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Abstract
Probabilistic and statistical modelling are the fundamental frameworks that underlie a

large proportion of the modern machine learning (ML) techniques. These frameworks

allow for the practitioners to develop tailor-made models for their problems that may

include their expert knowledge and can learn from data. Learning from data in the

Bayesian framework is referred as inference. In general, model-specific inference

methods are hard to derive as they require high level of mathematical and statistical

dexterity on the practitioner’s part. As a result, there is a large industry of researchers

in ML and statistics that work towards developing automatic methods of inference

(Carpenter et al., 2017; Tran et al., 2016; Kucukelbir et al., 2016; Ge et al., 2018;

Salvatier et al., 2016; Uber, 2017; Lintusaari et al., 2018). These methods are generally

model agnostic and are therefore called black-box inference. Recent work has shown

that use of deep learning techniques (Rezende and Mohamed, 2015b; Kingma et al.,

2016; Srivastava and Sutton, 2017; Mescheder et al., 2017a) within the framework of

variational inference (Jordan et al., 1999) not only allows for automatic and accurate

inference but does so in a drastically efficient way. The added efficiency comes from

the amortisation of the learning cost by using deep neural networks to leverage the

smoothness between data points and their posterior parameters.

The field of deep learning based amortised variational inference is relatively new

and therefore has numerous challenges and issues to be tackled before it can be estab-

lished as a standard method of inference. To this end, this thesis presents four pieces of

original work in the domain of automatic amortised variational inference in statistical

models. We first introduce two sets of techniques for amortising variational inference in

Bayesian generative models such as the Latent Dirichlet Allocation (Blei et al., 2003)

and Pachinko Allocation Machine (Li and McCallum, 2006). These techniques use

deep neural networks and stochastic gradient based first order optimisers for inference

and can be generically applied for inference in a large number of Bayesian generative

models. Similarly, we also introduce a novel variational framework for implicit genera-

tive models of data, called VEEGAN. This framework allows for doing inference in

statistical models where unlike the Bayesian generative models, a prescribed likelihood

function is not available. It makes use of a discriminator based density ratio estimator

(Sugiyama et al., 2012) to deal with the intractability of the likelihood function. Implicit

generative models such as the generative adversarial networks (Goodfellow et al., 2014)

suffer from learning issues like mode collapse (Srivastava et al., 2017) and training

instability (Arjovsky et al., 2017). We tackle the mode collapse in GANs using VEE-
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GAN and propose a new training method for implicit generative models, RB-MMDnet

based on an alternative density ratio estimation which provide for stable training and

optimisation in implicit models.

Our results and analysis clearly show that the application of deep generative mod-

elling in variational inference is a promising direction for improving the state of the

black-box inference methods. Not only do these methods perform better than the tradi-

tional inference methods for the models in question but they do so in a fraction of the

time compared to the traditional methods by utilising the latest in the GPU technology.
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Chapter 1

Introduction

Model-based machine learning (ML) consists of the study and development of statistical

models of data and inference algorithms. Statistical models allow for the practitioners

to capture their prior knowledge about the problem domain within a mathematical

abstraction that can be fit to the data and then be queried for decision-making. Inference

methods are algorithms that enable statistical models to to fit to or learn from the data.

In this chapter, we will introduce some key concepts and cover relevant background

material for model-based ML, statistical models and inference.

1.1 Probabilistic and Statistical Modelling

The ability to learn from our experiences and then apply that knowledge to newer,

unseen tasks and situations is one of the most important traits of human intelligence.

This skill of adaptive behaviour, based on prior experiences is a product of our innate

ability to explicitly or implicitly quantify uncertainty. Uncertainty quantification (UQ)

is not only central to human intelligence (Knill and Pouget, 2004) but also to the key

problems in the fields of sciences (both natural and social), engineering, medicine and

economics. Be it stock market prediction, quantum mechanics, drug discovery, flight

control or predicting the feasibility of a physical or a chemical process, UQ forms the

primary challenge in such problems. The study of quantifying uncertain behaviour

not only allows us to reason about the unknown in a mathematically sound way, but

also enables us to make mission critical decisions about the future in an informed

manner by taking our prior knowledge about the domain into account. Due to its

importance, UQ is amongst one of the most widely studied topics within statistics,

artificial intelligence (AI) and one of its quantitative sub-fields, machine learning. This
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Chapter 1. Introduction 2

has led to the development of tools and frameworks such as probabilistic and statistical

modelling, which underpin most of the supervised, unsupervised and reinforcement

learning (Levine, 2018) methods in modern machine learning.

Probabilistic and statistical modelling are frameworks for learning from data. They

are used to create models of the observed quantities. These models are mathematical

abstractions that provide a rigorous and systematic way of capturing what is already

known about the observed or the data, i.e. prior knowledge and quantifying what is

unknown. Such models allow to reason about uncertainty in unseen data or make future

predictions in a statistically informed fashion. Probabilistic modelling works under

the assumption that the data we observe, denoted here by {xi}N
i=1 are realisations of a

random variable XXX that has an unknown probability distribution, px; which we want

to learn. We do so by creating a model, parameterised by θ, whose distribution is

represented as pθ. The task of learning is then to find that value of θ for which our

model best approximates the data distribution.

While often used interchangeably, there is a subtle difference between probabilistic

and statistical models. Statistical models are a set or collection of probabilistic models.

For example, Figure 1.3 shows two types of statistical models. Another example comes

by treating the unknown parameter θ as a random variable in the probabilistic model

defined above. Using the Bayesian framework (Bishop, 2006) for capturing domain

knowledge in probabilistic models, we can put a prior distribution over θ. Now, instead

of finding a certain value of θ that best describe the data, we can use Bayes rule to get a

distribution over the posterior values of θ for a given x by

p(θ|x) = p(x,θ)
p(x)

, (1.1)

where p(x,θ) is a joint distribution over x and θ, i.e. p(x,θ) = p(x|θ)p(θ) such that

p(θ) is the prior distribution over θ and p(x|θ) is the conditional distribution of x for a

particular value of θ, also known as the likelihood. Learning the posterior distribution

p(θ|x) instead of a particular value θ is called inference.

1.2 Machine Learning: Workflows

In general, a ML workflow involves three distinct steps, data collection and processing,

modelling and inference. Based on how the modelling and the inference steps are

carried out, we can define two types of ML workflows, that we now describe.
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Figure 1.1: Off-the-shelf approach to ML where the practitioner picks a model from a

software package that most closely approximate the data and therefore can carry out

inference automatically using the built-in method in the package.

1.2.1 Off-the-shelf Approach

Statistical models are often used in other fields of science to analyse the experimental

outcomes and to validate their significance. As practitioners in these fields often might

not have the required level of mathematical training to design statistical models and

inference methods, they rely on software packages such as SPSS and Stata to do most of

the statistical analysis. This translates to the use of off-the-shelf statistical models, such

as linear regression, kernel-based classifiers and clustering algorithms. The benefits of

this approach to statistical analysis is that, the inference for such well studied models

are very readily available, often at the press of a button. Since, in most of probabilistic

modelling, inference turns out to be the bottleneck; this approach allows for making

high quality inference more accessible. On the downside, as the practitioners are

restricted to the class of models supported by their software package, they are unable to

explore better models that may describe their data more accurately. Figure 1.1 provides

a pictorial summary of the process involved in this approach.

1.2.2 Modelling Approach

The modelling based paradigm aims to relax the restrictions of the off-the-shelf approach.

This approach draws on the notion of tailor-made models that are designed for the data

in question from scratch by using probabilistic modelling or other ways of model

description. But this expressibility comes at an additional cost. Since this approach
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Figure 1.2: Modelling-based approach to ML where the practitioner designs a tailor made

model for their data and a result needs to derive the inference method from scratch.

often results in brand new models, the inference also has to be derived by the practitioner

from scratch. As noted above, inference derivation for new model requires high level

of mathematical and statistical dexterity and is in fact one of the most active fields of

research in machine learning and statistics. As such, this approach is rather limited in

natural sciences and among domain expert from non-computational fields of research.

Figure 1.2 summarises the process in contrast to the off-the-shelf approach.

1.3 Black-box Inference

While the modelling based approach is difficult in practice for non-technical audiences,

it is clearly more flexible and expressive of the two. Therefore, in an attempt to make

it more accessible, a huge amount of effort has been devoted to developing automatic

methods of carrying out inference in statistical models (Carpenter et al., 2017; Tran

et al., 2016; Kucukelbir et al., 2016; Ge et al., 2018; Salvatier et al., 2016; Uber, 2017;

Lintusaari et al., 2018). Since these methods can be applied to most probabilistic and

statistical models in a generic fashion, they are often referred to as black-box inference.

Black-box methods only require that the practitioner provides the log joint distribution

(p(x,θ) for example) or a method to sample from the joint distribution (Lintusaari et al.,

2018) and they can automatically learn model parameters and/or infer the latent random

variables. Efforts in this direction can be broadly categorised into two domains based

on the underlying inference machinery they derive on.
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Markov Chain Monte Carlo (MCMC) (Neal, 1993; Neal et al., 2011) is a family of

inference algorithms that is desirable due to the asymptotic guarantees the underlying

theory offers, especially in mission critical application such as medical research where

statistical precision is of high importance. MCMC methods define a Markov chain such

that it’s stationary distribution equals the posterior distribution p(θ|x) asymptotically.

Practitioners now have access to tools such as Stan (Carpenter et al., 2017), and Turing

(Ge et al., 2018), which allows them to specify any arbitrary model for their data

and then perform MCMC-based inference, automatically. While such packages are

extremely efficient and highly optimized, they do not scale well with complex models

or large amounts of data. This is because in general, their underlying MCMC samplers

are inherently computationally expensive and therefore not suitable for big data or very

complicated models.

Variational Inference (VI) (Jordan et al., 1999; Wainwright et al., 2008) is an optimi-

sation based inference alternative to MCMC. VI defines a set of tractable probability

distributions which are optimised to find the closest member in the set to the posterior

p(θ|x). Techniques in this class of methods are often scalable and fast compared to their

MCMC equivalents. However, this efficiency comes at the cost of loss in accuracy. Most

of traditional VI methods make simplistic assumptions about the set of approximating

distribution for mathematical convenience; as such there are no asymptotic guarantees

unlike MCMC methods.

This apparent trade-off between accuracy and scalability in such black-box inference

method is somewhat restrictive. Therefore, it is an open area of research to find newer

methods of inference that are accurate with asymptotic guarantees, as well as, scalable.

One such direction comes from the break through work in generative modelling (Bishop,

2006) that makes use of the emerging deep learning techniques (LeCun et al., 2015) and

therefore has come to be known as deep generative modelling (Kingma and Welling,

2013; Rezende et al., 2014; Rezende and Mohamed, 2015b).

1.4 Deep Generative Modelling for Variational Inference

The two machine learning work flows that we discussed above have a clear separation

between the modelling and the inference. As we will show in the this work, deep

generative modelling (DGM) provides an alternative work flow where the modelling and

inference steps are designed simultaneously. This allows for more efficient and accurate
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variational inference in a large class of prescribed and likelihood-free generative models

of data. Designing the model and inference method together enables the inference

method to use the structure of the model towards improving accuracy and computational

efficiency by amortising of the cost of learning of the posterior parameters (Srivastava

and Sutton, 2017; Khan and Lin, 2017; Johnson et al., 2016) (See section 1.5.1). Making

use of the model structure may affect the generic applicability of automatic inference

methods, but as we will later see, by using DGM and stochastic optimisation methods

(Kucukelbir et al., 2016; Kingma and Ba, 2014; Zeiler, 2012) such amortised VI

methods can maintain their black-box property.

1.4.1 Deep Generative Models

Generative modelling is an intuitive and flexible statistical framework that allows for

practitioners to define models by mathematically describing the process that renders

the observed data. A large number of both supervised and unsupervised models can

be generalised as generative models. Often, even reinforcement learning models can

be reinterpreted as being generative (Levine, 2018). Such models can be conveniently

described using the plate diagram notation (Bishop, 2006) and are naturally accessible

for the Bayesian treatment. We shall now describe a generic generative model that will

be used as an example throughout this chapter.

As before, let the data, {x}N
i=1 be i.i.d samples from the true data generating dis-

tribution px. Generative models assume that the data samples have some latent local

and/or global correlation structure and resort to a latent variable model (Bishop, 2006)

to describe the process of generation through a conditional probability distribution

pθ(x|z). Unlike the probabilistic model that we introduced earlier, this generative model

uses another random variable ZZZ to represent the local latent structure in the data. θ as

before, can either be treated as a model parameter or as a global latent random variable,

but for simplicity we will treat it as a model parameter here. In addition, often for

high-dimensional data, the latent structure is assumed to be lower-dimensional than

the observed. The latent random variables can be continuous or discrete depending on

the prior assumptions of the domain expert. Finally, the inference problem changes to

the approximation or estimation of pθ(z|x) when θ is treated as a model parameter or

p(z,θ|x) when the model is given a full Bayesian treatment.

Figure 1.3 shows how to graphically represent the two types of generative models

under local and global latent structure assumption.
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Figure 1.3: Two types of generative models. Bayesian models of data can be expressed

using the plate diagram notation. Observed variables are shaded unlike the latent

variable. Variables inside the plate are IID and local where as variables outside the

plate are global. Model on the left is an example of a typical latent variable model with

prescribed likelihood (depending on the assumptions) whereas the model on the left is an

example of an implicit model where the likelihood function is not available in closed-form.

1.4.2 Two Types of Generative Models

While plate diagram notation allows us to express the model specification graphically, it

is our prior assumptions about the nodes in these diagrams, i.e. the observed and latent

random variables, that complete the model description. Based on what is specified

about the generative models, they can be classified into two types, explicit and implicit

generative models. Explicit generative models have a prescribed likelihood function

since we make an explicit assumption about the sampling distribution for each of the

nodes in the graph. Compared to models with prescribed likelihood function, we also

have another class of generative models that do not have an explicit form for their

likelihood and are therefore called implicit models. Implicit models naturally arise

when we do not or cannot make an explicit assumption about the generative distribution

of some or all nodes in the graph.

Most of the traditional machine learning techniques deal with explicit generative

models. Examples of such models include mixture models, mixed-membership models,

latent Gaussian models such as those used in the factor analysis methods, etc (Bishop,

2006). In our example statistical model, if we assume that the conditional distribution
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pθ(x|z) is known, our model becomes explicit as now, it has a prescribed likelihood

function. This is a powerful modelling scheme and the flexibility of choosing the prior

and the generating distribution often also allows for mathematical convenience and

tractability in inference. Despite its benefits, explicit modelling has its limitations.

It is frequent in natural sciences to study and carry out inference directly in the data

generating process, which may be a deterministic function of some stochastic or noise

input, such as physical simulators studied in particle physics. In such cases, it is rarely

possible to tractability derive an expression for the likelihood function even if the

process is well understood. Similarly, for certain quantities of interest such as images,

we often do not know what distribution underlies the generation of such quantities and

may not want to make an assumption about their conditional generative distribution.

When we do not have an explicit form for the likelihood function, we refer to our

statistical model for the data generating process as an implicit model of the data. Implicit

generative models, based on their derivation, can be further divided into two groups.

When inference is carried out directly on the physical data simulator or its mathematical

abstraction, the simulator is referred to as a mechanistic or a functional model (Gutmann,

2018; Buzbas and Rosenberg, 2015; Lueckmann et al., 2017; Lintusaari et al., 2018)

since it is the actual process that generates the observations. On the other hand, statistical

models in which we do not make an explicit assumption about the generating distribution

for some of the nodes for quantities such as natural images (for example,) but instead

define a data generating process as a deterministic transformation of some stochastic

node, are referred to as statistical implicit models. For instance, in our example model, if

we do not assume that the distribution pθ(x|z) is known and instead model the generative

process as a deterministic function of z, it convert to an implicit generative model. A

well celebrated example of such models is the Generative Adversarial Network (GAN)

(Goodfellow et al., 2014) that we will be considered in detail in later chapters.

Most of the traditional machine learning methods for probabilistic inference are

not directly applicable in implicit models, and this constitutes the main challenge and

functional difference in these two classes of generative models. Recent development in

likelihood-free inference techniques (Lintusaari et al., 2018; Mescheder et al., 2017a;

Srivastava et al., 2017) are therefore very important in the study of implicit generative

models.
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1.5 Variational Inference using Deep Generative Mod-

elling

The key inference problem in our example generative model is the estimation of the

posterior distribution over the latent variables given the observations, i.e. p(z|x). This

quantity is often intractable except for in the case of very simple generative models.

As a result, most approximate inference methods use optimisation techniques to find

a variational distribution that is close to the true posterior according to a metric on

probability distributions or divergence measure of choice. In this section we will

introduce the general concept of variational inference (VI) and then explain a specific

approach of amortised VI in detail.

1.5.1 Mean-field and Amortized Variational Inference

A prevalent concept in traditional variational inference is that of the mean-field assump-

tion (Jordan et al., 1999; Bishop, 2006). Under this assumption the complicated or

structured posterior is approximated with a fully factorised distribution as it allows for

mathematical convenience. For example, if we introduce another latent random variable

y, in our example model such that the joint distribution of the new model is given

as (dropping θ for clarity), p(x,y,z) = p(x|y)p(y|z)p(z). Then under the mean-field

approach the intractable posterior distribution p(y,z|x) can be approximated with a

factorised variational distribution given by q(y|α)q(z|β); here α and β are variational

parameters that need to be optimized to ensure q(y|α)q(z|β)≈ p(y,z|x). This approach

introduces a lot of variational parameters, typically one or more per data point. For large

data problems this makes the optimisation more challenging. Amortised variational in-

ference (Kingma and Welling, 2013; Rezende et al., 2014; Srivastava and Sutton, 2017;

Mnih and Gregor, 2014) is a solution to this exact problem. It reduces the number of

learnable parameters drastically by assuming there exist a certain smoothness between

the observed and the latent variables, i.e. similar observations have similar posterior

parameters. We will discuss this technique in detail in chapters 2 and 3, where we

introduce amortised VI algorithms for hierarchical Bayesian models of text.
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1.5.2 Inference In Prescribed Models using Deep Generative Mod-

elling

Making use of our running example, it is easy to see how one can derive a closed

form expression for the posterior distribution if the latent variable z has a conjugate

prior (Bishop, 2006). For instance, if the observed x is a discrete quantity distributed

according to a Multinomial distribution. Then, if z is assumed to have a Dirichlet

prior, one can easily derive that the posterior is also Dirichlet distributed where the

pseudo-count of the prior is updated by adding the observed count statistics to it (Bishop,

2006). In general, when the posterior distribution is analytically tractable, it is quite

straightforward to derive a closed form inference method. While closed-form inference

methods are highly efficient, by limiting the choice of prior assumptions and complexity

of the latent structure they severely restrict the modelling capacity.

We will now show how to use deep generative modelling together with advances in

stochastic optimisation techniques to develop amortised variational inference methods

that can be generically applied to a wide class of generative models even in the cases

when the posterior distribution is not analytically tractable. We begin with the log

marginal likelihood function of the observed data log pθ(x) under our example model

represents the set of all the parameters of our model. As we have seen before, model as-

sumptions and structure can often render the likelihood function analytically intractable,

for example, finite mixture of Gaussians (Bishop, 2006). Typically in variational infer-

ence, this issue is sidestepped by obtaining a tractable lower bound to the log marginal

likelihood,

log pθ(x)≥
∫

qφ(z|x) log
pθ(x,z)
qφ(z|x)

dz. (1.2)

Here qφ denotes the variational posterior (with φ as its variational parameter) with

which we aim to approximate the true posterior distribution under our model. Based on

the way we factorise the joint model distribution of x and z, we recover two different

variational inference approaches. If closed-form or fixed-point iterative solutions are

available, we break the joint into a product of the posterior over z and the marginal of x,

i.e. p(z|x)pθ(x), which might lead to an expectation maximisation (EM) type method

(Moon, 1996). But assuming such solutions are not available in the general case, we

proceed by factorising the joint into the prior over z, p(z) and the model conditional
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pθ(x|z), yielding the following lower bound,

log pθ(x)≥
∫

qφ(z|x) log
p(z)

qφ(z|x)
dz+

∫
qφ(z|x) log pθ(x|z)dz

=−KL[qφ(z|x)‖p(z)]+
∫

qφ(z|x) log pθ(x|z)dz. (1.3)

Equation (1.3) is called the evidence lower bound or the ELBO and comprises of two

terms, a negation of Kullback-Leibler (KL) divergence between the variational posterior

and the prior over z and the expectation of the model-specified conditional distribution

under the variational posterior. These two terms provide quite an intuitive explanation

for the method. Maximisation of the second term in (1.3) is aimed at finding the setting

for parameter θ for which the observed quantity becomes highly likely to be generated

from the prescribed model. Additionally, to ensure that the learned parameters adhere

to the model specification, the first terms imposes a penalty on the learned posterior

when it deviates from the class of distributions specified by the prior.

While for a large number of prior distributions, the KL term may be tractable, in

practice it is rare that the second term is analytically tractable. One simple way to

mitigate this issue is to use a Monte-Carlo (MC) estimator of the integral in the second

term. Using N samples from qφ gives us the ELBO,

L(Θ) =−KL[qφ(z|x)‖p(z)]+
1
N

N

∑
i=1

log pθ(x|zi), (1.4)

where Θ = {θ,φ}. Using an MC estimator for the intractable integral makes the ELBO

numerically accessible to evaluate but it introduces a new problem.

We aim to solve the learning problem, i.e. finding the optimal setting for Θ via

stochastic gradient descent (SGD) based optimisation procedure. While our new ELBO

(1.4) may be differentiable as long as the latent variable z is continuous; the gradients of

the ELBO with respect to the sampler used for the MC estimator almost always has very

high variance. This is a severe limitation that prohibits the use of SGD type method on

our ELBO.

1.5.2.1 Re-parametrisation Trick:

For the class of distributions in the location-scale family (Stephens, 2007), the above

problem with the gradients of (1.4) with respect to φ can be resolved by using a different

parameterisation for z-samples (Kingma and Welling, 2013; Williams, 1992). For

example, if z is assumed to be Gaussian with mean µ and standard deviation σ, i.e.
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apriori φ = {µ,σ}, then samples from qφ can be drawn using a simple reparaterisation

of samples from a standard Gaussian distribution N (0,1), i.e. z = µ+σ ∗ ε, where

ε∼N (0,1).

This type of parameterisation in general allows to re-write the ELBO in (1.3) as

L(Θ) =−KL[qφ(z|x)‖p(z)]+
∫

b(ε) log pθ(x|z = r(ε,φ))dε, (1.5)

where b is the base distribution for z such that for ε ∼ b, z can be described as a

deterministic function of ε, z = r(ε,φ). This trick alleviates the need to take the

gradients of the ELBO with respect to the sampler and hence the high variance issue

does not arise. Using an MC estimate for the second term we can re-write (1.3) as

L(Θ) =−KL[qφ(z|x)‖p(z)]+
N

∑
i=1

log pθ(x|r(εi,φ)). (1.6)

Generalised Re-parameterisation Trick: Similar to the Gaussian case, most distri-

butions in the location-scale family can be re-parameterised in the same fashion and

used within this framework. But clearly, not all distributions have a convenient location-

scale form, for example the Dirichlet distribution over a probability simplex. Such

distributions can be tackled using approximations such as Laplace bridge (Hennig et al.,

2012; Srivastava and Sutton, 2017), centred stick-breaking transform (Kucukelbir et al.,

2016), etc. More recently, work by Figurnov et al. (2018) and Naesseth et al. (2016)

provide alternative re-parameterisation schemes that can be generically applied to most

of the continuous distributions even if they do not fall in the location-scale family.

One of the drawbacks of the stochastic gradient based variational inference methods

in general is their inability to work with discrete random variables in the latent space as

they introduce discontinuities in the ELBO (1.3). Classic variance reduction techniques

such as control variates, REINFORCE and Rao-Blackwellization based alternative

formulations of the ELBO have been proposed (Ranganath et al., 2014; Mnih and

Gregor, 2014) as a work around. But the more popular approach to deal with discrete

latent variable in SGD based VI is to use a continuous relaxation of the discrete

distribution such as the concrete distribution (Maddison et al., 2016; Jang et al., 2016)

at learning time and replace it with the discrete distribution thereafter. For a more

comprehensive description on this topic please see Duvenaud (2018); Grathwohl et al.

(2017).
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Figure 1.4: The figure on the left side denotes the plate diagram for a simple generative

model with Θ as the global parameter. Upon amortising the posterior parameters, the

resultant model can be represented as an variational autoencoder, like shown on the

right side. The encoder is a deep neural network that generates the posterior parameters

and the decoder is the actual conditional distribution that generates the observed.

1.5.2.2 Amortising Variational Parameter Learning

We have now established how variational inference can be generalised using stochastic

optimisation methods to a wide class of generative models. But one of the most signifi-

cant aspect of this stochastic learning framework is that it allows us to extend the class

of approximate variational posterior distributions to more complicated functions. The

goodness of any variational method depends largely on the flexibility and expressibility

of the class of functions it uses for posterior approximation. Stochastic gradient based

inference framework enables the use of deep neural network based universal function

approximators to learn variational posteriors that can in theory be arbitrarily close to

the true ones.

The key idea that motivates amortisation is that similar data points in general have

similar posterior parameters. In order to leverage this insight we introduce a set of

shared global variational parameters in form of a deep neural network, which is then

trained to learn a map from the data {xi}N
i=1 space to the posterior parameter space,

i.e. fλ : X 7→Φ. Here X and Φ represent the data and the variational parameter spaces

respectively, φ ∈Φ and fλ is a deep neural network. Re-writing the ELBO with fλ we

get,

L(Θ) =−KL[q fλ(z|x)‖p(z)]+
∫

b(ε) log pθ(x|z = r(ε, fλ(x))dε, (1.7)

which describes our final objective. Instead of learning a set of variational parameters
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φ per data point, we now learn a shared set of parameters of the deep network f , i.e.

Θ = {θ,λ}.

1.5.2.3 Optimisation

With our final objective (1.7) in place the next step is to actually carry about learning

and inference in the prescribed model. As mentioned earlier, variational inference

works by posing the inference problem as an optimisation task. Figure 1.4 shows that

by using amortisation via deep learning the latent variable model has been converted

into a variational autoencoder (Kingma and Welling, 2013) which can be trained easily

with stochastic methods. Therefore, the model is trained by optimising equation (1.7)

by using a first order stochastic gradient based optimiser such as ADAM (Kingma and

Ba, 2014). There are several other alternatives to carrying out the actual optimisation

(Duchi et al., 2011; Martens and Grosse, 2015; Zeiler, 2012; Tieleman and Hinton,

2012; Khan et al., 2018) and in fact this is an active area of research by itself where not

only first-order but second order methods have also been explored including methods

that use natural gradients.

1.5.2.4 Approximation Gap

Using a deep neural network for encoding the posterior parameters allows for better

variational approximation but by itself this is not enough to match the true posterior

distribution for a reasonably complicated model. This difference (usually measure using

KL-divergence) is called as the approximation gap. The primary reason for this gap may

lie in the simplistic Gaussian prior assumption that is very frequently used in practice.

Recent work such as (Papamakarios et al., 2017; Kingma et al., 2016; Rezende and

Mohamed, 2015b; Grathwohl et al., 2018) propose flows-based solutions to close this

approximation gap when it arises from the simplistic prior assumption. In general, these

methods introduce special transforms that are efficient to compute and back-propagate

through, then use them to re-shape the variational posterior distribution to match the

true posterior better.

1.5.2.5 Variational Autoencoder

Variational autoencoder (Kingma and Welling, 2013; Rezende et al., 2014) is a particular

realisation of the amortised variational inference on a latent Gaussian model. This

simple yet powerful model assumes that the low-dimensional latent space is Gaussian
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with a standard Gaussian prior, i.e. z∼N (0, I), which generates the observed from a

conditional Gaussian model, x ∼ pθ(x|z) = N (µ(z),σ(z)). The observation model is

also called decoder in the VAE literature especially when implemented using a deep

neural network. The encoder for amortisation of posterior parameters is a deep neural

network as well. Typically the architecture of encoder is the exact inverse of the decoder

since theoretically it tries to learn the inverse mapping of the decoder.

While VAE-based amortised inference techniques have become very popular, there

are still significant learning-related challenges in the field. Most prominent are those of

component collapsing (Dinh and Dumoulin, 2016) and slow convergence (Srivastava

and Sutton, 2017). Later in this thesis we discuss such learning issues in detail and

provide model specific solutions.

1.5.3 Likelihood-free Inference using Deep Generative Modelling

Previous sections assume we can compute the likelihood term, pθ(x|z) but there are

models like GANs (Goodfellow et al., 2014) and simulation-based models, where it is

not possible to get an analytical expression for pθ(x|z). Likelihood-Free inference aims

to approximate p(z|x) in this setting. In this section we provide an intuitive introduction

to likelihood-free inference using deep generative modelling in statistical model of data

where the likelihood function is not available either by the nature of the problem or by

choice. We will use the same running example as before, except this time we make a

further assumption that the functional form of the conditional distribution of x given z

is unknown i.e. we do not have a tractable likelihood function.

If we replace x with z in our running example; as we will see it allows us to use the

same stochastic method we developed in the previous section to carry out the inference

without having a likelihood function. The key quantity that we will work with in this

part is the ratio of densities. This is because we have quite efficient ways of estimating

ratios of densities even when we do not know their functional form but can sample from

them.

We begin by writing down the lower bound to the log-likelihood of the latent random

variable z this time,

log pθ(z)≥−KL[qφ(x|z)‖px(x)]+
∫

qφ(x|z) log pθ(z|x)dx

≥
∫

qφ(x|z) log
px(x)

qφ(x|z)
dx+

∫
qφ(x|z) log pθ(z|x)dx. (1.8)

Notice that equations (1.8) and (1.3) are basically the same except that the observed
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quantity x is switched with the latent variable z. As a result, now the first term i.e.

the KL divergence ensures that the model qφ (where φ now is the parameter of the

conditional generative process) stays close to the true data distribution px and the second

term encourages the learning of the variational posterior denoted now by pθ(z|x). This

formulation introduces a density ratio rx(x) =
px(x)

qφ(x|z) between the true data distribution

px and a parameterised model distribution qφ. While the quantities px and qφ are

unknown, it is possible to approximate the quantity rx as long as samples can be drawn

from px and qφ.

1.5.3.1 Discriminator-based Density Ratio Estimator

We are interested in empirical estimation of rx, the ratio between px and qφ through

samples drawn from these distributions. This section describes how a binary classifier

can be used to create an estimator for rx (Sugiyama et al., 2012; Gutmann and Hyväri-

nen, 2010). Consider a discriminator function Dω(x) that outputs the log-probability

log p(y|x) of a Bernoulli random variable y that takes the value one if x∼ px else, zero

when x∼ qφ. Using the discriminator probability i.e., σs(Dω(x)) = p(y = 1|x) where

σs(t) = 1
1+exp−t is the sigmoid function and the Bayes rule we can re-write the ratio rx

as

rx(x) =
px(x)
qφ(x)

=
p(y = 1|x)(1−π)

p(y = 0|x)(π) (1.9)

where π is the prior on y and if we set it to 0.5, the ratio estimator becomes,

rx(x) =
p(y = 1|x)

1− p(y = 1|x)
=⇒ log r̂(x) = Dω(x). (1.10)

Here, r̂ is the estimator of rx.

1.5.3.2 Maximum Mean Discrepancy-based Density Ratio Estimator

While discriminator based density ratio estimators are popular in generative models

such as GANs, they often suffer from optimisation related issues and do not provide

an analytical expression for the ratio estimator (See Chapter 5). We now describe an

alternative estimator that has a closed-form expression for the ratio and as we will show

in the later chapters, does not suffer from optimisation related issues. As this estimator
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is based on the Maximum Mean Discrepancy (MMD) (Gretton et al., 2012) criterion of

comparing probability distributions, we proceed by first defining MMD.

Maximum Mean Discrepancy is defined with respect to a class of functions F as

MMDF (p,q) = sup
f∈F

Ep[ f (x)]−Eq[ f (x)]. (1.11)

Here E denotes expectation. MMD measures the discrepancy between p and q and

if F is chosen to be rich enough MMDF (p,q) = 0 implies that p = q. Gretton et al.

(2012) show that it is sufficient to choose F to be a unit ball within a reproducing kernel

Hilbert space R with kernel k. Given samples x1 . . .xN ∼ p and yi . . .yM ∼ q, we can

estimate MMDR as

ˆMMDR (p,q) =
1

N2

N

∑
i=1

N

∑
i′=1

k(xi,xi′)−
1

NM

N

∑
i=1

M

∑
j=1

k(xi,y j)+
1

M2

M

∑
j=1

M

∑
j′=1

k(y j,y j′).

(1.12)

Using the above definition of MMD we can now derive a closed-form density

ratio estimator following Sugiyama et al. (2012). We will make use of two facts,

MMD(p, p) = 0 and that px(x) = rx(x)∗qφ(x).

Based on these facts we start with the following,

MMD(px,rx ∗qφ) = 0,

=⇒ min
rx

∥∥∥
∫

k(x)px(x)dx−
∫

k(x)rx(x)qφ(x)dx
∥∥∥

2

R
= 0, (1.13)

where ‖ · ‖R denotes the norm in the RKHS. Using the unbiased estimator of MMD

from (1.12) to estimate the left side of (1.13) we have,

min
rx

∥∥∥ 1
Npx

Npx

∑
i=1

k(xi; ·)−
1

Nqφ

Nqφ

∑
i=1

k(xi; ·)rx(xi)
∥∥∥

2

R
= 0. (1.14)

This equation can be solved in closed form in the RKHS to get our ratio estimator,

r̂x∼qφ
(x) =

Nqφ

Npx

K −1
q,q Kq,p. (1.15)

Here Kq,p is the kernel gram matrix evaluated at samples from qφ and px.

1.5.3.3 Likelihood-free Variational Inference

With the density ratio estimators in place we can proceed to carry out inference in

implicit models in a very similar fashion to the prescribed models as we have seen
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before. Equation (1.8) can be modified in two ways using either the discriminator-based

log density ratio estimator from (1.10),

log pθ(z)≥
∫

qφ(x|z)Dω(x)dx+
∫

qφ(x|z) log pθ(z|x)dx (1.16)

or by using the MMD-based ratio estimator from (1.15),

log pθ(z)≥
∫

qφ(x|z) log r̂x∼qφ
(x)dx+

∫
qφ(x|z) log pθ(z|x)dx. (1.17)

Both these estimators remove the intractability of (1.8) and reduces the inference to an

maximisation of the lower bounds. Once again, similarly to the prescribed case, this

maximisation may be carried out using a first order stochastic optimiser.

Traditionally, likelihood-free inference in implicit models has been carried out with

techniques such as the approximate Bayesian computation or ABC (Pritchard et al.,

1999; Gutmann, 2018). But more recently, especially within the machine learning

community, a range of methods have been developed for inference in likelihood free

generative models (Gutmann and Hyvärinen, 2010; Mescheder et al., 2017a; Makhzani

et al., 2015; Tran et al., 2017; Dumoulin et al., 2016; Donahue et al., 2016; Srivastava

et al., 2017). While some of these methods (Dumoulin et al., 2016; Donahue et al., 2016)

are specifically made for the generative adversarial network or GANs (Goodfellow

et al., 2014), others are applicable to implicit generative models in general. We discuss

these methods in detail in chapters 4 and 5 but in summary, all these methods except

Gutmann and Hyvärinen (2010) build on the idea of the likelihood free variational

inference that we have introduced above and specifically rely on (1.16) or its variant.

Methods such as (Mescheder et al., 2017a; Makhzani et al., 2015) use a discriminator

based density ratio estimators in the latent space to get the ratio between the variational

posterior and the prior, i.e. they use the estimator from (1.10) in the maximisation of

the objective for prescribed models, (1.7) . Using such an estimator in the latent spaced

allows for using complicated priors in the latent variable models, so as long as they can

be sampled from. On the other hand methods such as (Srivastava et al., 2017), as we

will see in chapter 4, model the latent and the observed space jointly by modifying the

objective (1.16) to work with joint distributions. An advantage of this joint modelling is

that both forms of generative models, prescribed and implicit can be mixed in a single

model. The flexibility of defining priors through samples instead and using ratio based

estimators for the KL divergence criterion also improves variational posterior and helps

to narrow down the approximation gap.

While likelihood free variational inference shows great promise there are still a

number of challenges that need to be resolved. One of the major draw backs of



Chapter 1. Introduction 19

implicit models at the moment is the lack of efficient methods to deal with discrete

distributions. This is because during learning their lower bounds need to differentiated

with respect to the output of the model, which for discrete distributions renders the

cost non-differentiable. Continuous relaxation of discrete distributions (Maddison

et al., 2016) have been proposed to this end but they are not very successful in implicit

models (Hjelm et al., 2017). Lack of evaluation metrics is another significant challenge.

At present, both implicit models and implicit VI methods do not have standardised

evaluation metrics which makes objective comparison fairly difficult. Similarly, there is

a lack of theoretical understanding of such models and methods. But recently, there has

been a surge of new work in this domain covering all aspects of implicit modelling and

inference. We cover some of the relevant ones in Chapters 4, 5 and 6.

1.5.3.4 Generative Adversarial Network

GAN is an implicit statistical generative model that is trained using a variant of the

likelihood-free VI method that we discussed above. This model contains a deep neural

network called the generator, which aims to learn a deterministic mapping from some

low-dimensional and easy-to-sample distribution of choice, like the standard Gaussian

to a high dimensional multimodal distribution such as that of natural images. In

our notation, the output of this generator is distributed according to qφ(x|z), where

z∼N (0, I). The training setup involves a discriminator that is trained to distinguish

between the samples from the true data distribution px and the generator distribution

qφ. The generator then learns the mapping by producing samples which can fool the

discriminator into treating them as if they come from the true data distribution, px;

hence the name.

While GANs have been very successful at tasks of generating continuous data such

as images. They suffer from plenty of learning issues (Arjovsky et al., 2017; Mescheder

et al., 2017b). Amongst these, mode collapse (Srivastava et al., 2017) and training

instability (Salimans et al., 2016) are the most prominent ones. Chapters 4 and 5 cover

these issues in detail and provide alternative training algorithms that can avoid these

issues in implicit models in general and in GANs in particular.
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1.6 Thesis Structure and Contribution

This chapter provides an introduction to the advances in variational inference for

generative models that come via the use of deep learning techniques. While the field

has made tremendous progress, there are still many challenges and issues that need to

be solved before amortised VI can be established as a standard method of inference in

statistical modelling. The rest of this document builds on this theme and presents four

pieces of original work that aim to solve specific challenges of amortised variational

inference in explicit and implicit models with the objective to extend its applicability to

other computational science domains as a preferred method of variational inference.

The first two chapters are based on variational inference in prescribed models. We

consider the class of topic models and provide new algorithms for better and more

efficient inference. Chapter 2, which is based on our published work (Srivastava and

Sutton, 2017) focuses on mixed-membership type topic models in general and Latent

Dirichlet Allocation (LDA) (Blei et al., 2003) in particular whereas chapter 3 considers

a family of hierarchical extensions of LDA, Packinko Allocation Machines (PAM) (Li

and McCallum, 2006). In these chapters, we take a detailed look at the practicality

of amortised VI in well established Bayesian models of text. We show that by using

deep neural networks for the amortisation of posterior learning, drastic improvement

can be achieved on the quality of the generated topics and on the speed of inference.

We also tackle the well-known problem of component or posterior collapse (Dinh and

Dumoulin, 2016; van den Oord et al., 2017) in amortised VI. When this occurs, the

learned posterior distribution q(z|x) does not show any or only partial divergence from

the prior p(z) and therefore learning becomes difficult. We provide a set of tricks and

techniques to counter this issue in the context of LDA and PAM-type models.

The next chapters, 4 and 5 focus on likelihood-free variational inference in implicit

generative models like the generative adversarial network. The state of inference

methods in this domain is still maturing and as a result there are a lot of learning issues

in implicit models. As mentioned above, two of the major ones are, mode collapse

(Srivastava et al., 2017) and instability of the training criterion (Arjovsky et al., 2017).

While mode collapse may not be typical of all implicit models, they are very prevalent

in GANs. A GAN is called to have mode collapsed when its generative distribution

qφ(x|z) can generates samples from only a few of the modes of the true data distribution,

px. To this end, chapter 4, which is based on our published work (Srivastava et al., 2017)

introduces a new learning framework called VEEGAN, for carrying out variational
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inference in implicit generative models like GANs that also avoids the mode collapse

issue. Chapter 5 follows a similar theme and using the MMD-based ratio estimator

from equation (1.15) introduces a new learning method for implicit generative models

that does not suffer from instability in training, is robust to hyper-parameter settings,

produces very high quality samples when trained on image data and most importantly

does not have the saddle-point issue which is deemed to be the main reason behind

learning issues in GANs.

Please note that all the chapters are based on papers that are either published or in

submission. Specifically, since Chapters 2 and 4 are based published work, they are

therefore rendered as is, in this document. Each chapter follows the same structure.

Relevant related work are discussed in their respective chapters. Each chapter also

provides a conclusion section that discusses specific future work pertaining to the topic

of the chapter. Finally, Chapter 6 concludes this thesis by providing a unified discussion

on the state-of-art, its criticism with respect to the work presented in this document and

future work.



Chapter 2

Autoencoding Variational Inference for

Topic Models

In the following two chapters we will take a detailed look into how amortisation of

variational learning principle using deep learning can benefit inference and improve

performance in traditional Bayesian model of categorical data such as text.

The focus in this chapter is on the celebrated Latent Dirichlet Allocation (LDA)

model (Blei et al., 2003). LDA is a mixed membership, generative model of categorical

text data, which assumes that the documents are generated by sampling their words from

a collection of discrete distributions over the corpus vocabulary, called the topics. Mixed

membership model is an extension of the mixture of experts model that generalises

it to the cases where each data point is a composite of multiple items, which in turn

may have different sampling distributions. But mixed-membership models often lead

to intractable posteriors and hence approximate inference methods are traditionally

applied to the models in this class.

Existing approximate inference methods for topic models like LDA are either based

on the Markov Chain Monte Carlo (MCMC) principle like the collapsed Gibbs sampler

(Griffiths and Steyvers, 2004) or on the variational learning principle like the online

variational inference method by Hoffman et al. (2010). While the collapsed Gibbs

sampler works very well and produces high quality topics, it is not scalable to big text

corpus. On the other hand, variational methods are in general are faster than most

MCMC samplers, but they tend to produce sub-quality topics. A popular example is

the mean-field variational inference (Blei et al., 2003), which assumes a factorised

prior over the latent variables to simplify and therefore speeds-up the inference quite

significantly . However, this method does not produce high quality topics like the Gibbs
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sampler (Srivastava and Sutton, 2017).

This chapter introduces a novel amortised variational inference method for LDA

that builds on top of the mean-field approach. Our method uses a further insight that

there exists a certain smoothness between the documents and their posterior parameters

under the LDA model. Specifically, similar documents tend to be generated from similar

topic distributions. Leveraging this smoothness using an inference network (see chapter

1) allows amortisation of the learning cost as well as better posterior estimation which

provides a drastic increase in efficiency, scalability and the coherence of the generated

topics.

In addition to being extremely efficient, the proposed method is also very easy to

adapt for new conjugate and non-conjugate models. We demonstrate this by replacing

the mixture-of-experts assumption in LDA with the product-of-experts. This change

results in a model (prodLDA) that is highly intractable in general but with our method

it only requires a single line of change in the code to carry out the inference in this

model. As we show, prodLDA with the product of expert assumption produces very

high quality topics compared to LDA.

The amortisation of posterior learning cost is achieved using the variational autoen-

coding framework (VAE) (Kingma and Welling, 2013). While this framework provides

a convenient way to use stochastic gradient decent for variational inference in a large

class of latent variable models, it also suffers from certain optimisation related issues.

The most prominent among these are component/posterior collapse (van den Oord et al.,

2017; Srivastava and Sutton, 2017) and slow convergence. Both of these issues are

highly undesirable for a parametric topic model and therefore a large part of this chapter

discusses tricks and techniques that we developed to sidestep these issues.

Our results clearly demonstrate that the amortisation of variational inference leads

to a much better inference in LDA in terms of the quality of topics and scalability

compared all existing methods of inference in this class of models.
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ABSTRACT

Topic models are one of the most popular methods for learning representations of
text, but a major challenge is that any change to the topic model requires mathe-
matically deriving a new inference algorithm. A promising approach to address
this problem is autoencoding variational Bayes (AEVB), but it has proven diffi-
cult to apply to topic models in practice. We present what is to our knowledge the
first effective AEVB based inference method for latent Dirichlet allocation (LDA),
which we call Autoencoded Variational Inference For Topic Model (AVITM). This
model tackles the problems caused for AEVB by the Dirichlet prior and by com-
ponent collapsing. We find that AVITM matches traditional methods in accuracy
with much better inference time. Indeed, because of the inference network, we
find that it is unnecessary to pay the computational cost of running variational
optimization on test data. Because AVITM is black box, it is readily applied
to new topic models. As a dramatic illustration of this, we present a new topic
model called ProdLDA, that replaces the mixture model in LDA with a product
of experts. By changing only one line of code from LDA, we find that ProdLDA
yields much more interpretable topics, even if LDA is trained via collapsed Gibbs
sampling.

1 INTRODUCTION

Topic models (Blei, 2012) are among the most widely used models for learning unsupervised repre-
sentations of text, with hundreds of different model variants in the literature, and have have found
applications ranging from the exploration of the scientific literature (Blei & Lafferty, 2007) to
computer vision (Fei-Fei & Perona, 2005), bioinformatics (Rogers et al., 2005), and archaeology
(Mimno, 2009). A major challenge in applying topic models and developing new models is the
computational cost of computing the posterior distribution. Therefore a large body of work has
considered approximate inference methods, the most popular methods being variational methods,
especially mean field methods, and Markov chain Monte Carlo, particularly methods based on col-
lapsed Gibbs sampling.

Both mean-field and collapsed Gibbs have the drawback that applying them to new topic models,
even if there is only a small change to the modeling assumptions, requires re-deriving the infer-
ence methods, which can be mathematically arduous and time consuming, and limits the ability of
practitioners to freely explore the space of different modeling assumptions. This has motivated the
development of black-box inference methods (Ranganath et al., 2014; Mnih & Gregor, 2014; Ku-
cukelbir et al., 2016; Kingma & Welling, 2014) which require only very limited and easy to compute
information from the model, and hence can be applied automatically to new models given a simple
declarative specification of the generative process.

Autoencoding variational Bayes (AEVB) (Kingma & Welling, 2014; Rezende et al., 2014) is a
particularly natural choice for topic models, because it trains an inference network (Dayan et al.,
1995), a neural network that directly maps a document to an approximate posterior distribution,

∗Additional affiliation: Alan Turing Institute, British Library, 96 Euston Road, London NW1 2DB
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without the need to run further variational updates. This is intuitively appealing because in topic
models, we expect the mapping from documents to posterior distributions to be well behaved, that
is, that a small change in the document will produce only a small change in topics. This is exactly
the type of mapping that a universal function approximator like a neural network should be good at
representing. Essentially, the inference network learns to mimic the effect of probabilistic inference,
so that on test data, we can enjoy the benefits of probabilistic modeling without paying a further cost
for inference.

However, despite some notable successes for latent Gaussian models, black box inference methods
are significantly more challenging to apply to topic models. For example, in initial experiments,
we tried to apply ADVI (Kucukelbir et al., 2016), a recent black-box variational method, but it was
difficult to obtain any meaningful topics. Two main challenges are: first, the Dirichlet prior is not
a location scale family, which hinders reparameterisation, and second, the well known problem of
component collapsing (Dinh & Dumoulin, 2016), in which the inference network becomes stuck in
a bad local optimum in which all topics are identical.

In this paper, we present what is, to our knowledge, the first effective AEVB inference method for
topic models, which we call Autoencoded Variational Inference for Topic Models or AVITM1. On
several data sets, we find that AVITM yields topics of equivalent quality to standard mean-field
inference, with a large decrease in training time. We also find that the inference network learns
to mimic the process of approximate inference highly accurately, so that it is not necessary to run
variational optimization at all on test data.

But perhaps more important is that AVITM is a black-box method that is easy to apply to new
models. To illustrate this, we present a new topic model, called ProdLDA, in which the distribution
over individual words is a product of experts rather than the mixture model used in LDA. We find
that ProdLDA consistently produces better topics than standard LDA, whether measured by auto-
matically determined topic coherence or qualitative examination. Furthermore, because we perform
probabilistic inference using a neural network, we can fit a topic model on roughly a one million
documents in under 80 minutes on a single GPU, and because we are using a black box inference
method, implementing ProdLDA requires a change of only one line of code from our implementation
of standard LDA.

To summarize, the main advantages of our methods are:

1. Topic coherence: ProdLDA returns consistently better topics than LDA, even when LDA is
trained using Gibbs sampling.

2. Computational efficiency: Training AVITM is fast and efficient like standard mean-field. On
new data, AVITM is much faster than standard mean field, because it requires only one forward
pass through a neural network.

3. Black box: AVITM does not require rigorous mathematical derivations to handle changes in
the model, and can be easily applied to a wide range of topic models.

Overall, our results suggest that AVITM is ready to take its place alongside mean field and collapsed
Gibbs as one of the workhorse inference methods for topic models.

2 BACKGROUND

To fix notation, we begin by describing topic modelling and AVITM.

2.1 LATENT DIRICHLET ALLOCATION

We describe the most popular topic model, latent Dirichlet allocation (LDA). In LDA, each doc-
ument of the collection is represented as a mixture of topics, where each topic βk is a probability
distribution over the vocabulary. We also use β to denote the matrix β = (β1 . . . βK). The generative
process is then as described in Algorithm 1. Under this generative model, the marginal likelihood of

1Code available at
https://github.com/akashgit/autoencoding_vi_for_topic_models
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for each document w do
Draw topic distribution θ ∼ Dirichlet(α);
for each word at position n do

Sample topic zn ∼ Multinomial(1, θ);
Sample word wn ∼ Multinomial(1, βzn);

end
end

Algorithm 1: LDA as a generative model.

a document w is

(1)p(w|α, β) =

∫

θ

(
N∏

n=1

k∑

zn=1

p(wn|zn, β)p(zn|θ)
)
p(θ|α)dθ.

Posterior inference over the hidden variables θ and z is intractable due to the coupling between the
θ and β under the multinomial assumption (Dickey, 1983).

2.2 MEAN FIELD AND AEVB

A popular approximation for efficient inference in topic models is mean field variational inference,
which breaks the coupling between θ and z by introducing free variational parameters γ over θ
and φ over z and dropping the edges between them. This results in an approximate variational
posterior q(θ, z|γ, φ) = qγ(θ)

∏
n qφ(zn), which is optimized to best approximate the true posterior

p(θ, z|w, α, β). The optimization problem is to minimize

(2)L(γ, φ | α, β) = DKL [q(θ, z|γ, φ)||p(θ, z|w, α, β)]− log p(w|α, β).

In fact the above equation is a lower bound to the marginal log likelihood, sometimes called an
evidence lower bound (ELBO), a fact which can be easily verified by multiplying and dividing (1)
by the variational posterior and then applying Jensen’s inequality on its logarithm. Note that the
mean field method optimizes over an independent set of variational parameters for each document.
To emphasize this, we will refer to this standard method by the non-standard name of Decoupled
Mean-Field Variational Inference (DMFVI).

For LDA, this optimization has closed form coordinate descent equations due to the conjugacy
between the Dirichlet and multinomial distributions. Although this is a computationally conve-
nient aspect of DMFVI, it also limits its flexibility. Applying DMFVI to new models relies on the
practitioner’s ability to derive the closed form updates, which can be impractical and sometimes
impossible.

AEVB (Kingma & Welling, 2014; Rezende et al., 2014) is one of several recent methods that aims
at “black box” inference methods to sidestep this issue. First, rewrite the ELBO as

(3)L(γ, φ | α, β) = −DKL [q(θ, z|γ, φ)||p(θ, z|α)] + Eq(θ,z|γ,φ)[log p(w|z, θ, α, β)]

This form is intuitive. The first term attempts to match the variational posterior over latent variables
to the prior on the latent variables, while the second term ensures that the variational posterior favors
values of the latent variables that are good at explaining the data. By analogy to autoencoders, this
second term is referred to as a reconstruction term.

What makes this method “Autoencoding,” and in fact the main difference from DMFVI, is the pa-
rameterization of the variational distribution. In AEVB, the variational parameters are computed
by using a neural network called an inference network that takes the observed data as input. For
example, if the model prior p(θ) were Gaussian, we might define the inference network as a feed-
forward neural network (µ(w),v(w)) = f(w, γ), where µ(w) and v(w) are both vectors of length
k, and γ are the network’s parameters. Then we might choose a Gaussian variational distribution
qγ(θ) = N(θ;µ(w), diag(v(w))), where diag(· · ·) produces a diagonal matrix from a column vec-
tor. The variational parameters γ can then be chosen by optimizing the ELBO (3). Note that we have
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now, unlike DMFVI, coupled the variational parameters for different documents because they are
all computed from the same neural network. To compute the expectations with respect to q in (3),
Kingma & Welling (2014); Rezende et al. (2014) use a Monte Carlo estimator which they call the
“reparameterization trick” (RT; appears also in Williams (1992)). In the RT, we define a variate U
with a simple distribution that is independent of all variational parameters, like a uniform or standard
normal, and a reparameterization function F such that F (U, γ) has distribution qγ . This is always
possible, as we could choose F to be the inverse cumulative distribution function of qγ , although we
will additionally want F to be easy to compute and differentiable. If we can determine a suitable F ,
then we can approximate (3) by taking Monte Carlo samples of U , and optimize γ using stochastic
gradient descent.

3 AUTOENCODING VARIATIONAL BAYES IN LATENT DIRICHLET
ALLOCATION

Although simple conceptually, applying AEVB to topic models raises several practical challenges.
The first is the need to determine a reparameterization function for q(θ) and q(zn) to use the RT.
The zn are easily dealt with, but θ is more difficult; if we choose q(θ) to be Dirichlet, it is difficult
to apply the RT, whereas if we choose q to be Gaussian or logistic normal, then the KL divergence
in (3) becomes more problematic. The second issue is the well known problem of component col-
lapsing (Dinh & Dumoulin, 2016), which a type of bad local optimum that is particularly endemic
to AEVB and similar methods. We describe our solutions to each of those problems in the next few
subsections.

3.1 COLLAPSING z’S

Dealing with discrete variables like z using reparameterization can be problematic, but fortunately
in LDA the variable z can be conveniently summed out. By collapsing z we are left with having to
sample from θ only, reducing (1) to

(4)p(w|α, β) =

∫

θ

(
N∏

n=1

p(wn|β, θ)
)
p(θ|α)dθ.

where the distribution of wn|β, θ is Multinomial(1, βθ), recalling that β denotes the matrix of all
topic-word probability vectors.

3.2 WORKING WITH DIRICHLET BELIEFS: LAPLACE APPROXIMATION

LDA gets its name from the Dirichlet prior on the topic proportions θ, and the choice of Dirichlet
prior is important to obtaining interpretable topics (Wallach et al., 2009). But it is difficult to handle
the Dirichlet within AEVB because it is difficult to develop an effective reparameterization function
for the RT. Fortunately, a RT does exist for the Gaussian distribution and has been shown to perform
quite well in the context of variational autoencoder (VAE) (Kingma & Welling, 2014).

We resolve this issue by constructing a Laplace approximation to the Dirichlet prior. Following
MacKay (1998), we do so in the softmax basis instead of the simplex. There are two benefits of this
choice. First, Dirichlet distributions are unimodal in the softmax basis with their modes coinciding
with the means of the transformed densities. Second, the softmax basis also allows for carrying
out unconstrained optimization of the cost function without the simplex constraints. The Dirichlet
probability density function in this basis over the softmax variable h is given by

(5)P (θ(h)|α) =
Γ(
∑
k αk)∏

k Γ(αk)

∏

k

θαk

k g(1Th).

Here θ = σ(h), where σ(.) represents the softmax function. Recall that the Jacobian of σ is pro-
portional to

∏
k θk and g(·) is an arbitrary density that ensures integrability by constraining the

redundant degree of freedom. We use the Laplace approximation of Hennig et al. (2012), which
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has the property that the covariance matrix becomes diagonal for large k (number of topics). This
approximation to the Dirichlet prior p(θ|α) results in the distribution over the softmax variables h
as a multivariate normal with mean µ1 and covariance matrix Σ1 where

µ1k = logαk −
1

K

∑

i

logαi

Σ1kk =
1

αk

(
1− 2

K

)
+

1

K2

∑

i

1

αk
. (6)

Finally, we approximate p(θ|α) in the simplex basis with p̂(θ|µ1,Σ1) = LN (θ|µ1,Σ1) where LN
is a logistic normal distribution with parameters µ1,Σ1. LN simply denotes the distribution of a
random variable whose logit is normally distributed. Although we approximate the Dirichlet prior
in LDA with a logistic normal, this is not the same idea as a correlated topic model (Blei & Lafferty,
2006), because we use a diagonal covariance matrix. Rather, it is an approximation to standard
LDA.

3.3 VARIATIONAL OBJECTIVE

Now we can write the modified variational objective function. We use a logistic normal variational
distribution over θ with diagonal covariance. More precisely, we define two inference networks as
feed forward neural networks fµ and fΣ with parameters δδδ; the output of each network is a vector
in RK . Then for a document w, we define q(θ) to be logistic normal with mean µ0 = fµ(w, δδδ)
and diagonal covariance ΣΣΣ0 = diag(fΣ(w, δδδ)), where diag converts a column vector to a diagonal
matrix. Note that we can generate samples from q(θ) by sampling εεε ∼ N (0, I) and computing
θ = σ(µµµ0 + ΣΣΣ

1/2
0 εεε).

We can now write the ELBO as

L(ΘΘΘ) =
D∑

d=1

[
−
(

1

2

{
tr(ΣΣΣ−1

1 ΣΣΣ0) + (µµµ1 −µµµ0)TΣΣΣ−1
1 (µµµ1 −µµµ0)−K + log

|ΣΣΣ1|
|ΣΣΣ0|

})
(7)

+Eεεε∼N (0,I)

[
w>d log

(
σ(βββ)σ(µµµ0 + ΣΣΣ

1/2
0 εεε)

)]]
,

where ΘΘΘ represents the set of all the model and variational parameters and w1 . . .wD are the docu-
ments in the corpus. The first line in this equation arises from the KL divergence between the two
logistic normal distributions q and p̂, while the second line is the reconstruction error.

In order to impose the simplex constraint on the β matrix during the optimization, we apply the
softmax transformation. That is, each topic βk ∈ RV is unconstrained, and the notation σ(βββ) means
to apply the softmax function separately to each column of the matrix β. Note that the mixture of
multinomials for each word wn can then be written as p(wn|σ(β), θ) = [σ(β)θ]wn

, which explains
the dot product in (7). To optimize (7), we use stochastic gradient descent using Monte Carlo
samples from εεε, following the Law of the Unconscious Statistician.

3.4 TRAINING AND PRACTICAL CONSIDERATIONS: DEALING WITH COMPONENT
COLLAPSING

AEVB is prone to component collapsing (Dinh & Dumoulin, 2016), which is a particular type of
local optimum very close to the prior belief, early on in the training. As the latent dimensionality
of the model is increased, the KL regularization in the variational objective dominates, so that the
outgoing decoder weights collapse for the components of the latent variable that reach close to the
prior and do not show any posterior divergence. In our case, the collapsing specifically occurs
because of the inclusion of the softmax transformation to produce θ. The result is that the k inferred
topics are identical as shown in table 7.

We were able to resolve this issue by tweaking the optimization. Specifically, we train the network
with the ADAM optimizer (Kingma & Ba, 2015) using high moment weight (β1) and learning rate
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(η). Through training at higher rates, early peaks in the functional space can be easily avoided. The
problem is that momentum based training coupled with higher learning rate causes the optimizer to
diverge. While explicit gradient clipping helps to a certain extent, we found that batch normalization
(Ioffe & Szegedy, 2015) does even better by smoothing out the functional space and hence curbing
sudden divergence.

Finally, we also found an increase in performance with dropout units when applied to θ to force the
network to use more of its capacity.

While more prominent in the AEVB framework, the collapsing can also occurs in DMFVI if the
learning offset (referred to as the τ parameter (Hofmann, 1999)) is not set properly. Interestingly, a
similar learning offset or annealing based approach can also be used to down-weight the KL term in
early iterations of the training to avoid local optima.

4 PRODLDA: LATENT DIRICHLET ALLOCATION WITH PRODUCTS OF
EXPERTS

In LDA, the distribution p(w|θ, β) is a mixture of multinomials. A problem with this assumption
is that it can never make any predictions that are sharper than the components that are being mixed
(Hinton & Salakhutdinov, 2009). This can result in some topics appearing that are poor quality
and do not correspond well with human judgment. One way to resolve this issue is to replace this
word-level mixture with a weighted product of experts which by definition is capable of making
sharper predictions than any of the constituent experts (Hinton, 2002). In this section we present a
novel topic model PRODLDA that replaces the mixture assumption at the word-level in LDA with
a weighted product of experts, resulting in a drastic improvement in topic coherence. This is a good
illustration of the benefits of a black box inference method, like AVITM, to allow exploration of
new models.

4.1 MODEL

The PRODLDA model can be simply described as latent Dirichlet allocation where the word-level
mixture over topics is carried out in natural parameter space, i.e. the topic matrix is not constrained
to exist in a multinomial simplex prior to mixing. In other words, the only changes from LDA
are that β is unnormalized, and that the conditional distribution of wn is defined as wn|β, θ ∼
Multinomial(1, σ(βθ)).

The connection to a product of experts is straightforward, as for the multinomial, a mixture of natural
parameters corresponds to a weighted geometric average of the mean parameters. That is, consider
two N dimensional multinomials parametrized by mean vectors p and q. Define the corresponding
natural parameters as p = σ(rrr) and q = σ(sss), and let δ ∈ [0, 1]. Then,

P
(
x|δrrr + (1− δ)sss

)
∝

N∏

i=1

σ(δri + (1− δ)si)xi ∝
N∏

i=1

[pδi · q(1−δ)
i ]xi .

So the PRODLDA model can be simply described as a product of experts, that is, p(wn|θ, β) ∝∏
k p(wn|zn = k, β)θk . PRODLDA is an instance of the exponential-family PCA (Collins et al.,

2001) class, and relates to the exponential-family harmoniums (Welling et al., 2004) but with non-
Gaussian priors.

5 RELATED WORK

For an overview of topic modeling, see Blei (2012). There are several examples of topic mod-
els based on neural networks and neural variational inference (Hinton & Salakhutdinov, 2009;
Larochelle & Lauly, 2012; Mnih & Gregor, 2014; Miao et al., 2016) but we are unaware of meth-
ods that apply AEVB generically to a topic model specified by an analyst, or even of a successful
application of AEVB to the most widely used topic model, latent Dirichlet allocation.

Recently, Miao et al. (2016) introduced a closely related model called the Neural Variational Docu-
ment Model (NVDM). This method uses a latent Gaussian distribution over topics, like probabilistic
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latent semantic indexing, and averages over topic-word distributions in the logit space. However,
they do not use either of the two key aspects of our work: explicitly approximating the Dirichlet
prior using a Gaussian, or high-momentum training. In the experiments we show that these aspects
lead to much improved training and much better topics.

6 EXPERIMENTS AND RESULTS

Qualitative evaluation of topic models is a challenging task and consequently a large body of work
has developed automatic evaluation metrics that attempt to match human judgment of topic quality.
Traditionally, perplexity has been used to measure the goodness-of-fit of the model but it has been
repeatedly shown that perplexity is not a good metric for qualitative evaluation of topics (Newman
et al., 2010). Several new metrics of topic coherence evaluation have thus been proposed; see Lau
et al. (2014) for a comparative review. Lau et al. (2014) showed that among all the competing
metrics, normalized pointwise mutual information (NPMI) between all the pairs of words in a set of
topics matches human judgment most closely, so we adopt it in this work. We also report perplexity,
primarily as a way of evaluating the capability of different optimizers. Following standard practice
(Blei et al., 2003), for variational methods we use the ELBO to calculate perplexity. For AEVB
methods, we calculate the ELBO using the same Monte Carlo approximation as for training.

We run experiments on both the 20 Newsgroups (11,000 training instances with 2000 word vocab-
ulary) and RCV1 Volume 2 ( 800K training instances with 10000 word vocabulary) datasets. Our
preprocessing involves tokenization, removal of some non UTF-8 characters for 20 Newsgroups
and English stop word removal. We first compare our AVITM inference method with the stan-
dard online mean-field variational inference (Hoffman et al., 2010) and collapsed Gibbs sampling
(Griffiths & Steyvers, 2004) on the LDA model. We use standard implementations of both meth-
ods, scikit-learn for DMFVI and mallet (McCallum, 2002) for collapsed Gibbs. Then
we compare two autoencoding inference methods on three different topic models: standard LDA,
PRODLDA using our inference method and the Neural Variational Document Model (NVDM)
(Miao et al., 2016), using the inference described in the paper.2

# topics ProdLDA
VAE

LDA
VAE

LDA
DMFVI

LDA
Collapsed Gibbs NVDM

50 0.24 0.11 0.11 0.17 0.08
200 0.19 0.11 0.06 0.14 0.06

Table 1: Average topic coherence on the 20 Newsgroups dataset. Higher is better.

Tables 1 and 2 show the average topic coherence values for all the models for two different settings of
k, the number of topics. Comparing the different inference methods for LDA, we find that, consistent
with previous work, collapsed Gibbs sampling yields better topics than mean-field methods. Among
the variational methods, we find that VAE-LDA model (AVITM) 3 yields similar topic coherence
and perplexity to the standard DMFVI (although in some cases, VAE-LDA yields significantly better
topics). However, AVITM is significantly faster to train than DMFVI. It takes 46 seconds on 20
Newsgroup compared to 18 minutes for DMFVI. Whereas for a million document corpus of RCV1
it only under 1.5 hours while scikit-learn’s implementation of DMFVI failed to return any results
even after running for 24 hours.4

Comparing the new topic models than LDA, it is clear that PRODLDA finds significantly better
topics than LDA, even when trained by collapsed Gibbs sampling. To verify this qualitatively, we
display examples of topics from all the models in Table 6. The topics from ProdLDA appear visually
more coherent than NVDM or LDA. Unfortunately, NVDM does not perform comparatively to LDA

2We have used both https://github.com/carpedm20/variational-text-tensorflow
and the NVDM author’s (Miao et al., 2016) implementation.

3We recently found that ’whitening’ the topic matrix significantly improves the topic coherence for VAE-
LDA. Manuscript in preparation.

4Therefore, we were not able to report topic coherence for DMFVI on RCV1
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# topics ProdLDA
VAE

LDA
VAE

LDA
DMFVI

LDA
Collapsed Gibbs NVDM

50 0.14 0.07 - 0.04 0.07
200 0.12 0.05 - 0.06 0.05

Table 2: Average topic coherence on the RCV1 dataset. Higher is better. Results not reported for
LDA DMFVI, as inference failed to converge in 24 hours.

# topics ProdLDA
VAE

LDA
VAE

LDA
DMFVI

LDA
Collapsed Gibbs NVDM

50 1172 1059 1046 728 837
200 1168 1128 1195 688 884

Table 3: Perplexity scores for 20 Newsgroups. Lower is better.

for any value of k. To avoid any training dissimilarities we train all the competing models until we
reach the perplexities that were reported in previous work. These are reported in Table 35.

A major benefit of AVITM inference is that it does not require running variational optimization,
which can be costly, for new data. Rather, the inference network can be used to obtain topic pro-
portions for new documents for new data points without running any optimization. We evaluate
whether this approximation is accurate, i.e. whether the neural network effectively learns to mimic
probabilistic inference. We verify this by training the model on the training set, then on the test set,
holding the topics (β matrix) fixed, and comparing the test perplexity if we obtain topic proportions
by running the inference neural network directly, or by the standard method of variational optimiza-
tion of the inference network on the test set. As shown in Table 4, the perplexity remains practically
un-changed. The computational benefits of this are remarkable. On both the datasets, computing
perplexity using the neural network takes well under a minute, while running the standard variational
approximation takes ∼ 3 minutes even on the smaller 20 Newsgroups data. Finally, we investigate
the reasons behind the improved topic coherence in PRODLDA. First, Table 5 explores the effects of
each of our two main ideas separately. In this table, “Dirichlet” means that the prior is the Laplace
approximation to Dirichlet(α = 0.02), while “Gaussian” indicates that we use a standard Gaussian
as prior. ‘High Learning Rate” training means we use β1 > 0.8 and 0.1 > η > 0.0016 with batch
normalization, whereas “Low Learning Rate” means β1 > 0.8 and 0.0009 > η > 0.00009 without
batch normalization. (For both parameters, the precise value was chosen by Bayesian optimization.
We found that these values in the ”with BN” cases were close to the default settings in the Adam
optimizer.) We find that the high topic coherence that we achieve in this work is only possible if
we use both tricks together. In fact the high learning rates with momentum is required to avoid
local minima in the beginning of the training and batch-normalization is required to be able to train
the network at these values without diverging. If trained at a lower momentum value or at a lower
learning rate PRODLDA shows component collapsing. Interestingly, if we choose a Gaussian prior,
rather than the logistic normal approximation used in ProdLDA or NVLDA, the model is easier to
train even with low learning rate without any momentum or batch normalization.

The main advantage of AVITM topic models as opposed to NVDM is that the Laplace approxima-
tion allows us to match a specific Dirichlet prior of interest. As pointed out by Wallach et al. (2009),
the choice of Dirichlet hyperparameter is important to the topic quality of LDA. Following this rea-
soning, we hypothesize that AVITM topics are higher quality than those of NVDM because they
are much more focused, i.e., apply to a more specific subset of documents of interest. We provide
support for this hypothesis in Figure 1, by evaluating the sparsity of the posterior proportions over
topics, that is, how many of the model’s topics are typically used to explain each document. In order
to estimate the sparsity in topic proportions, we project samples from the Gaussian latent spaces of
PRODLDA and NVDM in the simplex and average them across documents. We compare the topic

5We note that much recent work follows Hinton & Salakhutdinov (2009) in reporting perplexity for the
LDA Gibbs sampler on only a small subset of the test data. Our results are different because we use the entire
test dataset.

6β1 is the weight on the average of the gradients from the previous time step and η refers to the learning
rate.

8
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# Topics Inference Network Only Inference Network + Optimization
50 1172 1162

200 1168 1151

Table 4: Evaluation of inference network of VAE-LDA on 20 Newsgroups test set. “Inference
network only” shows the test perplexity when the inference network is trained on the training set,
but no variational optimization is performed on the test set. “Inference Network + Optimization”
shows the standard approach of optimizing the ELBO on the test set. The neural network effectively
learns to approximate probabilistic inference effectively.

sparsity for the standard Gaussian prior used by NVDM to the Laplace approximation of Dirichlet
priors with different hyperparameters. Clearly the Laplace approximation to the Dirichlet prior sig-
nificantly promotes sparsity, providing support for our hypothesis that preserving the Dirichlet prior
explains the the increased topic coherence in our method.

Figure 1: Effect of prior assumptions on θ on sparsity of θ in neural topic models.

Dirichlet
+High Learning Rate

Dirichlet
+Low Learning Rate

Gaussian Prior
+High Learning Rate

Gaussian Prior
+Low Learning Rate

Topic Coherence 0.24 0.016 0.08 0.08

Table 5: Average topic coherence for different choices of prior and optimization strategies of
PRODLDA on 20 Newsgroup for k = 50.

The inference network architecture can be found in figure 2 in the appendix.

7 DISCUSSION AND FUTURE WORK

We present what is to our knowledge the first effective AEVB inference algorithm for latent Dirich-
let allocation. Although this combination may seem simple in principle, in practice this method is
difficult to train because of the Dirichlet prior and because of the component collapsing problem.
By addressing both of these problems, we presented a black-box inference method for topic models
with the notable advantage that the neural network allows computing topic proportions for new doc-
uments without the need to run any variational optimization. As an illustration of the advantages of

9
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Model Topics

ProdLDA

motherboard meg printer quadra hd windows processor vga mhz connector
armenian genocide turks turkish muslim massacre turkey armenians armenia greek
voltage nec outlet circuit cable wiring wire panel motor install
season nhl team hockey playoff puck league flyers defensive player
israel israeli lebanese arab lebanon arabs civilian territory palestinian militia

LDA
NVLDA

db file output program line entry write bit int return
drive disk get card scsi use hard ide controller one
game team play win year player get think good make
use law state health file gun public issue control firearm
people say one think life make know god man see

LDA
DMFVI

write article dod ride right go get night dealer like
gun law use drug crime government court criminal firearm control
lunar flyers hitter spacecraft power us existence god go mean
stephanopoulos encrypt spacecraft ripem rsa cipher saturn violate lunar crypto
file program available server version include software entry ftp use

LDA
Collapsed Gibbs

get right back light side like see take time one
list mail send post anonymous internet file information user message
thanks please know anyone help look appreciate get need email
jesus church god law say christian one christ day come
bike dod ride dog motorcycle write article bmw helmet get

NVDM

light die burn body life inside mother tear kill christian
insurance drug different sport friend bank owner vancouver buy prayer
input package interface output tape offer component channel level model
price quadra hockey slot san playoff jose deal market dealer
christian church gateway catholic christianity homosexual resurrection modem mouse sunday

Table 6: Five randomly selected topics from all the models.

1. write article get thanks like anyone please know look one
2. article write one please like anyone know make want get
3. write article thanks anyone please like get one think look
4. article write one get like know thanks anyone try need
5. article write thanks please get like anyone one time make

Table 7: VAE-LDA fails to learn any meaningful topics when component collapsing occurs. The
table shows five randomly sampled topics (, which are essentially slight variants of each other) from
when the VAE-LDA model is trained without BN and high momentum training.

black box inference techniques, we presented a new topic model, ProdLDA, which achieves signif-
icantly better topics than LDA, while requiring a change of only one line of code from AVITM for
LDA. Our results suggest that AVITM inference is ready to take its place alongside mean field and
collapsed Gibbs as one of the workhorse inference methods for topic models. Future work could
include extending our inference methods to handle dynamic and correlated topic models.
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Figure 2: Architecture of the inference network used in the experiments.
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#topics prodLDA LDA-VAE MFVI Collapsed Gibbs NVDM

50 0.37 0.21 0.20 0.24 0.15

200 0.29 0.18 0.17 0.23 0.16

Table 2.1: Updated results for all the models on the 20Newsgroup dataset.

#topics prodLDA LDA-VAE MFVI Collapsed Gibbs NVDM

50 0.31 0.25 - 0.21 0.15

200 0.30 0.22 - 0.22 0.12

Table 2.2: Updated results for all the models on the RCV1 dataset.

2.1 Comments

We were recently made aware of a discrepancy in the evaluation script due to which

the absolute values topic coherence may not be correct. This does not change the

conclusions as the relative ranking of the methods remain the same. The updated results

on a recent set of topics are shown in tables 2.1 and 2.2.



Chapter 3

Autoencoding Variational Inference for

Pachinko Allocation Machines

This chapter continues to build on the theme of amortised variational inference in

Bayesian topic models of categorical data. Amortisation of the learning cost is highly

desirable in topic models since usually the data they are applied to are fairly large in

size. In the previous chapter, we saw how our amortised variational inference drastically

improves the quality of topics in mixed membership type topic models such as LDA.

We also saw similar improvements in the product of expert variant, prodLDA. But we

did not look into models that can encode the correlations that exists between topics.

In fact, the traditional LDA assumption posits that the topics should be independently

drawn from a Dirichlet distribution and therefore implies that there does not exist any

correlation between the set of topics. In practice, this may not always be the case and

the modeller may want to capture intra-topic correlations.

In this chapter we will consider an extension class of LDA, called the Pachinko

Allocation Machine (PAM) which captures such correlations between topics and further

generalise the class of mixed membership models to arbitrary hierarchical models of

discrete data. As in the previous chapter we will introduce a novel amortised variational

inference method that can be generically applied to all members of this family of models.

We will also show how this method not only improves the quality of inferred topics but

also substantially increases the speed of learning.

37
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3.1 Introduction

Topic models are widely used tools for exploring and visualizing document collections.

Simpler topic models, like latent Dirichlet allocation (LDA) (Blei et al., 2003), capture

correlations among words but do not capture correlations among topics. This limits

the model’s ability to discover finer-grained hierarchical latent structure in the data.

For example, we expect that very specific topics, such as those pertaining to individual

sports teams, are likely to co-occur more often than more general topics, such as a

generic “politics” topic with a generic “sports” topic. A popular extension to LDA

that captures topic correlations is the Pachinko Allocation Machine (PAM) (Li and

McCallum, 2006). PAM is essentially “deep LDA”. It is defined by a directed acyclic

graph (DAG) in which each leaf node denotes a word in the vocabulary, and each internal

node is associated with a distribution over its children. The document is generated by

sampling, for each word, a path from the root of the DAG to a leaf. Thus the internal

nodes can represent distributions over topics, so-called “super-topics” that represent

correlations among topics.

Unfortunately PAM introduces many latent variables — for each word in the doc-

ument, the path in the DAG that generated the word is latent. Therefore, traditional

inference methods, such as Gibbs sampling and decoupled mean-field variational in-

ference, become significantly more expensive. This not only affects the scale of data

sets that can be considered, but more fundamentally the computational cost of inference

makes it difficult to explore the space of possible architectures for PAM. As a result,

to date only relatively simple architectures have been studied in the literature (Li and

McCallum, 2006; Mimno et al., 2007; Li et al., 2012).

We present what is, to the best of our knowledge, the first variational inference

method for PAM, which we call Amortized Variational Inference for PAM (aviPAM).

Unlike collapsed Gibbs, aviPAM can be generically applied to any PAM architecture

without the need to derive a new inference algorithm, allowing for much more rapid

exploration of the space of possible model architectures. aviPAM is an amortized

inference method that follows the learning principle of variational autoencoders (VAE)

(Kingma and Welling, 2013; Rezende et al., 2014), which means that all the variational

distributions are parameterized by deep neural networks (encoder/inference-network)

that are trained to perform inference. The actual observation model in this framework is

often referred to as the decoder. aviPAM introduces a novel structured inference network

that allows for the complete amortization of the learning cost over all the latent variables
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of PAMs. We find that aviPAM is not only an order of magnitude faster than collapsed

Gibbs, but also learns topics with higher coherence than the current state-of-art. This

efficiency in inference enables exploration of more complex and deeper PAM models

than have previously been possible. As a demonstration of this, we introduce a mixture

of PAMs model. By mixing PAMs with varying numbers of topics, this model captures

the latent structure in the data at many different levels of granularity that can decouple

general broad topics from the more specific ones.

Like other stochastic VI methods, aviPAM also suffers from the problem of com-

ponent/posterior collapse (Dinh and Dumoulin, 2016; van den Oord et al., 2017). We

present an analysis of these issues in the context of topic modelling and propose a

normalization based solution to alleviate them.

3.2 Latent Dirichlet Allocation

LDA represents each document w in a collection as an admixture of topics. Each topic

vector βk is a distribution over the vocabulary, that is, a vector of probabilities, and

β = (β1 . . .βK) is the matrix of the K topics. Every document is then generated under

the model by first sampling a proportion vector θ ∼ Dirichlet(α), and then for each

word at position n, sampling a topic indicator zn ∈ {1, . . .K} as zn ∼ Categorical(θ),

and finally sampling the word index wn ∼ Categorical(βzn).

The marginal likelihood of a document w is therefore

p(w|α,β) =
∫

θ

( |w|
∏
n=1

k

∑
zn=1

p(wn|zn,β)p(zn|θ)
)

p(θ|α)dθ. (3.1)

3.2.1 Deep LDA: Pachinko Allocation Machine

PAM is a class of topic models that extends LDA by modeling correlations among

topics. A particular instance of a PAM represents the correlation structure among topics

by a DAG in which the leaf nodes represent words in the vocabulary and the internal

nodes represent topics. Each node s in the DAG is associated with a distribution θs over

its children, which has a Dirichlet prior. There is no need to differentiate between nodes

in the graph and the distributions θs, so we will simply take {θs}∪{1 . . .V} to be the

node set of the graph, where V is the size of the vocabulary. To generate a document

in PAM, for each word we sample a path from the root to a leaf, and output the word

associated with that leaf.
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More formally, we present the special case of 4-PAM, in which the DAG is a 4-

partite graph.1 It will be clear how to generalize this discussion to arbitrary DAGs. In

4-PAM, the DAG consists of a root node θr which is connected to its children θ1 . . .θS

called super-topics. Each super-topic θs is connected to a shared set of children β1 . . .βK

called subtopics. Subtopics are fully connected to the vocabulary items 1 . . .V in the

leaves.

A document w is generated in 4-PAM as follows. First, a single matrix of subtopics

β are sampled for the entire corpus as βk ∼ Dirichlet(α0). Then the root node, θr

is drawn from a Dirichlet prior θr ∼ Dirichlet(αr). Similarly, for each super-topic

s ∈ {1 . . .S}, θs is drawn θs ∼ Dirichlet(αs).

Then, for each word wn, a path is sampled in this DAG as follows. From the root, we

sample the index of a supertopic zn1 ∈ {1 . . .S} as zn1 ∼ Categorical(θr), followed by a

subtopic index zn2 ∈ {1 . . .K} sampled as zn2 ∼ Categorical(θzn1). Finally the word is

sampled as wn ∼ Categorical(βzn2) leading to the following joint density

P(w,z,θ |α,β) = p(θr|αr)
S

∏
s=1

P(θs|αs) (3.2)

×∏
n

p(zn1|θr)p(zn2|θzn1)p(wn|βzn2).

This process can be extended to arbitrary `-partite graphs in a similar manner, yielding

the `-PAM model, and also to arbitrary DAGs.Observe also that in this nomenclature,

LDA corresponds to 3-PAM.

3.3 Mixture of PAMs

The main advantage of the inference framework we propose is that it allows to easily

explore the design space of possible structures for PAM. As a demonstration of this, we

present a word-level mixture of PAMs that allows learning finer grained topics than a

single PAM, as some mixture components learn topics that capture the more general,

global topics so that other mixture components can focus on finer-grained topics.

We describe a word-level mixture of M PAMs P1 . . .PM, each of which can have a

different number of topics or even a completely different DAG structure. To generate a

document under this model, first we sample an M-dimensional document level mixing

proportion θr ∼Dirichlet(αr). Then, for each word wn in the document, we choose one

of the PAM models by sampling m∼ Categorical(θr) and then finally sample a word

1An `-partite graph is the natural generalization of a bipartite graph.
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by sampling a path through Pm as described in the previous section. This model can be

expressed as a general PAM model in which the root node θr is connected to the root

nodes of each of the M mixture components. If each of the mixture components are

3-PAM models, that is LDA, then we call the resulting model a mixture of LDA models

(MoLDA).2

The advantage of this model is that if we choose to incorporate different mixture

components with different numbers of topics, we find that the components with fewer

topics explain the coarse-grained structure in the data, freeing up the other components

to learn finer grained topics. For example, the Omniglot dataset contains 28x28 images

of handwritten alphabets from artificial scripts. In Figure 3.1, panels (C) and (D) are

visualization of some of the latent topics that are generated using vanilla LDA with

10 and 50 topics, respectively. Because we are modelling image data, each topic can

also be visualized as an image. Panels (A) and (B) show the topics from a single

MoLDA with two components, one with 10 topics and one with 50 topics. It is apparent

that the MoLDA topics are sharper, indicating that each individual topic is capturing

more detailed information about the data. The mixture model allows the two LDAs

being mixed to focus exclusively on higher (for 10 topics) and lower (for 50 topics)

level features while modeling the images. Since the final image is modeled by mixing

these topics, such a mixture model with extremely sharp topics will lead to a sharper

image with detailed features. On the other hand, the topics in the vanilla LDA need to

account for all the variability in the dataset using just 10 (or 50) topics and therefore are

fuzzier. This in turn leads to blurry images when the topics (from (c) or (d)) are mixed

to generate the images.

3.4 Inference

Probabilistic inference in topic models is the task of computing posterior distributions

p(z|w,α,β) over the topic assignments for words, and the posterior p(θ|w,α,β) over the

topic proportions for documents. For all practical topic models, this task is intractable.

Commonly used methods include Gibbs sampling (Li and McCallum, 2006; Blei et al.,

2004), which can be slow to converge, and variational inference methods such as mean

field (Blei et al., 2003; Blei and Lafferty, 2006), which sometimes sacrifice topic quality

for computational efficiency. More fundamentally, these families of approximate

inference algorithms tend to be model specific and require extensive mathematical

2It would perhaps be more proper to call this model an admixture of LDA models.
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sophistication on the practitioner’s part since even the slightest changes in model

assumptions may require substantial adjustments to the inference. The time required to

derive new approximate inference algorithms dramatically slows explorations through

the space of possible models.

In this section we describe a generic, amortized approximate inference method

aviPAM (Amortised Variational Inference for PAM) for learning in the PAM family of

models, that is extremely fast, accurate and flexible in the sense that it can be generically

applied to any DAG structure for PAM, without the need to derive new variational

update rules.

3.4.1 Variational Inference in PAM

In contrast to the collapsed Gibbs methods for PAM (Li and McCallum, 2006), which

integrate out θ’s using the conjugacy between Dirichlet and Multinomial distribution, in

aviPAM we integrate out the paths zn for each word instead. I.e., we seek to approximate

the posterior distribution p(θ|w,α,β).

To simplify notation, we will describe aviPAM for the special case of 4-PAM,

but it will be clear how to generalize this discussion to arbitrary DAGs. For 4-PAM,

we introduce a variational distribution q(θ|w) = q(θr|w)q(θ1|w) . . .q(θS|w) over θ =

(θr,θ1 . . .θS). To choose the best approximation q(θ|w), for the posterior we proceed

by constructing a lower bound to the evidence (ELBO) using Jensen’s inequality,

as is standard in variational inference since the the log-likelihood functions are in

general intractable for most PAMs. For example, the intractable log-likelihood function

log p(w|α,β) for the 4-PAM model (3.2) can be lower bounded by

L =−KL[q(θr|w)||p(θr|αr)]

−
S

∑
s=1

KL[q(θs|w)||p(θs|αs)]

+E
[
∑
n

log p(wn|θ,β)
]
,

(3.3)

where the expectation is with respect to the variational posterior q(θ|w).

3.4.2 VAE-based Amortized Variational Inference

Like the standard mean field variational inference (MFVI) approach, the main idea

behind VAE-based variational inference in PAM is to approximate the posterior dis-

tribution p(θ|w,α,β) for each super-topic θs and the root node θr by the variational
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distribution q(θ|w). But unlike the MFVI , in which q(θ|w) has an independent set of

variational parameters for each document in the corpus, the parameters of q(θ|w) are

computed by an inference network, which is a neural network that takes the document

w as input, and outputs the parameters of the variational distribution. This is motivated

by the observation that similar documents can be described well by similar posterior pa-

rameters. This amortization of the training cost by learning only a fixed set of parameter

of the inference network speeds up the training drastically.

In general, in VAE-based variational inference method, while the variaitonal poste-

rior over latent variables is represented and learned via an inference network (encoder),

the decoder network of the VAE is parametrized using the global model parameters

to represent and learn the observation model, for example in the case of PAM, β, the

sub-topic matrix parameterizes the decoder. In fact, the decoder in PAM is simply a

single layer MLP with a softmax non-linearity and no bias, whose weights are given by

β. β is learned using variational EM by maximizing L .

3.4.3 Existing VAE-based Variational Inference Methods

Srivastava and Sutton (2017) recently presented a VAE-based amortized VI method

for LDA in which they used a feedforward Multi-layer Perceptron (MLP) as the en-

coder network to generate the parameters for the posterior distribution over the topic

proportion vector θ as a function of the input document (see chapter 2). Evidently, the

latent space of 4-PAM (and above) models in general is significantly more complex

and richer than LDA. Therefore, their inference network cannot be applied in PAMs.

It is also not clear how existing structured variational inference methods that use the

VAE-framework such as (Khan and Lin, 2017; Johnson et al., 2016) can be applied to

(3.3) to achieve complete amortisation of the learning cost as both of these methods

rely on message-passing (Bishop, 2006) based variational inference for learning the

structured part of the posterior distribution.

3.4.4 aviPAM Inference Network

The difficultly in the direct application of existing VAE-based amortized variational in-

ference methods in PAM comes from the fact that unlike LDA, the posterior distribution

over θ does not directly depend on the data. In fact, it is dependent on a set of posterior

parameters {θr,{θs}S
s=1}, which in turn depend on the data and require sampling from

their own respective posterior distributions.
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To address this increased complexity of the latent space, we first note that in a

4-PAM, θ = θrΘ
T , where Θ is a matrix with S columns formed by vertically stacking

vectors in the set {θs}S
s=1. This implies that given {θr,{θs}S

s=1}, θ can be computed

as a dot product. Using this insight, we can compute θ in PAMs that are deeper than

four-levels as well.

We now proceed with the architecture of our novel inference network. Again,

we will describe the architecture for a 4-PAM but it can be easily extended to any

arbitrary depth. Our inference network Ir,s takes a batch of B documents WWW B as input

and produces a batch of B posterior θ parameters. It is a composition of two feedforward

networks, fr and fs parameterised by r and s, i.e Ir,s(WWW B) = g
(

fr(WWW B), fs(WWW B)
)

. fr is

similar to the inference networks used in (Srivastava and Sutton, 2017), in that it learns

to produce samples from the posterior Dirichlet distribution of θr, i.e fr : ZB×N
+ 7→RB×S.

But unlike fr that maps from a matrix input to a matrix output, fs : ZB×N
+ 7→ RB×S×K

maps a matrix input to a 3D tensor as in needs to produce B sets of {θs}S
s=1, one for each

document in the batch. K above refers to the total number of sub-topics. Since finally

we want B posterior samples for θ, Ir,s uses a custom implementation for dot-product

g : RB×S×RB×S×K 7→ RB×K that can broadcast the dot-product operator for each of

the B pairs, (θb
r ,Θ

b), where Θ is matrix as defined above.

For an arbitrary `-PAM the inference network that be similarly defined as,

Ir,s1,...,s` = g`
(

g`−1
(
· · · Ir,s1 · · · , fs`−1

)
, fs`

)
.

3.4.5 Re-parameterizing Dirichlet Distribution

The expectation over the third term in equation (3.3) is in general intractable and there-

fore we approximate it using a special type of Monte-Carlo (MC) method (Kingma and

Welling, 2013; Rezende and Mohamed, 2015a) that employs the re-parametrization-

trick (Williams, 1992) for sampling from the variational posterior. But this MC-estimate

requires q(θ|w) to belong to the location-scale family which excludes Dirichlet distribu-

tion. Recently, some progress has been made in the re-parametrization of distributions

like Dirichlet (Ruiz et al., 2016) but in this work, following Srivastava and Sutton (2017)

we approximate the posterior with a logistic normal distribution (also see Chapter 1).

First, we construct a Laplace approximation of the Dirichlet prior in the softmax basis,

which allows us to approximate the posterior distribution using a Gaussian that is in

the location-scale family. Then in order to sample θ from the posterior in the simplex

basis we apply the softmax transform to the Gaussian samples. Using this Laplace
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approximation trick also allows handling different prior assumptions, including other

non-location-scale family distributions. Note that by using Laplace approximation trick

the KL divergence terms are always between a pair of Gaussians and can be therefore

computed in closed-form.

3.4.6 Decoder

The decoder in the case of PAM is a dot product operator between the sample from

the output distribution of the inference network, the mixing proportions θ and the

sub-topic matrix β, i.e., E [∑n log p(wn|θ,β)] ∝
1
B ∑

B
b=1
[
wb(log Ir,sβ

T )b
]
. Therefore the

only difference is that topics matrix β is a global model parameter that is sampled only

once for the entire corpus.

This framework can be readily extended in several different ways. Although in our

experiments we always use MLPs to encode the posterior and decode the output, if

required other architectures like CNNs and RNNs can be easily used to replace the

MLPs. As mentioned before, aviPAM can work with non-Dirichlet priors by using the

Laplace approximation trick. It can also handle full-covariance Gaussian as well as

logistic Normals by simply using the Cholesky decomposition and can therefore be

used to learn Correlated Topic Model (CTM) (Blei and Lafferty, 2006).

3.5 Learning Issues in VAE

Trained with stochastic variational inference, like VAEs, our PAM models suffer from

primarily two learning problems: slow convergence and component collapse. In this

section, we describe each of those problems in more detail.

3.5.1 Slow Convergence

Training PAM models even on the recommended learning rate of 0.001 for the ADAM

optimizer (Kingma and Ba, 2014) generally causes the gradients to diverge early on

in training. Therefore in practice, fairly low learning rates have been used in VAE-

based generative models of text (Miao et al., 2016; Mnih and Gregor, 2014), which

significantly slows down learning. In this section we first explain one of the reasons for

the diverging behaviour of the gradients and then propose a solution that stabilizes them

and allows training VAEs with high learning rates therefore making learning faster.
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Consider a VAE for a model p(x,z) where z is a latent Gaussian variable, x is a

categorical variable distributed as pΘd(x|z) = Multinomial( fd(z,Θd)), and the function

fd() is a decoder MLP with parameters Θd whose outputs lie in the unit simplex. Sup-

pose we define a variational distribution qΘe(z|x) = N (µ,exp(u)), where µ = fµ(x,Θµ),

u = fu(x,Θu) are MLPs with parameters Θe = {Θµ,Θu} and u is the logarithm of the

diagonal of the covariance matrix.

Now the VAE objective function is

ELBO(ΘΘΘ) =−KL[qΘe(z|x)||p(z)]+E[log pΘd(x|z)]. (3.4)

Notice that the first term, the KL divergence, interacts only with the encoder parameters.

The gradients of this term L =KL[qΘe(z|x)||p(z)] with respect to u is ∇uL = 1
2(exp(u)−

1).

One possible explanation for the diverging behaviour of the gradients when trained

under higher learning rates lies in the steep curvature of this gradient. L is sensitive to

small changes in u, which makes it difficult to optimize it with respect to Θe on high

learning rates. The instability of the gradient wrt to u demands an adaptive learning rate

for encoder parameters Θu that can adapt to sudden large changes in ∇uL.

We propose that this adaptive learning rate can be achieved by applying BatchNorm

(BN) (Ioffe and Szegedy, 2015) transformation to fu. BN transformation for an incoming

mini-batch of activations {um
i=1} (we overload the notion on purpose here, in general

u can come from any layer) is, uBN = γ
u−µbatch√
σ2

batch+ε

+b. Here, µbatch =
1
m ∑

m
i=1 ui, σ2

batch =

1
m ∑

m
i=1(ui−µbatch)2 , γ is the gain parameter and finally b is the shift parameter. We are

specifically interested in the scaling factor γ√
σ2

batch
, because the sample variance grows

and shrinks with large changes in the norm of the mini-batch therefore allowing the

scaling factor to approximately dictates the norm of the activations. Let L be defined

as before, the posterior q is now a function of uBN . The gradients w.r.t. u and the gain

parameter γ are

∇uL =
γ√

σ2
batch+ε

Pu∇uBN L (3.5)

∇γL =
(u−µbatch)√

σ2
batch+ε

.∇uBN L, (3.6)

where Pu is a projection matrix. If ∇uBN L is large with respect to the out-going uBN , the

scaling term brings it down.

Therefore, the scaling term works like an adaptive learning rate that grows and

shrinks in response to the change in norm of the batch of u’s due to large gradient
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updates to the weights, thus resolving the issue with the diverging gradients. As shown

in Figure 3.3, after applying BN to one of the outputs u encoder of the prodLDA model

on 20newsgroup dataset Srivastava and Sutton (2017), the KL term minimizes fairly

slowly (red) compared to the case (blue) when no BN is applied to u. We experimentally

found that at this point the topics start to improve when the learning rate is ≥ 0.001.

In order to establish that the improvement in training comes from the adaptive learn-

ing rate property of the gain parameter we replace the divisor in the BN transformation

with the `2 norm of the activation. We neither center the activations nor apply any shift

to them. This normalization performs equivalently and occasionally better than BN,

therefore confirming our hypothesis. It also removes any dependency on batch-level

statistics that might be a requirement in models that make i.i.d assumptions.

3.5.1.1 Component Collapse

Another well known issue in VAEs is the problem of component collapsing (Dinh and

Dumoulin, 2016; van den Oord et al., 2017). In the context of topic models, component

collapsing is a bad local minimum of VAEs in which the model only learns a small

number of topics out of K (Srivastava and Sutton, 2017). For example, when we train a

3-PAM model on the Omniglot dataset (Lake et al., 2015) using the stochastic variational

inference from Kingma and Welling (2013) then, as shown in Figure 3.2, nine randomly

sampled topics for from this model which have been reshaped to Omniglot image

dimensions look exactly the same. This is clearly not a useful set of topics.

When trained without applying BN to the u output of the encoder, the KL terms

across most of the latent dimensions (components of z) vanish to zero. We call them

collapsed dimensions, since the posterior along them has collapsed to the prior. As a

result, the decoder only receives the sampling noise along these dimensions and in order

to minimize the noise in the output, it makes the correspnding weights very small. In

practice this means that these weights do not participate in learning and therefore do not

represent any meaningful topics. Following Srivastava and Sutton (2017), we also found

that the topic coherence increases drastically when BN (or weight-norm (Salimans and

Kingma, 2016)) is also applied to the topic matrix β prior to the application of the

softmax non-linearity. Besides preventing the softmax units to saturate, this slows down

the KL minimization further as shown by the green curve in Figure 3.3.
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Table 3.1: Topic coherence for models trained on 20 Newsgroups dataset for for 100

topics with 50 super-topics.

Collapsed-Gibbs aviPAM

4-PAM LDA 4-PAM 5-PAM MoLDA

50 100 50 100

Topics Coherence 0.25 0.30 0.28 0.31 0.31 0.32 0.28

Training Time (Min) 248 5 6 15 18 20

Table 3.2: Topic coherence for models trained on NIPS dataset for 100 topics with 50

super-topics.

Collapsed-Gibbs aviPAM

4-PAM LDA 4-PAM 5-PAM MoLDA

50 100 50 100

Topics Coherence 0.15 0.13 0.06 0.19 0.18 0.25 0.22

Training Time (Min) 428 8 7 4 5 5

3.6 Experiments and Results

We evaluate how aviPAM inference performs for different architectures of PAM models

when compared to the state-of-art collapsed Gibbs inference. To this end we evaluate

three different PAM architectures, 4-PAM, 5-PAM and MoLDA, on two different

datasets, 20 Newsgroups and NIPS abstracts (Lichman, 2013). We use these two data

sets because they represent two extreme settings. 20 Newsgroups is a large dataset

(12,000 documents) but with a more restricted vocabulary (2000 words) whereas the

NIPS dataset is smaller in size (1500 abstracts) dataset but has a considerably larger

vocabulary (12419 words). We compare inference methods both on time required

for training as well as topic quality. As a measure of topic quality, we use the topic

coherence metric (normalized point-wise mutual information), which as shown in Lau

et al. (2014) corresponds very well with human judgment on the quality of topics. We

do not report perplexity of the models because it has been repeatedly shown to not be a

good measure of topic coherence and even to be negatively correlated with the topic
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quality in some cases (Lau et al., 2014; Chang et al., 2009; Srivastava and Sutton, 2017).

We start by comparing the topic coherence across the different topic models on the

20 Newsgroup dataset. For the baseline we train a 4-PAM using 1000 collapsed Gibbs

sampling3 iterations (Griffiths and Steyvers, 2004) on both the datasets. Then using

aviPAM we train a 4-PAM, a 5-PAM and a MoLDA. For all the experiments we use 100

sub-topics, 50 super-topics and in the case of 5-PAM additionally 10 super-duper topics

for all models. For MoLDA we use two mixture components with 50 and 100 topics.

Results are shown in Table 3.1. Evidently not only all the models trained using aviPAM

produce better topics but they also took substantially less time for training. Additionally

we also ran the sampler for 10000 steps but found only a marginal increase (0.28) in the

topic coherence.

For the NIPS dataset, we repeat the same experiments. As reported in table 3.2

aviPAM again not only beats the Gibbs sampler, but does so in only a fraction of time.

Once again, when we ran the Gibbs sampler for 3000 iteration (which took 14 hours

and 51 minutes) we only saw the topic coherence going up by 0.01 (0.16).

3.6.1 PAM vs LDA

We also trained LDA on both the datasets for two choices of topics, 50 and 100, in

order to demonstrate the affect of capturing topic correlations on topic coherence. For

fair comparison we used 1000 Gibbs iterations for LDA as well. But note that Mallet

provides a very highly optimized parallel implementation for LDA so the training time

are not directly comparable to the Gibbs sampler for the 4-PAM model. Interestingly

we found that on 20newsgroup dataset, both of the Gibbs based PAM and LDA models

perform equally well. But on the NIPS dataset, LDA model starts to really struggle

as the number of topics are increased from 50 to 100. NIPS is a dataset of scientific

papers in AI and machine learning and therefore the topics are assumed to be heavily

correlated. Our experiments suggest that failing to capture this correlation could result

in poor topic coherence in topic models such as LDA.

3.6.2 Hyper-Parameter Tuning

For the experiments in this section we did not conduct extensive hyper-parameter

tuning. We used a grid search for setting the encoder capacity according to the dataset.

As a general guideline for PAM models, the encoder capacity should grow with the

3We used the Mallet implementation (McCallum, 2002).
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vocabulary size. Therefore we set the number of output units to 100 for all the hidden

layers for 20news dataset and to 500 for all the hidden layers in the case of the NIPS

dataset. For the learning rate, we used the default setting of 1E − 3 for the Adam

optimizer for all the models. We used a batch size of 200 for 20 Newsgroups as used in

(Srivastava and Sutton, 2017) and 100 for the NIPS dataset.

3.7 Related Work

Topic models have been explored extensively via directed (Blei et al., 2003; Li and

McCallum, 2006; Blei and Lafferty, 2006; Blei et al., 2004) as well as undirected

models or restricted Boltzmann machines (Larochelle and Lauly, 2012; Hinton and

Salakhutdinov, 2009). Hierarchical extensions to these models have received special

attention since they allow capturing the correlations between the topics and provide

meaningful interpretation to the latent structures in the data.

Recent advancements in blackbox-type inference method (Kucukelbir et al., 2016;

Ranganath et al., 2014; Mnih and Gregor, 2014; Khan and Lin, 2017) have made it easier

to try newer models without the need of deriving model-specific inference algorithms.

3.8 Conclusion

In this work we introduced aviPAM, which extends the idea of variational inference

in topic models via structured VAEs. We found that the combination of amortized

inference and modern GPU software allows for an order of magnitude improvement in

training time compared to standard inference mechanisms in such models. We hope

that this will allow future work to explore new and more complex architectures for deep

topic models.
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Figure 3.1: Top: A and B show randomly sampled topics from MoLDA(10:50). Bottom: C

and D show randomly sampled topics from LDA with 10 topics and 50 topics on Omniglot.

Notice that by using a mixture, the MoLDA can decouple the higher level structure (A)

from the lower-level details(B).
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Figure 3.2: 9-randomly sampled "topics" from Omniglot dataset folded back to the original

image dimensions. An example of how the topics look like if component collapsing

occurs.

Figure 3.3: In optimization without any BatchNorm, the average KL gets minimized fairly

early in the training. With BatchNorm applied to the encoder unit that produces logσ2,

the KL minimization is slow and slower if BatchNorm is also applied to each of the topics

in the decoder.



Chapter 4

VEEGAN: Reducing Mode Collapse in

GANs using Implicit Variational

Learning

In the last two chapters we showed how deep learning based amortised variational

inference can be applied to Bayesian latent variable models in cases where a prescribed

likelihood function is available. In the specific case of topic models, the amortised

inference led to better performance in term of topic coherence, efficiency and scalability

than either the MCMC-based collapsed Gibbs sampler or the traditional variational

methods. In the next two chapters we will extend the amortised variational inference

framework to a larger class of generative models and develop techniques that will allow

us to carry out learning in models where a tractable likelihood function is not available.

As discussed in chapter 1, there are a variety of reasons why a model does not or

cannot have a prescribed likelihood function. In this part, we will concern ourselves

only with the case where we chose to create a statistical model of data without mak-

ing assumptions about the generative distribution of the observed (or latent) variable.

However, some of the techniques that we discuss here will in fact be applicable to

mechanistic or functional models as well but we will leave the extension to functional

models for future work.

This chapter introduces a novel extension to the variational learning principle

VEEGAN, that does not require making assumptions about the generative distributions

and hence allows to carry out inference in implicit generative models. We use the

generative adversarial network (GAN) as the model of choice in this part but any

implicit or explicit generative model can be swapped in its place. The key idea behind

53
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VEEGAN is a density ratio estimator that uses a binary classifier. We use this estimator

to carry out learning on an upside-down variational autoencoder. This setup provides

a convenient way to re-purpose varitional learning principle that we saw in previous

chapters to do inference in GANs and other similar implicit generative models.

We will show that our variational learning principle, most importantly, provides a

theoretically grounded resilience to the mode collapse issue that is quite prevalent in

GANs. Mode collapsing occurs when the GAN that is trained on a multimodal dataset

only learns to generate samples from a subset of modes. We will also demonstrate

through extensive empirical evidence how, by desgin, VEEGAN training method can

avoid mode collapse compared to the other state-of-art learning methods for GANs.

Recently, an independent study (Rosca, 2018) has also reported that VEEGAN improves

training stability, sample quality and sample diversity.
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Abstract

Deep generative models provide powerful tools for distributions over complicated
manifolds, such as those of natural images. But many of these methods, including
generative adversarial networks (GANs), can be difficult to train, in part because
they are prone to mode collapse, which means that they characterize only a few
modes of the true distribution. To address this, we introduce VEEGAN, which
features a reconstructor network, reversing the action of the generator by mapping
from data to noise. Our training objective retains the original asymptotic consis-
tency guarantee of GANs, and can be interpreted as a novel autoencoder loss over
the noise. In sharp contrast to a traditional autoencoder over data points, VEEGAN
does not require specifying a loss function over the data, but rather only over the
representations, which are standard normal by assumption. On an extensive set of
synthetic and real world image datasets, VEEGAN indeed resists mode collapsing
to a far greater extent than other recent GAN variants, and produces more realistic
samples.

1 Introduction

Deep generative models are a topic of enormous recent interest, providing a powerful class of tools
for the unsupervised learning of probability distributions over difficult manifolds such as natural
images [7, 11, 19]. Deep generative models are usually implicit statistical models [3], also called
implicit probability distributions, meaning that they do not induce a density function that can be
tractably computed, but rather provide a simulation procedure to generate new data points. Generative
adversarial networks (GANs) [7] are an attractive such method, which have seen promising recent
successes [18, 21, 24]. GANs train two deep networks in concert: a generator network that maps
random noise, usually drawn from a multi-variate Gaussian, to data items; and a discriminator network
that estimates the likelihood ratio of the generator network to the data distribution, and is trained

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



using an adversarial principle. Despite an enormous amount of recent work, GANs are notoriously
fickle to train, and it has been observed [1, 20] that they often suffer from mode collapse, in which
the generator network learns how to generate samples from a few modes of the data distribution
but misses many other modes, even though samples from the missing modes occur throughout the
training data.

To address this problem, we introduce VEEGAN,1 a variational principle for estimating implicit
probability distributions that avoids mode collapse. While the generator network maps Gaussian
random noise to data items, VEEGAN introduces an additional reconstructor network that maps the
true data distribution to Gaussian random noise. We train the generator and reconstructor networks
jointly by introducing an implicit variational principle, which encourages the reconstructor network
not only to map the data distribution to a Gaussian, but also to approximately reverse the action of
the generator. Intuitively, if the reconstructor learns both to map all of the true data to the noise
distribution and is an approximate inverse of the generator network, this will encourage the generator
network to map from the noise distribution to the entirety of the true data distribution, thus resolving
mode collapse.

Unlike other adversarial methods that train reconstructor networks [4, 5, 23], the noise autoencoder
dramatically reduces mode collapse. Unlike recent adversarial methods that also make use of a
data autoencoder [1, 13, 15], VEEGAN autoencodes noise vectors rather than data items. This is
a significant difference, because choosing an autoencoder loss for images is problematic, but for
Gaussian noise vectors, an `2 loss is entirely natural. Experimentally, on both synthetic and real-world
image data sets, we find that VEEGAN is dramatically less susceptible to mode collapse, and produces
higher-quality samples, than other state-of-the-art methods.

2 Background

Implicit probability distributions are specified by a sampling procedure, but do not have a tractable
density [3]. Although a natural choice in many settings, implicit distributions have historically been
seen as difficult to estimate. However, recent progress in formulating density estimation as a problem
of supervised learning has allowed methods from the classification literature to enable implicit model
estimation, both in the general case [6, 10] and for deep generative adversarial networks (GANs) in
particular [7]. Let {xi}Ni=1 denote the training data, where each xi ∈ RD is drawn from an unknown
distribution p(x). A GAN is a neural network Gγ that maps representation vectors z ∈ RK , typically
drawn from a standard normal distribution, to data items x ∈ RD. Because this mapping defines an
implicit probability distribution, training is accomplished by introducing a second neural network
Dω, called a discriminator, whose goal is to distinguish generator samples from true data samples.
The parameters of these networks are estimated by solving the minimax problem

max
ω

min
γ
OGAN(ω, γ) := Ez [log σ (Dω(Gγ(z)))] + Ex [log (1− σ (Dω(x)))] ,

where Ez indicates an expectation over the standard normal z, Ex indicates an expectation over the
data distribution p(x), and σ denotes the sigmoid function. At the optimum, in the limit of infinite
data and arbitrarily powerful networks, we will have Dω = log qγ(x)/p(x), where qγ is the density
that is induced by running the network Gγ on normally distributed input, and hence that qγ = p [7].

Unfortunately, GANs can be difficult and unstable to train [20]. One common pathology that arises in
GAN training is mode collapse, which is when samples from qγ(x) capture only a few of the modes
of p(x). An intuition behind why mode collapse occurs is that the only information that the objective
function provides about γ is mediated by the discriminator network Dω. For example, if Dω is a
constant, then OGAN is constant with respect to γ, and so learning the generator is impossible. When
this situation occurs in a localized region of input space, for example, when there is a specific type of
image that the generator cannot replicate, this can cause mode collapse.

1VEEGAN is a Variational Encoder Enhancement to Generative Adversarial Networks. https://akashgit.
github.io/VEEGAN/
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(a) Suppose Fθ is trained to approximately invert
Gγ . Then applying Fθ to true data is likely to
produce a non-Gaussian distribution, allowing us
to detect mode collapse.
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(b) When Fθ is trained to map the data to a Gaus-
sian distribution, then treating Fθ ◦ Gγ as an au-
toencoder provides learning signal to correct Gγ.

Figure 1: Illustration of how a reconstructor network Fθ can help to detect mode collapse in a deep
generative network Gγ . The data distribution is p(x) and the Gaussian is p0(z). See text for details.

3 Method

The main idea of VEEGAN is to introduce a second network Fθ that we call the reconstructor network
which is learned both to map the true data distribution p(x) to a Gaussian and to approximately invert
the generator network.

To understand why this might prevent mode collapse, consider the example in Figure 1. In both
columns of the figure, the middle vertical panel represents the data space, where in this example
the true distribution p(x) is a mixture of two Gaussians. The bottom panel depicts the input to the
generator, which is drawn from a standard normal distribution p0 = N (0, I), and the top panel
depicts the result of applying the reconstructor network to the generated and the true data. The arrows
labeled Gγ show the action of the generator. The purple arrows labelled Fθ show the action of the
reconstructor on the true data, whereas the green arrows show the action of the reconstructor on data
from the generator. In this example, the generator has captured only one of the two modes of p(x).
The difference between Figure 1a and 1b is that the reconstructor networks are different.

First, let us suppose (Figure 1a) that we have successfully trained Fθ so that it is approximately the
inverse of Gγ . As we have assumed mode collapse however, the training data for the reconstructor
network Fθ does not include data items from the “forgotten" mode of p(x), therefore the action of Fθ
on data from that mode is ill-specified. This means that Fθ(X), X ∼ p(x) is unlikely to be Gaussian
and we can use this mismatch as an indicator of mode collapse.

Conversely, let us suppose (Figure 1b) that Fθ is successful at mapping the true data distribution to a
Gaussian. In that case, if Gγ mode collapses, then Fθ will not map all Gγ(z) back to the original z
and the resulting penalty provides us with a strong learning signal for both γ and θ.

Therefore, the learning principle for VEEGAN will be to train Fθ to achieve both of these objectives
simultaneously. Another way of stating this intuition is that if the same reconstructor network maps
both the true data and the generated data to a Gaussian distribution, then the generated data is likely
to coincide with true data. To measure whether Fθ approximately inverts Gγ , we use an autoencoder
loss. More precisely, we minimize a loss function, like `2 loss between z ∼ p0 and Fθ(Gγ(z))).
To quantify whether Fθ maps the true data distribution to a Gaussian, we use the cross entropy
H(Z,Fθ(X)) between Z and Fθ(x). This boils down to learning γ and θ by minimising the sum of
these two objectives, namely

Oentropy(γ, θ) = E
[
‖z − Fθ(Gγ(z))‖22

]
+H(Z,Fθ(X)). (1)

While this objective captures the main idea of our paper, it cannot be easily computed and minimised.
We next transform it into a computable version and derive theoretical guarantees. Please note that
there are still certain rare degenerate cases in which mode collapse can still occur.

3.1 Objective Function

Let us denote the distribution of the outputs of the reconstructor network when applied to a fixed data
item x by pθ(z|x) and when applied to all X ∼ p(x) by pθ(z) =

∫
pθ(z|x)p(x) dx. The conditional

3



distribution pθ(z|x) is Gaussian with unit variance and, with a slight abuse of notation, (deterministic)
mean function Fθ(x). The entropy term H(Z,Fθ(X)) can thus be written as

H(Z,Fθ(X)) = −
∫
p0(z) log pθ(z)dz = −

∫
p0(z) log

∫
p(x)pθ(z|x) dx dz. (2)

This cross entropy is minimized with respect to θ when pθ(z) = p0(z) [2]. Unfortunately, the
integral on the right-hand side of (2) cannot usually be computed in closed form. We thus introduce a
variational distribution qγ(x|z) and by Jensen’s inequality, we have

− log pθ(z) = − log

∫
pθ(z|x)p(x)

qγ(x|z)
qγ(x|z)

dx ≤ −
∫
qγ(x|z) log

pθ(z|x)p(x)
qγ(x|z)

dx, (3)

which we use to bound the cross-entropy in (2). In variational inference, strong parametric assump-
tions are typically made on qγ . Importantly, we here relax that assumption, instead representing qγ
implicitly as a deep generative model, enabling us to learn very complex distributions. The variational
distribution qγ(x|z) plays exactly the same role as the generator in a GAN, and for that reason, we
will parameterize qγ(x|z) as the output of a stochastic neural network Gγ(z).

In practice minimizing this bound is difficult if qγ is specified implicitly. For instance, it is chal-
lenging to train a discriminator network that accurately estimates the unknown likelihood ratio
log p(x)/qγ(x|z), because qγ(x|z), as a conditional distribution, is much more peaked than the
joint distribution p(x), making it too easy for a discriminator to tell the two distributions apart.
Intuitively, the discriminator in a GAN works well when it is presented a difficult pair of distributions
to distinguish. To circumvent this problem, we write (see supplementary material)

−
∫
p0(z) log pθ(z) ≤ KL [qγ(x|z)p0(z) ‖ pθ(z|x)p(x)]− E [log p0(z)] . (4)

Here all expectations are taken with respect to the joint distribution p0(z)qγ(x|z).
Now, moving to the second term in (1), we define the reconstruction penalty as an expectation
of the cost of autoencoding noise vectors, that is, E [d(z, Fθ(Gγ(z)))] . The function d denotes a
loss function in representation space RK , such as `2 loss and therefore the term is an autoencoder
in representation space. To make this link explicit, we expand the expectation, assuming that we
choose d to be `2 loss. This yields E [d(z, Fθ(x))] =

∫
p0(z)

∫
qγ(x|z)‖z − Fθ(x)‖2 dxdz. Unlike

a standard autoencoder, however, rather than taking a data item as input and attempting to reconstruct
it, we autoencode a representation vector. This makes a substantial difference in the interpretation
and performance of the method, as we discuss in Section 4. For example, notice that we do not
include a regularization weight on the autoencoder term in (5), because Proposition 1 below says that
this is not needed to recover the data distribution.

Combining these two ideas, we obtain the final objective function

O(γ, θ) = KL [qγ(x|z)p0(z) ‖ pθ(z|x)p(x)]− E [log p0(z)] + E [d(z, Fθ(x))] . (5)

Rather than minimizing the intractable Oentropy(γ, θ), our goal in VEEGAN is to minimize the upper
bound O with respect to γ and θ. Indeed, if the networks Fθ and Gγ are sufficiently powerful, then if
we succeed in globally minimizing O, we can guarantee that qγ recovers the true data distribution.
This statement is formalized in the following proposition.
Proposition 1. Suppose that there exist parameters θ∗, γ∗ such that O(γ∗, θ∗) = H[p0], where H
denotes Shannon entropy. Then (γ∗, θ∗) minimizes O, and further

pθ∗(z) :=

∫
pθ∗(z|x)p(x) dx = p0(z), and qγ∗(x) :=

∫
qγ∗(x|z)p0(z) dz = p(x).

Because neural networks can approximate functions with high precision, the conditions in the
proposition can be achieved when the networks G and F are sufficiently powerful.

3.2 Learning with Implicit Probability Distributions

This subsection describes how to approximateO when we have implicit representations for qγ and pθ
rather than explicit densities. In this case, we cannot optimize O directly, because the KL divergence
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Algorithm 1 VEEGAN training

1: while not converged do
2: for i ∈ {1 . . . N} do
3: Sample zi ∼ p0(z)
4: Sample xig ∼ qγ(x|zi)
5: Sample xi ∼ p(x)
6: Sample zig ∼ pθ(zg|xi)
7: gω ← −∇ω 1

N

∑
i log σ

(
Dω(z

i, xig)
)
+ log

(
1− σ

(
Dω(z

i
g, x

i)
))

. Compute∇ωÔLR

8:
9: gθ ← ∇θ 1

N

∑
i d(z

i, xig) . Compute∇θÔ
10:
11: gγ ← ∇γ 1

N

∑
iDω(z

i, xig) +
1
N

∑
i d(z

i, xig) . Compute ∇γÔ
12:
13: ω ← ω − ηgω; θ ← θ − ηgθ; γ ← γ − ηgγ . Perform SGD updates for ω, θ and γ

in (5) depends on a density ratio which is unknown, both because qγ is implicit and also because p(x)
is unknown. Following [4, 5], we estimate this ratio using a discriminator network Dω(x, z) which
we will train to encourage

Dω(z, x) = log
qγ(x|z)p0(z)
pθ(z|x)p(x)

. (6)

This will allow us to estimate O as

Ô(ω, γ, θ) = 1

N

N∑

i=1

Dω(zi, xig) +
1

N

N∑

i=1

d(zi, xig), (7)

where (zi, xig) ∼ p0(z)qγ(x|z). In this equation, note that xig is a function of γ; although we suppress
this in the notation, we do take this dependency into account in the algorithm. We use an auxiliary
objective function to estimate ω. As mentioned earlier, we omit the entropy term−E [log p0(z)] from
Ô as it is constant with respect to all parameters. In principle, any method for density ratio estimation
could be used here, for example, see [9, 22]. In this work, we will use the logistic regression loss,
much as in other methods for deep adversarial training, such as GANs [7], or for noise contrastive
estimation [8]. We will train Dω to distinguish samples from the joint distribution qγ(x|z)p0(z) from
pθ(z|x)p(x). The objective function for this is

OLR(ω, γ, θ) = −Eγ [log (σ (Dω(z, x)))]− Eθ [log (1− σ (Dω(z, x)))] , (8)

where Eγ denotes expectation with respect to the joint distribution qγ(x|z)p0(x) and Eθ with respect
to pθ(z|x)p(x). We write ÔLR to indicate the Monte Carlo estimate of OLR. Our learning algorithm
optimizes this pair of equations with respect to γ, ω, θ using stochastic gradient descent. In particular,
the algorithms aim to find a simultaneous solution to minω ÔLR(ω, γ, θ) and minθ,γ Ô(ω, γ, θ). This
training procedure is described in Algorithm 1. When this procedure converges, we will have that
ω∗ = argminω OLR(ω, γ

∗, θ∗), which means that Dω∗ has converged to the likelihood ratio (6).
Therefore (γ∗, θ∗) have also converged to a minimum of O.

We also found that pre-training the reconstructor network on samples from p(x) helps in some cases.

4 Relationships to Other Methods

An enormous amount of attention has been devoted recently to improved methods for GAN training,
and we compare ourselves to the most closely related work in detail.

BiGAN/Adversarially Learned Inference BiGAN [4] and Adversarially Learning Inference
(ALI) [5] are two essentially identical recent adversarial methods for learning both a deep gen-
erative network Gγ and a reconstructor network Fθ. Likelihood-free variational inference (LFVI)
[23] extends this idea to a hierarchical Bayesian setting. Like VEEGAN, all of these methods also use
a discriminator Dω(z, x) on the joint (z, x) space. However, the VEEGAN objective function O(θ, γ)
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provides significant benefits over the logistic regression loss over θ and γ that is used in ALI/BiGAN,
or the KL-divergence used in LFVI.

In all of these methods, just as in vanilla GANs, the objective function depends on θ and γ only
via the output Dω(z, x) of the discriminator; therefore, if there is a mode of data space in which
Dω is insensitive to changes in θ and γ, there will be mode collapse. In VEEGAN, by contrast, the
reconstruction term does not depend on the discriminator, and so can provide learning signal to γ
or θ even when the discriminator is constant. We will show in Section 5 that indeed VEEGAN is
dramatically less prone to mode collapse than ALI.

InfoGAN While differently motivated to obtain disentangled representation of the data, InfoGAN
also uses a latent-code reconstruction based penalty in its cost function. But unlike VEEGAN, only a
part of the latent code is reconstructed in InfoGAN. Thus, InfoGAN is similar to VEEGAN in that it
also includes an autoencoder over the latent codes, but the key difference is that InfoGAN does not
also train the reconstructor network on the true data distribution. We suggest that this may be the
reason that InfoGAN was observed to require some of the same stabilization tricks as vanilla GANs,
which are not required for VEEGAN.

Adversarial Methods for Autoencoders A number of other recent methods have been proposed
that combine adversarial methods and autoencoders, whether by explicitly regularizing the GAN
loss with an autoencoder loss [1, 13], or by alternating optimization between the two losses [15].
In all of these methods, the autoencoder is over images, i.e., they incorporate a loss function of the
form λd(x,Gγ(Fθ(x))), where d is a loss function over images, such as pixel-wise `2 loss, and λ is
a regularization constant. Similarly, variational autoencoders [12, 19] also autoencode images rather
than noise vectors. Finally, the adversarial variational Bayes (AVB) [16] is an adaptation of VAEs to
the case where the posterior distribution pθ(z|x) is implicit, but the data distribution qγ(x|z), must
be explicit, unlike in our work.

Because these methods autoencode data points, they share a crucial disadvantage. Choosing a good
loss function d over natural images can be problematic. For example, it has been commonly observed
that minimizing an `2 reconstruction loss on images can lead to blurry images. Indeed, if choosing
a loss function over images were easy, we could simply train an autoencoder and dispense with
adversarial learning entirely. By contrast, in VEEGAN we autoencode the noise vectors z, and it being
a simpler optimisation problem, choosing a good loss function for a noise autoencoder is relatively
easier. The noise vectors z are drawn from a standard normal distribution, using an `2 loss on z is
entirely natural — and does not, as we will show in Section 5, result in blurry images compared to
purely adversarial methods.

5 Experiments

Quantitative evaluation of GANs is problematic because implicit distributions do not have a tractable
likelihood term to quantify generative accuracy. Quantifying mode collapsing is also not straightfor-
ward, except in the case of synthetic data with known modes. For this reason, several indirect metrics
have recently been proposed to evaluate GANs specifically for their mode collapsing behavior [1, 17].
However, none of these metrics are reliable on their own and therefore we need to compare across a
number of different methods. Therefore in this section we evaluate VEEGAN on several synthetic and
real datasets and compare its performance against vanilla GANs [7], Unrolled GAN [17] and ALI
[5] on five different metrics. Our results strongly suggest that VEEGAN does indeed resolve mode
collapse in GANs to a large extent. Generally, we found that VEEGAN performed well with default
hyperparameter values, so we did not tune these. Full details are provided in the supplementary
material.

5.1 Synthetic Dataset

Mode collapse can be accurately measured on synthetic datasets, since the true distribution and its
modes are known. In this section we compare all four competing methods on three synthetic datasets
of increasing difficulty: a mixture of eight 2D Gaussian distributions arranged in a ring, a mixture
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Table 1: Sample quality and degree of mode collapse on mixtures of Gaussians. VEEGAN consistently
captures the highest number of modes and produces better samples.

2D Ring 2D Grid 1200D Synthetic

Modes
(Max 8)

% High Quality
Samples

Modes
(Max 25)

% High Quality
Samples

Modes
(Max 10)

% High Quality
Samples

GAN 1 99.3 3.3 0.5 1.6 2.0
ALI 2.8 0.13 15.8 1.6 3 5.4
Unrolled GAN 7.6 35.6 23.6 16 0 0.0
VEEGAN 8 52.9 24.6 40 5.5 28.29

of twenty-five 2D Gaussian distributions arranged in a grid 2 and a mixture of ten 700 dimensional
Gaussian distributions embedded in a 1200 dimensional space. This mixture arrangement was chosen
to mimic the higher dimensional manifolds of natural images. All of the mixture components were
isotropic Gaussians. For a fair comparison of the different learning methods for GANs, we use
the same network architectures for the reconstructors and the generators for all methods, namely,
fully-connected MLPs with two hidden layers. For the discriminator we use a two layer MLP without
dropout or normalization layers. VEEGAN method works for both deterministic and stochastic
generator networks. To allow for the generator to be a stochastic map we add an extra dimension of
noise to the generator input that is not reconstructed.

To quantify the mode collapsing behavior we report two metrics: We sample points from the generator
network, and count a sample as high quality, if it is within three standard deviations of the nearest
mode, for the 2D dataset, or within 10 standard deviations of the nearest mode, for the 1200D dataset.
Then, we report the number of modes captured as the number of mixture components whose mean is
nearest to at least one high quality sample. We also report the percentage of high quality samples
as a measure of sample quality. We generate 2500 samples from each trained model and average
the numbers over five runs. For the unrolled GAN, we set the number of unrolling steps to five as
suggested in the authors’ reference implementation.

As shown in Table 1, VEEGAN captures the greatest number of modes on all the synthetic datasets,
while consistently generating higher quality samples. This is visually apparent in Figure 2, which
plot the generator distributions for each method; the generators learned by VEEGAN are sharper and
closer to the true distribution. This figure also shows why it is important to measure sample quality
and mode collapse simultaneously, as either alone can be misleading. For instance, the GAN on the
2D ring has 99.3% sample quality, but this is simply because the GAN collapses all of its samples
onto one mode (Figure 2b). On the other extreme, the unrolled GAN on the 2D grid captures almost
all the modes in the true distribution, but this is simply because that it is generating highly dispersed
samples (Figure 2i) that do not accurately represent the true distribution, hence the low sample quality.
All methods had approximately the same running time, except for unrolled GAN, which is a few
orders of magnitude slower due to the unrolling overhead.

5.2 Stacked MNIST

Following [17], we evaluate our methods on the stacked MNIST dataset, a variant of the MNIST data
specifically designed to increase the number of discrete modes. The data is synthesized by stacking
three randomly sampled MNIST digits along the color channel resulting in a 28x28x3 image. We
now expect 1000 modes in this data set, corresponding to the number of possible triples of digits.

Again, to focus the evaluation on the difference in the learning algorithms, we use the same generator
architecture for all methods. In particular, the generator architecture is an off-the-shelf standard
implementation3 of DCGAN [18].

For Unrolled GAN, we used a standard implementation of the DCGAN discriminator network. For
ALI and VEEGAN, the discriminator architecture is described in the supplementary material. For the

2Experiment follows [5]. Please note that for certain settings of parameters, vanilla GAN can also recover all
25 modes, as was pointed out to us by Paulina Grnarova.

3https://github.com/carpedm20/DCGAN-tensorflow
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Stacked-MNIST CIFAR-10

Modes (Max 1000) KL IvOM

DCGAN 99 3.4 0.00844 ± 0.002
ALI 16 5.4 0.0067 ± 0.004

Unrolled GAN 48.7 4.32 0.013 ± 0.0009
VEEGAN 150 2.95 0.0068 ± 0.0001

Table 2: Degree of mode collapse, measured by modes captured and the inference via optimization
measure (IvOM), and sample quality (as measured by KL) on Stacked-MNIST and CIFAR. VEEGAN
captures the most modes and also achieves the highest quality.

reconstructor in ALI and VEEGAN, we use a simple two-layer MLP for the reconstructor without any
regularization layers.

Finally, for VEEGAN we pretrain the reconstructor by taking a few stochastic gradient steps with
respect to θ before running Algorithm 1. For all methods other than VEEGAN, we use the enhanced
generator loss function suggested in [7], since we were not able to get sufficient learning signals for
the generator without it. VEEGAN did not require this adjustment for successful training.

As the true locations of the modes in this data are unknown, the number of modes are estimated using
a trained classifier as described originally in [1]. We used a total of 26000 samples for all the models
and the results are averaged over five runs. As a measure of quality, following [17] again, we also
report the KL divergence between the generator distribution and the data distribution. As reported
in Table 2, VEEGAN not only captures the most modes, it consistently matches the data distribution
more closely than any other method. Generated samples from each of the models are shown in the
supplementary material.

5.3 CIFAR

Finally, we evaluate the learning methods on the CIFAR-10 dataset, a well-studied and diverse dataset
of natural images. We use the same discriminator, generator, and reconstructor architectures as in
the previous section. However, the previous mode collapsing metric is inappropriate here, owing to
CIFAR’s greater diversity. Even within one of the 10 classes of CIFAR, the intra-group diversity is
very high compared to any of the 10 classes of MNIST. Therefore, for CIFAR it is inappropriate to
assume, as the metrics of the previous subsection do, that each labelled class corresponds to a single
mode of the data distribution.

Instead, we use a metric introduced by [17] which we will call the inference via optimization metric
(IvOM). The idea behind this metric is to compare real images from the test set to the nearest
generated image; if the generator suffers from mode collapse, then there will be some images for
which this distance is large. To quantify this, we sample a real image x from the test set, and find
the closest image that the GAN is capable of generating, i.e. optimizing the `2 loss between x
and generated image Gγ(z) with respect to z. If a method consistently attains low MSE, then it
can be assumed to be capturing more modes than the ones which attain a higher MSE. As before,
this metric can still be fooled by highly dispersed generator distributions, and also the `2 metric
may favour generators that produce blurry images. Therefore we will also evaluate sample quality
visually. All numerical results have been averaged over five runs. Finally, to evaluate whether the
noise autoencoder in VEEGAN is indeed superior to a more traditional data autoencoder, we compare
to a variant, which we call VEEGAN +DAE, that uses a data autoencoder instead, by simply replacing
d(z, Fθ(x)) in O with a data loss ‖x−Gγ(Fθ(x)))‖22.

As shown in Table 2, ALI and VEEGAN achieve the best IvOM. Qualitatively, however, generated
samples from VEEGAN seem better than other methods. In particular, the samples from VEEGAN
+DAE are meaningless. Generated samples from VEEGAN are shown in Figure 3b; samples from
other methods are shown in the supplementary material. As another illustration of this, Figure 3
illustrates the IvOM metric, by showing the nearest neighbors to real images that each of the GANs
were able to generate; in general, the nearest neighbors will be more semantically meaningful than
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randomly generated images. We omit VEEGAN +DAE from this table because it did not produce
plausible images. Across the methods, we see in Figure 3 that VEEGAN captures small details, such
as the face of the poodle, that other methods miss.

Figure 2: Density plots of the true data and generator distributions from different GAN methods
trained on mixtures of Gaussians arranged in a ring (top) or a grid (bottom).

(a) True Data (b) GAN (c) ALI (d) Unrolled (e) VEEGAN

(f) True Data (g) GAN (h) ALI (i) Unrolled (j) VEEGAN

Figure 3: Sample images from GANs trained on CIFAR-10. Best viewed magnified on screen.

(a) Generated samples nearest to real images from CIFAR-10. In
each of the two panels, the first column are real images, followed
by the nearest images from DCGAN, ALI, Unrolled GAN, and
VEEGAN respectively.

(b) Random samples from generator of
VEEGAN trained on CIFAR-10.

6 Conclusion

We have presented VEEGAN, a new training principle for GANs that combines a KL divergence in
the joint space of representation and data points with an autoencoder over the representation space,
motivated by a variational argument. Experimental results on synthetic data and real images show
that our approach is much more effective than several state-of-the art GAN methods at avoiding mode
collapse while still generating good quality samples.
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A Proof of Lower Bound

This appendix completes the proof of the bound in the text that

−
∫
p0(z) log pθ(z) ≤ KL [qγ(x|z)p0(z) ‖ pθ(z|x)p(x)]− E [log p0(z)] (9)

where p0 is the standard normal density, and pθ(z) =
∫
pθ(z|x)p(x) dx. As described in the text,

introducing a a variational distribution qγ(x|z) yields

−
∫
p0(z) log pθ(z) dz ≤ −

∫∫
p0(z)qγ(x|z) log

pθ(z|x)p(x)
qγ(x|z)

dx dz. (10)

Starting from (10), we obtain a new upper bound by adding a trivial KL divergence to the right hand
side of the above inequality

−
∫
p0(z) log pθ(z) dz ≤ −

∫∫
p0(z)qγ(x|z) log

pθ(z|x)p(x)
qγ(x|z)

dx dz

=

∫∫
p0(z)qγ(x|z) log

qγ(x|z)
pθ(z|x)p(x)

dx dz +

∫
p0(z) log

p0(z)

p0(z)
dz

(11)

Now for the upper term in the KL, we have that
∫
p0(z) log p0(z) dz =

∫
p0(z) log p0(z)

(∫
qγ(x|z) dx

)
dz =

∫∫
p0(z)qγ(x|z) log p0(z) dx dz.

Combining with (11) yields

H(Z,Fθ(X)) ≤
∫∫

p0(z)qγ(x|z) log
qγ(x|z)

pθ(z|x)p(x)
dx dz +

∫∫
p0(z)qγ(x|z) log p0(z) dx dz

−
∫
p0(z) log p0(z) dz

=

∫∫
p0(z)qγ(x|z) log

qγ(x|z)p0(z)
pθ(z|x)p(x)

dx dz −
∫
p0(z) log p0(z) dz

= KL [qγ(x|z)p0(z) ‖ pθ(z|x)p(x)]−
∫
p0(z) log p0(z) dz,

which completes the proof.

B Proof of Proposition 1

Proposition 2. Suppose that there exist parameters θ∗, γ∗ such that O(γ∗, θ∗) = H[p0], where H
denotes Shannon entropy. Then (γ∗, θ∗) minimizes O, and we further have that

pθ∗(z) :=

∫
pθ∗(z|x)p(x) dx = p0(z)

qγ∗(x) :=

∫
qγ∗(x|z)p0(z) dz = p(x).

Proof. From information theory, we know that KL [qγ(x|z)p0(z) ‖ pθ(z|x)p(x)] ≥ 0. Additionally,
we have that E [d(z, Fθ(x))] ≥ 0,. Moreover, by definition of E [] in the proposition,

−E [log p0(z)] = −
∫∫

p0(z)qγ(x|z) log p0(z) dzdx = −
∫
p0(z) log p0(z) dz

∫
qγ(x|z) dx

= −
∫
p0(z) log p0(z) dz,

which is the definition of the Shannon entropy H[p0] of p0.
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This implies that

O(γ, θ) = KL [qγ(x|z)p0(z) ‖ pθ(z|x)p(x)]− E [log p0(z)] + E [d(z, Fθ(x))]

≥ −E [log p0(z)]

= H[p0].

This bound is attained with equality when qγ(x|z)p0(z) = pθ(z|x)p(x), and when Fθ inverts Gγ on
the data distribution, i.e., when Fθ(Gγ(z)) = z for all z. (Note that this statement does not require G
to be invertible outside of its range.)

Now, if O(γ∗, θ∗) = H[p0], subtracting the entropy from both sides implies that
KL [qγ(x|z)p0(z) ‖ pθ(z|x)p(x)] = 0. Because the optimum of the KL divergence is unique, we then
have that qγ∗(x|z)p0(z) = pθ∗(z|x)p(x).
Integrating both sides over x yields the first equality in the proposition, and integrating over z yields
the second.

C Discriminator Architecture for ALI and VEEGAN

When using ALI and VEEGAN, the original DCGAN discriminator needs to be augmented in order
allow it to operate on pairs of images and noise vectors. In order to achieve this, we flatten the
final convolutional layer of DCGAN’s discriminator and concatenate it with the input noise vector.
Afterwards, we run the concatenation through a hidden layer, and then compute Dω(z, x) through a
linear transformation.

Table 3: ALI and VEEGAN Discriminator Architecture.
Operation #Output BN? Activation

Dω(x)

Conv 64 False Leaky ReLU
Conv 128 True Leaky ReLU
Conv 256 True Leaky ReLU
Conv 512 True Leaky ReLU

Flatten - - -
σ(Dω(z, x)) Concatenate Dω(x) and z along the first axis.

Fully Connected 512 False Leaky ReLU
Fully Connected 1 False Sigmoid

D Inference

While not the focus of this work, our method can also be used for inference as in the case of ALI
and BiGAN models. Figure 4 shows an example of inference on MNIST. The top row samples are
from the dataset. We extract the latent representation vector for each of the real images by running
them through the trained reconstructor and then use the resulting vector in the generator to get the
generated samples shown in the bottom row of the figure.

E Adversarial Methods for Autoencoders

In order to quantify contrast the effect of autoencoding of noise in VEEGAN with autoencoding of
data in DAE methods [1, 13] we train DAE version of VEEGAN by simply using the reconstructor
network as an inference network. As mentioned before, careful tuning of the weighing parameter λ
is needed to ensure that the `2 loss is only working as a regularizer. Therefore, we run a parameter
sweep for λ. As shown in figure 5 we were not able to obtain any meaningful images for any of the
tested values.
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Figure 4: VEEGAN method can be used like ALI to perform inference. The means output from the
reconstructor network for the real images in the top row are used as the latent features to samples the
generated images in the bottom row.

Figure 5: CIFAR 10 samples from GANs with data Autoencoders. We did a parameter sweep over
the value of λ but were unable to generate any meaningful images for any of the values. Figure 5d is
generated entirely from the `2 loss.

(a) λ = 0.007 (b) λ = 0.01 (c) λ = 0.05 (d) Only `2

F Stacked MNIST Qualitative Results

Qualitative results from the Stacked MNIST dataset for all the 4 methods.

Figure 6: Samples from trained models for Stacked MNIST dataset.

(a) True Data (b) DCGAN (c) ALI (d) Unrolled (e) VEEGAN

G CelebA Random Sample from ALI and VEEGAN

Additionally, we compared ALI and VEEGAN models on the much bigger CelebA dataset [14] of
faces. Our goal is to test how robust each method is when used without extensive tuning of model
architecture and hyperparameters on a new dataset. Therefore we use the same model architectures
and hyperparameters as we did on the CIFAR-10 data. While ALI failed to produce any meaningful
images, VEEGAN generates high quality images of faces. Please note that this does not mean that ALI
fails on CelebA in general. Indeed, as [5] show, given higher capacity reconstructor and discriminator
with the right hyperparameters, it is possible to generate good quality images on this dataset. Rather,
this experiment only suggests that for the simple network that we use for Stacked MNIST and CIFAR
experiments, VEEGAN learning method was able to produce reasonable images without any further
tuning or hyper parameter search.
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Figure 7: ALI on CelebA with simple DCGAN architecture and without tweaking of hyperparameters.

Figure 8: VEEGAN on CelebA with simple DCGAN architecture and default hyperparameters.

H CIFAR 10 Random Sample from VEEGAN

Randomly generated samples for CIFAR 10 dataset for all the 4 methods.
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Figure 9: DCGAN on CIFAR 10 Dataset

Figure 10: ALI on CIFAR 10 Dataset
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Figure 11: Unrolled GAN on CIFAR 10 Dataset

Figure 12: VEEGAN on CIFAR 10 Dataset
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Chapter 5

Ratio Based MMD Nets: Low

dimensional projections for effective

deep generative models.

In the previous chapter we introduced a new variational learning principle, VEEGAN for

implicit generative models. The crux of this framework is a discriminator based density

ratio estimator, which allows for estimating the ratio between a pair of intractable

densities that can be sampled from. We also showed that when trained using the

VEEGAN framework, GANs are more resilient to the issue of mode collapsing. But

mode collapsing is only part of the problems that adversarially trained generative models

have. A larger issue is the instability of the training and the sensitivity to the choice of

hyper parameters. In this chapter we tackle these two issues in detail and introduce a

new training method that is more stable, robust to hyper parameters and leads to higher

quality generation of images compared to the state-of-art adversarial methods.

5.1 Introduction

Deep generative models (Kingma and Welling, 2013; Goodfellow et al., 2014) have

been shown to learn to generate realistic-looking images. These methods train a deep

neural network, called a generator, to transform samples from a noise distribution to

samples from the data distribution. Most methods use adversarial learning (Goodfellow

et al., 2014), in which the generator is pitted against a critic function, also called

a discriminator, which is trained to distinguish between the samples from the data

distribution and from the generator. Upon successful training the two sets of samples
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become indistinguishable with respect to the critic.

Maximum mean discrepancy (MMD) networks (Li et al., 2015; Dziugaite et al.,

2015) are a class of generative models that are trained to minimize the MMD between

the true data distribution and the model distribution. MMD networks are similar in

spirit to generative adversarial networks (GANs) (Goodfellow et al., 2014), in the sense

that the MMD is defined by maximizing over a class of critic functions. However,

in contrast to GANs, where finding the right balance between generator and critic is

difficult, training is simpler for MMD networks because using the kernel trick the MMD

can be estimated without the need to numerically optimize over critic functions. This

avoids the need in GANs to numerically solve a saddlepoint problem.

Unfortunately, although MMD networks work well on low dimensional data, these

networks have not on their own matched the performance of adversarial methods on

higher dimensional datasets, such as natural images (Dziugaite et al., 2015). Several

authors (Li et al., 2017; Bińkowski et al., 2018) suggest that a reason is that MMD

is sensitive to the choice of kernel. Li et al. (2017) propose a method called MMD-

GAN, in which the critic maps the samples from the generator and the data into a

lower-dimensional representation, and MMD is applied in this transformed space. This

can be interpreted as a method for learning the kernel in MMD. The critic is learned

adversarially by maximizing the MMD at the same time as it is minimized with respect

to the generator. This is much more effective than MMD networks, but training MMD-

GANs can be challenging, because the need to balance training of the learned kernel

and the generator can create a sensitivity to hyperparameter settings. In practice, it

is necessary to introduce several additional penalties to the loss function in order for

training to be effective.

In this work, we present a novel training method for MMD networks based on a new

principle for optimizing the critic. Like previous work, our goal is for the critic to map

the samples into a lower-dimensional space in which the MMD network estimator will

be more effective. Our proposal is that the critic should preserve density ratios, namely,

the ratio of the true density to the model density should be preserved under the mapping

defined by the critic. If the critic is successful in this, then matching the generator to the

true data in the lower dimensional space will also match the distributions in the original

space. We call networks that have been trained using this criterion ratio based MMD

networks (RB-MMDnets). This proposal builds on previous work by Sugiyama et al.

(2011) that considered linear dimensionality reduction for density ratio estimation. We

show empirically that our method is not only able to generate high quality images but
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by virtue of being non-adversarial it avoids saddlepoint optimization and hence is more

stable to train and robust to the choice of hyperparameters.

5.2 Background and Related Work

Given data xi ∈ RD for i ∈ {1 . . .N} from a distribution of interest with density px, the

goal of deep generative modeling is to learn a parametrized function Gγ : Rh 7→ RD,

called a generator network, that maps samples z ∈ Rh where h < D from a noise

distribution pz to samples from the model distribution. Since Gγ defines a new random

variable, we denote its density function by qx, and also write xq = Gγ(z), where we

suppress the dependency of xq on γ. The parameters γ of the generator are chosen to

minimize a loss criterion which encourages qx to match px.

5.2.1 Maximum Mean Discrepancy

Maximum mean discrepancy measures the discrepancy between two distributions as

the maximum difference between the expectations of a class of functions F , that is,

MMDF (p,q) = sup
f∈F

(
Ep[ f (x)]−Eq[ f (x)]

)
, (5.1)

where E denotes expectation. If F is chosen to be a rich enough class, then MMD(p,q)=

0 implies that p = q. Gretton et al. (2012) show that it is sufficient to choose F to be

a unit ball within a reproducing kernel Hilbert space R with kernel k. Given samples

x1 . . .xN ∼ p and yi . . .yM ∼ q, we can estimate MMDR as

ˆMMDR (p,q) =
1

N2

N

∑
i=1

N

∑
i′=1

k(xi,xi′)−
1

NM

N

∑
i=1

M

∑
j=1

k(xi,y j)+
1

M2

M

∑
j=1

M

∑
j′=1

k(y j,y j′).

(5.2)

5.2.2 MMD networks and MMD-GANs

Li et al. (2015) and Dziugaite et al. (2015) independently proposed MMD networks,

which use the MMD criterion to train a deep generative model. Unlike f -divergences,

MMD is well defined even for distributions that do not have overlapping support, which

is an important consideration for training generative models (Arjovsky et al., 2017).

Therefore, MMD networks use (5.2) in order to minimize the discrepancy between

the distributions qx and px with respect to Gγ. However, the sample quality of MMD
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networks generally degrades for higher dimensional or color image datasets (Li et al.,

2015).

To address this problem, Li et al. (2017) introduce MMD-GANs, which use a critic

fθ : RD 7→ RK to map the samples to a lower dimensional space RK , and train the

generator to minimize MMD in this reduced space. This can be interpreted as learning

the kernel function for MMD, because if fθ is injective and k0 is a kernel in RK , then

k(x,x′) = k0( fθ(x), fθ(x′)) is a kernel in RD. This injectivity constraint on fθ is imposed

by introducing another deep neural network f ′
φ
, which is trained to approximately invert

fθ using an auto-encoding penalty. The critic fθ is trained using an adversarial criterion,

but this then requires numerical saddlepoint optimization, and avoiding this was one of

the main attractions of MMD in the first place.

Successfully training fθ in practice required a penalty term called feasible set

reduction on the class of functions that fθ can learn to represent. Defining p̄ and q̄

respectively as the distributions of the random variables obtained by applying fθ to px

and qx, the training criteria for the critic and the generator in MMD-GANs are

L(θ,φ) = MMD
[

p̄
(

fθ(x)
)
, q̄
(

fθ(Gγ(z))
)]
−λ1d

[
x, f ′φ( fθ(Gγ(z)))

]
(5.3)

+λ2 min
[
E[ fθ(x)]−E[ fθ(Gγ(z))],0

]

L(γ) = MMD
[

p̄
(

fθ(x)
)
, q̄
(

fθ(Gγ(z))
)]

+λ3 min
[
E[ fθ(x)]−E[ fθ(Gγ(z))],0

]
,

where x∼ px and z∼ pz are samples from their respective distributions. The function d

denotes an expected auto-encoding penalty that ensures that f is approximately injective.

Furthermore, f is restricted to be k-Lipschitz continuous by using a low learning rate

and explicitly clipping the gradients during update steps of f akin to WGAN (Arjovsky

et al., 2017).

Our work is similar in spirit to MMD-GANs, in that we will also learn a critic

function to improve the performance of MMD networks. The main differences are

that we will not use an adversarial criterion to learn fθ, and that we do not require the

function k( fθ(·), fθ(·)) to be a kernel function. These differences will greatly simplify

our training algorithm, as we do not require an additional autoencoding penalty or

feasible set reduction as in their method. We will also show (Section 5.4) that our

method is more stable in training.

5.2.3 Dimensionality Reduction for Density Ratio Estimation

Sugiyama et al. (2011) suggest that density ratio estimation for distributions p and
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q over RD can be more accurately done in lower dimensional subspaces RK . They

propose to first learn a linear projection to a lower dimensional space by maximizing an

f -divergence between the distributions p̄ and q̄ of the projected data and then estimate

the ratio of p̄ and q̄ (using direct density ratio estimation). They showed that the

projected distributions preserve the original density ratio. Our method builds on this

insight, generalizing it to non-linear projections and incorporating it into a method for

deep generative modeling.

5.3 Method

Our aim will be to enjoy the advantages of MMD networks, but to improve their

performance by mapping the data into a lower-dimensional space, using a critic network

fθ, before computing the MMD criterion. Because MMD with a fixed kernel performs

well for lower-dimensional data (Li et al., 2015; Dziugaite et al., 2015), we hope that

by choosing K < D, we will improve the performance of the MMD network. Instead

of training fθ using an adversarial criterion like MMD-GAN, we aim at a more stable

training method by introducing a different principle for training the critic.

More specifically, we train fθ to minimize the squared ratio difference, that is,

the difference between density ratios in the original space and in the low-dimensional

space induced by fθ (Section 5.3.1). More specifically, let q̄ be the density of the

transformed simulated data, i.e., the density of the random variable fθ(Gγ(z)), where

z ∼ pz. Similarly let p̄ be the density of the transformed data, i.e., the density of

the random variable fθ(x). The squared ratio difference is minimized when θ so that

px/qx equals p̄/q̄. The motivation is that if density ratios are preserved by fθ, then

matching the generator to the data in the transformed space will also match it in the

original space (Section 5.3.3). The capacity of fθ should be chosen to strike a trade-off

between dimensionality reduction and ability to approximate the ratio. If the data lie on

a lower-dimensional manifold in RD, which is the case for e.g. natural images, then it is

reasonable to suppose that we can find a critic that strikes a good trade-off.

To compute this criterion, we need to estimate density ratios p̄/q̄, which can be

done in closed form using MMD (Section 5.3.2). Our method then alternates stochastic

gradient descent (SGD) steps between training the critic and the generator. The generator

is trained as an MMD network to match the transformed data { fθ(xi)} with transformed

outputs from the generator { f (Gγ(zi)} in the lower dimensional space. These gradient

steps are alternated with SGD steps on the the critic (Section 5.3.3).
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5.3.1 Training the Critic using Squared Ratio Difference

Our principle is to choose fθ so that the resulting densities p̄ and q̄ preserve the density

ratio between px and qx. We will choose fθ to minimize the distance between the two

density ratio functions

rx(x) = px(x)/qx(x) rθ(x) = p̄( fθ(x))/q̄( fθ(x)).

One way to measure how well f preserves density ratios is to use the squared distance

D∗(θ) =
∫

qx(x)
(

px(x)
qx(x)

− p̄( fθ(x))
q̄( fθ(x))

)2

dx. (5.4)

This objective is minimized only when the ratios match exactly, that is, when rx = rθ

for all x in the support of qx. Clearly a distance of zero can be trivially achieved if

K = D and if fθ is the identity function. But nontrivial optima can exist as well. For

example, suppose that px and qx are “intrinsically low dimensional” in the following

sense. Suppose K < D, and consider two distributions p0 and q0 over RK , and an

injective map T : RK → RD. Suppose that T maps samples from p0 and q0 to samples

from px and qx, by which we mean px(x) = J(DT )p0(T−1(x)), and similarly for qx.

Here J(DT ) denotes the Jacobian J(DT ) =
√
|δT δT>| of T . Then we have that D∗ is

minimized to 0 when fθ = T−1.

Interestingly, we can interpret D∗ in a different way, which justifies our terminology

of referring to fθ as a critic function. Expanding (5.4) and cancelling terms yields

D∗(θ) =C+
∫

q̄( fθ(x))
(

p̄( fθ(x))
q̄( fθ(x))

)2

dx−2
∫

p̄( fθ(x))
p̄( fθ(x))
q̄( fθ(x))

dx, (5.5)

where C does not depend on θ. This means that minimizing D∗ is equivalent to maxi-

mizing the Pearson divergence (Sugiyama et al., 2011)

PD(p̄, q̄) =
∫

q̄( fθ(x))
(

p̄( fθ(x))
q̄( fθ(x))

−1
)2

dx (5.6)

between p̄ and q̄. So we can alternatively interpret our squared ratio distance objective as

preferring fθ so that the low-dimensional distributions p̄ and q̄ are maximally separated.

Therefore D∗ can be minimized empirically using samples xq
1 . . .x

q
N ∼ qx, yielding

the critic loss function

L(θ) =
1
N

N

∑
i=1

[rθ(x
q
i )−1]2. (5.7)

Optimizing this requires a way to estimate rθ(x
q
i ), which we present in the next

section.
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5.3.2 Density Ratio Estimation

In terms of estimating the density ratio rθ, we have several choices of estimators

(Sugiyama et al., 2012). In our work, however, we employ the MMD criterion because

this allows a closed-form estimate. The MMD estimator of rθ (Sugiyama et al., 2012)

is given by optimizing

min
r∈R

∥∥∥∥
∫

k(y; .)p̄(y)dy−
∫

k(y; .)r(y)q̄(y)dy
∥∥∥∥

2

R
, (5.8)

where k is a kernel function. It is easy to see that at the minimum, we have r = p̄/q̄.

Notice that to compute (5.7), we need the value of rθ only for the points xq
1 . . .x

q
N . In

other words, we need to approximate the vector rq,θ = [rθ(x
q
1) . . .rθ(x

q
N)]

T . Following

Sugiyama et al. (2012), we replace the integrals in (5.8) with Monte Carlo averages

over the points xq
1 . . .x

q
N and over points xp

1 . . .x
p
N ∼ px. The minimizing values of rq,θ

can then be computed as

r̂q,θ = K−1
q,q Kq,p111. (5.9)

Here Kq,q and Kq,p denote the Gram matrices defined by [Kq,q]i, j = k( fθ(x
q
i ), fθ(x

q
j))

and [Kq,p]i, j = k( fθ(x
q
i ), fθ(x

p
j )). Substituting these estimates into (5.7), we get

L̂(θ) =
1
N
‖r̂q,θ−1‖2. (5.10)

This objective can be maximised to learn the critic fθ. We see that this is an approxi-

mation of the Pearson divergence PD(p̄, q̄) in that we are both averaging over samples

from qx, and we are approxmitaing the density ratio. Thus maximising this objective

would lead to preservation in density ratio (Sugiyama et al., 2011).

5.3.2.0.1 Empirical Estimation: Maximization of the estimated Pearson divergence

L̂ is challenging because for distributions with non-overlapping support, (5.10) has a

local maximum at 1 when the ratio r̂q,θ = 0. This is due to the fact that for densities

with non-overlapping support, the MMD-based ratio estimator of their densities is close

to zero. We can overcome this by instead maximising the MMD-based density ratio

estimator directly:

L̂1(θ) = r̂T
q,θ111. (5.11)

We can maximize this instead because the gradient ∇L̂1 is also an ascent direction

for L̂ if r̂q,θ ≥ 1. Figure 5.1 plots how Pearson divergence changes during the course
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Figure 5.1: Comparison of Pearson divergence maximisation and direct ratio maximi-

sation on the effect of Pearson divergence in a 2D setting with exact density ratios.

The x-axis is the iteration and the y-axis is the Pearson divergence. The green line

corresponds to maximization of (5.10) and the blue line corresponds to that of (5.11).

of optimization of (5.10) and (5.11). As can be seen, if (5.10) is maximized, the

Pearson divergence gets stuck at the local maximum 1 and does not increase. However,

directly optimizing (5.11) leads to a large Pearson divergence after 20000 iterations.

Additionally, since the MMD-based ratio estimator is not guaranteed to be non-negative,

the direct maximisation approach also helps to resolve this issue. Therefore, in practice,

we train fθ by maximising (5.11).

5.3.3 Generator Loss

To train the generator network Gγ, we minimize the MMD in the low-dimensional

space, transforming both the generated data and the true data by fθ. In other words, we

minimize the MMD between p̄ and q̄. We sample points z1 . . .zM ∼ pz from the input

distribution of the generator. Then using the empirical estimate (5.2) of the MMD, we

define the generator loss function as

L̂2(γ) =
1

N2

N

∑
i=1

N

∑
i′=1

k( fθ(xi), fθ(xi′))−
1

NM

N

∑
i=1

M

∑
j=1

k( fθ(xi), fθ(Gγ(z j))) (5.12)

+
1

N2

M

∑
j=1

M

∑
j′=1

k( fθ(Gγ(z j)), fθ(Gγ(z j′))),

which we minimize with respect to γ for a fixed critic fθ. Finally, the overall training

proceeds by alternating SGD steps between L̂1 and L̂2. Unlike WGAN (Arjovsky et al.,

2017) and MMD-GAN, we do not require the use of gradient clipping, feasible set
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reduction and autoencoding regularization terms from (5.3). Our algorithm is a simple

three step iterative process.

while not converged do
Estimate ratio r̂q,θ using (5.9);

Update the projection function parameters θ via (5.11) using one step of

gradient ascent;

Update the generator parameters γ via (5.12) using one step of gradient

descent;

end
Algorithm 1: RB-MMDnet Algorithm

5.3.3.0.1 Convergence: If we succeed in matching the generator to the true data

in the low-dimensional space, then we have also matched the generator to the data in

the original space, in the limit of infinite data. To see this, suppose that we have γ∗

and θ∗ such that D∗(θ∗) = 0 and that My = MMD(p̄, q̄) = 0. Then for all x, we have

rx(x) = rθ∗(x) because D∗(θ∗) = 0, and that rθ∗(x) = 1, because My = 0. This means

that rx(x) = 1, so we have that px = qx.

5.4 Experiments

In this section we empirically compare RB-MMDnets against MMD-GANs and vanilla

GANs, on the Cifar10 and CelebA image datasets. To evaluate the sample quality and

resilience against mode dropping, we used Frechet Inception Distance (FID) (Heusel

et al., 2017).1 Like the Inception Score (IS), FID also leverages a pre-trained Inception

Net to quantify the quality of the generated samples, but it is more robust to noise

than IS and can also detect intra-class mode dropping (Lucic et al., 2017). FID first

embeds both the real and the generated samples into the feature space of a specific

layer of the pre-trained Inception Net. It further assumes this feature space to follow a

multivariate Gaussian distribution and calculates the mean and covariance for both sets

of embeddings. The sample quality is then defined as the Frechet distance between the

two Gaussian distributions, which is

FID(xp,xq) = ‖µxp−µxq‖2
2 +Tr(Σxp +Σxq−2(ΣxpΣxq)

1
2 ),

where (µxp,Σxp), and (µxq,Σxq) are the mean and covariance of the sample embeddings

from the data distribution and model distribution. We report FID on a held-out set
1We use a standard implementation available from https://github.com/bioinf-jku/TTUR

https://github.com/bioinf-jku/TTUR
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Table 5.1: Sample quality (measured by FID; lower is better) of RB-MMDnets compared

to GANs.

Archtitecture Dataset MMD-GAN GAN RB-MMDnet

DCGAN Cifar10 40 (0.56) 26.82 (0.49) 24.85 (0.94)
Small Critic Cifar10 210.85 (8.92) 31.64 (2.10) 24.82 (0.62)
DCGAN CelebA 41.105 (1.42) 30.97 (5.32) 27.04 (4.24)

that was not used to train the models. We run all the models three times from random

initializations and report the mean and standard deviation of FID over the initializations.

To ensure that we are fairly comparing with Li et al. (2017), who report IS rather than

FID, we computed IS values on the Cifar10 data set as well. See the appendix.

Architecture: We test all the methods on the same architectures for the generator and

the critic, namely a four-layer DCGAN architecture (Radford et al., 2015), because this

has been consistently shown to perform well for the datasets that we use. Additionally,

to study the effect of changing architecture, we also evaluate a slightly weaker critic,

with the same number of layers but half the number of hidden units. Details of the

architectures are provided in the appendix.

Hyperparameters: To facilitate fair comparison with MMD-GAN we set all the

hyperparameters shared across the three methods to the values used in Li et al. (2017).

Therefore, we use a learning rate of 5e−5 and set the batch size to 64. For the MMD-

GAN and RB-MMDnets, we used the same set of RBF kernels that were used in Li

et al. (2017). We used the implementation of MMD-GANs from Li et al. (2017).2 We

leave all the hyper-parameters that are only used by MMD-GAN, namely the weights

λ1, λ2, and λ3 from the MMD-GAN objective (5.3), to the settings in the authors’ code.

For RB-MMDnets, we choose K = h, that is, the critic dimensionality equals the input

dimensionality of the generator. We present an evaluation of hyperparameter sensitivity

in Section 5.4.2.

5.4.1 Image Quality

We now look at how our method competes against GANs and MMD-GANs on sample

quality and mode dropping on Cifar10 and CelebA datasets. Results are shown in

Table 5.1. Clearly, RB-MMDnets outperform both baselines. For CelebA, we do not

2Available at https://github.com/OctoberChang/MMD-GAN.

https://github.com/OctoberChang/MMD-GAN
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Table 5.2: Sample quality (FID) of fully convolutional architecture originally used for

MMD-GAN by Li et al. (2017).

Architecture Dataset MMD-GAN

Fully Convolutional Cifar10 38.39 (0.28)

Fully Convolutional CelebA 40.27 (1.32)

Figure 5.2: Nearest training images to random samples from an RB-MMDnet trained on

Cifar10. In each column, the top image is a sample from the generator, and the images

below it are the nearest neighbors.

run experiments using the weaker critic, because this is a much larger and higher-

dimensional dataset, so a low-capacity critic is unlikely to work well.

To provide evidence that RB-MMDnets are not simply memorizing the training set,

we note that we measure FID on a held-out set, so a network that memorized the training

set would be likely to have poor performance. For additional qualitative evidence of

this, see Figure 5.2. This figure shows the five nearest neighbors from the training set

for 20 randomly generated samples from the trained generator of our RB-MMDnet.

None of the generated images have an exact copy in the training set, and qualitatively

the 20 images appear to be fairly diverse.

Note that our architecture is different from that used in the results of Li et al. (2017).

That work uses a fully convolutional architecture for both the critic and the generator,

which results in an order of magnitude more weights. This makes a large comparison

more expensive, and also risks overfitting on a small dataset like Cifar10. However,

for completeness, and to verify the fairness of our comparison, we also report the FID

that we were able to obtain with MMD-GAN on this fully-convolutional architecture

in Table 5.2. Compared to our experiments using MMD-GAN to train the DCGAN

architecture, the performance of MMD-GAN with the fully convolutional architecture
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Figure 5.3: Hyper-parameter sensitivity of MMD-GAN, GAN and RM-MMDnets on

Cifar10 dataset. Sample quality measured by FID.

remains unchanged for the larger CelebA dataset. On Cifar10, not surprisingly, the larger

fully convolutional architecture performs slightly better than the DCGAN architecture

trained using MMD-GAN. The difference in FID between the two different architectures

is relatively small, justifying our decision to compare the generative training methods

on the DCGAN architecture.

5.4.2 Sensitivity to Hyperparameters

GAN training can be sensitive to the learning rate (LR) and the batch size used for

training (Lucic et al., 2017). We examine the effect of learning rates and batch sizes

on the performance of all three methods. Figure 5.3a compares the performance as a

function of the learning rates. We see that RB-MMDnets are much less sensitive to the

learning rate than MMD-GAN, and are about as robust to changes in the learning rate

as a vanilla GAN. MMD-GAN seems to be especially sensitive to this hyperparameter.

We suggest that this might be the case since the critic in MMD-GAN is restricted to the

set of k-Lipschitz continuous functions using gradient clipping, and hence needs lower

learning rates. Similarly, Figure 5.3b shows the effect of the batch size on the three

models. We notice that all models are slightly sensitive to the batch size, and lower

batch size is in general better for all three methods.

5.4.3 Stability of MMD-GANs

For MMD-GANs, we evaluate the effect of the various stabilization techniques used

for training, namely the autoencoder penalty (AE) and the feasible set reduction (FSR)

techniques from (5.3) on the Cifar10 data over two settings of the batch size. Table 5.3
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Table 5.3: Performance of MMD-GAN (Inception scores; larger is better) for MMD-

GAN with and without additional penalty terms: feasible set reduction (FSR) and the

autoencoding loss (AE). The full MMD-GAN method is MMD+FSR+AE.

Batch Size MMD-GAN = MMD+FSR+AE MMD+FSR MMD+AE MMD

64 5.35 (0.05) 5.40 (0.04) 3.26 (0.03) 3.51 (0.03)

300 5.43 (0.03) 5.15 (0.06) 3.68 (0.22) 3.87 (0.03)

shows the results. The performance of MMD-GAN training clearly relies heavily on

FSR. This penalty not only stabilizes the critic but it can also provides additional learning

signal to the generator. Because these penalties are important to the performance of

MMD-GANs, it requires tuning several weighting parameters, which need to be set

carefully for successful training.

5.4.4 Effect of the Critic Dimensionality

We examine how changing the dimensionality K of the critic affects the performance of

our method. We use the Cifar10 data. Results are shown in Figure 5.3c. Interestingly,

we find that there are two regimes: the output dimensionality steadily improves the

FID until K = 1000, but larger values sharply degrade performance. This agrees with

the intuition in Section 5.3.1 that dimensionality reduction is especially useful for an

“intrinsically low dimensional” distribution.

5.5 Summary

We propose a new criterion for training deep generative networks using the maximum

mean discrepancy (MMD) criterion. While MMD networks alone fail to generate high

dimensional or color images of good quality, their performance can be greatly improved

by training them under a low dimensional mapping. We propose a novel training

method for learning this mapping that is based on matching density ratios, which leads

to sizeable improvements in performance compared to the recently proposed adversarial

methods for training MMD networks.
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5.6 Supplementary

5.6.1 Architecture

For the generator, we used the following DCGAN architecture,

Op Input Output Filter Stride Padding

Linear 128 2048 - - -

Reshape 2048 (-1,4,4,128) - - -

Conv2D_transpose 128 64 4 2 SAME

Conv2D_transpose 64 32 4 2 SAME

Conv2D_transpose 32 3 4 2 SAME

Table 5.4: DCGAN generator architecture for Cifar10.

We used two different architectures for the experiments on Cifar10 dataset. Table

5.5 shows the standard DCGAN discriminator that was used.

Op Input Output Filter Stride Padding

Conv2D 3 32 4 2 SAME

Conv2D 32 64 4 2 SAME

Conv2D 64 128 4 2 SAME

Flatten 128 2048 - - -

Linear 2048 128 - - -

Table 5.5: DCGAN discriminator architecture for Cifar10.

Table 5.6 shows the architecture of the weaker DCGAN discriminator architecture

that was also used for Cifar10 experiments.

While leaky-ReLU was used as non-linearity in the discriminator, ReLU was used

in the generator, except for the last layer, where it was tanh. Batchnorm was used in



Chapter 5. Ratio Based MMD Nets: Low dimensional projections for effective deep generative models.86

Op Input Output Filter Stride Padding

Conv2D 3 32 4 2 SAME

Conv2D 32 32 4 2 SAME

Conv2D 32 64 4 2 SAME

Flatten 64 1024 - - -

Linear 1024 128 - - -

Table 5.6: Shallow DCGAN discriminator architecture.

both the generator and the discriminator.

5.6.2 Samples

We show some of the randomly generated samples from our method on both the datasets

in Figure 5.4.

5.6.3 Inception Score

Inception score (IS) is another evaluation metric for quantifying the sample quality in

GANs. Compared FID, IS is not very robust to noise and cannot account for mode

dropping.

In addition to the FID scores that we provide in the paper, here we also report IS for

all the methods on CIFAR10 for completeness since the MMD-GAN paper used it as

their evaluation criteria.

Table 5.7: Inception Scores for MMD-GAN, GAN, RM-MMD and MMD-networks on

CIFAR10 for three random initializations.

MMD-GAN GAN RM-MMD

Inception Score
5.35(0.12)

5.21(0.14)

5.31(0.10)

5.17(0.13)

4.94(0.15)

5.27(0.05)

5.73(0.10)
5.44(0.12)
5.45(0.18)



Chapter 5. Ratio Based MMD Nets: Low dimensional projections for effective deep generative models.87

Figure 5.4: Random Samples from a randomly selected epoch (>100).

(a) CIFAR10

(b) CelebA

5.6.4 Mode Collapse

To complement the quantitative measure (FID) of mode dropping in, we also provide

visual evidence that our method is resilient against mode collapsing for sanity check.

We consider the standard synthetic benchmark of a mixture of eight 2D-Gaussians that

are laid out in a 2D ring. We first search for an architecture on which GANs showed

severe collapsing and then using the same architecture and hyper-parameters we ran

RB-MMDnets. As shown in Figure 5.5, compared to GANs, the RB-MMDnet is able
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to generate samples from all the modes.

Figure 5.5: Kernel density plots of the true data and generator distributions from different

methods trained on mixtures of Gaussians arranged in a ring.

(a) True Data (b) RB-MMDnet (c) GAN



Chapter 6

Conclusion and Future Work

Generative models are ubiquitous in machine learning and computational sciences.

They manifest themselves in the form of either a statistical model designed by domain

expert using for example the Bayesian framework, or as a simulator of an actual physical

process. In both the cases, the key problem of interest is that of posterior inference.

In this respect, the present thesis introduced several novel methods and algorithms to

tackle the inferential problems in the two types of generative models.

6.1 Prescribed Models

In Bayesian models such as LDA and PAM, where the likelihood function is available

in closed form, the posterior inference is often either too slow or not accurate enough.

We showed in Chapters 2 and 3 that our AVITM and aviPAM inference methods can be

employed in such models to not only increase the quality of the generated topics but

also to drastically speed up the learning process. Moreover, we demonstrated how the

black-box nature of these methods allows for the exploration of newer, better models

without the need of deriving their inference methods from scratch. As a result, we also

introduce new topic models such as prodLDA and MoLDA, which are the state-of-art

in terms of coherence i.e. the quality of the generated topics.

While in Chapter 2 we only considered topic models of text, the variational infer-

ence framework we introduced is general enough to be applicable to a large class of

continuous and discrete generative models. The VAE framework that our methods build

on top of, suffers from the issue of posterior collapse (Srivastava and Sutton, 2017).

To this end, we also provided a detailed explanation of the causes for this behaviour.

Furthermore, several tricks and techniques on how to resolve it successfully in the

89
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case of topic models, in particular through a novel use of the batch-normalisation type

methods are also discussed.

While the state-of-art in stochastic variational inference method is improving at a

fast rate, there still remain several big challenges that need to be tackled in order for such

methods to become more widely accepted especially in other fields of computational

sciences. For example, VI methods in general do not enjoy the same asymptotic

guarantees for convergence as the MCMC methods do. This is generally highly desirable

in the analysis of experimental sciences and therefore proves to be one of the major

reasons behind limited usage of VI in such fields. In the special case of stochastic VI,

optimisation issues are very prevalent and add to the issue of convergence guarantees.

They often require a few ad-hoc numerical stabilisation tricks in order to work.

Though there is a big scope for improvement, there is an equally big interest in this

area from within the machine learning and statistics communities. As a result, a lot of

these issues are being tackled in recent works such as Khan et al. (2018); Grathwohl

et al. (2018); van den Oord et al. (2017); Graves et al. (2018) and others. More notably,

library packages such as Edward (Tran et al., 2016; Kucukelbir et al., 2016) are now

available that provide a convenient way of designing generative models and carrying

out stochastic inference in a seamless way.

6.2 Implicit Models

Training of implicit generative models is laden with a plethora of optimisation and

learning related issues from both, theoretical and practical perspectives. For such

models we presented a variational learning framework, VEEGAN which can be used to

carry out inference when the likelihood function is not available in closed form. We

showed that when applied to GANs (Goodfellow et al., 2014) this method also resolves

the mode collapse issue and allows for better generation quality and stability. The

VEEGAN framework is based on a discriminator based density ratio estimator. In the

followup work, we explored another density ratio estimation technique and introduced a

novel training method for implicit generative models that uses a density ratio estimator

derived from the MMD criterion (Sugiyama et al., 2012). We showed that this training

method is not only far more stable and robust to training issues as it is not a saddle-point

optimisation problem like GANs but it also leads to very high quality image generation

as well.

While inference in implicit models is not a new problem in statistics and physics,
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implicit generative models and implicit variational inference are relatively new and at

the moment they are mostly concentrated within the machine learning research. Like

most new topics of research, implicit modelling and variational inference have a number

of challenges and issues that need resolutions before wide-scale adoption of these

methods becomes possible in other computational fields. One of the biggest challenges

in this area is the lack of standard evaluation metrics. While several recent works have

proposed improved metrics for sample quality evaluation in implicit generative models

of images (Heusel et al., 2017; Salimans et al., 2016; Bińkowski et al., 2018), it is

still not clear how to quantify the goodness of implicit variational inference methods

(Rosca, 2018). On the modelling side, research on the architectures of deep generative

model requires a significant effort as well. It has been often noted in recent work that

the choice of architecture plays a major role in the successful training of such models

(Lucic et al., 2017).

As mentioned in chapter 4, development of likelihood-free variational inference

has gained a lot of interest in machine learning community (Srivastava et al., 2017;

Mescheder et al., 2017a; Tran et al., 2017). Moreover, some of these methods provide

partial or full Bayesian treatment of the inference (Saatci and Wilson, 2017) as well.

While inference libraries are now also available for standard likelihood-free inference

methods such as ABC (Lintusaari et al., 2018), at the moment they do not focus much

on the variational methods for implicit generative models.

6.3 Future Work

A promising direction to allow wider adoption of implicit variational inference is

to provide their standardised implementations similarly to how ABC methods have

been via Engine for likelihood-free Inference (ELFI) (Lintusaari et al., 2018). An

interesting avenue for future work towards this goal is to develop on top of the VEEGAN

framework, as it provides a seamless way to deal with implicit and prescribed models

within one unified variational inference principle. VEEGAN can be extended in multiple

directions, we list some of the more relevant ones here.

Though in chapter 4 we only discussed a simple latent variable model, it is quite

straightforward to extend VEEGAN for hierarchical Bayesian models that are frequently

used in modelling complicated data in machine learning. The additional benefit of

using implicit VI in such model is that prior distributional assumptions do not have

to be made for all the nodes if samples are available for them. Similarly, VEEGAN
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can be easily modified to allow for full Bayesian analysis which is often important in

scientific research. A simple strategy is to amortise the learning of the generator, i.e.

instead of learning its parameters, we learn a distribution from which the generator can

be sampled. To this end, we may use the amortisation method that was introduced in

Chapter 3 to sample the super-topics.

Amortised stochastic variational inference has revolutionised the field of statistical

modelling and inference. With improved posterior approximation methods (Rezende

and Mohamed, 2015b; Kingma et al., 2016; Papamakarios et al., 2017), faster and more

stable optimisation techniques (Kingma and Ba, 2014; Khan et al., 2018; Martens and

Grosse, 2015), newer probabilistic metrics and estimators (Arjovsky et al., 2017; Srivas-

tava et al., 2018; Li et al., 2017; Bińkowski et al., 2018; Mroueh et al., 2017; Sugiyama

et al., 2012) and a deeper understanding of the methods and models (Mescheder et al.,

2017b; Arora, 2018; Shwartz-Ziv and Tishby, 2017), amortised stochastic variational

inference is becoming one of the most popular methods of inference both, within and

outside the machine learning research.
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