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Abstract
Natural language documents exhibit coherence and cohesion by means of interrelated

structures both within and across sentences. Sentences do not stand in isolation from

each other and only a coherent structure makes them understandable and sound natu-

ral to humans. In Statistical Machine Translation (SMT) only little research exists on

translating a document from a source language into a coherent document in the target

language. The dominant paradigm is still one that considers sentences independently

from each other. There is both a need for a deeper understanding of how to handle spe-

cific discourse phenomena, and for automatic evaluation of how well these phenomena

are handled in SMT.

In this thesis we explore an approach how to treat sentences as dependent on each

other by focussing on the problem of pronoun translation as an instance of a discourse-

related non-local phenomenon. We direct our attention to pronoun translation in the

form of cross-lingual pronoun prediction (CLPP) and develop a model to tackle this

problem. We obtain state-of-the-art results exhibiting the benefit of having access to

the antecedent of a pronoun for predicting the right translation of that pronoun. Experi-

ments also showed that features from the target side are more informative than features

from the source side, confirming linguistic knowledge that referential pronouns need to

agree in gender and number with their target-side antecedent. We show our approach

to be applicable across the two language pairs English-French and English-German.

The experimental setting for CLPP is artificially restricted, both to enable auto-

matic evaluation and to provide a controlled environment. This is a limitation which

does not yet allow us to test the full potential of CLPP systems within a more realistic

setting that is closer to a full SMT scenario. We provide an annotation scheme, a tool

and a corpus that enable evaluation of pronoun prediction in a more realistic setting.

The annotated corpus consists of parallel documents translated by a state-of-the-art

neural machine translation (NMT) system, where the appropriate target-side pronouns

have been chosen by annotators. With this corpus, we exhibit a weakness of our cur-

rent CLPP systems in that they are outperformed by a state-of-the-art NMT system in

this more realistic context. This corpus provides a basis for future CLPP shared tasks

and allows the research community to further understand and test their methods.

The lack of appropriate evaluation metrics that explicitly capture non-local phe-

nomena is one of the main reasons why handling non-local phenomena has not yet

been widely adopted in SMT. To overcome this obstacle and evaluate the coherence of

translated documents, we define a bilingual model of entity-based coherence, inspired
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by work on monolingual coherence modelling, and frame it as a learning-to-rank prob-

lem. We first evaluate this model on a corpus where we artificially introduce coherence

errors based on typical errors CLPP systems make. This allows us to assess the quality

of the model in a controlled environment with automatically provided gold coherence

rankings. Results show that this model can distinguish with high accuracy between a

human-authored translation and one with coherence errors, that it can also distinguish

between document pairs from two corpora with different degrees of coherence errors,

and that the learnt model can be successfully applied when the test set distribution

of errors comes from a different one than the one from the training data, showing its

generalization potentials.

To test our bilingual model of coherence as a discourse-aware SMT evaluation

metric, we apply it to more realistic data. We use it to evaluate a state-of-the-art NMT

system against post-editing systems with pronouns corrected by our CLPP systems.

For verifying our metric, we reuse our annotated parallel corpus and consider the pro-

noun annotations as proxy for human document-level coherence judgements. Experi-

ments show far lower accuracy in ranking translations according to their entity-based

coherence than on the artificial corpus, suggesting that the metric has difficulties gen-

eralizing to a more realistic setting. Analysis reveals that the system translations in our

test corpus do not differ in their pronoun translations in almost half of the document

pairs. To circumvent this data sparsity issue, and to remove the need for parameter

learning, we define a score-based SMT evaluation metric which directly uses features

from our bilingual coherence model.
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Lay Summary

Natural language text in documents such as newspaper articles is generally meaningful

to a human; it is said to be coherent. This coherence is achieved by establishing rela-

tions between parts of the text both within and across sentences. Sentences therefore

do not stand in isolation from each other. Only a coherent structure makes them un-

derstandable and sound natural to humans. Furthermore, coherence is part of the more

general linguistic concept of discourse. In Statistical Machine Translation (SMT) only

little research exists on translating a document from a source language into a coher-

ent document in the target language. The most prevalent methods consider sentences

independently. Therefore, there is both a need for a deeper understanding of how to

handle specific discourse phenomena, and for automatic evaluation of how well these

phenomena are handled in SMT.

In this thesis we explore an approach how to treat sentences as dependent on each

other by focussing on the problem of pronoun translation as an instance of a discourse-

related non-local phenomenon. We develop a computational model for cross-lingual

pronoun prediction (CLPP) to predict the translation of a pronoun in the context of a

bilingual document. We obtain state-of-the-art results exhibiting the benefit of giving

the model access to the entity a pronoun refers to. Experiments also showed that fea-

tures of the model extracted from the target side of the document are more informative

than features from the source side, confirming linguistic knowledge that pronouns re-

ferring to an entity need to agree in gender and number with this entity. We show our

approach to be applicable across the two language pairs English-French and English-

German.

The experimental setting for CLPP was artificially restricted by focussing on a

small number of pronouns and using human-authored translations. This enabled auto-

matic and fast evaluation in a controlled environment. However, this limitation does

not yet allow us to test the full potential of CLPP systems within a more realistic set-

ting that is closer to a full SMT scenario. We provide an annotation scheme and tool,

and a bilingual corpus that enable evaluation of pronoun prediction in a more realis-

tic setting. The annotated corpus consists of a collection of documents automatically

translated by a state-of-the-art neural machine translation (NMT) system, where the

appropriate target-side pronouns have been chosen by annotators. With this corpus,

we exhibit a weakness of our current CLPP systems in that they are outperformed by a

state-of-the-art NMT system in this more realistic context. This corpus provides a basis
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for future research on CLPP and allows the research community to further understand

and test their methods.

The lack of appropriate evaluation metrics that explicitly capture non-local phe-

nomena is one of the main reasons why handling non-local phenomena has not yet

been widely adopted in SMT. To overcome this obstacle and evaluate the coherence of

translated documents, we define a bilingual model of coherence specifically focussing

on entities. Our model is inspired by work on monolingual coherence modelling, and

it is designed to learn how to rank bilingual documents taking the coherence of both

source and target side into account. We first evaluate this model on a bilingual corpus

where we artificially introduce coherence errors based on typical errors CLPP systems

make. This allows us to assess the quality of the model in a controlled environment and

to automatically obtain true coherence rankings without requiring humans to provide

such a judgement. Results show that this model can distinguish with high accuracy

between a human-authored translation and one with coherence errors, that it can also

distinguish between two documents with different degrees of coherence errors, and that

the model generalizes well across different variations of coherence error introduction.

To test our bilingual model of coherence as a discourse-aware SMT evaluation met-

ric, we apply it to more realistic data. We use it to evaluate translations of a state-of-

the-art NMT system against translations where we automatically corrected pronouns

with our CLPP model. A good SMT evaluation metric judges automatic translations

according to how humans would judge them. We reuse our annotated bilingual cor-

pus and consider the pronoun annotations as an approximation of how humans would

judge the coherence of each document. Experiments show that the model has far lower

performance in ranking translations according to their entity-based coherence than on

the artificial corpus, suggesting that it has difficulties generalizing to a more realistic

setting. Analysis reveals that the automatic translations we use for learning the model

parameters and testing it as SMT evaluation metric are too similar to each other. To

circumvent this lack of data and diversity, which is a problem for data-driven models,

we define a simpler score-based SMT evaluation metric which directly uses features

from our bilingual coherence model without the need to learn parameters.
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Chapter 1

Introduction

Natural text in documents, such as newspaper articles, consists of a sequence of sen-

tences that follow a coherent structure. They are on a specific topic, they describe

events and their participants, and how they are related to each other. The following

text is an excerpt of a newspaper article:

(1) Eleven years ago, Sufjan Stevens sits on the stage in the Prime Club (now

Luxor) in Cologne. Beside him stands a flip chart on which the shy-seeming

folk singer has drawn the picturesque US state of Michigan in felt-tip pen. The

entire audience, some 40 people, is virtually mesmerised by Stevens’ perfor-

mance. Referring to different places, which each time he marks on the map,

he talks about the stories behind his meticulously and subtly contrived songs.

Where they originated, and what it looks like, in his home country. – WMT16

newstest

It introduces the main participant (i.e. Sufjan Stevens) at the beginning, provides ref-

erences to the context (i.e. the location and other participants in the room) and is about

a coherent topic (i.e. a concert performance). Taking a sentence out of this document

or changing the order of sentences would make the article less intelligible and less

coherent:

(2) Referring to different places, which each time he marks on the map, he talks

about the stories behind his meticulously and subtly contrived songs. Eleven

years ago, Sufjan Stevens sits on the stage in the Prime Club (now Luxor) in

Cologne.
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2 Chapter 1. Introduction

The first sentence refers to a participant (i.e. he), which has not yet been introduced

and it is unclear what his talking has to do with something that happened eleven years

ago.

The major body of work on Statistical Machine Translation (SMT) has the under-

lying assumption that sentences can be translated independently of each other.1 Only

in recent years, research on document-level and discourse-aware SMT started to attract

attention, working on lifting the strong independence assumptions in traditional SMT

that confine translation to a very local context. There has been work on analysing and

handling non-local phenomena within and across sentences (e.g. (Tiedemann, 2010;

Hardmeier et al., 2013a; Xiong et al., 2013; Guillou, 2016)). This interest has been

fuelled by workshops, such as the Discourse in Machine Translation Workshop (Dis-

coMT), in being organized to encourage contributions in this field. Further examples

are the two shared tasks for pronoun translation and prediction in 2015 (Hardmeier

et al., 2015) and the cross-lingual pronoun prediction (CLPP) shared task in 2016

(Guillou et al., 2016). Both the workshop and the shared task are going to be held

again in 2017, showing the consistent interest in this field, and also showing that it is a

problem far from being solved.

Discourse phenomena are much more complex than local phenomena (such as

word-order, grammaticality, or fluency that SMT was mostly concerned with). At

the same time elements relating to the discourse and signalling discourse structure can

be very sparse. For example, establishing a discourse relation by means of a discourse

connective (such as although, but, and, etc.) contributes a lot to the coherence and

cohesion of a text, however, it is often only affected by one word out of the entire

paragraph, sentence or clause. These issues provided the motivation that lead to the

CLPP shared tasks, focussing on one very specific problem, i.e. pronoun translation, in

greater detail. Furthermore, they also yielded the creation of phenomena-specific cor-

pora, e.g. ParCor (Guillou et al., 2014), and evaluation sets, e.g. PROTEST (Guillou

and Hardmeier, 2016).

On the other end, discourse phenomena in SMT require new, more suitable evalu-

ation metrics. The frequently used evaluation metrics such as BLEU (Papineni et al.,

2002) and METEOR (Denkowski and Lavie, 2014) are only defined to measure over-

lapping translations within a sentence against one or more reference translations. Fur-

thermore they are typically restricted to a small context window of adjacent words

1Throughout this thesis we use SMT to refer to automatic machine translation in general, including
neural machine translation (NMT) approaches. Whenever required, a more specific term is used.



1.1. Thesis Statement 3

(e.g. four words for BLEU). However, pronouns can have non-local dependencies that

can occur in preceding sentences and that influence the actual form of the pronoun.

These existing metrics therefore cannot capture non-local phenomena that researchers

started to model in the recent years. A few discourse-related evaluation metrics have

been proposed for SMT, however, most of them have a number of drawbacks, e.g. that

they are verified against sentence-level human judgements rather than human judge-

ments obtained from the entire document context, or that they stay within the sentence

context (cf. Section 2.3).

1.1 Thesis Statement

In this thesis we focus on the two interrelated problems of pronoun translation and

discourse-aware SMT evaluation. Our starting point is an abstraction from the full

SMT scenario in order to simplify the problem at hand and thus to better understand

the requirements. Further along in the thesis, we point out what the shortcomings

of these simplifications are, proposing and experimenting with ways to move back

towards the full SMT scenario.

Pronoun translation in SMT is a problem that needs to be tackled and better un-

derstood, and we believe that CLPP is an approach that makes this possible. CLPP

systems have so far been evaluated in a simplified and restricted setting. To further un-

derstand and correctly model pronoun translation, we need to relax this artificial setup,

in order to close the gap between abstraction and realistic setting. For this part of the

thesis, we therefore present our work on CLPP exploiting similarities in grammar and

structure across two language pairs to study the problem and define a path towards a

more realistic setting.

To further understand the role of CLPP within the context of a full SMT system and

to enable more research on discourse-aware SMT systems in general, we first require

an adequate SMT evaluation metric that takes non-local context and sparsity into ac-

count. Pronoun translation is part of the larger phenomenon of entity-based coherence.

We believe that there is a systematic correspondence between source- and target-side

entity coherence and that this can be exploited to define such an evaluation metric. In

the second part of the thesis, we therefore explore these systematic correspondences

and define and experiment with such a discourse-aware SMT evaluation metric.



4 Chapter 1. Introduction

1.2 Motivation and Overview

Text coherence refers to the set of concepts that make a text semantically meaningful

and deals with the connectedness of a document. There are quite a few phenomena that

contribute to the overall coherence of a document. There is topical coherence, which is

concerned with the semantic relatedness of topics that are observed and inferred from

documents (e.g. Barzilay and Lee (2004) using topics and topic transitions as content

models, or Misra et al. (2008) inferring topics with Latent Dirichlet Allocation (Blei

et al., 2003) to detect semantic coherence of a document). There is relational coher-

ence that is concerned with the discourse structure (e.g. cause and effect or conjunction

from Rhetorical Structure Theory (RST) (Mann and Thompson, 1988)) which relates

text spans with each other, using overt or implicit cues called discourse connectives

(cf. Prasad et al., 2008). There is also event-based coherence, which focuses on the

connectedness and relation between events described in a text (e.g. scripts (Schank

and Abelson, 1977), narrative structure and event schemata (Chambers and Jurafsky,

2008, 2009)). Finally, there is entity-based coherence which is concerned with enti-

ties occurring or being mentioned in a text, and how they are referred to. The latter

is strongly based on concepts such as coreference chains and pronominal anaphora.

Even though presented as discrete concepts grouped under coherence, some of them

are more directly related to each other (e.g. entities also play a central role in events

and Discourse Representation Theory (DRT) (Kamp, 1981), or world-knowledge and

expectations, and linguistic constraints together contribute to how pronominal refer-

ring expressions are interpreted (Kehler and Rohde, 2013)). Despite the importance

of each of the mentioned types of coherence, we will focus on entity-based coherence

throughout this thesis. In the context of translation, entity-based coherence consists of

basic building blocks such as pronoun translation or prediction, anaphora and corefer-

ence resolution.

One of the building blocks that contributes to the coherence of a document are

anaphoric pronouns. In the context of translation, pronouns have been identified as

posing difficulties that need to be overcome (Le Nagard and Koehn, 2010; Hardmeier,

2014; Guillou, 2016). They vary in their use across languages, they have to fulfil

certain grammatical constraints, such as agreement with their antecedents and they

can have highly non-local dependencies, i.e. their antecedent might be in sentences

preceding or following the current sentence. This problem has been picked up by

two shared tasks focussing solely on the cross-lingual prediction and translation of
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pronouns (Hardmeier et al., 2015; Guillou et al., 2016).

The general setup of the shared tasks for CLPP is a set of parallel documents with

human-authored source and target sides from which target-side pronouns have been

removed and replaced with a placeholder. Via word alignments, source- and target-

side pronouns are related to each other. The task is then to predict for each source-side

pronoun instance, the most likely translation of the source pronoun, choosing from a

closed set of classes. A detailed description of the shared task setups is provided in

Section 3.1.1. One of the major advantages of these CLPP shared tasks is that the

investigation of automatic pronoun translation was done outside of a full SMT system

working with human-authored translations. This allows for evaluating performance on

just this phenomenon without introducing other variation from the translation process.

In full SMT systems, it is often not straightforwardly possible to verify if handling a

particular sparse problem (e.g. pronoun translation) caused improvements in translated

pronouns in the final SMT output, or whether it just caused unrelated changes in the

resulting translation hypotheses. Furthermore, the setup with a human-authored target

side allows for automatically obtaining gold labels and hence large amounts of training

data.

With coherence in mind, we therefore first focus on pronoun translation and pro-

pose a CLPP system that attempts to find a solution to this problem (Chapter 3). The

CLPP shared tasks view this problem as a cross-lingual prediction task. This enables

us to gain insight into particular problems pronoun translation faces, what specific con-

text is required to deal with pronoun translation and what the similarities are that guide

the pronoun translation process across language pairs. At the same time, we realize

that the CLPP shared task abstracts away considerably from the realistic final goal

(and hence from many difficulties yet to come) of a fully pronoun-aware SMT system

in its limited focus and form of data it operates on.

To advance research on that end, we propose to remove the requirement of human-

authored target-side data for CLPP systems. In Chapter 4 we replace this target side

with an automatic translation generated by a state-of-the-art NMT system. The inter-

twined requirement that comes with this automatic translation is that gold labels for

predicted target-side pronouns have to be provided manually, since automatic extrac-

tion of these gold labels is no longer possible from an automatically translated target

side. We therefore propose an annotation and data collection scheme to obtain these

gold labels. The corpus created in that way provides a basis for other researchers to

experiment with and better understand their CLPP systems in a more realistic setup.
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Furthermore, we use this corpus as basis for verifying our SMT evaluation metric

(cf. Chapter 6) and whether it correlates with these human judgements.

Evaluation of CLPP systems in the setup of the shared tasks can be done auto-

matically, which is a great advantage. However, it has the underlying assumption that

the rest of the translation remains unchanged. In particular it assumes that pronoun

antecedents do not change in translation, therefore the gold pronoun label will always

remain correct. Achieving greater flexibility and a more realistic SMT setting demands

taking more context into account in evaluation. It has been shown that pronoun trans-

lation evaluation based on matching just the pronouns in the reference translation too

harshly penalizes the SMT system (Luong and Popescu-Belis, 2016). If the translated

pronoun does not match the reference, it is counted as an error even though in the

particular translation, it might in fact be the right pronoun, since it agrees with its

antecedent.

Furthermore, prior work on document-level and discourse-aware SMT often showed

no improvements with traditional sentence-based evaluation metrics such as BLEU. It

has been commented that this is due to the lack of SMT evaluation metrics that go

beyond sentence boundaries. There have been only very few attempts to tackle this

problem and none that focussed on entity-based coherence. This is why we propose to

focus on this aspect of discourse to develop an SMT evaluation metric that is capable of

capturing the entity-based coherence of translations. As a first step towards this SMT

evaluation metric, we propose a model of bilingual coherence that is inspired by earlier

work on monolingual coherence modelling (Chapter 5). This follows our hypothesis

that there is a strong correlation of entity-based coherence in the source document and

its human translation. In a bad translation this correlation is violated and systematic

differences can be identified to rank this bad translation accordingly with respect to

better translation hypotheses.

We then use the bilingual model of coherence as a basis for our discourse-aware

SMT evaluation metric (Chapter 6). Earlier work on SMT evaluation for discourse

or document-level phenomena often used existing SMT system outputs. It was never

defined exactly what these systems modelled, hence it is unclear whether any of these

systems actually handle discourse phenomena or not. If in earlier work a good corre-

lation with human judgements could be shown in that it ranked certain SMT systems

higher, then this was most likely because these SMT systems handled the captured dis-

course phenomenon by chance. We want to test SMT systems that specifically handle

a discourse phenomenon and want to find out in this context whether our discourse-
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aware evaluation metric can capture relevant differences. This way we can find out if

we actually handled the discourse phenomenon properly in the SMT system. This mo-

tivates the use of at least two SMT systems for verifying our SMT evaluation metric:

One that acts as a baseline without explicitly modelling discourse phenomena, and one

in which such a discourse-aware model has been integrated. We therefore propose to

integrate our CLPP system predictions as post-editing step into a baseline translation.

In this way, we combine our efforts on the modelling side (using CLPP in context) and

our efforts on the evaluation side (based on our bilingual coherence model). And we

gain some insights as to what degree the CLPP system is applicable and sufficient to

solving pronoun translation.

1.3 Contributions

The following list summarizes the main contributions of this thesis:

• Two CLPP systems for handling pronoun translations. They handle pronoun

predictions for English-French and English-German showing that the same ap-

proach generalizes over language pairs. They also provide insight into what

requirements are necessary and what features are useful for pronoun translation.

• A manually annotated English-German corpus for pronouns in context of auto-

matic translations. This enables us to test CLPP systems on realistic data and

could be used by a future CLPP shared task. Furthermore it acts as a proxy

for document-level human coherence judgements required for verification of our

discourse-aware SMT evaluation metric.

• A bilingual model of entity-based coherence that models the relationship be-

tween source- and target-side coherence in parallel documents. We evaluated

this model on an automatically created parallel corpus where we artificially ma-

nipulated the coherence on the target-side based on typical errors made in pro-

noun prediction.

• A discourse-aware SMT evaluation metric based on our bilingual coherence

model that operates on the document level for enabling more informed research

on and evaluation of document-level SMT. This metric is tested for correlation

with human judgements obtained at the document level.
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1.4 Relation to Published Work

In Wetzel et al. (2015) and Wetzel (2016) we describe our work on CLPP for sub-

mission to the CLPP shared tasks 2015 and 2016, respectively, which is covered in

Chapter 3 in this thesis.



Chapter 2

Background and Related Work

We first give a brief introduction to pronouns and coreference chains with regards to

our thesis (Section 2.1). We then give an overview of existing work on automatic pro-

noun translation for SMT (Section 2.2). Following this, we present work on evaluation

metrics for SMT that go beyond the sentence boundary and take discourse-phenomena

into account (Section 2.3). After that we provide an overview of entity-based coher-

ence modelling (Section 2.4). Finally, we discuss coreference resolution evaluation

methods and how they relate to our SMT evaluation metric (Section 2.5).

2.1 Pronouns and Coreference Chains

Pronouns and coreference chains play a central role in this thesis. In this section we

give an overview of the phenomena relevant to our work.

2.1.1 Pronouns

Pronouns are a frequent group of words that fulfil a variety of different functions. Guil-

lou (2016) provides a detailed overview of the different functions pronouns can take.

There are anaphoric pronouns (which have an antecedent in preceding or following

discourse), pleonastic pronouns (that act as dummy subjects and do not have a refer-

ent in discourse), event pronouns (linking to events in discourse), pronouns with an

extra-textual referent, with a speaker/addressee referent and with a generic referent.

In this thesis we generally focus on personal pronouns (i.e. anaphoric pronouns) and

non-referential pronouns (i.e. pleonastic pronouns).

Personal pronouns are referential pronouns that establish a link in discourse to their

9
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antecedents. These are words or phrases that provide enough context so that it can be

understood what or who the pronoun refers to. In the following example Clinton is the

antecedent of the personal pronoun her.

(1) [Clinton]1 maintains a large lead among women and moderates, but those leads

have narrowed. [Her]1 support among men has dropped considerably and

Sanders only trails [her]1 by 5 points. – WMT16 newstest

Referential pronouns can further be divided into two groups. Those whose antecedent

occurs within a sentence (i.e. intra-sentential pronouns). And those whose antecedent

occurs in a preceding or following sentence (i.e. inter-sentential or cross-sentential

pronouns).

Non-referential pronouns (also referred to as pleonastic pronouns) are used to fill a

required syntactic position, but do not have an antecedent in discourse. An example is

given as follows.

(2) The Met Office predicts, it will be raining in Edinburgh tomorrow.

In this thesis, non-referential pronouns play a role in our work on CLPP in two ways.

First, they need to be treated differently to referential pronouns since they do not have

antecedents in discourse which they have to agree with. Second, since they cannot

be part of a coreference chain, their identification acts as feature to counterbalance

erroneous decisions by automatic coreference resolution systems.

2.1.2 Pronouns Across Languages

In our work on CLPP, we focus on the translation of the two English pronouns it

and they, and their typical translations into French and German as given in Tables 2.1

and 2.2, respectively. Descriptions of French and German pronouns are based on def-

initions from Guillou et al. (2016). With English as the source language, there are

ambiguous pronouns which need to be resolved in order to correctly translate them

into French and German.

For example it may be a pleonastic pronoun translating to man or es in German as

shown in Example (3).

(3) a. [. . .] I could only imagine what it must be like to be trapped in that hell.
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ce, c’ used in the construction c’est (i.e. it is)

elle, elles 3rd person subject position feminine personal pronoun (singular

and plural)

il, ils 3rd person subject position masculine personal pronoun (singular

and plural)

il is also used as pleonastic pronoun (il pleut, i.e. it rains) or as

pronoun with generic referent

ça, ç’, cela, demonstrative pronoun (the second form is used before words

starting with a vowel)

on indefinite pronoun

Table 2.1: French pronouns used in our work on CLPP.

er 3rd person subject position masculine personal pronoun (singu-

lar)

sie 3rd person subject position personal pronoun (singular feminine

and plural)

if the case of characters is ignored, this can also be the polite

form of a 2nd person subject position personal pronoun (Sie, i.e.

you)

es 3rd person subject position neutral personal pronoun (singular)

also used as pleonastic pronoun (es regnet, i.e. it rains)

man indefinite pronoun

Table 2.2: German pronouns used in our work on CLPP.
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b. [. . .]
[. . .]

konnte
could

ich
I

mir
myself

nur
only

vorstellen,
image

wie
how

es
it

wäre,
would-be

in
in

dieser
this

Hölle
hell

gefangen
trapped

zu
to

sein.
be

– CLPP16 test set

If it is used as a referential pronoun, it has to agree in number and gender with the

target-side antecedent. Since German has grammatically gendered pronouns, a deci-

sion between er, sie, es has to be made. Consider Example (4), where sie has to be

chosen, since Sklaverei (i.e. slavery) has feminine gender.

(4) a. [Slavery]1 exists everywhere, nearly, in the world, and yet [it]1 is illegal

everywhere in the world.

b. [Sklaverei]1
slavery

existiert
exists

fast
nearly

überall
everywhere

auf
in

der
the

Welt,
world

obwohl
although

[sie]1
it

überall
everywhere

auf
in

der
the

Welt
world

verboten
illegal

ist.
is

– CLPP16 test set

Furthermore, pronouns do not necessarily have a counterpart in the other language.

In Example (5), a different formulation is used in German, which does not require a

pleonastic pronoun.

(5) a. The air is thick with heat and dust, and it’s hard to breathe.

b. Die
the

Luft
air

ist
is

stickig
thick

von
from

Hitze
heat

und
and

Staub
dust

und
and

das
the

Atmen
breathing

fällt
is

schwer.
hard

– CLPP16 test set

2.1.3 Coreference Chains

Pronouns form a part of a bigger structure in discourse. Together with coreferring

nouns, they are grouped into equivalence classes, where all elements in each class refer

to the same entity. These equivalence classes are referred to as coreference chains.

Consider this excerpt of a document:

(6) Last year at TED [I]1 gave an introduction to [the LHC]2. And [I]1 promised to

come back and give you an update on how [that machine]2 worked. So this is

it. And for those of you that weren’t there, [the LHC]2 is the largest scientific

experiment ever attempted – 27 kilometers in circumference. [Its]2 job is to

recreate the conditions that were present less than a billionth of a second after
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[the universe]3 began, up to 600 million times a second. – TED talk from Brian

Cox on the Large Hadron Collider

There are two main entities in this document, one is Brian Cox and the other one is

the Large Hadron Collider.1 These entities are mentioned several times throughout

the document either using nouns to refer to them, or pronouns. All mentions with the

same index form a coreference chain. A coreference chain with only a single member

is also often referred to as a singleton. An example of this is marked with the index 3

above, but for better visibility not all singletons are marked.

Throughout the thesis, but especially in Chapters 5 and 6, we will make extensive

use of coreference chains. In these cases, we only focus on coreference chains that

contain more than one element, i.e. we do not look at singletons.

2.2 Automatic Pronoun Translation

Le Nagard and Koehn (2010) present one of the early instances of research on pronoun

translation for SMT. They focus on English-French translation of the pronouns it and

they. These can be translated in multiple ways. They point out that one of the most im-

portant factors for disambiguation of the source pronoun is the target-side antecedent,

and that these antecedents often occur in preceding sentences. They first identify the

antecedent of a pronoun on the source side and then determine the target-side an-

tecedent via word alignment links. From this target-side antecedent, gender informa-

tion is extracted. This information is then added to the source-side pronoun, essentially

disambiguating its intended target-side meaning. At training time, the target-side trans-

lation of the antecedent is given by the parallel corpus. At test time, they resort to using

the output of a baseline translation of the full document to determine the target-side an-

tecedent. For identifying the antecedent on the source-side, they employ two different

rule-based anaphora resolution algorithms (i.e. Hobbs (1978), and Lappin and Leass

(1994)). They both operate on syntactic parse trees, identifying the most likely noun

antecedent with a set of heuristics on how to traverse the trees and sentences, and how

to distinguish similarly plausible antecedent candidates. Le Nagard and Koehn (2010)

automatically filter out pleonastic uses of it, so that these algorithms do not try to find

an antecedent for these non-referential pronouns. They train a phrase-based SMT sys-

tem on data where the source-side pronoun is disambiguated by adding the gender

1There are other entities, such as introduction, experiment, etc. which we leave out for clarity.
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of the target-side antecedent. They investigate the lexical translation probabilities of

each trained system. In the baseline they observe a strong bias towards the mascu-

line pronoun in French. Systems with the anaphora resolution algorithms show a shift

towards the correct translation. The BLEU scores, however, remain almost the same

between the baseline and their proposed system. Also, a manual inspection of pronoun

translation reveals, that baseline and extended systems have around the same count of

correctly translated pronouns. On a subset of the test set, the performance of anaphora

resolution was verified and it was found that only 56% of the pronouns were correctly

resolved. This leads the authors to conclude that the negative result is mostly due to

bad performance of the anaphora resolution algorithms. One of the features in our

CLPP system identifies the features of the target-side antecedent in a similar way via

the source and word alignments. We use a state-of-the-art coreference resolution sys-

tem instead of manually modified algorithms. Gender features are extracted based on a

lexicon, whereas we increase coverage by using a morphological tagger. Furthermore,

we handle pleonastic pronouns and null-translations, which are ignored in the above

work. In the above presented two pass-decoding process the antecedents get fixed by

the baseline translation, however in the second translation phase, there is no mecha-

nism that ensures that the antecedent gets translated in the same way. The previously

determined antecedent feature might therefore be no longer valid.

Guillou (2012) presents work on English-Czech pronoun translation. Their work

follows closely the work by Le Nagard and Koehn (2010), however, their main focus is

to rule out sources of error in the resolution and feature extraction process. Instead of

automatically resolving coreference on the source side, they take a manually annotated

corpus for pronoun coreference (the BBN Pronoun Coreference and Entity Type Cor-

pus). This corpus also identifies pleonastic pronouns, which are removed in the work

presented. The semantic head of the source-side antecedent is identified from syntactic

gold parses. The sentence-aligned target-side data is taken from the PCEDT2.0 corpus,

which comes with automatic word alignments between the source corpus and the tar-

get documents, and provides gender, number and animacy information for each token.

The baseline system is a phrase-based SMT system trained on the plain parallel cor-

pus. The extended system is trained on data, where the source-side pronouns have been

annotated by the gender, number and animacy features of the target-side antecedent.

At training time the target-side is given by the parallel corpus. At test time, the trans-

lations of the antecedent (required to identify agreement features) are taken from the

translation of the baseline system, following the approach by Le Nagard and Koehn
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(2010). The agreement features from these antecedents at test time are obtained from

a dictionary. In order to avoid a different translation of the antecedent when translating

with the extended system, the same word alignments were used during training of both

SMT systems. This does not give a guarantee, but manual inspection showed that the

antecedent rarely changed. An automatic evaluation is proposed targeted towards pro-

noun translation evaluation. Among others, there is the count of how many times the

translated pronoun is in a list of valid possible translations (compiled by hand) for the

given source pronoun and agrees with the antecedent. A matching against the reference

translation is not required. Manual evaluation is also performed. Counts are collected

which of the two system translations of pronouns is preferred if the translation differs

(overall, and only in those cases where the agreement features were correctly identi-

fied). This is done on a small sample of translations. Automatic results show only

minor improvements of a few pronouns in the extended system. Manual evaluation

results show that the extended system is marginally preferred. In those cases where the

annotated system received correct agreement features, a clearer preference is shown

for this system. No BLEU scores are given, so it is not possible to say how strong the

baseline is. A weak baseline would result in bad antecedent translations. Furthermore,

the authors comment that the annotators had difficulties to judge the systems due to

errors in syntax in the translation. This suggests that the overall translation quality was

not great to start with. While using manually resolved coreference is a great way of

reducing the preprocessing errors, we want to focus on a more realistic setting, where

we can base our models on automatically resolved coreference.

Hardmeier et al. (2013b) investigate pronoun translation by framing it as a pronoun

prediction problem. They focus on English-French pronoun translation of subject-

position third person pronouns. The basis for the task is a parallel corpus with human-

authored translations and word alignments between each source and target sentence.

The translation of a closed set of source pronouns has to be predicted by choosing

among a closed set of target-side pronouns. Features are extracted for a baseline clas-

sifier and two different neural network architectures. Source-side features are one-hot

vector representations of a 3-word window around the source-side pronoun. Similarly

to Le Nagard and Koehn (2010) target-side antecedents are obtained via sources-side

coreference resolution and word alignments. In this work, instead of relying on the

best identified antecedent, a weighted average over all possible antecedent candidates

is computed. In the first neural network, the weights correspond to the probabilities

from the coreference resolution system BART that follows a mention-pair model. In
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the second neural network, these probabilities are jointly learnt with the pronoun pre-

diction task. The baseline is a Maximum Entropy (MaxEnt) classifier. In the neural

networks the source-side and target-side features are separately mapped to a lower

dimensional space. This layer is then mapped to a hidden layer expected to learn a

representation for gender and number features. Finally, a softmax layer produces the

pronoun predictions. Experiments are run on two data sets. One is from the IWSLT

corpus containing TED talks. The other one is from the NewsCommentary6 corpus.

The performance of the baseline is generally better on the TED data, than on the News-

Commentary6 data. Also in the baseline, the rare class for the plural feminine pronoun

in French (elles) has a very low recall. Compared to the baseline, the accuracy of the

first neural network model is more or less the same. Recall is slightly better at the

cost of precision. The performance on elles is slightly better. The results for the sec-

ond neural network are even better on accuracy, and provide a better balance between

precision and recall for elles. This work inspired the succeeding CLPP shared tasks

(Hardmeier et al., 2015; Guillou et al., 2016) to which we submitted CLPP systems.

Contrary to this model, we also use target-side context around the pronoun that is to be

predicted. Instead of taking an average over all target-side antecedent candidates, we

take the best antecedent and extract explicit gender and number features from it. This

is also in contrast to their model, which hopes to learn these two features within the

hidden layer of the neural network. These explicit features were shown to be important

in our feature ablation study.

Luotolahti et al. (2016) present their approach to CLPP with a deep recurrent neural

network. According to the official results of the CLPP16 shared task (Guillou et al.,

2016), their system performed best in terms of macro-averaged recall. For each target-

side pronoun, the input to the network is defined as follows: left and right sentence

context of the aligned source-side words (inclusive), left and right sentence context of

the target-side pronoun (exclusive), where the former comes in three different flavours

using lemmata, Part-of-Speech (POS) tags or a combination of both. The first layer is a

randomly initialized word-embedding layer, followed by two layers of gated recurrent

units (GRUs), followed by a rectified linear unit (ReLU), with a final softmax layer that

provides a distribution over the possible pronoun classes. For training, they modify the

loss function such that each pronoun instance is weighted inversely proportional to

the frequency of the pronoun class label. This indirectly optimizes for macro-average

recall, the official metric, since it penalizes errors on low frequency class labels more.

The primary system submission uses only sentence-internal context (of a maximum
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number of 50 context words). Different experimental setups reveal that without the

modification to the loss function (i.e. no weighting), a drop of 4-6% (absolute) of

macro-averaged recall is observed. If the strictly sentence-internal context is relaxed

to allow for crossing sentence boundaries, a drop in performance is also observed.

Finally, if the Europarl corpus is removed from the training set, performance drops

considerably by about 7-14% (absolute) in macro-average recall. In contrast to our

CLPP submission, they do not explicitly identify the antecedent of a pronoun, nor do

they use gender features from the pronoun antecedent. In fact, in all of the cases where

the noun antecedent is outside of the sentence context, their system has no chance of

seeing the antecedent. Their good results are partially explained by optimizing their

model towards the official shared task metric. Even more substantially contributing to

the results is the use of the Europarl corpus. We do not use this corpus, since we require

clear document boundaries for coreference resolution, which Luotolahti et al. (2016)

do not need. Extending their model to cross the sentence boundaries lead to worse

results, suggesting that just adding more context in form or raw sequences of words is

not sufficient, and explicitly identifying the antecedent might also be necessary in their

model.

Rios Gonzales and Tuggener (2017) present work on pronoun translation focussing

on a pro-drop language on the source side. Subject pronouns can be implicit in these

languages (i.e. null-subjects), so they have to be made explicit when translating into

a language that is not a pro-drop language. They experiment on the language pair

Spanish-English and focus on null-subject and possessive pronouns. English only dis-

tinguishes gender with persons, and uses neutral gender otherwise. Furthermore, the

gender of persons remains the same across the two languages, so it can be easily de-

termined from the source-side. Possessive pronouns in Spanish are only marked for

number determined by the possessed object. In English, however, they need to agree in

gender and number with the possessor. For making null-subjects explicit and obtaining

grammatical features for possessive pronouns, the source-side is first processed with a

coreference resolution system. They adapt the incremental entity-mention model from

CorZu (Tuggener, 2016) to Spanish. For this they include all verbs used in conjunction

with null-subjects as markables. This allows them to make the null-subjects explicit

and to copy over gender and number information from the coreference chain it be-

longs to. The processed source-side with explicit null-subjects and additional gender

and number information is then used for training a phrase-based SMT system (Koehn

et al., 2007). The training, development and test data is chosen from the NewsCom-
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mentary11 corpus to include frequent cases of null-subjects and possessive pronouns.

Results are therefore obtained based on a fairly small training set and on a non-standard

test set. In experiments, it was determined that the Language Model (LM) has a high

bias towards translating masculine pronouns. The LM was therefore trained on data

with a large number of sentences sampled for feminine pronouns, in addition to un-

modified large monolingual corpora. Results are measured in BLEU and accuracy of

pronoun translation (APT), which we explain in detail in Section 2.3. Both metrics

show improvements over a baseline, with the former they are only minor, but with the

latter they show strong improvements with respect to pronouns. An oracle experiment

with three manually annotated source documents for coreference show that corefer-

ence resolution errors are one reason for limiting the performance and that there is still

room for improvement. In our experiments, we do not have the problem of missing

subjects, since our source language is always English. So this method is not applicable

to our systems. Furthermore, in the above work, the grammatical features, such as

gender and number can be determined from the source language, whereas in our work,

we need to have knowledge from target-side coreference chains, since our target-side

languages (French and German) pose grammatical gender and number requirements

on pronouns, that do not exist in English.

Luong et al. (2017) present work on Spanish-English. They handle possessive pro-

nouns and determiners, and third person subject-position pronouns. Both of these can

be translated in multiple ways into English as described above (cf. Rios Gonzales and

Tuggener, 2017). This work employs a translation model from their earlier work on

English-French (Luong and Popescu-Belis, 2016), extending it to make it suitable to

the new language pair. This is an easier problem, since all the features required can

be obtained from the source side. They propose a coreference model, which learns the

probability of a pronoun translation, given the source pronoun and source antecedent

features (gender, number and humaneness). When estimating the probabilities from a

parallel corpus, the source side is first processed with CorZu for Spanish (as described

in the previous paper) to obtain antecedent links. In the estimation, the n-best list of

antecedent candidates and their respective scores in this list is taken into account. At

test time, the best antecedent for each source pronoun is identified. The pronoun is

then marked-up with the features from the antecedent. These special tokens are then

handled by a secondary translation model, that is backed by the coreference model

above. Two phrase-based SMT systems with and without the secondary translation

model are trained on a small subset of the NewsCommentary11 corpus and tested on a
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non-standard test set from the same corpus. A small increase (2% absolute) in the APT

score is observed between the baseline and the extended system. Using oracle annota-

tions on a small subset of sentences on the source-side (both antecedent and features),

a large increase of 35% (absolute) in the APT score can be observed. The authors

point out, that one of their shortcomings is that their coreference model does not take

context into account, other than the extracted antecedent features. Furthermore, they

do not consider null-subjects. In their earlier work on English-French, they have to

use a two-pass decoding setup, since the antecedent in the target language has to be

determined first. This is not necessary in the Spanish-English language pair, since all

the required information can be determined in the source. Our CLPP systems take lo-

cal context into account when making pronoun predictions. Furthermore, the approach

in this paper is not applicable to English-German or English-French, since in both of

these language pairs, the relevant features have to be determined on the target side.

On the other hand, they integrate their coreference model directly into a phrase-based

SMT system at decoding time, whereas we only present a post-editing variant.

Miculicich Werlen and Popescu-Belis (2017) present work on using coreference

information for translating from Spanish to English. They propose two approaches.

The first one is based on reranking translation hypotheses, by using coreference res-

olution evaluation metrics that compare source- and target-side chains. The second

one is a post-editing approach, where the best translation for a source-side chain is

obtained based on pair-wise target-side mention scores. Both approaches are evalu-

ated manually and with BLEU on a non-standard test set of 10 documents from the

AnCora-ES corpus. The first approach relies on gold standard annotations from the

AnCora-ES corpus on the source-side and the Stanford statistical coreference resolu-

tion system (Clark and Manning, 2015) on the target-side. The target-side chains are

first projected to the source-side via word alignments. This provides the input to the

three standard coreference evaluation metrics MUC, B3 and CEAF-m (cf. Section 2.5),

with the source-side annotations as gold standard, and the projected chains as system

chains. This approach is motivated by showing that there is a correlation between

translation quality according to BLEU and the three individual coreference metrics,

when comparing the reference translation, a commercial NMT system and a baseline

phrase-based SMT system. This approach is used in a reranking framework, where

among the n-best lists for each sentence in a document, the combination of sentences

that maximize the average of the above coreference metrics is searched. The search

is approximated in a beam search by incrementally selecting the sentence that maxi-
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mizes the above score, pruning away lower scoring ones. Sentences leading to the same

coreference score are pruned if they have a lower BLEU score. The second approach

is a two-stage decoding setup with a final post-editing step. In the first stage, a baseline

translation is obtained. In this translation, the source-side mention head words (given

by gold coreference annotations) are projected to the target side and inserted there.

In a second stage, an n-best list of possible translations for each mention in context

is obtained. This is done by using the modified translation from the first step as new

source document. A filtered phrase-table is used where all phrases with words other

than mention words are removed. The decoding then produces the above mentioned

n-best lists. A final translation for each mention in a cluster is then selected by maxi-

mizing the pair-wise mention score on the target-side. This pair-wise score is obtained

from the pre-trained Stanford statistical coreference resolution system. Experiments

are run on a test set with ten documents from the AnCora-ES corpus. The reranking

approach and post-editing approach are compared to a phrase-based SMT baseline and

an NMT system. Evaluation is done by BLEU to test for overall translation quality.

The accuracy of pronoun translation is determined with the same method as described

in (Luong and Popescu-Belis, 2016) using the APT metric (and as summarized in Sec-

tion 2.3). Both reranking and post-editing approaches improve the accuracy of pronoun

translation with respect to the baselines. However, in the reranking approach BLEU

decreases considerably, while in the post-editing system, BLEU remains the same. The

latter observation is an indication that with the post-editing system the general transla-

tion quality is not affected, while improving pronoun translation. A manual evaluation

of four documents is performed where the annotator has to compare a mention in a

translated sentence to the reference translation and judge whether it is wrong, accept-

able or equal to the reference. The post-editing system reduces the number of wrong

mention translations, whereas the reranking system performs worse than the baseline.

Both approaches are based on the hypothesis that a good translation should have sim-

ilar coreference chains compared to the source-side. While the authors integrate this

concept into a translation system, we use this hypothesis to define an SMT evalua-

tion metric that can evaluate document coherence. The post-editing approach shows

promising results, however automatic and manual evaluation of pronoun or mention

translation, respectively, only verify against the reference translation. The antecedent

information which both influences pronoun and mention translation, is not considered

there. It therefore remains to be shown that translations of pronouns and mentions are

valid translations with respect to how their antecedent was translated. Another draw-
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back of the approach is that it relies on gold annotations on the source side whereas we

explicitly do not have this requirement. Furthermore, the first approach is based on the

assumption that implicit pronouns in Spanish are made explicit, otherwise the corefer-

ence resolution evaluation metric would penalize potentially correct translations if they

do not have an explicit counterpart on the source side. Finally, experiments are run on

a non-standard and small ten-document test set. If the approach generalizes remains to

be seen.

2.3 Evaluation Metrics for Document-level SMT

The most commonly used evaluation metric for automatically assessing translation

quality of SMT systems is BLEU (Papineni et al., 2002). It is a precision-oriented

metric and is designed to capture adequacy and fluency of proposed translations. This

is done by measuring the n-gram overlap between a proposed translation and one or

more reference translations (conventionally n ranges between 1 and 4). As such it is

applied sentence by sentence, and averaged over the entire corpus. A brevity penalty

specific to that corpus is computed in order to penalize overly short translations with

respect to their reference. This metric therefore makes independent decisions for each

sentence and neglects the fact that sentences in a text are interconnected via various

aspects such as topic, discourse connectives, coreference chains, etc. which make

a text cohesive and coherent. Furthermore, it ignores possibly correct translations of

pronouns that do not match the reference, but are correctly agreeing with the translation

of their antecedent. Finally, discourse-level phenomena such as pronoun translation

often involve only one word out of the entire sentence. BLEU however gives equal

importance to every word and such a small change is not adequately captured (cf.

Hardmeier, 2014, Section 6.4.4).

Comelles et al. (2010) state that up to this point, work on SMT is only evaluated

segment by segment, where a segment is usually a sentence.2 They propose an SMT

evaluation metric based on discourse representations. These representations focus on

important parts of a document (i.e. who did what to whom, when, where and why?).

Furthermore, these representations are not simply concatenations of individual sen-

tences, however they span across longer parts of the document, e.g. via anaphoric links

or discourse connectives. The authors claim that having such a discourse representa-

tion is essential in determining the semantic equivalence of an automatic translation

2This work is sometimes cited with a different author order as (Gimenez et al., 2010)
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and the corresponding reference document. The discourse structures in their work are

extracted with Boxer (Bos, 2008) (from the C&C Tools (Curran et al., 2007)), which

follow the DRT (Kamp, 1981). They are represented as first-order logic formulae en-

coding entities and the relationship between them. Boxer can be applied to individual

sentences, but also to a document as a whole. This is what Comelles et al. (2010) take

advantage of. They explore three different metric formulations. The first one is based

on the number of matching subpaths (of length four) between automatic translation

and the reference. The second and third one compute the average lexical (or alterna-

tively POS tag-based) overlap between automatic translation and reference. Of these

three metrics, they explore one variant based on discourse representations extracted

sentence by sentence, and one extracted for the entire document at once. For testing

their method, they compute the correlation between their evaluation metrics and human

judgements on Arabic-English documents. Document-level human judgements were

not available so to obtain them, they simply averaged sentence-level judgements. Re-

sults show a higher correlation with human judgements for the sentence-by-sentence

variants over the document-level ones. Furthermore, the sentence-based evaluation

metric METEOR shows a similarly high correlation with human judgements as the

first variant. The authors attribute this negative result to three possible causes. First,

there might be parser errors by Boxer on SMT output. Second, the human judgements

might be biased towards sentence-level evaluation. Third, the similarity measures em-

ployed might not be expressive enough. While this work takes discourse structure into

account, they only verify their evaluation metric against human judgements that were

elicited sentence by sentence. This is one of the major differences to our work. Evalua-

tion metrics that take cross-sentence context into account, have to be verified by human

judgements that also considered the same cross-sentence context.

Hardmeier and Federico (2010) touch on the topic of evaluating discourse-level

phenomena in SMT. Their main work focusses on pronoun translation between En-

glish and German. They propose a word-dependency model between words aligned

to a source-side pronoun and words aligned to its source-side antecedent. This is for-

mulated as a bi-gram language model and integrated as a feature function into the

phrase-based SMT decoder Moses. BLEU scores are virtually the same between a

baseline and the extended system. They propose a pronoun-specific evaluation method

to get a more detailed insight into performance of pronoun translation. Via word align-

ments between the source document and reference translation, they collect the correct

translations of source-side pronouns. Similarly, via word alignments from the decoder
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between the source document and automatic translation, they collect proposed trans-

lations of source-side pronouns. Their evaluation score then captures the number of

correctly translated pronouns. However, since word alignments can be one-to-many

(including one-to-none), instead of accuracy they define precision and recall. The nu-

merator of both is defined as the count of a particular word occurring in the automatic

translation limited by the number of times this word occurs in the reference translation.

This count is then summed over all aligned words of the automatic translation. The

denominators for precision and recall are the number of words in the automatic trans-

lation or reference translation respectively. The translation system with the additional

feature function improves recall of pronoun translation by a small, but statistically sig-

nificant amount. The score captures pronoun translation accuracy only to a certain

degree, since it is inherently restricted to the sentence level, only comparing proposed

pronoun translations to reference translations. It does not take into account the actual

translation of the antecedents of pronouns, which might in fact require different pro-

noun translations than what the reference translation dictates. Furthermore, this score

is not tested with regards to what humans consider a correct translation.

Wong et al. (2011) present work on using lexical cohesion for SMT evaluation for

translation into English. They observe that previous SMT evaluation metrics oper-

ate sentence by sentence not taking into account document-level concepts of cohesion

and coherence. Furthermore they note that any document-level SMT evaluation met-

ric has to be verified against human judgements that are themselves obtained from

taking the whole document into consideration. The authors focus on lexical cohesion

which is observed as reiteration and collocation in a document. Lexical cohesion is

used appropriately by humans without problem. They use the right amount of lexical

cohesive devices to produce a cohesive text, while not overusing them (e.g. by reiter-

ating too often). The authors hypothesize that a difference of usage of lexical cohesive

devices in human translations vs. automatic translation is observable, since humans

know to use lexical cohesion appropriately, but SMT systems do not. They analyse

the amount of lexical cohesive devices among content words in both human and au-

tomatic translation, where the former shows a higher number of content words used

as lexical cohesive devices. This leads to their hypothesis that this difference can be

quantified and therefore lexical cohesion can be used as a measure of quality of SMT

output. They tackle the lack of document-level human judgements by manually anno-

tating documents according to their coherence. Coherence of a text can be shown if

consecutive parts within a sentence or complete sentences themselves can be conjoined
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by an appropriate relation label according to RST. For their annotation, they simplify

this idea and only consider entire sentences as minimal unit. A score is then given to

each sentence depending on whether it can be conjoined with another sentence with

an allowed relation (score of one), or not (score of zero), or if the annotator is unsure

(score of 0.5). These scores are then averaged over all sentences in the document.

The particular relation label is ignored. These annotated document-level scores are

compared to sentence-level scores of human adequacy judgements (provided by the

Metrics MATR08 task). The comparison shows that only for high sentence-level ade-

quacy judgements, both types of scores correlate. However, for lower adequacy judge-

ments, the document-level scores are more spread out across the scale. This shows

that sentence-level judgements do not fully reflect the information obtained through

document-level judgements. An experiment is then performed to verify the utility of

lexical cohesion as SMT evaluation metric. This is done by measuring the correla-

tion of the metric output with human judgements. A baseline metric is defined as the

unigram match of stemmed words between translation and reference (by using the F-

measure of precision and recall). The proposed lexical cohesion metric is defined as

the ratio of words used as lexical cohesive devices divided by the number of all con-

tent words. Since lexical cohesion is a high-level feature, it will not perform well on its

own. The authors therefore propose to linearly combine the baseline metric with the

lexical cohesion metric. Results show that correlation (measured with the Pearson cor-

relation coefficient) with document-level judgements of the combined metric is higher

than with the baseline alone. Just the lexical cohesion metric has positive correlation,

but is too weak on its own. Furthermore, when looking at correlation against sentence-

level judgements, the same ordering of performance is seen, although with a generally

lower correlation for all three metrics versions. The main difference to our work is

that the authors propose an evaluation metric based on lexical cohesion, whereas our

bilingual coherence model focuses on entity-based coherence. Furthermore, their met-

ric only considers the target-side and takes the degree of lexical cohesive devices used

as a measure of quality. Our evaluation metric is based on the coherence patterns

observed between the source and target side, thus providing more information to the

metric. Similarly to our work, the authors identify the need for document-level human

judgements to evaluate discourse-aware SMT evaluation metrics. While they focus on

discourse relations between sentences, we focus on entity-based coherence.

Wong and Kit (2012) follow up on their work (Wong et al., 2011) again focussing

on lexical cohesion for SMT evaluation. They reiterate that lexical cohesion is one
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means to make a text coherent and is represented by content words that are used more

than once in a document and that are in one of these relations with each other: syn-

onymy, near-synonymy, superordinate relation, repetition and collocation. For deter-

mining most of these relations they rely on WordNet (Fellbaum, 2006). The same

statistics of content words and various groups of lexical cohesive devices as in their

previous work are presented for a new dataset and source language (Chinese-English).

They show similar results in that there are more content words in the human trans-

lation, and that most of these additional content words are used as lexical cohesive

devices (mostly repetition). They experiment with two ratios used as SMT evaluation

metrics of lexical cohesion. The first one, i.e. the ratio of lexical cohesive devices

over content words (LC) is the same as in their earlier work. The additional one is

defined as the ratio of repetitions over content words (RC). The ratios are computed

for human translations and automatic translations and compared. Both RC and LC are

more stable among different human translations and more distributed among different

SMT translations. Furthermore, both LC and RC are almost always lower in SMT

translations than in human translations. The distributions of values are very similar in

both data sets. This leads the authors to the hypothesis that LC and RC can be used as

quality measures of SMT output. Since lexical cohesion is a high-level concept, they

propose to integrate it with low-level evaluation metrics. Instead of using a simple

unigram-based F-measure of precision and recall (as done before), the authors take es-

tablished sentence-level metrics BLEU, METEOR and TER. They are then combined

as in their earlier work by taking the weighted average of one sentence-level metric

and one document-level metric. The weight is optimized on sentence-level human ad-

equacy judgements from the Arabic-English Metrics MATR08 dataset, while testing is

performed on the Chinese-English MTC4 dataset, which is also on sentence-level hu-

man adequacy judgements. This is contrary to their earlier work, where they explicitly

collect document-level human judgements. Generally a lower weight is given to the

LC/RC ratios (between 0.18–0.40). BLEU and TER can be improved by integrating

the RC or LC ratio. However, METEOR does not benefit from them. At system level

there is a high correlation with human judgements for all metrics and combinations,

which drops considerably at document level. The major difference to our work and

also their earlier work is that the authors no longer verify their modifications to the

evaluation metric against the human judgements collected on document-level.

Guzmán et al. (2014) and Joty et al. (2014) propose an evaluation metric that uses

discourse structure in form of RST trees at the sentence level. Two similarity measures
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are tested that compare the discourse tree structures of a source and a target sentence.

This metric is combined with a range of existing discourse-unaware SMT evaluation

metrics. The authors note that there is a logical relationship between sentences follow-

ing each other. They further emphasize that the same relationship also exists between

clauses within a sentence. These logical relationships in coherent texts can for exam-

ple be exposed with discourse analysis based on RST. The authors hypothesise that

semantic and pragmatic information encoded in RST trees is beneficial for both SMT

in general and its evaluation in particular. An SMT system will benefit from preserv-

ing the source-side discourse structure when translating. The evaluation setting is the

focus of their work. In Guzmán et al. (2014), experiments are run on the WMT11

and WMT12 metrics shared task data sets for which only sentence-level human judge-

ments are available. Rather than working on the document level, the authors point out

that there are enough long sentences in the data that have a rich discourse structure

sentence-internally to show that discourse structure can be beneficial for SMT evalua-

tion. Four different languages are part of the experiments, i.e. French, Czech, German

and Spanish into English, respectively, however results are only reported by averag-

ing over all languages. Discourse trees in RST consist of elementary discourse units

(EDUs) at the leaf-level. Adjacent EDUs are then connected recursively via discourse

relations. Furthermore, nodes in the discourse tree are weighted by importance (i.e.

nucleus for important ones and satellite for additional information). Their discourse-

aware SMT evaluation metric is either based on a lexicalized (i.e. with words of the

sentence as part of the tree) or unlexicalized (i.e. no words) version of the discourse

tree. Tree similarity is then checked with subtree kernels (Collins and Duffy, 2001).

Finally, the discourse-aware SMT evaluation metric is combined with a wide range

of existing evaluation metrics from the ASIYA toolkit (Giménez and Màrquez, 2010).

These metrics range from lexical (including BLEU and METEOR) and syntactic in-

formation to semantic information. The effectiveness of the proposed SMT evaluation

metric is verified by computing the correlation with human sentence-level judgements.

These judgements are taken from the WMT11 and WMT12 news translation shared

task, where system outputs have manually been ranked. In total four different kinds

of experiments are run to test for correlation with human judgements of the proposed

variants of the SMT evaluation metrics. The first experiment evaluates the metrics on

system level. Both proposed discourse-aware evaluation metrics on their own have a

high correlation and improve existing evaluation metrics when combined with them

in most of the cases. The lexicalized proposed metric performs better than the un-
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lexicalized one. In the second experiment correlation is tested at segment level. The

unlexicalized metric performs very poorly and the lexicalized one only slightly better.

Both metrics on their own are outperformed by most of the existing metrics. However,

the lexicalized metric when combined with the existing metrics consistently improves

correlation. The metric combinations in the above two experiments are done by an

unweighted linear interpolation. In the third and fourth experiment human judgements

are used to tune weights for the metric combinations. These experiments are only per-

formed on segment level, both in a cross-validation setup and on two different data

sets. Weight tuning is done within a pairwise learning-to-rank framework with hu-

man sentence-level judgements as gold rankings. Tuning weights results in a bigger

improvement of the combined metrics over individual ones than their untuned coun-

terparts. Overall, experiments show that using discourse structure in SMT evaluation

can be beneficial. Contrary to our work, the authors focus only on sentence-internal

phenomena. Furthermore, they employ a wide range of existing evaluation metrics

to be combined with their proposed metric, while we focus only on information pro-

vided by the discourse level. Similarly to our work, they tune weights for the metric

combination in a learning-to-rank framework based on human gold rankings. We tune

individual components of our SMT evaluation metric based on human gold labels at

the document level within the same framework. Furthermore, we also exploit infor-

mation from the source document with respect to the target-side and do not compare

system output to reference translations.

Joty et al. (2014) describe their system submission to the WMT14 metrics task,

which is based on the work presented above. They manage to achieve the best results

in the task with the tuned evaluation metric consisting of the combination of ASIYA

metrics and discourse-aware metrics. They note that especially their unlexicalized

metric results in many ties when ranking two systems at segment level against each

other. They propose a tie-breaking heuristics proportional to system level scores of

their own metric. Ranking ties are also a major problem with our metric and remain

an important part that needs to be explored and tackled with discourse-aware SMT

evaluation metrics.

Gong et al. (2015) also identify the need for document-level SMT evaluation met-

rics in order to find out if document-level models for SMT are beneficial. They propose

two evaluation metrics. One is based on the overall consistency of a translation with

respect to reference translations. The other one is based on the degree of cohesion

again comparing it between the automatic and reference translation. The first metric,
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capturing the gist consistency, is realized with the help of monolingual topic mod-

els. These models provide a set of topics for a document and can be seen to capture

the main idea of a document. A monolingual topic model is trained with 120 topics.

The document-topic distributions are then inferred from a system output and from the

reference translation on document level. The Kullback-Leibler divergence (Kullback

and Leibler, 1951) is then used to determine how close these two document-topic dis-

tributions are. Based on initial experiments the authors found out that using the full

distribution leads to worse performance. They therefore suggest to only take important

topics into account, where importance is determined by the probability of a particular

topic given the document above a certain threshold. Since multiple reference transla-

tions are available, the final gist consistency is the score that is the lowest between the

system output and any of these reference translations. The second metric is capturing

the cohesion of a document. In particular, the number of matching lexical chains be-

tween a system output and a reference translation of a document is taken as a measure

of cohesion. Lexical chains are extracted based on a simple matching algorithm. All

nouns that have the same stem are grouped into one lexical chain. In order to give

credit to partially matching lexical chains between system output and reference trans-

lation, the number of matching members of the lexical chain is counted and divided

by the total number of members in the reference translation. This score is aggregated

over all matching lexical chains. If a lexical chain does not have a counterpart in the

reference translation, this is penalized by dividing the above score by the total number

of lexical chains in the system output of the document. Again, the best total score is

used for a document, comparing one system output against each reference translation.

The authors point out that their formulation is in contrast to Wong and Kit (2012) in

that the latter work only attempts to capture cohesion on the target-side without com-

paring it to the reference translation, following the hypothesis that a better translation

has more content words that are part of lexical chains. To test whether their evalu-

ation metrics are beneficial for SMT evaluation, they combine each proposed metric

with one of the two existing metric BLEU or METEOR. The combination is a simple

linear combination with weights tuned on a development set. Experiments are per-

formed for Chinese-English on two different data sets. Each of these data sets contains

four reference translations and between three and six different automatic translations

from different SMT systems. These system outputs also come with sentence-level hu-

man judgements that rated adequacy and fluency. To obtain document-level human

judgements, the sentence-level judgements are simply averaged over the document. To



2.3. Evaluation Metrics for Document-level SMT 29

determine whether the proposed metric combinations are helpful, correlation against

human judgments is measured with Pearson and Kendall correlation coefficients. All

four evaluation combinations result in an increase of correlation with human judge-

ments on both tested data sets with respect to BLEU and METEOR on their own. The

metric combination using gist consistency performs better. This is also confirmed with

the learnt weights of the linear combination, which are similar for the gist consistency

and BLEU or METEOR, but almost zero for the score based on cohesion. One of the

major differences to our work is that this work evaluates performance of the proposed

SMT evaluation metrics against human judgements that were elicited sentence by sen-

tence. These human judges could therefore not take into account the overall adequacy

of the translation of the entire document. An uncommented problem in their result is

that the correlation of BLEU with human judgements on one of the data sets is almost

zero, suggesting some problem either with BLEU or with the judgements on this data

set. Furthermore, it is not explicitly mentioned how lexical chains between system

output and reference translations are matched.

Luong and Popescu-Belis (2016) present work on integrating pronoun antecedent

information into the decoding process of a phrased-based SMT system for English-

French. They also present an automatic evaluation metric, APT, that focuses on eval-

uating the translation of pronouns. In a manual evaluation they identify problems with

this automatic metric, nevertheless showing a correlation with human judgements. Re-

sults of the proposed pronoun-aware decoder show that it outperforms a phrase-based

baseline in terms of these metrics, but not in terms of BLEU. Work on handling pro-

noun translation in a full SMT system failed to improve over the baseline of the Dis-

coMT15 shared task on pronoun translation (Hardmeier et al., 2015). The authors

point out that one of the problems might be the quality of coreference resolution sys-

tems. These systems are required to identify the antecedent of a pronoun, which bears

relevant features (e.g. number and gender). From a large parallel corpus where coref-

erence is automatically resolved, they learn a distribution of pronouns given antecedent

features of these uncertain antecedents. First, pronoun-antecedent pairs are automat-

ically extracted on the source side. Via word alignments, these pairs are projected to

the target side and features from the target-side antecedent are extracted. A probabil-

ity distribution on the target side over pronouns given these features is estimated with

relative frequencies from a large parallel corpus (IWSLT). This distribution is inte-

grated into the phrase-based decoding process as a back-off translation model, which

is only applied if a relevant source pronoun is identified. At decoding time, sentences



30 Chapter 2. Background and Related Work

with sentence-internal antecedents are first translated without the additional transla-

tion model. Then antecedent features are extracted. In a second translation of the

same sentence, the additional translation model is now used, based on the previously

extracted antecedent features. Pronouns with antecedents in preceding sentences can

be processed directly with the additional translation model. A new evaluation metric

for assessing the accuracy of the translated pronouns is presented. It is inspired by the

ACT metric (Hajlaoui and Popescu-Belis, 2013) that handles evaluation of discourse

connectives. The pronoun-focussed metric inspects a source pronoun to find out if it

is translated correctly. This is done by following word alignments from the source to

both the reference translation and the candidate translation. A pronoun is considered

to be correctly translated if the aligned target-side tokens are both identical or if they

both belong to the same set of equivalent pronouns. The metric score is then the ratio

of correct translations over all pronoun instances in the test set. The translations of pro-

nouns are also evaluated by humans. They are given the source and reference sentence

that contains a pronoun with one preceding sentence respectively. Furthermore, they

get the output of the translation systems in random order. The source-side pronoun to

be evaluated was specially highlighted. The annotators should judge the correctness

of the pronoun translation according to the antecedent in the target side (and not ac-

cording to the source-pronoun). Kappa’s inter-annotator agreement is 0.65, based on a

subset of overlapping annotations. A higher agreement of 0.94 between the two anno-

tators could be reached after resolving disagreements. Experiments are run on the test

set of the DiscoMT15 shared task. Due to coreference or alignment errors only about

50% of the pronouns in the test set are processed by the proposed translation model,

the others are handled by the standard translation model. The BLEU score does not

show any difference in performance. However, the extended translation system out-

performs a phrase-based baseline in terms of the proposed automatic metric. They

also evaluate in terms of the pronoun-focussed evaluation metric from Hardmeier and

Federico (2010), which provides a similar picture. According to the human annotators,

the proposed system is also better. The accuracy scores (automatic and human) have a

high correlation. However, the human-provided accuracy scores are much higher (20%

absolute) compared to the proposed automatic pronoun metric. This difference is due

to the fact that the proposed metric counts pronouns as incorrect if they do not match

the reference pronoun, despite the fact that they agree with their actual antecedent in

the system output. The major difference in their proposed evaluation metric compared

to ours is that it does not take the antecedent of the actual translation into account.
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The authors provide evidence that this is problematic, leading to many false negatives.

Furthermore, this evaluation metric only focuses on evaluation of pronoun translation,

whereas we attempt to capture the entire entity-based coherence of which pronouns are

a part.

Guillou and Hardmeier (2016) present a test suite containing 250 hand-selected

pronouns for evaluating SMT systems. They also provide an automatic method to

compare pronouns from an SMT system output with a reference translation. This test

suite is mostly designed for obtaining a deeper understanding of the pronoun transla-

tion performance of SMT systems, so non-matching pronouns are referred to human

annotators to make a final decision. The data set is the DiscoMT2015 test set (Hard-

meier et al., 2015) for English-French. The source side is manually annotated in the

same style as the ParCor corpus (Guillou et al., 2014). Referential pronouns are linked

to their closest non-pronoun antecedent. They are further annotated by their function.

The test suite consist of full documents, however only a selected number of pronouns

is used for evaluation. To obtain this selection, pronouns are grouped by their function

and according to typical problems in pronoun translation. From each group a number

of pronouns is selected that is proportional to the number of ways the respective pro-

nouns might be translated into French. Only the source-side pronouns it, they and you

are considered. An automatic evaluation script compares system pronoun translations

with the reference pronoun translation. Word alignments between source and reference

translation, and source and system translation is required. If the pronoun is anaphoric,

then the antecedent is also checked against the reference translation. Accuracy for

each pronoun group and for the entire test suite is produced. In a brief analysis from

system outputs of participating systems in the DiscoMT15 pronoun translation shared

task, the authors could identify a correlation between better performance of systems on

those pronoun groups that were explicitly handled by the systems, and a poorer perfor-

mance on pronouns not taken care of by the systems. The proposed evaluation script

is very similar to the one from Luong and Popescu-Belis (2016). The main difference

is that Guillou and Hardmeier (2016) take the reference antecedent into account when

computing a match. On the other hand, Luong and Popescu-Belis (2016) allow for

greater flexibility when it comes to accepting translation variants. Unlike our work

on SMT evaluation, this test suite requires manual annotation of pronouns and their

antecedents in the source documents. It furthermore relies on the correct identification

of the target-side antecedent based on the gold annotated source-side referent and au-

tomatic word alignments. Any errors in this projection would result in the evaluation
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script penalizing a system. Furthermore, a noun antecedent in the source document,

might not necessarily correspond to a noun antecedent in the target side.

2.4 Entity-based Coherence Modelling

Barzilay and Lapata (2008) present a framework for modelling local entity-based text

coherence referred to as the entity grid model (EGM). It is inspired by existing lin-

guistic theories, such as Centering Theory (Grosz et al., 1995) and other entity-based

theories, but does not attempt to implement a particular one. Additionally, the empha-

sis of the framework is on automatic computability of required representations. The

basic assumption of the EGM is that entity distributions in locally coherent texts fol-

low regular patterns. These distributions of patterns can then be used to train classifiers

for text ordering, evaluation of the coherence of automatically created summaries and

readability assessment. A text is first transformed into an abstract entity grid (EGrid)

representation which records occurrence and absence of entities in sentences. If an

entity occurs in a sentence, its syntactic role is specified (S for subject, O for object

and X for other). Only one entity mention per entity in a sentence is recorded. The

result is a matrix with rows representing sentences and columns representing entities.

This representation is then converted into a feature vector which holds distributional

properties of n-place entity transitions (e.g. none-subj or subj-obj-none). These vec-

tors are then used to train classifiers for the above three tasks, which learn to rank more

coherent documents higher than less coherent documents (both in terms of artificially

created data and according to human rankings) in the first two tasks and learn to pre-

dict readability scores for the third task. The first experiment is a sentence ordering

task.3 The sentences of a coherent document have been shuffled to produce documents

that are less coherent than the original one. A ranking function is then learnt such

that it ranks the most coherent document (the original one) highest and the artificially

created ones lower. For evaluation, accuracy is measured, which is the ratio of times

a pairwise ranking ranked the original document higher than a shuffled one, divided

by the total number of pairwise comparisons. Different model variants are explored

(with or without coreference resolution, syntactic roles and salience). Results show

the more linguistic information is included in the model, the better it performs. Per-

3The sentence ordering task does not try to restore the correct order of a shuffled text, but the task
is restricted to ranking a number of shuffled documents lower than the original document in terms of
coherence.
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formance varies across different domains (newspaper articles vs. accident reports) and

the three different parameters vary in usefulness or unimportance. One baseline is

outperformed on both domains, whereas a second baseline (which is lexicalized and

captures global coherence) is slightly better on one domain. Since complementary in-

formation seems to be modelled, the authors suggest to combine both types of models

for further benefits. The second task is similar, however this time the shuffled doc-

uments are replaced by documents generated by various text summarization systems

and graded by humans as to how coherent they are. Furthermore, the original (i.e.

coherent) document was supplemented by human generated summaries, which are as-

sumed to be highly coherent as well. In this way the EGM can be evaluated against

human judgements of pairwise coherence ratings. As in the previous experiment, using

more linguistic information results in better models. However, this time results show

that when using the more sophisticated automatic coreference resolution results are

worse compared to the simple noun-identity matching coreference resolution version.

This is attributed to the fact that machine generated summaries are noisier and pose

more difficulties to the automatic coreference resolution system. It is also observed

that automatic summaries use pronouns less frequently than humans, so an easier noun

matching resolution model is sufficient. The third experiment tested whether the EGM

would be useful for improving readability assessment, which means determining how

easy or difficult it is to read a particular document. They treat this task as a classifica-

tion task with binary labels (easy vs. hard to read) and use a Support Vector Machine

(SVM) (Joachims, 2002) as classification model. As data articles from the Encyclope-

dia Britannica (hard) and their equivalent versions written for children (easy) are used.

The coherence feature vector was added to baseline features established in Schwarm

and Ostendorf (2005). Results show big improvements when coherence features are

added. However, coherence features on their own were not sufficient and performed

worse than the baseline system.

Guinaudeau and Strube (2013) reformulate the above model from Barzilay and La-

pata (2008) and represent the EGrid in a bipartite graph with sentences and entities

as the two mutually exclusive node sets. They call it the entity graph (EGraph). An

edge between an entity and a sentence records a mention of that entity in that sentence.

The syntactic roles are encoded as edge weights where S, O, X are assigned 3, 2 and

1 respectively. The bipartite graph is then projected to a graph with just the sentence

nodes (i.e. one-mode projections) where an edge between two sentence nodes is estab-

lished if an entity is mentioned in both sentences. The EGraph only captures entities
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that cross sentence boundaries, since singleton entities do not influence the resulting

one-mode projection. Furthermore, entities that are not mentioned in a particular sen-

tence are no longer explicitly represented. Three different one-mode projections are

formulated: PU where an edge with weight 1 exists if at least one entity is mentioned

in both sentences; PW where the edge weight is the count of how many different enti-

ties are mentioned in both sentences; and PAcc where the counts are weighted by the

syntactic role weights. Instead of learning a ranking function Guinaudeau and Strube

(2013) show that they can use a score derived from the one-mode projections directly.

They use the average out-degree (AOD) which is defined as the sum of the weighted

edges in the one-mode projection divided by the number of sentence nodes.

The above two models inspire our bilingual model of coherence and the SMT eval-

uation metric based on this model. We take over the abstraction of recording only one

entity mention of an entity in a sentence. Furthermore, similarly to the EGraph, we do

not record singleton coreference chains or coreference chains with mentions in just one

sentence. The major difference is that our setting is bilingual and we attempt to model

the patterns of coherence across the two languages. We furthermore define experimen-

tal tasks for the bilingual setting with an artificially created corpus with automatically

obtained gold labels and on a realistic data set with gold labels extracted from human

annotation.

Sim Smith et al. (2015) point out that if discourse-level problems in SMT are to

be tackled, labelled data representing coherence violations is required, but it does not

yet exist. Coherent data is available everywhere and output of current SMT systems

could be considered incoherent. However data of the latter type also exhibits many

other errors that are not related to coherence at all. This would make it difficult to

assess any advances in coherence modelling for SMT specifically. The authors fur-

ther note that manually annotating an automatically translated corpus with respect to

coherence or errors thereof is a hard task in terms of formalizing the annotation, anno-

tation cost, and time. In monolingual settings, coherence has been modelled in various

ways. These models are either evaluated against human judgements of coherence (e.g.

judging automatically created summaries). Alternatively, they are evaluated on data

that has artificially been made incoherent by shuffling the order of sentences in a docu-

ment. The proposal in Sim Smith et al. (2015) follows the latter approach and sketches

a plan to create a corpus where coherent target-side documents are taken as a start-

ing point. These are then made incoherent by introducing coherence errors based on

distributions of typical coherence errors found in existing translations and based on
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linguistic insight. In a corpus analysis and based on previous work that tackles is-

sues of discourse in SMT, the authors present the following common errors related

to coherence. Lexical cohesion, as part of the overall coherence encourages consis-

tent translations of lexical items. However, if lexical chains are wrongly identified,

this gives the wrong translation incentives, enforcing consistent translation of unre-

lated lexical items, which leads to incoherent texts. Anaphora resolution is a difficult

problem for SMT. Antecedents might occur outside of the sentence context and lan-

guages differ in their usage of gender and number agreement between antecedents and

referring expressions. This might result in incorrect or missing translations of referring

expressions, which has a direct impact on coherence. Discourse connectives might be

implicit in the source language and therefore missing in the translation, and they can

also be ambiguous. Both issues might result in incoherent translations. Syntax and

clause reordering is also important in translation as too much or to little reordering

might render the sentence incoherent. Finally, missing or wrong negation on the target

side introduces incoherent translations. With a set of operations, i.e. replace, delete,

add, and shift, errors can be introduced in the original document and the degree of error

introduction can be controlled for. Constructing corpora with the above described er-

rors is left for future work. It therefore remains to be seen how beneficial this proposal

is. In our experiments on bilingual coherence modelling we also employ the idea of

introducing artificial errors to obtain automatic coherence judgements. However, we

base our error introduction on the distribution of errors made by CLPP systems. This

means we only focus on the issue of referring expressions. However, we can introduce

errors automatically and do not have to manually define the errors that are introduced,

while also controlling for the degree of confusions introduced.

Sim Smith et al. (2016) present work on measuring coherence of SMT output using

monolingual coherence models. They evaluate the performance of these models on a

standard sentence shuffling task, where in a coherent document, the sentences have

been randomly shuffled. More importantly, they present a new task where the coher-

ence has to be assessed comparing automatically translated documents against their

human reference translation. They first present three existing monolingual coherence

models. First the EGrid model (Barzilay and Lapata, 2008) and second the EGraph

model (Guinaudeau and Strube, 2013) both presented above. The third model is by

Louis and Nenkova (2012) which exploits the assumption that in coherent texts, two

adjacent sentences contain similar syntactic patterns. However, patterns between the

two sentences are not mapped to each other via alignment information. Sim Smith
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et al. (2016) therefore propose an extension to this model where they add this align-

ment information as latent variable, following the intuition that certain pattern pairs are

more likely in adjacent sentences. Experiments are run on the WMT14 test data set for

German, French and Russian into English, respectively. For the shuffling task only the

human reference translations are used. For each document, one random permutation

of sentences is produced. The former documents are considered to be coherent, the

latter documents are considered to be incoherent. For the translation task, the human

reference translations are used as the coherent documents. As incoherent documents,

all outputs of the participating SMT systems from the WMT14 translation task are

taken. This follows the assumption that these translations systems produce text that is

less coherent than the human reference translation. Three different evaluation scores

are computed. The first one counts how often the human reference document is ranked

strictly higher than the incoherent documents. The second one also includes in these

counts any rankings where the model could not differentiate between human refer-

ence and incoherent documents. The third one, only applicable to the translation task,

counts how often the human reference is strictly ranked highest over all translations.

The results on the shuffling task show that the proposed enriched model of coherence

based on Louis and Nenkova (2012) outperforms the original model considerably. The

performance is comparable to the EGrid model. Results on the translation task show

that the scores are much lower than for the shuffling task, since the former task is more

difficult. As before, in the translation task the proposed model always outperforms its

original counterpart. The best performing model can score the human reference higher

than the SMT output in between 58% and 67% of the cases. There is no clearly best

performing model over all languages and all evaluation scores. The evaluation score

drops considerably if the human reference has to be ranked as coherent against all

SMT translations for a given document. There the best performing models score be-

tween 20% and 28%. Factors that contribute to different performances are the quality

of the reference translation or the closeness between the source and target language.

The major differences to our work are that their models of coherence are only assessing

coherence on the target side, disregarding the coherence patterns from the source doc-

ument. While they investigate different language pairs, the different source languages

only indirectly influence their monolingual coherence model scores in that the SMT

output tends to be closer to the source document and therefore the translation tends

to contain patterns different from human translations. Furthermore, they do not take

coreference into account, which is the major source of information for the monolingual
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models and our bilingual model.

2.5 Coreference Resolution Evaluation

Vilain et al. (1995) define an evaluation metric for comparing the performance of au-

tomatic coreference resolution systems against a gold standard annotation. It is a pre-

cision and recall metric that is defined over the equivalence classes which are obtained

by grouping all mentions that are coreferent into one set.4 For recall, the difference be-

tween system (i.e. response) and gold (i.e. key) classes is then defined as the minimum

number of links that need to be added between mention groups to create the gold class

from the system class. To compute precision, the roles of the gold and system equiv-

alence classes are swapped. This metric is hence defined over equivalence classes,

and does not compare links between individual entity mentions. For both scores, the

equivalence classes of system and gold standard are extracted. For recall, assume one

class of the gold standard is defined as S, and R1,R2, . . . ,Rm are all the equivalence

classes defined by the system response. Intersecting S with all these Ri partitions S

into sets of mentions, each being the result of the intersection with a specific Ri. Each

remaining element in S that was not affected by any intersection forms a singleton set

in the partition (i.e. a set with just one mention). For recall, these singleton sets contain

the mentions that are annotated in the gold standard, but which were not identified by

the system, as belonging to the coreference chains denoted by S. All these partitions

together are referred to as the set of partitions p(S). Recall for one gold equivalence

class S is then defined as |S|−|p(S)||S|−1 . The numerator is the minimum number of links

that is necessary to add to the system response (i.e. to the partition of S with respect to

the response equivalence classes Ri) in order to create the equivalence class S. The de-

nominator is the minimum number of links between gold standard mentions in S that is

necessary to create the equivalence class S. To extend that to an entire test set, one can

sum over all gold equivalence classes as follows ∑ |Si|−|p(Si)|
∑ |Si|−1 . As mentioned above, to

compute precision, the sets which define S and Ri are simply swapped between system

and gold sets. This metric is referred to as the MUC score in the literature.

Bagga and Baldwin (1998) identify two shortcomings with the MUC6 scorer (Vi-

lain et al., 1995). First of all it does not give any credit for correctly identifying single-

4Vilain et al. (1995) use terminology in a different way than we do here: They call noun phrases
entities, we call them mentions or entity mentions. One coreference chain forms an equivalence class,
which we also call entity, i.e. the entity to which all members of the chain (or equivalence class) refer.
Hence, our entity is not to be confused with the entity in the described paper.
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ton entities, since the equivalence classes are expected to contain at least two mentions

(the precision and recall formulae would be undefined, i.e. division by zero, if sin-

gleton entities were allowed). Second, all types of coreference resolution errors are

considered to be equivalent. According to the authors this is counterintuitive. For ex-

ample, if two long coreference chains are wrongly linked by the system, this is a more

severe error than wrongly linking a long chain with a short one (i.e. less entities are

wrongly linked together).5 Instead of comparing how much system entities partition

gold entities (or vice versa), which is the way the MUC6 scorer is defined, the B-cubed

metric is mention-specific and computes precision and recall for each mention with re-

spect to all other mentions in an equivalence class. Precision and recall are therefore

defined for each entity mention mi. For a specific mi the number of correct entity men-

tions in a system output chain containing mi is counted. For precision, this count is

divided by the total number of mentions in that system output chain. For recall, this

count is divided by the total number of mentions in the gold chain. The final precision

and recall scores are then defined as the weighted sum over all mention-specific preci-

sion and recall scores in a document. This metric is referred to as the B3 or B-cubed

score in the literature.

Luo (2005) point out that entity mentions can be used for matching more than

once in the above evaluation metric, thus artificially inflating the performance. They

therefore propose CEAF, the constraint entity-alignment F-measure. It aligns entities

from the gold standard and the system output with the constraint that each entity in

the gold standard can only be aligned at most once with one in the system output, and

vice versa. The alignment is optimized such that it maximizes entity similarity, while

following the constraint that entities can only be aligned once. For finding this optimal

entity alignment, the Kuhn-Munkres (KM) algorithm is used. The above setup requires

a definition of similarity between two entities. Luo (2005) provide two suggestions.

The first one is a mention-based similarity measure, which simply counts how many

entity mentions from a system chain and a reference chain match. In other words, this

reflects the ratio of mentions that are in the correct chain. The alignment that produces

the maximum of this score over all system and reference chains is searched. The found

score is then divided by the total number of mentions in all system output chains (for

precision) and divided by the total number of mentions in all reference chains (for

recall). The second similarity measure is an entity-based similarity measure, which

5Bagga and Baldwin (1998) use the same naming convention as in (Vilain et al., 1995), which is
different from ours. See footnote 4.
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also counts how many entity mentions from the system chain and the reference chain

match, but in addition normalizes this count by the number of entity mentions within

system and reference chain. In other words, this reflects the ratio of correct entities.

Again, the alignment that produces the maximum of this score is searched. The found

score is then divided by the total number of system chains (for precision) and the total

number of reference chains (for recall). The F-measure of precision and recall is then

taken as the final evaluation score. It automatically penalizes systems that generate too

many chains (which lowers precision) and systems that generate to few chains (which

lowers recall). When using the first similarity measure, this produces mention-based

CEAF (or CEAF-m), and the second one produces entity-based CEAF (or CEAF-e).

These evaluation metrics all compare gold coreference chains against coreference

chains hypothesized by a coreference resolution system. From a high-level perspec-

tive this setup is related to our setup in the SMT evaluation metric based on bilingual

coherence in that it is based on comparing entities (i.e. coreference chains) from the

source document with the ones occurring in the target document. From one angle this

could be viewed as the source-side entities being the gold standard coreference chains,

and the target-side entities being the coreference chains hypothesized by a coreference

resolution system. In fact Miculicich Werlen and Popescu-Belis (2017) take this view

in their experiments. They first project the target-side coreference chains to the source-

side and then compute the above three presented coreference evaluation metrics. They

then use this score to rerank translation hypotheses that maximize the scores. Their

work however relies on gold-standard annotations of coreference chains on the source

side.

This is the major difference to our work. To define a scalable SMT evaluation

metric, we wanted to base it on automatic coreference resolution systems (in both lan-

guages from the language pair involved). However, these systems make errors them-

selves such as wrongly linking mentions into one coreference chain, or missing a link.

We therefore can no longer assume that we have a gold standard on the source side.

The coreference resolution evaluation metrics, however, were designed to maximize

the matching between gold standard and system output, so they are not directly appli-

cable.

Our SMT evaluation metric is nevertheless inspired by these metrics. First of

all, we also use the KM algorithm to find the optimal one-to-one alignment between

source-side and target-side entities. However, instead of inflexibly punishing corefer-

ence chains that are too short or too long on the target-side (with respect to the source),
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we provide this information as a feature in a feature vector, whose weights then can be

tuned. In that way the errors of the coreference resolution systems can be taken into

account.

The CEAF metric offers two versions, one which focuses on the performance of

each mention, and one that compares entities as a whole. In our bilingual EGM for

SMT evaluation we also have an entity perspective and a mention perspective. In the

first one, we record how many entities have matching counterparts and how many re-

main unalinged, and in the second one, we count how many mentions are inserted,

deleted or have a matching counterpart in both languages. Contrary to the CEAF met-

ric, we integrate both views into our feature vector, so that they can both contribute to

the assessment of bilingual coherence.

Another major difference between these coreference evaluation metrics is that we

do not take each single entity mention into account, when aligning the entities. Inspired

by the monolingual EGM and the salience of entity mentions, we only take the most

salient entity mention per sentence into consideration. This also provided us with

an abstraction that is useful for abstracting away from minor language-specific details.

Furthermore, we do not take singleton chains into account, since they do not contribute

in the coherence of a document.

Finally, none of the above three papers explain in detail, how exactly it is deter-

mined that a gold entity mention and a system entity mention are the same. The im-

plicitly assumed setup is most likely that gold markables, i.e. spans of potentially

referential or non-referential mentions, are known to the coreference resolution sys-

tem. In that case it is then trivial to determine equality, since the participating entity

mentions would always have the same span in gold annotation and system output.

Other possibilities are also conceivable, such that mentions are deemed to be equal,

if their semantic head words are identical, irrespective of any surrounding words in

the markable span. Another definition could take the word overlap of both spans into

account. Any of these approaches do not work directly in the cross-lingual setup. The

least requirement would be to have word alignments, so that markable span corre-

spondences could be mapped from one language to another. This is the approach that

Miculicich Werlen and Popescu-Belis (2017) take, where they then rely on heuristics

to determine the markable span mapped from the target-side onto the gold annotations

of the source side. In our work, this is not directly applicable and necessary, since each

coreference chain only records one mention within a sentence. Furthermore, we do not

want to prescribe that the markable spans across two languages have to be exactly the
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same. This should be verified in a parallel corpus annotated for coreference in both

languages.





Chapter 3

Pronoun Translation for SMT with

CLPP

In this chapter, we focus on the problem of automatic pronoun translation, as an in-

stance of discourse-level phenomena that SMT systems have to deal with. We first

present the two shared tasks on cross-lingual pronoun prediction (CLPP) which were

set up in order to explore and better understand the problem of pronoun translation

and to establish a basis for researchers to work on it (Section 3.1). We then present

both CLPP systems we submitted to each of the shared tasks (Wetzel et al., 2015;

Wetzel, 2016). The first one handles the English-French language pair (Section 3.2)

and experiments show that the target-side features are more important than source-

side features, confirming linguistic knowledge. More specifically, they also show that

having access to the antecedent of a referential pronoun and the grammatical features

of the antecedent is beneficial for performance. Our second system validates that the

taken approach also generalizes to English-German and is still suitable with the im-

poverished target-side representation from the CLPP16 shared task (Section 3.3). In

that section, we also explore the use of a feature that learns to predict the empty word

showing its benefit, and experiment on integrating sequence information into the pre-

diction with negative results. Finally, we discuss the impact of and draw conclusions

from both our systems and the conducted experiments (Section 3.4).

3.1 Pronoun Translation and the CLPP Shared Tasks

Translation of pronouns is a non-trivial task due to ambiguities in the source language

(event pronouns, referential and non-referential uses) and due to diverging usage of

43
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pronouns between two languages (e.g. morphological differences including gender

and number and differing agreement constraints between a pronoun and its antecedent,

or pro-drop languages that leave subject pronouns implicit, cf. Section 2.1.2). In the

recent past there has been work on analysing these differences and there are various

approaches to tackle the problem for SMT (Le Nagard and Koehn, 2010; Hardmeier

and Federico, 2010; Guillou, 2012; Weiner, 2014; Hardmeier et al., 2014; Guillou

et al., 2014).

The DiscoMT 2015 shared task on pronoun translation (Hardmeier et al., 2015)

called for contributions to tackle this problem for English-French.1 It consists of two

sub-tasks, i.e. a full translation task where evaluation focuses on the performance of the

translation of pronouns, and a CLPP task which worked with a fixed human-authored

target-side, enabling automatic evaluation. We focus on the latter task. A second

instance of this shared task was offered at WMT 2016 (Guillou et al., 2016), this time

only offering the CLPP shared task.2 In addition to the English-French language pair,

it introduced data sets for English-German, as well as the inverse translation directions

from French and German into English. Throughout this thesis we will refer to these

tasks as the CLPP15 and CLPP16 shared tasks.

3.1.1 Shared Task Setup

In the CLPP shared task pronoun translation is treated as a classification task. Given

a set of source-side pronouns, a classification into a closed set of target-side pronouns

(or classes) has to be made for each of these source-side pronouns. Training and test

data consists of full parallel documents with aligned sentences. In each document the

entire source-side is given. Each parallel document also comes with word-alignments.

On the target-side pronouns were removed and replaced by special REPLACE tokens.

These mark the position where a particular target-side pronoun occurs. Furthermore,

the REPLACE token provides a reference to the position of the source pronoun it cor-

responds to. The training data additionally provides the original pronoun that each

REPLACE token substituted, as well as the official class the pronoun is assigned to.

Example (1) shows one pronoun instance it taken out of a document with gold label

elle as follows:

1https://web.archive.org/web/20151202210858/http://www.idiap.ch/workshop/
DiscoMT/shared-task

2http://www.statmt.org/wmt16/pronoun-task.html

https://web.archive.org/web/20151202210858/http://www.idiap.ch/workshop/DiscoMT/shared-task
https://web.archive.org/web/20151202210858/http://www.idiap.ch/workshop/DiscoMT/shared-task
http://www.statmt.org/wmt16/pronoun-task.html
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English source pronouns it, they

French target pronouns CLPP15 ce, elle, elles, il, ils, ça, cela, on, OTHER

French target pronouns CLPP16 ce, elle, elles, il, ils, cela, on, OTHER

German target pronouns CLPP16 er, sie, es, man, OTHER

Table 3.1: Overview of source- and target-side pronouns involved in the CLPP shared

tasks for English-French and English-German in 2015 and 2016.

(1) Source: He said he ’d been listening to the symphony and it was absolutely

glorious music [. . .]

Target: Il raconta qu’ il avait écouté une symphonie et qu’ REPLACE10 était

fabuleuse [. . .]

Gold label: elle – CLPP15 development set

Not all pronouns on the source and target-side are of interest in the shared task.

Focus is put on a small set of potentially ambiguous pronouns on the source side, and

a manageable set of pronouns on the target side (so as not to provide too many class

labels for learning classifiers). The set of English source pronouns for all tasks are

the same, i.e. it and they. The set of target side pronouns of the first shared task for

English-French is the following: ce, elle, elles, il, ils, ça, cela, on, OTHER. For the

second shared task the two pronouns ça and cela were merged into one class. The

English-German target-side pronouns are er, sie, es, man, OTHER. An overview is

provided in Table 3.1.

The OTHER class groups together any translation of the source pronouns that does

not fall into one of the defined classes, i.e. less frequent translations. It also includes

cases, where the source-side pronoun does not have a target-side counterpart according

to the provided word alignments. We refer to this special case as NONE. Furthermore,

it also captures alignment errors, where the source pronoun should have been aligned

to an existing target side pronoun.

The target side of both CLPP shared tasks consist of human reference translations.

This makes it possible to study and tackle the problem of pronoun translation indepen-

dently of further SMT processing. It abstracts away from additional difficulties that

arise with noisy automatic translations. One of the major differences in the CLPP16

shared task compared to the one from 2015 is the target-side data. It comes in the form

of lemmatized tokens with their POS tag, instead of the full word forms. This makes
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the task more challenging, since agreement features of words surrounding a pronoun

are no longer available. For example all determiners are mapped to one generic form

irrespective of their gender or number. Guillou et al. (2016) also argue that it makes

the task more realistic, when considering SMT as the driving goal. SMT systems do

not necessarily produce the correct target-side surface word forms and approaches to

pronoun translation should not rely on error-free translations of the relevant context.

This change therefore attempts to obtain models that can better handle noisier or un-

derspecified input.

The shared task training data consists of the Europarl corpus (Koehn, 2005), the

NewsCommentary corpus3 and the IWSLT corpus (Cettolo et al., 2012), which consists

of TED talks.4 The development and test data are also TED talks, which generally are

long documents (between 48 and 246 sentences) with a higher frequency of pronouns

than news article data commonly used in SMT experiments (cf. Ruiz and Federico,

2014; Guillou, 2016, Chapter 4).

3.1.2 Shared Task Baseline

The baseline system for the shared task (Hardmeier et al., 2015, Section 4) predicts

pronouns based on a LM. The idea behind it is to choose for each sentence the pro-

noun out of the set of class labels that maximizes sentence probability according to

the LM. The LM is a 5-gram model with Kneser-Ney smoothing. It is trained using

KenLM (Heafield, 2011) and the data sets from the shared task: IWSLT, Europarl,

NewsCommentary and news data from WMT2007-2013. The trained Kneser-Ney LM

is also provided as part of the shared task data.

In detail, the baseline works as follows. If there is only one REPLACE token in a

target sentence, then the baseline first substitutes this token with one of the class labels,

and computes the probability of the entire sentence with the LM. This is done for each

class label that represents an actual pronoun.

The OTHER class is treated slightly differently, since it cannot be directly sub-

stituted into the sentence. The LM has not seen this token during training, and would

therefore penalize the overall sentence probability. Instead, the most frequently aligned

target-side words to source-side pronouns (excluding the above class labels), are sub-

stituted.

3http://opus.lingfil.uu.se/News-Commentary.php
4https://www.ted.com/

http://opus.lingfil.uu.se/News-Commentary.php
https://www.ted.com/


3.2. A Maximum Entropy Classifier for CLPP 47

Furthermore, a prediction is made computing the sentence probability, when sub-

stituting the REPLACE token with the empty string (referred to as NONE). Since n-gram

LMs generally give higher probabilities to shorter sentences, a tunable penalty is added

to each NONE prediction, discouraging the baseline to predict NONE too frequently.

The class label, the most frequently aligned word, or the NONE token that resulted

in the sentence with the highest probability is then taken as the prediction of the base-

line for that pronoun instance. In the latter two cases, the prediction is first mapped to

the OTHER class.

If there are multiple pronoun instances in a sentence, the best combination of RE-

PLACE token substitutions is searched. Due to combinatorial explosion the search

space can get very large if there are many REPLACE tokens in one sentence. There-

fore, the search space is pruned if it exceeds 5000 sentence queries and only the 200

sentences with highest probability are retained.

The LM is purely oriented on the sentence level and does not take a wider context

into account. It therefore has the same shortcomings as full SMT systems. Further-

more, it only considers the target-side when making the pronoun predictions.

3.2 A Maximum Entropy Classifier for CLPP

In this section we describe our submission to the DiscoMT 2015 shared task on CLPP

for English to French. Our approach builds on a MaxEnt classifier that incorporates

features based on the source pronoun and local source- and target-side contexts. Ad-

ditional, discourse context is taken into account by extracting features from the target-

side noun referent (i.e. the antecedent) of a target-side pronoun.

A MaxEnt classifier can model multinomial dependent variables (discrete class

labels) given a set of independent variables (i.e. observations). Each observation is

represented by a set of m features extracted from the observation. The m features

can provide overlapping evidence, hence do not have to be independent of each other.

The model consists of a function f (xi,yi)→Rm+1 that maps the i-th observation x and

associated label y to a real valued vector. It also has a weight vector~θ of corresponding

size, which contains the model parameters that are learned from the training data. The

model is of the form

p(y|x) = exp~θ · f (x,y)
Z(x)

where Z(x) is a normalizing factor ensuring valid probabilities.
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. . . une symphonie et qu’ elle était . . .

. . . the symphony and it was . . .

antecedent

Figure 3.1: Antecedent of a pronoun within local context, which is also captured by a

5-gram language model.

si des institutions comme . . . les ONG peuvent travailler au développement social , elles sont sous-financées

while institutions such as . . . NGOs may work on social development , they are under-funded

antecedentaligned

antecedentco−ref

Figure 3.2: The lower sentence is in the source language (English), the upper on is in

the target language (French). The antecedentcore f of they on the English sentence is

determined with a coreference resolution system. The target-side antecedentaligned is

obtained by following the word alignment links. In the shared task, the target pronoun

elles is the pronoun that has to be predicted.

3.2.1 Features

Local Context

The local context around the source pronoun and target pronoun can contain the an-

tecedent (cf. Figure 3.1) or other relevant information, such as the inflection of a

verb which can provide evidence for the gender or number of the target-side pronoun.

Therefore, we include the tokens that are within a symmetric window of size 3 around

the pronoun. We integrate this information as bag-of-words, but separate the feature

space by source and target side vocabulary and whether the word occurs before or

after the pronoun. Special BOS and EOS markers are included for contexts at the be-

ginning or end of sentence, respectively. We neither remove stopwords nor normalize

the tokens.

We also include as features, the POS tags in a 3-word window to each side of

source and target pronouns. This gives some abstraction from the lexical surface form.

For the source side we use the POS tags from Stanford CoreNLP (Manning et al.,

2014) mapped to universal POS tags (Petrov et al., 2012). For the target side we use
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coarse-grained POS tags obtained with Morfette (Chrupała et al., 2008).5

Language Model Prediction

LMs provide a probability of a sequence of words and are trained on large monolingual

corpora. They are used in SMT as a model to encourage fluency, i.e. producing typical

target-language sentences.

We include the prediction of a target-side LM as a feature for the classifier. A 5-

gram LM is queried by providing the preceding four context words followed by one of

the eight target-side pronouns that the class labels represent. The pronoun that has the

highest prediction probability is the feature value that we include in the feature vector.

The ninth class OTHER requires special treatment, since it represents all other tokens

that are aligned to a source-side pronoun. It does not itself appear in the LM training

data. To get an accurate prediction probability for this aggregate class one would have

to iterate over the entire vocabulary V (excluding the other eight pronouns) and find

the most likely token. Since this would require a huge amount of LM queries overall

(|V |× number of training instances) we approximated this search by taking the 40

most frequent tokens that are observed in the training data in the position which is

labelled as OTHER. The highest prediction probability is then used to compete with the

probabilities of the other explicit classes. We use the trained LM model provided by

the shared task.

Target-side Antecedent Information

The closest target-side noun antecedent of the pronoun determines the grammatical

features the pronoun has to agree with, i.e. number and gender in both French and

German. Furthermore, if an antecedent exists, this marks the pronoun as referential,

therefore discouraging translations of non-referential pronouns. We first apply the

deterministic Stanford coreference resolution system, Stanford DCoref, (Lee et al.,

2013) to the source side to determine the coreference chains in each document of the

training data. We then project these chains to the target side via word-alignments

(cf. Figure 3.2). The motivation to obtain target-side coreference chains in that way

rather than computing them on the target side directly is three-fold. First, the target

side of the training data is missing most of the target-side pronouns since it is the

task to predict them. Therefore, relevant parts of coreference chains are missing and

5https://github.com/gchrupala/morfette

https://github.com/gchrupala/morfette
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the place-holders for these pronouns might introduce additional noise to the target-

side coreference resolution system. Secondly, we have a SMT scenario in mind as

an application for cross-lingual pronoun prediction. Applying a coreference system

to SMT output of already translated parts of the document is subjecting the resolution

system to noisier data than it was originally developed for. Thirdly, resources and

tools for automatic coreference resolution are more easily available for English than

for French. In fact up till now there is no end-to-end coreference resolution system

available for French.

Given the projected target-side coreference chains in a document, we greedily

search for the closest noun token in the chain in the preceding context for each pro-

noun instance. The reason why we do not just search for the closest noun-antecedent

on the source side and then take its projection is that nouns do not necessarily have to

align to nouns, but could be aligned to NULL, pronouns, or other words. This found

entity mention is included in the training data for the classifier as lexical feature. In

addition, we extract morphological features from the noun (i.e. number and gender)

by automatically analysing the target-side sentences with Morfette.6 In cases where

the pronoun was not assigned to a coreference chain, a special indicator feature was

used. In addition, the word alignment can align one source token to multiple target

tokens. We searched for the first noun in the aligned tokens and considered this to be

the representative head antecedent of the given pronoun. If no noun could be found

with this method, we resorted to taking the best representative antecedent of the source

chain as determined by the Stanford coreference system and took the aligned token as

the relevant target-side antecedent. In this case null alignments are also possible and a

special indicator feature is used for that.

Pleonastic Pronouns

Pleonastic pronouns are a class of pronouns that do not have a referent in the discourse

(i.e. they are non-referential) and they act as dummy subjects in constructions such

as “It is raining”. Their surface form in English is indistinguishable from referential

forms. Nada (Bergsma and Yarowsky, 2011) is a tool that provides a probability esti-

mate for it pronouns whether they are non-referential.7 We include these estimates as

6Morfette’s performance is quite robust and can handle sentences that contain REPLACE xx tokens,
which are the placeholders for target-side pronouns that have to be predicted. A comparison of the
performance on the original sentences and the sentences with the REPLACE xx tokens showed only
minor differences.

7https://code.google.com/p/nada-nonref-pronoun-detector/

https://code.google.com/p/nada-nonref-pronoun-detector/
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an additional feature. This should provide information especially for the French class

labels that can be used as pleonastic pronouns, e.g. “il pleut (it is raining)” or “ça

fait mal (it hurts)”. Bergsma and Yarowsky (2011) suggest to use a threshold on the

computed probability to make a discrete decision whether a pronoun is referential or

not, however we use the probability estimate directly as a feature.

In addition, the rule-based detection of pleonastic pronouns is only basic in the

Stanford DCoref system (cf. Lee et al., 2013, Appendix B). However since they do

not have a referent, they cannot be part of a coreference chain. Therefore, we expect

this feature to also counteract wrong decisions by the coreference resolution system

to a certain degree. Since Nada only provides estimates for it, we do not have such a

feature for pleonastic uses of the other source pronoun of the task they.

3.2.2 Experiments and Evaluation

Data

The shared task provides three corpora that can be used for training. The Europarl7

corpus, the NewsCommentary9 corpus and the IWSLT14 corpus which are transcripts

of planned speech, i.e. TED talks. Only the latter two corpora come with natural

document boundaries. Since these boundaries are necessary for coreference resolution,

we did not use the Europarl corpus. The test data contains 1105 pronoun classification

instances within a total of 2093 sentences in twelve TED talk documents.

Classifiers

We use Mallet (McCallum, 2002) to train the MaxEnt classifier.8 The variance for

regularizing the weights is set to 1 (default setting).

We trained classifiers in two different setups. The first setup provides all our ex-

tracted features as training data to one MaxEnt classifier, including the source pronoun

as additional feature for each training instance (from now on referred to as the ALLI-

NONE system). The second setup splits the training data into the two source pronoun

cases (it and they) and trains a separate classifier for each of them (POSTCOMBINED

system). At test time we use the specific classifiers according to the source pronoun

and combine individual predictions to form the final set of predictions for the entire

document.

8http://mallet.cs.umass.edu/

http://mallet.cs.umass.edu/
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Mac-F1 Acc

BASELINE 58.401 66.308

ALLINONE 57.073 72.315

POSTCOMBINED 54.967 71.407

Table 3.2: Official performance on the test data. Ranks according to each metric are

given in subscripts out of 14 submitted systems (including multiple submissions per

submitter and the baseline).

Evaluation Metrics

The official evaluation metric for the shared task is the macro-averaged F-score over

all prediction classes (Mac-F1) defined by the evaluation script as follows

Pc =
# of correct predictions of pronoun class c

# of predictions of pronoun class c

Rc =
# of correct predictions of pronoun class c

# of gold pronouns in class c

F1c = 2 · Pc ·Rc

Pc +Rc

Pmacro =
1
|C| ∑c∈C

Pc

Rmacro =
1
|C| ∑c∈C

Rc

F1macro =
1
|C| ∑c∈C

F1c

where C is the set of target-side classes. Since this metric favours systems that perform

equally well on all classes (i.e. all precision or recall values are weighted equally when

averaged), the task puts emphasis on handling low-frequency classes well instead of

only getting the frequent classes right. In addition to scores from the official metric we

also report overall accuracy (Acc), i.e. the ratio between the correctly predicted classes

and all test instances.

Results

Table 3.2 shows the official results on the test set together with the respective ranks

out of 14 submitted systems. Table 3.3 and Table 3.4 provide the per-class precision,
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Prec Recall F1

ce 77.78 87.50 82.35

cela 25.00 18.52 21.28

elle 51.79 34.94 41.73

elles 85.00 33.33 47.89

il 50.00 59.62 54.39

ils 76.84 91.25 83.43

on 63.64 37.84 47.46

ça 62.69 41.18 49.70

OTHER 80.95 90.48 85.45

Macro-averaged 63.74 54.96 57.07

Accuracy 72.31

Table 3.3: Performance of ALLINONE classifier.

recall and F1, overall accuracy, and overall macro-averaged F-score. Table 3.5 shows

results of our feature ablation experiments.

Generally, in terms of the official score (macro-averaged F1) one can see that our

system has a high rank at position three (including the baseline), however it is still be-

low the baseline. This is true for all the other submitted systems. In terms of accuracy,

however, we are well above the baseline performance (albeit only at rank 5).

The worst performing class is cela. However, separating the two pronouns cela and

ça is open for discussion, as it is more a matter of style than function, and it is often

not consistently used according to common conventions. Merging these two classes

is expected to result in an overall better system without reducing the accuracy of a

translation.

3.2.3 Discussion

Confusion Matrices Table 3.6 and Table 3.7 present confusion matrices on the test

set. Divergences from strong diagonal values in both tables derive in part from gender-

choice errors (pronoun is predicted as {il,ils}, but should have been {elle,elles} and
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Prec Recall F1

ce 78.05 86.96 82.26

cela 9.52 7.41 8.33

elle 49.06 31.33 38.24

elles 80.00 31.37 45.07

il 51.54 64.42 57.26

ils 75.79 90.00 82.29

on 61.90 35.14 44.83

ça 64.29 44.12 52.33

OTHER 80.00 88.52 84.04

Macro-averaged 61.13 53.25 54.96

Accuracy 71.40

Table 3.4: Performance of POSTCOMBINED classifier.

vice versa). On the other hand, the grammatical number of the personal pronouns is

almost perfectly predicted in all cases. The OTHER class causes quite a few confusions

among all pronouns, which is not surprising since it aggregates a heterogeneous set of

possible source pronoun translations. We expect that a more detailed distinction in this

group will result in better systems in general.

Feature Ablation In order to investigate the usefulness of the different types of fea-

tures, we performed a feature ablation (cf. Table 3.5). When removing all features

that are related to the antecedent of the target pronoun we need to predict, i.e. the an-

tecedent itself and its number and gender (all w/o antecedent features), we observe a

considerable drop in performance for both evaluation metrics. This is according to our

expectations, since number and gender are strong cues for most of the pronoun classes.

The antecedent token itself (all w/o number/gender) also provides enough information

to the classifier to make a positive impact on the results.

When removing all features related to the target side we can observe a consistent

drop in performance over all sets and classifiers.9 This result shows the strong influ-

9Features related to the target side are the LM, the target side context windows (lexical tokens and
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ALLINONE POSTCOMBINED

Mac-F1 Acc Mac-F1 Acc

all features 57.07 72.31 54.96 71.40

all w/o antecedent features 51.59 70.14 54.15 71.13

all w/o nada 50.86 69.86 54.84 71.40

all w/o number/gender 54.62 71.67 54.33 71.40

all w/o language model 54.83 71.13 55.32 71.59

only source-side features 34.81 55.20 34.41 54.84

only target-side features 55.05 71.49 54.82 71.31

Table 3.5: Feature ablation for both types of classifiers.

classified as→ ce ce
la

el
le

el
le

s

il ils on ça O
T

H
E

R

Total

ce 161 · 1 1 11 · · 3 7 184

cela · 5 2 · 4 · · 9 7 27

elle 8 1 29 · 21 3 2 5 14 83

elles 2 · · 17 · 28 · · 4 51

il 12 1 12 · 62 1 4 2 10 104

ils 1 · · 1 · 146 · · 12 160

on 2 · 3 1 5 4 14 2 6 37

ça 6 12 7 · 18 · 1 42 16 102

OTHER 15 1 2 · 3 8 1 4 323 357

Total 207 20 56 20 124 190 22 67 399 1105

Table 3.6: Confusion matrix for the ALLINONE classifier. Row labels are gold labels and

column labels are labels as they were classified. Dots represent zeros.
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classified as→ ce ce
la

el
le

el
le

s

il ils on ça O
T

H
E

R

Total

ce 160 · 2 · 11 1 · 3 7 184

cela · 2 1 1 5 · · 8 10 27

elle 10 · 26 · 23 3 3 6 12 83

elles 2 · 1 16 · 28 · · 4 51

il 9 1 10 1 67 1 2 2 11 104

ils · · · 2 · 144 · 1 13 160

on 2 · 5 · 6 4 13 2 5 37

ça 5 14 6 · 14 · 1 45 17 102

OTHER 17 4 2 · 4 9 2 3 316 357

Total 205 21 53 20 130 190 21 70 395 1105

Table 3.7: Confusion matrix for the POSTCOMBINED classifier Row labels are gold labels

and column labels are labels as they were classified. Dots represent zeros.

ence the target language has on the translation of a source pronoun. Removing the

source-side features does not have a strong impact on the results, which is consistent

again over all settings. Both results taken together strongly indicate that the target-side

features are much more important than the source-side features.

Classifier Types The overall results show a consistently better performance for the

ALLINONE classifier compared to the POSTCOMBINED one. One reason for this might

be that splitting the training data into two separate sets for the POSTCOMBINED setting

results in much smaller training data sizes for each of the individual classifiers. Our

feature ablation results show that particular features are useful for the former classifier,

but useless or even harmful for the latter. This instability might be due to the fact that

the POSTCOMBINED classifier has to learn from much smaller data sets. Incorporating

more training data from the Europarl corpus could alleviate this problem and would

make it possible to determine whether these differences persist. However, the addi-

tional data comes from a different domain and is of a different genre than the test data,

which might cause problems elsewhere.

POS tags), the antecedent of the target pronoun (lexical token and grammatical features).
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Language Model The mixed results for the usefulness of the LM features (i.e. per-

formance increase without the LM feature for the POSTCOMBINED system) prompt

for a further investigation of how to integrate the LM. We base the LM predictions on

the preceding n-gram of the target pronoun. However, it is also conceivable for this

task to query the LM with n-grams that are within a window of tokens containing the

target pronoun. Furthermore, there is a small mismatch between the trained LM which

has been trained on truecased data and the preceding tokens we have from the shared

task data where the case was not modified. If this difference is eliminated we expect

more accurate LM predictions, which should in turn provide more accurate features

for the classifiers.

Additionally, our LM feature currently predicts OTHER with a fairly high frequency

of around 80% (followed by il with around 15%). This might be another reason why

some classifiers work better without this feature, since this distribution does not match

the observed distribution of target pronouns in the training data. The over-prediction

might be counterbalanced by querying a smaller number of proxy words (i.e. 40 in our

experiments).

3.2.4 Post Shared-Task Improvements

Since the baseline had such a strong performance on the test set, we experimented after

the official shared task deadline with combining our classifiers with it. We replace our

LM feature with the predictions from the official baseline. The results are shown in

Figure 3.3. A big increase in both macro-averaged recall (6.16-9.13% absolute) and

accuracy (3.53-4.53% absolute) can be observed for both of our systems. This combi-

nation brings our system above the baseline for both evaluation metrics, and therefore

also to rank 1. It remains to be shown, however, how much the other participating

systems would benefit from such a combination.

3.3 Feature Extension and Language Transfer

To improve our CLPP system, we experiment with extending the feature set. We add

n-gram features, a more informed LM feature that is closer to the shared task baseline

and explicitly learn to predict the empty string (NONE).

Furthermore, triggered by the additional language pair in the CLPP16 shared task,

we apply the extended MaxEnt classifier to both English-French and English-German,
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Figure 3.3: The baseline and the shaded areas correspond to the official shared task

results from Table 3.2. The non-shaded area shows the improvement of our classifiers,

when including the official baseline predictions as additional feature.
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thereby testing it on a new language pair.

Additionally, the data available in the second CLPP shared task provides the target-

side only in lemmatized and POS-tagged form, which more closely relates to a realistic

SMT setting. In participating, we can experiment, whether our classifier is robust

enough to also learn from a weaker signal.

Finally, we also experimented with a stronger sequence model, i.e. Conditional

Random Fields (CRFs), attempting to exploit the sequential nature of coreference

chains, where pronouns take part in.

In the following sections we describe our extensions and experiments in terms of

our submission to the second CLPP shared task.

3.3.1 Features

In this section we motivate and describe the types of features we extract for learning

the MaxEnt classifier and the CRF models.

Local Context

For each training instance, i.e. for each source pronoun for which we want a prediction,

we extract a bag of words consisting of the ±3 tokens around the source pronoun.

Additionally, we extract the tokens in the ±3 context window of the aligned target

pronoun. The source-side feature consists of tokens in their full form, whereas the

target-side feature uses the lemmatized tokens.

Additionally, we extract POS tags for these tokens. For the source side we auto-

matically obtain POS tags with StanfordCoreNLP (Lee et al., 2013). For the target side

the POS tags are provided as part of the training and test data.

A common strategy to improve linear classifiers is to include combinations of fea-

tures so that the classifier can tune additional weights if feature combinations provide

information that they cannot provide on their own. Therefore, we experiment with

combining the above context window features within each type. In addition to the uni-

gram values, we extract n-gram combination of these values by concatenating adjacent

tokens or POS tags.

All of the above features are extracted both from the source and the target side.
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Pleonastic Pronouns

We include a probability estimate as feature value of a source-side it that it is a pleonas-

tic pronoun. This feature remains unchanged compared to Section 3.2.1.

Language Model Prediction

In our first CLPP system we incorporated a LM feature based on the preceding 5-

gram context of a target-side pronoun (cf. Section 3.2.1), by utilising the conditional

probability P(classLabel5|w1,w2,w3,w4), where classLabel is one of the class labels

from the closed set of target classes, or the OTHER class, and w are the preceding

words. This ignored any information following the pronoun, which could as well be

indicative of the correct prediction. Therefore, we expand the feature to provide a

rating for the entire sentence, i.e. P(〈s〉,w1, ...,classLabel, ...,wn,〈/s〉), where n is the

sentence length, and 〈s〉 and 〈/s〉 are sentence boundary markers.

The class label that produces the highest scoring sentence according to the LM is

then used as a feature value in our classifier. To obtain such a prediction for the class

labels that correspond to pronouns we can directly substitute the target-side pronoun

placeholder with each class label when querying the LM.

The OTHER class requires special treatment, since it does not occur as such in

the LM training data. We approximate the probability for this class in the same way

as described in (Wetzel et al., 2015). We first collect frequencies of words that are

tagged as OTHER from the training data. Then we query the LM with the top-n words

as substitute for the placeholder. The highest scoring word within that group then

competes as representative for OTHER against the probabilities of the rest of the class

labels.

Target-side Antecedent Information

The antecedent feature proved useful in (Wetzel et al., 2015). Both in German and

French, the pronoun has to agree in gender and number with its antecedent. Intuitively,

if we know the closest target-side antecedent of a referential target-side pronoun, we

have access to information such as grammatical gender and number of the referent.

Furthermore, the fact that an antecedent exists provides information as well, since it

separates referential from non-referential cases.

We use the same antecedent detection method as in our previous CLPP system.

We perform antecedent detection with the help of source-side coreference chains. We
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Corpus en-de en-fr

NC9 63.72 25.12

IWSLT15 68.55 31.25

TEDdev 60.00 34.31

Table 3.8: Percentage of NONE within the OTHER class.

follow the source-side chain that contains the source pronoun of interest in reverse

order (i.e. towards the beginning of the document) and check if the token that is aligned

to the source-side mention head is a noun. If it is not, the search proceeds. We take the

closest noun that we can find on the target side.

Since the target side only contains lemma information, where all gender- or number-

specific information has been removed from nouns (or merged to the same token for

e.g. determiners), we cannot apply a morphological tagger to give us this information

for the found antecedent. Therefore, we resort to a simpler method and look up the

most frequent gender for a given lemma in a lexicon. We only experiment with this

feature on the English-German task.

Predicting NONE

Source pronouns do not necessarily have a counterpart in the target language. These

cases are mapped to the OTHER class in the training and test data and occur very fre-

quently within this class (cf. Table 3.8). Though not part of the official set of classes,

they are still specifically marked with a NONE maker. If we know that a source pro-

noun does not have a translation, then this might be useful in an SMT scenario, where

for example a feature function could score phrases higher that do not contain target-

side pronouns. For CLPP our expectation is that it should help to improve prediction

performance for the very heterogeneous OTHER class.

For training the classifiers we first map all NONE cases from the OTHER class label

to NONE, thus introducing a separate class label. For the final predictions we map any

NONE predictions back to OTHER before evaluation.
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Sequence length en-de en-fr

1 74.45 74.13

2 15.34 15.43

3 5.34 5.43

4 2.21 2.29

5 1.08 1.11

Table 3.9: Distribution of pronoun sequence lengths up to 5 in the English-German

and English-French training data (IWSLT15 and NewsCommentary9) for the ALLINONE

setup in percent.

3.3.2 Pronoun Prediction as a Sequence Labelling Task

The MaxEnt classifier makes the assumption that the translation of a pronoun is only

dependent on the source and target contexts and the antecedent it refers to (for ref-

erential pronouns). This ignores the fact that pronouns are part of a longer chain of

coreferring expressions, which in turn may be other pronouns.

Therefore, we first prepare the training and test data such that all pronoun instances

that belong to the same coreference chain form one training or testing sequence. We

then train a linear-chain CRF with the features as given above to predict an optimal

sequence of target pronouns for a given sequence of source-side pronouns, rather than

making each prediction independently of the other pronouns. This way, typical patterns

of pronoun sequences can be learnt, which might help with the prediction. Table 3.9

gives the distribution of sequence lengths, i.e. the number of pronoun instances per

coreference chain. The slight difference between English-French and English-German

comes from the fact that there is a slight mismatch between the parallel documents

contained in each language pair variant.

We expect this additional information of typical pronoun sequences within one

coreference chain to be useful for the prediction task, since it allows for optimizing the

individual predictions in a chain on a global document level.
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Gender Frequency

Masculine 20878

Feminine 21221

Neuter 12894

Total 54993

Table 3.10: Number of nouns with gender information in the raw Zmorge lexicon for

German.

3.3.3 Experiments

We first describe the experimental setup of our systems, then briefly describe the data

we used and provide information about feature and parameter settings. Finally, we

report our results on development and test data.

Systems

We use Mallet (McCallum, 2002) for training the MaxEnt classifiers and CRF models.

For the MaxEnt classifier we use the default settings. For the CRF we train three-

quarter order models (i.e. one weight for each 〈feature, label〉 pair, and one for each

〈current label, previous label〉 pair) and only allow label transitions that have been

observed in the training data.

As before, we have two setups in all experiments. The POSTCOMBINED setup,

where we split the training and test data for each source pronoun into separate sets,

train separate classifiers and combine the predictions after classification. And the

ALLINONE setup, where we do not split the data.

The systems marked with initial consist of the local context window features, the

pleonastic pronoun feature, the LM feature and the antecedent information (without

gender information). We use fGender to refer to the gender feature, 3-gram window

to refer to the n-grams from the local context window and fNone to refer to the NONE-

prediction feature. Systems marked with sequence are the CRF models. We submit the

best performing system according to the official macro-averaged recall measure on the

development set for each language pair as primary test set submission.
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Baseline

The official BASELINE uses LM predictions similarly to our LM feature. Additionally,

it attempts to find the optimal predictions for a sentence, if there are multiple pronouns

that have to be predicted. It has a NULL penalty parameter that determines the influence

of not predicting a pronoun at all, which for this shared task is tuned. The underlying

LM is trained on lemmatized text.

Data

For training, we only extract information from the IWSLT15 and NewsCommentary

(NC9) corpus. We do not employ the provided Europarl corpus, as it does not come

with predefined document boundaries other than parliamentary sessions of a complete

day. For development, we use the TEDdev set. For the final submission on the official

test set we include TEDdev in the training data.

Features and parameters

For the LM feature, we take the provided trained models from the shared task, which

are 5-gram modified Kneser-Ney LMs that work on lemmatized text. We use KenLM

(Heafield, 2011) for obtaining probabilities. As proxy for the OTHER class we use the

top 35 words for German, and the top 70 for French. The threshold values are not

tuned, but set to include mostly other pronouns that are not part of the official set of

class labels.

For gender detection of German antecedents we use the lexicon from Zmorge (Sen-

nrich and Kunz, 2014).10 Gender distribution of nouns is given in Table 3.10. When a

noun has multiple genders in the lexicon, we take the most frequent one for that noun.

The different parameters such as context window size were taken from our findings

of the previous year (Wetzel et al., 2015). The n-grams of the context window are

extracted for n = [1..3] including beginning- and end-of-sentence markers if necessary.

Results

The results on the development set are given in Table 3.11 for English-German and in

Table 3.12 for English-French.

The initial systems in each language pair perform much better than the baseline,

which is especially noticeable in English-French. Adding the gender feature to the
10kitt.ifi.uzh.ch/kitt/zmorge, zmorge-lexicon-20150315

kitt.ifi.uzh.ch/kitt/zmorge
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Mac-R Acc

BASELINE 34.35 42.81

ALLINONE-initial 39.24 56.14

+ fGender 40.00 57.37

+ fGender, 3-gram window 41.21 57.72

+ fGender, 3-gram window, fNone 40.86 58.77

ALLINONE-sequence-initial 35.67 54.91

Table 3.11: System performance in percent for English-German on the development

data set.

Mac-R Acc

BASELINE 40.63 49.73

ALLINONE-initial 52.25 69.98

+ 3-gram window 54.68 73.36

+ 3-gram window, fNone 57.34 74.25

ALLINONE-sequence-initial 49.27 64.65

Table 3.12: System performance in percent for English-French on the development data

set.

English-German classifier shows improvements in performance, thereby confirming

the usefulness of adding gender information.

The additional feature that predicts NONE as possible translation is helpful for the

English-French pair. Results on English-German showed a decrease in performance

with respect to macro-averaged recall. This decrease is surprising, especially consid-

ering the much larger frequency of NONE in the German data set (cf. Table 3.8). In

terms of accuracy the NONE feature is also beneficial for English-German.

Including the n-gram features from the context window is very good for perfor-

mance in both language pairs according to both metrics.

The final results including the ranks on the official test set of the shared task are

given in Table 3.13.
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en-de en-fr

Mac-R Acc Mac-R Acc

ALLINONE 48.725 66.326 61.624 71.313

POSTCOMBINED 47.75 64.75 59.83 68.63

BASELINE-1 n/a n/a 50.85 53.35

BASELINE-2 47.86 54.31 n/a n/a

Table 3.13: Official shared task results. Ranks of our primary submission are given in

subscripts with a total of nine submissions for each language pair.

3.3.4 Discussion

General Performance In general, performance is considerably lower for English-

German compared to English-French, despite the former having a much smaller set of

class labels to choose from. One reason for that might be that in English-German, the

OTHER class is even more heterogeneous than in French, and taking apart this class to

the same degree as in the English-French data sets might be beneficial.

Development vs. Test Data Performance between development and test sets varies

greatly despite similar class label distributions (except for a much smaller amount of

OTHER instances in the English-French test set). To a certain degree this is expected,

however the big changes in performance suggest that there are other differences in the

data sets which are worth exploring.

Baseline Training a MaxEnt classifier where we substitute our LM feature with pre-

dictions from the shared task baseline performed slightly worse. This suggests that a

simpler LM feature is sufficient when included in the classifier, and that joint predic-

tion of multiple target pronouns within one sentence is not necessary. However, we did

not tune the NULL penalty of the baseline model.

Furthermore, the lemmatization of the French data merges singular and plural

forms of il into one lemma, similarly for elle. The baseline which uses the LM trained

on the lemmatized data is therefore never able to predict the plural forms of these two

pronouns, resulting in zero precision and recall for these classes. This is confirmed by

the corresponding confusion matrix. This might also have an indirect impact on the
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er si
e

es m
an

O
T

H
E

R

Total

er 4/4 2/2 3/8 · 6/1 15

sie 3/2 73/100 11/15 3/· 34/7 124

es 2/· 9/4 61/85 2/· 27/12 101

man · ·/1 2/4 1/1 5/2 8

OTHER 2/1 11/17 7/16 · 115/101 135

Total 11/7 95/124 84/128 6/1 187/123 383

(a) English-German

ce el
le

el
le

s

il ils ce
la

on O
T

H
E

R

Total

ce 58/60 · · 6/6 ·/1 1/· · 3/1 68

elle 2/2 10/9 2/· 5/8 ·/1 2/3 · 2/· 23

elles 2/· 2/· 3/6 · 15/17 1/· ·/1 2/1 25

il 5/6 1/6 · 43/43 2/1 4/3 2/2 4/· 61

ils · · 9/7 · 54/63 · · 8/1 71

cela · 3/1 · 8/7 · 15/20 1/1 4/2 31

on · · · ·/1 2/4 · 6/4 1/· 9

OTHER 1/3 1/· · 4/7 1/· 1/1 ·/2 77/72 85

Total 68/71 17/16 14/13 66/72 74/87 24/27 9/10 101/77 373

(b) English-French

Table 3.14: Confusion matrices for the ALLINONE classifier on the test set. Row labels

are gold labels and column labels are labels as they were classified. Dots represent

zeros. Numbers to the left of the slash represent our shared task submissions, numbers

to the right are for the results when we removed the LM feature from these submissions.
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Mac-R Acc

ALLINONE 48.72 66.32

− fAntecedent 46.24 64.23

− fLM 55.76 75.98

− fLM, + fNone 60.17 77.28

(a) English-German

Mac-R Acc

ALLINONE 61.62 71.31

− fAntecedent 61.89 71.85

− fLM 63.03 74.26

(b) English-French

Table 3.15: Feature ablation results of our submitted ALLINONE systems on the test set.

performance of our classifiers, since they use LM prediction as a feature.

Confusion Matrices The confusion matrix for English-German in Table 3.14a (counts

to the left of the slash) shows that OTHER is over-predicted (i.e. the sum of the OTHER-

column is much larger than the number of gold labels for that class), which might

explain the overall lower performance of the system. Furthermore, es and sie are con-

fused by our classifier. For English-French in Table 3.14b (counts to the left of the

slash) one can observe that the biggest confusion is between gender in plural pronouns

(i.e. elles and ils). This might be because we did not include any explicit gender in-

formation as feature. As above, the OTHER class is also very confused over all cases,

however it is not too over-predicted.

Classifier Types Similarly to our findings from last year, the POSTCOMBINED setup

scored consistently worse on the test sets (and only once slightly better on the develop-

ment set). This provides evidence, that splitting the training data according to source

pronouns is counterproductive. Furthermore, it might even be worse for the inverse

prediction tasks available at the shared task, since there are a lot more source pro-

nouns, hence making the available data even sparser.

Feature Ablation Feature ablation experiments on the test set shown in Table 3.15

revealed that the antecedent feature is helpful for English-German, but not for English-

French. One possible explanation for this might be that we do not have gender infor-

mation of the antecedent in French and only adding the antecedent itself might not be

sufficient.

Additional ablation experiments on the test set showed that our LM feature in fact
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hurts performance. Removing this feature gives a boost in performance, which brings

our systems to the second place (first for accuracy) for English-German and to the third

place (second for accuracy) for English-French. This contradicts findings from exper-

iments we conducted for last year’s shared task, where adding baseline predictions,

which are very similar to our LM feature, greatly improved results. An explanation

for this behaviour could be that the LM this year was trained on lemmatized text and

therefore performs much worse than when trained on original data. Confusion matri-

ces for these results are given in Table 3.14 (numbers to the right of the slash). For

both language pairs we are now under-predicting OTHER, however gaining accuracy

on the classes representing pronouns.

Furthermore, removing the LM feature brings the English-German system to the

same level of performance as the English-French system. This provides some evi-

dence that the same set of features can be used to make predictions into both of these

languages.

3.4 General Discussion

Generally, our CLPP experiments show that a small set of features already results

in a good performance. In both CLPP15 and CLPP16 shared tasks we manage to

achieve results much better than the LM-based baseline (albeit in the CLPP15 shared

task we achieved this only after modifications to our official submission). Our best-

performing classifiers (other than our official submissions) result in the best rank at

the CLPP15 shared task, and among the top two (English-German) and three (English-

French) performing systems in the second shared task. Taken together this shows that

we have competitive systems for CLPP at hand. These state-of-the-art results also

make our findings more reliable, since they are based on well-performing systems.

Furthermore, we will reuse our CLPP systems in Chapter 6 to generate discourse-

aware translations in a post-editing setup based on an NMT system. These system

translations are then used to as a basis for verification of our discourse-aware SMT

evaluation metric.

The LM-based baseline is very strong in the first shared task, i.e. it outperforms

all submitted systems. This strong baseline can be exploited by combining the base-

line predictions with the other features of our classifiers, resulting in an increase in

performance. One of the reasons why the baseline is so strong is that the LM predic-

tions of the baseline are based on human reference translations. Therefore, reliable
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cues are provided in the surrounding context of the target-side pronoun. However, in a

more realistic setting (i.e. one which has a full SMT system in mind), the surrounding

context no longer provides ground truth cues, and a diminishing performance of the

LM baseline is expected. This hypothesis is supported by the fact that the baseline

no longer performs so well on the CLPP16 shared task, which no longer provides full

human reference translations, but only lemmatized tokens on the target side. This set-

ting is more realistic in terms of the full SMT scenario, in that it does not make any

commitment to linguistic cues of surrounding words that agree in gender and number.

Furthermore, including the baseline in our classifier for the CLPP16 shared task hurts

performance, additionally suggesting that other features provide more reliable infor-

mation. The detrimental effect of the LM predictions or of features derived from these

baseline predictions is also observed in a feature ablation study in Stymne (2016).

We applied our CLPP system to two language pairs, i.e. English to French and

English to German. Experiments confirm a similar performance on both language

pairs (when considering our best performing systems), showing that our set of features

captures relevant information in both settings. Most of our features require only few

resources that are specific to the target side, i.e. either a morphological analyser and

POS tagger (for the CLPP15 shared task) or a simple lexicon with gender informa-

tion (for the CLPP16 shared task). However, since we require a coreference resolution

system on the source language, it is not trivial to train CLPP systems in the inverse

direction. An end-to-end coreference resolution system for German exists (Tuggener,

2016, CorZu), however, for French there is currently no such end-to-end system avail-

able.

The feature that captures non-local dependencies (i.e. the antecedent feature) proved

to be useful across both shared tasks and languages. The only exception is the English-

French system on the CLPP16 shared task, where we see a slight decrease of 0.27%

(absolute) for macro-averaged recall and 0.54% (absolute) for accuracy, when the fea-

ture is used. However, in this particular setting, we only have the antecedent token as

feature and we did not extract gender or number from the token as in all other settings.

So the missing gender and number might make the feature less useful, especially when

the target side is lemmatized as in the CLPP16 shared task. The gender and number

information from the antecedent proved very useful in our feature ablation experiments

of the CLPP15 shared task, which adds another piece of evidence to this hypothesis.

We included a feature into the classifier that learns to predict when a pronoun in

the source should not be translated in the target side. This is represented with the
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special NONE class. With regards to evaluation in the two CLPP shared tasks, the NONE

prediction was not part of the official set of class labels. However, this feature not only

provided a performance improvement with respect to the OTHER class under which it

is officially grouped. But it also allows us to actually make predictions that instead of

a pronoun, the target side counterpart of a source pronoun should be the empty string.

This is potentially useful in a full SMT setting, providing a more informed translation

choice. We reuse this feature for prediction of the empty word in one post-editing

system variant in Chapter 6.

In all experiments we only made use of a part of the provided training data (i.e. the

IWSLT and NewsCommentary corpora) and we did not consider the much larger Eu-

roparl corpus. This suggests that a small amount of training data is sufficient for train-

ing a classifier with good performance. The main reason for excluding the Europarl

corpus is that it does not come with clear document boundaries, which are important

to have for the coreference resolution system used in our antecedent feature. With-

out clear document boundaries mentions could be linked to entities from items on the

parliamentary agenda that have nothing in common, or mentions could be missing in

the beginning of the document. Providing a plausible separation of the parliamentary

sessions into self-contained documents would be an interesting task for future work, to

make this larger resource available for document-level SMT in general. Note however,

that the LM used in the baseline and in one of our features was trained on a much larger

set of data that included the Europarl corpus.

The CLPP shared tasks focus on TED talks as test set, since they generally have a

higher distribution of pronouns than other domains or genres (Ruiz and Federico, 2014;

Guillou, 2016, Chapter 4). This is a good basis for encouraging research on pronoun

translation, since especially problematic low frequency cases (e.g. elles, the feminine

3rd person plural pronoun in French) have a higher chance of occurring, if there are

more pronouns in general. One next step would be to show that CLPP systems can

also be applied to other genres or domains, such as the more streamlined domain of

written newstexts which is commonly used as test set for general SMT systems at the

WMT translation task. It remains to be shown, whether CLPP systems can be suc-

cessfully applied to such a new domain without any adaptation, or what the additional

requirements are. We address this issue to a certain degree in Section 4.5 by com-

paring the performance of our CLPP systems on the CLPP16 test set (i.e TED talks)

against a newstext test set. Results there show a decrease in performance according to

macro-average recall, but a slight increase in accuracy.
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Our sequence learning experiments showed to be unfruitful with the same set of

features from the MaxEnt classifier and we did not further investigate why this is the

case. Intuitively, there should be a benefit in performance from optimizing CLPP pre-

dictions globally. However, maybe the gender and number of pronouns is only really

dependent on the closest noun antecedent, and no generalizations can be made if they

belong to the same chain. I.e. nouns with different grammatical gender can be used to

refer to the same entity.

There is still a gap to fill between existing CLPP systems from the two shared

tasks and being able to apply them in an actual SMT scenario. On the one hand,

the shared tasks only focussed an a very small set of source and target pronouns (3rd

person singular and plural subject position pronouns on the source, and only a few most

frequently aligned pronouns on the target side), albeit ones that represent the more

difficult cases. Expanding these sets to other pronouns would increase the instances,

where the CLPP system can make a particular translation choice. In addition to that, the

target-side data of the shared task is so far still based on human reference translations.

The second shared task has seen a step towards a more realistic setting, where the full

word forms were no longer available, but were lemmatized. This is a step in the right

direction, since SMT output, where we want to apply the CLPP systems in the end, is

much noisier and less reliable that human reference translations. We address this issue

in Chapter 4.



Chapter 4

A Corpus of Document-level Pronoun

Annotations in SMT Output

In this chapter, we present an English-German parallel corpus with an automatically

translated target side created by a state-of-the-art NMT system and manual gold an-

notations of pronouns in this translation. We first motivate the necessity and benefits

of such a corpus emphasising that in addition to its value in evaluating CLPP sys-

tems in a realistic setting, it can also serve as a proxy of human coherence judgments

(Section 4.1). Then, we give details on how we processed and constructed the cor-

pus (Section 4.2). We present the annotation interface used to elicit human annotations

(Section 4.3) and explain how we conducted the actual annotation. We provide an anal-

ysis of the resulting annotations (Section 4.4) showing an overall high inter-annotator

agreement, low error rate and only a small number of unresolvable ambiguities. Fi-

nally, we run experiments with our existing CLPP systems leveraging this new resource

(Section 4.5). We explore the effect on CLPP systems when changing the domain and

genre which causes a decrease in performance with respect to macro-average recall,

but an increase for accuracy. We further explore the performance difference between

human and automatic translations. This experiment does not provide a clear picture,

neither observing a consistent increase nor decrease of performance. Furthermore, we

compare the pronoun prediction performance of the NMT system revealing a better

performance than the CLPP systems.

73
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4.1 Motivation

Both CLPP shared tasks have human reference translations on the target side of the

training and test data. While this was useful as a way to study and experiment with

pronoun translation without the additional noise introduced by SMT output, the major

goal is to apply these CLPP systems to such data, so that they can be used in a full SMT

scenario. The shared task organizers went a step towards that direction in the second

shared tasks, where they removed morphological information from words by lemma-

tizing them. This matches the SMT scenario more closely, since the morphological

information in SMT output no longer represents ground truth, but adds uncertainty in

terms of whether the words are translated in their correct form.

However, the current setup still does not enable experimentation to find out whether

CLPP systems work well also on SMT output. We therefore create a corpus with

automatic translations on the target-side produced by a state-of-the-art NMT system.

From this corpus, we remove the same set of target-side pronouns based on the same

set of source-side pronouns as in the CLPP16 shared task (cf. Section 3.1.1), enabling

experiments to predict pronouns in context of fully automatically translated data.

One of the major advantages of the original two shared task setups is that since the

target-side documents come from human translations, they also automatically provide

the gold translations for each pronoun instance. This makes it possible to train and

evaluate CLPP system performance automatically without the big overhead of manual

annotation. If the target-side document consist of automatic translations this automatic

supply of gold labels is no longer given.

However, to enable experimentation of CLPP on actual SMT output, manual an-

notation is unavoidable. We therefore elicit manual annotations where each pronoun

instance that has been removed from the automatically translated target side of a docu-

ment has to be reinserted by a human with one of the available class labels (i.e. target-

side pronouns) from the official sets of the CLPP16 shared task. With these gold

annotations in place, we can then provide a test data set for CLPP systems, to find out

how well they perform on realistic data.

These manual annotations also allow us to directly assess the performance of the

state-of-the-art NMT system with respect to pronoun translation. Each pronoun that

was removed and substituted with a REPLACE token to produce the CLPP test set,

can also be seen as a pronoun prediction of the NMT system. These can then also be

compared to the gold pronoun annotations.
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One additional benefit of having an automatically translated target side is that

the baseline translations of pronouns from the SMT system can be integrated in the

CLPP system as additional feature. This would, for example, make it possible to learn

whether the baseline translation already covers certain pronouns well, so that these

should no longer be changed by a subsequent CLPP system.

Finally, this annotated corpus can be seen as a proxy for manually judging the

coherence of a document. Pronouns are part of coreference chains and therefore con-

tribute to the coherence of a document. Hence, if we translate more pronouns cor-

rectly, this should increase the coherence of the resulting document. A translation

that matches the pronouns of the annotated corpora more often, should be the pre-

ferred translation, over one where the pronouns match less frequently. This provides us

with relative rankings between two translation systems on the document level. These

human-based rankings in turn can then be used to verify if an SMT evaluation met-

ric operating on the document level, correlates with these human-based rankings. We

come back to this in our later chapter where we present our discourse-aware SMT

evaluation metric (cf. Chapter 6).

4.2 Corpus Construction

In this section we first present the data we use as a basis for the annotations. Then we

mention how we obtain automatic translations. Following this, we elaborate on our

strategy to determine the final list of possible annotation choices. Finally, we explain

how we process and prepare the data for the annotation process.

4.2.1 Data

The data we use is from well-known test sets that are used in the WMT news transla-

tion task for English-German. We chose to use one of the WMT news translation task

test sets, since they are publicly available and commonly used in SMT evaluation. This

will make our corpus more useful for comparison and further experimentation. Fur-

thermore, we have access to a state-of-the-art NMT system that performs best on this

data set. On the other hand, the two CLPP shared tasks used TED talks as development

and test data. The major reason for this was the higher frequency of pronouns in TED

talks than in news text (Hardmeier et al., 2015). Despite using a different data set, we

still want to work with documents that have a similarly high frequency. Additionally,
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en de min-sent average-sent max-sent # of docs

WMT12 news test 0.86 1.98 5 30.33 147 99

WMT13 news test 1.15 2.13 37 57.69 99 52

WMT14 news test 0.85 1.81 4 18.31 83 164

WMT15 news test 0.99 2.03 5 26.78 264 81

WMT16 news test 1.01 2.11 2 19.35 77 155

IWSLT15 1.68 3.24 1 121.97 399 1592

Table 4.1: Several statistics from the WMT news test corpora between 2012 and 2016,

and the IWSLT15 corpus. The first two columns represent the pronoun/token ratio

in percent averaged over the entire corpus. The minimum, average and maximum

sentence count is provided to determine document length. The final column shows the

total number of documents in each corpus.

the documents in the corpus should not be too long, since they have to be annotated

manually. In longer documents, annotators are expected to be less focused (i.e. making

more errors) towards the end.

We therefore only consider one of the WMT test sets to limit the annotation re-

quirements and to allow to choose the data set that has a pronoun distribution that is

as close as possible to the CLPP shared task test sets. In order to find a suitable one,

we collected a set of statistics as presented in Table 4.1. For comparison, we also in-

clude the statistics for the IWSLT corpus, which consists of TED talks and was part

of the training data in the CLPP shared tasks. For the statistics, we first tokenized and

truecased the documents using the Moses pre-processing scripts via the EMS.1 For the

English pronoun/token ratio, we count the number of occurrences of the two pronouns

it and they and divide by the number of tokens in the corpus. Similarly, for the German

pronoun/token ratio, we count the number of the pronouns er, sie, Sie, es, man. These

two sets are the same set of pronouns that are used in the CLPP shared task 2016.

All requirements taken together lead to the WMT16 news test set, since it provides

one of the highest pronoun/token ratios in both languages while containing compara-

tively short documents (i.e. on average 19.35 sentences). The WMT16 news test set

therefore forms the basis for our annotations.

1http://www.statmt.org/moses/?n=FactoredTraining.EMS

http://www.statmt.org/moses/?n=FactoredTraining.EMS
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4.2.2 NMT System

The automatic translations that form the basis for annotating the target side are ob-

tained with the state-of-the-art NMT system Nematus (Sennrich et al., 2016a). This

system was the best-performing one at the WMT16 translation task with a BLEU score

of 34.8 (uncased) and 34.2 (cased) for that language pair and direction. It follows the

encoder-decoder architecture with attention mechanism (Bahdanau et al., 2014). For

handling unknown words and restricted vocabulary size, it uses byte-pair encoding

(BPE) (Sennrich et al., 2016b), which is a compression-based algorithm that splits

words into smaller subunits. In addition to the standard parallel data of about 4 mil-

lion sentence pairs, a sample of the same size of the monolingual target-side data is

back-translated into English with a German-English system, and added as additional

training data. Furthermore, it uses ensemble decoding with the last four models stored

during training after a fixed set of epochs. We reuse the pre-trained ensemble models

for English-German2 to translate the WMT16 news test set in order to obtain automatic

translations for our annotation task. We verified the translation and obtained the same

BLEU scores as reported in Sennrich et al. (2016a).

4.2.3 Annotation Choices

Annotators are presented with a complete parallel document from the automatically

translated WMT16 news test set. For each removed target-side pronoun instance, an-

notators are given a closed set of choices from which they have to choose. In a pilot

study, we experimented with three different sets of pronouns, to determine the final

choices we offer the annotators. The sets differ in the source and target pronouns. The

source pronouns determine where an annotation location (i.e. pronoun instance) is

(cf. Section 4.2.4). The target pronouns determine the choice the annotator has when

annotating. The three sets are as follows:

p001 source pronouns: it, they

target pronouns: er, sie, es, man, NONE, OTHER

p002 source pronouns: it, they

target pronouns: er, sie (singular), sie (plural), es, man, NONE, OTHER

p003 source pronouns: i, you, he, she, it, we, they, me, him, her, us, them, mine, yours,

his, hers, ours, theirs
2http://data.statmt.org/rsennrich/wmt16_systems/en-de/

http://data.statmt.org/rsennrich/wmt16_systems/en-de/
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p001/p002 p003

total # of docs 155 155

# of pronoun instances (total) 669 2181

# of pronoun instances (average per doc) 4.35 14.07

# of docs without pronoun instances 32 10

Table 4.2: Statistics about pronoun instances in the WMT16 news test corpus for the

different source- and target-side pronoun sets.

p001 p002 p003

average duration per instance 27.05s 36.33s 18.45s

total estimated duration 5.0268h 6.7513h 11.1776h

Table 4.3: Observed and estimated annotation times (in seconds and hours, respec-

tively) for the WMT16 news test set for all three annotation variants.

target pronouns: ich, du, er, sie, es, wir, ihr, mir, dir, ihm, uns, euch, ihnen, mich,

dich, ihn, man, NONE, OTHER

In Table 4.2 we show an overview of how many pronoun instances the different

pronoun sets produce in the WMT16 news test dataset, which in turn require an anno-

tation choice.

We annotated a small set of documents for each of the three annotation variants.

We chose around five different documents for each variant. This avoids getting to know

the documents, which would result in less accurate estimates. The average annotation

duration per pronoun instance and the total estimated annotation time for the entire

corpus are given in Table 4.3. The duration estimates are the lower bound, since we

are familiar with the task and can therefore make faster decisions. In addition to the

duration estimates for the entire WMT16 news test set, the time for understanding the

guidelines has to be added. Reading the guidelines (cf. Section 4.4.1) slowly takes

about 3 minutes, so for someone new to the task it should not take longer than 10-20

minutes to fully understand them.

After the pilot study, we observed three main issues discussed below. For the first

two pronoun lists (p001 and p002), and the documents we annotated there was almost

always only one choice that seemed plausible. From this we do not expect a great
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variety of annotations from different annotators. The pronoun list p003 also contains

pronouns that are very easy to annotate. For example, I can be directly translated to

ich without thoroughly reading the entire sentence or even surrounding context. On the

other hand, and contrary to the previous two lists, it contains hard cases. For example,

you, which could be translated as of the pronouns man, du, Sie, sie and is – when the

you is a generic-you – a matter of stylistic choice.

In rare occasions the translation was too bad to make a decision. This was even the

case when consulting the surrounding source and/or target context. This motivated the

addition of an UNDECIDABLE option to the set of target-side pronouns.

In many cases, when choosing OTHER, we added the pronoun to the available com-

ment field. However, we also added additional comments. This makes it harder to

post-process the annotations, so this motivated adding an extra field in the comment

dialogue, where such a pronoun can be added.

Rather than using NONE and OTHER directly as possible pronoun choices, we use

the substitutions NO WORD and ANOTHER WORD respectively. These are more straight

forward for an annotator to understand.

For the actual annotation task we decided to use the second pronoun list (p002).

This list provides a good compromise with respect to annotation time and potential

benefit that we can obtain from the annotations. Finally, this list is very close to the

official set of pronouns used in the second CLPP shared task, which makes it easier to

reuse these annotations with existing CLPP systems.

4.2.4 Preparation for Annotation and as CLPP Test Corpus

For the annotation and also for preparing the parallel corpus so that it can be used with

CLPP systems, we require word alignments. This is used to link the source pronouns

with their position on the target side. And in order to determine gold labels in case

our target side is taken from human reference translations. The NMT system does not

directly provide high quality word alignments for the translated text. We therefore use

MGiza3 with the grow-diag-final-and heuristic via the EMS4 to compute these word

alignments. In order to make them more reliable by providing more training data, we

computed word alignments for a concatenation of the WMT12-16 news test set and the

Europarl7 corpus, IWSLT15 corpus and NewsCommentary11 corpus. Unlike in the

data preparation for the CLPP 2016 shared task (Guillou et al., 2016, Section 3.3.1),

3https://github.com/moses-smt/mgiza
4http://www.statmt.org/moses/?n=FactoredTraining.EMS

https://github.com/moses-smt/mgiza
http://www.statmt.org/moses/?n=FactoredTraining.EMS
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we do not experiment with different settings to obtain word alignments. We choose the

standard word alignment settings used in phrase-based SMT system training.

In order to identify the target-side pronouns for which we want human annotations,

we follow the procedure used to prepare data for the CLPP shared tasks (Guillou et al.,

2016, Section 3.3.2). Given word alignments and a set of source pronouns, we follow

the word alignments for each of them and take the aligned token as the target-side

pronoun instance we want to obtain annotations for. Several heuristics are necessary

to cope with null alignments and 1:m alignments as detailed below:

1. A source-side pronoun has exactly one word alignment link to the target side

(e.g. ”[it]→ [es]”). In this case the target-side pronoun will be substituted with

a REPLACE token. If it is not equal to one of the defined class labels, it will be

assigned to the OTHER class.

2. A source-side pronoun has more than one alignment link to the target-side. There

are three cases:

(a) There is one, and only one class label in the list of aligned target-side tokens

(e.g. ”[they]→ [Mehr, sie]”). In that case this target-side word will form

the pronoun instance and the other tokens will be ignored.

(b) There is more than one class label in the list of aligned target-side tokens

(e.g. ”[they]→ [Sie, es]”). In this case one of the pronouns will be chosen

at random.

(c) None of the linked target-side words are pronouns from the set of class

labels (e.g. ”[they] → [Mehr, da]). In this case the shortest word will be

taken and assigned to the OTHER class.

3. A source-side pronoun does not have any alignment links (e.g. ”[they]→ []”).

In this case a position for the special NONE class has to be found. This is done

by expanding the source-side context around the source-side pronoun token by

token (alternating between left and right, starting with the left context first). As

soon as a source-side token with an alignment link is found, the REPLACE token

for the NONE class is inserted after (before) the found link for left (right) context.

Whenever an explicit NONE link is inserted, all other affected word alignment

ids are updated.
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The second CLPP shared task emphasizes that the main focus of CLPP in the task is

the prediction of subject position pronouns (Guillou et al., 2016, Section 3.3.3). They

therefore filter out pronoun instances that were obtained in the way described above,

that are not in the subject position according to a source-side dependency parser. For

our corpus, we do not perform this additional filtering step.

For the corpus used for annotation, the target side consists of automatic transla-

tions. The procedure above assumes that the word alignments can be reliably used

to identify the correct position (i.e. the position where a manually annotated pronoun

should occur) on the target side even in noisy automatic translations. During annota-

tion it is implicitly verified by the annotators whether the location of the annotation gap

for target-side pronouns was at a correct position. Only one observation of a wrong po-

sition was mentioned as a comment by the annotators, which provides some evidence

that the identified target-side locations were at least acceptable to make an annotation

choice. However, we did not explicitly elicit any comments in this regard.

4.3 Annotation Interface

The annotator, once logged into their account, is presented with a button to start a new

annotation task together with the total number of annotations that still need to be done.

A screenshot is shown in Figure 4.1.

Each annotation task consists of the annotation guidelines at the top part of the

screen. Following the guidelines is the parallel document where the annotations have

to be performed, and a comment text area, with a button to submit the annotation.

These three parts are shown in Figure 4.2.

In each annotation task the annotator is presented with the entire source and target

document where pronouns of interest have been removed and replaced by a drop-down

list of possible choices. The drop-down list does not have any pronoun selected by

default and the annotator has to make a choice for each list. An example of the drop-

down list is shown in Figure 4.3. The sentences from the source- and target- side

document are vertically aligned so that corresponding sentences can be found quickly.

If the annotator chooses ANOTHER WORD in the drop-down list, then they are en-

couraged to write down the word that they have in mind. However, this is not enforced.

The word can be entered into a special text field that is shown once a button next to the

drop-down box is clicked. With the same button, a comment can also be left for each

pronoun instance. A screenshot of these two form fields is shown in Figure 4.4.
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Figure 4.1: Welcome screen that is shown, when the annotator first logs into their

account.

The annotation interface is programmed in the JavaServer Faces framework using

the Apache MyFaces implementation.5 The front end uses PrimeFaces.6 The data is

stored in an SQLite data base. The interface is accessed via a web browser. The server

on which the application is run is Apache Tomcat.7

4.4 Annotation Process and Analysis

4.4.1 Annotation Guidelines

Each annotation task showed the following guidelines before showing the actual doc-

ument that had to be annotated:

Please read all of the following instructions first:

Below, you see an English news document (left), together with its German trans-

lation (right). Please go through the German part.

For each drop down menu, choose the pronoun that you think should be used

at that position. When choosing the pronoun, choose the one that sounds most

natural to you. Choose ’NO WORD’ if you think no word should be used at that

position. Choose ’ANOTHER WORD’ if none of the other given choices apply.

Each drop down menu has a blue button associated with it. There you can leave

an optional comment. And if pronouns other than your first choice are also

possible, or if you chose ’ANOTHER WORD’ write down the word you would

expect.

5https://myfaces.apache.org/
6https://www.primefaces.org/
7https://tomcat.apache.org/

https://myfaces.apache.org/
https://www.primefaces.org/
https://tomcat.apache.org/
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(a) Partial view of the top part of the annotation screen showing the annotation guidelines.

(b) A part of the parallel document shown in the center part of the annotation screen.

(c) Comment text area and submit button shown at the bottom part of the annotation screen.

Figure 4.2: The three parts of the annotation screen that represents one annotation

task.
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Figure 4.3: Screenshot: annotation screen – pronoun list.

Figure 4.4: Screenshot: annotation screen – comment dialogue.
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If the German translation of a sentence is too hard to understand on its own, you

can refer to the original sentence in English (left) at your convenience.

You do not have to read the entire document, however you might have to read

sentences preceding/following a drop down menu to understand the context and

make an informed choice.

You must make a choice for each drop down menu.

If and only if you cannot make a choice even with the English sentence and

surrounding English or German document context, choose ’UNDECIDABLE’.

Once you’re done, press ’Submit’ at the bottom of the page to save your
annotation.

4.4.2 Inter-Annotator Agreement and Comparison

For determining inter-annotator agreement and to find out if the annotations contain

a lot or only few ambiguities, which would result in lower agreement, we collected

annotations for a small set of documents from the corpus with the pronoun list p002.

Furthermore, a high inter-annotator agreement means that annotations from a single

annotator are reliable enough to be used on their own. Two annotators (one was the

author) annotated the same 15 documents each (equalling to 110 pronoun instances).

For inter-annotator agreement, we computed Cohen’s Kappa,8 which is 0.801. This

can be considered a high inter-annotator agreement. Table 4.4 shows the confusion ma-

trix between annotator 1 and 2 which shows us on which labels the annotators agreed

and disagreed, and how frequently that happened. In the 110 pronoun instances that

were doubly annotated, the pronoun man was never selected. The low frequency of

man is also observed in the CLPP shared task corpora. Most of the pronouns are

annotated as es, then sie. This also coincides with earlier observed frequencies in hu-

man translations. There are three UNDECIDABLE cases, two on which both annotators

agreed. This gives some evidence, that the automatic translation – together with the

source-side – can be understood by humans (i.e. they managed to make annotation

choices), hence being of at least decent quality. Most of the annotations for sie are

for the plural form. There are only very few confusions (i.e. disagreements) between

the two classes sie (singular) and sie (plural). This suggests that the same surface

8computed with the R package ’irr’
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er 3 · · · · · · ·

sie (singular) · 2 3 1 · · · ·

sie (plural) · 1 21 1 · · · ·

es 4 · · 57 · · · ·

man · · · · · · · ·

NO WORD · · · · · 3 2 ·

ANOTHER WORD · · · 1 · · 8 1

UNDECIDABLE · · · · · · · 2

Table 4.4: Confusion matrix showing agreements (diagonal values) and disagreements

(off-diagonal values) between annotator 1 and 2. Rows represent labels annotated by

annotator 1, columns represent labels annotated by annotator 2. Dots stand for zero.
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form can be reliably disambiguated by humans. Furthermore, the two classes will not

be treated differently in later experiments, so the small number of confusions will not

have a negative impact.

We analysed the cases where annotators disagreed and categorized the type of dis-

agreements. In the following table, we provide a detailed analysis of these disagree-

ments:

ID English sentence German sentence Comments

3 The research took place at the

end of last year ’s school year

; it included almost 900 ele-

mentary school children from

throughout Bohemia .

Die Forschung fand Ende

des letzten Schuljahres statt

; sie (plural)/sie (singular)
umfasste fast 900 Grund-

schulkinder aus ganz Böhmen

.

→ annotation error: annota-

tor 1 wrongly assigned plural

version of ”sie”; ⇒ resolving

to ”sie (singular)”

Conservative MP Andrew

Bingham also told BBC bosses

that the public service radio

station appeared to be ” dumb-

ing down ” and is becoming

increasingly indistinguishable

from its commercial rival .

Der konservative Abgeord-

nete Andrew Bingham sagte

auch den BBC-Chefs , dass

der öffentlich-rechtliche

Radiosender ” duzen ”

erschien und von seinem kom-

merziellen Rivalen zunehmend

ununterscheidbar sei .

8 ” Radio 3 seems to be - I don

’t like to use the word ” dumb-

ing down ” - but it seems to be

turning into Classic FM , ” he

said .

” Radio 3 scheint zu sein -

ich mag es nicht , das Wort ”

dumbing down ” zu verwen-

den - aber es/er scheint sich in

Classic FM zu verwandeln ” ,

sagte er .

→ ambiguity: both seem plau-

sible (the first annotator treated

it either as an event reference

or as referring to the abstract

concept ”the radio” = ”das Ra-

dio (neutr.)”, the second an-

notator refers to ”the radio

station” = ”der Radiosender

(masc.)”);⇒ resolving to ”es”

(since it is more natural)

16 Earlier this year , BBC Radio

3 controller Alan Davey argued

that it has to work harder to

engage audiences than it did

in the past , because Britons

are less educated about classi-

cal music .

Anfang des Jahres hatte BBC

Radio 3 Controller Alan Davey

argumentiert , dass es/er härter

arbeiten muss , um das Pub-

likum zu engagieren als es/er
in der Vergangenheit , weil die

Briten weniger über klassische

Musik gebildet sind .

→ ambiguity: same argument

as above; ⇒ resolving to ”es”

(since it is more natural; and it

avoids creating antecedent am-

biguities)
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ID English sentence German sentence Comments

160 A survey of 80 economists

polled by Reuters found a little

over half who only last week

thought the Fed would go for

it , now think it will hold fire a

bit longer and keep rates at the

current 0-0.25 percent range .

Eine Umfrage von 80

Ökonomen , die von Reuters

befragt wurden , fand etwas

mehr als die Hälfte , die erst

letzte Woche dachte , die

Fed würde UNDECIDABLE

sorgen , jetzt denken , sie (sin-
gular)/es wird ein bisschen

länger warten und die Zinsen

im aktuellen 0-0,25 Prozent

halten .

→ annotation error: error

with second annotator; ⇒ re-

solving to ”sie (singular)”

However the Fed cannot ignore

the less rosy global outlook .

Allerdings kann die Fed die

weniger rosigen globalen Aus-

sichten nicht ignorieren .

165 It has warned markets to be

ready for a hike but indications

are they also believe the odds

are against such a move .

sie (singular)/sie (plural) hat

die Märkte gewarnt , für eine

Wanderung bereit zu sein ,

aber sie (singular)/sie (plu-
ral) glauben auch , dass die

Chancen gegen einen solchen

Schritt sind .

→ annotation error: both

errors with second annotator;

”it” refers to ”the FED” which

is a singular entity; note: this

is a nice example where only

context can disambiguate the

”it”; ⇒ resolving to ”sie (sin-

gular)” in both cases

168 After shooting and killing his

girlfriend in Mississippi on

Monday morning - and before

he shot and killed his colleague

later that day - Shannon Lamb

wrote a note to say that he was

” sorry ” for the first murder

and wished he ” could take it

back , ” authorities revealed

Tuesday .

Nach Schüssen und Tötung

seiner Freundin in Missis-

sippi am Montagmorgen - und

bevor er seinen Kollegen später

an diesem Tag schoss und

tötete - schrieb Shannon Lamb

eine Notiz , um zu sagen ,

dass er für den ersten Mord

” Entschuldigung ” sei und

wünschte , er ” könnte AN-
OTHER WORD(ihn)/es(ihn)
zurücknehmen ” , verrieten die

Behörden am Dienstag .

→ ambiguity: both annotators

provided one correct pronoun

”ihn” as their alternative pro-

noun choice. The second an-

notator chose to translate ”it”

as event reference, however

the first solution ”ihn” sounds

more natural; ⇒ resolving to

”ANOTHER WORD”
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ID English sentence German sentence Comments

175 When police got to the scene

they found the body of Amy

Prentiss , 41 , and a handwrit-

ten note from Lamb , 45 , that

said : ” I am so sorry I wish I

could take it back .

Als die Polizei auf die Bühne

kam , fanden sie (singular)/sie
(plural) den Körper von Amy

Prentiss , 41 , und eine hand-

schriftliche Notiz von Lamb ,

45 , der sagte : ” Es tut mir so

leid , ich wünschte , ich könnte

es zurücknehmen .

→ annotation error (debat-

able; due to agreement con-

flict): ”die Polizei” is usually

singular in German, therefore

the first annotator is correct;

however the second annotator

chose the plural version most

likely because it agrees with

the translated verb; ⇒ resolv-

ing to ”sie (singular)”

It is awful - a boy who comes

to Manchester United at 18 ,

has it very difficult and then

plays fantastically and then this

happens .

es ist furchtbar - ein Junge , der

mit 18 Jahren zu Manchester

United kommt , hat es sehr

schwierig und spielt dann fan-

tastisch und dann passiert das .

219 When it was in the dressing

room he had an oxygen mask

on .

Als es/er in der Umkleidek-

abine war , hatte er eine Sauer-

stoffmaske auf .

→ not applicable (due to

strange source sentence):

the source sentence sounds

strange; annotator 1 is consis-

tent with the source, the choice

by annotator 2 yields a better

translation; ⇒ resolving to

”er” (most likely this was the

intended meaning)

239 I feel very bad about it , I am

so sorry .

Ich fühle mich sehr schlecht

NO WORD/ANOTHER
WORD (deswegen) , es tut

mir so leid .

→ annotation error: anno-

tator 1 is wrong; annotator 2

is right; ⇒ resolving to ”AN-

OTHER WORD”

326 As with his equivocation over

Nato - Tom Watson is adamant

that JC won ’t campaign to

quit - foreign diplomats will be

obliged to try to make sense of

it all for their masters at home .

Wie bei seiner Equipe über

die Nato - Tom Watson

setzt darauf , dass JC nicht

Wahlkampf machen wird -

ausländische Diplomaten wer-

den verpflichtet , zu versuchen

, für ihre Meister zu Hause

Sinn NO WORD/ANOTHER
WORD (daraus) zu machen .

→ annotation error: choice

of annotator 2 is more con-

sistent with the source sen-

tence; choice of annotator 1

is still acceptable, but results

in a worse translation, so an-

notator 2 should be favoured;

⇒ resolving to ”ANOTHER

WORD”
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ID English sentence German sentence Comments

332 PHE published the ” landmark

” report last month , describing

it as a ” comprehensive review

of the evidence . ”

Phe veröffentlichte im ver-

gangenen Monat den ”

richtungsweisenden ” Bericht

, der ANOTHER WORD
(ihn)/UNDECIDABLE
als eine ” umfassende

Überprüfung der Beweise

” bezeichnete .

→ annotation error: choice

of annotator 1 results in an

understandable, yet quite bad

translation; annotator 2 could

have made a choice here;

⇒ resolving to ”ANOTHER

WORD”

352 PHE has a clear duty to inform

the public about what the evi-

dence shows and what it does

not show , especially when

there was so much public con-

fusion about the relative dan-

gers compared to tobacco .

Phe hat die klare Pflicht , die

Öffentlichkeit darüber zu in-

formieren , was die Beweise

zeigen und was sie (plural)/es
nicht zeigt , vor allem , wenn es

so viel öffentliche Verwirrung

über die relativen Gefahren im

Vergleich zum Tabak gab .

→ annotation error (due to

agreement conflict): annotator

1 is correct, but his/her choice

results in agreement error with

the following verb; ⇒ resolv-

ing to ”sie (plural)”

Table 4.5: Sentences (and preceding context if necessary) where the annotators dis-

agreed. The last column categorises the disagreements and provides a decision as to

what the most likely resolved annotation should be.

annotation error 9

ambiguity 4

not applicable 1

total 14

Table 4.6: Counts of the types of annotation differences between annotator 1 and 2.

Table 4.6 shows the counts of the types of annotation differences for both annota-

tors together. Most of the annotator differences were due to annotation errors. How-

ever, seen over all the 110 pronouns annotated, the combined error (disregarding the

ambiguous cases and the one not applicable case) of both annotators is 8.18%. Indi-

vidually, annotator 1 made 3 errors (2.7%), annotator 2 made 6 errors (5.5%).

None of the sie (singular)/sie (plural) confusions are due to ambiguity, which fur-

ther emphasizes the earlier conclusion, that humans can successfully handle and re-

solve ambiguous cases.
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Three of the er/es confusions are due to different gender depending on what the ref-

erent is assumed to be referring to. The antecedent is not ambiguous, only the particular

noun that is used to refer to it, i.e. the radio station (der Radiosender, masculine) vs.

the radio (das Radio, neutral).

We also compared the alternative pronouns that annotators could provide, e.g.

when choosing ANOTHER WORD or when more than one pronoun is plausible. There

were 15 such cases. Among these, there were 8, where only one annotator mentioned

an alternative pronoun, and 7 where both mentioned an alternative pronoun. The an-

notators provided identical alternative pronouns in those 7 cases.

The analysis in this section showed that we can expect a low amount of ambiguity

and error in the annotation process. Together with the high inter-annotator agreement

obtained on a subset of documents, we believe that annotation quality will be accept-

able if we use one annotator for the remaining documents.

4.4.3 Full Annotation

In Table 4.7 we show the frequencies of how often a pronoun was used by a human

annotator. The table compares annotations from annotator 1 and 2. The figures show

a similar count for each pronoun across both annotators. Again (as already shown in

the 15 documents which both annotators annotated), es is the most frequent pronoun,

followed by sie. Also, man is the least frequent pronoun. Furthermore, the table

also shows frequencies after merging annotations of both annotators while resolving

differences as specified in Table 4.5.

We also recorded the amount of time each annotator spent annotating documents.

In total annotator 1 spent 3.45 hours on the annotation, and annotator 2 spent 4.11

hours. Only the time spent between starting a new annotation task and clicking the

submit button is measured.

4.5 Experiments

With the data prepared in the above described way, and with the human annotations

in place, we run a set of experiments. Ultimately, we want to test how well our CLPP

systems perform on the noisier SMT data set we created above.

First of all, we want to test how our trained CLPP systems perform on the CLPP

2016 test data set where we marked pronoun instances with our own implementation.
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raw counts relative counts

annotator 1 2 m 1 2 m

er 11 17 22 3.12 3.95 3.27

sie (singular) 15 21 34 4.25 4.88 5.05

sie (plural) 100 133 208 28.33 30.93 30.91

es 183 210 332 51.84 48.84 49.33

man 2 1 3 0.57 0.23 0.45

NO WORD 11 16 22 3.12 3.72 3.27

ANOTHER WORD 23 21 36 6.52 4.88 5.35

UNDECIDABLE 8 11 16 2.27 2.56 2.38

Total 353 430 673 100 100 100

Table 4.7: The statistics of different annotation choices for annotator 1 and 2. The

total number is not equal, since none of the annotators annotated the entire corpus.

Annotator m refers to the merged annotations. The relative counts are given in percent.

There are some differences to the officially described method. The biggest difference

is that we do not perform subject filtering (Guillou et al., 2016, Section 3.3.3), thus

having a bigger proportion of OTHER class labels. Any difference in performance in

this experiment compared to the official shared task results will be due to the differ-

ences in implementation. This experiment acts as a sanity check of our implementation

and to determine comparable performance scores for the following experiments.

In the second experiment, we want to see how well our systems perform on a

different data set, i.e. on the WMT16 news test set, which formed the basis for our

annotated corpus above. This helps us to identify what effect the changed data set has

on the CLPP systems. In the official shared task setting, the target side consisted of

human reference translations (lemmatized and POS-tagged). We therefore run in this

experiment our trained CLPP systems also on the human reference translations of the

WMT16 news test set, in order to keep the conditions as close as possible for better

comparability.

Finally, in the third experiment we will test how well our trained CLPP systems

perform on data that contains the automatically translated target-side. It is designed to

understand how well CLPP systems perform in a more realistic setting that is closer
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data set name target-side created by gold class labels

CLPP16test-official human translator automatic extraction

CLPP16test-ownimpl human translator automatic extraction

WMT16test-human-target human translator automatic extraction

WMT16test-auto-target NMT system manual annotation

Table 4.8: Overview of the test data sets used for the experiments that test our CLPP

systems.

to the SMT scenario. Furthermore, here we compare the performance of pronoun

translation of the NMT system against the pronoun predictions of our CLPP systems.

This is the experiment where we can fully make use of our annotated corpus, since

now we have gold labels available for each pronoun instance.

4.5.1 Data

For the first experiment, we compare the performance of our CLPP systems on two dif-

ferent data sets. The first one is the official CLPP 2016 shared task test set (henceforth:

CLPP16test-official) that contains transcribed TED talks. The second one contains the

same documents, however we marked pronoun instances with our own implementation

(henceforth: CLPP16test-ownimpl) as described in Section 4.2.4. Both data sets have

human reference translations. For the second experiment, we prepare the test set based

entirely on the WMT16 news test set, which means the target side documents are hu-

man reference translations. We mark pronoun instances with our implementation and

refer to this data set as WMT16test-human-target. The data for the third experiment

comes completely from our annotated corpus, i.e. automatically translated documents

from the WMT16 news test set. The gold labels for marked pronoun instances come

from the manual annotations. We refer to this data set as WMT16test-auto-target. An

overview showing the differences between the used data sets for the three experiments

is given in Table 4.8.

The data in the above corpus for human annotation is unlemmatized (so that hu-

mans can understand and read the documents). However, for applying our trained

CLPP systems, and to be as close as possible to the setting of the CLPP16 shared task,

we further process the target-side data. All of the above data sets have their target-side

lemmatized and POS-tagged. For the data sets we created ourselves, we used the Tree-
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Tagger9 (Schmid, 1994) for both lemmatization and POS-tagging. The POS-tags are

then mapped to universal POS-tags (Petrov et al., 2012). This is in accordance with

the CLPP16 shared task.

For all data sets without word alignments we obtain them in the same way as for

our annotated corpus above (cf. Section 4.2.4). We ran MGiza with the grow-diag-

final-and heuristics on a concatenation of Europarl7, NewsCommentary11, IWSLT15

and the respective data set.

4.5.2 CLPP Systems

We experiment with three different settings of our English-German CLPP system. All

of them reuse the respectively trained models as described in Section 3.3.3 from the

ALLINONE setup with the following variations in terms of feature usage.

None of the systems use the LM feature (fLM) since it was shown in the feature

ablation study that it hurts performance. The first system (henceforth: CLPPPLAIN)

was trained and is tested without the NONE feature (fNone). The second system (hence-

forth: CLPPNONEFEAT) was trained and is tested with fNone, while mapping all of the

NONE predictions back to OTHER before evaluation. Finally, the third system (hence-

forth: CLPPNONEFEAT&PREDICT) was also trained and is also tested with fNone and

the only difference between the latter two systems CLPPNONEFEAT and CLPPNONE-

FEAT&PREDICT is that in the latter system the NONE predictions are not mapped to

OTHER. In those two systems all the predictions except NONE and OTHER are identi-

cal. Furthermore, this also means that CLPPNONEFEAT&PREDICT is the only system

of the three CLPP systems that actually has NONE predictions in the final prediction

output.

4.5.3 Results

Experiment I: Testing our Pronoun Instance Extraction Implementation

Results from the first experiment are shown in Table 4.9. When comparing between the

performance of the official data set and the one preprocessed with our implementation,

one can see a small drop for both metrics. For the first two systems, macro-averaged

recall decreases between 5.18% and 6.02% (absolute) and accuracy decreases between

9http://www.cis.uni-muenchen.de/˜schmid/tools/TreeTagger/; version 3.2.1; with Java
interface from https://reckart.github.io/tt4j/

http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
https://reckart.github.io/tt4j/
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3.21% and 4.55% (absolute). The CLPPNONEFEAT&PREDICT system that has the ad-

ditional NONE class label, the recall has a similar drop of 5.50% (absolute) as the first

two systems, however there is a bigger drop for accuracy (12.06% absolute). Compar-

ison of the confusion matrices shows that the main reason for that is a considerably

worse prediction of the NONE cases.

One of the reasons for the overall drop in performance might be that we do not per-

form any filtering of pronoun instances according to subject relations of the source-side

dependency tree. This is what was done in the CLPP 2016 shared task, considerably re-

ducing the number of pronoun instances from the OTHER class. Therefore, in our data

set, we have a larger OTHER class label proportion (135 vs. 166 pronoun instances

with the OTHER gold label). Furthermore, the models we reused in this experiment

were trained on data that was preprocessed with the shared task tools. The same dif-

ferences mentioned above therefore also apply to the training data, resulting in a small

mismatch between training and test data. Retraining the CLPP systems with the train-

ing data preprocessed with our implementation might increase performance on the test

set, but is left for future work. Table 4.10 provides the full class label distributions

with and without subject filtering in order to quantify the impact it has on the resulting

test sets. It shows that the filtered CLPP16test-ownimpl data set more closely matches

the one from CLPP16test-official, with OTHER and es seeing the biggest change. Fi-

nally, we obtained word alignments using the standard heuristics used in training SMT

systems, whereas the shared task used precision-oriented word alignment heuristics.

Also note that since the CLPPNONEFEAT&PREDICT system has NONE predictions

in the final output, we also adjusted the evaluation script to treat the NONE class sepa-

rately from the OTHER class. This produces one more class than for the other systems,

and results from this system are therefore not directly comparable to the results of the

other two systems.

This experiment verified that our implementation of pronoun instance extraction

works comparably to the official implementation, so that we can also apply it to other

data sets in the following experiments. This experiment was mainly performed as a

sanity check of our pronoun extraction implementation and to rule out compounding

factors for the following experiments.

Experiment II: Performance on a Difference Domain and Genre

Results from the second experiment are shown in Table 4.11. We compare the results

of each CLPP system with its performance in the previous experiment in Table 4.9.
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Mac-R Acc

our official task submission 48.72 66.32

CLPPPLAIN 55.76 75.98

CLPPNONEFEAT 60.17 77.28

CLPPNONEFEAT&PREDICT 54.48 72.06

(a) Results on CLPP16test-official.

Mac-R Acc

CLPPPLAIN 50.58 71.43

CLPPNONEFEAT 54.15 74.07

CLPPNONEFEAT&PREDICT 48.98 60.00

(b) Results on CLPP16test-ownimpl.

Table 4.9: Experiment I: Macro-averaged recall and accuracy of our pre-trained CLPP

systems on the CLPP 2016 shared task test set (both official data set, and data set

preprocessed with our implementation).

CLPP16test-official CLPP16test-ownimpl CLPP16test-ownimpl

full full with subj filtering

er 15 16 16

sie 124 132 125

es 101 130 108

man 8 11 11

OTHER 135 166 119

Total 383 455 379

Table 4.10: Class label distributions from the CLPP16test-official and CLPP16test-

ownimpl test sets. For the latter, we provide figures for the full data set without subject

filtering, and for the reduced data set with subject filtering.
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Mac-R Acc

CLPPPLAIN 49.41 73.69

CLPPNONEFEAT 48.07 73.84

CLPPNONEFEAT&PREDICT 43.45 60.69

Table 4.11: Experiment II: Macro-averaged recall and accuracy of our pre-trained CLPP

systems on the WMT16 news test set with human reference translations (WMT16test-

human-target).

This tests what influence the change of domain and genre of the test set has on the pre-

trained CLPP systems. With respect to macro-average recall, one can observe that the

performance drops by between 1.17% to 5.53% (absolute). With respect to accuracy,

however, the results improve for two systems by 0.69% and 2.26% (absolute), while

slightly decreasing for one system by 0.23% (absolute).

The two biggest influencing factors in this change of performance are the different

genre and domain of the new test set. The CLPP16 test set contains TED talks, which

are from transcribed speech, whereas the WMT16 test sets contain written newspaper

articles. The other contributing factor is the difference in pronoun distributions. Unlike

for the CLPP test data sets, where the organizers attempted to select documents with a

larger number of rare pronouns (Guillou et al., 2016, Section 3.2), we did not impose

this requirement on our test set in order to provide a more generic one (i.e. the full

WMT16 news test set rather than a subset of it).

Experiment III: Performance on Automatically Translated Data

Results from the third experiment are shown in Table 4.12. We compare these re-

sults against the ones from the previous experiment given in Table 4.11, in order to

identify what effect the automatically translated target-side has on CLPP performance

compared to translations from human translators. Changes in performance are marked

with arrows indicating the direction of change. The performance of our CLPP systems

does not provide a consistent picture as to whether they perform better or worse on

the data set with the automatically translated target-side. Two systems in fact increase

their performance by between 0.94% and 4.94% (absolute) for macro-averaged recall,

while one system decreases its performance by 4.77% (absolute) for the same mea-

sure. In terms of accuracy, one system decreases its performance by 1.19% (absolute)
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Mac-R Acc

CLPPPLAIN 54.35↑ 72.50↓

CLPPNONEFEAT 48.93↑ 75.78↑

CLPPNONEFEAT&PREDICT 38.68↓ 70.25↑

NMTBASELINEPLAIN 60.71 84.75

Table 4.12: Experiment III: Macro-averaged recall and accuracy of our pre-trained CLPP

systems and the NMT baseline translation predictions on the WMT16 news test set

(WMT16-test-auto-target, the only one for which we have human annotations) with au-

tomatic translations on the target side, where the pronoun instance translation are taken

from the human annotations. Arrows represent increase or decrease of performance

with respect to the results in Table 4.11.

and two systems increase their performance by between 1.94% and 9.56% (absolute).

Only one system (CLPPNONEFEAT) continuously improves on the data set with the

automatically translated target-side.

We also show the pronoun prediction performance of the NMT baseline system in

Table 4.12. Comparing the performance of our CLPP systems against these predic-

tions, we can observe that in fact the NMT system has a much higher performance.

This result is unexpected, since the NMT system does not have access to context that

goes beyond sentence boundaries. It thus has the same deficiencies as phrase-based

SMT systems (cf. Le Nagard and Koehn, 2010; Hardmeier and Federico, 2010; Guil-

lou, 2012). Our earlier experiments with the CLPP systems (cf. Chapter 3) showed that

integrating non-local information increased performance of pronoun prediction. One

major difference is that the NMT system was trained on a much larger data set and has

thus better estimates. However, it remains to be investigated in more detail as to why

the performance of the NMT system is better in terms of pronouns, and whether this

holds in general or only on that specific data set. The confusion matrix in Table 4.13

reveals that the main confusions of the NMT system are between OTHER and es, and

sie and es.

In order to better understand the high performance of the NMT system in predicting

target-side pronouns, we conduct a more detailed analysis. Our hypothesis is that the

NMT system performs very well on pronouns that are either non-referential or have

their antecedent within the same sentence, and performance decreases for pronouns
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classified as→ er si
e

es m
an

O
T

H
E

R

To
ta

l

er 2 9 11 · · 22

sie · 221 13 · 5 239

es 1 21 281 · 28 331

man · 1 1 1 · 3

OTHER · 1 10 1 62 74

Total 3 253 316 2 95 669

Table 4.13: Confusion matrix for the NMTBASELINEPLAIN predictions on the WMT16-

test-auto-target test set. Row labels are gold labels and column labels are labels as

they were classified. Dots represent zeros.

Mac-R Acc

NMTBASELINEPLAIN: sentence-internal antecedent 50.00 78.43

NMTBASELINEPLAIN: cross-sentential antecedent 33.33 87.08

NMTBASELINEPLAIN: non-referential 49.04 84.35

Table 4.14: Experiment III: Macro-averaged recall and accuracy of the NMT baseline

translation predictions on the WMT16 news test set (WMT16-test-auto-target), sepa-

rated by pronoun instances (a) with antecedent within the sentence, (b) with antecedent

outside of the sentence, (c) that are non-referential.
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with cross-sentential antecedents. We expect the former case due to the larger context

and size of training data the NMT system has access to compared to our CLPP systems.

The latter is expected because the CLPP system has access to selected information

beyond the sentence context, which the NMT system does not.

To confirm our hypothesis we split the dataset into three subsets for each of the

three cases (a) a pronoun instance has an antecedent within the sentence, (b) a pro-

noun instance has an antecedent outside of the sentence, (c) a pronoun instance is

non-referential. The results are shown in Table 4.14. The NMT system has the lowest

recall by a large margin of 15.71% (absolute) on the subset with pronoun instances that

have cross-sentential antecedents compared to the other subsets. On the other hand it

has highest accuracy on the same subset with a margin of 2.73% (absolute) compared

to the other subsets. This suggests that on this subset it is very good at predicting the

majority class and thus achieving a high accuracy, but very bad at the minority classes

thus lowering recall. The confusion matrix in Table 4.15 confirms this. The model

never predicts the classes er, es and man correctly (with sie as the majority class) on

this subset. The results on the split test set confirm our hypothesis that the NMT per-

forms much worse on pronouns with cross-sentential antecedents.

4.6 Conclusions

In this chapter, we presented an annotation procedure, a tool and a corpus for obtaining

gold translations of pronouns in automatically translated documents. We showed that

this is a manageable task both in terms of the required number of annotators and how

much time is required for the annotation. This was shown with a high inter-annotator

agreement. Furthermore, it was shown by analysing the annotation differences and

finding out that only very few were due to ambiguities. These conclusions are based

on the assumption that the SMT system used for creating the target side has a high

(sentence-level) performance to start with. This is a reasonable assumption given the

recent advances in SMT and NMT performance. Handling cross-sentence discourse

phenomena requires a decent performance on lower-level phenomena.

In the experiment section, we put our manually annotated corpus to use in order

to test how CLPP systems perform on realistic data, i.e. on automatically translated

documents. Results could not provide a clear picture, as some systems were decreas-

ing in performance according to one of the two measures we used. However, some

systems were also increasing in performance. This shows that it might be necessary
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classified as→ er si
e

es m
an

O
T

H
E

R

To
ta

l

er 2 2 · · · 4

sie · 37 · · · 37

es · 6 · · 3 9

man · · · · · ·

OTHER · · · · 1 1

Total 2 45 · · 4 51

(a) Pronoun instances with sentence-internal

antecedents.

classified as→ er si
e

es m
an

O
T

H
E

R

To
ta

l

er · 6 · · · 6

sie · 180 · · · 180

es 1 15 · · 3 19

man · 1 · · · 1

OTHER · 1 · · 2 3

Total 1 203 · · 5 209

(b) Pronoun instances with cross-sentential

antecedents.

classified as→ er si
e

es m
an

O
T

H
E

R

To
ta

l
er · 1 11 · · 12

sie · 4 13 · 5 22

es · · 281 · 22 303

man · · 1 1 · 2

OTHER · · 10 1 59 70

Total · 5 316 2 86 409

(c) Non-referential pronoun instances.

Table 4.15: Confusion matrices for the NMTBASELINEPLAIN predictions on the WMT16-

test-auto-target test set that has been split into three subsets. Row labels are gold

labels and column labels are labels as they were classified. Dots represent zeros.
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to evaluate CLPP performance with a specific goal in mind in order to get the high-

est benefit out of these systems. Macro-average recall weighs performance on each

target-side pronoun class equally. This means that prediction changes affecting a few

rare classes influences macro-average recall considerably. This was deliberately cho-

sen by the shared task organizers to encourage system submissions that perform well

on the difficult cases. In a downstream task, however, it might be more desirable to

have a high accuracy, which simply counts the number of correct pronoun predictions

irrespectively of class frequency.

We direct our attention to evaluating the performance of CLPP systems in an ex-

trinsic setting in Chapter 6. There we embed CLPP system predictions in the final

output of an NMT system via post-editing. We then evaluate the performance of the

complete translation with an evaluation metric based on full coreference chains. The

CLPP system performance is therefore indirectly evaluated since pronouns form a part

in coreference chains and wrong translations might break these chains.

With our corpus, we could identify that the performance in terms of pronoun pre-

diction obtained from the state-of-the-art NMT system is unexpectedly high and ex-

ceeds the performance of our CLPP systems. For further insight it might be necessary

to investigate how much influence the subject filtering and word alignment optimiza-

tion has in the obtained results. Especially the former one has a direct influence on

the class distribution and creates an artificial difference between training and test data.

Retraining our CLPP systems on training data without subject filtering might provide a

generally higher performance and possibly manage to exceed performance of the NMT

system. Furthermore, the CLPP system was trained on data with artificially reduced

information, i.e. on a lemmatized target-side. This provides the NMT system with an

advantage, since it was trained on natural parallel text. This might partially explain

the good performance of the NMT system. Adding back in the full word forms in the

training data for the CLPP systems might boost their performance and might be part of

a new instance of a redefined CLPP shared task.

This corpus enables the research community on CLPP and pronoun translation to

evaluate their methods and analyse performance on data that is more realistic than what

was previously done. The target side is closer to the data obtained during automatic

translation compared to the test sets from the CLPP16 shared task where informa-

tion was artificially removed by lemmatizing the target side of a human translation.

With this corpus weaknesses of state-of-the-art CLPP systems can be exhibited, that

remained hidden from the lemmatized human-authored tests sets. This corpus further-
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more makes it possible to integrate suggested pronoun translations from the state-of-

the-art NMT system as additional feature of a CLPP system. This way, the model has

the potential to learn when a baseline pronoun translation can be relied on, or when a

different pronoun prediction should be used.





Chapter 5

Bilingual Models of Coherence based

on Entity Grid Models

In the previous chapters we focussed on pronoun translation in particular. It has been

observed in previous work that pronouns cannot just be evaluated on their own (e.g.

by comparing them to the pronoun in the reference translation). A wider context in-

cluding antecedents of referential pronouns has to be taken into account. Furthermore,

pronouns are part of the wider discourse phenomenon of entity-based coherence. As

members of coreference chains they contribute to producing a coherent document, by

connecting multiple occurrences of the same entity across the entire document.

There exists a wide range of work on entity-based coherence modelling in the

monolingual setting (e.g. Barzilay and Lapata (2005); Filippova and Strube (2007);

Barzilay and Lapata (2008); Cheung and Penn (2010); Elsner and Charniak (2011);

Guinaudeau and Strube (2013); Tien Nguyen and Joty (2017)) used for tasks such

as evaluating automatic summaries or reconstructing the order of documents where

sentences are no longer in their original order. Alternatively, they have been used as

an additional feature for judging the readability of texts. In this chapter we want to

bring these monolingual models of coherence to the bilingual setting. We do this with

the goal in mind to define an SMT evaluation metric that captures the coherence of

a translation with respect to the source document. The translation setting enables us

to not only model coherence of one language, but to exploit the coherence given by

the source-side document and the meaning-preserving relation between source- and

target-side coherence to define a richer and more informed model. We therefore de-

sign a bilingual coherence model that takes the relation between source- and target-side

coherence into account, aiming at evaluating SMT systems based on their coherence.

105
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However, before we apply this bilingual model of coherence to fully automatically

translated data, we take the same approach of the CLPP shared tasks to define the

problem in a simpler, more manageable way, which lets us experiment in a more con-

trolled setting. The second advantage, one that also the CLPP shared task organisers

exploited, is that in our simpler definition of the problem we can obtain automatic gold

labels for coherence which is one of the major requirements for our experiments. For

testing our approach, we focus on one particular document-level problem that SMT

systems encounter. Pronoun translation in particular can have cross-sentence depen-

dencies and has already been identified as a challenging problem in the CLPP shared

task (Hardmeier et al., 2015; Guillou et al., 2016). Translation of pronouns affects the

coherence of the target-side document, and introduces incoherence when translating

to the wrong target-side pronoun. We consider typical errors CLPP systems make as

a proxy of errors a pronoun-aware SMT system is likely to produce. This allows us

to study the problem in a more controlled environment, free from noise and variation

introduced by a fully automatic translation.

We first give an overview of the monolingual coherence model (i.e. the entity grid

model (EGM)) which inspires our bilingual version (Section 5.1). We then investigate

how the monolingual model behaves cross-lingually both based on gold standard and

automatic entity extraction (Sections 5.2.2 and 5.2.3). We then present and analyse

an automatic entity alignment method (Section 5.2.4) which forms the basis of our

bilingual EGM (Section 5.2.5). Following this, we apply our bilingual model to rank-

ing tasks in order to evaluate its performance on distinguishing gradually more and

more confused data from the original human-authored translation and on distinguish-

ing among the different confusions and test its generalization capabilities to unseen

confusions (Section 5.3). We discuss the findings (Section 5.4) and give a conclusion

(Section 5.5).

5.1 Monolingual Coherence Modelling with the EGM

Barzilay and Lapata (2008) present a monolingual model of entity-based coherence. In

this model, a document is represented by a matrix where rows represent sentences and

columns represent entities. Each cell in the matrix records whether a particular entity

is mentioned in that sentence and optionally which syntactic role it fills. Distinctions

about syntactic roles are made between SUBJECT (S), OBJECT (O) and OTHER (X).

Multiple mentions of the same entity in one sentence are only recorded once with
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the highest ranking syntactic role according to this ordering: S > O > X. The ma-

trix also records the absence of an entity in a sentence. This entire matrix is called

the EGrid. Once extracted from a document it is then converted into a feature vector

which records adjacent entity mention transitions of length two or longer as relative

frequencies. Ranking functions for these feature vectors are learnt for three different

experiments in a supervised setup. The first experiment applies the model to distin-

guish documents with shuffled sentences from the original documents. The second

experiment verifies that the ranking the model produces also correlates with human

judgements of coherence. The final experiment combines additional features typically

used for readability judgements with the EGM and assesses whether a text is easy or

difficult to read.

Guinaudeau and Strube (2013) reformulate the above model and represent the

EGrid in a bipartite graph with sentences and entities as the two mutually exclusive

node sets. They call it the EGraph. An edge between an entity and a sentence records

a mention of that entity in that sentence. The syntactic roles are encoded as edge

weights where S, O, X are assigned 3, 2 and 1 respectively. The bipartite graph is then

projected to a graph with just the sentence nodes (i.e. one-mode projection) where an

edge between two sentence nodes is established if an entity is mentioned in both sen-

tences. Furthermore, sentence nodes in the one-mode projected graph are connected

via directed edges, which can only point from an earlier sentence node to a later one

in the naturally occurring order of the sentences. The EGraph only captures entities

that cross sentence boundaries, since singleton entities and entities that are mentioned

strictly within one sentence do not influence the resulting one-mode projection. Fur-

thermore, entities that are not mentioned in a particular sentence are no longer explic-

itly represented. Three different one-mode projections are formulated: PU where an

edge with weight 1 exists if at least one entity is mentioned in both sentences; PW

where the edge weight is the count of how many different entities are mentioned in

both sentences; and PAcc where the counts are weighted by the syntactic role weights.

PU : w(si,s j) = min(1, |Ei j|)

PW : w(si,s j) = |Ei j|

PAcc : w(si,s j) = ∑
e∈Ei j

w(e,si) ·w(e,s j)
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where s are sentence nodes, e are entity nodes, Ei j is the set of entities occurring

in sentences si and s j and w(e,s) represents an edge weight between two nodes in the

bipartite graph, and w(si,s j) represents an edge weight between two sentence nodes in

the one-mode projected graph. This is done for all sentence node pairs si and s j, where

i < j (i.e. sentence si occurs before s j).

Instead of learning a ranking function Guinaudeau and Strube (2013) show that

they can use a score derived from the one-mode projections directly. They use the

AOD which is defined as the sum of the weighted edges in the one-mode projection

divided by the number of sentence nodes. The intuition behind this score is that if

entities are mentioned more often across the document, there are more outgoing edges

with a larger weight in a sentence node, resulting in a larger AOD. A larger AOD is the

result of a more coherent document.

5.2 Bilingual Coherence Modelling

With cross-lingual coherence in mind our hypothesis is that there is a strong correlation

between source- and target-side coherence. In the following analyses we verify that

this hypothesis holds.

5.2.1 Monolingual Model Details

We reimplement the EGraph model and for obtaining the required entities, we use

Stanford DCoref (Lee et al., 2013) for English and CorZu1 (Klenner and Tuggener,

2011) for German documents. To obtain syntactic roles recorded in the EGraph, we

obtain dependency parse trees for both the English and German documents with Stan-

ford CoreNLP2 and ParZu,3 respectively. Noun phrases can span over several tokens,

but generally one token is considered the semantic head of the phrase. This token also

determines the syntactic role of the phrase. We therefore obtain the semantic head

of a noun phrase span by searching the token whose syntactic head according to the

dependency tree points to a token outside of the noun phrase span.

1http://www.cl.uzh.ch/en/research/completed-research/coreferenceresolution.
html, v1.1

2github.com/stanfordnlp/CoreNLP
3github.com/rsennrich/ParZu

http://www.cl.uzh.ch/en/research/completed-research/coreferenceresolution.html
http://www.cl.uzh.ch/en/research/completed-research/coreferenceresolution.html
github.com/stanfordnlp/CoreNLP
github.com/rsennrich/ParZu
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PU PW PAcc

en de en de en de

AOD 0.3769 0.4125 0.3836 0.4210 2.5361 2.6257

Pearson 0.8911 0.8912 0.9332

Table 5.1: The AOD (averaged over the ten documents) and Pearson correlation of the

one-mode projection graph of three different types of projections (cf. Section 5.1) on the

manually annotated TED part of the ParCor corpus.

5.2.2 Analysis of EGMs based on Manual Annotations

In this section we analyse the output of the EGMs on English and German documents

individually and examine correspondences across the two languages. To get an idea

of the upper bound of the performance of the monolingual EGMs, this experiment

is based on manual annotations of entities. For this we need a parallel corpus (for

English-German) with fully annotated coreference chains, however no such resource

was available at the time of writing. The ParCor corpus (Guillou et al., 2014) contains

annotations approximating full coreference chains. This corpus provides partial coref-

erence chains where pronouns were manually linked to their closest noun antecedent.

We therefore use the TED part (10 long documents) of this corpus for our analysis. We

extract the one-mode projection of the EGraph on source- and target-side documents

separately and compute the AOD for each document and language.

For cross-lingual comparison we compute the Pearson correlation between the

AOD of the English documents and the AOD of the German documents to find out

whether the source- and target-side coherence as measured by the separate EGMs are

related. As noted in Section 5.1, Guinaudeau and Strube (2013) have shown that the

AOD computed from the EGraph is an adequate measure of monolingual entity-based

coherence. Our hypothesis is that the translation of a document should exhibit a similar

coherence, since it is expected to preserve the meaning of the source document. The

respective AOD scores are therefore expected to correlated with each other. Results

are given in Table 5.1. The AOD averaged over all 10 documents is very similar in

both languages. Furthermore, the Pearson correlation is very high (between 89% and

93%) which suggests that the coherence as measured by the AOD of a source- and

target-side document pair is strongly connected, thus confirming our expectations.
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PU PW PAcc

en de en de en de

AOD 10.7684 3.8320 11.2735 4.0701 78.2543 24.6206

Pearson 0.6409 0.6357 0.7093

Table 5.2: The AOD (averaged over the ten documents) and Pearson correlation of the

one-mode projection graph of three different types of projections (cf. Section 5.1) on the

automatically annotated TED part of the ParCor corpus.

5.2.3 Analysis of EGMs based on Automatic Annotations

The experiment in the previous section is based on manually annotated, but incomplete

coreference chains. To get an idea of performance under complete, but automatically

annotated coreference chains, we compute the AOD with entities resolved by the above

mentioned coreference resolution systems (cf. Section 5.2.1). Results are shown in Ta-

ble 5.2. The Pearson correlation between source and target coherence is lower than

with manual partial coreference annotations (i.e. decreasing by 22.39 and 25.55 per-

centage points), but still high enough (i.e. between 64% and 71%) to support our

hypothesis that there is a strong correlation between source- and target-side coherence.

The averaged AOD is considerably different between English and German, with the

latter having much lower values. One reason for the larger difference between source-

and target-side AOD could be due to the difference in performance of the coreference

resolution systems.

To get an intuition of how well the automatic coreference resolution systems work

on the genre and domain of the ParCor corpus (i.e. TED talks), we manually com-

pleted the partial ParCor annotations to full coreference chains for two documents in

both languages and computed the standard evaluation metrics MUC, B3 and CEAF

(cf. Section 2.5) using the reference implementation of the CoNLL shared task (Prad-

han et al., 2014).4 Results are given in Table 5.3. MUC shows a good F1 performance

between 51.08% and 67.51% with a balanced precision and recall. For the other met-

rics, precision is generally a lot higher than recall by between 23% and 52% (absolute).

All metrics show a similar performance when comparing source- and target side. Com-

monly the average of the F1 scores of MUC, B3 and CEAF-e are reported as a final

score. On the two source documents the average F1 score is 38.73, and on the two

4http://conll.github.io/reference-coreference-scorers/, v8.01

http://conll.github.io/reference-coreference-scorers/
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MUC B3 CEAF-m CEAF-e

docId R, P, F1 R, P, F1 R, P, F1 R, P, F1

src009 66.66, 68.37, 67.51 29.89, 65.15, 40.98 31.08, 67.83, 42.63 6.97, 51.48, 12.28

src010 62.50, 51.28, 56.33 30.00, 53.44, 38.43 25.26, 57.66, 35.14 9.83, 58.98, 16.85

tgt009 60.71, 69.67, 64.88 25.12, 60.59, 35.51 28.81, 53.79, 37.52 10.84, 46.67, 17.59

tgt010 45.19, 58.75, 51.08 26.77, 64.08, 37.77 26.49, 66.66, 37.91 13.06, 64.67, 21.73

Table 5.3: Recall, Precision, F1 of standard coreference resolution evaluation metrics

for two documents in English (source-side) and German (target-side). This evaluation

includes singleton entities, and is based on automatically detected mention spans.

target documents it is 37.98. The results are far from perfect, but also only look at two

documents. We speculate that this can also be attributed to the mismatch of our anno-

tated entity mentions (and their spans) and the automatically extracted ones. General

evaluation of the two coreference resolution systems as given in the respective papers

show a much better performance on larger gold standard corpora. The average F1 mea-

sure for Stanford DCoref is 54.62 on the English CoNLL2011 dev set, and CorZu has

an average F1 measure of 69.2 on the German SemEval 2010 data set. We give these

scores as indication of the performance range on standard tests sets, however they are

not directly comparable, since they are based on different data sets.

Furthermore, the EGraph ignores singleton entities, i.e. entities that occur only

once, since the one-mode projection only establishes a connection between two sen-

tences if entities are mentioned in both. The MUC metric in turn is the only metric that

does not take singleton entities into account. This means, that the most relevant metric

is also the one with the highest performance.

5.2.4 Entity Alignment

We manually inspected the EGraphs of source- and target-side documents by plotting

them in a shared space with a single set of sentence nodes. This inspection suggested

that there is a close correspondence between source- and target-side entities and that

they can be aligned via the shared sentence node space of the two language-specific

graphs. An excerpt of a source-target document pair is shown in Figure 5.1 with entities

represented as e nodes in the source (src) or target (tgt) side, and sentences as s nodes.

Edges are drawn between the two if the entity is mentioned in the sentence. The
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Figure 5.1: An excerpt of a source-side (left) and target-side (right) EGraph where the

sentence nodes are shared between the two graphs. Extracted from the original ParCor

document 009.

numbers provide an identifier for each node, but do not correspond to each other across

the node sets. It can be seen that entity esrc
73 (Nathaniel, he, . . . ) most likely corresponds

with etgt
71 (Nathaniel, er, . . . ), since they are both mentioned in sentences 10–12; and

similarly entity esrc
92 corresponds to etgt

84 , since they both occur in sentences 13–15. It

is highly unlikely that entity etgt
77 (schizophrenen Phasen, die, . . . ) corresponds to any

of the entities on the source side, since there is only little overlap. Furthermore note

that the graph is based on the original ParCor annotations, which only provide partial

coreference chains. With full coreference chains, the two separate entity nodes esrc
73 and

esrc
92 (and similarly for the target-side) would be represented in one entity node.

In order to verify this intuition from manual inspection and to systematically find

the entities in source and target side that correspond to each other we automatically

align source- and target-side entities. We use the KM algorithm to obtain the optimal

cross-lingual one-to-one entity alignment for a given document. The algorithm oper-

ates on a cost matrix with rows and columns as source and target entities respectively.
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This matrix records the cost of aligning a particular source and target entity. We deter-

mine the cost in each cell by first counting how often the respective source and target

entity is mentioned in the same sentences. Since the algorithm is defined to obtain a

matching with minimal cost, we invert the counts by subtracting them from the max-

imum count. Furthermore, the algorithm requires a square matrix, so we add dummy

entities with the maximum cost (so that they are most unlikely to get chosen), if we do

not have an equal number of entities in source and target language. The above steps

are illustrated in Table 5.4.

We manually inspected the aligned entities by looking at the source- and target-side

entity mentions of each entity pair. The results on a subset of the ParCor corpus (doc-

uments 006–010) are summarized in Tables 5.5 and 5.6 for EGraphs based on manual

ParCor annotations (i.e. partial coreference chains) and automatically resolved coref-

erence chains, respectively. We distinguished three groups: (a) corr: the entity align-

ment is correct, (b) incorr: the alignment is wrong, (c) context unk: with just looking

at the mentions it is not possible to judge whether the alignment is correct or incorrect

(e.g. if a coreference chain only consists of pronouns). Automatic coreference chains

may contain unrelated entity mentions, so we gave partial credit if an inconsistently

resolved coreference chain contained at least some matching entity mentions between

the aligned source and target entity (partial).

The automatic alignment of entities from EGraphs based on manual annotations

performs well with 69% correct alignments. This gives justification that our method

of entity alignment generally works. For the EGraphs based on automatic annotations,

the performance drops considerably, but still 39% of the paired entities are correctly

aligned.

In addition to the entity alignment procedure described above, we also experiment

with two different versions. First of all, the KM algorithm can align a source- and

target-side entity even though none of the entity mentions in either source or target oc-

cur in the same sentence (i.e. the cell in the cost matrix will have the highest cost). This

is due to the fact that the algorithm does not leave any entity unaligned. We therefore

check all aligned entity pairs and remove the alignment if none of the entity mentions

in the source or target side occur in the same sentence (henceforth WITHPOSTKM-

FILTERING). The second version takes word alignment into account, when creating

the cost matrix. Word alignments are obtained with MGiza.5 If a source and a target

entity mention in a particular sentence is not connected via word alignment links, then

5https://github.com/moses-smt/mgiza

https://github.com/moses-smt/mgiza
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esrc
0 esrc

1 esrc
2 esrc

3

s0 X X - -

s1 X - X -

s2 - - X X

s3 - X - X

(a) EGrid of source document.

etgt
0 etgt

1 etgt
2

s0 X - -

s1 X X -

s2 - X X

s3 X - X

(b) EGrid of target document.

etgt
0 etgt

1 etgt
2 dummytgt

0

esrc
0 2 1 0 0

esrc
1 2 0 1 0

esrc
2 1 2 1 0

esrc
3 1 1 2 0

(c) Weight matrix is created by counting the

number of shared sentences for each source-

target entity pairing. This is finally converted

into a cost matrix by subtracting all weights by

the maximum weight (here 2) to find minimum

cost pairings.

esrc
0 -etgt

0 esrc
2 -etgt

1 esrc
3 -etgt

2 esrc
1

s0 XX – – X

s1 XX XX – -

s2 – XX XX -

s3 -X – XX X

(d) Optimal pairing of source and target enti-

ties found by the KM algorithm.

Table 5.4: Steps involved to find the optimal matching between source- and target-side

entities. Sentences are represented by s and entities by e.
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docId corr incorr context unk

006 60.00 13.33 26.67

007 60.00 40.00 0.00

008 63.41 14.63 21.95

009 88.89 11.11 0.00

010 73.33 0.00 26.67

average 69.13 15.81 15.06

Table 5.5: Performance in percent of the automatic source-target entity alignment where

the EGraphs are based on manual ParCor annotations. We ignore singleton entities

when aligning.

docId corr incorr context unk partial

006 32.31 64.62 0.00 3.08

007 44.44 55.56 0.00 0.00

008 43.90 51.22 0.00 4.88

009 33.33 36.67 0.00 30.00

010 42.42 48.48 6.06 3.03

average 39.28 51.35 1.21 8.20

Table 5.6: Performance in percent of the automatic source-target entity alignment where

the EGraphs are based on automatically resolved coreference chains. We ignore sin-

gleton entities when aligning.
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this entity mention pair does not contribute to the weight in the cost matrix creation

(henceforth WITHINFORMEDKMCOSTMATRIX).

5.2.5 Bilingual Model of Source-Target Coherence Interaction

The method from the previous section to automatically establish an entity alignment

between a source- and target-side document allows us to define our bilingual entity

model. It models the interaction between source- and target-side coherence, and is

based on the hypothesis that there is a strong correlation between source- and target-

side entities.

We experiment with two different versions. The first model provides a coarse-

grained summary of the document similarly to the monolingual EGraph model. We

create a new merged EGraph by exploiting the automatic alignment between source

and target entities. The sentence nodes remain the same as for the individual EGraphs

and for each sentence and aligned entity pair, we create an edge if that entity is men-

tioned in that sentence in both languages. The edge weight is computed by multiplying

the edge weights of the monolingual edges of the involved entity mentions. If entity

mentions do not have a counterpart in the other language, then no edge is established.

Similarly, entities that were not aligned with the KM algorithm (because there were

more entities in the source than in the target document, or vice versa) will not be in

the new EGraph. For the aligned entities as determined in the example from Table 5.4,

the resulting merged EGraph is shown in Table 5.7. The three variants of the one-

mode projection can now be computed based on the new EGraph just as before and

the respective AOD scores represent three variants of the coarse-grained version of our

model.

The above version of the bilingual entity model is coarse grained because it only

provides a one-score summary of bilingual coherence. The second version of our bilin-

gual entity model looks at cross-lingual patterns in more detail and hence provides a

more fine-grained picture. We extract patterns on the entity level and on the entity

mention level. In the first group counts are collected of aligned entities, unaligned

source entities and unaligned target entities. In the second group counts are collected

only based on aligned entities by counting the number of inserted mentions and deleted

mentions (i.e. an entity mention exists in the source sentence, but not in the target sen-

tence, and vice versa respectively), and the number of preserved mentions (i.e. the

entity is mentioned in both source and target sentence). Additionally, we count the
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emerged
0,0 emerged

2,1 emerged
3,2

s0 1 0 0

s1 1 1 0

s2 0 1 1

s3 0 0 1

Table 5.7: The merged EGraph from the entity alignment shown in Table 5.4 (with

X from that table taking on the weight 1 as defined before). The bipartite graph is

represented as a matrix, where zero means no edge exists between an s node and an

e node.

number of source and target entities. These eight counts represent the features of the

fine-grained model in addition to the scores from the coarse-grained version.

We experiment with three different fine-grained versions. For the first (LEVELNORM)

we normalize the counts within the entity level by dividing them by the sum of counts,

and similarly for the mention level counts. The second version (NONORM) uses the

counts directly. We experiment with this unnormalized version to find out what effect

normalization has on the model. In the third version (SRCNORM) we divide the first

two scores within the entity level group by the number of source entities and leave the

other counts unnormalized. This normalization ensures the same denominator if com-

paring different translations of the same document, since the source-side remains the

same. In Table 5.8 we summarize the involved features, their values and the different

normalizations for our fine-grained model.

5.3 Experiments on Artificially Confused Data as Trans-

lation Proxy

To test our model, we focus on the problem of pronoun translation. This problem was

also the main aspect of the CLPP shared task (Hardmeier et al., 2015; Guillou et al.,

2016) to which we submitted systems (cf. Chapter 3). Participating systems were re-

quired to predict a translation of the pronouns it or they in subject position by choosing

from a closed set of target-side pronouns given the source and target document and

word alignments. The closed set consists of the most frequent pronoun translations

and an OTHER class which groups together the remaining, less frequent translations.



118 Chapter 5. Bilingual Models of Coherence based on Entity Grid Models

group no. feature levelNorm noNorm srcNorm

1 1 AOD of merged EGM: PU 1 1 1

2 AOD of merged EGM: PW 1 1 1

3 AOD of merged EGM: PAcc 1 1 1

2 4 number of mention insertions ∑group2 1 1

5 number of mention deletions ∑group2 1 1

6 number of mention preservations ∑group2 1 1

3 7 number of aligned entities ∑group3 1 S

8 number of unaligned source entities ∑group3 1 S

9 number of unaligned target entities ∑group3 1 1

4 10 number of entities in source document 1 1 1

11 number of entities in target document 1 1 1

Table 5.8: The values in the last three columns denote the denominator which is used

for normalizing the feature value from the ”feature” column. ∑group2 = sum of counts

in group 2. ∑group3 sum of counts in group 3. S = number of entities in the source

document.

We follow the underlying idea of the CLPP shared task to first experiment with

our model in a controlled setting. Therefore, in order to investigate the performance

of our model without the additional noise and variation introduced by automatically

translated data (e.g. parsing and coreference resolution might not work well on the

output of an SMT system), we work on an artificially created corpus, created from

parallel documents where the target-side is taken from the human reference translation.

We artificially introduce coherence errors in the data by confusing target-side pronouns

to varying degrees. We base the confusions on typical errors CLPP systems make to

get a more realistic confusion than just a uniformly random one. We achieve this by

sampling from the distribution of pronoun confusions from the confusion matrices of

CLPP systems. We take these confusions as proxy of discourse-related errors that a

full SMT system with otherwise perfect translation performance would make.

The second motivation for working on artificially confused corpora is the fact that

we automatically obtain labels for training and testing purposes with regards to coher-

ence judgements. This is based on our assumption that if we confuse more pronouns,

the coherence of the documents is also further away from the source document.

We conduct three experiments to test various aspects of our model. The first exper-
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iment investigates whether the model can distinguish between a confused target-side

document and the original version with respect to the source document. Our expecta-

tion here is that the coherence of a confused document exhibits systematic differences

with respect to the source document that cannot be found in the original document

with respect to the source document. The second experiment determines whether our

model is capable of distinguishing among data sets with different amounts of confu-

sions. With this we test if our model is generally suitable to rank different translation

hypotheses of the same source document in terms of coherence. The third experiment

tests whether we can reuse a learnt ranking function on a different confused corpus.

This would be evidence in favour of the fact that the learnt ranking function is general

enough to capture also differences between unseen confusions and the original corpus.

For these experiments, we learn ranking functions with SVMrank (Joachims, 2006).6

The output is a ranking that puts those documents at a higher rank that are closer to the

coherence of the source document. The SVM ranker learns a function h(~x) such that

for all input vector pairs~xi and~x j where the input vector~xi has a higher rank y than~x j,

the following condition holds:

h(~xi)> h(~x j)⇔ yi > y j

The model parameters are learnt by minimizing the number of wrong ranking or-

ders for a given training set of input pairs~xi and~x j with gold rankings~yi and~y j respec-

tively.

5.3.1 Corpus

We take the IWSLT15 corpus for English-German as a basis for our experiments.7 It

contains transcribed documents from TED talks and is therefore from the same genre

of the TED part of the ParCor corpus we explored in our earlier experiments. It con-

tains 1592 source-target document pairs in total with 122 sentences per document on

average.

5.3.2 Creation of Confused Data Sets

We prepare two different confused corpora. One is based on the confusion matrix ob-

tained from applying the TurkuNLP system (Luotolahti et al., 2016, TURKUNLPTEST)

6http://www.cs.cornell.edu/People/tj/svm_light/svm_rank.html
7https://wit3.fbk.eu/mt.php?release=2015-01

http://www.cs.cornell.edu/People/tj/svm_light/svm_rank.html
https://wit3.fbk.eu/mt.php?release=2015-01
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System Mac-R Acc

TURKUNLPTEST 64.41 71.54

UEDINDEV 41.21 57.72

Table 5.9: Macro-averaged recall (Mac-R) and accuracy (Acc) of the two CLPP systems

whose confusion matrices are used as a basis for introducing coherence errors.

to the CLPP16 shared task test set and the other one from applying our CLPP16 sub-

mission, i.e. the UEdin system (Wetzel, 2016, UEDINDEV) to the development set.

Performance of these systems is given in Table 5.9. The first one performed better in

the CLPP shared task both in terms of macro-averaged recall and accuracy. Since it

makes fewer errors, the resulting confused corpus will have fewer changes from the

original corpus.

For both corpus versions we remove the rows and columns from the confusion ma-

trix representing the OTHER class. We do this because we cannot replace a pronoun

with OTHER, since it does not stand for a particular pronoun and it would create un-

natural corpora with the word OTHER in them. This leaves us with the entries for

er, sie, es and man. We convert the counts in the confusion matrices to distributions

from which we can sample. We then use these distributions to replace all target-side

pronouns from the confusion matrix with randomly chosen ones. We replace pronouns

at the beginning of the sentence with their first character converted to upper case. For

all other occurrences we use lower case. One important difference to the CLPP shared

task setup is that we replace target-side pronouns irrespectively of the source-side pro-

nouns, i.e. we do not only replace target-side pronouns if their source-side counterpart

is the pronoun it or they in subject position.

We experiment with two confusion matrix representations. The first one includes

the values on the diagonal of the matrix, i.e. the correct predictions (henceforth:

CMWITHDIAG). With this confusion matrix representation, pronouns can be replaced

with themselves. This happens more often if the CLPP system has a higher accuracy.

For the other representation we use confusion matrices, where the diagonal values are

set to zero, i.e. each confusion results in a pronoun that is never itself. We refer to this

version as CMWITHOUTDIAG.
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type of confusion model variant accuracy

UedinDev, CmWithDiag AOD of PU 55.33

UedinDev, CmWithDiag AOD of PW 57.33

UedinDev, CmWithDiag AOD of PAcc 70.67

TurkunlpTest, CmWithDiag AOD of PU 52.00

TurkunlpTest, CmWithDiag AOD of PW 54.33

TurkunlpTest, CmWithDiag AOD of PAcc 68.67

Table 5.10: Performance of the coarse-grained model in terms of accuracy in percent

on the single train/test split of 1442/150 documents.

5.3.3 Experiment I: Binary Ranking

In this experiment we test the general ability of our model to distinguish the original

document pair from a document pair with the confused target-side pronouns (confused

document pair). We frame this problem as a ranking problem, where the original docu-

ment pairs should be ranked higher than their confused counterparts. We report results

in terms of accuracy (i.e. the number of correct rankings divided by the number of all

rankings). We run experiments on a single train/test split of 1442/150 documents and

additionally perform a 10-fold cross-validation. The data consists of tuples of feature

vectors, where the first element in the tuple represents the original document pair, and

the second one represents the confused document pair. We learn separate ranking func-

tions for each confused corpus. Our expectations are that the ranking performs slightly

better for the confused corpus based on the UEDINDEV confusion matrix, than the

TURKUNLPTEST one, since the former contains more confused pronouns and hence is

more distinct from the original corpus.

The results for the coarse-grained model are given in Table 5.10 for the single

train/test split. The performance of the first two variants is quite low (i.e. between

52.00-57.33% accuracy). The accuracy at 70.67% and 68.67% of the third variant is

considerably better than that. The results for the fine-grained model are given in Ta-

ble 5.11 for the single train/test split, and in Table 5.12 for the cross-validation exper-

iments. The accuracy is much higher than with any of the coarse-grained models and

very high in general (i.e. 88.00-96.00%). These results hold both for the single split

experiment and the 10-fold cross-validation. This is a first piece of evidence that the
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type of confusion model variant levelNorm noNorm srcNorm

UedinDev, CmWithoutDiag both KmExtensions 92.00 94.00 95.33

UedinDev, CmWithoutDiag only withPostKmFiltering 91.33 96.00 95.33

UedinDev, CmWithDiag both KmExtensions 93.33 88.67 91.33

TurkunlpTest, CmWithDiag both KmExtensions 88.00 84.67 88.00

Table 5.11: Performance of the fine-grained model in terms of accuracy in percent on

single train/test split of 1442/150 documents.

type of confusion model variant levelNorm noNorm srcNorm

UedinDev, CmWithoutDiag both KmExtensions 90.63±1.37 91.63±1.97 91.95±1.87

UedinDev, CmWithoutDiag only withPostKmFiltering 90.38±1.36 92.07±2.59 92.14±2.48

UedinDev, CmWithDiag both KmExtensions 90.69±1.62 89.75±2.08 90.75±1.97

TurkunlpTest, CmWithDiag both KmExtensions 87.99±2.02 86.92±2.53 87.55±2.48

Table 5.12: Performance of the fine-grained model in terms of accuracy in percent

averaged over results from a 10-fold cross-validation setup. Standard deviation is given

after ±.

bilingual coherence model is a good model to judge consistent cross-lingual coherence.

Furthermore, our expectations seem to hold that the TURKUNLPTEST corpus is harder

to rank than the UEDINDEV corpus, since the ranking performance is slightly worse

for the former one. The experiments with the confusion matrix variants CMWITH-

DIAG and CMWITHOUTDIAG show for most of the normalizations that the latter one

is easier to rank (i.e. better performance of the model). The same argument holds here,

that it contains more confused pronouns and is therefore easier to distinguish from

the original document. Compared to the best-performing coarse-grained model, the

fine-grained model still achieves a boost in accuracy of 25.33% up to 96.00%. This

shows that the fine-grained model is more informative and better captures the bilingual

coherence of the documents involved. In the remainder of the experiments, we will

therefore only report results with the fine-grained model.

5.3.4 Experiment II: N-ary Ranking

The experiments in Section 5.3.3 show that there is a difference that can be captured

between documents from various confused corpora and the original corpus. It also
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levelNorm noNorm srcNorm

Accuracy (pairwise) 83.33 82.89 84.22

Accuracy (three-way) 61.33 63.33 64.00

Table 5.13: Results in percent of three-way ranking experiment on the same train/test

split of 1442/150 documents.

suggests that we can distinguish between the confused versions themselves. This is an

important piece of evidence making these models useful for ranking different actual

SMT system translations. To provide further evidence we run an experiment, where

the data consists of triples of feature vectors. The first one represents the original

document pair, the second one the TURKUNLPTEST-confused document pair, and the

third one the UEDINDEV-confused document pair (CmWithDiag, both KmExtensions-

version). The assumed gold ranking labels are given in that order as (3,2,1) for each

triple, where a higher rank represents a higher coherence.

The results of this experiment are given in Table 5.13 for the single train/test split.

In addition to pairwise accuracy as before (i.e. how often is any pair ranked correctly),

we report the three-way accuracy, since now we have data triples. This is the number

of ranking triplets where all rankings in each triplet are ranked correctly divided by the

total number of ranking triplets. This metric more harshly penalizes the model, since

each ranking triplet has to be perfectly predicted to count as correct. Performance of

both metrics is very good, especially the second one, considering that any error in rank-

ing one of the three data points is penalized. This is strong evidence, that our bilingual

coherence model is capable of distinguishing different versions of confusions, thus be-

ing able to detect and judge entity-based coherence across two languages. This will

also be important when it is applied to scoring different translation outputs of SMT

systems for the same document.

5.3.5 Experiment III: Transfer of Learnt Ranking Function

In the final experiment we test if the learnt binary ranking function from experiment I

based on one confused corpus A vs. the original corpus can be applied to rank a

different confused corpus B against the original corpus. This tests whether the model

can be applied to rank data confused by a different error distribution and if this is

the case then we have evidence that we can apply the learnt ranking function to rank
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levelNorm noNorm srcNorm

train on: UedinDev, CmWithDiag

test on: TurkunlpTest, CmWithDiag 89.33 87.33 88.00

model type: both KmExtensions

train on: TurkunlpTest, CmWithDiag

test on: UedinDev, CmWithDiag 92.67 89.33 90.00

model type: both KmExtensions

Table 5.14: Accuracy in percent when applying a ranking function trained on a corpus

with one degree of confusion vs. the original one to a corpus with another degree of

confusion vs. the original one. Based on the same train/test split of 1442/150 docu-

ments.

different translation hypotheses of the same document.

Results are given in Table 5.14. They show a high accuracy between 92% and 89%,

which confirms that the learnt ranking function is general enough and can successfully

be applied to rank document pairs from a differently confused corpus against original

ones.

5.4 Discussion

We first analysed a small set of documents to verify our hypothesis that source- and

target-side coherence have a strong systematic connection. The analysis showed that

there is a strong correspondence of source- and target-side coherence as measured by

the EGraph formulation of the EGM both based on near-gold standard entity annota-

tions and on automatically resolved annotations. This enables us to exploit entity-based

coherence information with respect to the source document. In common translation

scenarios the entire source document is usually available completely and is produced

as natural language text by humans.

Based on the findings that there is a strong correspondence of coherence, we de-

veloped a bilingual model of coherence inspired by the monolingual EGM. We test its

performance on three experiments. These experiments are designed to capture three

different aspects of the model: (1) Can it distinguish original documents from docu-

ments with translation errors (i.e. confusions) with respect to the source documents?
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(2) Can it distinguish also among different levels of confusions? (3) Can we learn a

ranking function on one particular confused data set and apply it to a different one and

still be able to distinguish the original from the confused documents?

The first experiment aimed at providing evidence whether our model performs well

at capturing the coherence and the systematic connections of coherence between source

and target side. We assume that the coherence of the original target-side document is

closer to the source document than the confused target-side document, hence providing

automatic gold ranking labels. The learnt ranking function is then expected to rank the

original document pair higher than the confused one, which is confirmed by the results.

The second experiment aimed at providing evidence that the model can also be

used to provide more than a binary ranking (i.e. original vs. confused document pair).

So we tested whether we can rank document pairs of different degrees of confusion.

This tests the general ability of the model to make decisions about whether a document

pair is slightly better than another one, rather than comparing a perfect translation with

an inferior one. This is working towards evaluating or ranking different translation

hypotheses or different SMT system outputs. We obtain the different versions of con-

fused data sets by using two different confusion matrices as basis for the confusion.

We assume that the confusion from TURKUNLPTEST should always rank higher than

the one from UEDINDEV. This assumption comes from the fact that the first system

generally has a higher accuracy (i.e. more probability mass is on the diagonal of the

confusion matrix distribution) and therefore fewer pronouns get changed (i.e. more

pronouns get replaced with themselves). Investigation of both confusion matrices also

showed that the first CLPP system generally performed very well on the non-referential

pronoun man, therefore leaving more of these pronouns untouched and therefore intro-

ducing fewer referential pronouns that could potentially be resolved by the coreference

resolution system. Furthermore, our assumption as before that the original document

pair should be ranked highest still holds. The experimental results confirm what we

wanted to show.

In the first two experiments we created the supervised ranking labels automatically

based on well-founded assumptions, that our target-side confusions result in lower co-

herence than the original translations. However, in an SMT evaluation setting, we do

not know the true rankings of different translation hypotheses and therefore have no

training data for learning the ranking function. The final experiment is therefore de-

signed to test whether it is possible to take a learnt ranking function from one particular

confused data set, and see whether it generalizes and can be applied to rank another
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version of the confused data set vs. the original data set. Results in the experiment

confirm that this is possible in general.

All of the experiments are performed on data where errors of pronoun translation

were introduced artificially. We take these confused corpora as a proxy of actual SMT

output exhibiting one particular error commonly found in SMT system outputs. While

we are aware that this does not reflect the noisier and lower quality of automatic trans-

lation, we still think that this is a useful proxy of such data. The advantage of this

approach is the fact that we can work with almost natural translations, and can there-

fore rely on existing tools for parsing and coreference resolution.

The errors are introduced by sampling from confusions a CLPP system makes and

are therefore not completely arbitrary confusions. However, the decision what pronoun

to replace with what other pronoun is made independently of the surrounding context

and therefore does not necessarily reflect the actual prediction of the CLPP system

in that context. However, we cannot use the predictions of the CLPP systems directly,

since the corpus we use in our experiments was part of the systems’ training data. They

would therefore have to be retrained and code or parameter settings are not always

available. The approach of sampling from confusion matrices is therefore a useful

compromise, since all the confusion matrices are published by the shared task.

Coherence has many aspects and with the EGM we only capture one of it. The

conclusions of our experiments make no statement about other parts of coherence,

such as discourse relations.

5.5 Conclusions

We compared the output of the EGM, a monolingual coherence model, for English

and German and showed that there is a correlation between source- and target-side co-

herence. We then defined a coarse- and fine-grained bilingual coherence model. The

former is based on the AOD of a merged source-target EGraph and the latter is defined

as a feature vector of cross-lingual patterns on entity and entity mention level. To test

different aspects of our model, we ran three ranking experiments, where target-side

documents with a coherence more related to the source coherence are expected to be

ranked higher than less coherent ones. We work with human translations and different

degrees of confusion of these translations by substituting pronouns with other pro-

nouns sampled from a confusion matrix which represents typical errors a SMT system

could make. The experiments test whether the model can distinguish confused docu-
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ment pairs from the original document pair, whether it can distinguish among different

degrees of confusion, and whether we can learn a ranking function based on one de-

gree of confusion and use it to rank another degree of confusion against the original

translations. Results show that the coarse-grained model is not expressive enough re-

sulting in poor performance. However, the fine-grained model has a high performance

in all experiments. All experiments work towards using bilingual coherence for SMT

evaluation and provide encouraging results.





Chapter 6

A discourse-aware Evaluation Metric

for SMT

Recent work on document-level and discourse-aware SMT reported only minor im-

provements in performance according to BLEU when explicitly handling a particular

discourse phenomenon (Le Nagard and Koehn, 2010; Rios Gonzales and Tuggener,

2017; Hardmeier, 2014, Chapter 9). However, BLEU can only capture strictly sentence-

internal performance, is restricted to an n-gram context within sentences (convention-

ally n is 4) and gives equal importance to every word (cf Section 2.3). Furthermore,

manual evaluation revealed that the covered phenomena are indeed preferred by the hu-

man judge (Guillou, 2012; Luong and Popescu-Belis, 2016). However, manual evalu-

ation is not scalable. We therefore need an automatic discourse-aware SMT evaluation

metric to enable and further the development of discourse-aware SMT approaches.

Similarly to BLEU as tuning objective, this automatic metric could then also enable

tuning SMT systems not only towards BLEU, but also towards a better handling of

discourse-phenomena.

In the previous chapter we defined and experimented with our bilingual model of

coherence, i.e. our bilingual EGM. We tested the model’s performance on a task where

translations should be ranked according to their coherence. This task resembles the

SMT evaluation setting and in fact was set up with SMT evaluation in mind. We cre-

ated artificial corpora, that were constructed in such a way, that we could automatically

obtain gold ranks with a high certainty that they are reliable. The artificial corpora are

based on parallel documents from TED talks with both source- and target-side created

by human authors. We then confused the target-side by changing pronouns, where the

change was informed by typical errors made by CLPP systems.

129
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In this chapter, we move away from this artificial setup and experiment with our

bilingual EGM to see if it can be used as a full discourse-aware SMT evaluation met-

ric. We therefore need to show that it can be used when applied to real SMT system

output. This also requires that we test the evaluation metric for correlation with human

judgements. In the previous chapter, we could use automatically obtained gold labels

of coherence from the artificially constructed corpora. This is no longer available in

the setting for this chapter. Obtaining human coherence judgements is an expensive

and not well-defined task. Instead, we employ our annotated corpus from Chapter 4

for this purpose. We use the pronoun translations chosen by human annotators, which

are contributing to the entity-based coherence of a document, as a proxy for human

coherence judgements. Based on these judgements, we compute a gold ranking of

entity-based coherence between two system outputs, by counting which system agrees

more often with the human pronoun choice.

If we can show that there is a correlation of our SMT evaluation metric with these

human judgements, that shows that our evaluation metric adequately captures this par-

ticular concept of coherence. Instead of correlation, the equivalent view is if we can

show that we can predict the gold rankings with a high accuracy. This is the approach

we take in this chapter.

We first present the two SMT systems that we use to create translations as basis for

testing our SMT evaluation metric and describe the test data set including how we ob-

tained system rankings from our annotated corpus (Section 6.1). We then present how

we use our bilingual EGM as evaluation metric and run two sets of experiments (Sec-

tion 6.2). One is based on reusing pre-trained weights from our earlier chapter on arti-

ficial data, the other one uses a cross-validation setup. Both experiments are designed

to find out if there is a high correlation with human judgements of our discourse-aware

SMT evaluation metric. We then present a simpler evaluation metric based on infor-

mation extracted from our bilingual EGM, but without the additional tuning procedure

(Section 6.3). Finally, we discuss the overall results from this chapter (Section 6.4).

6.1 SMT Systems and Data

6.1.1 SMT Systems

In order to show the full potential of our discourse-aware SMT evaluation metric, we

cannot rely on simply comparing two or more standard sentence-level SMT systems.
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These systems could only introduce changes affecting the coherence of a translation

at the sentence level. Furthermore, even those changes would have been performed

by chance, since standard SMT systems do not explicitly model discourse-phenomena

(neither at the sentence-level, nor at the document-level).

For testing our evaluation metric, we therefore work with output from two different

SMT systems one of which is a discourse-aware system. The first system (henceforth:

NMTBASELINEPLAIN) is the state-of-the-art NMT system Nematus (Sennrich et al.,

2016a), that we used for our corpus creation (cf. Chapter 4). This system is not

specifically designed to handle any discourse phenomena. We therefore take it as our

discourse-unaware SMT system.

The second system is an automatic post-editing system that attempts to tackle pro-

noun translation. It is based on pronoun predictions made by our CLPP system. It

takes the output of the above NMT baseline, and replaces pronouns on the target side,

if the prediction is different from the baseline output. We experiment with three vari-

ants of this system based on different settings of our CLPP system. The settings of

these variants are described in detail in Section 4.5.2. The first two (henceforth: NMT-

CLPPPLAIN and NMTCLPPNONEFEAT) differ, in that in the latter system the NONE

feature is enabled, attempting to obtain better predictions for the OTHER class. How-

ever, none of these two systems have NONE predictions, i.e. that the source pronoun

should be translated with the empty word, in their final output. On the other hand, the

third variant (henceforth: NMTCLPPNONEFEAT&PREDICT) has NONE predictions in

its final output.

Compared to the baseline NMT system, these post-editing systems attempt to

tackle a discourse phenomenon that can be both sentence-internal, but more impor-

tantly can also cross sentence boundaries. They therefore make changes to the SMT

output that can no longer be adequately captured with sentence-level evaluation met-

rics such as BLEU. This is confirmed by the respective BLEU scores in Table 6.1,

which indeed do not change considerably. As such, our post-editing systems provide

us with data as a basis for evaluating whether our SMT evaluation metric performs

well. Table 6.1 furthermore shows the inadequacy of BLEU in that the translation

output resulting from human pronoun annotation on top of the NMTBASELINEPLAIN

output (HUMANC2, cf. Section 6.1.3) is in the same performance range as the BLEU

scores for system outputs, with the NMTBASELINEPLAIN ranking higher with a small

margin of 0.04 BLEU points.

In order to find out how different the output with respect to pronouns is between
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BLEU (uncased)

NMTCLPPPLAIN 34.54

NMTCLPPNONEFEAT 34.58

NMTCLPPNONEFEAT&PREDICT 34.72

NMTBASELINEPLAIN 34.82

HUMANC2 34.78

Table 6.1: Uncased BLEU scores on the WMT16 news test set.

Mac-R Acc

NMTBASELINEPLAIN vs. CLPPPLAIN 71.06 74.29

NMTBASELINEPLAIN vs. CLPPNONEFEAT 62.00 76.68

NMTBASELINEPLAIN vs. CLPPNONEFEAT&PREDICT 41.85 68.31

Table 6.2: Macro-averaged recall and accuracy on the WMT16 news test set (with auto-

matically translated target-side documents) when comparing pronouns as translated by

the NMTBASELINEPLAIN system against pronouns as predicted by each of our CLPP

systems.

the NMTBASELINEPLAIN system and our post-editing systems, we compute a confu-

sion matrix, where we consider the rows as the post-editing system predictions, and

the columns as the baseline predictions. Based on this confusion matrix, we compute

macro-averaged recall and accuracy as done in Section 3.2.2. These scores tell us how

different the two sets of document translation hypotheses are. If the accuracy is very

high, this means that there are not many differences. If it is low, then they propose

many different pronoun translations. The results are shown in Table 6.2. The accuracy

shows that between 68.31% and 74.29% of the pronouns do not differ. Macro-averaged

recall is lower, i.e. between 41.85% and 71.06%. The reason for the lowest score is

that the NMTBASELINEPLAIN system never predicts NONE, whereas the NMTCLPP-

NONEFEAT&PREDICT system does, leading to a recall of zero for that class.
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6.1.2 Data

We run our experiments on the WMT16 news test set, which also formed the basis

of our annotated corpus. It consists of 155 parallel documents. For the automatic

translation and for the individual pronoun predictions, we reuse the tokenized data

created in Section 4.5.1. Note that for experiments in this section, we reuse the data

before it has been lemmatized and POS-tagged. The translation of each document

from the baseline system can then be taken directly from our corpus preparation. The

post-edited translations of each document from the CLPP-enriched translation systems

are obtained by replacing all the pronoun instances on the target side in the translation

from the baseline with the pronoun predictions made by each CLPP system.

In case a CLPP system predicts NONE, we remove the target-side pronoun. With

respect to OTHER-class predictions, we do not know what the actual word would be

that the CLPP system prefers. The possibilities are too large since the OTHER class

groups many different words together (i.e. other pronouns, nouns, or even words from

other POS-classes). In our experiments, we therefore replace the baseline predictions

with the token OTHER in these cases. Furthermore, we made sure that each OTHER

token is unique by appending an identifier, so that the coreference resolution system

does not accidentally resolve them into one coreference chain.

For our bilingual EGM we then pre-process the parallel documents with corefer-

ence resolution systems both on the source and on the target side. For the English

source side, we use the Stanford DCoref system, and for the German target side, we

use CorZu. These are the same tools we used in earlier experiments (Section 5.2.1).

6.1.3 Human Judgements for Gold Coherence Rankings

Eliciting human judgements of coherence in a document is a task that would be both

expensive and is not well defined. If the term is left underspecified and human anno-

tators were asked to either provide a judgement on a scale how coherent a text is, or to

provide a ranking between two documents whether one is more coherent than the other,

then this would require a lot of annotation time and effort. Annotators would have to

read at least one (or possibly two) long documents and then give one final score for the

entire document.

In our translation setting, this is further complicated by imperfect translations mak-

ing it harder to understand the entire document and to judge only coherence and not be

influenced in this judgement by grammatical and other errors. An additional layer of
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complexity would be added if we required the annotator not only to judge the coher-

ence of the target-side document, but to get a coherence assessment with respect to the

source-side (e.g. verifying that all source-side entities are translated properly). Fur-

thermore, coherence has many aspects (e.g. based on topics, discourse relations, event

structure, entities, etc.) and if the term is left underspecified in a human assessment,

then it would be unclear which concept of coherence would influence the annotator’s

decision. Finally, the WMT translation shared tasks elicit human judgements on a sen-

tence by sentence basis, which simplifies the situation. However, even there they do

not ask for judgements of each sentence of a document, but only sample sentences to

be judged, as otherwise the task would be too time-consuming.

In their summary evaluation experiment, Barzilay and Lapata (2008) elicit coher-

ence judgements via crowd-sourcing. However, in their setup, many of the mentioned

problems do not occur. First of all, it is in a monolingual setting, not requiring the

annotators to read documents in two languages. Second, the summaries they evaluate

on are inherently short (i.e. around five sentences). Such short texts are faster to judge,

even when asking for a ranking between two such short texts. Therefore, this specific

monolingual setting is not comparable to our bilingual setting.

We therefore turn to our manually annotated corpus from Chapter 4. This paral-

lel corpus consists of documents, where the translations were obtained with the NMT

baseline system (NMTBASELINEPLAIN) we again use in the experiments in this chap-

ter. The target-side pronouns have then been removed and human annotators were

asked to provide a pronoun translation from a fixed set of choices. Hence, these anno-

tations focus on one specific aspect of coherence, i.e. entity-based coherence. We take

these pronoun annotations as a proxy for direct coherence judgements. This is based on

the simplifying assumption that entity-based coherence is only influenced by pronoun

choice. This is only an approximation, since in entity-based coherence coreferring

nouns also play a role. Nevertheless, it provides a feasible data collection scheme with

clearly defined annotation guidelines. Furthermore, when annotating the pronouns, the

human annotators do not make a judgement about the grammaticality or fluency of the

rest of the translation and therefore only focus on entity-based coherence.

We use the pronoun annotations in the corpus to create coherence rankings between

two system outputs. In order to convert the pronoun annotations into ranked coherence

judgements, we proceed as follows: For system A and B and for each document, we

count how often pronouns from the system are equal to the human annotation. If

system A has more such counts, then it gets a higher rank than system B, and vice
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NMTBASELINEPLAIN vs. NMTCLPPPLAIN 272 67 100 22 461

NMTBASELINEPLAIN vs. NMTCLPPNONEFEAT 261 52 80 23 416

NMTBASELINEPLAIN vs. NMTCLPPNONEFEAT&PREDICT 279 49 104 37 469

(a) Counts from documents, where one system is favoured over the other system (i.e. docu-

ments without ranking ties).
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NMTBASELINEPLAIN vs. NMTCLPPPLAIN 153 35 10 10 208

NMTBASELINEPLAIN vs. NMTCLPPNONEFEAT 181 46 13 13 253

NMTBASELINEPLAIN vs. NMTCLPPNONEFEAT&PREDICT 144 40 8 8 200

(b) Counts from documents, where both systems have the same count in one document (i.e.

documents with ranking ties).

Table 6.3: The tables give counts that represent how often system A and B agree or

disagree with human annotations for a particular pronoun instance (proInst). Four cases

are possible, i.e. both system A and B agree with the human annotations, both systems

disagree, only system A agrees, but not system B, and vice versa.

versa. If both system A and B have the same number of counts, then they get the same

rank (i.e. ranking tie). In Tables 6.3a and 6.3b, we list the statistics for these counts

separated for documents, which do not result in ranking ties and documents that result

in ranking ties, respectively.

We take a consolidated version of the annotations from our corpus as basis for the

above statistics and all of our experiments below (henceforth: HUMANC2). Whenever

we have multiple annotations for a document (i.e. by two annotators), we take the one

that is correct (if there are annotation errors) or the one that is most plausible (if they

are all correct).
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6.2 Bilingual EGM as SMT Evaluation Metric

In this section we want to answer the general question whether our bilingual EGM can

serve as a discourse-aware SMT evaluation metric and whether it correlates with hu-

man judgements of coherence. If this is the case, then it can be considered a good and

valid evaluation metric for assessing coherence in SMT output. To answer this ques-

tion we design experiments in a ranking task setup. We conduct a series of experiments

that are designed to answer different aspects of this general question.

6.2.1 Experimental Setup

In two experiments below (i.e. experiment I and II) we report results on two types of

setup. In the first setup, we let our evaluation metric rank a human reference transla-

tion against a system output (i.e. human vs. system). In the second one, we let our

evaluation metric rank two systems against each other (i.e. system A vs. system B).

The first type of setup (i.e. human vs. system) wants to answer the question,

whether we can distinguish a perfect translation (with respect to pronouns) from an

automatic translation that we assume is inferior. In particular this means that we want

to find out if we can distinguish human gold output from system output. To generate

system outputs, we use the SMT systems as described in Section 6.1.1. In this setting,

we assign the human gold output the higher coherence rank, and the system output

the lower coherence rank. This is based on the assumption that the automatic output

exhibits a lower coherence than the output with human pronoun annotations. In quite

a few cases, there is no difference with respect to pronouns between the human out-

put document and the automatic translation (either because there are no pronouns in

that particular document, or the automatic system predicted all pronouns in accordance

with humans). In that case, we assign equal coherence ranks.

The second type of setup (i.e. system A vs. system B) wants to answer the question,

whether we can rank two outputs from different systems according to the coherence of

the produced documents. This is the more realistic setting, where either two completely

different SMT systems can be ranked and the better one identified, or similarly the

same system with different parameters. In the first type of setup, we assumed gold

labels for coherence rankings. However in the system A vs. system B setup, we cannot

do that. Here we use the human judgements converted into gold rankings of coherence

as to which system produced a more coherent output from Section 6.1.3.

Both setups are binary ranking tasks, since in each setup two parallel input docu-
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ments are compared. This binary ranking task has the following three possible rank-

ings: (2,1), (1,2) and (1,1), where the first part refers to either human or system A

output, and the second part to the system or system B output, respectively for the two

types of setups. A higher number indicates a higher rank, i.e. 2 is more coherent than

1. If the rank is the same, then the pair (1,1) is used. In all experiments, our metric

is expected to rank each parallel document pair in a ranking order that is most simi-

lar to the one given by the gold labels (either obtained by assumption, or by human

judgements). Results are given in accuracy (i.e. how many rankings are ranked in the

correct order). Furthermore, we report results only for the bilingual EGM which uses

the LEVELNORM normalization setting (cf. Section 5.2.5), since the other normaliza-

tion variants showed similar results in Chapter 5 and we do not expect them to differ

here.

6.2.2 Experiment I: Reusing Weights from Trained Ranker

For this experiment we reuse a trained ranker from earlier experiments on the artifi-

cially confused corpus (cf. Section 5.3.3). If this works, then this would show that a

ranker can be trained once, and can be reused on different data sets and different se-

tups. The ranker for the earlier experiment was trained against data points that come

from parallel documents where the target side is the human reference translation vs.

parallel documents where pronouns in the human reference are randomly confused. In

that experiment, we tried out two different types of confusions, which were referred to

as UedinDev, CmWithDiag and TurkunlpTest, CmWithDiag. We now refer to them as

UedinDevDiag and TurkunlpTestDiag, respectively.

6.2.2.1 Human vs. System

Results on the entire test set are shown in Table 6.4a. The highest accuracy is 66.45%

providing good initial results. The pre-trained model parameters trained on the TurkunlpTest-

Diag corpus always perform better than the ones pre-trained on UedinDevDiag. Fur-

ther inspection shows that there are quite a few parallel input document pairs that have

an identical surface form for both human and the system (i.e. between 65 and 79 out

of 155 documents are input data ties). These input data ties are trivially easy to rank,

since they have an equal gold rank, i.e. (1,1), and the resulting bilingual coherence

model scores are also equal due to the identical input data.

We therefore also look at the performance on input data pairs, which are strictly
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different with respect to pronouns. Results for these are given in Table 6.4b. They are

considerably lower, with the highest accuracy at 31.58%. Note, that the values in each

row of the table without input data ties are not directly comparable. Each row reports

results on a slightly different test set size (between 76 and 90 documents), since each

human vs. system combination produces a different number of ties.

We more closely inspect the ranking errors by computing the confusion matrices of

predicted rankings vs. gold rankings. The confusion matrices for experimental results

reusing the UedinDevDiag model are shown in Table 6.5. Columns show the predicted

rankings and rows show the gold rankings. First of all, we can see that the huge drop

of performance between the full test data set (with input data ties) and the reduced

test data set (without input data ties) can be mostly attributed to the fact that there are

quite a lot of these input data ties. Additionally, these input data ties are trivially easy

to rank (performance is perfect for this class) as noted before. The major source of

error is that many input data pairs are ranked as ties (1,1), when they should have been

ranked as untied (2,1). In other words, despite the fact that the input document pair is

different, our metric is not capable of detecting the difference and predicts the same

ranking (1,1). Note, we leave out the same type of table for the TurkunlpTestDiag-

trained ranker.

6.2.2.2 System A vs. System B

In this set of experiments, we run the pre-trained ranker in the same way as in the

previous experiment. Only now we rank two systems against each other, using gold

ranking labels assigned by humans. Results are given in Tables 6.6a and 6.6b for the

entire test set, and for the test set without input data ties, respectively. We omit results

for the TurkunlpTestDiag-trained ranker. The number of input data ties is slightly

smaller than in the human vs. system setting with a maximum of 71 input data ties

compared to a maximum of 79 for the previous setting. The results are in the same

range in system A vs. system B setting compared to the human vs. system setting from

before, with a better maximum accuracy in the reduced test set without input data ties

in the current setting (i.e. 35.11% compared to 31.58%).

We provide confusion matrices for the system A vs. system B experiments with the

UedinDevDiag ranker in Table 6.7. Note that here again the numbers to the right side

of the slash in the confusion matrices represent the experiments where we removed

input data ties. On the reduced data set, in the human vs. system experiments we never

have the tied ranking (1,1) as gold label, since in this setup only input data ties can
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used trained ranking model: UedinDevDiag

HUMANC2 vs. NMTBASELINEPLAIN 65.81 155 79

HUMANC2 vs. NMTCLPPPLAIN 59.35 155 65

HUMANC2 vs. NMTCLPPNONEFEAT 60.00 155 70

HUMANC2 vs. NMTCLPPNONEFEAT&PREDICT 58.06 155 67

used trained ranking model: TurkunlpTestDiag

HUMANC2 vs. NMTBASELINEPLAIN 66.45 155 79

HUMANC2 vs. NMTCLPPPLAIN 60.00 155 65

HUMANC2 vs. NMTCLPPNONEFEAT 60.65 155 70

HUMANC2 vs. NMTCLPPNONEFEAT&PREDICT 58.71 155 67

(a) Test data includes all 155 documents (i.e. with input data ties).
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used trained ranking model: UedinDevDiag

HUMANC2 vs. NMTBASELINEPLAIN 30.26 76 0

HUMANC2 vs. NMTCLPPPLAIN 30.00 90 0

HUMANC2 vs. NMTCLPPNONEFEAT 27.06 85 0

HUMANC2 vs. NMTCLPPNONEFEAT&PREDICT 26.14 88 0

used trained ranking model: TurkunlpTestDiag

HUMANC2 vs. NMTBASELINEPLAIN 31.58 76 0

HUMANC2 vs. NMTCLPPPLAIN 31.11 90 0

HUMANC2 vs. NMTCLPPNONEFEAT 28.24 85 0

HUMANC2 vs. NMTCLPPNONEFEAT&PREDICT 27.27 88 0

(b) Test data only includes documents without input data ties.

Table 6.4: Results of experiment I: human vs. system. Results are given in accuracy in

percent.
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2,1 1,2 1,1 Total

2,1 23 19 34 76

1,2 0 0 0 0

1,1 0 0 79/0 79/0

Total 23 19 113/34 155/76

(a) HUMANC2 vs. NMTBASELINEPLAIN

2,1 1,2 1,1 Total

2,1 27 31 32 90

1,2 0 0 0 0

1,1 0 0 65/0 65/0

Total 27 31 97/32 155/90

(b) HUMANC2 vs. NMTCLPPPLAIN

2,1 1,2 1,1 Total

2,1 23 30 32 85

1,2 0 0 0 0

1,1 0 0 70/0 70/0

Total 23 30 102/32 155/85

(c) HUMANC2 vs. NMTCLPPNONEFEAT

2,1 1,2 1,1 Total

2,1 23 30 35 88

1,2 0 0 0 0

1,1 0 0 67/0 67/0

Total 23 30 102/35 155/88

(d) HUMANC2 vs. NMTCLPPNONE-

FEAT&PREDICT

Table 6.5: Confusion matrices of experiment I: human vs. system. These results are

obtained using the trained ranking model UedinDevDiag. Each column represents the

predicted ranking order, and each row represents the gold ranking order. The numbers

to the left of the slash are from the experiments with input data ties, the ones to the right

are from the experiments without input data ties.
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used trained ranking model: UedinDevDiag

NMTBASELINEPLAIN vs. NMTCLPPPLAIN 61.94 155 71

NMTBASELINEPLAIN vs. NMTCLPPNONEFEAT 63.87 155 75

NMTBASELINEPLAIN vs. NMTCLPPNONEFEAT&PREDICT 60.65 155 61

(a) Test data includes all 155 documents (i.e. with input data ties).
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NMTBASELINEPLAIN vs. NMTCLPPPLAIN 29.76 84 0

NMTBASELINEPLAIN vs. NMTCLPPNONEFEAT 30.00 80 0

NMTBASELINEPLAIN vs. NMTCLPPNONEFEAT&PREDICT 35.11 94 0

(b) Test data only includes documents without input data ties.

Table 6.6: Results of experiment I: system A vs. system B. Results are given in terms

of accuracy in percent.
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result in such a ranking. However, in the system A vs. system B experiments, there is

another way how gold rankings of (1,1) can occur. If system A makes an error in e.g.

sentence 5, and system B makes an error in sentence 10, and nowhere else, they both

receive the same rank according to the human annotation, since they both make exactly

one error and predict every other pronoun correctly. In other words, document pairs

that have a different surface form, can still result in (1,1) gold rankings. This explains,

why the gold ranking row for (1,1) in the confusion matrices is not necessarily zero in

the right-hand side confusion matrices. However, one can still see, that the number of

these tied gold rankings (1,1) in the right tables drops with respect to the left-hand side

of the table.

Compared to Table 6.5, in the confusion matrices in the current setup the confu-

sions are more spread out across the whole range of the matrix. This seems to suggest

that it is harder to rank two system outputs against each other than a system output

against a human annotation.

6.2.3 Experiment II: Cross-validation on Realistic Corpus

The results in the above two experiments have good accuracy on the full test set, but

a poor performance on the reduced set. One possible explanation for this is that the

trained weights from the rankers that we reused from earlier experiments on different

data (i.e. on corpora with artificially introduced coherence errors), cannot be applied

to this data set and need to be retrained. The amount of data with gold labels we

have at hand is quite small (i.e. 155 documents, and even smaller if input data ties are

removed), so a fixed training-test split might not provide sufficient training or test data

for reliable results. We therefore perform a 10-fold cross validation to get an average

performance measure across the 10 folds. For these experiments, we use rankSVM

integrated into LIBSVM (Kuo et al., 2014) with the default radial basis function kernel.

6.2.3.1 Human vs. System

Results for the human vs. system experiments are given in Tables 6.8a and 6.8b for the

full test set and for the reduced test set without input data ties. With the full test data set,

we can see that all human vs. system experiment pairs perform in the cross-validation

experiment at least as good as, and in most cases 0.61% to 6.31% (absolute) better than

their counterparts in the experiment using a pre-trained ranker (Section 6.2.2). With

respect to the setting without input data ties, two human vs. system pairs are better in
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2,1 1,2 1,1 Total

2,1 17 17 22 56

1,2 1 4 5 10

1,1 3 11 75/4 89/18

Total 21 32 102/31 155/84

(a) NMTBASELINEPLAIN vs. NMTCLPPPLAIN

2,1 1,2 1,1 Total

2,1 12 17 20 49

1,2 1 5 6 12

1,1 4 8 82/7 94/19

Total 17 30 108/33 55/80

(b) NMTBASELINEPLAIN vs. NMTCLPPNONE-

FEAT

2,1 1,2 1,1 Total

2,1 16 17 20 53

1,2 2 6 8 16

1,1 5 9 72/11 86/25

Total 23 32 100/39 155/94

(c) NMTBASELINEPLAIN vs. NMTCLPPNONEFEAT&PREDICT

Table 6.7: Confusion matrices of experiment I: system A vs. system B. These results are

obtained using the trained ranking model UedinDevDiag. Each column represents the

predicted ranking order, and each row represents the gold ranking order. The numbers

to the left of the slash are from the experiments with input data ties, the ones to the right

are from the experiments without input data ties.
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accuracy

HUMANC2 vs. NMTBASELINEPLAIN 72.12±14.99

HUMANC2 vs. NMTCLPPPLAIN 60.00±14.49

HUMANC2 vs. NMTCLPPNONEFEAT 60.61±9.62

HUMANC2 vs. NMTCLPPNONEFEAT&PREDICT 60.61±9.62

(a) Experiment data for the 10 folds includes all 155 documents (i.e. with input data ties).

accuracy

HUMANC2 vs. NMTBASELINEPLAIN 40.69±13.05

HUMANC2 vs. NMTCLPPPLAIN 26.66±12.37

HUMANC2 vs. NMTCLPPNONEFEAT 23.41±13.58

HUMANC2 vs. NMTCLPPNONEFEAT&PREDICT 29.54±16.23

(b) Experiment data for the 10 folds only includes documents without input data ties.

Table 6.8: Results of experiment II: human vs. system. Performance is given in terms

of accuracy in percent, which in turn is averaged over the 10 folds. Standard deviation

is given after ±.

experiment I (between 3.34% and 4.83%), and the other two are better in experiment II

(between 2.27% and 9.57%). At least in some cases, learning new model parameters

seem to help, however, in other cases, performance goes down showing that reusing

the learnt model parameters is sometimes better.

The standard deviation of the averaged performance scores is relatively high (be-

tween 9.62 and 14.99) on the full data set, and even higher (between 12.37 and 16.23)

on the restricted data set. This high variance might point towards the fairly small size

of the test set folds, hence leading to overfitting to the training data.

As done in Table 6.5 for the pre-trained human vs. system experiment, we also

show the confusion matrices from the human vs. system cross-validation experiments

in Table 6.9. Each of these confusion matrices is obtained by adding up the confusion

matrices from each of the 10 folds. Comparing the confusion matrices in the two tables

from experiment I and II one can see that in the latter the strict ranking (2,1) is less

frequently confused for HUMANC2 vs. NMTBASELINEPLAIN (but not for the other

combinations), thus showing a partial benefit of learning new weights. The latter table

also shows that a lot of times our metric cannot make a distinction between the data

pairs, and as are result of that predicts the (1,1) ranking.
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The minor variations between confusion matrices on the left and right (i.e. with

and without input data ties) in Table 6.9 come from the fact that the training data in

each fold is slightly different, since input data ties are missing in the latter setup.

One of the reasons, why there is a high number of equal rankings produced by

our evaluation metric (especially in the restricted data set without input data ties)

might be that the differences in coreference chains are not captured by this. Since

the bilingual EGM only captures differences on mention references across sentence

boundaries, it might be the case that in the parallel document pairs resulting in (1,1)

rankings, there are fewer cross-sentential coreference chains. To test this hypothesis,

we collect coreference chain statistics, separated by parallel document pairs resulting

in (1,1) against all other ranking outcomes. In Table 6.10, we distinguish between

pronoun instances that are part of a sentence-internal coreference chain, ones that are

part of cross-sentential coreference chains, and ones that are not part of a coreference

chain. The statistics confirm our hypothesis. The parallel document pairs resulting

in a (1,1) ranking exhibit a much lower count of cross-sentential coreference chains.

The counts also correlate with the performance of the different system pairings, i.e. a

higher performance has a higher count of cross-sentential coreference chains.

6.2.3.2 System A vs. System B

Results for the system A vs. system B experiments are given in Tables 6.11a and 6.11b.

In the cross-validation experiments for the full data set, there is an increase of perfor-

mance of 2.80-2.91% (absolute) in two combinations and a slight decrease of 0.65%

(absolute) in one combination compared to system A vs. system B results from experi-

ment I with pre-trained models (Section 6.2.2). In the same comparison on the reduced

data set, performance goes down by 0.21-3.80% (absolute) in two combinations, and

up by 1.25% (absolute) in one combination. The standard deviation of the performance

scores from the 10-fold cross-validation experiments is again quite large (between 6.96

and 21.10).

We also provide confusion matrices for the cross-validation experiment testing the

system A vs. system B setup in Table 6.12. Compared to system A vs. system B con-

fusion matrices from experiment I (cf. Table 6.7), one can observe that strict rankings

are less frequently confused (i.e. fewer (2,1) rankings are predicted as (1,2)). This pro-

vides additional indication that relearning model parameters rather than reusing them

is beneficial for ranking accuracy.

When comparing the cross-validation results from both setups in experiment II, one
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2,1 1,2 1,1 Total

2,1 30 11 35 76

1,2 0 0 0 0

1,1 0 0 79 79

Total 30 11 114 155

(a) HUMANC2 vs. NMTBASELINEPLAIN

2,1 1,2 1,1 Total

2,1 31 10 35 76

1,2 0 0 0 0

1,1 0 0 0 0

Total 31 10 35 76

(b) HUMANC2 vs. NMTBASELINEPLAIN

2,1 1,2 1,1 Total

2,1 24 33 33 90

1,2 0 0 0 0

1,1 0 0 65 65

Total 24 33 98 155

(c) HUMANC2 vs. NMTCLPPPLAIN

2,1 1,2 1,1 Total

2,1 24 33 33 90

1,2 0 0 0 0

1,1 0 0 0 0

Total 24 33 33 90

(d) HUMANC2 vs. NMTCLPPPLAIN

2,1 1,2 1,1 Total

2,1 22 30 33 85

1,2 0 0 0 0

1,1 0 0 70 70

Total 22 30 103 155

(e) HUMANC2 vs. NMTCLPPNONEFEAT

2,1 1,2 1,1 Total

2,1 20 32 33 85

1,2 0 0 0 0

1,1 0 0 0 0

Total 20 32 33 85

(f) HUMANC2 vs. NMTCLPPNONEFEAT

2,1 1,2 1,1 Total

2,1 25 27 36 88

1,2 0 0 0 0

1,1 0 0 67 67

Total 25 27 103 155

(g) HUMANC2 vs. NMTCLPPNONE-

FEAT&PREDICT

2,1 1,2 1,1 Total

2,1 26 26 36 88

1,2 0 0 0 0

1,1 0 0 0 0

Total 26 26 36 88

(h) HUMANC2 vs. NMTCLPPNONE-

FEAT&PREDICT

Table 6.9: Confusion matrices of experiment II: human vs. system. Each column rep-

resents the predicted ranking order, and each row represents the gold ranking order.

The left set of matrices are from the experiments with input data ties, the right set of

matrices are from the experiments without input data ties.
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rank (1,1) rank (2,1) or (1,2)

H S H S

sentence-internal coreference chain 7.12 9.39 9.22 9.31

cross-sentential coreference chain 21.15 20.40 29.66 33.01

not part of coreference chain 71.73 70.22 61.12 57.68

(a) HUMANC2 vs. NMTBASELINEPLAIN

rank (1,1) rank (2,1) or (1,2)

H S H S

sentence-internal coreference chain 4.79 5.80 9.45 5.76

cross-sentential coreference chain 18.78 18.77 27.94 30.97

not part of coreference chain 76.44 75.43 62.61 63.27

(b) HUMANC2 vs. NMTCLPPPLAIN

rank (1,1) rank (2,1) or (1,2)

H S H S

sentence-internal coreference chain 3.65 6.18 9.66 4.57

cross-sentential coreference chain 14.67 15.18 29.17 31.44

not part of coreference chain 81.68 78.64 61.18 63.99

(c) HUMANC2 vs. NMTCLPPNONEFEAT

rank (1,1) rank (2,1) or (1,2)

H S H S

sentence-internal coreference chain 1.87 3.25 10.3 3.93

cross-sentential coreference chain 14.64 14.43 28.98 29.71

not part of coreference chain 83.49 82.32 60.73 66.37

(d) HUMANC2 vs. NMTCLPPNONEFEAT&PREDICT

Table 6.10: Experiment II: human vs. system. Statistics about parallel document pairs

that have a predicted rank of (1,1) vs. all other rank predictions. H stands for the

statistics of the human-authored documents, S stands for statistics of the system output.

Counts are based on the target-side of the documents only. The figures are in percent

and represent the respective values averaged over the entire test corpus.
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accuracy

NMTBASELINEPLAIN vs. NMTCLPPPLAIN 64.85±11.75

NMTBASELINEPLAIN vs. NMTCLPPNONEFEAT 66.67±10.64

NMTBASELINEPLAIN vs. NMTCLPPNONEFEAT&PREDICT 60.00±6.96

(a) Experiment data for the 10 folds includes all 155 documents (i.e. with input data ties).

accuracy

NMTBASELINEPLAIN vs. NMTCLPPPLAIN 29.55±12.23

NMTBASELINEPLAIN vs. NMTCLPPNONEFEAT 31.25±21.10

NMTBASELINEPLAIN vs. NMTCLPPNONEFEAT&PREDICT 31.31±17.61

(b) Experiment data for the 10 folds only includes documents without input data ties.

Table 6.11: Results of experiment II: system A vs. system B. Performance is given in

terms of accuracy in percent, which in turn is averaged over the 10 folds. Standard

deviation is given after ±.

can see that it depends on the exact combination of system outputs involved whether

the human vs. system or system A vs. system B combination performs better. This

might seem counter-intuitive at first, since one would expect that the human vs. sys-

tem combinations are easier to handle, since the human output should be considerably

more different to a system than one system’s output compared to another one. How-

ever, it has to be noted that the human output is not the full reference translation, but

only contains the human annotation choices embedded in the NMT baseline output,

similarly to the other post-editing systems.

We again seek to test our hypothesis that there is a high number of equal rank-

ings (1,1) because parallel document pairs with these predicted rankings have a lower

number of cross-sentential coreference chains. The statistics in Table 6.13 confirm this

(only one system combination is shown). Compared to the statistics in the human vs.

system experiment setup (cf. Table 6.10), we have a slightly higher count of cross-

sentential coreference chains, which is also directly reflected in the fact that in the

second setup there are fewer equal rankings predicted when they should not be equally

ranked.
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2,1 1,2 1,1 Total

2,1 24 9 23 56

1,2 5 0 5 10

1,1 7 7 75 89

Total 36 16 103 155

(a) NMTBASELINEPLAIN vs. NMTCLPPPLAIN

2,1 1,2 1,1 Total

2,1 21 12 23 56

1,2 5 0 5 10

1,1 7 7 4 18

Total 33 19 32 84

(b) NMTBASELINEPLAIN vs. NMTCLPPPLAIN

2,1 1,2 1,1 Total

2,1 21 7 21 49

1,2 5 1 6 12

1,1 5 7 82 94

Total 31 15 109 155

(c) NMTBASELINEPLAIN vs. NMTCLPPNONE-

FEAT

2,1 1,2 1,1 Total

2,1 17 11 21 49

1,2 5 1 6 12

1,1 6 6 7 19

Total 28 18 34 80

(d) NMTBASELINEPLAIN vs. NMTCLPPNONE-

FEAT

2,1 1,2 1,1 Total

2,1 18 15 20 53

1,2 6 2 8 16

1,1 10 3 73 86

Total 34 20 101 155

(e) NMTBASELINEPLAIN vs. NMTCLPPNONE-

FEAT&PREDICT

2,1 1,2 1,1 Total

2,1 16 17 20 53

1,2 5 3 8 16

1,1 11 2 12 25

Total 32 22 40 94

(f) NMTBASELINEPLAIN vs. NMTCLPPNONE-

FEAT&PREDICT

Table 6.12: Confusion matrices of experiment II: system A vs. system B. Each column

represents the predicted ranking order, and each row represents the gold ranking order.

The left set of matrices are from the experiments with input data ties, the right set of

matrices are from the experiments without input data ties.
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rank (1,1) rank (2,1) or (1,2)

A B A B

sentence-internal coreference chain 5.37 4.54 10.33 4.21

cross-sentential coreference chain 13.85 16.28 33.89 30.59

not part of coreference chain 80.78 79.18 55.78 65.20

(a) NMTBASELINEPLAIN vs. NMTCLPPNONEFEAT&PREDICT

Table 6.13: Experiment II: system A vs. system B. Statistics about parallel document

pairs that have a predicted rank of (1,1) vs. all other rank predictions. A stands for

statistics of the system A output, B stands for statistics of the system B output. Counts

are based on the target-side of the documents only. The figures are in percent and

represent the respective values averaged over the entire test corpus.

6.2.3.3 Accuracy With Prediction Ties

Accuracy is generally on the lower side if all three possible rankings are considered

as equally important (which was done in the above experiments). A slightly different

perspective on the coherence ranking problem is to give different weights to the sever-

ity of a ranking error. Predicting the opposite ranking between two parallel documents

(e.g. predicting (2,1) for a (1,2) document pair) is definitely a serious error, however,

predicting a ranking tie (e.g. predicting (1,1) for a (1,2) document pair) can be inter-

preted as not such a severe error. Sim Smith et al. (2016) take this view and provide

results for both standard accuracy, and for accuracywith−prediction−ties, where prediction

ties are considered to be true positives no matter what the true gold label is.

In their experiments they rank human translations against automatically created

ones for coherence, similarly to our human vs. system setup. In this setup their in-

terpretation of accuracywith−prediction−ties is that it provides a score as to how often a

human translation is ranked no worse than any of the automatic translations. A more

general interpretation, which is then also relevant for our system A vs. system B setup,

is that the accuracywith−prediction−ties gives a score as to how well the model performs at

ranking parallel document pairs no worse than their true ranking (i.e. without reversing

their ranking).

Therefore, we also compute the accuracywith−prediction−ties for both human vs. sys-

tem and system A vs. system B settings and compare it to the standard accuracy scores

reported in all of our previous experiments. Results are given in Table 6.14. These

results show a much higher score for accuracywith−prediction−ties with a difference of
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accuracy accuracywith−prediction−ties

full reduced full reduced

HUMANC2 vs. NMTBASELINEPLAIN 72.12±14.99 40.69±13.06 93.33±06.36 86.58±10.32

HUMANC2 vs. NMTCLPPPLAIN 60.00±14.49 26.67±12.37 80.00±11.72 63.33±18.63

HUMANC2 vs. NMTCLPPNONEFEAT 60.61±09.62 23.41±13.58 80.61±06.64 61.59±16.93

HUMANC2 vs. NMTCLPPNONEFEAT&PREDICT 60.61±09.62 29.55±16.23 82.42±08.66 70.45±13.35

NMTBASELINEPLAIN vs. NMTCLPPPLAIN 64.85±11.75 29.55±12.24 83.03±10.00 63.64±18.04

NMTBASELINEPLAIN vs. NMTCLPPNONEFEAT 66.67±10.64 31.25±21.10 84.24±06.53 65.00±16.58

NMTBASELINEPLAIN vs. NMTCLPPNONEFEAT&PREDICT 60.00±06.96 31.31±17.61 78.18±07.57 62.12±15.50

Table 6.14: Standard accuracy compared to accuracy counting prediction ties as true

positives for both human vs. system and system A vs. system B setups, on both full

and reduced (i.e. without input data ties) test data sets in percent.

between 17.57% and 21.81% (absolute) compared to standard accuracy in both se-

tups. These scores provide the improvement potentials of our evaluation metric if the

high number of (1,1) predictions is tackled. Considering these results together with

the positive results from the artificial experiments in Chapter 5, we can conclude that

there is potential in our evaluation metric, if further development specifically focusses

on tackling the (1,1) predictions (e.g. by making the metric more sensitive to entities

mentioned only within the same sentence).

6.2.3.4 Random Baseline Performance

We perform an analysis of the results with regards to a random baseline performance.

As random baseline we consider the expected accuracy of our model, defined as fol-

lows:

pe =
1

N2 ∑
c∈C

(tpc + fnc)× (tpc + fpc)

where tpc, fnc and fpc are true positives, false negatives and false positives of a given

class (as obtained from a confusion matrix) and N is the number of parallel document

pairs in the test set. The expected accuracy provides an intuition of the proportion of

rankings our model could achieve correctly by chance. It is also used in the definition

of Cohen’s Kappa coefficient κ (Cohen, 1960):

κ =
po− pe

1− pe

where po is the observed accuracy (i.e. as reported in the experiments above). For

each fold in the cross-validation we compute expected accuracy and Cohen’s Kappa,
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expected accuracy Cohen’s Kappa

full reduced full reduced

HUMANC2 vs. NMTBASELINEPLAIN 50.14±11.66 40.69±13.06 47.41±23.90 0.00±0.00

HUMANC2 vs. NMTCLPPPLAIN 37.37±07.65 26.67±12.37 37.78±21.05 0.00±0.00

HUMANC2 vs. NMTCLPPNONEFEAT 39.39±05.13 23.41±13.58 35.14±14.95 0.00±0.00

HUMANC2 vs. NMTCLPPNONEFEAT&PREDICT 39.15±05.54 29.55±16.23 35.62±13.69 0.00±0.00

NMTBASELINEPLAIN vs. NMTCLPPPLAIN 48.36±05.24 36.22±06.69 32.53±20.50 -10.13±12.97

NMTBASELINEPLAIN vs. NMTCLPPNONEFEAT 50.10±03.55 33.91±10.34 32.38±22.80 -3.17±23.78

NMTBASELINEPLAIN vs. NMTCLPPNONEFEAT&PREDICT 44.85±05.48 32.02±07.70 26.55±15.91 -1.05±24.56

Table 6.15: Expected accuracy and Cohen’s Kappa coefficients in percent for both

human vs. system and system A vs. system B setups, on both full and reduced (i.e.

without input data ties) test data sets.

and provide the average and standard deviation of each in Table 6.15. The observed

accuracy used for the calculation of Cohen’s Kappa is taken from Table 6.14.

First, when considering the human vs. system setup, one can observe that for the

reduced test sets the observed and expected accuracies are the same. This is due to the

fact that in this setup there are no (1,1) or (1,2) gold rankings, and therefore in those

cases the expected accuracy is always equal to the observed accuracy. This also means

that for those cases Cohen’s Kappa values are not informative. This issue shows that

it is difficult to get meaningful results from a random baseline in the case where only

one class is actually observed in the test set. For the full test sets the (1,1) gold ranking

is possible in addition, and therefore the expected accuracy can be different from the

observed one. For the system A vs. system B setup, the expected accuracy and Cohen’s

Kappa can be interpreted on both full and reduced test sets, since all three possible

rankings exist in both sets.

Comparing the observed accuracy (cf. Table 6.14) with the expected accuracy

(cf. Table 6.15) one can see that for the full test data sets, the observed accuracy is al-

ways much higher (between 11.98% and 22.63% absolute) than the expected accuracy.

This is also reflected in Cohen’s Kappa scores, ranging between 26.55% and 47.41%.

For the reduced test sets (in the system A vs. system B setup), however, the expected

accuracies are in fact higher than the observed ones (by between 0.71% and 6.67%

absolute). This is also reflected in negative Kappa scores, ranging between −1.05%

and −10.13%. These results lead to the conclusion that the model in its current form

performs worse than what it is expected to perform by chance.
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6.2.4 Discussion

On the full data sets, all experiments showed a good accuracy score around 60%. This

initially seems to suggest, that our SMT evaluation metric can successfully rank trans-

lations in accordance with both assumed (i.e. human vs. system) and human (i.e.

system A vs. system B) rankings. However, a closer inspection revealed that a large

portion of this high accuracy score is due to parallel document pairs that are trivially

easy to rank, since they are identical with respect to pronoun translation. They are

either identical because they do not contain pronoun instances to begin with, or the in-

volved systems predicted the same pronouns for each pronoun instance in a document.

When we removed these data pairs from the corpus, accuracy dropped considerably to

around 31% on average.

Our SMT evaluation metric makes a large number of (1,1) predictions, i.e. ranks

the document pairs equally. We investigated why this is the case and found out that in

these document pairs, the number of pronoun instances that are part of cross-sentential

coreference chains is much lower compared to document pairs, where strict rankings

(2,1) or (1,2) are predicted. In fact, the former document pairs exhibit fewer coref-

erence chains in general. Our SMT evaluation metric only captures cross-sentential

coreference chains, which explains why it cannot distinguish well in those cases, yield-

ing a high number of (1,1) predictions.

In all cross-validation experiments we observed a high variance of accuracy (with

the standard deviation ranging between 6.96 and 21.10 percentage points). This is an

indicator that our data sets are too small, leading to overfitted parameters of our model.

An additional pattern can be observed in that the variance increases in five out of seven

experimental settings between the full test data set and the reduced data set. This

further shows that the even smaller reduced data sets lead to an even higher variance.

The results therefore have to be interpreted with care. Testing our evaluation metric on

a larger and more diverse data set (e.g. where the pronouns are not just predicted by

the same CLPP model with different parameters, but actually different models) might

lead to more reliable results (either rejecting or confirming our model as a good SMT

evaluation metric).

Contrary to our expectations, reusing a trained ranker from the artificially confused

corpora from Chapter 5 worked as well or better than retraining our SMT evaluation

metric on the gold ranking labels obtained by human annotations in a 10-fold cross-

validation. One explanation for this is, that the training folds are very small, hence,
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the learnt weights are overfitted and prediction on the test fold performs poorly. This

is confirmed by the high variance of accuracy.

In summary, the main issues that we identified leading to this overall negative result

in this section are (1) the small size of the training and test sets, (2) the lack of diversity

between the different automatically translated documents, and (3) the insensitivity of

our bilingual coherence model to entities that are mentioned only strictly within one

sentence. In the following section, we direct our attention to the first issue.

6.3 A Score-based SMT Evaluation Metric

The results in the previous section using our bilingual model of coherence with ei-

ther pre-trained model parameters or within a cross-validation setup did not show a

satisfactory performance. This is partly attributed to training on data that is from a

different distribution (i.e. the corpus with artificially introduced coherence errors) or is

very small (i.e. our corpus with human judgements), leading to a worse generalization

or overfitting.

In this section, we therefore experiment with reusing features extracted from our

bilingual coherence model without the additional learning of weights. This simpler

formulation is based on a combination of scores more similar to traditional untuned

evaluation metrics. By removing the requirement of tuning from our evaluation metric,

it can also be more easily applied to other datasets and languages without requiring a

tuning step (and therefore manually annotated data).

We first define the score-based discourse-aware SMT evaluation metric (Section 6.3.1).

We then test the metric in experiments using the corpus where we introduced coher-

ence errors artificially (Section 6.3.2). This experiment is again in a more controlled

setting, where the target-side is based on human translations, thus showing if the met-

ric generally has the potential to be used for SMT evaluation, or if it is less expressive

due to the missing weight tuning. We then apply the metric also to the more realis-

tic test set used in the previous experiments, with automatically translated target-sides

and post-edited pronouns (Section 6.3.3). This experiment tests whether results on the

controlled setting generalize to a more realistic SMT setting. Both experiments tell us

whether tuned weights are productive or counterproductive when using the bilingual

model of coherence for SMT evaluation.
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group no. feature

1 1 AOD of merged EGM: PU

2 AOD of merged EGM: PW

3 AOD of merged EGM: PAcc

2 4 number of mention insertions

5 number of mention deletions

6 number of mention preservations

3 7 number of aligned entities

8 number of unaligned source entities

9 number of unaligned target entities

4 10 number of entities in source document

11 number of entities in target document

Table 6.16: Set of features of the fine-grained model of bilingual coherence.

6.3.1 Metric Definition

As a reminder, we reproduce the features involved in the bilingual model of coherence

in Table 6.16 from Section 5.2.5. We base our definition on a combination of a subset

of these features. The features consist of several groups, which represent different

aspects of bilingual coherence. The first group contains three variants of the AOD (i.e.

the output of the three variants of our coarse-grained bilingual coherence model). The

problem with the AOD is that it is not normalized, and the values depend on the size

of the involved source- and target-side entity graphs from which it was computed. We

therefore do not use this group of features here and integration is left for future work.

The second group of features is based on the entities that could successfully be

aligned, and considers source-target mention pairs. To make use of the information

captured with the features in this group, we define the following mention-level scoring

function:

hm(d) =
mpre

d

mpre
d +mins

d +mdel
d

where d is a document, m are entity mention pairs from successfully aligned en-

tities, and epre stands for the count of preserved entity mention pairs, eins stands for

the count of mention pairs, where the target-side mention does not have a source-

side counterpart, and edel stands for the count of mention pairs, where the target-side
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mention is missing. This score is one, if we only have preserved mention pairs, and

decreases to zero if we only have inserted or deleted mention pairs. The intuition

behind this is that a more coherent target-side document exhibits a larger amount of

entity mentions that have corresponding mentions on the source-side (i.e. a high mpre
d

count). If the target-side is not a truthful translation of the source-document (i.e. a less

coherent document), the other two counts will be higher, resulting in a lower metric

score.

The third group of features looks at aligned entities and the number of unaligned

source or target entities. We define the following two variants a and b as entity-level

scoring function:

ha
e(d) =

eal
d

min(es
d,e

t
d)

hb
e(d) =

eal
d

min(eus
d ,eut

d )

where e are entities and eus stands for the number of unaligned source entities, eut

for the number of unaligned target entities and eal for the number of aligned entities.

Furthermore, es stands for the number of source entities and et for the number of

target entities. Variant a is one, if all possible source and target entities are aligned,

and zero if none of the source and target entities are aligned. Variant b provides the

ratio between aligned entities and those entities that could not be aligned. The main

difference between the two denominators is that the quantities in the former contain

counts for singleton entities and entities that are mentioned more than once within one

sentence. The quantities in the latter are derived only from counts of entities that are

mentioned more than once across sentences. Furthermore, the former has a slightly

better chance at capturing sentence-internal entities, since they are reflected in the

count, and therefore the expectation is that it has fewer (1,1) predictions. The general

intuition behind this component is that a coherent target-side document should contain

a higher number of entities that have a matching counterpart in the source-side.

Finally, we combine the mention- and entity-level scoring functions as follows:

h(d) =
1
2
· (hm(d)+he(d))

where he(d) is either variant a or b. This gives us two variants of the final definition

of our score-based SMT evaluation metric, variant hm, ha
e , and hm, hb

e .
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type of confusion accuracy

hm, ha
e hm, hb

e

UedinDevDiag 75.33 74.67

TurkunlpTestDiag 70.00 64.67

Table 6.17: Results of different metric definitions in accuracy in percent, as tested on

150 document pairs from experiments with the artificial corpora.

6.3.2 Experiments on Artificial Corpora

We experiment with the above two definitions of the score-based metric. As test cor-

pus, we consider the setup we had before with our corpora where we artificially in-

troduced coherence errors via confusion matrices from CLPP systems as described in

Section 5.3.3. In this experiment we use the same two test corpora, one based on pro-

noun confusions from our UedinDevDiag confusion matrix, and the other based on

confusions from the TurkunlpDiag confusion matrix. Each of the test corpora con-

tains 150 document pairs from the same single train/test split as in the artificial corpus

experiments (albeit here we ignore the training data, since we do not need it).

Results are shown in Table 6.17 and performance is given in accuracy in percent.

Both metric definitions perform well (between 64.67% and 75.33% accuracy), espe-

cially considering that the metric is untuned. One can observe again that the perfor-

mance is generally lower on the TurkunlpTestDiag data set, since it contains fewer

pronoun confusions and is therefore closer to the original document of each document

pair. It is harder to make accurate predictions if the documents in a pair are more

similar. We made the same observation in earlier experiments with the tuned metric

(cf. Section 5.3).

We also show the predictions of each metric definition on both artificial corpora in

Table 6.18. In these corpora we do not have any tied gold rankings (nor (1,2) rankings),

which is why we do not show full confusion matrices. The metric only predicts very

few ties (1,1).

6.3.3 Experiments on the Realistic Corpus

In this experiment we test our score-based evaluation metric on SMT system outputs as

done before with the tuned SMT evaluation metric (cf. Section 6.2). Results for the hu-
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type of confusion metric definition 2,1 1,2 1,1

UedinDevDiag hm,ha
e 113 35 2

UedinDevDiag hm,hb
e 112 35 3

TurkunlpDiag hm,ha
e 105 42 3

TurkunlpDiag hm,hb
e 97 48 5

Table 6.18: Counts of ranking predictions made by different definitions of the score-

based SMT evaluation metric on the two differently confused artificial corpora. The

gold predictions are all (2,1).

man vs. system setup are given in Table 6.19. On the full test data set, the performance

decreases by between 0.61% and 11.47% (absolute) compared to the results in the 10-

fold cross-validation (cf. Table 6.8a). On the reduced data set without input data ties

performance decreases for two human vs. system combinations by between 1.13% and

20.95% (absolute), and increases for the two other combinations by between 1.12%

and 3.65% (absolute), when comparing to the corresponding Table 6.8b.

The counts of different predictions for metric definition hm,hb
e are shown in Ta-

ble 6.20. These counts show promising results in that consistently over all human vs.

system combinations, there is a reduced number of wrong strict rankings compared to

the cross-validation setup.

Results for the system A vs. system B setup are given in Table 6.21. On the full

test data set, the results are comparable with the trained metric (cf. Table 6.11a). On

the reduced data set without input data ties, however, the score-based metric performs

better, with the hm,hb
e metric definition having an increase between 4.97 and 10.17

percentage points in accuracy (cf. Table 6.11b). On both full and reduced data sets,

the hm,hb
e metric definition performs better than the other one. This is the opposite

behaviour compared to results on the artificial corpora.

The confusion matrices for metric definition hm,hb
e are shown in Table 6.22. We

compare them to the ones from the tuned evaluation metric in Table 6.12. Two major

observations can be made. First, the score-based metric predicts an even higher number

of equal ranks (1,1). It has the same issues with a lack of representation for sentence-

internal entities as the tuned metric, since it is based on the same bilingual coherence

representation (i.e. this is not a problem we tried to solve with the score-based metric).

More importantly, it makes fewer wrong (1,2) predictions, especially in those cases
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accuracy

hm, ha
e hm, hb

e

HUMANC2 vs. NMTBASELINEPLAIN 61.94±12.51 60.65±13.66

HUMANC2 vs. NMTCLPPPLAIN 58.06±8.08 58.06±8.57

HUMANC2 vs. NMTCLPPNONEFEAT 58.71±10.57 60.00±12.39

HUMANC2 vs. NMTCLPPNONEFEAT&PREDICT 58.06±7.56 59.35±10.81

(a) Results on full test set (i.e. with input data ties).

accuracy

hm, ha
e hm, hb

e

HUMANC2 vs. NMTBASELINEPLAIN 22.37±9.21 19.74±12.52

HUMANC2 vs. NMTCLPPPLAIN 27.78±13.38 27.78±17.39

HUMANC2 vs. NMTCLPPNONEFEAT 24.71±16.05 27.06±19.92

HUMANC2 vs. NMTCLPPNONEFEAT&PREDICT 26.14±16.39 28.41±22.03

(b) Results on reduced test set (i.e. without input data ties).

Table 6.19: Results of the human vs. system experiment setup for the score-based

SMT evaluation metric. Performance is given in terms of accuracy in percent, which in

turn is averaged over the same 10 folds from experiment I (Section 6.2.3). Standard

deviation is given after ±.

where they should have been ranked as (2,1), and generally also predicts more (1,2)

predictions correctly. The confusion matrices (not shown) for the metric definition

hm,ha
e show a similar picture, although not as clearly.

6.3.4 Discussion

Experiments with the score-based SMT evaluation metric showed promising results in

general being comparable or better than the tuned metric in the system A vs. system

B setup. This is encouraging, since it points towards easier reuse of the metric, if it

does not require to be tuned, while still performing well. Nevertheless, the results have

to be interpreted relative to their overall low performance. Experiments across both

setups showed that the score-based metric performed better at predicting cases, where

the weaker post-editing system outputs were preferred by human judges (i.e. (1,2)
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2,1 1,2 1,1

HUMANC2 vs. NMTBASELINEPLAIN 15 11 50

HUMANC2 vs. NMTCLPPPLAIN 25 15 50

HUMANC2 vs. NMTCLPPNONEFEAT 23 12 50

HUMANC2 vs. NMTCLPPNONEFEAT&PREDICT 25 11 52

Table 6.20: Counts of ranking predictions made by the hm,hb
e metric definition of the

score-based SMT evaluation metric for the human vs. system experimental setup on

the reduced data set (i.e. without input data ties). The gold predictions are all (2,1).

accuracy

hm, ha
e hm, hb

e

NMTBASELINEPLAIN vs. NMTCLPPPLAIN 61.94±10.67 64.51±9.54

NMTBASELINEPLAIN vs. NMTCLPPNONEFEAT 63.87±12.18 67.74±12.53

NMTBASELINEPLAIN vs. NMTCLPPNONEFEAT&PREDICT 60.64±8.74 64.52±10.35

(a) Results on full test set (i.e. with input data ties).

accuracy

hm, ha
e hm, hb

e

NMTBASELINEPLAIN vs. NMTCLPPPLAIN 29.76±20.00 34.52±19.42

NMTBASELINEPLAIN vs. NMTCLPPNONEFEAT 30.00±23.18 37.50±26.81

NMTBASELINEPLAIN vs. NMTCLPPNONEFEAT&PREDICT 35.11±19.53 41.48±23.86

(b) Results on reduced test set (i.e. without input data ties).

Table 6.21: Results of the system A vs. system B experiment setup for the score-based

SMT evaluation metric. Performance is given in terms of accuracy in percent, which in

turn is averaged over the same 10 folds from experiment II (Section 6.2.3). Standard

deviation is given after ±.
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2,1 1,2 1,1 Total

2,1 15 7 34 56

1,2 1 4 5 10

1,1 5 3 81/10 89/18

Total 21 14 120/49 155/84

(a) NMTBASELINEPLAIN vs. NMTCLPPPLAIN

2,1 1,2 1,1 Total

2,1 14 4 31 49

1,2 1 4 7 12

1,1 5 2 87/12 94/19

Total 20 10 125/50 155/80

(b) NMTBASELINEPLAIN vs. NMTCLPPNONE-

FEAT

2,1 1,2 1,1 Total

2,1 18 6 29 53

1,2 2 4 10 16

1,1 4 4 78/17 86/25

Total 24 14 117/56 155/94

(c) NMTBASELINEPLAIN vs. NMTCLPPNONEFEAT&PREDICT

Table 6.22: Confusion matrices of the hm, hb
e metric definition for the system A vs.

system B experimental setup. Each column represents the predicted ranking order, and

each row represents the gold ranking order. The numbers to the left of the slash are

from the experiments with input data ties, the ones to the right are from the experiments

without input data ties.
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rankings).

6.4 General Discussion

The accuracy scores in all of the above metrics are to be understood as to how well the

rankings produced by the evaluation metric correlate with human judgements. A high

accuracy score means that the evaluation metric ranked a high number of system out-

puts according to how humans ranked these system outputs. At first sight, the accuracy

results in both experimental setups (i.e. human vs. system and system A vs. system B)

seem to be quite good on the full test data set (i.e. on average 64%). However, a closer

inspection revealed that this result is misleading, since the test data set contains a num-

ber of document pairs, where the SMT systems produce non-distinguishable output

(i.e. input data ties). This is either due to the fact that there are no pronoun instances

in a particular parallel document, and thus our post-editing systems cannot make any

changes to the baseline output. Or it is due to the fact that our CLPP system variants

predicted exactly the same pronouns as the baseline. However, these data points in

our experiments are trivially easy to rank as having an equal rank (1,1). With input

data ties the evaluation metric operates on document pairs with identical target sides

from two system outputs, hence producing the same metric score. We therefore also

included experiments, where we filtered out these input data ties from the corpus, with

the attempt to reveal the more realistic performance of the evaluation metric. Perfor-

mance on these reduced data sets is considerably lower than on the full data sets (i.e.

on average 31%). However, this might be due to the fact that the resulting data sets

are up to 50% smaller than the full data sets. This is partially confirmed by the high

variance of accuracy scores in the 10-fold cross-validation experiments. Due to the

small fold-size, the ranker overfits the parameters to the training fold, thus making

more errors on the test fold.

We reused the annotated corpus from Chapter 4 as a proxy for human coherence

rankings. By counting the number of times a pronoun from a system output agreed

with the human pronoun annotation, we converted these human annotations into human

judgements of coherence. These coherence judgements were then directly converted

into gold rankings between two system outputs (or also between human output taken

directly from these annotation and a system output in the human vs. system setup)

according to these counts. This has the underlying assumption that entity-based coher-

ence of a document can be captured by just looking at how pronouns are translated.
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This is a simplifying assumption, since full noun phrases are also part of coreference

chains, and thus contribute to the entity-based coherence of a document. Furthermore,

our annotations only consider a small subset of pronouns in a document (i.e. the ones

that are also used in the CLPP shared tasks) thus only capturing a part of entity-based

coherence. However, our annotations do not just evaluate pronoun translation. The an-

notations were obtained by showing the entire parallel documents, so they are sensitive

to the surrounding context, e.g. the automatically translated noun antecedent.

To test for correlation with human judgements of our discourse-aware SMT evalua-

tion metric, there is the one-time overhead of obtaining these human annotations. Once

a high correlation has been shown, the evaluation metric can be applied to new data

sets without testing for such a correlation under the assumption that human judgements

are consistent across different domains and genres. Therefore, the human annotations

have to be collected only once. However, since our evaluation metric requires model

parameters to determine, it also requires human judgements for training these parame-

ters. In the experiments on the artificially confused corpora (cf. Chapter 5) it has been

shown that the learnt weights generalize well from one confused corpus to another.

This remains to be shown for the experiments on realistic data from this chapter.

Earlier work on testing SMT evaluation metrics often relied on existing SMT sys-

tem output and human ratings obtained from sample translations (sentence by sen-

tence). With our approach of comparing a discourse-aware system with a baseline sys-

tem we can test whether the handled discourse phenomenon is actually beneficial for

the translation, instead of simply testing discourse-related translations that are correct

by chance (and not due to explicit modelling). In the DiscoMT15 shared translation

task (Hardmeier et al., 2015), there are a few SMT system outputs available from sys-

tems that explicitly attempt to model discourse phenomena. However, the data sets

used there are between English-French, so they are not applicable to our experiments.

Nonetheless, they could be considered for future work when testing our SMT eval-

uation metric on this language pair. Furthermore, they provide more varied system

outputs, rather than our post-editing systems that focus their changes on pronouns

only.

Our evaluation metric predicts a high number of equal ranks (1,1) when the doc-

ument pairs should have been ranked as (2,1) or (1,2). This means it has troubles

distinguishing these document pairs from each other. Analysis showed that in those

document pairs with predicted equal ranks (1,1), there are on average fewer cross-

sentential coreference chains. This explains why our metric tends to perform worse on
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these document pairs, since it only captures cross-sentential chains well. This prompts

for integrating these sentence-internal coreference chains into the EGM representations

as well. This is left for future work. A simpler, but also more error-prone approach

would be to combine our evaluation metric with BLEU, following the assumption that

if coreference chain mentions occur within the 4-gram window BLEU covers, differ-

ences in coherence could be captured. However, this comes with the same problems

noted as deficiencies that BLEU has when it comes to evaluating pronoun translation

(cf. Section 2.2). For example, it requires a matching of pronouns in reference and

system output regardless of how the antecedent is translated.

Previous work on discourse-aware SMT relied on pre-existing system output. These

systems did not attempt to model discourse by design. A better translation of pronouns

for example would happen by pure chance. Testing the evaluation metric on such out-

put only tests if the metric can capture these changes that are done by chance. We

on the other hand want to test our evaluation metric on system outputs from systems

that specifically model a discourse phenomenon. We therefore created the setup of a

state-of-the-art NMT system as baseline output, and a set of post-editing systems that

operated on this output. These post-editing systems consist of our CLPP systems ap-

plied to that output. They make more informed decisions about how pronouns should

be translated, taking the entire document context into account. Furthermore, it should

be noted that in this setup we do not have the requirement that the systems that model

a discourse-phenomenon must also produce better translations than the baseline. This

would be desirable, but for testing our discourse-aware evaluation metric, this not cru-

cial.

Our evaluation metric does not take reference translations into account. This is

mainly motivated by our initial hypothesis that there is a strong relation between enti-

ties in the source document with those in the target document. And that in incoherent

translations there is a systematic difference for these source-target entity pairs with

respect to a coherent translation that we can exploit with our evaluation metric. The

general approach of relying on the source-side for SMT evaluation is also taken by

Guzmán et al. (2014) and Joty et al. (2014) in their SMT evaluation metric which

compares the discourse structure between a source sentence and target sentence.

Our evaluation metric is unlexicalized, i.e. it does not represent the actual words

that are used in the source- or target-side document. This is in line with the original

monolingual formulation of the EGM (Barzilay and Lapata, 2008). This unlexicalized

representation is one way of circumventing the problem mentioned earlier that BLEU
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has with expected pronoun translations in the reference that are not checked against the

system translation of the antecedent. In other words, if a pronoun is translated differ-

ently to the reference translation, but agrees with the antecedent in the translation, then

this would still create a coreference chain, which is the basis for our evaluation metric.

Like this an actually correct pronoun translation that appears superficially wrong with

respect to the reference contributes positively to the metric. At the same time though

this means that our evaluation metric is not designed to be used on its own, since it

does not make any judgements about actual translations of individual words. It will

therefore have to be combined with evaluation metrics that do take words into account,

e.g. BLEU or METEOR. In our experiments this was not a problem, since the system

outputs were only distinguished by words (i.e. pronouns) that influence the structure of

the translation and are therefore captured by our evaluation metric. Words other than

pronouns were not changed from the baseline in the post-editing systems.

In the WMT metrics shared task (Bojar et al., 2016) SMT evaluation metrics are

tested for correlation with human judgements on two levels. The first level, i.e. the sys-

tem level, considers the final SMT system rankings produced by the human assessment

of SMT systems that participated in the WMT news translation shared task. A metric is

then tested how well it correlates with these system rankings. Since we only have four

systems which are very similar to each other, we do not test for such a system-level

correlation. Typically there is a much larger set of systems compared in this setup (i.e.

15 systems in WMT16), but even then many of these systems do not show a distinction

that is statistically significant resulting in the same ranking cluster (i.e. producing 7

clusters of systems in the final ranking in WMT16). The second level, i.e. segment

level, is what is most similar to our setup. The major difference is that in the WMT

metrics shared task, a segment is a sentence, whereas in our metric, a segment is a

document. Results in Bojar et al. (2016) show that correlation with human judgements

on the sentence-level correlation test is generally much lower compared to the system-

level correlation test. With this context in mind, the fairly low accuracy scores (i.e. low

correlation with human judgements) of 31% on average on the reduced data sets are

relativized to a certain degree, since it is a hard task in general.

The experiments with the score-based SMT metric showed promising results in

that it could achieve an increase of 5-10% (absolute) in accuracy on the reduced data

sets. This is promising, since it means that the score-based metric has the potential

to be used directly as an SMT metric without training model parameters. It further

means that it has the potential to be more straight-forwardly applied to other data sets
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and possibly new language pairs without the requirement of human annotations for

training parameters. The fact that the score-based evaluation metric performs better

than the tuned SMT metric provides additional evidence that the latter one is over-

fitting parameters towards the small training sets. In addition to that, the metric less

frequently confused the coherence of the document pairs, i.e. it less frequently ranked

documents in the wrong order. This provides a good starting point for overall good

performance, once the expressivity of the metric with sentence-internal coreference

chains is improved to handle the many (1,1) predictions.

A further issue is the frequency of changes with respect to pronoun translations

that occur within each document pair, often leading to little or no change at all. If we

have longer documents (e.g. TED talks as used in the ParCor corpus or in the CLPP

shared task test sets) or a higher frequency of pronouns, we expect the differences with

respect to entity-based coherence to increase. This in turn will increase the chance that

our SMT metric will provide more distinct predictions for document pairs, hence re-

ducing the number of (1,1) predictions. This would be a complementary experiment to

increasing the granularity of the underlying bilingual model of entity-based coherence.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

The main focus of this thesis has been two-fold: (1) modelling pronoun translation as a

phenomenon of entity-based coherence; and (2) discourse-aware SMT evaluation with

respect to entity-based coherence. In the first part, we looked at modelling pronoun

translation to better understand the requirements of how this should be modelled such

that it provides pronoun translations with high accuracy in a realistic setting. In the

second part, we focused on evaluation of SMT with a discourse-aware metric, which

we considered a necessity to enable advances in discourse-aware and document-level

SMT. The recurrent theme throughout our experiments is taking advantage of dividing

the main problem of pronoun translation and entity-based discourse-aware SMT eval-

uation into smaller steps, which enabled us to more deeply investigate the problems at

hand. These subdivisions abstract away from the full SMT pipeline, thus introducing

artificial settings. In both modelling and evaluation parts of this thesis we worked on

ways of lifting these artificial restrictions moving towards verifying and integrating the

approaches back into the final goal of end-to-end SMT with discourse-aware evalua-

tion of these systems. Bringing back the issues into the more realistic setting exhibited

weaknesses and drawbacks of proposed approaches and setups. There is still a big

gap to fill between the current understanding of modelling pronoun translation and a

fully discourse-aware evaluation metric. The results in this thesis should provide good

starting points to move the field further.

In Chapter 3 we created CLPP systems for English-German and English-French

that produce state-of-the-art results on the test sets of the CLPP shared tasks from

2015 and 2016. With the help of these systems we could show in a feature ablation

167



168 Chapter 7. Conclusion and Future Work

study that having access to the antecedent of a pronoun and the grammatical features

(gender and number) of this antecedent is beneficial for increasing the prediction per-

formance. Similarly, predicting NONE is not only beneficial for higher performance,

but also reduces the amount of OTHER predictions. This makes the predictions more

useful in downstream tasks, since NONE has a direct mapping to a surface form (i.e. the

empty string), whereas OTHER is an artificial string that cannot be substituted directly

into natural text. Experiments on both language pairs showed that a similar setup can

be used. This showed that the same approach generalizes well to other languages that

have similar agreement constraints on pronouns and their antecedents. Furthermore,

we could confirm linguistic knowledge for the pronouns and language pairs under dis-

cussion by showing the usefulness of having access to the antecedent and its grammat-

ical features in particular and by providing evidence that target-side features are more

informative than source-side ones in general.

We then pointed out in Chapter 4 that the two CLPP shared tasks work within an

artificially restricted setting by working on target-side data that has been translated

from the source by human translators (and lemmatized in the CLPP16 shared task).

This deliberate restriction was good for understanding what is involved in pronoun

translation without the noise added by full SMT systems. Furthermore, this restriction

enabled the automatic creation of large quantities of training data for applying machine

learning techniques, since the gold pronoun labels could be directly extracted via word

alignments from the parallel documents. We worked towards removing some of the

restrictions aiming at a more realistic setting by creating a test corpus for English-

German with automatic translations from a state-of-the-art NMT system rather than

human translations. In this setting, labels (i.e. target-side pronouns) can no longer be

extracted automatically. We therefore devise an annotation scheme with guidelines and

an annotation tool, with which we collect gold labels within the context of the full par-

allel document with the automatically translated target-side. Inter-annotator agreement

showed that this annotation is a feasible task producing reliable pronoun annotations.

The annotation also showed that the set of pronouns from the CLPP shared task only

show little unresolvable ambiguity for humans. We then applied our trained CLPP

systems on this more realistic test corpus. Results did not show a clear tendency and

depending on both the system and evaluation metric a decrease or increase of perfor-

mance could be observed. More importantly, however, experiments showed that the

state-of-the-art NMT system had a better performance in pronoun prediction than the

specialized models of our CLPP systems. This corpus and the experiments therefore
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made it possible to exhibit this weakness in the CLPP system that were undiscovered

with the abstracted setting of the first two shared task instances. At the same time it

enables future work on more realistic CLPP modelling, such as considering pronoun

translations of an underlying baseline SMT system.

The lack of appropriate evaluation metrics for SMT to handle discourse phenomena

provided us with the motivation to investigate in Chapter 5 how monolingual models

of entity-based coherence can be extended to the bilingual case. Focussing on entity-

based coherence, we worked with the hypothesis that an entity in the source-side shows

direct correspondences with entities on the target-side, and that an incoherent transla-

tion shows systematic differences in these correspondences compared to a coherent

counterpart. We showed that there is such a correspondence via correlation of source-

and target-side coherence model scores obtained from the monolingual EGMs. We

then devised an automatic entity alignment procedure. The aligned entities are then

basis for a bilingual model of coherence inspired by the monolingual EGM. The model

comes in two formulations, a coarse-grained one inspired by the EGraph representation

of the EGM (i.e. by merging the source- and target-side EGraphs) and a fine-grained

one (i.e. by capturing cross-lingual entity transition patterns inspired by the EGrid rep-

resentation). The models were tested on corpora where in the human-authored target

side the coherence of the document was disturbed by artificially confusing pronouns

based on typical errors CLPP systems make. This method provided us with automatic

gold labels for entity-based coherence. In a learning-to-rank framework, the models

were tested, such that more coherent documents should be ranked higher than less co-

herent ones. The coarse-grained model did not perform well, as it only provides one

score for the entire parallel document. The fine-grained model performed much better

(by 25 to 44 percentage points) being able to accurately rank document pairs accord-

ing to their gold ranking coherence. The bilingual model of coherence therefore was

shown to be useful in judging the bilingual coherence of parallel documents, with the

restriction that the target-side documents contained human translations with artificially

confused pronouns.

Finally, in Chapter 6 we tested how well the above bilingual model of entity-based

coherence is suited as a discourse-aware SMT evaluation metric, i.e. how well it per-

forms on non-artificial data that comes from actual SMT system outputs. For this pur-

pose, several outputs of SMT systems are necessary. Furthermore, we can no longer

obtain gold rankings of coherence automatically. We therefore need human judgements

of coherence. The major goal was to find out if the ranking order of document pairs
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translated by different SMT systems as established with our model correlates with the

ranking by humans. Instead of relying on existing SMT system outputs, which is a

common approach in SMT metric evaluation, we tested against output from a state-of-

the-art NMT system, and systems which explicitly handle a discourse phenomenon, i.e.

pronoun translation. To obtain the latter, we used our CLPP systems as post-editing

components operating on the NMT output. For obtaining the human judgements of

coherence, we reused our annotated corpus from Chapter 4 by converting the pro-

noun annotations with respect to SMT system outputs into ranking labels. This was

done by comparing the translated pronouns of a pair of system outputs with the pro-

nouns as translated by humans and counting the matching translations. The system in

each pairwise system comparison that yielded a higher number of matching pronouns

was assigned the higher rank of coherence. In experiments we discovered that with

our setup on the news data set, almost half of the document pairs are indistinguish-

able from each other, since there are either no pronoun instances, or the two involved

systems made the same prediction. Furthermore, we realized that in this setup, the

evaluation metric predicts a lot of ranking ties. We found out that this happens more

frequently if in the involved parallel document pairs there are fewer cross-sentential

coreference chains and fewer coreference chains in general. Since our evaluation met-

ric is predominantly sensitive to cross-sentential coreference chains, this means that

in those parallel documents there is less information that can be extracted with our

metric. This is a problem that future work on entity-based models of coherence for

discourse-aware SMT evaluation has to focus on.

One of the recurring approaches in this thesis is starting to investigate a problem

from an abstraction of the final goal, followed by exploring ways to remove some of

these abstractions. Our experimental results show that this approach comes both with

advantages and disadvantages. On the one hand, it enables understanding of pronoun

translation and testing our CLPP systems in a controlled setting and with automatic

means. This helps identifying relevant features (e.g. antecedent of a pronoun, mod-

elling prediction of the empty word) for modelling cross-lingual pronoun behaviour.

On the other hand, when applied to a more realistic test set, it was shown that a full

NMT system performed better at predicting the right pronoun than the dedicated CLPP

systems. Similarly, experiments with our bilingual model of entity-based coherence

showed very promising results on the artificially confused data set, providing us with

evidence that the model works in principle. However, when applied as discourse-aware

SMT metric on a realistic test set it pointed towards limitations of the abstraction ap-
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proach, since it performed much worse on the realistic test set. Despite the drawbacks,

we still believe that these abstracted settings are valuable approaches, since they verify

the models at least on a restricted setting and more importantly allow for more ex-

tensive and faster experimentation than with manual annotation, since gold labels can

be obtained automatically. However, it remains important to keep the original goal in

mind, so that these abstractions do not make the problem at hand too simple or unreal-

istic, such that once applied to the original setting the previously working models then

fail.

In our thesis, we aimed at providing annotations based on a generally used and un-

biased test set (i.e. WMT news test set). Complementary to this approach are the CLPP

shared tasks, which explicitly compiled test sets with documents where they ensured a

good coverage of rare pronouns. We opted against filtering out documents with a low

frequency of pronouns, because we wanted to verify both our CLPP systems and our

SMT evaluation metric on an unbiased and generally applicable data set. However, this

poses additional difficulties to the already difficult problem of discourse-aware SMT

in making the sparsity issue even stronger. In our approach with using CLPP systems

for post-editing this resulted in many document pairs with few to no changes or differ-

ences. We conclude from this that if such sparse, but important problems are attempted

to be tackled, then more targeted evaluation sets seem unavoidable. Nevertheless, any

experiment with a targeted test set, needs to be complemented with experiments on

unbiased test sets to be able to compare how proposed models and metrics would fare

in a realistic setting.

The unexpectedly high results of NMT systems in the CLPP task compared to

dedicated CLPP systems prompt for a reevaluation to what degree pronoun translation

is still a problem in NMT systems. When analysing this it needs to be identified what

pronouns NMT systems are good at, and which ones they still cannot handle. Pronouns

with sentence-internal antecedents beyond the context of n-gram based LMs might be

less problematic in NMT systems, whereas pronouns with cross-sentential antecedents

could still require specialised handling.

We only considered one aspect of coherence (i.e. entity-based coherence). This

makes the already sparse discourse-level problem even sparser. Rather than consider-

ing individual aspects of coherence separately one should address this problem as one

discourse-aware SMT evaluation metric with different components that take different

aspects into account. This makes it harder to pinpoint what element contributed to the

final metric score, but might make the metric overall less sparse and more success-
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ful, since it has a higher chance of revealing coherent or incoherent components in a

translation.

7.2 Future Work

CLPP

In Chapter 4 we tested our CLPP systems on realistic data where the target-side has

been automatically translated. In these experiments, we reused our pre-trained models

that were trained on the CLPP16 shared-task data sets with a human-authored and

lemmatized target-side. In this setup, potentially useful information is removed from

the training data by lemmatization. Further experiments should be conducted over

what kind of training data is more helpful to learn better CLPP models, whether it is

training data where the target-side contains full form human reference translations, or

whether it is the training data with the lemmatized target-side, or combination of the

two.

The CLPP shared tasks come with a few restrictions. One of these we lifted by

creating a data set with an automatically translated target-side and manually anno-

tated target-side pronouns (cf. Chapter 4), bringing it closer to a more realistic setting.

Another restriction is the set of pronouns the CLPP shared task focuses on. On the

source-side only subject-position 3rd person pronouns are considered. For the tasks

from English into German and French, these are it and they. This considerably re-

stricts coverage of pronouns to which a CLPP system can be applied. Some pronouns,

such as I might have a trivial one-to-one mapping in these language pairs, however,

there are other pronouns, such as you, that are also ambiguous in the source language

and can be translated into different pronouns on the target-side. Opening up the small

set of pronouns on the target-side, will reduce the large number of OTHER class labels,

therefore, making a potentially large portion of predictions more useful for downstream

tasks. Rather than predicting OTHER, which we for example cannot use in our post-

editing setup (cf. Chapter 6), we could then predict an actual pronoun. Difficulties with

this are the potentially low frequency of pronouns currently grouped into the OTHER

class. Furthermore, increasing the number of possible classes might make learning an

accurate classifier harder. This might require increasing the size of the training data.

We experimented with predicting pronouns in a sequence with the hypothesis that

if we jointly predict all pronouns belonging to the same coreference chain this should



7.2. Future Work 173

be beneficial for the overall performance. Rather than individual predictions for each

pronoun instance, we therefore grouped all those pronouns into one sequence that oc-

cur in the same coreference chain. In experiments with a linear CRF however we could

not show that such an approach increased the prediction performance. Nevertheless we

believe there is valuable information in the fact that pronoun instances belong to the

same coreference chain that should be exploited. Addressing the issue of possibly di-

verging grammatical genders of nouns in a coreference chain, e.g. by an additional

Boolean feature that records whether all nouns in a coreference chain have the same

gender or not, might be worth an experiment.

Bilingual EGM

The current formulation of our bilingual model of coherence does not explicitly model

entities with multiple mentions that remain strictly within one sentence. These are only

indirectly captured by including them in the count of source-side and target-side enti-

ties. Excluding sentence-internal non-singleton entities is in line with the monolingual

EGraph representation of the EGM, which only captures entity transitions across sen-

tences. Our experiments however showed that our bilingual model did not adequately

capture bilingual coherence in documents with a larger number of sentence-internal

non-singleton mentions. This suggests that even though they do not seem as relevant

in the monolingual case, they seem more important in the bilingual case. Experiments

should be conduced to find out whether including these entities improves the correla-

tion with human judgements.

All EGM formulations (monolingual and bilingual) in this thesis only record the

highest ranking entity mention within a sentence if there are multiple mentions. This is

a coarse-grained perspective on the document. These other syntactically lower ranking

mentions also contribute to the coherence of the document, and it should be experi-

mented whether they can be incorporated into the model as well. On the other hand,

in the translation setting removing this abstraction layer might increase the number

of one-to-zero or zero-to-one mappings between entity mentions in the source- and

target-side document.

The fine-grained formulation of our bilingual model of coherence currently con-

siders coherence patterns across two languages for example recording how often entity

mentions in aligned source-target entity pairs are preserved, deleted and inserted. This

horizontal view (across language, but within one sentence) does not consider tran-
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sitions of bilingual entity mention pairs of successive sentences. This vertical view

(across languages and across sentences) would take a more direct inspiration from the

EGrid formulation of the EGM in that it captures the entity mention transitions across

sentences. Similarly to that, we could capture how sequences of entity mention transi-

tions within the source language correspond to such transitions in the target language.

SMT Evaluation Metric

In experiments using the NMT baseline as starting point for creating different systems

via post-editing by substituting target-side pronouns with CLPP predictions, these sys-

tems are only different with respect to the target-side pronouns, i.e. all other trans-

lations are the same. Future experiments will have to look into how well the SMT

evaluation metric performs on SMT outputs that are different in other aspects in order

to close the gap between the current setting and a realistic scenario of ranking arbitrary

SMT systems. In our experimental setup this would require more manual annotations,

again asking human annotators to provide pronoun choices for a given automatically

translated target side. This annotation would have to be collected for each tested SMT

system.

Related work on discourse-level SMT evaluation often incorporates sentence-level

metrics, such as BLEU and METEOR, in addition to a proposed discourse-aware

component. In our experiments, we do not follow this approach, since BLEU and

METEOR are not focussed specifically on particular phenomena, i.e. they treat each

word or n-gram overlap with equal importance. They would therefore capture other

changes in the SMT output, which would make it harder to pinpoint the contribution

of the discourse-aware evaluation component. However, this approach makes no claim

about the usefulness of the combination of evaluation metrics in general to achieve a

global SMT evaluation metric that takes all aspects of translation quality into account.

Therefore, once shown that a particular discourse-phenomenon is well-captured by a

discourse-aware evaluation metric, the next step would be to experiment with these

combinations.

The exact role and influence of the coreference resolution systems should be inves-

tigated in detail. They provide the basis for our bilingual model of coherence. If for

example a coreference resolution system is particularly bad at resolving a specific pro-

noun leading to wrong or missed coreference chains, this could provide our evaluation

metric with false data. This issue is to be distinguished from the potentially noisy data
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the target-side coreference resolution system has to work with, i.e. since it consists of

automatically translated text. Coreference resolution systems are not developed with

noisy data in mind. However, this indirectly provides us with a coarse-grained assess-

ment of the overall translation quality. If the translated text is of low quality, then the

coreference resolution system is expected to make a higher number of errors, whereas

if we have a state-of-the-art translation, it has higher quality text to work with, thus

reducing the amount of potential errors caused by noisy translations. We did not inves-

tigate this relationship in our thesis, but the exact interaction should be studied. This

could for example take the form of exposing our metric to parallel document pairs

translated by two discourse-unaware SMT systems, one state-of-the-art system and an

inferior baseline system, where the expected coherence rank would be (2,1). If the

metric still can distinguish the two systems this would be evidence in favour of the

above hypothesis.

On the other hand the exact performance of the coreference resolution systems

can be studied by manually annotating parallel documents for coreference, where the

target-side is generated by different SMT systems. This oracle experiment would re-

veal the true potential of our evaluation metric if the underlying coreference resolution

systems were providing perfect coreference chains. This requires a substantial amount

of manual annotation. As a starting point the ParCor corpus (Guillou et al., 2014) could

be considered. It is a parallel corpus containing TED talks in English and French and

has been annotated with partial coreference chains by linking all pronouns to their

closest noun antecedent. These annotations could be completed on the source side

to provide full coreference chains. Annotations on the target side would have to be

performed completely from scratch, since these would be on automatic translations.

Our SMT evaluation metric only focuses on one specific aspect of coherence. We

only consider entities in a text and how they are mentioned and referenced. In under-

standing whether coherence can serve as a way to measure SMT quality it is important

to look at single concepts rather than a whole range right away. Nevertheless, findings

should be combined with other approaches on measuring coherence for SMT. Guzmán

et al. (2014) and Joty et al. (2014) for example consider discourse structure as one as-

pect contributing to the overall coherence of a translation. Extending their work from

the sentence level to the document level and combining it with our complementary

view of entity-based coherence metric seems like a promising direction to go. In ad-

dition to that, with respect to event-based coherence, entities are participants in events

and work has been done on monolingual modelling of how events are connected with
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each other in a document (e.g. via event schemata) and how entities are connected to

these events (e.g. via narrative schemata or scripts). It seems like a natural extension

of our hypothesis that entities are preserved in translation, in that event schemata are

also preserved in translation and that it is possible to capture systematic differences if

we have coherent vs. incoherent document pairs.
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