, since all tenants will look to buy resources aggressively to fully satisfy

their demand. Consequently, in periods of congestion, when the aggregate demand can

only be partially satisfied, tenants who value the spectrum more will end up getting less

resources relative to their requested amount, leading to their dissatisfaction.

2. The shared spectrum acquisition cost of the neutral-host must be factored in

setting the price to ensure that the host does not incur losses in the long run.

3. Given the tenants are mutual competitors, they do not reveal any private informa-

tion regarding their business model to the neutral-host. Instead they operate in isolation

with respect to each other and the neutral-host and can dynamically change their pri-

vate spectrum valuations. The pricing policy of the neutral-host should be able to adapt

to such changes.

4. The pricing mechanism should be practical enough to admit a practical imple-

mentation in the context of a shared spectrum based neutral host small cell system

architecture.

The obvious approach for the pricing is a centralized scheme for the allocation of

resources and charging of tenants. However, this approach does not meet requirement

(3) above as private valuation information of the tenants need to be revealed to the

centralized entity. The other alternative is to employ a static pricing approach; the is-

sue with this approach is that there may not be a single optimal fixed price as tenant

6.2. Iris Dynamic Pricing Mechanism 97

behavior, traffic load and spectrum availability varies. So instead, we adopt a dynamic

pricing approach that allows the neutral-host to dynamically adjust the price depend-

ing on the network conditions and the tenants’ behavior. In particular, considering

the stochastic nature of the shared spectrum based neutral host small-cell environment

(varying traffic loads, fluctuation in spectrum availability, changing tenant behaviors),

we formulate the dynamic pricing decision problem of the neutral host as a Markov

Decision Process (MDP) and solve it using a deep reinforcement learning algorithm.

The following subsection first describes our system model (summary of model param-

eters in Table 6.1) before proceeding to the problem formulation and the solution.

Table 6.1: Summary of Iris model parameters.

Parameter Description

t Dynamic pricing epoch

pt Price announced in epoch t

e Number of epochs in each period

nt Number of RBs available in epoch t

C(·) Shared spectrum acquisition cost

I Set of tenants participating in Iris

lt
i Load of tenant i in epoch t

νt
i Resource blocks requested by tenant i in epoch t

ut
i Radio RBs allocated to tenant i in epoch t

w+, w− Bias parameters of reward function for demand–supply mismatch

6.2.2 System Model

Tenant resource requests. In our model, tenants express their resource requests in

terms of radio RBs. We assume that the tenants have a way to map their aggregate

throughput demands into the number of radio RBs required (e.g., by assuming an aver-

age spectral efficiency for every RB). Such a mapping is reasonable, considering that

the small-cell deployment throughout the indoor space is typically planned and it can

provide near-optimal performance to user UEs within 20-30m [122].

Neutral-host and tenant interaction. The neutral-host follows a time slotted op-

eration for the allocation of shared spectrum, where each slot will henceforth be re-

ferred to as an epoch. The duration of an epoch is expected to be short (e.g., 20-100ms),

allowing the neutral-host to allocate radio resources in real-time. In each epoch t, the

neutral-host determines a RB price pt ∈ [pmin, pmax] with which the tenants can buy

98 Chapter 6. Iris: Shared Spectrum Access for Neutral-Host Small-Cell Deployments

the available resources. The range of possible prices is assumed to be known to the ten-

ants before they join the system (e.g., specified in their contract). Without restricting

generality, in the following, we consider dynamic pricing for the allocation of down-

link radio resources; the uplink can be treated similarly.

In each epoch t, all tenants see the price pt announced by the neutral-host and de-

cide how many resources to buy. The neutral-host is oblivious to the behavior of the

tenants, not knowing the internal mechanism (possibly changing over time) that gov-

erns their decisions. Consequently, the high level goal of the neutral host would be to

“predict” the demand of tenants at any point in time and dynamically decide on a price

that would utilize the resources as efficiently as possible while maximizing the tenant

satisfaction, by allocating the (virtual) radio resources to those that need it the most.

As discussed later, the model presented here is compatible with very general tenant

behavior patterns, deterministic (e.g., driven by the optimization of utility functions)

or not.

To model the temporal evolution of tenants’ demand, we divide a day into H peri-

ods, each e epochs long, so that He epochs make up 24h in the day. This construction

makes a period correspond to an appropriate time interval within a day (e.g., an hour

in a day) so that tenants’ behavior is not expected to vary within a period but could

across periods. Clearly, the shorter the period, the finer the granularity at which ten-

ant behavioral changes can be captured. Without restricting generality, one may index

periods within a day in the range 0≤ h < H and may take the evolution of the system

to start at epoch t = 0 coinciding with the beginning of a day. With this convention,

the index of the current epoch t maps to the index of the current period of the day

as: h(t) = (t div e) mod H. In the rest of this section, we will use superscripts of the

form ·t to denote the time dependency of any quantity including cases when it occurs

indirectly through h(t).

Shared spectrum acquisition and cost for the neutral-host. Let nt ∈ Z be the

number of radio RBs obtained from the external/public spectrum repository for the ten-

ants in epoch t. To maintain flexibility, the pricing mechanism regards the interaction

between the public repository and the neutral-host in abstract terms. Consequently,

{nt , t ≥ 0} is a stochastic process and the neutral-host, although informed about the

current value nt , is unaware of the process’ future dynamics so dynamics of a very gen-

eral form can be accommodated. The only assumption (to enable the MDP framework

discussed later) is that nt+1, conditioned on the value of nt , follows an (unknown to the

neutral-host) probability distribution that may depend on t and/or the current load of

6.2. Iris Dynamic Pricing Mechanism 99

the tenants. This is a very mild assumption compatible with virtually all scenarios of

practical interest.

To model the shared spectrum acquisition cost, we introduce a convex, increasing

function C(·). The value C(nt) represents the cost of the neutral-host to obtain nt RBs

and pertains to the particular small-cell in question.

System dynamics and neutral-host’s small-cell resource allocation. Let I be the

set of tenants served by the system. For each tenant i ∈ I, the expected load of a cell in

epoch t is denoted by lt
i , representing the total traffic that tenant i is expected to serve

during epoch t. For example, this could be the bytes stored in the transmission buffers

of all the UEs attached in the slice of the tenant, including a forecast of any new traffic

expected during epoch t. Again, the model can accommodate very general dynamics

for the evolution of lt
i , for all i ∈ I. The only assumption made (to enable the MDP for-

mulation) is that lt+1
i , conditioned on the value of lt

i , follows a probability distribution

that may depend on one or more of: the time t, the amount of radio resources nt , and

the price pt .

As already explained, the expected loads lt
i , i∈ I and the amount of shared spectrum

resources nt may mutually affect each other’s values at the next epoch. The load lt
i may

also affect the tenant’s current RB request νt
i ∈ Z. For maximum flexibility, such a

potential dependence is not made explicit and tenant i’s behavior at epoch t is directly

captured through the resource request νt
i. The dynamics of νt

i can be general, the only

restriction being that ν
t+1
i , conditioned on the value of νt

i, follows an (unknown to the

neutral-host) probability distribution, whose form may depend on one or more of: the

time t, the current tenant load lt
i and the price pt .

The collective request across all tenants may exceed the amount of available re-

sources, i.e., it is possible for ∑i∈I νt
i > nt . In such a case, the neutral-host would

allocate the available resources proportionally to the tenants’ requests. By using ut
i

to denote the resources actually allocated to tenant i in epoch t, this allocation rule

translates into

ut
i(~ν

t) =
νt

i

∑ j∈I νt
j
min{nt ,∑

j∈I
ν

t
j }, ∀i ∈ I, (6.1)

where~νt stands for a vector containing the requests from all tenants. Always, ∑i∈I ut
i ≤

nt . Moreover, ut
i = νt

i for all i ∈ I, when there are sufficient radio resources to meet all

resource requests.

100Chapter 6. Iris: Shared Spectrum Access for Neutral-Host Small-Cell Deployments

6.2.3 Problem Formulation

Given the system model just described and due to the stochastic nature of the shared

spectrum based neutral host small-cell environment (varying traffic loads, fluctuation

in spectrum availability, changing tenant behaviors), we formulate the neutral-host’s

dynamic pricing problem in Iris as a discrete-time, continuous state and action space

MDP. Essentially, the neutral-host observes the state of its environment and makes a

decision for an action based on this observation, bringing the environment into a new

state and obtaining a reward for the corresponding transition. In the dynamic pricing

context, the action of the host is to decide on the price pt . We denote this action as

at ∈ A where at = pt .

The state of the neutral-host’s environment in epoch t is denoted by xt and includes

the vector~νt−1 of virtual radio resources requested by the tenants in the previous epoch

t − 1, a vector ~lt containing the current loads lt
i of the tenants, the epoch t and the

number of available radio resources at the neutral-host nt . Formally, this is defined as

xt := (t,~νt−1,~lt ,nt) ∈ X . (6.2)

Note that xt is known to the neutral-host since it either contains information maintained

by itself or obtained from the tenants every time they request resources.

The reward function of the neutral-host reflects the requirements of Section 6.2.1

and is defined as

r(xt+1, pt | xt) = f (
nt−∑i∈I νt

i
nt)g(pt ,nt ,~νt). (6.3)

In the first factor on the right hand side, the function f has the Gaussian form

f (k) =

w+e−
k2

σ2 , k > 0,

w−e−
k2

σ2 , k ≤ 0,
(6.4)

which expresses how effectively the available resources are utilized by the tenants,

rewarding a close match of supply and demand. Ideally, resource under-utilization

(nt −∑i∈I νt
i > 0) is to be avoided, as it leaves room to allocate more resources to

tenants and increase their satisfaction. Excess demand (nt −∑i∈I νt
i < 0) should also

be avoided, as the proportional allocation in rule (6.1) gives some tenants fewer RBs

than the amount they requested at this price, leading to a decrease in their satisfaction.

Both aspects are reflected in (6.4) – the highest reward comes only when demand fully

meets the supply. The argument of f in (6.3) is normalized by the number of available

6.2. Iris Dynamic Pricing Mechanism 101

RBs nt to make the reward function behave in the same way regardless of the amount

of available spectrum. The parameters w+ and w− introduce bias to indicate whether

pricing decisions leading to excess demand of magnitude |k| are preferable over de-

cisions leading to resource underutilization by the same amount or vice versa. When

w− = w+ there is no bias. When w− > w+, the neutral-host achieves higher rewards

for pricing decisions leading to excess demand. Similarly, when w− < w+, decisions

that lead to the underutilization of resources are rewarded higher. The greater the dif-

ference between w+ and w−, the higher the bias. Finally, the parameter σ indicates

how small the supply-demand mismatch (nt −∑i∈I νt
i) should become to get a high

reward. A small σ attenuates the reward more sharply for a given mismatch, forcing

the neutral-host to develop more accurate pricing policies.

In the second factor of (6.3), the function g has the form

g(p,n,~ν) = min
(

1,
p∑i∈I ui(~ν)

C(n)

)δ

, δ≥ 1 (6.5)

which acts as a scaling factor reflecting the neutral-host’s losses. When the revenue

pt
∑i∈I ut

i(~ν
t) is at least equal to the neutral-host’s cost C(n), the right hand side in (6.5)

attains the highest possible value 1 and the neutral-host receives a full reward. If it

instead incurs losses, the reward is scaled down by g < 1, forcing the host to influence

the price decision that could raise its revenue to offset the costs. The higher the value

of δ, the more aggressively the neutral-host scales down the reward. Note that g attains

the maximum value 1 regardless of how big a profit is made by the neutral-host, so

the exact value of the profit has no impact to the host’s reward (and behavior). This is

in line with Section 6.2.1 since the host’s goal is to avoid losses, efficiently utilize the

resources and provide service differentiation for the tenants.

With the reward function (6.3), the behavior of the neutral-host is defined by a pol-

icy π, which maps the states to a probability distribution over the actions π : X→Pr(A).

With the mild assumptions stated in Section 6.2.2 and the structure of the state in (6.2),

the state transitions from xt to xt+1 given the action at satisfy the Markov property and

thus, applying a policy π to this MDP defines a Markov chain. We denote expectations

over this chain by Eπ. We define the return from a state xt as the sum of the discounted

future reward: Rt = ∑
∞
τ=t γ(τ−t)r(xτ,aτ) for a discounting factor γ ∈ [0,1] [116]. The

goal of the neutral-host then is to find a pricing policy that will maximize its expected

returns from the start state Eπ

[
R0] over an infinite horizon.

102Chapter 6. Iris: Shared Spectrum Access for Neutral-Host Small-Cell Deployments

6.2.4 Deep Reinforcement Learning Solution

Reinforcement learning is a common way to solve MDP problems of the kind pre-

sented in Section 6.2.3, where an exact model describing the dynamics of the envi-

ronment (e.g., tenant behavior and network traffic in our case) is not available. Q-

learning [137] is an obvious algorithm to use for this purpose. The idea underlying

Q-learning is that we have an action-value function Qπ which describes the expected

future return after taking the action at in some state xt and following policy π from that

point on, i.e.,

Qπ(xt ,at) = Eπ

[
Rt |xt ,at] . (6.6)

This function can be expressed through a recursive relationship known as the Bellman

equation:

Qπ(xt ,at) = Ert ,xt+1∼X
[
r(xt ,at)+ γQπ(xt+1,π(xt+1))

]
. (6.7)

Q-learning is an off-policy method in that the policy π used to estimate the discounted

future reward is different from the policy used for the action of the learning agent in a

state transition. The policy used for the estimation of the discounted future reward of

Q-learning is the greedy policy π(x) = argmaxa Q(x,a) whereas an exploration policy

is employed for the state transitions (e.g., take random actions).

Though a straightforward choice, Q-learning cannot be directly applied to our prob-

lem for several reasons. Firstly, it uses a table to store its Q-values. When the state

space of the problem is continuous or very large (as in our problem due to the range of

possible values for li, νi and n), calculating Qπ using a table becomes challenging. To

overcome this, we can rely on function approximators [24] parametrized by θQ. These

parameters can be optimized by minimizing the loss:

L(θQ) = Eπ′

[
(Q(xt ,at |θQ)− yt)2

]
, (6.8)

where

yt = r(xt ,at)+ γQ(xt+1,π(xt+1)|θQ). (6.9)

In addition to the large state space, we also have to deal with a continuous action

space (the announced price) which needs to be discretized in order to use Q-learning.

However, how to discretize the prices is not obvious or straightforward [24], since

the price range and its interpretation can be environment dependent. Using a policy

gradient actor-critic algorithm (e.g., [128]) is a way to overcome this problem. Such

algorithms maintain a parametrized actor function π(x|θπ) that estimates an action

policy and a parametrized critic function Q(x,a|θQ) that estimates the Q-values of

6.2. Iris Dynamic Pricing Mechanism 103

action-state pairs through the Bellman equation, as in Q-learning. The actor policy

is improved at each step by performing a gradient descent considering the estimated

values of the critic. Recent works (e.g., [83, 125, 39, 55]) show that using deep neural

networks as the function approximators for the estimation of actors and critics can

produce better results compared to using linear approximators, when the learning task

presents similar complexity to the one considered here in terms of its dimensionality.

Among others, it has been shown that higher rewards can be attained (avoiding local

optima) and that in some cases convergence speed can be improved.

In view of the above, we choose to use a state-of-the-art deep reinforcement learn-

ing actor-critic algorithm called DDPG [83]. The use of deep neural network approx-

imators allows DDPG to scale to high-dimensional state spaces and operate over con-

tinuous action spaces, making it an ideal candidate for Iris. One of its key features is

the use of replay buffers (a type of cache) to sample prior transitions (xt ,at ,xt+1,at+1)

which are used to train the neural networks. It also uses a technique called batch nor-

malization that improves the effectiveness of the learning process when using features

with different units and ranges (e.g., RBs and time). Finally, it uses a technique that

employs slow-changing copies of the actor and critic networks, called target networks,

which are used for calculating yt . This has been shown to greatly improve the stability

of the learning method.

Algorithm 1 Iris Dynamic Pricing Mechanism Outline
1: procedure DYNAMICPRICE

2: t← 0

3: Receive initial network state x0

4: loop:

5: Choose a price pt given the policy of the actor

6: at ← pt + ε, where ε is exploration noise

7: Execute action at (announce price to tenants)

8: Collect the radio resource requests of tenants ~νt and distribute the allocated

RBs ut
i(
~νt), ∀i ∈ I

9: Calculate the reward rt and transition to the state xt+1

10: Update the actor-critic parameters θQ and θπ (DDPG)

11: t← t +1

12: goto loop.

13: end procedure

104Chapter 6. Iris: Shared Spectrum Access for Neutral-Host Small-Cell Deployments

Algorithm 1 gives an outline of the dynamic pricing mechanism in Iris. A new

price pt is selected at each epoch t (line 5) using the policy indicated by the actor

π(x|θπ). Some exploration noise ε is added to the price to allow the agent to explore

other states. The price is announced to tenants (line 7) and their radio resource re-

quests are collected in return. Based on these requests, Iris neutral-host allocates the

radio resources following the rule in (6.1) (line 8); then calculates the reward rt and

transitions into a new state xt+1 (line 9). The parameters of the actor and the critic

network are updated based on the DDPG algorithm (line 10), which is the training

step, and a new epoch t + 1 begins. Note that the learning process of Iris never stops,

allowing the pricing mechanism to re-train and adapt to the new environments as the

tenants change their valuations for the radio resources over time, etc.

6.3 Iris System Architecture

Having described the dynamic pricing mechanism, the key component of Iris, we now

present its overall system architecture design and implementation.

6.3.1 Design

Our design builds on the observation that the small-cell infrastructure sharing capabil-

ity offered by a neutral-host is a particular albeit compelling use case of the broader

RAN slicing in the 5G context. However, a vanilla RAN slicing system would be

insufficient to address the specific needs of shared spectrum management and indoor

small-cell environments. In the following, we highlight how we address these needs in

our design (schematic shown in Figure 6.1). It embraces the C-RAN design paradigm,

with BBUs centralized in a virtualized BBU pool located in an edge cloud (e.g., in

the basement of the indoor space) and RRUs deployed throughout the building in a

planned manner. The RRUs are connected to the BBUs over high speed channels (e.g.,

10-Gigabit Ethernet or Fiber). This approach places most of the RAN processing on

the edge cloud which allows the system to scale better as BBU resources can be adap-

tively provisioned depending on the number of tenants and the spectrum availability. It

also lowers the form factor of the RRUs, making their deployment easier and discreet

from a building aesthetics viewpoint.

Each tenant is allocated a Virtual RAN Controller, deployed as a VNF over the edge

cloud. The controllers interface with the BBUs following a message-based communi-

6.3. Iris System Architecture 105

Figure 6.1: Schematic of Iris neutral-host system architecture.

cation and provide tenant-specific functions such as schedulers and mobility managers,

as well as an agent for the allocation of shared spectrum (discussed shortly).

At the heart of Iris lies the spectrum manager, a centralized controller managed by

the neutral-host. This controller informs the BBUs about the amount and type of avail-

able shared and privately owned spectrum and about its valid allocations, depending

on the access rights of tenants, distinguishing in particular, between tenants operat-

ing exclusively over shared spectrum and tenants that can also use their own private

licensed spectrum. A shared spectrum acquisition manager acquires the shared spec-

trum in a demand driven manner through a public repository (e.g., SAS in the CBRS

context). Moreover, this controller manages interference among small cells. Due to

the system’s C-RAN based design, the VNF of the spectrum manager co-exists with

the virtualized BBU pool over the same edge cloud, simplifying its coordination with

the BBUs through low-latency and high bandwidth channels and enabling the use of

advanced interference management techniques like CoMP [63].

Shared spectrum allocation process in Iris. Crucially, the spectrum manager

hosts a pricing policy agent responsible to decide on the dynamic shared spectrum

prices. The functionality of the Iris dynamic pricing mechanism (Section 6.2) is dis-

tributed among three distinct agents as illustrated in Figure 6.2.

The pricing policy agent initiates the shared spectrum allocation process in each

epoch, deciding on the price for each cell using the deep reinforcement learning al-

106Chapter 6. Iris: Shared Spectrum Access for Neutral-Host Small-Cell Deployments

Figure 6.2: Iris agents involved in dynamic pricing mechanism.

gorithm described earlier in Section 6.2.4. The pricing policy agent announces the

spectrum availability and the cell specific prices to the respective cell agents residing

in the BBUs, which in turn convey the price to the tenant agents residing in the ten-

ants’ virtual RAN controllers. Each tenant considers the announced price along with

its traffic load at the cell in question to decide on quantity of resource to be requested

as dictated by its internal policy. Such tenant requests are aggregated at the cell agent,

which distributes the available shared spectrum to the tenants proportionally to their

requests following rule (6.1) and notifies the pricing policy agent about the new state

of the cell, i.e., the allocated resources, the load of the tenants etc. The schedulers

running within the virtual RAN controllers of the tenants use the allocated resources to

serve the traffic of their UEs as per the tenants’ internal policies. Once the shared spec-

trum allocation process is complete, the pricing policy agent is further trained using the

feedback from the cells and decides on a new price for the upcoming epoch.

6.3.2 Implementation

Following the design described above, we developed a prototype implementation of

Iris, considering LTE as the RAT. To realize RAN slicing (i.e., multi-tenancy within

each BBU in the virtualized BBU pool), we leveraged Orion to enable the isolation of

the virtual control planes of tenants and the virtualization of the radio resources re-

vealed to them through the abstractions of vRRBs and vRRB Pools provided by the

6.3. Iris System Architecture 107

Orion Hypervisor. As already explained in Section 5.3.4, Orion is in turn built on top

of the OAI LTE platform. OAI has built-in C-RAN support offering three different

functional splits: lower-PHY, higher-PHY and nFAPI [129]. Although in principle

any of these functional splits could be used in Iris, the Orion implementation is only

compatible with the first two. Between them, considering their differences in fronthaul

bandwidth requirements (1Gbps with lower-PHY versus 280Mbps for higher-PHY for

a 20MHz carrier) [91, 28], we opt for the higher-PHY functional split. Moreover, to

allow the C-RAN capabilities of OAI to work with the slicing features provided by

Orion, we had to modify the OAI code to synchronize the Hypervisor threads respon-

sible for the communication with the control planes of tenants to the threads sending

the I/Q data to the RRUs.

Edge Cloud Deployment. To realize the Iris system design, we created an Open-

Stack edge cloud deployment composed of 5 commodity compute nodes (4 Xeon CPUs

@3.2GHz and 8GB RAM each), which were optimized for real-time operation (dis-

abled CPU C-states, low-latency Linux kernel, no CPU frequency scaling). Moreover,

the compute nodes were instructed by the OpenStack controller to use CPU pinning,

i.e., dedicated CPU cores that were not shared with other VNFs. For the RRUs, we

used low-cost SDRs (USRP B210), interfaced with compute nodes used for the com-

munication with the BBUs (over Gigabit Ethernet) and for running the lower part of

the PHY operations. We used small factor PCs (UP board with 4GB of RAM and Intel

Atom x5 Z8350 CPUs @1.92GHz) as RRU compute nodes (shown in Figure 6.3).

Figure 6.3: RRU equipment used for the prototype, composed of an SDR unit (right)

and a basic compute unit (left).

Spectrum Manager. We implemented a prototype Python-based spectrum manager to

108Chapter 6. Iris: Shared Spectrum Access for Neutral-Host Small-Cell Deployments

host the Iris pricing policy agent, employing an existing implementation of the DDPG

algorithm [5] that uses Tensorflow for the training of the deep neural networks. Given

our equipment constraints, we used a Tensorflow flavor that supports CPU execution

(GPU-based variants could be more computationally efficient). Regarding the param-

eters of DDPG, we retained the default values provided in the aforementioned imple-

mentation. The neural networks of both the actor and the critic had two hidden layers

with 400 and 300 units, respectively. For the representation of the state and action

space of the dynamic pricing mechanism, we employed the OpenAI Gym [23] rein-

forcement learning toolkit.

In a full implementation, shared spectrum support should be introduced through

carrier aggregation. However, given that this functionality is not currently supported

by OAI, we simulated scaling the available shared spectrum up/down using a contigu-

ous band of spectrum, scaled by the spectrum manager through signaling messages to

the cell agents, restricting their operations to a portion of the spectrum.

Cell Agents. The cell agents of Iris are introduced by modifying the OrionHypervisors

in the BBUs. First, the radio resource allocation scheme of Iris following rule (6.1)

was introduced into the radio resource manager of the Hypervisor. Moreover, the

Hypervisorswere interfaced with the spectrum manager using Google Protocol Buffers [2]

and ZeroMQ [1]. Finally, the protocol used for the communication of the Hypervisors

with the virtual control planes of tenants was extended to support the messages re-

quired for the operation of the Iris tenant agents, i.e., for the shared spectrum price

announcements and the radio resource requests of tenants.

Tenant Agents. On the tenant side, we leveraged the virtual control plane implemen-

tation of Orion, which we extended with the Iris tenant agents. In these agents, we

implemented a generic parameterizable dis-utility function that can be customized by

each tenant to decide on the allocation of shared spectrum based on the announced

price and its load. With each tenant we associated a dis-utility function of the form

Ū(p,d,b) =
(

α(max(0,d−b))γd +(pb)γp
)1/γp

. (6.10)

All arguments of the function refer to the same epoch. Specifically, p stands for the

price announced by the pricing policy agent, d expresses the tenant’s traffic load in

terms of radio RBs and b represents the number of requested RBs. The parameters

α, γd and γp characterize the individual tenant behavior; the settings of these param-

6.4. Experimental Evaluation 109

eters determine the sensitivity of the dis-utility function to the current load or price

and can therefore allow simulation of different tenant behaviors and reactions to price

changes (as elaborated further in Section 6.4). An API is provided in the controllers

of the tenants for these parameters can be modified on-the-fly, allowing the tenants to

dynamically change their shared spectrum allocation policy. Raising the sum in (6.10)

to the power 1/γp expresses the value of the dis-utility in units of “cost”, bearing the

same interpretation for all tenants, regardless of the value of γp employed in each of

them. This allows introducing the notion of “total dis-utility” calculated as the sum

of dis-utilities over all tenants. Through (6.10) and given the price pt announced by

the Iris pricing policy agent and the level of traffic load lt
i , corresponding to d(lt

i) RBs,

the agent of each tenant i requests from the Iris cell agent the amount of RBs that

minimizes its dis-utility i.e., argminbŪi(p,d(lt
i),b). When mapping the load of a ten-

ant from bytes to RBs, the current implementation employs a static correspondence,

assuming a 64-QAM modulation scheme allowing each RB to serve on average 80

bytes, i.e. d(lt
i) = lt

i/80.

It is important to note that although we implemented the form in (6.10) to realize

different tenant behaviors for our evaluations, our design (specifically the dynamic

pricing mechanism) is completely agnostic to actual tenant utility functions and does

not make any assumptions about their nature.

6.4 Experimental Evaluation

6.4.1 Evaluation Setup

We use the prototype implementation of Iris (Section 6.3.2) in our evaluations. The

default experimental setup corresponds to 4 tenants per cell. For experiments with a

single small cell, real UEs (LTE smartphones and dongles), one per tenant, and the

D-ITG traffic generator [22] were used to generate a simulated aggregate UDP traffic

for the tenant. Scenarios with multiple small cells were realized using simulated UEs,

due to the complexity of managing the experimental setup.

To simulate the traffic loads of tenants, we used the daily aggregate traffic pattern

presented in [136] for an entertainment area, which is one of the representative indoor

environments. We assume that the aggregate incoming hourly traffic of each tenant

follows a normal distribution, with mean and variance depending on the particular

hour in the day considered, as illustrated in Fig. 6.4a. The shared spectrum announced

110Chapter 6. Iris: Shared Spectrum Access for Neutral-Host Small-Cell Deployments

by the spectrum manager is based on the spectrum availability profile in Figure 6.4b.

The idea behind this profile is that the available shared spectrum is re-adjusted (with

some delay) by the spectrum manager to approximately match the traffic load. While

some of the experiments span the whole day and use the full profiles in Figure 6.4,

others focus on a particular hour and employ the traffic and spectrum values for that

hour. The default evaluation configuration considers the conditions applicable at 3pm

and a cell with 5MHz of available shared spectrum, emulating a CBRS-like service

using LTE band 7. Small-cells use a Single-Input Single-Output transmission mode,

which for 5MHz spectrum corresponds to a max throughput of 16Mbps.

0 5 10 15 20

Time(h)

0

1

2

3

4

5

6

7

T
ra

ff
ic

 R
a

te
 (

M
b

p
s

)

(a) Traffic load

0 5 10 15 20

Time(h)

0

2

4

6

8

10

B
a

n
d

w
id

th
 (

M
H

z
)

(b) Spectrum availability

Figure 6.4: Daily traffic profile of tenants and spectrum availability profile over a day at

the neutral-host.

For the dynamic pricing mechanism, the presented results correspond to the price

range [0, pmax], with pmax = 2500. For the shared spectrum acquisition cost we employ

the linear cost function

C(n) = pcn, (6.11)

where pc is the cost incurred to the small cell for the acquisition of a single RB. We set

pc = 0.25pmax = 625, unless explicitly stated otherwise. The epoch duration is set to

30ms (chosen based on results of Section 6.4.4). The parameters of (6.4) are configured

empirically, with the bias parameters set to w+ = 9.7×103 and w− = 104 to promote

solutions avoiding resource underutilization and σ = 27, allowing the pricing policy

agent to attain a high reward only when the supply-demand mismatch is in the order of

a few tens of RBs.

For the shared spectrum requests of the tenants, we created the 4 profiles listed in

6.4. Experimental Evaluation 111

Table 6.2: Tenant profiles with different parameterizations of the generic dis-utility func-

tion and the resulting behaviors.

Profile # α γp γd Effect

1 3.5×108 2 1

The tenant is only willing to cover its load when the price is low.

Otherwise, it buys a minimum amount of resources to maintain

a presence in the network.

2 2×109 2 1
The tenant is willing to fully cover its load for low to medium

prices. For high prices, it only covers part of its load.

3 0.203 1 2

In periods of high load, tenant is willing to buy a large amount

of resources even at high prices. In other times, the tenant will

queue its traffic until the load increases enough to buy in bulk.

4 1.1×105 2 2
Tenant always tries to provide a medium level of service, asking

a price-dependent fraction of its load.

Table 6.2, that configure the dis-utility function in (6.10) to simulate various tenant

behaviors. The expected effects of each configuration to the behavior of the tenants

(for the price range considered) are explained in Table 6.2. Unless explicitly stated

otherwise, tenants were assigned profiles in a cyclic manner, i.e. tenant 1 to profile 1,

tenant 2 to profile 2, tenant 5 to profile 1 etc.

6.4.2 Characterizing Iris Shared Spectrum Management

Learning behavior for various traffic loads. We evaluate the learning behavior of the

pricing policy agent for four tenants over three cells, with each cell having a different

aggregate traffic load. We consider a congested cell (Cell 1), corresponding to the

conditions at 3pm from the daily traffic profile of Figure 6.4, an uncongested cell

(Cell 2) experiencing low traffic load, corresponding to the conditions at 8am from

the daily traffic profile and a cell with high traffic loads (Cell 3) that are not leading to

congestion, corresponding to the conditions at 11am from the daily traffic profile.

The results in Figure 6.5 depict the reward obtained by the pricing policy agent

(normalized over the maximum possible reward) and the average mismatch between

the RBs available during an epoch and those collectively requested by all tenants (i.e.,

∑i∈I νt
i). A zero mismatch corresponds to an exact match between demand and supply.

On the other hand, a negative mismatch signifies a collective tenant request that led to

excess demand and a positive mismatch signifies underutilization, due either to high

price or low load.

As we can observe, in the congested cell (cell 1) case, the agent begins with a

112Chapter 6. Iris: Shared Spectrum Access for Neutral-Host Small-Cell Deployments

very high RB mismatch, which drops by more than half after the first 40000 epochs

and constantly gets closer to 0 as time progresses, indicating that the pricing policy

agent is effectively learning how to control the requests of the tenants. This is also

apparent by the reward of the agent that is close to 1 (the max), meaning that the agent

both utilizes the radio resources, while it covers its expenses for the acquisition of the

shared spectrum.

For cell 2, the mismatch is always positive and close to 500. This is expected, since

the load of the tenants is very low and the demand can never match the supply. Due to

the very low load, it is infeasible for the neutral-host to fully cover its expenses for the

acquisition of the shared spectrum, regardless of the pricing policy it follows. This is

reflected in its reward that is scaled down by (6.5). However, despite this and after the

first 40000 epochs, the neutral-host agent discovers a pricing policy that improves its

revenue, which is reflected into the improvement of the obtained reward (getting close

to 0.2).

0 2 4 6 8 10 12

Number of epochs ×10
4

0

0.2

0.4

0.6

0.8

1

1.2

R
e
w

a
rd

 p
e
r

E
p

o
c
h

Cell 1 (Congested)

Cell 2 (Uncongested-low)

Cell 3 (Uncongested-high)

(a) Neutral-host reward

0 2 4 6 8 10 12

Number of epochs ×10
4

-1500

-1000

-500

0

500

A
v

e
ra

g
e

 R
B

 m
is

m
a

tc
h

 p
e

r
e

p
o

c
h

Cell 1 (Congested)

Cell 2 (Uncongested-low)

Cell 3 (Uncongested-high)

(b) Resource block mismatch

Figure 6.5: Learning behavior of pricing policy agent for cells with different levels of

congestion and loads.

Finally, in the case of cell 3, the agent presents a stable behavior, with its reward

(and RB mismatch) remaining relatively static throughout the experiment. This is be-

cause the aggregate traffic of the tenants requires an amount of RBs that is roughly

equal to the RBs that are available in the system. Therefore, as long as the pricing

policy agent does not announce very high prices, the spectrum will be almost fully

utilized. However, for a short period of time after the first 45000 epochs, the RB mis-

match undergoes a sudden increase (also reflected in the agent’s reward). The root

cause of this behavior lies in the exploration noise of the reinforcement learning pro-

6.4. Experimental Evaluation 113

cess, as presented in Algorithm 1. This noise makes the agent diverge from the pricing

policy it already knows to explore new states that could potentially lead to better re-

sults. This can have a negative impact to the tenants, due to their sensitivity to the

announced prices, which is reflected into the sudden degradation in the RB mismatch

and the decrease in the reward.

Different number of tenants. We evaluate the learning behavior of the dynamic pric-

ing mechanism as the number and behavior of active tenants vary. (Recall that the

behavior of each tenant depends on its index, as explained in Section 6.4.1). We con-

sider three cases with two, four and six tenants and a congested cell with the aggregate

traffic generated by all tenants being 16Mbps (all tenants generating equal levels of

traffic). The average RB mismatch is illustrated in Figure 6.6a. In the case of four and

six tenants the system begins with a negative mismatch, while for two tenants with a

positive mismatch. This is related to the effect of neutral-host’s pricing choices to the

tenants (Figure 6.6b), given their loads and shared spectrum allocation profiles. For

two tenants, the initial prices (around 1300) are considered high, leading to the under-

utilization of the resources, despite the cell congestion. On the other hand, for four and

six tenants and given the increased competition for the resources, the price is low, lead-

ing to excess demand. In all cases, the agent discovers an appropriate pricing policy

to minimize the mismatch, showing the adaptiveness of the proposed mechanism. For

four and six tenants this is translated into high and very high prices correspondingly,

while for the two tenants into a price reduction.

Effect of reward function. In the next experiment, we explore how the behavior of the

learning process can be affected by the reward function. We consider three different

variants of the reward function; the one we used in our default setup, an unbiased

reward function (w+ = w− = 104) and the default biased version of the function with

the parameter σ set to a high value (σ = 750).

The results for the effect of these configurations on the RB mismatch are in Fig-

ure 6.7a. The variant with the large σ fails to provide acceptable results until very late

in the experiment. This is because for a large σ, the reward attained by the agent for any

type of demand expressed by the tenants (both high and low) is very similar, making

the differentiation of good and bad pricing decisions difficult. The other two variants

of the reward function yield similar results and present similar behavior. However, as

it can be seen in the zoomed area of the figure, the biased version tends to favor pricing

114Chapter 6. Iris: Shared Spectrum Access for Neutral-Host Small-Cell Deployments

0 2 4 6 8 10 12

Number of epochs ×10
4

-1500

-1000

-500

0

500
A

v
e

ra
g

e
 R

B
 m

is
m

a
tc

h
 p

e
r

e
p

o
c

h

Two tenants

Four tenants

Six tenants

(a) Learning behavior for different number of

tenants.

0 2 4 6 8 10 12

Number of epochs ×10
4

0

500

1000

1500

2000

2500

P
ri

c
e

Two tenants

Four tenants

Six tenants

(b) Price decision for different number of ten-

ants.

Figure 6.6: Behavior of Iris dynamic pricing mechanism for varying number of tenants.

policies that lead to a slight excess in demand (negative mismatch) rather than leaving

part of the shared spectrum underutilized, like in the unbiased flavor (frequent positive

mismatches).

0 5 10

Number of epochs ×10
4

-2500

-2000

-1500

-1000

-500

0

500

1000

A
v

e
ra

g
e

 R
B

 m
is

m
a

tc
h

 p
e

r
e

p
o

c
h

Unbiased reward

Biased reward

0.9 1 1.1 1.2

×10
5

-50
0

50

(a) Effect of reward function parameters.

0 0.5 1 1.5 2

Number of epochs ×10
5

-1400

-1200

-1000

-800

-600

-400

-200

0

200

A
v
e
ra

g
e
 R

B
 m

is
m

a
tc

h
 p

e
r

e
p

o
c
h

New policy for tenant 1

(b) Adaptation to dynamic policy changes.

Figure 6.7: Behavior of Iris dynamic pricing mechanism under different reward function

parameters and dynamic tenant policy changes.

Effect of dynamic policy changes. This experiment demonstrates the adaptiveness

of the dynamic pricing mechanism when tenants make policy changes dynamically.

According to the scenario, the experiment runs for 120000 epochs using the default

tenant profiles. When this period elapses, and once the agent has identified an appro-

6.4. Experimental Evaluation 115

priate pricing policy for the given load, the API of tenant 1 is used to dynamically

change the tenant’s policy into profile #2 (Table 6.2). This leads to a temporary failure

of the agent to appropriately price the available radio resources, which is translated

into a major RB mismatch, as depicted in Figure 6.7b. However, after about 30000

epochs (150000 epochs in the experiment), the neutral-host agent manages to re-adapt

to the new behavior of tenant 1.

Effect of shared spectrum acquisition cost. Here, we evaluate the effect of the

shared spectrum acquisition cost to the pricing decisions. For this, we consider two

cases with a different acquisition price pc. The first case employs the default value

pc = 0.25pmax = 625, while the second case uses a very high acquisition price pc =

0.75pmax = 1850.

p
c
 = 625 p

c
 = 1850

Neutral-host acquisition cost per RB

0

0.2

0.4

0.6

0.8

1

Normalized Shared Spectrum Cost

Normalized Neutral-Host Revenue

740 RBs/epoch 690 RBs/epoch

Figure 6.8: Impact of spectrum acquisition cost.

We compare the normalized revenue of the neutral-host against the normalized cost

for acquiring the spectrum by the public repository. The normalization is performed in

terms of the maximum revenue achievable by the neutral-host for the same period (i.e.

selling all resources at price pmax). The results are in Figure 6.8. For the low acquisi-

tion price, the revenue of the neutral-host is much higher than the spectrum cost. Due

to the high load (traffic at 3pm) experienced by the tenants and the network congestion,

tenants are willing to buy the RBs in prices much higher than pc = 0.25pmax. However,

for the high acquisition cost, the valuation of the tenants for the available resources is

not high enough to cover the costs of the neutral-host. As a result, the neutral-host

agent, driven by its reward function, learns an alternative pricing policy that makes the

tenants buy less RBs on average (690 vs. 740 in the low price case) but at higher prices

allowing the host to recover its spectrum acquisition cost.

116Chapter 6. Iris: Shared Spectrum Access for Neutral-Host Small-Cell Deployments

6.4.3 Comparison with Alternative Approaches

We now compare the performance of the Iris dynamic pricing mechanism with alter-

native approaches in terms of the benefits provided to tenants. We consider the traffic

generated for a whole day (using the full profile presented in Figure 6.4) for four ten-

ants with their behaviors defined in Table 6.2. We are interested in the performance

of the neutral-host agent at day 0 of training, i.e., the agent is evaluated against other

schemes without any prior training. This worst-case scenario is important to bench-

mark the effectiveness of the neutral-host agent’s operation in volatile environments,

where tenants can frequently change their valuations.

One alternative that could be viewed as a variant of the optimal solution is an un-

realistic myopic pricing scheme in which the neutral-host knows the dis-utility func-

tions of the tenants. Using this knowledge, it determines at each epoch, the price to

charge the tenants by minimizing the sum of tenant dis-utilities, subject to the resource

availability constraint and the requirement that the neutral-host experiences no losses,

i.e.,
min
p,~ν

∑
i∈I

Ūi(p,d,νi)

s.t. p∑
i∈I

νi ≥C(n),

∑
i∈I

νi ≤ n,

νi ≥ 0, ∀i ∈ I

(6.12)

The neutral-host allocates the resources myopically during each epoch (in the sense

that it views each epoch in isolation) so that it does not incur losses even in the short-

term. A side-effect of this is that under very low traffic load, the neutral-host forces

the tenants to buy more resources than they actually need, to balance the acquisition

cost for the spectrum. It is noted that the comparative evaluation does not consider

as a baseline the unrealistic but “optimal” solution which optimizes the allocation of

resources considering the network dynamics (traffic, spectrum cost, tenant behaviors)

throughout the whole day. The complex modeling requirements accounting for the

dependency across epochs, the high computational complexity of obtaining the optimal

solution and the fact that this needs to be performed over and over again in time makes

it impractical even as a baseline.

In addition to the myopic scheme outlined above, we also consider four static pric-

ing schemes, where the price announced by the agent during each epoch t is fixed to

pmax/8 ≈ 312 (Static Low), 3pmax/8 ≈ 937 (Static Med-L), 5pmax/8 ≈ 1562 (Static

6.4. Experimental Evaluation 117

Pricing Scheme

-2

0

2

4

6

8

10

12

A
v
e
ra

g
e
 t

e
n

a
n

t
d

is
u

ti
li
ty

×10
7

-0.2

-0.1

0

0.1

0.2

0.3

N
o

rm
a
li
z
e
d

 p
ro

fi
t

Iris Myopic Static

Low

Static

Med-L

Static

Med-H

Static

High

(a) Total tenant disutility and neutral-host profit.

Pricing Scheme

0

0.5

1

1.5

2

S
e

rv
e

d
 B

it
s

 /
 P

ri
c

e
 U

n
it

×10
5

0

1

2

3

4

T
o

ta
l

c
e

ll
 t

ra
ff

ic
 s

e
rv

e
d

 (
T

B
)

Iris Myopic Static
Med-H

Static
High

(b) Total traffic served and bits per price unit.

Figure 6.9: Comparison of Iris with alternative approaches.

Med-H) and 7pmax/8≈ 2187 (Static High) correspondingly, to capture the whole range

of possible prices.

We begin by looking at the average dis-utility of the tenants for each pricing scheme,

as well as the total normalized profit made by the neutral-host (Figure 6.9a). The profit

is normalized by the maximum possible revenue of the neutral-host, i.e., selling all the

available resources at the max price of pmax. In terms of the dis-utility, we can observe

that Iris performs worse than two of the static pricing schemes with the lower prices

(Static Low and Static Med-L). However, through the profit results, we also observe

that with the low static pricing schemes the neutral-host experiences losses, something

that could have been avoided if the neutral-host dynamically adapted its prices. This

means that while the low static prices can improve the satisfaction of tenants, they also

disincentivize the neutral-host to provide its service in the first place.

The results are opposite for the myopic and the higher static pricing schemes (Med-

H and High) in that with these schemes the neutral-host obtains a higher profit at the

expense of a higher tenant dis-utility compared to Iris . For the static pricing schemes,

this is due to the inability of the pricing mechanism to adapt to the traffic loads, charg-

ing high prices even at times of no congestion (e.g., 1am-10am when the traffic load is

low or 6pm-9pm when there is abundance of spectrum). For the myopic scheme, how-

ever, this is due to the neutral-host agent forcing tenants to buy resources not needed to

myopically recover its spectrum acquisition cost within each epoch. These behaviors

are better seen in the hourly breakdown of the tenants’ dis-utilities and corresponding

prices decided by the neutral-host as shown in Figure 6.10. The Iris dynamic pric-

ing mechanism manages to draw a balance between the needs of the tenants and the

118Chapter 6. Iris: Shared Spectrum Access for Neutral-Host Small-Cell Deployments

neutral-host more effectively, learning the right pricing policy that keeps the tenants as

satisfied as possible, but without incurring losses that would disincentivize the neutral-

host.

0 10 20

Time(h)

0

0.2

0.4

0.6

0.8

1

1.2

T
o

ta
l

d
is

u
ti

li
ty

0

0.5

1

1.5

2

2.5

A
v

e
ra

g
e

 P
ri

c
e

 (
x

1
0

0
0

)

Iris

0 10 20

Time(h)

0

0.2

0.4

0.6

0.8

1

1.2

T
o

ta
l

d
is

u
ti

li
ty

0

0.5

1

1.5

2

2.5

A
v

e
ra

g
e

 p
ri

c
e

 (
x

1
0

0
0

)

Myopic

0 10 20

Time(h)

0

0.2

0.4

0.6

0.8

1

1.2

T
o

ta
l

d
is

u
ti

li
ty

0

0.5

1

1.5

2

2.5

A
v

e
ra

g
e

 p
ri

c
e

 (
x

1
0

0
0

)

Static Low

0 10 20

Time(h)

0

0.2

0.4

0.6

0.8

1

1.2

T
o

ta
l

d
is

u
ti

li
ty

0

0.5

1

1.5

2

2.5

A
v

e
ra

g
e

 p
ri

c
e

 (
x

1
0

0
0

)

Static Med-L

0 10 20

Time(h)

0

0.2

0.4

0.6

0.8

1

1.2

T
o

ta
l

d
is

u
ti

li
ty

0

0.5

1

1.5

2

2.5

A
v

e
ra

g
e

 p
ri

c
e

 (
x

1
0

0
0

)

Static Med-H

0 10 20

Time(h)

0

0.2

0.4

0.6

0.8

1

1.2

T
o

ta
l

d
is

u
ti

li
ty

0

0.5

1

1.5

2

2.5

A
v

e
ra

g
e

 p
ri

c
e

 (
x

1
0

0
0

)

Static High

Figure 6.10: Hourly breakdown of tenants’ total disutility and average price selected by

neutral-host.

In terms of the offered service, we measure the total traffic served by a cell through-

out the day and calculate the average bits per price unit that the tenants bought for each

pricing scheme. We omit the static Low and Med-L schemes from this comparison,

given the losses they incur to the neutral-host. The results are in Figure 6.9b. As we

can observe, Iris offers the cheapest service, benefiting from the adaptiveness of its

pricing scheme. Note that, although the same adaptiveness is also offered by the my-

opic scheme, the fact that tenants might be forced to buy unwanted resources raises the

overall service cost. Another interesting observation is that, the total traffic served in

the High static pricing scheme is significantly lower than that of Iris. This is because,

due to the high prices, the tenants avoid buying radio resources despite the availability

(evident from the fact that the other pricing schemes served more traffic with the same

overall amount of resources).

Finally, we compare the service differentiation offered by Iris against the myopic

scheme and the spectrum allocation policy proposed in [72]. The latter allocates RBs to

6.4. Experimental Evaluation 119

5 10 15 20

Time(h)

0

1

2

3

4

5

6

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Tenant 1

Tenant 2

Tenant 3

Tenant 4

Proportional

(a) Service differentiation in Iris vs proportional

load allocation.

5 10 15 20

Time(h)

0

1

2

3

4

5

6

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Tenant 1

Tenant 2

Tenant 3

Tenant 4

(b) Service differentiation in myopic allocation

scheme.

Figure 6.11: Service differentiation among tenants with Iris and other approaches.

the tenants proportionally to their load, so it can be viewed as a purely load dependent

but pricing agnostic scheme. For this result, the myopic scheme can act as a baseline,

since in this case the neutral-host is aware of the dis-utility functions of the tenants and

thus optimally distributes the resources among them. The results appear in Figure 6.11.

As we can observe, Iris provides service differentiation among tenants, with results that

are close to that of the myopic scheme. For the proportional scheme, we can see that

no differentiation can be achieved (since every tenant generates the same traffic load).

This can have a negative impact to the tenants’ satisfaction, since the tenants that value

the available spectrum the most end up getting less resources than they would like

during hours that the network experiences congestion (e.g., 12-6pm).

6.4.4 Iris Deployment Feasibility

Here we examine the system requirements for deploying Iris. We begin with the aver-

age execution time required for a single training step of the pricing policy agent, i.e.,

the time required to calculate the new parameters of the actor and the critic functions

by DDPG. This time is very significant, as it dictates the time granularity of the dy-

namic pricing epoch, i.e., an epoch cannot be shorter than the agent training time. We

measure the execution time for a varying number of tenants with results shown in Fig-

ure 6.12. As we can observe, the execution time increases linearly with the number of

tenants and remains below 22ms even for 8 tenants. This linear effect is correlated with

the computational complexity introduced by the linear increase in the number of input

120Chapter 6. Iris: Shared Spectrum Access for Neutral-Host Small-Cell Deployments

layer units in the neural networks of the actor and critic as the number of tenants grow

– each tenant adds one load li and one request νi feature to the input layer. When set-

ting the epoch duration, the additional overhead introduced by the message exchanges

between the various Iris agents should also be taken into account. We therefore chose

30ms for the epoch duration in all the earlier experiments. It should however be noted

that offloading the training computations to GPUs (rather than using CPU as in our

current implementation) can potentially lead to significant reductions in the execution

time, which in turn allows the duration of the epoch to lower and Iris to learn faster.

2 4 6 8

Number of tenants

0

0.1

0.2

0.3

0.4

B
a
n

d
w

id
th

 (
M

b
p

s
)

16

18

20

22

24

E
x
e
c
u

ti
o

n
 t

im
e
 (

m
s
)

Pricing Policy - Cell

Cell - Tenants

Figure 6.12: Execution time for single training step of Iris and bandwidth requirements

for Irisagents message exchanges.

We also measure the bandwidth requirements for the message exchanges of Iris,

which includes both the messages for the communication between the pricing policy

and cell agents as well as the messages for communication between cell and tenant

agents. As illustrated in Figure 6.12, the bandwidth requirements of Iris are minimal

(less than 0.4Mbps) for all practical deployment scenarios of up to 8 tenants and posing

a negligible overhead to the edge cloud deployment.

6.5 Conclusions

We have presented Iris, a system architecture for neutral-host indoor small-cells based

on shared spectrum. The design of Iris follows a C-RAN approach that simplifies the

control and deployment of the underlying infrastructure and leverages Orion for provid-

ing full isolation for tenants in terms of radio resource management. At the core of Iris

lies a novel dynamic pricing radio resource allocation mechanism for shared spectrum.

6.5. Conclusions 121

This mechanism employs deep reinforcement learning to discover pricing policies that

allow tenants to request shared spectrum resources on demand, ensuring the differ-

entiation of their services based on their valuation of the spectrum, while avoiding

losses for the neutral-host due to the acquisition cost of the shared spectrum from a

public repository. Using our prototype implementation of Iris developed for LTE, we

have conducted extensive experimental evaluations to characterize the dynamic pric-

ing mechanism of Iris under different conditions, show the benefits of the Iris approach

compared to alternative approaches and examine its deployment feasibility.

Chapter 7

Conclusions and Future Work

7.1 Conclusions

The emergence of 5G is expected to bring a wave of new technological and architec-

tural changes that are designed to greatly improve the performance of mobile networks

in terms of throughput, latency, scalability etc. At the same time, 5G mobile networks

are envisioned to become multi-service environments, catering the needs of mobile

network operators, verticals and over-the-top service providers by integrating inher-

ent support for the dynamic deployment of services with a diverse set of performance

requirements.

Unfortunately, the one-size-fits-all approach and the rigidness in the design of the

conventional mobile network architecture proves to be a significant bottleneck for the

evolution towards this vision. For the network to evolve, flexibility in the creation,

management and control of the network components is of paramount importance. The

key into enabling this flexibility is the introduction of programmability and virtual-

ization capabilities for the mobile network functions. The focus of this thesis was on

providing three relevant solutions in the context of the RAN, considering the chal-

lenges that arise by the idiosyncrasies of this part of the mobile network architecture

compared to the core.

While each of the individual solutions focused on addressing different problems,

the resulting systems are highly-complementary and contribute in the bigger picture of

creating a next generation RAN that is flexible and adaptable to a wide-range of use

cases. Big attention was given on creating realizable system designs, something that

is evident both from the concrete prototype implementations that complement them

and from the extensive evaluation results that indicate the feasibility and performance

123

124 Chapter 7. Conclusions and Future Work

of the proposed approaches. The high-level conclusions for each of these solutions is

presented in the following subsections.

7.1.1 Software-Defined Radio Access Networks

The first contribution of this thesis was the FlexRAN platform, which is a concrete pro-

totype implementation of an SD-RAN architecture. FlexRAN was specifically designed

to take into consideration the challenges that appear in the RAN regarding the con-

trol of the radio resources and the stringent time constraints presented by a number of

critical control functions. The main advantage of FlexRAN is that it provides a flexible

control plane designed with support for real-time RAN control applications, flexibility

to realize various degrees of coordination among RAN infrastructure entities, and pro-

grammability to adapt control over time and easier evolution to the future following

SDN/NFV principles. Evaluation results reveal the feasibility of adopting an SD-RAN

design for many practical deployment scenarios. The benefits of the SD-RAN archi-

tecture are further demonstrated by exploiting the FlexRAN prototype to implement a

number of prominent use cases that are being considered in the context of both 4G and

5G, including Mobile Edge Computing, inter-cell interference management and RAN

sharing.

7.1.2 RAN Slicing

The second contribution of this thesis attempted to address the problem of bringing

virtualization and slicing capabilities to the RAN in a way that ensures the efficiency

in the allocation of the resources and the full functional and performance isolation

of the co-existing slices. Towards this direction, the Orion RAN slicing system was

proposed, which enables the dynamic virtualization of base stations and the flexible

customization of slices to meet their respective service needs. Orion is based on a

Hypervisor component that is the key enabler of the RAN virtualization. Among oth-

ers, the Hypervisor builds on set of abstractions that are specifically introduced for

ensuring the isolated distribution of the radio resources to slices. It also leverages and

extends the primitives of FlexRAN to allow the introduction of multiple virtual control

planes, each corresponding to a different slice. To complement the basic design of

Orion, an additional extension was also considered to cater the needs of OTT service

providers. The evaluation results and the case studies that were performed using a con-

crete prototype implementation, revealed both the feasibility of the proposed approach

7.2. Limitations and Future Work 125

and the benefits that it can bring compared to the state-of-the-art.

7.1.3 Multi-tenancy in Indoor Small-cell Deployments with Shared

Spectrum

The final contribution of this thesis built on the RAN slicing capabilities introduced by

Orionand introduced a system called Iristhat was specifically designed for the emerg-

ing use case of multi-tenancy in indoor small-cell deployments with shared spectrum.

The main focus of this part of the thesis was on designing a radio resource allocation

mechanism that considers the idiosyncrasies of shared spectrum and allows tenants to

differentiate their services without revealing private information about their business

model, while at the same time ensuring that the neutral-host does not experience losses

from the acquisition of the shared spectrum. For that, a dynamic pricing mechanism

was proposed in the form of an MDPs and a deep reinforcement learning algorithm

was employed to solve it. The dynamic pricing mechanism was embedded in a C-

RAN design and the extensive evaluation results that were provided over a prototype

testbed implementation demonstrated the feasibility and practicality of the proposed

allocation mechanism in a realistic setting.

7.2 Limitations and Future Work

This section summarizes the limitations and future work opportunities in relation to

the contributions made in this thesis.

7.2.1 FlexRAN: A Software-Defined Radio Access Network Plat-

form

State consistency – Based on the current design of FlexRAN , it is possible for RAN

applications that are deployed and concurrently running on top of the platform to mod-

ify the same state. Therefore, a conflict resolution mechanism ensuring state consis-

tency becomes valuable when third-party network applications need to be supported.

For example, such a mechanism should prohibit the deployment of multiple applica-

tions that may simultaneously issue scheduling decisions for the same resource blocks,

effectively leading to conflicts.

126 Chapter 7. Conclusions and Future Work

Control delegation – Another significant issue of FlexRAN is related to the mecha-

nism of control delegation. Currently the VSF code that is pushed to the agents by

the controller needs to be compiled against the processor architecture of the target

agent using the programming language of the FlexRAN agent API (currently in C). This

cross-compilation process can be cumbersome and error-prone. Introducing a high-

level domain-specific language that would make the development of VSFs technology-

agnostic could greatly simplify the control delegation mechanism, especially in cases

where the underlying infrastructure is heterogeneous in terms of the hardware em-

ployed for the agent implementation.

Security concerns – Another issue that needs to be further considered is related to

the security concerns raised by the VSF updation mechanism. Depending on the envi-

ronment in which FlexRAN operates, the VSF updation mechanism could be potentially

exploited in cases when the development and deployment of third-party applications

is allowed. Developing a sandbox environment with controlled permissions for the ex-

ecution of the VSFs in line with the discussion in Section 4.3.3.1 is a very important

topic for further research.

Northbound API – The current implementation of FlexRAN does not employ any

high-level abstractions in the northbound API and instead reveals raw information to

the applications through the RIB. This can make the development of control and man-

agement applications more challenging and time consuming. Specifying RAN abstrac-

tions and primitives that can simplify the development of applications is an interesting

topic for future work.

Scale and scope – Improving the scalability of FlexRAN for wide area settings by in-

troducing another layer of control and broadening its scope to go beyond the control

and management of the radio resources in the cellular RAN by considering other do-

mains like the core network and multi-RAT settings would provide a more holistic

SDN solution for future mobile networks.

7.2.2 Orion: A RAN Slicing System

RAN-as-a-Service – The virtualization capabilities enabled by Orion can be seen as

a concrete step towards realizing the so-called RAN-as-a-Service (RaaS) paradigm,

where virtual RAN instances can be dynamically created over a cloud infrastructure.

However, apart from virtualization, another significant aspect of the RaaS paradigm

7.2. Limitations and Future Work 127

is the capability to perform a dynamic functional split of the RAN in terms of control

and data plane operations, enabling a more flexible composition of RAN instances. Ex-

tending the design of Orion to accommodate this need, while retaining its virtualization

capabilites is a natural next step.

Multi-RAT virtualization – 5G networks are expected to span multiple RATs, includ-

ing emerging technologies not just in the 3GPP space, like 5G NR and Narrowband-

IoT, but also WiFi, which in the future is expected to become more similar to LTE (e.g.

with 802.11ax). Moreover, the 5G core is expected to become access agnostic. In this

setting, it is vital for RAN virtualization solutions to be able to accommodate multiple

RATs. Orion is currently designed for single-RAT settings, however investigating the

feasibility of extending its capabilities for multi-RAT is a significant topic for future

work. This presents an additional outstanding challenge as it is unclear whether mul-

tiple RATs can be multiplexed over the same possibly specialized hardware or each

needs its own dedicated hardware; the answer to this question might depend on the set

of RATs under consideration.

Slicing the UE – The current design of Orion assumes a 1:1 mapping of UEs to slices

with the additional capability of supporting OTT services through the extensions con-

sidered in Section 5.6. However, in some cases, multi-slice capabilities might still be

desirable, like for example allowing a device to be connected to two different slices at

the same time for work and personal use correspondingly. Perhaps the most important

challenge when trying to introduce such multi-slice capabilities is related to the need to

provide guarantees regarding the conflict-free operation of slices. For example, deal-

ing with mobility and power management in such settings is not straightforward, as the

roles and the responsibilities of the different slices are not clear. Introducing a mech-

anism to resolve such conflicts and regulate the operation of multi-slice environments

is an interesting topic for future research.

7.2.3 Multi-Tenancy in a Neutral Host Environment

Spectrum manager – While the focus of this work was on the dynamic pricing mech-

anism provided by the spectrum manager of Iris, designing this entity in its entirety

presents a number of additional challenges. First of all, the decisions regarding the ac-

quisition and release of shared spectrum are not always obvious. Different cells in the

indoor space might present different characteristics regarding their traffic loads. There-

128 Chapter 7. Conclusions and Future Work

fore, deciding on the proper amount of spectrum to obtain from a public repository is

not trivial and needs to take into consideration the demands of all the small-cells of the

deployment. Properly monitoring the small-cells and accurately forecasting their traf-

fic patterns could help on making such decisions. It should be noted that this problem

can become even more challenging when considering cases where the shared spectrum

is accessible via a market (e.g. managed by the public repository) and demand dictates

the cost of a block of spectrum. This dynamism needs to also be factored into any

system that relies on such spectrum.

Another more technical challenge is related to the assignment of the shared spectrum

to the small-cells. Depending on the frequency bands that are available, there might

exist different constraints regarding the transmission power that a small-cell can use.

This could have a direct effect in the coverage of the small-cells (and correspondingly

their spectral efficiency). The spectrum manager should take into consideration such

constraints when assigning the spectrum, as they could have a significant impact to the

overall network performance.

Strategic tenants – The evaluation of this work assumes that tenants participating in

the allocation mechanism provided by Iris do not act as price makers (e.g. strategically

deciding not to buy resources in some epoch with the goal of reducing future prices)

and instead their behavior is dictated by deterministic dis-utility functions. However,

in scenarios where the tenants develop strategic behavior, we no longer have time-

invariant transition rates from the point of view of any entity participating in the system

(neutral-host or tenant), which can make the problem of solving the MDP harder. In

order to improve the neutral-host’s efficiency, learning rate and adjustability to the

ever-changing network dynamics, we could view the dynamic pricing problem in the

context of a multi-agent reinforcement learning framework like [86]. In this, both

the neutral-host and the tenants could have their own strategic goals regarding the

utilization of the radio resources and the adjustment of the price and could be using a

semi-centralized learning process to reach their goal. Optimizing the dynamic pricing

mechanism of Iris for such cases is left as future work.

Multi-RAT settings – The main focus of Iris was in enabling multi-tenancy in indoor

small-cell environments with shared spectrum. The practicality of the system could

be further enhanced by also considering unlicensed spectrum in the context of both

3GPP-based radio access technologies (e.g. LTE-U, MulteFire), but also technolo-

gies like WiFi, as this could greatly increase the capacity of the network. However, the

7.2. Limitations and Future Work 129

opportunistic nature of the spectrum introduces additional constraints in terms of its al-

location to the tenants, since its availability can change at an even finer time granularity

compared to the scenario of the shared spectrum (e.g. every few ms). Investigating the

applicability of the proposed dynamic pricing mechanism in such cases and identifying

ways to improve its performance is another interesting topic for future work.

Appendix A

Work and Publications

A.1 Work related to FlexRAN

The FlexRAN SD-RAN platform that was presented in Chapter 4 was reported in the

following publication:

1. Xenofon Foukas, Navid Nikaein, Mohamed M. Kassem, Mahesh K. Marina,
and Kimon Kontovasilis. “FlexRAN: A Flexible and Programmable Platform

for Software-Defined Radio Access Networks.” In Proceedings of the 12th Inter-

national on Conference on emerging Networking Experiments and Technologies

(CoNEXT), ACM, 2016.

A demo of the FlexRAN platform was also presented in a number of venues:

1. ACM MobiCom 2017

2. IEEE 5G Berlin Summit (held in conjunction with IEEE CSCN 2016)

3. All Things Cellular 2016 (held in conjunction with ACM MobiCom 2016)

The FlexRAN platform is publicly available as open source software. More infor-

mation about the platform, the FlexRAN protocol specifications and demonstration in-

formation (video and live demos) can be found at:

• http://networks.inf.ed.ac.uk/flexran/

131

132 Appendix A. Work and Publications

A.2 Work related to Orion

The Orion RAN slicing system that was presented in Chapter 5 was reported in the

following publication:

1. Xenofon Foukas, Mahesh K. Marina, and Kimon Kontovasilis. “Orion:

RAN Slicing for a Flexible and Cost-Effective Multi-Service Mobile Network

Architecture.” In In Proceedings of the 23rd Annual International Conference

on Mobile Computing and Networking (MobiCom), ACM, 2017.

A demo of Orion was also presented in a number of venues:

1. ACM MobiCom 2017 (Best demo award)

2. BT/Lime Microsystems Hackathon (Finalist project)

3. IEEE 5G Thessaloniki Summit 2017

4. Cambridge Wireless “The Time is Ripe for Innovations” event on 5G enabling

technologies (Nov 2017)

A.3 Other works

The main motivation and background of this thesis was also reported as part of the

following publications:

1. Xenofon Foukas, Georgios Patounas, Ahmed Elmokashfi, and Mahesh K.
Marina. “Network Slicing in 5G: Survey and Challenges.” IEEE Communica-

tions Magazine 55, no. 5 (2017).

2. Xenofon Foukas, Mahesh K. Marina, and Kimon Kontovasilis. “Software

Defined Networking Concepts.” Software Defined Mobile Networks (SDMN):

Beyond LTE Network Architecture (2015).

Appendix B

FlexRAN Protocol Specification

This appendix lists the FlexRAN protocol specification.

B.1 FlexRAN header

All messages begin with a FlexRAN header:

flex_header {

uint8_t version; /* The protocol version used */

uint16_t type; /* The type of the message */

uint32_t xid; /* Transaction id to pair req and reply */

};

enum flex_type {

/* Discovery and maintenance messages */

FLPT_HELLO ,

FLPT_ECHO_REQUEST ,

FLPT_ECHO_REPLY ,

/* Error reporting messages */

FLTP_ERROR ,

/* Time indication messages*/

FLPT_SF_TRIGGER ,

/* eNB configuration messages */

FLPT_GET_ENB_CONFIG_REQUEST ,

FLPT_GET_ENB_CONFIG_REPLY ,

FLPT_GET_UE_CONFIG_REQUEST ,

FLPT_GET_UE_CONFIG_REPLY ,

FLPT_GET_LC_CONFIG_REQUEST ,

FLPT_GET_LC_CONFIG_REPLY ,

FLPT_SET_CELL_CONFIG ,

133

134 Appendix B. FlexRAN Protocol Specification

FLPT_SET_UE_CONFIG ,

/* Statistics and measurement messages */

FLPT_STATS_REQUEST ,

FLPT_STATS_REPLY ,

/* Controller command messages */

FLPT_DL_MAC_CONFIG ,

FLPT_UL_MAC_CONFIG ,

/* Asynchronous messages */

FLPT_UL_SR_INFO ,

FLPT_DL_RACH_INFO ,

FLPT_UE_STATE_CHANGE ,

/* Control delegation messages */

FLPT_CONTROL_LOAD_REQUEST ,

FLPT_CONTROL_LOAD_REPLY ,

FLPT_DELEGATE_CONTROL ,

FLPT_RECONFIGURE_AGENT

};

B.2 Common Structures

Cell configuration related structures and enums

enum flex_hopping_mode {

FLHM_INTER = 0,

FLHM_INTERINTRA ,

};

enum flex_phich_resource {

FLPR_ONE_SIXTH = 0,

FLPR_HALF ,

FLPR_ONE ,

FLPR_TWO ,

};

enum flex_phich_duration {

FLPD_NORMAL = 0,

FLPD_EXTENDED ,

};

struct flex_si_config {

uint16_t sfn; /* Frame number to apply the SI config */

B.2. Common Structures 135

uint16_t sib1_length; /* The length of SIB1 in bytes */

uint8_t si_window_length; /* SI Scheduling window in SF */

uint8_t nrSI; /* The number of SI messages */

struct prp_si_message si_message[nrSI]; /* List of SI messages

to send. The index identifies the type of message: 0 - SIB1 ,

1..31 - Six, 32..63 - PCCH */

};

struct flex_si_message {

uint16_t periodicity; /* Periodicity of SI msg in frames */

uint16_t length; /* The length of the SI message in bytes */

};

enum flex_ul_cyclic_prefix_length {

FLUCPL_NORMAL = 0,

FLUCPL_EXTENDED ,

};

enum flex_dl_cyclic_prefix_length {

FLDCPL_NORMAL = 0,

FLDCPL_EXTENDED ,

};

enum flex_duplex_mode {

FLDM_TDD = 0,

FLDM_FDD ,

};

enum flex_qam {

FLEQ_MOD_16QAM = 0,

FLEQ_MOD_64QAM ,

};

This structure contains all information regarding the current configuration of a cell

struct flex_cell_config {

uint32_t phy_cell_id; /* The PCI of this cell */

uint32_t cell_id; /* The PLMN cell id of this cell */

uint8_t pusch_hopping_offset; /*PUSCH resources in RBs for

hopping */

uint16_t hopping_mode; /* One of the FLHM_* */

uint8_t n_sb; /* The number of subbands */

uint16_t phich_resource; /* The number of resource element

136 Appendix B. FlexRAN Protocol Specification

groups used for PHICH. One of FLPR_* */

uint8_t phich_duration; /* One of the FLPD_* */

uint8_t init_nr_PDCCH_OFDM_sym; /*See TS 36.211, section 6.9*/

struct prp_si_config si_config; /* The SI configuration */

uint8_t ul_bandwidth; /* The UL transmission bandwidth RBs */

uint8_t dl_bandwidth; /* The DL transmission bandwidth RBs */

uint16_t ul_cyclic_prefix_length; /* One of the FLUCPL_* */

unit16_t dl_cyclic_prefix_length; /* One of the FLDCPL_* */

uint8_t antenna_ports_count; /* Number of cell antenna ports */

uint8_t duplex_mode; /* One of the FLDM_* */

uint8_t subframe_assignment; /*TDD DL/UL subframe assignment*/

uint8_t special_subframe_patterns; /* TDD only. See TS 36.211,

table 4.2.1 */

uint8_t mbsfn_set; /* Boolean value */

uint8_t mbsfn_subframe_config_rfperiod [5]; /* The MBSFN radio

frame period. Optional */

uint8_t mbsfn_subframe_config_rfoffset [5]; /* The radio frame

offset. Optional */

uint8_t mbsfn_subframe_config_sfalloc [5]; /*Bitmap indicating

the MBSFN subframes. Optional */

uint8_t prach_config_index; /* See TS 36.211, section 5.7.1 */

uint8_t prach_freq_offset; /* See TS 36.211, section 5.7.1 */

uint8_t ra_response_window_size; /* Duration of RA response

window in SF */

uint8_t mac_contention_resolution_timer; /*Timer used for RA*/

uint8_t max_HARQ_Msg3Tx; /* See TS 36.321 */

uint8_t n1PUCCH_AN; /* See TS 36.213, section 10.1 */

uint8_t deltaPUCCH_shift; /* See TS 36.211, section 5.4 */

uint nRB_cqi; /* See TS 36.211, section 5.4 */

uint8_t srs_subframe_config; /* See TS 36.211, table

5.5.3.3-1,2 */

uint8_t srs_bw_config; /* See TS 36.211, section 5.5.3.2 */

uint8_t srs_mac_up_pts; /* Boolean value. See TS 36.211,

section 5.5.3.2. TDD only */

uint8_t enable_64QAM; /* One of the FLEQ_* */

uint8_t carrier_index; /* Carrier component index */

};

UE configuration related structures and enums

struct flex_drx_config {

/* See TS 36.321 */

B.2. Common Structures 137

uint8_t on_duration_timer; /* Timer in SF */

uint16_t drx_inactivity_timer; /* Timer in SF */

uint8_t drx_retransmission_timer; /* Timer in SF */

uint16_t long_DRX_cycle; /*Long DRX cycle in SF */

uint16_t long_DRX_cycle_start_offset; /*Long DRX cycle offset*/

uint16_t short_DRX_cycle; /* Short DRX cycle in SF */

uint8_t drx_short_cycle_timer; /* Timer in subframes */

};

enum flex_meas_gap_config_pattern {

FLMGCP_GP1 = 0,

FLMGCP_GP2 ,

FLMGCP_OFF ,

};

struct flex_sps_config {

uint16_t semi_persistent_sched_interval_UL; /* SPS UL

scheduling interval in SF */

uint16_t semi_persistent_sched_interval_DL; /* SPS DL

scheduling interval in SF */

uint8_t num_of_conf_SPS_proc; /* Number of SPS HARQ processes ,

see TS 36.321 */

uint8_t n1_PUCCH_AN_persistent_list_size; /* The size of the

list. Ignored when prp_sps_config is used */

uint16_t n1_PUCCH_AN_element [4]; /* See TS 36.213. Ignored when

prp_sps_config is used as part of PRPT_SET_UE_CONFIG */

uint8_t implicit_release_after; /* number of empty

transmissions before release of SPS */

};

enum flex_setup_release_action {

FLSRA_SETUP = 0,

FLSRA_RELEASE ,

};

struct flex_sr_config {

uint8_t sr_action; /* Indicates if SR config should be changed

or released. One of the FLSRA_* values */

uint8_t sched_interval; /* SR scheduling interval in SF */

uint8_t dsr_trans_max; /* See TS 36.213 */

};

138 Appendix B. FlexRAN Protocol Specification

struct flex_cqi_config {

uint8_t cqi_action; /* Indicates if CQI config should be

changed or released. One of the FLSRA_* values */

uint8_t cqi_sched_interval; /* CQI scheduling interval in SF */

uint8_t ri_sched_interval; /* RI scheduling interval in SF */

};

struct flex_ue_capabilities {

uint8_t half_duplex; /* Only half -duplex support. FDD operation

. Boolean value */

uint8_t intra_SF_hopping; /* Support of intra -subframe hopping.

Boolean value */

uint8_t type2_sb_1; /* UE support for type 2 hopping with n_sb

>1 */

uint16_t ue_category; /* The UE category */

uint8_t res_alloc_type1; /* UE support for resource allocation

type 1 */

};

enum flex_ue_transmission_antenna {

FLUTA_NONE = 0,

FLUTA_OPEN_LOOP ,

FLUTA_CLOSED_LOOP ,

};

enum flex_aperiodic_cqi_report_mode {

FLACRM_RM12 = 0,

FLACRM_RM20 ,

FLACRM_RM22 ,

FLACRM_RM30 ,

FLACRM_RM31 ,

FLACRM_NONE ,

};

enum flex_tdd_ack_nack_feedback_mode {

FLTANFM_BUNDLING = 0,

FLTANFM_MULTIPLEXING ,

};

struct flex_scell_config {

uint8_t carrier_index; /*Identifier of the carrier component*/

uint8_t scell_index; /* Index of this SCell (RRC SCellIndex) */

B.2. Common Structures 139

uint8_t use_ccs; /* Indicates if cross -carrier scheduling is

used by this SCell. Boolean value */

uint8_t sched_cell_index; /* Index of the cell responsible for

scheduling this SCell */

uint8_t pdsch_start; /* Starting OFDM symbol of PDSCH data

region for this SCell */

};

struct flex_ue_config {

uint16_t rnti; /* The RNTI of the UE */

uint8_t drx_config_present; /* Boolean. Indicates if the drx

structure is valid */

struct flex_drx_config drx_config; /* The DRX configuration */

uint16_t time_alignment_timer; /* Timer in SF. Controls the

synchronization status of the UE, not the timing advance

procedure. See TS 36.321 */

uint8_t meas_gap_config_pattern; /* Measurement gap

configuration. One of FLMGCP_*. See TS 36.133 */

uint8_t meas_gap_config_sf_offset; /* Measurement gap offset ,

if applicable */

uint8_t sps_config_present; /* Boolean value. Indicates if the

SPS configuration is valid */

struct flex_sps_config sps_config; /* The SPS configuration */

uint8_t sr_config_present; /* Boolean value. Indicates if the

SR configuration is valid */

struct flex_sr_config sr_config; /* The SR configuration */

uint8_t cqi_config_present; /* Boolean value. Indicates if the

CQI configuration is valid*/

struct flex_cqi_config; /* The CQI configuration */

uint8_t transmission_mode; /* The UE transmission mode. See TS

36.213 */

uint64_t ue_aggregated_max_bitrate_UL; /* Aggregated bit -rate

of non-gbr bearer per UE. See TS 36.413 */

uint64_t ue_aggregated_max_bitrate_DL; /* Aggregated bit -rate

of non-gbr bearer per UE. See TS 36.413 */

struct flex_ue_capabilities capabilities; /* The UE

capabilities */

uint8_t ue_transmission_antenna; /* One of FLUTA_* values */

uint8_t tti_bundling; /* Boolean value. See TS 36.321 */

uint8_t max_HARQ_Tx; /* The max HARQ retransmission for UL. See

TS 36.321 */

uint8_t beta_offset_ACK_index; /* See TS 36.213 */

140 Appendix B. FlexRAN Protocol Specification

uint8_t beta_offset_RI_index; /* See TS 36.213 */

uint8_t beta_offset_CQI_index; /* See TS 36.213 */

uint8_t ack_nack_simultaneous_trans; /* Boolean. See TS 36.213,

Section 8.2 */

uint8_t simultaneous_ack_nack_cqi; /* Boolean. See TS36.213,

Section 10.1 */

uint8_t aperiodic_cqi_rep_mode; /*One of the FLACRM_* values*/

uint8_t tdd_ack_nack_feedback; /*One of the FLTANFM_* values*/

uint8_t ack_nack_repetition_factor; /* See TS36.213, section

10.1 */

uint8_t extended_bsr_size; /* Boolean. Extended BSR size */

uint8_t ca_support; /* Boolean. Support for CA */

uint8_t cross_carrier_sched_support; /* Boolean */

uint8_t pcell_carrier_index; /* Index of primary cell */

uint8_t nr_scells; /* Number of secondary cells */

struct flex_scell_config scell_config[nr_scells]; /* Secondary

cells configuration */

uint8_t scell_deactivation_timer; /* Deactivation timer for

secondary cell */

};

Logical channels configuration related structures and enums

enum flex_lc_direction {

FLLCD_UL = 0,

FLLCD_DL ,

FLLCD_BOTH ,

};

enum flex_qos_bearer_type {

FLQBT_NON_GBR = 0,

FLQBT_GBR ,

};

struct flex_lc_config_element {

uint8_t lcid; /* The logical channel id */

uint8_t lcg; /* The LC group (0..3) the LC is mapped to. 4

means no LCG association */

uint8_t direction; /* The LC direction. One of the FLLCD_*

values */

uint8_t qos_bearer_type; /* GBR or NGBR bearer. One of the

FLQBT_* values */

B.2. Common Structures 141

uint8_t qci; /* The QCI defined in TS 23.203, coded as defined

in TS 36.413 (one less than the actual QCI value) */

uint64_t e_RAB_max_bitrate_UL; /* In bps. GBR only */

uint64_t e_RAB_max_bitrate_DL; /* In bps. GBR only */

uint64_t e_RAB_guaranteed_bitrate_UL; /* In bps. GBR only */

uint64_t e_RAB_guaranteed_bitrate_DL; /* In bps. GBR only */

};

struct flex_lc_ue_config {

uint16_t rnti; /* The RNTI identifying the UE */

uint8_t nr_lc; /* The number of logical channels */

struct flex_lc_config[rn_lc]; /* The list of LC configurations

for the UE */

};

Statistics related structures and enums

Types of statistics related enums

/* Types of statistics requested by the controller */

enum flex_stats_type {

FLST_COMPLETE_STATS = 0,

FLST_CELL_STATS ,

FLST_UE_STATS ,

};

/* Report frequency for the requested statistics */

enum flex_stats_report_freq {

FLSRF_ONCE = 0,

FLSRF_PERIODICAL ,

FLSRF_CONTINUOUS , /* Report any occurring change of stats */

FLSRF_OFF , /* Stops periodic reports for defined types */

};

/* Flags for cell statistics */

enum flex_cell_stats_type {

FLCST_NOISE_INTERFERENCE = 1 << 0, /* Noise and interference */

};

/* Flags for UE-related statistics */

enum flex_ue_stats_type {

FLUST_BSR = 1 << 0, /* Buffer status report */

FLUST_PRH = 1 << 1, /* Power headroom */

142 Appendix B. FlexRAN Protocol Specification

FLUST_RLC_BS = 1 << 2, /* Buffer status of RLC LCs */

FLUST_MAC_CE_BS = 1 << 3, /* Buffer status for MAC CE */

FLUST_DL_CQI = 1 << 4, /* DL CQI report */

FLUST_PBS = 1 << 5, /* Paging buffer status. Valid only when

rnti = p-rnti */

FLUST_UL_CQI = 1 << 6, /* UL CQI report */

};

UE related statistics

/* RLC buffer status for a specific logical channel of a UE */

struct flex_rlc_bsr {

uint8_t lc_id; /* The id of the LC */

uint32_t tx_queue_size; /* Transmission queue size (bytes) */

uint16_t tx_queue_hol_delay; /*Tx Head of line delay in ms*/

uint32_t retransmission_queue_size; /* The size of the re-tx

queue in bytes */

uint16_t retransmission_queue_hol_delay; /* Head of line delay

of re-tx in ms */

uint16_t status_pdu_size; /* The current size of the pending

STATUS message in bytes */

};

/* Flags for MAC CEs */

enum flex_ce_type {

FLPCET_TA = 1 << 0, /* Timing Advance */

FLPCET_DRX = 1 << 1, /* DRX control */

FLPCET_CR = 1 << 2, /* Contention Resolution */

FLPCET_CA = 1 << 3, /* CA activation/deactivation */

};

/* Type of DL CSI report */

enum flex_csi_type {

FLCSIT_P10 = 0,

FLCSIT_P11 ,

FLCSIT_P20 ,

FLCSIT_P21 ,

FLCSIT_A12 ,

FLCSIT_A22 ,

FLCSIT_A20 ,

FLCSIT_A30 ,

FLCSIT_A31 ,

};

B.2. Common Structures 143

/* CSI type P10 */

struct flex_csi_p10 {

uint8_t wb_cqi; /* The reported wideband CQI value */

};

/* CSI type P11 */

struct flex_csi_p11 {

uint8_t wb_cqi[2]; /* Wideband CQI value per codeword. */

uint8_t wb_pmi; /* The reported matrix index. */

};

/* CSI type P20 */

struct flex_csi_p20 {

uint8_t wb_cqi; /*The wideband CQI value per codeword*/

uint8_t sb_cqi; /* The CQI in the current subband */

uint8_t bandwidth_part_index; /* The bandwidth part for which

CQI is reported */

uint8_t sb_index; /* The preferred subband in the current

bandwidth part. */

};

/* CSI type P21 */

struct flex_csi_p21 {

uint8_t wb_cqi[2]; /* Wideband CQI value per codeword. */

uint8_t wb_pmi; /*Wideband precoding matrix index.*/

uint8_t sb_cqi[2]; /* CQI for up to two codewords for the

preferred subband */

uint8_t bandwidth_part_index; /* The bandwidth part for which

CQI is reported */

uint8_t sb_index; /* The preferred subband in the current

bandwidth part. */

};

/* CSI type A12 */

struct flex_csi_a12 {

uint8_t wb_cqi[2]; /* Wideband CQI value per codeword. */

uint8_t sb_pmi[13]; /* The pmi conditioned on the current

subband for aperiodic higher -layer selected subbands. */

};

144 Appendix B. FlexRAN Protocol Specification

/* CSI type A22 */

struct flex_csi_a22 {

uint8_t wb_cqi[2]; /* Wideband CQI value per codeword. */

uint8_t sb_cqi[2]; /* The CQI for up to two codewords for the

preferred subband */

uint8_t wb_pmi; /* Wideband precoding matrix index. */

uint8_t sb_pmi; /* The PMI conditioned on current subband */

uint8_t sb_list[6]; /*Preferred -M subbands reported by the UE*/

};

/* CSI type A20 */

struct flex_csi_a20 {

uint8_t wb_cqi; /* Wideband CQI value per codeword */

uint8_t sb_cqi; /* The CQI in the current subband */

uint8_t sb_list[6]; /*Preferred -M subbands reported by the UE*/

};

/* CSI type A30 */

struct flex_csi_a30 {

uint8_t wb_cqi; /* Wideband CQI value per codeword */

uint8_t sb_cqi[13]; /*CQI conditioned on preferred -M subbands*/

};

/* CSI type A31 */

struct flex_csi_a31 {

uint8_t wb_cqi[2]; /* Wideband CQI value per codeword. */

uint8_t sb_cqi [13][2]; /* The CQI for up to two codewords

conditioned on the preferred -M subbands. */

uint8_t wb_pmi; /* Wideband precoding matrix index. */

};

/* The CSI report of the UE for a specific servCellIndex */

struct flex_dl_csi {

uint8_t serv_cell_index; /*Definition according to TS 36.331*/

uint8_t ri; /* The last received rank indicator */

uint16_t type; /* Type of CSI report. A FLCSIT_* value */

uint8_t report[0]; /* CSI report based on the type */

};

/* The full DL CQI report for all CC of a UE */

struct flex_dl_cqi_report {

uint16_t sfn_sn; /* The SFN/SF in which the CQI was received */

B.2. Common Structures 145

uint16_t nr_reports; /* Number of reports for the given UE */

struct flex_dl_csi csi_report[nr_reports]; /* UE CSI report */

};

/* Paging message info */

struct flex_paging_info {

uint8_t paging_index; /* An index used to identify the

scheduled message. Must be used for scheduling decision */

uint16_t paging_message_size; /* The size of paging message */

uint8_t paging_subframe; /* The subframe in which the message

needs to be scheduled */

uint8_t carrier_index; /* The carrier where the message should

be scheduled */

};

/* Report for the paging buffer status */

struct flex_paging_buffer_report {

uint8_t nr_paging_info; /* The number of pending paging

messages. Valid only if RNTI is a P-RNTI */

struct flex_paging_info paging_list[nr_paging_info]; /* A list

of pending paging messages. Valid only if RNTI is a P-RNTI */

};

/* The type of UL CQI */

enum flex_ul_cqi_type {

FLUCT_SRS = 0,

FLUCT_PUSCH ,

FLUCT_PUCCH_1 ,

FLUCT_PUCCH_2 ,

FLUCT_PRACH ,

};

/* UL CQI report for a specific UE for a given report type */

struct flex_ul_cqi {

uint8_t type; /* Type of report. One of the FLUCT_* values */

uint16_t sinr[100]; /* The SINR measurements in dB based on the

resource given in type. For PUCCH only first index used. For

PRACH first 6 indices used. For PUSCH and SRS each index is

1 RB. */

uint8_t serv_cell_index; /* Definition in TS 36.331 */

};

146 Appendix B. FlexRAN Protocol Specification

/* Full UL CQI report for a specific UE */

struct flex_ul_cqi_report {

uint16_t sfn_sn; /* The SFN/SF in which the CQI information was

received */

uint16_t nr_reports; /* Number of reports for the given UE */

struct flex_ul_cqi cqi_meas_list[nr_reports]; /* A list of

reports for the given UE */

};

/* Statistics report for a specific UE */

struct flex_ue_stats_report {

uint16_t rnti; /* The RNTI of the UE. Could also be a P-RNTI (

all other flags disabled) */

uint32_t flags; /* A bitmap of FLUST_* values for the elements

of this report */

uint8_t bsr[4]; /* BSR for the 4 LCGs (values 0..63). Value 64

no update of buffer status. */

uint8_t phr; /* Power headroom. Valid only if flag is set */

uint16_t nr_lc; /* Number of LCs for buffer status report.

Valid only if flag is set */

struct flex_rlc_bsr rlc_reports[nr_lc]; /* Buffer status for

each LC in the RLC. Valid only if flag is set */

uint8_t pedning_mac_ces; /* A bitmap of FLCET_* flags showing

the pending CEs for MAC transmission. Valid only if proper

flag is set */

struct flex_dl_cqi_report dl_cqi_report; /* DL CQI report.

Valid only if proper flag is set */

struct flex_paging_buffer_report pbr; /* Status of paging

buffer report. Valid only if rnti = p-rnti and flag is set */

struct flex_ul_cqi_report ul_cqi_report; /* UL CQI report.

Valid if proper flag is set */

};

Cell related statistics

/* The UL noise and interference report for a UE */

struct flex_noise_interference_report {

uint16_t sfn_sf; /* The SFN and SF in which the info was

received. Bit 0-3 SF and 4-13 SFN */

uint16_t rip; /* Received interference in dBm. See TS 36.214 */

uint16_t tnp; /* Thermal noise power in dBm. See TS 36.214 */

};

B.2. Common Structures 147

/* The full statistics report for a specific cell */

struct flex_cell_stats_report {

uint16_t carrier_index; /* The index of the

CC */

uint32_t flags; /* A bitmap

of FLCST_* values for the elements of this report */

struct flex_noise_interference_report noise_inter_report;

/* A report on the noise and interference of the

cell. Optional , only if flag is set */

};

Controller commands related structures and enums

DL MAC config structures and enums

enum flex_dci_format {

FLDCIF_1 = 0,

FLDCIF_1A ,

FLDCIF_1B ,

FLDCIF_1C ,

FLDCIF_1D ,

FLDCIF_2 ,

FLDCIF_2A ,

FLDCIF_2B ,

FLDCIF_3 ,

FLDCIF_3A

};

enum flex_vrb_format {

FLVRBF_LOCALIZED = 0,

FLVRBF_DISTRIBUTED ,

};

enum flex_ngap_val {

FLNGV_1 = 0,

FLNGV_2 ,

};

/*UE DCI info for the DL */

struct flex_dl_dci {

uint16_t rnti; /* The RNTI identifying the UE */

uint8_t res_alloc; /* Type of resource allocation */

uint32_t rb_bitmap; /* Bitmap for RBs allocation to the UE */

148 Appendix B. FlexRAN Protocol Specification

uint8_t rb_shift; /* See TS 36.213 section 7.1.6.2 */

uint8_t nr_of_tbs; /* The number of transport blocks */

uint16_t tbs_size[2]; /* The size of TBs in size */

uint8_t mcs[2]; /*MCS of each TB. See TS 36.213 section 7.1.7*/

uint8_t ndi[2]; /* New data indicator in each TB. Boolean */

uint8_t rv[2]; /* Redundancy version in each TB */

uint8_t cce_index; /* CCE index used to send the DCI */

uint8_t aggr_level; /* The aggregation level */

uint8_t precoding_info; /* 2 antenna ports:0..6, 4 antenna

ports:0..50 */

uint8_t format; /* DCI format. One of the FLDCIF_* values */

int8_t tpc; /* See TS 36.213, sec 5.1.1.1 */

uint8_t harq_process; /* The number of the HARQ process */

uint8_t dai; /* Only for TDD */

uint8_t vrb_format; /*TS 36.213, sec 7.1.6.3. A FLVRBF_* value*/

uint8_t tb_swap; /* Boolean value. TB to codeword swap flag.

See TS 36.21, section 5.3.3.1.5 */

uint8_t sps_release; /* SPS release. Boolean value */

uint8_t pdcch_order; /* Boolean value. Indicates if PDCCH is

for PDCCH order */

uint8_t preamble_index; /* Preamble index. Only valid if

pdcch_order=1 */

uint8_t prach_mask_index; /* PRACH mask index. Valid if

pdcch_order = 1 */

uint8_t n_gap; /* The value of N_GAP. One of FLNGV_* values */

uint8_t tbs_idx; /* The TBS index for Format 1A */

uint8_t dl_power_offset; /*Format 1D. See TS 36.213, sec 7.1.5*/

int8_t pdcch_power_offset; /* DL PDCCH power boosting in dB */

uint8_t cif_present; /* Boolean value. CIF field indication */

uint8_t cif; /* CIF field for cross carrier scheduling */

};

/* Parameters for RLC PDU creation */

struct flex_rlc_pdu {

uint8_t logical_channel_id; /* The logical channel ID */

uint16_t size; /* Maximum length of the RLC PDU in bytes */

};

/* UE DL conf information */

struct flex_dl_data {

uint16_t rnti; /* The RNTI of the UE */

struct flex_dl_dci dl_dci; /*DL DCI configured for the UE. Could

B.2. Common Structures 149

also indicate PDCCH order or SPS release of format 3/3A*/

uint8_t ce_bitmap[2]; /* The CEs scheduled for transmission in

this TB. A bitmap composed of FLPCET_* flags */

uint8_t nr_rlc_pdu; /* Number of RLC PDUs to be built */

struct flex_rlc_pdu rlc_pdu_list[nr_lrc_pdu][2]; /* A list of

parameters for the creation of RLC PDUs per TB */

uint8_t serv_cell_index; /*Definition according to TS 36.331*/

uint8_t act_deact_ce; /* Hex content of MAC CE for Activation/

Deactivation in CA */

};

/* RAR configuration */

struct flex_dl_rar {

uint16_t rnti; /* The C-RNTI identifying the UE */

uint32_t grant; /* 20-bit UL grant. See TS 36.213, sec 6.2 */

struct flex_dl_dci rar_dci; /* DL DCI configured for the RAR */

uint8_t carrier_index; /* The carrier index for the RAR */

};

enum flex_broadcast_type {

FLBT_BCCH = 0,

FLBT_PCCH ,

};

/* paging/broadcast configuration */

struct flex_dl_broadcast {

uint8_t type; /* Broadcast message type. A FLBT_* value */

uint8_t index; /* Broadcast message index. 0 - SIB1 , 1..31 -

Six, 32..63 - PCCH (obtained from flex_paging_info) */

struct flex_dl_dci broad_dci; /*DL DCI for BCCH/PCCH*/

uint8_t carrier_index; /* Index of the carrier for broadcast */

};

struct flex_pdcch_ofdm_sym_count {

uint8_t carrier_index; /* Unique carrier identifier */

uint8_t num_pdcch_ofdm_symbols; /*PDCCH size in OFDM symbols*/

};

UL MAC config structures and enums

struct flex_ul_dci {

uint16_t rnti; /* The RNTI identifying the UE */

uint8_t rb_start; /*The first RB allocated to UE. See TS 36.213,

150 Appendix B. FlexRAN Protocol Specification

sec 8.1*/

uint8_t rb_len; /*RBs allocated to UE. See TS 36.213, sec 8.1*/

uint16_t tb_size; /* Size of the transport block in bytes */

uint8_t mcs; /* The MCS of each TB */

uint8_t ndi; /* New data indicator field (0-1) */

uint8_t cce_index; /* CCE index used to send the DCI */

uint8_t aggr_level; /* The aggregation level */

uint8_t ue_tx_antenna_selection; /* See TS 36.212, section

5.3.3.2. Values 0,1,3. 3 means off */

uint8_t hopping; /* Hopping enabled flag. Boolean */

uint8_t n_2_dmrs; /* Cyclic shift (0..7) */

int8_t tpc; /*Tx power control command. TS 36.213, sec 5.1.1.1*/

uint8_t cqi_request; /* Aperiodic CQI req flag. Boolean */

uint8_t ul_index; /* UL index. TDD only */

uint8_t dai; /* DL assignment index. TDD only */

uint8_t freq_hopping; /* Frequency hopping bits. See TS 36.213,

sec 8.4 */

int8_t pdcch_power_offset; /* PDCCH power boosting in dB */

uint8_t cif_present; /* Boolean value. CIF field indication */

uint8_t cif; /* CIF field for cross carrier scheduling */

uint8_t serv_cell_index; /*Definition according to TS 36.331*/

};

struct flex_ul_phich {

uint16_t rnti; /* The RNTI identifying the UE */

uint8_t phich; /*ACK(0) or NACK(1) passed to UE in the PHICH*/

uint8_t serv_cell_index; /*Definition according to TS 36.331*/

};

Asynchronous messages related structures and enums

RACH reception structures and enums

struct flex_rach {

uint16_t rnti; /*Allocated t-crnti based on the RACH preamble*/

uint16_t estimated_size; /* The estimated minimum size of the

UL message in bits , based on the RACH preamble */

uint8_t carrier_index; /*Carrier that RACH req was received*/

};

UE state change structures and enums

enum flex_ue_state_change_type {

B.2. Common Structures 151

FLUESC_UPDATED = 0,

FLUESC_ACTIVATED ,

FLUESC_DEACTIVATED ,

FLUESC_MOVED ,

};

Time indication related structures and enums

enum flex_harq_status {

FLHS_ACK = 0,

FLHS_NACK ,

FLHS_DTX ,

};

struct flex_dl_info {

uint16_t rnti; /* The rnti identifying the UE */

uint8_t harq_process_id; /* The id of the HARQ process */

uint8_t nr_harq_status; /*Size of the HARQ status list (TBs) */

uint8_t harq_status [2]; /* HARQ status for the above process

. One of FLHS_* values */

uint8_t serv_cell_index; /* definition according to 36.331 */

};

enum flex_reception_status {

FLRS_OK = 0,

FLRS_NOT_OK ,

FLRS_NOT_VALID ,

};

struct flex_ul_info {

uint16_t rnti; /* The rnti identifying the UE */

uint16_t ul_reception [11]; /* The amount of data in bytes in

the MAC SDU received in this subframe for the given logical

channel. */

uint8_t reception_status; /* One of the FLRS_* status values */

int8_t tpc; /* Tx power control. See TS 36.213, sec 5.1.1.1 */

uint8_t serv_cell_index; /* Definition according to 36.331 */

};

152 Appendix B. FlexRAN Protocol Specification

B.3 Discovery and maintenance messages

Hello message

The hello message contains no body, i.e. it is composed only by the header of the

message with the type set to FLPT_HELLO. Future versions of the protocol might also

support a Hello message body for additional functionality.

struct flex_hello {

struct flex_header header;

};

Echo request message

The echo request message consists of the message header and a variable length data

field. This datafield could be a zero-length field in case the message is used to check

for liveness, a timestamp when used for latency or a field of various lengths when used

to measure bandwidth.

struct flex_echo_request {

struct flex_header header;

uint8_t data[0]; /* A variable -length data field */

};

Echo reply message

The echo reply message consists of the message header and the unmodified data field

that was used in the corresponding request message.

struct flex_echo_reply {

struct flex_header header;

uint8_t data[0]; /* The unmodified variable -length data field

of the req*/

};

B.4 Error reporting messages

Error message

The error message is used to notify the controller for any problems that might have

occurred to the eNB. Each error message has a type, a code and a data field. The type

B.5. eNB configuration messages 153

field describes the high-level type of the error, while the code describes the specific

error based on the type. The data is a variable-length field that is defined based on the

specific type and code of a message and contains in most cases the message that caused

the error.

struct flex_error_msg {

struct flex_header header;

uint16_t type; /* The high -level type of the error */

uint16_t code; /* The code for the specific error type */

uint8_t data[0]; /*Variable -length data based on type and code*/

};

B.5 eNB configuration messages

eNB configuration request message

The eNB configuration request message contains no body, i.e. it is composed only

of the message header with the type set to FLPT GET ENB CONFIG REQUEST. The con-

troller expects to receive a message of type FLPT GET ENB CONFIG REPLY as a reply

to this message.

UE configuration request message

The UE configuration request message contains no body, i.e. it is composed only of

the message header with the type set to FLPT GET UE CONFIG REQUEST. The controller

expects to receive a message of type FLPT GET UE CONFIG REPLY as a reply to this

message.

Logical channels configuration request message

The logical channels configuration request message contains no body, i.e. it is com-

posed only of the message header with the type set to FLPT GET LC CONFIG REQUEST.

The controller expects to receive a message of type FLPT GET LC CONFIG REPLY as a

reply to this message.

154 Appendix B. FlexRAN Protocol Specification

eNB configuration reply message

The eNB configuration reply message consists of the message header, the eNB ID and

a list of cell configurations for all the cells supported by the eNB.

struct flex_enb_config_reply {

struct flex_header header;

uint32_t eNB_id; /* The id of the eNB */

uint8_t nr_cells; /* Number of cells (carriers) */

struct flex_cell_config cell_config[nr_cells]; /* Config of

each cell. */

};

UE configuration reply message

The UE configuration reply message FLPT GET UE CONFIG REPLY consists of the mes-

sage header and a list of the UE configurations of all the UEs currently associated with

the eNB.

struct flex_ue_config_reply {

struct flex_header header;

uint16_t nr_ue; /* The number of UEs in the list */

struct flex_ue_config ue_config[nr_ue]; /* A list of UE

configurations */

};

Logical channels configuration reply message

The logical channels configuration reply message FLPT GET LC CONFIG REPLY con-

sists of the message header and a list of logical channel configurations for all the asso-

ciated UEs

struct flex_lc_config_reply {

struct flex_header header;

uint16_t nr_ue; /* The number of UEs in the list */

struct flex_lc_ue_config lc_ue_config[nr_ue]; /* A list of

logical channel configs for the connected UEs */

};

B.6. Statistics and measurement report messages 155

Cell configuration set message

The cell configuration set message FLPT SET CELL CONFIG consists of the message

header and a list of cell configurations for the eNB.

struct flex_cell_config_update {

struct flex_header header;

uint16_t nr_cells; /* The number of cells with updated

configurations */

struct flex_cell_config cell_configs[nr_cells]; /* The cell

configuration updates */

};

UE configuration set message

The UE configuration set message FLPT SET UE CONFIG consists of the message header

and a list of UE configurations for updates.

struct flex_ue_config_update {

struct flex_header header;

uint16_t nr_ue; /* The number of UEs with updated

configurations */

struct flex_ue_config ue_configs[nr_ue]; /* The UE

configuration updates */

};

B.6 Statistics and measurement report messages

Statistics request message

The statistics request message FLPT STATS REQUEST consists of the message header,

the type of statistics requested and a body based on the request type.

struct flex_stats_request {

struct flex_header header;

uint8_t type; /* One of the FLST_* values */

uint8_t body[0]; /* The body of the request. Different based

on the type. 5.6.1.1 - 5.6.1.3 structs */

};

156 Appendix B. FlexRAN Protocol Specification

Complete stats request

struct flex_complete_stats_request {

uint8_t report_frequency; /* One of the FLSRF_* values */

uint16_t sf; /* Period of reporting in SFs. Valid only in

PERIODICAL report frequency */

uint32_t cell_report_flags; /* A bitmap of FLCST_* flags */

uint32_t ue_report_flags; /* A bitmap of FLUST_* flags */

};

Cell stats request

struct flex_cell_stats_request {

uint16_t nr_cells;

uint16_t cell_list[nr_cells]; /* The IDs of the cells */

uint32_t flags;

};

UE stats request

struct flex_ue_stats_request {

uint16_t nr_ue;

uint16_t rnti_list[nr_ue]; /* The RNTIs of the UEs */

uint32_t flags;

};

Statistics reply message

The statistics reply message FLPT STATS REPLY consists of the message header, one

list of UE statistics reports and one list of cell statistics reports

struct flex_stats_reply {

struct flex_header header;

uint8_t nr_ue_stats; /* Number of UE reports */

struct flex_ue_stats_report ue_reports[nr_ue_stats]; /* A list

of the UE reports */

uint8_t nr_cell_stats; /* Number of cell reports */

struct flex_cell_stats_report cell_reports[nr_cell_stats]; /* A

list of cell reports */

};

B.7. Controller command messages 157

B.7 Controller command messages

Configure DL MAC for next TTI

The command message FLPT DL MAC CONFIG configures the state of the MAC for the

DL for a specific SFN and SF. The message consists of the message header, the SFN

and the SF in which the command is to be applied and three lists: one with config-

urations for random access responses, one with configurations for UE data and one

for broadcast and paging data. Finally, the message contains the number of OFDM

symbols used for the PDCCH channel of each carrier component.

struct flex_dl_mac_config {

struct flex_header header;

uint16_t sfn_sf; /* The SFN and SF in which the configuration

is to be applied. Bit 0-3 SF and 4-13 SFN */

uint8_t nr_ue_data; /* The number of UE data configuration

elements */

struct flex_dl_data dl_ue_data[nr_ue_data]; /* The UE data

config elements */

uint8_t nr_rar_data; /* The number of RAR configuration

elements */

struct flex_dl_rar dl_rar[nr_rar_data]; /* The RAR config

elements */

uint8_t nr_broadcast_data; /* The number of broadcast data

configuration elements */

struct flex_dl_broadcast dl_broadcast_list[nr_broadcast_data];

/* The broadcast config elements */

uint8_t nr_cc; /* The number of CCs for CA */

struct flex_pdcch_ofdm_sym_count ofdm_sym[nr_cc]; /* A list

with OFDM symbol counts for each CC */

};

Configure UL MAC for next TTI

The command message FLPT UL MAC CONFIG configures the state of the MAC for the

UL for a specific SFN and SF. The message consists of the message header, the SFN

and the SF in which the command is to be applied and two lists: one for UL UE data

configurations (DCI 0) and one for PHICH information transmissions.

struct flex_ul_mac_config {

struct flex_header header;

158 Appendix B. FlexRAN Protocol Specification

uint16_t sfn_sf; /* The SFN and SF in which the configuration

is to be applied. Bit 0-3 SF and 4-13 SFN */

uint8_t nr_ue_data; /* The number of UL UE data configuration

elements */

struct flex_ul_dci ul_dci_list[nr_ue_data]; /* The UE config

elements (DCI 0) */

uint8_t nr_phich_data; /* The number of PHICH information */

struct flex_ul_phich ul_phich_list[nr_phich_data]; /* The

PHICH config elements */

};

B.8 Asynchronous messages

These are messages sent by the agents to the controller to notify for events occurring

at the eNBs.

Scheduling request reception

The message FLPT_UL_SR_INFO provides scheduling request reception information

that will be used by the scheduler. The message consists of the message header, the

SFN and the SF in which the scheduling request was received and a list of the SRs

received during that subframe.

struct flex_ul_sr_info {

struct flex_header header;

uint16_t sfn_sf; /* The SFN and SF in which the configuration

is to be applied. Bit 0-3 SF and 4-13 SFN */

uint8_t nr_sr; /* The number of SRs received */

uint16_t sr_list[nr_sr]; /* A list of RNTIs with scheduling

requests */

};

RACH request reception

The message FLPT DL RACH INFO provides information about the RACH process to

the controller to be used in order to generate the RAR. The message consists of the

message header, the SFN and the SF in which the RACH preamble was received and a

list of the detected RACHs.

B.9. Control delegation messages 159

struct flex_dl_rach_info {

struct flex_header header;

uint16_t sfn_sf; /* The SFN and SF in which the configuration

is to be applied. Bit 0-3 SF and 4-13 SFN */

uint8_t nr_rach; /* The number of RACHs received */

struct flex_rach rach_list[nr_rach]; /* The list of detected

RACHs */

};

UE state change

The UE state message FLPT UE STATE CHANGE provides information about the state

changes of the UE. The message consists of the message header, the type of state

change and a body of type flex ue config containing the new state of the UE. This

config does not provide a delta update (all fields of the config should be checked for

changes). In the case of a message of type FLUESC DEACTIVATED, the config is empty.

struct flex_ue_state_change {

struct flex_header header;

uint8_t type; /* The type of the state change. One of the

FLUESC_* values */

struct flex_ue_config config; /* The body of the message

based on type. */

};

B.9 Control delegation messages

These messages are used to allow the controller to assume or delegate control of one or

more cells to the eNB agent as well as to inform the controller of the capability of the

agent to deal with the commands issued by the controller within the designated time

limits.

Control load request

The control load request message contains no body. It is a message that consists only

of a header with the type set to FLPT CONTROL LOAD REQUEST. The controller expects

a message of type FLPT CONTROL LOAD REPLY from the agent.

160 Appendix B. FlexRAN Protocol Specification

Control load reply

The control load reply message FLPT CONTROL LOAD REPLY consists of a header and a

list of statistics about control load for each cell of the eNB.

struct flex_control_load_reply {

struct flex_header header;

uint8_t nr_cells; /* Number of cells reported */

struct flex_control_load_stats load_stats[nr_cells]; /* A list

of control load statistics for the cells */

};

Control delegation

The control delegation message FLPT DELEGATE CONTROL consists of a header, an enu-

merator describing the type of delegation (e.g. dl/ul scheduler of the MAC, mobility

manager in RRC etc), the delegated function payload in binary format and the name of

the delegated function.

struct flex_control_delegation {

struct flex_header header;

uint32_t delegation_type; /* The delegation type that should be

performed by the agent. An enum of FLCDT_* values */

uint64_t n_bytes; /* The number of bytes in the payload of the

delegated functions */

uint8_t payload[n_bytes]; /* The delegated functions pushed by

the controller */

uint16_t name_length; /* The length of the function’s name */

char name[name_length]; /* The delegated function name */

};

Policy reconfiguration

The policy reconfiguration message FLPT RECONFIGURE AGENT consists of a header,

and a string describing the policy changes using YAML syntax. The policy changes

could be in the form of loading one of the delegated functions or changing the value of

parameters for certain functions. The structure of the policy change string is described

in section 2.

struct flex_agent_reconfiguration {

struct flex_header header;

B.10. Time indication messages 161

uint16_t policy_length; /* The length of the policy change

string */

char policy[policy_length];/*The policy changes in YAML syntax*/

};

B.10 Time indication messages

These messages are triggered by the eNB to signal the controller for specific events

and to maintain its synchronization with the eNB.

Subframe trigger

The subframe trigger message FLPT SF TRIGGER is triggered by the end of every TTI

and is used to provide timing information to the controller in terms of SFN and SF as

well as to provide UL/DL information updates (HARQ status, UL reception status). In

the current protocol version the eNB is always expected to send these messages to the

controller in each TTI unless MAC control has been delegated to the local controller.

The message consists of a header, the SFN and the SF for the time indication and a list

of reports about the status of DL HARQ processes and UL receptions for the reported

subframe.

struct flex_dl_trigger {

struct flex_header header;

uint16_t sfn_sf; /* The SFN and SF reported. Bit 0-3 SF and

4-13 SFN */

uint8_t nr_dl_info; /* The number of elements in the DL

information list */

struct flex_dl_info dl_info_list[nr_dl_info]; /* The DL

information list */

uint8_t nr_ul_info; /* The number of elements in the UL

information list */

struct flex_ul_info dl_info_list[nr_ul_info]; /* The UL

information list */

};

Appendix C

DDPG Algorithm

Here, for completeness, we provide the details of the DDPG algorithm proposed in

[83] and adjusted for the work presented in Chapter 6.

The execution of the algorithm is broken down into episodes and runs in an infinite

loop. In each episode, a different random process is initialized for the action explo-

ration. For the case of Iris, an episode corresponds to H = 24 periods and thus the total

number of epochs for each episode is He, where according to the model of Section 6.2,

e is the number of epochs in a single period.

163

164 Appendix C. DDPG Algorithm

Algorithm DDPG algorithm
1: Randomly initialize critic network Q(x,α|θQ) and actor π(x|θπ) with weights θQ and θπ.

2: Initialize target network Q′ and π′ with weights θQ′ ← θQ, θπ′ ← θπ

3: Initialize replay buffer R

4: Initialize episode m← 0

5: Receive initial observation state x0

6: loop:

7: Initialize a random process N for action exploration

8: for t = 0, . . . ,He do
9: Select action at = π(xt |θπ)+N t according to the current policy and exploration noise

10: Execute action at and observe reward rt and new state xt+1

11: Store transition (xt ,at ,rt ,xt+1) in R

12: Sample a random minibatch of N transitions (xt ,at ,rt ,xt+1) from R

13: Set yt = rt + γQ′(xt+1,π′(xt+1|θπ′)|θQ′)

14: Update critic by minimizing the loss: L = 1
N ∑i(yi−Q(xi,ai|θQ))2

15: Update the actor policy using the sampled policy gradient:

∇θπJ ≈ 1
N ∑i ∇aQ(x,a|θQ)|x=xt ,a=π(xt)∇θππ(x|θπ)|xt

16: Update the target networks:

θQ′ ← τθQ +(1− τ)θQ′

θπ′ ← τθπ +(1− τ)θπ′

17: end for
18: m← m+1 . Move to the next episode

19: x0← xt . Use last state as initial state of next episode

20: goto loop

Bibliography

[1] http://zeromq.org/.

[2] https://developers.google.com/protocol-buffers/, 2016.

[3] http://dash.edgesuite.net/dash264/TestCases/2a/qualcomm/1/

MultiResMPEG2.mpd, 2016.

[4] http://dash.edgesuite.net/akamai/streamroot/050714/Spring_

4Ktest.mpd, 2016.

[5] DDPG implementation. https://github.com/stevenpjg/ddpg-aigym,

2018.

[6] 3GPP. Architecture enhancements for dedicated core networks. TS 23.707,

2017.

[7] 3GPP. Architecture Enhancements to Facilitate Communications with Packet

Data Networks and Applications. TS 23.682, 2017.

[8] 3GPP. Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer

procedures. TS 36.213, 2017.

[9] 5G Americas. Multi-operator and neutral host small cells: Drivers, architecture,

planning and regulation, Dec 2016.

[10] I. F. Akyildiz et al. SoftAir: A software defined networking architecture for 5G

wireless systems. Computer Networks, 85:1–18, 2015.

[11] H. Ali-Ahmad et al. CROWD: an SDN approach for DenseNets. In Second

European Workshop on Software Defined Networks (EWSDN), pages 25–31.

IEEE, 2013.

165

166 Bibliography

[12] X. An et al. On end to end network slicing for 5G communication systems.

Transactions on Emerging Telecommunications Technologies, 2016.

[13] A. Apostolaras et al. Evolved User Equipment for Collaborative Wireless Back-

hauling in Next Generation Cellular Networks. In 12th Annual IEEE Inter-

national Conference on Sensing, Communication, and Networking (SECON),

pages 408–416. IEEE, 2015.

[14] M. Arslan et al. Software-Defined Networking in Cellular Radio Access Net-

works: Potential and Challenges. Communications Magazine, IEEE, 53(1):150–

156, 2015.

[15] U. Author. IEEE 802.1q – IEEE standard for local and metropolitan area net-

works virtual bridged local area networks. IEEE Computer Society, 2005.

[16] A. Banerjee et al. Scaling the LTE Control-Plane for Future Mobile Access. In

Proceedings of the 11th ACM CoNEXT, page 19. ACM, 2015.

[17] M. Bansal et al. OpenRadio: A Programmable Wireless Dataplane. In Proceed-

ings of the 1st workshop on Hot topics in Software Defined Networks, pages

109–114. ACM, 2012.

[18] N. Baranasuriya et al. QProbe: Locating the bottleneck in cellular communica-

tion. In Proceedings of the 11th ACM CoNEXT, page 33. ACM, 2015.

[19] D. Bega et al. Optimising 5G infrastructure markets: The business of network

slicing. In INFOCOM 2017, pages 1–9. IEEE, 2017.

[20] C. Bernardos et al. An Architecture for Software Defined Wireless Networking.

Wireless Communications, IEEE, 21(3):52–61, 2014.

[21] F. Boccardi et al. Five Disruptive Technology Directions for 5G. Communica-

tions Magazine, IEEE, 52(2):74–80, 2014.

[22] A. Botta, A. Dainotti, and A. Pescapé. A tool for the generation of realistic

network workload for emerging networking scenarios. Computer Networks,

56(15):3531–3547, 2012.

[23] G. Brockman et al. OpenAI Gym, 2016.

Bibliography 167

[24] L. Busoniu et al. Reinforcement learning and dynamic programming using func-

tion approximators, volume 39. CRC press, 2010.

[25] P. Caballero et al. Multi-Tenant Radio Access Network Slicing: Statisti-

cal Multiplexing of Spatial Loads. IEEE/ACM Transactions on Networking,

25(5):3044–3058, 2017.

[26] P. Caballero et al. Network slicing games: Enabling customization in multi-

tenent networks. In Proceedings of IEEE INFOCOM 2017. IEEE, 2017.

[27] L. Cano et al. Cooperative infrastructure and spectrum sharing in heteroge-

neous mobile networks. IEEE Journal on Selected Areas in Communications,

34(10):2617–2629, 2016.

[28] C.-Y. Chang et al. FlexCRAN: A flexible functional split framework over ether-

net fronthaul in Cloud-RAN. In 2017 IEEE International Conference on Com-

munications (ICC), pages 1–7. IEEE, 2017.

[29] T. Chen et al. SoftMobile: Control Evolution for Future Heterogeneous Mobile

Networks. Wireless Communications, IEEE, 21(6):70–78, 2014.

[30] I. Chih-Lin et al. Recent Progress on C-RAN Centralization and Cloudification.

Access, IEEE, 2:1030–1039, 2014.

[31] China Mobile. C-RAN: the road towards green RAN. White Paper, ver, 2, 2011.

[32] I. P. Chochliouros et al. A Novel Architectural Concept for Enhanced 5G Net-

work Facilities. In MATEC Web of Conferences, volume 125, page 03012. EDP

Sciences, 2017.

[33] B. Chun et al. Planetlab: An Overlay Testbed for Broad-Coverage Services.

ACM SIGCOMM Computer Communication Review, 33(3):3–12, 2003.

[34] Cisco Visual Networking Index. Global mobile data traffic forecast update,

2016-2021, 2017.

[35] X. Costa-Pérez et al. Radio Access Network Virtualization for Future Mobile

Carrier Networks. IEEE Communications Magazine, 51(7):27–35, 2013.

[36] S. Costanzo et al. OpeNB: A framework for Virtualizing Base Stations in LTE

Networks. In IEEE International Conference on Communications (ICC), pages

3148–3153. IEEE, 2014.

168 Bibliography

[37] DASH Industry Forum. DASH Reference Client. http://

dashif.org/reference/players/javascript/v2.4.1/samples/

dash-if-reference-player/index.html, 2017.

[38] S. Deb et al. Algorithms for Enhanced Inter Cell Interference Coordination

(eICIC) in LTE HetNets. IEEE/ACM Transactions on Networking (TON),

22(1):137–150, 2014.

[39] Y. Duan et al. Benchmarking deep reinforcement learning for continuous con-

trol. In International Conference on Machine Learning, pages 1329–1338,

2016.

[40] Ericsson. A Vision of the 5G Core: Flexibility for New Business Opportunities,

2016.

[41] Ericsson. 5G Systems - Enabling the Transformation of Industry and Society,

Jan 2017.

[42] ETSI. Open Source MANO. https://osm.etsi.org/, 2017.

[43] Eurecom. Demo at MWC 2017:5G Cloud RAN slice. https://insights.

ubuntu.com/event/mobile-world-congress-2017/, 2017.

[44] J. O. Fajardo et al. Introducing mobile edge computing capabilities through

distributed 5G cloud enabled small cells. Mobile networks and applications,

21(4):564–574, 2016.

[45] FCC. FCC Rule Making on 3.5 GHz Band / Citizens Broadband Radio Service,

April 2015.

[46] X. Foukas et al. FlexRAN: A Flexible and Programmable Platform for

Software-Defined Radio Access Networks. In Proceedings of the 12th ACM

CoNEXT, pages 427–441. ACM, 2016.

[47] X. Foukas et al. Orion: RAN Slicing for a Flexible and Cost-Effective Multi-

Service Mobile Network Architecture. In Proceedings of the 23rd ACM Mobi-

Com, pages 127–140. ACM, 2017.

[48] L. Foundation. Netem linux network emulator. https://wiki.

linuxfoundation.org/networking/netem, 2017.

Bibliography 169

[49] T. Frisanco et al. Infrastructure Sharing and Shared Operations for Mobile Net-

work Operators from a Deployment and Operations View. In Proceedings of

IEEE NOMS 2008, pages 129–136. IEEE, 2008.

[50] F. Fu and U. C. Kozat. Stochastic game for wireless network virtualization.

IEEE/ACM Transactions on Networking (ToN), 21(1):84–97, 2013.

[51] P. C. Garcés et al. RMSC: A Cell Slicing Controller for Virtualized Multi-

tenant Mobile Networks. In IEEE 81st Vehicular Technology Conference (VTC

Spring), pages 1–6. IEEE, 2015.

[52] A. A. Gebremariam et al. Resource pooling via dynamic spectrum-level slicing

across heterogeneous networks. In 14th IEEE annual consumer communica-

tions and networking conference (CCNC), 2017.

[53] I. Giannoulakis et al. The emergence of operator-neutral small cells as a

strong case for cloud computing at the mobile edge. Transactions on Emerg-

ing Telecommunications Technologies, 27(9):1152–1159, 2016.

[54] GSNFV ETSI. Network functions virtualisation (NFV): Architectural frame-

work. ETsI Gs NFV, 2(2):V1, 2013.

[55] S. Gu et al. Deep reinforcement learning for robotic manipulation with

asynchronous off-policy updates. In 2017 IEEE International Conference on

Robotics and Automation (ICRA), pages 3389–3396. IEEE, 2017.

[56] A. Gudipati et al. SoftRAN: Software Defined Radio Access Network. In Pro-

ceedings of the second ACM SIGCOMM workshop on Hot topics in software

defined networking, pages 25–30. ACM, 2013.

[57] A. Gudipati et al. RadioVisor: A Slicing Plane for Radio Access Networks. In

Proceedings of the third workshop on Hot topics in software defined networking,

pages 237–238. ACM, 2014.

[58] S. Ha et al. Tube: Time-dependent pricing for mobile data. ACM SIGCOMM

Computer Communication Review, 42(4):247–258, 2012.

[59] J. He and W. Song. AppRAN: Application-Oriented Radio Access Network

Sharing in Mobile Networks. In Proceedings of IEEE International Conference

on Communications (ICC), pages 3788–3794. IEEE, 2015.

170 Bibliography

[60] M. Helsley. LXC: Linux container tools. IBM devloperWorks Technical Library,

page 11, 2009.

[61] P. Hintjens. ZeroMQ: Messaging for Many Applications. O’Reilly Media, Inc,

2013.

[62] Y. C. Hu et al. Mobile Edge Computing - A Key Technology Towards 5G. ETSI

White Paper, 11, 2015.

[63] R. Irmer, H. Droste, P. Marsch, M. Grieger, G. Fettweis, S. Brueck, H.-P. Mayer,

L. Thiele, and V. Jungnickel. Coordinated multipoint: Concepts, performance,

and field trial results. IEEE Communications Magazine, 49(2):102–111, 2011.

[64] ITU. ITU-R M.[IMT-2020.TECH PERF REQ] - Minimum requirements related

to technical performance for IMT-2020 radio interface(s), Feb 2017.

[65] M. Jiang et al. Network slicing management & prioritization in 5G mobile

systems. In Proceedings of 22th European Wireless Conference, pages 1–6.

VDE, 2016.

[66] X. Jin et al. Softcell: Scalable and Flexible Cellular Core Network Architecture.

In Proceedings of the ninth ACM CoNEXT, pages 163–174. ACM, 2013.

[67] V. Joseph and G. de Veciana. NOVA: QoE-Driven Optimization of DASH-based

Video Delivery in Networks. In Proceedings of IEEE INFOCOM, pages 82–90.

IEEE, 2014.

[68] M. I. Kamel et al. LTE Wireless Network Virtualization: Dynamic Slicing via

Flexible Scheduling. In Vehicular Technology Conference (VTC Fall), 2014

IEEE 80th, pages 1–5. IEEE, 2014.

[69] J. Khun-Jush et al. Licensed shared access as complementary approach to meet

spectrum demands: Benefits for next generation cellular systems. In ETSI Work-

shop on reconfigurable radio systems, 2012.

[70] M. G. Kibria et al. Resource allocation in shared spectrum access communi-

cations for operators with diverse service requirements. EURASIP Journal on

Advances in Signal Processing, 2016(1):83, 2016.

Bibliography 171

[71] M. G. Kibria et al. Heterogeneous networks in shared spectrum access commu-

nications. IEEE Journal on Selected Areas in Communications, 35(1):145–158,

2017.

[72] M. G. Kibria et al. Shared spectrum access communications: A neutral host

micro operator approach. IEEE Journal on Selected Areas in Communications,

35(8):1741–1753, 2017.

[73] B.-G. Kim et al. Dynamic pricing for smart grid with reinforcement learning. In

2014 IEEE Conference on Computer Communications Workshops (INFOCOM

WKSHPS), pages 640–645. IEEE, 2014.

[74] Y. H. Kim et al. Slicing the Next Mobile Packet Core Network. In 11th In-

ternational Symposium on Wireless Communications Systems (ISWCS), pages

901–904. IEEE, 2014.

[75] A. Kivity et al. kvm: the Linux virtual machine monitor. In Proceedings of the

Linux symposium, volume 1, pages 225–230, 2007.

[76] R. Kokku et al. NVS: A Substrate for Virtualizing Wireless Resources in Cel-

lular Networks. IEEE/ACM Transactions on Networking (TON), 20(5):1333–

1346, 2012.

[77] R. Kokku et al. CellSlice: Cellular Wireless Resource Slicing for Active RAN

Sharing. In 2013 Fifth International Conference on Communication Systems

and Networks (COMSNETS), pages 1–10. IEEE, 2013.

[78] A. Ksentini and N. Nikaein. Toward enforcing network slicing on ran: Flexibil-

ity and resources abstraction. IEEE Communications Magazine, 55(6):102–108,

2017.

[79] L. E. Li et al. Toward Software-Defined Cellular Networks. In Proceedings

of 2012 European Workshop on Software Defined Networking (EWSDN), pages

7–12. IEEE, 2012.

[80] N. Li et al. Optimal demand response based on utility maximization in power

networks. In Power and Energy Society General Meeting, 2011 IEEE, pages

1–8. IEEE, 2011.

172 Bibliography

[81] Y. Li et al. Content-Aware Playout and Packet Scheduling for Video Streaming

over Wireless Links. IEEE Transactions on Multimedia, 10(5):885–895, 2008.

[82] C. Liang and F. R. Yu. Wireless Virtualization for Next Generation Mobile

Cellular Networks. IEEE Wireless Communications, 22(1):61–69, 2015.

[83] T. P. Lillicrap et al. Continuous control with deep reinforcement learning. In

ICLR 2016, 2016.

[84] Linux Foundation. ONAP. https://www.onap.org/, 2017.

[85] Z. Liu et al. Pricing data center demand response. ACM SIGMETRICS Perfor-

mance Evaluation Review, 42(1):111–123, 2014.

[86] R. Lowe et al. Multi-agent actor-critic for mixed cooperative-competitive envi-

ronments. In Advances in Neural Information Processing Systems, pages 6382–

6393, 2017.

[87] J. Luo et al. Multi-carrier waveform based flexible inter-operator spectrum shar-

ing for 5G systems. In IEEE International Symposium on Dynamic Spectrum

Access Networks (DYSPAN), pages 449–457. IEEE, 2014.

[88] T. Magedanz et al. Prototyping new concepts beyond 4G–the Fraunhofer

Open5GCore. it-Information Technology, 57(5):314–320, 2015.

[89] R. Mahindra et al. Network-Wide Radio Access Network Sharing in Cellular

Networks. In Proceedings of 21st IEEE International Conference on Network

Protocols (ICNP), pages 1–10. IEEE, 2013.

[90] T. Mahmoodi and S. Seetharaman. Traffic Jam: Handling the Increasing Vol-

ume of Mobile Data Traffic. IEEE Vehicular Technology Magazine, 9(3):56–62,

2014.

[91] N. Makris et al. Experimental evaluation of functional splits for 5G Cloud-

RANs. In 2017 IEEE International Conference on Communications (ICC),

pages 1–6. IEEE, 2017.

[92] I. Malanchini et al. Generalized Resource Sharing for Multiple Operators in

Cellular Wireless Networks. In 2014 International Wireless Communications

and Mobile Computing Conference (IWCMC), pages 803–808. IEEE, 2014.

Bibliography 173

[93] M. Matinmikko et al. Spectrum sharing using licensed shared access: the con-

cept and its workflow for LTE-advanced networks. IEEE Wireless Communica-

tions, 21(2):72–79, 2014.

[94] M. Matinmikko et al. Micro Operators to Boost Local Service Delivery in 5G.

Wireless Personal Communications, 95(1):69–82, 2017.

[95] N. McKeown et al. OpenFlow: enabling innovation in campus networks. ACM

SIGCOMM Computer Communication Review, 38(2):69–74, 2008.

[96] D. Merkel. Docker: lightweight linux containers for consistent development

and deployment. Linux Journal, 2014(239):2, 2014.

[97] Microsoft Test Content. DASH Sample Video. http://wams.edgesuite.

net/media/MPTExpressionData02/BigBuckBunny_1080p24_IYUV_2ch.

ism/manifest(format=mpd-time-csf), 2017.

[98] Mobile Experts. CBRS: New Shared Spectrum Enables Flexible Indoor and

Outdoor Mobile Solutions and New Business Models, March 2017.

[99] Mobile Experts. Cisco Vision 5G: Thriving Indoors, March 2017.

[100] M. Moradi et al. SoftMoW: Recursive and Reconfigurable Cellular WAN Ar-

chitecture. In Proceedings of the 10th ACM CoNEXT, pages 377–390. ACM,

2014.

[101] MulteFire Alliance. MulteFire release 1.0 technical paper: A new way to wire-

less, 2017.

[102] A. Nakao et al. Demo at ITU FG IMT-2020 Workshop:Softwarized

LTE in FLARE network slices. http://www.itu.int/en/ITU-T/

Workshops-and-Seminars/201612/Pages/Programme.aspx, Dec 2016.

[103] A. Nakao et al. End-to-end Network Slicing for 5G Mobile Networks. Journal

of Information Processing, 25:153–163, 2017.

[104] NGMN-Alliance. 5G White Paper, Feb 2015.

[105] N. Nikaein. FlexRAN tutorial on RAN sharing. https://gitlab.eurecom.

fr/mosaic-5g/mosaic-5g/wikis/ran-sharing, 2017.

174 Bibliography

[106] N. Nikaein et al. OpenAirInterface: A flexible platform for 5G research. ACM

SIGCOMM Computer Communication Review, 44(5):33–38, 2014.

[107] N. Nikaein et al. Network store: Exploring slicing in future 5G networks. In

Proceedings of 10th ACM International Workshop on Mobility in the Evolving

Internet Architecture (MobiArch’15), pages 8–13, Sep 2015.

[108] Nokia. Network Sharing: Delivering mobile broadband more efficiently and

at lower cost. http://resources.alcatel-lucent.com/asset/200192,

2014.

[109] Ofcom. 3.8 GHz to 4.2 GHz Band: Opportunities for Innovation, April 2016.

[110] Ofcom. Communications Market Report, Aug 2017.

[111] D. O’Neill, M. Levorato, A. Goldsmith, and U. Mitra. Residential demand re-

sponse using reinforcement learning. In First IEEE International Conference on

Smart Grid Communications (SmartGridComm), pages 409–414. IEEE, 2010.

[112] OpenAirInterface Software Alliance. Openair-cn repository. https://gitlab.

eurecom.fr/oai/openair-cn, 2017.

[113] P. Pahalawatta et al. Content-Aware Resource Allocation and Packet Scheduling

for Video Transmission over Wireless Networks. IEEE Journal on Selected

Areas in Communications, 25(4), 2007.

[114] K. I. Pedersen et al. A Flexible 5G Frame Structure Design for Frequency-

Division Duplex Cases. IEEE Communications Magazine, 54(3):53–59, 2016.

[115] K. Pentikousis et al. MobileFlow: Toward Software-Defined Mobile Networks.

Communications Magazine, IEEE, 51(7):44–53, 2013.

[116] M. L. Puterman. Markov decision processes: discrete stochastic dynamic pro-

gramming. John Wiley & Sons, 2014.

[117] Z. A. Qazi et al. KLEIN: A Minimally Disruptive Design for an Elastic Cellular

Core. In Proceedings of the Symposium on SDN Research, page 2. ACM, 2016.

[118] Qualcomm. Making 5G NR a reality, Dec 2016.

Bibliography 175

[119] R. Riggio. Demo: The EmPOWER Mobile Network Operating System. In

Proceedings of the Tenth ACM International Workshop on Wireless Network

Testbeds, Experimental Evaluation, and Characterization, pages 87–88. ACM,

2016.

[120] P. Rost et al. Mobile Network Architecture Evolution Toward 5G. IEEE Com-

munications, 54(5), 2016.

[121] P. Rost et al. Network Slicing to Enable Scalability and Flexibility in 5G Mobile

Networks. IEEE Communications magazine, 2017.

[122] G. Salami et al. LTE indoor small cell capacity and coverage comparison. In

IEEE 24th International Symposium on Personal, Indoor and Mobile Radio

Communications (PIMRC Workshops), pages 66–70. IEEE, 2013.

[123] K. Samdanis et al. Service Boost: Towards on-demand QoS enhancements for

OTT apps in LTE. In 21st IEEE International Conference on Network Protocols

(ICNP), pages 1–6. IEEE, 2013.

[124] K. Samdanis et al. From Network Sharing to Multi-Tenancy: The 5G Network

Slice Broker. IEEE Communications, 54(7), 2016.

[125] J. Schulman et al. High-dimensional continuous control using generalized ad-

vantage estimation. ICLR 2016, 2016.

[126] V. Sciancalepore et al. Mobile Traffic Forecasting for Maximizing 5G Network

Slicing Resource Utilization. IEEE INFOCOM, 2017.

[127] R. Sherwood et al. FlowVisor: A Network Virtualization Layer. OpenFlow

Switch Consortium, Tech. Rep, pages 1–13, 2009.

[128] D. Silver et al. Deterministic policy gradient algorithms. In ICML, 2014.

[129] Small Cell Forum. nFAPI and FAPI specifications, May 2017.

[130] I. Sodagar. The MPEG-DASH Standard for Multimedia Streaming Over the

Internet. IEEE MultiMedia, pages 62–67, 2011.

[131] A. Syed and J. Van der Merwe. Proteus: A Network Service Control Platform

for Service Evolution in a Mobile Software Defined Infrastructure. In Proceed-

ings of the 22nd ACM MobiCom, pages 257–270. ACM, 2016.

176 Bibliography

[132] T. Taleb et al. Lightweight Mobile Core Networks for Machine Type Commu-

nications. IEEE Access, 2:1128–1137, 2014.

[133] T. Taleb et al. EASE: EPC as a Service to Ease Mobile Core Network Deploy-

ment over Cloud. IEEE Network, 29(2):78–88, 2015.

[134] K. Tsagkaris et al. SON Coordination in a Unified Management Framework. In

77th IEEE Vehicular Technology Conference (VTC Spring), pages 1–5. IEEE,

2013.

[135] B. Wang et al. Multimedia Streaming via TCP: An Analytic Performance Study.

ACM Transactions on Multimedia Computing, Communications, and Applica-

tions (TOMM), 4(2):16, 2008.

[136] H. Wang et al. Understanding mobile traffic patterns of large scale cellular

towers in urban environment. In Proceedings of the 2015 Internet Measurement

Conference, pages 225–238. ACM, 2015.

[137] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–292,

1992.

[138] Z. Wen, D. O’Neill, and H. Maei. Optimal demand response using device-based

reinforcement learning. IEEE Transactions on Smart Grid, 6(5):2312–2324,

2015.

[139] W. Wu et al. PRAN: Programmable Radio Access Networks. In Proceedings of

the 13th ACM Workshop on Hot Topics in Networks, page 6. ACM, 2014.

[140] X. Xie et al. piStream: Physical Layer Informed Adaptive Video Streaming

Over LTE. In Proceedings of the 21st ACM MobiCom, pages 413–425. ACM,

2015.

[141] M. Yang et al. OpenRAN: A Software-Defined RAN Architecture via Virtual-

ization. In ACM SIGCOMM computer communication review, volume 43, pages

549–550. ACM, 2013.

[142] V. Yazıcı et al. A New Control Plane for 5G Network Architecture with a Case

Study on Unified Handoff, Mobility, and Routing Management. IEEE Commu-

nications Magazine, 52(11):76–85, 2014.

Bibliography 177

[143] Y. Zaki et al. LTE Mobile Network Virtualization. Mobile Networks and Appli-

cations, 16(4):424–432, 2011.

[144] J. Zander and P. Mähönen. Riding the data tsunami in the cloud: myths and chal-

lenges in future wireless access. IEEE Communications Magazine, 51(3):145–

151, 2013.

[145] L. Zhao et al. LTE virtualization: From Theoretical Gain to Practical Solution.

In Proceedings of the 23rd International Teletraffic Congress, pages 71–78. In-

ternational Teletraffic Congress, 2011.

[146] K. Zhu and E. Hossain. Virtualization of 5G cellular networks as a hierarchical

combinatorial auction. IEEE Transactions on Mobile Computing, 15(10):2640–

2654, 2016.

	cover sheet
	main

