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Abstract
The space of compile-time transformations and or run-time options which can im-

prove the performance of a given code is usually so large as to be virtually impossible

to search in any practical time-frame. Thus, heuristics are leveraged which can suggest

good but not necessarily best configurations. Unfortunately, since such heuristics are

tightly coupled to processor architecture performance is not portable; heuristics must

be tuned, traditionally manually, for each device in turn. This is extremely laborious

and the result is often outdated heuristics and less effective optimisation.

Ideally, to keep up with changes in hardware and run-time environments a fast and

automated method to generate heuristics is needed. Recent works have shown that

machine learning can be used to produce mathematical models or rules in their place,

which is automated but not necessarily fast. This thesis proposes the use of active

machine learning, sequential analysis, and active feature acquisition to accelerate the

training process in an automatic way, thereby tackling this timely and substantive issue.

First, a demonstration of the efficiency of active learning over the previously stan-

dard supervised machine learning technique is presented in the form of an ensemble

algorithm. This algorithm learns a model capable of predicting the best processing

device in a heterogeneous system to use per workload size, per kernel. Active machine

learning is a methodology which is sensitive to the cost of training; specifically, it is

able to reduce the time taken to construct a model by predicting how much is expected

to be learnt from each new training instance and then only choosing to learn from those

most profitable examples. The exemplar heuristic is constructed on average 4x faster

than a baseline approach, whilst maintaining comparable quality.

Next, a combination of active learning and sequential analysis is presented which

reduces both the number of samples per training example as well as the number of

training examples overall. This allows for the creation of models based on noisy in-

formation, sacrificing accuracy per training instance for speed, without having a sig-

nificant affect on the quality of the final product. In particular, the runtime of high-

performance compute kernels is predicted from code transformations one may want to

apply using a heuristic which was generated up to 26x faster than with active learning

alone.

Finally, preliminary work demonstrates that an automated system can be created

which optimises both the number of training examples as well as which features to

select during training to further substantially accelerate learning, in cases where each

feature value that is revealed comes at some cost.
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Lay Summary

In order to optimise software for performance, heuristics are used to estimate good

settings for compiling and running code on a system. Traditionally these heuristics are

created by people with knowledge and experience of software–hardware interaction,

who can guess how to get the most from a machine under varying conditions. The

problem with this technique is that these heuristics are inherently tied to the underlying

hardware architecture, and owing to the arduous nature of this work, combined with

the speed at which technology moves, heuristics are often left outdated.

Machine learning techniques have been shown to be able to automatically create

heuristics, based on mathematical models or rules, which can be more effective than

those built by human experts; but, unfortunately, the time needed to create them in this

way is prohibitive. This thesis proposes three techniques which can be used to accel-

erate this automated heuristic generation process using a mixture of active learning,

sequential analysis, and active feature acquisition.

First, it is shown that active learning is on average 4x faster than current approaches

at producing an exemplar heuristic. Where previous machine learning implementations

learn at random how to map the characteristics of a program to performant settings

active learning attempts to select carefully what would be most beneficial to learn next

in order to save time.

Second, since measuring performance in computer experiments produces noisy re-

sults it is often necessary to evaluate an optimisation strategy some number of times

before its effect can be understood. The number of samples in previous works have

always been fixed, which is potentially wasteful. By dynamically determining how

many samples are needed for each training example in turn, based on the information

already collected, learning can be accelerated. In particular, a model which can pre-

dict runtime from code transformations is created up to 26x faster with this sequential

analysis approach included than with active learning alone.

Finally, in machine learning applications data scientists have to work out which

features to measure in order to best map these to target values, however, good fea-

tures are usually not known a priori. It is demonstrated in this thesis that as well as

optimising the number of samples per training example, and the number of training

examples, it is also possible to optimise the number and selection of features simul-

taneously and automatically at learning-time, and where these features come at a cost

training is further accelerated.
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Chapter 1

Introduction

It was predicted at the turn of the century that by 2016 processors would be available

with clock rates in excess of 28 GHz [ITRS, 2001]; however, five years after this prog-

nostication manufacturers such as Intel and AMD abandoned pursuing chips with ever

faster frequencies in favour of multi-core platform designs [Hennessy and Patterson,

2011]. The primary reasons for this paradigm shift were three-fold, the limitation to

the amount of Instruction-Level Parallelism (ILP) that can be exploited in any given in-

struction stream, the growing disparity between the speed of memory and CPU, and, in

particular, the end of Dennard scaling [Patterson, 2006; ITRS, 2015]—the ILP, mem-

ory, and power walls, respectively.

Previously, from the perspective of software developers, performance of codes

could be relied upon to improve over time for ‘free’ as CPU frequencies increased

thanks to the shrinking of electrical components, as observed by Moore’s Law, and the

constancy of power required per unit area, given by Dennard scaling. Unfortunately, it

was seen in the 1990s that clock frequencies in excess of 3.5 GHz have prohibitively

expensive heat dissipation problems [Denning and Lewis, 2017], and more recently

researchers have found that there are at least seven reasons to believe Moore’s Law (as

it relates to complementary metal-oxide-semiconductor technology) will not be able

to continue for much longer [Wu et al., 2013]. This means that whilst the move to

multi-core platforms has allowed chip manufactures to deliver increased performance

from hardware in the short-term, going forward the onus for finding speed-ups will be

increasingly the responsibility of the software engineer, not the platform architect.

In order to take full advantage of parallel hardware the optimal compile-time code

transformations and run-time settings for a given program need to be found. Unfor-

tunately, modern processors are extremely complex. They often have multiple cores

1



2 Chapter 1. Introduction

and are becoming progressively heterogeneous [Power et al., 2013], where each core

often specialises in different classes of workload [Shan, 2006] by offering either dif-

ferent capabilities [ARM, 2016] or distinct instruction set architectures entirely [Kahle

et al., 2005]. Within each core a large number of components run in parallel and

are sensitive to the behaviour of the others. Since it is often infeasible (in any rea-

sonable time-frame) to obtain the best configuration for a code through exhaustive

techniques [Massalin, 1987; Joshi et al., 2002] heuristics must be leveraged instead.

Traditionally, optimisation heuristics are fine-tuned by experts with a deep under-

standing of the underlying platform, and are intrinsically non-portable. Which is to

say, each distinct processor requires a unique heuristic even if it is based on a previous

chip design from within the same product family. This is problematic since creating

heuristics in this way is laborious and extremely expensive, with compiler back-ends

often incurring an investment of man-decades of work to reach maturity [Fisher et al.,

2005]. Moreover, because there is a relatively quick turnaround on new hardware from

processor manufacturers, and because it requires so much effort to recreate heuristics

each time, these heuristics are often left outdated [Kulkarni and Cavazos, 2012]. This

is a significant problem since without properly tuned heuristics good program perfor-

mance cannot be expected.

1.1 Machine Learning Based Heuristic Generation

For the reasons outlined above, manually fine-tuning optimisation heuristics is no

longer scalable, and the failure to always have easily to hand quality heuristics for

a given architecture has ultimately resulted in poorly optimised code. In order to ame-

liorate this situation researchers have shown that the process of heuristic construction

can be successfully automated instead. For example, iterative compilation [Aarts et al.,

1997; Bodin et al., 1998; Cooper et al., 1999; Kisuki et al., 2000; Knijnenburg et al.,

2002] was proposed as a means by which compiler heuristics can be computed with

little human involvement. The basic idea is to apply different optimisation strategies in

some systematic fashion at compile-time to examine their affect on speed, code size,

power, or energy. Augmented with machine learning [Agakov et al., 2006] these data

are used to form a model from which good optimisation strategies can be extracted

for any specified set of features, where these features can identify a program enough

to predict how to optimise it. Forming models on which to base heuristics in this

way has been shown to outperform those manually crafted by human experts [Dubach
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et al., 2009; Kulkarni and Cavazos, 2012; Grauer-Gray et al., 2012; Wang et al., 2014].

Machine learning has also been applied to many different problem domains besides

compilation, such as parallelism mapping [Grewe et al., 2013b], porting across archi-

tectural spaces [Cavazos et al., 2007], and run-time tuning [Cummins et al., 2016]. Un-

fortunately, despite the potential gains of this powerful technique it appears to remain

relatively unappealing, evidenced by the lack of machine learning based heuristics in

production systems. The intuition on which the works in this thesis are based is that it

is the cost of automatically producing these models that is its key flaw. Which is to say,

it can take months to gather enough data for a model to be built which is of sufficient

quality to be useful: hardly better than the manually fine-tuned alternative. In an ideal

world, an automated and fast method to produce heuristics is required, so that they can

be created quickly as and when they are needed.

This thesis presents three ways in which construction of models on which to base

heuristics can be substantially accelerated. Firstly, active learning [Settles, 2013] can

significantly reduce the number of training instances required to form a high-quality

model by concentrating on informative training examples only. Secondly, sequential

analysis [Wald, 1944] can be used to reduce the number of samples per training ex-

ample, further reducing the learning overhead. Finally, it is demonstrated that active

feature acquisition [Veeramachaneni and Avesani, 2003] can be used to optimise the

selection of feature values that need to be recorded during the learning process, in order

to reduce training expense in circumstances where more features requires more time.

1.2 Contributions to Knowledge

The main contributions made in this thesis are as follows:

1. demonstrating that the training overhead of machine learning based heuristics

can be significantly reduced without sacrificing prediction quality;

2. presenting empirical measurements which prove active learning can be used to

automatically derive a heuristic to map OPENMP and OPENCL programs on

a CPU–GPU based heterogeneous platform;

3. hypothesising that the training overhead of machine learning based heuristics

can be further lessened through the employment of sequential analysis;
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4. developing a technique which combines sequential analysis and active learning

to reduce both the number of training examples and the number of samples per

training example used in heuristic construction;

5. presenting evidence which proves this combination can substantially reduce the

training overhead of runtime prediction models, which can be used to determine

good compilation options, as compared to the state of the art;

6. and demonstrating that feature selection can also be accomplished automatically

at learning-time, making data collection much more efficient and straightfor-

ward.

1.3 Thesis Structure

The rest of this thesis is composed as follows:

Chapter 2 will outline some background material necessary to fully understand the

technical aspects of the presented works;

Chapter 3 will provide context as to where these works sit in relation to the broader

academic literature relevant to this topic;

Chapter 4 will detail the work carried out with regards to mapping inputs to the most

appropriate device in a heterogeneous system using active learning, and

in particular the efficiency of that technique over previous approaches;

Chapter 5 will discuss research on the topic of combining sequential analysis and

active learning, and demonstrate the potential of this idea with regards to

selecting good compile-time optimisations for a fraction of the cost;

Chapter 6 will demonstrate how the selection of missing but expensive features val-

ues can be adaptively revealed during data collection, in such a way as to

minimise learning time whilst attaining overall good quality models;

Chapter 7 will look at potential directions for future work, and give a conclusion to

this thesis.
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1.4 Summary

This chapter has provided a brief explanation as to why processors are increasingly

multi-core and heterogeneous, and what that means for the necessity and complexity

of heuristic generation; has mentioned that due to the arduous nature of manually fine-

tuning such heuristics there already exist outdated heuristics that provide poor code

performance; and concluded that researchers have shown machine learning to be ca-

pable of revolutionising this process, but has argued that current implementations are

unnecessarily inefficient.

In the rest of this thesis it will be shown how the training overhead required to

create these crucial heuristics can be substantially reduced through the application of

active learning, sequential analysis, and active feature acquisition; thus, providing fast,

automated processes for future heuristic generation, ensuring good optimisation deci-

sions can be more easily and quickly determined for modern codes.





Chapter 2

Background

The sections which follow in this chapter will briefly cover any background material

that is not explicitly explained in the contributory works presented in this thesis—

Chapters 4–6. Although the following text is not exhaustive it will be sufficient for a

reader to appreciate the technicalities of the research, and, where appropriate, refer-

ences will be provided if more extensive literature is desired.

This chapter is organised as follows: Section 2.1 will define terms used in this

thesis; Section 2.2 will discuss the difference between OPENMP and OPENCL, which

are topics relevant to Chapter 4; Section 2.3 will similarly elaborate on techniques

discussed in Chapter 5, i.e. common loop optimisations and iterative compilation; Sec-

tion 2.4 will begin with the basics of supervised machine learning, move onto dis-

cussing active learning, briefly outline the Random Forest model, which is the only

model used in these works not explained in the technical chapters themselves, and end

by describing how quality has been measured for all classification and regression prob-

lems; Section 2.5 gives explanations of the statistical methods used in this research;

and Section 2.6 summarises the chapter.

2.1 Terminology

The term runtime is used to refer to an actual measurement of the time it takes for

a program to begin executing and to reach completion. The hyphenated term run-

time is not a measurement but is used to indicate that an event occurs during program

execution, just as learning-time refers to the period during which data is collected to

generate a heuristic, or compile-time refers to the time period during which a program

is compiled.

7



8 Chapter 2. Background

The phrase machine learning, when used in this thesis, relates exclusively to su-

pervised machine learning, as opposed to the unsupervised or semi-supervised variants

which are not discussed further here. The form of active learning used in these works

is of the pool-based variety, as opposed to stream-based active learning: the difference

being multiple candidates are ranked based on their estimated utility versus making a

decision to label (or not) each potential candidate in a sequential stream.

The aim of supervised machine learning is to determine a mapping between a set

of explanatory variables X (called the feature vector) and a dependent variable Y . A

unique permutation of feature vector values x ∈ X is called a configuration, or a can-

didate training example in the context of a configuration which is being considered

for labelling; the process of labelling involves the measurement of the value y ∈ Y

which is associated with the feature values x. A tuple (x,y) is interchangeably referred

to as a either a training instance or a training example. When Y is in a discrete space

the problem of determining this mapping is called classification, whereas regression

refers to the case where Y ∈ R.

2.2 Parallel Programming Models

Chapter 4 uses a run-time optimisation decision to illustrate the merits of active learn-

ing over a passive approach. In particular, the exemplar heuristic is that when given

a set of input values to a program, and two implementations of that program written

in OPENMP and OPENCL, would it be faster to run that program’s kernel on the CPU

using the OPENMP programming model or on the GPU with OPENCL. Relevant to

that work is a discussion of the different characteristics of OPENMP versus OPENCL,

which are given in the following subsections.

2.2.1 Open Multi-Processing

Open Multi-Processing, or OPENMP for short, is a high-level, shared-memory parallel

programming model for C, C++ and Fortran, which comprises compiler directives,

library routines and environment variables [OpenMP, 2011].

In OPENMP a programmer identifies a structured block of code they wish to exe-

cute using either thread or data level parallelism with a compiler directive or comment

for C/C++ or Fortran, respectively. The run-time library then distributes work or tasks

from the master thread to some number of slave threads spread across multiple cores.
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The run-time library is configured through compiler directives/comments, function

calls, or environment variables on the system. Options include specifying the maxi-

mum number of threads; which variables are shared between threads and which are

private; and how work is allocated: for example, should each thread have an equal

number of tasks or should they be served in a FIFO (first-in first-out) queue.

An example of using OPENMP to parallelise a simple loop is given in Listing 2.1.

Listing 2.1: this is a simple OPENMP code example where the pragma directs a com-

patible compiler to generate parallel code that distributes the loop iterations across a

multi-core processor, where variables a and b are shared but the loop counter i is

private.

vo id s i m p l e ( i n t n , f l o a t ∗a , f l o a t ∗b ) {

i n t i ;

#pragma omp p a r a l l e l f o r

f o r ( i =1 ; i<n ; i ++) { / / i i s p r i v a t e by d e f a u l t

b [ i ] = ( a [ i ] + a [ i −1]) / 2 . 0 ;

}

}

2.2.2 Open Compute Language

The Open Compute Language (OPENCL) is a formalised standard designed to al-

low developers to write general-purpose, parallel code that can be executed on CPUs,

GPUs, DSPs (Digital Signal Processors), FPGAs (Field-Programmable Gate Arrays),

and other processors and hardware accelerator devices without alteration: although,

as ever, performance is not portable. Despite its name, OPENCL is actually an en-

tire framework for parallel computation which includes a language, based on C99; an

API (Application Programmable Interface); libraries; and a run-time system [OpenCL,

2012]. In comparison to OPENMP, OPENCL is a much lower-level specification but

its advantage is its functional portability between device types.

In order to run code on a parallel device supported by OPENCL a number of steps

must to taken. First, an OPENCL host application connects to a platform, which is a

vendor-specific OPENCL implementation: at the time of writing, there are numerous
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implementations provided by Intel, AMD, ARM, Qualcomm, and NVIDIA amongst

others. This platform is a run-time system which allocates work to one or more com-

pute devices, such as a CPU or GPU. After device objects have been created, via

calls to the platform, a context is formed to keep track of the run-time objects. Next,

an OPENCL program is generated from source code written in the OPENCL language.

Specifically, this code is compiled at run-time and a kernel created by specifying which

function in the source code gives the entry point for the desired computation, since nu-

merous kernels can be present in the same source code. Lastly, buffers may need to

be instantiated before the kernel is instructed to begin executing using a command

queue. An example of a relatively simple OPENCL program is provided in Listing A

in Appendix A.

In terms of the OPENCL execution model, one instance of a kernel runs on one com-

pute unit to tackle one work-item, where one or more work-items are collected into

one or more work-groups. To make this a little clearer, the OPENCL platform model

is shown conceptually in Figure 2.1, where a host machine can connect to multiple

devices simultaneously; each device contains one or more compute units; and each

of those contains one or more processing elements. To give a real-world example, a

multi-core CPU is a compute device where each of the cores are a compute unit and

each contain a single processing element; in this scenario each core would execute all

work-items in the work-groups that it is assigned.

Figure 2.1: an illustration of the OPENCL platform model adapted from OpenCL [2012]:

one host can have multiple compute devices, each of which contains one or more com-

pute units that each hold one or more processing elements.
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OPENCL also has its own conceptualised memory model illustrated in Figure 2.2.

Each processing element in a compute unit has access to a private memory that only

it can see. Across processing elements there is a local memory for shared data, where

between compute units there lies a cache supplying information from the global mem-

ory and a memory specifically designated for constant values. As might be expected,

it is often the case that as one traverses the memory hierarchy from private to global

memories the latency for memory operations increases substantially.

Compute Device

Global/Constant Memory Data Cache

Global Memory

Compute Unit 1

Private

Memory M

PE M

Private

Memory 1

PE 1 ...

Compute Unit N

Private

Memory M

PE M

Private

Memory 1

PE 1 ...
...

Local

Memory 1

Local

Memory N

Constant Memory

Figure 2.2: a conceptualisation of the OPENCL memory model, adapted from OpenCL

[2012].

As with OPENMP, there is much more to the OPENCL standard than it would be

sensible to include here so an interested reader should consult the relevant specifica-

tion, where OPENCL v1.2 was used for the work in this thesis [OpenCL, 2012].

2.3 Compile-time Optimisation

This section briefly describes the loop optimisations that are referenced in Chapter 5

and then illustrates the concept of iterative compilation discussed in the same.
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2.3.1 Loop Transformations

Loop Unrolling One of the most basic optimisation transformations one can apply to

code is loop unrolling: sometimes called loop unwinding. The goal of loop unrolling is

to reduce the overhead of index arithmetic and boolean checks whilst simultaneously

increasing the potential to exploit ILP [Ullman and Aho, 1977]. Some disadvantages

of the technique are an increase in code size as well as, potentially, an increase in the

instruction cache miss rate and or register use. An example is provided in Listings 2.2–

2.3, where the number of increments and boolean checks on i is cut by four-fifths.

Listing 2.2: before loop unrolling

i n t i ;

f o r ( i =0 ; i <100; i ++) {
doSomething ( i ) ;

}

Listing 2.3: after loop unrolling

i n t i ;

f o r ( i =0 ; i <100; i +=5) {
doSomething ( i ) ;

doSomething ( i + 1 ) ;

doSomething ( i + 2 ) ;

doSomething ( i + 3 ) ;

doSomething ( i + 4 ) ;

}

Cache Tiling Cache tiling or strip mining [Loveman, 1976; Wolfe, 1987] is an op-

timisation whereby the iteration space of a loop is separated into blocks in order to

increase the locality of reference [Denning, 2005] and potentially allow parallel execu-

tion of the blocks if the blocks hold memory references which are independent of each

other [Wolfe, 1989]. Take Listing 2.4 as an example, showing a simple matrix-vector

multiplication in C; if the value of n is relatively large and the cache size relatively

small then the instruction given on Line 7 may induce cache misses. In contrast, the

code in Listing 2.5, which uses 5×5 tiles, will necessarily fit more easily into a cache.
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Listing 2.4: before cache tiling

1 i n t i , j ;

2 i n t n = 5 0 ;

3 i n t x [ 5 0 ] [ 5 0 ] , y [ 5 0 ] , z [ 5 0 ] ;

4 f o r ( i =0 ; i<n ; i ++) {
5 z [ i ] = 0 ;

6 f o r ( j =0 ; j<n ; j ++) {
7 z [ i ] += x [ i ] [ j ] ∗ y [ j ] ;

8 }
9 }

Listing 2.5: after cache tiling

i n t i , j , k , l ;

i n t n = 5 0 ;

i n t x [ 5 0 ] [ 5 0 ] , y [ 5 0 ] , z [ 5 0 ] ;

f o r ( i =0 ; i<n ; i +=5) {
z [ i ] = 0 ;

z [ i +1] = 0 ;

z [ i +2] = 0 ;

z [ i +3] = 0 ;

z [ i +4] = 0 ;

f o r ( j =0 ; j<n ; j +=5) {
f o r ( k= i ; k<min ( i +5 , n ) ; k ++) {

f o r ( l = j ; l<min ( j +5 , n ) ; l ++) {
z [ k ] += x [ k ] [ l ] ∗ y [ l ] ;

}
}

}
}

Register Tiling Register tiling, as the name suggests, is very similar to cache tiling

in that a loop is divided into blocks or tiles in such a way as to fit all the data being

accessed into registers or a level in the cache hierarchy, respectively. These optimisa-

tions reduce the latency for stores and loads and so speed-up code execution, where
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do I = 1,N
 do J = 1,N
 do K = 1,N

loop body
enddo

do J = 1,N
 do K = 1,N
 do I = 1,N

loop body
enddo

do JJ = 1,N,BJJ

do J = JJ,JJ+BJJ-1
 do K = 1,N
 do I = 1,N

loop body
enddo

do JJ = 1,N,BJJ

do K = 1,N
 do J = JJ,JJ+BJJ-1
 do I = 1,N

loop body
enddo

do JJ = 1,N,BJJ

do KK = 1,N,BKK

do K = KK,KK+BKK-1
 do J = JJ,JJ+BJJ-1
 do I = 1,N

loop body
enddo

do JJ = 1,N,BJJ

do KK = 1,N,BKK

do I = 1,N
 do J = JJ,JJ+BJJ-1
 do K = KK,KK+BKK-1

loop body
enddo

1. original code 3. tiled J2. permuted

5. tiled K 6. permuted

do JJ = 1,N,BJJ

do KK = 1,N,BKK

do I = 1,N
 C(I,JJ) = C(I,JJ) + A(I,KK) * B(KK,JJ)
 C(I,JJ) = C(I,JJ) + A(I,KK+1) * B(KK+1,JJ)
 C(I,JJ+1) = C(I,JJ+1) + A(I,KK) * B(KK,JJ+1)
 C(I,JJ+1) = C(I,JJ+1) + A(I,KK+1) * B(KK+1,JJ+1)
enddo

do JJ = 1,N,BJJ

do KK = 1,N,BKK

RR1 = B(KK,JJ)
 RR2 = B(KK+1,JJ)
 RR3 = B(KK,JJ+1)
 RR4 = B(KK+1,JJ+1)
 do I = 1,N
 C(I,JJ) = C(I,JJ) + A(I,KK) * RR1
 C(I,JJ) = C(I,JJ) + A(I,KK+1) * RR2
 C(I,JJ+1) = C(I,JJ+1) + A(I,KK) * RR3
 C(I,JJ+1) = C(I,JJ+1) + A(I,KK+1) * RR4
enddo

7. fully unrolled 8. scalar replacement

4. permuted

Figure 2.3: adapted from [Jiménez et al., 2002], this figure illustrates the steps in con-

ventional register tiling for a matrix multiplication code, where the block size is 2×2.

register tiling adds a few steps beyond those performed by cache tiling. Firstly, after

cache tiling has been applied the inner-most loop must be fully unrolled since regis-

ters cannot be addressed using offset addresses. Secondly, scalar replacement can be

used to further save on load and store operations between iterations [Callahan et al.,

1988, 1990; Duesterwald et al., 1993; Carr and Kennedy, 1994]. A concise example

adapted from Jiménez et al. [2002] is given in Figure 2.3, where loop permutations or

interchange [Wolf, 1992] are used to manipulate the order of the loops to tile each in

turn.

2.3.2 Iterative Compilation

Iterative or profile-driven compilation is a technique that can be used to find a good

transformation or a good set of transformations to optimise a given code [Aarts et al.,

1997; Bodin et al., 1998; Cooper et al., 1999; Kisuki et al., 2000; Knijnenburg et al.,

2002]. The process is simple, a driver program is fed the source code and a list of
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list of potential
transformations

source code

Driver

Compiler

Profiler
execution time

optimised
 program

selected transformations
+ source code

Figure 2.4: the three main stages in iterative compilation

potential optimising transformations that could be used to optimise it. Some search is

performed and one or more transformations are selected to be applied. After the code

has been optimised, compiled and linked the final executable is profiled to determine

the performance of those transformations. This information is then fed back into the

driver program and this loop continues until some completion criterion is satisfied,

with the best transformation(s) out of those tested being used to optimise production

code. This process is illustrated in Figure 2.4.

2.4 Supervised Machine Learning

Supervised machine learning is the process of attempting to infer a relationship when

given some labelled training data. Which is to say, when given a set of training exam-

ples (x1,y1),(x2,y2),(x3,y3), . . . ,(xn,yn), where xi is a vector of explanatory variables

or features which identifies example i of n, and yi is the associated label, the task of

supervised learning is to work out how to map the input-space x to the output-space y.

In this way, when presented with a previously unseen feature vector xn+1 the technique

is able to predict its label yn+1. When the label is some continuous value this is called

regression, as opposed to classification where the potential values of y are from some

discrete set.

2.4.1 Active Learning

Not hearing is not as good as hearing, hearing is not as good as seeing,
seeing is not as good as mentally knowing, mentally knowing is not as
good as acting; true learning continues up to the point that action comes
forth

—Xun Zi, The Teachings of the Ru, 3rd Century BC
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The term active learning first appeared in the context of pedagogy, where it has

been shown that students who actively participate in the learning process fair bet-

ter than those who are passive observers [Harke, 1998; Prince, 2004; Michael, 2006;

Hoellwarth and Moelter, 2011; PCAST, 2012]. This concept is unsurprisingly ancient,

evidenced by the quote from Xun Zi—written sometime in the third century BC—but

has recently been rediscovered, popularised, and applied to the modern classroom. In

a similar fashion, an active machine learning algorithm asks queries of an oracle or a

teacher, choosing what it wishes to learn next based on what it already knows about the

space, thereby actively engaging in the learning process as opposed to merely receiv-

ing information. In this way, the chance of redundant examples being learnt is reduced

and, moreover, so is the cumulative learning time [Settles, 2013].

Figure 2.5 provides an overview of the key steps involved in all active machine

learning algorithms:

1. some number of random but distinct configurations are chosen to be labelled by

the oracle, and when this is done these constitute an initial training set;

2. an intermediate model is built using the training set thus far accumulated;

3. completion criterion are checked, which can involve, for example, an estimate

of the intermediate model’s quality and or the total learning cost which has ac-

cumulated,

(a) if completion is reached then the final model is taken as the last intermedi-

ate model,

(b) otherwise new training data is sought;

4. from amongst one or more candidate training examples that could be chosen to

be learnt from next one or more of these are selected to be labelled by the oracle

based on an estimate of how much new information they might provide;

5. and the loop starts again at step 2.

2.4.2 Random Forest

Random Forest [Breiman, 2001] is a type of ensemble learning algorithm which lever-

ages the concept of bootstrap aggregating, more commonly referred to as bagging in
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Figure 2.5: a generic view of active learning

the literature, to ameliorate the tendency of tree learners to overfit [Hastie et al., 2009]

to their training data, see Breiman et al. [1984] for details.

In bagging, m randomly generated training sets are created from an original training

set of n instances by uniformly sampling from that original set with replacement, such

that each new set also contains n instances. In regression the output value of a test

instance is then given as the average predicted output value of the m models, whereas

a classification problem uses majority vote instead—see Figure 2.6.

In the canonical Random Forest algorithm the m models are tree-based, but each

model differs slightly from the typical regression or decision tree since at each potential

splitting point in the tree a random subset of features are considered instead of all of

them. This is done in an attempt to avoid correlation among the m trees, particularly

when some small subset of features have relatively high predictive power.

2.4.3 Evaluating Quality

The following paragraphs will explain how the various metrics used for evaluation

throughout this thesis are calculated, firstly for classification and then for regression.
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Figure 2.6: illustrates the construction and use of a random forest model

Figure 2.7: a confusion matrix for a binary classification problem
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Accuracy in Classification Probably the easiest metric to understand with regards

to classification models is accuracy, it is simply the number of correctly classified

test instances relative to the total number of test instances, reported as a percentage.

In relation to the Confusion Matrix [Stehman, 1997] in Figure 2.7, the calculation is

given explicitly in Equation 2.1.

Accuracy =
TP+TN

TP+TN+FP+FN
(2.1)

Cohen’s Kappa versus Accuracy Accuracy is a trivial metric to understand and to

calculate, but it does have one significant flaw. If there is a relatively extreme im-

balance in the number of instances in the space belonging to one class over another

then a high level of accuracy does not necessarily give a good indication of a high-

quality model. For example, for the majority of different workload sizes evaluated

for the SRAD kernel, discussed further in Chapter 4, the GPU was deemed the best

device—see Figure 2.8. Since test instances are fetched at random and the majority

of the space belongs to the GPU class any model which only ever predicts GPU will

likely have a high level of accuracy, incorrectly giving the impression that the heuristic

is able to accurately determine the optimal class for any instance in the space. To get a

fairer picture of a model’s quality Cohen’s Kappa is sometimes used to calculate how

good a model is at predictions, taking into consideration the probability of guessing

right by chance [Cohen, 1960]. Cohen’s Kappa is defined in Equation 2.2, where po

is equivalent to accuracy as previously defined, and pe is the overall probability of

guessing a test instance’s classification correctly based solely on the prevalence of that

class in the space, and is defined in Equation 2.3 with reference to Figure 2.7. The

correlation of kappa value to accuracy is demonstrated visually in Figure 2.9, where

this graph was generated through simulation.

κ =
po− pe

1− pe
(2.2)

pyes =
TP+FN

TP+TN+FP+FN
· TP+FP

TP+TN+FP+FN

pno =
FP+TN

TP+TN+FP+FN
· FN+TN

TP+TN+FP+FN

pe = pyes + pno

(2.3)
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Figure 2.8: the SRAD feature-space, discussed more in Chapter 4, is a good example

of one in which the distribution of classes is heavily skewed; this presents a problem

for classification accuracy since a simplistic model, which only ever predicts one class,

can score a high accuracy rate even though it does not fully reflect the underlying data.
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Figure 2.9: these data were generated through simulation, where the values for TP, TN,

FP and FN were randomly generated, and illustrates a correlation between kappa and

accuracy values.
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Mean Absolute Error In regression, since output values y ∈ R, accuracy and kappa

cannot be used to evaluate performance; instead, Mean Absolute Error (MAE) is often

used and is given as the absolute difference between the predicted value ŷi and the ac-

tual value yi of each test instance averaged across the entire test set—see Equation 2.4.

MAE =
1
n

n

∑
i=1
|ŷi− yi| (2.4)

Root-Mean-Squared Error The Root-Mean-Squared Error (RMSE) of a prediction

model is defined as the value predicted by that model ŷi compared to the observed

mean value yi for n test instances, as follows:

RMSE =

√
∑

n
i=1 (ŷi− yi)

2

n
(2.5)

2.5 Statistical Techniques

There are three statistical techniques used in these works which are not explicitly de-

fined in the technical chapters, instead these will be explained in the following subsec-

tions.

2.5.1 Confidence Intervals

Confidence Intervals (CI) are used in statistics to give an indication of the uncertainty

associated with an estimate of a population metric based on a number of samples [Ney-

man, 1937]. CI are used in these works to give a sense of the confidence one should

have in the estimate of the population or true runtime mean, aggregated from sample

program runtimes.

Where the population standard deviation σ is unknown and the number of samples

n is less than 30, which is the case for all experiments in this thesis where CI has

been calculated, the CI is defined as the range given by Equation 2.6, where X is the

sample mean and s is the sample standard deviation. The critical value t∗ is taken

from Student’s t-distribution, a table of pre-computed critical values parametrised by

degrees of freedom r = n−1 and α = 1
2 (1−C), where C is the confidence level.

[
X− t∗

s√
n
,X + t∗

s√
n

]
(2.6)
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It is important to note that a given percentage confidence interval does not signify

that the population or true mean lies within the given range but rather that upon re-

peated experimentation the population mean will lie between the calculated confidence

intervals some percentage of the time. For example, a 95% confidence level provides

the ability to say that one is 95% confident that the population value lies within the

stated interval.

2.5.2 Outlier Removal

It is often common practice in machine learning to remove samples from data which

appear to have extreme feature values relative to the bulk of the samples collected.

These are called outliers, and this is necessary because some machine learning algo-

rithms (such as Linear Regression) are very sensitive to their influence. Which is to

say, a single outlier can cause the whole model to skew wildly in one direction, and if

the instance that this outlier represents is atypical for the data then the resulting model

will have poor overall performance.

Unfortunately, there is no theoretical definition of what constitutes an outlier when

given a set of samples so a heuristic is typically used instead to distinguish and elim-

inate them from consideration. In this thesis, and in particular the work presented

in Chapter 4, the method of outlier removal used is based on Tukey’s Fences [Tukey,

1977] and his definition of far out observations. This rule of thumb relies upon the

calculation of the InterQuartile-Range (IQR), and states that any samples with values

out-with the interval [Q1−1.5(Q3−Q1) ,Q3 +1.5(Q3−Q1)] can be considered an

outlier, where Q1 and Q3 are the first and third quartiles of the distribution, respec-

tively, and Q3−Q1 is the IQR.

2.5.3 Welch’s T-test

In the context of this thesis, a t-test has been used to determine if two sample means can

be said to be statistically different from one another. This is useful since it can allow

one to say, with some level of confidence, that there is actually a significant difference

in the runtimes of an executable when one optimisation strategy is employed over

another, where this is not necessarily obvious from looking at the raw data.

Since the runtime means being compared come from independent distributions

there is no natural way in which to pair observations, and since each set of measure-

ments may have different sample counts the unpaired two-sample t-test variant is used.
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Furthermore, since the variance is not assumed to be constant for both distributions

Welch’s t-test is used [Welch, 1947], as opposed to Student’s original test [Student,

1908]. It is assumed, and a requirement of these tests, that runtime samples are inde-

pendently and identically distributed and, more specifically, that these are taken from

Gaussian distributions.

To determine if the two sets of runtimes are significantly different the t-statistic is

first calculated using Equation 2.7, where Xi is the sample mean, si the sample standard

deviation, and ni the number of samples from distribution i of two.

t =
X1−X2√

s2
1

n1
+

s2
2

n2

(2.7)

Once the t-statistic has been calculated the degrees of freedom r is worked out us-

ing the Welch–Satterthwaite Equation (2.8) [Welch, 1947; Satterthwaite, 1946]. By

consulting the probability density function of the t-distribution with degrees of free-

dom r the probability of obtaining the calculated t value can be obtained, and if this is

lower than the alpha value, where C is 95% for example, then one can say that there is

a 95% probability that these these two means come from different distributions.

r =

(
s2

1/n1 + s2
2/n2

)2

s2
1/n1

n1−1 +
s2

1/n1
n2−1

(2.8)

2.6 Summary

This chapter has provided brief details of the alternative optimisation strategies chosen

during run-time or compile-time in the heuristics generated for the works in Chap-

ters 4–5, respectively. It has also discussed both supervised machine learning and

active learning, the essential constituents of iterative compilation, how Random Forest

models are generated, and how models in this thesis are evaluated using various met-

rics and statistical methods. The chapter which follows will provide a literature review

relevant to this research topic.



Chapter 3

Literature Review

This chapter provides a brief but comprehensive review of all academic literature rele-

vant to the topic on which the works in this thesis are based; that is to say, this chap-

ter summarises all publications in which the authors attempt a solution which auto-

matically selects a good optimisation strategy from a complex space and where they

have tried to address the long search times associated with such problems. In broadly

chronological order, this chapter looks at the various techniques that have been at-

tempted in the past, including, but not limited to, active learning, and where appropri-

ate makes comparisons between these related works and the contributions presented in

this document.

Wolf et al. [1996] appear to have been the first to construct a compiler which both

searches for a good optimisation strategy automatically for a code and performs a prun-

ing of the optimisation-space in order to accelerate the search. In particular, the authors

leverage the independence of the transformations being evaluated to greatly reduce the

potential number of combinations that need to be attempted while looking for good

configurations. Unfortunately, this early technique is heavily tied to the hardware for

which it targets its optimisations, both in terms of the details needed by the heuris-

tics to limit the search space (e.g. the number of hardware registers) and the relatively

detailed and bespoke processor model used for estimating the number of cycles per

loop iteration that would result from a given set of transformations. Therefore, this ap-

proach is brittle and porting across architectures is relatively laborious when compared

to later machine learning based works.

Kisuki et al. [1999] provided a more portable solution to auto-tuning than the pre-

vious work in that they used actual runtimes of program executions, as opposed to

estimates from a complex simulator, to base their predictions of performance upon.

25
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More specifically, in their paper Kisuki et al. [1999] attempted to ameliorate the in-

crease in compile time that often results from auto-tuning by suggesting three search

plans that could be used to cover the optimisation-space—random, gradient, and grid-

based methods. Ultimately, concentrating on the latter of the three as the most efficient,

their algorithm begins by constructing an evenly-spaced, but coarse, grid over the en-

tire optimisation-space; the corresponding optimisation strategies at each point on this

grid are used during compilation and profiling for a given application; and from this

information the point with the lowest runtime, together with any points within some

threshold of this minimum, are added to a priority queue. For each point in the queue,

if the performance of that point is still within the threshold of the minimum program

runtime seen thus far, the grid around that point is refined, such that the spacing in

each dimension around the point is half its previous value. Again, these configura-

tions (points) are used during compilation and the resulting binaries profiled, and again

any new points found to be within the threshold of the current minimum runtime are

added to the priority queue also. This process continues until no more points in the

queue are within the threshold and the best configuration found in this search returned

as a good optimisation strategy. This work is simple and easy to understand, but is

flawed in that the search pattern is rigid and could easily skip over global minima,

even more so than is typical for non-exhaustive search, or result in an excessive num-

ber of evaluations if the spacing between the grid points is not optimal. In comparison,

active learning is an adaptive approach which does not need to search equally along

all dimensions since it is capable of estimating uncertainty in its knowledge about the

space to a finer granularity, and in this way it should usually be more efficient.

Active Harmony is an automated run-time tuning system which defines an API that

allows library writers to permit profiling of CPU and memory usage of their code at

run-time, together with a server application; it is also the first occurrence in the sys-

tems optimisation literature where an active learning technique has been applied to a

search problem, although that term never actually appears in the relevant texts [Ţăpuş

et al., 2002; Chung and Hollingsworth, 2004]. The intuition behind the system is that

since different libraries and or algorithms are more performant when used with differ-

ent applications it may be beneficial if one could create libraries which held multiple

versions of a procedure; the idea being that at run-time one variant of the required

function could then be adaptively chosen over another based on previously recorded

performance data. In a later work, Tiwari et al. [2009] combined Active Harmony with

the CHiLL framework [Chen et al., 2008], a polyhedral transformation and code gen-
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eration engine, in order to power iterative compilation. In particular, Active Harmony

requests multiple codes be generated by CHiLL using specific transformations; these

variants are executed and profiled in parallel; and the performance data fed back into

Active Harmony to move a simplex within the search space. This iterative process

will then ultimately converge to a solution, but as with as with the earlier incarnation

this will not necessarily be a good solution since the method makes an assumption of

monotonicity in the space as the simplex method requires it, whereas it has been shown

that optimisation problems are often non-convex—e.g. Cooper et al. [2002] and Fursin

et al. [2002].

In contrast to the techniques discussed so far, Triantafyllis et al. [2003] attempted to

reduce the time taken to explore an optimisation-space by limiting the transformations

being considered to those that were presumed to be the most interesting and beneficial,

in other words by manually and artificially reducing the size of the search space. This

was acomplished by first eliminating those transformations from contention that the re-

searchers believed to be generally well-tuned already, those that consistently degraded

program performance, and optimisations that seemed to be too similar to those already

selected to be included in their limited subspace. In order to search over the given

optimisation-space they built a tree by selecting a set of m most relevant transforma-

tions O for all code segments C in a particular program and use these as the children

of the root node. For each child node oi ∈ O a set of transformed code segments Ci

are chosen whose performance is estimated to be maximised by those particular trans-

formations, relative to the other segments in the program. Using this information, the

successors of the oi node are those most relevant or important optimisations for the Ci

segments. This process continues until only leaf nodes remain. The final optimisation

strategy that is selected to be used is the best performing path through the constructed

tree, where a breadth-first search is used so that sub-trees whose estimated performance

is already too high with respect to other nodes can be eliminated from further consider-

ation. The estimates of the importance of optimisations to code segments are provided

by a model based on profiled data, as in Li et al. [1999]. In order to prune the tree the

initial code segments present in C are those which contain hot code only—i.e. code that

is frequently executed. Despite initially appearing an elegant proposition to shrinking

optimisation search spaces there are a number of weaknesses to this approach. Firstly,

construction and search through this optimisation tree occurs at compile-time which

greatly increases the effort required to produce any code, whereas active learning can

be learnt off-line; secondly, the authors assume that the space of useful transformations
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can be easily reduced to a small subset a priori which cannot be trivially achieved;

moreover, the authors acknowledge that this process would need to be repeated per

processing device (and thus necessarily involves much manual effort for each proces-

sor being targeted) where in this thesis we wish to have a portable and fast approach to

auto-tuning. Lastly, it has been shown that ‘dangerous strategies’ can actually substan-

tially increase performance under certain conditions so eliminating them so casually

would seem to be unnecessarily short-sighted—e.g. -funroll-all-loops [Ashouri

et al., 2016].

Pan and Eigenmann [2004] were the first researchers to suggest that a program’s

source code could be chopped up into smaller Tunable Sections (TS) in order to speed-

up auto-tuning. Moreover, they proposed that the performance of an optimisation

strategy when used on a TS can be compared even when the workloads or contexts

differ by using one of three systems—context, model, or re-execution based ratings.

More specifically, in context-based ratings performance results can be directly com-

pared when different invocations of a TS use the same workload, however, in order

to determine if this is the case when transforming code on-line the TS needs to con-

tain variables which are scalar only: either plain scalar variables, array references with

constant subscripts, or memory references with pointers that are fixed throughout the

execution of the TS. Naturally, with such constraints this comparison cannot be applied

often, limiting its utility. In re-execution based rating the TS is forced to execute again

with the same workload which allows for performance measurements to be compared

fairly and directly under differing optimisation strategies, but again this method is lim-

ited in its applicability in that the TS cannot be executed in this loop-like way, and the

measurements remain comparable, unless side effects are prohibited. Which is to say,

any library calls with side effects, such as malloc, rand or I/O functions, prohibit the

use of re-execution based rating. Finally, model-based rating can be used to formulate

a linear regression between input and performance achieved by a given strategy, but

this only applies to relatively small benchmarks since each TS requires a large number

of invocations for the model to have good accuracy, and the more TSs in a program the

more substantial the tuning time will be.

Fursin et al. [2004] offer a novel idea to combat the long search times in iterative

compilation, by providing a means to estimate when one should stop searching for

another optimisation to try. In particular, the researchers proposed a fast method to es-

timate the lower bound on the execution time of a scientific code by timing a program

when nearly all cache misses are removed. This can then be used to stop the search
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when an optimised binary is within some percentage of this lower bound. To calculate

an approximation of the lower-bound runtime they record the memory addresses of

all load or store operations in subsections of code during a normal program run. Each

subsection was then modified such that the memory operations in each loop within that

subsection point to pre-set scalar values, whilst checking and maintaining data depen-

dencies. In this way, the time for memory referencing is reduced and so is the cache

miss rate. Unfortunately, this lower bound estimate is only accurate for memory bound

applications and so cannot be universally applied. Furthermore, it is often difficult to

determine data dependencies as this can often be influenced by run-time behaviour.

Nevertheless, this is an interesting piece of research but is somewhat orthogonal to the

works in this thesis since it deals with stopping criterion not optimising the body of the

search algorithm itself.

Zhao et al. [2005] tackle the high cost of applying optimisations and experimentally

observing the results by constructing analytical models and using these to estimate the

profitability of such optimisations being succesful without requiring further profiling.

This is quite similar to the work by Wolf et al. [1996], except that in that case the

authors used simulation as opposed to analytical models to predict performance. That

said, the disadvantages are the same. Zhao et al. [2005] use code models generated

by the optimiser together with models of the optimisations being applied and models

of the resources of a particular target machine in order to establish a performance

estimate. These latter two models need to be constructed by an engineer manually

which makes the approach initially very expensive and means these models are not

easily ported between architectures. By contrast, machine learning derived models can

be constructed in such a way as to avoid processor peculiarities and permit performance

prediction to be portable.

The ACME compiler was presented by Cooper et al. [2005] as the first user-friendly

iterative compilation enabled system, in that it allowed the user to easily select be-

tween four distinct algorithms that could automatically search the space of optimising

transformations for a good strategy: these were a greedy constructive, a genetic, a

hill climbing, and a random-probing search algorithm. Arguably more interesting,

these search strategies were accelerated by the use of Estimated Virtual Execution, a

technique which predicts the performance effect of optimisations based on counts of

instructions executed by a single program run. In particular, in cases where the Con-

trol Flow Graph (CFG) is not changed by an optimisation it is possible to record each

basic block’s execution frequency in an unoptimised code profile run and predict the
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performance of the optimisation strategy by summing over all blocks the frequency

of their executions multiplied by the number of instructions within those blocks after

optimisation. To deal with cases where the CFG will change the ACME compiler runs

the unoptimised code version and associates a block-identifying tag with each block

whose frequency it counts. For every potential CFG changing optimisation a pass is

made which detects changes in that CFG and updates the frequency counts as needed.

The authors acknowledged that this technique is expensive, only works for a subset of

optimisations, and often fails for applications with complex control flow, making it of

limited use in practice despite being an elegant technique.

Epshteyn et al. [2005] also suggested an active learning like strategy in their work,

although they refer to it as active sampling, and it is more of an analytical model than

machine learning proper. In their algorithm, they use information contained in an-

alytical models derived by Yotov et al. [2003, 2005] to seed their model with good

information, and from that data use a potential field to find likely informative candi-

dates to explore next, that are also not too expensive. They achieve this by placing a

positive (attractive) charge on the origin, close to where the faster executing binaries

will be located, as well as any points they estimate have good performance; nega-

tive (repulsive) charges are placed on already explored points, and they find the mini-

mum potential located in this field to sample from next. This compares favourably to

the alternative of using the near-exhaustive search that was already built into the AT-

LAS BLAS library generator [Whaley et al., 2005]. In terms of comparing this research

to the works in this thesis it remains to be seen whether this technique would beat a

passive, random search strategy in the small optimisation-space in which it has been

applied. Moreover, since it is not machine learning based but analytical in nature it is

tied to an architecture and not easily portable. Furthermore, no attempt is made to min-

imise the number of samples that should be taken to avoid noise for each configuration

tested in the optimisation-space like in Chapter 5.

In Franke et al. [2005] the authors recognised that there are distinct benefits to

selecting either an iteratively-improving, focussed search versus a broadly random ex-

ploration of the space. Indeed, this is the same exploitation versus exploration problem

discussed in Chapter 5–6. Namely, that exploitation or focussed search can fall into

local minima, whereas random exploration will eventually find the global minima but

at a potentially greater cost. In order to take advantage of both techniques Franke

et al. [2005] used a genetic algorithm called Population-based Incremental Learn-

ing (PBIL) [Beluja, 1994] in competition with a random search strategy. The PBIL
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algorithm selects transformations stochastically, but with the probability distribution

biased towards those optimisations which have generally improved performance in

previous evaluated configurations. Compared to the the active learning strategies dis-

cussed in this thesis the approach outlined in this paper necessarily involves much more

evaluations of candidate points, since not only are they performing full random search

alongside PBIL but they also rely on stochastic processes to drive the PBIL genetic

algorithm itself—hence, there is a higher chance of redundant data.

Unlike Triantafyllis et al. [2003], Haneda et al. [2005] attempted to reduce the

search space of possible optimisations which need to be evaluated not by eliminating

dangerous optimisations but by concentrating on those transformations which interact

positively with each other in aggregate across a range of supposedly representative pro-

grams. To achieve this they take advantage of Orthogonal Arrays [Rao, 1947] (OA),

where an OA is an m× n array which can be used to enumerate all possible ways

that m-optimisations can interact with each other in pairs of two. Using this method

one can work out how well each pair of optimisations complement one another whilst

only considering a smaller region of the overall space. This is certainly an interesting

solution to the large optimisation-space problem, but is limited in that it only looks

at pair-wise interactions, whereas optimising transformations are known to interact in

very complex and not necessarily intuitive ways that may be k-tuple, where k > 2. Ac-

tive learning approaches, on the other hand, can deal with the whole optimisation-space

in an efficient way without artificially limiting the number of possible interactions.

Similar to Pan and Eigenmann [2004], Fursin et al. [2005] also suggested that one

could accelerate iterative compilation by simply chopping up a program into smaller,

quicker-running constituent pieces, however, in their implementation they look for

phases of consistent performance in loop nests or function executions, in terms of

instructions per cycle counts found using the Performance API (PAPI) library [Mucci

et al., 1999]. Once these regions have been identified and entered into either the origi-

nal unaltered code is run to check that the phase is still stable or a new version which

has been optimised differently is executed. In this way their technique can try differ-

ent strategies during run-time whilst ensuring that the performance measurements are

always comparable between the unoptimised and optimised code variants. Disadvan-

tages of this approach are that a good optimisation for one program cannot be applied

to another one, and thus this is a non-portable, application-specific technique. Further-

more, not only is this non-portable but it also only works at run-time. Active learning

strategies, on the other hand, can be trained off-line and use portable-friendly features.
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In an interesting work, Cavazos et al. [2006] developed a method called reaction-

based modelling, where an artificial neural network is provided with training examples

which have inputs of 4 carefully selected canonical transformations together with ran-

domly picked optimisations, with the output being the speed-up achieved by the opti-

mised code relative to a baseline. These canonical transformations are selected based

on a calculation of highest entropy compared to their peers and, therefore, the trans-

formations deemed canonical changes as data is incrementally collected. The intuition

behind this approach is that codes which react similarly to a small set of canonical

transformations must behave in a similar way and, thus, good optimisation strategies

can be found by looking for similarly behaving programs—since not all transforma-

tions are tried the search is accelerated. Unlike the implementations of active learning

in this thesis, however, the optimisation strategy chosen to be applied in each training

instance is still heavily dominated by a stochastic process, meaning code executions

may be performed which do not contribute useful information used to increase the

quality of the resultant final model.

In Agakov et al. [2006] the authors proposed using machine learning to reduce

the size of an optimisation-space which needs to be searched over by trying to find

those regions within it which are particularly profitable for some characterisation of

a given program. In order to accomplish this objective the researchers first construct

a probability distribution for each of their training benchmarks, where the distribu-

tion gives the probability of each of the evaluated transformations appearing in good

transformation sequences of some fixed length; there are 14 transformations attempted

for each benchmark, and the length of the sequences are limited to five, thus, the au-

thors perform 145 exhaustive evaluations (profile runs) per benchmark. When a new

benchmark is encountered static code features are put through Principle Components

Analysis (PCA) [Jolliffe, 2002] which reduces their number from 36 to 5. The closest

learnt probability distribution is determined from this 5D feature-space using near-

est neighbour—euclidean distance in this case. From this the learnt distribution can

be used to bias either random search or seed an initial population in a genetic algo-

rithm. Although this technique does speed-up iterative compilation as compared to

non-biased random or genetic algorithms it still requires a substantial amount of work,

in the form of the model built off-line. This paper is one of the more influential on this

topic, but it is hypothesised by this author that the technique could have been acceler-

ated further if active learning had been applied in this case, since it is unlikely that an

exhaustive search would have been needed.
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Machine learning approaches only work well if the training data on which a model

is built is as representative as possible. Naı̈vely, one could try to achieve this by train-

ing on as many benchmarks as possible, however, just as Chapter 4 will discuss the

inefficiencies of randomly collecting training examples which provide redundant data,

Joshi et al. [2006] point out that there are redundant benchmarks which should be

avoided too. In particular, the article proposes reducing the number of benchmarks

worth training on to create a high-quality model by finding a subset of all benchmarks

that are the most representative of the whole set. To demonstrate the potential of this

technique they use a combination of microarchitecture-independent features together

with PCA and clustering [Everitt, 2011] to find such representative benchmarks from

well known benchmark suites. This is a good approach, so long as the features being

used to characterise the benchmarks represent their behaviour in an accurate way. Un-

fortunately, since the features in this work are based on static analysis it is of limited

use in practice. One might imagine two benchmarks with similar code features which

do not behave in the same way at run-time due to dynamic behaviour, and, moreover,

that different optimisations might be better applied because of these differences. Fur-

thermore, in active learning there is an explicit, continuous learning process which

evolves over time, where this methodology requires a vast number of benchmarks to

be available at learning-time.

Pan and Eigenmann [2006] designed an algorithm they called combined elimina-

tion which iteratively discards transformations from a pre-defined set S that are found

to cause an increase in runtime for a given code. This is done by first compiling and

profiling a benchmark with an initial baseline Bt strategy, where all optimisations in S

are applied; each optimisation is then individually turned off in isolation to see what

affect this has on runtime; and the optimisations which are shown to degrade perfor-

mance relative to the baseline are collected into an ordered set X = x1,x2, . . . ,xk, such

that x1 is the most damaging. This most dangerous transformation x1 is then immedi-

ately removed from S and a new baseline measurement taken Bt+1. The performance of

the application when each optimisation in X is switched off in turn is again recorded,

but this time measured with respect to the new baseline Bt+1. Those optimisations

that still degrade performance, despite the absence of the X1 transformation, are also

removed from S. This process repeats until no transformations are found to harm per-

formance. The main difficulty with this approach is that it is specific to each code

and is expensive. As an alternative, machine learning can be used to generalise good

optimisation strategies across programs and even architectures.
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Coons et al. [2008] attempted to speed-up automatic construction of compiler

heuristics, and in particular instruction placement, through careful feature selection.

Their approach relied upon using LASSO (Least Absolute Shrinkage and Selection

Operator) regression [Tibshirani, 1996] to find features which most closely affected

performance; correlation coefficients to eliminate redundancy; and then a variant of

Neuro-Evolution of Augmenting Topologies (NEAT) [Stanley and Miikkulainen, 2002]

called FS-NEAT [Whiteson et al., 2005] to further constrain the search space, where

NEAT is a type of genetic algorithm which drives the creation of a neural network.

Unfortunately, the authors themselves state that for LASSO regression to work well

it requires a large sample of performance results, something that this thesis explicitly

attempts to avoid.

Similar to the work performed by Joshi et al. [2006] discussed previously, Thom-

son et al. [2009] used feature selection techniques combined with clustering in or-

der to reduce the number of benchmarks that would be learnt from to only those that

were generally well representative of a complete set. Specifically, their implementation

counted the proportion of times a type of machine instruction was used in an unopti-

mised program, normalised to the total number of instructions in that program; from

these counts 9 features were found to be particularly relevant by PCA; when projected

into the reduced 9D feature-space, clustering was used to find a subset of benchmarks

which were representative of the others; random optimisation strategies were then ap-

plied to each of these and the performance exhibited by the resultant binaries recorded;

finally, a nearest neighbour model was used to find a good optimisation strategies given

an unseen program’s proximity in the reduced feature-space to existing training data.

Although this technique can be used to speed-up learning by reducing the number of

benchmarks being used for training purposes it suffers from the same drawbacks as the

other related work by Joshi et al.; which is to say, by relying on static code features

alone it potentially does not take into consideration run-time behaviour which may be

useful in differentiating the good optimisation decisions from the bad.

Staying on the theme of feature selection, in Leather et al. [2009a] and Ting et al.

[2017] both groups of researchers noted the importance of choosing good, representa-

tive features on which to train machine learning models in order to obtain quality out-

comes, however, these works were not aimed at accelerating iterative compilation per

se but rather at obtaining more accurate end results. In particular, Leather et al. [2009a]

used a combination of Grammatical Evoluation [Ryan et al., 1998] and Genetic Pro-

gramming [Koza, 1990] to search over possible features to map static code attributes



35

to performance. In comparison, Ting et al. [2017] developed an automated framework

which can similarly find good features on which to base a model using either LASSO

regression, sequential forward or backward selection methods. Both these works suf-

fer from the same basic drawback, they perform feature selection in an a posteriori

way, which is inefficient since it requires collection of a large number of data before

feature selection can take place—Chapter 6 attempts to remedy this problem.

Leather et al. [2009b] produced an interesting contribution and were the first re-

searchers to optimise the number of samples required per program variant when de-

termining which optimisation strategy may be the most profitable in a collection. In

particular, they presented an algorithm which compares some number of candidate

strategies by first taking an initial, fixed number of runtime samples for each and then

using hypothesis testing—Welch’s T-test [Welch, 1947]—to eliminate losing strategies

from contention in a statistical manner. That is, if there is only one non-loser left, or

if all the non-losers are deemed equivalent, then the search completes, otherwise the

sample size is increased by one for all remaining candidates and the process continues

until some maximum number of attempts is exceeded. This is the same approach used

to classify data for Chapter 4, and it is a technique which is particularly useful where n

candidates are present and a ‘winning’ strategy needs to be found quickly. That said,

the paper does not apply this technique to machine learning. Moreover, no discussion

of how candidate strategies should be collected in the first place is presented, whereas

Chapters 4–6 in this thesis all address the optimisation of search through active learn-

ing.

Fursin and Temam [2010] proposed a unique solution to speed-up iterative com-

pilation based upon what they termed collective optimisation. Their idea was to con-

struct a central database to hold the performance obtained from using a particular op-

timisation strategy on a given program, input and architecture. In practice, users of

their GCC modified compiler upload performance results for an attempted optimisa-

tion strategy to the database in the background and, transparently, a server associated

with that same database then informs the compiler which optimisations to try next.

When a lot of data has already been accumulated for a given code a program-specific

probability distribution can be used to stochastically select a likely good optimisation

strategy; when little is known reaction-based modelling [Cavazos et al., 2006] is used

instead to probe which program-specific distribution the current program behaves like

the most, and uses that data as a proxy; finally, when nothing is known the data from all

program-specific distributions are used in aggregate. The selection of which of these
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three distributions to choose from is also stochastic, so generally the best optimisation

strategy found so far will be used but other configurations are also tried. The most

obvious disadvantage to this approach is that it uses a checksum to characterise the

programs, where two programs that are similar but not exactly the same must be found

through reaction-based modelling rather than an arguably more simplistic and efficient

approach such as nearest neighbour. Having said that, implementation problems aside,

this is a compelling idea, bringing ‘big data’ to the problem of program optimisation.

Staying on the topic of large scale data processing, Tartara and Reghizzi [2012]

demonstrated that iterative compilation driven by machine learning could be acceler-

ated by fitting the process to a MapReduce workload, so long as the map nodes had

identical hardware and software configurations. Alternatively, they showed that it was

possible to use such a MapReduce strategy on a single machine if specific tools were

utilised to isolate parallel map executions from interfering with each other over shared

resources. Unfortunately, this proposal relied upon random search for selecting opti-

misation strategies where an active learning approach could have been used instead by

performing MapReduce in a while loop until a completion criterion was satisfied—

similar to Balaprakash et al. [2013a].

Chen et al. [2012a]; Fang et al. [2015] proposed an idea similar to that presented by

Tartara and Reghizzi [2012], which is to say they suggested that iterative compilation

could be performed at scale in a MapReduce type workflow in order to speed-up search.

Contrary to Tartara and Reghizzi, however, Fang et al. attempted to analyse and combat

the problem of performance noise incurred by co-running programs on the map nodes,

and thus presented a more realistic environment similar to that found in actual data

centres as opposed to private and artificially unloaded machines. In particular, the

authors showed that good optimisation strategies could still be found for MapReduce

or compute-intensive server applications even in the presence of performance noise

from co-runners, and that the type of co-runner made no difference to what constituted

a good optimisation strategy for a given program. That said, they did find the best

optimisation strategy changed based on co-runners, particularly when two co-running

programs vie for the same resource—L2 cache, for example. In order to mitigate this

behaviour they maintain a table which measures the influence co-runners have over

each other and dynamically schedule them to minimise interference. Unlike the works

presented in this thesis, no attempt is made to optimise search where the authors simply

state it to be orthogonal to their work; furthermore, the number of sample runtimes for

a program running under some input/co-runner combination is not dynamically found.
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Balaprakash et al. [Balaprakash et al., 2013a,b] proposed the use of a relatively new

type of modelling algorithm called dynamic trees [Taddy et al., 2009; Gramacy et al.,

2013] in their works, in which they actively train models to predict good optimisation

strategies for CPU or GPU codes, respectively. The details regarding the learning ap-

proach used in these papers are discussed in detail in Chapter 5, but the main drawback

of their methodology lies in the fact that they do not optimise the number of samples

they need to collect for a high-quality heuristic. Chapter 5 explicitly tackles this inef-

ficiency by improving on their work, incorporating sequential analysis which is shown

to greatly accelerate the learning speed of their dynamic tree based approach.

The paper by Zuluaga et al. [2013] presents an algorithm called Pareto Active

Learning (PAL) which is useful for finding data that is highly likely to be Pareto-

optimal. These are then evaluated to find the Pareto-frontier in a multi-objective

optimisation-space. The researchers provide a theoretical analysis of their technique

together with empirical results obtained from using three distinct datasets, where one

is taken from Siegmund et al. [2012] and relates to optimising both performance and

memory footprint by changing LLVM compiler flags. The algorithm itself uses Gaus-

sian Processes (GPs) [Rasmussen and Williams, 2006] to estimate the mean and stan-

dard deviation vectors for each configuration in the design space as information accu-

mulates. Using this data an uncertainty region or hyper-rectangle is constructed which

can be used to estimate whether a point is likely Pareto-optimal or not. In a subsequent

article Zuluaga et al. [2016] improves the technique by allowing a user to control the

granularity of Pareto-optimal points in the frontier, thereby potentially further acceler-

ating training at the expense of accuracy. Although these are interesting works, since

they tackle multi-objective problems in systems literature, they are somewhat hindered

by their use of GPs in that these are known to be particularly expensive to train and,

thus, arguably less suitable in active learning works compared with other techniques,

such as dynamic trees [Balaprakash et al., 2013a].

Ashouri et al. [2014] approach the problem of selecting good compiler optimisa-

tions per program in a similar way to Agakov et al. [2006], in so much as they use

machine learning to focus iterative compilation towards more promising areas of the

optimisation-space. That said, Ashouri et al. [2014] use a Bayesian network to es-

tablish a probability distribution learnt from training data which is then biased using

the features of a test program. Another difference is that the more recent work uses

micro-architecturally independent dynamic values instead of static code features to

base their model upon. Compared with the works in this thesis, and others based on
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active learning, this technique is likely more inefficient since it samples uniformly from

the optimisation-space during training which can result in redundant examples being

evaluated.

Lastly, Martins et al. [2014, 2016] employ a novel clustering methodology to find

functions which are similar to the one that they wish to optimise, in order to reduce the

search time. To avoid any peculiarities intrinsic in code features they begin by first en-

coding the source code into a DNA like symbolic representation [Sanches and Cardoso,

2010]; next, the pair-wise distance between each representation is measured using

the Normalised Compression Distance (NCD) [Cilibrasi and Vitanyi, 2005]; the NCD

values are used by a neighbour joining algorithm [Felsenstein, 2003] to construct a

Phylogenetic tree and from this a clustering algorithm can be used to partition the tree

into sub-trees, where the leaf of a sub-tree on which a test function is present repre-

sents previously optimised functions over which a search technique can be applied.

Although this technique does slim down the optimisation-space to more representative

examples it does not deal with the efficient training of which optimisations should be

applied to which function characterisations.

Summary

This chapter has provided a brief summary of all works which not only attempt some

form of auto-tuning but also tackle the associated problem of long search times inher-

ent in the techniques applied. In all cases, the contributions of this document are shown

by qualitative or quantitative comparison to provide a substantive and novel addition

to the literature.



Chapter 4

Heuristic Generation with Active

Learning

As stated in the Introduction, heuristics are necessary because the optimisation-space

for any given code is often so immense that it is infeasible to find the best optimisation

strategy for a particular platform, ergo, a good one must suffice. Unfortunately, the tra-

ditional method of creating such heuristics through manual, fine-grained adjustments

does not scale well with the speed at which new hardware is released. This is because

it takes time to perfect heuristics and each distinct processor requires its own [Fursin

et al., 2011]. Indeed, the result of following this failed methodology to date has too

often been outdated heuristics [Kulkarni and Cavazos, 2012] and, thus, poorly opti-

mised code. Therefore, to ensure good performance from any modern computer, for

any code, an automated process to create these optimisation heuristics is required.

Machine learning based modelling has rapidly emerged as a viable means to auto-

mate heuristic construction; by running example programs optimised in different ways

and observing how these variations affect program runtime, automatic tools can pre-

dict good settings for new, as yet unseen, programs. This research area is promising,

having the potential to fundamentally change the way in which heuristics are designed,

however, before this potential can be realised there remain hurdles which must be tack-

led. In particular, the concern targeted in this thesis is excessive training time. Which

is to say, while machine learning allows heuristics to be automatically constructed with

little human involvement the cost of collecting training data (that allows a learning al-

gorithm to accumulate knowledge) is often very high. This chapter presents a novel,

low-cost and broadly applicable predictive modelling approach that can significantly

reduce the overhead of collecting this training data without sacrificing model quality.

39
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In predictive modelling it is often common for training data to be gathered in a ran-

dom fashion, and there are good reasons for this since it avoids inadvertent bias, giving

a more representative coverage of the space. Naturally, random collection can also en-

counter redundant information since multiple training instances can have both very

similar output and feature values. In contexts where obtaining training data is fairly

cheap this is not a problem, but where collection is relatively expensive it means some

considerable cost is being paid with little or no resultant improvement to the quality

of the final model. All machine learning based heuristics literature until recently has

employed the former, random approach, but this ignores the expense of labelling each

training example. In particular, when training some optimisation model it is neces-

sary to run a given program under differing conditions multiple times to get relatively

sound measurements of their effect, where repeated compilation is often also a part of

this process. Clearly, if some of this effort is exhausted and nothing useful has been

learnt in the process then time and money have both been wasted. In this chapter, this

substantial problem is targeted by employing active learning.

In the sections which follow the effectiveness of leveraging active machine learning

to build optimisation models versus random learning, which is called passive learning

in the literature, is demonstrated. In particular, heuristics are constructed to determine

which processor will give the better performance on a CPU–GPU based heterogeneous

system at differing inputs for different programs, where across four benchmarks the

average learning speed-up is 4x under specific test conditions.

The rest of this chapter is organised as follows: in Section 4.1 a motivating example

is given for this work; in Section 4.2 an overview of the approach and the implementa-

tion details of the system are discussed; in Section 4.3 the experimental setup used to

validate the technique is outlined; Section 4.4 provides the results and accompanying

analysis; Section 4.5 critiques the work in a constructive manner; and a summary is

given in Section 4.6.

4.1 Motivation

To motivate this research it is first demonstrated how much unnecessary effort can

be involved in the traditional, randomisation-based passive learning techniques used

extensively in prior literature, and to point out in what way the proposed active learning

strategy can improve upon efficiency.
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Figure 4.1: the problem-space

In Figure 4.1 it is shown for the HotSpot benchmark [Huang et al., 2006] (from

the Rodinia suite [Che et al., 2009, 2010]) when it is better to run on the CPU us-

ing OPENMP [OpenMP, 2011] or the GPU with OPENCL [OpenCL, 2012] for maxi-

mum performance. This benchmark accepts two independent program inputs and their

values form the axes of the graph. The data itself was generated by selecting all input

permutations in the space and running them on both the CPU and GPU enough times

to make a statistically sound decision about which device is better for each individual

case.

Automated learning has been shown to be a viable option for creating heuristics for

this type of problem [Cooper et al., 1999; Wang and O’Boyle, 2009]. To build such a

heuristic, a learning algorithm requires a set of training examples to learn from, where,

in this case, each example requires profiling a program with a permutation of input

values in order to label it. In Figure 4.2 a random selection of 200 input permutations

for HotSpot has been chosen. This was achieved by putting all possible permutations

for the space shown into a ‘bag‘ and selecting them with equal likelihood (i.e. with

a uniform distribution) over a single iteration. These distinct examples are then put

through the labelling process and from this a training set emerges. A heuristic was

created from this data using the RandomForest machine learning algorithm from the
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Figure 4.2: random training instances

Weka Toolkit v3.6.9 [Hall et al., 2009; Frank et al., 2016]. This heuristic was able

to achieve a respectable 95% accuracy rate when a randomly chosen test set of 500

examples was used for evaluation, where the training and test sets were kept disjoint.

From this quick example it is clear that machine learning can create good heuristics

in this case, however, intuition insists that a proportion of the randomly-selected train-

ing examples may offer little useful information. In fact, given the appearance of the

problem-space in Figure 4.1, it was hypothesised that those training examples chosen

nearest to the reciprocal-shaped boundary would have the most impact: since they best

define the trajectory of that separation. The intuition of redundant examples is proved

correct in a follow-up experiment, where just 29 training examples have been selected

to form the training set instead. Evaluating with the same test set as before gave an

accuracy of 97% despite 15% as many examples being used—see Figure 4.3. This in-

dicates that there is significant potential to reduce the training cost for machine learned

heuristics if only the better examples to train over can be found. Unfortunately, with-

out already knowing the shape of the space it is impossible to tell what these examples

should be, but nevertheless it will be shown that with active learning techniques it is

possible to approximate their location.
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Figure 4.3: intelligent training instances

In this chapter a simple active learning technique is provided which accumulates a

set of training examples gradually, only adding to the set those instances the algorithm

predicts will most improve the quality of the heuristic. The following section describes

the methodology in detail.

4.2 Methodology

As a case study, this work aims to train a predictor to determine the best processor to

use for given program inputs while avoiding profiling those that provide little or no

information to the learning algorithm. This is achieved by using an active learning

approach which carefully chooses each example to be examined in turn, where these

are selected based on their predicted usefulness.

4.2.1 The Query-by-Committee Technique

The form of active learning used to create the inputs-to-device mappings in this work is

called Query-by-Committee (QBC) [Seung et al., 1992]. The QBC algorithm follows

the same basic structure as that outlined in Subsection 2.4.1, and shown graphically
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in Figure 2.5, but differs in that it uses an ensemble of intermediate models in combi-

nation to provide both predictions and to select new, informative training examples to

learn from.

There are a number of ways to implement QBC but the ‘committee’ used in this

work consists of numerous randomisation-based learners. Each member algorithm is

constructed using a distinct seed value which initialises an internal psuedo-random

number generator; each are also given the exact same small training set, where the ex-

amples constituting this set were selected at random; however, since each learner has

a different seed they tend to form different intermediate models despite possessing the

same data. In order to label a new, previously unseen instance its class is defined as the

majority class predicted by the models making up the committee. To determine which

candidate should be chosen to be labelled next the QBC algorithm asks each constitute

member to predict to which class each candidate in a pool of potential training exam-

ples should belong. The candidate with which the members disagree the most is then

selected, as this suggests that the models have something to gain from its labelling.

The insight behind the QBC technique is that it is thought less profitable to learn

from parts of the problem-space which are already collectively (and relatively) well

understood, and rather it is more beneficial to learn from regions which are least well

defined. Gradually over time these regions of disagreement shrink as data is fetched

from them, and the model converges upon the true boundary over which the most ef-

ficient processing device should be changed. This corresponds to the idea discussed

with respect to Figure 4.3, that the most informative points are likely closest to the

reciprocal-shaped boundary in that figure since they will most accuracy define its tra-

jectory.

An example Figure 4.4 provides a hypothetical example to demonstrate how new

training examples are selected by QBC. In Figure 4.4(a) an input-space is presented

which is fully described by two parameters and has the location of some training ex-

amples already shown, where the shape of the points indicate different classes. In this

case, the committee consists of two classifiers X and Y with different seeds giving dif-

ferent models, as illustrated in Figure 4.4(a) and (b). If the classification boundaries

of the two models are overlapped, as in Figure 4.4(c), it becomes clear that there are

parts of the space that both classifiers are in agreement about as well as an area where

they disagree. Knowing the location of any disagreement region the algorithm can then

select new training examples from within that, thereby maximising the likelihood that

something new will be collectively learnt.
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Figure 4.4: a simplified two-parameter feature-space with the locations of profiled

training examples marked, where two distinct learning algorithms build two different

models—(a) and (b). These models are then combined, as in (c), to find the region

of disagreement between them and this information used to better select where future

training examples should be drawn from.

4.2.2 Quantifying Committee Disagreement

Shannon information entropy H [Shannon, 1948] is used to evaluate the level of dis-

agreement between committee members for each candidate training example, where

in Equation 4.1 p(xi) is the proportion of committee members that predict that the

candidate instance x is fastest on device i of n. If out of all candidate instances, per

learning loop iteration, a multiple number have the same maximum entropy value then

one is randomly chosen from amongst those to be profiled next. In this case, profiling

or labelling involves using the input values associated with that training example to run

the CPU and GPU kernels enough times to determine which processor is faster in that

case. Once this information has been added to the training set the learning loop begins

another iteration forming fresh intermediate models, only this time new data has been

included.

H (x) =−
n

∑
i=1

p(xi) log p(xi) (4.1)

4.2.3 Statistically Sound Performance Profiling

Since computer experiments, particularly those that require accurate time measure-

ments, are known to give noisy results statistical techniques are used to increase the

reliability of the models being produced in this work. In particular, a minimum num-

ber of performance samples per device are recorded, as specified by the user. Further-
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more, IQR outlier removal [Moore and McCabe, 2005] is applied before Welch’s t-

test [Welch, 1947] to discover if one hardware device is indeed statistically faster than

the other. If it cannot be concluded from the t-test that this is the case then an equiv-

alence test is performed. Both devices are said to be ‘equivalent’ if the difference

between the higher mean runtime plus its confidence interval minus the lower mean

minus its confidence is within some pre-defined threshold of indifference. This thresh-

old is set to be within some percentage of the minimum of the two means. If the fastest

device cannot be determined and yet they are not deemed equivalent then a single extra

sample per device is obtained and the tests applied again, up until some pre-set number

of tries. For classification purposes, if the devices are determined to be equivalent or

the number of maximum tries has been exceeded then the CPU is chosen as the pre-

ferred device since it is at least more energy-efficient than the GPU: see Figure 4.5 for

a graphical example of the equivalence test and Algorithm 1 for some pseudo-code of

the labelling procedure.

Figure 4.5: there is no mathematical formula for equivalence but a heuristic can be

used which relies upon the confidence intervals of the two classes. For example, if

the maximum difference between the 95% confidence intervals d is within 1% of the

minimum mean runtime (of the GPU in the case above) then the devices are said to

provide equivalent performance. In such cases the CPU is designated as the more

performant hardware since at least this increases energy-efficiency.

4.3 Experimental Setup

This section gives the exact details of the experiments carried out in this case study,

starting with the platform and benchmarks used, moving onto the particular QBC set-

tings, and finally discussing the evaluation methodology.
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Algorithm 1 to label an instance, with features X , as being either faster on the CPU or

the GPU the minimum nmin and maximum nmax number of sample runtimes to record

per device needs to be set. A confidence level C is also required for Welch’s t-test and

the equivalence test, as well as a threshold d—see Subsection 4.2.3.
1: procedure LABELINSTANCE(X ,nmin,nmax,C,d)

2: for i ∈ {cpu,gpu} do

3: Yi← /0

4: for j = 0,nmin do

5: Yi← Yi∪timeExectionOnDevice(X , i)

6: end for

7: Yi← removeOutliers(Yi)

8: end for

9: repeat

10: if isStatisticallyDifferent(Ycpu,Ygpu,C) then

11: if mean(Ycpu) <= mean(Ygpu) then

12: return cpu

13: end if

14: return gpu

15: end if

16: if isEquivalent(Ycpu,Ygpu,C,d) then

17: return cpu

18: end if

19: for i ∈ {cpu,gpu} do

20: Yi← Yi∪ timeExectionOnDevice(X , i)

21: Yi← removeOutliers(Yi)

22: end for

23: until |Ycpu|>= nmax

24: return cpu

25: end procedure

4.3.1 Platform and Benchmarks

Platform The approach was evaluated on a CPU–GPU based heterogeneous platform

with an Intel Core i7-4770k CPU, containing 4-cores (8 hardware threads) which run

at 3.4 GHz. The machine has 16 GB of RAM and the GPU is an NVIDIA GeForce GTX

Titan with 6 GB of memory. The operating system is OpenSuse Linux v12.3 and

both GCC v4.7.2 and the NVIDIA CUDA Toolkit v5.5 are used for compilation.
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Benchmarks In terms of benchmarks, three were selected from the Rodinia suite

based on their ability to allow fine-grained changes to their kernel inputs and since they

had implementations in both OPENMP and OPENCL—namely HotSpot, PathFinder,

and SRAD. A simple matrix multiplication kernel was also written in both OPENMP

and OPENCL to allow for increased testing. Table 4.1 gives all relevant details re-

garding the input-space explored for each of these benchmarks, where the input ranges

were chosen to give a substantial, but fairly realistic, region to learn over based on

default testing values. It is vitally important to mention here though that the size of the

input-space will have a significant impact upon the value of any resultant speed-ups

calculated, and so the relevant information during experimentation is more that there

is a significant effect rather than the absolute value itself.

Table 4.1: the Size of the input-space for each of the benchmarks are given in the

table below, as well as the number of Dimensions; the Min and Max values for each

dimension, inclusively; the number of Candidates considered at each loop iteration; and

the step value of the Stride.

Benchmark Dimentions Min Max Stride Size Candidates

HotSpot 2 1 128 1 16,384 10,000

Matrix Mult. 3 1 256 1 1.6×107 10,000

PathFinder 2 2 1,024 1 1.0×106 10,000

SRAD 2 128 1,024 16 3,136 2,636

4.3.2 Active Learning Settings

Learning Models The active learning committee was formed using 5 RandomForest

classifier objects from the Weka Toolkit v3.6.9, where each was given a unique seed.

This algorithm was selected since it was found to give the most accurate models for

all benchmarks during experimentation, it can produce distinct models with different

initial seed values, and it is used commonly in machine learning literature.

Initial Training Set and Candidate Set Sizes For all experiments the training set

was initialised with a single randomly chosen instance, i.e. the minimum possible. The

effect of changing this parameter is discussed in Subsection 4.4.3. The candidate set

size was either 10,000 examples not already present in the training and test sets or the

maximum number of points not in those sets, whichever was smaller—see Table 4.1.
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Termination Criterion The learning loop was halted when the number of training

examples learnt by the algorithm reached 200, this was found experimentally to be

sufficient for the improvement in heuristic quality to have reached a fairly consistent

plateau.

4.3.3 Evaluation Methodology

Runtime Measurement and Device Comparison To determine if a benchmark with

a given input permutation was better suited to the CPU or GPU it was run on each

device using OPENMP or OPENCL, respectively, at least 10 times and at most 200

times: N.B. different programming frameworks were used since OPENCL was not

thought mature on the CPU and OPENMP could not execute on a GPU at that time.

As mentioned in Section 4.2, IQR outlier removal was employed, with Welch’s t-test

and equivalence testing to ensure the statistical soundness of the gathered program

execution times.

Statistical Difference and Equivalence Testing In order to determine if one com-

pute device is indeed better suited for a particular workload size over the other Welch’s

t-test is used. The t-test is parametrised by a confidence value C of 0.95, i.e. a 95%

confidence level, which is generally considered to be the minimum standard for sci-

entific experiments. If it cannot be determined that the devices have mean runtimes

which are statistically different enough to judge that one is better than the other then

an equivalence test is attempted. This equivalence test (see Figure 4.5 for the details)

uses the same confidence level (95%) with a threshold d of 1%.

Testing For testing purposes, a set of 500 inputs were excluded from any training and

candidate sets. Both the active and passive learning experiments were run 10 times for

each benchmark and the arithmetic mean of Cohen’s Kappa was recorded. For active

learning a committee of 5 models were used in combination to form a single implicit

model to predict classifications of test instances, or to work out entropy for selecting

the next training instance, based on ‘votes‘ cast; in comparison, for passive learning a

single classification model was used as this was the de facto state of the art.
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4.4 Experimental Results

This section begins by presenting the overall results of these novel experiments, show-

ing that an active learning approach can significantly reduce the training time by a fac-

tor of four on average, when compared to the passive learning technique used in prior

works. Then, the performance exhibited by the learning system for each benchmark in

turn is examined. Finally, how three user-supplied parameters affect the performance

of the methodology is inspected and discussed.

4.4.1 Overall Efficiency Savings

Figure 4.6 shows the average learning speed-up of an active approach over the passive,

random technique traditionally used in automated heuristic construction.

The speed-up values are based on the average relative costs, in terms of training

examples required, for the maximum common kappa value to be obtained through

active versus passive learning. As can be seen from Figure 4.6, active learning con-

sistently outperforms the classical technique for all benchmarks tested, which in real

terms means saving weeks of collecting data.

That said, as mentioned previously in Subsection 4.3.1, these absolute speed-up

values are heavily dependant upon the size of the input-space so the important point

here is that the active learning methodology does significantly accelerate learning, not

that it accelerates learning by some calculated amount.
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Figure 4.6: on average this active learning implementation requires 4x fewer training

examples to create a high-quality heuristic on the given input-spaces, as compared to

the traditional, random learning technique.
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4.4.2 Training Examples Selection

Figures 4.7–4.10 clearly illustrate where the cost savings associated with this QBC

implementation are coming from, where each graph shows the training points selected

by the QBC algorithm in a single run. That is to say, in all cases the algorithm quickly

chooses points surrounding the boundary between the CPU and the GPU optimum

regions, giving it the ability to more accurately model its shape in less time.

4.4.3 Sensitivity to Parameters

As well as confirming the validity of this active learning approach three further ex-

periments were conducted to determine the impact that some user defined parameters

might have on its effectiveness. The first experiment (Figure 4.11) involved altering

how many randomly-selected training examples were initially supplied to the QBC

algorithm to get it started. The second experiment, whose results are presented in Fig-

ure 4.12, investigated the extent to which changing the size of the candidate set would

have an effect on the speed of heuristic construction. Finally, Figure 4.13 gives an

indication of the impact of increasing the number of committee members. For all three

experiments, the benchmark used was HotSpot and all variations per experiment were

run 10 times to calculate the respective mean performances.

From Figure 4.11 it is clear that increasing the number of random training instances

used to seed the QBC algorithm for HotSpot has no significant effect on its long-term

performance, but is somewhat detrimental in the short-term. This makes sense since

it simply reflects the behaviour of passive learning. Which is to say, passive learning

is slower than QBC at reaching high kappa values but once it has accumulated enough

random knowledge it is competitive with an active training set. That said, one can

imagine a case where a complex space with many localised features may be better

explored through an initially random approach followed by active learning.

Figure 4.12 illustrates how changing the size of the candidate set for the HotSpot

benchmark affects the performance of the system. In particular, the data indicates that

although a smaller candidate set size may be more beneficial up to a point, the absolute

difference between the best and worst kappa values for any variation is small enough

that this could actually be the result of experimental noise, despite repeated runs.

In Figure 4.13 the committee size was altered to see what affect this might have

on the learning curve for the HotSpot benchmark. The results show that there is little

difference made when a higher number of committee members is chosen—5 is fine.
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Figure 4.7: since the Matrix Multiplication space is three-dimensional it is slightly more

difficult for a human to visualise the separation between CPU and GPU regions; to make

things a little easier the graph above was flattened such that the z-axis has values 122≤
z≤ 130. Active was approximately four-times faster than passive learning at producing

a high-quality model for this code, one of the quickest tested, presumably because the

additional dimension reduces the effectiveness of random selection further.
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Figure 4.8: the efficiency of QBC at finding the boundary between the best class of

device is dramatic for the HotSpot code. When compared to a random approach it is

easy to understand how QBC would be over twice as fast at achieving a high kappa

value, indicating a quality heuristic.
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Figure 4.9: active learning was nearly eight times faster at producing a quality model

than passive learning for the PathFinder benchmark, and the reasons are obvious.

The input-space for this benchmark was one of the largest and the location of the region

at which the GPU is fastest is relatively small. Thus, a random approach will naturally

find it difficult to locate the boundary versus an ‘intelligent’ approach.
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Figure 4.10: somewhat similar to Figure 4.9 in that one device dominates the input-

space, the points selected to train on SRAD appear to be initially random but then can

concentrate on the relevant boundary once discovered. This gives the QBC approach

an advantage over random learning, and is the reason why it is ultimately three times

faster than that classical technique at producing a high-quality heuristic.
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Figure 4.11: this figure shows that increasing the number of random examples given

initially to the QBC algorithm for HotSpot is on average at first detrimental to its perfor-

mance but in the long-term has no significant effect on the model quality; however, in a

more complex feature-space increased randomness may help uncover small localised

features.

Figure 4.12: this figure shows that choosing a lower candidate set size may be more

beneficial than a larger one up to a point; however, as the absolute difference of the

best and worst kappa values between any two variations is rather small this could be

down to experimental noise.
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Figure 4.13: choosing a higher number of committee members seems to make little

difference to the rate of change in the learning curve.

4.5 Discussion

This section provides some self-reflective criticism of the work presented thus far, and

how it might be improved upon. In particular, a way to combat the greedy nature of

the QBC algorithm to ensure localised spatial features might be better reflected in the

final model is presented. A novel idea for an entropy-related completion criterion is

also investigated and discussed.

4.5.1 Localised Classification Changes

It was speculated, prior to the commencement of this research, that there would be

some global transition within each program input-space between configurations for

which the CPU is better than the GPU and vice versa. In fact, it was assumed that

the CPU would naturally be quicker at small workload sizes since there is an overhead

associated with transferring data over the PCIe bus—Peripheral Component Intercon-

nect Express—and that a GPU, with its relatively high number of processing units

would then overtake as the better device. In practice, although the transition has not

always been from CPU to GPU with increasing work, the input-spaces were all found

to be nicely separable into two distinct regions as predicted. The QBC algorithm was

chosen based on this prediction, but, if one imagines a more complex input-space,

such as that imagined in Figure 4.14, it is clear that QBC could run into a problem.
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More specifically, if a QBC algorithm detects points which surrounds one boundary

but misses another then it will assume incorrectly that the space is separable into just

two distinct regions.

An obvious solution to this problem would be to increase the number of random

training examples at the beginning of the learning process, but this would not be suf-

ficient in itself since it is still possible that a region might still be missed. Rather, it is

suggested that at every n iterations of the learning loop a training example is selected

which is deliberately not near the known boundary but actually some distance away

from already explored parts of the space. Thus, increasing the likelihood in such a sit-

uation as displayed that all localised changes will eventually be found. Alternatively,

an ε-greedy approach [Sutton and Barto, 1998] could be used to combine exploitation

and exploration, such that the probability of selecting a random instance to learn is ε

and 1−ε is the probability of selecting a high-entropy example instead. Unfortunately,

since we have not encountered such a complex space this method has not been evalu-

ated, but as this is a well known strategy to combat this problem it seems sensible to

include it here for completeness.

4.5.2 Entropy Completion Criterion

In Subsection 4.3.2 it was described how the committee of models was comprised of 5

Random Forest classifiers, each given the same training data but also a distinct seed.

Such a committee works because the psuedo-random number generator within each

object will produce different outputs which then, in turn, has an effect on the aggregate

model shape. Having said that, it is likely that as time goes on, and more data is

accumulated, each model will begin to converge on one another. It would therefore

be interesting to examine whether or not it would be possible for a completion criteria

to be based on total entropy within the candidate set. Which is to say, if the total

entropy of n consecutive learning loop iterations is below a certain threshold then the

process is deemed complete, since all committee members agree in the main on the

class distribution for the space. This would seem to be a far more natural completion

state than an arbitrary time limit or size of the training set. Unlike Subsection 4.5.1,

which cannot be properly evaluated since it would require the creation of an artificial

problem, the success of this technique can be measured.

In a brief experiment, the HotSpot benchmark is evaluated again using the same

active learning strategy and parameters given in Section 4.3 but this time metrics sum-
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Figure 4.14: QBC copes well with a singular classification boundary but for more com-

plex spaces a more elaborate approach may be required. For example, this figure

shows the same data as that presented in Figure 4.3, except that the classification of

points in the upper extreme of the space have been artificially altered. If the points se-

lected to be sampled are the same (shown as block dots) the final model will incorrectly

assume the space can be separated into two distinct regions. To combat this problem

at every n iterations of the learning loop a random training instance biased away from

current known points could be selected for labelling, or an ε-greedy strategy could be

used instead.

marising the distribution of entropy values within the candidate set are recorded. These

metrics are the minimum and maximum entropy values; the 25th, 50th, and 75th per-

centiles of that distribution; and the mean. Figure 4.15 gives the results aggregated

over ten runs. For ease of comprehension only the average maximum and median en-

tropy values at each iteration of the learning loop are plotted alongside average kappa.

What the data shows is that although the entropy values for most of the candidate set

in any given distribution is zero there is a relationship between a decreasing kappa and

the maximum entropy observed. Unfortunately, the relationship is so volatile, how-

ever, that it is doubtful that such a technique could be used in practice and so more

conventional completion criterion must be relied upon.
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Figure 4.15: it appears from this experiment that the average entropy value of a can-

didate in the candidate set is zero, particularly after an initial phase at the beginning.

There is a relationship between average maximum entropy and average kappa but the

data is so volatile that it would appear this is not a reliable stopping criterion after all.

4.6 Summary

This chapter has presented a novel, low-cost, and broadly applicable predictive mod-

elling approach for machine learning based heuristic construction. Instead of building

heuristics based on randomly chosen training examples, as was the previous standard

process, active learning is used to focus on those instances that improve the quality of

the resultant models the most. Using QBC to construct a heuristic to predict which pro-

cessor to use for given program input values the approach is able to speed-up training

by a factor of 4x for the given input-spaces, resulting in a saving of weeks of compute

time.

This chapter has also attempted to suggest two techniques which might improve the

overall approach through introducing some randomness back into the technique to help

the discovery of any localised optimal classification changes, and a novel completion

criterion dependent on total entropy in the candidate set over a number of consecutive

iterations. Unfortunately, this latter suggestion was found to be unreliable after some

experimentation.
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Active Learning with Sequential

Analysis

In Chapter 4 it was pointed out that the majority of prior work has used a random, pas-

sive training technique to automatically construct optimisation heuristics. It was then

demonstrated that the learning overhead of generating such models could in principle

be reduced by using active machine learning instead. Indeed, other works have drawn

the same conclusion [Zuluaga et al., 2013; Balaprakash et al., 2013a,b] and, when

combined, these represent a substantial leap forward towards making heuristic gener-

ation quick and easy. Unfortunately, despite this, sizeable inefficiency does still exist

in the training process. More specifically, all previous literature on machine learning

based auto-tuning has used a fixed sampling plan to collect training data. Which is to

say, each unique training instance is repeatedly profiled a set number of times, cho-

sen a priori, to obtain a reasonable estimate of the runtime so that the affect of the

configuration being tested can be accurately known. This is necessary since runtime

measurements are inherently noisy, but it is also a potential source of wasted effort

since a fixed sample size n does not allow for the case where less than n samples are

all that are necessary, given a broader context.

The subsections which follow will give a brief discussion as to the origins of noise

in computer experiments, how that noise can be reduced to ameliorate the need for

repeated profiling, and argue that such noise reduction techniques may not actually be

desirable. Instead, a summary of an adaptive system which can dynamically determine

at learning-time how many samples to record per training example will be presented,

followed by a brief outline of the layout for the remainder of this chapter.

61
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The Origins of Runtime Noise

There are many sources of noise which perturb runtime measurements, the most egre-

gious of which are caused by system processes or those belonging to other users.

Such processes compete for resources with the tested application, especially for cores,

caches [Petoumenos et al., 2006], and memory [Zhuravlev et al., 2010]; moreover, they

do so in non-deterministic ways. In recent systems the power and thermal walls have

lead to even more complex interference patterns. Intel’s Turbo Boost technology, for

example, might lower the frequency and the power consumption of a process running

on a core when other cores wake up [Charles et al., 2009].

Even ignoring interference from other applications, there are still more sources of

noise in computer experiments. Memory management mechanisms, such as dynamic

memory allocations [Herter et al., 2011] and garbage collectors [Siebert, 2001], can

introduce additional unpredictable overheads. On top of this, Address Space Lay-

out Randomisation (ASLR) and the physical page allocation mechanism change the

logical and physical memory layout of the application every time it is executed, po-

tentially affecting the number of conflict misses in the CPU caches and branch mis-

prediction rates [de Oliveira et al., 2014]. Multi-threaded applications can even force

non-deterministic behaviour back on themselves, if the scheduler is not set to be per-

fectly repeatable, or if small timing changes alter communication patterns [Pusukuri

et al., 2012]. Any I/O can have non-repeatable timings, and even changes to the en-

vironment variables between runs can shift memory and alter runtimes [Mytkowicz

et al., 2009].

Reducing Experimental Noise

Past research has investigated ways to reduce measurement noise in performance ex-

periments. Typical approaches include avoiding I/O, overriding the default scheduling

policy [Pusukuri et al., 2012; Pouchet, 2012], using deterministic memory manage-

ment [Pusukuri et al., 2012; Pouchet, 2012; Herter et al., 2011], or just minimising the

number of active processes, including services and daemons. However, going to these

lengths is not always enough or even desirable for multiple reasons. First and fore-

most, while these techniques do reduce noise they do not eliminate it. Therefore, mul-

tiple profile runs are still needed to determine whether noise affects the measurements

significantly, which brings up the question as to how many samples are enough. Even

when applied, the amount of variation might still be too high for optimisation heuristics
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dependent on accurate measurements [Leather et al., 2009b]. Secondly, modifications

to reduce noise may do so at the expense of altering run-time behaviour, ultimately

risking the possibility that the wrong heuristic is learnt. Heuristics targeting very spe-

cific, low-noise run-time environments may not match well when used in practice. For

example, Curtsinger and Berger [2013] showed that the runtime variation caused by

memory layout changes, such as ASLR, can dwarf the differences between optimisa-

tions. Therefore, if ASLR is disabled during training, or only a single runtime sample

is taken, then an optimisation could be selected which is not helpful, in aggregate,

when deployed; instead, multiple runs must be used to smooth out the effects of ran-

dom layout changes. Finally, even if a low-noise environment did not actually alter

the heuristic, it may prove difficult to convince companies that tuning heuristics in an

environment different than their production one is acceptable.

An Adaptive Sampling Plan

Since reducing noise can be problematic for the reasons outlined in the previous sub-

section repeated measurements are inevitably required. This brings up the question

again as to what sample size to choose; if it is too low then inaccurate information will

be learnt and the model performance will suffer, whereas too many samples will mean

that time is wasted with excessive, repeated profiling. The work in this chapter aims

exactly at handling noise without having to reduce it, and without wasting time on

unnecessary evaluations. The insight behind this research is that each additional sam-

ple, that is, each additional performance measurement for some optimisation strategy,

would provide diminishing amounts of information. Indeed, that extra information will

quickly reach zero if there is little experimental noise or if the samples already fit well

with what is already known about the space. In other words, extra profiling runs for a

decision are useful only if the results are likely to contradict what has been predicted

about that decision. The experiments in the proceeding sections confirm that iterative

compilation can be slowed down by using a fixed sampling plan, spending much of its

time getting additional samples which provide little or no useful information.

A seminal work was presented by Wald [1944], where some theoretical foundations

for the field of sequential analysis were established. In particular, the paper presented

a sequential probability ratio test for binomial and normal distributions, as well as dou-

ble dichotomies, such that a sample can be iteratively obtained for a random variable to

establish some mean that can be used to either accept or reject a null hypothesis. That
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is, some small number of samples can be recorded and a sample mean used to accept

or reject a null hypothesis, if neither action is taken then another sample is added and

the same procedure attempted again. For normally distributed values, this means that

one could establish, with some pre-defined allowable thresholds for incorrect classifi-

cation, whether a mean is below or above a given value. This is similar to the approach

taken by Leather et al. [2009b], but a problem lies in the fact that this particular test

requires the standard deviation to be known. Nevertheless, sequential analysis is the

name given to an approach where the number of samples are allowed to change dur-

ing experimentation, and in this chapter a novel active learning technique for iterative

compilation is introduced which includes sequential analysis, albeit in a more ad hoc

form than that of Wald [1944].

More specifically, the approach taken in this work is able to more quickly pro-

duce an optimisation model, as compared to a fixed sampling plan, without sacrificing

heuristic quality by profiling an application under the same optimisation decision only

as long as this improves knowledge . This is achieved by taking a single sample run-

time measurement for optimisations that are deemed to be most profitable to learn

from, as defined by an active learner. As knowledge is built up, the algorithm is able to

revisit these examples later instead of getting new ones. This happens if the algorithm

determines that they are of continued interest, that is, if it appears that measurement

noise has affected the data previously collected on that configuration.

To evaluate this approach models are created for 11 programs from the SPAPT

suite [Balaprakash et al., 2012]. These models can predict, with low error, the runtime

of a particular code given a number of optimisation options that one may want to

apply, and in this way can find an optimal combination which minimises runtime. This

is a variation on the commonly applied speed-up prediction technique [Cavazos et al.,

2006; Dubach et al., 2007; Park et al., 2011] and is necessary since it is not possible

to directly foresee a good combination from the outset as the model needs to guess

relative performance before it can conclude which configuration may be best. The

results show that this methodology can create high-quality heuristics on average 4x,

and up to 26x, faster than a baseline approach which uses 35 samples per training

example and active learning alone: where 35 was chosen as it was used in the most

closely related literature— Balaprakash et al. [2013a].

The rest of this chapter is organised as follows: Section 5.1 provides a motivation,

Section 5.2 describes the methodology; Section 5.3 details the validation; Section 5.4

lists results; Section 5.5 critiques this approach; and a summary is given in Section 5.6.
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5.1 Motivation

The research in this chapter is based on the realisation that current procedures for

creating machine learning based heuristics do not consider sample size a parameter for

optimisation, but rather assume it to be a constant value fixed ahead of time. Moreover,

little or no justification is ever provided for one chosen sample size over another. With

active, iterative learning this need not be the case and the knowledge built up by the

algorithm over time can be leveraged to adaptively select a more appropriate sample

size per example, significantly accelerating training overall.

To motivate this work an examination of a simple optimisation-space was car-

ried out. The exemplar problem was finding the best unroll factor for two loops in

the Matrix Multiplication kernel from the SPAPT benchmark suite—specifically

loops i1 and i2. Compiling each training example on the machine whose specifica-

tions are given in Subsection 5.3.1, and with the -O2 optimisation level as a baseline,

the kernel was iteratively compiled multiple times, each time with a different combina-

tion of unroll factor values for the two loops. Each binary was then executed 35 times

and the runtime measurements recorded.

Figure 5.1 presents the Mean Absolute Error (MAE) that would have been incurred

had only one sample per configuration been taken versus 35 samples. This gives an

estimated baseline for the worst error that could result in this space, as high as 4 ms (5%

of the mean) for some binaries but practically zero for many. For the latter case getting

even a second sample is a waste of effort. To estimate the potential speed-up that could

be obtained if the optimal number of samples were known for each optimisation setting

the space was iterated through again, but at each configuration samples were removed

randomly from the group of 35 collected initially; this reduction continued so long as

the calculated MAE remained below 0.1 ms.

Figures 5.2–5.3 show the error of this ‘optimal’ approach across the entire space

and the number of samples that were actually needed per configuration to maintain

such a small error, respectively. These figures demonstrate that there is quite con-

siderable stochastic noise in measurements from this feature-space, as one might ex-

pect based on the previous discussion regarding noise. Hence, the number of sam-

ples needed for a low MAE varies. If the naı̈ve, fixed sampling plan of 35 is taken

then 35× 30× 30 = 31,500 individual executions are needed, whereas if it was al-

ready known ahead of time what sample size would be required then a maximum error

of only 0.1 ms is incurred at a cost of just 15,131 runs—approximately half.



66 Chapter 5. Active Learning with Sequential Analysis

Figure 5.1: this decision-space represents different unroll factors for two loops of

the Matrix Multiplication kernel of SPAPT, where the relative colour indicates the

Mean Absolute Error (MAE) for a sample size of one, assuming 35 samples approxi-

mates the population mean.
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Figure 5.2: similar to Figure 5.1 except this graph shows the comparison between an

‘optimal’ number of samples versus 35.

Figure 5.3: the optimal number of samples per configuration in the decision-space.
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Although this example has not used machine learning directly, through simple de-

duction it can be established that if one had perfect knowledge, and knew how many

samples per configuration were needed, then training time could be reduced. That is,

since perfect knowledge reduces samples, a training example is composed of a num-

ber of samples, more samples cost more time, then perfect knowledge reduces time of

training.

This motivating experiment has started out with ‘perfect’ information about each

configuration in the decision-space and removed samples until the average runtime

starts to deviate significantly from that initially calculated, but a real sequential analysis

approach must work in the opposite direction. It must start from zero information about

each configuration and add samples until the distance between the average runtime and

the true population mean is within some threshold. Unfortunately, this distance cannot

be known, but the intuition behind this research is that it may be approximated by

looking at what information has been gathered from the rest of the space.

Consider Figure 5.4, where the i1 loop in the adi benchmark is unrolled some ran-

dom number of times and a single sample runtime measurement taken per executable.

Despite the noise there appears to be a pattern identifiable to the human eye: a plateau

starting at 2.1 s which climbs and levels off at 3.1 s around a loop unroll factor of 10.

It is postulated, and it will be demonstrated that, points in areas where the pattern is

clear and which fall nicely within that pattern are more likely to be nearer to their re-

spective population means. The points where more samples are needed are the rest.

In other words, from looking at the spatial locality of runtime sample means across an

optimisation-space it is possible to guess which ones may be incorrect and need more

samples, because they tend to stick out.

A sample runtime may not always fit to expectations if the mean runtime of the

other training instances are badly estimated. The assumption in this work is that the

runtime of training examples with less than optimal sample counts will be noisy, but

that the model should be able to accommodate for this by taking neighbouring data

into consideration to approximate the target value in question. This was inspired by

Fermi estimation, where numerous roughly correct estimates combine in such a way

as to cancel out any over or under estimation [Weinstein and Adam, 2008]; indeed,

machine learning algorithms often explicitly generalise on purpose anyway to avoid

overfitting [Hastie et al., 2009]. Hence, if a sample runtime is relatively far from where

it is expected to be in the space there are four possibilities, either the model is poorly

fit and the sample runtime is correct or the model is accurate and the sample runtime
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Figure 5.4: runtime versus unroll factor for a loop of adi when using a sample size

of one. A relationship between unroll factor and runtime is relatively clear despite the

noise: i.e. stable around 2.1 s until 10 where it climbs steadily and plateaus at 3.1 s for

high factors of loop unrolling.
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Figure 5.5: an overview of the active learning approach. An initial model is seeded

with some high-quality data. A single training example is then selected from a set of

candidate examples. Data is collected and fed back into the algorithm. The process

repeats until some completion criterion has been satisfied. Contrary to existing active

learning approaches, potentially noisy training data is collected one sample at a time.

Visited training examples remain in the candidate set and can be revisited if getting

more samples for that optimisation is more profitable than exploring other, new parts of

the space.

is wrong, or they are both right or both wrong—in any case increasing the number

of samples for such a point will increase knowledge. Note that this technique will not

work as intended if the bias of the model fits the data poorly, but in such a scenario there

is a larger problem since the heuristic will not fit the collected information irrespective

of the sampling approach taken.

5.2 Methodology

The work in this chapter introduces a novel approach to active learning which is

broadly applicable. While traditional active learning is used to reduce only the number

of training examples, this methodology wishes to reduce the number of samples per

example. Previous research in this area has ignored sequential analysis, presumably

because many implementations of active learning are greedy so learning from noisy

data on purpose would lead to poor conclusions being drawn from the intermediate

models [Settles, 2013]. For example, as demonstrated in Subsection 4.5.1, using QBC

with a noisy oracle can steer the search towards less informative areas of the decision-

space, significantly reducing any heuristic’s effectiveness; Subsection 5.2.3 explains

how this problem has been overcome in this work.
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5.2.1 Sequential Analysis

Traditionally in active learning the training set (the set of examples already seen) and

the candidate set, a random subset of all examples that could be learnt from next,

are kept disjoint. This makes sense because the information contained in the training

set is assumed to be of good quality; each example will have been evaluated some

fixed number of times to ameliorate the effects of noise, hence, there is little to be

gained from revisiting those examples again. However, as has been demonstrated in

Section 5.1, a fixed sample count can be overly conservative and wasteful.

In order to modify active learning to incorporate sequential analysis the algorithm

is altered such that the sample size fetched during labelling is set to one. In cases of

noisy data, the algorithm needs to be able to revisit previously compiled programs so

training examples that have been explored remain temporarily in the candidate set—

see Figure 5.5. That is to say, at each iteration of the learning loop the algorithm will

consider not only getting a new example but also whether it is more profitable to try

an old one again, similar to the multi-armed bandit problem in the field of mathemat-

ics [Robbins, 1952; Berry and Fristedt., 1985]. This is possible because the particular

model used in this work provides a scoring function which quantifies the uncertainty

the model has about each point in the space, based on the knowledge it has at that time.

As knowledge is gained, given the shape of the intermediate model, noisy examples

or examples in complex areas of the decision-space will begin to stick out, and will

be more likely to be visited. In either case, with each iteration of the training loop

the configuration that is estimated to provide the most amount of information will be

sampled from.

The procedure for this work is summarised as pseudo-code in Algorithm 2. The

algorithm begins by constructing a model M with ninit training examples which have

been randomly chosen from all potential examples F as a seed. To generate this initial

model a fixed number of observations nobs are collected for each training example to

give the active learner a quick and accurate look at the search space. The learning loop

then proceeds whilst the completion criterion has not been met. In this implementation

the criterion is set to a fixed number of training instances but could have been based

on, for example, wall-clock time or some estimate of the error in the final model estab-

lished through cross-validation [Hastie et al., 2009]. Within each iteration of the loop

the candidate set C combines nc random points which have never been observed before

and those examples which have been seen previously but less than nobs times. The next
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Figure 5.6: this diagram shows the three potential updates that are stochastically ap-

plied to the Dynamic Tree upon receiving a new training example (xt+1,yt+1). The

tree either remains unchanged, a leaf node is pruned back so that the parent of the leaf

becomes a leaf itself, or grown such that two new children divide the relevant subspace.

training example x is chosen based upon its predicted usefulness (see Subsection 5.2.3)

and its runtime y measured once. The model is then updated as well as the required

data structures. It should be noted that this algorithm is easily parallelised by selecting

multiple training examples per loop iteration instead of just one [Balaprakash et al.,

2013a] but as this is orthogonal to this work, and would have complicate analyses, the

algorithm was made purposefully sequential.

5.2.2 Dynamic Trees Model

In regression problems where an estimate of uncertainty of a prediction is required the

collective wisdom would arguably have been to use a Gaussian Process (GP) [Ras-

mussen and Williams, 2006]. GP inference, however, is relatively slow with O(n3)

efficiency for n examples. This is problematic, particularly in active learning, since

each time something new is learned a model needs to be constructed and evaluated.

A more efficient algorithm, which is leveraged in this work, is the relatively new Dy-

namic Tree, which is based on a classical decision tree model [Breiman et al., 1984]

with modifications to include Bayesian Inference [Chipman et al., 1998, 2002]. The

advantages of the Dynamic Tree for this work are

• its ability to evolve over time as new data come in, without reconstructing the

model from the ground up with each iteration;

• its estimation of uncertainty for any given point in the space, like a GP but with-

out the overhead;

• and its avoidance of overfitting to the training data, which is vital since the algo-

rithm is learning potentially noisy information.
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Full details can be obtained from the article by Taddy et al. [Taddy et al., 2009],

but a brief overview of how the Dynamic Tree model works is as follows. The static

model used within the Dynamic Tree framework is a traditional decision tree for re-

gression applications; a set of rules recursively partitions the search space into a set

of hyper-rectangles such that training examples with the same or similar output value

are contained within the same leaf node. The Dynamic Tree changes over time, when

new information is introduced, through a stochastic process thereby avoiding the need

to prune the tree once learning is finished to avoid over-fitting. At time t, a tree Tt is

derived from the training data (x,y)t where x gives the training instance features and y

the associated target value. When new data (xt+1,yt+1) arrives, an updated tree Tt+1 is

created, identical to Tt except that some mechanism has been randomly chosen from

three possibilities—see Figure 5.6. The leaf node η(xt+1) containing xt+1 either (1)

remains completely unchanged; (2) is pruned, so that the parent of η(xt+1) becomes

a leaf node; or (3) is grown, such that η(xt+1) becomes an internal node to two new

children. The choice of transformation is influenced by yt+1 in a posterior distribu-

tion. This posterior distribution depends upon the probability of yt+1 given xt+1,Tt ,

and [x,y]t . Hence, the Dynamic Tree is more resilient to noisy data than other regres-

sion techniques.

5.2.3 Quantifying Usefulness

The most crucial part of the active learning loop is estimating which training example

from within the pool of potential candidates C would be most profitable to learn from

next. The dynaTree package for R [Gramacy and Taddy, 2017] that is used in this

work offers two heuristics out of the box, both well cited in the literature for regression

problems. The first was presented by MacKay [1992] and selects the candidate where

the estimated variance of the output is maximised relative to the other candidates. The

second heuristic by Cohn [1996] selects the candidate it calculates will most reduce the

predicted average variance across the space. To put this in a more accessible way, it se-

lects the example it believes will enable the model to best fit what it is already seeing, in

an attempt to reveal key information that it may be missing. Both are competitive with

each other, and both solve the greedy search problem discussed previously. Although

the latter is more computationally intensive than the former—O(|C|2) versus O(|C|)—
it is used here to provide a scoring function since it handles heteroskedasticity which

is assumed for increased robustness.
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5.3 Experimental Setup

The novel approach presented in this chapter was evaluated by examining how effi-

ciently models are constructed to solve a classical but complex compilation problem.

In particular, the problem considered in this work involves finding the optimal set of

compilation parameters for a program. The set of parameters includes loop unrolling,

cache tiling, and register tiling factors, where each parameter has a range of possible

values unique to each loop in the source code. The combination of these parameters

results in a large model which predicts program-specific runtimes. By using machine

learning it is possible to find a good performing configuration for minimal runtime

without having to compile and profile each possible combination in the optimisation-

space.

5.3.1 Platform and Benchmarks

Platform The server used during experimentation was the same as in Chapter 4, but

for convenience the relevant specifications are a machine running OpenSuse v12.3,

with an Intel Core i7-4770k CPU running at 3.4 GHz, which contains 16 GB of RAM,

and compiles using GCC v4.7.2. In terms of specific environment, the time of each

application run was measured using the C library function clock gettime(). As in

previous iterative compilation literature, the machine was restricted to a single user and

did not have any processes running other than those enabled by default under a standard

OS installation. No further steps to reduce experimental noise, such as pinning threads

to processor cores or using a non-standard memory allocator were used. This was so

as to avoid potentially creating an artificial environment that might alter findings, as

discussed previously in the introductory text to this chapter.

Benchmarks Eleven benchmark applications were taken from the SPAPT suite to

be used for evaluation, where these codes are based on high-performance computing

problems such as stencils and dense linear algebra. These particular 11 were selected

because they were the only applications included in a dataset used for initial proto-

typing, kindly provided by Dr. Balaprakash of Argonne National Laboratory which

he collected for his closely related research [Balaprakash et al., 2013a]. Each prob-

lem in the SPAPT suite is defined by three primary variables—kernel, input size, and

tunable configuration. The tunable parameters are further broken down into a num-

ber of integer and binary values, with these values representing which optimising code
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transformations are applied. In this evaluation binary flags and input size were not

considered so that a fair comparison could be made with Balaprakash et al. [2013a].

The precise size of each search space is given in Table 5.1.

5.3.2 Active Learning Settings

For each kernel the goal was to produce a model capable of estimating mean serial

code runtime when a given set of compiler optimisation settings are used. To this end,

the following parameters were used in the learning algorithm.

With respect to Algorithm 2, the learning process is started by seeding the train-

ing set with five random examples ninit , where for each example 35 samples nobs were

obtained to calculate a mean runtime. The Dynamic Tree model is created using the

R dynaTree package [Gramacy and Taddy, 2017] with an entirely default configu-

ration except that the number of particles N is set to 5,000, where this value was

found to be more effective at producing high-quality heuristics through 10-fold cross-

validation [Hastie et al., 2009]. During each iteration of the learning loop 500 random

and new candidate training instances are considered nc.

The completion criterion for all experiments was set such that the maximum size

of the training set nmax did not exceed 2,500. All experiments were repeated 10 times

with new random seeds. The results reported in Section 5.4 are all averaged over those

10 experimental runs.

5.3.3 Evaluation Methodology

Baseline Approach Most (if not all) machine learning in compilers literature uses a

simple constant sampling plan [Moss et al., 1997; Monsifrot et al., 2002; Stephenson

et al., 2003], where the number of samples for each training example is fixed ahead of

time. Different sizes have been chosen in the past, for example, Grewe et al. [2013a];

Emani et al. [2013] uses 10, Grewe et al. [2011] uses 20, Petoumenos et al. [2015]

uses 80, and Balaprakash et al. [2013a] uses 35. Based upon classical methodologies,

two techniques are considered to be in competition with the one presented here. For

both, a fixed number of samples are used to calculate the mean runtime for each train-

ing instance, and the candidate set is kept disjoint from past training examples. The

first technique uses the average runtimes calculated over 35 samples, as in Balaprakash

et al. [2013a]. The second records a single timing per example to estimate the mean

runtime. In this way, this novel approach can be compared to both very low and rela-
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tively high-confidence estimates of the runtime for each configuration. Furthermore, to

provide the best evaluation possible the methodology of the active learning approach

in Balaprakash et al. [2013a] is also followed, in that the same benchmark suite, model,

and error metric are used.

Description of the Datasets To collect the data for the experiments each program

was profiled with 10,000 distinct, randomly-selected configurations. For each config-

uration the mean runtime, as determined by averaging 35 separate execution times, as

well as its compilation time were recorded. Per experiment, exactly 7,500 examples

were randomly marked for possible training whilst the remaining 2,500 constituted a

test set. The feature values of each data point, which is to say the values which make

each example distinct from one another, were all normalised through scaling and cen-

tring to transform them into something similar to the Standard Normal Distribution: a

common practice in machine learning work where features are not all on comparative

scales.

Evaluation Metric The efficiency of model construction and, more specifically, the

evolution of model error over training time for each one of the 11 benchmarks, us-

ing the three different sampling methods, is examined to validate this research. In

particular, the error of the models produced by each approach is calculated using the

Root-Mean-Squared Error (RMSE) of the predicted runtimes of the test set instances.

Note that the measurement of training time in each experiment is defined as the

cumulative compilation and runtime of any executables used in training. The overhead

of updating the Dynamic Tree was not measured as it is only a small part of the overall

training overhead, is near constant for all evaluated approaches, and would change in

proportion to the average benchmark runtime.

5.4 Experimental Results

This section begins by proving that a combination of active learning and sequential

analysis can successfully and substantially accelerate heuristic construction; specifi-

cally, that the cost of profiling can be reduced by as much as 26x, as compared to a

baseline approach that uses 35 observations per training example for active learning

alone. This section then discusses the results for a few representative benchmarks in

detail, and how these relate to the behaviour of the others.
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5.4.1 Overall Efficiency Savings

To evaluate the overall efficiency of the proposed methodology versus a baseline active

learning approach [Balaprakash et al., 2013a] the time needed for both techniques

to first reach a common lowest average RMSE was measured. The evaluation was

performed in this way to get an idea of the speed-up one could achieve whilst producing

the best heuristic possible under the circumstances. To ensure a fair evaluation a fixed

point at which speed-ups would be calculated was required to be set a priori to prevent

biasing the results in the favour of the presented methodology, since speed-up can

change dramatically over the course of a single training run.

Table 5.1 shows for each benchmark what this lowest error was and how many sec-

onds it took to collect the profiling data needed to reach it for the competing methods

on average. Whereas, Figure 5.7 presents graphically the acceleration achieved by this

novel approach.

In all but one benchmark the proposed algorithm is technically faster at reaching

the lowest average error as defined by the pre-set evaluation technique. Specifically,

this new methodology was able to reduce the overhead for 10 benchmarks by 4x on

average, and up to 26x. The only benchmark in which this approach failed to reduce

the overhead was adi. However, the difference in RMSE between the two techniques

is comparable for that benchmark: within a few thousandths of a second on average.

That said, from Figure 5.11 it is clear that the definition of speed-up in this case is

insufficient. Which is to say, although technically the novel approach is faster at reach-

ing the lowest common error between the two approaches the graph shows that using

all samples is actually superior. In hindsight a better evaluation methodology would

have included a means for coping with this case.
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Algorithm 2 an active learning algorithm modified to reduce the number of samples,

where F contains all optimisation configurations in the space, ninit and nmax specify the

initial and total number of training examples to record, nc the number of candidates per

iteration, and nobs the number of samples thought to be needed to reduce the affects of

noise in the output/performance measurements.
1: procedure ACTIVELEARN(F,ninit ,nmax,nc,nobs)

2: X ← sample(F,ninit)

3: Y ← getObservations(X ,nobs)

4: M← dynaTree(X ,Y )

5: D← /0

6: for i = ninit ,nmax do

7: C← sample(F−X ,nc)

8: for all k ∈ keys(D) do

9: if D[k]< nobs then C←C∪ k

10: end if

11: end for

12: x← /0

13: vmin←MAX DOUBLE

14: for all c ∈C do

15: v← predictAvgModelVariance(M,c)

16: if v < vmin then

17: vmin← v

18: x← c

19: end if

20: end for

21: y← getObservations(x,1)

22: M← updateModel(M,x,y)

23: X ← X ∪ x

24: if k ∈ keys(D) then

25: D[k]← D[k]+1

26: else

27: D[k]← 1

28: end if

29: end for

30: return M

31: end procedure
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Table 5.1: lowest common RMSE achieved by both competitive approaches, profiling time needed to reach this error level, and training speed-up

for all 11 benchmarks

benchmark search space lowest common RMSE cost of the baseline cost of this approach speed-up
(sec) (sec)

adi 3.78×1014 0.087 2.62×104 9.08×104 0.29

atax 2.57×1012 0.097 3.33×103 2.39×102 13.93

bicgkernel 5.83×108 0.065 1.35×104 3.76×103 3.59

correlation 3.78×1014 0.589 57.46 8.13 7.07

dgemv3 1.33×1027 0.067 1.75×102 7.44 23.52

gemver 1.14×1016 0.342 2.99×103 1.15×102 26.00

hessian 1.95×107 0.006 5.76×103 1.56×103 3.69

jacobi 1.95×107 0.076 3.04×103 8.57×102 3.55

lu 5.83×108 0.013 2.57×103 7.09×102 3.62

mm 3.18×109 0.042 9.87×104 8.89×104 1.11

mvt 1.95×107 0.002 2.59×103 2.20×103 1.18

geometric mean 3.97
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Table 5.2: this table gives an indication of the spread of the variance and 95% confidence interval relative to the mean for all benchmarks

tested; the latter is given for two sample sizes, 5 and 35 observations. The values shown illustrate that although noise can be low for many

benchmarks it is high for others.

benchmark
variance 35-sample 95% C.I. / mean 5-sample 95% C.I. / mean

min mean max min mean max min mean max

adi 8.44×10−10 2.34×10−3 0.14 4.10×10−6 2.25×10−3 0.05 2.77×10−6 0.01 0.16

atax 7.54×10−10 9.72×10−5 0.03 2.22×10−5 2.31×10−3 0.06 1.79×10−5 0.01 0.25

bicgkernel 2.06×10−10 1.06×10−4 0.05 1.17×10−5 1.52×10−3 0.07 1.02×10−5 4.64×10−3 0.29

correlation 2.27×10−10 0.42 8.02 2.13×10−5 0.03 0.34 4.42×10−6 0.13 2.41

dgemv3 1.15×10−9 5.60×10−5 0.03 3.31×10−5 2.25×10−3 0.08 2.24×10−5 0.01 0.28

gemver 1.19×10−9 5.91×10−3 0.47 1.18×10−5 4.81×10−3 0.10 9.34×10−6 0.02 0.42

hessian 2.35×10−11 1.03×10−6 1.99×10−4 3.89×10−5 1.33×10−3 0.06 1.63×10−5 4.15×10−3 0.24

jacobi 2.54×10−10 1.20×10−4 0.09 1.32×10−5 1.29×10−3 0.09 4.12×10−6 3.83×10−3 0.39

lu 1.84×10−11 8.45×10−7 1.09×10−4 2.03×10−5 6.89×10−4 0.02 5.76×10−6 2.10×10−3 0.11

mm 2.76×10−10 4.87×10−6 1.31×10−3 2.26×10−5 7.44×10−4 0.02 1.36×10−5 2.37×10−3 0.09

mvt 9.97×10−12 1.07×10−8 7.87×10−6 6.29×10−5 8.28×10−4 0.03 3.98×10−5 2.44×10−3 0.11
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Figure 5.7: this bar chart shows the average reduction of profiling overhead of the

proposed approach compared to a baseline.

5.4.2 Per Benchmark Performance

This subsection presents the experimental findings in greater detail. Figures 5.8–5.18

show the RMSE against evaluation time (cumulative profiling and compilation cost in

seconds) averaged over 10 runs for all benchmarks. To make a fair comparison each

graph shows the range of time over which all three sampling plans are simultaneously

active in processing up to 2,500 training samples. What follows is a qualitative sum-

mary of these results.

adi Figure 5.8 gives error against time for the three different sampling techniques

evaluated in this work for the adi benchmark. It seems self-evident that there is some

considerable noise in the underlying data since a single sample per training example

plateaus in error fairly quickly and cannot achieve the same results as the other two

sampling plans. Although the variable sampling approach is also unable to keep up

with a high, fixed number of samples per example it does achieve comparably low

error throughout.

atax, bicgkernel The data for benchmark atax in Figure 5.9 is quite different

to that in Figure 5.8 and appears to represent a case where the underlying noise in

performance measurements is relatively low. This is exemplified by the fact that one
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Figure 5.8

Figure 5.9

sample per unique instance is enough to do well, and indeed the adaptive sampling

technique presented in this chapter appears to detect this; compare these plot-lines to

the 35-samples approach and it its clear that substantial time can be saved through

sequential analysis. Figure 5.10 shows similar results for bicgkernel.
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Figure 5.10

Figure 5.11

correlation Figure 5.11, showing the results of the correlation benchmark,

is interesting since the error remains high irrespective of the sampling technique used.

As in Figure 5.8, there must be noise present since one observation performs worst. A

variable approach is not quite as good as using a large number of samples per train-
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Figure 5.12

Figure 5.13

ing example but is competitive and within a few hundredths of a second in terms of

average RMSE by the end of the displayed time.
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Figure 5.14

Figure 5.15

dgemv3, gemver, hessian In Figure 5.13 the variable approach is much faster

than the classical method and the simple but potentially noisy variant, similarly for the

results of dgemv3 and hessian—Figures 5.12 and 5.14, respectively.
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Figure 5.16

jacobi, lu, mm, mvt The data for the jacobi benchmark (Figure 5.15), which is

also generally representative of lu (Figure 5.16), are interesting since they show the

adaptive algorithm in this chapter to be slightly too cautious but still much more effi-

cient than a fixed sampling plan. The mm benchmark gives a graph akin to that of mvt,

showing a variable sampling approach as giving slight speed-ups over the classical

methodology, see Figures 5.17–5.18.

Table 5.2 details the distributions of the runtimes measured during these experi-

ments as well as the spread of the variance and confidence intervals relative to those

mean runtimes. The level of noise across this set of benchmarks varies across appli-

cations. Moreover, the variance is not constant across all parts of the space for even a

single benchmark in isolation: some parts of the space suffer from extreme noise and

others are comparatively noiseless. An adaptive algorithm such as the one proposed in

this work is necessary to make the best of these conditions.

For adi, where the speed-up runs counter to expectations, a longer experiment was

carried out but the outcome did not change. Thus, it is believed that the relatively poor

performance for adi is due to the shape of the noisy regions in this space.
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Figure 5.17

Figure 5.18

5.5 Discussion

Upon reflection, two criticisms of this work are outlined and discussed in the following

subsections; namely, that the methodology used is sequential, not parallel, and that the

baseline number of samples is 35, which some may consider to be excessive.
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5.5.1 Serialising the Learning Algorithm

A fair criticism that could be made about this work is that although passive learning

can be inefficient it does have the advantage of being implementable in an embarrass-

ingly parallel fashion. Therefore, although active learning has been demonstrated as

being faster for all but one of the benchmarks in this chapter it could be argued that the

proposed technique may actually slow things down overall since it necessitates some

sequential processing. This is true, at least in part, but could be countered by using

one of the previously researched methods of performing Batch Active Learning [Set-

tles, 2013], where the basic idea is that instead of selecting one example from the

candidate set on which to learn, per loop iteration, m examples can be chosen instead.

Indeed, the active learning work compared against throughout this chapter uses batch

learning to parallelise the learning process [Balaprakash et al., 2013a]. It is only for

simplicity (and expediency) of experimentation and analysis that this approach was

not followed in the preceding algorithm presented in this chapter, but in hindsight its

inclusion would have made for a more holistic work.

5.5.2 Excessive Samples in the Baseline

A second criticism that could be made of this work is that the choice of 35 samples

per training example to compare against would appear somewhat arbitrary, and may

unnecessarily hinder the baseline approach. Indeed, this was a concern during ex-

perimentation. However, there is both a qualitative and a quantitative defence to this

choice.

Qualitatively, as the introduction to this chapter has already mentioned, it is dif-

ficult, if not impossible, to know how many samples one should use in a particular

environment a priori, so any value one sets will be inherently arbitrary; moreover, ad-

justments to the environment could change the heuristic in such a way as to make it

sub-optimal, since by definition it is learning under ‘laboratory’ conditions that which

must be applied in the ‘real world’. Furthermore, it is debatable, for this reason,

whether companies would feel comfortable learning in an environment which is so

dissimilar from production.

Quantitatively, there is no statistical criterion that will sufficiently determine the

correct number of samples that should be taken in an experiment at the outset, with no

data yet gathered. Instead, post hoc analysis can be performed, for example, by calcu-

lating the ratio of the confidence interval to the mean and rejecting that sample count as
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insufficient if that ratio breaches some pre-defined threshold. Typically this validation

is not presented in papers, if it is done at all. When it is done the standard procedure

appears to be to use the 95% confidence interval and a 1% CI/mean threshold. The

adaptive approach in this research is compared against a constant sampling plan of 35

samples as that is what is used in the closest comparable work [Balaprakash et al.,

2013a]. Even though this could appear excessive 35 samples is actually not always

enough. Which is to say, across the evaluated benchmarks even though on the majority

of examples there was often very little noise a significant number did experience it. In

terms of numbers, fully 5% of examples broke the 1% CI/mean threshold. When a

more generous threshold of 5% was chosen instead 0.5% failed. Moreover, with fewer

samples the problem is worse. At five samples 3.3% fail the more generous threshold

of 5%; and at two samples (the minimum required to perform any statistical calcula-

tion) 5% fail. This finding is corroborated by Leather et al. [2009b], in which samples

are taken until a threshold is met, where it was discovered that for timing small code

sequences it is sometimes necessary to take hundreds of samples.

5.6 Summary

Concluding this chapter, the results here have demonstrated that it is possible, and

indeed substantially profitable, to employ a sequential learning technique alongside

active learning when generating heuristics for optimising compilers. In particular, the

headline results for this implementation are that training has been accelerated by 4x on

average, and up 26x, when compared to an active learning approach alone. This means

that the process of automatically producing heuristics for disparate architectures need

not be as expensive as is presently the case, which will go some way to resolving the

problem of out-of-date optimisation strategies in currently popular compilers.





Chapter 6

Active Learning with Active Feature

Acquisition

This chapter proposes a methodology which can accelerate one of the more popular

methods used to produce machine learning based heuristics for program optimisation;

in particular, where hardware performance counters are used as features to characterise

a code, such as in Cavazos et al. [2007]; Dubach et al. [2009]; Wang and O’Boyle

[2009]; Chen et al. [2010], and Park et al. [2013].

Hardware performance counters are a set of special registers built into a processor

which can be used to record how many times a given event occurs during run-time, for

example, the number of cache misses, branch misprediction rates or load/store oper-

ation counts. The intuition behind their use is that two programs which have similar

event values may share enough characteristics that they are optimisable in a similar

way. An advantage of using these performance counters is that it is possible to create

models which are agnostic to the source code language in which programs have been

written, and that they can also take into consideration dynamic run-time behaviour.

That said, generating optimisation models in this way is also particularly expensive.

This is because recording these values necessarily involves profiling each application

on which one wishes to train, and there are sometimes hundreds of events which can be

recorded but only relatively few registers which can be used to do so: for example, the

Intel i7 4770k CPU used for experimentation in this work has over 200 events but only

4–8 hardware counters, depending upon OS configuration [Intel, 2016]. Although it is

possible to multiplex the recording of these events during run-time this is not desirable

since it inevitably decreases accuracy, therefore, for m events, n registers and o samples

to ensure statistical rigour dm/ne×o executions are required, per program.

91
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To accelerate the learning process researchers traditionally use a subset of events to

produce a good correlation between optimisation strategies and their effects [Cavazos

et al., 2007]. This makes sense since it would require excessive training time to do

otherwise, and, indeed, feature selection is usually performed explicitly anyway during

any machine learning process irrespective of the domain. This helps to ensure quality

heuristics are more likely to be produced since not all features help characterise a

program sufficiently to differentiate it from others in terms of how it should be best

optimised. The problem with this approach, however, is that it is extremely difficult to

know a priori which features to ‘buy’. Instead, feature selection is performed at the

end of an unnecessarily expensive data collection phase. Moreover, researchers often

rely on good feature sets chosen by others in the field, but this is problematic since

it has been shown that a good subset of events to record changes depending not only

upon the processor involved but also on the choice of compiler [Park et al., 2013].

Active feature acquisition was first proposed in a paper by Veeramachaneni and

Avesani [2003] as a means to combat recording expensive features values unnecessar-

ily during data collection. Inspired by active learning, the authors discuss how one

might most efficiently choose between competing candidate features to add to an ex-

isting training set a priori: that is, before the relevant features have been recorded

for all samples. In situations where it can take time to gather values for a particular

feature, where they use apple tree disease prediction as an example, it would be bene-

ficial to work out which features might improve the quality of a model the most whilst

minimising the time to make this determination. They achieve a better than random

subsampling policy by ranking candidate features based on their usefulness in terms of

maximising the absolute change of entropy in class distribtuion. This work was later

superseded by Deng et al. [2013], however, and it is this latter paper which forms the

foundation of this research.

In the following sections a novel algorithm is presented which combines active

learning [Settles, 2013] and active feature acquisition [Saar-Tsechansky et al., 2009].

The advantage of such a pairing is that this algorithm can select both good hardware

events and good training instances to train on simultaneously during learning-time, in

such a way as to minimise training cost whilst still producing quality results. In partic-

ular, the approach demonstrated in this chapter is based on the absolute biased round-

robin with entropy technique presented by Deng et al. [2013], but adapted to include

an ε-greedy probabilistic training example selector. With this unique combination this

algorithm is able to construct a predictor which can propose good optimisations to ap-
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ply for each benchmark in the PolyBench/C suite [Pouchet, 2012] 50% faster than the

current state of the art whilst maintaining equally high-quality outcomes.

The rest of this chapter is structured as follows: Section 6.1 will give a motivating

example for this research; Section 6.2 will explain the overall approach taken; Sec-

tion 6.3 will give details of the experimental setup, where Section 6.4 analyses the

results; Section 6.5 offers a brief self-reflective discussion on this contribution; and

Section 6.6 concludes with proposals of future directions.

6.1 Motivation

To motivate this work a simple experiment is conducted to demonstrate the importance

of feature selection in this domain, both in terms of eliminating attributes which may

not be useful in characterising programs and in reducing training time.

To begin, 36 hardware event occurrences are counted using the Performance API

or PAPI [Mucci et al., 1999] for unoptimised versions of all PolyBench/C benchmarks.

More specifically, for each benchmark 5 runs were executed to aggregate performance

counts in order to avoid any potential inaccuracies caused by experimental noise, and

each individual count was normalised with respect to the total number of instructions

executed per run. This data served as the oracle for all experiments in this Chapter. For

details of which performance events were chosen (based on previous literature [Park

et al., 2013]), the hardware specifications of the test bed machine, and the software

used please refer to Section 6.3.

To establish the extent to which feature selection can have an impact on the efficacy

of machine learning models the learning cost and quality of two classification based

speed-up predictors are compared: the first uses all 36 hardware events while the other

is trained using just 7. These 7 were chosen based on how much relative information

they appeared to carry. This was found by creating a Linear Regression model evalu-

ated using 10-fold cross-validation and taking those features from the whole training

set which were assigned the largest magnitude coefficients. The task of these predictors

was to forecast the performance an optimisation strategy would have on any given code

relative to a baseline optimisation level—i.e. -O3. The feature vector itself contained

both a set of normalised performance counts to characterise a program and a set of

optimisations applied to that program—see Figure 6.2. The machine learning model

used in these experiments was the J48 Decision Tree from the Weka Toolkit [Hall

et al., 2009; Frank et al., 2016], which itself is a Java implementation of the C4.5 algo-
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Figure 6.1: by using only 7 relatively more informative hardware performance event

counts as features the learning speed-up of a predictor can be accelerated by 70%

without harming quality

rithm [Quinlan, 1993]. The selection of training instances over time was random, and

the experiments were repeated ten times to give an aggregate result.

As can be seen in Figure 6.1, recording much fewer performance events can sub-

stantially increase training efficiency—by 70% in this case—without harming qual-

ity; the challenge lies in finding which features to record at run-time for a given

microarchitecture–compiler combination. In the next section a novel algorithm is out-

lined which can select during learning-time not only which features will most improve

a performance model but also which benchmark/optimisation combination should be

executed, thus reducing training cost and making machine learning based heuristic

construction more appealing in the process.

6.2 Methodology

As outlined in the introductory text to this chapter, the goal of this work is to re-

duce the training overhead associated with creating any optimisation heuristic based

on hardware performance counters; however, in order to do that it is first necessary

to understand how these are currently modelled in state-of-the-art implementations.

Therefore, Subsection 6.2.1 describes the speed-up predictor [Park et al., 2011] ap-

proach as it relates to this topic and how the method here differs. This explanation will
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ultimately state that the novelty and success of this contribution stems from its ability to

select both good features and good training examples simultaneously at learning-time,

where the details of how this is achieved are outlined in Subsections 6.2.2 and 6.2.3,

respectively.

6.2.1 Speed-up Prediction with Hardware Performance Counters

First proposed by Cavazos et al. [2006, 2007], speed-up predictors based on hardware

performance events use the number of times each event is recorded by CPU counters

as a surrogate for program characterisation; together with a sequence of feature values

which enumerate the optimisations applied to a given benchmark during compilation

these constitute a complete feature vector. This feature vector is then mapped to the

performance speed-up achieved by those optimisations over a baseline strategy (such

as -O2 or -O3) to form a complete training example—see Figure 6.2. The typical

procedure for labelling an instance may be summarised as

1. compiling a benchmark with a base optimisation level only;

2. measuring all hardware event counts during multiple executions, normalising

these to the total number of instructions per each execution, and recording the

average runtime and average event counts;

3. optimising the benchmark in a particular way and recording the average runtime

of the optimised binary;

4. encoding a feature vector with the normalised hardware event counts and the

optimisation decisions; and associating that with the ratio of average optimised

runtime relative to the baseline.

As in all passive learning scenarios many instances are labelled in this way and

fed into a machine learning algorithm in one step, and this has been the methodology

followed in all previous literature. In contrast, the novel approach presented in this

chapter selects iteratively what to learn next based on what is already known: first by

determining which hardware event to monitor and then what benchmark and set of

optimisations to try.

When new information needs to be learnt by the model the hardware performance

counter whose occurrences are to be recorded next is selected. Based on this, a random

selection of candidate training instances are drawn together where either the hardware
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performance counters are all missing, i.e. this training instance has never been seen

before, or where some hardware event counts are present but not the one being looked

for this time. If the instance has not been seen before the process of labelling is similar

to that outlined previously, except that in step 2 a single hardware event count is mea-

sured. If the instance has been seen before then only the unoptimised binary needs to

be executed and the count value averaged. This process is summarised in Figure 6.3.

6.2.2 Absolute Biased Round-Robin Active Feature Acquisition

In this work the Absolute Biased Round-Robin (ABRR) algorithm proposed by Deng

et al. [2013] is leveraged for feature selection at learning-time. As the name suggests

this is based on the idea that missing features may be iterated through in a round-robin

fashion, with an alteration that one should continue to ‘purchase’ the hardware event

i of n to learn next if it is deemed to still be profitable, else move onto (i+1) mod n.

A purchase at time t is defined as being profitable if the current model has changed by

more than some fixed amount δ(t)> ∆. This change is defined as

Figure 6.2: adapted from Park et al. [2013], speed-up predictors which use performance

counters record some set of hardware event occurrences normalised to the total num-

ber of machine instructions for a given program in order to identify the characteristics

of that program, together with a finite set of optimisation options supplied to a compiler

in order to form a feature vector; these values are then mapped to the relative perfor-

mance achieved by the given program optimised with those options, with respect to a

more established strategy such as -O2 or -O3, and in this way an unseen program’s

performance with some optimisation strategy can be read off from the model
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δ(t) =
∑

M
m=1 ∑

J
j=1 |Pt ( j|xm)−Pt−1 ( j|xm) |

M

where Pt ( j|xm) is the probability of instance m of M, with feature vector xm, be-

longing to class j of J at the t-th iteration of the learning loop. Similarly, Pt−1 ( j|xm)

is the probability of xm belonging to class j at the (t−1)-th iteration. In other words,

δ(t) is the absolute change in class probabilities between the current model and the

last model, averaged over all training instances.

Although ABRR will be demonstrated to work well within the systems domain it

does require a slight change in the way one would typically model speed-up. That is

to say, speed-up is normally measured as a ratio of the performance of an optimisation

Performance

Counters

Optimisation

Flags

0.16 0.60 0.48

0.28 0.11 0.49

0.30 0.90 … 0.86

0.22 0.10 1.60

0.10 0.40 1.70

0 1 0 0 1 0 0 0 -O2

0 1 0 0 0 0 0 1 -O3

0 1 0 1 0 0 1 0 -O2

0 1 0 1 0 1 1 0 -O2

0 0 1 0 0 0 0 1 -O2

Beneficial

Harmful

Beneficial

Greatly Accelerated

Greatly Decelerated

Class

Value

Initial Training Set

? 0.75 ?

? ? … ?
0.37 ? ?

? ? ?

1 0 0 0 1 0 0 1 -O2

0 0 1 0 0 1 0 0 -O2

0 1 1 0 0 0 1 0 -O2

1 0 0 0 1 1 0 1 -O3

Beneficial

?

Harmful

?

Candidate Set

…… … …

1. after numerous iterations 
of the active learning loop 
another candidate needs 
to be selected again

2. the candidate set contains 
entirely unforeseen instances 
and ones visited before that 
still have missing data values, 
the balance of these two 
types is influenced by ε

3. a feature is selected using 
biased round-robin, and an 
instance using entropy

4. since this example has not been visited before the baseline optimisations 
are applied and the relevant performance counter recorded together with 
total instructions per cycle so that this value can be normalised 

5. the binary is also run with the specified optimisation flags, the 
performance these provide over the baseline provides a class value 

6. this data is added to the training set, but the example is not removed 
from the candidate set as it normally would be, so that it may be revisited 
and more performance counter values revealed in future iterations

Figure 6.3: the process of choosing a new candidate training instance to learn from

involves both completely new unseen examples and those visited before which still

have missing data.
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strategy versus a baseline, but as this form of active feature acquisition requires clas-

sification in order to work the speed-up predictor was altered so that these speed-up

ratios are binned into categories. This will be explained in more detail in Section 6.3.

6.2.3 Epsilon-Greedy Entropy Based Training Instance Selection

In the same paper as Deng et al. [2013] proposed that ABRR could be used to select

features they also suggested that it be combined with an uncertainty based instance

selector, specifically one that uses entropy. This type of selector is common in the

literature [Settles, 2013]. It is also similar to the instance selector used in QBC, except

(with reference to Equation 4.1) that p(xi) should be substituted with p(xi|m). This

corresponds to the probability that instance i should belong to class m, which can be

easily calculated from some types of models. Unfortunately, upon experimentation this

technique was found to be insufficient at producing learning speed-ups over a baseline

approach so an alteration had to be made.

When the data was analysed after using the approach as stated by Deng et al. [2013]

the problem appeared to lie in the fact that when deciding which instance to label the

algorithm would more-often-than-not select an instance where none of the other hard-

ware events had been counted yet either. This resulted in a situation whereby the

training set comprised training instances primarily with a single hardware event mea-

surement, and where the rest of these event measurement were set as missing. Since

the model was unable to identify which training information most closely resembled

any given test instance the performance of the heuristic was poor.

In order to remedy this situation and encourage the selection of candidate instances

where hardware event occurrences had already been measured the ε-greedy strategy (as

previously discussed in Subsection 4.5.1) was applied to bias exploitation over explo-

ration. More specifically, a new training instance with no previously revealed informa-

tion is chosen with a probability of ε and, conversely, an example which has had at least

one hardware event counter value is selected with probability 1−ε—see Figure 6.3 for

a graphical overview.

6.3 Experimental Setup

As in previous chapters, this section details the experimental setup used to validate the

efficacy of the algorithm proposed in this work. In particular, the test bed machine
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is described along with the benchmarks from which training instances are derived to

form the basis of the final heuristic. Next, the variables involved in the machine learn-

ing process are enumerated. Finally, evaluation methodology is discussed in the last

subsection.

6.3.1 Platform and Benchmarks

Platform The hardware of the server used for recording performance was the same

as in Chapters 4–5 but the software was updated. More specifically, the processor was

an Intel Core i7-4770k CPU running at 3.4 GHz with 16 GB of RAM. The operating

system was a fresh install of OpenSuse Leap v42.2, the machine was dedicated to

the task of performance measurements with no other users or extraneous processes

besides those enabled by default, and the compiler was GCC v4.8.5. Version 5.5 of the

Performance API (PAPI) library [Mucci et al., 1999] was used to record the frequency

of hardware events.

Benchmarks Table 6.1 lists the applications from PolyBench/C v4.2.1 [Pouchet,

2012] which were used for testing and evaluating the machine learning algorithm de-

scribed in this work. For each benchmark, the hardware events used to form part of a

feature vector for training were a subset drawn from the article by Park et al. [2013];

specifically, those events which are supported by the server—see Table 6.2. The op-

timisation strategies applied with GCC were taken from Ashouri et al. [2016], which

itself was based on an earlier work by Chen et al. [2012b], and were selected because

they have been found to have a significant impact on the performance of codes; that is

to say, either -O2 or -O3 was selected along with any combination of the flags presented

in Table 6.3.

6.3.2 Active Learning Settings

Learning Models The article by Deng et al. [2013] (which forms the basis for this

contribution) suggests using a Bayesian model for learning through active feature ac-

quisition; however, during experimentation it was found that the J48 algorithm from

Weka Toolkit v3.8.1 [Hall et al., 2009; Frank et al., 2016] produced superior results,

as verified through cross-validation. As a necessity, J48 also provides the ability to

obtain the class probabilities required by the algorithm as well as the capacity to learn

from instances with missing values.



100 Chapter 6. Active Learning with Active Feature Acquisition

Table 6.1: the 30 benchmarks in PolyBench/C v4.2.1, taken from Pouchet [2015]

Benchmark Description

2mm 2 Matrix Multiplications (D=A.B; E=C.D)

3mm 3 Matrix Multiplications (E=A.B; F=C.D; G=E.F)

adi Alternating Direction Implicit solver

atax Matrix Transpose and Vector Multiplication

bicg BiCG Sub Kernel of BiCGStab Linear Solver

cholesky Cholesky Decomposition

cholesky Correlation Computation

covariance Covariance Computation

deriche Edge detection filter

doitgen Multi-resolution analysis kernel (MADNESS)

durbin Toeplitz system solver

fdtd-2d 2-D Finite Different Time Domain Kernel

gauss-filter Gaussian Filter

gemm Matrix-multiply C=alpha.A.B+beta.C

gemver Vector Multiplication and Matrix Addition

gesummv Scalar, Vector and Matrix Multiplication

gramschmidt Gram-Schmidt decomposition

head-3d Heat equation over 3D data domain

jacobi-1D 1-D Jacobi stencil computation

jacobi-2D 2-D Jacobi stencil computation

lu LU decomposition

ludcmp LU decomposition

mvt Matrix Vector Product and Transpose

nussinov Dynamic programming algorithm for sequence alignment

seidel 2-D Seidel stencil computation

symm Symmetric matrix-multiply

syr2k Symmetric rank-2k operations

syrk Symmetric rank-k operations

trisolv Triangular solver

trmm Triangular matrix-multiply
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Table 6.2: the Performance Counters (PC) collected using the PAPI library to uniquely

identify each benchmark in Table 6.1, adapted from Park et al. [2013]

Category of PCs List of PCs selected

Cache Line Access CA CLN, CA ITV, CA SHR

Level 1 Cache L1 DCM, L1 ICM, L1 LDM, L1 STM, L1 TCM

Level 2 Cache L2 DCA, L2 DCM, L2 DCR, L2 DCW, L2 ICA,

L2 ICH, L2 ICM, L2 LDM, L2 STM, L2 TCA,

L2 TCM, L2 TCR, L2 TCW

Level 3 Cache L3 TCA, L3 TCM

Branch Related BR CN, BR INS, BR MSP, BR NTK, BR PRC,

BR TKN, BR UCN

Interrupt / Stall RES STL

Translation Lookaside Buffer TLB DM, TLB IM

Total Cycle or Instruction TOT CYC, TOT INS

Load / Store Instruction LD INS, SR INS

Initial Training Set For all experiments training began with a set of 5 randomly cho-

sen instances, where each instance held values for all features. Which is to say, to label

an instance fully the selected benchmark was first compiled using the -O3 optimisation

flag only. This binary was then was profiled enough times to get the average counts for

all 36 hardware events normalised to the average total number of instructions. Next,

either -O2 or -O3 was selected as a base optimisation level together with a random

combination of flags chosen from those in Table 6.3. This optimised version of the

program was profiled to calculate the mean runtime over 5 executions. The ratio of

optimised runtime to base runtime was then binned into one of four categories—see

Table 6.4. Together the compiler flags, normalised performance counters, and speed-

up classification represent a complete training instance.

Candidate Sets The number of random candidate instances evaluated with each it-

eration of the learning loop was either 1,000 or the total number of remaining possible

candidates, whichever was lower. The instances in the candidate set were either those

whose hardware performance counters had been partially revealed already or those

which had never been profiled before, depending upon a random roll within the range

[0,1] and the value of ε, where different values were attempted.
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Table 6.3: together with setting an optimisation level of either -O2 or -O3, a boolean

array denoted which, if any, of the following compiler flags were enabled for a given

benchmark; this constituted the second portion of the feature vector used in this work.

Optimisation Flag Description

-fno-ivopts stops high-level loop induction variable optimisa-

tions

-fno-tree-loop-optimize disables loop optimisations on trees

-fno-inline-functions prevents inlining of functions, except those explicit

marked with the always inline attribute

-funroll-all-loops unrolls every loop, even in cases where the number

of loop iterations is uncertain at the beginning of

the loop

-fno-guess-branch-probability prohibits the guessing of the probability of a branch

being taken or not based on heuristics

-funsafe-math-optimizations allows float-point arithmetic optimisation that may

violate IEEE or ANSI standards

Table 6.4: in order to apply this active feature acquisition technique to the problem of

code optimisation the relative performance is binned, essentially turning the regression

problem into a classification one; the table below lists the ranges of each classification

as well as the prevalence of this classification in the data.

Relative Speed-up Classification Instances with this Classification

x < 0.75 Greatly Decelerated 205

0.75≤ x < 1 Harmful 2331

1≤ x < 1.25 Beneficial 1023

1.25≤ x Greatly Accelerated 281
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Termination Criterion These experiments were terminated when the total training

time of this novel learning technique exceeded the time taken for a baseline approach

to achieve an accuracy of at least 90% on a test set, so that the learning speed-up could

be calculated. This test set was made up of 20% of all possible training instances

that could be produced given the optimisation-space and number of benchmarks in

the PolyBench/C suite. To ensure accuracy could be precisely measured the test set

instances were excluded from the possibility of being trained upon.

6.3.3 Evaluation Methodology

Baseline Approach The previous state-of-the-art methodology for creating hard-

ware performance counter based optimisation heuristics involved recording a subset of

hardware events and combining this with profiling an optimisation strategy over a pre-

defined compiler optimisation level—i.e. a passive learning derived speed-up model.

Therefore, in this work a technique which collects training data at random, and for each

obtains all 36 hardware event values, is compared against the proposed algorithm from

this chapter. In particular, the time taken for all program executions required by the

baseline approach to achieve an accuracy of 90% on the held out test set is compared

to the time required by the novel strategy. As well as this passive learning comparison

a comparison is also made against an active learning technique, whereby all hardware

events are still recorded per training instance but the instances themselves are selected

to be learnt from by considering their usefulness given the current information held by

the model, as defined by an entropy calculation.

Evaluation Methodology Both the active and passive baselines discussed in the pre-

vious paragraph are used to compare this unique approach to the state of the art, how-

ever, the algorithm outlined in Section 6.2 is also parameterised by two variables. The

first is the threshold over which it is deemed profitable to continue to select a given fea-

ture for learning ∆, versus moving on in a round-robin fashion. The second is the value

ε which determines the probability that a completely new, previously unseen, instance

should be selected for training next, as opposed to one for which at least one hardware

performance counter value has been recorded. Different values for these variables are

tried and evaluated against these baselines, and the results presented in Section 6.4.

Description of the Dataset The data used in the following experiments was col-

lected ahead of time. First each benchmark was compiled with -O3 and the average
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runtime and mean performance counters recorded over 5 runs. Next, the cross-product

of these benchmarks with all possible optimisation combinations of -O2 or -O3 to-

gether with the flags in Table 6.3 were compiled and executed to calculate the relative

performance of those settings versus the -O3 runtime, where this ratio was binned into

a category, as defined in Table 6.4.

6.4 Experimental Results

This section is broken down into two parts, the first presents the main findings of the

experiments to date and the second examines the affect of parameters on efficiency.

6.4.1 Overall Efficiency Savings

Figure 6.4 summarises the main finding of this preliminary work, that by employ-

ing a novel approach which leverages an active feature selection technique the cost of

training a predictor to select good optimisations for a previously unseen code can be re-

duced by 50% as compared to a state-of-the-art passive learning approach. Somewhat

surprisingly, active learning on its own is actually slower than the random methodol-

ogy. Since the input feature vector is dominated by characterisation of a program, this

could be down to the fact that the active learner is naturally biased towards exploring

more programs as opposed to more optimisation decisions per program, although this

would need to be investigated further in future work.

6.4.2 Sensitivity to Parameters

During experimentation the parameters ε and ∆ were varied to see what affect this

might have on the efficiency of the algorithm with the results given in Table 6.5. In-

terestingly, a low value for each parameter gives the best performance. This means

that, ideally, even small changes in the structure of the model should be detected to

determine whether a hardware performance event is useful for characterisation or not.

What is also clear from the data is that a relatively low value for ε is most help-

ful, meaning exploitation is more beneficial than exploration in this particular task,

which makes intuitive sense since until some number of performance counters have

been recorded for a particular optimisation–benchmark combination it is difficult to

generalise about how that training instance relates to other programs.
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Figure 6.4: the novel approach presented in this chapter is able to produce a model

with a 90% accuracy 50% faster than the previous state of the art. The ε and ∆ values

were 0.05 and 0.001, respectively, based on a search of the parameter-space. The

90% completion criterion was chosen before the alternative approaches were tested,

based upon the maximum accuracy achieved by the passive approach.
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Table 6.5: varying ε and ∆ has some effect on the efficiency of the algorithm, with a low

value for each giving the best performances. This indicates that even small changes

in the model structure should be used as an indicator of a useful feature, and that

exploitation is generally more helpful than exploration in this task.

Delta Epsilon Max. Accuracy (%) Training Cost (days)

0.001

0.05 92.19 7.94

0.10 87.51 3.47

0.15 74.37 6.42

0.20 71.55 5.81

0.010

0.05 89.96 8.00

0.10 77.45 6.70

0.15 72.66 6.40

0.20 70.96 5.91

0.100

0.05 87.07 7.68

0.10 69.20 5.64

0.15 70.17 6.44

0.20 70.87 5.82

6.5 Discussion

The work in this chapter is preliminary and there are at least two ways in which it

is suggested that it might be improved upon. First, by the re-establishment of the re-

gression model which offers more predictive power than classification in this case, and

secondly by selecting multiple counters per iteration, thereby parallelising the method-

ology.

6.5.1 Re-establishing the Regression Model

By choosing to use the ABRR learning-time feature selection technique proposed by

Deng et al. [2013] it was necessary to cast the speed-up prediction problem as one of

classification. This was necessary because the calculation of δt , the change observed

in the model structure at time t, relied upon the probability of class membership per

instance; however, the disadvantage of this is that information is lost in the binning

of runtime values. In other words, where classification permits choosing some opti-

misation strategy that it is predicted will increase runtime by at least 25% over -O3,

regression allows the selection of the predicted best configuration.
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There are two ways in which regression may be re-incorporated back into the tech-

nique. The first is to re-define δ in such a way as to calculate movement in the structure

of the model in terms of predicted values, as opposed to class membership. The second

is to use the described classification methodology to select which features and which

instances to learn over but also train a regression based model in parallel with full run-

time data. It is left to future work to see which of these two approaches would produce

the best result.

6.5.2 Selection of Multiple Counters per Iteration

In the approach discussed in this chapter a single hardware event’s average normalised

value is selected to be learnt at each iteration of the learning process. However, since

machines often have multiple registers to allow some number of events to be recorded

simultaneously at run-time it is possible to record multiple events at once. That being

the case, a clear improvement to the algorithm would be to use all of these available

registers to search over the space more efficiently. Where the number of registers avail-

able is n, one approach would be to learn the first n of m hardware events supported

by the architecture in the first loop iteration. Upon receiving these counts n copies

of the existing training set can be created where each is updated with a distinct fea-

ture value each. From these n δt values can be calculated to see which features are

worth selecting in the next iteration. Of those that are not worth continued selection

an atomically updated integer can point to the next feature to learn in the round-robin

algorithm. Again, due to a lack of time, this approach is left to future work.

6.6 Summary

In this chapter a novel algorithm which combines active learning and active feature

acquisition has been presented. At each iteration of the learning loop a hardware per-

formance event is selected in a round-robin fashion, but biased towards using the same

event if the model is changing significantly. Upon selection of a hardware event, the

instance itself is chosen based on an entropy utilisation estimate. In this way, the

algorithm can select which feature, optimisation, and benchmark to measure during

learning that will most improve the model. In an evaluation against the current state of

the art this approach is able to accelerate learning by 50% without negatively affecting

heuristic performance results.





Chapter 7

Conclusions

This thesis has attempted to address a substantive and timely problem in computer

systems research; that is, how to quickly and accurately produce heuristics which can

predict good compile-time or run-time decisions that ultimately result in an efficient

program execution. Although these works have explicitly looked at optimising execu-

tion time the techniques described here are equally applicable to either power or energy

conservation, smaller code sizes, or some combination of those same.

This research was motivated by the appearance of outdated heuristics in modern

compilers [Kulkarni and Cavazos, 2012], which have been the result of increasingly

complicated hardware as well as the tradition of manually fine-tuning heuristics for

each platform in turn; despite this, this expert-driven process inexplicably continues

to be followed in the main despite machine learning having been shown to outperform

it [Dubach et al., 2009; Kulkarni and Cavazos, 2012]. The intuition on which the works

in this thesis are based is that it is the speed of training machine learning based auto-

tuning, or indeed the lack of, that is the hindrance to it being adopted as the de facto

standard heuristic generation procedure.

To tackle this challenging problem, Chapter 4 proposes that active learning be used

in place of the random, passive machine learning technique (utilised extensively in

prior literature) to concentrate on only those training examples which are predicted

to provide the most information. Next, Chapter 5 demonstrates that it is possible to

further substantially reduce this training overhead through the inclusion of sequential

analysis: which can optimise the number of samples per example rather than just the

number of examples. Finally, Chapter 6 demonstrates that where recording more fea-

ture values results in an increase in training time a combination of active learning and

active feature selection can be used to further speed-up model creation.

109
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In combination it is hoped that these works will go some way towards making

heuristic generation less costly, and hence help ensure that good heuristics are always

available for any code, on any platform. For the remainder of this chapter, Section 7.1

will briefly summarise each of these individual contributions in turn, and Section 7.2

will conclude with a discussion of possible directions for future work.

7.1 Contributions

This thesis has made three principle contributions to the topic of auto-tuning optimi-

sation heuristics: two peer-reviewed and one preliminary. The following subsections

will summarise each of these in the order they appeared in the text.

Heuristic Generation with Active Learning

It is difficult to always ensure a run-time or compile-time optimisation heuristic is up-

to-date at the time of use because there are usually many ways in which optimisations

can be applied. Indeed, the spaces can be unimaginably large, for example, the popu-

lar GCC compiler has on the order of 10400 combinations of optimisations, and this is

before one considers the much greater number of permutations—i.e. the phase order-

ing problem [Kulkarni and Cavazos, 2012]. Moreover, the task for engineers is not just

to tune heuristics for a single target, but for multiple targets. Even worse, there is finite

time in which one can concentrate on each because new hardware is introduced each

year. With this complexity and the sheer arduous nature of the work it is no wonder

heuristics are often simply left outdated, since the effort to keep up is monumental.

Chapter 4 explained that machine learning has been shown to outperform expert-

constructed heuristics and it was hoped since this is an automated process it might

ameliorate this situation; however, despite this literature, the technique is still not pop-

ularly applied outside of academia. This thesis proposes that it is the slow nature of

training that may to be to blame, and so has attempted to tackle that.

In particular, the vast majority of the literature on auto-tuning heuristics using

machine learning has used passive learning techniques to generate their respective

models—i.e. learning at random. This is often taught as the standard supervised ma-

chine learning process but ignores the fact that randomness can result in redundancy,

and where each training example comes at a cost this is problematic. Active machine

learning is specifically designed to tackle this issue, and in Chapter 4 an approach to
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active learning called Query-by-Committee (QBC) is used to show that it can indeed

speed-up learning. Across four benchmarks QBC was able to accelerate the learning

of inputs-dependent heuristics by 4x on average, and up to 8x at best, compared to a

random-learning baseline approach.

Active Learning with Sequential Analysis

The intuition behind the work presented in Chapter 5 was that repeated samples are

necessary to understand the consequences of an optimisation decision due to experi-

mental noise, but that this number can be optimised on a per training example basis.

The particular challenge in this work was understanding when it is more beneficial

to be more certain about a particular runtime estimate for a given optimisation strategy

versus profiling a new strategy entirely. The approach assumes that the spatial locality

of sample runtimes can give some indication about the certainty one should have about

a particular set of measurements, and hence how much information might be gained

from further increased precision versus trying uncharted optimisations. This assump-

tion appears to be correct in that upon evaluation the presented approach was able to

speed-up learning by up 26x compared to active learning alone [Balaprakash et al.,

2013a], where across 11 benchmarks the average speed-up was 4x.

This research illustrates that not only can active learning substantially speed-up the

creation of heuristics, but that by adding sequential analysis the learning acceleration

can be further and significantly increased.

Active Learning with Active Feature Acquisition

Lastly, some preliminary work was provided in Chapter 6 which discusses the inef-

ficiencies of previous machine learning based heuristic generation implementations

which rely upon hardware performance counters to characterise programs. That is,

that a subset of all performance events are chosen in practice to use in program char-

acterisation because recording them all would take too long, but that it is difficult to

know which events to use a priori. Due to this, authors tend to go with whatever events

a previous study has used, but this is problematic since a good subset depends upon the

architecture and the system software present on it. The way in which feature selection

is performed currently involves collecting a data set and then working backwards to

determine which hardware events were worth recording, but this wastes much time on

profiling. In contrast, the approach discussed in Chapter 6 is able to dynamically de-
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termine at learning-time whether it is worth continuing to use a given hardware event

for further training, thereby greatly accelerating learning. Indeed, the presented imple-

mentation is able to achieve a 50% speed-up over the previous state of the art and this

is only an initial finding, where this work could be futher improved with some effort

before publication.

7.2 Future Work

In terms of future work proceeding from these experiments, which has not already

been discussed, there are a number of directions one could take. Firstly, it would be

interesting to find out to what extent the methodology presented in Chapter 5, which

combines active learning and sequential analysis, can withstand more extreme cases of

environmental noise. No strenuous effort was made to reduce the potential noise that

might be encountered while recording runtimes for the oracle for each benchmark, and

this was a deliberate action since, as has already been stated, significantly altering the

run-time environment of the target machine might invalidate the effectiveness of the

produced heuristics; however, the machine used to record these runtimes was set aside

specifically for that purpose. In an industrial setting where the optimisation-spaces

might be even larger, and the ability to isolate a given number of machines for a partic-

ular task much harder, this proposal might be more desirable if it was shown that the

technique could still produce effective heuristics within a cluster. Clusters are an inter-

esting case since they are so prevalent in high-performance computing, and it would

be convenient to be able to produce heuristics directly on them without having to iso-

late individual computers. That said, clusters also necessarily require extra software to

handle inter-machine communications, which might introduce extraneous noise above

that of a simple stand-alone machine. It remains to be seen whether the current imple-

mentation, without alteration, would be able to deal with this more extreme case, and

if not what modifications could be made to allow for it.

Secondly, it must be acknowledged that although the speed-ups from the second

technical chapter are substantial, and the methodology is proven to work on the bench-

marks tested, the engineering of the process was regrettably somewhat ad-hoc. It

would be interesting to see, therefore, if another implementation could be found which

is more mathematically rigorous. There is an abundance of literature in the statistics

community on sequential analysis techniques [Online, 2017], and in the Geosciences

there is a methodology called Kriging [Chils and Delfiner, 2012] which is used to
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estimate where to dig for precious minerals given a limited set of sample borehole lo-

cations. A collaboration with an expert in either or both of these fields might yield

even better results than those demonstrated here: it would certainly be fascinating to

investigate.

Thirdly, embedded platforms often have multiple processors which are specialised

to different workload types. For example, Qualcomm’s recent Snapdragon 835 system

on a chip contains a CPU, GPU and a DSP [Qualcomm, 2017]. Depending upon the

application being run one could imagine that it might be best executed on one or a

multitude of these processors simultaneously, in an ideal world. However, for that to

be possible it would require a program to be written such that it could be compiled

at run-time down to the relevant machine code for the specific processor, a compiler

which understands which optimisations to apply per device, and a scheduler which

can map code features and or workload to the most appropriate device using some pre-

computed heuristics. The benefits of such a scheduler could potentially be a significant

increase in battery life for such chips, but would need to be researched.

Finally, the work by Cummins et al. [Cummins et al., 2017] is a natural progression

from this thesis. Which is to say, the hypothesis on which this research was based is

that it is the time required to collect training data which is a key reason why machine

learning based heuristics are not seen more readily in production systems, however,

that is only one part of it. Another problem is simply the lack of diversity when it

comes to benchmarks on which heuristics can be trained. Generally speaking, the

more training examples provided to a machine learning algorithm the better the final

model is likely to be, although, as has been demonstrated, not all information is equally

useful. That said, there is a small finite number of benchmarks currently available for

learning. Since benchmarks require substantial effort to write it is not sensible to

expect significantly more will appear in the near future, hence, artificial benchmark

generation might provide a way to further increase the benefits and quality of using

artificially derived heuristics.





Appendix A

An OPENCL Code Example

The following OPENCL code example, which performs vector addition, was adapted

from Oak Ridge Leadership Computing Facility [2014]:

# i n c l u d e <CL / o p e n c l . h>

# i n c l u d e <math . h>

# i n c l u d e <s t d i o . h>

# i n c l u d e < s t d l i b . h>

/ / an OpenCL Kernel , each work−i t e m t a k e s care o f one e l e m e n t o f c

c o n s t c h a r ∗ kSource = ”\n ” \
” k e r n e l vo id vecAdd ( g l o b a l do ub l e ∗a , \n ” \
” g l o b a l do ub l e ∗b , \n ” \
” g l o b a l do ub l e ∗c , \n ” \
” c o n s t u n s i g n e d i n t n ) { \n ” \
” \n ” \
” / / g e t t h e g l o b a l t h r e a d ID \n ” \
” i n t i d = g e t g l o b a l i d ( 0 ) ; \n ” \
” \n ” \
” / / make s u r e t o keep w i t h i n bounds \n ” \
” i f ( i d < n ) \n ” \
” c [ i d ] = a [ i d ] + b [ i d ] ; \n ” \
” \n ” \
”} \n ”

i n t main ( i n t a rgc , c h a r ∗ a rgv [ ] ) {

/ / l e n g t h o f v e c t o r s

u n s i g n e d i n t n = 100000;
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/ / h o s t i n p u t v e c t o r s

do ub l e ∗ h a ;

do ub l e ∗ h b ;

/ / h o s t o u t p u t v e c t o r

do ub l e ∗ h c ;

/ / d e v i c e i n p u t b u f f e r s

cl mem d a ;

cl mem d b ;

/ / d e v i c e o u t p u t b u f f e r

cl mem d c ;

/ / r e q u i r e d OpenCL p o i n t e r s

c l p l a t f o r m i d c p P l a t f o r m ;

c l d e v i c e i d d e v i c e i d ;

c l c o n t e x t c o n t e x t ;

c l command queue queue ;

c l p r o g r a m program ;

c l k e r n e l k e r n e l ;

/ / s i z e , i n b y t e s , o f each v e c t o r

s i z e t b y t e s = n∗ s i z e o f ( d ou b l e ) ;

/ / a l l o c a t e memory f o r each v e c t o r on t h e h o s t

h a = ( d ou b l e ∗ ) ma l l oc ( b y t e s ) ;

h b = ( dou b l e ∗ ) ma l l oc ( b y t e s ) ;

h c = ( d ou b l e ∗ ) ma l l oc ( b y t e s ) ;

/ / i n i t i a l i s e v e c t o r s on t h e h o s t

i n t i ;

f o r ( i =0 ; i<n ; i ++) {
h a [ i ] = s i n f ( i ) ∗ s i n f ( i ) ;

h b [ i ] = c o s f ( i ) ∗ c o s f ( i ) ;

}

s i z e t g l o b a l S i z e , l o c a l S i z e ;

c l i n t e r r ;

/ / number o f work i t e m s i n each l o c a l work group

l o c a l S i z e = 6 4 ;
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/ / number o f t o t a l work i t e m s − l o c a l S i z e must be d e v i s e r

g l o b a l S i z e = c e i l ( n / ( f l o a t ) l o c a l S i z e )∗ l o c a l S i z e ;

/ / c o n n e c t t o t h e f i r s t i n s t a l l e d p l a t f o r m

e r r = c l G e t P l a t f o r m I D s ( 1 , &c p P l a t f o r m , NULL ) ;

/ / g e t an ID f o r a GPU d e v i c e

e r r = c l G e t D e v i c e I D s ( c p P l a t f o r m ,

CL DEVICE TYPE GPU , 1 , &d e v i c e i d , NULL ) ;

/ / c r e a t e t h e c o n t e x t

c o n t e x t = c l C r e a t e C o n t e x t ( 0 , 1 , &d e v i c e i d , NULL, NULL, &e r r ) ;

/ / c r e a t e t h e command queue

queue = clCreateCommandQueue ( c o n t e x t , d e v i c e i d , 0 , &e r r ) ;

/ / c r e a t e t h e compute program from t h e s o u r c e b u f f e r

program = c l C r e a t e P r o g r a m W i t h S o u r c e ( c o n t e x t , 1 ,

( c o n s t c h a r ∗∗)& kSource ,

NULL, &e r r ) ;

/ / b u i l d t h e program e x e c u t a b l e

c l B u i l d P r o g r a m ( program , 0 , NULL, NULL, NULL, NULL ) ;

/ / d e s i g n a t e t h e k e r n e l

k e r n e l = c l C r e a t e K e r n e l ( program , ” vecAdd ” , &e r r ) ;

/ / c r e a t e t h e i n p u t and o u t p u t a r r a y s i n d e v i c e memory

d a = c l C r e a t e B u f f e r ( c o n t e x t ,

CL MEM READ ONLY, b y t e s , NULL, NULL ) ;

d b = c l C r e a t e B u f f e r ( c o n t e x t ,

CL MEM READ ONLY, b y t e s , NULL, NULL ) ;

d c = c l C r e a t e B u f f e r ( c o n t e x t ,

CL MEM WRITE ONLY, b y t e s , NULL, NULL ) ;

/ / w r i t e t h e da ta i n t o t h e i n p u t a r r a y s

e r r = c l E n q u e u e W r i t e B u f f e r ( queue , d a , CL TRUE , 0 ,

b y t e s , h a , 0 , NULL, NULL ) ;

e r r |= c l E n q u e u e W r i t e B u f f e r ( queue , d b , CL TRUE , 0 ,

b y t e s , h b , 0 , NULL, NULL ) ;
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/ / s e t t h e argument s t o t h e compute k e r n e l

e r r = c l S e t K e r n e l A r g ( k e r n e l , 0 , s i z e o f ( cl mem ) , &d a ) ;

e r r |= c l S e t K e r n e l A r g ( k e r n e l , 1 , s i z e o f ( cl mem ) , &d b ) ;

e r r |= c l S e t K e r n e l A r g ( k e r n e l , 2 , s i z e o f ( cl mem ) , &d c ) ;

e r r |= c l S e t K e r n e l A r g ( k e r n e l , 3 , s i z e o f ( u n s i g n e d i n t ) , &n ) ;

/ / e x e c u t e t h e k e r n e l ove r t h e e n t i r e range o f t h e da ta

e r r = clEnqueueNDRangeKernel ( queue , k e r n e l , 1 , NULL,

&g l o b a l S i z e , &l o c a l S i z e ,

0 , NULL, NULL ) ;

/ / w a i t f o r t h e command queue t o g e t s e r v i c e d

/ / b e f o r e r e a d i n g back r e s u l t s

c l F i n i s h ( queue ) ;

/ / read t h e r e s u l t s from t h e d e v i c e

c lE n q ue u eR e ad B u f f e r ( queue , d c , CL TRUE , 0 , b y t e s , h c , 0 ,

NULL, NULL ) ;

/ / sum up v e c t o r c and p r i n t r e s u l t d i v i d e d by n ,

/ / t h i s s h o u l d r o u g h l y e q u a l 1

do ub l e sum = 0 ;

f o r ( i =0 ; i<n ; i ++)

sum += h c [ i ] ;

p r i n t f ( ” f i n a l r e s u l t : %f \n ” , sum / n ) ;

/ / r e l e a s e OpenCL r e s o u r c e s , and h o s t memory

c lRe leaseMemObjec t ( d a ) ;

c lRe leaseMemObjec t ( d b ) ;

c lRe leaseMemObjec t ( d c ) ;

c l R e l e a s e P r o g r a m ( program ) ;

c l R e l e a s e K e r n e l ( k e r n e l ) ;

clReleaseCommandQueue ( queue ) ;

c l R e l e a s e C o n t e x t ( c o n t e x t ) ;

f r e e ( h a ) ;

f r e e ( h b ) ;

f r e e ( h c ) ;

r e t u r n 0 ;

}
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