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Abstract

This project is concerned with learning to take decisions in complex domains, in games

in particular. Previous work assumes that massive data resources are available for

training, but aside from a few very popular games, this is generally not the case, and the

state of the art in such circumstances is to rely extensively on hand-crafted heuristics.

On the other hand, human players are able to quickly learn from only a handful of

examples, exploiting specific characteristics of the learning problem to accelerate their

learning process. Designing algorithms that function in a similar way is an open area

of research and has many applications in today’s complex decision problems.

One solution presented in this work is design learning algorithms that exploit the

inherent structure of the game. Specifically, we take into account how the action space

can be clustered into sets called types and exploit this characteristic to improve plan-

ning at decision time. Action types can also be leveraged to extract high-level strate-

gies from a sparse corpus of human play, and this generates more realistic trajectories

during planning, further improving performance.

Another approach that proved successful is using an accurate model of the environ-

ment to reduce the complexity of the learning problem. Similar to how human players

have an internal model of the world that allows them to focus on the relevant parts of

the problem, we decouple learning to win from learning the rules of the game, thereby

making supervised learning more data efficient.

Finally, in order to handle partial observability that is usually encountered in com-

plex games, we propose an extension to Monte Carlo Tree Search that plans in the

Belief Markov Decision Process. We found that this algorithm doesn’t outperform

the state of the art models on our chosen domain. Our error analysis indicates that the

method struggles to handle the high uncertainty of the conditions required for the game

to end. Furthermore, our relaxed belief model can cause rollouts in the belief space to

be inaccurate, especially in complex games.

We assess the proposed methods in an agent playing the highly complex board

game Settlers of Catan. Building on previous research, our strongest agent combines

planning at decision time with prior knowledge extracted from an available corpus of

general human play; but unlike this prior work, our human corpus consists of only

60 games, as opposed to many thousands. Our agent defeats the current state of the

art agent by a large margin, showing that the proposed modifications aid in exploiting

general human play in highly complex games.

iii



Lay Summary

The most prominent successes in learning to play complex games, such as Go or Poker,

rely on the availability of massive data resources where the number of examples are

in the order of millions. However, human players are able to quickly learn from only

a handful of examples by exploiting certain characteristics of the learning problem.

Similarly, young children learn to separate objects in certain categories given the ob-

jects attributes and previous research has shown that such categorisation could aid in

reducing the cognitive effort. Furthermore, we apply our previous knowledge about the

world when we learn new skills, for example we use our knowledge of gravity when

learning certain basketball shots.

In this thesis, we design our algorithms to function in a similar way such that these

can learn from a handful of examples. Our first solution is to exploit the structure

of the game during learning and planning. For this purpose, we take advantage of

how the rules of the game naturally carve up a structure in complex domains. Another

successful approach is to design an accurate model of the environment that can be used

by the learning algorithms to reduce the complexity of the problem. Such a model

allows us to decouple learning to win from learning the rules of the game, thereby

making learning more data efficient. Finally, we extend our algorithms to handle what

is known as partial observability in games, i.e. the players cannot be certain of the

complete description of the current game state. As before, the games structure permits

creating efficient methods that focus only on specific attributes when reasoning over

what is known as the agents belief of the game state.

We assess the proposed methods in an agent playing the highly complex board

game Settlers of Catan. Building on previous research, our strongest agent combines

planning with knowledge extracted from a set of example human play; but unlike this

prior work, our dataset consists of only 60 games. Our agent defeats the current state

of the art agent by a large margin, showing that the proposed modifications aid in

exploiting general human play in highly complex games.
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Chapter 1

Introduction

This thesis is concerned with learning to play highly complex games. Exact methods

are not feasible due to the size of state and action space. Online approaches address

this by sampling the decision space to perform approximate inference about optimal

strategies. Even in this case it is well known that time forbids sufficient search of the

space, and that random sampling is not informative enough.

Prior knowledge of the problem can suggest which parts of the game tree are likely

to be lucrative to explore. Unfortunately, this is generally very difficult to design and

evaluate manually, because specifying heuristics that determine the lucrative moves

accurately for all possible states places a large burden on the developer. Even so, there

is strong evidence that one can learn directly from human play (Silver et al., 2016). In

spite of their cognitive bounds, human players learn from their experience and reach

expert level. Learning from expert play has proven useful in modelling Go which was

until recently considered one of the biggest challenges in the field. However, there are

at least two shortcomings to this prior work. First, Go presents only some features

that are characteristic to very complex domains. Secondly, they rely on mining tens

of millions of games of human play to estimate the lucrative portions of the game

tree, and these extremely high data requirements are not typically available for other

games. The aim of this thesis is two fold: to demonstrate that learning from human

play is beneficial in even more complex environments; and to show that even for more

complex games than Go, the agent can usefully exploit very small amounts of data on

human play—of the order of 50 games rather than millions.

In this work we show how previously developed algorithms can be modified and

adapted in order to scale to such challenging learning problems. Finally, previous

research assumes that one has access to almost unlimited data and computational re-

1



2 Chapter 1. Introduction

sources. The strongest methods presented here run on standard CPU machines, but

could also be easily extended if more computing power is available.

1.1 Motivation

Just as children and adults use games to understand the world and develop their skills,

board games and computer games are perfect tools for developing and evaluating au-

tonomous agents. Games provide an ideal research test-bed (Schaeffer and van den

Herik, 2002; Sawyer and Rejeski, 2002) as they model various problems concerning

optimal decision making that are encountered in real life; e.g. commercial transactions

or where to go on holiday. Some of these also model human behaviour in specific

scenarios that relate to many daily activities (e.g. logistics, planning or negotiations).

Therefore, many games (e.g. Chess, Backgammon, Poker and Go) have been used as

benchmarks for Artificial Intelligence performance. Another advantage is that these

games can easily be simulated with high confidence, a characteristic that permits eval-

uating the learning algorithms in a controlled fashion.

Just as children improve and develop new abilities while encountering increasingly

challenging problems, we must attempt to solve increasingly complex games in order

to push the boundaries of Artificial Intelligence. There are many ways in which a

game can be complex, however the most common way to define complexity is in terms

of the size of the game, e.g. the large number of possible situations that one may

encounter while playing it. This aspect also increases the number of ways one can

satisfy the objective of the game, so an algorithm has to evaluate a large number of

strategies in order to find the best one. But there are other aspects of a game that make

it challenging such as the uncertainty caused by certain aspects of the game being

hidden. This uncertainty increases the number of possibilities, but also raises other

challenging questions such as how can we create information seeking algorithms that

perform optimal exploration? Another characteristic that increases the complexity of

a game is the number of participating players. Again, this results in an increase in

the size of the game in terms of number of possible situations. However, the possible

interactions between players poses other (social) questions, e.g. how can a player form

coalitions that would be beneficial in the long run? Despite this, the comunity has

focused its attention on the effect of complexity in terms of how it increases the size

these games. Furthermore, it has addressed this issue with mostly brute force solutions

with the objective to create tabula rasa methods.
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Following this brief description of complexity, we can observe that games like

Chess, Poker and Go are all complex environments, providing some interesting deci-

sion problems that are similar to those in real life. However, they each have distinct

interesting characteristics. For example, Backgammon displays a large degree of non-

determinism given the many dice rolls, Poker contains elements of imperfect infor-

mation, Go has a very large branching factor due to the board size, while each of the

pieces in Chess has a different capability (and importance) resulting in different avail-

able strategies depending on the current state. Aside from the fact that the algorithms

are developed for one of these specific decision problems and may not scale well to

others, many real-world decision problems display all these characteristics together.

The environment we have chosen to evaluate our models is the board game Settlers

of Catan since it displays all the complexity characteristics encountered in the games

presented above. The game is a popular multi-player board game, where players race

to achieve the victory conditions, i.e. 10 victory points. These points are achieved

through a variety of actions (e.g. building pieces on the board or buying development

cards that offer certain benefits). The requirements for these actions and the sparsity

of the available resources force players to interact with each other. Players must race

to be the first to access the available resources, but they must also exchange resources

with the other players if certain resources are not available. As a result, they must find

a tradeoff between how aggressive they are in their play on the board versus how much

they are willing to pay for this agressiveness when they need the scarce resources.

Players keep their hands hidden making negotiations even more challenging. One

exchange could decide the course of the game, especially close to the end of the game.

The board is modular and the initial configuration is randomised before the start of the

game, so designing heuristics to address these tradeoffs in every possible configuration

is not feasible.

We provide a more detailed description of the game rules in Chapter 3. For now,

we show a comparison to Go in Table 1.1. Go has been extensively used as a bench-

mark for learning agents (e.g. Silver et al., 2016). The figures in the table on Settlers

of Catan are determined by the game rules, except for the depth and branching factors

which are estimated by running games with the rule-based agent. We did not use the

human corpus since a large number of games contained fewer players than the maxi-

mum of 4. The table shows that Settlers of Catan presents a much more challenging

problem than Go. The size of the state and action space is much larger. It also contains

other challenging elements such as imperfect information and chance events (i.e. it is
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stochastic). Its tree does have a reduced branching factor, but the depth is almost two

orders of magnitude greater (11715 average depth) if random sampling is used. The

reduced branching is caused by a minor modification that we have introduced to limit

the trading possibilities (making the action space finite in the process). This modifi-

cation is required to evaluate our agents against the current baselines, which also do

not handle the complete game. Learning the unrestricted game is an interesting path

to explore in future work and may require devising methods that incorporate life-long

learning.1

Of course, there are other characteristics that Settlers of Catan does not feature

such as simultaneous actions, real-time play and continuous actions. However, solving

tasks with these features, while a highly interesting and important challenge, is beyond

the scope of this work. Even though Settlers of Catan does not display all character-

istics found in daily life, it is a major step forward from the environments previously

explored.

Property GO Settlers of Catan

Incomplete Information Yes Yes

Stochastic No Yes

Partially Observable Moves No Yes

Imperfect Information No Yes

Avg. depth 250 250 (11715 random π)

Branching factor 250 65

Initial state space 1 ≈ 1.2∗1015

Action Space 361 18822

Types of actions 2 8

Number of players 2 4

Number of actions per turn 1 ≥ 2

Turn-based Yes Yes (mostly)

Table 1.1: Comparison of Go and Settlers of Catan. The depth of SoC was computed

by simulating games with the heuristics agents or via random sampling.

1Negotiations in a corpus of human play show that people make complex offers, involving specific
promises on the contingency of specific possible future states, that may not be within anyone’s deliber-
ations about possible moves in the game—a case of having to adapt to unforeseen possibilities.

2The action space is calculated as shown in Appendix A given the minor game modifications pre-
sented later in Section 3.2.2.
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1.2 Hypotheses

We have highlighted how learning to play Settlers of Catan is a very challenging task.

This document presents a series of improvements brought to a learning agent which

achieves state of the art performance in this difficult environment. These improvements

are based on the following two core ideas:

Emergent Structure Hypothesis (ESH): Highly complex games have a clear struc-

ture that can be exploited to aid the learning process;

Model-based Abstraction Hypothesis (MAH): One can use a model of the environ-

ment to reduce the complexity and improve the performance of the learning

agent.

Certain traits of complex games cause a structure to emerge. For example, a large

branching factor causes differences and similarities to be noticeable between the avail-

able actions so these can easily by clustered into what we refer to as types. In fact,

game developers make use of these types to communicate the rules of the game more

concisely in the game’s manual. Settlers of Catan has 4 times more action types than

Go (see Table 1.1). An action type is the trade action, while an action token of this

type is the description of the exchange, e.g. wood for ore. This categorisation aids

the algorithm generalise to certain situations that are similar. Furthermore, the game

rules enforce a legality over both the set of types and their tokens (e.g. a player cannot

give away wood without owning any). This legality reduces the space of possibilities

but also forces the players to choose from the less valuable moves that are available.

In this thesis, we aim to increase the generalisable capability of learning methods by

taking both of these characteristics into account.

The defined structure highlights an additional issue: certain action types are more

common than others. In most turn-based games for example, there is a single way

one could end their turn, while there could be multiple methods to build or move

around the board before you end it. Consequently, if learning involves exploring the

space by sampling from action tokens as opposed to action types, then the learning

problem is inherently skewed towards these common types. For instance, an agent is

in danger of never learning that ending the turn is (probably) optimal, because ending

the turn is only 1 of 600 possible actions and the agent never happens to sample the

consequences of this move! One should avoid this skewness in situations where the

optimal behaviour is either a combination of several action types or it does not contain
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the common types.

The rules of the game also naturally carve up the game into a set of phases that may

require different strategies to solve. For example, Settlers of Catan has an initial set-up

phase where players build their first two settlements. These phases can be clustered

following the categorisation into types and the action type legality, since only a portion

of the action types can be executed in a particular phase. In addition to these clusters,

large games are either very long or have a large average branching factor, or both. In

long games, the optimal strategy at the beginning may dramatically differ to the one

closer to the end of the game. For example, players are more likely to collaborate with

their opponents in the early stages of the game, when such collaboration would aid

both parties without any immediate adverse consequences. Later in the game, aiding

an opponent that is close to winning is very risky. The game’s inventor encourages the

players to use these definitions to learn the game because there are major benefits in

being aware of them. Previous work devised rules to account for this game trait, e.g.

the heuristics-based agent that plays Settlers of Catan, developed by Thomas (2004),

does not trade with opponents that are 2 victory points away from ending the game.

Enforcing strict rules may result in sub-optimal behaviour since the agent is not

allowed to explore the entire space of possibilities. Instead, we design our algorithms

such that the resulting agent is aware of this structure. In particular, we employ the

“divide and conquer” principle when designing our learning agent which permits spe-

cialising parts of the algorithm to certain phases. The presentation of these structures

in the game rules encourages the players to employ this principle. Disregarding the

phases of the game is similarly problematic to ignoring that certain action types are

more common, since players spend a large portion of the game in certain phases.

Furthermore, this emergent structure of the domain could be useful for abstraction

purposes. Human decision makers are limited due to their available information, the

difficulty of the problem and their cognitive bounds in terms of both time and memory

(Gigerenzer and Selten, 2001). Despite this, some human players become experts and

are able to take better decisions than novice human players that lack knowledge of the

game (although expert players can execute apparent bad moves which later in the game

will prove decisive). To overcome their limitations, humans most likely exploit known

structural regularities in the environment (Gigerenzer and Selten, 2001) and so are able

to generalise from previous experience. Rosch (1978) concludes that there is a high

correlational structure in the world, and that humans utilise this to define categories in

order to reduce the cognitive effort. Children learn these categories during early stages
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of development which suggests that categorisation may have an impact on learning to

interact with the world. One way to generate these categories is based on their common

attributes. Similar to how the large number of actions results in a structure that helps

to cluster them into types, the large dimensionality of the game state description and

the large number of possible states one may encounter encourages abstracting over the

complete description of a game state. There is only a small set of features that are

relevant to the task at hand and that repeat across all possible states. Keeping these

features while dropping the additional information can dramatically reduce the space

a learning algorithm needs to search for the optimal strategy.

All these aspects described by the ESH can be observed in many other complex

games, such as Monopoly, Civilisation, Battlerstar Galactica etc. There is a clear cat-

egorisation of the actions, e.g. Civilisation has build type actions or move units type

actions. Some of the available actions are more common then others, e.g. the number

of negotiation actions one can make during bargaining in Monopoly is very high com-

pared to the number of actions for building houses on the owned properties. Finally,

the rules present a clear separation of the game phases, e.g. there are hidden cylons

among the human players that are revealed after the first part of the Battlestart Galac-

tica game. Given this large number of similarities, the “divide and conquer” principle

and the hierarchical planning approach could also be applied in learning to play in

many other board games that present similar challenges to Settlers of Catan.

The second idea (MAH) is inspired by model-based reinforcement learning (Sutton

and Barto, 1998), which in turn is inspired by psychology (Spelke et al., 1992; Hegarty,

2004; Gläscher et al., 2010). The human brain creates an internal model of the world

that is a good approximation of the physical properties of the real word, like gravity.

We develop this model during the early periods of our childhood while honing our

motor skills and handling objects. We later use this model to make inference about new

situations. For example, if we observe an object falling when there is nothing to support

it, we can infer that other objects that are not supported would also fall. Generalising

that there is always a force that attracts the objects towards the earth allows us to focus

on other properties of the object that are relevant and may influence the fall. We learn

that a heavier object can reach a higher total speed, while a paper plane may form a

circular motion due to the increased air friction given its wings. In turn, knowing these

properties allows us to quickly learn new skills as well as transfer them to slightly

different situations, e.g. throwing a basketball through a hoop versus throwing a tennis

ball. Our internal model of the world allows us to focus on developing new skills
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without the need to relearn the physics of the world. Similarly, model-based learning

in games allows us to decouple learning the game rules from learning to win. Just as

a human expert player doesn’t relearn what actions are legal before making decisions,

our offline learning models only consider legal actions when evaluating which is the

optimal one. Such an approach permits defining simpler models that can generalise

better in the low-resource scenario as we show in Chapter 7.3

Another well-known benefit of the internal model is that one can exploit it to simu-

late what might happen without experiencing it. For example, human adults can predict

that a glass on the edge of the table is likely to fall and shatter without actually trying

it. Similarly, a model of the game allows the player to evaluate which of the possible

playing sequences are more likely to end up in a win or a loss, without performing

the required exploration in the real game. In addition, model-based planning at deci-

sion time exploits this benefit to quickly estimate the optimal play in a given situation.

This is particularly useful in complex games, where learning a general good strategy

is very challenging if not impossible. Despite the game states being very similar, there

are large differences between strategies that are optimal in the different phases of the

game. Furthermore, one cannot be certain that the learned policy performs well in

every possible situation due to the sheer size of such games. Building on the pre-

vious success with model-based planning at decision time (Szita et al., 2010; Silver

et al., 2016), we believe such an approach is needed in our chosen domain and in the

domains previously enumerated.

However, simulated play is more useful the more accurate its predictions about out-

comes are and these benefit from strong and accurate guidance of a good prior model.

Following on MAH, existing work in games utilise an exact model of the environment.

The game rules provide an additional knowledge about legal and illegal moves (ESH)

which can be used to extend the model of the environment and further guide the learn-

ing algorithm. Such an approach is especially useful for efficient planning and permits

planning to be performed online during game play. While an exact model is beneficial,

we believe it is not sufficient for complex games with very sparse reward functions,

where pure random walks take too long to encounter states with high rewards and are

very likely to fall prey to cycles (i.e. encountering the same state multiple times during

simulations). Some form of opponent modelling is required and, taking advantage of

the ESH, we can perform abstractions followed by extracting high-level preferences
3Our work is also different to that on the Atari environment (Mnih et al., 2015), where the agent is

allowed to try illegal actions and learn that these are not modifying the game state. Therefore, the goal
there was also to also learn the game rules in addition to learning to play well.
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from a corpus of general play. A basic opponent model made of general preferences is

useful in simulating more realistic play and avoid the pitfalls of complex environments.

Finally, previous work on Settlers of Catan rely on complicated heuristics created

using expert human knowledge to either develop the full agent or to inform parts of

the learning process (Thomas, 2004; Pfeiffer, 2003; Szita et al., 2010). But, other

previous research has shown that learning directly from human examples can be very

fruitful: inverse reinforcement learning (Ng and Russell, 2000), apprenticeship learn-

ing (Abbeel and Ng, 2004), learning by demonstration (Argall et al., 2009), learning to

predict expert play via supervised learning (Clark and Storkey, 2015; Maddison et al.,

2015), active learning (Settles, 2009) or human computation (Quinn and Bederson,

2011). Most of this work employed only expert demonstrations and safely assumed the

play is optimal. But learning from humans solving highly complex tasks presents par-

ticular challenges for AI agents, because the corpus of human choices will inevitably

contain a fair portion of suboptimal play. Nevertheless, as long as decent human moves

can be separated from poor ones, valuable information can be extracted from human

play. Based on this intuition, the hypothesis that inspired the work on this thesis is that

learning from human data can be beneficial even if the amount and the quality of the

data available is considerably lower than that of the datasets previously used.

1.3 Contribution

The aim of this project is to present new techniques for deciding on optimal actions in

complex games in extensive form, when available resources, both computational and

data wise, are limited. In line with prior work on learning strategies for complex agents

(Branavan et al., 2012; Silver et al., 2016), we deploy algorithms that support planning

at decision time. In particular, we adapt the learning model based on Monte Carlo Tree

Search (MCTS) so that it reasons simultaneously over the data generated via simulated

play and over suggestions provided by a policy extracted from the human corpus data

during an offline phase. We show that this combination can be applied to even more

complex environments if the two parts are designed based on the two hypotheses, ESH

and MAH, presented earlier.

First, we present the large benefits that can be gained by taking into account the

structure of the game during the sampling phase of MCTS. Similar to hierarchical

methods, our approach samples the type space first followed by sampling the specific

description of the chosen action type. This simple modification is the most important
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modification required for extending our agent to take decisions over the most compli-

cated aspect of the game: trading. By parallelising MCTS and incorporating several

well-known methods for sharing statistics, the agent is able to defeat the current state

of the art models in the fully-observable version of the game. We then extract from

our corpus a probability distribution over action types and condition it on type legality.

Sampling the action types during planning based on this distribution, which only rep-

resents the conditional preferences of a standard player, boosts the performance of the

agent significantly.

Second, supervised learning can only be applied to such a complex problem if it

learns over an abstracted version of the game and ignores the illegal parts of the action

space. These techniques reduce the hypothesis space sufficiently to allow training

on a much smaller and noisier dataset of example play than previously tackled. Our

evaluation indicates that using a model of the environment to batch the input and design

the output layer increases the performance significantly. In addition, we observed that

training models on a dataset of mixed play is beneficial as this approach has an inherent

regularisation effect. Training on a dataset generated by a deterministic synthetic agent

resulted in overfitting to the trajectories the agent is more likely to explore, and the

learned policy was not useful when combined with planning.

We also evaluate the agents in a tournament setting where we pitch each of our

proposed models against several baselines and against each other. The results illustrate

that, despite the difficulty of the learning problem, it is useful to combine planning with

knowledge of what humans did in similar states. Such a model outperforms any model

that uses only one of these information sources. Combining MCTS with a Neural

Network, that was trained in a supervised fashion on the human corpus to predict what

a human would do in the current game, performed well. But, our best agent is the one

that uses Maximum Likelihood Estimation on the human corpus to estimate only the

action type (in contrast to the neural network which was designed to estimate the action

token) that a human would choose given the available types. This result indicates that

simpler approaches or methods that reason over an abstracted version of the decision

space are more appropriate in a low-resource setting.

Finally, we implemented several extensions to MCTS that can handle imperfect

information. We propose combining MCTS with a factored belief model such that

our agent can plan in the Belief Markov Decision Process. The exact method has

proven weak, while an approximation did not outperform the existing sampling based

implementations (Silver and Veness, 2010). We provide a detailed analysis that shows
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our approach struggles to handle the uncertainty of key information that is required

for deciding when the game ends during rollouts. We also observed that our relaxed

belief model, even though it is very accurate, reduces the effectiveness of the rollouts

performed by MCTS. Nonetheless, all agents that reason over imperfect information

defeat the current open-source state of the art agent in our evaluation environment and

could potentially be a challenging opponent for human expert players.

1.3.1 Code

The code for running the experiments presented in this thesis is available as part of 3

Java projects:

• MCTS: https://github.com/sorinMD/MCTS. This project contains the code for

the planning agents presented in Chapter 5 and 6.

• DeepCatan: https://github.com/sorinMD/deepCatan. This project contains the

code for training and evaluating the Neural Networks developed in Chapter 7.

• StacSettlers: https://github.com/sorinMD/StacSettlers. This project contains the

modified JSettlers framework developed by the STAC project STAC (2018) and

all the other agents used as baselines in game simulations.

1.3.2 Limitations

The aim was not to develop the world’s best player for Settlers of Catan. As a result,

the final agent has not been extensively optimised, either for performance or for effi-

ciency. The focus of this research is only to evaluate the hypotheses described above.

Therefore, we have extensively explored the parameter space in each ablation study to

confirm the benefits of each method presented in this work, but we have not explored

all possible parameter combinations for the final agent presented in Section 8.5. There

are methods that can help further optimise the parameters of the planning method and

of the offline learning method presented in this thesis (e.g. Coulom (2011); Snoek et al.

(2012)). Due to resources constraints, such optimisations are left for future work and

are very likely to further increase the performance.

On the same note, the presented method was not developed from a multi-agent per-

spective, despite the clear characteristic of the chosen environment that makes it highly

likely that reasoning about the player type(s) of the opponents would further improve
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performance on the game. Our agent, however, doesn’t reason about other players’

goals or beliefs, and it doesn’t factor in detailed opponent types. The assumption is

that each of the opponents play optimally in the sense that each tries to maximise their

score and win the game. We reduce the chances of falling into local optima only by

balancing exploitation with exploration during planning. Future work could introduce

behavioural profiles of the current opponents in the sampling methods to further im-

prove the performance and reduce this risk.

1.3.3 Publications

The work presented in this thesis has been included in the folowing publications:

• Mihai Dobre and Alex Lascarides (2018). POMCP with human preferences in

Settlers of Catan. Proceedings of the 14th AAAI Conference on Artificial Intelli-

gence and Interactive Digital Entertainment (AIIDE), Edmonton, Canada. This

paper describes the Partially-Observable Monte Carlo Planning extensions from

Chapter 6 and the evaluation of different combinations of Partially-Observable

Monte Carlo Planning with the offline learning methods from Chapter 8.

• Mihai Dobre and Alex Lascarides (2017). Exploiting action categories in learn-

ing complex games. Proceedings of the IEEE SAI Intelligent Systems Confer-

ence (IntelliSys), London, UK. The work on extending Monte Carlo Tree Search

algorithm with sampling over the action types in the observable version of the

game (see Chapter 5) is contained in this publication.

• Mihai Dobre and Alex Lascarides (2017). Combining a Mixture of Experts

with Transfer Learning in Complex Games. Proceedings of the AAAI Spring

Symposium: Learning from Observation of Humans, Stanford, USA. This pa-

per presents the proposed neural network architecture that permitted extracting

policies from our sparse corpus (see Chapter 7).

• Mihai Dobre and Alex Lascarides (2015). Online Learning and Mining Human

Play in Complex Games. Proceedings of the IEEE Conference on Computational

Intelligence in Games (CIG), Tainan, Taiwan. This publication describes the

combination of the non-parametric method with a variant of Flat Monte Carlo

Tree Search that learns to execute one action in the game, i.e. the placement

of the second settlement during the initial placement phase (see Chapter 4 for

details).
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1.4 Summary of Thesis

Chapter 2 is the background section that contains the basic definitions of the meth-

ods and a discussion on related work. Chapter 3 presents a quick introduction of the

resources used and a more detailed analysis of Settlers of Catan. Chapter 4 presents

a simple non-parametric model for extracting advice from the corpus and combining

with a simplified version of Monte Carlo Tree Search. Chapters 5 and 6 describe the

planning at decision time algorithm applied in an observable version of the game and

in the full version of the game. These chapters contain the modifications required to

extend Monte Carlo Tree Search to handle the challenges in Settlers of Catan. Chap-

ter 6 also contains a detailed analysis of why planning in the Belief Markov Decision

Process is not appropriate for Settlers of Catan. We then introduce the offline learning

model and its extensions in Chapter 7. We combine planning with the offline models

and evaluate the resulting agents in Chapter 8. Finally, Chapter 9 contains the conclu-

sion and a brief description of possible future work.





Chapter 2

Background

This chapter provides an overview of the required theory and algorithms implemented

in this thesis. We also aim to place our work within the existing research literature

by highlighting similarities and differences to prior work. This is not an exhaustive

presentation, but it does provide a basis to discuss the proposed methods.

2.1 Game Theory

Decision theory combines utility theory and probability theory to define a Savagean

model (Savage, 1954) of rational action (Russell and Norvig, 2009): i.e., a rational

agent chooses its action via an optimal trade off between what it prefers (as defined by

utility theory) and what it believes it can achieve (as defined by a probabilistic model

of belief). Specifically, the Maximum Expected Utility (MEU) principles states that

rational agents choose actions a to maximise their expected utility (see Equation 2.1)

given the evidence e. Utility U is a measure of how much the agent wants something,

represented as a mapping of the outcome Resulti(a) of an action to a real number,

and “expected” refers to the agent’s belief as to whether it can achieve the outcome

P(Resulti(a)|Do(a),e) given the evidence e and what other outcomes are possible,

hence the summation over all i outcomes.

EU(a|e) = ∑
i

P(Resulti(a)|Do(a),e)U(Resulti(a)) (2.1)

The MEU principle can be extended to sequential decision making via the Bellman

equation (see Equation 2.2). The idea is that the utility of a state in sequential planning

is not only dependent on its immediate reward, but also on the rewards of those states

that are reachable from it via the agent’s action. Specifically, Equation 2.2 states that

15
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the expected utility of a state s is its immediate reward R(s) plus the discounted utility

of the next state s′ given that the agent chooses the optimal action a.

EU(s) = R(s)+ γmax
a ∑

s′
P(s′|s,a)EU(s′) (2.2)

The degrading factor γ ∈ [0,1] describes the agent as anything between myopic

(γ = 0) to far-sighted (γ = 1). As before, a transition model is used to quantify the

expectation. It provides P(s′|s,a) which is the probability of s′ being the outcome state

given that a is performed in s. There are methods for computing optimal solutions as

defined by the Bellman equation, such as backward chaining, which reasons backwards

from the end states of a problem in order to find the optimal sequence of actions.

However, these are exact methods which are not tractable in large environments.

Game theory studies decision theory in situations where multiple agents interact

to produce specified outcomes (von Neumann and Morgenstern, 1944). These situa-

tions are posed as games: a set of established rules that define the interaction. Games

are categorised into several types. Of particular relevance to this project is games of

extensive form: in other words, completing the game requires the players to perform

an extended sequence of actions. Games can be further categorised via the following

dimensions (Browne et al., 2012; Shoham and Leyton-Brown, 2008):

• Cooperation: Whether players have binding commitments;

• Pay-off : What is the sum of the players’ utilities;

• Sequential: Whether players execute their actions simultaneously or in turn;

• Information: Only in sequential games, whether all players can fully observe

their opponents’ moves;

• Determinism: Whether chance factors play a part;

• Symmetry: Whether the goal is the same for each participant;

There are other characteristics, but these are the most relevant for presenting and com-

paring Settlers of Catan with other similar domains. We will revisit these notions when

we present the game in Chapter 3.

There are several solution concepts for games, such as Nash equilibrium (Nash,

1950), in which no player has an incentive to deviate unilaterally from their own strat-

egy given the strategies of the other players. Nash equilibrium is related to the MEU
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principle, if we assume that the players know the other players’ strategies and that

these are fixed. A player’s best response strategy is the one that maximise the player’s

utility, and no rational agent would deviate from it. Finding Nash equilibria in com-

plex domains is an active area of research, but the space of possible strategies increases

exponentially with the number of players, action and state space. As it is the case with

backward chaining this is not appropriate in Settlers of Catan and we need to develop

approximate methods.

2.2 Multiagent Systems

The goal of multiagent learning is to develop and analyse agents that learn to interact

with each other. In order to be successful in Settlers of Catan, players need to negotiate

and may even form temporary coalitions with other players. Therefore, the large body

of knowledge in the multiagent field Shoham and Leyton-Brown (2008); Young (2004)

is very relevant to our chosen domain. Despite this, we do not implement methods from

a multiagent perspective and focus on our initial goal of learning a single policy from

a sparse and noisy dataset. It is also very likely that reasoning about interactions with

other players would not provide additional gains given that the baselines we compare

against do not have any capabilities to react. If we evaluate against human players in

future work, these methods might prove effective. Since Settlers of Catan is a multi-

player game, we must at least tackle the fact that opponents contribute to the game’s

progress (i.e., they have the capacity to change the game state). We make the safe

assumption that all players act to maximise their expected utility measured purely as

a function of the score they achieve. The methods that we develop plan via what is

known as self-play: i.e., the same algorithm that acts to maximise the score plays

against itself.

There is a small amount of work in Settlers of Catan that analyses the multi-agent

characteristic of the game. Guhe and Lascarides (2014b) evaluate the effects of per-

suasion on win percentage and number of moves. The authors define a small set of

player types to represent how ingenious the persuaders are or how gullible the recipi-

ents of persuasion are, followed by running game simulations between different agent

types. The current state of the art rule-based agent (Guhe and Lascarides, 2014a) was

developed by improving parts of the overall strategy and tuning the parameters of the

existing heuristic agent (Thomas, 2004). The resulting agent was evaluated in a tour-

nament setting versus multiple versions or types of the heuristic agent. Branca and
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Johansson (2007) develop a multi-agent system that represents a single player by sep-

arating the heuristics of an existing agent (Thomas, 2004) into different agents, each

handling different aspects of the game. In addition to not reasoning about interactions

with the opponents, decentralising the agent was unsuccessful which is expected as it

adds the additional challenge of coordination between the parts.

2.2.1 Opponent Modelling

Even though our agent doesn’t interact or coordinate with the opponents over and

above what the action space allows, our planning method could obviously benefit from

knowledge of the opponent’s strategy. In opponent modelling, the algorithms learn a

model of an opponent by observing its behaviour. The trained model can predict moves

which help to compute the opponent’s optimal response during planning. One of the

first opponent modelling methods proposed is known as fictitious play Brown (1951),

which tracks the opponent’s action frequency under the assumption that the distribu-

tion describing the opponent’s preferences is stationary. Other more flexible methods

account for the fact that the distribution may not be stationary, similar to the Bayesian

Game setting (Harsanyi, 1967, 1968). These methods estimate the opponents current

player type, given an extended history of evidence of their behaviour (and the game

states). Instead of directly modelling the distribution describing the player’s prefer-

ences, type-based opponent modelling can quickly adapt to changes in the opponent’s

behaviour by modifying the distribution over types that describes the opponent. Due to

these benefits, there has been a large interest in type-based modelling in the literature

(Gal et al., 2005, 2008; Hindriks and Tykhonov, 2008) as well as research into how

to model the uncertainty over the definition of the hypothesis space of possible player

types (Albrecht, 2015).

Most of the existing methods update the model’s parameters during game play.

This is complimentary to the work in this thesis and all the algorithms presented here

can be combined with such an online method for modelling the opponent. Furthermore,

it doesn’t make any sense to learn distributions over player types from a database of

example play unless the agent is encountering the same opponents or can describe the

new opponents via mixtures of the learned types. It is a very challenging and possibly

unrealistic task to learn and differentiate the possible player types from the amount of

data that we have available when the state and action spaces are massive. It is also

very difficult to define these models without a strong knowledge of the game. Most
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of the previous work in Bayesian games is done on relatively simple games—fully

observable, with hundreds (not thousands) of possible states, with only a handful of

options at each state (on average) instead of hundreds. It would be interesting to see

whether some of the models mentioned above scale up to inform optimisation in more

complex environments, but we leave this to future work.

However, models that learn a general move prediction model without reasoning

over types (Sutskever and Nair, 2008; Clark and Storkey, 2015) may be more applica-

ble in our case. The extracted player model collapses all player types into a single type,

so we should require less data to learn such a general estimation. However, the assump-

tion that the data was generated by a single player type may not hold since different

player types can generate play that is contradictory. Previous work bypasses this issue

by learning from large datasets of expert play where it is likely that the optimal moves

outnumber the sub-optimal ones. In this work we evaluate if training these methods

on a sparse dataset that also contains sub-optimal play is possible. We evaluate their

utility in biasing a planning agent and we also compare their performance against sim-

pler approaches, similar to Bitan and Kraus (2017), who extract preferences over an

abstraction of the action space. As future work we will look into reasoning over the

player types both in planning and when learning from data.

2.3 Reinforcement Learning

Reinforcement Learning (RL) is a part of the broader field of machine learning that

formalises the learning from experience problem (Sutton and Barto, 1998). In this

setting, an autonomous agent learns to reach a predefined goal by interacting with the

environment and observing the reward signals. The agent achieves its goal by optimis-

ing a function defined over these signals (e.g. average of the rewards), which results in

learning a policy to take optimal decisions. A policy is a mapping π from each state s

to a probability distribution P(A) over the action space A, and is denoted as π(s). The

whole probability mass is concentrated on a single action in a deterministic policy,

while in a stochastic policy, the mass is spread over multiple actions. A rational agent

facing a decision problem is tasked with finding the optimal policy: i.e. the policy that

maximises a function over the reward signals. In general this function is quantified

using state value functions V π(s) or action value functions Qπ(s,a) given the current

policy. The optimal policy is π such that V ∗(s) = maxa Q∗(s,a) = maxπV π(s). The

two value function represent how good a state or an action that can be executed in the
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current state are. Following on the decision theory, these functions are quantified by

computing the expected reward given the agent’s policy and the environment’s dynam-

ics (as shown in Equation2.3 in the following Section).

2.3.1 Markov Decision Process

A sequential reinforcement learning task that satisfies the Markov property can be

modelled as a Markov Decision Process (MDP). The Markov property assumes that

a state and expected reward of a state of the process depends only on the previ-

ous state and the action performed (Russell and Norvig, 2009). A MDP is a tuple

< S,A,T,R,γ > which specifies the states S of the environment, the actions A the agent

can take from each state, the transition function T (s,a,s′) that provides probabilities

P(s′|s,a) of reaching any outcome state s′ given the current state s and the chosen ac-

tion a, the reward function R that maps states in S to a numerical value and the discount

factor γ. Given this definition, the Bellman optimality equation in an MDP is:

Q∗(s,a) = ∑
s′

P(s′|s,a)(R(s′)+ γV ∗(s′) (2.3)

2.3.2 Partially-observable Markov Decision Process

Part of the complexity of domains such as Settlers of Catan is attributed to being par-

tially observable, which causes an exponential increase in the search space (i.e. due

to the curse of dimensionality). Furthermore, these domains cannot be modelled using

an MDP since the agent doesn’t know what the state of the environment is. Kaelbling

et al. (1998) introduces the Partially Observable Markov Decision Process (POMDP)

that extends the MDP framework by adding a set of observations Ω and defining an

observation model O(s′,a,o) that provides the probabilities P(o|s′,a) of observing an

observation o ∈ Ω given the action executed is a and the outcome state that cannot be

observed directly is s′. A POMDP is a framework for modelling what is known as the

Belief MDP by marginalising over the possible current states s to compute the proba-

bilities over the possible resulting states s′ (Equation 2.4 shows the transition function

in a POMDP). A Belief MDP is an MDP < B,A,τ,ρ,γ > defined over the continu-

ous space of belief states b ∈ B where each b is a probability distributions over S, the

same set of actions A, the belief transition function τ(b′,a,b) (see Equation 2.5) and

a reward function ρ(b) (see Equation 2.6). Every belief update is deterministic since

P(b′|a,b,o) output depends on the deterministic SE function (Equation 2.7). The SE



2.3. Reinforcement Learning 21

function is known as the state estimator and it outputs the new belief state depending

on the previous belief state, the action and the observation (Kaelbling et al., 1998).

P(s′|b′) = ∑
o

P(o|a,s′)∑
s

P(s′|a,s) (2.4)

τ(b′,a,b) = P(b′|b,a) = ∑
o

P(b′|a,b,o)P(o|a,b) (2.5)

ρ(b) = ∑
s

P(s|b)R(s) (2.6)

P(b′|a,b,o) =

1 if b′ = SE(b,a,o)

0 otherwise
(2.7)

Exact planning in a POMDP is impossible in complex environments due to Bell-

man’s curse of dimensionality, which is further aggravated by having to consider an

additional dimension: belief. The most successful approaches are based on sampling

(Kurniawati et al., 2008; Silver and Veness, 2010; Somani et al., 2013) or by plan-

ning in abstract representation of the belief (Kaelbling and Lozano-Prez, 2013). We

implemented a modified version of POMCP (Silver and Veness, 2010) and compared

it with a model that can be seen as an extension of the approach in Kaelbling and

Lozano-Prez (2013) to forward planning in multi-agent non-cooperative environments

(see Chapter 6 for details). However, our algorithm plans in an almost exact repre-

sentation of the belief by making use of a factored representation (Paquet et al., 2005;

Williams, 2005). Interactive POMDPs (I-POMDP) are an extension of POMDP to

the multi-agent setting by integrating player types (Gmytrasiewicz and Doshi, 2005).

Finding a solution becomes even more expensive as the model explicitly reasons over

nested beliefs. We therefore use the standard POMDP framework to present the algo-

rithms and make the assumption that the opponent’s have the same strategy as our own

agent, i.e. trying to maximise their expected return. This is known as self-play.

2.3.3 Function Approximations

A tabular representation for the value functions is clearly not appropriate in large en-

vironments since it doesn’t allow any form of generalisation, despite being exact. Ap-

proximate methods learn functions over the continuous space of a different represen-

tation (e.g. sparse feature vectors) by learning the parameters of the function instead
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of the exact state or action to value mapping. There is a variety of ways to define these

functions depending on the domain (Sutton and Barto, 2018): linear functions, radial

basis functions, tile coding, non-linear functions etc.

Linear function approximations have been shown to give good results in large or

continuous games where the state space is too large (Silver et al., 2008). To perform

such approximations, one first needs to transform the game data into a different repre-

sentation, e.g. feature vectors. This pre-processing has proven to be a very important

step in the performance of the final systems (Bishop, 1995). It involves feature selec-

tion and feature extraction. The former is the process of creating a subset of features

from the raw data set by eliminating any irrelevant or redundant ones. Feature extrac-

tion is a special form of dimensionality reduction and could create new features from

an existing set, by performing some mathematical calculations. Generalisation over

binary features has been applied with success to a multitude of domains: Go (Silver

et al., 2008), Civilisation 2 (Branavan et al., 2012), Checkers (Neto et al., 2014) and

Backgammon (Tesauro, 1995). In general, the features were chosen manually based on

the author’s domain knowledge. However, (Neto and Julian, 2007) show that a simple

automatic process using a Genetic Algorithm can greatly improve the agent’s perfor-

mance. We are manually building the representation used by our offline methods, by

employing both feature selection and extraction (see Chapter 7 for details). We want to

underline the fact that we do not include any knowledge of state or action values, and

we only aim to reduce the hypothesis space compared to that of a model that uses the

raw representation. Such an approximation is obviously needed given the complexity

of our domain and the lack of data, but we did not do a thorough exploration of the

feature space.

2.3.3.1 Neural Networks

Neural Networks are computational models composed of basic units called neurons

(nodes) intended to imitate the operation of a single brain cell (Haykin, 1998). Each

network is tailored to its task, which could be classification or regression tasks. A

multi-layer network contains at least one hidden layer which enables the network to

compute non-linear functions. The output o j corresponding to the jth neuron of the

current layer with activation function g and having as input the output of neuron i

from the previous layer is given by the following formula, where wi j are the weights

(including a bias term connected to a fixed input) between the previous neurons i and
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the current neuron j:

o j = g(
n

∑
i=0

wi joi) (2.8)

The training process is called weight synaptic adjustment. It consists of updating

the weights in order to produce the desired outcome. Updating the weights involves

minimising the difference (called error) between the desired and the actual results.

There are a multitude of algorithms that can be applied, some of which employ a form

of gradient descent (Bishop, 1995). Deep Neural Networks (DNN) (Hinton, 2007) are

multi-layer neural networks that have more than 2 hidden layers which permits learning

even more complex functions. These are trained via a process called backpropagation

which takes advantage of the fact that each layer can be seen as a function and these

are chained together to form the network. Using the chain rule of calculus, the error

can be propagated back to the initial layers of the network.

Neural Networks have been used in games for varied purposes. For instance the

Neurogammon program (Tesauro, 1990) learns to take decisions using a multi-layer

network and is the first learning program to win a tournament. Sutskever and Nair

(2008) use a network to model the opponents while Branavan et al. (2012) trained a

network to approximate a Q-function by combining information taken from a manual

with information extracted from the state encountered in the real game. Using DNNs as

function approximations lead to the creation of a field known as Deep Reinforcement

Learning that is concerned with developing algorithms that are able to overcome the

difficulties in training these functions using only the reward signal. Deep Reinforce-

ment Learning has proven very successful in games (Riedmiller, 2005; Mnih et al.,

2015; Silver et al., 2016), however these methods are notorious for the amount of data

and computational resources they require especially in highly sparse complex games.

In contrast, this thesis focusses on methods that will learn effectively when vast data

and computational resources for training are not available.

2.3.4 Planning at Decision Time

Planning has been extensively studied in the field of artificial intelligence, especially

in model-based reasoning systems that define the environment and how the agent can

interact with it using similar formalisms to propositional or first-order logic (Russell

and Norvig, 2009). Several languages have been proposed such as STRIPS (Fikes and

Nilsson, 1971) and ADL (Pednault, 1987). Uncertainty and partial-observability was
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usually handled via contingency planning or by replanning if a plan failed in the real

world. Most of the classical planning frameworks were only intended to find a plan

and not necessarily the best plan. Also, the agent was not learning while planning.

In general, a reinforcement learning agent learns from real experience, but there are

reinforcement learning algorithms that perform planning using a model of the environ-

ment. In this case, the agent can simulate game playing and learn to play optimally

during the simulated play, and execute the best action or sequence of actions in the real

environment when it finished planning. The most popular approaches only estimate the

optimal policy since these are sampling-based procedures for forward panning (Kearns

et al., 2002; Kocsis and Szepesvari, 2006). Planning at decision time is sometimes re-

ferred to as online planning or online learning since it is generally fast and applied

during game play whenever a new state is encountered. We will stick to the name of

planning to avoid confusion with learning in a continuous or life-long setting.

2.3.4.1 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is an extremely successful method for creating

agents that play complex games. To avoid the need to learn a policy applicable in

every possible state in a vast state space, the agent learns to plan at decision time.

It combines Monte Carlo methods for sampling the decision space with strong poli-

cies for balancing exploitations and exploration in multi-armed bandits. In addition,

it slowly builds the game tree making use of one of the most influential ideas in rein-

forcement learning: bootstrapping (Sutton and Barto, 2018). It uses the statistics from

previous iterations to select longer sequences of actions thus being able to plan over

several time-steps and slowly converge towards the optimal sequence as the number of

iterations is increased.

Abramson (1990) demonstrated that Monte Carlo methods might be useful to ap-

proximate the game-theoretic value of a move. The action value function is the average

expected reward r given the number of times N(s,a) the action a was taken from state

s (Gelly and Silver, 2011):

Q(s,a) =
1

N(s,a)

N(s,a)

∑
i=1

ri (2.9)

Multi-armed bandit problems are a class of sequential decision problems, in which

the agent needs to choose amongst k actions in order to maximise the cumulative re-

ward (Robbins, 1952). Auer et al. (2002) showed that methods that calculate the upper
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confidence bounds (UCB) achieve a logarithmic expected regret. UCB was adapted to

MCTS and renamed to Upper Confidence Bound for Trees (UCT). It is the most popu-

lar policy for MCTS as it performs better than ε-greedy methods in which exploration

is achieved choosing uniformly at random from the available options (Sturtevant, 2008;

Balla and Fern, 2009). We direct the reader to the survey done by Browne et al. (2012)

for alternative tree policies. UCT combines the value function with an additional term

that represents the confidence in the current statistics based on how much the action

was explored compared to other available options (this is the second term in the sum

shown in Equation 2.10). This confidence value in combination with a constant C are

used to decide on the amount of exploration:

UCT (s,a) = Q(s,a)+C

√
2lnN(s)
N(s,a)

(2.10)

The standard MCTS algorithm can be separated into four steps (see Figure 2.1):

selection (starting from the root that represents the current state in the real game, select

the nodes based on the UCT policy until a leaf node is reached), expansion (one or

more children are added to the leaf node), rollout (from the new node the game is

played following the default random policy) and backpropagation (the result is used to

update the statistics at every chosen node in the tree).

Selection Expansion Rollout Backpropagation

Figure 2.1: MCTS algorithm; Repeat the steps n times or until a given time limit.

MCTS suffers from the same issues in large complex games like any other re-

inforcement learning algorithms. If the space is too large and there are only small

differences in the values of the available actions, it requires a huge number of sam-

ples to converge to an optimal policy. If it doesn’t encounter any high valued node in

the selection step, also known as the tree phase, it is unable to bootstrap and differ-

entiate the available branches. In addition, the estimated return computed with Monte

Carlo methods has a large variance (Sutton and Barto, 2018), especially in stochastic
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environments such as Settlers of Catan. There are other characteristics of games that

aggravate this issue, such as the action space being dominated by action types that ei-

ther do not get the players closer to winning the game or generate a cyclic behaviour.

To overcome these issues, one can either perform importance sampling or bias the al-

gorithm with some form of control variate. An example for the latter is how neural

networks trained on previous experience were used to bias the tree search in AlphaGo

(Silver et al., 2016).

In our experiments on the observable version of Settlers of Catan (see Chapter 5),

we partly address the issue in the tree phase via standard techniques by sharing results

via transpositions (Childs et al., 2008) as well as combining results of actions that lead

to the same outcome state. The latter is known as either afterstates or successor-states

in literature (Sutton and Barto, 1998; Szepesvari, 2010). We depart from the standard

way of handling partial-observablity by representing nodes using the history in the

partially-observable game (Silver and Veness, 2010; Cowling et al., 2012a) due to the

obvious impossibility to share results. Instead, we use an abstract representation of

belief states to represent nodes. We also develop a game model that provides a belief

transition function and, following on the work of (Kaelbling and Lozano-Prez, 2013),

we do not sample fully-observable states. The result is the first MCTS algorithm that

plans entirely in the Belief MDP in stochastic partially-observable games.

Another popular way to overcome the issues of random sampling in large domains

is by introducing prior knowledge into either the tree phase or the rollout phase of

MCTS. Similar to the work in contextual bandits (Wang et al., 2005; Li et al., 2011;

Beygelzimer et al., 2011; Bubeck and Cesa-Bianchi, 2012; Caron et al., 2012), where

a context that provides information on the reward structure is used, UCT can be im-

proved via a multitude of ways: initialising the action values (Szita et al., 2010; Sil-

ver and Veness, 2010) based on common knowledge or general heuristics, initialising

with statistics from previous runs (Gelly and Silver, 2007), combining with an oppo-

nent model learned via fictitious play (Heinrich and Silver, 2015), interpolating with

a probability distribution that describes general preferences over abstract actions from

a database of gameplay (Bitan and Kraus, 2017), weighting with a move-prediction

model trained on a database of expert games (Graf and Platzner, 2016) or with a pol-

icy trained via reinforcement learning (Silver et al., 2007, 2016). On the other hand

improving the rollout policy could have similar benefits and this is generally known as

using heavy rollouts (James et al., 2017). Again there are a variety of ways to improve

the rollouts by combining with: heuristics (Silver and Veness, 2010; Whitehouse et al.,
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2013), general preferences over abstract actions (Bitan and Kraus, 2017) or a policy

trained via supervised or reinforcement learning (Silver et al., 2016). In general, the

strategies used for informing the rollout policy need to be more efficient than the ones

used in the tree phase since the algorithm spends the majority of the time performing

rollouts. Following on this large literature, we also combine MCTS with knowledge

extracted from a corpus of human play and inform both policies. However, our corpus

is much smaller in comparison to the human corpus of game play used by Silver et al.

(2016), and it contains general play instead of expert play. We therefore show the ben-

efits of adding general preferences over the standard policy mapping states to action

probabilities in this case. We define these preferences over an abstract description of

the action space that is provided by the game rules, known as action types, instead of

defining our own abstraction as Bitan and Kraus (2017). In addition we explore the

benefits of learning these preferences conditional on type legality which encapsulates

strong preferences of certain types over others. This information aids in preventing the

cycles encountered in the random rollouts caused by one type dominating the action

space.

We want to briefly mention here that the algorithms developed in this thesis use

a single accurate model of the environment when planning. One of the major limi-

tations of MCTS is the dependency on a model of the environment for planning via

forward sampling. In some real-time strategy games, researchers focus their atten-

tion on games where a fast forward model can be created, e.g. Moraes et al. (2018).

Looking at robotics or real-world applications, where the physics of the world must be

simulated and the robot response time must be in miliseconds, creating such a model

is an even more challenging task. However, boardgames (e.g. Settlers of Catan, Go,

Chess) have a set of clear rules and the effects of the actions can be quickly simulated.

Therefore, we do not attempt to learn or improve an existing model of the game as in

Bayesian model-based reinforcement learning, where the agent may be uncertain of

the environment dynamics. There are methods that deal with this uncertainty (Cas-

tro and Precup, 2010; Asmuth and Littman, 2011; Guez et al., 2013; Menashe and

Stone, 2015) in a sampling-based fashion, however this adds unnecessary burden for

the learning algorithm when we can define an accurate model for Settlers of Catan.
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2.4 Mining Human Knowledge

The methods presented before, in their standard implementation, are random walk ap-

proaches and there is a risk of getting stuck in local maxima. To prevent this, one must

balance guided search with random exploration. We want to avoid manually specify-

ing rules since the massive state and action space makes such methods highly labour

intensive and error prone. Automatically extracting information on what humans do

in similar situations would be a better solution. Techniques for exploiting human play

to learn to play a game have proved useful for improving the performance of agents

in several applications, including complex games. We provide here a short survey of

existing methods for mining human knowledge by categorising these into: imitation

learning, learning from demonstration and human intervention. For completeness we

also cover the work done on designing heuristics by manually analysing human play

or based on expert advice.

2.4.1 Imitation Learning

The most simple and well-known approach to imitation learning is by training a stan-

dard classifier (Bishop, 1995) that learns a policy as a mapping from states to actions

while following an expert’s trajectory in the environment. The label or correct actions

are the actions that the expert policy chose at each state in the trajectory. Such meth-

ods have been applied with some success since Neurogammon (Tesauro, 1990), whose

doubling algorithm was trained on 3000 positions taken from 64 expert games. Clas-

sification via statistical methods require the samples to be independent and identically

distributed, while following expert trajectories generates samples that are strongly cor-

related. Some well known attempts to address this issue are the SEARN (Daumé et al.,

2009) and the DAGGER (Ross et al., 2011) algorithms which both train the classifier

on datasets generated from a policy that is an interpolation between the expert policy

and the continuously improving classifier. Another benefit of these methods is that it

bootstrap with the expert policy to avoid the difficulty of learning in large spaces.

However, these aggregation methods require access to the expert policy, which is

not available in most cases. As a result, most methods rely on just randomly shuffling

the existing data to break correlations. These methods are sometimes referred to as

move-prediction methods, since they are not necessarily able to generate sequences

of actions that resemble those of the expert but can provide an indication on the most

likely actions given the current state. These methods have been very successful in Go
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(Sutskever and Nair, 2008; Clark and Storkey, 2015; Maddison et al., 2015) and have

proven useful in combining with MCTS when trained on expert play (Silver et al.,

2016). In our experiments we also do not have access to the expert’s policy, so we

will follow this research in training a policy via supervision in an offline manner. In

this thesis, we motivate and evaluate some modifications that are needed to help these

methods tackle training on mixed play and with a smaller set of training examples.

2.4.2 Learning from Demonstration

Learning from demonstration involves extracting a policy from a set of examples, or

demonstrations. Argall et al. (2009) definition of demonstration includes any form of

knowledge, while we focus on human knowledge only and in particular in the form

of an existing corpus of game play. Of most relevance to our task is the inverse rein-

forcement learning approach (IRL) (Ng and Russell, 2000). IRL tries to recover the

reward function that best explains the demonstration behaviour given evidence of the

model of the environment in which the demonstrations were generated in. The recov-

ered reward function can then be used in a reinforcement learning algorithm to learn

the optimal policy. An alternative is to use the recovered reward to enhance the envi-

ronments reward function via reward shaping (Ng et al., 1999; Randløv and Alstrøm,

1998; Suay et al., 2016). This new reward function could be used in reinforcement

learning or even in online planning. Finally, Apprenticeship Learning (AL) (Abbeel

and Ng, 2004) creates a mixture of the policies explored by IRL during learning such

that the trajectories generated by it resemble that of the expert.

Unfortunately, these methods have several challenges that increase the already dif-

ficult task tackled in this thesis. First of all, IRL chases two objectives during learning:

recovering the reward function and generating the optimal policy under this reward.

This cycle increases the hypothesis space dramatically. Secondly, the assumption that

a reinforcement learning algorithm can find the optimal policy in such a game is un-

realistic. In order to make it work, previous work focused on extracting rewards for

specific actions in a shooter game and also created simple specific scenarios for col-

lecting the demonstration trajectories (Tastan and Sukthankar, 2011). In addition, we

require good function approximation to represent the reward, the policy and the fea-

ture expectations. This is especially problematic since these have to account for the

trajectories’ outstanding space of possibilities and ambiguity. Most IRL algorithms

also assume ergodicity of the MDP but this is not true for Settlers of Catan because of
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the way the initial state is generated. Finally, there is no guarantee that the recovered

policy is similar to the one that generated the demonstration, rather than just generating

trajectories that look the same.

There is a large body of work that attempts to address these challenges; many of

these constitute highly complex algorithms (Ratliff et al., 2006; Ziebart et al., 2008;

Babeş-Vroman et al., 2011; Boularias et al., 2011). It is very likely that we would still

need to combine the learned policy with a planning method, which will add additional

parameters. Unfortunately, our dataset already presents a large number of challenges

that we need to focus on first. As a result we chose develop a good function approxima-

tion and extract a policy via the simpler approach of supervised learning. We believe

IRL and AL are interesting paths to explore in future work.

An approach worth mentioning that is sometimes considered part of the learning

from demonstration field is combining expert demonstrations with another learning

mechanism. For example, Thrun (1995) shows that an agent can be trained on a com-

bination of self-play and database play. Alternatives include bootstrapping reinforce-

ment learning by either training the initial policy via supervised learning first Silver

et al. (2016) or by combining the loss of Deep Q-learning with a loss function that

encourages imitating the expert Hester et al. (2017). Even though these approaches

have accelerated the learning, there was still a very large computational requirement

required to train deep reinforcement learning on simpler games than Settlers of Catan.

In addition, these approaches would make it hard to quantify the value of our data,

so we chose to focus on a pure imitation learning method as a means of extracting a

policy from our corpus which we will use to bootstrap an online planning method.

2.4.3 Human Intervention

The term human computation was coined to describe the use of human processing

power to solve problems; however the output is generally used without performing any

further computation. Therefore, we believe that a more accurate description would

be “human intervention” and we will be using this term instead. Human interven-

tion problems fit the general paradigm of computing using human participation di-

rected by the system to guide its computations (Quinn and Bederson, 2011). So it is

a human-machine collaboration scenario, in which human processing is used to solve

problems that computers cannot solve yet. Crowdsourcing and human intervention

overlap but are not the same: “Whereas human computation replaces computers with
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humans, crowdsourcing replaces traditional human workers with members of the pub-

lic” (Quinn and Bederson, 2011). An example of human intervention in games is the

work by Knox and Stone (2008) who developed a framework called Training an Agent

Manually via Evaluative Reinforcement (TAMER). Their framework allows humans

to provide feedback in the form of a reward to the agent’s actions in the game of Tetris,

reducing the number of games required and improving the agent’s performance.

On the other hand, data mining involves applying algorithms for extracting patterns

from data (Fayyad et al., 1996) which may have been created by humans. One can no-

tice that human intervention and data mining are different, because the former directly

uses human processing power, while the latter performs its own processing on data

resulting from human processes. Another very relevant field is that of active learning

(Settles, 2009), where the learning algorithm can help reduce the bottleneck of data

labelling by learning to query an oracle only when a certain condition is met, e.g. the

learning algorithm is uncertain about the label of a sample. This approach can help

reduce the data requirements significantly, at the expense of having an oracle available

to answer the algorithm’s query.

The only methods that fit the human intervention paradigm and are related to this

thesis are that of data mining. Our corpus is already collected and the only post-

processing we could do is that of annotating based on the quality of the play. We

would need to crowdsource this task to expert players that are capable of analysing

such data. Annotating the games, as we will show in Chapter 3, is quite challenging

so we cannot guarantee the results will have a high quality. Furthermore, annotating or

using an oracle involve additional expense that this thesis aims to avoid by developing

algorithms that can learn from sparse and noisy datasets. Finally, if we have access to

experts, we could just ask them to play the game and generate more example play. We

conclude that this field is not the most appropriate for finding solutions to our problem.

2.4.4 Heuristics

As mentioned before, manually coding rules to reflect what a human player would do in

similar situations provides no guarantees. Even so, improving the play with heuristics

has been extensively done in every game for which an AI agent has been developed.

It is the simplest form of integrating human knowledge. There are also many ways to

achieve this and we will only mention a few relevant ones. Applying MCTS in the

domain of Go has received a lot of attention in recent years and, until recent work on
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alphaZero (Silver et al., 2017), the best agents made use of patterns describing board

positions (Gelly et al., 2006) or opening moves (Chaslot et al., 2009), both written

following expert players advice. Both the tree and the rollout phases of MCTS can

also be improved using strong heuristics (Browne et al., 2012; Gelly and Silver, 2007;

Silver and Veness, 2010; Whitehouse et al., 2013). Regarding Settlers of Catan, the

strongest agent (Guhe and Lascarides, 2014a) is an extension to the initial rule-based

one (Thomas, 2004) implemented in the JSettlers framework. Keizer et al. (2017)

shows that this agent is strong enough to be competitive against human players. A

pure reinforcement learning method has not been applied yet on the full game and all of

the existing implementations either use a combination of heuristics with reinforcement

learning or have simplified the rules of the game (Szita et al., 2010; Roelofs, 2012).

Pfeiffer (2003) shows that one needs heuristics to structure the high level strategies or

medium-term goals and use reinforcement learning from the low-level decisions.

2.5 Conclusion

The literature review presented in this chapter highlights the strengths and deficiencies

of many popular methods with respect to the problem we aim to solve: learn to play

in a complex game under a low-resource constraint. Previous work has highlighted

the need for approximate and adaptable methods in such complex environments. As

a result, we implement an online planning algorithm that can take decisions by sim-

ulating the set of possibilities given the state the agent finds itself in. Since sampling

based algorithms require a large number of samples in order to form a good estimate

(due to the variance of the returns), we bias planning with policies extracted offline

from a corpus of previous play. Unfortunately, previous research indicates that the

strongest offline learning methods also have large data requirements. Therefore, we

perform certain abstractions that would permit us to utilise the sparse corpus we have

available, and we evaluate methods that make use of such abstractions versus neural

network based methods that do not.
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Resources and Domain Analysis

This chapter presents the domain chosen for evaluating the proposed models. It also

contains a brief description of the software used, the corpus of human games and the

experimental methodology, including our method for evaluating the performance of

our various learning algorithms. The goal of this chapter is to provide a quick intro-

duction of the environment in which the experiments were conducted and to present

the challenges this setting poses to learning effective game strategies.

3.1 Settlers of Catan

Settlers of Catan is a multi-player win-lose game. We focus on the core board game

with 4 players shown in Figure 3.1. The players build roads, settlements and cities

on the board, which is formed of hexagonal tiles. The first player to reach 10 Victory

Points (VP) wins the game. One obtains victory points in a variety of ways (e.g. a

settlement is worth 1 point and a city is worth 2 points). The hexagonal board tiles

represent one of the five resources (Clay, Ore, Sheep, Wood and Wheat), desert, water

or ports. Each of the resource producing tiles has an associated number between 2 and

12 (but not 7). Players obtain resources via the location of their buildings and dice

rolls that start each turn of the game: e.g., if a player rolls a 3 and a 6, then all players

who have a settlement (or city) on a hex marked with a 9 receive 1 (or 2) of that hex’s

resources (unless there is a robber on the hex in question, in which case no resource is

produced until the robber is moved). One needs different combinations of resources to

build different pieces (e.g. a road costs 1 clay and 1 wood). In addition to dice rolls,

players can acquire resources through trades with the bank (at a 4:1 ratio), or with a

port if they have built a settlement or city there (3:1 or 2:1, depending on the port) or

33
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through negotiated trades with other players.

Figure 3.1: JSettlers game interface

There are many special actions which increase the complexity of the game, such as:

(i) buying and then playing development cards that each give different advantages, (ii)

moving the robber and stealing resources from other players and (iii) gaining victory

points via the longest road or largest army. When an agent plays a development card

it receives one of the following benefits depending on the type of card: build two free

roads (i.e. the road building card), move the robber followed by stealing a resource

from another player (i.e. the knight card), receive two free resources (i.e. the discovery

card) or get every resource of that type from the other players (i.e. the monopoly card).

The victory point development card gives the owner one victory point as soon as it is

bought, however this is kept hidden from the other players until the end of the game.

There are two awards that each give their owner two victory points if certain conditions

are met. The longest road award requires the player to have the longest road made of

at least 5 connected road pieces. The largest army award requires the player to have

played the most or at least 3 knight cards. It is worth mentioning that the game rules

encourage trading with other players. Hoarding resources until the player possess

the required amount to execute certain actions is risky, since players that have over

7 resources must discard half of them when a 7 is rolled. We have provided a brief
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description of every aspect of the game, however we encourage the reader to read the

complete rules that can be found at www.catan.com.

Figure 3.1 illustrates the interface that a human player sees when using JSettlers.

JSsettlers is an open-source implementation of Settlers of Catan, which we will de-

scribe in more detail in Section 3.3. The square in the centre is the board, where the

players build the settlements, cities and roads, as well as move the robber. The coloured

side panels are the players’ panels which contain information about their hands. The

current interface is linked to the blue player, hence this player has access to additional

information such as what type of resources or development cards it posesses. The but-

tons inside the panel aid the player execute certain commands, e.g. the Done button

is used for ending the turn. The box above the board is the chat interface and the box

below the board is the helper box with buttons for buying pieces or development cards.

The chat interface is used for trading by typing a set of specific utterances which the

built-in agent (as well as the server who executes the trade) can understand, e.g. I give

1 ore for 2 wood.1 Finally, the teal arrow pointing to the blue panel indicates that it is

the blue player’s turn to act.

3.2 Game Analysis and Motivation

From a game theoretic perspective, Settlers of Catan is a very complex game (see Ta-

ble 1.1 in Chapter 1). In addition to the incomplete information (i.e. the opponents’

policies), the game contains elements of imperfect information. Specifically, oppo-

nents cannot see the type of unplayed development card that others posses (nor know

which development cards are still in the pile that can be bought). Further, since the type

of resource that gets robbed or discarded is hidden to the unaffected players, players

generally have only partial information about which type of resources their opponents

possess as well. Further, the game is stochastic (e.g. dice rolls determine the players’

resources). The generation of the board is done by shuffling the 19 land hexes and

the 9 port hexes, so the game has a huge space of possible initial states (≈ 1.2 ∗ 1015

compared to 1 for the game of Go). However, local features such as smaller groups of

hexes appear across many games, therefore Settlers of Catan presents an ideal problem

to evaluate the generalisation capabilities of learning agents. Even though there is a

large set of heuristics and suggestions for playing the game, there is no exact analytic

1StacSettlers’ documentation contains a list of the allowed utterances. See link to the project in
Section 1.3.1.

www.catan.com
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solution for every possible game state as far as we are aware.

The game tree has a large branching factor, e.g. there’s a wide range of negotiation

actions one can employ to trade the necessary resources with others. In fact, the large

depth and branching factor of Settlers of Catan are mainly due to trading as we show

in Table 3.3. Table 3.1 contains approximations of these factors, given 3 different sam-

pling policies (where in each trial, all players are the same; i.e. human, or a heuristic

agent, or a random agent). The results corresponding to the human and agent policies

have been averaged over 60 human games (Afantenos et al., 2012) and 1000 simulated

games respectively. Due to how these games have been logged, trades are considered

a single exchange action and the preceding negotiations are not taken into account,

hence the depths in Table 3.1 are smaller than in reality.

Policy Branch Depth

Heuristic 73 249

Human 65 159

Random 65 11715

Table 3.1: Average branching and depth. Many of the human games have 2 or 3 players,

hence the smaller average depth. The values in this table are collected from games that

run with the minor modifications described later in Section 3.2.2.

The length of the games generated using a random policy differs dramatically to

that of the games generated with a more reasonable policy, e.g. a set of heuristics. As

we will show in Table 3.3 (see page 41), this is mainly due to the trading actions. Disal-

lowing trades in a random policy reduces the space size of the game tree significantly.

The growth in the depth of the game is partly due to the cycles created by trading.

But these cycles are actually a result of the agent’s inability to properly evaluate the

value of the trade actions. It is very difficult to differentiate between these actions in

the planning phase since agents can trade back the resources and easily revert to the

original state without any penalty. Such behaviour is unnatural in human games, and

sub-optimal: an opponent may learn to exploit this eagerness to trade. Therefore, any

learning method based purely on random sampling of the space would be inefficient

and very inaccurate when evaluating the value of states or actions.

Despite the massive state and action space, high-level strategies are the same across

games. For example, there are well-known suggestions for beginners to play towards

the longest road, which is worth 2 VPs, by building settlements quickly and expanding
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on the board, or towards the largest army (again worth 2 VPs) by building cities and

buying development cards. These two are known in the community as wood-clay or

ore-wheat strategies based on the names of the main resource requirements for achiev-

ing them. This game playing advice points to the fact that a player must be able to

plan ahead and their action sequences must be consistently getting them closer to their

end goal. However, this is not always possible due to how congested the board is, so

players must be able to adapt and modify these two strategies to be successful. Com-

bined with the lengthy games and difficulty to rank the legal actions according to their

value, makes this game a very challenging problem for both planning at decision time

and methods that learn general policies over the whole game.

One aspect that has a large impact on the complexity of the game is that it is a

multiagent environment. As we mentioned before, we do not explicitly model the

other agents in our implementation, however our agent must still be able to account for

the fact that other agents have a say in how the game advances. Given that it is a win-

lose game, the game is adversarial so all agents race to achieve the victory condition.

Any rational agent will try to minimise the gains of the agent that is in the lead or

at least ensure that it is not aiding the leading player and thus throwing the game

away. If multiple agents display such rational behaviour, a coordination against the

leading player arises even if the agents do not explicitly aim to form coalitions. This

can be observed if multiple baseline agents play in the same game since these players

will target the leading player when moving the robber. Human players are capable of

forming more complex coalitions and can betray each other in the most unexpected

way, e.g. trade many cards of a specific resource followed by playing the monopoly

card to get everything back. Furthermore, negotiations moves are more advanced as

human players are capable of forming complex persuasion moves, e.g. “If you trade

your ore for my wood you will be able to build a settlement at location x”, and blocking

moves, e.g. “Do not accept that trade or he will be able to get the longest road and win

the game!”. Unfortunately, these interesting aspects of the game can only be observed

in human games since the current state of the art agents do not have the capabilities to

even respond to such moves. As a result we decided to learn under the assumption that

all agents act to maximise their return without considering other agents’ preferences.

As we will see in several of our results, such an assumption reduces the performance

of our strongest agent which indicates that a bayesian game formulation (i.e. reason

over player types) is an interesting path to explore as future work.
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3.2.1 Structure in Complex Games

While Settlers of Catan is highly complex, it also incorporates a clear structure to its

decision space. Actions can be grouped into several types, e.g. trade actions versus

build road actions. The cardinality of one class almost always dominates those of

others: e.g. there are always many trade options, but only one action of the type “end

turn”. The game can also be separated into 6 phases based on what action types are

possible, such that there is a minimum overlap between the phases. We will refer to

the following phases as tasks and use their names or corresponding indices throughout

the document:

0. Free road building state: this is either the initial state where the agent places

two free roads, or the two free roads that stem from having just played a ’road

building’ development card;

1. Free settlement building state: placing settlements during the initial placement

part of the game;

2. The normal state: this is a state where the agent can build, trade, buy or play

development card, or end their turn;

3. Before rolling the dice state: the agent has to decide between playing a devel-

opment card or rolling the dice;

4. Discard state due to a 7 being rolled: the agent has to discard half of the re-

sources it is holding;

5. Moving robber state due to a 7 being rolled: the agent has to move the robber

and steal one resource at random from an opponent.

Out of these tasks, the normal one is the most challenging and it also contains the

highest diversity of action types. Table 3.2 enumerates these types alongside statistics

that show how likely it is that each action type is legal, the average number of possi-

bilities (i.e. action tokens) when it is legal and the maximum number of possibilities.

These were collected from 10k games played using a uniform random policy. The high

values for the trade action type indicates that players have to generally decide between

many trade moves and a few moves belonging to other types. Due to this skewness,

a uniform random policy over the action tokens will be very biased towards trading.

This table also shows that there are very few examples in the corpus for each of the
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types that describe playing a development card. Combined with the small size of our

corpus, this increases the difficulty of learning a strong policy for the complete action

space.

Action type Probability Average Maximum

Build road 0.0547 5.48 19

Build settlement 0.0331 2.82 13

Build city 0.0122 2.71 5

Buy development card 0.0114 1 1

Trade with opponent 0.9982 64.8 512

Trade with bank/port 0.2361 4.47 20

Play knight card 0.0001 16.16 29

Play monopoly card 0.0010 3.92 5

Play discovery card 0.0005 15 15

Play free road card 0.0023 6.35 34

End turn 1 1 1

Table 3.2: The list of action types during the normal phase of the game, the probability

of the type of action being available, the average number of actions when the type

is available and the maximum number of actions of each type. These numbers are

collected from 10K games with 4 players, where each player plays randomly.

Following our previous game analysis, Settlers of Catan presents a very challenging

problem. To overcome these we design our algorithms so that they exploit the structure

inherent in the game rules. We specialise offline learning models to the tasks described

above to alleviate the skewness of our data towards the normal phase in which players

spend majority of the time. Furthermore, we reason over action types during plan-

ning to handle the ubiquitous characteristics of the game: negotiation and trading.

There are many other board games that present similar game play characteristics—e.g.

Monopoly, Civilisation, Diplomacy, Battlestar Galactica to name a few—for which the

techniques developed in this work could aid the learning process.

In addition to this structure, only certain action types are legal depending on the

current state description. This type legality provides a very compact representation of

game states and allows us to cluster them. This is especially powerful since we have

a very sparse dataset and learning a tabular representation or a general approximate

representation may prove too challenging. We have integrated this knowledge of legal-
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ity in the design and implementation of all our algorithm and it has proven key to the

success of our agent given our empirical evaluations.

3.2.2 Game Modifications

Our final agent is tested in a game that has only a few minor modifications to the

rules defined in www.catan.com. The goal of this modification is to level the playing

field between our agents and the baseline heuristic agent. The state of the art rule-

based agent that we evaluate our agent against only considers 1:1, 1:2 and 2:1 resource

trades between players so we also limit our agents’ set of legal actions to these. There

are still a large set of possible trades (up to 540). Of course a side effect is that it

reduces the branching factor dramatically by not including trades such as 2:2, 2:3, 3:2

and so on, but it is obvious that these trades are a composition of the allowed ones. The

only benefit of this modification is that we do not include 3:1 or 4:1 trades. These are

equivalent to bank or port trades and it is obvious to any player who aims to win that it

is better to not trade with opponents at these rates. This is a very minor heuristic that

only slightly reduces the space the agent needs to explore.

A simplification worth mentioning is that we do not allow any agent to perform

any form of negotiations above offer, accept, reject and counter-offer. In addition,

the current player must initiate the negotiations. These modifications prevent very

interesting aspects of human games and there are perhaps many moves of high strategic

importance that we ignore. Unfortunately, coordinating the agents to allow such moves

is highly complex and would deviate too much from the original goal of this research.

There is some interesting initial research into the value of persuasion moves in Settlers

of Catan by Guhe and Lascarides (2014b) (e.g., ”If you accept this trade offer, then

you will get wood and be able to build a road”), but these are restricted to a small set

of rules or templates. Human players are also able to change the way they formulate

the negotiation utterances based on the current context and opponent’s types. This is

a very interesting problem that delves very close to Natural Language Generation for

task oriented dialogue, but where the current goal should be decided by the agent’s

decision making algorithm. This is a very interesting path to explore in future work.

Previous research has either attempted to combine machine learning with rule-

based methods (Pfeiffer, 2003) to reduce the responsibility of the learning algorithm,

or has focused entirely on a single aspect of the game such as what resources to trade

while the rest was controlled by the heuristic agent (Cuayáhuitl et al., 2015), or has

www.catan.com
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simplified the game such that a pure machine learning algorithm is able to handle the

reduced space (Szita et al., 2010). Szita et al. (2010) have removed the agent’s ability

to trade in the real game, but also removed trading from the game model used dur-

ing planning. Table 3.3 shows the large effects of these modifications on the game

branching and depth factors. This modification doesn’t impede their agent from play-

ing the game, because being able to trade is beneficial but not a requirement. As a

result, the agent presented by Szita et al. (2010) is still able to defeat the best heuristic

agent of the time (Thomas, 2004). At the same time, Cuayáhuitl et al. (2015) show

large performance gains when modifying a single aspect of the current best heuristic

agent’s trading behaviour. This underlines the need to handle trading in order to be

very successful in the game.

Trade Branch Depth

None 10 1090

1:1 only 17 3085

1:1, 1:2 same and 2 same:1 26 5371

all trades 65 11715

Table 3.3: Average branching and depth when trading is not allowed or when only

specific exchanges are allowed. The third option contains all 1:2 and 2:1 trades when

the 2 resources are of the same type (e.g. 1 clay for 2 ore), while the last includes all

1:1, 1:2 and 2:1 including trades such as 1 clay for 1 ore and 1 sheep.

Finally, the existing planning based algorithms (Szita et al., 2010; Roelofs, 2012)

have further simplified the game by either ignoring the imperfect information or by

making the game observable to all agents. Ignoring the unknown information is clearly

a sub-optimal approach, while making the game observable reduces the difficulty of the

game. Our final planning-based agent is able to reason over the imperfect information.

We also extend the current state of the art planning algorithms to handle the opponent’s

trading behaviour and include all trading actions described above in the planning phase.

Therefore, our agent is the first pure machine learning based agent that can handle the

rules of the full game.2

2Without being able to negotiate with human players due to not having natural language generation
and understanding capabilities.
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3.3 Software

The starting point for conducting our experiments is an open-source implementation

called JSettlers (Thomas, 2004). JSettlers is a client-server system: a server maintains

the game state and passes messages between each of the players’ clients. Clients can be

any combination of human players or computer agents (with a maximum of 4 players

overall). The game interface for human players (including the board and each of the

player’s information) is shown in Figure 3.1. Guhe and Lascarides (2014a) improved

the original JSettlers heuristics-based player, to create what we call the Stac agent. To

our knowledge this is the strongest open-source rule-based Settlers of Catan agent and,

like ours, it can play according to the game’s complete set of options. So this heuristic

agent tackles both negotiation and trading, and also the fact that the game is a game of

imperfect information. Keizer et al. (2017) shows that this agent is strong enough to be

competitive against human players. The JSettlers software was extended further with a

simulation environment that permitted previous research (Guhe and Lascarides, 2014a;

Guhe et al., 2013; Keizer et al., 2017; Cuayáhuitl et al., 2015) to compare agents with

different parameters in a tournament-like setting.

JSettlers logging is a delta update system which stores only modifications to the

current state. It is impossible to quickly access the details of a specific state without

parsing the whole log file. In addition, JSettlers has undergone several modifications to

its message parsing code without backwards compatibility, so it is not always straight-

forward to parse some of the old logs. To avoid the expensive look-up as well as losing

data, we have created a database logging system which stores every information on

each state and action in a game. The stored information is everything required to be

able to load a game state stored in the corpus or played by synthetic or even human

versus synthetic players.3 We also created a save-load mechanism which can be used

either by human players or synthetic agents in most game states (excluding some situ-

ations such as during negotiations). Unfortunately, JSettlers has a similar delta update

system for the agents’ state and belief representations, making it impossible for a syn-

thetic agent to replace either a human player or an agent with different capabilities.

Nonetheless, the save-load function is sufficient to run the models presented in Chap-

ter 4 which only required reloading the same state with the same type of agents or with

agents with fewer dependencies.

3The database does not contain the messages in the chat interface since this was not relevant to the
current research.
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In addition to the framework that allows us to evaluate the agents by running games

between them, we need a lightweight simulation environment to perform the forward

sampling required by MCTS. The game characteristics (e.g. discrete, no physics sim-

ulation required, clear rules etc.) allows us to build a fast and accurate model. Further-

more, the SmartSettlers framework (Szita et al., 2010) can quickly simulate a simpli-

fied version of the game, i.e. fully-observable and without trading. However, extending

this framework to handle the remaining aspects of the game as well as connecting it

with the existing JSettlers framework has proven very time-consuming. First of all,

JSettlers agents are built into the JSettlers framework and an agent interface is not

well-defined. There are many special cases that are not mentioned in the game rules

which we discovered as we were combining the two frameworks. For example, players

can gain 3 victory points by building a settlement that breaks the longest road of an

opponent and allows them to get the longest road award. Furthermore, the partial ob-

servability requires the forward sampling model to be synchronised with the JSettlers

framework that serves the real game without providing access to the true game state.

Finally, trading and negotiations create scenarios where the result of actions may be

different in the real game. For example, an offer may be encoutered by a different re-

sponse than the one anticipated. We will present the details on how we handle trading

in Section 5.5.

The deep learning models were built using the Deeplearning4j library version 0.4-

rc3.10 (Deeplearning4j, 2016). Using an established deep learning library ensures

gradient calculations, backpropagation and regularization methods are implemented

correctly and efficiently. This permitted quick testing of various implementations. Fur-

thermore, the choice for a deep learning library in Java was due to the need to keep the

agent’s decision time to a minimum. Creating a fast and seamless interface between

programming languages is not always straightforward.

3.4 The human corpus

Our human data is taken from a corpus of humans playing Settlers in a competition

that ran for three seasons. Two of the seasons are split into different leagues based

on the participants’ previous experience and level of play. Each participant provided

their own estimation of their playing ability by completing a questionnaire. In these

leagues each player plays multiple games and a basic ranking system is produced. The

third season contains 21 games in which players of different levels are mixed together
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and each of them has played a single game. The corpus consists of 59 games played

on different board layouts and containing different number of players (i.e. 2, 3 or

4 players), from a total of 100 participants with an age range of 18-54 and 25% of

them were women. Overall, this corpus ensures the data we have collected contains a

large variety of scenarios. Despite this, the data is very sparse and it is highly unlikely

that an exact state that is attested in the corpus will be encountered in a future game.

In fact, it is unclear if existing learning methods would be able to generalise in such a

complex game from such a small amount of data. Furthermore, filtering of sub-optimal

plays based on the resulting inaccurate ranking system or on the subjective responses

provided by the participants in the questionnaire would most likely only reduce the

amount of data available instead of improving the overall quality of the data.

Following a more in-depth analysis of the corpus we have found 3 interesting ex-

amples that represent the type of game play contained in the corpus (see Figure 3.2).

Example 3.2a shows a clearly sub-optimal play if the objective of the red player was

to win the game. The player built settlements next to the desert despite having other

options. At the same time it seems the player focused its attention entirely on winning

the longest road, despite clearly struggling to compete with others that have access

to the required resources. Another possibility is that this player lost an earlier race

to a second settlement and gave up on trying to win the game. The second example

(3.2b) also illustrates what is generally weak play. The blue player built most of its

settlements on the edge of the board, a location that generally provides less resource

production then the centre of the board. However this player has won the game and it is

unclear if this is due to luck or if avoiding locations contested by the other players was

the best play. It could also be the result of what is known in Game Theory as a mixed

strategy. The final example (3.2c) shows a strong example play by the blue player that

results in gaining the longest road award while ensuring no other player could contest

it for the rest of the game: blocking opponents from building roads and settlements is

an important part of one’s strategy for winning the game.

These examples illustrate the variety of play included in our corpus. As with many

experiments that involve human participation, it is impossible to decipher the partici-

pant’s intentions only by observing the produced data. The characteristics of the game,

such as non-determinism and being a multi-agent environment, exacerbate the player’s

uncertainty about the consequences of his or her decisions. This short analysis un-

derlines the difficulty in interpreting the game play and classifying it as good or bad

examples. It is very challenging for a human expert to reach a conclusion, let alone
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(a) Sub-optimal play (b) Apparent sub-optimal play

(c) Interesting (possibly optimal) play

Figure 3.2: A few examples of game play taken from the human corpus.

for standard machine learning algorithms. The diversity included in the corpus poses

an interesting question: Is it possible to extract any useful advice without additional

expensive pre-processing?

3.5 Experimental methodology

We are evaluating our methods by implementing agents that play the game in the JSet-

tlers environment similar to the approach of Guhe and Lascarides (2014a). Running

several game simulations in an evaluation is necessary because of the stochastic nature

of the game: even a weak player can get lucky! The performance of an agent is mea-

sured by running simulations of 2000 games between 4 players: one of the players is

the (modified) agent we are evaluating and the other 3 are baseline agents. So, a player

that is of equal strength to the baseline agent would win 25% of the games. We tested

the significance of win rates against this null hypothesis using the z-test and a thresh-

old p < 0.01. This makes any win rate between 22.5-27.5% not significantly different
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from the null hypothesis (i.e. a win rate of 25%). In order to keep the tables clear, z

scores are not included.

The setting of evaluating one modified agent versus 3 baseline agents of the same

type is a controlled experiment where we also have a well defined null hypothesis.

On the other hand, an experiment where agents are all different is not a controlled

experiment. There can be many interactions between the agents, which means we

cannot form a null hypothesis. Other variations such as 2 versus 2 can also be tricky

due to the same reason. A round-robin experiment requires searching a large space

of possible combinations in order to change one variable at a time in. Such a setting

makes it impossible to run all experiments in a timely manner.

Settlers of Catan is a multi-player game in which human players often form coal-

litions or betray each other. If synthetic agents would present the same behaviour,

other experimental settings (e.g. round-robin) may reveal these interactions. However,

none of the baseline agents or our agents explicitly reason about these interactions. As

mentioned before in Section 1.3.2, our agent doesn’t include any behavioural reason-

ing in its planning either. Nonetheless, there could still be implicit interactions (e.g.

a certain type of agent may collaborate better with agents of the same type, or some

types of agents may have a counter-strategy to the baseline agent’s one). In order to

account for these interactions without running the expensive round-robin experiment,

we also evaluate one baseline agent versus 3 modified agents. In future work on intro-

ducing type-based reasoning in the planning agents, round-robin experiments may be

required.

Finally, there is the concern that the same type of agent may win more games than

the expected 25% win rate in the 1 versus 3 setting. Given that there are no explicit

interactions, the only other culprit could be the implicit interactions such as coordi-

nations between agents caused by built-in rules (e.g. never trade with the player that

is winning the game). Any interactions of such form would affect all agents equally

since these agents are of the same type. The large number of games (2000) and the ran-

domisations performed (i.e. the board layout and the agents position are randomised

before each game) ensure that the experiment is fair. Nonetheless, we performed a 1

vs 3 experiment where all four agents were the state of the art rule-based agent. We

observed that the difference from 25% win rate is always less than 0.3% so we did not

repeat the experiment for the other agents.

We evaluate the modified agents against several baselines:

• Stac agent—the state of the art heuristic agent which can handle the full game
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(Guhe and Lascarides, 2014a);

• SmartSettlers agent—the state of the art planning agent which can handle a sim-

plified version of the game (Szita et al., 2010);

• several ablated versions of our agent to evaluate the effects of each modifica-

tion. We will introduce these and how we refer to them when presenting the

algorithms used in constructing our final agent.

In a typical game of Settlers of Catan, a player has access to a limited amount as

well as types of resources. Furthermore, some of the resources are finite (e.g. there

are only 25 development cards in the deck) and there is a race between the players

to use these resources to achieve the winning condition. To avoid situations where the

modified agent has a successful strategy only because it focuses on aspects of the game

that are ignored by the baseline agent, we also evaluate the performance of the baseline

agent versus 3 of the modified agents.

SmartSettlers agents don’t trade, so our agents playing against them are not allowed

to trade either. Otherwise, the SmartSettlers agent would be disadvantaged; limiting

an agent’s trade capability handicaps it (Guhe et al., 2013). Furthermore, SmartSet-

tlers agents are unable to handle the imperfect information so we only evaluate our

agent against it on the fully-observable version of the game. We evaluate against the

Stac agent and against the ablated versions of our agent on the game that contains the

complete set of actions.

An important aspect of the experimental methodology is the choice to not introduce

a time constrain for the planning agents. The agents developed in this thesis employ

what is known as online planning via forward sampling (i.e. extensions of the MCTS

algorithm). These methods are expensive so the emphasis is generally on making them

more efficient. However, we have not spent additional time on micro-optimising all of

our methods. Introducing a time constrain, would result in an unfair comparison in this

case. Instead we have individually timed the algorithms and discussed if these have

comparable time requirements. Methods which have comparable performance (i.e.

win rate) but require more time, would be weaker if time constraints were introduced.

This can be inferred from the performance and individual timing experiments, and we

also highlight this when discussing the results in text.

The majority of experiments was performed on the “Eddie” computing cluster of

the Edinburgh Compute and Data Facility (ECDF). Game simulations with one of our

most expensive agents versus 3 Stac agents can be run on a normal desktop machine
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with an Intel-I5 hyper-threaded processor and 8GB of RAM. However, the 2000 games

required for evaluating each modification requires running many jobs on the Eddie

cluster and aggregating the results at the end. The Neural Networks were trained on

Nvidia GTX TITAN X GPUs, but these could have been trained on CPUs given the

small amount of data and size of our networks. Even with the access to such computa-

tional power, the amount of exploration one needs to do to highly tune the parameters

of complex implementations is an impossible task given our limited time. As a re-

sult we have performed a mixture of grid search with a large coarseness over a fixed

range specific to each of the agent’s parameters, followed by manual tuning at a more

granular level in the most promising range.



Chapter 4

Simple Non-parametric Method for

Mining the Corpus

Work on similar complex games, e.g. Branavan et al. (2012); Silver et al. (2016), has

shown that combining an online planning algorithm with additional sources of infor-

mation, such as a manual presenting general good advice or example play executed by

expert players, can be very succesful. The planning method is bootstrapped and thus

biased to explore the areas of the space that are more likely to be promising. In turn,

planning can escape regions of local minima and learn corrections to the general advice

received given its ability to perform exploration. However, previous work assumes that

the advice or previous play are reasonable. On the other hand, our corpus is made of

mixed play which it is very likely to contain sub-optimal play. It is unclear if anything

useful can be extracted from our corpus. Furthermore, would combining the extracted

advice with a planning method result in a stronger player?

4.1 Non-parametric Method for Value Estimation

To answer these questions, we introduce a simple method for mining the corpus that we

implemented to learn a single action of the game: the placement of the second free set-

tlement in the initial phase of the game. The inspiration for the first implementation is

the well known classification method of nearest neighbours (Duda et al., 2001). Near-

est neighbours classifies a sample based on the distance to a predefined and correctly

classified set of samples. This set is sometimes referred to as the training set, although

the base algorithm doesn’t process it or construct any representation that can explain

the data distribution. The training set is instead stored and used as it is for classify-
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ing of new points. The data is defined as a set of n pairs (x1,y1),(x2,y2), . . . ,(xn,yn),

where xi is the representation of the data sample i in some metric space X and yi is the

label that indicates to which class the sample belongs. Nearest Neighbours requires

the definition of an appropriate distance metric d (e.g. Euclidean distance) to mea-

sure the distances between the representation of the new samples x′ and the correctly

classified samples x. The nearest neighbour is the sample xi that minimises this dis-

tance: mind(xi,x′), i = 1,2, . . . ,n. A modification to the algorithm by computing the

majority vote of k-nearest neighbours allows for reducing the variance of the standard

algorithm. In general the value is chosen based on the performance of different values

on the training data evaluated via cross-validation.

We have chosen to represent both states and actions as vectors of numerical fea-

tures. The vector xa representing an action is constructed via vector difference between

the vector xs′ representing the resulting state s′ and the vector xs representing the state

s in which the action is performed: xa = xs′−xs. Due to the sparsity of our corpus data,

we need a set of features that does not necessarily contain the exact description of the

state (i.e. coordinates of pieces on the board), but rather specific characteristics or re-

lations (e.g. number of pieces on board, distances between them, access to resources

etc). Furthermore, it is very difficult to transpose the actions due to parts of the game

configuration varying a lot between games (e.g. hexes on the board are randomised in

the beginning). Therefore, our features are intended to capture the abstract properties

that best represent the current player’s state and focus on what effects his actions may

have. These features are chosen based on general knowledge of the game and the set

of features was kept small since a low dimensionality aids generalisation. The list of

features composing the vectors are described in Appendix B.

In contrast to previous approaches, we have chosen to underline the importance

of similarity of both states and actions. Such similarities have been shown to speed

up convergence of tabular reinforcement learning such as Q-learning (Rosenfeld et al.,

2017). But, the main reason is the sparsity of our data and the complexity of the game

as described in Chapter 3. The board is different from one game to another since it is

generated by shuffling the 19 hexes and 9 port hexes. The position and order of play

are also randomised. It is very unlikely that we will encounter the exact state again,

however an action’s effects are more likely to be similar since these effects are local

and also depend on small portions of the board. In the initial placement for example,

building a settlement will provide a player with access to resources based on the 3

surrounding hexes. The exact board may not be encountered, but the same 3 hexes
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combination or a subset of this combination will very likely be encountered in a dif-

ferent game. This idea is related to the concept of advantage function in reinforcement

learning, which tries to capture the benefits of an action by separating it from the value

of the state (Sutton and Barto, 2018; Wang et al., 2016):

A(s,a) = Q(s,a)−V (s) (4.1)

The difference to other research in reinforcement learning is that we do not com-

pute this advantage function as a function of the state representation xs, but only as a

function of the action representation: A(a) using xa. Using an action representation

permits a richer alternative representation to the abstract one presented in the game

rules. Consider again the example of placing a settlement on the board at a specific co-

ordinate somewhere in the middle of the board. Depending on the board description,

this action may provide access to three resources or to two resources if one adjacent

hex is the desert. If only one of the hexes is different between these two board descrip-

tions then the former is clearly a better action despite having the same coordinate based

on the abstract description provided by the game rules. The same action effect could

be encountered in a different board setting and with placing a settlement closer to the

border of the island. As a result, our action representation offers great flexibility in de-

ciding when to utilise the advice from the corpus since we can use it for generalisation

purposes.

Still, reinforcement learning theory states that the action value depends on the state

this action was executed in and we should take into account the current state. Returning

again to the settlement placement example, placing the second free settlement close to

a desert may be beneficial if it is close to the first free settlement, since it may be easier

to connect roads and get the longest road award. Such an effect could be encoded in the

action representation, but this is tedious and we will slowly start describing an infinite

set of interactions. Instead, we will use both state and action representations in our

method.

To implement a method similar to nearest neighbours, we need to define an appro-

priate distance metric. We calculate the relevance of the states and actions by com-

puting their vectors’ cosine distance (where x and y are the vectors describing the

candidate states or actions):

d(x,y) =
x ·y
‖x‖‖y‖

=
∑

n
i=1 xi×yi√

∑
n
i=1(xi)2×

√
∑

n
i=1(yi)2

(4.2)
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Cosine similarity presents multiple properties that make it a good metric in our

case. It is bounded and it handles high dimensionality spaces better than euclidean

distance. Furthermore, it is bounded in [−1,1] providing information on when states

are similar (value close to 1), opposite (value close to -1) and not alike at all (value

close to 0). In Settlers of Catan, the vectors describing the states are in positive space,

so their cosine distance is in [0,1]. Action vectors are the result of the difference

between the resulting state and the initial state, so these could contain negative values

for different actions of the game. However, during the initial building phase that we

run these initial experiments in, the action representation cannot contain any negative

values. This permits using the similarity value to influence the estimation of the value

function without any further processing. In the case of negative values, a threshold can

be used to ignore pairs from the corpus instead of down voting current actions based

on relevance only.

We use the vector of features representing the states or actions stored in the corpus

(sc and ac) to compute the relevance to the newly encountered state and action (sn, an)

as shown in Equation 4.3. The similarity between states and actions is averaged since

there is no indication which of the two carries more weight. As future work, one could

finetune these weights following an empirical evaluation.

rel((sc,ac),(sn,an)) =
d(xsc,xsn)+d(xac,xan)

2
(4.3)

This relevance value is used as a weight when evaluating the new states and actions,

sn and an. Equation 4.4 estimates their action value, Qi(sn,an), using only sample i

from the corpus, i.e. using state sc and action ac.

Qi(sn,an) = rel((sc,ac),(sn,an))U(sc,ac) (4.4)

We do not estimate the utility of the state–action pairs gathered in the corpus; in-

stead, we trust the decision making of the person who played the action. To reflect this

assumption, the utility of every pair in the corpus U(sc,ac) is initialised to 1. Even

though our corpus contains play from novices and experts, we have observed that hu-

man players will win approximately 50% of the games when playing against 3 original

agents (also confirmed by Thomas (2004)). So the assumption that humans are always

better at choosing locations for the initial placement than the heuristic agent is naive,

but largely reasonable. If utilities were available, one could potentially weight the util-

ity of a state by the relevance to the states stored in the corpus and the same for actions
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before combining the result. Also, another set of weights could be used to decide if the

relevance between the states or actions is more important.

Finally, we need to take into account that multiple pairs from the corpus may sug-

gest the same action as the best next move. As a result, the final estimated Q(sn,an)

value is averaged over all k suggestions:

Q(sn,an) =
∑

k
i=0 Qi(sn,an)

k
(4.5)

We want to underline that the value of each state–action pair from the corpus is

used only once to influence the most similar pair from the current options. The result

is that we are not evaluating all the pairs encountered in the current game, but rather we

bias the search towards a smaller part of the game tree deemed good by the information

extracted from the corpus. We also do not rely entirely on the advice from the corpus.

This bias is used only to guide the initial exploration of the MCTS algorithm and

MCTS can learn local corrections given sufficient samples.

4.1.1 Combining with Flat Monte Carlo Tree Search

We have combined this method with a simpler version of MCTS, known in literature

as Flat MCTS (see Figure 4.1). This pilot experiment tests only one action in the game,

so we want for now to avoid having MCTS (see Figure 2.1) selecting actions based on

how good a specific part of a branch continuing from the current node is. We removed

the expansion part of the algorithm turning this into a similar approach as Monte-Carlo

Search (Browne et al., 2012). Flat MCTS has proven to be very strong in the domains

of Bridge (Ginsberg, 2001) and Scrabble (Sheppard, 2002). We also want to keep the

benefits of UCT, so our method treats the tree as a one step multi-armed bandit. Such

an approach is also known as Flat Upper Confidence Bounds (Browne et al., 2012).

S

S′1

...

L1

S′2

...

L2

S′3

...

L3

S′4

...

L4

S′5

...

L5

S′6

...

L6

S′7

...

L7 Reward

ai ∼ π

ai ∼UCT

Figure 4.1: Flat-MCTS algorithm. Repeat until a budget limit.
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Flat-MCTS with random rollouts doesn’t perform any opponent modelling, be-

cause UCT is only used in the tree level (i.e. only from the current player’s perspec-

tive), while the other players take only random decisions during rollouts. To over-

come this, we are replacing the random rollout policy with an ε-greedy policy π (with

ε = 0.2), in which an action is chosen based on the Stac heuristic in 1− ε proportion

of time and uniformly at random in the remaining ε proportion. All players use the

ε-greedy policy in the rollout phase. Whitehouse et al. (2013) have shown that exist-

ing heuristics can be re-purposed inside MCTS to retain the personality of the original

agent and potentially create a stronger player. But the ε-greedy policy will also allow

the model to explore the game space as the Stac agent’s decisions are deterministic.

Finally we have chosen a fixed number of 1000 roll-outs for the Flat MCTS method,

with each roll-out terminating at an end state of the game (i.e. the state where the first

player acquires 10 victory points). The action selected to be played in the real game is

the one that maximises Q(s,a) in the UCT formula (see Equation 2.10), with C = 1.

We introduce the estimation performed via the nearest neighbour approach in the tree

by setting the initial value of Q(s,a) to the value computed in Equation 4.5 (as the value

is in the range [0,1]) and N(s,a) = 10. This means that the value of the node is equal

to the value estimated by the non-parametric method after 10 visits. Initialising the

number of visits estimates the weight of the seeding in comparison to the estimation

performed via sampling by the search method. Note that the UCT algorithm will try

the nodes that were not initialised at least once before the seeded value will influence

the search.

4.1.2 Results and Analysis

For this particular experiment only, we measured the performance of a modified agent

by running 10000 game simulations with 4 players; one of the players is the modified

agent and the other 3 are baseline agents (the details of the baseline agents are given

shortly). Therefore, a player that is of equal strength to the baseline agent would win

25% of the games. We performed a Z-test to test the significance of win rates against

this null hypothesis and we chose a threshold p < 0.01. Results between 24-26% are

not considered significant.

We ran our experiments using the Stac agent briefly presented in Chapter 3 as an

upper-bound baseline: i.e. an agent that plays according to a set of sophisticated, but

hand-crafted rules. Results against the lower-bound baseline (random player) are not
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reported in the table: any of the presented agents win 99% of the games against a ran-

dom agent. The modified agent was replaced with different versions of the Flat-MCTS

model with the intention to test each addition on its own and then assess the joint

model. Furthermore, we explore the effects of biasing the search with the evaluation

performed by the Stac agent. Therefore we have the following modified agents:

1. Flat-MCTS without any prior knowledge;

2. Flat-MCTS seeded with prior information extracted from the Stac heuristics;

3. Flat-MCTS seeded with the Corpus suggested policy;

4. An agent that follows the Corpus suggested policies without performing simula-

tions;

Agent 1 samples the space following the uninitialised UCT formula (see Equa-

tion 2.10) and chooses the action that yielded the best result during rollouts to play

in the real game. This player doesn’t use any prior information. Agent 4 builds the

tree and seeds in the values computed from the corpus. It doesn’t perform any roll-

outs, but just chooses the action with the highest value. Agent 3 combines these two

approaches. Agent 2 computes the values of actions following the Stac heuristic agent

estimates and only the 5 nodes corresponding to the best 5 actions are initialised. The

tree is seeded in the same manner as for the other two players that make use of prior

knowledge, by initialising the Q(s,a) = 1 and N(s,a) = 10. All agents, aside from the

last one, perform rollouts using the ε-greedy policy described in the previous section,

where the optimal move is chosen by the Stac heuristic. These 4 agents choose a single

action in the real game (i.e. the placement of the second settlement during the initial

set up), while the remainder of the game is played as if they were Stac agents.

Agent type Win percentage Number of games

Stac (baseline) 25% 10000

Flat-MCTS 28.74% 10000

Flat-MCTS seeded with stac heuristics 28.48% 10000

Flat-MCTS seeded with Corpus 30.43% 10000

Corpus 19.11% 10000

Table 4.1: Results
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Table 4.1 contains the performance in terms of win percentage of each of these

agents versus 3 Stac agents. As expected, Flat-MCTS shows a large increase in win

rate (3.7%) over the baseline and informing the search with a policy that averages over

the related advice from the corpus further increases the performance by another 1.7%.

These results illustrate the potential value of mining our human corpus. The increase

in performance may seem small, however the model only tests this on one action in

what is a very long game (recall from Chapter 1 that average game depth is 11715).

Furthermore, the strong rollout policy could also be a cause for such a large increase

in performance resulting from applying the Flat-MCTS method. Unsurprisingly, the

agent that doesn’t run any rollouts performs poorly, decreasing the win rate by 6%. The

corpus data is too sparse to be the only source of information for guiding the decision

making. Further, without sampling, the agent is not afforded the chance to learn that

the chosen move that’s based on human observation may have been suboptimal (be-

cause the human choices in the corpus were). The method for assessing the relevance

presented above is an approximation and averaging over the given advice only partly

filters the noise. Without any rollouts to correct any poor suggestions or to differentiate

between the suggestions this is not enough.

This experiment has also shown that a simple non-parametric method could be used

to improve policies in complex games. In addition, these methods are very flexible and

there are many extensions that could be done. For example separating how the utility

and relevance of the action are evaluated from those of the state, as previously men-

tioned. Another option is to include certain thresholds and use only samples that are

very similar to the current options. Combining the suggestions with a simple average

is also problematic and initialising the utility of the samples from the corpus based on

our confidence in the player’s ability could also further improve the model. Mining a

very small corpus of examples has also proven successful, but only for initialising a

planning method. It is very unlikely that the advice from such a small set of examples

could be used on its own to find solutions to such complex games as Settlers of Catan.

Unfortunately, there are a few drawbacks that are problematic for extending to the

full game. First of all, such a method is very slow and expensive. It is also well known

that non-parametric methods require a lot of memory to store the training data. We

have tested the performance of the approach on a typical desktop machine (Intel-I5

hyper-threaded processor with 4GB of RAM). The JSettlers environment runs 10000

games with 4 Stac players in approximately 1 hour on a typical desktop machine.

Running the 1000 simulations required for the Flat-MCTS method with the JSettlers
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environment takes approximately 5 minutes, which is too slow for an online method.

The seeding method requires less than a second to finish and can be further improved,

however there are a total of only 390 samples for the initial placement phase in the

corpus. There are 7k samples for the normal phase of the game, where players spend

the majority of the game. We could decide to use only part of the corpus instead

of the whole, similar to the well-known k-nearest neighbour algorithm, but iterating

over the whole dataset to decide on the k samples is still required. Moreover, deciding

which k samples to use based on relevance alone is not sufficient and we would need to

approximate the utility of the moves in the corpus beforehand. Finally, the abstraction

may be well suited for the initial phase of the game and cosine similarity has proven a

good metric, but it is not clear if this will extend well to the full game.

4.2 Conclusion

We applied a nearest neighbour approach to learn a policy for one of the most impor-

tant actions in the game. The results have shown that the corpus data contains some

useful advice but this method is not sufficient on its own to play optimally. Due to the

amount of data available combined with a naive distance metric, the method cannot

generalise to unseen situations even for a single action. This raises some concerns to

how well this will extend to the full game. In addition, this approach is very expensive

and approximations to this method would be difficult without evaluating the corpus

data beforehand. Performing an accurate evaluation is itself a very challenging if not

impossible task given the nature of our corpus and the game’s stochasticity.

The results pointed out the benefits of planning at decision time. MCTS has proven

to be highly successful, both on its own and to improve on the advice from the mining

method. It may be that, given our corpus, we can only extract general advice and we

will never be able to extract a policy that is able to generalise to the full game and

create long sequences of actions. As a result MCTS is a crucial part of the final agent.

Even though the rollouts handle the full game, we have only applied the tree phase of

the algorithm on a single action in the observable phase of the game. Therefore, we

focus on extending MCTS to handle trades and imperfect information in the next two

chapters, before we combine with a different model of extracting a policy from the

corpus.





Chapter 5

Monte Carlo Tree Search in

Observable Settlers of Catan

In this chapter, we focus on the MCTS extensions needed to overcome the challenges

encountered in the observable version of Settlers of Catan (i.e. a version where all

players can see each other’s resource cards). As discussed in Chapter 3.2, these are

mainly due to a large branching factor where (approximate) methods for estimating

their utility assign them largely the same values (as we’ll see shortly). In Settlers

of Catan, trading is the main culprit and, in addition to increasing the difficulty in

evaluating the available actions, it generates a cyclic behaviour as the effects of trading

can be easily undone. This results in a tree depth larger than ever treated before in

similar work on complex board games. The experiments and analysis presented in this

chapter increases our understanding of the game and demonstrate that trading is the

most challenging aspect.

First, we evaluate if the standard MCTS implementation can scale to a game of

such size and what are its limitations. We present a few well-known approaches to

increase its efficiency: parallelisation and sharing statistics in the tree. Despite their

well-known benefits, our experiments show that these improvements are not enough.

The goal of this chapter is to evaluate if we can exploit the structure of the game (see

ESH in Description 1.2) to address the challenges presented by trading. We adapt

MCTS to reason over an abstract version of the game (i.e. action types) to increase

the efficiency and strength of the agent. Finally, we address the thesis objective to

extract useful policies from a corpus under the low-resource constraint. Therefore, we

learn a simple policy for the abstracted game and modify how MCTS evaluates the leaf

nodes. Following the ESH, we evaluate if integrating preferences with action legality
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provided by the game rules increases the performance of the agent.

In order to remove the need to reason over hidden information in Settlers of Catan,

we make the players hands visible to every other player and treat the action of draw-

ing a development card as a chance event that informs every player of the outcome.

Given this modification, we will limit our discussion to the MDP framework in this

chapter (Chapter 6 will present a model that learns the full version of the game, which

incorporates the partially observable states and actions).

5.1 Monte Carlo Tree Search

We will now present MCTS in more detail following the brief description in Chapter 2.

It is a planning method for finding optimal solutions that combines random sampling

of the decision space with the precision of a search tree (Coulom, 2006; Browne et al.,

2012). The high-level structure is presented in Algorithm 1. It performs forward search

to evaluate the current state of the game using statistics from simulated experience.

This experience is generated using a model of the environment. Such simulated expe-

rience is preferable to avoid performing exploration in the real environment, especially

in a competitive setting.

create n root node;

while within computational budget do
n← TREE POLICY(n);

r← ROLLOUT POLICY(n);

BACKPROPAGATION(n,r);

end
return BEST ACTION(n);

Algorithm 1: The basic MCTS algorithm

MCTS only needs access to the samples and can work with “black-box” models.

Unfortunately, like any model-based learning method, it is not guaranteed to find the

optimal policy if the game model is imperfect. In our application, we have access to an

exact model of the environment, so the search will not be affected by the approximation

error resulted from learning the environment. But, inferences about which action is

optimal is still approximate and prone to error because, while sampling converges on

true solutions in the limit, finite resources mean you may not ever reach those limits.

Furthermore, Settlers of Catan has a big branching factor and it is very likely that
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only a set of the available actions are worth exploring. Focusing the search towards

promising areas of the space makes better use of the available budget. This is the

motivation for using a policy extracted from the corpus of human play and at the same

time for modifying MCTS to reason over action types as we will show in this chapter.

MCTS presents additional characteristics that are beneficial to the problem ad-

dressed in this thesis. The most important ones are: (a) it is an anytime algorithm,

and (b) it builds an asymmetric tree (Browne et al., 2012). The thesis is concerned

with finding policies in complex games given a strict computational budget and lim-

ited human resources, so being able to stop the algorithm at anytime and return an

approximation to the optimal policy is crucial. Building an asymmetric tree suggests

that the algorithm is able to focus on the most promising area of the game tree in

time. This is a characteristic we would like to exacerbate when combining with prior

knowledge taken from previous play. MCTS’ policy also improves in time due to its

bootstrapping behaviour. This is achieved by iteratively adding new nodes to the tree

in combination with a policy that offers a good balance between exploring less visited

branches and exploiting promising ones such as UCT. The standard tree policy is given

in Algorithm 2. EXPAND(n) adds the children nodes to node n and returns one child

sampled uniformly. SELECT UCT(n) uses Equation 2.10 to select the child node that

results from executing the action a with the maximum UCT value in the state s cor-

responding to node n. We make the reasonable assumption that game states and tree

nodes are somehow linked, and that the game state can be retrieved given access to the

tree node.

while n is non-terminal do
if n is a leaf node then

return EXPAND(n);

else
n← SELECT UCT(n);

end

end
return n;

Algorithm 2: Standard TREE POLICY

The rollout step follows and it utilises the game model G (i.e. access to step(s,a)

function, reward function and knowledge of when the game has ended) to play the

game until a terminal state is reached as shown in Algorithm 3. The policy (π(s))
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chooses an action uniformly at random from the list of legal actions and is called the

default policy. Finally, the statistics stored in the nodes are updated based on the re-

sult of the rollout. When the computational budget limit is reached, the best action is

executed in the real game (i.e. BEST ACTION(n)). There are multiple methods for

choosing this action, e.g. max child, robust child (Browne et al., 2012). For our imple-

mentation we select the action that yields the highest reward average, i.e. maxQ(s,a),

to be played in the real game (see Appendix C for an alternative approach for the

BEST ACTION(n) function).

s← n.getState();

while s is non-terminal do
a∼ π(s);

s← G.step(s,a);

end
return reward for s;

Algorithm 3: Standard ROLLOUT POLICY

MCTS has been applied to two different environments: standard MDP environ-

ments where illegal actions are allowed but the environment doesn’t advance, or multi-

player game environments where illegal actions are generally not allowed. Since Set-

tlers of Catan is a multi-player board game, we don’t allow the execution of illegal

actions. We briefly show here that illegal actions have no effect on the expected return

in an MDP given some conditions. Therefore, excluding illegal actions would re-

duce the space a planning method needs to search without modify the optimal policy.1

The two conditions are that the reward function provides highly sparse rewards, i.e.

R = {0,1} received at the end of the game, and that the game is an undiscounted MDP,

i.e.γ= 1. Both conditions are true in our implementation. Illegal actions can be defined

in an MDP using a deterministic transition function, such that ∑s′ 6=s P(s′|a,s) = 0 and

P(s|a,s) = 1. This definition requires that there is at least one legal action or the game

cannot continue. In general, this requirement is satisfied by the game rules which make

sure that states without legal actions do not exist or that the game ends in such a state.

1We make the assumption here that the agent is rational and acts to maximise it’s expected return.
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Given these conditions, the Bellman equation for an illegal action ai is:

Q(s,ai) = ∑
s′

P(s′|ai,s)[R(s′)+ γmax
a′

Q(s′,a′)]

= ∑
s′

P(s′|ai,s)[R(s′)+V (s′)]

= ∑
s′

P(s′|ai,s)V (s′)

=V (s)

(5.1)

We can drop the reward function R(s′), since players cannot finish a game with an

illegal action so it will always be 0 for illegal actions. Given this equation, the expected

return over two trajectories, where one contains several illegal actions ai and the other

only legal actions al (e.g. (s1,ai
1),(s1,ai

1),(s1,al
1), . . .sn,al

n versus (s1,al
1), . . .sn,al

n),

would be the same. This means that illegal actions only increase the length of trajec-

tories so it would be beneficial to ignore illegal actions in this case. Luckily, we have

access to a function provided by the game model that can be used to recognise illegal

actions during the planning phase:

II(s,a) =
1 if a is legal

0 otherwise
(5.2)

We can change the Bellman equation by multiplying each action value with the

output from this function that checks action legality: Ql(s,a) = II(s,a)Q(s,a). This

ensures that the value of illegal actions is Ql(s,ai) = 0. The only time illegal actions

would still be considered is if argmaxai
Ql(s,ai)= argmaxal

Ql(s,al)= 0 (breaking ties

randomly) since the value of legal actions is obviously unchanged. This means we can

still generate trajectories with illegal actions if there is no better option. MCTS applied

to game environments takes this further and disallows illegal actions altogether. This

would be equivalent to modifying the function that checks action legality as following:

II(s,a) =
1 if a is legal

−∞ otherwise
(5.3)

To conclude, we do not allow illegal actions in the tree because these only increase

the size of the tree, but we prefer the first definition of the action legality function

when computing the Q-values. Firstly, the second option is incorrect because it is
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equivalent to saying that executing an illegal action would cause the agent to lose the

game. In reality, a server (or the peers in human games) would inform the agent that the

action is illegal without any consequences. So nothing happens if an illegal action is

executed and the game continues normally.2 Secondly, we use this function to compute

a different quantity in the partially observable version of the game and the former is

more appropriate in that setting as we will show in Chapter 6.

As previously described, there are a set of characteristics specific to complex games

that Settlers of Catan features. Accordingly, we add a set of standard techniques to the

base MCTS algorithm to address the game’s non-determinism and multi-player char-

acteristics. Sections 5.4 then presents further novel techniques that tackle the large

branching factor and depth of the game, the cyclic behaviour that arises from simulat-

ing the game, the varied cardinality of the sets of actions that are of a given type (we

explain why this cardinality is problematic unless it is tackled head on), and extracting

conditional preferences over types from the corpus.

MCTS can easily be extended to multi-player games by keeping track of the statis-

tics for each player in the nodes and modelling the turn change. Selecting an action in

the tree level is done by selecting the maximum UCT value of the player whose turn

it is. Non-deterministic actions can be handled by introducing chance nodes, where

the subsequent move is a nature move. These select the outcome of the player’s action

based on a distribution that is given by the game rules (e.g. the player rolls a die and na-

ture uniformly chooses one of the 6 outcomes). In addition, the planning model should

not have access to information specific to the hidden part of a game state. In Settlers of

Catan for example, we need to handle the order of development cards available in the

deck. This can be achieved by shuffling the deck before each MCTS iteration and treat-

ing the action of buying a development card as an action that has a non-deterministic

outcome (i.e. you buy the development card, but then nature chooses which card you

bought).

Some games present actions that may have a very large set of resulting states. In

Settlers of Catan this sometimes happens with the discard action, where the number

of resulting states is equal to all the possible combinations of resources a player can

discard. Given that our search budget is very limited, the number of iterations may

not be enough to make an informed decision. As a result, we treat the discard action

as a chance node with a uniform distribution over the space of outcome states when
2In human games attempting illegal actions could be a strategic move that misinforms the opponents

of the player’s intentions, but we consider a tightly controlled environment where we do not allow such
misdirections.
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the player has to discard more than 8 resource cards. If an agent must discard so

many cards, it already has access to abundant resources and a random discard will

barely harm it. This situation is also rarely encountered so this check only ensures that

experiments and planning do not take too long.

Finally, the game tree of a complex game usually contains multiple duplicate nodes.

These duplications could arise from either when the same state is encountered multiple

times in the same trajectory through the tree or when the same state can be reached via

different paths through the tree. It is best to reuse the information we have on these

states and this is achieved via a transposition table (Childs et al., 2008), where the

statistics are attached to the game state and multiple nodes could map to the same state.

To avoid impairing UCT’s ability to balance between exploration and exploitation, we

only update a node once per iteration no matter how many times it was accessed in

that iteration. The alternative is known as every-visit search (Sutton and Barto, 2018)

which we have not evaluated in our experiments.

In Section 5.2 we present how we parallelised MCTS. In each of the subsequent

subsections, we analyse the modifications we brought to the standard MCTS by com-

paring our final best model with a version of itself that does not contain the modifi-

cation. All of our MCTS agents are multi-threaded as described in Section 5.2 and

contain the standard techniques discussed above. Section 5.4.4 presents an empirical

evaluation of our best MCTS agent against the current state of the art models in Set-

tlers of Catan. The last section analyses the effect trading has on the performance of

the agent and the difficulty of the game.

5.2 Parallel Monte Carlo Tree Search

MCTS is easily parallelisable. We exploit this since we wish to balance the need of

sampling the game space to yield decent strategies with the need to decide on the next

move within a time interval that human opponents would tolerate. There are three

alternatives: leaf parallelisation, root paralellisation and tree parallelisation (Chaslot

et al., 2008a).

Leaf parallelisation performs multiple parallel roll-outs starting from a leaf node

and backpropagates all the results through the tree once all have finished. It is the

simplest to implement, but has a few disadvantages. First of all, the algorithm needs to

wait for all threads to finish before backpropagating the results. So it is inefficient in

its use of resources. Secondly, it is difficult to decide on the exploration term in UCT
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if the statistics are incremented in steps greater than 1.

Root parallelisation involves replicating the whole tree a number of times equal to

the number of threads used. The results are combined at the end of the search, before

deciding on the next move to make in the real game. It generally performs better than

leaf parallelisation, but it requires a good combination of the final results. It is memory

inefficient as it stores multiple trees and it duplicates a lot of the effort.

Tree parallelisation addresses the above issues by keeping a single copy of the

tree and using mutexes to lock the branches accessed by the threads. The locks are

global locks, where the whole tree is locked, or local locks, where each node requires

the accessing thread to get a lock. The latter has a better overall performance. It

is also more efficient since threads do not lock branches or sub-trees, so it is less

likely that threads will wait for lock releases. We have chosen a tree parallelisation

with local mutexes due to its advantages over leaf or root parallelisations. A lock-

free version implementation could be implemented (Silver et al., 2016; Chaslot et al.,

2008a), but it would probably provide a minor improvement in speed while sacrificing

a number of results. Our agents run a relatively small number of iterations compared

to other applications of MCTS (e.g. AlphaGo Silver et al., 2016), so we wanted a

synchronised approach to avoid any overwrites. To reduce the overhead caused by

the synchronisation, we are also using virtual loss to discourage multiple threads from

following the same path through the tree.

5.2.1 General Performance

We will briefly mention the performance of the multi-threaded version of our best

MCTS agent on a server with Intel Xeon quad-core CPUs at 3GHz frequency. This

agent requires a single CPU and 4GB of RAM. Multiple identical CPUs are used when

the number of threads is greater than 4. The time it takes to run 10k iterations as

presented in Table 5.1 can be tolerated by human opponents. As expected, the more

iterations are run, the more useful it becomes to increase the number of threads. We

didn’t evaluate the effect of the number of threads on the agents’ win rates, so we fixed

this number to 4 for all the MCTS agents in this thesis.

The times presented above represent how long our best MCTS agent requires to

plan the first move at the start of the game, where the rollouts are the longest. As the

game progresses, the length of the rollout diminishes so the planning time reduces. As

a result, we decided to measure a small set of statistics over 10 games in which our
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Iterations
Threads

1 4 8 16

10k 7518 2701 1747 1418

30k 21563 7548 4428 3954

40k 27302 9995 6862 5229

50k 36386 12743 8092 6682

Table 5.1: Time in milliseconds spent by the best MCTS algorithm on the first decision

of the game averaged over 100 Catan games.

best MCTS agent faces 3 Stac agents. Our MCTS agent performed 10k iterations and

used 4 threads. As Table 5.2 shows, the mean and median time are much lower than

the times presented above. Despite this, there are other factors that affect the planning

time such as branching factor. The maximum of 4 seconds is encountered in the normal

phase of the game, where there is a large number of possible trades.

Agent Min Max Mean Median

MCTS 45 3852 1433 1445

Table 5.2: The planning time in milliseconds of the best MCTS agent across the whole

game. Statistics are gathered over 10 games.

5.2.2 Fine-tuning other Parameters

For the sake of space and interest, we present only a partial exploration of the full pa-

rameter space. Better models could potentially be discovered if one were to perform

a more detailed search of all parameter combinations. We have performed the mini-

mum required optimisation and have analysed two important parameters: the number

of MCTS iterations and the C parameter in UCT. The former shows how our algorithm

scales in our environment with the increase of the available budget, while the latter is

a parameter that defines the exploration that is specific to each environment.

Table 5.3 contains the performance of our best MCTS agent against 3 (state of

the art, hand-crafted, rule-based) Stac agents when varying the number of iterations.

Even though the improvements get smaller, these are still noticeable even after 30k

iterations; but obviously increasing iterations comes at the expense of increasing the

decision time. We aimed to have a low decision time (so that human opponents will
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find our agents tolerable to play against) and we have fixed the number of iterations

to 10k given the time it takes to run these. The large number of experiments and the

computation time per move that can be tolerated by a human player (see Table 5.2) are

the main reasons for choosing 10k as the iteration limit and the number of threads to

4. The best value for the exploration parameter C was 0.5: higher values would reduce

the performance of the agent. See Appendix C for the effects of parallelisation and

C parameter on performance. All the unbiased MCTS agents presented in this thesis

used these values for the parameters, unless otherwise specified.

5k 10k 20k 30k 40k 50k

18.8% 36.2% 45.75% 55.95% 59.4% 61.01%

Table 5.3: Win rates of the best MCTS agent against 3 Stac agents, while varying the

number of MCTS iterations.

5.3 Afterstates

The initial UCT selection criterion was proposed by Kocsis and Szepesvari (2006) as

an application of the Upper Confidence Bounds (UCB) algorithm to trees. UCB is

used for selecting the next arm to pick in bandit based problems, therefore the natural

translation is to apply UCT to select the next action, instead of the next child node

(i.e. state). The literature has since branched out in two methods: the one presented

in Chapter 2, which selects the actions, and a method for selecting the outcome state

as shown in equation 5.4. V (s′) is the outcome state value estimated as the number of

wins out of the number of simulated plays when action a was chosen in state s and leads

to s′, N(s) is the number of times s was encountered before and N(s′) is the number of

times the outcome state s′ was encountered. These two approaches would be equivalent

if the nodes in the tree are unique. This is typically not the case in complex games, and

Settlers of Catan is no exception (for instance, an agent can exchange resources with

another player and then exchange them back again).

UCT (s,a) =V (s′)+C

√
lnN(s)
N(s′)

(5.4)

The resulting state immediately after executing an action is known in the literature

as an afterstate (Sutton and Barto, 1998) or a post-decision state (Szepesvari, 2010)
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(see Figure 5.1 for a simple illustration). These states account for non-deterministic

actions since they represent states immediately after a decision was taken but right

before any of the stochastic effects are performed (i.e. P(s′|a,s)). In addition to sep-

arating the deterministic effect from the stochastic effect of an action, the state space

(therefore also the afterstate space) is much smaller than that of the state–action pairs.

As a result, using the value of the states could be more economical and efficient than

using the action value (Szepesvari, 2010). Another benefit of afterstates is that differ-

ent state–action pairs could produce the same outcome state, so their values must be

the same (Sutton and Barto, 1998). Computing the action value using Equation 5.4

allows the results of the rollouts following either of the two state–action pairs to be

shared.

S1

S3

a1

S2

a2

S′3

P(s′|a,s)

S1

S3

a1

S2

a2

Figure 5.1: Simple example of afterstates or post-decision states. The first graph from

the left accounts for the stochastic effect or other unknown effects of the environment

(including the opponent model). Node S3 from the first graph is the state prior to the

stochastic effect of the action. Two different non-deterministic actions, executed in dif-

ferent states, could have the same afterstate if their set of successor states and transi-

tion probabilities are the same. The second graph shows the simplified case when the

actions are deterministic.

We now present an empirical evaluation of the effect of afterstates. We compare

the performance of our best MCTS agent with a version of itself that does not use

afterstates. The model that uses afterstates as in Equation 2.10 is referred to as MCTSA,

while the model that does not use afterstates is MCTS. We have re-tuned the exploration

parameter C of the MCTS agent and observed that the best value for this agent is 2.

Table 5.4 outlines the large benefit of afterstates. The table contains the performance

of the modified agents that are specified on the first column of the table. To clarify,

MCTSA wins 36.2% of the games versus 3 Stac agents, while the MCTS agent wins

only 3.42% of the games against 3 MCTSA. The MCTS agent is much weaker than

both the baseline Stac agent and its counterpart with afterstates. This result backs

up the hypothesis that using the value of the outcome state during UCT calculations
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can significantly reduce the complexity of the space. Every MCTS agent presented in

future experiments use Equation 5.4 so we avoid mentioning afterstates in their names.

Modified
Baseline

Stac MCTS MCTSA

MCTS 9.23% – 3.42%

MCTSA 36.2% 71% –

Table 5.4: Win rates of the MCTS algorithm with and without afterstates, collected over

2000 games.

5.4 Exploiting Domain Structure

Despite MCTS characteristics that make it a better choice over the alternative rein-

forcement learning methods, it still degrades with the length of the planning horizon

because the complexity of the planning problem increases exponentially (this is known

as the curse of history). One solution for handling this problem is to define a hierarchy

subroutine, also known as Macro actions or options which are composed of a sequence

of primitive actions. Dietterich (2000) introduced the MAXQ framework which recur-

sively decomposes the overall value function into a collection of value functions for

the subtasks, subsubtasks and so on. Experiments on the taxi problem show that the

MAXQ model can converge much faster than Q-learning. Vien and Toussaint (2015)

have similarly extended the MCTS planning framework, via a hierarchy of pre-defined

subtasks that in turn reduce the set of policies that can be considered. As a result, the

computational cost shrinks considerably, with the effect proportional to the length of

the macro actions (He et al., 2010).

These hierarchical models assume that subgoals can be easily identified by the

developers. Dietterich (2000) provides a detailed discussion on how this approach

relies heavily on careful reasoning when designing certain parts of the hierarchical

models, such as defining the subgoals or the use of state abstraction. In a game as

complex as Settlers of Catan, the smallest mistakes may cause such an approach to fail.

There are methods that can automatically generate these subgoals (Stolle and Precup,

2002; He et al., 2010; Chaganty et al., 2012; Vezhnevets et al., 2016; Fox et al., 2017),

but using such methods on a vast action space such as that in Settlers of Catan will

most likely result in defining an inaccurate game model. Furthermore, macro actions
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impose a structure on the task and having an incomplete definition of the possible

subgoals limits the possible policies that the agent can learn and the optimal policy

may be external to the set of possibilities generated by the limited set of subgoals the

agent is aware of. Another limitation of these methods is that they rely entirely on a

reward structure that provides feedback during the game. This is not the case in our

environment, where rewards are sparse and delayed (only binary rewards are received

at the end of the game).

The most closely related work is that of Xie et al. (2014) applied to improving

the exploration of a greedy best-first search algorithm. Their method clusters states

or nodes based on specific characteristics or heuristics which they refer to as a type-

based system. Their type-based system is then used to ensure that the search algorithm

doesn’t get stuck trying nodes of a specific type. Lelis et al. (2013) have applied a

similar type-based system to a tree search algorithm and noticed the modification made

the search more efficient. Unlike this previous work, we cluster the actions into types

rather than the states. We apply this system to the rollout phase of MCTS and notice

efficiency gains as well as performance gains measured in an increase in the agent’s

win rate. Furthermore, clustering actions allows us to extract a high-level strategy that

further improves how the rollouts evaluate leaf nodes. Such a system would not be

possible with a state type-based system due to the state space being much larger than

the action space.

There are also well developed ways of dealing with a large branching factor of

some complex games in the MCTS literature, such as grouping the moves according to

some characteristic and combining their statistics in the tree. This approach is known

as Move Groups, in which the moves are clustered based on a specific characteristic

defined in advance (Childs et al., 2008). Another very similar method is to group the

chance actions that can be executed from one state into a single group, which is called

node-groups (Jouandeau and Cazenave, 2014a,b). This approach works well when

there is some correlation between the moves such that the information on one move

gained during the search generalises to the other moves belonging to the same group.

These grouping techniques have only been applied to the tree level part of MCTS. We

also do not share the statistics between the actions of the same type since belonging to

the same type doesn’t imply that the actions have similar values.

In other complex games, splitting the decision into multiple steps and choosing the

order of the steps has greatly increased the performance of the algorithm (Kloetzer

et al., 2007; Cowling et al., 2012a,b). This approach requires expert knowledge of the
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domain to choose the parts as well as the order these are executed in. Cowling et al.

(2012b) mention that the important decisions should be higher in the tree. Since the

aim of this method is to also reduce the branching factor of the tree it resembles the

Move Group method, but these are two different approaches.

There are also many methods for improving the rollouts in the MCTS algorithm,

but these make use of existing rule-based implementations or hand-crafted heuristics

to bias the search. Previous methods employed an existing agent to search the game

(Dobre and Lascarides, 2015; Branavan et al., 2012) or define their own rules based

on expert knowledge (Cowling et al., 2012b; Chaslot et al., 2009). These methods are

sometimes referred to as pseudorandom games (Kloetzer et al., 2007). The rules used

in previous implementations need to be devised in advance and may not generalise

to all cases in the game. Furthermore, the resulting policy is a deterministic policy

that could get stuck in local minima. Subramanian et al. (2016) constrained the action

space by integrating rules to prevent known bad situations (e.g. avoid ghost in PacMan)

during rollouts in MCTS. The authors also combined these with options in the tree

phase of the algorithm. The options were generated via crowdsourcing (Subramanian

et al., 2011) while the constraints were created following a detailed analysis of varied

human play (Irani, 2015).

In this work we present an approach to sampling the decision space of a complex

planning problem, which increases both performance and efficiency. Instead of defin-

ing macro-actions or grouping actions based on a specific metric, we exploit the natural

hierarchy of the actions as it is defined by the game rules (i.e. Emergent Structure Hy-

pothesis described in Chapter 1 on page 5). We therefore sample from the set of legal

action types before sampling from the specific actions of the (sampled) type during

rollouts in MCTS. This results in a reduced branching factor and a reduced depth by

avoiding redundant behaviour. Such an approach has numerous benefits, particularly

in large domains where the sets of distinct action types vary a lot in size. For example,

it is unlikely to explore the benefits of ending the turn when it is one action in a set

of almost 600 legal actions. This approach is related to the Hierarchical Bayes model,

where a prior distribution over the hyperparameters yields a more expressive model

(Koller and Friedman, 2009). The hierarchy that we have defined is also similar to a

semantic hierarchy which can be used to reduce the search space, e.g. in computer

vision, such a semantic hierarchy can be exploited to acquire labels more efficiently

during annotation tasks (Deng et al., 2014).
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5.4.1 Action Types

The base MCTS algorithm relies on Monte Carlo sampling of the space to ensure that

an accurate estimation of the current state’s value can be performed given a sufficient

computational budget. The default sampling policy assumes a uniform distribution

over the legal actions given the current state. These actions could belong to the same

class of actions for simple games or could belong to one of many classes in more

complex games. In the case where there is a single class, or if the number of actions

belonging to each class is similar, the uniform sampling over all the legal actions would

ensure a sufficiently unbiased estimation. But, if the cardinality of different classes is

very different (e.g. the average number of trade moves is 64.8, while the average for

ending the turn is 1 in Catan), the resulting policy is more likely to execute an action

that belongs to a dominant class. The resulting estimation would be useful only if the

opponents in the real game have a similar policy (i.e. one where they tend to perform

actions from a dominant class). This is highly unlikely if there isn’t a huge benefit to

executing one of the actions from the dominant class over those of other classes.

Looking at Settlers of Catan, these types are encountered in what we call the nor-

mal phase of the game (Dobre and Lascarides, 2017) (i.e. the phase in the game where

the player has rolled the dice, and now has a choice of trading, building, buying or

playing a development card, or ending the turn). Most of the time is spent in this phase

in which players usually have to decide between multiple types of actions. We have

copied the table with the list of action types introduced earlier (see Table 5.5). The

table also includes the probability of actions belonging to a type being legal, the av-

erage number of actions belonging to the type when this is present, and the maximum

number of actions for each type. These are computed over all the decisions made in

this phase during 10k games. The games were generated using the standard random

policy of selecting uniformly at random from all legal actions indifferent of their type.

The high values for the trade actions indicates that players have to generally decide

between many trade moves and a few moves belonging to other classes. A uniform

random policy over this set is much more likely to choose a trade action. This policy is

weak since this action type is not sufficient: trades are necessary to quickly gain access

to scarce resources, but executing other action types is required to win the game.

Another characteristic that causes difficulties in turn-based complex games is that

the end turn action is always present and the type cardinality will almost always be

smaller than the other classes. In Go, a simple heuristic can handle this case since it
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Action type Probability Average Maximum

Build road 0.0547 5.48 19

Build settlement 0.0331 2.82 13

Build city 0.0122 2.71 5

Buy development card 0.0114 1 1

Trade with opponent 0.9982 64.8 512

Trade with bank/port 0.2361 4.47 20

Play knight card 0.0001 16.16 29

Play monopoly card 0.0010 3.92 5

Play discovery card 0.0005 15 15

Play free road card 0.0023 6.35 34

End turn 1 1 1

Table 5.5: The list of action types during the normal phase of the game, the probability

of the type of action being available, the average number of actions when the type

is available and the maximum number of actions of each type. These numbers are

collected from 10K games with 4 players, where each player follows the default random

policy over all legal actions.

is well known that it is generally better to not pass your turn. In Settlers of Catan,

ending the turn has a high strategic importance: player’s may choose not to execute

actions in order to avoid informing the other players of their plans. There are also

other situations where ending the turn might be desirable over other actions (e.g. a

player can build a road, but may want to keep its resources so it can build a settlement

in the following turn). This small cardinality compared to the other types means that

the action is unlikely to be tried if other types are also available.

There are many other large complex games, such as most of the multi-player board

games or video games (e.g the Civilisation series, Diplomacy, Battlestar Galactica,

Monopoly), that have a large branching factor and present a clear structure in the rules

of the game. These games have similar challenges to Settlers of Catan as the cardinality

of specific action types would be greater than that of others (e.g. negotiations in the

Monopoly game).
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5.4.2 Extending the Rollout Policy

We now present the formal details. Let T be the set of action types and t ∈ T . a

is an action option from the set At of actions belonging to type t. n is a tree node

and s is the corresponding game state. Algorithm 4 shows how the rollout policy can

incorporate a step of selecting the action type based on a policy πt(T ) then select the

action description based on a policy πa(At).3 In Settlers of Catan for example, road

building is a different type of action to city building; but the specific description of

such actions include where to place the piece on the board. In the simple case, which

is also what we evaluate in our experiments, these two policies select uniformly at

random from the available actions.

A uniform prior would be sufficient to address the concerns presented in the previ-

ous section. However, this model can easily be combined with an opponent model or a

better sampling strategy if one is available, just by training a set of parameters that de-

fine the distribution over types and the distribution over action descriptions for a given

type. Just as a Hierarchical Bayes model defines richer priors, this separation allows

a more expressive opponent model to be implemented and permits more interesting

combinations of Monte Carlo planning with data driven models. Another side effect of

the method is that it reduces the branching factor of the game: only the actions belong-

ing to one type are listed as available and the number of classes is inherently smaller

than the number of all actions indifferent of their type.

s← n.getState();

while s is non-terminal do
T ← G.action types(s);

t ∼ πt(T ));

At ← G.actions o f type(s, t);

a∼ πa(At));

s← G.step(s,a);

end
return reward for s;

Algorithm 4: Extended ROLLOUT POLICY

Table 5.6 shows the effects of introducing the second step in the sampling policy on

3The algorithm makes the reasonable assumption that the game developer can provide the functions
action types(s) and actions o f type(s, t) to categorise the actions into types. The game rules must
permit such a categorization as it is the case in Settlers of Catan.



76 Chapter 5. Monte Carlo Tree Search in Observable Settlers of Catan

the depth and time of the random rollouts. Despite the extra sampling step, the gains

are massive. To illustrate the differences, a game between 4 players, where one is the

standard (untyped) MCTS agent and 3 are Stac, finishes in 17 minutes. In comparison,

a game with one typed MCTS (TMCTS) agent and 3 Stac agents finishes in under 3

minutes. Note that running 10k iterations of the typed MCTS algorithm (see Table 5.1)

is cheaper than just running 10k of random typed rollouts. We believe this is caused by

the focused approach of the tree selection policy in combination with the importance

of the free initial placement stage. Comparing the rollouts of the 3 MCTS agents

(vanilla, SmartSettlers and the typed version), the typed MCTS algorithm presents

the most balanced and diverse sampling of the decision space. The standard algorithm

prefers trades over all given the probabilities included in Table 5.5, while SmartSettlers

has a preference towards building pieces over the other action of the game given the

heuristics used by the authors (Szita et al., 2010).

Policy time depth

Default 583384 11715

Typed 8530 420

Table 5.6: Comparing the typed sampling against the single step sampling over 10k

Catan games. The time spent is in milliseconds. Both methods are single-threaded.

The results presented here show the benefits of the action type hierarchy over the

vanilla MCTS method. Due to the expensive planning of the (untyped) MCTS method,

we compared it only against our proposed model (TMCTS) and the Stac agent. Also,

the legal trades actions have been reduced to only 1 for 1 exchanges for this experi-

ment. Otherwise, the standard MCTS method would take to long to finish the search,

given the time required to perform random rollouts as shown in Table 5.6. We have per-

formed this experiment twice: once when the number of iterations was fixed to 10k for

both planning methods (Table 5.7); and the second with a budget limit of 1.5 seconds

or 50K iterations, whichever is reached first (Table 5.8). The 1.5 seconds budget was

chosen based on the average time our strongest agent spends planning (see Table 5.2),

and the 50k limit is the upper limit that we used in all our experiments. As before, the

modified agents are specified on the first column and the corresponding baseline on the

second row.
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Modified
Baseline

Stac MCTS TMCTS

MCTS 22.34% – 9.58%

TMCTS 36.2% 54.3% –

Table 5.7: Win rate of the MCTS agents with and without the type categorisation, and a

limit of 10k rollouts. Each result is measured over 2000 games.

Modified
Baseline

Stac MCTS TMCTS

MCTS 6.55% – 0.81%

TMCTS 27.98% 88.57% –

Table 5.8: Win rate of the MCTS agents with and without the type categorisation, and

a limit of 1.5 seconds (up to a maximum of 50k rollouts). Each result is measured over

2000 games.

5.4.3 Learning a Type Distribution from Human Games

Our end goal is to combine the planning method with a method that extracts a policy

from our human corpus. We aim to use this policy to improve both the tree phase and

the rollout phase of MCTS. One simple way to improve the rollouts is by improving

the policy used to select action types πt(T ) over the standard uniform policy. This can

be achieved by learning a preference distribution over action types from the game play

stored in the corpus as we suggested in Dobre and Lascarides (2017). The simplest

approach is to estimate this distribution via Maximum Likelihood Estimation (MLE)

which counts the number of times an action type was selected in the corpus over the

number of times this action type was legal. We use a function C to represent the counts,

a function type(a) to represent the type of the chosen action a and a function legal(t)

to indicate that a type t is legal (i.e. there is at least one legal action of type t) or not

(there are no legal actions of type t):

π
u
t (T ) = P(T = t) =

C(type(a) = t)
C(legal(t) = True)

(5.5)

A very similar approach was performed by Bitan and Kraus (2017) in Cheat, the

main difference is that we use the game rules that define what an action type is while

they partition their action space manually. Bitan and Kraus (2017) have an abstract
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representation for each action to avoid including the full space of possibilities: instead

of including the exact value of the rank claimed by an opponent, they cluster all higher

ranks and all lower ranks together. Given the game’s termination conditions, they are

also able to run rollouts in this abstracted space. Neither the abstraction nor running

such rollouts is possible in Settlers of Catan where we need the exact state descrip-

tion to access the end game conditions. Another major difference is that they learn

this distribution by counting the total number of times an abstract action was selected

without taking into consideration if the action was legal or not. We found this rather

odd since the authors take into consideration the possibility of actions being illegal and

normalise accordingly when performing the actual rollouts.

Ideally, one would like to also condition on the state representation, such that this

preference would resemble an action value function Q(s,a). It is clearly impossible to

use a tabular representation in a game of the size of Settlers of Catan when we have

access to such a small set of samples (60 games). We used a non-linear function ap-

proximation to condition this Q-value estimation on a state representation in Chapter 7.

For now we want to include any additional information without conditioning on aspects

that would clearly result in an extremely sparse space such as states or sequences of

actions. None of the previous research has considered learning a policy over action

types as well as conditioning on the set of n legal action types given the current state

s. We use a function Γ(s) =< legal(t1), legal(t2), . . . , legal(tn) > to represent this set

of legal types. Therefore we modify the previous estimation in Equation 5.5 by using

a list that contains the legal types as a condition and counting the number of times a

type was selected when this condition was true in the corpus:

π
c
t (T,Γ(s)) = P(T = t|Γ(s)) = C(type(a) = t)

C(Γ(s))
(5.6)

In words, this approach captures the fact that a human player’s policy includes

preferences of executing certain types over other types when both are legal. The un-

conditioned distribution may be very skewed towards the more common types that are

more likely to be legal and at the same time more likely to be executed in a game rather

than preferred. Such a skewed distribution will not reflect the fact that certain types that

are known to be good by players are less likely to be encountered in a game. A simple

example in Settlers of Catan would be to consider how often the player selected to build

something over trading when both actions are available. Trading is a means to acquire

the requirements for executing other actions which in turn will get the player closer to

winning the game. The conditioned distribution encapsulates these preferences as well
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as others such as preferences (or possibly indifference) of building settlements over

building cities which such a conditioning can capture. These preferences can be seen

as a weak form of defining options or macro actions. However the preferences are not

compulsory milestones as it is the case with defining sub-goals, overcoming the issues

we presented earlier with enforcing a structure. Avoiding sub-goals is especially useful

in a multi-agent environment, where these goals may not be achievable due to agents

racing for the limited resources. Another benefit of our approach over pre-defining

macro actions, is that these preferences can be easily extracted automatically from a

small corpus of mixed play, while learning macro actions is a very challenging task.

Capturing user preferences is known to be very useful in decision making and a

very popular method for representing them is a Conditional Preference Net (CP-Net)

(Boutilier et al., 2004). Simple preferences can be represented as: a � b (a is strictly

preferred over b), a � b (a is equally or more preferred to b) or a ∼ b (the agent is

indifferent to either a or b). CP-Nets are graphs which can represent more complex

preferences by slowly incorporating more variables based on an ordering that shows

how parent variables affect preferences over other variables. Therefore a CP-Net can

represent conditional preferences of the form a : b � c (if a is true then the agent

prefers b over c). It is obvious that Equation 5.6 learns a probabilistic version of a

shallow CP-Net, known in literature as Probabilistic CP-Nets (PCP-Net) (Bigot et al.,

2013). The learned PCP-Net is 2 levels deep: the first level provides preferences of

the form a � ¬a (agent prefers executing action a over not executing action a), while

the second level contains preferences of the form ab : c�¬c (if a and b are also legal,

then the agent prefers doing c over the other actions). The benefits of PCP-Nets is

that they account for possible noisy preferences or when the whole set of variables that

affect the user’s preferences is unknown. In our case, a probabilistic representation

accounts for the fact that there are multiple players that generated the data and we

collapse this to a single preference representation for a standard player. There is some

work in combining preference learning with reinforcement learning (Fürnkranz et al.,

2012), but none of the previous approaches integrate conditional preferences as well

as combine these preferences with a type-based system.

Despite the fact that the action type space is small, our corpus is still highly sparse

and we still do not have enough examples to learn a good estimation for each possible

condition. Therefore we learn both the unconditioned and the conditioned policies and

when we encounter an unseen condition or we do not have any counts of the action

being selected when the conditioning is true, we fall back to the unconditioned case.
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Due to time limitation, we have not explored any smoothing strategies (other than the

backoff strategy just given) to account for fewer or no counts for certain types. Our

data is sufficient to at least have some counts for every type in the unconditioned policy.

It is worth mentioning that we normalised the two policies to sum to 1 since the types

are not always legal.

We have run an empirical evaluation where we pitched these modified agents versus

3 Stac agents. In Table 5.9 we have 3 modified agents:

• uniform which uses the typed rollouts with a uniform policy over types πt(T );

• unconditioned which uses the typed rollouts with the policy over types πu
t (T )

learned using Equation 5.5;

• conditioned which uses the typed rollouts with the policy over types πc
t (T )

learned using Equation 5.6, and falling back to πu
t (T ) from Equation 5.5 when

the condition was not encountered in the corpus (i.e. C(Γ(s)) = 0).

Modified
Baseline

Stac uniform unconditioned conditioned

uniform 36.2% – 23.60% 17.60%

unconditioned 30.85% 25.00% – 17.22%

conditioned 41.45% 34.40% 35.34% –

Table 5.9: Win rates of the TMCTS agents while varying the distribution over types;

each result is collected over 2000 games.

All 3 agents are able to easily win when pitched against 3 Stac agents, but sampling

from the unconditioned distribution yields the weakest result (30.85%). In fact, this

approach is not even able to perform significantly different to the baseline performance

when playing versus 3 agents that use the uniform distribution to sample action types,

winning exactly 25% of the games. The agent using the conditioned distribution is the

best performing agent since it easily defeats every other agent, and none of the other

agents are able to win over 25% of the games when playing versus 3 agents of this type.

As before we will integrate reasoning over types in the rollouts in all our future MCTS

agents. However, we want to be able to evaluate the benefits of future modifications

independent of those brought by learning the distribution from the corpus. As a result

we will use the uniform distribution over types, unless otherwise specified.
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The win rate of agents shows that certain modifications are improving the agent, but

it does not provide any indication as to why these modifications succeeded. As shown

in Figure 3.2, analysing game play is very challenging, therefore cherry-picking state–

action pairs from the experiments may provide a biased explanation. Instead, we take

advantage of the structure of the environment (following the ESH introduced in De-

scription 1.2) and indicate how the average behaviour of the agent changes following

the modifications we make to the algorithm. For example, we can show what type of

actions the agent prefers as the percentage of that type the agent executed out of the

total actions the agent executed. In this analysis, we only include build road, build

settlement, build city and play development card actions. In the interest of clarity, we

do not include trading, stealing, discarding or rolling dice actions. However, we in-

clude other statistics: average number of times the agent achieved the largest army or

longest road awards, and the average number of resources the player received from the

roll dice action. The average number of times the agent received an award can be over

1, since the player may have lost and regained the award multiple times per game.

Table 5.10 contains one such analysis for the experiments presented in Table 5.9.

These statistics show how different the effects of the unconditioned policy are com-

pared to the conditioned one. The conditioned policy biases the agent towards build-

ing more cities (12.96% from 10.94%), and dramatically reduces the focus on roads

(50.93% from 52.39%) including aiming for the longest road award. On the other hand,

the unconditioned policy increased how many roads the agent built more than the build-

ing of settlements and cities. However, building cities and settlements is known to be

a good strategy as it is the only way to access the required resources from dice rolls.

As can be seen, the production of resources from dice rolls is increased when the agent

uses the conditioned rollout policy (52.68) over the unconditioned policy (51.53).

The policy represented by the shallow PCP-Net learned via MLE is a very quick

method for integrating prior knowledge into rollouts. This shallow and quick method

for utilising human data was effective, even though we had access to only very small

amounts of human data, namely 60 games. Table 5.11 contains a comparison of the

conditioned distribution to the uniform distribution over types. Since we want to keep

the agent decision time low, a quick heavy rollout is preferable to methods that include

complex heuristics or make use of Neural Networks. In fact the need for quick rollouts

is well known and there is a lot of research in this area. For example, Xiao and Müller

(2017) use a Factorization Bradley-Terry model to learn the interaction strength be-

tween the features used to define the legal actions. AlphaGo (Silver et al., 2016) uses
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Statistic
Agent

uniform unconditioned conditioned

Avg number of actions 14 13.78 13.76

Percentage build road 52.39% 53.07% 50.93%

Percentage build sett. 12.55% 13.66% 14.81%

Percentage build city 10.94% 11.46% 12.96%

Percentage play card 24.13% 21.81% 21.30%

Avg LA count 0.28 0.23 0.25

Avg LR count 1.04 1.01 0.98

Avg rss. from dice 52.27 51.53 52.68

Table 5.10: Statistics for the modified agents from Table 5.9 when playing versus 3

Stac agents. Sett stands for settlement, LA for largest army award, LR for longest

road award and rss for resources. Averages are computed over the number of games,

while the percentages are computed out of the average number of actions (i.e. the first

statistic). For example, the uniform agent builds 52.39% roads from the 14 pieces it

builds on average per game.

a smaller Neural Network that represents a policy during the rollout phase of MCTS.

Agent Min Max Mean Median

uniform 45 3852 1433 1445

conditioned 59 4149 1470 1477

Table 5.11: The planning time in milliseconds of the best MCTS agent while varying the

type distribution. These values are measured over 10 games.

A possible extension is to use the distribution learned via MLE as a prior that is up-

dated during planning or during the real game play if we want to model the opponents.

Rosman and Ramamoorthy (2012) presented an interesting approach to accelerate re-

inforcement learning by defining priors over actions conditioned on states or observa-

tions in a tabular representation. The authors used the prior to perform a more informed

exploration step in an ε-greedy control policy. They use a Dirichlet distribution and

update the counts only when the action was chosen in a greedy manner. In this way the

distribution averages the Q-functions and bootstraps exploration with this knowledge.

The extension of initialising the counts according to a set of trajectories followed by

updating it during learning was actually proposed by the authors for learning a prior
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over actions (Rosman and Ramamoorthy, 2012) instead of action types.

5.4.4 Empirical Evaluation against the State of the Art

Table 5.12 shows the performance of our uniform (typed) MCTS agent (TMCTS)

against the two current state of the art agents, Stac and SmartSettlers (see Section 3.5

for a description of the two agents). As a reminder, SmartSettlers cannot trade so our

agent does not trade with opponents either when playing against SmartSettlers, while

trading is allowed in games versus Stac agents. Table 5.12 shows the performance of

the modified agents which are specified on the first column of the table. To clarify,

TMCTS agent wins 36.2% of the games versus 3 Stac agents, while one Stac agent

wins only 15.18% of the games against 3 TMCTS. Evaluating the agent both ways

guards against the possibility of the modified agent winning only due to having a dif-

ferent policy to the three baseline agents. To level the playing field between the two

planning agents, we aimed to limit the time each agent can take to deliberate before

executing an action. Unfortunately, SmartSettlers does not contain an option to set this

limit, so we had to limit the number of rollouts instead. 10k rollouts for our agent takes

approximately the same amount of time as 2k rollouts for the SmartSettlers one.

Modified
Baseline

Stac SmartSettlers TMCTS

Stac – – 15.18%

SmartSettlers – – 18.67%

TMCTS 36.2% 36.39% –

Table 5.12: Win rates of the TMCTS agent and the 2 state of the art agents: Stac

and SmartSettlers. Trading is allowed in the games against Stac, but not in the games

against SmartSettlers. Each result is measured over 2000 games.

5.5 Trading and Negotiation

We now describe in more detail how negotiations and trades are handled and how the

planning method interfaces with the real game. This is a challenging task. Negotia-

tions are composed of the actions of offer, reject and accept. Both in the real game and

during planning, when a player accepts another’s offer, the exchange of resources is
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executed. This means that the participating players must agree before a trade is exe-

cuted. In the real game, the other players have their own policy to decide on what is the

best action, e.g. the Stac agents accept offers based on their internal heuristic evalua-

tion of the action. When an MCTS agent plans, the best action (i.e. accept or reject) is

chosen based on the UCT value for the player that must respond to the offer. The main

difference in negotiations between planning and the real game is that counter-offers are

completely ignored during planning. The list of original offers is already exhaustive,

so any counter-offer will already be contained in this list. This action would not bring

any benefit aside from increasing the depth of the tree. In future work, this option

could be explored again in combination with reasoning about player types.

In addition to a large increase in the complexity of the search space when trades

are added (e.g. branching factor increased to 65 from 10 when trading is allowed), the

coordination between players is difficult to solve. For example, the planned offer may

fail to result in a trade in the real game because the opponent can reject the offer). De-

spite MCTS’s assumption that the opponents play optimally (i.e. they try to maximise

their expected return), the opponent’s evaluation of the best trade may be different than

the approximation performed by the planning method. The usual application of MCTS

is to plan and select one best action to execute in the game, then repeat for each sub-

sequent state. But, with negotiations in the real game, this search strategy carries a

risk of cyclic behaviour that will block the progression of the real game: the planning

model may choose the same trade offer repeatedly and the opponent may always reject

it.4 One obvious solution is to implement a tabu list that keeps track of the failed offers

while replanning. Replanning from the same state would however replicate the same

effort several times and would slow down the experiments. In our implementation we

rank all available actions according to their value, which was already estimated in the

first search, and try to execute these actions in decreasing order. The agent makes a

new plan when an action is successful (indifferent of the action’s type). If it receives

a counter-offer to any of its offers, our agent treats it as a reject action to speed up the

negotiations in the real game. If the received counter-offer exists in the list of evaluated

actions, it will be considered by our agent only if nothing better is successful.

Since Settlers of Catan is a turn-based game, we must also consider how our agent

reacts to offers received during the opponent’s turn. We are not allowing our MCTS

agent to make counter-offers during an opponent’s turn due to timing issues and the

complexity of handling such a behaviour in JSettlers. Allowing these would also in-

4This issue could potentially be alleviated with an accurate opponent model.
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crease the time required to run experiments. Instead, the planning agent must choose

between either accepting or rejecting offers received during the opponent’s turn. Our

results show that our agent with these limits still outperforms the Stac agent, which

doesn’t have these limits.

As explained before, the same state may be encountered repeatedly during plan-

ning. This is problematic when the new nodes have not been explored enough and

uncertainty in their current value is high. Due to the tree policy of selecting the ac-

tion with the highest UCT value, the current search could get stuck in an infinite loop.

Again a tabu list or certain restrictions to disallow this cyclic behaviour seem like the

obvious solution. However, we have chosen a much simpler and cheaper alternative,

which takes advantage of how the virtual loss is used during multi-threading. Instead

of adding a virtual loss per thread, we increment a counter of virtual losses every time

a thread enters a node. In time, this cyclic behaviour is discouraged. This counter is

reset during updates.

5.5.1 Results

Trades add a lot of depth and complexity to the game. In a normal Settlers of Catan

game, trading with other players is desirable because it is more resource efficient than

trading with bank or port trades and has the potential to provide the needed resources

immediately in contexts where bank or port trades are not possible. Furthermore, due

to the layout of the board and the rules that decide how the players choose their initial

positions on the board, it is highly unlikely that a player will have access to all five

resources in a sufficient amount to achieve their goals without interacting with the

other players.

To highlight the above, we run a quick set of experiments, where we compared our

uniform TMCTS agent’s performance against 3 Stac agents when trades are allowed

in the game versus when trades are not allowed (i.e. either both the Stac agents and the

TMCTS agent are allowed to trade, or none of the agents are allowed to trade). In the

latter, the performance of the TMCTS agent would cap at 43% with 30k rollouts, as

can be observed in Table 5.13. With trades, the game is much more complex and we

can still observe an increase even at 50k rollouts.

We observed that the TMCTS agents make on average a large number of offers

when trades are allowed. Also, this number is only slightly reduced as the number

of rollouts is increased. Only 15% of the offers are accepted by the opponents in the
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Trades
Iterations

5k 10k 20k 30k 50k

no trades 33.9% 39.9% 40.8% 43.8% 42.85%

with trades 18.8% 36.2% 45.75% 55.95% 61.01%

Table 5.13: Win rates of the TMCTS agent against 3 Stac agents with or without trades

allowed in the game, while varying the number of iterations. Each result is measured

over 2000 games.

real game. Since such a behaviour may seem annoying to a human opponent, we have

tried two different ways of limiting it. Looking at the games collected in the corpus

by Afantenos et al. (2012), a decent human player makes on average far fewer offers

compared to novice players. Another possible cause for the reduced performance when

the number of offers are unlimited could be that the Stac opponents may benefit from

our agent’s eagerness to trade. Even though the Stac agents use rule-based policies

and would only accept trades that are relevant to their current plan, proposing so many

exchanges increases the chances of making one that is relevant to their plan. We be-

lieve a human player would also be able to exploit the unlimited agent’s behaviour.

So, we have implemented a version that limits the total number of offers per turn. We

also made the game model used by TMCTS aware of this limit. Table 5.14 illustrates

the performance of the agent with this limitation. This limit affects the agent’s perfor-

mance slightly, but it also reduces the total number of trades to a number that would

be tolerated by a human player.

Max offers per turn 1 2 3 4 5 unlimited

Win Rate 30.50% 31.10% 31.20% 33.75% 33.85% 36.2%

No. offers 18 36 45 57 70 527

Table 5.14: TMCTS agent’s win rates and average number of offers per game given the

number of offers it is allowed to make in total per turn. These are collected over 2000

games.

Appendix C shows that the trade limit has a higher impact on performance if the

algorithm is allowed to perform more than 10k iteration. As future work, it would

be interesting if the TMCTS algorithm could be modified and informed of a global

constraint, e.g. the agents are only allowed a maximum of n offers over the whole
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game. The goal of this modification would be to help the agent learn when to trade.

However, the current search method only optimises the behaviour of the agents in

the tree level (i.e. UCT) followed by long random rollouts to quickly evaluate leaf

nodes. This means the current algorithm is likely to use the allowance early instead of

partitioning it over the duration of the game.

5.6 Conclusion

This chapter presented the modifications necessary for scaling MCTS to the the full

action space of the fully-observable version of Settlers of Catan. Standard methods for

parallelising the algorithm and sharing results in the tree have proven useful, however

the biggest gains are due to extending the rollout phase with an action type based sys-

tem. Our best performing agent combines this type-based system with preferences ex-

tracted from the corpus via MLE, highlighting the need for prior knowledge to extend

sampling methods to complex domains. Conditioning the preferences on type legality

was crucial to improving over a uniform distribution. The benefits of the type-based

system and of the conditioning support the ESH presented in Chapter 1 on page 5.

Overall, the very good results indicate the need of a planning at decision time

method to win in complex games despite not using heuristics as in Chapter 4 to gener-

ate heavy rollouts. We have shown how even a sparse corpus that contains mixed play

can be used to improve the planning. Even if the advice is not optimal, the extracted

preferences represent how a standard player would play the game. Sampling from

this high-level advice enforces trajectories to be more similar to those encountered

in the corpus. Unfortunately, the proposed modifications were not enough to reduce

the agent’s eagerness to trade with the opponents. We need better ways to inform the

planning of the consequences of trading as a human player may take advantage of this

behaviour. Our current solution is to limit the number of trades the agent is allowed to

perform and we leave solving this problem to future work.





Chapter 6

Monte Carlo Tree Search in

Partially-Observable Settlers of Catan

A characteristic of Settlers of Catan that makes the game a challenging environment

for learning agents is the imperfect information. Due to the uncertainty over which

is the true state of the environment, an agent may need to consider a large number of

possibilities in order to take an informed decision. Therefore, the complexity of the

game is increased. In the previous chapter, we have showed that exploiting the game

structure can alleviate the explosion of possibilities caused by trading. In this chapter,

we evaluate if we can construct similar solutions to handle the imperfect information

in the game. Following the MAH (see Description 1.2), we build a model of an agent’s

belief and utilise it during planning. We also aim to exploit the ESH in building this

model since only certain portions of the state need to be modelled. Finally, the ex-

periments in this chapter will evaluate the different implementations by measuring the

performance of the agents in the full version of the Settlers of Catan game. The goal of

these experiments is to show the merits of each method and which aspects of the game

explain their performances.

6.1 Introduction

The game starts fully-observable, with the only unknown aspect being the opponents’

player types and the order of development cards in the deck. We leave modelling the

opponents to future work, while the order of development cards in the deck is bypassed

by treating the action of buying a development card as a chance node. As the game

plays out, however, certain action effects are not observable by all the players and the

89
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true game state is hidden. For instance, when one player robs a resource from another,

the unaffected players know the robbing has taken place but don’t know what’s been

stolen. Further, when an opponent has to discard resources, they don’t know which

resources the player discarded. Fortunately, the list of all possible outcomes can be

easily deduced given the state that the action was executed from and the rules of the

game. For example, when a player buys a development card it can only draw one

of: knight, monopoly, year of plenty, road building or victory point cards. There is a

fixed and known number of each in the deck initially. Given that we know the exact

quantities and the game rules, we can develop a game model that provides the exact

probabilities of the transition functions. Such a model will alleviate the steepness of

the learning curve, since learning has a single objective: finding the best policy to win

the game. This is in contrast to many decision problems that humans face in daily

life, where they must tackle learning the model as well as what is the optimal action.

For example, learning to drive has these (more complex) aspects to the learning task.

A beginner may initially be unaware that service vehicles can drive on the opposite

side in case of an emergency. This missing detail from their naive model makes it

impossible to plan in advance and sometimes also very difficult to know how to react.

For this reason, our agent has access to a complete and exact game model. As it is

generally the case in games, e.g. Szita et al. (2010); Silver et al. (2017), an accurate

game model can be developed due to the games’ clear structure described in the rules.

In other environments, one could have an abstract symbolic description of the relevant

aspects, e.g. Kaelbling and Lozano-Prez (2013) or attempt to learn a model at the same

time, e.g. Guez et al. (2013). Despite having access to an accurate game model, the

agent won’t know the true game state as the game progresses (even if the agent has

the luxury of infinite memory), and instead it has a belief of what the true state might

be. This belief model is represented as a distribution over the possible game states in

S. The size of S is massive given that certain actions (e.g. stealing and discard) have a

huge outcome range that also grows with the size of the initial belief. To make matters

worse, Settlers of Catan is a 4 player game which tends to increase the number of states

that are assigned a non-zero probability, given the current observations (for any given

player will be uncertain about the resources possessed by all 3 opponents).

A popular approach to address this issue is to sample fully-observable states, plan

in the observable version of the game, and then aggregate the results. But, making the

game fully-observable is inappropriate since the fact that some information is hidden

has strategic importance. For example, the development cards are always hidden until
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these are played, so a player could hold them in their hand until the right moment. Fur-

thermore, victory point cards are never shown and the other players cannot be certain

of how close an opponent is to winning the game. Even hidden resources can have an

impact in human games because a player can hide the fact that it has a specific resource

to negotiate a better trade. Overall, then, the ability to hide information from others is

part of what makes a strong Settlers of Catan player, and so we must be able to include

these strategies in a player’s decision making. This ability is extremely important in

commercial scenarios in mergers and acquisitions (e.g., you hide from a hostile bidder

for your company that you have a better offer from another more friendly company).

Sampling fully-observable states changes the behaviour of agents in both single and

multi-agent environments. Kaelbling and Lozano-Prez (2013) has observed multiple

benefits to integrating uncertainty in robot planning, while sampling and incorrectly

combining the results gives rise to what is known as strategy fusion in games (Frank

and Basin, 1998).

The algorithms presented in this chapter attempt to plan in what is known as the

Belief MDP. A POMDP can be translated into a Belief MDP as long as the belief

transitions are Markovian, i.e. each outcome belief can be generated from the in-

formation in the current belief. We provided a formal definition of the Belief MDP

in Section 2.3.2. As mentioned earlier, many current extensions to MCTS sample

fully-observable states at the root node in order to access the game model. The re-

sults of planning with those (fully-observed) samples are then aggregated in the Belief

MDP based on the trajectory of these samples. Following Kaelbling and Lozano-Prez

(2013), we depart from the sample-based approach and we evaluate if planning entirely

in the belief space is appropriate for non-cooperative multi-player environments. Kael-

bling and Lozano-Prez (2013) claim that this has multiple benefits over the current ap-

proaches that exploit sampling fully-observable states, since it encourages “intelligent

information-gathering behavior”. In addition, we hypothesise that sampling struggles

in large and highly uncertain situations because the planning will always be done over

a very sparse tree. If the support of the distribution representing the belief is massive

or it has a high entropy, then (perhaps) too many samples will be needed to estimate

the true distribution.

Reasoning over the belief of the agent allows reasoning over all possible actions

and at the same time aggregates the possible states. This permits sharing of certain

results such as winning or losing the game where the hidden part of the state doesn’t

necessarily contribute to the result. Furthermore, transitions in the belief space are de-
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terministic modifications to the current belief distribution so the variance of the result

would be reduced. But, in order to plan in the belief space, we require two parts:

• a model to represent and track the belief both in the real game and during plan-

ning;

• a model of the game that provides a reward and transition probabilities given the

belief of a player.

Before we present these two parts and the algorithms, we must briefly remind the

reader how we handle the multi-agent characteristic of the game. The POMDP frame-

work presented in Chapter 2 is appropriate, and as mentioned there we present the al-

gorithms from a single player’s perspective by making the assumption that each agent

acts to maximise their outcome. Therefore, planning is done via self-play, and we do

not include player types or reason over nested beliefs.

6.2 Tracking Belief in Settlers of Catan

The most popular methods for tracking the belief of an agent are to either use a particle

filter (Silver and Veness, 2010), or to create a model of the environment such as a

hidden markov model or a dynamic bayesian network (Russell and Norvig, 2009).

An alternative is to create an abstract representation of the game and track only the

relevant or more important aspects of the environment (Kaelbling and Lozano-Prez,

2013). The latter generally requires some knowledge of the domain. Given that our

task is one where the agent starts the learning process knowing all game rules, we

adopt this method of creating an abstract representation. Our goal is to have a belief

model that is as accurate as possible such that we can be certain of the performance

of the algorithms that use it. It is worth mentioning that all final algorithms presented

in this chapter make use of the agent’s complete and accurate knowledge of the game

rules to represent and update the belief of the agent.

Our implementation resembles that of a Factored POMDP (FPOMDP) (Paquet

et al., 2005; Williams, 2005). In a FPOMDP, the belief is not represented as a distri-

bution over a single state variable, instead states are represented as a set of M random

variables s=X1 = x1, . . . ,XM = xM and a belief is represented as a joint probability dis-

tribution over these variables b = P(X1, . . . ,XM). One approach is to assume complete

independence b = ∏
M
k P(Xk) (Paquet et al., 2005), but this is quite a strong assumption

that may not work very well in domains such as ours, where sets of variables determine
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actions legality as well as actions effects. For instance, the requirement for building a

road is to hold 1 wood and 1 clay, while the effect of stealing depends on the victim’s

entire hand. As a result we only assume independence between some of the variables.

We included a more detailed description of the belief model and belief transition func-

tion b′ = τ(b,a,o) that are specific to Settlers of Catan in Appendix D. As it is the case

with the observable game model, a belief model can be designed and developed due to

the clear structure described in the game rules.

There are three major benefits in factorising the belief in this way: belief update

is faster, enumerating possible legal actions is also faster and belief representation re-

quires a lower memory. The first and the second benefits are mostly due to how these

only target specific portions of the state as well as specific players. The latter is true

because (as with Bayes Nets) the factored approach offers a highly compact represen-

tation of the joint probability distribution over all possible states. These benefits are

also reported by Paquet et al. (2005). Kaelbling and Lozano-Prez (2013) show that

failed actions in the real environment can be used to update the belief followed by re-

planning, such that the robot can advance and achieve its goal. In Settlers of Catan,

action legality depends on part of the game that is observable from the current player’s

perspective. This means that players always know what is legal and what is not, so we

do not need to worry about actions that fail in the real game.

6.3 The Imperfect Information Game Model

Following the discussion in Section 6.1, our hypothesis is that planning in the Belief

MDP without marginalising over states is beneficial for several reasons:

1. it turns the transition function into a deterministic one, so it reduces the number

of chance nodes and the uncertainty as a result. In a Belief MDP, the transition

function P(b′|b,a,o) is deterministic (see Section 2.3.2).

2. it speeds up convergence to the true action value expectations in situations where

the belief distribution domain is massive and the entropy of the distribution is

very high.

3. it allows agents to learn strategically important moves since they can reason

about what opponents might want to keep hidden or reveal.

Kaelbling and Lozano-Prez (2013) showed that planning entirely in the belief space

results in intelligent and more realistic behaviour in single-agent environments. To



94 Chapter 6. Monte Carlo Tree Search in Partially-Observable Settlers of Catan

achieve this, the authors represented the belief as a set of fluents that are important for

the agent’s goal and belief update as a set of modifications to these fluents. They also

defined a set of observations and their likelihoods according to the robot configuration

and the sensors they had at their disposal. We used the factored representation pre-

sented earlier. We present in Appendix E how we implemented the set of action effects

and observations in the game model according to the game rules.

A further complexity in Settlers of Catan that we must address is the (hidden)

possibility that an opponent’s next action will result in the game being over. In the real

game, a server has access to the true state and it can inform all agents of the outcome.

During planning this is not possible since the algorithm has access only to one of the

agent’s belief. There are cases where the game has ended in some of the states that are

possible according to the belief model, but not in others. In other words, the agent is

uncertain about whether the game has ended! This is caused by the game rules that

dictate victory point cards are kept hidden until the player has gathered at least 10

victory points, including the points from these cards. There are many board games that

have this characteristic, such as Small World or Oregon, and there are also games in

which players have a hidden victory condition from a pool of possible ones, such as

Mission Risk (a variant of the well-known Risk game) or Ticket to Ride. In either of

these scenarios, the planning method must be able to take into account the possibility

that the game has ended and an opponent won.

So we need to introduce an extra chance node for the cases where a player’s ob-

servable victory points in combination with the number of unplayed development cards

could reach the required threshold of 10 for the game to end. For example, the current

player receives the longest road award that increases this player’s score to 9 victory

points. The player also has 2 unplayed development cards and our current player be-

lieves there are 3 victory points either in the development deck or in an opponent’s

hand. Given this information, we compute the probability that the player has at least

one victory point card (P(X j
v = 1)) using simple combinatorics. This probability indi-

cates how likely it is the game has ended ( and 1−P(X j
v = 1) indicates how likely it is

the game has continued). The chance node samples one of these outcomes accordingly

and, if the game continues, the development model is updated with the information that

the current player cannot have any victory point cards in their hand. This chance node

is encountered in the planning phase only, but the update to the development model

is performed in the real game as well when the server doesn’t end the game. We will

refer to this new chance node as the win/continue chance node through the rest of this
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chapter.

Finally, Kaelbling and Lozano-Prez (2013) did not have to deal with action legality

and could permit planning over illegal actions as long as these provide observations to

update the agent’s belief. As shown in Chapter 5, we cannot afford such a luxury due

to the massive action space. As a result we created our game model that can enumerate

all possible actions. The possible actions are defined to be the actions that are legal in

at least one state from those that have a non-zero probability mass in the agent’s current

belief (i.e. P(s|b)> 0). From now on we refer to the set of actions that are allowed in

the game as the action space, the set of actions that are allowed in a fully-observable

state as legal actions and the set of actions that are allowed in a belief state as possible

actions.

6.4 Partially Observable Monte Carlo Planning

Partially Observable Monte Carlo Planning (POMCP) (Silver and Veness, 2010) was

originally proposed as an approximate planning method in POMDPs. In undiscounted

POMDPs with highly sparse rewards such as our game, it is a straightforward exten-

sion of the MCTS algorithm presented in Chapter 5: the main difference is that the

nodes in the tree are histories h instead of true states s. Histories are list of tuples

ht =< (a1,o1),(a2,o2), . . . ,(at ,ot)> which are collected from interacting with the en-

vironment. The UCT equation can easily be adapted to use histories by replacing the

counts over states with the counts over the histories: Q(h,a) = Q(h,a)+C
√

logN(h)
N(h,a) .

Before each MCTS iteration, a fully observable state s is sampled from the agent’s

belief given the history at the root node (st ∼ B(ht)). In order to generate the history

during the planning phase, the state is used as input alongside the action with the max-

imum UCT value to a black box model of the game G(s,a). This model returns the

next fully observable state st+1, an observation ot+1 (used in combination with the ac-

tion a to update the history) and a reward rt+1 (which is 1 only when the game ended

and the agent won). Therefore, the sampled state is updated during the tree phase of

the algorithm. In the original paper, the belief of the agent is represented using an un-

weighted particle filter and particle reinvigoration as random noise is used to generate

new particles.

The algorithm is very quick since it never updates the full belief during the planning

phase and it only updates the current sampled state. It adds the sampled state to the

current history node if it is missing, so the algorithm slowly builds up the belief of the
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agent at each of the non-root nodes. Silver and Veness (2010) extend the rollout phase

of MCTS to the partially-observable case by creating a heavy rollout policy defined

over the history π(h) = P(at+1|h = ht). This policy is a probability distribution that

prefers certain actions given a small set of manually-defined heuristics. While intro-

ducing domain knowledge helped the algorithm considerably (as one would expect),

the set of legal actions given the history is the same as the set of legal actions given the

current sampled fully-observable state in their environment. The authors do not reason

over action legality, since this is not state dependent in the partially-observable version

of PacMan that they used to evaluate the algorithm. As a result, the state policy π(s)

and the history policy π(h) are the same because these are the same distribution defined

over the same set of legal actions. This is true for both the policy that prefers certain

actions and for the default uniform distribution. Unless additional reasoning over the

history is performed, the rollouts in POMCP are the same as the ones performed in a

standard MCTS algorithm over the fully-observable game.

6.4.1 Extensions

We want to compare the performance in our domain of tackling planning with imper-

fect information with the two distinct approaches we described above: i.e., the belief

transition model, in which uncertainty about the current state is maintained while fol-

lowing how the game might progress in MCTS versus the ‘sampling’ POMCP model,

in which the agent starts by sampling a fully observable state from its belief about the

current state, and follows the consequences of that in MCTS. We need to make several

modifications to POMCP. The most obvious one is the belief representation using a

particle filter. Particle reinvigoration is not straightforward in Settlers of Catan since

applying random noise to the state description could easily result in illegal states. We

would need a detailed model in order to be able to do this safely, perhaps by defining

certain bounds for each feature according to the current history. Unfortunately, this

would be just as complex as the factored belief model we described earlier. We have

therefore decided to replace the particle filter with our factored belief model.

A weakness of POMCP is using histories to represent nodes, especially in Settlers

of Catan. Transpositions can still be used by creating a hash map where the keys are

the hash values of the histories, but results are no longer shared. Hashing histories

enforces nodes to be unique. The action-observation pairs and their order must be the

same for two nodes represented with histories to be the same. Sharing statistics with
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transpositions has been known in the literature to be useful (Childs et al., 2008). The

results in Chapter 5 have also shown the large benefits of sharing action values using

afterstates in the observable version of Settlers of Catan. Obviously, neither afterstates

or transpositions can be implemented with histories. We need a representation for the

nodes that combines the observable part of the state with the agent’s belief. Hashing

the factored belief in the current format is expensive and redundant. So we use an

abstract representation of the belief as input to the hashing function. Similar to the

state representation, this abstract representation of the belief is a vector of features

(see Appendix F) that provide a sufficient definition to differentiate from beliefs in

other nodes. This is combined with the observable description of the state to represent

nodes.

Hashing this representation permits sharing of results when different actions or

sequences of actions lead to the same belief state b′. This is often the case in the first

half of the game, before discard and stealing occurs, when the belief model contains

only the true state of the game. But it is also encountered when the sequences of

actions do not reveal anything additional to what the agent already knows, such as the

cases where opponents trade or use resources that our agent is already certain they

own. Finally, it is possible that different actions executed from different belief state

would end up in the same outcome node as in the fully-observable version of the game.

Sharing results and using transpositions allows us to compute the UCT value of an

action a that results in belief b′, when executed in belief b (see Equation 6.1). This is

similar to how afterstates are used in the observable case (see Equation 5.4).

UCT (b,a) =V (b′)+ c

√
logN(b)

N(b′)
(6.1)

Even though this modification is beneficial, it requires access to the exact belief

to generate the abstract representation for the corresponding node. As a result, we

further depart from the original POMCP algorithm and we update the agent’s belief as

we traverse the tree phase of the algorithm. We still sample a fully-observable state at

the root node to advance the game using the observable game model G(s,a), but we

update the belief using the observation and our transition function b′ = τ(b,a,o) at the

same time.

Updating the belief makes POMCP more expensive. However, this update only

takes place during the tree phase of the algorithm, while rollouts use the observable

game model. There is only a small set of updates for each iteration and we believe the
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benefits of sharing statistics, as shown before, outweigh its costs. An obvious extension

would be to define a cheap update step so that we can update the abstract representation

directly. This would be an approximation of the full belief update step and would be

much quicker. Since the other algorithms presented in this chapter use the exact update

rule and the exact belief model, we decided not to make this modification such that we

have a fair comparison between the algorithms.

Silver and Veness (2010) have applied POMCP to environments where the agent

does not need to reason over the opponents’ action legality. Their environment is a

single player game, where the agent always has complete knowledge of which actions

are legal (in spite of the current game state being hidden). In Settlers of Catan, we need

to reason over what opponents can and cannot do, because a failed action would inform

the other players of what the agent doesn’t have. Similar to how we expand the nodes

with the set of legal actions in the fully-observable case, we expand the nodes when

the opponent is next to move with the set of possible actions given our agent’s current

belief. Based on the sampled state, we then mask out the edges that correspond to the

actions that are illegal. This is only a design choice. The alternative is to enumerate

all legal actions given the current state and slowly expand the node until all possible

actions are added. Both approaches achieve the same goal of not allowing to plan over

actions that are illegal given the state sampled at the beginning of the iteration.

A very popular and effective approach to improve any MCTS algorithm is to reuse

the statistics over the branch that was chosen in the real game in subsequent planning

phases. This has been done in the original POMCP algorithm, but we have not allowed

the reuse of statistics and each planning phase starts from the root node. This modi-

fication would clearly improve any MCTS algorithms presented in this thesis, but we

left it to future work due to time constraints. A final modification is that we use the

typed policy during rollouts as presented in Chapter 5. This modification has proven

crucial to the success in the observable version of the game. We have not compared the

original POMCP to this modified version because all modifications presented here are

clearly improving the original agent at the expense of slightly slowing down the tree

phase. This modified version resembles the algorithm presented by Bai et al. (2016)

who present state abstractions in MDP as turning the problem into a POMDP. However,

Bai et al. (2016) have also included options to create a hierarchical method. This is not

straightforward in Settlers of Catan as we discussed in Section 5.4. Our approach also

contains other differences such as: the typed policy that we use for rollouts, sharing

statistics by aggregating them in the outcome belief node, the factored representation
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of the belief model that provides the abstraction function, and the use of action legality

function to allow extension to a multi-player scenario. We use this modified version in

the experiments and we refer to it as TPOMCP (Typed POMCP).

Algorithm 5 presents TPOMCP. The observable game model G is extended such

that it can also enumerate the possible actions given a belief state, possible actions(b),

in addition to enumerating the legal action types given a state, action types(s), and

enumerating the legal actions of a given type in a state, actions o f type(s, t). We

included the typed rollout and the use of afterstates in this presentation. It is worth

mentioning that we can quickly access the statistics stored in a node corresponding

to a belief-state b′ because the observation model is deterministic as described in Ap-

pendix E. Therefore, we drop o to keep the algorithm clear. If the observation model

was not deterministic, we would need to delay P(O|s,a) and τ(b,a,o) to a chance node

after the deterministic modifications of the action are executed. This is similar to how

afterstates are implemented in a stochastic fully-observable game (see Figure 5.1). An-

other related aspect is that we do not need to recompute b′ = τ(b,a) for every a in the

selection phase of the algorithm (i.e. TreePolicy function). These are stored during the

expansion step, where each child node is connected to the parent. Finally, we do not

include the Backpropagation function as this is only incrementing the statistics in the

nodes that were visited in the corresponding iteration.

6.5 Information Set Monte Carlo Tree Search

Another very popular and simple extension to the standard MCTS algorithm in order

to handle games with imperfect information is Determinized MCTS (Bjarnason et al.,

2009; Browne et al., 2012). The approach is to sample a fully-observable state or a

determinization at the root node followed by building a tree for each different sampled

states. The planning is always done in the fully-observable version of the game, so a

standard MCTS algorithm can be used. At the end of the planning phase, the results are

merged and the action with the maximum aggregated value according to some metric

is selected in the real game. This approach has a few weaknesses:

• Nonlocality: Players have different beliefs of what the true state of the game

could be (Frank and Basin, 1998). So, agents must consider the opponents’

beliefs when reasoning on how they will direct the game towards what is most

favourable for them;
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Function Search(G, Tree, b):
n← Tree.new node(b))

while within budget do
s∼ b

n,s,b← TreePolicy (s, b, n, G, Tree)

s← Expand (s, b, n, G)

r← Rollout (s, G)

Backpropagate (r, Tree)

end
a← argmaxaV (b′), where b′← τ(b,a)

return a;
Function TreePolicy(s, b, n, G, Tree):

while n has children do

a← argmaxal
V (b′)+C

√
logN(b)

N(b′) , where al ∈ {a|II(s,a) = 1} and

b′← τ(b,al)

s← G.step(s,a)

n← Tree.get node(τ(b,a))

end
return n,s,b

Function Rollout(s, G):
while s is non-terminal do

t ∼ πt(G.action types(s))

a∼ πa(G.actions o f type(s, t))

s← G.step(s,a)

end
return G.reward(s)

Function Expand(s, b, n, G):
foreach a ∈ G.possible actions(b) do

Tree.new node(b′) where b′← τ(b,a)

end
a∼ {a|II(s,a) = 1} # uniform random choice

return G.step(s,a)
Algorithm 5: The TPOMCP algorithm
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• Duplication: The technique does not take advantage of nodes being duplicated

across trees, spending resources for recomputing their values (Cowling et al.,

2012a);

• Strategy fusion: There is a constraint that the agent must have the same strategy

indifferent of the sampled determinization (Frank and Basin, 1998). This is not

true in any algorithm that samples determinizations and combines the strategies

post-planning. So these would learn a sub-optimal policy.

Information Set Monte-Carlo Tree Search (ISMCTS) (Cowling et al., 2012a) was pro-

posed to address these issues observed with Determinized MCTS. It constructs a single

tree with nodes representing information sets rather than exact states to address the du-

plication issue. Information sets are sets of all the possible determinizations. When

combined with a probability distribution over the determinizations, they are equivalent

to belief states. At the root node, the algorithm chooses a determinization from the

ones available in the information set and follows a path down the tree based on which

actions are available given the chosen determinization. At every node it builds up the

information set by adding the determinization if it is missing. Strategy fusion is partly

solved by performing the selection step of the algorithm using the results aggregated

over all determinizations. In fact, the standard ISMCTS is equivalent to the POMCP

algorithm save for the UCT calculation, which is modified to avoid over-exploring un-

likely actions. Since ISMCTS samples determinizations, different subsets of actions

are available for each pass through a node. So, each action selection in the tree be-

comes what they refer to as a subset-armed bandit problem. The authors modify the

UCT formula to accommodate this by replacing the number of times N(b) a node has

been visited with the number of times N(b|legal(a) = True) the node was visited and

the action was legal. So, ISMCTS is also adapted to multi-player game environments

and reasons over action legality by modifying the UCT calculation as following:

UCT (b,a) =V (b′)+ c

√
logN(b|legal(a) = True)

N(b′)
(6.2)

Cowling et al. (2012a) present several improvements to the ISMCTS algorithm.

One of them is to keep the opponent’s partially observable actions hidden in the tree

and replace them with a chance node that selects their effect at random. The moti-

vation for this is that it reduces strategy fusion at the risk of weakening the opponent

model as the opponent cannot decide the outcome. We do not agree with the use of



102 Chapter 6. Monte Carlo Tree Search in Partially-Observable Settlers of Catan

chance nodes because we believe these generate a sparse tree when the results could

be aggregated. So we have instead integrated all possible effects in our belief tran-

sition function. However, the only partially observable move that the agent has full

control over is the discard action. In this case, the others can only observe the number

of cards that were discarded. When a player other than the one whose beliefs we’re

modelling performs a discard action, we assume in that belief model that this player

had no preference over its available actions. So similar to chance nodes, this is also a

weaker opponent model, but all resulting outcomes are aggregated. Player preferences

can be easily integrated into the belief transition function if we were to reason over

player types.

Another extension proposed, known as multiple observer ISMCTS (MO-ISMCTS),

is to keep track of the opponents’ beliefs as well. This version keeps a separate tree and

a separate belief for each participating player. During planning, all trees are traversed

in parallel and the algorithm selects the actions using the statistics from the tree whose

player is next to move. MO-ISMCTS attempts to address the non-locality issue as it

allows our agent to reason over opponents’ beliefs. However, this is an estimation. The

opponents’ beliefs and knowledge of the game state are based on our agent’s belief of

the game state. Therefore, the opponent’s actions will be an estimate of what their op-

timal play should be. It is obviously impossible to accurately track an opponent’s real

knowledge of the game state without providing access to the true game state. There

are methods that estimate or correct the belief distribution using the utilities of certain

actions estimated via MCTS (Wang et al., 2015), under the assumption that players

act rationally and aim to maximise their score. They increase the probability mass on

states that are more beneficial to the opponent because they expect the opponent can

decide which state they prefer.

MO-ISMCTS may result in our agent choosing not to rush into playing certain

actions because it can reveal certain information to the opponent. This may have a

high strategic importance if the negotiation moves would be more advanced and agents

would be able to react to these. However, MO-ISMCTS is more expensive compared

to ISMCTS as it must track at least the belief of multiple players and it must store and

traverse multiple trees. We aimed for the simplest possible model given that this thesis

centres on tackling complex games with limited computational resources (as well as

limited data resources). As a result, we only implemented the standard single-observer

ISMCTS algorithm with the partially observable actions effects integrated in the belief

updates to our factored model. We also introduced the typed rollouts in the ISMCTS
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algorithm since the approach has proven essential in the previous experiments. We

refer to this agent as TISMCTS (Typed ISMCTS). We do not include an algorithm

for TISMCTS as it is the same as the TPOMCP algorithm with the exception of the

exploration term in the UCT calculation performed in the TreePolicy function.

6.6 Belief Monte Carlo Tree Search

POMCP and ISMCTS both sample a fully-observable state followed by masking out

the illegal portion of the tree. So the algorithms are always traversing sparse trees and

rely on sampling to be sufficient to cover the full tree in time. In massive state spaces,

when the support of the belief distribution is large, sampling may not be sufficient

to get a good estimation if the number of samples is small. Furthermore, an even

larger number of samples is required if the entropy of the distribution is high. Finally,

even if the number of samples are sufficient to acquire a reasonable estimate of the

belief distribution, it would definitely not be enough to get an accurate estimate of the

expected value of each state in the belief. This is caused by the way MCTS already

samples the game tree to estimate the value of each state, so POMCP and ISMCTS

combine two sampling phases: one to estimate the current belief and one to estimate

the expected return for each sample. This means the number of iterations required to

get reasonable estimates of expected utilities is further increased.

Planning in the belief space means that we do not need to marginalise over states

to estimate the belief distribution. Our modified game model and belief transition

function allows us to propagate the agent’s belief down the tree, without the need

to sample states. We in effect avoid this slow convergence to the true distribution

at every node in the tree. Wang et al. (2015) claim to achieve the same objective

of planning in the belief space. However, they sample observable states before the

search over the game tree and so their algorithm resembles POMCP and ISMCTS.

Their main contribution is that they use the statistics from planning to update the belief

distribution such that it slowly changes towards a distribution that reflects what states

a rational opponent is more likely to visit. As a result, the belief corrections they

make affect what states are more likely to be sampled at the root node. This is an

interesting approach, but is complementary to what we aim to achieve. We model

the belief transition function to reflect the game dynamics and use it during planning,

while they still sample states to slowly converge towards this distribution. We handle

the stochastic effects of partially-observable actions while they apply their method to
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phantom games that do not have any stochastic effects. So they assume the players can

always decide the outcomes of actions. An opponent model such as theirs can further

improve our belief transition function for the actions where we assume the opponent is

indifferent (e.g. discard).

Similar to TPOMCP and TISMCTS, we represent the nodes as belief states. The

main difference is that we do not sample states at the root node and we do not mask

any of the possible actions as a result. This approach has a large risk of over-sampling

unlikely actions because all possible actions given the current belief are allowed with

equal probability. We need to somehow weight the actions according to how likely

these are to be legal given the current belief. Let’s assume for the moment that we

allow illegal actions to be executed in states and that all agents receive one of the two

observations after each action Ω = {Success,Failure}. The Bellman equation in a

Belief MDP is:

Q(b,a) = ρ(τ(b,a,o))+ γ ∑
o∈Ω

P(o|b,a)V (τ(b,a,o)) (6.3)

Given we have the two observations mentioned before, we can rewrite the equation

as following (we also drop the discount parameter as before):

Q(b,a) = ρ(τ(b,a,o))+P(o = Success|b,a)V (τ(b,a,o))

+P(o = Failure|b,a)V (τ(b,a,o)) (6.4)

As we have shown in Chapter 5, illegal actions would just increase the length of

trajectories in a non-discounting scenario with highly sparse rewards ({0,1} on only

end states to the game). One will not receive a reward after an illegal action, since

the game cannot end following an illegal action. Similar to the observable case, the

value of an illegal action would be equal to the value of the belief this was executed

in. Executing an illegal action can also provide valuable information to the opponents

as we discussed before. Since all players know what actions are legal and what are

not during their turn, it does not make any sense to include these actions.1 In the end

we want the game model to accurately represent the real environment and JSettlers

is a server-client where the server keeps track of the true state. Only the player that
1Making trade offers where the receivable part is illegal in the true state of the game is a legal move,

since even the strongest players cannot know the true state. In this case, the recipient is not allowed to
accept the offer since it doesn’t have the requested resources. On the other hand, a player is not allowed
to offer resources it doesn’t possess as this can be a move that attempts to misinform the opponents. As
mentioned in Chapter 5, we do not allow such moves in our experiments.
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tried to execute the action will be informed that the action failed. As a result, we

can drop the second part of the equation. Since the players only observe Success

when the action is legal, we can compute this probability using the action legality

function II(s,a) that we defined in Equation 5.1 in Chapter 5 (we use legal(a) to

indicate if the action a is legal or not): P(o = Success|b,a) = P(legal(a) = True|b) =
µ∑s∈b P(s|b)II(s,a). Since the action legality probabilities are independent, we need

to normalise the final distribution. Calculating P(legal(a) = True|b) is quite expensive

if we were to enumerate the full state space, so we utilise our factored implementation

to quickly compute the probability of the player having the requirements for the action

to be legal. The new UCT calculation is shown in Equation 6.5. This weighting is only

required during the opponents’ turns. During its own turn, our agent is certain of what

are its legal actions given its belief. For the same reason we do not need to weight

the decision made once the planning is over, i.e. the agent chooses the action with the

maximum value, argmaxaV (b′) as in TPOMCP.

UCT (b,a) = P(legal(a) = True|b)[V (b′)+ c

√
logN(b)

N(b′)
] (6.5)

Rollouts can also be done using the belief model by enumerating all possible ac-

tions and representing the policy π(b) = P(A = a|b) as a distribution over them. But,

we must take into account how certain actions are legal more often then others. As a

result, the default uniform policy should be modified by replacing the probability of

selecting each action with the probability that the action is legal P(legal(a) = True|b).
Each action legality probability is independent of the other possible actions’ legality so

we need to normalise them such that the sum equals 1. When using the uniform typed

rollout, we replace the probability of selecting a type πt(T ) = P(T = t) with the maxi-

mum legality probability maxa P(legal(a) = True|b) of the action a from the possible

set that are of type t. The policy πa(At) that selects the action description is modified

to take into account the actions’ legality P(legal(a) = True|b), and the list At now

contains the possible actions of type t rather than just the legal ones. The typed rollout

algorithm is the same as the one in Algorithm 4 (see page 75) where each mention of

s is replaced with b. We also list all possible actions or action types instead of just the

legal ones. We call this algorithm Typed Belief MCTS (TBMCTS) because it plans in

the belief space. We also refer to the agent that plans using it as TBMCTS. TBMCTS

is shown in Algorithm 6. For conciseness we do not show how the lists T and At are

formed in the Rollout function. These are created during the computation of P(t), by
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enumerating over the possible actions given by G.possible actions(b).

As we will observe, the belief rollouts are by far the most expensive part of the

algorithm because games in Settlers of Catan tend to be long (i.e., the tree depth is

large). The algorithm performs many belief updates and the sampling policy encoun-

ters belief states where agents hoard resources, further increasing the time required to

perform the updates. A simple modification to the TBMCTS algorithm is to sample a

fully-observable state at the leaf nodes of the tree and perform the typed rollouts using

the observable game model similar to TPOMCP and TISMCTS. We would still prop-

agate the belief down the tree during the tree phase and aggregate the possible states.

We call this TBMCTS with Observable Rollouts (TBMCTSOR) and we refer to the

agent as TBMCTSOR.

Algorithm 7 presents TBMCTSOR. This method is a combination of TBMCTS

(i.e. the TreePolicy and Expand functions) and TPOMCP (i.e. the Rollout function).

Performing observable rollouts is acceptable since we do not use player types, or rea-

son over opponent’s knowledge and beliefs. As a result, belief rollouts would not im-

prove how leaf nodes are evaluated more than just aggregating trajectories. Observable

rollouts can be easily turned into heavy rollouts just by using as policy the distribution

over types learned from our corpus with MLE. Belief rollouts could also be extended

with this knowledge by multiplying the belief distribution with the distribution over

types.

6.7 Results

Before we present the performance of the agents, we remind the reader about the mod-

ifications to the MCTS agents that we described from Chapter 5. All agents use the

typed rollout with the uniform distribution over types. Also, we limited the offers the

agents can make per turn to 3, otherwise the experiments would take too long and the

agent we build would not be tolerated by human opponents. Due to time restrictions

we focused on evaluating the presented algorithms versus the Stac agent only and we

did not run a tournament-like experiment to find the best agent. Table 6.1 contains

the results while varying the number of iterations. The performances of the TPOMCP,

TISMCTS and TBMCTSOR agents versus 3 Stac agents are not significantly different.

On the other hand, the results clearly show that the TBMCTS agent is the weakest. The

issue lies with performing rollouts in the belief space, since TBMCTSOR differs from

TBMCTS only because it performs observable rollouts as TPOMCP and TISMCTS.
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Function Search(G, Tree, b):
n← Tree.new node(b))

while within budget do
n,b← TreePolicy (b, n, Tree)

b← Expand (b, n, G)

r← Rollout (b)

Backpropagate (r, Tree)

end
a← argmaxaV (b′) where b′← τ(b,a)

return a;
Function TreePolicy(b, n, Tree):

while n has children do

a← argmaxa P(legal(a) = True|b)[V (b′)+C
√

logN(b)
N(b′) ] where

b′← τ(b,a)

n← Tree.get node(τ(b,a))

end
return n,b

Function Rollout(b):
while b is non-terminal do

P(t)←maxa P(legal(a) = True|b), where a ∈ At ←{a|type(a) = t}
t ∼ πt(T ) # using P(t)

a∼ πa(At) # using P(legal(a) = True|b)
b← τ(b,a) # includes win/continue chance node

end
return reward(b) # from observable score or w/c chance node

Function Expand(b, n, G):
foreach a ∈ G.possible actions(b) do

Tree.new node(b′) where b′← τ(b,a)

end
a∼ G.possible actions(b) # uniform random choice

return τ(b,a)
Algorithm 6: The TBMCTS algorithm
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Function Search(G, Tree, b):
n← Tree.new node(b))

while within budget do
n,b← TreePolicy (b, n, Tree)

b← Expand (b, n, G)

s∼ b

r← Rollout (s, G)

Backpropagate (r, Tree)

end
a← argmaxaV (b′) where b′← τ(b,a)

return a;
Function TreePolicy(b, n, Tree):

while n has children do
P(legal(a) = True|b) = µ∑s∈b P(s|b)II(s,a) # for each

a ∈ G.possible actions(b)

a← argmaxa P(legal(a) = True|b)[V (b′)+C
√

logN(b)
N(b′) ] where

b′← τ(b,a)

b← τ(b,a)

n← Tree.get node(b))

end
return n,b

Function Rollout(s, G):
while s is non-terminal do

t ∼ πt(G.action types(s))

a∼ πa(G.actions o f type(s, t))

s← G.step(s,a)

end
return G.reward(s)

Function Expand(b, n, G):
foreach a ∈ G.possible actions(b) do

Tree.new node(b′) where b′← τ(b,a)

end
a∼ G.possible actions(b) # uniform random choice

return τ(b,a)
Algorithm 7: The TBMCTSOR algorithm
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However, it is unclear why rollouts in the belief space should perform so much worse

than rollouts with the fully observable states that are sampled from belief states. The

cause could be that when rollouts are done in the belief space, one must reason about

action legality; or it could be due to having to reason about the win/continue chance

nodes (which, as described earlier, are required because you cannot know with com-

plete certainty when an action ends the game, because whether opponents hold VP

cards is hidden).

Agent 10k 20k 30k 40k

TPOMCP 32.14% 42.23% 44.5% 47.94%

TISMCTS 31.31% 41.66% 44.16% 48.49%

TBMCTS 23.52% 31.5% 38.08% 40.33%

TBMCTSOR 32.05% 41.63% 45.09% 48.7%

Table 6.1: Win rates of the modified agents against 3 Stac agents, while varying the

number of iterations. Each result is collected over 2000 games.

We have also timed how long the agents take to plan and present the statistics in

Table 6.2. As before these are measured by running 10 games versus 3 Stac agents

while fixing the number of iterations to 10k and the number of threads to 4. The times

presented in this table can be tolerated by human players. TISMCTS has compara-

ble values to TPOMCP so we didn’t include it in the table. As expected, TBMCTS

is much more expensive than the sampling based agents. It may initially appear sur-

prising that TPOMCP takes longer than TBMCTSOR, however it must also compute

the action masks for every decision in the tree phase. It is quite likely that TPOMCP

with approximate belief updates and an abstract belief model would be quicker. These

models have not been extensively optimised, e.g. caching previous computations such

as the mask in POMCP and ISMCTS, so we do not perform experiments while limiting

the allocated time for planning. After optimisations, it is very likely that these models

would have very similar time requirements given that the current planning times are

already comparable.

6.7.1 Rollouts with the Human Type Distribution

Since there is not a large difference between the performance of the 3 agents that per-

form sampling, we chose TPOMCP to evaluate if we can observe the same benefits of

integrating preferences extracted from the human corpus, where these preferences are
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Agent Min Max Mean Median

TPOMCP 456 7035 2113 2086

TBMCTS 270 19559 8161 8449

TBMCTSOR 757 5476 1963 1916

Table 6.2: The agents’ planning time in milliseconds, each value measured over 10

games.

either conditioned on the other type legality or unconditioned (see Section 5.4.3 for

details on how these are learned). Table 6.3 contains the results where we modified the

rollout distribution of a TPOMCP agent. Similar to the experiment in the observable

version of the game (see Table 5.9), the unconditioned is worse than the uniform dis-

tribution and conditioning on type legality addresses results in a better performance.

The benefits over the uniform distribution do not seem as noticeable as before, but

this may be due to the increased difficulty of the game when considering imperfect

information. Interestingly, an agent that uses a uniform distribution is able to win over

25% of the games versus 3 agents that sample the action types from the conditioned

distribution. Even though the 27.19% win rate is not significantly better, it illustrates

why we also need to evaluate the performance of baseline agents versus the modified

agents. Despite this result, an agent using the conditioned distribution wins more than

27.19% (i.e. it wins 32.10% of the games) versus versus 3 agents using the uniform

distribution, so we can conclude that sampling types from the conditioned distribution

during rollouts is better. As before, the effect on the planning time is quite small as

seen in Table 6.4.

Modified
Baseline

Stac uniform unconditioned conditioned

uniform 32.14% – 22.25% 27.19%

unconditioned 25.63% 23.55% – 17.25%

conditioned 34.75% 32.10% 34.80% –

Table 6.3: Win rate of the TPOMCP agents while varying the distribution over types

used in the rollout phase. Each result is measured over 2000 games.

Table 6.5 contains the statistics of the modified agents when these are playing ver-

sus Stac agents (i.e. the first column of results from Table 6.3). The effects of the two

policies are very similar to the effects in the observable game (see Table 5.10). The
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Agent Min Max Mean Median

uniform 456 7035 2113 2086

conditioned 857 25939 2178 2077

Table 6.4: TPOMCP’s planning time in milliseconds while varying the type distribution,

measured over 10 games.

conditioned policy biases towards building more settlements and cities while the un-

conditioned policy biases towards building more roads. The resource production of the

conditioned biased agent is also higher than the agent with the unconditioned rollout

policy. However, it is lower than the uniform agent’s production which indicates that

the conditioned agent is either more efficient in its use of these resources or targets

building pieces that would generate the resources it requires.

It is interesting that the effects of the conditioned and unconditioned policies are

comparable to the effects in the observable game, despite these being two completely

different games. For example, the agents execute fewer actions on average (around 13

instead of 14 in the observable game) and focus more on playing development cards

instead of building roads. These differences can be observed even in the uniform player

that is unaffected by our modifications. The main reason is that development cards are

kept hidden until are needed in the partially observable version of the game. The result

is that the other players execute actions that force the owners of the development cards

to play one of them. In the observable game, if you know a player has a knight you

are less likely to attack them with the robber. Given that development cards provide

reassurance, the planning-based agents focus less on achieving the longest road award

and buy more development cards.

6.7.2 Experiments with Action Legality Probability

Given that planning in the belief space has not provided any additional benefits, we

want to confirm which part of the model is detrimental: the action legality probabilities

or the chance nodes. We focus here on the action legality function and modifications

to it. First we look at its effects on the tree phase of the algorithm only. The first

experiment that we run is to ignore this probability altogether and make each action

equally likely P(legal(a) = True|b) = 1. Table 6.6 contains the results of TBMCTS

and TBMCTSOR. We expected the performance to be slightly weaker, however there

is no major difference between using and not using the legality probability.
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Statistic
Agent

uniform unconditioned conditioned

Avg number of actions 13.4 12.96 13.43

Percentage build road 45.05% 46.30% 43.60%

Percentage build sett. 10.89% 11.89% 12.20%

Percentage build city 12.03% 11.56% 12.90%

Percentage play card 32.04% 30.26% 31.30%

Avg LA count 0.30 0.27 0.30

Avg LR count 0.97 0.92 0.95

Avg rss. from dice 55.28 52.15 54.65

Table 6.5: Statistics for the modified agents in Table 6.3 when playing versus 3 Stac

agents. Sett stands for settlement, LA for largest army award, LR for longest road award

and rss for resources. Averages are computed over the number of games, while the

percentages are computed out of the average number of actions (i.e. the first statistic).

Agent 10k 20k

TBMCTS 22.99% 31.29%

TBMCTSOR 30.88% 42.39%

Table 6.6: Win rates of the two TBMCTS agents against 3 Stac agents when the action

legality probability is ignored. Each result is collected over 2000 games.

Another hypothesis is that some of these probabilities are so low that they cause

UCT to never explore the corresponding actions. On the other hand, when ignoring the

probabilities, UCT would over-explore unlikely actions. Therefore we smoothed these

independent probabilities by increasing their temperature as following: P(legal(a) =

True|b) = τ
√

P(legal(a) = True|b) and we have varied τ. Table6.7 contains the results

of the two agents with the best tuned parameter τ. The TBMCTS agent has improved

slightly but not enough to be comparable to the other agents. Smoothing the probabil-

ities has most likely modified how the agent performs exploration fixing some of the

issues created by the win/continue chance nodes. We suspect this based on the results

we present in the following two subsections.

Another hypothesis that could explain the lack of improvement of the belief agents

over sampling methods is that the belief planning algorithms still overestimate certain

actions despite the action legality probabilities. This behaviour is caused by backprop-
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Agent 10k 20k

TBMCTS 24.34% 33.04%

TBMCTSOR 31.96% 42.19%

Table 6.7: Win rates of the two TBMCTS agents against 3 Stac agents, while smoothing

the action legality probability. Each result is collected over 2000 games.

agating simple returns of 1 for a win or 0 for a loss, and averaging them to estimate the

value of children nodes V (b′) = W (b′)
N(b′) , where W (b′) is the sum of rewards r received

at that node. Given Equation 6.5 the action legality probability discourages selecting

actions that are less likely to be legal given the current belief, but it does not take into

account how likely the current estimation is given the whole sequence of actions. This

means that the algorithm might select actions without taking into account the legal-

ity probability of the following actions. We can include this in the computation by

replacing W (b′) with G(b′) in Equation 6.5, where G(b′) is computed as following:

G(b′) = E[W (b′)] =
N(b′)

∑
i

ri

Di

∏
d=depth(b′)

P(legal(ad) = True|bd) (6.6)

In this equation, depth(b′) represents the depth of node with belief b′ and Di repre-

sents the maximum depth of ith iteration through node with belief b′. So, this equation

computes the expected return with respect to the legality of the actions encountered

during trajectory i through the tree. Unfortunately, this weakened the TBMCTSOR

agent to a win rate of 24.50% versus 3 Stac agents. We believe that expected returns

have an unwanted effect on the way UCT balances exploration and exploitation, since

the expected returns diminish as the tree depth increases. Perhaps decaying the explo-

ration parameter as a function of tree depth or using a smaller portion of the current

iteration depth instead of the maximum depth Di to compute the expectation could help

alleviate this effect. Unfortunately, we were unable to explore this path further due to

time restriction.

In TBMCTS, the action legality probability affects the rollouts also (see Section 6.6

for a description of the rollout algorithm). We attempted a final experiment, where

we enforced the distribution over action types to be uniform instead of using the

maxa P(legal(a) = True|b) values for each type to construct it. This modification had

no impact on the performance of the TBMCTS agent. Since this is the only agent that

is affected by this modification, we did not include this result in a table.
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6.7.3 Experiments with Belief Chance Nodes

Since modifying the action legality probability function did not have any major impact

on the performance of the belief agent, we focused our attention on the win/continue

chance node, which decides when the game is won by an opponent versus when it

continues. One of the initial motivations for planning in the belief space is that it

will reduce the number of chance nodes: most transitions become deterministic mod-

ifications of the belief distribution. We discussed earlier the need to introduce the

win/continue chance node. This is the one chance node that is not needed by the alter-

native ‘sampling’ approaches to adapting MCTS to games of imperfect information.

We thought that the introduction of this chance node would be a price worth paying,

however, because in practice this node should not be encountered too often in the roll-

outs. But as we will show in the next subsection, this node is actually very common

for the methods that plan in the belief space.

Since we want to quantify the effect of the win/continue chance node on the perfor-

mance of TBMCTS and TBMCSTOR, we make a modification to the game rules that

results in the exclusion of this chance node. As mentioned in Section 6.3, keeping the

victory point cards hidden are the only reason for its existence. We modify the game

rules such that whenever a drawn development card is a victory point card the server

reveals this information to the other players. All the other cards are kept hidden. Since

this game modification provides valuable information to the players, we have decided

to rerun the experiments for the TPOMCP agent also.

Table 6.8 contains the performance of TBMCTS or TPOMCP agents versus 3 Stac

agents. Surprisingly, revealing victory point development cards has weakened the per-

formance of the TPOMCP agent slightly. We believe this may be due to a possible

improvement of the heuristic agent which no longer needs to estimate the score of

each opponent. On the other hand, the number of games the TBMCTS agent wins

did not change from the experiments presented in Table 6.1. Given these results we

can conclude that the new chance nodes have an impact on the agent’s performance.

However this effect is not enough to explain the weak performance of TBMCTS ver-

sus the other agents. We believe that the weakness of this agent must also be due to

the relaxations of the factored belief model described in Section 6.2. During lengthy

rollouts, this error accumulates, as there is no feedback from the server to reduce the

set of possible states. Unfortunately, we do not have a solution to this problem since

the independence assumptions we made are very reasonable (see Appendix D).
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Agent 10k 20k

TPOMCP 29.63% 40.46%

TBMCTS 22.85% 31.51%

Table 6.8: Win rates of TPOMCP and TBMCTS agents against 3 Stac agents, while

varying the number of iterations. Each result is collected over 2000 games in which the

VP development cards are observable.

6.8 Error Analysis

Following the experiments above that were designed to evaluate the effect of action le-

gality probabilities and the win/continue chance node, we have decided to do a further

analysis of the effects of the partial observability on the game complexity. We have

gathered statistics for the resource model for one of our agents playing versus 3 Stac

agents. TPOMCP and TBMCTSOR encounter very similar scenarios so we will only

present these gathered when the modified agent is a TBMCTSOR. Table 6.9 includes

these statistics over 100 games and we clarify here what each field means. First of all,

this agent faces a total of 9211 decisions spread over the 100 games, which means that

the agent makes 92 moves per game on average.2 Out of these, our agent is uncertain

of another player hand in only a little over half of them and in only a quarter of them it

is uncertain of the hand of the next player in turn. Due to how MCTS builds the game

tree following the order of play, we considered the uncertainty of the next player’s state

to carry more weight than that over the other players’ states. When the true state of the

resource hands is partially-observable, there are on average 1.62 players whose hands

our agent is uncertain of. This is an expected value since there are 3 opponents. As

a reminder, the resource belief model tracks each player’s hand independently of the

other hands and our agent’s belief is represented as distributions over the set of possi-

ble hands for each opponent. When an opponent’s hand is partially-observable, there

are on average 5.39 possible hands that opponent could have. The median is of only

3, which indicates that in the majority of cases there is a small set of possible worlds

the player needs to reason over even though the maximum is quite high (113). Further-

more, the statistics describing the entropy of the distribution over the set of possible

hands show that the entropy is generally low. This means either there are few options

or the distribution is quite peaked.

2Multiple consecutive offers are counted as a single move due to how the replans only after a suc-
cessful trade or a different action type is executed.
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Property Value

Total decisions 9211

Decisions when at least one player’s hand is po 5023

Next player’s hand is po 2518

Number of players with po hands on avg 1.62

Number of hands when po mean 5.39

Max number of hands when po 113

Number of hands when po median 3.0

Number of hands when po variance 38.58

Max entropy 3.97

Min entropy 0.2

Entropy mean 1.16

Entropy variance 0.36

Entropy median 1.04

Table 6.9: Statistics for the players’ resource hands over 100 games. po stands for

partially-observable and avg for average.

We decided to gather the same statistics only when the number of possible hands is

over 10 (see Table 6.10), to see the upper bound of the game complexity. These were

collected from a different run, hence the slightly different values. As expected there are

far fewer cases when there are a large set of possible hands (≈13% of the game) and

the agent is uncertain of the next player’s hand in only half these cases. Again it seems

that there are very few extreme cases where there are a large set of possibilities (up to

170) since the mean is low (20.32) and the median even lower (16). These cases would

present a challenge to methods that sample fully-observable states since the min, mean

and median of the entropy are significantly higher. However, these cases are quite rare.

These statistics indicate that the imperfect information elements of the game do not

increase the complexity of the game as much as we expected. It is worth keeping in

mind that the set of possible worlds that describe a complete game state is much larger

because a possible game state is created via combinations of all the possible resource

hands for each opponent plus combinations of the development card hands for each

player. By assuming the players’ hands can be tracked independently we have reduced

the difficulty of tracking the game’s imperfect information. Furthermore, the method

that samples a fully-observable state samples each player resource hand first and com-
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Property Value

Total decisions 9740

Decisions when at least one player’s hand is po 1224

Next player’s hand is po 659

Number of players with po hands on avg 1.19

Number of hands when po mean 20.32

Max number of hands when po 170

Number of hands when po median 16

Number of hands when po variance 125.63

Max entropy 4.06

Min entropy 1.33

Entropy mean 2.34

Entropy variance 0.16

Entropy median 2.33

Table 6.10: Statistics for the players’ resource hands over 100 games when the player

hand must be at least 10. po stands for partially-observable and avg for average.

bines them with the information on the development cards afterwards. This bucketing

or hierarchical approach ensures that the sampler is more likely to cover all combina-

tions a player could have, even if it may not cover the whole set of possible complete

state descriptions. Finally, action requirements are either resources or development

cards but never both. So, it may also be that the action values doesn’t differ very much

between sampled fully-observable states because these vary in the description that is

irrelevant for the action requirements.

We further explore our hypothesis about whether the TBMCTS’ weak performance

could be (at least in part) caused by many extra win/continue chance nodes during

rollouts—in other words, is it the case that a player often encounters, during rollouts, a

situation where it is unsure as to whether the game has ended? We counted the number

of chance nodes over 100 games for TBMCTS and TBMCTSOR. The latter encounters

on average 6 nodes per planning phase (i.e. over 10k iterations), while the former

encounters a staggering 4407 nodes per planning phase. The majority encountered by

TBMCTS are in the rollouts as there is no difference between the two algorithms in the

tree level. These results in combination with the ones in Sections 6.7.2 and 6.7.3 are

sufficient to illustrate that the new chance nodes are problematic to the performance of
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the model. However, these show that belief rollouts are also affecting the performance

at least in the game of Settlers of Catan and the cause could be the assumptions we

made when creating the belief model. Unfortunately, the game rules make it very

challenging to do further error analysis, such as saving or loading games with certain

characteristics; it is very hard to guarantee that the characteristics we look for have a

large impact on the game outcome or only a temporary effect. In addition we require a

large number of samples to ensure the results are significant and it would be extremely

time consuming to generate sufficient situations.

6.9 Conclusions

We implemented two well-known extensions to MCTS for handling imperfect infor-

mation: POMCP and ISMCTS. In order to benefit from sharing statistics in the tree,

we have defined a factored belief model that allows us to perform quick belief updates

in the tree and represent the nodes using an abstract representation of this model rather

than the history made of action-observation tuples. We also defined a belief transition

function for the stochastic effects of the partially-observable moves following the game

dynamics. These two permit us to traverse the Belief MDP directly without sampling

fully-observable states. We introduced a MCTS algorithm that plans in the belief space

of the planning agent and an approximation that samples observable states at leaf nodes

only.

We evaluated these agents versus the state of the art rule-based agent in Settlers of

Catan. All agents are able to defeat this baseline agent given sufficient computational

resources. Our game analysis indicates that there are fewer situations where the game

state is unknown than we originally anticipated. Furthermore, this game is known as a

“Euro” game, where the interaction between agents is minimal and there is very little

conflict in the game. In combination with the inability to perform complex negotiation

moves, players can be successful even if they focus entirely on their own plan. Given

these characteristics, planning in the belief in the tree phase of the algorithm may not

provide additional benefits. Surprisingly, the weakest agent is the one that also per-

forms rollouts in the belief space. Our evaluation indicates that the uncertainty over

the conditions required for the game to end and the assumptions we made when con-

structing the factored belief model are weakening this method. Perhaps, our proposed

methods could be successful if applied to games where the agents can always observe

when the next action finishes the game. Other characteristics of such games should be
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the fact that it is useful to reason over what the opponent can do, and taking the hid-

den stochastic effects into account can help to narrow the space of possibilities. One

such game, is the game of Cheat, where the game ends when a player’s hand is empty

and drawing a card from the deck is a stochastic action. Also, in a game like Cluedo,

sampling from the belief space essentially solves the game (i.e., if you can observe

who performed the crime etc, then you can win by making the accusation). Observ-

able rollouts in such a case would be really odd, because the sampled state always has

a clear winning strategy and then the game ends! You would therefore never explore

alternative moves, other than making the accusation, resulting in poor planning.





Chapter 7

Supervised Learning of Policies from

Game Play

In the previous chapters, we extracted policies from the human corpus in an abstract

version of the game. There is a concern that such an approach may ignore important

information due to the performed abstraction. As a result we turn our attention to

approximating the human policies as a state to action mapping and we implement

several Neural Network models trained in a supervised manner. The thesis focus is

on extracting useful information from a very small data set—useful in the sense that

it can enhance a learning agent’s ability to search the space effectively for strategies

that help it win the game. As before, the objective is to show how both the ESH and

MAH hypotheses described in Chapter 1 on page 5 can provide guidance in designing

the Neural Network for the low-resource scenario. In this chapter, we will only use

standard evaluation methods to measure the performance of the networks, e.g. cross-

validation. The benefits of combining the final models with planning will be compared

to that of the preference extraction methods in Chapter 8.

Deep Neural Networks (Hinton, 2007) have been successfully applied to many

tasks such as visual processing (Lecun et al., 1998; Krizhevsky et al., 2012) and speech

(Deng et al., 2013). They are particularly suited to tasks where abstract formalisations

of the domain are not available, but large amounts of training data are available. As

mentioned before there is a large literature showing that a DNN can be successfully

combined with various reinforcement learning methods (Tesauro, 1995; Riedmiller,

2005; Mnih et al., 2015; Silver et al., 2016). All these models require large amounts

of data, many iterations and a large computational budget to converge to a reasonable

result. Furthermore, large amounts of human (expert) data, unlike the data of humans
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playing Go (Silver et al., 2016), may simply not exist to train via supervised learn-

ing. When the available data is insufficient, reinforcement learning or Monte-Carlo

sampling can be used to fine-tune the policy captured during the supervised step. The

objective of this research is to assess the utility of very sparse and noisy datasets. To

achieve our goal, we compare the performance of the models trained on our corpus

versus those trained on a large dataset of synthetic play generated by the state of the art

rule-based agent. Since the goal of this thesis is not to create the strongest Settlers of

Catan player but to evaluate the benefits of a sparse and noisy human corpus, we have

not combined the two datasets or performed any other data augmentation. Another

well-known enhancement that is likely to improve any agent is that of bootstrapping

simulated play with an existing database of expert play, e.g. Nair et al. (2018); Hester

et al. (2017). However, the training period of such approaches is considerably more

expensive which is in contradiction with our goal of learning in a low-resource sce-

nario. Furthermore, it would not only highlight the utility of our corpus but also if it

can be combined with other offline learning methods, so we leave this for future work

on improving the agent.

Another limitation of prior research is that the optimal policies required to handle

each phase of the game may be orthogonal or too complex to be represented by a single

model. The amount or quality of the training data may also not permit learning to play

all phases well. Very long complex games further aggravate this problem by requiring

the optimal policy for one task to shift throughout the game. In Settlers of Catan for

example, it may be risky to trade with a player that is close to winning the game, but

it is generally useful to trade at the beginning of the game. For the similar reasons, the

best results in shooter games are achieved by modularising the models into a mixture of

experts, where each expert specialises on one of the portions of the game (Tastan and

Sukthankar, 2011; Lample and Chaplot, 2016). These approaches reduce the number

of actions an agent has to consider, making the Q-function simpler to learn (Gaskett

et al., 1999). The result is a much shorter training period and improved performance

of the final agent. This approach dovetails with our ESH: it is, after all, a method

for limiting search by exploiting the structure of the game that is defined by the game

rules. Accordingly, we also explore how specialising parts of the model to specific

phases in the game affects policy learning.

In the following sections, we present an integrated suite of techniques for enabling

deep learning to cope with very small amounts of (human) training data. The models

in previous work on complex games are not easily extended to games where the action
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space is massive. To address this gap, we will design our network so that it gains

efficiencies from the fact that only a subset of the possible actions are legal in any

one state of the game. Following the MAH, we use a model of the environment to

inform the neural network of which actions are legal in a given state. In addition, we

present a mixture of experts model, where each network specialises on a specific phase

of the game. We then take advantage of the larger amounts of data available for certain

phases and use transfer learning in order to improve performance on the phases for

which very little training data is available. We show the benefits of using a mixture of

experts on synthetic data gathered from agent simulations in Settlers of Catan (where

the players in the simulations were Stac agents), followed by applying transfer learning

via pre-training on data gathered from human participants playing the game.

7.1 Datasets

We are evaluating the models on two datasets made of games of Settlers of Catan: a

synthetic and a human one. Table 7.1 presents a comparison of the two datasets in

terms of the amount of data available. The synthetic dataset was created using the

JSettlers framework by running 4-player game simulations between the best heuristic

based agent (what we have been calling the Stac agent) (Guhe and Lascarides, 2014a).

The environment allows us to collect as much data as we want and permits evaluating

how the model scales with the amount of data. The training set was collected from

5000 games and the test set from another 1000 games. The parameters of the models

were fit on an evaluation set taken from another 1000, which we later discarded.

On the other hand, the human play has been extracted from the corpus described in

Section 3.4 (Afantenos et al., 2012). In addition to containing a total of only 60 games,

this dataset presents a completely different learning problem to that of the synthetic

one. First of all, it contains many games that have less than 4 players. The optimal

strategy in such games may differ entirely to that of 4 player games that we aim to

test our final agent in. Secondly, these players use different policies and the policy

of an individual player may be mixed (so what they do now in a given state may be

different from what they would have done in that same state a while ago). Finally, the

participants are not necessarily experts in playing the game, so the policy learned by

our models cannot be assumed to be even a good approximation of the optimal policy

(let alone truly optimal). Given the size of the dataset, we did not split it into training,

evaluation and test sets, instead we only performed 10-fold cross-validation to evaluate
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Task Synthetic Human

Free Road (0) 54k 446

Free Settlement (1) 48k 390

Normal (2) 60k 7588

Before Roll (3) 60k 461

Discard (4) 21k 192

Robber (5) 60k 858

Table 7.1: Total number of states in both datasets split according to the task. See

Description 3.2.1 for a description of the 6 tasks.

the models.

The two datasets do not contain the negotiation actions preceding a trade. We

make the assumption that the exchange executed in the real game is acceptable for

both players and that it is the best action these players could possibly execute in the

current game state. This may diverge from the player’s preferred trade option in some

cases—it remains an interesting path to explore in future work.

7.2 Representation

Many of the existing approaches in games use the raw data (Mnih et al., 2015; Silver

et al., 2017), thereby enhancing the model’s appetite for very large data sets to learn

useful abstractions. We diverge from this trend and form the input as a 1D vector of nu-

merical features, taken directly from the game state representation plus a set of features

that abstract over the coordinates of pieces and board configuration. The abstraction

is necessary for effective learning from the very small training set of human data that

we have access to. Information on the number of pieces on the board of each type,

the robber, longest roads, award owners and the visible information on development

cards and player’s hands is taken directly from the game state. The exact location of

each piece is represented via their significance with regards to the board description

by including the information on resource production, the expansion possibility (i.e. if

the player is blocked) and future production of the closest legal locations. Since we

are abstracting state descriptions from the board coordinates, using exact action coor-

dinates is nonsensical. We chose to also represent the actions as feature vectors similar

to how we represented them in Chapter 4. We achieved this by subtracting the state
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vector in which the action was executed from the outcome state vector (following the

representation of actions as transitions between states). Only the features that can be

modified by actions are included in the feature vector describing an action.

The imperfect information is handled by assuming that the players have no infor-

mation aside from the observable portion of the game since the human games do not

include information on the players’ beliefs. However, the vector contains information

on the player that is next to move which is not observable by the other players. We will

show in Section 7.7 how we modify this when building a model of an opponent whose

exact hand our agent cannot observe. For non-deterministic actions, specific features

are computed using the expected outcome following the game rules (e.g. resource

production is decided based on the chances of rolling two six-sided dice). The action

of stealing is the only exception, since the player executing the action doesn’t know

the victim’s hand. There are a total of 157 state features and 73 action features. The

complete list is included in Appendix G. Since our features are numerical, the features

are normalised such that the distribution over their values in the training dataset has 0

mean and unit variance.

None of the features presented above inform the model of the benefits of certain

actions. However, there is no doubt that this abstraction aids the learning process,

especially given the complexity of the game and the lack of human data. We do not

have a baseline model that learns from the raw description of the game, since we

strongly believe the performance of such a model will be very weak. The abstraction

considerably reduces the number of parameters required. A model that does not benefit

from such a dimensionality reduction would overfit our human dataset. Therefore, the

input of all the models presented in this section is created with the abstraction described

above.

7.3 Frequency Baseline

Before we continue describing the performance of the baseline model, we will briefly

discuss how we measure the performance of the models. We report our results as

accuracy defined as the number of times the model selects the correct action (i.e. the

action chosen by the player from the set of legal actions) over the total number of

samples. A sample is formed of the state description, the descriptions of each legal

action and the description of the action chosen by the player in the game (i.e. the label

action). This performance measure reflects the goal of learning to imitate the policy
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that generated the data and not predicting the action’s class.

We created a frequency-based baseline that counts the frequency of the action de-

scriptions that were also the positive label actions in the training set. It then selects

the action with the highest count from the set of legal ones for each sample during

evaluation. Table 7.2 contains the accuracy of the frequency-based model on the two

datasets on each of the 6 game tasks described on page 38. We “trained” one baseline

model per task. For this experiment only, the human data was split in two sets: 90% for

training and 10% for evaluation. All other models can easily outperform this baseline.

The inability of the baseline to select the correct option on the initial placement task is

most likely due to the large number of initial board positions (i.e. ≈ 1.2 ∗ 1015). It is

very unlikely that the same action will be available and also chosen by the rule-based

agents across multiple games. On the other hand, task 3 contains the roll action which

is very often chosen over the alternative of playing a knight card. It seems the human

players prefer ending their turn over other actions in the normal task (i.e. task 2). Per-

haps, this is due to a preference for waiting to roll the needed resources over trading

with the opponents.

Task
Synthetic Human

Eval Train Eval Train

0. Free road building 29.09% 28.82% 39.77% 33.52%

1. Free settlement building 0% 0% 0% 0%

2. Normal 6.58% 6.42% 10.91% 11.29%

3. Before roll 75.09% 75.22% 77.17% 74.25%

4. Discard 11.18% 10.36% 13.16% 4.55%

5. Move robber 8.33% 8.06% 4.71% 4.8%

Table 7.2: Frequency-based baseline accuracy on the two datasets.

7.4 Single Model

In general, the number of classes is hardcoded in the output layer when training a

classification model. Previous research afforded such an approach since their training

data was not limited and the number of actions that can be executed in the game is

relatively small compared to our setting. We have performed an abstraction as shown

in Section 7.2 over certain state features which aids considerably in reducing the space
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of the problem. This reduces the number of parameters required to define the model,

but it creates a disconnection between the new state definition and the actions that are

defined using coordinates on the board. To overcome this, we have also parametrised

the actions in the same space. The effect of this parametrisation is that the total number

of actions has increased slightly, but sufficiently to make training with the amount of

data we have difficult again (see Appendix G). Our approach of parametrising the

actions is similar to that of He et al. (2015). However they have applied their method

to a reinforcement learning task and have not evaluated the benefits of normalising the

network’s output before the backpropagation step.

Fortunately, we have access to a game model which we previously used to perform

game simulations. Following the Model-based Abstraction Hypothesis described in

Chapter 1 (see page 5), we show now how we can use the game model to reduce the

complexity of the learning problem. The game model, which we refer to as M, can

present the list of legal actions Al ⊂ A given the current state of the game M : S 7→ Al .

So, the network only needs to evaluate this set of options Al which represents the

actions that can be executed in the current game state. This set, made of 65 actions on

average (see Table 3.1), is much smaller than the full set of actions A (i.e. 1882, see

Table 1.1). A smaller set of target classes also means that the network has a reduced

number of parameters. As a result, the model’s capacity is reduced and it is less likely

to overfit. Using a game model to reduce the output layer is inspired by the fact that

a player does not need to reason over the illegal actions; e.g. a player never weighs

building a settlement versus which opponent to steal from because these two actions are

never legal at the same time. By limiting the number of options we greatly simplify the

problem: the network does not need to learn which action is legal. Prior work assumes

a fixed set of classes in the output layer and the cost of this is the models need to also

unnecessarily learn which actions are legal.

Since the cardinality of the set of legal actions |Al| = n varies from one state to

another, we need to make our network adaptable to this number. We inform it of this

number n via the shape of the input that is created from the output of the model M.

The input is a matrix, where each row is a vector of features that represent the current

state and one of the legal actions. This is achieved by replicating the state vector n

times, concatenating each of them with the vector describing one of the legal actions

and stacking the resulting vectors. The resulting matrix has n rows and 231 columns

(including the bias), where n is the number of legal actions and 230 (157+73) is the size

of the feature vector resulting from concatenating the state and action representations.



128 Chapter 7. Supervised Learning of Policies from Game Play

This stacked input can be seen as a minibatch. However, the size of this minibatch

varies from one sample to another since the number n of legal actions also varies.
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Figure 7.1: A diagram of the DNN which shows the computation flow to illustrate how

the input is minibatched, and not the way the nodes are connected. The hidden layers

are fully-connected in reality.

The network is a feedforward neural network with two hidden layers, as shown in

Figure 7.1. Both hidden layers are fully-connected with 256 nodes. The first layer has

a sigmoid activation function while the second one uses a rectifier linear function. The

output layer implements a softmax function that outputs a distribution over the n ac-

tions. The network doesn’t predict which is the correct class given the input, but rather

what is the probability of each input pair being the correct one taking into account the

other pairs. This comparison between the legal state–action pairs is achieved by shar-

ing the weights that are used to evaluate each of them followed by turning the output of

the network into a distribution with the softmax layer. Another view of this approach

is that the network learns a representation for a state–action pair which allows it to

separate the correct pair from the rest by a large margin. The separation is imposed via

the cross-entropy loss with hard labels of [0,1], where 1 is assigned to the correct pair

and 0 to the rest.

The standard softmax formula is shown in equation 7.2, where z is typically com-

puted as z = WT h+b (h is the previous layer’s output and b is a vector containing the

biases). The softmax equation shown here is following the standard activation function

equation shown in Equation 2.8 (see page 23) but using linear algebra to compute the

function’s input. W is the matrix that contains the weights and its size is usually fixed

according to the number of classes. However, we do not know the number of classes
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beforehand and defining a matrix that would encode all possible actions is not feasible.

Instead we use a 1D vector of weights w to compute the unnormalised probabilities of

each action i separately as shown in equation 7.1. The results are stacked to form the

full z which is then normalised using the softmax function. Since this vector of weights

is shared among the inputs, the number of total parameters that need to be learned is

dramatically reduced (from nclasses×nh to only nh, where nh is the number of nodes in

the previous hidden layer). The partial derivative of the softmax function with respect

to its input has not changed so the derivative of the error with respect to the network’s

weights is the same and the training can be done using the standard backpropagation

algorithm.

zi = wT hi +b (7.1)

so f tmax(z)i =
ezi

∑ j ez j
(7.2)

The network can handle any number of rows of the input matrix and therefore

any number of classes. In fact, the architecture is equivalent to evaluating each state–

action pair iteratively and turning the resulting vector into a probability distribution.

On the other hand, our approach assumes a mutual exclusivity between the available

(i.e. legal) state–action pairs, forcing the network to rank the options in the order

of preference according to their features. It also normalises the output, making the

training more stable. This normalisation is required since the large branching factor

of the game causes the data to be very skewed towards the negative case. A simple

alternative to our approach is to consider each state–action pair separately and perform

a binary classification while iterating over each sample. This means that each pair is

classified as true if the action is the one performed or false otherwise. This is incorrect,

because a positive value on one pair entails negative values for all the other legal pairs,

and yet in a binary classification task the pairs are considered independently.

Another advantage to our architecture is the ability to evaluate all possible actions

in a given state with only a single forward pass through the network as it is done in a

standard network using minibatch training. The proposed approach can be seen as an

adaptive minibatch training, where the size of the minibatch varies with the number of

legal actions in the current state. It is also straightforward to extend to the minibatch

(of states) case. Most of the forward pass would be computed in parallel, except for

the softmax operation which needs to be computed iteratively on each portion of the
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input corresponding to a set of legal state–action pairs.

During training we feed the network one sample at a time, where each sample is

a set of the legal state–action pairs stacked in a matrix format as described earlier.

The updates are done using RMSProp:1 they are performed using minibatches of size

equal to the number of legal actions. We noticed a large improvement when using

RMSProp compared to the simple update rule. We also tried using minibatches of

states, but these gave no improvements. This could be caused by the lack of data or

by the fact that the number of legal actions has a huge variance throughout the game.

The network’s weights are initialised using the Xavier algorithm (Glorot and Bengio,

2010).

Due to the abstraction described in the previous section, the target action that the

network tries to learn may be encountered twice in the list of legal actions. We handle

this rare case by giving equal weight to each of the corresponding indices in the target

vector, such that the sum of the vector is still equal to 1. During evaluation either option

is considered correct. As regularisation, we perform label smoothing (Goodfellow

et al., 2016), by multiplying the target labels with 10 and normalising with a softmax

function with temperature 1. This has an effect of reducing the hard 1 with ε and

increasing the 0 with ε

n−1 . We observed that uniformly softening the labels has resulted

in 5% absolute increase in the validation accuracy on some tasks, but we do not include

these fine-tuning results in the thesis. In combination with early stopping, this has

been enough to prevent the models from overfitting. Other regularisation techniques

such as parameter norm penalties or dropout reduced both the training and evaluation

performance significantly. In order to keep everything clear, we will not provide results

to show improvements due to parameter tuning.

The size of the network, activation functions, initialisation and update methods

were chosen based on the performance on a different evaluation set made of synthetic

data. Since this model is eventually combined with a sampling method to create an

agent that takes decisions in an online manner, the prediction time was another reason

for keeping the size of the model relatively small compared to the state of the art in

other domains.

1http://www.cs.toronto.edu/˜tijmen/csc321/slides/lecture slides lec6.pdf



7.4. Single Model 131

7.4.1 Evaluation on Synthetic Dataset

Table 7.3 contains the results of this model trained on the synthetic data. Even though

the model doesn’t differentiate between the tasks in any way, there was a noticeable

improvement when the model is trained by iteratively feeding it samples from each

task, instead of randomly shuffling the order of the tasks or performing full epochs

on each task. The results presented here are the best on each task separately, and

are not taken from a specific epoch where the best overall performance was noticed.

Therefore, the overall performance across the tasks as shown in the table is slightly

better than if we stopped training the single model based on the average performance

across the 6 tasks.

Task Evaluation Train

0. Free road building 67.01% 66.88%

1. Free settlement building 65.98% 65.75%

2. Normal 48.35% 47.30%

3. Before roll 80.07% 80.38%

4. Discard 38.87% 40.36%

5. Move robber 23.16% 24.51%

Table 7.3: Single model accuracy on synthetic data.

7.4.2 Logistic Regression Baseline

We also wanted to measure the effect of evaluating the set of actions together using the

proposed softmax output layer with the multi-class cross-entropy loss function. We

created a second baseline which is a DNN that differs to our model in the output layer

only. Instead of the approach proposed in Section 7.4, it has a sigmoid function and

we used the binary cross-entropy loss function. Each state–action feature vector is

evaluated independently:

y = σ(wT h+b) (7.3)

Apart from this difference, the baseline network benefits from the same optimisation

and regularisation techniques as the proposed network. We noticed it is very hard to

decide on the threshold between the two classes due to how skewed the data is. To

overcome this issue during evaluation, the pair that the network assigned the highest

value is considered as labelled 1 and the rest are 0 for each sample.
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This baseline can be trained with minibatches of different size then the size of the

set of legal actions. We do not include the fine-tuning process of the minibatch size,

since on average these are weaker compared to the case where the minibatch size is the

same size as the legal set of actions given the game state. The latter is the same to how

the proposed model is trained, using the game model. The adaptive minibatch aids

the training process as it guarantees that each minibatch contains at least one positive

class. It also ensures that all actions that are legal in one state are used at once during

training.

Overall, the results are considerably weaker than that of the proposed model on

most tasks on the synthetic data as shown in Table 7.4. Similar to the other single

model, these results are the best on each tasks individually. The only task where the

two approaches have the same performance is task 3 which, as mentioned before, it

seems to be a straightforward decision. Finally, the simple model is prone to numerical

underflow due to the skewness of the data. It would require additional regularisation

compared to the proposed network. To have a fair comparison between the two, the

results presented here are without any additional regularisation, before the network

encounters these issues.

Task Eval Train

0. Free road building 63.77% 64.21%

1. Free settlement building 54.4% 54.08%

2. Normal 45.06% 44.63%

3. Before roll 80.06% 80.11%

4. Discard 37.38% 37.93%

5. Move robber 22.44% 23.45%

Table 7.4: Baseline DNN accuracy on the synthetic dataset.

7.5 Mixture of Experts Model

The single model reaches the best performance on each task after a different number

of iterations. Also, the single model displays a very unstable learning curve (see Fig-

ure 7.2 for a comparison between the single model and the mixture of experts model

on one task of the human data). Our initial solution on the synthetic dataset was to

cap the number of samples for each task to 50K, despite having access to consider-
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(a) Single (b) Mixture of Experts

Figure 7.2: Learning curves of the two models on task 5 on the human data. Black

vertical line indicates the highest mean value on the validation sets and vertical lines

indicate standard deviation.

ably more samples on some of the tasks, such as the normal task. In combination with

iterating over the tasks when performing updates, this has helped significantly to sta-

bilise the training. On the human dataset, we cannot afford to throw away any samples.

Furthermore, when iterating over the tasks, we cannot resample the ones that have a

little amount of data as we risk further overfitting on them. Table 7.1 illustrates the

lack of data and the skewness towards the normal task. As a result, we need a way of

separating the learning process on each task to control it better.

Ensemble learning is a popular approach for supervised learning that uses multiple

models to increase performance. One example that seems fit for our needs is a mixture

of experts model that is based on the divide and conquer principle (Masoudnia and

Ebrahimpour, 2014). Typically, a set of networks are trained alongside a gating net-

work. The gating network chooses which expert to use for each sample (Jacobs et al.,

1991). Another approach is to explicitly partition the space beforehand. Here we do

the latter, by taking advantage of the existing game structure as shown in section 3.2.1

and predefine a function that chooses the expert deterministically. Each expert has

the same architecture as the single model presented earlier. Hinton et al. (2015) have

implemented a very related mixture of experts model, which they refer to as a set of

specialists. However, the authors have separated their dataset using the predictions of a

general model and clustering the set of classes based on how often these are predicted

together. In our case, we have access to the game model that separates the data in a

natural way that arises from the game rules.
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7.5.1 Evaluation on Synthetic Dataset

Despite the high performance of the frequency-based baseline and the single models,

the mixture of experts approach is significantly better on almost all tasks (see Table 7.2

for the performance of the frequency-based baseline and Table 7.3 for the performance

of the single model). Table 7.5 shows these results and how the model improves with

the increase of data. Furthermore, the learning curves no longer presented the unusual

instability that we observed in the case of the single model. These results suggest

that the performance is due to an increased capacity. In their setting, Hinton et al.

(2015) have mentioned the specialist networks have a higher risk of overfitting. In

our synthetic dataset we have not observed signs of overfitting. On the contrary, the

generalisation error has increased noticeably only on two tasks, for both the baseline

and the proposed output layer. We believe this is due to using a deterministic policy

to generate the data since we have sufficient samples in the training set. Overfitting is

slightly more visible on the human dataset for both models as shown in the next set of

results.

Task
Size of training set

5k 10k 25k 50k

Eval Train Eval Train Eval Train Eval Train

0 60.23% 59.32% 61.67% 62.45% 66.45% 71.50% 68.51% 70.90%

1 72.23% 76.74% 71.86% 73.9% 73.21% 73.96% 73.83% 73.45%

2 55.81% 55.97% 56.86% 57.90% 58.35% 58.39% 58.65% 59.33%

3 80.72% 85.1% 81.28% 85.31% 81.16% 86.11% 81.49% 84.76%

4 36.26% 54.34% 39.50% 46.48% 42.24% 55.42% 42.24% 55.42%

5 24.78% 33.24% 27.57% 39.34% 29.9% 42.08% 29.67% 36.92%

Table 7.5: Accuracy on synthetic data of the mixture of experts model while varying the

amount of data available for training.

Table 7.6 shows that the baseline DNN is still weaker on average than the pro-

posed network (Table 7.5), even though the mixture of experts settings has reduced

the gap between the two considerably. There is however one task where the baseline

outperforms the proposed approach: the discard task. It may be that considering the

alternatives does not provide additional information since the players evaluate each

action individually when presented with the decision problem in this task. Another

possibility is that there is not an option that is clearly better than the others from the
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list of legal actions because the options differ only slightly in this task. This result

indicates that the proposed model performs best when applied to specific supervised

problems, where a clear separation between the policy that generated the data and the

other possible policies exists.

Task Eval Train

0. Free road building 67.04% 66.57%

1. Free settlement building 68.69% 68.02%

2. Normal 56.5% 56.71%

3. Before roll 81.67% 82.25%

4. Discard 45.51% 56.55%

5. Move robber 27.27% 30.69%

Table 7.6: Accuracy of mixture of baseline DNN on the full synthetic dataset.

The goal is to have a decent policy estimation that can predict the stored game play,

so we can bias the search during online planning. Therefore, we are also interested in

how the network ranks all the legal actions and how far the correct action is from the

network’s preferred option. Figure 7.3 shows the accuracy of the mixture of expert

model as we allow the correct option to be in the first n options in the output (the value

of n is given by the x axis). The accuracy for task 0 has an unusual curve due to most of

the samples only containing 3 options, while the other tasks have many more than 10

legal actions (given the branching factor of the game tree). Overall, the correct option

(i.e. the action observed in the evaluation dataset) is within the model’s top 10 options

70% of the time. This is a promising result, suggesting that the network’s output would

be a good approximation of the synthetic policy and we could use this information to

inform the tree search.

7.5.2 Evaluation on Human Dataset

We evaluated our models with 10-fold cross-validation over the whole set of human

samples. In addition to displaying the evaluation and training accuracy, we included

the 90% confidence intervals on the evaluation accuracy in the tables. The results of

the single model are included in Table 7.7. This model presented slightly better perfor-

mance compared to the standard mixture of experts on the tasks with fewer samples,

indicating the benefits of sharing the knowledge between the phases. However, we

observed that the training was very unstable and the accuracy on each task fluctuated
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Figure 7.3: Percentage of correct classifications up to the first 10 choices of the Mixture

of Experts model trained on synthetic data.

rather than having a steady increase with the epochs. Also, when the best performance

on one of the tasks was observed, the performance on others was relatively weak, mak-

ing it impossible to decide when to stop the training. The most likely cause is the lack

of data in combination with the large difference in the size of the training sets. This is

a characteristic of complex games: the mixture of experts model addresses this.

Task Evaluation Eval CI. Train

0. Free road building 44.77% ±5.37 47.31%

1. Free settlement building 25.38% ±4.8 28.46%

2. Normal 62.14% ±1.55 63.53%

3. Before roll 79.35% ±3.07 79.3%

4. Discard 24.21% ±4.23 24.57%

5. Move robber 37.05% ±2.76 37.12%

Table 7.7: Accuracy of the single model on human data.

Table 7.8 contains the accuracy of the mixture of experts model. Due to the lack of

data and the multitude of policies responsible for generating the human data (Afantenos

et al., 2012), a weaker performance compared to the results on the synthetic data is

expected as observed on tasks 0, 1 and 4. The results for the remaining tasks are very
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similar. However, the performance on the move robber task is better. We believe this

may be due to the features chosen, which may enable the learning algorithm to learn

to explain a human behaviour much better than that of a complex heuristic agent that

performs obscure computations over and above those including the visible features.

Task Evaluation Eval CI. Train

0. Free road building 47.04% ±4.42 50.82%

1. Free settlement building 22.56% ±3.79 27.63%

2. Normal 62.71% ±1.39 63.22%

3. Before roll 81.3% ±3.77 82.89%

4. Discard 22.1% ±5.68 25.02%

5. Move robber 37.76% ±3.59 47.59%

Table 7.8: Accuracy of the mixture of experts model on human data.

We have only evaluated the baseline sigmoid output layer in the mixture of experts

setting. Table 7.9 shows that the differences between the baseline and the proposed

output layer are not as clear as in the synthetic data. However, the proposed approach

performs better on the normal task (2) which is the most important task of the game.

Another reason for the smaller differences could be that the human data is generated

from many different policies, and encouraging a clear separation via the proposed out-

put layer may not aid the learning process that much. As future work, it would be

interesting to evaluate the two on a larger dataset of (human) games, while varying the

number of policies (players) used to generate the data.

Task Evaluation Eval CI. Train

0. Free road building 46.36% ±3.51 49.38%

1. Free settlement building 21.53% ±4.21 26.23%

2. Normal 59.92% ±1.37 60.60%

3. Before roll 78.7% ±3.27 81.10%

4. Discard 20.53% ±3.45 24.62%

5. Move robber 36% ±2.99 36.95%

Table 7.9: Performance of the mixture of baseline DNNs on human data.
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7.6 Introducing Knowledge via Label Smoothing

In Chapter 4 we showed that a simple distance metric (e.g. cosine similarity) can be

used to approximate the relevance of the actions from the corpus to those encountered

in a new game. The relevance value has proven useful in designing a simple non-

parametric method that would initialise a subset of current legal actions as well as rank

them according to the average resemblance to the ones in the corpus. The performance

of the model was surprisingly good and it would be interesting to use the similarity

metric to provide additional information when fitting the Neural Network. Instead of

adding noise to the labels, we have decided to create an interpolation between the real

hard labels and the similarity of each action to the action labelled as 1:

z = wl×y+ws× s (7.4)

wl and ws are weights that can be tuned, y are the true labels, s are the distances of

each action to the action chosen by the human in the data computed using the cosine

similarity metric as shown in Equation 4.2. We only used the feature vectors describing

the actions to compute the similarity since the state features were the same for every

action in the legal set. Using a similarity metric to rank the legal actions makes sense

in Settlers of Catan given the representation we have chosen. As an example, a player

may have to choose between two locations to place a settlement that differ only by

a neighbouring hex and one location to place a road. If the best option is one of the

settlements then it is obvious that choosing the other settlement should be punished

less compared to building a road. Finally, the result of this interpolation is turned

into a distribution using a softmax function with temperature 1 as before. The other

parameters and the training procedure were the same as when we were training with

the true labels only.

Table 7.10 contains the results of the Mixture of Experts model trained with the

new labels. We have noticed that the best result was achieved by setting the weights

wl = ws = 3. Unfortunately, we were unable to even achieve the same performance in

some of the tasks compared to just adding random noise to the labels (see Table 7.8 for

comparison). We also noticed that this method had no further benefits in reducing the

generalisation error or in increasing the percentage of the time the correct label was

found in the top 10 options of the model’s output. It seems that reasoning about action

relevance is more important when transferring to different states as we have shown in

Chapter 4 then for ranking the legal action set in a given state as we did here.
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Task Evaluation Eval CI. Train

0. Free road building 47.27% ±5.05 50.35%

1. Free settlement building 20.77% ±4.4 25.01%

2. Normal 62.4% ±1.39 65.72%

3. Before roll 81.74% ±3.52 84.17%

4. Discard 22.63% ±4.68 37.1%

5. Move robber 38% ±2.41 39.7%

Table 7.10: Accuracy of the mixture of experts model with modified labels on human

data.

We further hypothesise that the interpolation smooths the labels too much without

providing a large amount of information to differentiate the actions between them.

Actions only slightly modify the vector representation and the similarity values would

be very close to each other. During the normal phase of the game where trading options

dominate the action space for example, if the target action is trade ore for wheat then

trading ore for clay and trading wood for wheat would be equally distant from the

target action. As a result the similarity values resemble random noise and we just

increased the amount of noise. Another possibility that could cause training to become

unstable is that the similarity values may increase the differences between the already

varied play encountered in our corpus. The output of the model may never get close

to the saturation region of the output function and will therefore fluctuate a lot. Due to

time limitations we have not insisted on finding out which of these two hypotheses is

true. So we do not introduce knowledge via the labels when training any other models

presented in the rest of the thesis.

7.7 Training an Opponent Policy for the Partially Ob-

servable Game

We aim to use the models presented here to bias the search in MCTS, by suggesting

what is the best policy for each node for both our player and the opponent. We handled

the lack of information our player has on the opponents’ hands by ignoring informa-

tion and using the totals that are observable. We must also account for this lack of

information when the models suggest what an opponent can do when it is their turn.

Since our agent has a belief represented as a distribution over the opponent’s possible
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hands, we can implement several methods:

1. Use the current trained Neural Network and sample n observable states when-

ever the agent is uncertain of what the current player’s hand is. Use a weighted

average of the outputs as a value to seed into the tree.

2. Mask the exact details on the resource and development cards for the current

player in both the state and action representation. Retraining the Neural Net-

works on the same data represented with the smaller, abstracted feature vector.

3. Implement a different network architecture that can handle a sequence of states

that would represent the history of the game. Retrain the network on the same

dataset and hopefully it will be able to infer the information required from the

sequence.

We chose option 2 on the basis that it provides a quick implementation that does not

require additional computation. The first option required processing n samples that

would estimate the current belief distribution. This is a sound approach and would

probably work very well given that there are a small set of situations where there are

a large number of possible states. But even for this small set, it will be hard to find

the best balance between the time required for running the Neural Networks and that

required for planning. Furthermore, combining Neural Networks with MCTS already

increases the decision time significantly, as we will show in the next chapter. We would

therefore be in danger of breaching the limits in decision time that human opponents

would find acceptable.

We have discarded option 3, due to the lack of data in our corpus. Recurrent neural

networks require an even larger amount of data. There is an exponential increase of the

space of possibilities because trajectories are sequences of state–action pairs and there

could be many combinations. Tables 7.11 and 7.12 contain the performance of the sin-

gle and mixture of experts models trained on the human data with the masked features.

There is no discard task in this case, since all discard actions in the partially-observable

game appear the same to an external observer. Surprisingly, this modification didn’t

really affect the overall performance as much as we expected and even increased the

performance on a small set of tasks. For comparison, see Table 7.8 for the unmasked

MOE and Table 7.7 for the unmasked single model. It is worth mentioning that we

kept the list of legal actions the same as in the observable case since we do not have

access to the players’ beliefs of what the opponents can and cannot do. Perhaps the
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state features representing resources and development cards are not important in this

case because the model can infer the benefits of the action from its effects only. Mod-

ifying the game model to produce a different set of legal actions based on a player’s

belief could provide more insight into this, but we have not explored this option due to

time limitations.

Task Evaluation Eval CI. Train

0. Free road building 44.32% ±5.19 49.33%

1. Free settlement building 23.08% ±4.38 26.23%

2. Normal 62.51% ±1.46 63.28%

3. Before roll 79.57% ±1.52 80.17%

5. Move robber 38.24% ±2.67 37.97%

Table 7.11: Accuracy of the single model on the masked human data.

Task Evaluation Eval CI. Train

0. Free road building 46.82% ±5.27 49.98%

1. Free settlement building 22.31% ±3.6 25.5%

2. Normal 63.01% ±1.42 65.52%

3. Before roll 82.39% ±3.42 83.2%

5. Move robber 37.29% ±3.1 40.82%

Table 7.12: Accuracy of the mixture of experts model on the masked human data.

7.8 Transfer Learning between Experts via Pre-training

When little amount of data is available, splitting the data in order to specialise the mod-

els on specific tasks further reduces the amount of data each model encounters during

training. We referred to the six game phases as tasks suggesting multi-task learning

(Caruana, 1997) as a good method to regularise and improve the performance of the

model further. Multi-task learning improves generalisation by learning multiple tasks

in parallel while using the same representation. It would also allow a softer separation

of the data since it allows transferring knowledge between the tasks. However, multi-

task learning is performed by matching the same input to multiple labels, where each

label is the target for each of the task the network needs to learn. Our setting differs
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because we do not have multiple labels for the same input. In addition, one should not

try to learn tasks that are impossible given a certain input. In Settlers of Catan all tasks

are clearly separated, so the agent will never have to learn to discard in the initial phase

of the game for example.

Nevertheless, we still want to transfer what was learned about one task to another,

given that the corpus is made of only 60 games. This domain is suited to this technique

because some of the tasks share similar dilemmas (e.g., a decision on where to build

a road factors into initial road building and in the normal phase), and so it may help

to use the larger data set for one task to inform learning on another for which the

data set is much smaller. The training sets for some tasks are significantly smaller

than those for others due to the rules of the game (e.g. 200 samples for task 4 and

6k training samples for task 2). Since part of the representation is the same, we can

transfer the learned features from one task to another to increase the performance at

least in the tasks with insufficient data. In computer vision, for instance, features

learned on one task are general and transferable to other tasks (Yosinski et al., 2014),

even if the samples do not come from the same distribution (Bengio et al., 2011). More

generally, transfer learning has proved useful in both unsupervised (Mesnil et al., 2012)

and supervised learning (Thrun, 1996), but it matters how transferable the learned

features are. Furthermore, transfer learning should keep the experts consistent and the

resulting combined policy will be closer to the policy used to play the games from

which the samples were collected.

We perform the simplest form of transfer learning: we initialise the network’s

weights by pre-training for several epochs on the data available for the other tasks.

The number of epochs was finetuned to the specific task, e.g. the best performance on

task 4 was achieved after 10 pre-training epochs, while task 5 required only 5 epochs.

Previous work has evaluated the performance of the network after transferring only

part of it, while randomly reinitialising the weights of the rest. We achieved the best

performance by transferring the weights of the full network, since our chosen archi-

tecture permits transferring the weights in the output layer also. The positive result

enforces our belief that both the representation and the policy captured during pre-

training contributed to the increase in performance.
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7.8.1 Evaluation on Human Dataset

We have only focused on the unmasked Neural Networks for this experiment. As ex-

pected, transfer learning works best for fitting the tasks where less data is available, i.e.

the initial placement(1) and discard tasks(4) (see Table 7.13 compared to Table 7.8).

Even though the effect of the actions is not exactly the same across different tasks (e.g.

placing the initial settlements yields an immediate production, in contrast to building

a settlement in the normal part of the game), the weights learned over the other tasks

help the neural network explain why certain features are important for the target task

also. We did not see any improvements for the normal (2) and free road (0) tasks. The

training data for task 2 is sufficient, while task 0 bares very little resemblance to any

other task. The feature abstraction is also causing issues in task 0, as most of the cases

where actions are confused with each other are included in this dataset. Unfortunately,

pre-training also resulted in the model overfitting more on the training data in some of

the tasks.

Task Evaluation Eval. CI. Train

0. Free road building 46.59% ±4.65 51.94%

1. Free settlement building 27.44% ±4.83 32.11%

2. Normal 63.01% ± 63.47%

3. Before roll 83.69% ±2.14 87.25%

4. Discard 32.11% ±4.29 49.71%

5. Move robber 38.71% ±2.73 40.23%

Table 7.13: Transfer learning between experts on human data.

Similarly to the mixture of experts on synthetic data, Figure 7.4 shows the accuracy

of the mixture of expert model with transfer learning on human data as we allow the

correct option to be in the first n options in the output (the value of n is given by the

x axis). Overall, the correct option is within the model’s top 10 options 80% of the

time, which surprisingly is higher than that on the synthetic data. Therefore this model

could also be used to perform soft pruning of a search tree, despite training on a much

smaller dataset.
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Figure 7.4: Percentage of correct classifications up to the first 10 choices of the best

model trained on human data.

7.9 Conclusion

In this chapter, we have focused on extracting a policy from existing game play and

increasing the accuracy of the models in the low-resource setting. Feature selection

and extraction was required in our setting due to the very little amount of data. Despite

this we have shown how we can use a model of the game to separate learning action

legality from learning the correct action in order to keep the models small. Due to

this modification, the networks had to learn in a setting similar to that of a binary

classification, causing instability and weak performance due to data skewness. We took

advantage of our game model to create minibatches of state–action pairs based on what

actions were legal given a state and normalise the network output, essentially informing

the model that the actions are mutually-exclusive. Both modifications were useful and

improved upon a simple binary logistic regression approach, however batching has

also proven useful in increasing the performance of the standard approach. Finally,

we have explored introducing information via the labels without additional benefits to

those of regularisation observed even when using uniform random noise.

We managed to achieve a good performance on both datasets and illustrated that

the extracted policies could be useful in biasing tree search. The overall performance

on the human data is slightly weaker, but this is expected given the simplicity of the
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synthetic agent and the amount of synthetic data available. Also, a mixture of experts

approach has proven more useful when there is sufficient data. On the human dataset

we have showed how we can improve the performance by pre-training experts on the

other tasks. The mixture of experts approaches are more prone to overfitting and we

want to evaluate how these models behave on unseen game settings, i.e. different

initial board configurations and versus a variety of opponents. In the next chapter, we

evaluate which of the two datasets and models (single versus mixture of experts) are

more appropriate for introducing knowledge in the tree phase of MCTS.





Chapter 8

Combining Extracted Policies with

Monte Carlo Tree Search

In the previous chapter, we performed an intrinsic evaluation of a suite of models for

predicting decisions about action in Settlers of Catan from both a synthetic data set and

a much smaller corpus of human decisions. Our models were a vast improvement over

the baselines. However, this is not necessarily an indicator on how the models will per-

form as part of an algorithm for learning decent strategies. This chapter is concerned

with conducting an extrinsic evaluation of the models of the previous chapter. Our aim

is to prove our main hypothesis detailed in Chapter 1: that even very small amounts

of evidence of human play can be exploited to improve the performance of an agent

that is learning a highly complex task. This chapter is therefore dedicated to combin-

ing some of our best models for predicting human decision making with our TMCTS

algorithm from Chapter 5 (for the observable version of the game) and Chapter 6 (for

the true, imperfect version of the game). Specifically, we will use the predictions to

guide search on which actions to choose in the selection phase of TMCTS.

By combining TMCTS with the predictions about human decision making that

are produced by the neural networks, trained on very small amounts of human data,

we can evaluate the performance of the resulting agents as discussed in Section 3.5 to

conclude which of the prediction models and datasets are more appropriate for learning

policies in Settlers of Catan. Due to the normalisation effects of the proposed output

layer over a binary classification, its resilience to numerical underflows and its slightly

better overall performance on both datasets, we only compare models that implement

this approach. We compare the benefits of having a single model versus a mixture of

experts learning on both datasets (i.e., the synthetic data set produced by 4 Stac agents

147
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playing each other in game simulations, and the much smaller data set of human play).

We also evaluate if there are any benefits to transfer learning on the human dataset.

Finally, we pitch the best agents from the two datasets against each other to evaluate

the utility of learning from human data versus synthetic data.

In addition we compare the best approach to informing the tree level of the TMCTS

algorithm: a Neural Network that provides a policy as a mapping from states to actions

or a high-level policy as a mapping from states to action types learned via MLE. As a

last experiment, we create an agent by combining the best improvements presented in

this thesis and pitch it against the current state of the art agent, Stac. This chapter thus

constitutes an empirical evaluation: the best combination of models for data mining,

exploiting and exploring the complex task emerges after fine-tuning the parameters

and comparing its performance to that of the alternatives.

8.1 Algorithms for Informing the Search

The literature contains many examples of combining UCT with domain knowledge, but

there is very little comparison between the available options. Throughout this section,

we will refer to the action of initialising the value of the node in the game tree to be

explored via MCTS as seeding and the value used as a seed. We have considered the

following existing approaches of informing MCTS:

• Naive seeding;

• Progressive bias;

• Rapid Action Value Estimation (RAVE);

• Bayesian UCT;

• Predictor + UCT (PUCT);

• Pruning;

Naive seeding has been implemented before in Settlers of Catan by Szita et al.

(2010). This approach simply seeds the nodes with a value to initialise the number of

wins. The authors have chosen the seed using a set of heuristics: they have observed

that the performance of their agent versus the JSettlers agent from Thomas (2004) has

increased significantly when biasing the search towards preferring building settlements



8.1. Algorithms for Informing the Search 149

and cities. This simple form of seeding doesn’t scale well to different opponent types

and it is also dangerous since preferring building settlements or cities over every other

option may not be good in every situation, e.g. when only poor locations are left

buying development cards is a better alternative to achieving the last victory points.

Naive seeding also relies on the software developer’s own expertise on the task, since

the heuristics are manually chosen.

One simple improvement would be to decay the effect of the seed. There are es-

sentially 4 methods for implementing a decay effect on the (initial) seed so that in-

formation learned from MCTS iterations can (eventually) take over. Firstly, Chaslot

et al. (2008b) introduce progressive bias, in which the UCT computation becomes:

UCTpb(s,a) = UCT (s,a) + P(s,a)
N(s,a)+1 , where N(s,a) is the number of times action a

was selected from state s. P(s,a) is the seed value that is calculated using domain

knowledge.

UCT Rapid Action Value Estimation (RAVE) (Gelly and Silver, 2007) similarly

decays the effect of the seed by combining the prior value with the UCT value as such:

UCTRAV E(s,a) = αP(s,a)+ (1−α)UCT (s,a), where α = max{0, V−N(s,a)
V }. V is the

parameter that defines the amount of decay. The effect of the seed decays over time

and the results from previous MCTS iterations take over. The benefit of RAVE is two-

fold: it handles both the uncertainty of the sampling method when the sample set is

small (i.e., in the first few MCTS iterations), as well as taking into account that the

seed may only be a general suggestion of what is a good action to perform. Usually,

RAVE is combined with the all-moves-as-first heuristic, which reuses the information

stored in the tree if the action was previously executed. However, it can be used with

other forms of knowledge, such as a neural network that evaluates the utility of the

move. Progressive bias and RAVE could also be combined together as shown by Graf

and Platzner (2016).

On the other hand, we can view the seed as a means of performing an informed

exploration of the space. Even though it is not clear if the information provided by

the seed is good or bad, it is an initial guess. Therefore, it makes sense to combine it

with the exploration term in UCT as it is done in the variant of PUCT that was used

in AlphaGo (Silver et al., 2016): PUCT (s,a) = Q(s,a)+CP(s,a)

√
∑a′ 6=a N(s,a′)

1+N(s,a) , where

Q(s,a) is the action value, n the number of times its parent was visited and C the

exploration parameter. As before, we can easily combine with afterstates to compute

the value of action a executed in state s with the outcome state s′: PUCT (s,a) =
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V (s′)+CP(s,a)

√
∑x 6=s′ N(x)
1+N(s′) , where x are the outcome states of the other legal actions

that are not a.

Finally, we could use the distribution given by the predictor as a prior in Bayesian

UCT (Tesauro et al., 2012). Unfortunately, their experiments show that Bayesian UCT

is much slower than other approaches and we would like to keep the agent’s planning

period under a threshold that would be tolerated by human opponents.

There are also many pruning methods developed for MCTS (Browne et al., 2012).

These generally require a careful design to make sure the branches that are pruned do

not contain the optimal solution. Since we cannot trust the seeding method entirely,

pruning is not appropriate. Other methods and variations are available, but we fo-

cused our attention on RAVE and PUCT given their performance in similarly complex

games. The first experiment we performed with each of the models was to fine-tune

the parameters. During this phase we observed RAVE to have a reduced overall per-

formance compared to PUCT. The extra V parameter is very difficult to tune due to

the large space of values that can be explored. RAVE was significantly weaker across

many runs, therefore we chose PUCT, and we will only report the results achieved with

this seeding strategy. Every TMCTS or TPOMCP agent in this section uses the PUCT

selection policy, even if these are not seeded (which is equivalent to the seed being a

uniform distribution over all legal or possible actions). We observed an improvement

when using PUCT with a uniform distribution over the UCT policy we used before, so

we will also use PUCT in the baseline TMCTS or TPOMCP agents.

8.2 Implementation Details

Previous work assumes access to unlimited resources (Silver et al., 2016) and the pos-

sibility to run the predictor on separate GPU threads. The models we present here,

while they could be extended to such a scenario, are designed to be run on a standard

desktop machine. The positive results presented later underline that our methods can

be implemented even if one doesn’t have a large computational budget. Our experi-

ments in which we use the Stac agent as the baseline are run on CPU only machines

with a maximum of 4 cores and 8Gb of RAM, where each game simulation uses a

single CPU (i.e. the agents share the resources). In the partially-observable case or

when multiple TMCTS combined with Neural Networks agents are playing the same

game we allocate 16Gb of RAM.
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Given the hardware limitation, the 4 threads that we used in Chapter 5 to conduct

the TMCTS planning need to be shared with the prediction step. One could simply

allocate n threads to the planning method and the remaining to the seeding. A quick

evaluation showed that this approach results in either resources not being used, or

insufficient resources being allocated to the prediction step. In the latter, we cannot

properly evaluate the utility of the seeding method because it is not keeping up with

the planning method. Our solution is to have a common thread pool and a priority

queue, where the seeding has a higher priority. We also limited the seeding to use

a maximum of two threads at one time to prevent starving the planning method. On

average, over 95% of the tree is seeded at the end of the planning phase.

The evaluations performed in the seeding step are triggered during the expansion

step. we used 6 queues when informing MCTS with the Neural Networks, one for each

task (recall the definitions of the six tasks from Chapter 3, page 38). In the mixture

of experts case, each queue is allocated to the corresponding expert, while the same

model processes every queue in the single model case. To further take advantage of the

parallelisation performed by linear algebra programs, we use a minibatch of 10 sets of

state–action pairs which is equivalent to ten newly expanded nodes. Seeding the tree

asynchronously permits us to wait until the batch is formed and perform fewer forward

passes through the networks. We have not performed extensive tuning of the batch

size, but we noticed that this number and the priority queue are sufficient to perform

incremental evaluations that keep up with the tree expansion. The statistics and seeding

values for the new nodes are used to compute their PUCT value as soon as these are

available.

A detail worth clarifying is that PUCT requires ∑a P(s,a) = 1, so we ensure this

is true in our implementation. Given how a state can be visited following multiple

trajectories in the tree, this aspect is very important.

8.3 Observable Version of Settlers of Catan

We first focus on the observable version of the game, where we use the best parallel

TMCTS model presented in Chapter 5. That is, the model that:

• uses afterstates and transpositions;

• can execute unlimited trades during a turn;

• exploits a typed rollout, using a uniform distribution over action types.
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Due to time and computational restrictions, we have focused on seeding TMCTS

agents that run 10k iterations only.

The networks were trained via supervised learning while trying to enforce a maxi-

mum margin between the positive class and the rest. So these models assign the major-

ity of the mass to one of the label classes similar to how they have been trained. Such a

peaked distribution would reduce the amount of exploration done in the tree level and

limit it to a small set of options. The effect would be a very aggressive pruning of some

of the branches, and we already discussed that this is not appropriate as we cannot trust

the data we have. A similar result was observed in AlphaGo, where the authors have

smoothed the output of the neural network Silver et al. (2016). We employ the same

approach and tune the value of the temperature τ in the softmax function:

so f tmax(z) =
ezi/τ

∑ j ez j/τ
(8.1)

Game simulations with MCTS agents with unlimited trades are very long, and so

given the eagerness of these agents to trade, it is impossible to find the best set of

parameters when pitching the agents against another MCTS baseline. Therefore, we

have chosen the Stac agent as our baseline for tuning the parameters. Random is too

weak of a baseline to be informative of the best parameters; any reasonable agent has

a 99% win rate against 3 random agents. Each combination of TMCTS with one of the

networks is first tuned against Stac by performing a grid search in the parameter space,

then evaluated against a TMCTS agent without seeding, a TMCTS agent with uniform

seeding, and finally against the other combinations.

The results presented in Chapter 7 for the Single models are the best accuracy

the model achieves for each task at different stages during the training. In general,

the decision to stop the training for a Single model is taken based on the overall best

performance without taking into account if the performance for a specific task is or not

the best across all the epochs. We therefore retrain the Single networks on the human

and synthetic datasets, while stopping based on the best overall performance. On the

human data, we also retrain the other models (including the mixture of experts) on the

full dataset and stop the training at the best epoch indicated by crossvalidation. This is

a standard approach when insufficient data is available (Goodfellow et al., 2016).
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8.3.1 Seeding with Neural Networks Trained on the Synthetic Data

We will first show the performance of the combination of TMCTS with the networks

trained on the synthetic data. Table 8.1 contains the evaluation of all the combination

agents, where the rows show the performance of the modified agent versus the baseline

agents of the type shown on the columns of the second row. The first column shows the

name of the modified agents and the second column shows the best performance of the

agents against the Stac baseline after tuning the parameters. TMCTS with the single

model (TMCTS-Single) has an exploration parameter C = 6 and temperature τ = 10,

while the combination with the mixture of experts model (TMCTS-MOE) has C = 6

and τ = 2. Surprisingly, the combination with the single model seems to be a better

choice against the Stac agent. However, considering that both models have been tuned

against this agent, this result does not indicate how the combination generalises to other

policies. The second column shows the performance against the TMCTS agent without

any seeding (i.e. with PUCT and a uniform distribution over the legal actions). The

combination with a mixture of experts is better than the combination with the single

model, but neither are able to defeat TMCTS with uniform seeding. The synthetic

data is generated by a single deterministic policy which visits similar situations across

games, and we believe that the Neural Network overfitted to these situations. As future

work, we could generate the data with an ε-greedy strategy to overcome this problem.

The final two columns compare the agents against each other. Seeding with the mixture

model is significantly better than seeding with the single model, when the two agents

are pitched against each other. The last columns also illustrate that the base TMCTS

has a harder time against 3 TMCTS agents combined with a mixture of experts than

with the single model.

Modified
Baseline

Stac TMCTS TMCTS-Single TMCTS-MOE

TMCTS 38.89% – 30.47% 26.69%

TMCTS-Single 37.56% 18.25% – 22.35%

TMCTS-MOE 36.8% 23.35% 28.88% –

Table 8.1: Win rates of the TMCTS agents combined with the networks trained on

synthetic data. Each result is measured over 2000 games.
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8.3.2 Seeding with Neural Networks Trained on the Human Data

Table 8.2 displays the same evaluation of the models trained on the human dataset

with the addition of the combination with transfer learning (TMCTS-TL). The best

parameters versus the Stac baseline are C = 4 and τ = 4 for all combinations. The

results of these combinations are very different to the ones with the models trained

on synthetic data. First of all, every combination is able to significantly defeat both

baselines: Stac and TMCTS with a uniform prior. Secondly, the combination with

the single model appears to be slightly better than TMCTS combined with a mixture

of experts, even though these results are not significant. Also, transfer learning does

not improve the agent; the performance is weaker, but not significantly weaker. Due

to time limitations, we did not run further experiments to confirm these differences.

It is possible that transfer learning causes the output of the network to be even more

peaked over the option the network considers the best. The three combination on

the small human corpus have comparable performances, and, different to the results

during crossvalidation, there are no clear benefits of using a mixture of experts on

the human data when combining with TMCTS. It is possible that a mixture of expert

only increases the capacity of the model since the mixture of experts combination

significantly outperforms the single combination on the large synthetic dataset.

Modified
Baseline

Stac TMCTS TMCTS-Single TMCTS-MOE TMCTS-TL

TMCTS 38.89% – 19.60% 20.15% 20.40%

TMCTS-Single 42.55% 31.05% – 26.02% –

TMCTS-MOE 41.40% 28% 23.50% – 24.95%

TMCTS-TL 41.45% 27.8% – 24.29% –

Table 8.2: Win rates of the TMCTS agents combined with the networks trained on

human data. Each result is measured over 2000 games.

Table 8.3 contains the decision time of a TMCTS agent combined with the Single

model versus that of an unseeded TMCTS agent. As before these are measured over 10

games versus 3 Stac agents. There is a large increase in the time required when adding

seeding with the Neural Network. The increase in performance versus Stac agents

is slightly less than doubling the number of iterations which yielded a 45.75% win

rate versus 3 Stac agents (see Table 5.3 on page 68). However, running 20k iterations

would double the average decision time, while seeding with the Neural network only
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increased it by approximately 30%.

Agent Min Max Mean Median

TMCTS 45 3852 1433 1445

TMCTS-NN 567 7427 2078 2118

Table 8.3: The planning time in milliseconds of the TMCTS agent seeded with the single

model versus a standard TMCTS agent. These are measured over 10 games.

8.3.3 Comparison between Datasets

Previous results show that the combination with networks trained on human data have

a higher win rate against the two baselines: Stac and TMCTS. The goal of this set of

experiment is to directly compare the usefulness of the two datasets. The synthetic

dataset is a very clean dataset generated by a single deterministic policy and it contains

a large number of samples compared to the human dataset. The human dataset contains

gameplay generated by players with a variety of strategies and of different level of skill.

When the corpus was gathered, the human players were given the chance to play a few

practice turns. However, it is still possible that the data is noisy: these players may

prefer the physical game or did not have enough time to get used to the interface. To

evaluate the two datasets, we compared the best models trained on each of them (i.e.

TMCTS combined with the mixture of experts trained on the synthetic dataset, and

TMCTS combined with the single model trained on the human dataset). The results

presented in Table 8.4 and the victory points shown in Figure 8.1 indicate that, despite

these limitations, training on human data is considerably better than training on the

synthetic dataset generated by the Stac agent. This synthetic agent is a strong baseline

that is comparable to human strength (Keizer et al., 2017), and it required many years

of effort to develop (since the original JSettlers agent of Thomas (2004)). Despite this,

the result highlights the clear benefits in using a human corpus, even with its clear

limitations in terms of size and quality. It is possible that the variety of the gameplay is

enough to overcome the extreme differences in the amount of data. Another possibility

is that the noise contained in the human dataset has a regularising effect.

Table 8.5 provides more insight as to why biasing the planning agents with the

offline policies trained on human data is so succesful. The synthetic trained network

biases the agent towards building more pieces and to disregard playing development
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Modified
Baseline

TMCTS-Synth TMCTS-Human

TMCTS-Synth – 20.14%

TMCTS-Human 28.69% –

Table 8.4: Win rates of the TMCTS agents combined with the best models trained on

each of the two datasets. Each result is measured over 2000 games.

(a) Human dataset (b) Synthetic dataset

Figure 8.1: The two best combined agents’ victory points, where x axis represents

number of victory points and the y axis the number of games.

cards including aiming for the largest army award. Development cards provide count-

less benefits such as additional VP, knights to defend against the robber, free resources

and roads. These benefits can turn the tide of a game, especially when the opponents

ignore them completely. It is very likely that training on a single type of agent is

the culprit for having such an unbalanced strategy. Another downside of combining

with the synthetic trained network is the inefficiency of the agent in terms of resource

usage. The TMCTS-Synth agent produces far more resources but it executes fewer

actions. However, this could also be due to building settlements and cities being more

expensive than buying development cards.

8.3.4 Seeding with the Action Type Distribution

Given the benefits observed in sampling actions from the action type distribution dur-

ing rollouts, an obvious simple seeding method is to initialise the nodes in the tree

based on this distribution. We used the same PUCT action selection policy but instead

of using the output from the Neural Network, we computed a probability distribu-



8.3. Observable Version of Settlers of Catan 157

Statistic
Agent

TMCTS-Synth TMCTS-Human

Avg number of actions 12.66 14.63

Percentage build road 54.07% 48.17%

Percentage build sett. 16.05% 12.92%

Percentage build city 16.83% 10.53%

Percentage play card 13.05% 28.38%

Avg LA count 0.09 0.4

Avg LR count 1.06 1.04

Avg rss. from dice 57.55 52.72

Table 8.5: Statistics for the two combination agents TMCTS-Synth and TMCTS-Human

when playing versus 3 Stac agents. Sett stands for settlement, LA for largest army

award, LR for longest road award and rss for resources. Averages are computed over

the number of games, while the percentages are computed out of the average number

of actions (i.e. the first statistic).

tion over the legal actions given their type πtype(s) = P(a|type(a) = t) using one of

the stochastic policies over types πt(T ) = P(T = t) learned via MLE as described

in Section 5.4.3. It is straightforward to compute this probability by setting each

P(a|type(a) = t) = P(T=t)
N(t) , where N(t) is the number of legal actions of type t. We

evaluated both type policies: the unconditioned one and the one conditioned on what

other action types are legal. We noticed that these distributions can get very peaked

and we want to avoid aggressive prunning. As a result we have also tuned a temper-

ature parameter versus Stac agents in order to smooth these distributions. The best

parameter for the conditioned policy is 7, while the best for the unconditioned one is

5.

Table 8.6 contains the performance of these agents versus the Stac baseline and ver-

sus a TMCTS agent with uniform seeding. Surprisingly, these agents achieve similar

or better performance than the agents seeded with the Neural Network versus the two

baselines. It may be that the Neural Network provides information that is too specific

due to how it maps state description to actions. The action type distributions are quite

general and as a result a better fit for influencing the exploration term of UCT. Perhaps

the amount of data we have is not sufficient and the Neural Network has overfit to the

parts of the abstracted space encountered in our corpus. The agent seeded with the
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conditioned policy seems to be slightly weaker when playing versus the agent using

the unconditioned policy when these two play versus each other. However, the dif-

ferences are not significant to the baseline performance of 25%. Also, the conditioned

seeded agent performs better versus both baselines (Stac and uniform seeded TMCTS),

while the unconditioned seeded agent’s performance is not significantly better than the

baseline performance when playing versus the TMCTS agent with uniform seeding.

Modified
Baseline

Stac uniform unconditioned conditioned

uniform 38.89% – 23.79% 22.25%

unconditioned 42.30% 26.55% – 25.40%

conditioned 44.36% 30.47% 24.10% –

Table 8.6: Win rates of the TMCTS agent with PUCT while varying the action type

distribution used for seeding. Each result is measured over 2000 games.

The statistics for these modified agents are included in Table 8.7. The effects of

the two distributions is comparable to that observed when it was used in the rollout

phase (see Table 5.10).1 The two agents build more settlements and cities over roads

compared to the uniform agent, and are also more efficient in their use of resources.

However, these effects are less pronounced compared to when the distributions were

used in the rollout phase of the planning algorithm. This can be explained by the

smoothing performed with the increase of the temperature parameter. Smoothing the

distributions maintained the exploration ability of PUCT but reduces the effect of the

type distributions. Another interesting observation is that the differences between the

two agents is neglijable which explains the comparable performance observed in Ta-

ble 8.6.

There seems to be a difference between biasing the tree phase and biasing the roll-

out phase with the same policy. When the tree phase is informed, the agent prefers

playing development cards. On the other hand, playing development cards is less pre-

ferred when the rollout phase is modified. This is true for both conditioned and un-

conditioned distributions, and in both observable and partially observable versions of

the game. Learning how to play development cards requires reasoning about opponent

strategy more than the other actions. It is possible that combining these distributions
1The statistics of the uniform agent are different in this chapter compared to those in previous chap-

ters because the uniform agent uses PUCT with a uniform prior in this chapter. UCT was used in the
previous chapters.
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with UCT in a multi-agent planning method results in the agent observing the large

benefits of having answers to the possible opponents’ moves. This is only a hypothesis

and further investigation is required.

Statistic
Agent

uniform unconditioned conditioned

Avg number of actions 14.28 13.80 13.99

Percentage build road 51.56% 50.03% 49.54%

Percentage build sett. 13.11% 14.29% 14.58%

Percentage build city 10.97% 10.92% 11.02%

Percentage play card 24.36% 24.76% 24.86%

Avg LA count 0.30 0.29 0.32

Avg LR count 1.05 1.06 1.06

Avg rss. from dice 53.30 51.17 51.72

Table 8.7: Statistics for the modified agents in Table 8.6 when playing versus 3 Stac

agents. Sett stands for settlement, LA for largest army award, LR for longest road award

and rss for resources. Averages are computed over the number of games, while the

percentages are computed out of the average number of actions (i.e. the first statistic).

Table 8.8 shows that seeding with the type distribution has a negligible effect com-

pared to seeding with a Neural Network. This is expected, since the former is a simple

lookup operation in comparison to the computations performed by the network which

require dedicated threads. Despite this, the performance versus 3 Stac agents is bet-

ter. Since the two combinations also have comparable performance versus the TMCTS

agents, simpler and quick methods are more appropriate in the low-resource case even

in complex games as Settlers of Catan.

Agent Min Max Mean Median

TMCTS 45 3852 1433 1445

TMCTS-typeSeed 213 4053 1602 1658

Table 8.8: The planning time in milliseconds of the TMCTS agent seeded with the type

distribution versus a standard TMCTS agent. These are measured over 10 games.
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8.4 Partially-observable Version of Settlers of Catan

There are only a few minor modifications required to combine the masked Neural Net-

work (described in Section 7.7 on page 139) with a MCTS algorithm that can handle

the partially observable version of the game. During planning, we use the masked neu-

ral network to compute a distribution over the possible actions in the current belief,

i.e. P(b,a), rather than the legal actions given a state, which is the P(s,a) previously

used. There is a slight mismatch to how we trained the masked networks on sets of

legal actions given the masked true state, but we do not have access to the true game

state during planning. Our adaptive network design allows us to easily compute the

probability over a larger set of actions by modifying the input. Regarding the planning

algorithm, we have chosen to use TPOMCP since there was no major performance or

computation complexity difference to TISMCTS or TBMCTSOR algorithms (see Sec-

tion 6.7 for the comparison). As selection algorithm we adapted PUCT with afterstates

to use statistics stored in belief nodes instead of state nodes:

PUCT (b,a) =V (b′)+CP(b,a)

√
∑x 6=b′N(x)
1+N(b′)

(8.2)

We used the unmasked seeding when our agent is next to move during the planning

phase, and we added the masked implementation to seed the nodes that correspond to

an opponent move. The first required modification for the opponent case is to reduce

the state representation s by masking the features representing resources and devel-

opment cards that our agent cannot observe. As explained in Section 7.7, this results

in a pesimistic approximation of the belief state b as it assumes that our agent cannot

infer anything about the hidden resources or development cards. Secondly, we need to

handle how illegal actions given the current observable sampled state s are masked in

TPOMCP. The masked Neural Network introduces a distribution over the possible ac-

tions, but only a subset of these are legal in each iteration of TPOMCP. So, the illegal

actions given the sampled state are ignored during the selection phase (see masking

description in Section 6.4.1). In this case the probability distribution used in PUCT

may be less than 1, reducing the amount of exploration. To overcome this, we must

normalise the distribution by multiplying each probability with a µ = 1

∑a II(s,a)P(b,a)
,

where s ∼ b is the state sampled by TPOMCP at the root node and updated as the
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game progressed:

PUCT (b,a) =V (b′)+CµP(b,a)

√
∑x 6=b′N(x)
1+N(b′)

(8.3)

8.4.1 Seeding with Models Trained on Human Dataset

We chose to only evaluate the TPOMCP algorithm combined with the Neural Networks

that are trained on the masked human data, since training on human data yielded better

results than training on synthetic data in the fully-observable scenario. Also, we have

focused on evaluating the combination with the Single model only, because it had

a slightly better performance than the other agents in the observable version of the

game. Due to time restrictions, we leave the comparison of different combinations in

the partially observable game to future work. We have retuned the temperature and

exploration, but observed that the same values of 4 yielded the best performance. We

limited the number of offers to 3 for all experiments in the partially-observable version

of the game. Table 8.9 contains the results. As expected the overall performance of

the agents combined with seeding is slightly weaker than in the observable version

of the game (see Table 8.2), since the imperfect information increases the complexity

of the game and limiting the number of offers reduces the performance of the agent

as shown before. At the same time, seeding was less beneficial relative to PUCT

with a uniform distribution over actions, even though the seeded agent is still the best

performing agent. One of the reasons for this could be that we train the models on the

set of legal actions rather than the possible actions. We chose to do this since we do not

have access to the human players’ belief. Secondly, preparing the input for the neural

network takes longer than in the observable case since we need to mask it. Even though

seeding still keeps up with planning, it may be that the small delay in providing the

seed is enough for its utility to be reduced. Unfortunately, we didn’t afford to explore

these two hypotheses further.

The statistics in Table 8.10 indicate that combining the planning agent with the Sin-

gle model trained on human data has a minor effect on the behaviour of the agent. This

could explain the minor difference to the uniform biased agent. The most noticeable

differences are the reduced preference of building roads and the increased preference

in playing development cards. This is in line with the effects of biasing the tree phase

of the algorithm with the type distribution.

As before we also evaluated seeding with the action type distribution. However,
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Modified
Baseline

Stac TPOMCP TPOMCP-Single

TPOMCP 33.45% – 19.65%

TPOMCP-Single 34.89% 30.69% –

Table 8.9: Win rates of the TPOMCP agent combined with the Single model trained

on human data in the partially-observable game. Each result is measured over 2000

games.

Statistic
Agent

TPOMCP TPOMCP-Single

Avg number of actions 13.55 13.57

Percentage build road 45.20% 43.80%

Percentage build sett. 11.01% 11.13%

Percentage build city 12.14% 12.15%

Percentage play card 31.65% 32.92%

Avg LA count 0.29 0.32

Avg LR count 0.99 1.00

Avg rss. from dice 56.00 55.32

Table 8.10: Statistics for the modified agents in Table 8.10 when playing versus 3 Stac

agents. Sett stands for settlement, LA for largest army award, LR for longest road award

and rss for resources. Averages are computed over the number of games, while the

percentages are computed out of the average number of actions (i.e. the first statistic).

instead of spreading the mass assigned to one type over all legal actions of that type,

we now spread it equally over all possible actions of that type. As in the case of seed-

ing with the Neural Network, we used the normalised PUCT algorithm in the selection

phase of TPOMCP. We tuned the temperature parameter again and observed that the

same values yielded the best results: 5 for the unconditioned distribution and 7 for

the conditioned one. The results are included in Table 8.11. The differences between

the conditioned and the unconditioned distributions are further reduced to the point

where there is no difference between these two. It is possible that limiting the num-

ber of offers the agent can make is one of the reasons the unconditioned distribution

performs so well. One of the aims of the conditioned distribution was to capture the

fact that trading is a means to obtain the resources required for other action types, by
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extracting the player’s preferences over the action types conditioned on what types are

legal. Furthermore, compared to the massive differences between the conditioned and

the unconditioned distributions when these are used in the rollout phase, the differ-

ences when these are used in the seeding phase are very small in both observable and

partially-observable cases. Perhaps smoothing also has an impact on reducing the dif-

ferences between the two, however increasing the temperature is needed to combine

these with PUCT.

Modified
Baseline

Stac uniform unconditioned conditioned

uniform 33.45% – 21.01% 22.05%

unconditioned 40.06% 29.75% – 25.32%

conditioned 40.56% 29.53% 24.52% –

Table 8.11: Win rates of the TPOMCP agent while varying the action type distribution

used for seeding in the partially-observable game. Each result is measured over 2000

games.

The effect of the conditioned and unconditioned distributions over types on the

overall behaviour of the agent is very similar to those in the observable version of

the game (see Table 8.12 compared to Table 8.7). The only difference is that the

unexpected bias towards playing development cards is further increased. This version

of the game is partially observable which supports the hypothesis presented earlier:

learning how to play development cards requires reasoning about player interactions.

As future work, additional experiments such as making some of the agents omniscient

may aid in explaining this effect.

We included the statistics regarding the decision time depending on what seeding

method was used in Table 8.13. TPOMCP-TS is the TPOMCP agent seeded with the

conditioned distribution. Similar to the observable case (Tables 8.3 and 8.8), seeding

with the type distribution has a minor effect on the decision time while the Neural Net-

work is very expensive. Unfortunately, the decision time combined with only a minor

improvement in performance indicates that using a Neural Network is not appropriate

for our setting. On the other hand, using the typed distribution yielded a performance

close to that of doubling the number of iterations and at a fraction of the cost. A

TPOMCP agent running 20k iterations wins 42.23% of the games versus 3 Stac agents

and a TPOMCP agent seeded with the conditioned type distribution wins 40.56% of
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Statistic
Agent

uniform unconditioned conditioned

Avg number of actions 13.55 13.59 13.57

Percentage build road 45.20% 42.47% 42.19%

Percentage build sett. 11.01% 11.84% 12.02%

Percentage build city 12.14% 12.05% 11.97%

Percentage play card 31.65% 33.64% 33.81%

Avg LA count 0.29 0.34 0.34

Avg LR count 0.99 1.02 0.98

Avg rss. from dice 56.00 54.69 54.32

Table 8.12: Statistics for the modified agents in Table 8.11 when playing versus 3 Stac

agents. Sett stands for settlement, LA for largest army award, LR for longest road award

and rss for resources. Averages are computed over the number of games, while the

percentages are computed out of the average number of actions (i.e. the first statistic).

the games.

Agent Min Max Mean Median

TPOMCP 456 7035 2113 2086

TPOMCP-NN 793 19160 3372 3170

TPOMCP-TS 411 10096 2201 2165

Table 8.13: The planning time in milliseconds of the TPOMCP agent seeded with vari-

ous methods versus a standard TPOMCP agent. These are measured over 10 games.

8.5 Final Agent

We dedicate this final small section to a small set of results with our final best agent.

This agent is the best TPOMCP agent described in Chapter 6 with the conditioned

typed rollout and the conditioned type seeding. We refer to this agent as TPOMCP-

TS-CR in this section. We evaluate this agent versus Stac, versus TPOMCP that uses

the conditioned type seeding but uniform typed rollouts, referred to as TPOMCP-TS,

and versus TPOMCP that doesn’t use any additional information in any of the two

stages of the algorithm, referred to as TPOMCP. The MCTS-based agents run 10k it-

erations only. The results are in Table 8.14. This agent easily defeats the Stac agent,
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Modified
Baseline

Stac TPOMCP TPOMCP-NN TPOMCP-TS TPOMCP-TS-CR

TPOMCP 33.45% – 19.65% 22.05% 31.50%

TPOMCP-NN 34.89% 30.69% – 24.80% 24.70%

TPOMCP-TS 40.56% 29.53% 24.82% – 24.71%

TPOMCP-TS-CR 40.70% 47.50% 33.30% 30.73% –

Table 8.14: Win rates of our strongest agent TPOMCP-TS-CR versus Stac and other

combinations of planning with offline methods over 2000 games.

the state of the art rule-based agent. However, the improvement brought by the con-

ditioned typed rollouts does not seem noticeable (40.70% compared to 40.56%). We

have performed further analysis of the results and observed that the conditioned typed

rollouts increased the average number of victory points to 8.21 from 8.12 with the

uniform typed rollouts. As shown in Figure 8.2, this is possibly due to a better perfor-

mance in the early and mid game, since the agent with the conditioned typed rollouts

finishes more games with 8 or 9 victory points when it does not win.

The benefits of the conditioned typed rollouts are more noticeable versus TPOMCP

agents. The TPOMCP-TS-CR agent wins 30.73% of the games versus 3 TPOMCP-

typeSeed, while the ablated agent does not achieve a performance significantly dif-

ferent to the baseline performance (24.71%). Against 3 TPOMCP agents without any

seeding and with uniform typed rollouts, our best agent wins 47.5% of the games (from

29.53% as shown in Table 8.11). However, the TPOMCP agent is also able to defeat

3 of our best agents, even though it is winning fewer games in total (31.50%). This is

an interesting result, and we can only hypothesise that either our improved agents are

very competitive with the other 2 versions of themselves or that the uniform TPOMCP

agent plays very different to our best agent. Taking into account opponent types might

help with this behaviour, but we leave this and further analysis to future work.

Comparing with the statistics in Tables 6.5 and 8.12, the statistics in Table 8.15

show that biasing both the rollout and the tree phases at the same time results in an

agent that takes the best from both. It is the most balanced agent in terms of playing

development cards, and it focuses even more on building settlements and cities over

roads since the two biases agreed in this regard. An additional benefit that can be

observed is that the agent is faster in achieving the victory condition. This is illustrated

by the fewer number of actions executed on average and fewer resources produced on

average.
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(a) TPOMCP-TS (b) TPOMCP-TS-CR

Figure 8.2: Victory points for the TPOMCP-TS-CR agent versus 3 Stac agents com-

pared to the Victory points for the TPOMCP-TS agent.

Statistic
Agent

TPOMCP-TS-CR

Avg number of actions 13.33

Percentage build road 40.88%

Percentage build sett. 13.40%

Percentage build city 13.13%

Percentage play card 32.60%

Avg LA count 0.30

Avg LR count 0.92

Avg rss. from dice 53.06

Table 8.15: Statistics for our strongest agent (see Table 8.14) when playing versus 3

Stac agents. Sett stands for settlement, LA for largest army award, LR for longest

road award and rss for resources. Averages are computed over the number of games,

while the percentages are computed out of the average number of actions (i.e. the first

statistic).

Finally, we compare the performances of the TPOMCP and TPOMCP-TS-CR

agents versus 3 Stac agents. This experiment shows how the algorithm scales with

the number of planning iterations. The results in Table 8.16 indicate that the bias from

the MLE trained policies is useful even if the algorithm is allowed to perform a large

number of iterations. Our TPOMCP-TS-CR agent performs better than an uninformed

TPOMCP agent that runs 2 times more iterations.
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Agent 10k 20k 30k 40k

TPOMCP 33.45% 42.23% 44.5% 47.94%

TPOMCP-TS-CR 40.70% 49.00% 52.65% 53.65%

Table 8.16: Win rates of TPOMCP and TPOMCP-TS-CR agents against 3 Stac agents,

while varying the number of iterations.

8.6 Conclusions

We presented an empirical evaluation of the improvements we have developed in this

thesis by comparing the resulting agents in a tournament setting. Our best agent is a

combination of all the methods we developed. This agent can easily defeat the current

state of the art rule-based agent under a very tight computational budget. We expect

large increases in performance if more resources are allocated since the planning agent

could explore more of the game tree. There are several conclusions we can draw from

the current results. First of all, the human data has not only proven sufficient but also

essential in creating the best agent. This agent heavily relies on the various extracted

policies. Secondly, human data is far better than synthetic data even if the latter is in

large quantities. We attribute this fact to the diverse play that is usually present in a

corpus generated by a large number of different human players. Thirdly, our ensemble

approach was only useful when large quantity of data was available. The large in-

crease in the model capacity as well as combining with pre-training seemed promising

during standard cross-validation. However, these methods show signs of overfitting in

comparison to a single model and have weaker performance when applied on unseen

data during planning. Finally, a Maximum Likelihood Estimation approach that learns

a high-level policy over types has proven more successful than deep learning tech-

niques in our setting. This emphasizes the need for simpler and more robust methods

in complex games when limited resources are available.





Chapter 9

Conclusion and Future Work

The aim of this thesis was to evaluate the requirements for creating a strong agent for

a highly complex board game. Furthermore, we set out to explore different ways of

extracting additional information when there is a lack of data and the available samples

are very noisy. One of the main hypotheses was that we can exploit the environment’s

structure to overcome limitations in both data and computational resources and still

improve the performance of our agent over the current state of the art.

Our main contributions include several key extensions to standard planning and

learning models which have significantly increased their computational and data effi-

ciency. Furthermore we have shown that access to enormous amounts of example game

play is not a key requirement in creating a competitive agent. A highly sparse human

corpus containing non-expert play can still be mined to increase the performance of

any unbiased planning method. An important conclusion is that integrating high-level

preferences extracted from the corpus that describe a human player’s overall behaviour

has been essential in creating our strongest agent. This highlights the importance of

robustness in noisy and low-resource settings.

Finally, we have thoroughly analysed the game domain and the characteristics that

make it a very difficult environment for both humans and machine learning techniques.

In doing so, we have also shown that planning in the belief space is not appropriate and

presented a detailed error analysis to justify our conclusion.

9.1 Main Findings

Before providing a summary of the main contributions of the thesis, we give a short

reminder of the challenging aspects of the game:
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• massive state space;

• massive action space;

• imperfect (and incomplete) information;

• the game depth is large (and typically larger than complex games tackled to date,

such as GO);

• action space dominated by type of actions that are beneficial but not sufficient

for winning the game.

First of all, the game has a massive state space which is further aggravated by the

large diversity of the starting states. Secondly, a tabular representation of the action

space without considering action legality provides a large hypothesis space for learn-

ing policies represented as mapping states to probabilities over the action space. The

branching factor is large, but the huge depth compared to other domains increases the

already large strategy space. Another important characteristic is that the action space

is dominated by actions that are generally only needed to satisfy the requirements of

other actions (e.g. trading which is needed to get resources and execute other actions)

without a huge immediate benefit. The game requires planning a long sequence of

actions while avoiding cycles that are unnatural in expert games. Finally, the imperfect

information increases the state space and makes it challenging to reason over oppo-

nents’ intentions.

Exploiting game structure during planning and learning. Our best performing

models take advantage of the game structure as defined by the game rules. In Chap-

ter 5 we showed how we can incorporate a prior distribution over action types during

the rollout phase and increase the expressiveness of the policy. This simple modifi-

cation combined with a uniform prior is the single most important change required to

reduce the negative impact of having an action space dominated by one action type. We

further improved the performance of the agent by extracting preferences over action

types from our corpus. We attribute the increase in performance to the capability of

the new rollout policy to generate trajectories that resemble trajectories generated by a

standard player. In Chapter 7 we specialised models for certain tasks of the game. This

has increased the accuracy on each of the task for both synthetic and human datasets

during offline evaluation.

Model-based supervised learning. In Chapter 7 aimed to use training data to esti-

mate which action from those that are legal in the given state are sufficiently optimal
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to be worth exploring. This approach permitted keeping the output layer significantly

smaller thus reducing the model’s number of parameters compared to using the tabular

representation of the action space to define the output layer. As a result the model gen-

eralisation error is reduced and we can learn from a very small dataset in a game with

massive state–action space. We used a game model to form the minibatches of legal

actions given a game state. Training with these minibatches has proven key in achiev-

ing a better performance over training with fixed size minibatches since even binary

logistic regression models benefited from this batching policy. Introducing a mutual

exclusivity via the softmax output layer punished representations that did not permit

easy separation of the correct action, resulting in higher performance over a standard

binary classification task.

Combining preferences with action legality. In Chapter 5 we showed how a simple

MLE model can be used to extract preferences that provide a high-level description

of what a standard human player would do. We showed how a richer description of

these preferences by conditioning them on what other action types are legal can dra-

matically improve the rollout policy. This conditioning incorporates strong preferences

over types that help differentiate actions required for satisfying requirements of other

actions from those that are important milestones for winning the game. We observed

the same effect in the partially-observable case (Chapter ch:poplanning). When seed-

ing the tree policy (Chapter 8), the benefits of conditioning on action types legality

was not as pronounced. Nonetheless, this simple baseline has proven both more ef-

ficient and more effective than training a Deep Neural Network to estimate a policy

that maps states to actions. The conclusion is that combining methods that extract

high-level strategies or meta-information about policies with planning at decision time

can be very effective in learning to play complex games when faced with a lack of

computation power and limited noisy data.

Belief Monte Carlo Tree Search. We have evaluated several known MCTS ex-

tensions for planning in partially-observable games in Chapter 6. Following on the

positive results in Chapter 5, we have shown how a belief abstraction method can be

used to integrate transpositions and afterstates into POMCP such that node statistics

are shared. The benefits outweigh the increase in computation required to do several

belief update steps in the tree level of MCTS (we suggested a cheap alternative that

only updates the abstract representation for environments where even a small set of

exact updates would be too expensive). We compared POMCP to a version of MCTS

in the Belief MDP that does not sample fully observable states but rather retains the
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uncertainty about the game state during the tree search and rollouts towards the game’s

end state(s). Surprisingly the exact Belief MCTS algorithm had a weak performance,

while an approximation that samples observable states at the leaf nodes is comparable

to POMCP’s performance. Our results indicate that sampling is sufficient if statistics

are shared and that there are no further benefits to reasoning in the belief space. The

error analysis indicates that there are several reasons why POMCP is sufficient (given

our factored belief representation):

1 The entropy of the distribution over the belief factors that are relevant to the

current player’s actions is usually low.

2 A smaller portion of the game than we initially believed is spent in partially-

observable states.

3 Settlers of Catan requires chance nodes for handling the uncertainty of the game

outcome (win or continue game) and these directly influence the reward function.

Planning in the belief encounters many of these chance node and the uncertainty

in the rollouts results is increased.

4 The observation model is deterministic so the trajectories in the belief space

strongly resemble those in the state space. Planning in the belief should help

further to aggregate the trajectories in the state space and share results, but we

did not observe this benefit.

5 Settlers of Catan is a Eurogame where there are very few interactions between

players. This means agents do not need to reason over opponents’ hands other

than when trading. Being able to accurately track what an opponent has and can

do may be very important in human games but not in synthetic agent simulations.

9.2 Future Work

We have evaluated the proposed methods on a single game: Settlers of Catan. An obvi-

ous path to explore is to evaluate the proposed models in similar complex games, that

are highly structured and present similar characteristics (e.g. action types that domi-

nate the action space or generate cyclic behaviour that would not be tolerated by human

players in reality). We are confident that some of our techniques will prove beneficial,
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given positive initial results with a similar typed MCTS algorithm on Monopoly (Sam-

mul, 2018). Other board games and video games that present similar structure are: the

Civilisation series, Diplomacy, Battlestar Galactica, etc.

Another alternative is to further evaluate the benefit of planning in the belief space

given our negative results for Settlers of Catan. In other games, key information on who

is winning the game is either observable or players can be certain of it. Furthermore,

we believe planning in the belief space can be beneficial if players have more control

on what to hide and what to show to opponents instead of chance events deciding the

outcome as in Settlers of Catan. Therefore, we believe planning in the belief space can

be beneficial in games such as Cheat or Cluedo.

Settlers of Catan is a very popular game and there is a large community of players.

There are many versions of the game available for different platforms, e.g. Microsoft,

Android etc. Unfortunately, most of these games have not released their source code

and it would be time consuming to receive access to their database of collected game

play. In addition, we would need to create an interface to connect our game model

to theirs as well as to parse the data. Creating our experimental framework and a fast

forward sampling model for MCTS was already very time-consuming (see a brief de-

scription of the software in Section 3.3). One would need to dedicate an even larger

amount of resources to connect all the platforms. Nonetheless, it would be interest-

ing to compare the methods developed in this thesis to other supervised learning ap-

proaches that require a large number of resources, e.g. Silver et al. (2016). The game’s

official website (www.catan.com) may be a good starting place for future work.

A related future path that may generate stronger agents is to augment the human

corpus with synthetic or self-play data. As discussed in several parts of the thesis, we

have not explored this option for several reasons. First of all, we aimed to directly

compare synthetic data versus human data. We did not aim to create the strongest

agent for Settlers of Catan by combining the two data sources. Secondly, bootstrapping

learning methods doesn’t only highlight if the advice provided by the data is good, but

also if the extracted information allows the learning method to correct or adapt it in case

the advice is sub-optimal. To this end, we have already evaluated the agents resulted

from combining the extracted policies with a planning method. Finally, bootstrapping

deep reinforcement learning is still a very expensive approach and the combination

only partly speeds up learning. There are existing methods that could be attempted as

future work, e.g. Nair et al. (2018); Hester et al. (2017).

As mentioned before, this thesis does not contain an exhaustive search of the best

www.catan.com
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set of parameters or features. The search we performed is sufficient to be highly con-

fident of the performance of each proposed model. There is a possibility for minor

improvements of our final agent (evaluated in Section 8.5) if one wishes to perform

an even more fine-grained exploration of the parameter space. Instead, we aimed to

evaluate if learning from a highly sparse and noisy dataset of human play is possible

in such complex games. We achieved this goal and as a by-product we also created

the current best open-source Settlers of Catan player which is purely based on learning

methods. Over the next few subsection we go in more detail over what we believe are

the most interesting and possibly fruitful options for future work.

9.2.1 Human Evaluation

We evaluated the methods implemented in this thesis versus multiple baseline agents,

where one of them (Stac) is known to have comparable performance to human play-

ers (Keizer et al., 2017). Since our best agent can easily defeat this baseline (40.70%

win rate versus 3 Stac when running only 10k iterations), we can extrapolate that our

agent will also prove a challenging opponent for human players. In order to be certain,

we would need to run a tournament between our agent, a baseline agent and human

(expert) players as in Keizer et al. (2017). The current JSettlers framework and the

experiment setting as described by Keizer et al. (2017) (e.g. games of 1 human player

versus 3 agents, the payment done via Amazon vouchers, etc) can be followed. Our

agent requires considerably more time to take decisions (approximately 3 seconds on

average compared to the almost instant decision making of Stac), so an increased in-

centive may be required to pre-empt participants from losing interest. A difficulty

that needs addressing is the additional computation resources our agent requires. The

agents may need to run on a cluster of machines rather than a single one. To reduce

this burden further, estimating the time required for games to finish and allocating time

slots for each participant may be an option. The planning, as well as the engineering

behind setting up and running this experiment made it impossible to perform it as part

of this thesis.

There is also a major concern that requires addressing before this experiment can

be run: our agent’s trading behaviour. We have observed that it is very eager to make

trade offers, possibly in board situations where it does not have access to the resources

required to achieve its plan. Our current solution is to limit the number of offers the

agent can make per turn, but the effect is that the performance of the agent is slightly
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reduced. Even so, the number of offers is still large (45 per game) compared to that of

the Stac agent (12 per game). One of the reason the Stac agent may be able to make

fewer trades is its significantly more sophisticated trading algorithm. Its heuristics

allow it to make offers to multiple opponents at once, while our agent is evaluating

the benefits of trading with each opponent during planning. It then makes the offers

in the real game by following through the list of legal trades in their descending order

according to their value estimated during planning. An approach which aggregates the

offers that are the same but have different recipients in order to make a single offer in

the real game may improve the experience of human players. Further engineering to

rank these aggregated offers and decide how to reply if multiple opponents accept the

offer will be required. Finally, our agent cannot react or make partial offers, where

either what resources are given, or requested are mentioned in the offer. Due to time

restrictions, we were unable to create these extensions and analyse which would be the

best performing one.

9.2.2 Hierarchical Approaches

Our main results, particularly integrating a prior distribution over action types to in-

form different phases of the MCTS algorithm, indicate the need for hierarchical and

mixture methods to learn in highly complex games. The simple MLE approach de-

scribed in this thesis learns action type preferences that describe an overview of how

a standard player would act. However, these preferences are reactive, in the sense that

these do not take into account what the player has done in the past. Conditioning on

the history that describe what the player has done in the past is an interesting path to

explore. This is particularly appropriate in learning to play games that require follow-

ing a consistent plan, such as Settlers of Catan where well-known general strategies

are advised (see description of ore-wheat or clay-wood strategies in Section 3.2). The

main challenge in this case is the sparsity of the data that is further aggravated by

conditioning on sequences. Methods to generate approximative representations, such

as function approximations similar to the approach of Christiano et al. (2017), are re-

quired. A relevant approach is that of hierarchical reinforcement learning Dietterich

(2000), where macro actions or options are defined to reduce the space the algorithm

needs to explore. Automatic extraction of such options (over actions or action types)

from a sparse corpus of human play could also be an interesting path to explore in

future work.
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We have implemented a version of Mixture of Experts model for offline learning of

a policy which specialises models to specific tasks in the game. However, there is an

alternative offline learning approach that is similar to the strategy of sampling action

types followed by the action specifics done in MCTS rollouts. One could specialise

models to learn action specifics, e.g. a model learns where is the best coordinate for

roads while another learns to place settlements, and train a different model to select

the best action type to execute next. The latter can be a simple MLE approach to learn

a density function over the set of legal (or possible) action types, while the specialist

models can be DNNs. But, it would also be interesting to compare this approach to

end-to-end training of a standard Mixture of Experts: a gating function that provides

the distribution over which expert is more likely to answer correctly (this is equivalent

to the distribution over action types), and a set of experts that each provide distributions

over portions of the action space that include only legal actions of the type each is

assigned to learn.

9.2.3 Multi-agent Perspective

One of the most interesting aspects of Settlers of Catan is the negotiation game that is

played in parallel with the game addressed in this thesis (defined as a finite POMDP).

Here, we refer to negotiations as the very diverse chat moves a player can make: from

the simple exchanges, such as introduce themselves to the other people, to highly com-

plex persuasion moves required to ensure a good trade. This negotiation game is very

complex since it has an unbounded action and state space. But, it also requires rea-

soning about opponent types or preferences. In fact, Settlers of Catan is a social game

and you cannot risk making certain moves without taking into consideration the effects

these may have on how the others will perceive you. For example, being a nice player

may help you form coalitions that in turn will prove decisive to winning the game.

Negotiation utterances are interesting from a natural language generation perspective

because one may need to phrase these with a specific goal in mind (an example goal

would be to get a clay resource from the red player). This goal is not a static objec-

tive as in most domain-based language generation tasks as it depends on the current

game state, on the other player types etc. But, it must be connected to the main objec-

tive of winning the game, which, on its own, is too generic to help inform how these

negotiation utterances should be phrased.

A Bayesian formulation should also help in learning to take decisions in the finite
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POMDP we addressed in this thesis. Settlers of Catan is a multi-player game and,

in reality, it is highly unlikely that one would play in a 1 versus 3 of the same type

of agents setting as in our experiments. Such a controlled setting was required for

empirically evaluating synthetic agents one versus another. A Bayesian formulation of

such a complex environment presents many challenges. One of these is defining these

player types and their behaviours. Automatic methods to hypothesise these behaviours

based on the problem description or example play may be required. Reasoning over

player types could also be combined with learning macro actions or extracting policies

from a corpus of human data. However, including player types may not be successful

in the low-resource setting such as ours.

9.2.4 Reinforcement Learning

One of the main reason we chose planning at decision time over other reinforcement

learning methods, such as deep reinforcement learning or inverse reinforcement learn-

ing, is the sheer size of the problem space. MCTS bypasses this by estimating a locally

optimal policy, in the sense that this policy is sensible for the current game state and

board configuration only. Deep reinforcement learning methods are known for the

amount of data and computational resources they require, as well as their need to reach

reward rich areas of the state space in order to bootstrap. The large branching factor

and massive depth factor of Settlers of Catan combined with a highly sparse reward

function, would have caused these methods to be extremely slow or even unsuccessful.

Inverse reinforcement learning methods would also struggle given these characteris-

tics. In addition, inverse reinforcement learning would have to deal with the added

issue of very ambiguous trajectories generated in our environment, especially due to

the action space being dominated by trading actions and the very varied game sce-

narios (which may require apparent contradictory play). The hierarchical solution we

presented (sampling action types followed by action description) has significantly re-

duced the depth of rollouts and increased the efficiency of running them (see Table 5.6

on page 76). If such a hierarchical policy is used, the algorithm is more likely to en-

counter reward rich areas and this will speed up convergence. It would be interesting to

explore hierarchical versions of deep reinforcement learning or inverse reinforcement

learning that could learn both the policies (over actions and over action types) or just

one.

Another possibility to speed up convergence of reinforcement learning algorithms
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is specialising policies to certain tasks of the game, and training them iteratively while

fixing the other policies. For example, Cuayáhuitl et al. (2015) have used the heuris-

tics based agent to handle all actions in the game except deciding what resources to

exchange when trading. The authors trained a neural policy to select these resources

whenever the rule-based agent decided to trade. Using the rule-based agent helped to

reduce the learning problem to the situations that are more likely to be encountered in

real games, as well as aided in learning a trading policy that is in line with the game

play strategy of the rule-based agent. Cuayáhuitl et al. (2015) have focused only on

learning what resources to select, so the action space is small (≈70) compared to the

full game (1882, see Appendix A for details). Nonetheless, an iterative divide and

conquer approach might also prove successful in applying reinforcement learning to

the full game of Settlers of Catan.



Appendix A

Settlers of Catan Action Space

Table A.1 contains the maximum number of options for each action type in the game

Settlers of Catan given our minor modification of the trade action space. The set of

options of building or placing a piece contains the legal locations on the board for

the specific type, move robber with stealing contains the number of hexes times the

number of opponents (plus the case where there is no adjacent piece), bank trades

include the 3 options of 1 for 2 resources, 1 for 3 resources and 1 for 4 resources for

each combination of resources (excluding exchanging the same resource type), trades

between players include the 1 for 1 resource, 1 for 2 of the same type, 2 of the same

type for 1 resource, 1 for 2 of different type and 2 of different type for 1 with each

of the three opponents, discards include all possible unique combinations of resource

types up to 10 resources which is the maximum limit implemented in the planning

method.
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Build settlement 54

Build city 54

Build road 72

Move robber 19∗ (3+1)

Buy development card 1

Play knight 1

Play free road 1

Play monopoly 5

Play discovery 15

Roll dice 1

End turn 1

Bank trades 5∗4∗3

Player trades (20+60∗2)∗3

Discard 1001

Total 1882

Table A.1: Game actions



Appendix B

Features for the Non-parametric

Method

This feature template was used to represent the states in the nearest neighbours exper-

iment. The full vector length is 110 and is created from two sets of features: a set

describing a general board description and a set describing each players’ state start-

ing from the current player and going round based on the order of play. The features

describing the general game state are:

• State number taken from JSettlers;

• Number of players;

• Total number of roads built;

• Total number of settlements built;

• Total number of cities built;

• The position of the current player based on play order;

The set of features describing a player’s state:

• Current victory points;

• If the player owns the largest army;

• If the player owns the longest road;

• The number of roads on the board;
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• The number of settlements on the board;

• The number of cities on the board;

• The sum of numbers (these are on the hexes this player’s settlements and cities

are touching; in the case of a city the value is duplicated);

• Maximum production of each resource type computed as a sum of settlements

and cities touching that resource (where a settlement = 1 and a city = 2);

• The port types this player has access to;

• A small set of heuristics:

– Is the player’s territory connected;

– Does the player have an isolated settlement;

– The current longest road;

– The longest possible road;

– Distance to opponent’s pieces;

– Distance to a port;

– Distance to the next legal location for a settlement;



Appendix C

Monte Carlo Tree Search Parameter

Tuning

This appendix includes the results from tuning the parameters of the MCTS algo-

rithm in the fully-observable game. We focus our attention on the exploration pa-

rameter C, the effects of the trading limit, on the effects of the selection policy for

the BEST ACTION(n) function from Algorithm 1, and compare the sequential agent

versus the parallel agent. We first show the effect of increasing the exploration param-

eter value. Table C.1 shows that increasing C has a negative effect on performance.

Since the performance as a function of C is a monotonic function decreasing with the

increase of C, we limited our exploration to the values included in the table.

0.5 1 2 3 4

36.20% 33.95% 30.10% 29.50% 29.00%

Table C.1: Win rates of the MCTS agent versus 3 Stac agents in the fully-observable

domain while varying the value of the exploration parameter C. The MCTS agent runs

10k iterations and can make unlimited offers.

In Section 5.5, we observed that including an offer limit affects the performance of

the agent. While tuning the exploration parameter C and the number of iterations, it

became clear that this limit affects the algorithm more as the number of iterations is in-

creased (see Table C.2). This further highlights the need for future work on developing

a better approach to reduce the trading eagerness of the planning agents.

Selecting the action with the maximum value, i.e. maxQ(s,a), as the next action

to be executed after planning is controversial. This approach is considered risky since
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Iterations
C

0.5 1 2 3 4

10k 31.20% 29.90% 27.20% 27.45% 26.55%

20k 40.85% 40.90% 40.8% 37.55% 37.65%

30k 46.75% 45.90% 44.40% 44.55% 43.50%

40k 47.35% 48.15% 46.69% 46.85% 46.83%

50k 50.85% 51.45% 49.60% 48.32% 50.76%

Table C.2: Win rate of the MCTS agent with max value policy versus 3 Stac agents

as we vary the number of iterations and the exploration parameter C. Trade offers are

limited to 3 per turn.

an action with few visits may have received some lucky wins before the planning ends.

Choosing the most visited action is much less error-prone, therefore the most success-

ful agents in Go (Silver et al., 2016, 2017) use the robust child policy, i.e. select the

action with the most visits (maxN(s,a)). Table C.3 shows the performance of the

MCTS agent with the robust child policy. Due to time constraints, the MCTS agent

was limited to 3 offers per turn, so these results can be compared to those included in

Table C.2 where the MCTS agent uses the max value policy. The results indicate that

the performance of the two policies is comparable. In the end, we chose the max value

policy following Szita et al. (2010), the authors of SmartSettlers.

Iterations
C

0.5 1 2 3 4

10k 31.50% 30.45% 27.25% 27.85% 27.00%

20k 40.80% 40.85% 40.00% 38.80% 38.95%

30k 45.15% 46.80% 44.30% 43.40% 44.15%

40k 47.90% 48.40% 46.35% 47.10% 46.55%

50k 49.05% 50.05% 51.60% 48.55% 47.05%

Table C.3: Win rate of the MCTS agent with robust child policy versus 3 Stac agents

as we vary the number of iterations and the exploration parameter C. Trade offers are

limited to 3 per turn.

Finally, we have compared the performance of the sequential agent versus the par-

allel agent while limiting the number of iterations to 10k. We used our strongest MCTS
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agent, i.e. TMCTS, and we compared its performance when the number of threads is 1

(Sequential) versus 4 (Parallel). Table C.4 contains the results. As expected Sequential

performs slightly better than Parallel since it doesn’t lose any results due to concurrent

modifications in the tree. Another reason for this improved performance is that threads

may explore the same branch in the parallel version, while in the Sequential agent an

update is always performed before starting a new iteration. So the parallel version

duplicates some of the effort. Virtual loss punishes duplication, however it is not suf-

ficient. Despite these results, the parallel agent provides almost 3 times the speed up

compared to the sequential agent (see Table 5.1), so we use the parallel version in the

thesis.

Modified
Baseline

Stac Sequential Parallel

Sequential 33.15% – 26.35%

Parallel 31.20% 23.53% –

Table C.4: Win rates of the two TMCTS agents: Sequential and Parallel. Each result is

measured over 2000 games.





Appendix D

Factored Belief Model

In Settlers of Catan, the players’ resources and development cards are the only parts

of the game that opponents can be uncertain of. Fortunately, it is obvious from the

game rules that these two aspects are independent and can be tracked by separate mod-

els, referred from now on as the resource model and the development model. Further,

since this is a 4-player game, tracking a belief over a complete description of the state

would result in an explosion of possible states given the large number of combinations

between each possible resource hand and development hand for each player. But, we

only require the information for the current player to reason over the next legal moves.

Therefore we track each player’s resource hands individually and we make the assump-

tion that these are independent. Given that players steal resources from each other, this

is clearly a relaxed implementation. This means that sampling complete state descrip-

tions from this model will create a small number of additional impossible states, but it

will always include the true state and the whole set of possible states. Unfortunately,

this relaxation is the best we can do without developing a very complex model. It may

be very challenging if not impossible to create a better model; none of the opponents

observe what a player discards and there could be numerous stealing actions where

players repeatedly steal from each other. Given these minor assumptions, the belief is

represented using the following product:

bt
i = ∏

j 6=i
P(X j

c , . . . ,X
j

wd|H)P(X j
k , . . . ,X

j
v |H) (D.1)

In this equation we show how we represent the belief bt
i of player i at time t, by

enumerating over the opponents j to compute the joint distribution over their resources:

clay (c), ore(o), sheep(s), wheat (wh) and wood (wd), and the joint distribution over
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their development cards: knights (k), monopoly (m), discovery (d), free road (r) and

victory points (v). For completeness we include the dependence on the history H which

is usually a list of actions and observations. However, this is a Belief MDP, so we

replace H with a tuple (bt−1
i ,at−1,ot−1). We do not want to delve on implementation

details, so we only mention that the joint probability distribution over resources is

computed by keeping track of complete set of resources that describe all possible hands

mapped to their probability mass, while the one over the development card is computed

via simple combinatorics, and by keeping track of totals for played and unplayed cards.

One minor point we want to make is that the belief distribution is highly sparse,

so there is no point in keeping track of all possible states (i.e., possible resource hands

and development hands in our case). One reason is that the game is not ergodic (i.e.

only a subset of possible states can be encountered in a given game due to the large

variety of initial board settings). Another cause is that only a subset of the states from

those reachable in the current game are possible at the current time step. Even though

we show that we enumerate over all states s ∈ S, in fact we only keep track of a small

subset s ∈ S− such that b(s)> 0.

The belief transition function b′ = τ(b,a,o) is straightforward for the development

card model: we just need to update the totals following the actions of buying or playing

a development card. In the resource model case, we built an update method that is

inspired from Situation Calculus (Russell and Norvig, 2009). A possible state (or

situation) is described with fluents for the quantities of each resource type that form

the players’ hands. For each action in the game that requires an update to the resource

model, we define a possibility axiom and an effect axiom. For example, building a

road possibility axiom requires the description of the possible world (i.e. resource set)

to include at least one clay and one wood. The effect axiom will modify the resource

set by decrementing one clay and one wood. We solve the representational frame

problem via a mixture of successor-state axioms for the fluents describing a player’s

hand and explicit frame axioms that state which players’ hands are modified. The main

difference to Situation Calculus is that we need to keep track of multiple situations at

the same time since we don’t know the true state prior to the action being modelled. We

handle this by attaching probabilities to each situation. We use this model to track the

belief of our agent as actions are executed. So an update is performed when an action

is observed in the real game or in the game model used by MCTS. After an update,

sets of situations may be inconsistent with the relevant possibility axiom. Therefore,

we also normalise the ones resulting from the effect axiom such that their probability
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mass sums to 1.





Appendix E

Settlers of Catan Partially-observable

Game Model

The following list contains the set of action effects and observations in the game model

according to the game rules:

1. Build action: this is a fully-observable action and every player observes the full

effect. Depending on the type of piece built, the possibility axiom requires the

initial resource set to contain the required resources, and the effect is to subtract

the requirements from the initial set.

2. Trade action: all players observe what is exchanged. The possibility and effect

axiom are the same as for the build action. The update is performed for two

players in a normal trade, or for a single player in the trade with bank or port

case.

3. End turn: observable action and no update is required to the belief model;

4. Roll dice: observable action followed by a chance event whose consequences

(in terms of which players get which resources) are observable. The effect is to

add the relevant resources to each possible situation.

5. Move robber: observable action and no update is performed to the belief. This

is followed by a steal action (as described in more detail in point 10);

6. Play development card: observable action and its effect is to update the totals

in the development model. Depending on the development card, this action can

be followed by other actions such as move robber, build two free roads, receive
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two resources of a chosen type or take all resources of a chosen type from all the

other players (monopoly). All these actions are fully-observable and the effects

are straightforward, except for the monopoly action.

7. Monopoly action: observable action and effect, but the axioms are not straight-

forward to implement. In the partially-observable setting, the current player

doesn’t know the true state so it may not know the true totals for specific re-

source types for each player. The game rules dictate that all players must give

away all resources of the chosen type to the player that played the monopoly

card. In the planning phase, there is no server that can enforce this so we must

create a chance event where the totals are sampled for each victim. The effect

axiom updates the fluents by setting the quantity of the chosen type to 0.

8. Buy development card: partially observable action, where each opponent ob-

serves that the current player bought a development card but only the current

player observes its type. The effect is to increase the total of unplayed develop-

ment cards for the current player in the probabilistic development model.

9. Discard: partially observable action, where the opponents observe the total num-

ber of cards discarded but not their resource types. If the victim is the player

whose belief we are tracking, then the effect axiom is similar to that of the build

actions. When an opponent discards, the effect axiom computes all possible

combinations that could have been discarded and generates new situations for

each.

10. Stealing: this action follows every move robber action and the participants ob-

serve what type of resource was stolen while the other two players only observe

that a card was stolen but its type remains hidden to them. Therefore, the update

is done depending on the perspective of the agent whose belief we are modelling:

is it a participant or just an observer? If it is a participant, then the effects are

observed following a chance node. If it is an observer, then the effect axiom is

the same as that of the discard action, but now we must update the situations for

both the victim and the perpetrator.

Staying in the belief space turns the effects of the discard action and stealing action

into deterministic modifications to the belief. Unfortunately, we had to add one new

chance node for the monopoly action (see above for motivation). This is due to the

game rules which clearly state that the exact quantities are revealed when this action is
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performed. The game rules also dictate that the observation model is deterministic i.e.

there is a single observation that has a mass equal to 1: P(O = o|s,a) = 1. As a result,

the observations received after monopoly actions have a strong revealing effect (i.e.

sets b(s) = 0 for a large number of s ∈ S) which make it pointless to attempt building

a belief transition function for this action.





Appendix F

Abstract Belief Representation

The belief is represented in the tree as a vector of features that represent the belief of

what each player holds in their hand. Therefore this is constructed by concatenating

the following information for each player:

• minimum number of resources for each type of resource;

• maximum number of resources for each type of resource

• total number of unplayed and unknown development cards;

• how many of the above are definitely not victory point cards;

• total number of played or revealed development cards for each type;

followed by a set of features describing what is remaining in play overall:

• total number of unplayed development cards (including what is still in the deck);

• total number of unplayed development cards of each type;

The vector size contains 82 features in total.
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Neural Network Input Features

The set of features used for describing the state is made of a set of features describing

the current general game state:

• current turn number;

• dice result;

• number of settlements;

• number of roads;

• number of cities;

• has the current player played a development card;

• the board position of the current player;

• the resource type blocked by the robber;

• the number on the hex blocked by the robber;

• number of players affected by the robber;

• number of pieces affected by the robber;

• are there any development cards left in the deck;

followed by a set of player specific features for the current player:

• score;

• longest road label;
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• largest army label;

• number of road pieces available to build;

• number of settlement pieces available to build;

• number of city pieces available to build;

• the resources the player has in its hand;

• access to port types;

• access to resource types, where a city counts as double access;

• production of each resource type by summing the numbers on the hexes this

player pieces are touching while taking into account the robber effect;

• is this player affected by the robber;

• number of played knights;

• length of longest road;

• number of development cards (new, old and played);

• what type of actions are legal given the resources the player has in his hand;

• does this player have over 7 resources;

• is this player blocked (if it cannot build any new pieces on the board);

• expansion possibility represented as the production and access to ports of the

closest available empty position;

continuing with the features for the opponents, iterating over them in the order of play.

Each set of features for each opponent contains only the observable features from the

above list. Therefore, the exact description of resources in hand and development cards

in hand are replaced with their total which is always observable. If the game had less

than 4 players, the feature vector is padded with 0s such that it is equal to the ones

extracted from 4 player games. The length of the vector is 157.

The set of features describing the actions is made of only the features from the

above list that any action could modify. For example the features regarding resources

is contained in this list, while the features describing the opponents’ total number of
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development card is not included since a player cannot steal development cards from

opponents. The set of features are computed via vector difference between the resulting

state s′ and the state s from which the action was executed. In the case of the stealing

action, the features do not contain the stolen resource and only the change to the totals

of the players involved in the action. The length of the feature vector describing the

action is 73.
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