

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Capturing Mobile Security Policies
Precisely

Joseph Hallett

Doctor of Philosophy

Laboratory for Foundations of Computer Science

School of Informatics

University of Edinburgh

2017

Abstract
The security policies of mobile devices that describe how we should use

these devices are often informally specified. Users have preferences for some
apps over others. Some users may avoid apps which can access large amounts
of their personal data, whilst others may not care. A user is unlikely to write
down these policies or describe them using a formal policy language. This is
unfortunate as without a formal description of the policy we cannot precisely
reason about them. We cannot help users to pick the apps they want if we
cannot describe their policies.

Companies have mobile security policies that define how an employee should
use smart phone devices and tablet computers from home at work. A company
might describe the policy in a natural language document for employees to
read and agree to. They might also use some software installed on employee’s
devices to enforce the company rules. Without a link between the specification
of the policy in the natural language document and the implementation of the
policy with the tool, understanding how they are related can be hard.

This thesis looks at developing an authorisation logic, called AppPAL, to
capture the informal security policies of the mobile ecosystem, which we define
as the interactions surrounding the use of mobile devices in a particular setting.
This includes the policies of the users, the devices, the app stores, and the
environments the users bring the devices into. Whilst earlier work has looked
on checking and enforcing policies with low-level controls, this work aims
to capture these informal policy’s intents and the trust relationships within
them separating the policy specification from its enforcement. This allows us to
analyse the informal policies precisely, and reason about how they are used.

We show how AppPAL instantiates SecPAL, a policy language designed
for access control in distributed environments. We describe AppPAL’s im-
plementation as an authorisation logic for mobile ecosystems. We show how
we can check AppPAL policies for common errors. Using AppPAL we show
that policies describing users privacy preferences do not seem to match the
apps users install. We explore the di↵erences between app stores and how to
create new ones based on policy. We look at five BYOD policies and discover
previously unexamined idioms within them. This suggests aspects of BYOD
policies not managed by current BYOD tools.

i

Acknowledgements
I am grateful to many people for their help in completing my PhD. In particular
I would like to thank the following people:

Thank you to my supervisors David Aspinall and Björn Franke for their
advice, criticism, help, patience, and always o↵ering to edit my papers. Thank
you to Andy Gordon and Martin Hofmann for the helpful discussions early on,
introducing me to SecPAL and to using formal logic to model this domain. Thank
you to my examiners, Paul Jackson and Charles Morisset for their comments.

Thank you to Daniel, Marcin, Arthur, Catherine and the rest of IF 5.24 for
listening to my rants and helpful discussions over the years. Thank you to Dan
Page for his help early in my career, and for suggesting I apply for this job. A
second thank you to David Aspinall for helping me move back home to be a dad
before I really should have. Thank you to my friends and family for supporting
me over the past years, especially Di for her camaraderie in completing this.
Also, thanks to EasyJet for roughly 316 flights between Edinburgh and Bristol.

Finally, thank you to Emma and Jim. Thank you Emma for your unwavering
support and for letting me work when I should be helping with the baby, and
thank you Jim for keeping me awake and writing at all hours.

ii

Declaration
I declare that this thesis was composed by myself, that the work contained
herein is my own except where explicitly stated otherwise in the text, and
that this work has not been submitted for any other degree or professional
qualification except as specified.

(Joseph Hallett)

iii

This thesis is dedicated to Emma, for putting up with me.

“To what extent should one trust a statement that a program is free of Trojan horses? Perhaps it

is more important to trust the people who wrote the software.” — Ken Thompson

“You cannot have a secure Android phone for two reasons: 1) it is Android, 2) it is a phone.

Step 1, get google out of it. Step 2, everything else” — The Grugq

“It’s not the language that matters, it’s what you do with it”

iv

Table of Contents

1 Introduction 1
1.1 The Policies of the Mobile Ecosystem 2
1.2 Capturing Mobile Security Policies Precisely 8

1.2.1 Thesis Outline and Publications 10
1.2.2 Research Contributions 12

2 Background and Related Work 14
2.1 SecPAL . 14

2.1.1 Delegation in SecPAL . 23
2.2 Policy Languages . 27
2.3 Fine-Grained Permission Systems 40
2.4 Moving Forward . 42

3 Instantiating and Evaluating SecPAL 43
3.1 Why SecPAL . 44
3.2 Basic Examples of AppPAL . 49

3.2.1 AppPAL Policies for App Stores 50
3.2.2 Worked Example of Policy Checking 52

3.3 Instantiating SecPAL for Mobile Ecosystems 55
3.3.1 Predicate Conventions . 55
3.3.2 Type Notation . 60

3.4 Implementation . 63
3.4.1 Evaluation . 65
3.4.2 Soundness and Completeness of Decision Procedure . . 69
3.4.3 Benchmarks . 73

3.5 Automatic Analysis of AppPAL policies 74
3.5.1 Checking Satisfiability . 75

v

3.5.2 Checking Redundancy . 80

4 App Stores and App Preferences 85
4.1 App Stores . 85

4.1.1 Exploring Di↵erences in Terms Between App Stores . . . 87
4.1.2 Why Who Signed the App Matters 94

4.2 Finding the Right Apps . 96
4.2.1 Privacy Preferences . 97
4.2.2 Measuring Users . 99
4.2.3 Privacy Policies and Malware 103
4.2.4 Discussion . 105

4.3 An AppPAL Enhanced Store . 106
4.3.1 Using GenStore to Build an App Store 107
4.3.2 Current Status . 108

5 Applying AppPAL to BYOD Policies 110
5.1 BYOD in the Workplace . 110

5.1.1 Overview of Five BYOD Policies 111
5.1.2 Review of MDM software 113
5.1.3 Related BYOD Work . 115

5.2 Modelling BYOD policies . 117
5.3 BYOD Idioms in AppPAL . 118

5.3.1 Delegation and Roles Within Policies 119
5.3.2 Acknowledgement . 122

5.4 Enforcing a BYOD policy with AppPAL 124

6 Future Work 126
6.1 Probable SecPAL . 126

6.1.1 Examples of Probability 127
6.1.2 Guarantees for Probable SecPAL 129

6.2 Patterns with Predicates . 131
6.3 AppPAL MDM . 133
6.4 Usability Study . 134

7 Conclusion 135

vi

A Translated BYOD Policies 137
A.1 NHS . 137
A.2 SANS . 148
A.3 HiMSS . 157
A.4 Edinburgh . 161
A.5 Sirens . 167

B Probabilistic SecPAL Changes and Evaluation 174
B.1 Evaluating Probability . 174
B.2 A Probable Algorithm 5.2 . 176

Bibliography 178

vii

List of Figures

1.1 Interactions surrounding the use of mobile devices. 2

2.1 Simple example of a policy scenario. 15
2.2 Structure of a SecPAL assertion. 15
2.3 A policy scenario involving variables. 17
2.4 Simple SecPAL proof. 19
2.5 A more complex SecPAL proof involving variables. 19
2.6 A policy scenario involving constraints. 20
2.7 BNF description of SecPAL. 21
2.8 Derivation rules used to evaluate SecPAL. 21
2.9 SecPAL’s proof-theoretic semantics. 22
2.10 SecPAL’s assertion safety conditions. 22
2.11 SecPAL’s IN/OUT query safety condition. 22
2.12 Example of delegation on a cluster. 24
2.13 Example of unbounded delegation. 25
2.14 Example of delegation with roles. 25
2.15 Example of depth-bounded delegation. 26
2.16 Example of delegation with a loop of trust. 27
2.17 Timeline of the development of di↵erent policy languages. . . . 28
2.18 A permissive XACML policy. 36
2.19 Excerpt from XACML delegation example. 38
2.20 The XACML reference architecture. 39

3.1 Entities in the mobile ecosystem 44
3.2 Proof tree output by AppPAL. 56
3.3 Changes to SecPAL’s syntax to support types. 60
3.4 De-sugaring from AppPAL types to SecPAL. 61
3.5 Procedure to expand types from AppPAL into SecPAL. 61

viii

3.6 AppPAL’s inputs and outputs. 65
3.7 Pseudo-code for evaluating a query. 67
3.8 Pseudo-code for using the cond-rule. 67
3.9 Pseudo-code for using the can-say and can-act-as rules. 68
3.10 Excerpts from the 1 to 1, 1 to 2 and 1 to 3 benchmarks. 73
3.11 Proof graph showing irrelevance. 81
3.12 Proof graph showing unreachability. 82
3.13 A simple policy shown as a graph. 83
3.14 Flattening a more complex policy. 84

4.1 Adware infested and pirated app from Aptoide. 87
4.2 Rooting app found on Aptoide. 87
4.3 AppPAL translations of app store refund rules. 93
4.4 AppPAL translations of app store support rules. 94
4.5 Adoption of Lin et al. policies. 101
4.6 Explanation of adoption charts. 102
4.7 Malware installation numbers in the Carat data set. 104
4.8 Plots of conformance to policies against malware installed. . . . 104
4.9 AppPAL GenStore’s architecture. 106
4.10 GenStore database schema. 106
4.11 Output of the GenStore tool. 109

5.1 Policy settings in the MaaS360 MDM tool. 115
5.2 Interactions in a company with BYOD security policies. 124

6.1 VirusTotal results for two Android apps. 128

ix

List of Tables

3.1 Standard prefixes used for AppPAL predicates. 55
3.2 Sets used in AppPAL evaluation. 66
3.3 Benchmarking results on a Nexus 4 Android phone. 74

4.1 Comparison of terms and conditions from five app stores. . . . 92
4.2 Lin et al. policies expressed as sets of permissions. 97
4.3 Lin and Westin privacy groups and their sizes. 98
4.4 Summary of experiment to measure the extent user’s follow a

policy. 99

5.1 Summary of di↵erent MDM capabilities 114
5.2 Summary of method to identify idioms in BYOD policies. 116
5.3 Counts of predicate-types in each policy. 120
5.4 Summary of di↵erent authorities in BYOD policies. 120
5.5 Occurrences of predicates common to multiple policies. 121

6.1 Summary of temporal operators from Prior. 131

x

Chapter 1

Introduction

Mobile devices are ubiquitous, yet the relationships between their users, and
the environment they run in is often vague. Users have preferences for the apps
they use. Stores have terms for the apps they sell, and for the users who buy
them. Companies have policies as to what apps and devices employees can
use in the o�ce. The precise trust relationships, however, are often hidden in
informal, or natural language, descriptions of the policies.

As the devices have become more powerful, there has been an increasing
wish to control the devices. Companies expect devices to follow their corporate
policies within their networks and trust users to abide by their policies as well
as use tools to enforce some aspects of them. Some users may have reservations
about what data an app can get access to and may wish to restrict the app’s
access. Users may rely on stores to vet the apps they sell, but will likely not
know (or necessarily care) precisely how the store checked the app.

These devices exist within the mobile ecosystem: which we define as the
interactions surrounding the use of smart phones and tablet computers in a
given setting. Figure 1.1 shows some relationships between devices, their users
and their preferences, the stores, companies and all these principal’s policies.
Users have phones or other mobile devices. The users may own personal or
have company provided devices. They may have their own preferred ways
of using the device, or they have to follow policies written by their employer.
Users download apps, written by developers, from app stores; each store has
their own policies and some stores may delegate some aspects of their quality
control to external vetting software.

Prior work focused on how systems and tools can check and enforce more

1

Chapter 1. Introduction 2

Figure 1.1: Interactions surrounding the use of mobile devices.

sophisticated policies and ever finer controls. This thesis asks a di↵erent
question: how can we capture the informal policies and trust relationships
surrounding the mobile ecosystem and use formal languages to model and
examine them? We ask how can we tie the top-level goals in the natural
language policies and preferences to the tools used to implement them? How
can we compare di↵erent policies and highlight similarities and di↵erences
between them precisely?

1.1 The Policies of the Mobile Ecosystem

As mobile devices are increasingly capable and hold ever-increasing amounts
of information, users and businesses need to manage how the devices behave.
Employees now bring their mobile devices to work and use them to access
company email and documents. In response to this companies might mandate
that employees follow mobile device policies that describe how the employees
should use their devices within the company. These policies vary in terms of
formality inside and outside of a company. They may also use Mobile Device
Management (MDM) software, tools which allow companies to configure mobile

Chapter 1. Introduction 3

devices remotely, to enforce the policies. Regulation, such as Health Insurance
Portability and Accountability Act (HIPAA), may also a↵ect some companies.

A user may never write their personal privacy preferences in a formal
language but they may make decisions guided by them. An example might
be a user choosing which apps to install and which to avoid, based on their
own discretion. They may make decisions based on what their friends have told
them, or what a review said about the app.

In this section we will start to introduce by example AppPAL: an authorisation
language for the policies of the mobile ecosystem, and is based on SecPAL [23].
We will describe AppPAL in greater detail in Chapter 3 and throughout the
thesis, but it is, in essence, an instantiation of the SecPAL system to the mobile
domain, along with some minor changes to syntax. We have implemented
AppPAL to explore its use and to capture the policies of the mobile ecosystem.
Whenever we show an AppPAL snippet in teletype font it can be parsed
and used as part of a policy1 with our implementation.

An AppPAL policy consists of many assertions. Each assertion is a statement
by a principal either of a fact, or a rule for inferring a fact. For example, the
statement:

’alice’ says ’angry-birds’ isGood.

Should be read as an assertion by Alice (a principal), that Angry Birds (a
constant) is good (a predicate). An example of a rule might be:

’alice’ says App:A isGood

if A isFree.

This example should be read as an assertion by Alice that any App (a type),
referred to as A (a variable) is good if A is also free (a conditional).

As well as assertions about whether variable or constant subjects meet
certain predicates, AppPAL can be used to describe delegations, such as:

’alice’ says ’bob’ can-say App:A isGood.

1Sometimes with minimal edits as some constraints used are not implemented.

Chapter 1. Introduction 4

Which should be read as an assertion by Alice that if Bob says an App, A, is
good then she will also agree that it is good. AppPAL can also describe roles,
the assertions:

’alice’ says ’polygon.com’ can-say X isGood.

’alice’ says ’justin’ can-act-as ’polygon.com’.

Are read as first an assertion by Alice that she trusts polygon.com (a famous
video-game news website) to say whether something, referred to as X, is good;
and secondly as an assertion that Alice allows Justin (one of polygon.com’s
editors) to act as the website.

A full description of AppPAL will be given later in the thesis. AppPAL
inherits its evaluation rules and semantics from SecPAL which is described
in Section 2.1. AppPAL’s syntax, however, di↵ers slightly from SecPAL and
includes some conventions for writing policies—these changes are described in
Section 3.3.

A key aspect of the mobile ecosystem is delegation. The user of a mobile
device (typically) first logs on to a Google or Apple account before using
the device, which fetches all their data from a server on the internet. Rather
than keep account information locally an app may prompt the user to log in,
delegating to a third-party (such as Google or Facebook) to manage the account
ID. Capturing these trust relationships as policies can help clarify the precise
terms for authentication and who each principal trusts to make what decisions.
For example, an app might trust Google to manage accounts. Google will only
authorise a user if the user has authorised the app, and will only allow the app
access to the data the user has explicitly authorised:

’app’ says ’google’ can-say

’app’ canLink(User:U, Account:A).

’google’ says App:A canLink(User:U, Account:Acc)

if U hasAuthorized(A), U hasAccount(Acc).

’google’ says User:U can-say U hasAuthorized(App:A)

if U isAuthenticatedWith(Token), Token isValid.

’google’ says User:U can-say App:A canAccess(Data:D)

if D isOwnedBy(U).

Users may install apps manually themselves, but they might also buy and

polygon.com
polygon.com

Chapter 1. Introduction 5

download apps from one or more app stores. They trust these app stores to sell
them good and safe apps, and delegate the checking of them to the store. Whereas,
in the earlier days of PCs, a user might once have done the check themselves
(or at least delegated to an anti-virus (AV) package on their computer) now
the responsibility is with the stores. Now most apps come signed either by
the developer who created it (in the case of Google’s Play Store), the store that
sold it (in the case of Amazon’s app store) or both (Apple’s App Store). These
signatures ensure integrity and some measure of authenticity, standing for an
assertion that the signer makes that the app is safe to run. For example we may
take Apple’s signature as an assertion that Apple’s vetting process has approved
the app is safe to use by its customers. A store may delegate to a third-party
app vetting service to assess what apps are safe (Yandex and Aptoide stores), or
use their own in-house teams.

Users sometimes recommend apps to each other. We can capture, for
example, that Alice may trust Bob to tell her which apps are good.

’alice’ says ’bob’ can-say App:A isGood.

Some may consider what apps they want to use on their phone and come up
with informally applied personal policies that describe how they want to use
them. They may never write these policies down, but they might take the form
of preferences that influence the apps they choose, by capturing these we can
start to examine and compare policies as well as potentially enforcing them.
Bob might recommend any app by Nintendo:

’bob’ says App:A isGood

if A isGame,

A hasDeveloper(’nintendo’).

Bob might trust reviews and review sites to give him an idea of an app’s quality.

’bob’ says App:A isGood

if A hasReviewScore(N)

where N > 60.

’bob’ says ’metacritic’ can-say

App:A hasReviewScore(Percent:N).

Chapter 1. Introduction 6

Bob might also recommend an app based on its app store categorisation and
its permissions.

’bob’ says App:A isGood

if A hasCategory(’flashlight’),

A hasPermissions(P)

where ! contains(P, ’INTERNET’).

Users allow their employers to say how they should their devices, who may
in turn delegate to IT departments, to write rules, which may delegate back to
the users to state what rules they’re willing to follow.

A company looking to control their employee’s mobile devices at work
might write a Bring Your Own Device (BYOD) policy that their employees agree
to follow. They might also use MDM software to control some aspects of their
devices. The company might write these with varying degrees of formality
but often they use natural language. This adds vagueness and can lead to
confusion about how the company upholds the policy. By describing the policy
in a formal language we can express the policy rigorously. We can start to make
comparisons between users, and with rules for checking the policy start to help
the user to make decisions more accurately, or measure the extent a user follows
their stated policy. Using formal languages we can model the policies precisely,
helping clarify their meanings and make precise comparisons between di↵erent
policies. We could tie the rules in the BYOD policies to the MDM tools used to
check them.

In the US all software for use with medical data must conform to a policy
called HIPAA, and this includes apps on mobile devices. The HIPAA act covers
many rules specific to medical software including requirements for keeping
medical records confidential. If a company needs its employees to use such
apps they could use static analysis tools to check for some aspects of the HIPAA
policy. A company might use Mallodroid [47] to detect when apps send data
unencrypted.

’company’ says Employee:E canUse(App:A)

if A isHIPAAConformant

where mallodroidCheckSafe(A) = True.

It is important not to confuse the tools and techniques we might use to uphold
parts of a policy with the end goal of ensuring compliance. A taint-tracking tool,
like TaintDroid [46] (for example), can tell when sensitive data is being leaked

Chapter 1. Introduction 7

out of a network socket. If the end security goal is to prevent employees leaking
data, this only covers part of the policy—what about a malicious employee
stealing files by printing them and walking out of the o�ce with them? How
do we run the tool and when? Using a tool to check for compliance does not
necessarily mean that a policy is fully implemented. A formal language that
lets us sever the policy from its implementation can help us understand the
policy precisely, and show precisely how we check the policy. It lets us see
which tools are checking what rules, and identify gaps where the policy is not
being checked su�ciently.

These trust relationships and delegations permeate the entire mobile ecosys-
tem. They represent an important aspect of the ecosystem that a policy language
should catch to describe the relationships and policies within it.

In this thesis we will come back to these ideas of user’s personal privacy
policies and BYOD policies as they show two di↵erent aspects of how policies
are used within the mobile ecosystem. User’s privacy preferences are very
informal and may not be something a user would ever consider writing down.
Rather, a user’s privacy preferences guide which apps they might use. A user
might even be willing to use an app that does not match their preferences in
some cases, such as using the Facebook app (which can access lots of data
on a user’s device) whilst being generally unhappy sharing their data with
their software. In contrast a BYOD policy can exist as a formal agreement
(though often informally specified) between the company and its employees.
An employee might reasonably expect to face consequences if their employer
discovers they broke the BYOD rules.

Superficially these policies also resemble classic discretionary access control
(DAC) and mandatory access control (MAC) policies. A company mandates the
BYOD policy, the user uses their discretion when picking the apps they use on
their phone. An interesting aspect of the mobile ecosystem is that the policies
are more complicated than simple MAC and DAC distinctions and use aspects
of both. In Chapter 5 we will look at how companies use employee’s discretion
to judge if aspects of the company’s BYOD agreements (such as ethical policies)
have been followed.

In contrast, users use their discretion to follow their privacy preferences
when picking and using apps. The user must decide whether an app has the
need to access certain device functionality or be installed on their phone at all. A

Chapter 1. Introduction 8

user using a fine-grained permissions system (such as one described in Section 2.3)
or creating a curated app store (we give a method to do so using a policy in
Section 4.3). Now the user will end up writing a MAC-style policy describing
how their phone should behave and what apps the store should sell.

BYOD policies and privacy preferences are only a subset of the policies we
might see in the mobile ecosystem. We will survey some other policies in the
course of the thesis including app store terms and conditions, and the app
signing models built into the mobile OSs, but we chose to focus on BYOD and
privacy preferences as they covered a range of policy styles, high and low-level
policy topics and could showcase some of what makes the mobile ecosystem
fascinating.

1.2 Capturing Mobile Security Policies Precisely

The topic of this thesis is how can we capture the informal policies and trust
relationships surrounding the mobile ecosystem and use formal languages to
model and examine them? Existing research on mobile security policies has
focused on enforcing app permissions policies—the fine-grained permissions
systems. These permission systems allow for new and powerful ways of
expressing how users want their devices to behave, but they do not deal with
the fact that users say not typically express their policies in terms of permission
sets or formal policies but instead might use natural language.

Existing work has given us the mechanisms for enforcing arbitrary mobile
security policies, but not the means to link them back to the human natural
language informal policies people use in practice. What existing research lacks
is the mechanisms to capture and reason about the informal policies precisely,
and then link them to the tools and mechanisms that can enforce them.

With the goal of showing how to capture the informal mobile security
policies precisely in mind, this thesis attempts to answer the following research
questions:

• How can we capture precisely an informally specified mobile security policy using
a formal language?

This is the central question of the thesis. We propose using an authorisation
logic as a formalisation to capture mobile device policies as these logics

Chapter 1. Introduction 9

have been previously used to capture policies. Based our requirements for
the language and a survey of existing policy languages we suggest using a
SecPAL-based language (AppPAL). The rest of the thesis contains various
case-studies where we show that our proposed language can capture the
policies and give us greater insight into their rules and provide potential
enforcement mechanisms.

• Do we see personal app privacy preferences reflected in users’ choice of apps?

To answer this question we have access to data about users policies and
app installations—therefore we use quantitative research methods as
AppPAL gives us a mechanism to query policies against data.

Existing work has identified 4 generalised app privacy preferences people
state they follow [82]. Existing work has also created a data-set of what
apps users installed [90]. To answer this question we encode the stated
privacy preferences as AppPAL policies, then use AppPAL to find the
apps that would be accepted by the policy. The extent a user is following
the policy is found by measuring quantitatively the percentage of apps
that the user has installed that met the policy as a percentage of the apps
they installed overall.

• What are the common decisions in BYOD policies, and are these the decisions
that MDM tools help to enforce?

This question lets us use AppPAL for a case-study into BYOD policies. We
do not have access to any data about BYOD usage, but we can examine the
policies. The research methods used to answer the question are encoding
into AppPAL (for the policies) and survey for the functionality of the
MDM tools. This allows us to further explore the policies on the basis
of our encoding, without having to deal with the ambiguity of natural
language policies.

We take various BYOD policies and express them in AppPAL. This can be
somewhat subjective, so care must be taken to capture the style and intent
of the original policy and to use a consistent set of predicates between
policies. With the policies encoded in AppPAL we can look for common
decisions, idioms and trust structures and make comparisons precisely
on the basis of the formal version of the policy. We survey the features

Chapter 1. Introduction 10

of various MDM tools by examining their websites and documentation.
Finally we contrast what MDM tools can do with the decisions that BYOD
policies want to make.

1.2.1 Thesis Outline and Publications

The rest of this thesis is organised into the following chapters. Some work
described has been presented at various conferences, workshops and PhD
symposiums through the course of the PhD. We describe the publications, and
show where they fit into the various chapters.

For each of our publications the work described was done by the first author:
Joseph Hallett (me, the thesis author). The second author, Professor Aspinall
(my PhD supervisor), provided invaluable suggestions and advice as to where
to go with the research as well as extensive editing.

• Chapter 2: Background. This chapter describes Becker et al.’s work
on SecPAL, and gives an overview of work on other policy languages
including XACML and DKAL as well as the fine-grained permission
systems used to enforce policies on Android devices.

• Chapter 3: Instantiating and Evaluating SecPAL. The next chapter in-
troduces AppPAL as a language instantiating SecPAL to describe the
policies of the mobile ecosystem. We introduce the language through
examples before showing how we implemented it. We also describe some
modifications to the language from SecPAL to make writing policies easier.
We conclude by describing our tools for analysing AppPAL policies for
satisfiability and redundancy errors.

Some early examples were taken from our paper:

– Towards an authorisation framework for app security checking [55]. This is
a PhD symposium paper that describes how we might use SecPAL to
model policies in the mobile ecosystem.

• Chapter 4: App Stores and App Preferences. Having described AppPAL,
this chapter starts to describe the di↵erences between di↵erent app stores
and survey their di↵erent terms and conditions. We use AppPAL to
capture descriptions of user’s app privacy preferences; and measure the

Chapter 1. Introduction 11

extent users follow these preferences when selecting apps by comparing
with records of user’s app installation history. Finally, we describe a tool
for generating curated app stores on the basis of a policy.

The implementation described, and work on capturing user’s privacy
preferences is included in our papers:

– AppPAL for Android [57]. This conference paper describes AppPAL as
an instantiation of SecPAL. We present AppPAL evaluation algorithm,
and show how to capture user privacy preferences as AppPAL policies.
We use the AppPAL versions of the privacy policies to find examples
of users following the policies in a user app-installation data set.

– Poster: Using Authorisation Logic to Capture User Policies in Mobile
Ecosystems [56]. This poster presents early work measuring the
extent users seem to follow an AppPAL translation of user privacy
preferences.

• Chapter 5: Applying AppPAL to BYOD Policies. We move from describ-
ing user-centric policies, to ones companies might want to enforce. We
look at how we can capture BYOD policies using AppPAL by looking
at 5 BYOD policies (which are included in Appendix A). In capturing
the policies, we identify two idioms that existing MDM tooling does not
capture. We also describe how AppPAL could be used to enforce a BYOD
policy by integrating with existing tooling.

This chapter encompasses and extends our work presented in:

– Capturing Policies for BYOD [59] This conference paper shows how
AppPAL can be used to capture the rules and trust relationships in
BYOD policies.

– Common Concerns in BYOD Policies [60]. This conference paper looks
at BYOD policies and our e↵orts to find common areas of concern
within them.

– Specifying BYOD Policies with Authorisation Logic [58]. This PhD
symposium paper describes early work capturing BYOD policies
with AppPAL. The paper describes how we could use AppPAL to
look for common problems, such as completeness.

Chapter 1. Introduction 12

• Chapter 6: Future Work. This chapter describes possible future work,
including a probabilistic variant of AppPAL.

1.2.2 Research Contributions

This thesis makes the following contributions:

• I show how SecPAL can be instantiated with predicates and conventions
to create a language called AppPAL to describe the policies of the mobile
ecosystem.

• I provide an open source implementation of SecPAL and AppPAL. This
also contains tooling for examining policies for common problems such
as consistency and redundancy. The previous implementation (by the
authors of the SecPAL paper [23]) is closed source, and runs only on
Windows. Our implementation is written in Java and will run in the JVM
and on Android devices.

• I describe a framework for measuring the extent users follow policies with
respect to their app choices. Using this framework and a collection of app
privacy policies found by surveying users [82], I show that users do not
seem to follow them in practice.

• I provide a table summarising the di↵erences in terms and conditions
between 5 di↵erent app stores.

• I provide a formal version of 5 di↵erent BYOD policies, written in AppPAL.
Using the formal versions of the policies to compare the contents of the
policies I identify two idiomatic forms of BYOD policy rules that have not
been examined before or supported by existing tooling.

It is di�cult to judge the extent the investigations in this thesis have been a
success. We do not, for the most part, provide any proofs that could be checked
to show our AppPAL policies are correct, more precise and more powerful than
the natural language ones we claim to capture. In fact, the act of writing down
the policies in AppPAL requires a degree of subjectivity to capture the style
and intent of the original policy. It would be reasonable to look at some of
our policies and say that a di↵erent version might be more accurate or more
descriptive.

Chapter 1. Introduction 13

As well as describing the policies, this thesis also describes how we can
compare and analyse the policies. The AppPAL language give us rules and
a grammar for capturing the policies, decisions and trust relationships of the
mobile ecosystem. It is, of course, possible to disagree with the way we have
captured and presented the policies—but our versions of the policies, and
approaches we have taken, can provide a baseline to compare future work
against. If future authors can find new policies (hopefully written in AppPAL)
that capture the trust relationships di↵erently, in more detail or more precisely,
then by comparing our two policies we could see precisely how they di↵er and
gain a greater understanding of the mobile ecosystem.

One approach to judging this work is to consider what the act of capturing
the policies in a formal language lets us do. We believe that expressing mobile
security policies precisely lets us see the trust relationships more clearly. It
allows us to make comparisons on the basis of a formalisation. It helps us
understand and argue about the policies. If by capturing the mobile security
policies, what we learn is interesting and leads to worthwhile discussion, then
our investigations are a success. Alternately if what we have discovered is
trivial, wrong, and our language fails to capture the policies in any way, then
this work must be judged a failure.

I believe the former is the case. This work is interesting. That my work
has lead to publications and informal discussions suggests it is interesting to
others too. There is an element of subjectivity in the way we have captured
the policies, but I believe the work presented in the rest of this thesis shows
that we do manage to capture the trust relationships and policies of the mobile
ecosystem successfully.

Chapter 2

Background and Related Work

How do computers make policy decisions and how can we capture the com-
puter’s decision making process. Suppose Alice, a researcher, wants to run
a program to analyse some data—how does the computer decide what she
can run and which data she can access? In this chapter we introduce formal
policy languages as a mechanism for capturing these decisions, and showing
how the decisions can be made. We given an initial example of a researcher
attempting to run a program on a computer and illustrate it with SecPAL—a
policy language for capturing access control decisions that forms the basis for
much of the work in the rest of the thesis. Policy languages (also called logics
of authorisation) describe rules for when to allow certain actions. We go on to
describe past and current work on policy and access-control languages, as well
as work on fine-grained permission systems that can be used to implement
policies on mobile devices.

2.1 SecPAL

The scenario in this section are based on an example given by Becker in the
original SecPAL paper [23], but extended and illustrated by us.

Suppose Alice, who works as a researcher, wants to run a program on her
computer to analyse some data. How does her computer decide whether she
is allowed to do this? The answer is that her computer has a policy—a set
of precise rules and a decision procedures that describe who is allowed to do
what. When Alice makes the request to run the program the computer checks
whether its policy permits Alice to run things and if so, runs the program as

14

Chapter 2. Background and Related Work 15

Alice ComputerRun program.exe

'computer' says
 'alice' canRun('program.exe').

Figure 2.1: Simple example of a policy scenario.

speaker
z }| {
‘user’ says

fact
z }| {
subject
z}|{
App

predicate
z }| {
isRunnable

condition
z }| {
if App isFree

constraint
z }| {
where hasPermission(App, ‘INTERNET’) = true .

Figure 2.2: Structure of a SecPAL assertion.

Alice requested.
A simple example of this might be Alice running programs on her own

personal computer. Her computer has the simple policy that Alice can run her
specific program. This is illustrated in Figure 2.1. Alice send a request to the
computer to run her program (the bold arrow) and the computer has a policy
that allows it to make decisions (the note).

’computer’ says ’alice’ canRun(’program.exe’).

The policy is written in SecPAL (the Security Policy Authorization Language):
an authorisation language developed by Becker, Fournet and Gordon to describe
policies and delegation chains for distributed systems [23]. SecPAL will be
explained by example through out the chapter, but in summary SecPAL is a
high-level human-readable language that separates policy specification and
maintenance from the implementation mechanisms. A summary of the di↵erent
parts of an assertion (a single SecPAL rule or statement) is shown in Figure 2.2,
and a BNF-description of SecPAL’s grammar is shown in Figure 2.7.

Chapter 2. Background and Related Work 16

When Alice sends her request what does the computer do? It takes Alice’s
request and constructs a query from it, and then checks the query against the
policy. If the query is valid with respect to the policy then the computer allows
Alice’s request. Written in SecPAL Alice’s query is:

AC,; ` ’computer’ says ’alice’ canRun(’program.exe’).

Assertions in SecPAL are made by an explicit entity called the speaker or
principal (the computer in this case) who says a fact about another entity called
the subject (’alice’). The subject of an assertion may also be a speaker, or
may be a voiceless entity the speaker says something about (the program, for
example). In SecPAL the speaker of an assertion represents the original entity
making the decision—assertions can be shared between principals (which we
will come to in Section 2.1.1) but in this case since it is the computer’s rule about
what programs Alice can run, it is the computer who makes the assertion.

The computer collects all of it’s policy rules into a structure called an assertion
context (AC), and attempts to decide whether the AC can be used to construct a
proof that the query q is true (under a possible variable substitution ✓, which in
this case is the empty set as there are no variables).

[’computer’ says ’alice’ canRun(’program.exe’).]
z}|{

AC ,✓ ` q
|{z}

’computer’ says ’alice’ canRun(’program.exe’).

SecPAL’s proof theoretic semantics are given in Figure 2.9, and the derivation
rules it uses to decide is a particular assertion holds or not are given in Figure 2.8.
SecPAL has two main forms of decision procedure: The ` form is used to
evaluate a query with respect to an assertion context, and the |= form is used
to decide whether, given an assertion context and a flag indicating whether
delegation is allowed, SecPAL’s derivation rules can be used to derive the
assertion from the assertion context.

Chapter 2. Background and Related Work 17

Alice ComputerRun program.exe

'computer' says
 User canRun(Program)
 if User isLoggedIn,
 Program isExecutable.

'computer' says 'alice' isLoggedIn.

'computer' says 'program.exe' isExecutable.

Figure 2.3: A policy scenario involving variables.

In this case, the proof Alice’s computer constructs is a simple application of
the cond-rule (Figure 2.4). The cond-rule states that a queried-assertion is valid
with respect to an assertion context if:

1. the assertion context contains an assertion that has the query as its head
(possibly under a variable renaming ✓),

2. all the conditionals in the body of the assertion are also valid with respect
to the assertion context,

3. any constraints are satisfied,

4. the fact in the head of assertion contains no variables (after the renaming
✓ is applied).

The computer’s query satisfies the policy, so it allows Alice to run her
program. This example is trivial: the policy contains one hard-coded rule and it
states explicitly that Alice can run the program (and there are no variables or
constraints). We can (and will) show much more complex policies that capture
more subtle behaviours and decisions, but this demonstrates the basic problem
policy languages aim to solve. Given a set of rules, when a system is asked to
make a decision what should it do and how can it show that the rules were
followed? The proof shows how the policy was evaluated, and acts as evidence
that the policy was followed.

Chapter 2. Background and Related Work 18

Of course, SecPAL can express more complex policies than a simple hard-
coded rule. A more realistic example might be that the computer allows anyone
who is logged-in to run programs that are marked as executable (Figure 2.3).
The policy now becomes:

’computer’ says User canRun(Program)

if User isLoggedIn,

Program isExecutable.

’computer’ says ’alice’ isLoggedIn.

’computer’ says ’program.exe’ isExecutable.

This introduces variables that allow entities to be generalised. Instead of
the rule specifying that Alice can run a specific program, Alice is replaced
by a variable user (who must be logged in) and the program is also replaced
by a variable with the condition that the program must be executable. Two
additional assertions are added to the policy: the first stating that Alice is logged
in, and the second stating that her program is executable. The proof (Figure 2.5)
becomes more complex, but it still gives us a structured way of showing how a
decision was made.

While assertions in an assertion context are allowed to contain variable
(subject to rules), SecPAL queries are not allowed to contain free variables.
Becker described an IN/OUT query safety condition (Figure 2.11) that ensured
that for any assertion context the set of possible answer substitutions would be
finite. A later extension to SecPAL added guarded universal quantification of
variables, however [22]. The extension allowed queries with a 8 in them, but
also required that the query include a guard—a statement to restrict the scope of
the free variable. For example, a query to search for all apps (known by Alice)
that that were recommended by Bob could be written:

8X

0
BBBBBBBBBB@

Guard
z }| {
Alice says X isApp.) Bob says X isRecommended.

| {z }
Guarded Query

1
CCCCCCCCCCA

In this query the Alice says X isApp. is the guard, restricting the scope of X
to the values that Alice says are apps, and the Bob says X isRecommended. is
the guarded query that provides the result.

In the last example the knowledge of who was logged in, and what was
executable was written in the computer’s policy. Not all information can be

Chapter 2. Background and Related Work 19

AC, inf |= ’computer’ says ’alice’ canRun(’program.exe’).

(’computer’ says ’alice’ canRun(’program.exe’).) 2 AC
|= > (no constraint)
vars(’alice’ canRun(’program.exe’)) = ;

Figure 2.4: A Simple SecPAL proof, presented in the Fitch style.

AC, inf |= ’computer’ says ’alice’ canRun(’program.exe’).

(’computer’ says User canRun(Program) if · · · .) 2 AC

’computer’ says User isLoggedIn.(User! ’alice’)

’computer’ says ’alice’ isLoggedIn. 2 AC
|= >
vars(’alice’ isLoggedIn.) = ;

’computer’ says Program isExecutable.(Program! ’program.exe’)

’computer’ says ’program.exe’ isExecutable. 2 AC
|= >
vars(’program.exe’ isExecutable) = ;

|= >
vars(’alice’ canRun(’program.exe’)) = ;

Figure 2.5: A more complex SecPAL proof involving variables.

Chapter 2. Background and Related Work 20

Alice ServerRun program.exe

'server' says
 User canRun(Program)
 if User isUser,
 Program isExecutable
 where timeSpent(User) < timePaidFor(User).

'server' says 'alice' isUser.

'server' says 'program.exe' isExecutable.

Figure 2.6: A policy scenario involving constraints.

captured by adding statements to a policy. Dynamic information, like time, can
be hard to encode for example. Suppose Alice isn’t using her personal computer
but a cloud server run by a third party. Alice has purchased some compute time
on the server, and once her time is up she can’t run any more programs. The
scenario is illustrated in Figure 2.6.

SecPAL captures policies that rely on dynamic, external information by
using constraints. A constraint is an arbitrary function that can return some
value (such as an entity, boolean, number or string) that is separate from the
decision procedures in SecPAL. In Figure 2.6, the timeSpent and timePaidFor
constraints return numbers. So long as Alice has spent less time than she’s
paid for she is allowed to run her program. How the constraints determine
these times this is opaque to the policy: they may go o↵ and query a payment
or usage tracking system, but from the point of view of the policy this is a
black-box. SecPAL has other mechanisms for handling delegated decisions that
allow for greater control over how delegation takes place within SecPAL, but in
this case we do not know how the functions work. The only limitation SecPAL
places on constraints is that if they contain variables, those variables must have
been removed (through renaming in the cond-rule) by the time the constraint is
evaluated.

Chapter 2. Background and Related Work 21

AC F assertion1 . . . assertionn (assertion context)

assertion F e says claim.
e F X (variables)

| ’A’ (constants)

predicate F has | can | . . . (predicates)

D F 0 (no further delegation)

| inf (unbounded delegation)

vp F predicate((e1, . . . en))? (verb phrase)

| can-say D? f (delegation of fact)

| can-act-as e (role assignment)

f F e vp (fact)

claim F f (if f1,. . . , fn)? (where c)?
c | e01= e02 (constraints)

| e01< e02 (constraints)

| . . .
e0 F e | function(e1,. . . en)

| true | false (booleans)

| integer (numbers)

Figure 2.7: BNF description of SecPAL as used in this thesis. As originally
described by Becker, SecPAL is hard to type as it uses subscripts and infinity
symbols. We replace these with ASCII equivalents, and allow a missing D in
the can-say statement (equivalent to can-say 0). Terminals are shown in red.

(A says fact if fact1, . . . , factk where c) 2 AC
AC,D |= A says facti✓ 8i 2 {1 · · · k}

|= c✓ vars(fact✓) = ;)

AC,D |= A says f act✓ cond

AC, inf |= A says B can-say D fact AC,D |= B says fact
AC, inf |= A says fact

can-say

AC,D |= a says B can-act-as c AC,D |= A says C verb-phrase
AC,D |= A says B verb-phrase

can-act-as

Figure 2.8: The derivation rules used to evaluate SecPAL. All SecPAL rules
are evaluated in the context of a set of other assertions AC as well as an
allowed level of delegation D which may be 0 or inf. The |= symbol is used by
Becker [23] to describe the derivation rules instead of the more usual `. This
is in order to distinguish SecPAL’s derivation rules, from SecPAL’s query rules
(given in Figure 2.9).

Chapter 2. Background and Related Work 22

C
on

ce
pt

s AC,✓ ` q Defining relation. A query assertion q is valid given the
assertions contained in the assertion context AC and a
variable substitution ✓.

✏ The empty substitution.

D
efi

ni
tio

ns
1. AC,✓ ` e says f act

| {z }
q

. if AC, inf |= e✓ says f act✓.
and dom(✓) ✓ vars(e says f act)

2. AC,✓1✓2 ` q1, q2 if AC,✓1 ` q1 and AC,✓2 ` q2✓1

3. AC,✓ ` q1 or q2 if AC,✓ ` q1 or AC,✓ ` q2

4. AC, ✏ ` not(q) if AC, ✏ 0 q and vars(q) = ;
5. AC, ✏ ` c if |= c

Figure 2.9: SecPAL’s proof-theoretic semantics as described by Becker [23].

Let ’a’ says fact if fact1 · · · factn where c. be an assertion.
A variable X 2 vars (fact) is safe if:

X 2 vars (fact1) [· · · [vars (factn)

The assertion ’a’ says fact if fact1 · · · factn where c. is safe if:

1. (a) If fact is flat (it is not a can-say fact), all variables in vars (fact) are safe.

(b) If fact is not flat (it is of the form E can-say fact0), E is a constant or safe
variable.

2. vars (c) ✓ vars
�

f act
� [vars (fact1) [· · · [vars (factn)

3. fact1 · · · factn are all flat.

Figure 2.10: SecPAL’s assertion safety conditions.

9O such that ; � q : O
q is safe

I � q : O

8>>>>>><>>>>>>:

q is the query.

I is the set of ground variables before evaluating q.

O is the set of newly ground variables after evaluating q.

fact is flat
I � e says fact : vars

�
e says fact

� � I
vars(c) ✓ I

I � c : ;
I � q1 : O1 I � q2 : O2

I � q1 or q2 : O1 \O2
I � q : O vars

�
q
� ✓ I

I � not(q) : ;
I � q1 : O1 I [O1 � q2 : O2

I � q1, q2 : O1 [O2

Figure 2.11: SecPAL’s IN/OUT query safety condition.

Chapter 2. Background and Related Work 23

2.1.1 Delegation in SecPAL

In the prior examples, Alice was trying to run a program on just one computer.
There was only one policy, and only two entities: Alice and the computer she
was trying to run her program on. What happens when the scenario becomes
more complex? What happens if there multiple entities, each responsible for
their own decisions? How do we capture delegation and trust using a formal
language?

A key feature of SecPAL is the ability to delegate statements. SecPAL was
designed to make access control decisions over large networks. Rather than
have a centralised decision server make all decisions, SecPAL allows the sharing
of information through assertions signed by their speaker. This allows di↵erent
principals to take responsibility for di↵erent decisions and make decisions
independently.

This time instead of Alice attempting to run a program on her own computer,
she will attempt to run a query on her university’s cluster using data from a
file-server, and by interacting with an HR department who know whose who in
the department (Figure 2.12).

Alice requests the cluster run a search on her data. Her data is on the
file-server. The cluster has a policy that only researchers can run the search. It
also has a rule that says the human resources department (HR) can say who is a
researcher.

’cluster’ says X canRun(’grep’)

if X isResearcher.

’cluster’ says ’hr’ can-say

X isResearcher.

The cluster queries HR if Alice is a researcher. HR responds by saying she is.

’hr’ says ’alice’ isResearcher.

The cluster does not know how HR knows that Alice is a researcher. But it is
content to trust HR’s assertion that she is. HR may have a SecPAL instance and
policy of their own to make this decision and send it to the cluster. Alternatively
they might be using a conventional database. Provided they give this SecPAL
assertion to the cluster, it does not care how they came by it. The one limitation
the cluster has is that it must be HR telling them. HR cannot delegate the

Chapter 2. Background and Related Work 24

Figure 2.12: Example of delegation when running a command on a cluster.
Bold links show requests, plain links show the sending of SecPAL statements,
and dotted links indicate delegation relationships. SecPAL assertions at each
location are shown in notes.

decision further.
The cluster is now convinced that Alice may run the search. It requests the

database from the file server. The file server knows that Alice can read her data
and that anyone who can read a file may say who else can read it.

’fileserver’ says ’alice’ canRead(’data.db’).

’fileserver’ says X can-say inf Y canRead(File)

if X canRead(File).

Using SecPAL, the file server determines that Alice can say who reads her data.
Alice gives the file server a statement that the cluster can read her file (for a
short time period).

’alice’ says ’cluster’ canRead(’data.db’)

where currentTime() < 01/02/2003.

The file server gives the cluster the data. The cluster runs the search and hands
the results back to Alice.

This simple example shows how di↵erent principals can make decisions
using delegation mechanisms. SecPAL allows for more complicated delegation

Chapter 2. Background and Related Work 25

Figure 2.13: Example of unbounded delegation.

Figure 2.14: Example of delegation with roles. Role relationships are shown
with dashed links.

relationships, however. The file server gave Alice the ability to delegate who
could read her file by using the can-say inf verb. Alice might allow Bob to
share her data set with others who might also be allowed to share it for a limited
time (Figure 2.13).

An alternative to asking to the HR server directly if Alice is a researcher is to
use roles (shown in Figure 2.14). Many people work in HR. The cluster might
accept the word of any of the people who work there. To do this the cluster
delegates to HR to name anyone who acts as HR. Suppose that HR responds
that Clyde can act for them.

’cluster’ says ’hr’ can-say

X can-act-as ’hr’.

’hr’ says ’clyde’ can-act-as ’hr’.

Chapter 2. Background and Related Work 26

Figure 2.15: Example of depth-bounded delegation.

Now, on the cluster, Clyde’s word is as good as HR’s. Clyde sends the necessary
facts about Alice. The policy check now runs as before. Note that the restrictions
on HR also apply to Clyde: he still cannot delegate the decision further. Clyde
may have more capabilities than HR if there are other provable assertions about
him. The can-act-as means that Clydes is at least as powerful as HR: he inherits
HR’s capabilities.

Depth-bounded delegation with the can-say statement is an alternative to
roles (Figure 2.15). Instead of letting HR state who is a researcher to HR,
the cluster lets HR decide who decides. HR delegates to Clyde and the process
continues as before. Depth-bounded delegation allows delegation statements to
be chained to an arbitrary (but finite) depth, without allowing for unbounded
delegation, as unbounded delegation can become problematic if loops of trust
are introduced. Loops of trust, as shown in Section 2.1.1, when there is a chain
of delegation between principals that forms a loop. SecPAL does not prohibit
setting up loops like and it is left to the implementation to detect and resolve
them, as they can cause the derivation rules to hang.

It is preferable to roles as it allows HR to delegate some but not all decisions
to others. If role assignment is used then, on the cluster, anywhere ’hr’ follows
the says in an assertion, then it can be replaced with ’clyde’: they are the
same.

Chapter 2. Background and Related Work 27

Alice Bob

'bob' can-say inf
 Y canRead('data.db').

Claire

'claire' can-say inf
 Y canRead('data.db').

'alice' can-say inf
 Y canRead('data.db').

Figure 2.16: Delegation with a loop of trust. Alice trusts Bob who trusts Claire
who trusts Alice in turn to make a decision.

SecPAL’s delegation mechanisms can describe many trust relationships
between entities, as we have described above. Yet it remains conceptually
and semantically simple, by using just the can-say and can-act-as phrases to
capture them. This power makes SecPAL attractive for situations where entities
are distributed and there is no central decision point, as we can capture the
trust relationships between entities and at di↵erent places. This makes SecPAL
a very appropriate language to model the policies of the mobile ecosystem, as
every device, user, company and store has their own policies and makes their
own decisions, sometimes by talking to each other. We will discuss our reasons
for using SecPAL to capture the policies of the mobile ecosystem further in
Chapter 3, but to summarise its ability to delegate and capture policies makes it
a good starting point.

2.2 Policy Languages

We introduced SecPAL to describe policies, and will study it further in the rest
of the thesis to describe the policies of the mobile ecosystem. Other policy
languages exist, however, and in this section we give a survey of some other
influential policy languages. A timeline of the development of the languages
mentioned here is shown in Figure 2.17.

Chapter 2. Background and Related Work 28

1990 1995 2000 2005 2010 2015

X.50
9

A
Calc

ulu
s for

Acc
es

s Con
tro

l [1
]

Auth
en

tic
ati

on
in

the
Ta

os
OS

[11
3]

Poli
cy

Mak
er

[27
]

Key
Note

[29
]

SPKI/S
DSI[4

3]

Dele
ga

tio
n Lo

gic
[77

]

Pon
de

r [39
], X

ACML

RT [78
], B

ind
er

[41
]

Cas
sa

nd
ra

[20
]

XACML 2.0

Sec
PA

L [23
]

DKAL [53
]

DKAL2
[54

], P
on

de
r2

[10
9],

Sec
PA

L4
P

[24
]

XACML 3.0
[88

]

Sec
PA

L4
DSA

[16
]

DKAL?
[68

]

App
PA

L [57
]

Figure 2.17: Timeline of the development of different policy languages.

PolicyMaker. PolicyMaker [27] is a language for permitted actions. It grew out
of the logics of authentication of Wobber, Abadi, Burrows and Lampson [113, 1];
as well as a dissatisfaction with identification mechanisms such as X.509 and
PGP certificates. These mechanisms identified users but could not link them to
what they could do.

To describe the authorisations, assertions hold trust information. Many
assertions form a policy. An assertion has a source (either the local policy
document or a public key). The source asserts that the holder of a key (or
more complex arrangements such as three of four keys) can do any action that
matches the filter. The filter itself is an arbitrary program that can make a yes/no
decision. Blaze et al. give examples using regular expressions and a reduced
version of AWK [4]. They note, however, that any programming language could
be used. The device policy can be queried by a key holder requesting a given
action.

To integrate PolicyMaker into a real system, software would have to be
modified to automatically send PolicyMaker queries to a central query server
in response to events, in order to decide what to do next. Blaze et al. give an
example of this scheme being used as part of an email server. A user, Alice
identified by key 0x12345678, can send emails with the from header set to Alice
and the organisation set to Bob Labs.

PolicyMaker is installed on a server. It receives queries and gives answers.
The policy installed on the server in this example would be:

policy ASSERTS

pgp:’0x12345678’

WHERE PREDICATE=regexp:’(From: Alice) &&

(Organization: Bob Labs)’;

Chapter 2. Background and Related Work 29

When Alice sends an email using a PolicyMaker enhanced SMTP client
she signs her message with her key. The mail server checks the signature and
queries the policy server with her message:

pgp:’0x12345678’

REQUESTS ’From: Alice

Organization: Bob Labs

Hello World!’;

If Alice’s message is okay, then the SMTP server will send it. If it does not
match the policy, then it will not.

KeyNote. PolicyMaker is the basis for KeyNote [31, 29]. KeyNote simplifies
the arbitrary filter languages, o↵ering instead one based on C that always
returns a boolean answer. KeyNote allows the policy server to do the signature
verification instead of the querying application. It also makes the syntax more
readable. KeyNote also trades PolicyMaker’s generality for a more realistic
scenario using public-key infrastructure. The prior policy for KeyNote could be
written:
Authorizer: ”POLICY”
Licensees: ”RSA:abc123”

KeyNote-Version: ”2”
Local-Constants: Alice=”RSA:12345678”
Authorizer: ”RSA:abc123”
Conditions: (app_domain == ”RFC822�EMAIL”) &&
(name=”Alice”) &&
(organization=”Bob Labs”);

As with PolicyMaker, the integration of KeyNote into any application is
left to developers. Consequently the automation of any queries (and deciding
what to do with whatever results KeyNote may return) is left to the application.
Blaze et al. note that [28]:

“KeyNote does not directly enforce policy it only provides advice
to the applications that call it. In other words, KeyNote assumes
that the application itself is trusted and that the policy assertions it
specifies are correct. Nothing prevents an application from submit-
ting misleading or incorrect assertions to KeyNote or from ignoring
KeyNote altogether.”

Chapter 2. Background and Related Work 30

Checking whether a PolicyMaker or KeyNote policy is satisfied is NP-
hard [30]. PolicyMaker assertions can involve arbitrary programs written in
Turing complete languages. Blaze et al. restrict these programs to those that run
in polynomial time for all inputs pertinent to a request.

A weakness of these languages is that they cannot express relationships
among users. You cannot have policy where the subject is a set of users. The
example policy could not be written as anyone working in R&D can send email
from Bob Labs.

SPKI/SDSI. Unlike PolicyMaker, SPKI/SDSI [43] was designed to associate
keys with roles. A user, Alice with key KA, can present a certificate that says
she can act as (a role assignment) a Bob Labs employee (authorised by Bob with
key KB) for one year.

(KA, BobLabsEmployee, KB, 1 year)

Bob can also create authorisation certificates to let his employees to send
emails. Optionally they can delegate the decision further.

(KB, (KB, BobLabsEmployee), ?, send email, 1 year)

PolicyMaker checks whether to allow a specific user’s action. SPKI/SDSI
associates users with roles and roles with tasks. The SPKI/SDSI version of
the email sending policy (shown above) does not specify that all emails sent
by Employees must have a field listing the lab as the sending organisation.
That part of the policy must be added by whatever implements the send email
functionality. One of the advantages of SPKI/SDSI is that it allows a higher-level
view of the policy by associating groups of users with a role, and roles with
allowed actions, rather than specifying the precise mechanism of the checks.

SPKI/SDSI does not have a formal semantics. The language’s precise meaning
must be inferred from RFC 2693, which loosely defines it in English [43]. There
are several later attempts at fitting semantics to the language [71, 2, 66, 34].
Not all covered every aspect of SPKI/SDSI’s features, however. No definitive
standard has appeared.

RT. The focus on roles led to the RT family of languages [79]. RT associates
policy decisions with roles. This is similar to how Role Based Access Control
(RBAC) systems associate access decisions to the roles a user holds. Policies are
expressed as Horn clauses. A rule such as:

Chapter 2. Background and Related Work 31

Bob.employee :- alice.

Bob.employee.sendEmail :- Bob.employee.

is read as Bob says Alice is an employee, and Bob says an employee can send emails if
they are an employee. Li et al. describe many variants of RT with various features.
The most basic variant is RT0 [81]. RT1 adds support for parameterised roles.
RT2 adds logical objects on top of the roles. As well as these variants, the RT
family of languages supports optional feature sets: RTT allows for policies
with thresholds (i.e. Alice can email someone if two out of three of the board
members of her company approve it). RTC adds constraints. Finally, RTD adds
delegation [79].

Unlike PolicyMaker, the RT family of languages is tractable. Li et al. prove a
guarantee that a query will be answered soundly in polynomial time in the size
of the policy. To give this guarantee, the researchers showed the languages could
be reduced to Datalog. Datalog is a database language with known complexity
guarantees and fast evaluation. Datalog is similar Prolog, but without negation,
complex arguments, and the is statement. They also showed similar languages,
like Binder [41] and Delegation Logic [80, 77], could be described using Datalog
as well.

Datalog is limited in that it cannot describe structured data. Consider a rule
that lets Alice send email between 9am and 5pm. We might want some function
to compare whether a time is within a range. In Datalog we cannot trivially
write this function. We would have to say for each possible time if it is in that
period. Generally, when there is data that has structure such as file paths, times
or numeric intervals: Datalog databases can become overly large.

To solve this Li et al. modified Datalog to create DatalogC [76]. DatalogC is
based on Constraint Datalog [98, 99] and supports constraints whilst keeping
Datalog’s tractability. It focuses on the constraints typical to a policy languages
(such as constraints for handling files and directories) instead of those for
database programming.

Showing a policy language is translatable to DatalogC allows the language
author to prove that evaluating policies in their language can be done with the
same time and space complexities as DatalogC. DatalogC is used as a foundation
for many other policy languages including SecPAL as well as RT.

Chapter 2. Background and Related Work 32

Ponder. Ponder, like SecPAL, is a language for specifying policies for dis-
tributed systems [39]. Ponder supports positive and negative authorisation,
delegation, obligation, roles and constraints. It uses constraints to extract the
attributes of principals, read state, and deal with time. A policy that trainee
engineers are not allowed to send emails could be written:

inst auth- engineersCanEmail {

subject e =/Engineer;

target /mail_server;

action send_email();

when e.status() == ‘‘trainee’’;

}

Since Ponder allows positive and negative policies, conflicts can occur. Pon-
der does not resolve the conflicts itself. Instead, it detects them using static
analysis and reports them to the policy author as bugs in the policy specifi-
cation. Ponder2 [109] simplified Ponder and added policies for decentralised
environments.

Ponder2 also provides a control language called PonderTalk, which lets
the decision engine send messages to the objects it manages, as well as the
objects send messages between themselves. This allows for the automation
of some queries in response to PonderTalk message being sent, as well as the
management of obligations by allowing di↵erent objects to notify others of what
they must do.

Cassandra. Cassandra is a trust management language to model large sys-
tems. It was demonstrated on the NHS Spine: a system to let healthcare workers
share patient data [20, 21]. The language is similar to RT, using both a DatalogC

and some of its syntax. Cassandra, however, focuses on roles instead of general
access control mechanisms. Principals activate roles when they need to act in its
capacity. This lets one principal hold di↵erent roles, with di↵erent capabilities,
at di↵erent times and at di↵erent locations. A hospital admin might allow a
clinician access to a patient’s records if they have the role of Clinician at the
hospital, and can activate the role of Treating Clinician for that patient at this
hospital:

Chapter 2. Background and Related Work 33

hospital@admin.permits(clinician, Read-Records(patient)) <-

hospital@hasActivated(clinician, Clinician(hospital)),

hospital@canActivate(clinician, TreatingClinician(hospital, patient))

A prototype of Cassandra was implemented allowing it to answer some of
the queries associated with requesting electronic health records, but this wasn’t
further developed (that we know of) into an automated system for supplying
health records.

Cassandra allows for powerful control of di↵erent roles, and enables delega-
tion by allowing third-parties to activate and remove roles on others. Becker
worked on Cassandra for his doctorate. He went on to work on SecPAL.

DKAL The DKAL family of languages [68, 53, 54] grew from SecPAL as a
policy language for a distributed system’s interacting agents [26]. Assertions
are communicated as signed statements called infons between principals. For
example Alice might wish to recommend Bob an app. Alice, therefore, sends to
Bob the infon:

alice said com.rovio.angrybirds is a good app.

Bob is free to do with this information as he wishes. He might accept app
recommendations from anyone and may have a rule to learn facts:

with M: String, P: Principal

upon

P said M is a good app

do

learn P said M is a good app

DKAL2 [54] simplifies DKAL language removing SecPAL’s constructs for
roles (the can-act-as statement) as the authors of DKAL and DKAL2 could
not find a use for them in practice. It also adds support for sending infons
if the recipient has completed an action: for example only sending an app
recommendation if the recipient has asked for it. DKAL? [68] took the ideas
of information sharing further and showed how to create executable protocols
from DKAL programs.

DKAL improves over SecPAL by giving a means for transferring and reacting
to information. These might be helpful to describe how protocols worked within
the mobile ecosystem and for expanding how obligation policies would be
triggered. The authors of DKAL showed that all SecPAL policies could be

Chapter 2. Background and Related Work 34

expressed in DKAL [53].
The work on AppPAL in this thesis is based on SecPAL rather than a DKAL-

based language. As DKAL extends SecPAL, and is backwards compatible with
SecPAL, AppPAL could gain, if needed, increased expressiveness and the ability
to describe protocols just by switching interpreters. For the work described in
this thesis however, we did not require the additional expensiveness.

XACML XACML is a policy language with an industrial standard [88] that
can be extended to fit many scenarios. It is an attribute based policy language,
but can also describe role-based policies. It has tooling and enforcement
infrastructure available from Oracle. The third version of the language (which
supports delegation) was released just after we started our own work on
AppPAL. As a standard, it is important to summarise and briefly describe why
we chose to base our own work on SecPAL, a comparatively obscure policy
language, instead of the more well-known XACML.

XACML policies are expressed as sets of rules that describe whether a specific
action should be allowed or denied. When making a request if a rule’s target
matches it then the appropriate action should be taken. Rules are combined
into policies containing many rules which can contradict each other if multiple
ones match a given request. To handle contradictions a combining algorithm is
used to decide how to proceed. Typical algorithms include:

Permit-overrides. If a rule gives a permit result, then the request is permitted.

Deny-overrides. If a rule gives a deny result, then the request is denied.

First-applicable. The rules have an order of precedence. The first rule that
gives a result decides the outcome.

Only-one-applicable. Only one rule may match. If there are multiple matches,
then an error is returned.

XACML’s designers used natural language to describe the semantics of
XACML. This makes the semantics notoriously di�cult to interpret [94]. There
have been several attempts to describe XACML’s semantics formally [95, 96, 33].
Some of these translations only describe a subset of XACML’s syntax [62].
Others describe older versions of XACML which are not compatible with the

Chapter 2. Background and Related Work 35

latest language versions [3], Others have been found to contain mistakes caused
by ambiguities in the XACML specification [32, 62]. All these attempts help
us understand XACML, but the lack of a single standard semantics make it
less attractive to extend to a new domain. As the language grows and changes
there are no present guarantees that any of the formal semantics will remain
correct and applicable to the current version of XACML. In contrast, SecPAL’s
semantics are given precisely by Becker [23].

Whilst SecPAL was designed for readability, XACML policies are verbose
and di�cult to read. For example, to describe a simple policy that grants a
principal, Alice, permission to do whatever she wants we might write the policy
shown in Figure 2.18.

To help developers write policies, alternative notations are available that
compile into XACML’s XML notation. ALFA is an alternate notation for
XACML [89] maintained by the XACML developers. The equivalent ALFA
policy of the above allow Alice all policy would be:

namespace alice {

policy policy {

target clause Attributes.subjectId == ”alice”
apply permitOverrides

rule {

permit

}

}

}

The ALFA policy is more concise and shows the policy’s meaning more
clearly than the XACML version. There is an (Eclipse based) compiler for ALFA
policies into XACML [14], but there are not tools for translating XACML to
ALFA. This means that any XACML policies would need to be rewritten to
take advantage of ALFA’s syntax, and that any tweaks made to a XACML
policy cannot be trivially reintegrated into the ALFA version. Furthermore,
any analysis of XACML’s semantics cannot be trivially used to understand the
semantics of ALFA.

Other notations exist including graphical languages [86], languages based
on propositional logic [116] and answer set programming [95].

Whilst XACML 3.0 does support delegation [87], earlier versions do not. The
XACML 3.0 standard was published in 2013, after deciding to start work with

Chapter 2. Background and Related Work 36

<xacml3:Policy xmlns:xacml3=”urn:oasis:names:tc:xacml:3.0:core:schema:wd�17”
PolicyId=”http://axiomatics.com/alfa/ identifier / alice . policy ”
RuleCombiningAlgId=”urn:oasis:names:tc:xacml:3.0:rule�combining�algorithm:permit�

overrides”
Version=”1.0”>
<xacml3:Description />

<xacml3:PolicyDefaults>

<xacml3:XPathVersion>http://www.w3.org/TR/1999/REC-xpath-19991116</xacml3:

XPathVersion>

</xacml3:PolicyDefaults>

<xacml3:Target>

<xacml3:AnyOf>

<xacml3:AllOf>

<xacml3:Match MatchId=”urn:oasis:names:tc:xacml:1.0:function:string�equal”>
<xacml3:AttributeValue

DataType=”http://www.w3.org/2001/XMLSchema#string”>alice</xacml3:
AttributeValue>

<xacml3:AttributeDesignator

AttributeId=”urn:oasis:names:tc:xacml:1.0:subject:subject�id”
DataType=”http://www.w3.org/2001/XMLSchema#string”
Category=”urn:oasis:names:tc:xacml:1.0:subject�category:access�subject”
MustBePresent=”false”
/>

</xacml3:Match>

</xacml3:AllOf>

</xacml3:AnyOf>

</xacml3:Target>

<xacml3:Rule

Effect=”Permit”
RuleId=”http ://axiomatics.com/alfa/ identifier / alice . policy .Id 18”>
<xacml3:Description />

<xacml3:Target />

</xacml3:Rule>

</xacml3:Policy>

Figure 2.18: A permissive XACML policy.

Chapter 2. Background and Related Work 37

SecPAL. Despite XACML having a mechanism for delegation its semantics, like
the rest of the language, are poorly defined in natural language. The standard
gives one example of how delegation in XACML can be used: a company has
a printer and Carol is responsible for saying who can use the printer. She
delegates to Bob who in turn grants Alice the right to use the printer. An excerpt
from the XACML delegation policy example is shown in Figure 2.19. The full
policy set is split into three smaller policies1

’company’ says ’carol’ can-say inf

Person:X canUse(Printer:P).

’carol’ says ’bob’’ can-say

Person:X canUse(Printer:P).

’bob’ says ’alice’ canUse(Printer:P).

Using ALFA we can also write delegation policies in the style of XACML. An
example (taken from [15]) might be a policy for a bank where only the account
holder, or the account holder’s guardians can view their account:

policy account{

target clause object.objectType == ”account”
apply firstApplicable

rule viewAccount{

target clause action.actionId == ”view”
condition (user.username == account.owner) ||

(stringIsIn(stringOneAndOnly(user.username),owner.guardians))

}

}

The equivalent in AppPAL would be:

’bank’ says Person:O canView(Account:A)

if A hasOwner(O).

’bank’ says Person:G canView(Account:A)

if A hasOwner(O),

O hasGuardian(G).

’bank’ says Person:P can-say

P hasGuardian(Person:G).

1An individual decision in XACML is called a policy. Many policies form a policy set.

Chapter 2. Background and Related Work 38

<PolicySet PolicySetId=”PolicySet1”
Version=”1.0”
PolicyCombiningAlgId=”urn:oasis:names:tc:xacml:1.0:policy�combining�algorithm:permit�overrides”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema�instance”
xmlns=”urn:oasis:names:tc:xacml:3.0:core:schema:wd�17”
xsi:schemaLocation=”urn:oasis:names:tc:xacml:3.0:core:schema:wd�17 xacml�core�v3�schema�wd�17.xsd”>

<Target/>

<Policy PolicyId=”Policy1”
Version=”1.0”
RuleCombiningAlgId=”urn:oasis:names:tc:xacml:1.0:rule�combining�algorithm:permit�overrides”>

<Target>

<AnyOf> <AllOf>

<Match MatchId=”urn:oasis:names:tc:xacml:1.0:function:string�equal”>
<AttributeValue

DataType=”http://www.w3.org/2001/XMLSchema#string”
>employee</AttributeValue>

<AttributeDesignator Category=”urn:oasis:names:tc:xacml:3.0:attribute�category:delegated:urn:oasis:names:tc:xacml:1.0:subject�category
:access�subject ”

AttributeId=”group”
MustBePresent=”false”
DataType=”http://www.w3.org/2001/XMLSchema#string”/>

</Match>

</AllOf> </AnyOf>

<AnyOf> <AllOf>

<Match MatchId=”urn:oasis:names:tc:xacml:1.0:function:string�equal”>
<AttributeValue

DataType=”http://www.w3.org/2001/XMLSchema#string”>printer</AttributeValue>
<AttributeDesignator Category=”urn:oasis:names:tc:xacml:3.0:attribute�category:delegated:urn:oasis:names:tc:xacml:3.0:attribute�

category:resource”
AttributeId=”urn:oasis:names:tc:xacml:1.0:resource:resource�id”
MustBePresent=”false”
DataType=”http://www.w3.org/2001/XMLSchema#string”/>

</Match>

</AllOf> </AnyOf>

<AnyOf> <AllOf>

<Match MatchId=”urn:oasis:names:tc:xacml:1.0:function:string�equal”>
<AttributeValue

DataType=”http://www.w3.org/2001/XMLSchema#string”>print</AttributeValue>
<AttributeDesignator Category=”urn:oasis:names:tc:xacml:3.0:attribute�category:delegated:urn:oasis:names:tc:xacml:3.0:attribute�

category:action”
AttributeId=”urn:oasis:names:tc:xacml:1.0:action:action�id”
MustBePresent=”false”
DataType=”http://www.w3.org/2001/XMLSchema#string”/>

</Match>

</AllOf> </AnyOf>

<AnyOf> <AllOf>

<Match MatchId=”urn:oasis:names:tc:xacml:1.0:function:string�equal”>
<AttributeValue

DataType=”http://www.w3.org/2001/XMLSchema#string”>Carol</AttributeValue>
<AttributeDesignator

Category=”urn:oasis:names:tc:xacml:3.0:attribute�category:delegate”
AttributeId=”urn:oasis:names:tc:xacml:1.0:subject:subject�id”
MustBePresent=”false”
DataType=”http://www.w3.org/2001/XMLSchema#string”/>

</Match>

</AllOf> </AnyOf>

</Target>

<Rule RuleId=”Rule1” Effect=”Permit”>
<Target/>

</Rule>

</Policy>

Figure 2.19: Excerpt from XACML delegation example [87].

Chapter 2. Background and Related Work 39

Figure 2.20: The XACML reference architecture.

XACML also defines a reference architecture for anyone using XACML,
shown in Figure 2.20. The architecture consists of five major policy points. The
reference architecture describes how to setup the policy points so that queries
can be made and answered automatically. The PEP stands between the users
and the files (for example) they are trying to access. When a user tries to access a
file the PEP sends a query to the PDP (which makes the decision), and enforces the
policy by either granting or denying access. In order to make the decision PDP
requests policies from the PRP (which are updated by an administrator editing
the policies at the PAP), and using information from the PIP.

XACML’s architecture fits well with a centralised architecture, where dis-
tributed PEPs talk to local PDPs which retrieve policies from a centralised PRP.
For a decentralised scenario the architecture fits less well as the decision point
may have to retrieve policies and decisions from multiple sources (which may
in turn require more decisions and policies to be retrieved).

SecPAL Extensions. We started this chapter, by describing SecPAL. Since
SecPAL was first described various tweaks and extensions were made to the
language. SecPAL was extended to allow existential queries. This allowed it
to answer queries such as “does Alice say Bob can read any of her files?” or “do

Chapter 2. Background and Related Work 40

all Alice’s apps meet her installation policy?”, which could only be answered by
manually making multiple queries before. Becker also described the possibility
of dynamic assertion retrieval, which would allow SecPAL to fetch and add
assertions to its assertion context when making queries. In the case of delegation
this would allow a delegated principals assertions to be imported dynamically
rather than having to be present in the AC before evaluating a query. Becker
defined a safety condition, but didn’t describe a protocol for retrieving assertions,
however [22].

Becker also noted that roles and the can-act-as statement had proven to be of
limited use. Delegation using can-say could replace it with greater control in all
cases Wherever that can-act-as to use exclusively depth bounded delegation (as
we showed in Section 2.1.1).

2.3 Fine-Grained Permission Systems

Whilst policy languages, in general, give us a mechanism to describe trust
relationships and decisions in general. Fine-grained permission systems are a
type of policy language to control app behaviour on Android. In this section
we survey some of the developments here.

This section looks exclusively at Android as that is where the bulk of the
research has been. It is relevant to our work as these alternative permissions
schemes have been used to describe the policies about how users wish to use
their devices. The majority of the work has looked at Android: perhaps because,
unlike iOS, the operating system can be modified to incorporate new features.

To access some APIs, such as access to private storage, Android apps must
ask for a permission. Permissions are a coarse usage control mechanism. Until
2015 (and Android Marshmallow), users could not control which permissions
an app had (by default) and not installing an app was the only way to stop an
app accessing data, without modifying Android. Since Android Marshmallow,
users can disable many of an app’s permissions after installation.

The coarseness of Android’s permission system, and its relative inflexibility,
has led to a line of research into fine-grained permissions systems. These
systems add extra permissions controls, and allow greater control of their
enforcement. We describe several notable examples and what extra controls
or new enforcement means the fine-grained permissions systems o↵ered. A

Chapter 2. Background and Related Work 41

fine-grained permissions system is designed to enforce app policies, whereas
our work on AppPAL is about capturing the broader policies of the entire
mobile ecosystem. A fine-grained permissions system could be plugged into
AppPAL, via the constraints mechanisms, to allow enforcement of fine-grained
permissions policies, if we wished to capture and use these tools.

Some of the earliest work on fine-grained permissions systems for Android
starts with Enck et al.’s work on Kirin [45]. Kirin allowed a user to define what
behaviour they considered acceptable using a policy language. Kirin ran on the
device to certify apps using static analysis. If an app did not conform to the
policy the user would be warned and could uninstall it. A natural next question
is rather than rejecting the entire app, can you just reject the behaviour you don’t
like? Ontang et al.’s SAINT tool [91] did just that for inter-app communication,
allowing the user to express a policy about the circumstances two apps could
share data or call functionality. Similarly, Apex [85] allowed user’s to specify
at install time constraints as to when a permission could be used. CRePE [36]
took these ideas further allowing permissions to be denied based on context (for
example the user was on a train, or the user was within Bluetooth range of their
computer).

Dr. Android and Mr. Hide [69] was a fine-grained permission scheme that
worked by rewriting apps to use guarded APIs. AppGuard [17] worked similarly
to Dr. Android, but allowed for controlled responses when a permission was
denied—essentially ensuring that the app didn’t crash if it didn’t get access to
the data it expected to. Aurasium [114] works by modifying apps to monitor
system calls and IPC mechanisms via GOT hijacking in the Bionic libc, allowing
their policies to e↵ect native code which earlier tools ignored.

Jin et al. developed a fine-grained permission system that targeted apps
written using the PhoneGap framework, that enable developers to create
portable native apps from web apps [70]. Dai et al. proposed a fine-grained
permissions scheme that controlled apps (and IoT devices) access to media
stored on cloud based services based on a user’s policies [38].

Chapter 2. Background and Related Work 42

2.4 Moving Forward

This chapter described SecPAL, and a number of other policy languages designed
in the same time frame. We also described a number of fine-grained permissions
systems that have been used to enforce policies on Android. In the next chapter
we show how we took SecPAL and instantiated it to describe the policies
surrounding mobile devices. In doing so we created AppPAL. We describe the
language and our implementation of it in Chapter 3.

AppPAL fits into this background of policy languages by instantiating
SecPAL for a new domain. It does not have new semantic language features to
describe new kinds of policies. Instead, its novelty lies in the application to a
domain that has not before had its policies captured using a precise language.

Chapter 3

Instantiating and Evaluating
SecPAL

The mobile ecosystem (which we define as the devices, users, stores, developers
and policies surrounding the ways we use mobile devices) contains many
interacting entities, including devices interacting with their users, app stores
selling software, developers building apps, wireless access points devices
connect to, and the companies and networks the devices and their users work
within.

Every entity in the ecosystem has its own policies. For example, there is a
contract between the store selling apps and the developer programming them.
The stores have content policies as to which apps they will sell, often prohibiting
sexual or illicit content. The app developers may have preferences as to which
stores they will sell their apps in, favouring stores with higher market shares,
or which take smaller cuts of the app sale price. Not all policies are as formal as
a contract: a user may have preferences about which kinds of apps he wants to
install but may not write these preferences down. Instead, he might pick apps
to install from a store based on his best guess whether it matches his preferences.
The mobile ecosystem is a distributed system. Phones, users and stores are not
aware of each other until they interact—there is no list of every app store, every
device and every user. They must make policy decisions on their own without
relying on a central authority to make decisions for them. They can, if required,
delegate to others for their policies and knowledge.

Formal languages let us write policies without ambiguity and describes
precisely the process behind making decisions. A policy written in a formal lan-

43

Chapter 3. Instantiating and Evaluating SecPAL 44

Alice’s Phone

AppPAL Apps

filters
AppPAL enhanced store

AppPALPolicy

App Store

Apps

buys from

buys from
Policy

Employer

User

Policy

describes
company

policy

Vetting service

Tool
checks
apps

Policy

«composes»

describes
checks

describes
personal

policy

Developer

Policy

sells
apps on

Figure 3.1: Entities in the mobile ecosystem and some of the policies surround-
ing them.

guage describes what decisions can be made. Translating policies into a formal
language allows for rigorous comparisons of di↵erent policies, preferences and
rules in mobile ecosystems. Writing the policy in a formal language gives a
precise meaning and perhaps allows it to be checked automatically, if the policy
is decidable.

Becker et al. designed SecPAL to make access control decisions in distributed
systems [23]. SecPAL is expressive, has a clear and intuitive syntax, is decidable
and extensible. That SecPAL is extensible is important as we can apply the
language to a new domain by instantiating it with predicates and constraints.

This chapter introduces how SecPAL is instantiated to describe the policies
surrounding mobile ecosystems. We explain why SecPAL is a good choice
to describe policies in the mobile ecosystem. I introduce AppPAL as an
instantiation and implementation of SecPAL for mobile device policies.

3.1 Why SecPAL

There are many policy languages. Some target specific domains: such as Ponder
which targets firewalls, OS’s and databases [39]. Others, such as Cassandra, focus
on credential management [20]. Some are general like XACML [88]: designed
to express access control decisions from a variety of domains. Di↵erent policy
languages are described in greater detail in Chapter 2.

Chapter 3. Instantiating and Evaluating SecPAL 45

The mobile ecosystem has specific requirements for a policy language to
describe its policies. Namely, we need a policy language that can express:

Delegation. Sometimes entities may wish to share information and policy
rules. A user might delegate to an expert user to help them decide what
policies they want to use. An app store might use information from an
app vetting firm to decide what apps to sell. A company might want HR
and IT departments to be responsible for some decisions, and they in turn
might wish to give specific HR or IT workers specific decisions to make.
Capturing these relationships lets us describe precisely who makes what
decisions in the mobile ecosystem.

Locality. In the mobile ecosystem di↵erent devices can have di↵erent policies.
For example, two users of mobile phones may disagree about what makes
an app installable (i.e. acceptable to install). Equally, the policies a store
may wish to enforce are very di↵erent from the policies a user may wish
to enforce. The locality of a query is the place where the decision is being
made, typically in the immediate vicinity of an entity such as a user or
store. Each entity in the ecosystem also expects to enforce their own
policies—there is no overarching enforcer of policies, rather users enforce
whatever preferences they have, stores enforce their own rules through
whatever means they see fit. Being able to point to the location a decision
is made is important when considering delegation: a user might ask a
friend if an app is good: we want to distinguish between the friend telling
the user directly, and the friend giving the user su�cient information to
draw the conclusion themselves.

Access external information. There are many tools and sources that can give
us information about apps (as well as other subjects). These tools each
give information in their own way: be it employee data through an SQL
database, terminal output through a command line analysis tool, or HTML
output onto an app store’s web-page. We want to be able to make use
of this information when writing policies, but we should not rely on all
tools standardising on our policy language as a universal information
transfer mechanism. We want our policy language to be able to capture
the policies which use these external sources without forcing the tools

Chapter 3. Instantiating and Evaluating SecPAL 46

themselves to work in any particular manner. In other words, the policy
specification should be separate from its enforcement.

Constraints. As well as external information, we’d also wish our policy lan-
guage to capture dynamic information such as the time of day or the
current location of a device. This information is sometimes incorporated
into a policy language through constraints. This would allow us to start to
create rules that depend on the context of the user. For example a company
boss might want to check what time their employees get into work. To do
this the boss requires their employees install an app that gives him their
location. Employees might allow their boss to check on them during the
work day, but during the weekend and the evenings the employee would
rather their boss could not see where they were.

Flexibility of Policy Style. The mobile ecosystem encompasses many scenarios.
A company looking to enforce a mobile device policy would use a MAC-
style policy, but a user trying to filter what APIs an app can access may
write a policy in a DAC-style. A user trying to describe might be happy to
install an app with certain permissions if the app has a particular purpose.
For example a user might be happy to install a file management app
that can access a memory card, but not happy to install a torch app with
the same set of permissions—a policy reminiscent of an RBAC or ABAC
policy. We want to capture all these policies, and we would want our
policy language to be agnostic to any particular policy style.

We chose SecPAL as the basis for our policy language for mobile ecosystems
as it provides the features we wanted. By using its can-say and can-act-as phrases
we can capture di↵erent delegation patters (as described in Section 2.1.1).

Every assertion in SecPAL is made by an explicit speaker, who should sign
each statement with a key. This gives locality to statements. If we have an
assertion from Alice that she thinks an app is good then it must have come
directly from Alice. If we just have assertions from Alice that describe the
general process for deciding if an app is good or not, then we might reasonably
believe that the decision whether Alice would consider an individual app good
or not might be made elsewhere.

SecPAL’s constraint mechanism (the where part of an assertion) lets us
implement the constraints we described but also allows us to access external

Chapter 3. Instantiating and Evaluating SecPAL 47

information. Constraint functions can be written to run a particular tool, or
make a query to a database, allowing us access to external information.

SecPAL policies are style agnostic, and the language does not prescribe a
particular style to write polices in. It is easy to capture idiomatic policy styles
using SecPAL. For example, a classic example of a DAC-style policy are UNIX
file permissions. The decision by an OS whether to allow a user (U) to read a file
(F) based on the permissions on the file-system (FS) can be written in SecPAL:

’os’ says User:U canRead(File:F)

if F hasOwner(U),

F hasPermissionsMask(’400’).

’os’ says User:U canRead(File:F)

if F hasGroup(G),

U isMemberOf(G),

F hasPermissionsMask(’040’).

’os’ says User:U canRead(File:F)

if F hasPermissionsMask(’004’).

’os’ says ’fs’ can-say File:F hasOwner(User:U).

’os’ says ’fs’ can-say File:F hasPermissionsMask(Mask:M).

Similarly, we can also capture the simple and star MAC rules of the Bell-LaPadula
model (the read-down, write-up rules) using SecPAL:

’admin’ says User:U canRead(File:F)

if U isSecurityLevel(LU),

F isSecurityLevel(LF)

where LU >= LF.

’admin’ says User:U canWrite(File:F)

if U isSecurityLevel(LU),

F isSecurityLevel(LF)

where LU <= LF.

Writing RBAC, or ABAC-style policies is similarly easy. Unlike some languages,
such as Cassandra [20] or RT [78], which encourage a certain style of policy,
SecPAL doesn’t say how a policy should be written, it instead lets the policy
author write their rules as they see best.

As well meeting our requirements for a policy language, we agree with
Becker et al.’s assertion that SecPAL is readable and has evaluation rules that

Chapter 3. Instantiating and Evaluating SecPAL 48

are easy to understand and unsurprising [23]. This again makes SecPAL a good
fit to describe the policies of the mobile ecosystem as even someone unfamiliar
with SecPAL might be able to look at an assertion and be reasonably expected
to understand what the assertion means.

Tschantz and Krishnamurthi defined various reasonability properties (prop-
erties that determine how well someone might predict how a policy will behave)
for policy languages [108]. They note that compared to languages based on
first-order logic (like SecPAL):

“policies written in XACML are more transparent than policies
written in languages based on first-order logic”

In their paper, Tschantz and Krishnamurthi compare a restricted version of
XACML (Core XACML) to three first-order logic based languages: FOL, Lithium
and L5. Tschantz and Krishnamurthi go on to define their properties: totality
if the language always makes a decision, determinism if the language always
makes the same decision given the same query, monotonic if the policy makes the
same decisions if the rules are reordered, safety if adding a facts from a policy
only allows more permit decisions to be made and independent composition if the
results of querying the policy as a whole are no di↵erent from querying subsets
of the policy’s rules and combining them. They note that whilst Core XACML
is deterministic it is not safe, does not have independent composition and is not
monotonic.

SecPAL in contrast is total (by the closed world assumption), is monotonic
(there are no policy combinators and negation is not allowed in policies), and
has independent composition (there are no policy combinators). If the policy
is always structured to use the same form of decision (the policy always uses
canRead instead of canNotRead, for example) then the language is safe too.
SecPAL without constraints is also deterministic, and if constraints are used
then the language is deterministic only if the constraints themselves are1. SecPAL
seems, therefore, to meet most of Tschantz and Krishnamurthi criteria for a
reasonable language, despite being based of first-order logic.

Other languages, perhaps such as XACML or Ponder, could have been used
as a starting point for a policy language. We chose SecPAL, however, as the
basis for AppPAL—a policy language for mobile ecosystems.

1A constraint which rolled a dice and checked if the number rolled was 2 would not be
deterministic but could be used in SecPAL.

Chapter 3. Instantiating and Evaluating SecPAL 49

3.2 Basic Examples of AppPAL

AppPAL is a policy language that describes the policies of the mobile ecosystem.
To be more precise: it is SecPAL, with a slightly modified syntax to allow for
additional typing constraints (described in Section 3.3.2) and to aid machine
parsing. As well as the modified syntax, AppPAL also instantiates SecPAL
(which is generic) to with the predicates and types to talk about mobile security
policies (Section 3.3).

One example of the policies AppPAL might describe is a user selecting which
apps they want to use on their phone. Suppose a user, Alice, decides that an
individual app (Angry Birds, for example) is okay to use on her phone. This is
written as:

’alice’ says ’com.rovio.angrybirds’ isInstallable.

Having decided the app is the one Alice wishes to use she tells the de-
vice’s package manager that it must install the app. The package manager
might be connected to an app store (such as the Play Store on Android: the
com.android.vending APK file), a MDM program such as iOS’s Volume Pur-
chase Program (VPP), or an IT manager manually provisioning devices. The
user may not know who fills the role of the package manager but most systems
provide one nevertheless.

’alice’ says ’package-manager’

mustInstall (’com.rovio.angrybirds’).

’alice’ says ’com.android.vending’ can-act-as ’package-manager’.

Additionally Alice may allow her workplace to dictate some apps that must be
installed (a delegation).

’workplace’ says ’alice’ mustInstall(’com.microsoft.office.word’).

’alice’ says ’workplace’ can-say

’alice’ mustInstall(’com.microsoft.office.word’).

This policy works with single apps: Alice decides which apps to install and lists
them. This is an accurate description of how users currently interact with stores
and their devices. Users may have more complicated rules for deciding what to
install, but following the rules is usually left to the user’s own self-discipline.

Policy languages allow for greater generality. A cautious user may only

Chapter 3. Instantiating and Evaluating SecPAL 50

install Android apps with certain permissions2.

’user’ says App isInstallable

if App hasntPermission(’CAMERA’),

App hasntPermission(’INTERNET’),

Others may avoid apps that allow them to spend money within the app.

’user’ says App isInstallable

if App cannotMakeInAppPurchases.

Some users may rely on an AV program installed on their phone. The phone
can only install apps checked by the AV program.

’user’ says App:A isInstallable

where runAV(A) = ’safe’.

Alternatively a user may allow an app to be installed if two or more of their
friends are willing to recommend the app to them.

’user’ says App isInstallable

if App isRecommendedBy(Friend1),

App isRecommendedBy(Friend2)

where Friend1 != Friend2.

’user’ says Friend:F can-say

App:A isRecommendedBy(F).

3.2.1 AppPAL Policies for App Stores

AppPAL gives a language for describing these decision-making processes. By
writing down policies in formal language we not only start to allow machine-
based decision-making, avoiding the need for user’s self-control, but we also can
compare di↵erent policies. This goes beyond describing user’s app preferences.
Consider the two largest mobile operating systems: Apple’s iOS and Google’s
Android. When comparing the systems Apple’s is often described as a walled-
garden whereas Android is an open-platform [18, 44]. Language like this is
informal. It hints at the di↵erences without giving them precisely.

Using AppPAL we can model the di↵erences between the two systems and
make more meaningful comparisons. The walled-garden comments relate to

2Permissions are the access control mechanism for device features used by Android.

Chapter 3. Instantiating and Evaluating SecPAL 51

their di↵erent app store models. Users of iOS can only install apps from the
App Store3. If a user is willing to install a special certificate, from a developer or
business, however they may install apps through the browser or a computer
connected to the device. Apple controls these special certificates, issuing and
revoking them. They must also be authorised by the device’s owner.

’device’ says App isInstallable

if App hasBeenSignedBy(Cert),

Cert hasIssuer(’apple’).

’device’ says App isInstallable

if App hasBeenSignedBy(Cert),

Cert hasIssuer(X),

’apple’ hasAuthorized(X),

’device’ hasOwner(U),

U hasAuthorized(Cert)

where validCertificate(App, Cert) = true.

’device’ says Authority:A can-say A hasAuthorized(Certificate:C).

In contrast, an Android user is free to install any signed app (though who signed
it is not immediately important). Unless the user has enabled side-loading, the app
must come from the Play Store, as opposed to a file downloaded through another
app store or the internet. Alternatively, if the user has enabled developer-mode
then they may install apps through the Android Debug Bridge (ADB).

’device’ says App isInstallable

if App hasSource(’play-store’),

App hasBeenSignedBy(Cert)

where validCertificate(App, Cert) = true.

’device’ says App isInstallable

if App hasSource(’file’)

’device’ hasOwner(U),

U hasAuthorized(’sideloading’),

App hasBeenSignedBy(Cert)

where validCertificate(App, Cert) = true.

3The App Store is Apple’s marketplace for selling apps, an app store is a generic term for an
on-device store selling apps.

Chapter 3. Instantiating and Evaluating SecPAL 52

’device’ says ’settings-app’ can-say

U hasAuthorized(’sideloading’).

’device’ says App isInstallable

if App hasSource(’adb’)

’device’ hasOwner(U),

U hasAuthorized(’developer-mode’).

’device’ says ’settings-app’ can-say

U hasAuthorized(’developer-mode’).

’settings-app’ says ’user’ can-say

’user’ hasAuthorized(Setting:X).

This glosses over some details of certificate handling (though the example
could be extended further). It also ignores how the system might update apps.
It does, however, provide a far more precise version of the di↵erences in app
installation between the two platforms. For iOS, to install an app Apple have to
authorise it, either by signing the app or the issuer. In contrast, for Android,
to the device can install any app if the device owner is willing to enable the
relevant setting.

3.2.2 Worked Example of Policy Checking

As a worked example consider a user Alice, trying to install an app on her work
phone. Alice works for a hospital trust and the trust has a mobile device policy.
The trust’s policy states that if Alice wants to install an app Alice has to clear it
with her immediate manager. If it is for clinical use then Alice also has to clear
it with the Care and Clinical Policies Group (CACPG). If it is for business use
then Alice also has to clear it with the Management of Information Group (MIG).
Finally, the Integrated Governance Comitee (IGC) should clear the app. This is
a relatively complicated policy but realistic: it comes from an actual NHS trust’s
BYOD rules (shown with an AppPAL translation in Appendix A).

To implement the policy the trust publishes the following AppPAL rules:

Chapter 3. Instantiating and Evaluating SecPAL 53

’nhs-trust’ says App isUsable

if App hasMet(’clinical-use-case’).

’nhs-trust’ says App isUsable

if App hasMet(’business-use-case’).

’nhs-trust’ says ’cacpg’ can-say

App:A hasMet(’clinical-use-case’).

’nhs-trust’ says ’mig’ can-say

App:A hasMet(’business-use-case’).

’nhs-trust’ says App isInstallable

if App hasMet(’final-app-approval’), App isUsable.

’nhs-trust’ says ’igc’ can-say

App hasMet(’final-app-approval’).

’nhs-trust’ says Device canInstall(App)

if App isInstallable, App isApprovedFor(Device).

’nhs-trust’ says Employee:Manager can-say

App:A isApprovedFor(Device)

if Manager isResponsibleFor(Device).

Suppose Alice wishes to install the app ms.office for business purposes.
To satisfy the policy and install the app she needs to collect the following
statements.

• ’nhs-trust’ says ’ms.office’ isInstallable. For this, she needs the MIG to
state that it has a business use-case. She also needs approval from the
IGC.

1. ’mig’ says ’ms.office’ hasMet(’business-use-case’).

2. ’igc’ says ’ms.office’ hasMet(’final-app-approval’).

• ’nhs-trust’ says ’ms.office’ isApprovedFor(’alices-device’).
To get this she needs a statement from the manager responsible for Alice’s
device (suppose it is Bob) approving the app.

3. ’bob’ says ’ms.office’ isApprovedFor(’alices-device’).

Chapter 3. Instantiating and Evaluating SecPAL 54

4. ’nhs-trust’ says ’bob’ isResponsibleFor(’alices-device’).

• Additionally, she needs the following typing statements.

5. ’nhs-trust’ says ’ms.office’ isApp.

6. ’nhs-trust’ says ’bob’ isEmployee.

Alice obtains the statements by contacting the speakers. Each may either
give her the statement she needs or may give her more rules in the form of a
cryptographically signed electronic representation of each assertion. For the
MIG and IGC may authorise the app or they might give a list of additional
checks they need before they agree to authorise the app. When checking if the
app is an App in Item 5, the NHS trust might delegate further. They could
reply that if the App is in the Google Play store then they recognise it as a valid
app. Alice would then have to get more assertions if she wanted to prove this
statement. Alternatively, the speaker could refuse to make the assertion, either
because they do not believe it, or they cannot give an answer. In this case, Alice
would have to look for an alternative means to prove the assertion or accept
that they cannot install the app.

Once Alice has collected the statements, either by contacting the speakers
directly or through other means, Alice can use a SecPAL inference tool, such as
AppPAL, to check whether she can install the app. Additional to the decision, if
a proof is found, a tool like AppPAL can output a proof tree4 to show how it
made the decision (Figure 3.2). The proof tree shows the AppPAL assertions
used to prove each statement at varying levels of the tree: from the top-level
goal which, in this case, used the cond rule first shown in Figure 2.8.

To later nodes which might use SecPAL’s other rules to be proved (can-say in
this case).

4Technically a DAG.

Chapter 3. Instantiating and Evaluating SecPAL 55

Prefix Meaning

subject canAction The subject is allowed to perform the action.
subject hasAction The subject has performed the action.
subject isProperty The property holds true for the subject.
subject mustObligation The subject is required to satisfy the obligation.

Table 3.1: Standard prefixes used for AppPAL predicates.

If two nodes depend on the same sub-goals, then the proof will be reused.

3.3 Instantiating SecPAL for Mobile Ecosystems

SecPAL is a generic language. In SecPAL’s grammar (Figure 2.7), predicates
and constraint functions describe the decisions and checks done in a particular
domain. The choice of predicates and constraints defines the decisions the
SecPAL instantiation can talk about.

AppPAL instantiates SecPAL to describe policies in mobile ecosystems. It
was initially focused on describing app installation policies, however it was
later extended further to describe other policies, such as BYOD policies.

3.3.1 Predicate Conventions

When instantiating SecPAL we use predicates based on four verbs: can, has,
is and must. These verbs describe facts common to many policies, such as
permitted actions, completed actions, describing properties of entities and
obligations respectively.

Chapter 3. Instantiating and Evaluating SecPAL 56

'b
ob

'
sa

ys

'c
om

.m
ic

ro
so

ft
.o

ff
ic

e'
 i

sA
pp

ro
ve

dF
or

('
al

ic
es

-d
ev

ic
e'

).

'i
gc

'
sa

ys

'c
om

.m
ic

ro
so

ft
.o

ff
ic

e'
 h

as
Me

t(
'f

in
al

-a
pp

-a
pp

ro
va

l'
).

'm
ig

'
sa

ys

'c
om

.m
ic

ro
so

ft
.o

ff
ic

e'
 h

as
Me

t(
'b

us
in

es
s-

us
e-

ca
se

')
.

'n
hs

-t
ru

st
'

sa
ys

'a

li
ce

s-
de

vi
ce

'
ca

nI
ns

ta
ll

('
co

m.
mi

cr
os

of
t.

of
fi

ce
')

if

 '
co

m.
mi

cr
os

of
t.

of
fi

ce
'

is
In

st
al

la
bl

e,

'c

om
.m

ic
ro

so
ft

.o
ff

ic
e'

 i
sA

pp
ro

ve
dF

or
('

al
ic

es
-d

ev
ic

e'
).

co
nd

'n
hs

-t
ru

st
'

sa
ys

'b

ob
'

ca
n-

sa
y

'c

om
.m

ic
ro

so
ft

.o
ff

ic
e'

 i
sA

pp
ro

ve
dF

or
('

al
ic

es
-d

ev
ic

e'
)

if

 M
an

ag
er

 i
sR

es
po

ns
ib

le
Fo

r(
'a

li
ce

s-
de

vi
ce

')
,

 A
 i

sA
pp

,

 M

an
ag

er
 i

sE
mp

lo
ye

e.

co
nd

'n
hs

-t
ru

st
'

sa
ys

'b

ob
'

is
Em

pl
oy

ee
.

'n
hs

-t
ru

st
'

sa
ys

'b

ob
'

is
Re

sp
on

si
bl

eF
or

('
al

ic
es

-d
ev

ic
e'

).
'n

hs
-t

ru
st

'
sa

ys

'c
om

.m
ic

ro
so

ft
.o

ff
ic

e'
 h

as
Me

t(
'b

us
in

es
s-

us
e-

ca
se

')
.

ca
n-

sa
y

'n
hs

-t
ru

st
'

sa
ys

'c

om
.m

ic
ro

so
ft

.o
ff

ic
e'

 h
as

Me
t(

'f
in

al
-a

pp
-a

pp
ro

va
l'

).

ca
n-

sa
y

'n
hs

-t
ru

st
'

sa
ys

'c

om
.m

ic
ro

so
ft

.o
ff

ic
e'

 i
sA

pp
.

'n
hs

-t
ru

st
'

sa
ys

'c

om
.m

ic
ro

so
ft

.o
ff

ic
e'

 i
sA

pp
ro

ve
dF

or
('

al
ic

es
-d

ev
ic

e'
).

ca
n-

sa
y

'n
hs

-t
ru

st
'

sa
ys

'c

om
.m

ic
ro

so
ft

.o
ff

ic
e'

 i
sI

ns
ta

ll
ab

le

if
 '

co
m.

mi
cr

os
of

t.
of

fi
ce

'
ha

sM
et

('
fi

na
l-

ap
p-

ap
pr

ov
al

')
,

 '
co

m.
mi

cr
os

of
t.

of
fi

ce
'

is
Us

ab
le

.

co
nd

'n
hs

-t
ru

st
'

sa
ys

'c

om
.m

ic
ro

so
ft

.o
ff

ic
e'

 i
sU

sa
bl

e

if
 '

co
m.

mi
cr

os
of

t.
of

fi
ce

'
ha

sM
et

('
bu

si
ne

ss
-u

se
-c

as
e'

).

co
nd

'n
hs

-t
ru

st
'

sa
ys

'i

gc
'

ca
n-

sa
y

'c

om
.m

ic
ro

so
ft

.o
ff

ic
e'

 h
as

Me
t(

'f
in

al
-a

pp
-a

pp
ro

va
l'

).

'n
hs

-t
ru

st
'

sa
ys

'm

ig
'

ca
n-

sa
y

'c

om
.m

ic
ro

so
ft

.o
ff

ic
e'

 h
as

Me
t(

'b
us

in
es

s-
us

e-
ca

se
')

if

 A
 i

sA
pp

.

co
nd

Figure 3.2: Proof tree generated by AppPAL when checking whether to install
Alice’s app.

Chapter 3. Instantiating and Evaluating SecPAL 57

subject isProperty A statement that says the subject has a given property.
A common example of this is to restrict variables to a given type. An exam-
ple might be that ’angry-birds’ isApp or that ’jennie’ isEmployee. Constants
and variables in SecPAL are untyped, so it is often helpful to restrict their
type to a given domain. For example, Alice might trust Bob to describe
which apps are good, but not what websites.

’alice’ says ’bob’ can-say X isGood if X isApp.

Additionally, SecPAL requires that all variables in the head of a statement
be used in the body (the restriction helps the language to be reducible
to DatalogC, and thus ensure all queries terminate): assigning a type by
using an is statement is su�cient to satisfy the rule.

Not all constants or variables need have a property or type, but some may
have multiple ones, for example an app might have the good property, the
app type, and be installable. Each of these properties is expressed using
the is statement. There is no obligation to provide a type to variables or
constants, but when writing policies we have found them helpful as they
help specify precisely the domain a rule should operate on.

Is predicates are sometimes used as goals for queries, for example to test
whether an app isInstallable or not. They also often occur frequently inside
assertion bodies, as described.

subject hasAction Describes actions the subject has completed.

For example if an app on a device has requested a permission then we
might write:

’device’ says App:A hasRequestedPermission(Permission:P).

If a device requires its owner to grant a permission we might write:

’device’ says User:U can-say

App:A hasBeenGrantedPermission(Permission:P)

if ’device’ isOwnedBy(U).

Often, has predicates fall into common patterns and groups, for example
hasRequested and hasBeenGranted here. There is no requirement for the
predicates to be named in such a way—hasBeenGranted could be named

Chapter 3. Instantiating and Evaluating SecPAL 58

canUseFeaturesAssociatedWith. In practice when describing policies it is
best to be consistent and use just one predicate for one action or property
to avoid confusion, redundant rules, and multiple ways of satisfying a
policy. In Section 3.5 an early implementation of a tool for checking for
duplicated predicates is described.

Has predicates are rarely used as top-level queries as they describe actions
already taken. They might be used as a goal if a policy needs to describe
actions occurring in a given order. For example, a company might require
that devices report if a user is using a company device unacceptably:

’company’ says User:U hasBehavedUnacceptably

if U hasAccessedWebpage(W),

W isPornographic.

subject canAction An authorization. The subject may perform the action. Can
predicates are used to describe access control decisions. For example, a
company might wish to limit access to a server to employees who working
in R&D. To do so they might write a policy such as:

’company’ says User:U canConnectTo(’192.168.20.22’)

if U isInDepartment(’r&d’).

Other examples of policies involving can predicates might include a user
describing whether an app is allowed access to their photographs, or an
app store deciding whether to allow a developer to sell their app in the
store.

Can predicates are frequently used as goals in queries. They can be used
to describe access control decisions, and as such are often the source of a
query whether a subject can do some action.

There is no obligation on someone who uses a policy that has can predicates,
to also generate an assertion using a has predicate when an action is
performed. For example, an app store may have terms and conditions
that any user can read.

’app-store’ say User:U canReadTermsAndConditions.

A user, Alice, might read these terms and conditions having satisfied the
rule that she can do so. Having done so it might be reasonable to expect

Chapter 3. Instantiating and Evaluating SecPAL 59

the store to add to its knowledge base an assertion that:

’app-store’ says ’alice’ hasReadTermsAndConditions.

Adding assertions in this manner is not required, however, though keeping
these relationships can be helpful. In Section 6.2 we discuss some potential
ways we could use these relationships for auditing and policy compression,
if the relationships were to be enforced.

subject mustAction An obligation. The subject should carry out the action.
An example might be requiring the device tell a company’s IT department
if there have been three unsuccessful password attempts:
’company’ says Device:D mustInform(’it’, ’login-failure’)

if D hasUnsuccesfulLogins(N)

where N >= 3.

AppPAL does not state how quickly a subject should complete their
obligation, or enforce that they even perform it. These additional checks
could be created by using additional predicates:

’mum’ says ’alice’ hasSatisfiedObligationToCall

if ’alice’ mustCall,

’alice’ hasCalled.

Must predicates are mostly goals, as they describe the conditions when
its subject must do something. There are exceptions, such as the example
above where must predicate is a condition, but they are unusual. If a policy
were to contain a particular must predicate as a condition, but never as a
goal, then the policy would be unsatisfiable—something we can check for
as described in Section 3.5.1.

Some of the predicates may seem to allow AppPAL access to information
from outside of its assertion context. In order to use external information,
however, an AppPAL constraint must be used. For example, if we had a fact:
User:X canWriteTo(File:f), then we might imagine it implemented with a rule:

’admin’ says User:X canWriteTo(File:f)

where fsAllowWrite(X, F) = true.

Where fsAllowWrite() is a constraint that checks whether the file-system would
allow a given user access to file. An alternative to using a constraint, would be

Chapter 3. Instantiating and Evaluating SecPAL 60

hEi F hVariablei | ’constant’
hVariablei B Type:Var | Var

Figure 3.3: Changes to SecPAL’s syntax to support types. Changed terms are
shown in red.

to generate ground AppPAL assertions before running the query which state
exactly which users can write to any given file.

’admin’ says ’alice’ canWriteTo(’alices-documents’).

’admin’ says ’alice’ canWriteTo(’project-notes’).

’admin’ says ’bob’ canWriteTo(’project-notes’).

When there are large numbers of users and files this may become infeasible
however.

Our predicate conventions di↵er in the approach to the ones added with
the SecPAL4P and SecPAL4DSA languages [24, 16]. Both these languages add
extra phrases to SecPAL’s grammar. For example SecPAL4P adds a may and
will phrase to describe whether to carry out an action. If Alice, a policy author,
wished to use SecPAL4P to say that someone can forget her email address she
could write:5

Alice says x may delete Email within t

The same AppPAL rule would be:

’alice’ says User:X canDeleteWithin(’email’, Time:t)

where currentTime() < t.

3.3.2 Type Notation

When writing a policy, it is common to use conditions in facts that limit the
scope of a variable. To do this we use is-predicates, that give their subject a type.
For example Alice might declare that Bob is responsible for saying which apps
she can install. This can be written in SecPAL as follows:

’alice’ says ’bob’ can-say App isInstallable

if App isApp.

5 SecPAL4P also relaxes safety rules that permit the variables x and t to be in the head of the
rule, but not the body.

Chapter 3. Instantiating and Evaluating SecPAL 61

AppPAL

X says T1:A predicate(T2:B, T3:C)

if

SecPAL

X says A predicate(B, C)

if A isT1,

B isT2,

C isT3,

... .

Figure 3.4: De-sugaring from AppPAL types to SecPAL.

Expand Types(Assertion):

for v 2 Assertion.Head() do

if 9 v.Type() :

f new Fact(v, “is”+v.Type())

Assertion.Body().Add(f)

return Assertion

Figure 3.5: Procedure to expand types from AppPAL into SecPAL.

When writing this we added a condition if App isApp, that Bob can only talk
about Apps as being installable. Generalising this pattern we use predicates
starting with is to give types to their subjects. If a policy rule contains a lot
of variables, however these typing conditions can become very verbose. To
simplify the policy rules, AppPAL adds a sugared notation for typing statements
by extending SecPAL’s grammar for variables (Figure 3.3).

Expansion of the AppPAL types into SecPAL conditions is described in
Figure 3.5. This is run when parsing AppPAL code, and adds a rule to AppPAL
that if a variable in the head of an assertion has a type then it is removed and a
condition that the variable is that type is added to the body of the assertion. If a
variable in the body of an assertion has a type, then AppPAL’s parser reports it
as an error when reading the policy. If a variable needs multiple types, they can
be added by adding additional if predicates to the body.

Using this sugared notation, the earlier example becomes:

’alice’ says ’bob’ can-say App:A isInstallable

Chapter 3. Instantiating and Evaluating SecPAL 62

For a more complex example consider the following example taken from a
BYOD policy.

’company’ says Device:D canConnectToAP(AP:X)

if X isOwnedByCompany.

The rule states that the company will only allow devices to connect to
company owned access points. The syntactic sugar expands into the following
equivalent policy.

’company’ says Device canConnectToAP(X)

if X isOwnedByCompany,

Device isDevice,

X isAP.

This is a fairly simple refinement of SecPAL’s syntax, but it improves the
readability. It avoids hiding the condition that the company must own the
access point among typing statements aiding readability. It also helps avoid
errors in policies caused by the policy author forgetting to give a type to a
variable.

The typing syntax can also lead to scenarios where the typing is predicates are
checked multiple times when querying a policy. For example, in the following
hypothetical policy if Alice queried whether Angry Birds was installable she
might check three (or more) times if ’alice’ says ’angry-birds’ isApp.

’alice’ says App:A isInstallable

if A isAGame.

’alice’ says App:A isAGame

if A hasCategory(’game’).

’alice’ says ’google-play’ can-say App:A hasCategory(’game’).

In practice, however, this isn’t an issue as our implementation (described in
Section 3.4) caches the results from queries when evaluating policies. We also
describe in Section 3.5.2 a method for detecting when conditions are redundant.

We also make no attempt to detect when types are clashing or inconsistent.
For example, we might expect that an object could be an app, or a device but
not both. If a policy were to contain, for example assertions that:

’alice’ says ’angry-birds’ isApp.

’alice’ says ’angry-birds’ isDevice.

Chapter 3. Instantiating and Evaluating SecPAL 63

We might speculate the policy may contain errors as we wouldn’t expect
Angry Birds to be both an app and a device. AppPAL does not by itself check
for such errors, however, if desired a policy author could add an assertion to
their policy to check for such type-errors.

’alice’ says ’policy’ hasTypeErrors

if X isApp,

X isDevice.

To our knowledge this is the first attempt to add types to SecPAL. Adding a
static type-checker, and looking at more complex type systems has been left to
future work.

3.4 Implementation

To our knowledge no prior open source implementation of SecPAL exists. Becker
implemented SecPAL as a closed-source library atop the .net framework [97].
This library included examples and a C# API for SecPAL, allowing assertions
to be created using code, but no parser for SecPAL. Since Becker’s SecPAL
implementation cannot be trivially extended and will only run on Microsoft
Windows, the decision was made to re-implement AppPAL from scratch as an
open source library.

Our AppPAL implementation is a Java library, with roughly 5,000 lines of
code. The implementation is available online6. The library creates an AppPAL
instance with an empty cache. This instance can be given several policies to
enforce. The architecture is shown in Figure 3.6. The instance is queried and
will give decisions based on whether the queried assertion is valid according to
the policy. As part of the constraint checking AppPAL can also be connected to
external databases, systems, and static analysis tools. These can give AppPAL
with more information external to that provided by SecPAL at the time of
checking, and connect AppPAL to tools to enforce the policies.

Implementing AppPAL as a library allows us to embed it into a variety of
situations. AppPAL can be part of an app store checking the apps sold against
a policy. Running on a device, AppPAL can check apps before installation by
the package manager. There is also a command-line version which is useful for

6https://github.com/apppal/libapppal

https://github.com/apppal/libapppal

Chapter 3. Instantiating and Evaluating SecPAL 64

testing and modelling policies. Our implementation can make the inferences, on
an Android device or on a command line, but it is not integrated into Android.
It is future work to evaluate how AppPAL policies might work in practice and
be tied into a mobile operating system to enforce policies in practice. The work
here looks primarily and modelling the policies and preference and providing a
framework for enforcement, rather than the enforcement itself.

The AppPAL interpreter implements SecPAL’s evaluation rules (shown in Fig-
ure 2.8) directly. This di↵ers from Becker’s original description of SecPAL [23]
which describes evaluation through DatalogC. DatalogC is a variant of Datalog
extended to support constraints [76].

Becker used a translation from SecPAL to DatalogC in order to prove certain
properties about SecPAL: namely decidability and tractability (with polynomial
data complexity in the size of the policy). To implement SecPAL e�ciently he
described a novel Datalog evaluation algorithm using tabling, as the bottom up
methods were ine�cient with a changing assertion context, and the top down
methods (such as SLD resolution) could run into infinite loops when evaluating
can-say or can-act-as statements. To solve these issues Becker proposed an
algorithm that extended SLD resolution with a table to prune infinite search
trees by tracking which rules had been used before.

When implementing SecPAL we considered using a DatalogC back-end
but could not find an implementation. We also explored using a Datalog
implementation (such as Z3 or Datomic) to build SecPAL but in practice no
implementation could fully support DatalogC’s constraints. To implement the
constraint checking we would need to modify the Datalog implementation to
run additional checks whilst making inferences. For AppPAL these additional
checks might require running an external program, but this would not be a
trivial change to make for the libraries we looked at.

We also wanted our implementation to run on an Android device (we were
interested in having users enforce policies on their phone), and all the Datalog
libraries we found could not be ported trivially.

Instead of implementing DatalogC ourselves, AppPAL implements SecPAL’s
evaluation rules directly and adds Becker’s tabling method to avoid infinite
loops. Our implementation is naı̈ve and not the optimal method for evaluating
queries. Faster solutions might use answer-set programming and an SMT
solver to answer queries. For all policies we tried, our implementation was fast

Chapter 3. Instantiating and Evaluating SecPAL 65

Policy

AC

Policy Policy

AppPAL instanceQuery
?- 'alice' says...

Database
Static Analysis
Host System

Yes/No
Optional proof tree

Figure 3.6: AppPAL’s inputs and outputs.

enough—answering all but the most complex queries in seconds (Section 3.4.3).

3.4.1 Evaluation

Pseudo-code for the evaluation algorithm used by AppPAL is described in Fig-
ures 3.7, 3.9 and 3.8.

To make queries against a policy, AppPAL is first given one or more policy
files. AppPAL parses the files and adds the assertions within them to the
assertion context (AC). The AC is then preprocessed to extract more information;
this is summarised in Table 3.2. If a constant is used before a says statement, or
it is used as the subject of a can-say fact then the constant is marked as voiced. A
constant is voiced if it is the speaker of a statement or it is the subject of a can-say
fact. A constant is a subject is it is the subject of a fact. The predicates used in
the policy are also extracted and marked as derivable. This allows some queries
to be decided automatically and some rules to be flagged as unusable in the
assertion context. This lets AppPAL reject some queries quickly: if a query has
a speaker that isn’t voiced then we cannot query what the speaker says. If a
rule relies on un-derivable predicates, then it cannot be used to make decisions.

Chapter 3. Instantiating and Evaluating SecPAL 66

c 2 Voiced (= 9 (c says · · ·) 2 AC
W

9 (? says c can-say · · ·) 2 AC

c 2 Subjects (= 9 (? says c · · ·) 2 AC
W

9 (· · · if · · · , c ?, · · ·) 2 AC,

c 2 Constants

p 2 Derivable (= 9 �· · · ? p (· · ·) · · · � 2 AC

Table 3.2: Sets used in AppPAL evaluation.

A results table (RT) is also created. All ground facts in the assertion context
are added to the results table as proven facts. The table stores partial results and
previously established proofs. The table is indexed by queries and a delegation
depth, partial results (i.e. that the evaluation of this query is ongoing). This
allows previous results to reused without re-computation or constraint re-
evaluation. It also prevents AppPAL proofs growing unboundedly (and the
decision process not terminating). If when searching for a proof we meet a
query that we are currently evaluating, i.e. one that exists higher in the current
proof tree, we treat it as false. Multiple queries will share the same results table
until the table is cleared, or the AppPAL instance is stopped.

Ignoring queries we are currently evaluating lets us avoid proofs with cycles
(i.e. proof trees where the proof of a query depends on proving itself). If we
can find a terminating proof with a cycle then we can find also shorter proof by
removing the cycle. If a proof tree has a cycle that never terminates (i.e. it loops
infinitely) then we can treat it as e↵ectively false as it would take an infinite
amount of time to derive.

When evaluating the policy we also track which rules and predicates we
have used. From this we can reconstruct a proof tree that shows how AppPAL
made a decision. This allows an auditor to check the decision-making process
and aids AppPAL’s developers with debugging.

AppPAL’s evaluation procedure is not the same as SecPAL’s, though in
practice both could be used to evaluate AppPAL or SecPAL policies. SecPAL
was evaluated by first converting queries and policies into DatalogC. Becker
then described a novel DatalogC evaluation algorithm with tabling to evaluate
the converted queries and make decisions. The AppPAL evaluation algorithm

Chapter 3. Instantiating and Evaluating SecPAL 67

Evaluate(AC, RT, Q, D):
if RT.Contains((Q, D)) :

result RT.Get((Q, D))
if result=Success :

return result
else:

return Failure
else:

RT.Set((Q, D), (Inprogress, p))
p Cond(AC, RT, Q, D)
if p=Proven :

RT.Set((Q, D), Success)
return Success

else:
p CanSay-CanActAs(AC, RT, Q, D)
if p=Proven :

RT.Set((Q, D), Success)
return Success

else:
RT.Set((Q, D), Failure)
return Failure

Figure 3.7: Pseudo-code for evaluating a query.

Cond(AC, RT, Q, D):
for a 2 Assertions(AC) do

u Q.Unify(a.Head())
if u.IsValid?() :

a a.Apply(u)
for ✓ 2 PossibleVariableSubstitutions(AC, a) do

a0 a.Apply(✓)
if Variables (a0) = ; :

if 8 b 2 a0.Body(): Evaluate(AC, RT, b, D)=Success :
if CheckConstraint(a0.constraint)=True :

return Success
return Failure

Figure 3.8: Pseudo-code for using the cond-rule.

Chapter 3. Instantiating and Evaluating SecPAL 68

CanSay-CanActAs(AC, RT, Q, D):
for c 2 Constants(AC) do

if c 2 Subjects(AC) :
if CanActAs(AC, RT, Q, D, c) = Proven :

return Proven
if D =1 ^ c 2 Speakers(AC) :

if CanSay(AC, RT, Q, D) = Proven :
return Proven

return Failure

CanActAs(AC, RT, Q, D, c):
q1 Q.speaker says c can-act-as Q.subject.
q2 Q.speaker says c Q.verbphrase.
p1 Evaluate(AC, RT, q1, D) = Proven
p2 Evaluate(AC, RT, q2, D) = Proven
if p1 ^ p2 :

return Proven
else:

return Failure

CanSay(AC, RT, Q, D, c):
q11 Q.speaker says c can-say inf Q.fact.
q21 c says Q.fact.
p11 Evaluate(AC, RT, q1,1) = Proven
p21 Evaluate(AC, RT, q2,1) = Proven
q1 Q.speaker says c can-say Q.fact.
q2 c says Q.fact.
p1 Evaluate(AC, RT, q1, 0) = Proven
p2 Evaluate(AC, RT, q2, 0) = Proven
if (p11 ^ p21) _ (p1 ^ p2) :

return Proven
else:

return Failure

Figure 3.9: Pseudo-code for using the can-say and can-act-as rules.

Chapter 3. Instantiating and Evaluating SecPAL 69

does not make use of DatalogC, but instead implements AppPAL’s evaluation
rules directly. We do, however, borrow some strategies from Becker’s SecPAL
evaluation algorithm—AppPAL’s results table serves a similar purpose to
SecPAL’s tabling caching results and preventing cycles. The use of sets to restrict
the search space for variables is unique to the AppPAL algorithm, however.

Our method for evaluating AppPAL o↵ers an alternative to Becker’s proce-
dure. We developed it to avoid having to implement DatalogC, and to allow us
greater control over how AppPAL evaluated policies. We believe the procedure
is equivalent to Becker’s SecPAL evaluation algorithm (though a more rigorous
comparison as to how the procedures compare has not been done).

3.4.2 Soundness and Completeness of Decision Procedure

The algorithm as described is neither sound nor complete as it makes use of
a results table RT, but has no means to invalidate results in it. This causes
problems when handling constraints, in particular temporal ones.

Consider a constraint that states that the current time must be between 9 am
and 3 pm. At 8:59 am we try to evaluate a query that depends on this constraint
being true (i.e. all possible proof trees use this constraint). No proof can be
found so the Evaluate function correctly returns failure and the RT is updated
accordingly. At 9:01 am the query is re-run. Since a past result already exists
in RT it is reused and evaluate returns failure again, despite the constraint
now being satisfiable. Therefore, the algorithm is incomplete as it has failed to
find a proof when one exists. A similar argument for soundness can be made
by evaluating a query successfully at 2:59 pm and then again at 3:01 pm. A
successful result may be returned which is unsound.

We use the results table to cache results, and to avoid circular proof searches.
It helps makes the algorithm fast, albeit at the cost of soundness and complete-
ness. If AppPAL were incorporated into a production system, the designers
would need to have a strategy to manage the RT and delete old results. A
simple strategy, such as clearing any statements older than 10 minutes, may
be enough for most scenarios. Alternatively the cache can be cleared between
queries, though this loses some of the speed benefits of having some common
sub-query results cached. Ultimately the decision of how to manage the results
table is up to the developer.

Chapter 3. Instantiating and Evaluating SecPAL 70

The arguments in the rest of the section assume that the result of evaluating
a constraint does not change over time. This allows us to argue the correctness
of the algorithm, assuming that the RT cache is correct.

When describing SecPAL Becker also showed that decision procedure he
used for SecPAL was both sound and complete. His decision procedure had
to parts: a translation from SecPAL into DatalogC, and a Datalog evaluation
algorithm involving tabling. He proved the soundness and completeness of both
parts in Appendix C of the SecPAL technical report [23]. To do so, he described
the SecPAL evaluation algorithm as a labelled transition system and proved
by induction which states were reachable from an initial state. In comparison
to Becker’s proofs, the arguments presented here for AppPAL work through
induction on the height of the proof tree generated by applying AppPAL’s
evaluation rules. Becker did not have to consider constraints when presenting
his proofs as the SecPAL evaluation algorithm does not cache SecPAL queries.
It does make use of a results table, but this stores the Datalog translation of the
SecPAL statement without constraint only, and so the problems associated with
the results of constraints changing over time do not apply.

Soundness Argument

Evaluate(AC,RT,Q,D) = Success =) AC,D |= Q.

Base Case. For the base case we argue that the Evaluate function is sound
when not making recursive calls. A query is Evaluate-d at a given delegation
depth, against a given AC and RT. If the query has been made before, then the
result will be present in RT, and will be reused. Therefore, in showing Evaluate
is sound we must show that only queries that can be proven are ever marked as
successful in RT.

The Evaluate function calls Cond function which implements SecPAL’s cond
rule. It searches the AC for unifying assertions (i.e. those assertions which have
a head that is equal to the query under a variable renaming), then searches for
possible variable substitutions that remove all variables. If the body is missing
(i.e. the unifying assertion has no conditionals) and the constraint is true, then
Cond will return success, and the results table will be updated accordingly. This
corresponds to SecPAL’s cond rule (we have greyed out the recursive case),
hence we would argue it is sound as there is no other means for our evaluation

Chapter 3. Instantiating and Evaluating SecPAL 71

algorithm to mark a result as true in RT without recursively calling Evaluate.
We call the call tree of Evaluate T1

E.
The analogous proof tree to T1

E (called T1
|=) produced by the evaluation rules,

also relies on the cond rule (shown below with recursive elements greyed out).
Both T1

E and T1
|= have height 1.

(A says fact if fact1, . . . , factk where c) 2 AC

AC,D |= A says facti✓ 8i 2 {1 · · · k}
|= c✓ vars(fact✓) = ;)

AC,D |= A says f act✓
cond

Inductive Hypothesis. Suppose we know that we know that if Evaluate(AC,
{}, Q, D) implies that AC,D |= Q, where the height of the call tree of Evaluate
is n (in calls of Evaluate), and that the height of the implied derivation tree is
also n. We hypothesise that if Evaluate is sound with a call tree and derivation
tree height of n, then when Evaluate’s call tree height is n + 1, there will be an
equivalent derivation tree with height n + 1.

Inductive Step. Let Tn
E be the call tree from a call to Evaluate with corre-

sponding proof tree Tn
|=, both with height n. Let Tn+1

E be a call tree of height
n + 1 where Tn

E is a child of the root node. To show the hypothesis is true we
must show that however the Evaluate function proceeds, it must correspond
to one of AppPAL’s evaluation rules; so the corresponding proof tree Tn+1

|= is the
matching evaluation rule with Tn

|= as (one of) its children.
We can ignore the results table (if it starts empty, or only contains sound

results) as it is just memoising results which could be recalculated without
memoisation. We do not need to consider to the case of non-terminating queries
(i.e. circular), as Evaluatewill return Failurewhen the loop is detected.
Evaluate will call Cond, CanSay or CanActAs each which implements the

corresponding evaluation rule and each of which calls Evaluate, where at
least one call of which will produce Tn

E . The corresponding proof tree will
have the equivalent evaluation rule at its root and Tn

|= as its child. Therefore,
Evaluate(AC,RT,Q,D) = Success implies we can always find an equivalent
AC,D |= Q.

Chapter 3. Instantiating and Evaluating SecPAL 72

Completeness Argument

AC,D |= Q. =) Evaluate(AC,RT,Q,D) = Success

Base Case. Consider the case where a query has been evaluated with
AppPAL’s evaluation rules and found true. Suppose the height of proof
tree used to derive it is 1, that is to say that we have only used the cond rule
once to show the query is valid. In this case the query must be unifiable with
a fact in the AC (i.e. one with no if part). If this is the case, when using the
Evaluate function we will call Cond, which will search the AC for assertions to
unify with. Since (at least) one assertion must exist (without an if) for the cond
rule to return true, then we will find it and Evaluate will always also return
Success, without recursively calling itself.

Induction Hypothesis. Suppose know that for a proof tree of a query q (given
an AC, and D) with height n, when running Evaluate(AC, {}, Q, D) it will
eventually return Success (with at least n recursive calls to Evaluate). We
hypothesise that for a proof tree of height n+1, Evaluatewill also return success
(given the same AC and q), with a recursive call depth of n.

Inductive Step. The Evaluate function will (in the worst case) search the
entire AC for a rule which will unify with the currently evaluated query, and
evaluate to Success. We argue that evaluate implements each of the AppPAL
evaluation rules by comparison between the code and the inference rules.

For a proof tree of height n + 1, where n > 0, we will use one of the cond,
can-say or can-act-as rules to derive the proof tree at height n. Each of the Cond,
CanSay, and CanActAs functions which implement these evaluation rules will
call Evaluate at least once (corresponding to the dependent proofs in the proof
tree). The induction hypothesis says that these will be complete and will have
at most n recursive calls to Evaluate. So at height n + 1 the algorithm must be
complete as if the proof tree is valid, Evaluate would be able to evaluate the
corresponding assertions and with a call tree height of n + 1.

Chapter 3. Instantiating and Evaluating SecPAL 73

’0’ says ’1’ can-say

X isInstallable.

’1’ says ’2’ can-say

X isInstallable.

’2’ says ’3’ can-say

X isInstallable.

’2’ says ’4’ can-say

X isInstallable.

’2’ says ’5’ can-say

X isInstallable.

’3’ says ’6’ can-say

X isInstallable.

’3’ says ’7’ can-say

X isInstallable.

’4’ says ’12’ can-say

X isInstallable.

’4’ says ’13’ can-say

X isInstallable.

’4’ says ’14’ can-say

X isInstallable.

’5’ says ’15’ can-say

X isInstallable.

’5’ says ’16’ can-say

X isInstallable.

’5’ says ’17’ can-say

X isInstallable.

Figure 3.10: Excerpts from the 1 to 1, 1 to 2 and 1 to 3 benchmarks.

3.4.3 Benchmarks

Someone who uses AppPAL might wish it to check apps before installation.
Since policy checks may involve inspecting many rules and constraints one may
ask whether the checking will be acceptably fast. Downloading and installing an
app takes about 30 seconds on a typical Android phone over WiFi. If checking
a policy delays this even further a user may become annoyed and disable
AppPAL.

A synthetic benchmark is used to give a measure AppPAL’s performance. The
policy checking procedure is at its slowest when having to delegate repeatedly;
the depth of the delegation tree is the biggest reason for slowing the search.
Synthetic benchmarks checks that the checking procedure performed acceptably.
Each benchmark consisted of a chain of delegations. The 1 to 1 benchmark
consists of a repeated delegation between all the principals. In the 1 to 2
benchmark each principal delegated to 2 others and in the 1 to 3 benchmark each
principal delegated to 3 others. These benchmarks are reasonable as they model
the slowest kinds of policies to test—though worse ones could be designed by
delegating even more or triggering an expensive constraint check.

For each benchmark we controlled the number of principals in the policy file:
as the number of principals increased so did the size of the policy. The results are
shown in Table 3.3. Most typical policies (such as those discussed in Chapter 4
and Chapter 5), use only few delegations per decision. We believe the policy

Chapter 3. Instantiating and Evaluating SecPAL 74

Delegations Principals Time (s)

1 to 1 10 0.01
1 to 1 100 1.00
1 to 1 500 20.90
1 to 1 1000 88.73

1 to 2 10 0.01
1 to 2 100 0.43
1 to 2 500 7.36
1 to 2 1000 27.47

1 to 3 10 0.01
1 to 3 100 0.24
1 to 3 500 3.99
1 to 3 1000 15.28

1

10

100

10 100 500 1000

Principals

C
h

e
ck

 t
im

e
 (

s) Delegations

1 to 1

1 to 2

1 to 3

Table 3.3: Benchmarking results on a Nexus 4 Android phone.

checking performance of AppPAL is acceptable as unless a policy consists of
hundreds of delegating principals the overhead of checking an AppPAL policy
is negligible, even on a power constrained device such as a mobile phone.

3.5 Automatic Analysis of AppPAL policies

When examining an AppPAL policy it is natural to wonder whether the policy
is as optimal, in terms of the rules and facts required to decide a query and
the number of rules in the policy, as it could be. Is a decision reachable given
the rules and facts contained in the policy? Does an assertion context contain
enough statements to use a given rule? If there are multiple ways of deciding
whether some statement is true or not, does one rule require fewer statements
than any other? Does one rule require only a subset of the facts of another rule,
implying the second is redundant?

Policies can be checked for many properties including:

Satisfiability. Do there exist rules which can never be satisfied?

Equivalence. Do there exist rules which have the require the same ground facts
to be proven in order to satisfy them?

Redundancy. Do there exist multiple rules to make a decision where one is
satisfied by a subset of the facts that satisfy the other?

Consistency. Can two contradictory decisions be made?

Chapter 3. Instantiating and Evaluating SecPAL 75

We have implemented preliminary checkers for two of these properties. The
code is included with AppPAL. The output shown in teletype is output by the
tools we have produced, and the diagrams shown in Section 3.5.2 are produced
when running the tools in debug mode. Additionally, a checker for consistency
could be implemented by using the same technique as the Ponder authorization
language and disallowing predicates of the form can? and cannot? [39].

3.5.1 Checking Satisfiability

An assertion is satisfiable if there are su�cient facts such that the assertion’s
conditions can be met. This is related to the concept of satisfiability in SMT solving
(where a propositional logic formula is satisfiable if there is an assignment of
truth values to the propositional variables that makes the formula true), but
made more complex by the recursive nature of AppPAL’s (and other policy and
database languages) assertions. Instead of just looking for an assignment of
variables, we must look to see if there are rules and facts su�cient that we can
derive the satisfiable statement.

We care about this property when writing policies as it means that our
assertions a↵ect something. If an assertion is unsatisfiable, then this may indicate
that we have failed to specify one of the conditions it depends upon.

In Datalog (and, more generally, in logic programming) a Datalog predicate,
found by satisfying a rule, is satisfiable if there are su�cient ground facts in the
database to deduce it. Formally, satisfiability in Datalog is defined in terms of
the Intentional Database (IDB) (the Datalog program, analogous to a policy file
loaded into an AppPAL assertion context), and the Extensional Database (EDB)
(a set of facts from both the IDB and those which can be derived using rules).
Satisfiability for Datalog is defined as [75]:

Satisfiability: An IDB predicate s of a program P is satisfiable if there
is some EDB D, such that P defines a non-empty relationship for s.

In AppPAL, when an assertion is satisfiable, there is a combination of facts
that could satisfy its conditionals. If there are no facts that could ever satisfy the
rule, then the policy may have a bug. An analogy can be drawn to an conditional
always false bug in a conventional programming language: we have code (or in
this case a rule) that can never be used as the conditions for using it can never
occur.

Chapter 3. Instantiating and Evaluating SecPAL 76

Drawing from the Datalog definition of satisfiability, we define an AppPAL
statement G as satisfiable if there exists some AC such that there is an assertion
A within the AC and some assignment of variables ✓ such that A✓ derives G,
and that all the conditions in the body of A✓ are also satisfiable. Formally, we
define this as:

G 2 Satisfiable if 9A 2 AC : 9✓ : G ⌘ head(A✓)

^ (conditionals(A) = ;
_ 8G0 2 conditionals(A✓). G0 2 Satisfiable.)

Our satisfiability checker works by examining which assertions each prin-
cipal could possibly say from a given assertion context. When checking the
satisfiability we ask whether there is a mechanism in the policy for the principal
to use a given predicate. We use the following rules with a relaxed notion of 2,
that allows variable unification:

9A 2 AC s.t. A ⌘ �principal says ? predicate if ? p1, · · · , ? pn.
�

8p 2 �pi · · · pn
�

: AC ` (principal, p) 2 Satisfiable

AC ` (principal, predicate) 2 Satisfiable
(1)

9A 2 AC s.t. A ⌘ �principal says ? S can-say predicate if ? p1, · · · , ? pn.
�

8p 2 �pi · · · pn
�

: AC ` (principal, p) 2 Satisfiable
AC ` (S, predicate) 2 Satisfiable.

AC ` (principal, predicate) 2 Satisfiable
(2)

Informally the rules say when a policy (in an assertion context) supports the
notion that a principal can say a predicate (that (principal, predicate) 2 Satis-
fiable). Rule (1) says that a principal can make statements using a predicate if the
assertion context contains an example of them doing so; and that if that example
has conditionals, they policy also supports them saying each conditional’s
predicate. Rule (2) handles the case with delegation: a principal can use a
predicate (that (principal, predicate) 2 Satisfiable), if they say someone else
can say the predicate, and the policy supports the other person being able to
use that predicate (that (S, predicate) 2 Satisfiable)).

Chapter 3. Instantiating and Evaluating SecPAL 77

To give an example, if we have an assertion context with the following
assertions:

’alice’ says ’bob’ recommends(’angry-birds’).

’alice’ says ’claire’ canInstall(App)

if ’bob’ recommends(App).

’alice’ says ’claire’ mustInstall(App)

if ’bob’ highlyRecommends(App).

The first assertion can be used to show that:

(’alice’, recommends(’angry-birds’)) 2 Satisfiable

The assertion is present in the policy and there are no conditions, so:

(’alice’, recommends(’angry-birds’)) 2 Satisfiable

The second assertion shows that:

(’alice’, canInstall(App)) 2 Satisfiable

In the second case we have a condition, but since the first assertion showed that:

(’alice’, recommends(’angry-birds’)) 2 Satisfiable

Then we allow (with the relaxed notion of 2) that:

(’alice’, recommends(App)) 2 Satisfiable

Finally the third assertion cannot be used to show that:

(’alice’, mustInstall(App)) 2 Satisfiable

As we have no way to show that:

(’alice’, highlyRecommends(App))

We also add a somewhat weaker notion of satisfiability (Satisfiable?) which
distinguishes statements that might be satisfiable, but depend on delegation,
and where the delegated party has made no assertions about this predicate.
This distinguishes the case where we have missing information from the case
where a speaker has made an assertion that is itself unsatisfiable.

Chapter 3. Instantiating and Evaluating SecPAL 78

AC ` (principal, predicate) < Satisfiable
9A 2 AC s.t. A ⌘ �principal says ? predicate if ? p1, · · · , ? pn.

�

8p 2 �pi · · · pn
�

: AC ` (principal, p) 2 Satisfiable _ (principal, p) 2 Satisfiable?

9p 2 �pi · · · pn
�

: AC ` (principal, p) 2 Satisfiable? ^ (principal, p) < Satisfiable

AC ` (principal, predicate) 2 Satisfiable*

9A 2 AC s.t. A ⌘ �principal says ? S can-say predicate if ? p1, · · · , ? pn.
�

8p 2 �pi · · · pn
�

: AC ` (principal, p) 2 Satisfiable
@A 2 AC s.t. A ⌘ (S says ? predicate · · · .)

AC ` (principal, predicate) 2 Satisfiable?

The satisfiability rules are reminiscent of AppPAL’s cond and can-say rules
shown in Figure 2.8, but far more general. AppPAL’s evaluation rules decide
if a specific assertion by a speaker is supported by an assertion context. In
contrast, the satisfiability rules look at whether it is possible that the evaluation
rules could decide that the assertion is supported—that the AppPAL evaluation
rules could conceivably be satisfied, not that the evaluation rules are satisfied
for a specific assertion.

This definition of satisfiability is not complete (it ignores relationships formed
using can-act-as, as well as delegations to principals specified as variables). It
is, however, useful as a debugging tool as it can quickly check that a policy
contains enough statements to make any decision.

For a real example of the satisfiability checker in use, consider the following
snippet taken from the NHS policy described in Chapter 5. The rule described
in the policy is that an app must be approved by the IGC as well as by either the
CACPG as well as the MIG depending on whether it is for clinical or business
use. We describe this in AppPAL as:

’nhs-trust’ says App isInstallable

if App isApproved, App isUsableClinically.

’nhs-trust’ says App isInstallable

if App isApproved, App isUsableNonClinically.

’nhs-trust’ says ’igc’ can-say App:isApproved.

’nhs-trust’ says ’cacpg’ can-say App:A isUsableClinically.

’nhs-trust’ says ’mig’ can-say App:A isUsableNonClinically.

What apps in practice are approved for use? As the policy document notes,
none of the groups or committees have ever approved an app in practice. When

Chapter 3. Instantiating and Evaluating SecPAL 79

running the satisfiability checker on this policy, it reports that (among other
information) no app is installable.

$ java -jar Lint.jar --satisfiability example.policy
[INFO]: loaded 1/1 files of 6 assertions

Issues identified when checking satisfiability.

The following decisions may be unsatisfiable by their speakers:

’nhs-trust’ says * isUsableClinically

’nhs-trust’ says * isInstallable

’nhs-trust’ says * isApproved

’nhs-trust’ says * isUsableNonClinically

In particular the following assertions are unsatisfiable:

’nhs-trust’ says App isInstallable if App isApproved, App

isUsableNonClinically.

’nhs-trust’ says App isInstallable if App isApproved, App isUsableClinically.

These decisions may be satisfiable through delegation but we

lack any statements to that effect from the delegated party:

(via ’cacpg’) ’nhs-trust’ says * isUsableClinically

(via ’igc’) ’nhs-trust’ says * isApproved

(via ’mig’) ’nhs-trust’ says * isUsableNonClinically

As well as reporting which decisions it cannot make, it also reports the
specific assertions as well. It also reports the assertions that may be satisfiable
through delegation given additional statements (the Satisfiable?) separately at
the bottom.

These checks are simple and we don’t take into account dependencies
between variables. If we add, for example, the statements:

’igc’ says ’angry-birds’ isApproved.

’cacpg’ says ’dropbox’ isUsableClinically.

’mig’ says ’instagram’ isUsableNonClinically.

Then we will still never find any installable apps, as the IGC, CACPG
and MIG need to agree on the same app to find it installable. Our rules for
determining what is satisfiable only concern themselves with the predicates
and the principals: no checks are done to ensure that the subjects of the policies,
match up. In part this is because AppPAL has a closed-world assumption: if a
principal does not talk about a specific constant with respect to a predicate then
it is assumed false. When we run the satisfiability checker, we find no problems

Chapter 3. Instantiating and Evaluating SecPAL 80

as all the decisions are now satisfiable as there is a decision about some variable;
even if that variable isn’t useful in practice.

$ java -jar Lint.jar --satisfiability example.policy
[I]: loaded 1/1 files of 11 assertions

[I]: no satisfiability problems

The satisfiability checker acts as a quick sanity checker that a policy contains
enough facts and assertions; unlike AppPAL-proper which can check how and
whether a specific statement would be made.

3.5.2 Checking Redundancy

If unsatisfiability can be caused when we lack su�cient facts and assertions to
make a decision then redundancy occurs when we have too many. Specifically
there are two types of redundancy [74] that we care about here:

• Unreachability occurs if a predicate does not take part in the minimal
derivation tree of a fact.

• Irrelevance occurs if a derivation tree contains pairs of identical atoms.

These ideas can be applied to AppPAL to detect some potential problems in
AppPAL policies. For instance, consider the following AppPAL policy:

’alice’ says App isInstallable

if App isRecommended,

App isNotMalware.

’alice’ says App isRecommended

if App isNotMalware,

App isGood.

Alice checks that the app is not malware when checking the app is installable
and when checking that the app is recommended. The check in isInstallable
is irrelevant as it depends on the app being recommended which also checks this
property. When writing AppPAL policies this kind of irrelevance commonly
occurs when using the typed-syntax described in Section 3.3.2. For example, in
this excerpt from a SANS BYOD policy there is a check that U is a user in both
assertions. In the first there is irrelevance because U is stated as being a user
twice, where once would have been su�cient. In the second there is a single

Chapter 3. Instantiating and Evaluating SecPAL 81

Figure 3.11: Proof graph showing irrelevance.

check that U is a user but it is irrelevant as the check had already been done
when checking if U had lost the device (since only users can lose devices in the
first assertion).

’company’ says User:U can-say User:U hasLost(Device:D)

if D isOwnedBy(U).

’company’ says User:U mustInform(’help-desk’, ’device-lost’)

if U hasLost(Device).

Whilst the irrelevance adds redundancy and can slow down inferences when
making policy checks, it can also aid policy comprehension. In the previous
example the repeated checks as to whether someone is a user do not, strictly,
need to be done. They do, however, clarify what the type of each variable is.
A future implementation of AppPAL might incorporate code to remove the
redundant checks automatically. In order to remove the redundant checks we
must first be able to identify them, however.

We can check for irrelevance by building a proof-graph for the assertion
context. Every node (shown in a box) represents an AppPAL fact we might
wish to prove. For every assertion in the context we create a proof (represented
as a number in brackets) for the head of the assertion, which is connected to
the facts required to prove the assertion. In the case of can-say and can-act-as
statements we expand them as per AppPAL’s inference rules. A proof-graph
for the above example is shown in Figure 3.11: the irrelevant links are shown in
red and the AppPAL facts connected to the two dashed ones can be removed to
remove the irrelevance.

Chapter 3. Instantiating and Evaluating SecPAL 82

Figure 3.12: Proof graph showing unreachability.

In contrast, unreachability occurs when a fact does not take part in the
minimal derivation tree of a fact. As a simple example consider the following
policy:

’alice’ says App isInstallable if App isNotMalware.

’alice’ says App isInstallable if App isNotMalware, App isRecommended.

To detect unreachability for a given policy we again build the proof-graph
(shown in Figure 3.12). For each proof node we collect the facts (the leaves
of the graph underneath it, which are the ground assertions from the AC7 in
AppPAL). If the facts for one proof node connected to a fact are a subset of
the facts for another proof node, then the larger proof node is unreachable as
it contains facts which are not in the minimal derivation tree. In the case of
Figure 3.12, the derivation-graph 2 is made redundant by derivation-graph 1 as
it contains a subset of the facts. This is a simplified example; in general facts
lower in the tree may have multiple derivation trees, leading to multiple sets of
facts being required for a fact that seems to have only one proof node. Loops
can also occur (where one fact depends on itself to prove itself). This approach
isn’t complete, but it does identify several cases where an AppPAL policy may
be redundant through unreachability.

Redundancy can also occur when there are multiple rules that result in the
same decision being made. Rules may depend on other rules, or ground facts.
One proof (A) is made redundant by another proof (B) if the set of ground facts
used in B is a subset of the ground facts used in A. Whenever A is satisfied B
will also be, but when B is satisfied A may not be: consequently A is redundant

7Or in the case of an unsatisfiable policy facts with variables that cannot be unified with a
ground fact.

Chapter 3. Instantiating and Evaluating SecPAL 83

’x’ says ’y’ p

if ’y’ q,

’y’ r.

’x’ says ’y’ p

if ’y’ q.

’x’ says ’y’ p.

[0] [1]

’x’ says ’y’ q. ’x’ says ’y’ r.

Figure 3.13: A simple policy shown as a graph.

as B can be used to prove its goal with fewer facts. Informally, for any goal G:

9p1 2 proofs(G). 9p2 2 proofs(G).

p1 , p2 ^ facts(p1) ⇢ facts(p2) =) G has unreachable proofs.

p1 , p2 ^ facts(p1) = facts(p2) =) G has equivalent proofs.

Where proofs(G) is the set of all possible proof trees for a goal G.
Additionally, if two di↵erent goals (G and G0) have equivalent proofs, i.e.

there are multiple proofs that both rely on the same ground facts, then we report
this as it implies the two statements may not be independent.

9p1 2 proofs(G). 9p2 2 proofs(G0).

facts(p1) = facts(p2) =) G and G0 have equivalent proofs.

A simple example might be the policy shown in Figure 3.13. The second
rule makes the first redundant. We can represent the policy as a graph shown
opposite the policy. The goal (shown as a blue rectangle) has two routes to
prove it true (each shown in ellipses). Route 1 requires that the facts (shown
in green rectangles) ’x’ says ’y’ r, and ’x’ says ’y’ q., whereas route 0 only
requires the latter fact.

A more complex example is shown below:

’x’ says ’z’ p if ’z’ q.

’x’ says ’y’ can-say ’z’ p.

’y’ says ’z’ p if ’z’ q.

’y’ says ’x’ can-say ’z’ q.

Representing this policy as the graph in Figure 3.14 we can see it is more
complex. Goals that depend on more than just green facts, are shown as black

Chapter 3. Instantiating and Evaluating SecPAL 84

1.

’x’ says ’y’ can-say ’z’ p.

’x’ says ’z’ p.

[0]

[1]

’x’ says ’z’ q. ’y’ says ’x’ can-say ’z’ q.

’y’ says ’z’ p.

[0]

’y’ says ’z’ q.

[0]

2.

’x’ says ’y’ can-say ’z’ p.

’x’ says ’z’ p.

[0][1]

’x’ says ’z’ q.’y’ says ’x’ can-say ’z’ q.

’y’ says ’z’ p.

[0]

’y’ says ’z’ q.

[0]

3.

’x’ says ’y’ can-say ’z’ p.

’x’ says ’z’ p.

[0][1]

’x’ says ’z’ q. ’y’ says ’x’ can-say ’z’ q.

’y’ says ’z’ p.

[0]

’y’ says ’z’ q.

[0]

Figure 3.14: Flattening a more complex policy.

rectangles. If a goal is used to prove another goal, and it itself only depends on
green, ground, facts, then the node is marked to be flattened (red rectangle). Its
proofs are merged into the higher proof, and the flattened goal is removed from
the higher proof. This process is repeated until no more nodes can be flattened
(shown twice in Figure 3.14). Once the graph is flattened we can identify that
’x’ says ’z’ p has a redundant means of proof (route 0 only uses one of route 1’s
facts). We can also see that all the proofs for ’y’ says ’z’ q and ’y’ says ’z’ p
use the same facts. We report these statements as having equivalent proofs as
the goals are not independent of each other (implying we could use fewer goals
and still write equivalent policies).

Chapter 4

App Stores and App Preferences

Apps and app stores are a key part of the mobile ecosystem, an app being the
key form of software and the app store as their primary distribution means.
In this chapter we explore the stores and the policies surrounding them. We
compare the terms and conditions between the various marketplaces. We look
at how users have privacy preferences about the which apps they want to use.
But by using AppPAL versions of common user privacy preferences, we show
how Android users do not seem to follow them in practice. Finally, we describe
how AppPAL can be used to create new app stores by checking for apps that
can be shown to follow a policy, and o↵ering them in a web app-based store.

4.1 App Stores

Whilst iOS has just one store (Apple’s App Store), the Android ecosystem is
more diverse with multiple stores available for multiple di↵erent purposes.
The dominant app store on Android is Google Play. Unlike iOS, Google isn’t
the sole app vendor however. Some device vendors add their own stores to
their devices as a feature: Amazon does this with their Kindle Fire tablets,
where Kindle owners can download discounted apps. Some vendors, such as
Samsung, add their own store this to highlight apps that use features specific
to their phones (KNOX in Samsung’s case). In some regions (such as China),
using Google services is problematic due to legislation banning their use in the
region. People in these countries use local, regionally focused app stores (such
as QiHoo360 or Yandex) instead.

For a manufacturer to install Google’s store they must comply with the

85

Chapter 4. App Stores and App Preferences 86

Android Compatibility Definition Document (CDD) [50]. The CDD describes
how to configure the Android operating system and what features a device
must have to run Android. If a manufacturer cannot pass the Compatibility
Test Suite (CTS) that tests conformance with the CDD, then they cannot install
the Play Store.

For manufacturers like Jolla whose devices do not run Android1, but can
emulate some parts of the Dalvik virtual machine enough to run Android apps,
third-party stores like Yandex and Aptoide allow the device to still benefit from
apps designed for the Android ecosystem, without having to pass Google’s test
suites.

In this section we will focus on five di↵erent app stores: Apple’s App Store,
Amazon’s app store, Aptoide, Google Play and Yandex. Apple’s App Store is
for iOS, but the rest are for Android operating systems.

Amazon’s app store was opened in 2011 and was the primary app store for
Amazon’s Android-based Kindle tablets2. Like Apple and Google’s stores, the
store is controlled by the device manufacturer.

Yandex is a store primarily for the Russian and eastern European markets.
It features many Russian language apps. Some manufacturers, such as Nokia,
installed Yandex over Google’s app store on devices sold in Russia.

Aptoide is an open-source app store, and software for creating new app
stores. Unlike many other app stores it provides specialised app stores targeted
for Android based Smart TVs (Aptoide TV), and for users with slow internet
connections (Aptoide Lite). Aptoide doesn’t provide access to fixed sets of apps.
Any user, or developer, is free to create their own curated repository of apps,
and point Aptoide to it. Aptoide claim users and developers have created over
220,000 stores using Aptoide. Notably the F-Droid app store which sells only
open source apps was created from a fork of Aptoide’s code. Aptoide tries
to detect malware in its own repositories (Figure 4.1), like many other store
vendors. Unlike others rather than removing the malware Aptoide alert their
customers that the app may be dangerous. Not all apps are subject to these
checks however. Searching the store it was quickly possible to find an app
designed to root phones (Figure 4.2)

We chose these stores to focus on as they represent a range of di↵erent app
1They run Sailfish, which is based o↵ of the Linux Foundation’s Mer operating system.
2The Kindle Fire models, as opposed to the regular Kindle models.

Chapter 4. App Stores and App Preferences 87

Figure 4.1: Adware infested and pirated app from Aptoide.

Figure 4.2: Rooting app found on Aptoide.

stores. From the largest of marketplaces (Apple and Google) to smaller markets
for specific devices (Amazon) specific regions (Yandex) and for companies and
users looking to create their own stores for their own devices (Aptoide).

4.1.1 Exploring Differences in Terms Between App Stores

With the various app stores available, a user or developer might be interested
in the di↵erences between the app stores. Di↵erent stores require di↵erent
amounts of identification from their users to buy and sell apps, or o↵er di↵erent
terms and conditions.

Chapter 4. App Stores and App Preferences 88

The precise terms for using these app stores are hidden in user and developer
agreements. The agreements hide within pages of legalese what the stores are
contractually allowed to do with a user’s data and a developer’s app.

A comparison of the terms and conditions is given in Table 4.1 (starting on
page 89). It is also worthwhile comparing the forms the terms and conditions
themselves take. For most of the stores, the terms are single files or web pages
written in English easily accessible from the store homepages [115, 9, 51, 6].

Apple’s terms documents are split into many files and websites, and it is
not immediately clear how each document is related. The user agreements for
all app software and hardware are kept on one site in hierarchical menus with
each product, version of a product, and for each country appearing to have a
separate terms document. In practice many products share the same linked
contracts, within a single country. Developer terms and agreements are kept
in a di↵erent website and presented as a list of eleven policies. The iTunes
terms and conditions, which form the bulk of the agreements for using the iOS
app store. The iTunes terms and conditions are even available in comic-book
format [93].

Comparing the terms and conditions in Table 4.1, the stores are for the most
part rather similar. Stores pay their developers a month in lieu. A user must be
over 18 to use the store, unless their guardian permits it. No store is okay with
developers selling illegal or sexually explicit material. Most stores are going
to record information about the users who bought software from them. One
area where the stores do di↵er is in terms of refunds—only Apple has a return
period longer than a few hours. In the case of Amazon there is no right to a
refund, and for Yandex only 15 minutes.

Another area where they di↵er is the rights a store has to the apps they sell.
Amazon and Aptoide both have the right to alter the apps. This is important
because it changes the trust model for apps on Android. In Android the
developer who signs the app is responsible for updates and identified as the
developer of the app. Android will not let a user install unsigned apps3. To
modify an app, Aptoide and Amazon must be able to re-sign the code, essentially
taking on the role of vouching for the apps integrity and, by implication, its
safety and security. Whereas an app from Google’s marketplace would be
signed by the developer who made it, the Amazon app store signs the apps it

3Normally. There are exceptions for development.

Chapter 4. App Stores and App Preferences 89

Apple Amazon Aptoide Google Yandex

App User
identification

Apple ID. Amazon account. An ID and contact
details. User agrees
not to give false ID.

Name address and
billing details.

For free apps no ID
is needed, For paid
apps they must be
an authorised user

and give payment
details

Taken information Technical data
about the device,
system, software
and peripherals;
which the
Application Provider
may use provided it
is in a form that
does not personally
identify the user.

Device info, network
connectivity,
download info,
location, usage info.
They will not access
information
unrelated to the app
store.

Transaction
information, which
may be shared with
developers.

App installation
data (for malware
identification),
which may be opted
out of. Device ID,
visited URLs and
cookies.

Device info, OS info,
device content,
apps and services.
Mobile and SIM
information.
Location (which can
be denied), search
queries and
technical
information.

Payment info Credit card or gift
card.

Through Amazon. Through an
approved partner’s
payment processor.

Google Wallet,
others at Google’s
discretion.

Through an
approved processor
provided by Yandex.

Who pays whom? The purchasing
user pays Apple. If
a user uses family

sharing then the
family organiser
pays Apple.

User pays Amazon. User pays the store
owner through
Aptoide.

User pays Google
Commerce or the
provider where
Google is acting as
an agent.

User pays the app
supplier.

Pricing Apple sets price
tiers which a
developer may
choose from.

Amazon, based on
a minimum or
suggested price
from the developer.

The developer and
store owners.
Aptoide may round
prices.

The developer.
Google may round
prices. If the
developer makes an
app free they may
not charge later.

The supplier. The
supplier agrees that
Yandex may limit
the exact amount of
money and may
convert to other
currencies.

Refunds 14 days. No. 24 hours. Only for defective or
removed content. A
user may ask for a
refund for 2 hours.
For an amount less
than 10 USD a
refund may be
issued up to 48
hours later. For
amounts above 10
USD it depends on
who processed the
payment.

15 minutes.

Age of use 13 or older to create
an Apple ID.
Parents or
guardians can
create an ID
through family
sharing.
Educational
institutions can
create IDs for
students.

Bellow 18 with
consent of parent or
guardian. No
alcohol content for
under 21s.

A legal age within
the user’s country.

At least 13. Bellow
18 with parent or
guardian’s consent.

At least 14. Bellow
18 with parent or
guardian’s consent.

Updates Apple are not
obliged to provide
updates, and user’s
can chose not to
install them.

By default they will
be installed.

Aptoide can check
for updates to apps
and users will
receive them.

Google will check
for updates to apps
and users will
receive them.

Yandex may update
content on devices
for security and
bug-fixing reasons.

Chapter 4. App Stores and App Preferences 90

Apple Amazon Aptoide Google Yandex

Moderation Apple will moderate
based on their own
opinion of what is
appropriate.

Publisher is obliged
to give information
which may be used
to give ratings.
Amazon cannot
check these ratings
are correct.

Aptoide may review,
screen, change and
review apps but are
not obliged to. The
Aptoide trusted app

sign indicates an
automatic anti-virus
checker checked
the app and does
not imply Aptoide
checked it.

No obligation but
Google may.

They may moderate
and filter but are not
obliged to.

Rights to content Apps are licensed
to a user and not
sold. The user may
use content on
Apple devices. If
the device is later
sold the user must
remove the content.
The user may not
distribute, copy,
reverse engineer,
disassemble,
change or create
derivative works
with the licensed
application or part
thereof.

The user may not
change, rent, lease,
loan, sell, distribute
or create derivative
works based on the
content. The user
may use the
content.

The user cannot
use apps as part of
a public
performance. The
user may transfer
apps between
linked Google
accounts. The user
may not use content
for dangerous
activities, such as
nuclear plants, life
supporting,
emergency
communications,
aircraft control or
similar activities
where failure might
lead to death, injury
and environmental
damage.

What can the store
do with the app?

Apple are appointed
as the developer’s
agent/commission-
aire to sell, market,
and deliver apps.
Apple may thin an
app, and repackage
it for certain devices
and optimisation.

Irrevocable
royalty-free right to
distribute through
all electronic means.
Amazon can check,
test and store the
app. Amazon may
change and add to
the app for
analytics, policy
enforcement, to add
metadata and to
improve
compatibility with
Amazon devices.
They may, if
requested by the
developer add DRM.
Amazon may use
the app to promote
and advertise their
services, and may
make limited time
promotions or test

drive versions of the
app. They may
claim other rights.

Sell and make
available to
third-party stores.
They may change
the app.

Google can
reproduce, perform
and display the app
for marketing
purposes. Google
may delegate this
right to a third-party.

Yandex may use the
app and developer’s
marks, logos and
images of the app
and its content
worldwide. Yandex
may delegate or
sub-license this
right.

Chapter 4. App Stores and App Preferences 91

Apple Amazon Aptoide Google Yandex

How quickly will
they remove an app
at a developer’s
request?

No time period
specified, but the
developer may ask
that they do it.

10 days generally. 5
days if due to a loss
or third-party claim
to rights. ASAP if it
is due to breaking
the law.

No time period
specified, but the
developer may ask
that they do it.

No time period
specified, but the
developer may ask
that they do it. If it is
due to IP or
breaking the law
then users who
downloaded within
the last year can
have a refund.

90 days, though
Yandex may keep
an archive copy.

Additional EULAs The developer may
add one, but it may
not be inconsistent
with the minimal
terms and
conditions provided
by Apple, and must
comply with all
applicable laws in
the regions the app
is sold.

The developer may
add one if it doesn’t
interfere with
Amazon’s own
terms.

Aptoide add a
default one, but they
suggest developers
add one that
supersedes it.

Developer may add
one, else the user is
granted the
worldwide perpetual
right to perform,
display and use the
product.

Developer must add
one and it must
include the right to
the content
worldwide (except
for trials).

Developer
identification

Apple Developer ID. Amazon account. Email address.
Using the same
email as used for a
Google Play
developer account
may help speed the
app review process.

Google account and
payment info.

Email, company
name, tax ID,
addresses, country
of residence,
website, order email
address, user
support email
address, urgent
Yandex support
email address,
payment
information, other
reasonable

information, which
they do not define
further.

Content restrictions Described by a
living document [7],
which Apple will
change as new
example come up.
Broadly they look
for safety,
performance,
business, design
and legal issues.
They also are aware
kids use their store
and want
developers to think
about them when
submitting apps.
They will reject
amateurish,
cobbled together
apps. Apps that
they believe to have
content that is over

the line (they say
“they will know it

when they see it”).
Attempts to cheat
the system will lead
to developers being
banned.

No offensive
content,
pornography,
illegality, gambling
with real currency,
IP infringing,
privacy infringing,
copyright infringing,
or content that
would be illegal in
which the country
the app would be
sold.

Nothing that
displays or links to:
illegal content,
invasions of privacy,
content that
interferes with the
services of others,
hate or violence, IP
infringement.
Nothing that harms
devices or personal
data. Nothing that
has unpredictable
network usage or
has an adverse
impact on a user’s
service charges or
a carrier’s network.
Nothing that creates
a spammy user

experience.

No apps
implementing
alternate stores can
be submitted to the
store. No sex or
violence, bullying,
hate, impersonation,
IP infringing, PII
publishing
(specifically credit
or ID card
information, or
non-public
contacts), illegal
content, gambling,
dangerous
(malware or
spyware),
self-modifying or
system interfering
content. No
unpredictable
network use.

Content must be
safe, free of defects,
and described
accurately. Nothing
disruptive to Yandex
or malware.
Nothing illegal such
as: child
pornography,
obscenity, nudity,
sex, extremist,
hatred, violent,
discriminatory,
defamatory,
gambling, copyright
infringing or other
forbidden material.
Nothing that steals
private information
nothing that mimics
system functionality.
Nothing that would
require Yandex to
open-source
anything via
copy-left. No
alternative
marketplaces.

Chapter 4. App Stores and App Preferences 92

Apple Amazon Aptoide Google Yandex

Who describes the
apps

Developer Developer but
Amazon may edit it.

Developer. Developer. Developer but
Yandex may edit it.

Who can distribute
apps?

Apple. Amazon, and
regional
subsidiaries.

Aptoide and
third-party partners
using Aptoide to
create their own
store.

Google. Yandex and
partners.

What support must
a developer give?

None, except what
is in app’s EULA.
The developer must
acknowledge that
they are solely
responsible for
maintaining their
app (not Apple).

Must respond to
users within 5 days.
Must respond to
Amazon within 24
hours if Amazon
deem issue critical.

Aptoide will give
users with the
developer’s contact
information.

Developer must
support their app
and handle
complaints.
Developer must
respond within 3
days and to issues
deemed urgent by
Google within 24
hours. Failure to do
so will result in
Google lowering
your app’s ranking,
review scores, and
removal.

Must give user with
support via email or
phone. Must
respond to users
within 5 days.

When do
developers get
paid?

Within 45 days of
the last day of the
month. Minimum
earned balance is
either 10 USD or
150 USD,
depending on the
developer’s bank’s
country.

Roughly 30 days
after app was sold.

Roughly 30 days
after the
end-of-the-month of
the purchase.

On the 15th of the
following month via
Google Wallet.
Minimum earned
balance for local
currency payout is 1
USD. 100 USD for
wire transfer
payouts.

30 days after the
end-of-the-month of
the purchase.
Minimum earned
balance for payout
is 100 USD. If less
is earned in a
month Yandex will
store it without
interest.

What do developers
get paid?

Roughly 70% of the
price, as specified
by [8].

70% of list price
(minus card
processing fees).

75% of revenue
share after
deduction of all
transaction fees.
Other rates subject
to agreement with
Aptoide.

70% of payment by
user.

70% of net revenue
(minus transaction
fees).

Table 4.1: Comparison of terms and conditions from five app stores.

sells. In theory, an app originally purchased in the Google Play store could be
updated by an app from the Yandex store (if signed by the same key and the app
was a later version). With Amazon’s model this is not possible as they sign the
app with di↵erent key. In Amazon’s case this is especially confusing as Amazon
manufacture their own Android tablets. To access certain system permissions
Android requires that an app be signed by the same key that signed the OS
installation. In the Play store model Google no third-party developer in their
store would have access to that key, but in the Amazon model they could (if
they desired) distribute system apps for their Kindle devices. Having a di↵erent
signing model is not inherently wrong, but it changes the trust assumptions
associated with Android, which a user may not necessarily be aware of. We

Chapter 4. App Stores and App Preferences 93

’apple’ says ’maximum-purchase-hours’ is(336).

’apple’ says User:U canRequestRefund(Purchase:P)

if U hasCompletedPurchase(P), ’maximum-purchase-age’ is(N)

where age(P) < N.

’aptoide’ says ’maximum-purchase-hours’ is(24).

’aptoide’ says User:U canRequestRefund(Purchase:P)

if U hasCompletedPurchase(P), ’maximum-purchase-age’ is(N)

where age(P) < N.

’google’ says ’maximum-purchase-hours’ is(2).

’google’ says User:U canRequestRefund(Purchase:P)

if P isFor(App:A), A isDefective,

U hasCompletedpurchase(P), ’maximum-purchase-age’ is(N)

where age(P) < N.

’yandex’ says ’maximum-purchase-hours’ is(0.25).

’yandex’ says User:U canRequestRefund(Purchase:P)

if U hasCompletedPurchase(P), ’maximum-purchase-age’ is(N)

where age(P) < N.

Figure 4.3: AppPAL translations of app store refund rules.

discuss this further in Section 4.1.2.
The terms and conditions are dense technical documents. Yet despite the

document’s intimidating nature, the di↵erences in terms between each app
store agreement is often small. By encoding the key di↵erences into a formal
language (such as AppPAL) we can clarify the distinctions between the stores.
A developer, or user, can then choose the app stores they are happy to submit to
based on the store’s policies, and a company could automate the enforcement of
the policy. For example, in the case of refunds the di↵erences in policy could be
written as shown in Figure 4.3. The di↵erences in support agreements is shown
in Figure 4.4. Again the di↵erences are small: only di↵ering in the number of
hours developers have to respond and whether there is a need to respond to
issues from the store itself more urgently.

Writing policies out in this way describes the informal terms and conditions
unambiguously. A computer could check compliance with the terms by
evaluating the policy in this form (assuming it was given su�cient information).

Chapter 4. App Stores and App Preferences 94

’amazon’ says Developer:D mustRespondWithinHours(Issue:I, 120)

if User hasIssueWith(I, App), D hasCreated(App).

’amazon’ says Developer:D mustRespondWithinHours(Issue:I, 24)

if ’amazon’ hasIssueWith(I, App), D hasCreated(App),

I isCritical.

’google’ says Developer:D mustRespondWithinHours(Issue:I, 72)

if User hasIssueWith(I, App), D hasCreated(App).

’google’ says Developer:D mustRespondWithinHours(Issue:I, 24)

if ’amazon’ hasIssueWith(I, App), D hasCreated(App),

I isCritical.

’yandex’ says Developer:D mustRespondWithinHours(Issue:I, 120)

if User hasIssueWith(I, App), D hasCreated(App).

Figure 4.4: AppPAL translations of app store support rules.

If we were to translate the entire app store terms and agreements we could
build a set of standard decisions that describe what app stores terms and
conditions talk about. The similarity between the di↵erent rules in Figure 4.3
and Figure 4.4 suggests there are idiomatic patterns present in the policies
that could be captured and described. In Chapter 5 we look at BYOD policies
and identify decisions and idioms common to those policies on the basis of an
AppPAL description of the rules. Similar techniques could also be applied to
app store terms to clarify and describe the policies precisely; going beyond the
comparison of the text of the policies presented here.

4.1.2 Why Who Signed the App Matters

Some stores may make changes to the apps they sell. For Android users this is
important as it changes the trust relationships around who can provide updates
and who developed the app. We will illustrate the decisions Android makes
using AppPAL.

To install an app Android requires it to be signed with a key to identify the
developer who built the app:

Chapter 4. App Stores and App Preferences 95

’android’ says App:A isAcceptable

if A isSignedWith(Key),

Key isValid.

The standard Android trust model says that the developer of the app should
be the person that signed it:

’user’ says Developer:D hasMade(App:A)

if A isSignedWith(Key),

Developer isOwnerOf(Key).

When upgrading an app the upgrade is only accepted if the certificates
match (and the version number is higher). Additionally, if two apps have been
signed by the same key, they will share the same process space (enabling them
to share memory) and be able to share code:

’android’ says App:A canUpgrade(App:B)

if A isSignedWith(Key),

B isSignedWith(Key),

A hasVersion(V1),

B hasVersion(V2),

Key isValid

where V1 > V2.

’android’ says App:A canAccess(Data:D)

if D isOwnedBy(DataOwnerApp),

A isSignedWith(Key),

DataOwnerApp isSignedWith(Key).

Key isValid

To submit an app to the Play Store Google requires that the key the app was
signed with must be valid until 2033, and more generally they recommend keys
are valid for at least 25 years4:

’play-store’ says App:A isAcceptable

if A isSignedWith(Key),

Key isValid

where expiryDate(Key) > 2033.

If an app is re-signed by a store to alter an app, then it loses the relationships
set up by its original key. The store must now provide (or re-sign) updates

4The validity of the key is somewhat surprising. We believe that this is to ensure the key
outlives the app and so avoid issues with the developer’s keys expiring whilst they are still
providing updates to the app.

Chapter 4. App Stores and App Preferences 96

for the app it sold. If the new key is also used to sign other apps then the
app may leak (or take) information from other apps shared by the same key.
Assumptions that data is private to one particular app start to break down if
apps are re-signed. The user’s trust model must now become:

’user’ says Store:D hasSold(App:A)

if A isSignedWith(Key),

Developer isOwnerOf(Key).

This policy is equivalent to the user’s original trust model (they rely on the
same decisions), but the meaning is subtly di↵erent. The key that signed the
app is no longer su�cient to identify the developer.

4.2 Finding the Right Apps

For a user, finding the right apps is tricky. Users need to discover which ones
are not going to abuse their data. This is di�cult as it isn’t obvious how apps
use the data each has access to (including data generated by the app or data
already on the device). Consider a user attempting to buy a torch app. The Play
store shows users a long list of apps when they browse. Clicking through each
app they can find the permissions each requests but not the reasons why each
was needed. They can see review scores from users but not from tools to check
apps for problems and issues like SSL misconfigurations [47]. If they want to
use the app at work will it break their employers rules for mobile usage?

App stores give some information about their apps; descriptions, screenshots
and review scores. Android apps show a list of permissions when they’re first
installed. In Android Marshmallow apps display permissions requests when the
app first tries to access sensitive data (such as contacts or location information).
In general, research shows that users do not understand how permissions relate
to their device [48, 105]. Nevertheless, the device user must make the decision
which apps to use and which permissions to grant.

Some apps are highly undesirable. One class of apps are called potentially
unwanted programs (PUPs). They represent apps which whilst they are not
exactly malicious, are designed to do things which may annoy users, such as
displaying pop-up notifications for adverts or altering wallpapers on the device.
There are many PUPs being sold for Android devices [107, 104]. Employees are
increasingly using their own phones for work and an employer may restrict

Chapter 4. App Stores and App Preferences 97

Policy C A F U

GET ACCOUNTS 7 7 7 7

ACCESS FINE LOCATION 7 7 7

READ CONTACT 7 7 7

READ PHONE STATE 7 7

SEND SMS 7 7

ACCESS COARSE LOCATION 7

Table 4.2: Lin et al. privacy preference policies expressed as sets of prohibited
permissions.

which apps their employees can use. The IT department may set a mobile device
policy—a series of rules describing what kinds of apps employees can used and
how—to prevent information leaks. Some users worry that apps will misuse
their personal data—sending their address book or location to an advertiser
without their permission. Such a user avoids apps which can get access to their
location, or address book; so they may apply their own personal, informal,
security policies when downloading and running apps.

4.2.1 Privacy Preferences

To what extent do users follow personal policies informally? In a study of 725
Android users, Lin et al. found four patterns that characterise user privacy
preferences for apps [82], demonstrating a refinement of Westin’s privacy
segmentation [64].

Westin grouped the people into three categories based on their responses
to surveys. Privacy Fundamentalists were highly concerned with their privacy
and actively distrusted businesses governments and technology with their
personal data and disputed any need from these groups to collect the data.
Privacy Unconcerned people, in contrast, were not concerned with giving a way
information and who trusted others to not mismanage information about them.
The third group, the Privacy Pragmatists, were more considered and would
have some personal policy that described when they were happy to give up (or
protect) their privacy.

Lin et al. identified four types of user when assessing user’s personal app
privacy policies. The Conservative (C) users were uncomfortable allowing an

Chapter 4. App Stores and App Preferences 98

Westin Privacy Segment Lin et al. Privacy Preference

Privacy Fundamentalist (25%) Conservative (12%)

Privacy Pragmatist (55%)
Advanced (18%)
Fencesitter (22%)

Privacy Unconcerned (20%) Unconcerned (48%)

Table 4.3: Lin and Westin privacy groups and their sizes.

app access to any personal data for any reason. The Unconcerned (U) users
felt okay allowing access to most data for almost any reason (though they
were somewhat uncomfortable about allowing apps unrestricted access to their
accounts). Advanced (A) users were comfortable allowing apps access to location
data but not if it was for advertising. Opinions in the largest cluster, Fencesitters
(F), varied but were broadly against collection of personal data for advertising.

Lin et al.’s four groups roughly map to Westin’s three, with Conservatives
being Privacy Fundamentalists, Unconcerned users being Privacy Unconcerned, and
the Advanced and Fencesitter users together acting as the Privacy Pragmatists.
A criticism of Westin’s privacy groups is that he did not distinguish between
pragmatic people and those who gave vague responses in the Privacy Pragmatists
group [110]. Lin et al.’s groups seem to support their Advanced and Fencesitter
groups seem to cover both aspects of the Privacy Pragmatist group. Lin et al. and
Westin’s groups di↵er, however, in terms of size. In general, Lin et al. found
more unconcerned users, and less fundamentalist or conservative users then
Westin estimated existed in the general population (Table 4.3).

Chapter 4. App Stores and App Preferences 99

Question To what extent do user’s follow an app policy?
Input Policy to test. Database of users and which apps they had installed. The

installed apps.
Output The percentage of each user’s apps they had that satisfied the policy.
Method

1. Express policy using AppPAL in the form of: ’researcher’ says
App:A hasMetPolicy(’policy-name’) if ...

2. For every installed app, check whether: ’researcher’ says
’app-name’ hasMetPolicy(’policy-name’).

3. For each user count then number of their apps for which the policy
was satisfied. The output is the percentage for which the check
came back as true.

Hypothesis If a user is following a policy, we would expect most of the apps they
installed to meet the policy.

Table 4.4: Summary of experiment to measure the extent user’s follow a policy.

4.2.2 Measuring Users

To answer the question of to what extent do users follow personal privacy
policies in practice we performed the following experiment (summarised in
Table 4.4). We wrote AppPAL policies to describe each of Lin et al.’s behaviours
as sets of prohibited permissions, shown in Table 4.2. For example the Fencesitter
policy is encoded as:

’researcher’ says App:X hasMet(’fencesitter-policy’)

if X isWithoutPermission(’GET ACCOUNTS’),

X isWithoutPermission(’ACCESS FINE LOCATION’),

X isWithoutPermission(’READ CONTACT’).

’researcher’ says App:X isWithoutPermission(Permission:P)

where check_permission(X, P) = false.

Where check permission is a constraint that checks whether the app X requests
permission P. Each policy in Table 4.2 was translated into a similar AppPAL
rule where the permissions that made the users uncomfortable were prohibited.
These simplify the privacy policies identified by Lin et al. as we do not take
into account the reason each app might have requested each permission (we
could write more precise rules if we knew why each permission was requested).

Chapter 4. App Stores and App Preferences 100

Lin et al. used Androguard [40] as well as manual analysis to find the precise
reasons the app requested each permission [82].

We took installation from a partially anonymised database of installed apps
captured by Carat [90]. This allowed us to link users to the apps they had
installed and measure the extent each user was following the policy.

The Carat data set was collected as part of a UC Berkley and University
of Helsinki experiment to measure the energy usage of apps. As part of the
experiment, users of the Carat app allowed the app to collect which apps were
installed on their device. The data set was anonymised by replacing the app
names with hashes of the apps package identifier, and usernames with an
increasing integer key.

The app names were replaced with hashes in order to obscure the package
names of some apps. We spoke to one of the researchers who collected the data
and learnt that the Carat tool was tested inside a company who were developing
some apps that had not been announced. The company did not want to leak
the names of their private apps so they were hashed in order to preserve their
secrecy. This allowed researchers to reverse engineer the hashes of publicly
known applications, whilst keeping any secret or unknown applications private.

Having confirmed with the data-set owners that reverse engineering the
app hashes would not raise ethical concerns, we used John the Ripper [103],
with a database of known package names and hashes, mostly derived from the
Android observatory [19] to link some of the app hashes to app names. Using
the reverse engineered hashes we can see which users (identified by a number)
had installed which apps.

The database has over 90,000 apps and 55,000 users. On average, each
Carat user installed around 90 apps each, and 4,300 apps have known names.
Disregarding system apps (such as com.android.vending) and very common
apps (Facebook, Dropbox, Whatsapp, and Twitter) we reduced the set to an
average of 20 known apps per user. To see some variation in app type, we
considered only the 44,000 users who had more than 20 known apps. Using this
data, and the apps themselves taken from the Google Play Store and Android
Observatory [19], we checked which apps satisfied which policies.

To check which apps satisfied which of Lin’s policies, we took our AppPAL
encoding of the policies, and facts identifying the apps in our data-set actual
apps into an assertion context.

Chapter 4. App Stores and App Preferences 101

0

5000

10000

15000

20000

0.00 0.25 0.50 0.75 1.00
Fraction of user’s apps meeting policy

U
se

r
co

u
n
t

(a) Advanced policy

0

5000

10000

15000

20000

0.00 0.25 0.50 0.75 1.00
Fraction of user’s apps meeting policy

U
se

r
co

u
n
t

(b) Conservative policy

0

5000

10000

15000

20000

0.00 0.25 0.50 0.75 1.00
Fraction of user’s apps meeting policy

U
se

r
co

u
n
t

(c) Fencesitter policy

0

5000

10000

15000

20000

0.00 0.25 0.50 0.75 1.00
Fraction of user’s apps meeting policy

U
se

r
co

u
n
t

(d) Unconcerned policy

Figure 4.5: Adoption of the four Lin et al. policies among users from the Carat
data set. Most users do not appear to follow these policies most of the time.

’researcher’ says App:X hasMet(’unconcerned-policy’)

if X isWithoutPermission(’GET_ACCOUNTS’)

’researcher’ says ’com.facebook.katana’ isApp.

For each app, we then queried AppPAL whether the app had met each of
the policies, and recorded which apps met which policies. This allowed us to
measure the extent any of the users appeared to be following any of the policies,
as the percentage of the apps they had installed that met the policy. Our results
are shown in Figure 4.5.

Chapter 4. App Stores and App Preferences 102

Figure 4.6: Chart highlighting that there
were around 7,500 users for whom only
10-15% of their apps satisfied the fence-
sitter policy.

We hypothesised that if a user’s
were following a policy, then we
would expect the majority of the apps
they had installed to meet the policy.
In the case of the Lin et al.policies we
found that very few users had a ma-
jority of apps which met the policy.
This would suggest that user’s may
not be following Lin et al.’s policies
in practice. The charts can be read
as described in Figure 4.6. Each bar
of the histogram represents a state-
ment about what percentage-range of
a users apps met a given policy. A
user for whom between 0–5% of their apps met the policy would count towards
the first bar, a user for whom between 5-10% of their apps met the policy would
count towards the second bar. The height of each bar represents the number of
users in each group.

Even for the least onerous unconcerned policy, most users did not seem to
follow the policy most of the time. This suggests that user’s privacy preferences
are somewhat disconnected from their behaviour (assuming the user population
studied by Lin et al. was similar to the data in the Carat study). This is
reminiscent of the privacy paradox that states that whilst people will say they are
very concerned about their privacy, they do not alter their behaviour to protect it.
It was first noticed by psychologists looking at how people use social networks;
though has appeared in many other areas since. A few users, however, did seem
to install apps meeting one of these policies most of the time. This suggests that
while users may have privacy preferences most are not attempting to enforce
them. This suggests that policy enforcement tools, like AppPAL, may help users
enforce their personally desirable policies which they cannot do easily using
the current ad-hoc manual means available.

Chapter 4. App Stores and App Preferences 103

4.2.3 Privacy Policies and Malware

It is also interesting to discover whether people install apps classified as malware.
McAfee classify malware into several categories, and provided us with a data
set of apps classified as malware and PUPs. Using these package IDs we
calculated the package hashes and looked to find users in the Carat data set
who had installed any of these apps. The McAfee data classified the data into
several categories based on the purpose of the malware. The malicious and trojan
categories describe traditional malware. Other categories classify PUPs such
as aggressive adware. Using AppPAL we can write policies to di↵erentiate
characterising users who allow dangerous apps and those who install poor
quality ones.

’user’ says ’mcafee’ can-say

’malware’ isKindOf(App).

’mcafee’ says ’trojan’ can-act-as ’malware’.

’mcafee’ says ’pup’ can-act-as ’malware’.

If a user is enforcing a privacy policy, we might also expect them to be more
selective about the apps they install. If a user is being selective we might expect
them to install less malware and PUPs, as they often request many permissions.
We can check this by using AppPAL policies to measure the amount of malware
each user had installed.

We found that 1% of the users had a PUP or malicious app installed. Figure 4.7
shows that infection rates for PUPs and malware is low; though a user is 3 times
more likely to have a PUP installed than malware. It is interesting to compare a
user’s compliance to the Lin et al. policies with the amount of malware each
had installed (Figure Figure 4.8). Users who were complying more than half the
time with the conservative or advanced policies complied with the malware or
PUP policies fully. This suggests that policy enforcement is worthwhile: users
who do enforce policies about their apps experience less malware. This could
also be attributed to the users selecting their apps more carefully to enforce
their policy: a careful user is unlikely to install malware generally.

Chapter 4. App Stores and App Preferences 104

0

50

100

150

200

250

0.7 0.8 0.9 1.0
Fraction of user’s apps meeting policy

U
se

r
co

u
n
t

(a) Malware only

0

50

100

150

200

250

0.7 0.8 0.9 1.0
Fraction of user’s apps meeting policy

U
se

r
co

u
n
t

(b) Malware and PUPs

Figure 4.7: Malware installation numbers in the Carat data set.

0.80

0.85

0.90

0.95

1.00

0.00 0.25 0.50 0.75 1.00
Fraction of user’s apps meeting ‘Advanced’ policy

F
ra

ct
io

n
 o

f
u

se
r’
s

a
p

p
s

m
e

e
tin

g
 ‘N

o
t−

P
U

P
’ p

o
lic

y

(a) Advanced policy and malware

0.80

0.85

0.90

0.95

1.00

0.00 0.25 0.50 0.75 1.00
Fraction of user’s apps meeting ‘Conservative’ policy

F
ra

ct
io

n
 o

f
u

se
r’
s

a
p

p
s

m
e

e
tin

g
 ‘N

o
t−

P
U

P
’ p

o
lic

y

(b) Conservative policy and malware

0.80

0.85

0.90

0.95

1.00

0.00 0.25 0.50 0.75 1.00
Fraction of user’s apps meeting ‘Fencesitter’ policy

F
ra

ct
io

n
 o

f
u

se
r’
s

a
p

p
s

m
e

e
tin

g
 ‘N

o
t−

P
U

P
’ p

o
lic

y

(c) Fencesitter policy and malware

0.80

0.85

0.90

0.95

1.00

0.00 0.25 0.50 0.75 1.00
Fraction of user’s apps meeting ‘Unconcerned’ policy

F
ra

ct
io

n
 o

f
u

se
r’
s

a
p

p
s

m
e

e
tin

g
 ‘N

o
t−

P
U

P
’ p

o
lic

y

(d) Unconcerned policy and malware

Figure 4.8: Graphs plotting a user’s conformance with the Lin et al. policies
against the amount of malware they had installed on their device. Each dot
represents a user.

Chapter 4. App Stores and App Preferences 105

4.2.4 Discussion

In capturing the privacy preferences, and in comparing them to user installation
data, we have shown that most users use apps irrespective of how uncomfortable
they are with the permissions the app request. A small set of users do seem
to enforce these policies at least sometimes, however. Our comparison is not
without some limitations:

• We do not have the full user purchase history, and we can only find out
about apps whose names match those in available databases. So a user
may have apps installed that break the policy without us knowing.

• The downloaded apps used for experiment may not be the same version
that users had, in particular, their permissions may di↵er. Permissions
tend to increase in apps over time [111], so a user may actually be more
conservative than our analysis suggests.

• The Android permission system has changed over time. In particular, our
app installation data comes from before users had the ability to revoke
individual permissions from apps. Android’s current permissions model
makes it easier for a user to follow a policy as they do not have to chose
between going against their privacy preferences and not installing an app.
If we were to repeat the study with modern data, and looking at which
apps had their permissions requests denied, we might expect to see more
users following a policy (if users do wish to follow a privacy preference
most of the time).

• The Carat data set is not the same group of users, as was examined by
Lin et al.and so is not the same sample of users. In particular, the users in
the Carat data-set had all installed the Carat app to monitor their power
usage. We found that some users in the Carat data-set had also installed
tools such as Busybox5. This suggests the Carat data-set contains more
technically minded users than we might expect to find in the general
population.

To avoid most of these limitations we would need to collect our own data,
and work with users to better understand and capture their privacy preferences.
We leave this to future work, however.

5Which gives the user access to common UNIX utilities such as a shell.

Chapter 4. App Stores and App Preferences 106

Available Apps AppPAL GenStore

Policies Selected Apps

Proof trees[optionally]

Database

Web app store

Figure 4.9: AppPAL GenStore’s architecture. In go policies and apps, out come
app stores.

Figure 4.10: GenStore database schema.

4.3 An AppPAL Enhanced Store

Using AppPAL we can describe users preferences for apps, and we can describe
the di↵erences between some stores. A natural continuation of this is to start to
generate new app stores, based on a user’s policy, that only sell apps that a user
might find acceptable.

Curated app stores are a similar idea, used inside companies to help employ-
ees install apps for work that satisfy company policies. With these corporate
stores the apps are hand selected by IT sta↵.

The GenStore tool uses AppPAL to automate the store creation process for
Android app stores. The architecture is shown in Figure 4.9. We summarise it
as:

1. The developer provides a pool of apps to GenStore. GenStore will select
from among these apps to create the curated store.

Chapter 4. App Stores and App Preferences 107

2. The developer also provides a series of policy files. These should include
rules to decide if an App isSellable. Optionally they can also describe
predicates where App hasCategory(Category) which will be used to organise
the apps into categories in the store.

3. GenStore runs, and for every app checks whether it is sellable. Additionally,
it checks apps for each category (apps can belong to multiple categories),
if defined. From this the GenStore builds a database (Figure 4.10) docu-
menting which apps are available, their categories and some additional
metadata.

4. A web-app is created from a template. The default template uses the
Sinatra framework to serve the store, but any framework could be used.
Alongside the web-app, Genstore copies the selected APK files into a
directory and a database is created storing information about the apps.

4.3.1 Using GenStore to Build an App Store

As an example of GenStore consider Alice who wants to build a curated app store
for her company. The apps in her store will be split into two categories: required
apps which is a list of apps specified by the HR department that everyone
should install, optional apps which people can install if they want, and Alice’s
Favourites which are apps Alice particularly likes and wants to show o↵. Apps
which aren’t in these categories shouldn’t be available and, as well as these
three categories, only apps which have been checked by the company antivirus
program should be allowed on her store.

To implement her store she downloads a pool of apps that she could sell in
her store, and writes a policy. In this case we chose a pool of 12 apps to serve as
an example. The policy describes what she wants to sell in her store and how
she wants to categorise the apps. This policy is very simple (it essentially just
white-lists apps) but more complex policies could be written if Alice wanted.

Chapter 4. App Stores and App Preferences 108

’store’ says ’alice’ can-say inf App isSellable.

’store’ says ’alice’ can-say inf App hasCategory(C).

’alice’ says App isSellable

if App hasCategory(C),

where AVCheck(App) = true.

’alice’ says ’hr’ can-say X hasCategory(’Required’).

’hr’ says ’apk://com.microsoft.office.word’ hasCategory(’Required’).

’hr’ says ’apk://com.microsoft.skydrive’ hasCategory(’Required’).

’hr’ says ’apk://com.skype.raider’ hasCategory(’Required’).

’alice’ says ’apk://com.niksoftware.snapseed’ hasCategory(’Optional’).

’alice’ says ’apk://net.skyscanner.android.main’ hasCategory(’Optional’).

’alice’ says ’apk://com.google.android.apps.photos’ hasCategory(’Optional’).

’alice’ says ’apk://com.sega.sonicdash’ hasCategory(’Optional’).

With the policy written, she passes the apps and the policy to GenStore
and asks it to build her an app store. It finds that several of the 5 of the apps
were not sellable in her store (4 because they did not have categories, and the
Towelroot rooting tool was rejected by the antivirus), but that it could create an
app store from the remainder. The output of the tool, and the web app it creates
is shown in Figure 4.11. Alice can take this web app and modify it to work in
her company.

4.3.2 Current Status

The GenStore tool itself is usable as a prototype, but it is not production-ready.
The stores it creates are minimal and do not have any authentication; and as such
further work would be required to make the stores ready for use in an actual
company. Genstore lets developers explore how policies could be integrated
into the Android ecosystem. It shows an example of how AppPAL can help
make decisions, in this case about which apps should be included in a company
app store, automatically. For a company seeking to enforce a policy about which
apps are installable they could use it to o↵er their employees choice about apps,
without having to remove the default store entirely. If an AV vendor integrated
their own checks into AppPAL then they could create a safe app store where all
apps have been demonstrably vetted by their software and engineers.

Chapter 4. App Stores and App Preferences 109

$ java -jar genstore.jar -d data -p store.policy

[INFO] preparing store

[INFO] picking apps

[INFO] com.microsoft.skydrive is sellable.

[INFO] com.niksoftware.snapseed is sellable.

[INFO] com.google.android.apps.photos is sellable.

[WARNING] com.geohot.towelroot is not sellable.

[INFO] com.sega.sonicdash is sellable.

[WARNING] com.rovio.baba is not sellable.

[INFO] net.skyscanner.android.main is sellable.

[INFO] com.microsoft.office.word is sellable.

[WARNING] com.supercell.clashofclans is not sellable.

[WARNING] com.whatsapp is not sellable.

[INFO] com.skype.raider is sellable.

[WARNING] com.outfit7.mytalkingtomfree is not sellable.

[INFO] picking categories

[INFO] com.microsoft.skydrive has category Required.

[INFO] com.microsoft.office.word has category Required.

[INFO] com.skype.raider has category Required.

[INFO] found 3 apps with category ’Required’

[INFO] com.niksoftware.snapseed has category Optional.

[INFO] com.google.android.apps.photos has category Optional.

[INFO] com.sega.sonicdash has category Optional.

[INFO] net.skyscanner.android.main has category Optional.

[INFO] found 4 apps with category ’Optional’

[INFO] building store

[INFO] copying app structure

[INFO] creating tables

[INFO] adding apks

[INFO] adding categories

[INFO] adding metadata

[INFO] copying apks

Figure 4.11: Output of the GenStore tool which runs on the command-line and
produces a web app.

Chapter 5

Applying AppPAL to BYOD
Policies

The relationships between users, apps and app stores is one part of the mobile
ecosystem, but another aspect is what happens when user’s start to bring their
personal devices into the workplace. In this chapter we move from looking at
personal policies to corporate ones. BYOD policies are one way a company
might try to control how personal devices are used in the workplace. In this
chapter we show how we can capture these policies using AppPAL. We focus on
the trust relationships within these policies and identify two idioms, delegation
and acknowledgements, that existing tools for enforcing BYOD policies ignore.

5.1 BYOD in the Workplace

Many employees bring their personal mobile devices to work. To control the
access these devices have to company resources an estimated 72% of companies
publish BYOD policies. According to a survey of companies by LinkedIn [101],
40% made BYOD available to all employees and 32% made it available to
selected employees. These BYOD policies are natural language documents that
employees should read and obey. They describe steps to take to secure devices
in the workplace. The policies say how employees should get access to data,
and who should authorise decisions.

Companies can use their policies in varying ways. Some may trust employees
to follow the rules on their own. Others may use MDM software to implement
part of their policies. Tools such as IBM’s MaaS360 and Blackberry’s BES [67, 25]

110

Chapter 5. Applying AppPAL to BYOD Policies 111

can configure devices to restrict functionality and manage apps.
Commercial tools have limits to what they currently enforce. Some tools can

only enable simple on-o↵ configuration settings, and ban explicitly black-listed
apps. More advanced systems can use app-rewriting to recompile apps. This
lets them tunnel tra�c through a VPN, or use geofencing to apply policies in
predefined areas. These tools are not infallible. One survey found that 50%
of companies with MDM software still had non-compliant devices in their
networks [84]. Whilst app wrapping can protect some apps, in general it is
ine↵ective [63].

5.1.1 Overview of Five BYOD Policies

This chapter looks at how we can apply AppPAL to BYOD policies. To do this
we analyse of five real-world policies. We chose the policies from a variety of
domains. They cover a range of di↵erent policy styles and concerns. Two are
example policy templates a company might want to base its own BYOD policy
on, published by security advice organisations. The remaining three are BYOD
policies used inside companies.

The Security Policy Template [52]. It was published by the SANS Institute.
This policy is a hypothetical policy published to help companies mitigate
the threats to corporate assets caused by mobile devices. Companies
change the document to suit their needs and BYOD requirements. The
policy is general; not specific to any particular industry, device, or country’s
legislation.

The Health information and Management Systems Society [65]. HiMSS is a
US non-profit company trying to improve health care through IT. The
Health information and Management Systems Society (HiMSS) policy
is short and has concerns specific to healthcare scenarios. The policy is
a contract the users follow. It has a di↵erent style to other policies: in
the other policies the company states what users should do; here the user
states what they will do. The policy is a sample agreement for a healthcare
company managing mobile devices.

Chapter 5. Applying AppPAL to BYOD Policies 112

A British hospital trust [73]. It describes the BYOD scheme used in practice at
the hospital. The policy is broad and covers rules for corporately owned
devices. This policy also briefly describes how devices should interact
with patients.

The University of Edinburgh [112]. It is brief. It groups rules into those for
high and low risk users. The policy is extremely general describing rules
for laptops, tablets and phones. Many of the rules are vague. The policy
says “Use anti-virus software and keep it up to date”, leaving the choice of AV
software and update times to the user.

A company selling emergency sirens [35]. Again this policy is simpler, and,
like the Edinburgh policy, is rather general compared to the other policies.

Each policy is split into a series of rules employees should follow. Typically, the
policy is describing what employees should do and what will happen under
certain circumstances. For example the NHS policy states that:

NHS: In the event of loss of the device, all data including apps will be wiped. The
Trust is not responsible for reimbursement of any costs for personally purchased
apps.

The Siren policy matches this style. It states what conditions will lead to the
company wiping an employee’s device:

Sirens: The employee’s device may be remotely wiped if: • The device is lost or
stolen. • The employee terminates his or her employment. • IT detects a data or
policy breach, a virus or similar threat to the security of the company’s data and
technology infrastructure.

The HiMSS policy has a di↵erent style. The equivalent rule is phrased from
the perspective of the policy subject (“I agree. . . ”):

HiMSS: I agree that the PDA/Smartphone can be wiped by XYZ Health System
upon the decision of XYZ Health System management and understand that it will
delete all data including personal files.

The SANS policy is written in the same style as the NHS policy. It is a
template policy that a company might use as the basis for their own policy.
Sometimes, however, it says things that seem like advice to the IT department
for what to look for. For example:

Chapter 5. Applying AppPAL to BYOD Policies 113

SANS: A corporate mobile device management solution SHALL feature remote
device wiping (or possibly only blocking) mechanism for all devices accessing
corporate internal networks.

The SANS policy also distinguishes between rules that should always be
followed (SHALL), and those that may depend on a specific business’s situation
(SHOULD):

SANS: Basically, sentences using the verb “SHALL” are mandatory requirements
applying to practices with high probability of putting the business at risk, whereas
“SHOULD” means that the policy needs to be applied according to the business’s
specific situation.

The Edinburgh policy goes further, grouping rules by device type and giving
a security level to each rule. The policy expects high and medium risk users to
follow everything, and low risk users to consider following the rules marked
with a r. For example, the policy groups together the rule for remote wiping
devices with the rules specific to mobile devices and tablets:

Edinburgh: r Configure your device to enable you to remote-wipe it should it
become lost.

Our translation shows the text of the policy next to the AppPAL version.
We have included the full translations in Appendix A. The rest of this chapter
looks at what we found from the translation process, and comments on MDM
policies in general.

5.1.2 Review of MDM software

A company might use MDM software to enforce their rules. Many vendors o↵er
MDM solutions: including IBM (with their tool MaaS360), VMware (AirWatch)
and MobileIron (whose tool has the same name as the company). They all o↵er
a similar set of features, namely:

1. App wrapping. The tool modifies apps to o↵er some extra features or
network properties. This may be limited to routing all the app’s network
tra�c through a VPN.

Chapter 5. Applying AppPAL to BYOD Policies 114

Feature M
aa

S
36

0

B
la

ck
be

rr
y

B
E

S

M
ob

ile
Iro

n

C
itr

ix
X

en
M

ob
ile

V
M

W
ar

e
A

irW
at

ch

M
ic

ro
so

ft

S
O

TI
M

ob
iC

on
tro

l

S
op

ho
s

La
nd

de
sk

Antivirus 3

App selection/store/management 3 3 3 3 3 3 3 3 3

App wrapping/modification 3 3 3 3 3 3 3

Authentication 3 3 3 3 3 3 3

Compliance reporting 3 3 3 3 3 3 3 3

Device configuration 3 3 3 3 3 3 3 3

Email/Calendar/Contacts/Documents 3 3 3 3 3 3 3 3 3

Feature Restrictions 3 3 3 3

Licence distribution 3

Location based settings 3 3

Network configuration 3 3 3 3 3 3 3

Password/Encryption settings 3 3 3 3 3 3 3 3

Remote wipe 3 3 3 3 3 3 3 3 3

Security auditing 3 3 3 3 3 3 3 3

Tracking/Spyware 3 3 3 3 3

Watermarking 3

Table 5.1: Summary of different MDM software’s capabilities built from informa-
tion from each of the tools sales pages.

2. Basic security configuration. Lets an administrator to turn on and o↵
various settings and security features. These include WiFi settings, pass-
codes, encryption or Bluetooth. These features could be used to reduce the
attack surface of a device; or enforce policies that need a user’s location
by turning on the GPS.

3. Provisioning. IT departments can install and update apps and their
configuration files. Email and LDAP configuration is common.

4. A curated app store. IT departments can white-or-black-list apps, and
o↵er them to employees.

Table 5.1 summarises the features of 9 competing MDM packages identified
by a Gartner report [102]. Most of the tools link to the report on their homepages
as the report lists every tool as either visionary, leading, or niche player. The
meaning of each term is unclear, however.1 The tools are similar with the main
di↵erence being the UI and some extra features only some tools have.

1Table 5.1 summarises the visionary and leading MDM packages.

Chapter 5. Applying AppPAL to BYOD Policies 115

Figure 5.1: Policy settings in the MaaS360 MDM tool.

Whilst MDM tools can configure devices, the policies they enforce are less
advanced than what can be written using a policy language such as AppPAL.
The policies of an MDM tool are essentially granular check boxes (shown
in Figure 5.1). An administrator can manually enable or disable features to
configure devices for users.

5.1.3 Related BYOD Work

As well as commercial MDM products there are also research tools that are
similar to MDM software. Martinelli et al.’s work creates a dynamic permis-
sions manager, called UC-Droid. Their tool can alter what an app’s Android
permissions are at run time, based on policies [83]. The tool allows companies to
reconfigure their apps depending on whether the employee is at work, in a secret
lab, or working out-of-hours. These kinds of policies are more configurable than
the geo-fenced based policies some MDM tools o↵er. Other work has looked
at enforcing di↵erent policies based on what roles an employee holds [37].
The work allowed a company to verify the devices within their network and
what servers and services they could reach. It also describes a mechanism for
providing di↵erent users with di↵erent policies.

Chapter 5. Applying AppPAL to BYOD Policies 116

Armando et al. developed BYODroid as a tool for enforcing BYOD policies
through a secure marketplace [11]. Their tool allows companies to distribute
apps through a secure app store [12]. The store ensures apps meet policies
through a static analysis and app rewriting to add dynamic enforcement. Their
policies are low-level, based on ConSpec [5], and check the policy with respect to
the Dalvik VM’s state. Using their tool, they implemented the parts of a NATO
Communications and Information Agency policy about personal networks
and data management [10]. Their work shows how to check and enforce the
app-specific sections of a BYOD policy using tools. They did not look at where
the checks or policies come from, however.

Question What are the idiomatic concerns in BYOD policies?
Input Five different natural language BYOD policies from various sectors.
Output The encodings of the policies into AppPAL. Analysis of policy contents.
Method

1. For each policy encode it as an AppPAL policy, taking care to
capture the style and intent of the original policy.

2. Go through each encoded policy and ensure predicates have a
common name where they capture similar decisions.

3. Compare AppPAL policies looking for areas of common concern and
where common structures have been used to capture the policy.

Hypothesis Different BYOD policies will have some common areas of concern and
predicates. Some may be similar to the features associated with MDM
tools, and others may be different. Comparing the AppPAL translations of
the policies will help clarify the differences and similarities between the
policies.

Table 5.2: Summary of method to identify idioms in BYOD policies.

Chapter 5. Applying AppPAL to BYOD Policies 117

5.2 Modelling BYOD policies

BYOD policies written in natural language can have ambiguities. Comparing
policies with di↵erent styles from di↵erent sources is tricky: the relationships
between di↵erent entities, and the exact decisions being made can become con-
fused. To make the comparisons precise, and to identify common authorisation
patterns in the polices we propose the method summarised in Table 5.2: encode
each of the natural language policies in AppPAL and then use the more formal
AppPAL version as the basis for examining the policies. We took care to use
the same predicates between di↵erent policies in order to create a standard
set of decisions between BYOD policies. We hypothesised that by doing this
we would be able to make comparisons and identify common BYOD idioms
between policies.

Each of the policies are split into a series of rules. A simple example is the
following example from the Sirens company policy. The rule states that devices
may get access to various company resources. For each resource we create an
AppPAL assertion stating the device may access the resource.

Sirens: Employees may use their mobile device to access the following company-
owned resources:
• Email • Calendars • Contacts • Documents • Etc.

’department’ says Device:D canAccess(’email’).

’department’ says Device:D canAccess(’calendars’).

’department’ says Device:D canAccess(’contacts’).

’department’ says Device:D canAccess(’documents’).

The NHS policy has a more complex example. Employees are not allowed to
call non-domestic, or premium rate numbers on company-owned phones. An
employee’s manager, however, can make an exception. To write it in AppPAL
we first describe the rule that bans international calls. We add a second rule
stating that it is allowed if someone exempts it. A third lets the employee’s
manager make the exemption.

Chapter 5. Applying AppPAL to BYOD Policies 118

NHS: All mobile devices will be configured for national access only. Premium/inter-
national calls will be barred. International call barring and roaming arrangements
can be lifted for specific periods, to be stipulated on request, on approval of the
relevant manager/budget holder.

’nhs-trust’ says Device canCall(TelephoneNumber:X)

if Device isOwnedBy(’nhs-trust’),

X isNationalNumber, X isStandardRateNumber.

’nhs-trust’ says Device canCall(TelephoneNumber:X)

if Device isOwnedBy(Staff),

Staff hasCallExemption.

’nhs-trust’ says Manager can-say

Staff hasCallExemption

if Manager isManagerOf(Staff).

Table 5.3 shows a count of the di↵erent predicates used in the policies. As
in Chapter 3, we use prefixes to distinguish di↵erent kinds of predicates. The
use of each is also split by whether the predicate is a decision made by the
policy (i.e. it exists in the head of a rule), or a condition for making that decision
(i.e. it exists in the body of a rule). Can and must decisions feature in all policies,
except can decisions in the Edinburgh policy due to its structure (as discussed
in Section 5.1.1). This is expected. Access control decisions and reactions to
events are both topics that MDM tools have focused on implementing. Has and
is predicates are often used in the conditions. There are also decisions using
them as well.

5.3 BYOD Idioms in AppPAL

We hypothesised, when translating the policies into AppPAL, that we might
be able to identify idiomatic decisions for BYOD policies. These idioms
would appear as common predicates, and structures in the AppPAL policies.
Examining the policies there are some concern concerns shared between the
di↵erent policies. Table 5.5 shows predicates used in multiple policies by our
translation. The table lists predicates (and arguments) found in multiple policies

Chapter 5. Applying AppPAL to BYOD Policies 119

and in which policies they occurred. From it we can find the common decisions
of concern to BYOD policies.

Acknowledgements, where the policy requests people acknowledge other
policies, and predicates linking devices to owners feature in all policies. Most
policies describe rules for when to enable and disable device features. Configur-
ing device features is a found in many MDM packages, but tracking what a user
agrees to is not seen in MDM packages. Only two of the five policies had rules
limiting access to networks, servers, or access points. This is surprising as many
MDM tools can control how devices and apps access networks. Users have
privacy preferences about apps [82], but not all companies try to control what
employees can install. Curated app stores and app blacklisting are common
features to many MDM programs; but not all policies have rules about which
apps to install. All policies talk about remotely wiping a device for security
reasons (as shown in Section 5.1.1). Most MDM tools o↵er this: they let admins
remotely erase devices (Table 5.1).

Two particular idioms occur in many policies: acknowledgements and
delegation. So far MDM tools and research have focused on implementing
restrictions on apps and devices [67, 13, 83]. These controls are a vital aspect of
BYOD policies and all five of the policies we looked at had rules that described
restrictions (Table 5.5). Every policy also had rules that required employees
acknowledgements, however. Only the (configuration focused) SANS policy
had more rules that required restrictions than acknowledgements. All the
policies had more rules featuring delegation relationships than functionality
restrictions. Restricting device functionality is and important: but other aspects
of BYOD policies are also worth attention.

5.3.1 Delegation and Roles Within Policies

Delegation is an important part of the policies. Each of the policies describes
through rules how separate entities are responsible for making some decisions.
These rules could be a delegation to an employee’s manager to authorise a
decision (as in the NHS policy). It could be to technical sta↵ to decide what
apps are part of a standard install (as in the sirens and SANS policies).

When translating the policies, the author of the policy is the primary speaker
of the policy’s rules. This is typically the company; except in the HiMSS case

Chapter 5. Applying AppPAL to BYOD Policies 120

Decision Condition

Policy C
an

M
us

t

H
as

Is C
an

M
us

t

H
as

Is

SANS 35% (26) 29% (22) 9 % (8) 27% (20) 2% (2) 2% (2) 8% (9) 87% (82)

HiMSS 21% (6) 41% (12) 31% (9) 7 % (2) 0 0 13% (3) 87% (20)

NHS 19% (13) 26% (18) 33% (23) 23% (16) 2% (2) 0 19% (20) 83% (83)

Sirens 27% (12) 45% (20) 11% (5) 16% (7) 2% (1) 7% (4) 2% (1) 89% (50)

Edinburgh 0 18% (3) 82% (9) 0 7% (2) 7% (2) 50% (15) 37% (13)

Table 5.3: Counts of predicate-types in each policy.

Authorities Primary Authority Technical Authority User Authority

SANS 10 company it-department user
HiMSS 3 user xyz-health-system department
NHS 11 nhs-trust it-department employee
Edinburgh 2 records-management employee

Table 5.4: Summary of different authorities in BYOD policies.

where it is the user (Table 5.4). All the policies describe multiple entities that
might make statements and delegate.

Some policies have more authorities than others (Table 5.4). The NHS policy
has various managers that approve decisions for their sta↵. There are groups
that make decisions for the clinical and business halves of the NHS. If a clinical
user wishes to use an app with a patient they must seek approval from two
policy groups, as well as their line manager.

Others make less use of di↵erent authorities. In the Edinburgh policy, the
records-management o�ce states how to configure a low or high risk device.
There is no delegation to others to further specify aspects of the policy.

Whilst delegation of responsibilities is an important part of BYOD policies,
many MDM tools seem to largely to ignore it, however. These tools instead allow
IT sta↵ to set fixed policies and push them to devices. No further requesting of
information is typically needed or required.

When a policy decision requires input from a third-party, we use delegation.
For example, an employee’s manager must authorise an app install. The SecPAL
can-say statement is the basis for a delegation. We can ask the HR department to

Chapter 5. Applying AppPAL to BYOD Policies 121

Predicate S
A

N
S

H
iM

S
S

N
H

S

S
ire

ns

E
di

nb
ur

gh

person mustAcknowledge(policy) 3 3 3 3 3

person hasAcknowledged(policy) 3 3 3 3 3

device isOwnedBy(person) 3 3 3 3 3

thing isDevice 3 3 3 3 3

device mustDisable(feature) 3 3 3 3

device mustWipe 3 3 3 3

device isLost 3 3 3 3

thing isEmployee 3 3 3 3

thing isApp 3 3 3 3

device isActivated 3 3 3 3

device mustEnable(feature) 3 3 3

device isEncrypted 3 3 3

device hasFeature(feature) 3 3 3

device hasMet(policy) 3 3 3

person canMonitor(device) 3 3 3

person mustInform(person) 3 3

thing isTelephoneNumber 3 3

thing isString 3 3

thing isSecurityLevel 3 3

app isInstallable 3 3

thing isFeature 3 3

thing isData 3 3

application isApprovedFor(person) 3 3

application isApproved 3 3

person hasDevice(device) 3 3

person hasDepartment(department) 3 3

person canUse(device) 3 3

device canStore(file) 3 3

device canInstall(app) 3 3

device canConnectToServer(server) 3 3

device canConnectToNetwork(network) 3 3

device canConnectToAP(access-point) 3 3

device canCall(number) 3 3

device canBackupTo(server) 3 3

Table 5.5: Occurrences of predicates common to multiple policies.

Chapter 5. Applying AppPAL to BYOD Policies 122

state who is someone’s manager. When we delegate, we can add conditionals
to the can-say statement that enforces any relationship between the delegating
and delegated parties.

’company’ says ’hr-department’ can-say

Employee:E hasManager(Employee:M).

’company’ says Manager can-say

Employee canInstall(App:A)

if Employee hasManager(Manager).

5.3.2 Acknowledgement

All the policies we looked at require their subjects be aware of and acknowledge
certain rules or policies. These include acknowledging the company may
do certain actions. Requiring subjects to acknowledge and agree to follow
other policies is interesting as these are not necessarily technical restrictions on
employee behaviour. An administrator cannot configure a device so that a user
is aware of an ethical policy. Rather, they must trust that when the user says
they’ve read the policy, they actually did so.

In some cases this is used by companies to justify their actions. A user
cannot complain about a company’s actions if they were notified in advance.
For example the NHS and HiMSS policies state that the organisation will wipe
devices remotely to protect confidential information if a user loses their device.
Both policies also say that employees would lose personal information if they
had it on the device and the company needed to erase it. In the case of the
HiMSS policy, the user agrees not to sue the company if this happens.

HiMSS: I agree to hold XYZ Health System harmless for any loss relating
to the administration of PDA/Smartphone connectivity to XYZ Health System
systems including, but not limited to, loss of personal information stored on a
PDA/Smartphone due to data deletion done to protect sensitive information related
to XYZ Health System, its patients, members or partners.

’xyz-health-system’ says

’user’ mustAcknowledge(’data-loss-policy’).

Chapter 5. Applying AppPAL to BYOD Policies 123

NHS: Individuals who have personal data of any kind stored on a corporately
issued mobile device must be aware that in the event of loss of the device the above
data wipe will include removal of all personal data.

’nhs-trust’ says Staff:S can-say

S hasAcknowledged(’data-loss-policy’).

’nhs-trust’ says

Staff:S mustAcknowledge(’data-loss-policy’).

The SANS, NHS and the Sirens company policies use acknowledgements to
link to other sets of rules that employees should follow, such as the acceptable-use
policy in the SANS example bellow. These policies are not further specified
and, in the case of an acceptable use policy, are hard to enforce through other
means. The SANS policy requires that all employees follow an email security,
acceptable use, and an eCommerce-security policy. The Sirens policy expects an
employee to use their devices ethically and abide by an acceptable use policy.

SANS: Users MUST agree to the email security/acceptable use policy and
eventually to the eCommerce security policy.

’company’ says

Employee:U mustAcknowledge(’email-security’).

’company’ says

Employee:U mustAcknowledge(’acceptable-use’).

’company’ says

Employee:U mustAcknowledge(’ecommerce-security’).

Sirens: The employee is expected to use his or her devices in an ethical manner at
all times and adhere to the company’s acceptable use policy.

’department’ says

Employee:E mustAcknowledge(’acceptable-use’).

We use acknowledgements when employees should be aware of (usually
separate) rules. The company may not have wish to enforce these separate
rules automatically, however. A company may have an ethical policy that
says employees should not use devices for criminal purposes. The company
is not interested in, or capable of, defining what is criminal. They trust their

Chapter 5. Applying AppPAL to BYOD Policies 124

Figure 5.2: Interactions in a company with BYOD security policies.

employees to make the right decision. They trust their employees to know of
the rules.

To write these in AppPAL, a policy author creates two rules. The first states
their employees must have acknowledged the policy. The second delegates the
acceptance of the policy to the employee themselves.

’company’ says Employee:E mustAcknowledge(’policy’).

’company’ says Employee:E can-say

E hasAcknowledged(’policy’).

5.4 Enforcing a BYOD policy with AppPAL

Our work has, so far, looked at the BYOD policy contents. We have highlighted
the concerns and delegation relationships as they are not handled well by
existing MDM tools. The policies also have rules that the MDM tools do
manage well: configuring, provisioning and managing devices. The MDM
tools fail, however, to give a means to control how they to configure themselves.
Typically, an IT administrator configures them manually.

AppPAL exists as a tool for checking whether a policy is contains su�cient
facts and rules to decide whether a given statement is true or not. It is reasonable
to ask what would a company have to do to enforce their mobile device policies.
A company could have a structure such as in Figure 5.2: the Chief Security
O�cer sets the BYOD policy, which delegates to IT and HR to further specify
parts of the policy. HR obliges employees to read all the policies put out

Chapter 5. Applying AppPAL to BYOD Policies 125

and follow them (by HR). The IT department configure MDM software on
employee’s devices to ensure the devices meet their policies.

AppPAL o↵ers a company the means to describe the policy precisely and
check if it satisfied. To enforce the policy the company would need to add
actions on top of these checks. If AppPAL checks a policy and finds a user
must install an app or disable a feature on their phone, then the company might
want to configure their MDM software to do something to correct it. If AppPAL
found an employee had not met the obligation to sign a contract, then the
company might want to email a reminder to the employee.

AppPAL doesn’t remove the need for MDM software. Much of an MDM
tool could be re-implemented as part of AppPAL: but this is an unnecessary
duplication of work. Rather, AppPAL should be used to configure and with
other existing tools. An MDM package could enforce a password policy, and
enable remote wipe. Google’s For Work tools can enforce access control policies
for company’s documents, as can Microsoft’s O�ce Suite. The settings on an
Android app control what permissions an app can have. MDM tools give a
means to control how a mobile device behaves, and what employees can do
with a device. Alone, however, they do not give enough to fully enforce a
BYOD policy as all the BYOD policies we looked at had more than just device
configuration.

AppPAL works as a glue between existing tools. It tells an administrator what
tools are used to check a policy. If the tool’s configuration can be automated
through AppPAL (perhaps by enabling certain settings), then so much the
better. In this respect AppPAL is similar to a configuration language. Giving
employees a means to make AppPAL statements (such as a dialog box that says

“to acknowledge the following policy type your password.”) lets us track what people
have done and make decisions on the basis of their actions. Configuring and
selecting the tools lets us pick which checks we enforce and when.

Chapter 6

Future Work

We have described the policies of the mobile ecosystem and how to use AppPAL
to describe them. We have argued that AppPAL is a good language for describing
these policies, however there are also areas where AppPAL could be improved
to further to describe more kinds of policies and to aid policy authors, as well
as examining further aspects of the mobile ecosystem. This chapter suggests
areas for future research and some starting ideas as to how they might expand
our knowledge of mobile ecosystems and the trust relationships within them.

6.1 Probable SecPAL

The SecPAL authorization language, and the AppPAL instantiation, let policy
authors to make use of static analysis tools to make decisions, and allow
principals to make statements about apps through delegation. When these
decisions are made, they are made with certainty. If a principal says an app is
safe to access the network, then we believe that that principal definitely believes
the app is safe on a network. When a static analysis tool finds that an app isn’t
malware, then we believe that app to not be malware. This isn’t realistic. Static
analysis tools can produce false results. A principal might be merely fairly
confident that an app can access the network safely but not absolutely certain.

With current authorization languages you cannot quantify the belief a
principal has in any statement. A principal cannot say how probable they think
any statement is.

126

Chapter 6. Future Work 127

6.1.1 Examples of Probability

SecPAL was designed to make access control decisions. The decision whether to
install allow a user access to a file or not is a binary one: either they can access it
or they cannot. Similarly, the decision process for these decisions is also binary:
a user is either logged in or not, a network address is either in the network or
outside it, someone can act as someone else’s manager or they can not. Not all
decisions are binary however.

As an example of a probabilistic policy consider a user, Alice, who has a
policy to only install safe apps, ones she knows are not malware. She could
use an AV program, but these tools are not infallible as they can change their
judgment about apps over time. Others AV tools are heuristic based and may
only be capable of judging an app based on su�ciently many malware indicators
being present. Instead of using one AV program, suppose that Alice opts to
use VirusTotal; a web service for running files through multiple AV programs.
Even for known malware samples VirusTotal rarely gives absolute answers
instead giving the number of AV programs that flagged it (Figure 6.1). Alice
acknowledges this and writes her policy accordingly:

’alice’ says App:A isInstallable

if A isSafe

with probability at least 0.75.

’alice’ says ’virustotal’ can-say

App:A isSafe

’virustotal’ says ’com.good.app’ isSafe

with probability 0.95.

’virustotal’ says ’com.malicious.app’ isSafe

with probability 0.26.

She can install the com.good.app, since the probability it is good is greater
than her threshold but the com.malicious.app fails her test and is uninstallable.

In the first example VirusTotal gave Alice a value for how probable it was
the app was safe: but what if Alice has to decide this value herself? An example
of this is app recommendations. Alice only wants to install apps that are really
good. She has two friends, Bob and Charlie, who o↵er her reviews of a game.
To complicate matters further, whilst she trusts Bob utterly, she is a little less

Chapter 6. Future Work 128

Figure 6.1: VirusTotal results for 57 antivirus packages scanning a sample
of the BaseBridge Android malware, and 64 antivirus packages analyzing a
download of the (relatively safe) Towelroot rooting app. The tools do not agree
on the results.

Chapter 6. Future Work 129

trusting of Charlie.

’alice’ says App:A isInstallable

if A isGood

with probability

’bob’ says ’com.rovio.angrybirds’ isGood

with probability 0.8.

’charlie’ says ’com.rovio.angrybirds’ isGood

with probability 0.9.

’alice’ says ’bob’ can-say App:A isGood.

’alice’ says ’charlie’ can-say App:A isGood

with probability 0.9.

How should she combine the information to get an overall rating of the
game? If Alice wants to only install apps that are both good and safe how
should she trade o↵ the probability against each other? Is she willing to install
a more dangerous app if it is highly reviewed?

Various papers have proposed probabilistic variants of Datalog [49] or
explored the semantics of probabilistic logics [61]. Role-based access control
languages have incorporated ideas about risk into their schemes [72, 42, 100],
which is a similar notion to probability and trust. These schemes do not seem to
deal with delegation in the same manner as SecPAL however so incorporating
similar ideas here may be interesting and allow SecPAL and AppPAL greater
expressiveness.

Whilst some work went into developing the ideas behind a probable SecPAL
variant, we did not finish this work because there are several hard problems
surrounding it. In particular, it is far from clear how to combine probabilistic
statements in a consistent, and sound manner. Several choices are possible
but more research is needed to understand the right way to do it and how to
develop Probable SecPAL into a full, and useful language.

6.1.2 Guarantees for Probable SecPAL

In Appendix B we suggest how we might implement Probable SecPAL by
modifying Becker et al.’s original design. Regardless of how we implement it, we

Chapter 6. Future Work 130

should consider carefully how we might combine information and probabilities.
Combining probabilities of events when you cannot guarantee independence is
hard, and the same is true of probability. Strategies such as taking the product,
minimum of combined statements may be too simple. We suggest the following
properties should hold no matter what combination mechanism is used:

1. If all facts are completely probable, then evaluation should be equivalent
to standard SecPAL.

2. If any fact is completely improbable, then it should be equivalent to the
statement not existing in the assertion context.

3. No derived statement should be more probable than the conditions used
to derive it.

Rule 1 ensures that any probability additions do not start to produce di↵erent
results to standard SecPAL. We wish to be able to reason about scenarios where
we have partial probability, but this addition shouldn’t change our ability to
reason when each speaker has total belief in their assertions. If everything is
completely probable, then the reasoning should be equivalent to SecPAL where
the perfect probability is assumed. Similarly, if a speaker believes a fact to be
completely improbable, then Rule 2 ensures that fact is used to derive other
facts. SecPAL operates under a closed world assumption, that is that the assertion
context contains (or at least can derive) all known facts. If a statement is missing,
then it is false. If a speaker believes a statement to be perfectly improbable then
it should be equivalent to falsehood in standard SecPAL and should not be used
further.

Rule 3 applies to assertions with a conditional part (i.e. an if). If this rule
were not the case, we might be able to grow the probability of a fact by applying
a rule that contained its own derived fact in its condition. For example, consider
the following rule:

’x’ says ’y’ p

if ’y’ p,

’z’ q.

Say we know already that by applying this rule the probability that ’x’ says
’y’ p will be greater than the probability of the conditionals that ’x’ says ’y’
p and ’x’ says ’z’ q. Since the decision that ’x’ says ’y’ p is also part of

Chapter 6. Future Work 131

F(�)) At sometime in the future � is true.
P(�)) At sometime in the past � was true.
G(�)) � will always be true.
H(�)) � was always true.

Table 6.1: Summary of temporal operators from Prior.

the conditions, we could repeatedly reapply this rule and raise the probability
arbitrarily.

6.2 Patterns with Predicates

We described in Chapter 3 how we split AppPAL predicates into four types:
can, has, is and must. Using the four predicate types we can start to build
relationships between them. We also showed how a policy author could check
an obligation was completed when describing must predicates. Whilst a policy
author could write these rules by hand, AppPAL has tools to automate creating
rules like this.

As well as automating creating the policy, we could also start to check other
properties to check the policy is well-formed. Using the example of installing
an app; if Alice says Bob must install an app, then it implies that there should be a
rule where Alice says Bob has installed that app. We might also expect there to be
a rule that Alice says Bob can install the app.

This can be taken further: if in one version of the policy Alice can do
something we might expect to see in a later version of the policy assertions
where Alice has done something. We could generalise this and create a new rule
that if someone has done something, then there must have been a point where
the policy said they could do it.

Using temporal operators, such as those established by Prior [92] (Table 6.1),
we can start to write rules expressing the relationship between di↵erent pred-
icates. Taking the earlier example, we might wish to add a rule that if Alice
believes Bob has done something �, then she must have said he could do that
thing in the past.

Chapter 6. Future Work 132

AC,D |= A says B has �.
P
⇣
9AC0 s.t. AC0,D0 |= A says B can �.

⌘

This doesn’t mean that if Alice can do something then this will always lead
to a statement where she has done it in the future, but it does imply that if she
has done something, then the action must have been permitted in the past.

Using this structure we could add a rule to AppPAL that all decisions from
the past, will hold in the future. This might enable us to reduce the size of the
assertion context as once we have a statement that someone has we can remove
the respective can assertions. Alternatively if we prove the rule is false, i.e. at
no point in the past did Alice permit Bob’s action then we can detect something
has gone wrong.

AC,D |= A says B has �. ¬P
⇣
9AC0 s.t. AC0,D0 |= A says B can �.

⌘

?

An AppPAL interpreter might implement this by requiring the can statement
be made before any equivalent has statement is made. Looking at a trace from
an instance of an AppPAL interpreter with one AC (though which might import
or remove assertions over time), the following trace would be valid, but if the
statement in red was removed it would be rejected.

...
...

At Ti: ACi,D |= A says B can �.
...

...

At Tj: ACj,D |= A says B has �. (j > i)
...

...

Interesting examples are not just limited to can and has: if Alice says Bob
must do some �, then we would expect that at some point in the future (if
not immediately) that Alice will say that Bob can complete the obligation to �.
Furthermore, we would also expect Alice to acknowledge that at some future
point Bob has done � as she required.

F
⇣
9AC0 s.t. AC0,D0 |= A says B can �.

⌘
AC,D |= A says B must �.

F
⇣
9AC0 s.t. AC0,D0 |= A says B has �.

⌘

Chapter 6. Future Work 133

Using this interpretation of AppPAL’s rules the following for an interpreter
the following trace is valid; but if either statement in red was removed the
interpreter would report an error.

...
...

At Ti: ACi,D |= A says B must �.
...

...

At Tj: ACi,D |= A says B can �.
...

...

At Tk: ACj,D |= A says B has �. (k > i, k > j)
...

...

Further investigation into the relationships between predicates, and their
semantics, might allow for interesting auditing possibilities with AppPAL and
extend the language further.

6.3 AppPAL MDM

BYOD is another area where it would be interesting to see how AppPAL might
be used in practice. AppPAL is designed to separate the policy specification
from its implementation. By combining an AppPAL policy engine with an MDM
package we could dynamically configure the MDM software to enforce a BYOD
policy. This would allow for greater customization as we could extend the MDM
tool to support contextual and policy driven controls rather than the low-level
simple ones that are the only controls many tools support. More advanced
MDM tools, such as Armando et al.’s meta-market [12], can enforce more complex
policies but cannot distinguish between di↵erent contexts. A user who uses an
app for both work and home may wish to run an app unencumbered and with
di↵erent accounts when at home compared to at the o�ce. Extending a tool
such as this with AppPAL would allow contextual as well as policy controls
into apps.

Trialing an implementation in a company and working with the IT depart-
ments and policy authors to better understand their needs would allow us to
tailor AppPAL further to implementing BYOD policies rather than just modeling
them.

Chapter 6. Future Work 134

6.4 Usability Study

AppPAL is designed to be readable, but we might guess that most non-technical
users would struggle with writing a formal policy (as they do with many
other technical tasks). Exploring how general users might use policies, either
through a subscription model where they subscribe to a policy written by a more
advanced user, or through a graphical interface that helps them build their own
policy, would help us understand how (and in fact whether at all) users would
take advantage of better app controls.

Looking solely at the language a user study with AppPAL should seek to
answer at least three questions looking at a range of users of varying technical
skill and comparing to results from other languages (such as XACML):

Can users understand a policy written in AppPAL? Becker designed SecPAL
to be readable but didn’t trial the language with users. Specifically
SecPAL was designed to be less verbose than XACML, to abstract away
the logic-based syntax of the RT family (which some administrators
found intimidating), and to o↵er a simple succinct syntax based on
natural language. Measuring users’ comprehension of AppPAL would
test whether the syntax o↵ers an advantage over other languages.

Can users predict the decision made by AppPAL? As well as being readable
SecPAL was designed to have intuitive semantics. We would hope that a
user should be able to follow and understand the decision process made
by AppPAL, but we should test it with users to be sure. A key requirement
for a policy language should be how predictable it is as we do not want
the language to make surprising decisions (for its users), and allow or
deny actions that users intuitively believe should not be permitted given
a policy. Testing whether users can predict decisions given a policy and
whether they can explain, in high-level terms, the decision process would
give some measure of the language’s intuitiveness.

Can users modify or create an AppPAL policy? If AppPAL is comprehensible
and predictable we would hope that a user could tweak or even create
a policy to meet their own requirements. SecPAL was designed to be
expressive, but we should test whether users are capable of expressing
the policies they want using it.

Chapter 7

Conclusion

This thesis looked at capturing the security policies of the mobile ecosystem
precisely. We have tried to capture the trust relationships within the policies
using the AppPAL policy language we instantiated from SecPAL. This allowed
us to make precise comparisons between di↵erent policies, and study the way
policies were used in practice rigorously.

Our work contributes to the literature by showing how to capture the security
policies of the mobile ecosystem, and how to use the formal policies as the
basis for comparisons and reasoning. Whilst AppPAL does not have any new
semantic language features, our work is novel as it shows the application of
policy languages to a new domain.

One benefit of AppPAL is that it lets us separate policy specification from
implementation. We can describe the policies of the mobile ecosystem at a
higher level than other tools, delegating to the low-level tools when we need and
when we want them to do their analysis. This makes our policies independent
of any particular tool, and lets us abstract the checking process away from the
reasons the policy requires we do the checks.

In some policies, who has performed a check is more important to the
policy than what check they actually did. Existing research has looked at ways
of enforcing policies mechanistically. Sometimes, however, just trusting the
subject to follow them on their own, however, is enough. Capturing these trust
relationships lets us see precisely how a policy is satisfied.

Our work is not without its limitations. There are many policies in the
mobile ecosystem that we didn’t fully look at; these include policies such as the
di↵erences between OSs and the di↵erences between store contents. We have

135

Chapter 7. Conclusion 136

shown that by using AppPAL we can gain a better understanding of the policies,
however. This includes the policy’s implications and the trust relationships
between companies, people and tools they use.

In his Turing award lecture on trusting trust Ken Thompson asked a ques-
tion [106]:

“To what extent should one trust a statement that a program is free of
Trojan horses? Perhaps it is more important to trust the people who wrote
the software.”

He concluded:

“The moral is obvious. You can’t trust code that you did not totally create
yourself. (Especially code from companies that employ people like me.) No
amount of source-level verification or scrutiny will protect you from using
untrusted code.”

The same question could be asked of the policies in the mobile ecosystem.
Thompson’s conclusion is still true: there is no way to trust that any app
you download is safe or good. There is no way to check employees are not
circumventing a BYOD policy cleverly. It is hard for users to create all their own
apps and OSs. Few companies can only run with only one employee. We can’t
trust people follow our policies. But we can understand the trust relationships
within them. If we understand the trust relationships, we can decide what risks
we take, and with whom.

Appendix A

Translated BYOD Policies

A.1 NHS

137

AppPAL Translation

A translation of the requirements in this document into AppPAL is presented in
this column. Not all policies are translatable (or contain an actual requirement that
should be enforced), but where they are the rule is given next to the informal policy
text.

This policy contains many requirements which depend on an employee having agreed
to various conditions. We can simplify the policies if we require employees to agree
to these conditions up front.

’nhs�trust’ says Staff:S mustAcknowledged(’acceptable�use’).
’nhs�trust’ says Staff:S mustAcknowledged(’charger�policy’).
’nhs�trust’ says Staff:S mustAcknowledged(’charging�policy’).
’nhs�trust’ says Staff:S mustAcknowledged(’confidentiality�guidelines’).
’nhs�trust’ says Staff:S mustAcknowledged(’damage�policy’).
’nhs�trust’ says Staff:S mustAcknowledged(’data�loss�policy’).
’nhs�trust’ says Staff:S mustAcknowledged(’driving�policy’).
’nhs�trust’ says Staff:S mustAcknowledged(’monthly�fee’).
’nhs�trust’ says Staff:S mustAcknowledged(’personal�liability’).
’nhs�trust’ says Staff:S mustAcknowledged(’public�usage�policy’).
’nhs�trust’ says Staff:S mustAcknowledged(’usage�policy’).
’nhs�trust’ says Staff:S mustAcknowledged(’work�communication�policy’).

’nhs�trust’ says Staff isNeeding(’Mobile’)
if Staff isLoneWorking,

Staff isOutOfHoursWorking,
Staff isOutOfOfficeWorking.

Torbay and Southern Devon Health and Care
Mobile Devices Policy

1. Glossary of Terms

Mobile device: a mobile device is a device that enables functionality away
from the main base of work.

Mobile phone: a mobile phone is a device that allows the ability to make
telephone calls and send and receive text messages without the need of a
physical connection to the telephone network.

Smartphone: a smartphone provides the same functionality as a mobile phone
with the additional ability of being able to send and receive emails and
enabling the use of general purpose applications (apps).

Tablet: a tablet computer, or simply tablet, is a mobile computer with display,
circuitry and battery contained within a single device.

Smart tablet: a smart tablet comprises the ability of a tablet with the func-
tionality of a smartphone with the exception of not being able to send or
receive phone calls or text messages.

Supported and non-supported devices: a supported device is one that the
Trust issues and will provide technical support for. A non-supported device
does not fall within this remit.

2. Eligibility Criteria

2.1.

The Trust is committed to flexible working and ensuring that adequate com-
munication facilities are available to its sta↵ in order for them to carry out
their normal daily duties. Devices will be allocated according to the criteria
below and depending upon both the person’s role and the location in which
they normally work.

The criteria for a mobile device is as follows (all three must be met):

1

’nhs�trust’ says Staff isNeeding(’SmartMobile’)
if Staff isNeeding(’mobile’),

Staff hasMet(’smart�mobile�requirements’).

’nhs�trust’ says Staff hasMet(’smart�mobile�requirements’)
if Staff isNeeding(’oooemail’),

Staff isNeeding(’ooocalendar’).

’nhs�trust’ says Staff hasMet(’smart�mobile�requirements’)
if Staff isNeeding(’oooemail’),

Staff isNeeding(’ooointernet’).

’nhs�trust’ says Staff hasMet(’smart�mobile�requirements’)
if Staff isNeeding(’ooocalendar’),

Staff isNeeding(’ooointernet’).

’nhs�trust’ says User canUse(Device)
if Device isOwnedBy(User),

User hasAcknowledged(’personal�liability’),
User hasAcknowledged(’confidentiality�guidelines ’).

’nhs�trust’ says User canUse(Device)
if Device isOwnedBy(’nhs�trust’),

User hasAppliedFor(’phone’, Form),
Form isAuthorized.

’nhs�trust’ says Staff hasAppliedFor(’phone’, Form)
if Staff hasSubmitted(Form),

Form isReceived.

’nhs�trust’ says Form isAuthorized
if Staff hasAppliedFor(’phone’, Form),

FinanceDirector:F hasApproved(Form),
AssistantDirector:D hasApproved(Form),
D isManagerOf(Staff).

’nhs�trust’ says Employee:S can-say
S hasAcknowledged(’damage�policy’).

• Sta↵ whose work entails predominantly lone working in the community

• Emergency out of hours sta↵ including any sta↵ on the on-call rota

• Sta↵ who spend a significant amount of time out of the o�ce and are
required to be contactable during this period

2.2.

In order to qualify for a smart device a member of sta↵ must first qualify for
the above basic mobile device criteria. However, where it has been agreed that
a mobile device with the ability to access the internet can be demonstrated to
provide better and / or cost e↵ective patient care (for example increased quality
of work, improved productivity), a smart device may be considered. At least
two of the following criteria must be met in order to apply for a smart device:

• Sta↵ whose work regularly requires the use of email whilst lone working in
the community / working out of the o�ce.

• Sta↵ whose work regularly requires access to their calendar whilst lone
working in the community / working out of the o�ce.

• Sta↵ whose work requires internet access whilst lone working in the com-
munity / working out of the o�ce.

2.3.

If the Trust deems it is not necessary for a member of sta↵ to have a mobile
device to discharge their duties and has decided not to issue a device, that
member of sta↵ should not use a personal mobile device for Trust business.
If an individual does use a personal mobile device for Trust business they do
so entirely at their own risk and own cost. There are some circumstances in
which the Trust prohibits the use of personal devices for Trust business and
this includes any circumstances where personal identifiable data is stored on
that device. Please refer to the confidentiality sta↵ code of practice for further
advice and guidance.

2.4.

Upon receipt of the completed application form, allocation will also need to be
authorised by the relevant Assistant Director and the Director of Finance.

3. Mobile Device User Roles and Responsibilities

3.1. The corporately issued mobile device is the property of the Trust and as such
it is a requirement that sta↵ must take good care of it. Sta↵ should take all
reasonable steps to ensure that it is not damaged, lost or stolen.

2

’nhs�trust’ says Employee:S can-say
S hasAcknowledged(’work�communication�policy’).

’nhs�trust’ says Staff can-say
Device isPersonalUse
if Device isOwnedBy(Staff).

’ it�department’ says Staff can-say
Device isLost
if Device isOwnedBy(Staff).

’nhs�trust’ says ’ it�department’ can-say
Device isActivated.

’nhs�trust’ says Staff can-say
Device isLinkedTo(MailAddr)
if Device isOwnedBy(Staff),

Staff hasEmail(MailAddr),
MailAddr isNHSMailAddr.

’nhs�trust’ says ’nhsmail’ can-say inf
Device mustWipe.

’nhs�trust’ says Staff can-say Device mustWipe
if Device isOwnedBy(Staff),

Device isLost.

3.2. In receiving a mobile device from the Trust, the individual receiving and using
the device accepts that the device can be used to communicate through all
corporate channels including voice calls, emails and texts and where appropriate
enabled web applications, during working hours.

3.3.

There are circumstances in which members of sta↵ may use the corporately
issued mobile device for personal use. These are described in section 4 below.
However, any personal data that is stored on the device will be covered by the
following sections.

3.4.

In the event that a member of sta↵ intends to use a corporately issued mobile
device for personal use, a declaration of use form must be completed in which
the user declares their intention to use the device for personal use. In this
instance a minimum of 5 per month will be deducted from their salary towards
the cost of personal calls made from the device. If the personal usage goes above
the 5 per month the individual will be asked to pay the di↵erence and in some
circumstances the device may be withdrawn.

3.5.

It is the responsibility of sta↵ to ensure that mobile devices are kept safe and
secure. Any losses, damage or misuse should be reported immediately to the IT
Department in order for the device to be disabled. If the device is stolen, sta↵
will be expected to report the theft to the police and obtain a log number. An
incident form should also be completed on Datix. Subsequently, if the device is
found it can then be re-enabled by the IT Department, who should be informed
immediately.

3.6.

Guidance on the use of smart devices with NHSmail can be found on iCare.
Once the smart device has been connected to NHSmail it is the responsibility of
the device holder to ensure that only current work devices are linked to their
NHS mail account.

3.7.

In the event of the device getting lost, stolen, misplaced or updated, it is the
responsibility of the device holder to manage the ‘remote wipe data’ through
NHSmail. IT support is available if needed. Remote wiping is done by following
these steps:

3

’nhs�trust’ says Employee:S can-say
S hasAcknowledged(’data�loss�policy’).

’nhs�mail’ says Device canConnectToServer(’nhs�mail’)
if Device hasFeature(’encryption’).

’nhs�trust’ says Staff can-say
Device mustUpdatePassword
if Device isOwnedBy(Staff).

’nhs�trust’ says Employee:S can-say
S hasAcknowledged(’charging�policy’).

’nhs�trust’ says Employee:S can-say
S hasAcknowledged(’charger�policy’).

’nhs�trust’ says Employee:S can-say
S hasAcknowledged(’usage�policy’).

’nhs�trust’ says LineManager:X can-say
Staff hasMet(’business�requirement’)
if X isManagerOf(Staff).

1See 2.4.

• Log in to NHSmail at www.nhs.net

3.8.

Individuals who have personal data of any kind stored on a corporately issued
mobile device must be aware that in the event of loss of the device the above
data wipe will include removal of all personal data.

3.9.

On connecting any Smart device to NHSmail, a minimum level of encryption is
enforced. This will automatically apply a pin number or password. s

3.10.

It is the responsibility of the device user to ensure that the pedin number or
password is kept up to date, remembered and kept secure at all times.

3.11.

It is the responsibility of the device user to keep the batteries fully charged and
for the device to be kept switched on during working hours.

3.12.

It is the responsibility of the device user to ensure that mobile device chargers are
only used for charging the correct devices. Mobile device chargers should only
be plugged in for the duration of charging the device. Mobile device chargers
left plugged in are a potential fire risk when not charging a device. When not
in use, chargers should be disconnected and stored appropriately.

3.13.

Members of sta↵ who have corporately issued mobile devices should remember
to:

• Ensure they have their device with them when away from their o�ce base.

• Ensure the device is switched on and they are able to receive calls, text
messages and emails, where appropriate.

• Regularly check their device, particularly if it has been switched o↵ for a
period of time or if they have been in a black spot.

3.14.

The application process for allocating a mobile device to a member of sta↵
requires the completion of an electronic application form by the line manager

1

via iCare. Managers must ensure that there is a clearly demonstrable business
requirement for the device.

4

’nhs�trust’ says ’ it�department’ canMonitor(Device)
if Device isOwnedBy(’nhs�trust’).

2This is duplicated and extended by 4.4.4..

’nhs�trust’ says Staff canUse(Device)
if Device isOwnedBy(Staff).

3.15.

When issued with a mobile device, members of sta↵ will be asked to read this
policy and will be required to complete the declaration of use form (Appendix
A), which will be retained on the employee’s personal file.

3.16.

The IT Department will monitor the device usage for excessive use and will
bring any issues to the attention of the sta↵ member and their manager.2

3.17.

The mobile device is intended for the exclusive use of the member of sta↵ to
whom it is issued. It should not be loaned or shared with anyone else including
family members, friends or other members of sta↵. The use of this device will
be monitored and any misuse could result in disciplinary action. The sim-card
issued with the mobile device must be used only with corporate devices and
must not be used with personally owned equipment unless otherwise authorised
through the immediate line manager and the IT Department.

5

’nhs�trust’ says Staff can-say
Device isNoLongerRequired
if Device isOwnedBy(Staff).

’nhs�trust’ says Employee:S can-say
Device hasPassedOnTo(Employee:T)
if Device isOwnedBy(S),

S hasAppliedFor(’phone�transfer’, Form),
Form isReceived.

’nhs�trust’ says ’ line�manager’ can-say
Device hasBeenReturned.

’nhs�trust’ says Manager isResponsibleFor(Device)
if Device isOwnedBy(Staff),

Manager isManagerOf(Staff).

’nhs�trust’ says ’ it�department’ can-say
’nhs�trust’ hasDevice(Device:D).

3(See Requirement 4.4.4.)
’nhs�trust’ says Employee:S can-say
S hasAcknowledged(’public�usage�policy’).

’nhs�trust’ says Staff canUseForPersonal(Device)
if Device isOwnedBy(Staff),

Device isOwnedBy(’nhs�trust’),
Device isPersonalUse,
Staff hasAcknowledged(’monthly�fee’),
Staff hasAcknowledged(’acceptable�use’).

3.18.

If the device is longer required or if it has been passed on to a colleague, the
Line Manager and IT Department must be informed via the following electronic
form.

3.19.

Leavers should return the mobile device and any accessories including chargers
to their line manager before their final working day. Failure to comply will result
in the user being invoiced for the full cost of the modern equivalent handset and
any other associated costs.

3.20.

All smart devices issued by the Trust are done so on a contract basis. Man-
agers / budget holders will be responsible for mobile device costs within their
team. Therefore it is imperative that the IT Department is kept informed of
any moves / changes as they occur to ensure this does not impact on the budget
holder (including replacing devices in the event of loss).

3.21.

The IT Department will keep a register of devices and allocations and will
monitor mobile device usage for excessive use and will bring any issues to the
attention of the sta↵ member and their manager.3

3.22.

It is the responsibility of the individual to ensure that they adhere to signage
and instructions governing the use of devices whilst within a public service
property.

4. Personal Usage of Corporately Issued Mobile Device

4.1.

If a mobile device user wishes to make personal use of the device, this must be
declared on the declaration of use form and a minimum of 5 per month should
be paid by the user. This monthly charge is intended primarily to cover the cost
of voice communication and texting for private use. The use of the mobile device
for data usage over mobile networks for private use is discouraged. However,

6

’nhs�trust’ says ’ it�department’ canMonitor(Device)
if Device isOwnedBy(’nhs�trust’).

’nhs�trust’ says ’ it�department’ can-say
Device isUsedExcessively.

’nhs�trust’ says ’ it�department’ mustInform(Manager, ’excessive�use’)
if Device isOwnedBy(Staff),

Device isUsedExcessively,
Manager isManagerOf(Staff).

’nhs�trust’ says Employee:S can-say
S hasAcknowledged(’data�loss�policy’).

’nhs�trust’ says Device:D mustDisable(D)
where inCar(D) = true,

usingHandsFree(D) = false.

’nhs�trust’ says Employee:S can-say
S hasAcknowledged(’driving�policy’).

’nhs�trust’ says Device canCall(TelephoneNumber:X)
if Device isOwnedBy(’nhs�trust’)
where nationalNumber(X) = true,

premiumNumber(X) = false.

’nhs�trust’ says Device canCall(TelephoneNumber:X)
if Device isOwnedBy(Staff),

Staff canDuring(From, To, ’make�international�calls’)
where betweenDates(From, To) = true.

’nhs�trust’ says ’ it�department’ can-say
Staff canMakeInternationalCalls(From, To)
if Staff hasAppliedFor(’international�calls’, Form),

Manager hasApproved(Form).

’nhs�trust’ says Manager can-say inf
Manager hasApproved(’international�calls’, App)
if Staff hasAppliedFor(’international�calls’, App),

Manager isManagerOf(Staff).

should a member of sta↵ wish to access the web in their own time this would be
acceptable.

4.2.

The Trust expects all members of sta↵ who opt to use a corporately issued
mobile device for personal usage to keep usage appropriate and legal at all
times. It will be a disciplinary matter if the device were used inappropriately or
in any illegal or unsavoury way in accordance with the principles of the NHS
Constitution.

4.3.

The Trust would not encourage sta↵ members to download apps for personal use
onto a corporately issued mobile device or to use the device to store personal
data.

4.4.

The IT Department will monitor the device usage for excessive use and will
bring any issues to the attention of the sta↵ member and their manager.

4.5. As stated earlier, in the event of loss of the device, all data including personal
data, photographs and personal apps including paid apps will be remote wiped
and the Trust would not recompense sta↵ for loss of any such data or paid apps.

5. Mobile Devices and Driving

5.1.

For safety reasons, Trust sta↵ must not use a hand held mobile device whilst
driving any vehicle. It is illegal to do so. Please refer to the most up-to-date
information via the Highways Agency.

5.2. It is not Trust policy to provide hands-free equipment and the Trust does
not recommend using mobile devices in hands-free mode or with hands-free
attachments whilst driving.

5.3.

The Trust will not take responsibility or be liable in any way for legal charges
or other consequences of using a mobile device whilst driving.

6. Roaming Arrangements and International barring

6.1.

7

’nhs�trust’ says Device mustDisable(’international�calls’)
if Device isPersonalUse.

’nhs�trust’ says Device canPhotograph(Patient)
if Device isEncrypted,

Patient isPhotographable.

’nhs�trust’ says ’ clinician ’ can-say
Patient isPhotographable
if Patient hasConsentedTo(’photography’).

’nhs�trust’ says Patient can-say inf
Patient hasConsentedTo(’photography’)
if Patient canConsent.

’nhs�trust’ says ’ clinician ’ can-say
Patient canConsent.

All mobile devices will be configured for national access only. Premium / interna-
tional calls will be barred. International call barring and roaming arrangements
can be lifted for specific periods, to be stipulated on request, on approval of the
relevant manager / budget holder. This may be granted by emailing a member
of the IT Department or via:
tct.mobilephone@nhs.net

giving the reason for the request. However, members of sta↵ must be aware
that if email is used whilst abroad it will cost extra money and the cost may be
recoverable personally from the device holder. It is recommended that if going
abroad, the device holder’s phone is used for voice communication only. The
IT and Telecommunications Team can assist with turning data o↵ or they can
arrange for a standard mobile phone to be loaned for the duration of the time
abroad.

6.2. If a device holder is paying for personal use, use of data whilst abroad will not
be sanctioned unless under exceptional circumstances to be agreed in advance
with the line manager.

7. Use of Camera Enabled Mobile Devices

7.1.
Some mobile devices have the ability to take photographs / videos. This function
should not be used for photographs / videos of an individual’s care and treatment
unless the device has encryption enabled and it is clinically appropriate to do
so. Please refer to Appendix B; ‘Use of Smart Devices for Photography and
Videoing when Assessing and Planning Care’.

7.2.
If the photography / video facility is used as part of the recording of an
individual’s care and treatment, the device user must ensure that the consent of
the individual has been collected prior to taking any photograph / video. The
individual needs to fully understand why the photograph / video is being taken
and the member of sta↵ plans to do with it, in particular if it will be shared. A
record of the consent must be entered into the individual’s care record. It would
be good practice to show the individual the photograph / video once taken.

8. Smart Tablets

Where appropriate the use of a Smart tablet may be considered a more ap-
propriate device as opposed to a Smartphone. This will be determined on an
individual basis at the discretion of the line manager and IT Department.

8

’nhs�trust’ says App isInstallable
if App hasMet(’ clinical�use�case’).

’nhs�trust’ says App isInstallable
if App hasMet(’business�use�case’).

’nhs�trust’ says ’cacpg’ can-say
App hasMet(’ clinical�use�case’).

’nhs�trust’ says ’mig’ can-say
App hasMet(’business�use�case’).

’nhs�trust’ says App isInstallable
if App isDownloadable,

App hasMet(’final�app�approval’).

’nhs�trust’ says ’igc ’ can-say
App hasMet(’final�app�approval’).

’nhs�trust’ says Device canInstall(App)
if App isInstallable,

App isApprovedFor(Device).

’nhs�trust’ says Employee:Manager can-say
App:A isApprovedFor(Device)
if Manager isResponsibleFor(Device).

9. Apps Management

9.1.

Downloading of personal apps onto a corporately issued mobile device should
be avoided where possible. The Trust would not encourage sta↵ members to
download apps for personal use onto a corporately issued mobile device. All
sta↵ are reminded that they must adhere to the guidance outlined in the Social
Media Policy.

9.2.

Apps for work usage must not be downloaded onto corporately issued mobile
devices (even if approved on the NHS apps store) unless they have been approved
through the following Trust channels:

9.3.

Clinical apps; at the time of writing there are no apps clinically approved
by the Trust for use with patients / clients. However, if a member of sta↵
believes that there are clinical apps or other technologies that could benefit
their patients / clients, this should be discussed with the clinical lead in the first
instance and ratification should be sought via the Care and Clinical Policies
Group. A clinical app should not be used if it has not been approved via this
group.

9.4.

Business apps; at the time of writing there are no business (i.e., non-clinical)
apps approved by the Trust for use other than those preloaded onto the device
at the point of issue. However, if a member of sta↵ believes that there are apps
or other technologies that could benefit their non-clinical work, ratification of
the app must be sought via the Management of Information Group (MIG). An
app should not be used if it has not been approved via this group.

9.5.

Following approval through Care and Clinical Policies and / or MIG, final
approval will be required through Integrated Governance Committee.

9.6.

Use of paid apps must be agreed in advance with the device holder’s line manager
and there should be a demonstrable benefit.

9

’nhs�trust’ says ’ clinician ’ can-say
Treatment:T isJustifiedBy(String:Reason).

9.7. Whilst apps are a useful tool to aid in clinical decision making they should not
be used as a sole basis for clinical decision making. It is the legal responsibility
for the clinician to justify the treatment or procedure that they have undertaken.
The sole use of an app to support this is not valid justification.

9.8.

Where an Apple device has been approved, an Apple ID is required to download
apps, whether free or paid. Guidance on creating an Apple ID is here. The
creation of an Apple ID should be independent from any personal accounts
the employee may hold. The installation and use of iTunes is not required to
download apps from the apps store. ITunes will not be supported on corporate
devices.

10. Policy Non-Compliance

10.1.

Policy non-compliance will be regarded as serious or gross misconduct, which is
likely to result in disciplinary action being taken.

11. Policy Distribution and Application

11.1.

To all managers and mobile device users.

11.2.

Managers are expected to apply this policy equally across all areas throughout
the Trust.

11.3.

Associated forms and paperwork will be maintained and kept up-to-date. It
should be noted that the forms contained within the appendices may be updated
from time to time.

10

Appendix A. Translated BYOD Policies 148

A.2 SANS

’company’ says ’it�department’ can-say1Employee:U canUse(Device:D).

’ it�department’ says Employee:User canUse(Handheld:Device)
if U hasAcknowledged(’policy’).

’ it�department’ says Employee:User can-say
User hasAcknowledged(’policy’).

’ it�department’ says Employee:U mustAcknowledged(’policy’).

’ it�department’ says ’regular’ isEmployee.
’ it�department’ says ’intern’ isEmployee.
’ it�department’ says ’external’ isEmployee.

’ it�department’ says ’pocket�pc’ isHandheld.
’ it�department’ says ’smartphone’ isHandheld.

’company’ says ’it�governance’ can-say Device canConnectToNetwork(’corporate�network’)
if Device hasMet(’risk�assesment�policy’).

’company’ says Device mustProhibitCollectAt(Location)
if Device isPrivatelyOwned,

Location isSecurityLevel(’restricted’).

’company’ says Device canConnectToNetwork(’company�network’)
if Device isApproved,

Device isActivated,
Device isPrivatelyOwned.

’company’ says ’technical�personnel’ can-say Device isApproved.

’company’ says ’it�department’ can-act-as ’technical�personnel’.
’company’ says ’desktop�support’ can-act-as ’technical�personnel’.

’company’ says ’it�department’ can-say Device:X hasMet(’mobile�handheld�device�policy’).
’company’ says ’it�department’ can-say Device:X hasMet(’approved�device�policy’).
’company’ says ’it�department’ can-say App:A isInstallable.
’company’ says ’it�department’ can-say App:A isNotInstallable.

2 Security Policy for Handheld Devices

2.1 General policy requirements

Policy agreement.
IT department MUST ensure that all employees (regular employees, interns,

externals) using devices falling into the category “handheld devices” as defined in
section 1.7, have acknowledged this security policy and the associated procedures
before they are allowed to use corporate services using handheld devices.

Use of private handheld in corporate environment. IT governance
MUST define whether private handhelds are authorized to connect to corporate
networks in the user acceptance policy, according to its risk assesment policy.

Private handhelds are not authorized: In highly restricted facilities,
private handheld devices MUST be prohibited. In that case, mobile devices
MUST be collected prior to the user’s entrance into the facility.

Private handhelds are authorized in o�ces but are not allowed to connect to
internal networks.

Private handhelds MUST NOT connect to corporate networks and access
corporate information. This includes synchronization with a workstation con-
nected to internal networks. Corporate networks MUST be protected accordingly
using network access control mechanisms and MUST NOT grant access to any
corporate information to unregistered devices.

Private handhelds are authorized: Any non business-owned (that, is
private) device must be able to connect to hCompanyi network MUST first be
approved by technical personnel such as those from the hCompanyi IT department
or desktop support.

If allowed, privately-owned handheld devices MUST comply with this security
policy and MUST be inventoried along with corporate handhelds, but identified
as private. This is in order to prevent theft of corporate data with unmanaged
handhelds (i.e. owner of device is not identified).

IT department roles and responsibilities. IT governance is responsible
for the mobile handheld device policy at hCompanyi and shall conduct a risk

1

’company’ says User can-say
Device isLost
if Device isOwnedBy(User).

’company’ says User mustInform(’enterprise�help�desk’, ’device�lost’)
if D isOwnedBy(User),

D isLost.

’company’ says Device:D canCall(TelephoneNumber:X)
where inCar(D) = true,

usingHandsfree(D) = true.

This seems very similar to section 5 of the NHS device policy.

’company’ says Device:D hasMet(’password�policy’)
where passwordEnabled(D) = true.

’company’ says Device can-say Device isOwnedBy(X)
if Device isOwnedBy(X).

’company’ says Device:D can-say D isOwnedBy(Company).

analysis to document safeguards for each device type to be used on the network
or on equipment owned by hCompanyi.

The IT department maintains a list of approved mobile handheld devices
and makes the list available on the intranet. The IT Department maintains lists
of allowed and unauthorized applications and makes them available to users on
the intranet.

2.2 Physical security

Physical security. In case of loss or theft of handheld, users MUST re-
port AS SOON AS POSSIBLE (right after the loss has been noticed) the IT
department or help desk, in order to take the appropriate measures.

Procedure for reporting lost device MUST exist and be clearly communicated
to all users:

To report lost or stolen mobile computing and storage devices, call the
Enterprise Help Desk at +41-xx-xxx-xx- xx. For further procedures on lost or
stolen handheld wireless devices, please see the PDA Information and Procedures
section.

Device safety. Usage of handheld devices in uncommon situations is depicted
in the acceptable use policy 0, which states that: Conducting telephone calls
or utilizing handhelds while driving can be a safety hazard. Drivers should use
handhelds in hand only while parked or out of the vehicle.

If employees must use a handheld device while driving, hCompanyi requires
the use of hands-free headset devices.

Password policy. Access to handheld devices MUST be password-protected.

Ownership information. Owner information SHALL be written on the
handheld. Owner should be either end-user (if users are responsible for their
device) or generic owner information to avoid revealing the company name
and thus exposing the device to more scrutiny. This is possible in two ways,
according to hardware capabilities:

• Either the information can be displayed on the lockout screen on the
handheld

2

’company’ says Device:D mustDisable(’wlan’)
where usingBattery() = true.

’company’ says Device:D mustDisable(’encryption’)
where usingBattery() = true.

Similar to 3.11–3.13 of NHS policy.

’company’ says Device mustDisable(’camera’)
if ’ restricted �environment’ isWhereIs(Device).

’company’ says Device mustDisable(’mms’)
if ’high�security�environment’ isWhereIs(Device).

’company’ says ’high�security�environment’ can-act-as ’restricted�environment’.

’company’ says Location:L isWhereIs(Device:D)
where location(D, L) = true.

’company’ says Device mustBeUpdated
if Device isRunningVersion(Version)
where lth(deviceVersion(Device), Version) = true.

’company’ says ’it�department’ can-say Device:D mustRun(Version:V).

’company’ says ’device’ mustDisable(’file�sharing’).
’company’ says ’device’ mustDisable(’ftp�client’).

How do we check for this? Should device query if 9 service that should be disabled?

• Or the information MUST be written on a sticker on the back of the
handheld

This would allow anyone finding a lost device to return it to its owner.

Availability of device & services—business continuity. As handheld
devices consume lots of resources (processing, memory), battery management
is crucial to ensure business continuity. Mobile users working out of companys
o�ces MUST have the necessary accessories to charge their device, according to
the situation they are in: car, train, at customer sites, etc.

Batteries are consumed faster during the following operations, and devices
should be switched o↵ if not used:

• Wireless LAN (searching for nearby network)

• Encryption/decryption of communications

Use of camera. Digital camera embedded on handheld devices might be
disabled in restricted environments, according to hCompanyi risk analysis. In
sensitive facilities, information can be stolen using pictures and possibly sent
using MMS or E-mail services.

In high-security facilities such as R&D labs or design manufacturers, camera
MUST be disabled. Furthermore, MMS messages should be disabled as well, to
prevent malicious users from sending proprietary pictures.

2.3 Operating system security

Firmware version, updates & patching. Devices firmware MUST be
up-to-date in order to prevent vulnerabilities and make the device more stable.
Firmware patching and updating processes are the responsibility of the IT
department, MUST be documented and tested prior to deployment on a whole
fleet of handsets

OS hardening: removing unnecessary services. In order to enhance
the security level of end devices, all unnecessary built-in services should be
disabled, especially including:

• Internet file-sharing

• FTP client

3

’company’ says App isNotInstallable
if App isAssociatedWith(’mp3’).

’company’ says App isNotInstallable
if App isAssociatedWith(’mimetype�audio�mpeg’).

I need to fix bug in parsing due to unacceptable characters in strings (i.e. ‘*’ and
‘.’)

’company’ says App hasMet(’unsigned�applications�policy’)
if App isSignedBy(X).

’company’ says ’it�department’ can-say Certificate:C isValid.

’company’ says ’av�software’ canConnectToServer(URL:X)
where connectedToWifi() = true.

’company’ says ’av�software’ canScan(Device:D).

There is a delegation relationship to the AV software in terms of its fuctionality and
the requirement to have it installed, but I’m unsure how to express it. Software
traditionally doesn’t speak in AppPAL.

’company’ says Device:D canEnable(’bluetooth’)
where geq(bluetoothVersion(), ’2�1’) = true.

’company’ says ’information�security�manager’ can-say Device canEnable(’bluetooth’).

’company’ says Device1 can-say Device1 hasPairedWith(Device2, PIN:P)
if Device1 canPair(Device2).

’company’ says Device:D1 canPair(Device:D2)
where location(D1, ’restricted’) = false.

The second part (re: reporting duplicate pairing attempts) seems tricky to express
in AppPAL. Feels like a meta-policy about the state of a device’s assertion context.

System hardening: removing unnecessary applications. If employees
have no reason to use certain file types (especially MP3s and videos), removal
of the corresponding applications from the devices is recommended.

This not only prevents a devices being used as an expensive MP3 player,
but it also protects the organization from potential legal problems regarding
these types of media (DRMs infringement). Furthermore, removing unnecessary
applications prevents attackers from exploiting implementation flaws in those
applications.

Unsigned applications policy. Users MUST NOT install any UNSIGNED
application or applications theme on the handheld device, for any purpose; this
in policy order to prevent malicious infection of the device.

Certificates management. Only IT department sta↵ are authorized to
manage (install and revoke) certificates on handhelds. The IT department
MUST provide the necessary certificates to enable all required services to users.
Only the IT department can install certificates in the root certificates store or
in the intermediate certificates store (if available).

Antivirus policy. Mobile devices MUST have antivirus software installed
to prevent viruses from being vectored into the corporationeither as e-mail
attachments or through file transfers. Antivirus software MUST be configured
in order to:

• Do automatic signature update when connected to desktop PC or wireless
network

• Do automatic and regular scan of device

2.4 Personal Area Networks (PAN) security policy

Bluetooth version. No Bluetooth Device shall be deployed on hCompanyi
equipment that does not meet Bluetooth v2.1 specifications without written
authorization from the Information Security Manager.

Any Bluetooth equipment purchased prior to this policy MUST comply with
all parts of this policy except the Bluetooth version specifications.

4

’company’ says Device1 canSendTo(Device2, Data:X)
if Device1 hasPairedWith(Device2, PIN),

Device2 hasPairedWith(Device1, PIN).

’company’ says Device1 can-say Device1 hasPairedWith(Device2, PIN)
if Device2 hasStartedPairing(Device1, PIN).

’company’ says ’is�sta↵’ canMonitor(Device:D, Feature:X)
where ! X = ’conversation’.

Similar to NHS policy 3.14.

’company’ says Device mustDisable(’irda’)
if ’bluetooth ’ isOwnedBy(Device).

’company’ says ’device’ cannotStore(Doc) if Doc isSecurityLevel(’secret’).
’company’ says ’device’ cannotStore(Doc) if Doc isSecurityLevel(’strict�confidential’).
’company’ says ’device’ cannotStore(Doc) if Doc isSecurityLevel(’confidential’).
’company’ says ’device’ cannotStore(Doc) if Doc isSecurityLevel(’internal’).

PAN PINs and pairing. When pairing two communicating devices in a
PAN, users should ensure that they are not in a public area. If the equipment
asks for a PIN after it has been initially paired, users MUST refuse the pairing
request and immediately report it to IT department or the help desk. Unless the
device itself has malfunctioned and lost its PIN, this is a sign of a hack attempt.

Care must be taken to avoid being recorded when pairing Bluetooth adapters;
Bluetooth 2.0 Class 1 devices have a range of 100 meters.

File transfer (beam in PAN). File transfers between devices in close
range (PAN), taking place over Bluetooth or Infrared, MUST take place only
between authenticated parties, which MUST agree on a pairing key as defined
in section 4.2: PAN PINs and pairing.

Anonymous connections (i.e. without pairing) MUST NEVER take place.

PAN security audits. Information security sta↵ SHALL perform audits
for Bluetooth and IrDA to ensure compliance with this policy. In the process of
performing such audits, information security auditors SHALL NOT eavesdrop
on any phone conversation.

Infrared IrDA. Infrared support MUST be disabled if Bluetooth connec-
tivity is supported. Bluetooth MUST be preferred to IrDA when available.

2.5 Data security

Information classification. The information classification policy applies
restrictively to handheld devices as it applies to laptops.

A handheld device SHALL NOT be used to enter or store passwords, safe/-
door combinations, personal identification numbers, or classified, sensitive, or
proprietary information. Corporate documents are classified according to their
level of confidentiality e.g.:

• Public documents

• Internal documents

• Confidential documents

• Strictly confidential or secret documents

5

’company’ says Encrypted:Device canStore(Confidential:Doc).

’company’ says ’internal’ canStore(File:Doc).
’company’ says ’external’ cannotStore(File:Doc).

We could do this with app permissions, by prohibiting the WRITE_EXTERNAL permission.

’company’ says Device:D canInstall(App)
if App isEncrypting,

App isInstallable.

’company’ says Device canInstall(App)
if App isInstallable,

Device mustEnable(’mmc�encryption’).

’company’ says Device:D can-say
D mustEnable(’mmc�encryption’).

’company’ says ’it�department’ can-say Device canConnectToNetwork(’internal’)
if Device isActivated.

’company’ says ’it�department’ can-say Device:D isActivated.

’company’ says Device:D mustDisable(’file�sharing’).
’company’ says Device:D canEnable(’file�sharing’)
if ’ file �sharing’ mustEnable(’authentication’).

• Secret and confidential documents MUST NEVER be stored on end
devices.

Internal documents SHOULD NOT be stored on mobile devices unless strictly
necessary. Public documents can be carried on mobile devices without risk.
However, if not needed, public corporate files MUST be removed from the device.

Data security. Mobile handheld devices containing confidential, personal,
sensitive, and generally all information belonging to hCompanyi SHALL employ
encryption or equally strong measures to protect the corporate data stored on
the device, as stated in corporate encryption standards.

If memory encryption is not available natively in the device, a third party
application SHALL be purchased.

Persistent memory. Corporate data, i.e. any corporate file, even public,
MUST not be stored in persistent (or device) memory, but rather in memory
card (SD or MMC).

Encryption of removable storage card. Removable storage on smart-
phones (e.g. SD cards) MUST be encrypted in order to prevent data theft on
storage card.

Usually, encryption of MMC is natively built in devices. Encryption of MMC
MUST be turned on. Third-party encryption software might be used if native
platform does not o↵er the option of data encryption on MMC.

2.6 Corporate networks access security

Network access control. All devices, including handhelds that have to
connect to internal networks MUST be identified by IT department for Network
Access Control purposes, after they are declared in the corporate inventory.

Any attempt to access corporate networks with an unknown device will be
considered as an attack against corporate assets.

File sharing. File-sharing services MUST be disabled, independently of the
transport technology.

6

’company’ says ’device’ mustDisable(’wifi’).

’company’ says Device:D canConnectToAP(AP:X)
if X isOwnedBy(’company’).

’company’ says Device:D canConnectToAP(AP:X)
if X canAuthenticateWith(’wpa’).

’company’ says PPG:PPG can-say File:F isProvisioningFile
if PPG isApproved.

’company’ says ’security�sta↵ ’ can-say PPG:PPG isApproved.

’company’ says ’it�department’ can-say Device:D isUpdatedBy(Update:U).
’company’ says ’operator’ can-say Server:S isUpdatedBy(Update:U).

’company’ says User canUse(Device)
if Device isOwnedBy(User),

User hasAcknowledged(’email�security’),
User hasAcknowledged(’acceptable�use’),
User hasAcknowledged(’ecommerce�security’).

’company’ says Employee:U mustAcknowledged(’email�security’).
’company’ says Employee:U mustAcknowledged(’acceptable�use’).
’company’ says Employee:U mustAcknowledged(’ecommerce�security’).

Seems to add to the canUse policy in 2.1.

If enabled, authentication MUST be in place to force the identification of
the communicating party: no anonymous access shall be possible. Guidelines or
a policy depicting valid passwords are available in the password policy.

Wireless support. Independently of the company risk analysis, disable
WLAN support in the following cases: Whenever connectivity is not required to
prevent unnecessary battery consumption.

When connected to a desktop computer to prevent the spread of malware.
Access to WLAN MUST be restricted if mobile workers do not require access

to public, open, or untrusted WLAN, according to hCompanyi risk analysis and
its business model:

• Restrict the list of authorized access points to corporate access points only.

• Disable connection to open/public WLANs without encryption and au-
thentication methods.

• Disable connecting to WEP-protected WLANs (considered insecure).

2.7 Over-the-air provisioning security

Handheld configuration for OTA provisioning. Mobile devices MUST
be configured to receive provisioning files only from a list of trusted PPGs. This
white list of trusted PPGs MUST contain corporate PPG IP address only, and
eventually other PPGs owned by the operator.

This white list MUST be provisioned by security sta↵, and regularly pushed
to end devices for security policy enforcement.

OTA provisioning messages security. Provisioning messages (using OMA
DM or WAP Push) MUST be encrypted. Necessary SSL certificates MUST
be provided by corporate IT department. Note that SSL certificates on OMA
Device Management Server must be signed by a Certification Authority or by
the Operator.

2.8 Internet Security

Use of Internet services. Users MUST agree to the email security/ac-
ceptable use policy and eventually to the eCommerce security policy.

7

’company’ says Device:D mustDisable(’attachment�download’).E-mail attachments download. Users SHALL NOT download files at-
tached to e-mails. Restriction of attachment downloading can be implemented
on both the device (via provisioning) and the mobile email server (via configu-
ration). Attachment download restrictions MUST be implemented, preferably
in mobile e-mail servers in order to prevent users tweaking the device security
features.

8

Appendix A. Translated BYOD Policies 157

A.3 HiMSS

’ user ’ says ’xyz�health�system’ can-say
Device:D mustSet(SecuritySetting:Opt, Value)
if Value isValueFor(Opt).

’xyz�health�system’ says ’user’ mustAcknowledged(’data�loss�policy’).
’ user ’ says ’user’ hasAcknowledged(’data�loss�policy’).
’ user ’ says ’xyz�health�system’ can-say
Device mustWipe
if Device isOwnedBy(’user’).

Mobile Security Toolkit: Sample Mobile Device
User Agreement

Healthcare Information and Management Systems Society

February 27, 2017

Introductory Note: The sample mobile device user agreement is an example

of an agreement that is being used by a health system to manage personal mobile

devices in its environment. It is only an example and is not meant to be a

complete or exhaustive list of policy elements. Because organizations, along with

regulatory and legal requirements, are di↵erent, each organization should develop

a unique mobile device user agreement that is aligned with the needs of the

organization, applicable laws, and is consistent with its policies and procedures.

As a condition of synchronizing my personal PDA/Smartphone with the

XYZ Health System computing environment, I understand that I am subject

to certain restrictions and expectations on the use of my PDA/Smartphone.

This document serves as notification of the restrictions and expectations, and

acceptance and acknowledgement thereof.

By signing below:

• I agree to follow all XYZ Health System policies relating to the use and
security of portable computing devices.

• I acknowledge that XYZ Health System will enforce security settings on
the PDA/Smartphone including at a minimum encryption of all XYZ
Health System information on the device.

• I understand that if I do not make appropriate backups of my personal

information maintained on the PDA/Smartphone in order to avoid loss of
information should the device be lost, stolen, corrupted, or data must be

1

’ user ’ says Device:D canBackupTo(Computer)
if Computer isOwnedBy(’xyz�health�system’).

’ user ’ says ’xyz�health�system’ can-say
’xyz�health�system’ hasDevice(Device:D).

’xyz�health�system’ says ’user’ mustAcknowledged(’data�loss�policy’).
’ user ’ says ’user’ hasAcknowledged(’data�loss�policy’).

’xyz�health�system’ says ’user’ mustAcknowledged(’rooting�policy’).
’ user ’ says ’user’ hasAcknowledged(’rooting�policy’).

’xyz�health�system’ says ’user’ mustAcknowledged(’internet�unreliable’).
’ user ’ says ’user’ hasAcknowledged(’internet�unreliable’).

’ user ’ says Device canConnectToAP(AP)
if Device isOwnedBy(’user’),

Device isOwnedBy(’xyz�health’),
AP isOwnedBy(’xyz�health�system’).

’ user ’ says Data canBeSentWith(’MyXYZHealthSystem’)
if Data isSecurityLevel(’protected�health’).

’ user ’ says Data canBeSentWith(’e�secure’)
if Data isSecurityLevel(’business�sensitive’).

’ user ’ says Data canBeSentWith(’secure�ftp’)
if Data isSecurityLevel(’business�sensitive’).

’xyz�health�system’ says ’user’ mustAcknowledged(’diagnostic�limitations’).
’ user ’ says ’user’ hasAcknowledged(’diagnostic�limitations’).
’ user ’ says App canStore(Data)
if Data isSecurityLevel(’protected�health’),

App isApprovedFor(Device).

’ user ’ says ’xyz�health�system’ can-say
App:A isApproved.

deleted (wiped) in order to protect sensitive information, such personal
information may be lost and is not the responsibility of XYZ Health
System.

• I agree not to backup XYZ Health System information (including e-mail)
to a non-XYZ Health System computer or move the XYZ Health System
information from its encrypted area to any other areas on the smart
phone. I understand my XYZ Health System email mailbox information
is maintained and backed up by XYZ Health System and should not be
replicated onto non-XYZ Health System computers.

• I agree to hold XYZ Health System harmless for any loss relating to the
administration of PDA/Smartphone connectivity to XYZ Health System
systems including, but not limited to, loss of personal information stored
on a PDA/Smartphone due to data deletion done to protect sensitive
information related to XYZ Health System, its patients, members or
partners.

• I understand that modifying the underlying operating system of the device
(e.g., “rooting”, “Jailbreak-ing”, etc.) will result in the device being
removed from synchronization with XYZ Health System data and voids
this agreement and support for the device.

• I understand and accept that synchronization relies on one or more cellular
network providers and the Internet, and that both are subject to slowdowns
and outages of extended duration that are beyond the control of IT. Service
cannot be guaranteed or fixed by XYZ Health System.

• I understand that access to the XYZ Health System wireless network is
not available to non-XYZ Health System devices. All connectivity must
be through cellular provider.

• I agree not to transmit XYZ Health System sensitive information (e.g.,
Business Sensitive Information (BSI) or Protected Health Information
(PHI)) through non-XYZ Health System approved methods. These include
texting, paging, personal email and social networks. Electronic commu-
nications with patients should be through MyXYZHealthSystem. BSI
can be transmitted using secure e-mail (e-secure) of secure file transfer
methods.

2

’ user ’ says ’xyz�health�system’ can-say
Device mustWipe
if Device isOwnedBy(’user’).

’xyz�health�system’ says ’user’ mustAcknowledged(’activation�charge’).
’ user ’ says ’user’ hasAcknowledged(’activation�charge’).
’department’ says Device isActivated
if Device isOwnedBy(User),

User hasDepartment(’department’),
Device hasActivationFee(Fee),
User hasPaid(Fee).

’ user ’ says ’user’ mustInform(’it�help�desk’, ’device�lost’)
if Device isOwnedBy(’user’),

Device isLost.

’xyz�health�system’ says ’user’ mustAcknowledged(’remote�working�policy’).
’ user ’ says ’user’ hasAcknowledged(’remote�working�policy’).

’xyz�health�system’ says ’user’ mustAcknowledged(’penalty�conditions’).
’ user ’ says ’user’ hasAcknowledged(’penalty�conditions’).

• I understand that these devices should not be considered diagnostic quality
for patient care decisions, and should not contain Protect Health Informa-
tion (PHI), unless incorporated as part of an o�cially approved, standard
application support by XYZ Health System.

• I agree that the PDA/Smartphone can be wiped by XYZ Health System
upon the decision of XYZ Health System management and understand
that it will delete all data including personal files.

• I understand that there is a one-time charge to my department for activa-
tion and management of a new device, which includes replacements and
upgrades: Blackberry $xxx, Android/iPhone $xxx.

• I agree to report loss of a device immediately to the IT Help Desk xxx-
xxx-xxxx.

• I understand that non-exempt employees carrying or operating a PDA/S-
martphones device outside of normal work hours does not constitute
working remotely unless properly authorized by management.

• I understand that failure to adhere to these conditions or failure to appro-
priately safeguard XYZ Health System information could result in action
against me personally, including termination of employment, civil action
(e.g., being sued directly) or criminal prosecution by e↵ected persons.
[This exposure is especially relevant to disclosure of Protected Health
Information (“PHI”) or Business Sensitive Information (“BSI”)].

3

Appendix A. Translated BYOD Policies 161

A.4 Edinburgh

’ records�management’ says BA can-say
Device hasMet(’higher�requirements’)
if Device isOwnedBy(Employee),

Employee hasDepartment(BA).

BYOD Policy: Use of Personally Owned Devices
for University Work

University of Edinburgh Records Management

March 20, 2017

1 Audience and purpose

1.1

This policy is for all sta↵ using personally owned devices such as smart phones,
tablet computers, laptops, netbooks and similar equipment, to store, access,
carry, transmit, receive or use University information or data, whether on an
occasional or regular basis. The term for such devices is BYOD (“bring your
own device”).

1.2

The University recognises the benefits brought by the use of your own devices
in work and welcomes it. This policy is about reducing the risk in using BYOD.
Such risks may come from your BYOD being lost, stolen, used or exploited in
such a way to take advantage of you or the University.

1.3

This policy sets out the minimum requirements. Individual business areas may
specify additional, higher requirements as necessary.

1

’ records�management’ says Device hasMet(’information�policy’)
if Employee has(Device),

Employee hasMet(’high�risk’),
Device hasMet(’high�risk�any�device�policy’),
Device hasMet(’high�risk�specific�device�policy’).

’ records�management’ says Device hasMet(’information�policy’)
if Employee has(Device),

Employee hasMet(’low�risk’),
Device hasMet(’low�risk�any�device�policy’),
Device hasMet(’low�risk�specific�device�policy’).

1.4

We believe that following the procedures set out below will bring benefits to
sta↵ through protection of your own data as well as that of the University.

2 General principle

2.1

If you use your own device for University work, it is important to ensure that it
and the information it contains is appropriately protected.

3 Data sensitivity

3.1

The Universitys Policy on Taking Sensitive Information and Personal Data
Outside the Secure Computing Environment provides guidance on categories of
high and medium risk personal data and business information.

3.2

If some of your work involves the use of high or medium risk information, and
you use a BYOD, it is likely that some of it will find a way on to your device,
for example within your email, or if you are working on documents away from
your o�ce.

4 Requirements for users of high and medium
risk information; Advice for low risk users

4.1

High and medium risk users: You are required to comply with all bullet points
listed below to permit use of BYOD for work. If necessary, seek help from your
IT support personnel to meet these requirements.

2

’ records�management’ says Device hasMet(’low�risk�any�device�policy’)
if Device hasPassword(Password),

Password isStrongPassword,
Device mustLockAfter(N),
Device canBackupTo(Server),
Server isOwnedBy(’university’)

where leq(N, ’180’) = true.

’ records�management’ says Device hasMet(’high�risk�any�device�policy’)
if Device hasMet(’low�risk�any�device�policy’),

Device isOwnedBy(Employee),
Employee mustAcknowledged(’erase�on�loss’),
Employee hasAcknowledged(’erase�on�loss’),
Device isEncrypted.

4.2

Low risk users: For protection of your own data as well as low risk work data, you
are advised to comply with at least the triangle bullet points below. Consider
what the potential consequences could be for you, your friends or your family
should your device become lost or stolen, and what protection configuration you
want to put in place to prevent your data from being misused.

4.3

If you are in any doubt about which of the above classes you fall into you must
assume that you are a High and medium risk user. Experience shows that almost
all academic sta↵ and those in HR, Finance and student-related roles will be
high and medium risk users.

Any type of device

4 Set and use a passcode (e.g. pin number or password) to access your device.
Whenever possible, use a strong passcode. Do not share the passcode with
anyone.

4 Set your device to lock automatically when the device is inactive for more
than a few minutes.

4 Take appropriate physical security measures. Do not leave your device
unattended.

4 Keep your software up to date.

4 Make arrangements to back up your documents.

4 Keep master copies of work documents on a University managed storage
service.

• If other members of your household use your device, ensure they cannot
access University information, for example, with an additional account
passcode. (Our preference is for you not to share the device with others.)

• Organise and regularly review the information on your device. Delete
copies from your device when no longer needed.

3

1If your device is an Apple iPhone or iPad, it is encrypted and protection is e↵ective
as soon as you set a PIN locking code.
2If your device is Android, there is an option to turn on whole-device encryption
in its configuration settings. Other devices may or may not be encryptable. We
recommend that you include your ability to encrypt as a factor when you are choosing
your own devices.

’ records�management’ says SmartPhone:Device hasMet(’low�risk�specific�device�policy’)
if Device hasFeature(’remote�wipe’).

’ records�management’ says Device hasMet(’high�risk�specific�device�policy’)
if Device hasMet(’low�risk�specific�device�policy’),

Device cannotSideload.

3If you configure your device for use with O�ce365, you are able to remote wipe it
using a service within the university.

’ records�management’ says Computer:Device hasMet(’low�risk�specific�device�policy’)
if Device has(Antivirus:AV)
where update(AV) = true.

’ records�management’ says Device:D mustDisable(’automatic�connection’).

• When you stop using your device (for example because you have replaced
it) and when you leave the Universitys employment, securely delete all
(non-published) University information from your device.

• Encrypt the device (to prevent access even if someone extracts the storage
chips or disks and houses them in another device)12.

• Report any data breaches in accordance with the Incident Reporting
Policy.

• Configure your device to maximise its security. For example each new
technology brings new enhanced security features. Take time to study and
discover how to use these and decide which of them are relevant to you.
Seek help from your IT support team if necessary.

• Whenever possible, use remote access facilities to access information on
University systems. Log out and disconnect at the end of each session.

Mobile phones, smart phones and “tablet” devices

4 Configure your device to enable you to remote-wipe it should it become
lost3.

4 If your device is second hand, restore to factory settings before using it
for the first time.

• Only download applications (‘apps’) or other software from reputable
sources.

Laptops, computers and more sophisticated tablet devices

4 Use anti-virus software and keep it up to date

Using wireless networks outside the University

4 Control your devices connections by disabling automatic connection to
open, unsecured Wi-Fi networks and make risk-conscious decisions before
connecting.

4 Disable services such as Bluetooth and wireless if you are not using them.

4

’ records�management’ says Employee:U can-say
U hasAcknowledged(’compliance�policy’).

’ records�management’ says Employee:U mustAcknowledged(’compliance�policy’).

5 Consequences of non-compliance

5.1

The loss, theft or misuse of a BYOD is personally distressing. If you use sensitive
data, it can also have serious consequences for others, for example sta↵ and
students about whom information is held. In addition there may be significant
legal, financial and reputational consequences for the University, including fines
of up to £500,000 can be levied. You may also carry personal responsibility

which, in serious cases could result in disciplinary action under the University

Computing Regulations.

5

Appendix A. Translated BYOD Policies 167

A.5 Sirens

’department’ says ’technician ’ canMonitor(Device)
if Device mustBeProvisioned.

’department’ says ’technician ’ canMonitor(Device)
if Device mustBeInvestigated.

’department’ says Employee:E can-say
E hasAcknowledged(’acceptable�usage’).

’department’ says Employee:E mustAcknowledged(’acceptable�usage’).

Sample BYOD Policy

http://www.code3pse.com/public/media/22845.pdf

February 27, 2017

1 Expectation of Privacy

hDepartment Namei will respect the privacy of your personal device and will
only request access to the device by technicians to implement security controls or
to respond to legitimate discovery requests arising out of administrative, civil, or
criminal proceedings. This di↵ers from policy for hDepartment Namei provided
equipment and/or services, where employees do not have the right, nor should
they have the expectation, of privacy while using equipment and/or services.

2 Acceptable Use

2.1

The company defines acceptable business use as activities that directly or
indirectly support the business of hDepartment Namei.

2.2

The company defines acceptable personal use on company time as reasonable
and limited personal communication or recreation, such as reading or game
playing.

2.3

Devices may not be used at any time to:

1

’department’ says Device:D canAccess(’email’).
’department’ says Device:D canAccess(’calendars’).
’department’ says Device:D canAccess(’contacts’).
’department’ says Device:D canAccess(’documents’).

’department’ says Device mustEnable(’hands�free’)
if Device isInCar.

’department’ says Device mustDisable(’speaker’)
if Device isInCar.

’department’ says Device mustDisable(’sms’)
if Device isInCar.

’department’ says Device mustDisable(’email’)
if Device isInCar.

’department’ says IPhone3GS:Device isSupported.
’department’ says IPhone4:Device isSupported.

• Store or transmit illicit materials

• Store or transmit proprietary information

• Harass others

• Engage in outside business activities

• Etc.

2.4

Employees may use their mobile device to access the following company-owned
resources:

• Email

• Calendars

• Contacts

• Documents

• Etc.

2.5

hDepartment Namei has a zero-tolerance policy for texting or emailing while
driving and only hands-free talking while driving is permitted.

3 Devices and Support

3.1

The following devices are supported:

• iPhone (3GS, 4, 4S, 5, etc...)

• iPad (hlist acceptable modelsi)

• Android (hlist acceptable modelsi)

2

’department’ says Employee:E can-say
E hasAcknowledged(’internet�unreliable’).

’department’ says Employee:E mustAcknowledged(’internet�unreliable’).

’department’ says Device mustInstall(App)
if Device mustBeProvisioned,

App isStandardInstall.

’department’ says ’it�department’ can-say
App:A isStandardInstall.

’department’ says Device:D mustEnable(’password’).
’department’ says Device canConnectToNetwork
if Device mustEnable(’password’).

’department’ says String:Password isAcceptable
if Password isCreated(Date)
where geq(length(Password), ’6’) = true,

largeAlphabet(Password) = true,
leq(minus(today(), Date), ’90’) = true,
novel(Password) = true.

’department’ says Employee:U can-say
Password:P isCreated(Date:D)

where geq(D, delegatedAssertionDate()) = true.

The delegatedAssertionDate would probably have to be an obligation constraint,
and would require some dark magic to implement.

’department’ says Device:D mustLock
where geq(idleTime(), ’300’) = true.

’department’ says Device cannotConnectToNetwork
if Device isRooted.

• Blackberry (hlist acceptable modelsi)

• Windows (hlist acceptable modelsi)

• Etc...

3.2

Connectivity issues are supported by IT; employees should contact the device
manufacturer or their carrier for operating system or hardware-related issues.

3.3

Devices must be presented to IT for proper job provisioning and configuration
of standard apps, such as browsers, o�ce productivity software and security
tools, before they can access the network.

4 Security

4.1

In order to prevent unauthorized access, devices must be password protected
using the features of the device and a strong password is required to access the
company network.

4.2

The companys strong password policy is: Passwords must be at least six charac-
ters and a combination of upper- and lower-case letters, numbers and symbols.
Passwords will be rotated every 90 days and the new password cant be one of
15 previous passwords.

4.3

The device must lock itself with a password or PIN if its idle for five minutes.

3

’department’ says Device cannotConnectToNetwork
if Device isNotSupported.

’department’ says Device cannotConnectToNetwork
if Device isNotProvisioned.

’department’ says Device canReadData(X)
if Device isOwnedBy(User),

User canReadData(X).

’department’ says ’it�department’ can-say
Employee:U canReadData(Data:D).

’department’ says Device mustWipe
if Device isLost.

’department’ says Device mustWipe
if Device isOwnedBy(User),

User isNotEmployed.

’department’ says ’it�department’ can-say
Device:D mustWipe.

’department’ says ’it�department’ can-say
Device:D mustWipe.

4.4

Rooted (Android) or jailbroken (iOS) devices are strictly forbidden from access-
ing the network.

4.5

Smartphones and tablets that are not on the companys list of supported devices
are not allowed to connect to the network.

4.6

Smartphones and tablets belonging to employees that are for personal use only
are not allowed to connect to the network.

4.7

Employees access to company data is limited based on user profiles defined by
IT and automatically enforced.

4.8

The employee’s device may be remotely wiped if:

• The device is lost or stolen.

• The employee terminates his or her employment.

• IT detects a data or policy breach, a virus or similar threat to the security
of the companys data and technology infrastructure.

5 Risks/Liabilities/Disclaimers

5.1

While IT will take every precaution to prevent the employees personal data from
being lost in the event it must remote wipe a device, but it is the employees
responsibility to take additional precautions, such as backing up email, contacts,
etc.

4

’department’ says ’company’ can-say Device:D isDisconnected.
’department’ says ’company’ can-say Device:D mustDisable(Feature:X).

’department’ says Employee mustInform(’company’, ’device�lost’)
if Device isOwnedBy(Employee),

Device isLost.
’department’ says Employee mustInform(Carrier, ’device�lost’)
if Device isOwnedBy(Employee),

Device hasCarrier(Carrier),
Device isLost.

’department’ says Employee can-say
Device isLost
if Device isOwnedBy(Employee).

’department’ says Employee:E can-say
E hasAcknowledged(’ethical�policy’).

’department’ says Employee:E mustAcknowledged(’ethical�policy’).

’department’ says Employee:E can-say
E hasAcknowledged(’financial� liabiliy �policy’).

’department’ says Employee:E mustAcknowledged(’financial�liabiliy�policy’).

’department’ says Employee:E can-say
E hasAcknowledged(’ liabiliy�policy’)

’department’ says Employee:E mustAcknowledged(’liabiliy�policy’)

’department’ says Employee:U mustAcknowledge(’this�policy’)
if Device isOwnedBy(U).

5.2

The company reserves the right to disconnect devices or disable services without
notification.

5.3

Lost or stolen devices must be reported to the company within 24 hours. Em-
ployees are responsible for notifying their mobile carrier immediately upon loss
of a device.

5.4

The employee is expected to use his or her devices in an ethical manner at all
times and adhere to the companys acceptable use policy as outlined above.

5.5

The employee is personally liable for all costs associated with his or her
device.

5.6

The employee assumes full liability for risks including, but not limited to,
the partial or complete loss of company and personal data due to an operating
system crash, errors, bugs, viruses, malware, and/or other software or hardware
failures, or programming errors that render the device unusable.

5.7

hDepartment Namei reserves the right to take appropriate disciplinary action
up to and including termination for noncompliance with this policy.

6 User Acknowledgment and Agreement

I acknowledge, understand and will comply with the above referenced se-
curity policy and rules of behavior, as applicable to my BYOD usage of
hDepartment Namei services. I understand that business use may result in

5

increases to my personal monthly service plan costs. I further understand that
reimbursement of any business related data/voice plan usage of my personal
device is not provided.

6

Appendix B

Probabilistic SecPAL Changes and
Evaluation

In Chapter 6 we described how SecPAL could be modified so that assertions
could carry a measure of how probable the speaker believed them to be. To
implement this we would require changes to SecPAL’s evaluation algorithm.
Also when describing SecPAL Becker showed that it could be translated into
DatalogC in order to show that the language was tractable could be evaluated
in polynomial time [23]. Becker et al. gave in their technical report an algorithm
(5.2) translating SecPAL into DatalogC. By modifying this algorithm to add the
probability annotations described in this chapter, we can show the Probable
SecPAL is also tractable.

The remainder of this appendix presents the modifications to SecPAL’s
evaluation rules, as well as Becker et al.’s Algorithm 5.2 as described by
Becker with additions for probability. We do not present any arguments for the
correctness of our modifications, but rather present them as a tentative first step
towards implementing Probable SecPAL.

B.1 Evaluating Probability

SecPAL has three rules for evaluation: cond, can-say, and can-act-as. We modify
the language so that the says keyword has an an annotation 0 � p � 1 denoting
a statements probability. If the annotation is missing then it is assumed to be 1
We also assume a probability combining function �which combines probability,
though we do not define it.

174

Appendix B. Probabilistic SecPAL Changes and Evaluation 175

�
A says f i f f1 · · · fn where c with probability at least plim

� 2 AC
8i 2 [1 · · · n].AC,D |= A sayspi fi✓

0 < plim 
Ln

i=1 pi

` c✓ vars
�

f✓
�
= ;

AC,D |= A says
Ln

i=1 pi f✓
cond

�
A says f i f f1 · · · fn where c with probability is plim

� 2 AC
8i 2 [1 · · · n].AC,D |= A sayspi fi✓

0 < plim 
Ln

i=1 pi

` c✓ vars
�

f✓
�
= ;

AC,D |= A saysplim f✓ cond=

AC,1 |= A saysp1 B can-sayD f AC,D |= B saysp2 f
AC,1 |= A saysp1�p2 f

can-say

AC,D |= A saysp1 x can-act-as y AC,D |= B saysp2 y vp
AC,D |= A saysp1�p2 x vp

can-act-as

AC,D |= A saysp0 f p  p0

AC,D |= A saysp f reduce

Any derived statement is at most as probable as the combination of the
statements that went into deriving it.

We split the cond rule into two variants. The cond rule allows us to specify
a minimum probability required by combining all the conditional statements
and if that limit is exceeded we take the combined probability in the probability
of the outcome. The cond= rule allows us again to set a minimum probability
but this time we take the stated probability if the rule is satisfied. These two
cond rules serve di↵erent purposes. The cond= variant is useful when we want
to set a limit on the probability: for instance when we have a tool with a known
confidence rate we want to run, or a fact which we know how probable it is.
The cond= rule is useful for when you want to ensure that a decision is made
with a certain least-confidence, for instance if you want to be at least 80% sure
that an app is safe to use before doing anything with it. In this case we would
want the combined probability to trickle through the proof not the lower limit.

We also add a probability reduction rule that allows us to reduce the
probability of an assertion, this allows us to phrase a policy query as “is it at least
50% probable that...” rather than having to discover the probabilities precisely.

Appendix B. Probabilistic SecPAL Changes and Evaluation 176

B.2 A Probable Algorithm 5.2
We now describe an algorithm for translating an assertion context

into an equivalent constrained Datalog program. We treat expres-
sions of the form e1saysk f act as Datalog literals, where k is either
a variable or 0 or 1. This can be seen as a sugared notation for
a literal where the predicate name is the string concatenation of
all infix operators (says, can-say, can-act-as, and predicates) oc-
curring in the expression, including subscripts for can-say. The
arguments of the literal are the collected expressions between these
infix operators. For example, the expression

A saysp
k x cansay1 y cansay0 B canactas z

is shorthand for:

says cansay infinity cansay zero canactas(A,p,k,x,y,B,z).

Given an assertion:

A says f0 if f1 · · · fn where c with probability p.

1. If f0 is flat (it isn’t a can-say statement), then the assertion is
translated into the clause:
A saysp⇤

k f0 :-
A saysp1

k f1 · · · A sayspn

k fn, c,
p⌃ is p1 � · · · � pn,
0 < plim  p⌃.

Where k is a fresh variable and p⇤ is plim if the probability is is,
and p⌃ is it is at least.

2. Otherwise f0 is of the form:
e0 can-say D0 · · · en�1 can-say Dn�1 f

Where f is flat. Let:
f 0n ⌘ f and f 0i ⌘ ei can-say Di f 0i+1, for i 2 {0 · · · n � 1}.
Note that f0 = f 00 .
Then the assertion A says f0 if f1 · · · fm, c, with probability p
is translated into a set of n + 1 Datalog rules as follows.

(a) We add the Datalog rule:
A saysp⇤

k f 00 :-
x saysp1

k f1 · · · A sayspm

k fm, c,
p⌃ is p1 � · · · � pn,
0 < plim  p⌃.

Where k is a fresh variable, and p⇤ is plim if the probability is
is, and p⌃ is it is at least.

(b) For each i 2 {1 · · · n}, we add a Datalog rule

Appendix B. Probabilistic SecPAL Changes and Evaluation 177

A saysp⇤
1 f 0i :-

x saysp1

Di�1
f 0i ,

A saysp2
1 x can-say Di�1 f 0i ,

p⇤ is p1 � p2,
0 < p⇤  1.

Where x is a fresh variable.

3. For each Datalog rule created above of the form:
A saysp

k e v :- · · ·

we add a rule:
A saysp⇤

1 e v :-
x saysp1

k x can-act-as e,
A saysp2

k e v,
p⇤ is p1 � p2,
0 < p⇤  1.

Where x is a fresh variable. Note that k is not a fresh variable,
but either a constant or a variable taken from the original rule.
We also add an additional rule (to account for the reduce rule)
that should not be used in general, but only when trying to re-
duce the probability to account for a lower bound on probability
in a query:

A saysp#
k e v :-

A saysp
k e v,

p#  p.

Bibliography

[1] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A Calculus for
Access Control in Distributed Systems. In J. Feigenbaum, editor, Advances
in Cryptology CRYPTO 91, number 576 in Lecture Notes in Computer
Science, pages 1–23. Springer Berlin Heidelberg, 1991.

[2] M. Abadi. On SDSIs linked local name spaces. Journal of Computer
Security, 6(1-2):3–21, 1998. ISSN 0926-227X.

[3] G.-j. Ahn, H. Hu, J. Lee, and Y. Meng. Reasoning about XACML Policy
Descriptions in Answer Set Programming (Preliminary Report). In 13th
International Workshop on Nonmonotonic Reasoning, 2010.

[4] A. V. Aho, B. W. Kernighan, and P. J. Weinberger. Awk-a pattern scanning
and processing language. Softw., Pract. Exper., 9(4):267–279, 1979.

[5] I. Aktug and K. Naliuka. ConSpec A Formal Language for Policy
Specification. Electronic Notes in Theoretical Computer Science, 2008.

[6] Amazon. Amazon.co.uk Help: Amazon Appstore for Android Terms of
Use. https://www.amazon.co.uk/gp/help/customer/display.html?
nodeId=201485660, 2014.

[7] Apple. App Store Review Guidelines - Apple Developer.
https://developer.apple.com/app-store/review/guidelines/,
2017.

[8] Apple. iTunes Connect - All Prices and Currencies - App Store.
https://itunesconnect.apple.com/WebObjects/iTunesConnect.
woa/ra/ng/pricingMatrix/recurring, 2017.

[9] Aptoide. Aptoide - Terms of Service.
https://www.aptoide.com/page/terms, 2014.

[10] A. Armando, G. Costa, A. Merlo, L. Verderame, and K. Wrona.
Developing a NATO BYOD security policy. In International Conference on
Military Communications and Information Systems, 2016.

[11] A. Armando, G. Costa, and A. Merlo. Bring Your Own Device, Securely.
In Proceedings of the 28th Annual ACM Symposium on Applied Computing,
SAC ’13, pages 1852–1858, New York, NY, USA, 2013. ACM.

178

https://www.amazon.co.uk/gp/help/customer/display.html?nodeId=201485660
https://www.amazon.co.uk/gp/help/customer/display.html?nodeId=201485660
https://developer.apple.com/app-store/review/guidelines/
https://itunesconnect.apple.com/WebObjects/iTunesConnect.woa/ra/ng/pricingMatrix/recurring
https://itunesconnect.apple.com/WebObjects/iTunesConnect.woa/ra/ng/pricingMatrix/recurring
https://www.aptoide.com/page/terms

Bibliography 179

[12] A. Armando, G. Costa, A. Merlo, and L. Verderame. Enabling BYOD
through secure meta-market. In ACM Conference on Security and Privacy in
Wireless and Mobile Networks, 2014.

[13] A. Armando, G. Costa, A. Merlo, and L. Verderame. Formal modeling
and automatic enforcement of Bring Your Own Device policies.
International Journal of Information Security, 2014.

[14] Axiomaics. Axiomatics releases free plugin for the Eclipse IDE to author
XACML3.0 policies - Axiomatics.
https://www.axiomatics.com/news/axiomatics-releases-free-
plugin-for-the-eclipse-ide-to-author-xacml3-0-policies/,
2012.

[15] Axiomatics. Going on vacation, how can I implement delegation in
XACML? - Axiomatics. https://www.axiomatics.com/blog/going-on-
vacation-how-can-i-implement-delegation-in-xacml/, 2016.

[16] B. Aziz, A. Arenas, and M. Wilson. SecPAL4dsa: A Policy Language for
Specifying Data Sharing Agreements. In Secure and Trust Computing, Data
Management and Applications, number 186 in Communications in
Computer and Information Science, pages 29–36. Springer, 2011.

[17] M. Backes, S. Gerling, C. Hammer, M. Ma↵ei, and P. v. Styp-Rekowsky.
AppGuard Enforcing User Requirements on Android Apps. In Tools and
Algorithms for the Construction and Analysis of Systems, pages 543–548.
Springer, Berlin, Heidelberg, 2013.

[18] D. Barrera and P. V. Oorschot. Secure Software Installation on
Smartphones. IEEE Security Privacy, 9(3):42–48, 2011. ISSN 1540-7993.

[19] D. Barrera, J. Clark, D. McCarney, and P. C. van Oorschot. Understanding
and Improving App Installation Security Mechanisms Through
Empirical Analysis of Android. In Proceedings of the Second ACM
Workshop on Security and Privacy in Smartphones and Mobile Devices, SPSM
’12, pages 81–92, New York, NY, USA, 2012. ACM.

[20] M. Y. Becker and P. Sewell. Cassandra: distributed access control policies
with tunable expressiveness. In Proceedings. Fifth IEEE International
Workshop on Policies for Distributed Systems and Networks, 2004. POLICY
2004., pages 159–168, 2004.

[21] M. Y. Becker and P. Sewell. Cassandra: flexible trust management,
applied to electronic health records. In 17th IEEE Computer Security
Foundations Workshop, 2004. Proceedings, pages 139–154, 2004.

[22] M. Y. Becker. SecPAL: Formalization and Extensions. Technical Report
MSR-TR-2009-127, Microsoft Research, 2009.

https://www.axiomatics.com/news/axiomatics-releases-free-plugin-for-the-eclipse-ide-to-author-xacml3-0-policies/
https://www.axiomatics.com/news/axiomatics-releases-free-plugin-for-the-eclipse-ide-to-author-xacml3-0-policies/
https://www.axiomatics.com/blog/going-on-vacation-how-can-i-implement-delegation-in-xacml/
https://www.axiomatics.com/blog/going-on-vacation-how-can-i-implement-delegation-in-xacml/

Bibliography 180

[23] M. Y. Becker, C. Fournet, and A. D. Gordon. SecPAL: Design and
semantics of a decentralized authorization language. Journal of Computer
Security, 2006.

[24] M. Y. Becker, A. Malkis, and L. Bussard. A Framework for Privacy
Preferences and Data-Handling Policies. Technical Report
MSRTR2009128, Microsoft Research, 2009.

[25] BlackBerry. Secure Android Solution BlackBerry and Android for Work.
http://us.blackberry.com/enterprise/android-for-work.html,
2016.

[26] A. Blass, G. De Caso, and Y. Gurevich. An introduction to DKAL.
Technical Report MSR-TR-2012-108, Microsoft Research, 2012.

[27] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management.
In Proceedings 1996 IEEE Symposium on Security and Privacy, pages
164–173, 1996.

[28] M. Blaze and A. D. Keromytis. RFC 2704: The keynote trust-management
system version 2. Technical Report RFC 2704, IETF, 1999.

[29] M. Blaze, J. Feigenbaum, and A. D. Keromytis. KeyNote: Trust
Management for Public-Key Infrastructures. In Security Protocols, pages
59–63. Springer, Berlin, Heidelberg, 1998.

[30] M. Blaze, J. Feigenbaum, and M. Strauss. Compliance checking in the
PolicyMaker trust management system. In Financial Cryptography, pages
254–274. Springer, Berlin, Heidelberg, 1998.

[31] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. The Role of
Trust Management in Distributed Systems Security. In J. Vitek and C. D.
Jensen, editors, Secure Internet Programming, number 1603 in Lecture
Notes in Computer Science, pages 185–210. Springer Berlin Heidelberg,
1999.

[32] G. Bruns and M. Huth. Access-Control Policies via Belnap Logic:
E↵ective and E�cient Composition and Analysis. In 2008 21st IEEE
Computer Security Foundations Symposium, pages 163–176, 2008.

[33] J. Bryans. Reasoning About XACML Policies Using CSP. In Proceedings of
the 2005 Workshop on Secure Web Services, SWS ’05, pages 28–35, New York,
NY, USA, 2005. ACM.

[34] D. Clarke, J.-E. Elien, C. Ellison, M. Fredette, A. Morcos, and R. L. Rivest.
Certificate chain discovery in SPKI/SDSI. Journal of Computer Security, 9
(4), 2001.

[35] Code3PSE.org. Sample BYOD Policy.
http://www.code3pse.com/public/media/22845.pdf, 2016.

http://us.blackberry.com/enterprise/android-for-work.html
http://www.code3pse.com/public/media/22845.pdf

Bibliography 181

[36] M. Conti, V. T. N. Nguyen, and B. Crispo. CRePE: Context-Related Policy
Enforcement for Android. In M. Burmester, G. Tsudik, S. Magliveras, and
I. Ili, editors, Information Security, number 6531 in Lecture Notes in
Computer Science, pages 331–345. Springer Berlin Heidelberg, 2010.

[37] G. Costantino, F. Martinelli, A. Saracino, and D. Sgandurra. Towards
enforcing on-the-fly policies in BYOD environments. In International
Conference on Information Assurance and Security, 2013.

[38] W. Dai, M. Qiu, L. Qiu, L. Chen, and A. Wu. Who Moved My Data?
Privacy Protection in Smartphones. IEEE Communications Magazine, 55(1):
20–25, 2017. ISSN 0163-6804.

[39] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder Policy
Specification Language. In M. Sloman, E. C. Lupu, and J. Lobo, editors,
Policies for Distributed Systems and Networks, number 1995 in Lecture Notes
in Computer Science, pages 18–38. Springer Berlin Heidelberg, 2001.

[40] A. Desnos. Androguard - Reverse engineering, Malware and goodware
analysis of Android applications ... and more (ninja !).
https://github.com/androguard/androguard, 2012.

[41] J. DeTreville. Binder, a logic-based security language. In Proceedings 2002
IEEE Symposium on Security and Privacy, pages 105–113, 2002.

[42] N. Dimmock, A. Belokosztolszki, D. Eyers, J. Bacon, and K. Moody. Using
Trust and Risk in Role-based Access Control Policies. In Proceedings of the
Ninth ACM Symposium on Access Control Models and Technologies,
SACMAT ’04, pages 156–162, New York, NY, USA, 2004. ACM.

[43] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen.
SPKI Certificate Theory. Technical Report RFC 2693, IETF, 1999.

[44] W. Enck. Defending Users against Smartphone Apps: Techniques and
Future Directions. In S. Jajodia and C. Mazumdar, editors, Information
Systems Security, Lecture Notes in Computer Science, pages 49–70.
Springer Berlin Heidelberg, 2011.

[45] W. Enck, M. Ongtang, and P. McDaniel. On lightweight mobile phone
application certification. In 16th ACM Conference on Computer and
Communications Security, pages 235–245, New York, 2009. ACM.

[46] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, P. McDaniel, and A. N. Sheth.
TaintDroid: an information-flow tracking system for realtime privacy
monitoring on smartphones. USENIX Symposium on Operating Systems
Design and Implementation OSDI, October 2010.

[47] S. Fahl, M. Harbach, T. Muders, L. Baumgrtner, B. Freisleben, and
M. Smith. Why Eve and Mallory Love Android: An Analysis of Android
SSL (in)Security. In Proceedings of the 2012 ACM Conference on Computer

https://github.com/androguard/androguard

Bibliography 182

and Communications Security, CCS ’12, pages 50–61, New York, NY, USA,
2012. ACM.

[48] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner. Android
Permissions: User Attention, Comprehension, and Behavior. In
Proceedings of the Eighth Symposium on Usable Privacy and Security, SOUPS
’12, pages 3:1–3:14, New York, NY, USA, 2012. ACM.

[49] N. Fuhr. Probabilistic Dataloga logic for powerful retrieval methods.
Proceedings of the 18th annual international ACM SIGIR conference on
Research and development in information retrieval, 1995.

[50] Google. Android 7.1 Compatibility Definition.
https://static.googleusercontent.com/media/source.android.
com/en//compatibility/7.1/android-7.1-cdd.pdf, 2016.

[51] Google. Google Play Terms of Service.
https://play.google.com/intl/en_uk/about/play-terms.html,
2017.

[52] N. R. C. Guerin. Security Policy for the use of handheld devices in
corporate environments. Technical report, SANS, 2008.

[53] Y. Gurevich and I. Neeman. DKAL: Distributed-Knowledge
Authorization Language. In 2008 21st IEEE Computer Security Foundations
Symposium, pages 149–162, 2008.

[54] Y. Gurevich and I. Neeman. DKAL2—A Simplified and Improved
Authorization Language. Technical Report MSR-TR-2009-11, Microsoft
Research, 2009.

[55] J. Hallett and D. Aspinall. Towards an authorization framework for app
security checking. In Engineering Secure Software and Systems, 2014.

[56] J. Hallett and D. Aspinall. Poster: Using Authorization Logic to Capture
User Policies in Mobile Ecosystems. In Symposium on Usable Privacy and
Security, 2015.

[57] J. Hallett and D. Aspinall. AppPAL for Android. In 8th International
Symposium on Engineering Secure Software and Systems. Springer Verlag,
2016.

[58] J. Hallett and D. Aspinall. Specifying BYOD Policies with Authorization
Logic. In PhD Symposium at iFM’16 on Formal Methods. Reykjavik
University, 2016.

[59] J. Hallett and D. Aspinall. Capturing Policies for BYOD. In IFIP Security
and Privacy Conference, 2017.

[60] J. Hallett and D. Aspinall. Common Concerns in BYOD Policies. In
Workshop on Innovations in Mobile Privacy and Security, 2017.

https://static.googleusercontent.com/media/source.android.com/en//compatibility/7.1/android-7.1-cdd.pdf
https://static.googleusercontent.com/media/source.android.com/en//compatibility/7.1/android-7.1-cdd.pdf
https://play.google.com/intl/en_uk/about/play-terms.html

Bibliography 183

[61] J. Y. Halpern. An analysis of first-order logics of probability. Artificial
Intelligence, 46(3):311–350, 1990. ISSN 0004-3702.

[62] J. Y. Halpern and V. Weissman. Using First-Order Logic to Reason About
Policies. ACM Trans. Inf. Syst. Secur., 11(4):21:1–21:41, 2008. ISSN
1094-9224.

[63] H. Hao, V. Singh, and W. Du. On the e↵ectiveness of API-level access
control using bytecode rewriting in Android. Proceedings of the 8th ACM
SIGSAC symposium on Information, computer and communications security,
2013.

[64] Harris Interactive. Privacy On and O↵ the Internet: What Consumers
Want. Technical Report Study No. 15229, Privacy & American Business,
2002.

[65] Healthcare Information and Management Systems Society. Mobile
Security Toolkit: Sample Mobile Device User Agreement. Healthcare
Information and Management Systems Society, 2012.

[66] J. Howell and D. Kotz. A Formal Semantics for SPKI. In Computer Security
- ESORICS 2000, pages 140–158. Springer, Berlin, Heidelberg, 2000.

[67] IBM. IBM MaaS360 - Enterprise Mobility Management (EMM).
http://www-03.ibm.com/security/mobile/maas360.html, 2016.

[68] J.-B. Jeannin, G. d. Caso, J. Chen, Y. Gurevich, P. Naldurg, and N. Swamy.
DKAL*: Constructing Executable Specifications of Authorization
Protocols. In Engineering Secure Software and Systems, pages 139–154.
Springer, Berlin, Heidelberg, 2013.

[69] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S. Foster, and
T. Millstein. Dr. Android and Mr. Hide: fine-grained permissions in
android applications. In Proceedings of the second ACM workshop on
Security and privacy in smartphones and mobile devices, 2012.

[70] X. Jin, L. Wang, T. Luo, and W. Du. Fine-Grained Access Control for
HTML5-Based Mobile Applications in Android. In Information Security,
pages 309–318. Springer, Cham, 2015.

[71] Joseph Y. Halpern and Ron van der Meyden. A Logic for SDSI’s Linked
Local Name Spaces. Journal of Computer Security, 1999.

[72] A. Jsang and S. L. Presti. Analysing the Relationship between Risk and
Trust. In C. Jensen, S. Poslad, and T. Dimitrakos, editors, Trust
Management, number 2995 in Lecture Notes in Computer Science, pages
135–145. Springer Berlin Heidelberg, 2004.

[73] G. Kennington, K. Pointer, C. Morey, L. Budge, V. Dunn, and S. Ball.
Mobiles Devices Policy. Technical report, Torbay and Southern Devon
Health and Care NHS Trust, 2014.

http://www-03.ibm.com/security/mobile/maas360.html

Bibliography 184

[74] A. Levy and Y. Sagiv. Constraints and redundancy in datalog. Proceedings
of the eleventh ACM SIGACT-SIGMOD-SIGART symposium on Principles of
database systems, 1992.

[75] A. Levy, I. S. Mumick, Y. Sagiv, and O. Shmueli. Equivalence,
query-reachability and satisfiability in Datalog extensions. Proceeding of
the 12th ACM SIGACT-SIGMOD-SIGART symposium on Principles of
Database Systems, 1993.

[76] N. Li and J. C. Mitchell. Datalog with Constraints: A Foundation for
Trust Management Languages. In V. Dahl and P. Wadler, editors, Practical
Aspects of Declarative Languages, number 2562 in Lecture Notes in
Computer Science, pages 58–73. Springer Berlin Heidelberg, 2003.

[77] N. Li, B. Grosof, and J. Feigenbaum. A Practically Implementable and
Tractable Delegation Logic. In Proceeding 2000 IEEE Symposium on
Security and Privacy. S P 2000, pages 27–42, 2000.

[78] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a role-based
trust-management framework. In Proceedings 2002 IEEE Symposium on
Security and Privacy, pages 114–130, 2002.

[79] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a role-based
trust-management framework. In Proceedings 2002 IEEE Symposium on
Security and Privacy, pages 114–130, 2002.

[80] N. Li, B. N. Grosof, and J. Feigenbaum. Delegation Logic: A Logic-based
Approach to Distributed Authorization. ACM Trans. Inf. Syst. Secur., 6(1):
128–171, 2003. ISSN 1094-9224.

[81] N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed credential
chain discovery in trust management*. Journal of Computer Security, 11(1):
35–86, 2003. ISSN 0926-227X.

[82] J. Lin, B. Liu, N. Sadeh, and J. I. Hong. Modeling Users Mobile App
Privacy Preferences: Restoring Usability in a Sea of Permission Settings.
Symposium On Usable Privacy and Security, 2014.

[83] F. Martinelli, P. Mori, and A. Saracino. Enhancing Android Permission
Through Usage Control: A BYOD Use-case. In Symposium on Applied
Computing, 2016.

[84] MobileIron Security Labs. Q4 Mobile Security and Risk Review.
Technical report, MobileIron Security Labs, 2015.

[85] M. Nauman, S. Khan, and X. Zhang. Apex: Extending Android
Permission Model and Enforcement with User-defined Runtime
Constraints. In Proceedings of the 5th ACM Symposium on Information,
Computer and Communications Security, ASIACCS ’10, pages 328–332, New
York, NY, USA, 2010. ACM.

Bibliography 185

[86] H. Nergaard, N. Ulltveit-Moe, and Terje Gjøsæter. A scratch-based
graphical policy editor for XACML. International Conference on
Information Systems Security and Privacy, 2015.

[87] OASIS. XACML v3.0 Administration and Delegation Profile. Technical
report, OASIS, 2010.

[88] OASIS. eXtensible Access Control Markup Language (XACML) Version
3.0. Technical report, OASIS, 2013.

[89] OASIS XACML Technical Comitee. Abbreviated Language for
Authorization. Technical report, OASIS, 2015.

[90] A. J. Oliner, A. P. Iyer, I. Stoica, E. Lagerspetz, and S. Tarkoma. Carat:
Collaborative Energy Diagnosis for Mobile Devices. In Proceedings of the
11th ACM Conference on Embedded Networked Sensor Systems, SenSys ’13,
pages 10:1–10:14, New York, NY, USA, 2013. ACM.

[91] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel. Semantically rich
application-centric security in Android. Security and Communication
Networks, 5(6):658–673, 2012. ISSN 1939-0122.

[92] A. N. Prior. Past, Present and Future. Technical report, Oxford University,
1967.

[93] R. Sikoryak. Terms and Conditions. Drawn and Quarterly, 01 edition
edition, 2017.

[94] C. D. P. K. Ramli. Detecting Incompleteness, Conflicting and
Unreachability XACML Policies using Answer Set Programming.
arXiv:1503.02732 [cs], 2015.

[95] C. D. P. K. Ramli, H. R. Nielson, and F. Nielson. XACML 3.0 in Answer
Set Programming. In E. Albert, editor, Logic-Based Program Synthesis and
Transformation, number 7844 in Lecture Notes in Computer Science, pages
89–105. Springer Berlin Heidelberg, 2012.

[96] C. D. P. K. Ramli, H. R. Nielson, and F. Nielson. The logic of XACML.
Science of Computer Programming, 83:80–105, 2014. ISSN 0167-6423.

[97] M. Research. SecPAL Research Release for Microsoft .NET, version 1.1.
https://www.microsoft.com/en-
us/download/details.aspx?id=52356, 2007.

[98] P. Z. Revesz. Constraint databases: A survey. In Semantics in Databases,
pages 209–246. Springer, Berlin, Heidelberg, 1995.

[99] P. Z. Revesz. Safe Datalog Queries with Linear Constraints. In Principles
and Practice of Constraint Programming CP98, pages 355–369. Springer,
Berlin, Heidelberg, 1998.

https://www.microsoft.com/en-us/download/details.aspx?id=52356
https://www.microsoft.com/en-us/download/details.aspx?id=52356

Bibliography 186

[100] F. Salim, J. Reid, E. Dawson, and U. Dulleck. An Approach to Access
Control under Uncertainty. In 2011 Sixth International Conference on
Availability, Reliability and Security (ARES), pages 1–8, 2011.

[101] H. Schulze. BYOD & Mobile Security 2016 Spotlight Report. Technical
report, LinkedIn Information Security, 2016.

[102] R. Smith, B. Taylor, C. Silva, M. Bhat, T. Cosgrove, and J. Girard. Magic
Quadrant for Enterprise Mobility Management Suites. Technical Report
G00279887, Gartrer, 2016.

[103] Solar Designer. John the Ripper password cracker.
http://www.openwall.com/john/, 2013.

[104] V. Svajcer and S. McDonald. Classifying PUAs In The Mobile
Environment. In Virus Bulletin Conference, 2013.

[105] C. Thompson, M. Johnson, S. Egelman, D. Wagner, and J. King. When It’s
Better to Ask Forgiveness Than Get Permission: Attribution Mechanisms
for Smartphone Resources. In Proceedings of the Ninth Symposium on
Usable Privacy and Security, SOUPS ’13, pages 1:1–1:14, New York, NY,
USA, 2013. ACM.

[106] K. Thompson. Reflections on Trusting Trust. Turing Award Lecture, 1984.

[107] H. T. T. Truong, E. Lagerspetz, P. Nurmi, A. J. Oliner, S. Tarkoma,
N. Asokan, and S. Bhattacharya. The Company You Keep: Mobile
Malware Infection Rates and Inexpensive Risk Indicators. In Proceedings
of the 23rd International Conference on World Wide Web, WWW ’14, pages
39–50, New York, NY, USA, 2014. ACM.

[108] M. C. Tschantz and S. Krishnamurthi. Towards reasonability properties
for access-control policy languages. In ACM Symposium on Access Control
Models and Technologies, 2006.

[109] K. Twidle, N. Dulay, E. Lupu, and M. Sloman. Ponder2: A Policy System
for Autonomous Pervasive Environments. In 2009 Fifth International
Conference on Autonomic and Autonomous Systems, 2009.

[110] J. M. Urban and C. J. Hoofnagle. The privacy pragmatic as privacy
vulnerable. Symposium on Usable Privacy and Security, 2014.

[111] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos. Permission evolution in
the android ecosystem. In Proceedings of the 28th Annual Computer Security
Applications Conference, pages 31–40. ACM, 2012.

[112] D. Williamson, A. Grzybowski, and S. Graham. Bring Your Own Device
Policy. Policy 15, University of Edinburgh, 2015.

http://www.openwall.com/john/

Bibliography 187

[113] E. Wobber, M. Abadi, M. Burrows, and B. Lampson. Authentication in
the Taos Operating System. ACM Trans. Comput. Syst., 12(1):3–32, 1994.
ISSN 0734-2071.

[114] R. Xu, H. Sadi, and R. Anderson. Aurasium: Practical Policy
Enforcement for Android Applications. In 21st USENIX Security
Symposium, Bellevue, WA, 2012. USENIX Association.

[115] Yandex. YANDEX.STORE TERMS OF USE Legal documents.
http://yandex.com/legal/store_termsofuse/index.html, 2014.

[116] N. Zhang, M. Ryan, and D. P. Guelev. Synthesising Verified Access
Control Systems in XACML. In Proceedings of the 2004 ACM Workshop on
Formal Methods in Security Engineering, FMSE ’04, pages 56–65, New York,
NY, USA, 2004. ACM.

http://yandex.com/legal/store_termsofuse/index.html

