
 
 
 
 
 
 
 
 
 
 
 

 
 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

 

This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



Cryptographic Techniques for Hardware Security

Yiannis Tselekounis

Doctor of Philosophy

Laboratory for Foundations of Computer Science

School of Informatics

University of Edinburgh

2018



To my family.



Abstract

Traditionally, cryptographic algorithms are designed under the so-called black-box model,

which considers adversaries that receive black-box access to the hardware implementation.

Although a “black-box” treatment covers a wide range of attacks, it fails to capture reality

adequately, as real-world adversaries can exploit physical properties of the implementation,

mounting attacks that enable unexpected, non-black-box access, to the components of the

cryptographic system. This type of attacks is widely known as physical attacks, and has

proven to be a significant threat to the real-world security of cryptographic systems. The

present dissertation is (partially) dealing with the problem of protecting cryptographic

memory against physical attacks, via the use of non-malleable codes, which is a notion

introduced in a preceding work, aiming to provide privacy of the encoded data, in the

presence of adversarial faults.

In the present thesis we improve the current state-of-the-art on non-malleable codes

and we provide practical solutions for protecting real-world cryptographic implementations

against physical attacks. Our study is primarily focusing on the following adversarial

models: (i) the extensively studied split-state model, which assumes that private memory

splits into two parts, and the adversary tampers with each part, independently, and (ii) the

model of partial functions, which is introduced by the current thesis, and models adversaries

that access arbitrary subsets of codeword locations, with bounded cardinality. Our study

is comprehensive, covering one-time and continuous, attacks, while for the case of partial

functions, we manage to achieve a stronger notion of security, that we call non-malleability

with manipulation detection, that in addition to privacy, it also guarantees integrity of the

private data. It should be noted that, our techniques are also useful for the problem of

establishing, private, keyless communication, over adversarial communication channels.

Besides physical attacks, another important concern related to cryptographic hard-
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ware security, is that the hardware fabrication process is assumed to be trusted. In reality

though, when aiming to minimize the production costs, or whenever access to leading-edge

manufacturing facilities is required, the fabrication process requires the involvement of sev-

eral, potentially malicious, facilities. Consequently, cryptographic hardware is susceptible

to the so-called hardware Trojans, which are hardware components that are maliciously

implanted to the original circuitry, having as a purpose to alter the device’s functional-

ity, while remaining undetected. Part of the present dissertation, deals with the problem

of protecting cryptographic hardware against Trojan injection attacks, by (i) proposing a

formal model for assessing the security of cryptographic hardware, whose production has

been partially outsourced to a set of untrusted, and possibly malicious, manufacturers, and

(ii) by proposing a compiler that transforms any cryptographic circuit, into another, that

can be securely outsourced.
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Chapter 1

Introduction

The enormous technological advancements of the last decades, led to the emerge of an era

in which, almost every aspect of our life has been digitized. While this brings convenience

and facilitates innovation, it also poses serious concerns about the privacy, as well as the

integrity and authenticity of the users’ data. The role of cryptography is to provide rigorous

and realistic mathematical models of security, followed by provably secure solutions that

protect against malicious behaviours.

The wide use of cryptographic hardware, is one of the impacts of the digital era in

our lives. By the term “cryptographic hardware” (or “cryptographic device”), we refer

to any device that possess some sort of private memory (private state) and implements

specific cryptographic algorithms, whose security depends solely on the privacy of the

memory contents. In each invocation, the device evaluates the cryptographic algorithm

over the private state and any potential public user input, and returns the output of the

computation to the caller. An instance for such a cryptographic system is a smart-card.

Smart-cards are light-weight hardware devices, widely used by payment systems, enabling

the authentication of users, by requiring them to provide proof of knowledge of the secret

code (referred to as pin), that is stored in the device’s private state.

Although cryptographic devices have revolutionized and improved human lives, at the

same time they pose serious security concerns, mainly due to the following reasons: (1)

they can easily fall into the hands of malicious users, as they are susceptible to theft, and

(2) their implementation requires the involvement of numerous entities, that are assumed

to be trusted. In this context, it is possible for a malicious user to alter the functionality of

the device, by exploiting physical properties of the implementation, in a way that enables

recovery of the private state, thus allowing impersonation of legitimate users. Furthermore,
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1.1. Physical attacks and provable security 2

the adversarial advantage could increase, when the adversary is (partially) controlling the

fabrication process, which is assumed to be trusted.

The present dissertation deals with problem of protecting cryptographic hardware

against physical and hardware Trojan injection, attacks, using cryptographic methods.

Along with that, we highlight the applicability of our techniques to the problem of estab-

lishing secure communication in the presence of man-in-the-middle adversaries.

Before presenting the contributions of the thesis, we introduce a formal model, together

with basic notions.

1.1 Physical attacks and provable security

Traditionally, cryptographic algorithms are designed assuming adversaries that receive

black-box access to the cryptographic device, i.e., they are allowed to execute the device on

inputs of their choice, and by observing the output behaviour, they try to infer information

related to the private state. In this setting, the value of the private memory, as well as

the algorithm executed by the device, cannot be altered by the attacker. This mode of

interaction is usually modeled as a security game that formally defines the capabilities of

the adversary and the outcomes of the game that signify that security has been breached.

After defining the model, the next step is to construct cryptographic schemes and formally

prove their security.

Broadly speaking, there are two main types of cryptographic security, namely, com-

putational and information-theoretic, or unconditional. The former type assumes com-

putationally bounded adversaries and relies on intractability assumptions over problems

that have been studied by researchers for decades, and there is strong evidence that such

problems do not have efficient, i.e., polynomial-time, solvers. Under this assumption, the

security of the cryptographic scheme is reduced to the underlying hardness assumption,

by formally proving that, any efficient adversary that compromises the security of the

cryptographic scheme, yields an efficient solver for the underlying problem, reaching a

contradiction. On the other hand, security in the information-theoretic setting is with

respect to computationally unbounded adversaries, and the proof of security is based on

probabilistic arguments, showing that “bad” events occur with negligible probability. In

this setting, the proof often relies on assumptions related to the probabilistic behaviour of

the environment, like for instance, assumptions on the error probability, when studying

the problem of data transmission over noisy channels.
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Even though the approach described above covers many practical scenarios, it does not

model reality adequately, as real-world adversaries can be much more powerful. In reality,

the adversary, besides observing the device’s input-output behaviour, it can also exploit the

physical properties of the implementation, mounting attacks that enable unexpected, non-

black-box access, to the components of the cryptographic system. Consequently, security

can be compromised, as such attacks are not covered by the security model. An instance

of this type of attacks was considered in [Koc96], in which Kocher presents an attack

that recovers the secret key of an encryption scheme, by measuring the power consumed

by the device during the encryption operation, while in [KJJ99], Kocher et al. manage

the same thing, this time by measuring the time needed for the encryption to complete.

In subsequent works [GST17, GST14], Genkin, Shamir and Tromer manage to extract

4096-bit RSA decryption keys within an hour, using the sound generated by the computer

during the decryption of some chosen ciphertexts.

Besides physical attacks in the passive setting, in which the adversary performs different

kinds of measurements, there is also a wide range of active physical attacks. The works

of [BS97, BDL01, BDL97, GA03, AK96, SA03], consider adversaries that induce faults

to the computation, and then show how to leak sensitive information, by inspecting the

output of the tampered computation. Physical attacks have proven to be a significant

threat to the real-world security of cryptographic implementations, as they can fully break

the security of cryptographic systems.

Over the past decade, the cryptographic community has made a substantial progress

towards protecting cryptographic implementations from physical attacks. From a theoret-

ical perspective, this line of research focuses on providing rigorous adversarial models, that

cover a wide range of real-world attacks, followed by provably secure solutions. The efforts

made by the community, led to the development of two important directions in cryptogra-

phy, establishing the branches that nowadays are known as leakage-resilient and tamper-

resilient, cryptography. The former, deals with the problem of protecting cryptographic

implementations against passive attacks, by considering adversaries that receive bounded

information (leakage) related to the private state of the cryptographic primitive (see for

instance [ISW03, MR04, DP08, FKPR10, FRR+10, BKKV10, DDF14, DLZ15, DGL+16]),

while tamper-resilient cryptography is dealing with active physical attacks, considering ad-

versaries that, either tamper with the memory of the cryptographic device, which is a

model originally considered in the seminal work of Gennaro et al. [GLM+04], or adver-

saries that induce faults to the computation; a model originally considered by [IPSW06]
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and subsequently by [FPV11, DK12, DK14, KT13].

Part of this dissertation focuses on securing cryptographic memory against tampering

and leakage attacks, via the use of non-malleable codes [DPW10].

1.1.1 Non-malleable codes and physical security

The notion of non-malleable codes (NMC) was introduced by Dziembowski, Pietrzak and

Wichs [DPW10], as a relaxation of error correction and error detection codes, aiming to

provide strong privacy, without ensuring correctness. Informally, non-malleable encoding

schemes are keyless primitives, guaranteeing that any modified codeword, decodes, either to

the original message, or to a completely unrelated one, with overwhelming probability. The

definition of non-malleability is simulation-based, stating that for any tampering function

f , there exists a simulator that simulates the tampering effect, by only accessing f , i.e.,

without making any assumptions on the distribution of the encoded message. Besides the

original definition [DPW10], the work of Aggarwal et al. [ADKO15], considers a reduction

based definition according to which, security against a function class F , is proven by a

reduction from F to a class of trivial functions, consisting of the identity function and all

constant functions. As the authors prove, their definition is equivalent to the one given in

[DPW10].

The main application of non-malleable codes, that motivated the seminal work of

Dziembowski et al. [DPW10], is the protection of cryptographic implementations from

active physical attacks against memory, known as tampering attacks. In this setting, the

adversary tampers with the memory contents of the cryptographic device, receives the

output of the computation on inputs of its choice, with respect to the tampered memory

value, and tries to extract information related to the original memory value. Non-malleable

codes provide a straightforward method to protect against such attacks [DPW10] and we

briefly discuss it in the paragraph that follows.

Consider a non-malleable encoding scheme (Enc,Dec), consisting of the encoder, Enc,

and the decoder, Dec, and any reactive cryptographic functionality G, with private state

s, receiving public input m. For instance, consider G to be the computation of a digital

signature over the input message m and signing key s. The evaluation of G, over m, s, will

be denoted by [G, s](m). Using (Enc,Dec) we can transform the functionality [G, s] into

a tamper-resilient functionality [Ĝ, c], which is secure against tampering with the private

state c. The transformation is as follows: first we compute the non-malleable encoding of

s, i.e., we compute c ← Enc(s), and then we define the functionality [Ĝ, c], such that on
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input message m, [Ĝ, c](m), first recovers the signing key by computing s← Dec(c), then

executes [G, s](m), i.e., it executes the original functionality [G, s] on input message m,

erases the private state c, and stores a fresh non-malleable encoding of s, by recomputing

c ← Enc(s). In the i-th round of interaction between the adversary and the device, the

adversary evaluates [Ĝ, c] on input mi of its choice, and in addition, it is allowed to issue

a tampering query, fi, against c, receiving [G, fi(c)](mi), i.e., the adversary receives the

output of the functionality on input mi, with respect to the tampered memory value fi(c).

In case, Dec(fi(c)) = ⊥, i.e., if the attacker creates an invalid codeword,1 the private

memory of the device is erased and the functionality outputs ⊥, in all subsequent rounds

(in that case we say that the devices self-destructs). As it is stressed by Gennaro et

al. [GLM+04], the self-destruct mechanism is essential, otherwise the adversary can fully

recover the private state.

The non-malleability property of (Enc,Dec), guarantees that in a single round, any

admissible modification of the private state, c, decodes, either to the original value s, or

to a completely unrelated one, and in addition, the tampering effect can be simulated

without accessing s. This implies that, any information the attacker learns by evaluating

[G, f(c)](mi), it could also be computed by either evaluating [G, c](mi), i.e., without tam-

pering with c, or by evaluating [G, c′](mi), for a private state value c′, that is completely

unrelated to s, thus privacy of the private state is guaranteed. Since the non-malleable

encoding of s is refreshed after each invocation of the functionality, the above construction

is continuously secure, i.e., it provides security against multi-round adversaries, even if the

underlying non-malleable code is one-time secure.

The transformation described above requires erasure of the private state after each

invocation of the functionality. However, even if fully erasing the private state is feasible,

such erasures can be problematic in the presence of tampering adversaries, as it was origi-

nally pointed out by Faust et al. [FMNV14]. Consider a scenario in which besides storing

the encoding of a private key, the memory of the device also contains other, unencoded

data. In this setting, erasing only the part that stores the encoding of the private key

could compromise security, as the adversary might be able to copy the codeword on the

unencoded part of the memory, rendering the self-destruct mechanism of the device useless.

A solution to the problem would be to erase the entire memory of the device, still in most

cases, there is a good chance that the users will use the uncoded part of the memory to

store important data that should not be erased. The straightforward way to prevent the

1The output of the decoder on invalid input codewords, is defined to be the special symbol “⊥”.
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adversary from getting permanent access to the codeword by making copies of it, would

be to encode the entire memory of the device. However, this approach has serious disad-

vantages, that where originally identified by [FMNV14]. First of all, protecting the entire

memory is implausible, as in many cases a major part of it consists of non-sensitive data

that don’t require protection. Secondly, the proposed solution is highly inefficient, as each

invocation of the device requires decoding and re-encoding the entire state, introducing

substantial overhead.

Motivated by the above considerations, Faust et al. [FMNV14], introduce the notion

of continuous non-malleable codes (CNMC) as an extension to the original notion, con-

sidering adversaries that tamper continuously with the same codeword, as opposed to the

original notion, that requires erasures in order to be applied to the continuous setting.

In Chapter 2, we provide formal definitions for the notions of non-malleable codes and

continuous non-malleable codes, while in Chapters 3,5,6, we construct these notions for

various function classes, that we informally introduce below.

1.1.2 Models of memory tampering

Ideally, we would like to achieve non-malleability against arbitrary function classes, how-

ever, it not hard to see that this is impossible. For instance, consider (Enc,Dec), to be

the encoding and decoding, respectively, procedures, of an encoding scheme, and assume

that the tampering function class permits the application of (Enc,Dec). Then, we define

the tampering function f as f(c) := Enc(Dec(c) + 1), where c denotes the encoding of the

private message, s. Clearly, for any codeword c, the decoding of f(c) is equal to s + 1,

which is a message highly related to the original one, thus no secure construction can exist

against any function class that contains f . Therefore, when aiming for non-malleability,

restricting the function class is unavoidable.

In the original paper [DPW10], the authors present the first non-malleable code for the

class of bit-wise independent tampering functions, denoted as Fbit, that tamper with each

bit of the codeword, independently. In particular, an element f ∈ Fbit, can be represented

as a vector of functions (f1, . . . , fν), where ν denotes the codeword length, in bits, and each

fi tampers with the i-th codeword bit, independently of the value of the remaining bits.

Besides an explicit construction against Fbit, the authors of [DPW10], using probabilistic

arguments, they prove the existence of non-malleable codes for function classes of bounded

size, namely for all function classes F , such that log (log(|F|)) < ν, where |F| denotes the
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size of the function class.2 Although the probabilistic method of [DPW10], does not directly

yield efficient explicit constructions, it gives efficient non-malleable codes in the random

oracle model, for more general classes of tampering functions. The results of [DPW10]

are in the information-theoretic setting, i.e., they provide security against computationally

unbounded adversaries.

Due to their important application, constructing non-malleable codes has received a lot

of attention over the last years. The main objective in this line of research, is to construct

efficient encoding schemes against function classes, expressive enough to model real-world

attacks. As in the case of error correction/detection codes, the efficiency of non-malleable

encoding schemes, depends on how efficient the encoding and decoding procedures are,

while another important measure of efficiency, is the information rate of the scheme, which

is defined as the ratio of the message to codeword, length, as the message length goes to

infinity. Based on the notation introduced so far, the information rate of an encoding

scheme (Enc,Dec), is formally defined as,

lim
|s|→∞

|s|
|c|
,

where c is the codeword output by Enc(s), and |s| (resp. |c|) denotes the message (resp.

codeword) length.

The split-state model. Due to the impossibility of non-malleable codes for arbitrary

functions classes, various models have been proposed and studied over the years. An

important model, that the present thesis is partially focusing on, is the extensively studied

split-state model. The split-state model is a generalization of the bit-wise independent

tampering function class, and was originally introduced in the context of non-malleable

codes, by Dziembowski et al. [DPW10] and Liu and Lysyanskaya [LL12], who considered

the case of two split-states. Briefly speaking, in the split-state model with two states,

the codeword (private memory) is split into two parts, c0, c1, and the attacker is allowed

to apply on it any function f = (f0, f1), that results in a tampered codeword equal to

(f0(c0), f1(c1)). As in the case of bit-wise independent tampering, the critical point here

is that each fi, for i ∈ {0, 1}, tampers with ci, independently of the value c1−i. This is

a plausible model to assume, since there are many scenarios in which sensitive data may

be split into two storage devices, that are physically separated, for security reasons. In

this setting, an adversary that receives tampering access over the memory components,

2Note that for the function family Fall, consisting of all functions f : {0, 1}ν → {0, 1}ν , we have
log (log(|Fall|)) = ν + log(ν).
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modifies the contents of each memory independently of the contents of the other. Note

that, the model can generalize to multiple split-states, with the two-state variant being

the hardest to achieve. Part of the current thesis (cf. Chapter 5,6), considers the problem

of constructing efficient non-malleable codes against split-state attackers, with two states,

and from now on, any reference to the split-state model will be with respect to the two-state

variant.

The class of partial functions. The current state-of-the-art on non-malleable codes,

which is discussed extensively in subsequent chapters, consider adversaries that receive

full access over the codeword, while imposing structural or computational restrictions to

the way the function computes over the input. In the present thesis (cf. Chapter 3), we

initiate a study on the notion of non-malleable codes, for functions that receive partial

access over the codeword. Informally speaking, the class of partial functions contains all

functions that read/write on an arbitrary subset of codeword bits,3 of specific cardinality.

As we elaborate later in the thesis, this is a plausible and important, yet overlook class.

In Chapter 3, we construct efficient non-malleable codes for the class of partial func-

tions, while in Chapter 5, we provide efficient constructions against split-state adversaries.

In Chapter 6, we consider continuous attacks and we construct continuously secure non-

malleable codes for split-state adversaries, while a weaker notion of continuous security

against partial functions is also presented in Chapter 3.

1.2 Secure communication

Non-malleable codes can be useful, not only as a countermeasure against physical attacks,

but in any setting in which a restriction is imposed to the way the adversary accesses the

data. As an example, consider two parties that wish to communicate securely, while given

access to two independent and possibly insecure channels. Assuming the adversary tampers

independently with the data transmitted over the two channels,4 split-state non-malleable

codes provide a straightforward way for establishing a private, keyless communication

channel, ensuring non-malleability of the transmitted data. This property has also been

identified by [BDKM18, CGM+16], who present the notion of non-malleable codes in the so-

called streaming model, in which the adversary is accessing codeword blocks in a streaming

3When considering alphabets larger than {0,1}, the function is accessing codeword symbols.
4This could happen because the adversary prefers not to slow down the transmission rate, in order to

avoid detection.
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fashion, i.e., tampering with the i-th block only depends on the view over the previous

i − 1 blocks. The main drawback of existing constructions, is that they do not provide

integrity, which we believe is an important property when applying NMCs in the context

of secure communication.

The results presented in the current dissertation find useful application, not only in the

context of securing cryptographic hardware against memory tampering, but also for pro-

viding private, keyless and non-malleable communication, that also guarantees integrity of

the transmitted data. As we discuss later in the thesis, this type of security can be achieved

via the use of non-malleable codes, as well as via the use of non-malleable commitments,

which are studied in Chapter 7 of the present thesis.

1.3 Protection against hardware Trojans

Up to now, and as far as hardware security is concerned, we have considered adversaries

that receive tampering access over the cryptographic implementation, assuming that the

fabrication process has been performed by a trusted party. In reality, though, when aiming

to minimize the production costs, or whenever access to leading-edge manufacturing facil-

ities is required, the fabrication process demands the involvement of several, potentially

malicious, facilities. Consequently, integrated circuits (ICs) are susceptible to the so-

called hardware Trojans, which are hardware components that are maliciously implanted

to the original circuitry, having as a purpose to alter its functionality, while remaining

undetected. Hardware Trojans are aiming at disabling or compromising the security de-

fences of a system, or covertly leaking information related to the systems’ private state

[LKG+09, CNB09, BRPB14]. The injection of Hardware Trojans can occur during the

design phase, by a malicious designer, or during the manufacturing phase, by a malicious

fabrication facility. Once the Trojan is implanted, it may be active the entire time, or it

may be triggered by some special event, e.g., when the user supplies the circuit with some

special input, or after a specific number of circuit invocations.

In Chapter 8 of the thesis, we deal with the problem of secure circuit outsourcing, by

providing a rigorous security model that covers a large class of hardware Trojans, together

with a construction that is based on the notion of secure multi-party computation.

1.4 Contributions

In the current section, we briefly summarize the outcomes of the present dissertation.
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1.4.1 Non-malleable codes for partial functions and applications

In the present thesis, we initiate a comprehensive study on non-malleable codes for the class

of partial functions, that read/write on an arbitrary subset of codeword bits (symbols),

with specific cardinality. Our constructions are efficient in terms of information rate, while

allowing the attacker to access asymptotically almost the entire codeword. In addition,

they satisfy a notion of security which is stronger than non-malleability, that we call non-

malleability with manipulation detection (MD-NMC), guaranteeing that any modified

codeword decodes, either to the original message, or to ⊥, with overwhelming probability.

Our results are informally summarized bellow.

1. (MD-NMC in the CRS model): First, we construct an information rate 1 MD-

NMC, in the common reference string (CRS) model,5 tolerating adversarial access

over a 1−1/Ω(log k) faction of codeword bits, where k denotes the security parameter.

The proposed construction combines Authenticated Encryption together with an

inner code that protects the key of the encryption scheme.

2. (MD-NMC in the standard model): In our second result we show how to remove

the CRS, and we present a computationally secure MD-NMC in the standard model,

over alphabets of length O(log k), with information rate 1 − 1/Ω(log k), tolerating

adversarial access over a 1− 1/Ω(log k) fraction of codeword blocks (or symbols).

3. (Continuous MD-NMC ): In our final result, we construct continuous non-malleable

codes, for a weaker notion of security than the one presented in [FMNV14], since our

codewords need to be updated after each tampering query. Nevertheless, our update

operation uses only shuffling and refreshing operations, avoiding the full re-encoding

process. Also, by incorporating the seed of a pseudo-random generator inside the

codeword, the final construction is deterministic.

In Chapter 3, we propose various applications of the primitive in tamper-resilient cryptog-

raphy, namely, for protecting the cryptographic memory of boolean and arithmetic circuits

against tampering attacks, and also for protecting data transmission over adversarial chan-

nels.

5The common reference string (CRS) model, assumes that all parties receive access to a trusted,
honestly and correctly, generated string, and generalizes the common random string model, in which the
common string is sampled according to the uniform distribution.
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NMC for partial functions and All-or-Nothing Transforms. Besides the impor-

tance of non-malleable codes for partial functions in the active setting, in which the function

is allowed to partially read/write the codeword, the passive analogue of the primitive, i.e.,

when the function is only given read access over the codeword, matches the model consid-

ered by All-Or-Nothing Transforms (AONTs), which is a notion originally introduced by

Rivest [Riv97], providing security guarantees similar to those of leakage resilience: reading

an arbitrary subset (up to some bounded cardinality) of locations of the codeword does not

reveal the underlying message. As non-malleable codes provide privacy, non-malleability

for partial functions is the active analogue of (and in fact implies) AONTs, thus our con-

structions yield efficient AONTs under standard assumptions (only one-way functions),

which, was an open question until now.

1.4.2 `-more weakly extractable hash function families and

non-malleability

In the present dissertation, we introduce the notion of `-more extractable, collision resis-

tant, hash function families. Briefly speaking, `-more extractable hash function families

capture the idea that, if an adversary, that is given ` ∈ N precomputed hash values

v1, . . . , v`, manages to produce a new valid hash value ṽ, then it must know a pre-image

of ṽ. This is a generalization of the notion of extractable hash functions by Bitansky et

al. [BCCT12] and Goldwasser et al. [GLR11], which corresponds to the ` = 0 case, in which

the adversary gets no access to any valid hash values, prior to producing its own value. By

appropriately relaxing the extractability requirement without hurting the applicability of

the primitive, we manage to instantiate `-more extractable hash functions under the same

assumptions used by Bitansky et al. and Goldwasser et al., i.e., a variant of the Knowledge

of Exponent Assumption. We call the resulting notion, `-more weakly extractable, collision

resistant hash function family (wECRH), and we present the following results.

1. (Extractability [BCCT12] 6=⇒ 1-more extractability): We prove that our

generalization is strict, by showing that the extractable hash function family of

[BCCT12, GLR11], is not 1-more extractable.

2. (Constructing `-more wECRH): In our second result, we construct the notion of

`-more wECRH. In particular, we provide two instantiations of the primitive. The

first one is based on the hardness of the discrete logarithm problem and the variant
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of the knowledge of exponent assumption used by [BCCT12], while the latter is in

the random oracle model.

3. (Leakage-resilient `-more wECRH): Finally, as an extension of the notion of

`-more wECRH, we formalize and construct the notion of leakage-resilient, `-more,

weakly extractable hash function families, considering attackers that, in addition to

receiving access to ` precomputed hash values, they also receive bounded leakage over

the randomness used to compute those values.

Subsequently, we illustrate the power of the primitive by providing constructions that

significantly improve the current state-of-the-art in non-malleable cryptography. In par-

ticular, we provide the following results based on `-more wECRH.

1. (NMC for split-state functions): We significantly improve the efficiency of non-

malleable codes in the split-state model, by constructing an encoding scheme with

codewords of length |s| + O(k), where |s| is the length of the message, and k is the

security parameter. This is a substantial improvement over previous constructions,

both asymptotically and concretely.

2. (Continuous NMC against split-state functions): We leverage the power of

`-more wECRH in the continuous setting, and assuming leakage-resilient `-more ex-

tractable hash functions, we construct efficient, continuously non-malleable, leakage-

resilient codes against split-state attackers, improving the efficiency of [FMNV14].

3. (Non-malleable commitments): Finally, we prove that `-more extractable hash

functions imply succinct, non-interactive, non-malleable commitments, that satisfy a

stronger definition than the ones by Crescenzo et al. [DIO98], and Pass and Rosen

[PR05], in the sense that the simulator does not require access to the original message,

while the attacker’s auxiliary input is allowed to depend on it.

1.4.3 Circuit outsourcing and Trojan resilience

In Chapter 8 of the thesis, we propose a formal model for assessing the security of integrated

circuits, whose fabrication has been outsourced to a set of untrusted and possibly malicious,

manufacturers. The model that we propose assumes that the circuit specification and

design, are trusted, but the fabrication facilities may be malicious. In this setting we

provide the following, informally stated results.
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1. (A formal model for secure circuit outsourcing): We provide a simulation-

based definition for the problem of secure circuit outsourcing, ensuring that no in-

formation over circuit’s private information will be released, even in the presence of

Trojans. Our model provides security against powerful adversaries that are allowed

to make arbitrary modifications over the outsourced circuit components.

2. (A complier for secure circuit outsourcing): We propose a compiler that trans-

forms any cryptographic circuit, into another that can be securely outsourced. Our

compiler, relies on secure multi-party computation (MPC) with certain suitable prop-

erties, that are attainable by existing schemes.

1.5 Outline

The outline of the thesis is as follows. In Chapter 2, we present basic definitions that will be

used throughout the thesis. The notions introduced by the current thesis are presented in

the corresponding chapters. Chapter 3 introduces the notion of non-malleable codes with

manipulation detection and provides efficient constructions for the class of partial func-

tions. In the same chapter, we also present and construct a weaker notion of continuous

non-malleable codes [FMNV14]. In Chapter 4, we introduce the notion of l-more weakly

extractable, collision-resistant hash function families (wECRH), and we provide two in-

stantiations of the primitive. In subsequent chapters, i.e., Chapters 5,6,7, we demonstrate

the applicability of the primitive by providing a variety of applications in non-malleable

cryptography. In particular, in Chapter 5, we show how how to construct practically ef-

ficient non-malleable codes against split-state functions, while in Chapter 6 we show how

to improve the efficiency of continuous non-malleable codes for split-state adversaries. In

Chapter 7 we present another important application of wECRH, by showing how to con-

struct efficient, succinct, non-interactive non-malleable commitments. Finally, in Chapter

8 we deal with the problem of secure circuit outsourcing, providing a formal model and a

feasibility result based on multi-party computation.



Chapter 2

Preliminaries

In this Chapter we present the notation and basic definitions and that will be used through-

out the thesis. Newly introduced notions will be presented in subsequent chapters.

2.1 Notation and basic notions

Definition 2.1.1 (Notation). Let t, i, j, be non-negative integers. Then, [t] denotes the

set {1, . . . , t}. For vectors x,y, 〈x,y〉 denotes the inner product of x, y, and [x]i is the

i-th coordinate of x. For bit-strings x, y, x||y, is the concatenation of x, y, |x| denotes

the length of x, for i ∈ [|x|], x[i] is the i-th bit of x,
ft
j=1 xj := x1|| . . . ||xt, and for i ≤ j,

x[i : j] := x[i]|| . . . ||x[j]. For a set I, |I|, P(I), are the cardinality and power set of I,

respectively, and for I ⊆ [|x|], x|I is the projection of the bits of x with respect to I. For

a string variable c and value v, c ← v denotes the assignment of v to c, and c[I] ← v,

denotes an assignment such that c|I equals v.

For a distribution D over a set X , x← D, denotes sampling an element x ∈ X , accord-

ing to D, x← X denotes sampling a uniform element x from X , UX denotes the uniform

distribution over X and x1, . . . , xt
rs← X denotes sampling a uniform subset of X with t

distinct elements, using rejection sampling. The statistical distance between two random

variables X, Y , with range D, is denoted by ∆(X,Y ), i.e., ∆(X,Y ) := 1
2

∑
u∈D |Pr[X =

u] − Pr[Y = u]|. In addition, “≈” and “≈c”, denote statistical and computational in-

distinguishability, respectively, and negl(k) denotes an unspecified, negligible function, in

k. For random variables X, Y , H∞(X) and H̃∞(X|Y ), denote the min-entropy and av-

erage min-entropy conditioned on Y , of X, respectively. For any element g and vector

r = (r1, . . . , rt), g
r := (gr1 , . . . , grt).

14
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For a randomized algorithm A, using y ← A(x) we denote the execution of A on input

x, receiving output y. In this setting, y is a random variable and A(x; r) denotes the

execution of A on input x with randomness r. An algorithm A is probabilistic polynomial-

time (PPT) if A is randomized and for any x, r ∈ {0, 1}∗, the computation of A(x; r)

terminates in at most poly(|x|+ |r|) steps.

Given two ensembles of random variables X = {Xk}k∈N and Y = {Yk}k∈N, we write

X ≡ Y to denote that the two ensembles are identically distributed, X ≈ Y to denote

that the two ensembles are statistically close, i.e., ∆(Xk, Yk) ≤ negl(k), and X ≈c Y
to denote that the two ensembles are computationally indistinguishable, i.e., for all PPT

distinguishers D, |Pr [D(Xk) = 1]− Pr [D(Yk) = 1]| ≤ negl(k).

Next we provide the definition of one-time message authentication code (MAC) follow-

ing [KL14].

Definition 2.1.2 (One-time MAC [KL14]). Let k be the security parameter. A message

authentication code Π = (Gen,Mac,Vrfy) is one-time ε-secure, if for all algorithms A =

(A1,A2),

Pr[Mac− forgeA,Π(k) = 1] ≤ ε,

where,

Mac− forgeA,Π(k) :

sk ← Gen(1k)

(s, st)← A1(1k)

t← Macsk(s)

(s̃, t̃)← A2(t, st)

Output 1 if Vrfysk(s̃, t̃) = 1 and s̃ 6= s.

The definition of leakage-resilient one-time MAC follows.

Definition 2.1.3 (One-time MAC against leakage). Let k be the security parameter and

L be a function class. A message authentication code Π = (Gen,Mac,Vrfy) is one-time

ε-secure against L if for all algorithms A = (A1,A2,A3),

Pr
[
LRMac− forgeA,Π(k) = 1

]
≤ ε,
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where,

LRMac− forgeA,Π(k) :

sk ← Gen(1k)

g ← A1(1k), g ∈ L
(s, st)← A2(1k, g(sk))

t← Macsk(s)

(s̃, t̃)← A3(t, st)

Output 1 if Vrfysk(s̃, t̃) = 1 and s̃ 6= s.

The above definitions will be used for building authenticated encryption, which is

defined in Definition 2.1.6.

Below, we provide formal definitions for the notions of collision resistant hash function

families and the hardness of the discrete logarithm problem (DLOG).

Definition 2.1.4 (Collision resistant hash function family [KL14]). A fixed length, collision

resistant, hash function family, is a pair of probabilistic algorithms Hk = (Gen, h) satisfying

the following:

• Gen is a PPT algorithm which receives as input a security parameter 1k and outputs

a key z.

• h receives z, and x ∈ {0, 1}p1(k) and outputs hz(x) ∈ {0, 1}p2(k), where p1(k), p2(k) =

poly(k), p2(k) < p1(k).

• For all PPTadversaries A, the collision-finding experiment HcollA,Hk , which is de-

fined bellow, satisfies the following property:

Pr[HcollA,Hk(1k) = 1] ≤ negl(k),

for some negligible function negl(·), where

HcollA,Hk(k):

– A key z is generated by executing Gen(1k).

– A is given z and outputs x,x′.

– If x 6= x′ and hz(x) = hz(x
′) output 1, otherwise output 0.
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For simplicity, the key of the hash function, z, will be omitted from the notation.

Definition 2.1.5 (Hardness of the discrete logarithm problem [KL14]). For any k ∈ N

and any group-generation algorithm G, we say that the discrete logarithm problem is hard

relative to G, if for all PPT algorithms A there exists a negligible function negl such that

Pr
[
DLogA,G(k) = 1

]
≤ negl(k),

where,

DLogA,G(k) :

(G, g, p)← G(1k), |G| = p

s′ ← Zp, w := gs
′

s← A(G, g, p, w)

If gs = w, return 1, otherwise, return 0

and G is the description of a cyclic group for which the group operation if efficiently com-

puted.

Below, we define the notion of authenticated encryption with ciphertext indistinguisha-

bility under chosen-plaintext attacks (IND-CPA), for a single oracle query and against

one-time leakage.

Definition 2.1.6 (1-IND-CPA secure authenticated encryption against one-time leak-

age)). Let k be the security parameter, let (KGen,E,D) be a symmetric encryption scheme

and let L be a set of functions. Then, (KGen,E,D) is authenticated, 1-IND-CPA secure

against one-time leakage with respect to L, if it satisfies the following properties:

1. (Correctness): For every message s, Pr[Dsk(Esk(s)) = s] = 1, where sk ← KGen(1k).

2. (1-IND-CPA security under leakage): for any g ∈ L and for any triple of

messages s, s0, s1,
(
Esk(s),Esk(s0), g(sk)

)
≈
(
Esk(s),Esk(s1), g(sk)

)
, where sk ←

KGen(1k).

3. (Unforgeability under leakage): For any g ∈ L and every algorithm A =

(A1,A2),

Pr

[
ẽ 6= e ∧ Dsk(ẽ) 6= ⊥

∣∣∣∣∣ sk ← KGen(1k); (s, st)← A1(1k, g(sk));

e← Esk(s); ẽ← A2(e, st)

]
≤ negl(k).
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When the scheme is computationally secure, we consider computational indistinguishability

instead of statistical, and A is PPT.

Here, it should be noted that the leakage function is being defined by the attacker

before receiving the challenge ciphertext, otherwise security breaks. Also, when we don’t

consider oracle, or leakage, queries, we require that Esk(s0) ≈ Esk(s1), for any pair of

messages s0, s1. In this setting, the encryption scheme is simply called semantically secure.

Finally, when considering unforgeability without leakage, A1 is only receiving the security

parameter.

Next we state the t-variant, due to [BCCT12], of the Knowledge of Exponent As-

sumption (KEA), [Dam92, HT98, BP04], with individual auxiliary inputs for the ad-

versary and the extractor, which is known not to contradict the impossibility results of

[BCPR14, BP15].

Assumption 2.1.7 (t-KEA [BCCT12]). Let t, k ∈ N. There exists a group generation

algorithm G, such that for any pair (G, g) sampled according to G(1k), where G is a group

of prime order p ∈ (2k−1, 2k), the following holds: for any PPT algorithm A with auxiliary

input zv ∈ {0, 1}poly(k), there exist PPT extractor EA with auxiliary input zE ∈ {0, 1}poly(k),

such that for all sufficiently large k ∈ N,

Pr
(G,g)←G(1k)
(a,r)←Zp×Ztp

[
(v, v′)← A(gr, gar, zv), v′ = va :

x← EA(gr, gar, zE) ∧ g〈r,x〉 6= v

]
≤ negl(k).

Next we recall the definition of extractable hash of [BCCT12]. The definition can be

modified to support different auxiliary inputs for the adversary and the extractor, as the

t-KEA above, but here we present the original version.

Definition 2.1.8 (Extractable hash [BCCT12]). For k ∈ N, an efficiently samplable hash

function ensemble H = {Hk}k∈N is extractable, if for any PPT algorithm A, there exists

a PPTextractor EHA , such that for all large k ∈ N and any auxiliary input z ∈ {0, 1}poly(k):

Pr
h←Hk

[
y ← A(h, z),∃x : h(x) = y :

x′ ← EHA (h, z) ∧ h(x′) 6= y

]
≤ negl(k).
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2.1.1 Randomness extractors and universal hash function families

Using extractors [NZ93] we can extract randomness from sources that produce weakly-

random values, assuming those values have sufficient min-entropy. Here, we follow the

definition given by [DRS04], that uses average conditional min-entropy H̃∞(·).

Definition 2.1.9 (Randomness Extractor [DRS04]). A polynomially time computable

function Ext :M×{0, 1}n → {0, 1}k is an average case, strong, (m, ε)-extractor, if for all

random variables S, Z, where S is a variable over M and H̃∞(S|Z) ≥ m, it holds that

∆(Ext(S;R), Uk | (R,Z)) ≤ ε,

where R denotes the random coins of Ext. The value L = m− k is called the entropy loss

of Ext, and n is the seed length of Ext.

Universal hash functions are good randomness extractors, and they are defined as

follows:

Definition 2.1.10 (ρ-Universal Hashing [CW77]). A family H of deterministic functions

h :M→ {0, 1}k is called a ρ-universal hash family, if for any s1 6= s2 ∈M, Prh←H[h(s1) =

h(s2)] ≤ ρ. If ρ = 1/2k, H is called universal.

Now we state the leftover-hash lemma [HILL99], following the definition given in

[BDK+11].

Lemma 2.1.11 (Leftover-Hash Lemma [HILL99, BDK+11]). Assume that the family H of

functions h :M→ {0, 1}k is a 1+γ
2k

-universal hash family. Then, the extractor Ext(s;h) =

h(s), where h is sampled according to H, is an average case, strong (m, ε)-extractor, where

ε = 1
2 ·
√
γ + 1

2L
and L = m− k is the entropy loss.

Below, we define the inner product hash function family and in Lemma 2.1.13 we prove

that it is universal.

Definition 2.1.12 (The inner product hash function family). Let Fp be a finite field of

prime order p, where p is a k-bit prime number. For any t ∈ N, the inner-product function

family Hip = (Gen, h), for messages over Ftp is defined as follows:

• Gen(1k): sample (r1, . . . , rt)← Ftp and set z = (r1, . . . , rt).

• Hash computation: on input message s = (s1, . . . , st) ∈ Ftp, compute hz(s) =∑t
i=1 si · ri, where the summation refers to the addition operation, and · is the mul-

tiplication operation, over Fp.
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Lemma 2.1.13. The function family Hip of Definition 2.1.12 is universal.

Proof. For any k in N, let Fp be any field of order p, where p is a k-bit integer, and let

s = (s1, . . . , st), s̄ = (s̄1, . . . , s̄t) be two distinct messages, i.e., s and s̄ differ in at least one

coordinate. Without loss of generality, we assume that s1 6= s̄1. Then,

Pr
hz←Hip

[hz(s) = hz(s̄)] = Pr

[
t∑
i=1

ri · (si − s̄i) = 0

]
= Pr

[
r1 =

−
∑t

i=2 ri · (si − s̄i)
(s1 − s̄1)−1

]

Hence, for any choice of r2, . . . , rt, there is a unique r1 for which hz(s) = hz(s̄). Since r1 is

random over Fp, we have that Pr[hz(s) = hz(s̄)] ≤ 1/p ≤ 1/2k.

2.2 Tampering function classes

In this section we formally define the tampering function classes that will be considered in

the present thesis. We begin by defining the class of partial functions that are the main

subject of Chapter 3.

Definition 2.2.1 (The class of partial functions FανΓ (or Fα)). Let Γ ⊆ {0, 1}∗ be an

alphabet, α ∈ [0, 1) and ν ∈ N. Any f ∈ FανΓ , f : Γν → Γν , is indexed by a set I ⊆ [ν],

|I| ≤ αν, and a function f ′ : Γαν → Γαν , such that for any x ∈ Γν , (f(x))|I = f ′
(
x|I
)

and

(f(x))|Ic
= x|Ic , where Ic := [ν]\I.

For simplicity, in the rest of the text we will use the notation f(x) and f(x|I ) (instead

of f ′
(
x|I
)
). Also, the length of the codeword, ν, according to Γ, will be omitted from

the notation and whenever Γ is omitted we assume that Γ = {0, 1}. In Chapter 3.3, we

consider Γ = {0, 1}, while in Chapter 3.4, Γ = {0, 1}O(log k), i.e., the tampering function

operates over blocks of size O(log k). When considering the CRS model, the functions are

parameterized by the common reference string.

Below, we define the class of affine functions that will be used in Sections 4.3.1 and

4.3.2.

Definition 2.2.2 (The function family Faff). For any field F and any positive integer t,

we define the affine function class over Ft, as follows

Faff =
{
f(x1, . . . , xt) = (d · x1 + b1, . . . , d · xt + bt) | (b1, . . . , bt) ∈ Ft, d ∈ F

}
.

Here, the pair (+, ·) denotes the standard addition and multiplication operations over F,

and any element in Faff will be denoted by (b, d).
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Below, we define the split-state functions class, Fss, which is the main subject of Chap-

ter 5.

Definition 2.2.3 (The split-state function family Fss). For any, even, ν ∈ N and any

efficiently computable function f : {0, 1}ν → {0, 1}ν , f ∈ Fss, if there exist efficiently

computable functions f0 : {0, 1}ν/2 → {0, 1}ν/2, f1 : {0, 1}ν/2 → {0, 1}ν/2, such that for

every x0, x1 ∈ {0, 1}ν/2 × {0, 1}ν/2, f(x0||x1) = f0(x0)|| f1(x1).

In the subsequent chapters, we will slightly abuse notation, allowing split-state func-

tions to operate over pairs of bitstrings, i.e., for f = (f0, f1) ∈ Fss and x0, x1 ∈ {0, 1}ν/2×
{0, 1}ν/2, we will use the notation f(x0, x1) = (f0(x0), f1(x1)).

2.3 Non-malleable codes

Below, we define encoding schemes, based on the definitions by [DPW10, LL12].

Definition 2.3.1 (Encoding scheme [DPW10]). A (κ, ν)-coding scheme, κ, ν ∈ N, is a

pair of algorithms (Enc,Dec) such that: Enc : {0, 1}κ → {0, 1}ν is an encoding algo-

rithm, Dec : {0, 1}ν → {0, 1}κ ∪ {⊥} is a decoding algorithm, and for every s ∈ {0, 1}κ,

Pr
[
Dec(1k,Enc(1k, s)) = s

]
= 1, where the probability runs over the randomness used by

(Enc,Dec).

For encoding schemes in the CRS model the definition is as follows.

Definition 2.3.2 (Encoding scheme in the Common Reference String (CRS) Model

[LL12])). A (κ, ν)-coding scheme in the CRS model, κ, ν ∈ N, is a triple of algorithms

(Init,Enc,Dec) such that: Init is a randomized algorithm which receives 1k, where k de-

notes the security parameter, and produces a common reference string Σ ∈ {0, 1}poly(k),

and (Enc(1k,Σ, ·),Dec(1k,Σ, ·)) is a (κ, ν)-coding scheme, κ, ν = poly(k).

For brevity, 1k will be omitted from the inputs of Init, Enc and Dec. Also, we can

easily generalize the above definitions with respect to larger alphabets, i.e., by considering

Enc : {0, 1}κ → Γν and Dec : Γν → {0, 1}κ ∪ {⊥}, for some alphabet Γ ⊆ {0, 1}∗.
Below we state the definition of strong non-malleability in the CRS model based on

the definitions by [DPW10, LL12].

Definition 2.3.3 (Strong non-malleability in the CRS model [DPW10, LL12]).

Let (Init,Enc,Dec) be a (κ, ν)-encoding scheme in the common reference string model, and
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F be a family of functions f : {0, 1}ν → {0, 1}ν . For any f ∈ F , s ∈ {0, 1}κ, sample

Σ← Init(1k) and define the tampering experiment

TamperΣ,fs :=

{
c← Enc(Σ, s), c̃← fΣ(c), s̃← Dec(Σ, c̃)

Output same∗ if c̃ = c, and s̃ otherwise.

}

which is a random variable over the randomness of Init, Enc and Dec. The encoding scheme

(Init,Enc,Dec) is strongly non-malleable with respect to the function family F , if for any

f ∈ F and any s0, s1 ∈ {0, 1}κ,{(
Σ,TamperΣ,fs0

)}
k∈N
≈
{(

Σ,TamperΣ,fs1

)}
k∈N

,

where Σ← Init(1k), and “≈” may refer to statistical, or computational, indistinguishability,

with parameter k.

In the above definition, f is parameterized by Σ to differentiate tamper-proof input,

i.e., Σ, from tamperable input, i.e., c. Also, according to the standard definition of non-

malleability, the decoding procedure is not randomized, however, as it is suggested by Ball

et al. [BDKM16], Dec may be randomized.

Next, the uniqueness is defined due to [FMNV14]. The uniqueness property is essential

for achieving non-malleability in the continuous setting against split-state attackers, which

is the main subject of Chapter 6.

Definition 2.3.4 (Uniqueness [FMNV14]). Let ES = (Init,Enc,Dec) be a split-state en-

coding scheme in the CRS model. Then, ES satisfies the uniqueness property if for any

PPT algorithm A and all, sufficiently large k ∈ N, we have:

Pr

[
Σ← Init(1k); (c0, c1, c

′
1)← A(1k,Σ) :

Dec(Σ, (c0, c1)) 6= ⊥ ∧ Dec(Σ, (c0, c
′
1)) 6= ⊥ ∧ c1 6= c′1

]
≤ negl(k),

and symmetrically for the case in which we fix the right part of the codeword.

The definition of the split-state continuous tampering oracle due to [FMNV14] follows.

Definition 2.3.5 (The split-state tampering oracle Ocnm [FMNV14]).

Let (Init,Enc,Dec) be a split-state, (κ, ν)-encoding scheme, in the CRS model. For any

(c0, c1) ∈ {0, 1}ν/2×{0, 1}ν/2, and any split-state function f = (f0, f1), f0, f1 : {0, 1}ν/2 →
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{0, 1}ν/2, define the stateful oracle Ocnm(·, ·) with initial state st := 0, as follows,

Ocnm((c0, c1), (f0, f1)) :

If st = 1, return ⊥
(c̃0, c̃1)← (f0(c0), f1(c1))

If (c0, c1) = (c̃0, c̃1) return same∗

If Dec(Σ, (c̃0, c̃1)) = ⊥, return ⊥ and set st← 1

Else return (c̃0, c̃1)

where Σ← Init(1k).

The λ-bit leakage oracle, returning a total of at most λ bits.

Definition 2.3.6 (The λ-bit leakage oracle Oλ(·, ·)). A leakage oracle Oλ(·, ·), is a stateful

oracle, with initial state st := 0. For any λ ∈ N, string s, and function g : {0, 1}|s| →
{0, 1}λ′, if λ′+st ≤ λ, Oλ(s, g) outputs g(s), and updates it state to st← st+λ′, otherwise

it outputs ⊥.

Below we provide the definition of continuously non-malleable, leakage-resilient codes,

due to [FMNV14].

Definition 2.3.7 (Continuously non-malleable, leakage-resilient codes [FMNV14]). Let

ES = (Init,Enc,Dec) be a split-state encoding scheme in the CRS model, and let λ, q ∈ N.

Then, ES is a q-continuously λ-leakage resilient ( (q, λ)-CNMLR ) code, if for every,

sufficiently large k ∈ N, any pair of messages s0, s1 ∈ {0, 1}poly(k), and any PPT algorithm

A, {
Tampercnmlr

A,s0 (k)
}
k∈N
≈c
{
Tampercnmlr

A,s1 (k)
}
k∈N

,

where,

Tampercnmlr
A,s (k) :=

{
Σ← Init(1k); (c0, c1)← Enc(Σ, s);

out← AOλ(c0,·),Oλ(c1,·),Ocnm((c0,c1),·)(Σ); Output : out

}

and A makes at most q tampering queries against Ocnm.



Chapter 3

Non-malleable codes for partial

functions with manipulation detection

3.1 Introduction

The notion of non-malleable codes (NMC) was introduced by Dziembowski, Pietrzak

and Wichs [DPW10], as a relaxation of error correction and error detection codes, aim-

ing to provide strong privacy, without ensuring correctness. Informally, non-malleable

encoding schemes are keyless primitives, guaranteeing that any modified codeword de-

codes, either to the original message, or to a completely unrelated one, with overwhelm-

ing probability. As non-malleability against general function classes is impossible (cf.

Chapter 1), various subclasses of tampering functions have been considered, such as

split-state functions [ADL14, DKO13, ADKO15, LL12, AAG+16, DPW10, KLT16], bit-

wise tampering and permutations [DPW10, AGM+15a, AGM+15b], bounded-size func-

tion classes [FMVW14], bounded depth/fan-in circuits [BDKM16], space-bounded tam-

pering [FHMV17], and others (cf. Section 3.1.3). One characteristic shared by those

function classes is that they allow full access to the codeword, while imposing structural or

computational restrictions to the way the function computes over the input. In the present

chapter, we initiate a study on non-malleability for functions that receive partial access

over the codeword, which is an important yet overlooked class, as we elaborate below.

The class of partial functions. The class of partial functions contains all functions that

read/write on an arbitrary subset of codeword bits,1 with specific cardinality. Concretely,

1When considering alphabets larger than {0,1}, the function is accessing codeword symbols.

24
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let c be a codeword with length ν. For α ∈ [0, 1), the function class Fαν (or Fα for brevity)

consists of all functions that operate over any subset of bits of c with cardinality at most αν,

while leaving the remaining bits intact. The work of Cheraghchi and Guruswami [CG14]

explicitly defines this class and uses a subclass (the one containing functions that always

touch the first αν bits of the codeword) in a negative way, namely as the tool for deriving

capacity lower bounds for information-theoretic non-malleable codes against split-state

functions. Partial functions were also studied implicitly by Faust et al. [FMVW14], while

aiming for non-malleability against bounded-size circuits.2

Even though capacity lower bounds for partial functions have been derived (cf. [CG14]),

our understanding about explicit constructions is still limited. Existential results can be

derived by the probabilistic method, as shown in prior works [DPW10, CG14],3 but they

do not yield explicit constructions. On the other hand, the capacity bounds do not apply

to the computational setting, which could potentially allow more practical solutions. This

is a direction that needs to be explored, as besides the theoretical interest, partial functions

is a natural model that complies with existing attacks that require partial access to the

registers of the cryptographic implementation [BDL97, BDL01, BS97, BDH+98, TMA11].4

Besides the importance of partial functions in the active setting, i.e., when the function

is allowed to partially read/write the codeword, the passive analogue of the class, i.e., when

the function is only given read access over the codeword, matches the model considered by

All-Or-Nothing Transforms (AONTs), which is a notion originally introduced by Rivest

[Riv97], providing security guarantees similar to those of leakage resilience: reading an

arbitrary subset (up to some bounded cardinality) of locations of the codeword does not

reveal the underlying message. As non-malleable codes provide privacy, non-malleability

for partial functions is the active analogue of (and in fact implies) AONTs, that find nu-

merous applications [Riv97, Boy99, CDH+00, Sti01, RP11].

Plausibility. At a first glance one might think that partial functions better comply with

the framework of error-correction/detection codes (ECC/EDC), as they do not touch the

2 Specifically, in [FMVW14], the authors consider a model where a common reference string (CRS) is
available, with length roughly logarithmic in the size of the tampering function class; as a consequence,
the tampering function is allowed to read/write the whole codeword while having only partial information
over the CRS.

3Informally, prior works [DPW10, CG14] showed existence of non-malleable codes for classes of certain
bounded cardinalities. The results cover the class of partial functions.

4The attacks by [BDL97, BDL01, BDH+98] require the modification of a single (random) memory bit,
while in [BS97] a single error per each round of the computation suffices. In [TMA11], the attack requires
a single faulty byte.
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whole codeword. However, if we allow the adversary to access asymptotically almost the

entire codeword, it is conceivable it can use this generous access rate, i.e., the fraction

of the codeword that can be accessed (see below), to create correlated encodings, thus

solving non-malleability in this setting is essential. Additionally, non-malleability provides

simulation based security, which is not considered by ECC/EDC.

We illustrate the separation between the notions using the following example. Consider

the set of partial functions that operate either on the right or on the left half of the codeword

(the function chooses if it is going to be left or right), and the trivial encoding scheme that

on input message s, outputs (s, s). The decoder, on input (s, s′), checks if s = s′, in which

case it outputs s, otherwise it outputs ⊥. This scheme is clearly an EDC against the

aforementioned function class,5 as the output of the decoder is in {s,⊥}, with probability

1; however, it is malleable since the tampering function can create encodings whose validity

depends on the message. On the other hand, an ECC would provide a trivial solution in

this setting, however it requires restriction of the adversarial access fraction to 1/2 (of the

codeword); by accessing more than this fraction, the attacker can possibly create invalid

encodings depending on the message, as general ECCs do not provide privacy. Thus, the

ECC/EDC setting is inapt when aiming for simulation based security in the presence of

attackers that access almost the entire codeword. Later in this section, we provide an

extensive discussion on challenges of non-malleability for partial functions.

Besides the plausibility and the lack of a comprehensive study, partial functions can

potentially allow stronger primitives, as constant functions are excluded from the class.

This is similar to the path followed by Jafargholi and Wichs [JW15], aiming to achieve

tamper detection (cf. Section 3.1.3) against a class of functions that implicitly excludes

constant functions and the identity function. In what follows we prove that this intu-

ition holds, by showing that partial functions allow a stronger primitive that we define

as non-malleability with manipulation detection (MD-NMC), which in addition to simu-

lation based security, also guarantees that any tampered codeword will either decode to

the original message, or to ⊥. Again, and as in the case of ECC/EDC, we stress that

manipulation/tamper-detection codes do not imply MD-NMC, as they do not provide

simulation based security.6

Having the above discussion in mind, it is clear that partial functions is an interesting

and well-motivated model, and the goal of the present chapter is to answer the following

5It is not an ECC as the decoder does not know which side has been modified by the tampering
function.

6Clearly, MD-NMC imply manipulation/error-detection codes.
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(informally stated) question:

Is it possible to construct efficient (high information rate) non-malleable codes

for partial functions, while allowing the attacker to access almost the entire

codeword?

In what follows we answer the above question in the affirmative. Before presenting the

results of the present chapter (cf. Section 3.1.1), we identify several challenges that are

involved in tackling the problem.

Challenges. We first define some useful notions that will be used later.

• Information rate: the ratio of message to codeword length, as the message length

goes to infinity.

• Access rate: the fraction of the number of bits (resp. symbols)7 that the attacker

is allowed to access, over the total codeword bits (resp. symbols), as the message

length goes to infinity.

The access rate measures the effectiveness of a non-malleable code in the partial function

setting and reflects the level of adversarial access to the codeword. In this chapter, we

aim at constructing non-malleable codes for partial functions with high information rate

and high access rate, i.e., both rates should approach 1, simultaneously. Before discussing

the challenges posed by this requirement, we first review some known impossibility results.

First, non-malleability for partial functions with concrete access rate 1 is impossible, as the

function can fully decode the codeword and then re-encode a related message [DPW10].

Second, information-theoretic non-malleable codes with constant information rate (e.g.,

0.5) are not possible against partial functions with constant access rate [CG14],8 and

consequently, solutions in the information-theoretic settings such as ECC and Robust

Secret Sharing (RSS) do not solve our problem. Based on these facts, in order to achieve

our goal, the only path is to explore the computational setting, aiming for access rate at

most 1− ε, for some ε > 0.

At a first glance one might think that non-malleability for partial functions is easier to

achieve, compared to other function classes, as partial functions cannot touch the whole

7This is of the case of bigger alphabets.
8Informally, in [CG14] (Theorem 5.3) the authors showed that any information-theoretic non-malleable

code with a constant access rate and a constant information rate must have a constant distinguishing
probability.
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codeword. Having that in mind, it would be tempting to conclude that existing design-

s/techniques with minor modifications are sufficient to achieve our goal. However, we will

show that this intuition is misleading, by pointing out why prior approaches fail to provide

security against partial functions with high access rate.

The current state of the art in the computational setting considers tools such as

(Authenticated) Encryption [DLSZ15, AAG+16, KLT16, FN17, LL12, DKS17a], non-

interactive zero-knowledge (NIZK) proofs [LL12, FN17, FMNV14, DKS17a], and `-more

weakly extractable collision resistant hashes [KLT16], where others use KEM/DEM tech-

niques [DLSZ15, AAG+16]. Those constructions share a common structure, incorporating

a short secret key sk (or a short encoding of it), as well as a long ciphertext, e, and a

proof π (or a hash value). Now, consider the partial function f that gets full access to

the secret key sk and a constant number of bits of the ciphertext e, partially decrypts

e and modifies the codeword depending on those bits. Then, it is not hard to see that

non-malleability falls apart, as the security of the encryption no longer holds. The at-

tack requires access rate only O((|sk|)/(|sk| + |e| + |π|)), for [LL12, FN17, DKS17a] and

O(poly(k)/|s|) for [DLSZ15, AAG+16, KLT16]. A similar attack applies to [FMNV14],

which is in the continuous setting.

One possible route to tackle the above challenges, is to use an encoding scheme over

the ciphertext, such that partial access over it does not reveal the underlying message.9

The guarantees that we need from such a primitive resemble the properties of AONTs,

however this primitive does not provide security against active, i.e., tampering, attacks.

Another approach would be to use Reconstructable Probabilistic Encodings [BDKM16],

which provide error-correcting guarantees, yet still it is unknown whether we can achieve

information rate 1 for such a primitive. In addition, the techniques and tools for protecting

the secret key can be used to achieve optimal information rate as they are independent

of the underlying message, yet at the same time, they become the weakest point against

partial functions with high access rate. Thus, the question is how to overcome the above

challenges, allowing access to almost the entire codeword.

In the present thesis we solve the challenges presented above based on the following

observation: in existing solutions the structure of the codeword is fixed and known to

the attacker, and independently of the primitives that we use, the only way to resolve

the above issues is by hiding the structure via randomization. This requires a structure

recovering mechanism that can either be implemented by an “external” source, or otherwise

9In the presence of NIZKs we can have attacks with low access rate that read sk, e, and constant
number of bits from the proof.



3.1. Introduction 29

the structure needs to be reflected in the codeword in some way that the attacker cannot

exploit. In the present thesis we implement this mechanism in both ways, by first proposing

a construction in the common reference string (CRS) model (cf. Section 3.3), and then

we show how to remove the CRS using slightly bigger alphabets (cf. Section 3.4).

3.1.1 Results

In the present chapter, we introduce the notion of non-malleable codes with manipulation-

detection (MD-NMC), and we present the first construction for this type of codes. We

focus on achieving simultaneously high information rate and high access rate, in the partial

functions setting, which by the results of [CG14], it can be achieved only in the computa-

tional setting.

The contribution is threefold. First, we construct an information rate 1 non-malleable

code in the CRS model, with access rate 1 − 1/Ω(log k), where k denotes the security

parameter. The proposed construction combines Authenticated Encryption together with

an inner code that protects the key of the encryption scheme (cf. Section 3.3). The result

is informally summarized in the following theorem.

Theorem 3.1.1 (Informal). Assuming one-way functions, there exists an explicit compu-

tationally secure MD-NMC in the CRS model, with information rate 1 and access rate

1− 1/Ω(log k), where k is the security parameter.

The proposed scheme, in order to achieve security with error 2−Ω(k), produces code-

words of length |s| + O(k2 log k), where |s| denotes the length of the message, and uses

a CRS of length O(k2 log k log(|s| + k)). We note that the construction does not require

the CRS to be fully tamper-proof and we refer the reader to the end of Section 3.3 for a

general discussion on the topic.

As a second result, we show how to remove the CRS by slightly increasing the size

of the alphabet. This yields a computationally secure MD-NMC in the standard model,

achieving information and access rate 1−1/Ω(log k). The proposed construction is proven

secure by a reduction to the security of the scheme presented in Theorem 4.1.4. Below, we

informally state the result.

Theorem 3.1.2 (Informal). Assuming one-way functions, there exists an explicit, compu-

tationally secure MD-NMC in the standard model, with alphabet length O(log k), informa-

tion rate 1− 1/Ω(log k) and access rate 1− 1/Ω(log k), where k is the security parameter.
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The scheme produces codewords of length |s|(1 + 1/O(log k)) +O(k2 log2 k).

In Section 3.5, we consider security against continuous attacks. We show how to achieve

a weaker notion of continuous security, while avoiding the use of a self-destruct mechanism,

which was originally achieved by [FN17]. Our notion is weaker than full continuous security

[FMNV14], since the codewords need to be updated. Nevertheless, our update operation

is deterministic and avoids the full re-encoding process [DPW10, LL12]; it uses only shuf-

fling and refreshing operations, i.e., we avoid cryptographic computations such as group

operations and NIZKs. We call such an update mechanism a “light update.” Informally,

we prove the following result.

Theorem 3.1.3 (Informal). One-way functions imply continuous non-malleable codes with

deterministic light updates and without self-destruct, in the standard model, with alphabet

length O(log k), information rate 1− 1/Ω(log k) and access rate 1− 1/Ω(log k), where k is

the security parameter.

As we stated earlier in this chapter, non-malleable codes against partial functions imply

AONTs [Riv97]. The first AONT was presented by Boyko [Boy99] in the random oracle

model, and then Canetti et al. [CDH+00] consider AONTs with public/private parts

as well as a secret-only part, which is the full notion. Canetti et al. [CDH+00] provide

efficient constructions for both settings, yet the fully secure AONT (called “secret-only”

in that paper) is based on non-standard assumptions.10

Assuming one-way functions, our results yield efficient, fully secure AONTs, in the

standard model. This resolves, the open question left in [CDH+00], where the problem of

constructing AONTs under standard assumptions was posed. Our result is presented in

the following theorem.

Theorem 3.1.4 (Informal). Assuming one-way functions, there exists an explicit secret-

only AONT in the standard model, with information rate 1 and access rate 1−1/Ω(log k),

where k is the security parameter.

The above theorem is derived by the Informal Theorem 4.1.4, yielding an AONT whose

output consists of both the CRS and the codeword produced by the NMC scheme in the

CRS model. A similar theorem can be derived with respect to the Informal Theorem

3.1.2. Finally, and in connection to AONTs that provide leakage resilience, our results

imply leakage-resilient codes [LL12] for partial functions.

10In [Sti01] the authors present a deterministic AONT construction that provides weaker security.
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Later in this chapter, we provide concrete instantiations of the proposed constructions,

using textbook instantiations ([KL14]) for the underlying authenticated encryption scheme.

For completeness, we also provide information theoretic variants of our constructions that

maintain high access rate and thus necessarily sacrifice information rate.

3.1.2 Applications of MD-NMC for partial functions

In the present section we present applications of MD-NMC for the class of partial func-

tions.

Security against passive attackers - AONTs. Regarding the passive setting, our

model and constructions find useful application in all settings where AONTs are useful

(cf. [Riv97, Boy99, CDH+00, RP11]), e.g., for increasing the security of encryption without

increasing the key-size, for improving the efficiency of block ciphers and constructing re-

motely keyed encryption [Riv97, Boy99], and also for constructing computationally secure

secret sharing [RP11]. Other uses of AONTs are related to optimal asymmetric encryption

padding [Boy99].

Security against memory tampering - (binary alphabets, logarithmic length

CRS). As with every NMC, the most notable application of the proposed model and con-

structions is when aiming for protecting cryptographic devices against memory tampering.

Using our CRS based construction we can protect a large tamperable memory with a small

(logarithmic in the message length) tamperproof memory, that holds the CRS.

The construction is as follows. Consider any device performing cryptographic opera-

tions, e.g., a smart card, whose memory is initialized when the card is being issued. Each

card is initialized with an independent CRS, which is stored in a tamper-proof memory,

while the codeword is stored in a tamperable memory. Due to the independency of the CRS

values, it is plausible to assume that the adversary is not given access to the CRS prior to

tampering with the card; the full CRS is given to the tampering function while it tampers

with the codeword during computation. This idea is along the lines of the only computa-

tion leaks information model [MR04], where data can only be leaked during computation,

i.e., the attacker learns the CRS when the devices performs computations that depend

on it. We note that in this work we allow the tampering function to read the full CRS,

in contrast to [FMVW14], in which the tampering function receives partial information

over it (our CRS can also be tampered, cf. the end of the current section). In subse-

quent rounds, the CRS and the codeword are being updated by the device, which is the
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standard way to achieve security in multiple rounds while using a one-time NMC [DPW10].

Security against memory tampering - (logarithmic length alphabets, no CRS).

In modern architectures data is stored and transmitted in chunks, thus our block-wise en-

coding scheme can provide tamper-resilience in all these settings. For instance, consider the

case of arithmetic circuits, having memory consisting of consecutive blocks storing integers.

Considering adversaries that access the memory of such circuits in a block-wise manner,

is a plausible scenario. In terms of modeling, this is similar to tamper-resilience for arith-

metic circuits [GIP+14], in which the attacker, instead of accessing individual circuit wires

carrying bits, it accesses wires carrying integers. The case is similar for RAM computation

where the CPU operates over 32 or 64 bit registers (securing RAM programs using NMC

was also considered by [FMNV15, DLSZ15, DKS17b, DKS18]). We note that, the memory

segments in which the codeword blocks are stored do not have to be physically separated,

as partial functions output values that depend on the whole input in which they receive

access to. This is in contrast to the split-state setting in which the tampering function

tampers with each state independently, and thus the states need to be physically separated.

Security against adversarial channels. In Wiretap Channels [BTV12, Wyn75, OW]

the goal is to communicate data privately against eavesdroppers, under the assumption that

the channel between the sender and the adversary is “noisier” than the channel between

the sender and the receiver. The model that we propose and our block-wise construction

can be applied in this setting to provide privacy against a wiretap adversary under the

assumption that due to the gap of noise there is a small (of rate o(1)) fraction of symbols

that are delivered intact to the receiver and dropped from the transmission to the adversary.

This enables private, key-less communication between the parties, guaranteeing that the

receiver will either receive the original message, or ⊥. In this way, the communication will

be non-malleable in the sense that the receiver cannot be lead to output ⊥ depending on

any property of the plaintext. Our model allows the noise in the receiver side to depend

on the transmission to the wiretap adversary, that tampers with a large (of rate 1− o(1))

fraction of symbols, leading to an “active” variant of the wiretap model.

3.1.3 Related work

Manipulation detection has been considered independently of the notion of non-malleability,

in the seminal paper by Cramer et. al. [CDF+08], who introduced the notion of algebraic
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manipulation detection (AMD) codes, providing security against additive attacks over the

codeword. A similar notion was considered by Jafargholi and Wichs [JW15], called tamper

detection, aiming to detect malicious modifications over the codeword, independently of

how those affect the output of the decoder. Tamper detection ensures that the application

of any (admissible) function to the codeword leads to an invalid decoding.

Non-malleable codes for other function classes have been extensively studied, such as

constant split-state functions [CZ14, DNO17]. The first explicit non-malleable code in the

split-state model, for the information-theoretic setting was proposed by [DKO13], yet their

scheme can only encode single-bit messages. Subsequent constructions for multi-bit mes-

sages are discussed in subsequent chapters. Non-malleable codes for other function classes

have been extensively studied, e.g., bit-wise independent tampering [DPW10], bounded-

size function classes [FMVW14], the k-split setting [CZ14], block-wise tampering [CKM11,

CGM+15], and bounded depth and fan-in circuits [BDKM16]. The work of [ADKO15] de-

velops beautiful connections among different function classes. In [BDKM18] the authors

consider AC0 circuits, bounded-depth decision trees and streaming, space-bounded adver-

saries.

Other aspects of non-malleable codes have also been studied, such as rate-function class

tradeoff, in the information-theoretic setting [CG14]. Other variants of non-malleable

codes have been proposed, such as continuous non-malleable codes [FMNV14, JW15],

augmented non-malleable codes [AAG+16], locally decodable/updatable non-malleable

codes [DLSZ15, DKS17b, FMNV15, CKR16, DKS18], which were used to secure the imple-

mentation of RAM computation, and non-malleable codes with split-state refresh [FN17].

Leakage resilience was also considered as an additional feature, e.g., [LL12, DLSZ15,

CKR16, FN17].

A related line of work in tamper resilience aims to protect circuit computation against

tampering attacks on circuit wires [IPSW06, FPV11, DK12, DK14] or gates [KT13]. In this

setting, using non-malleable codes for protecting the circuit’s private memory is an option,

still in order to achieve security the encoding and decoding procedures should be protected

against fault injection attacks using the techniques from [IPSW06, FPV11, DK12, DK14,

KT13].

3.2 Preliminaries on MD-NMC

In the present chapter, we exploit the fact that the class of partial functions does not include

constant functions and we achieve a notion that is stronger than non-malleability, which
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we call non-malleability with manipulation detection. Below, we formalize this notion as a

strengthening of non-malleability and we show that the proposed constructions achieve this

stronger notion. Informally, manipulation detection ensures that any tampered codeword

will either decode to the original message, or to ⊥, with overwhelming probability.

The definition provided below is with respect to alphabets, as in Section 3.4 we consider

alphabets of size O(log k).

Definition 3.2.1 (Non-Malleability with Manipulation Detection (MD-NMC)). Let Γ be

an alphabet, let (Init,Enc,Dec) be a (κ, ν)-encoding scheme in the common reference string

model, and F be a family of functions f : Γν → Γν . For any f ∈ F and s ∈ {0, 1}κ, define

the tampering experiment

Tamperfs :=

{
Σ← Init(1k), c← Enc(Σ, s), c̃← fΣ(c), s̃← Dec(Σ, c̃)

Output : s̃.

}

which is a random variable over the randomness of Enc, Dec and Init. The encoding scheme

(Init,Enc,Dec) is non-malleable with manipulation detection with respect to the function

family F , if for all, sufficiently large k and for all f ∈ F , there exists a distribution D(Σ,f)

over {0, 1}κ ∪ {⊥, same∗}, such that for all s ∈ {0, 1}κ, we have:

{
Tamperfs

}
k∈N
≈

{
s̃← D(Σ,f)

Output s if s̃ = same∗, and ⊥ otherwise

}
k∈N

where Σ ← Init(1k) and D(Σ,f) is efficiently samplable given access to f , Σ. Here, “≈”

may refer to statistical, or computational, indistinguishability.

In the above definition, f is parameterized by Σ to differentiate tamper-proof input,

i.e., Σ, from tamperable input, i.e., c. The following lemma is useful for proving MD-NMC

security throughout the chapter.

Lemma 3.2.2. Let (Enc,Dec) be a (κ, ν)-coding scheme and F be a family of functions.

For every f ∈ F and s ∈ {0, 1}κ, define the tampering experiment

Tamperfs :=

{
c← Enc(s), c̃← f(c), s̃← Dec(c̃)

Output same∗ if s̃ = s, and s̃ otherwise.

}

which is a random variable over the randomness of Enc and Dec. (Enc,Dec) is an MD-

NMC with respect to F , if for any f ∈ F and all sufficiently large k: (i) for any pair of

messages s0, s1 ∈ {0, 1}κ, {
Tamperfs0

}
k∈N
≈
{
Tamperfs1

}
k∈N

,
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and (ii) for any s,

Pr
[
Tamperfs /∈ {⊥, s}

]
≤ negl(k).

Here, “≈” may refer to statistical, or computational, indistinguishability.

Proof. By Definition 3.2.1 we have that (Enc,Dec) is an MD-NMC against F , if for any

f ∈ F , there exists an efficiently samplable distribution Df over {0, 1}k ∪{⊥, same∗}, such

that for any message s{
c← Enc(s), c̃← f(c), s̃← Dec(c̃)

Output : s̃

}
≈

{
s̃← Df

Output s if s̃ = same∗, and ⊥ otherwise

}
(3.1)

Let 0 be the zero message in {0, 1}κ. For any f ∈ F , we define Df as follows:

• Sample c← Enc(0) and compute c̃← f(c), s̃← Dec(c̃).

• Output: if s̃ = 0, set s̃← same∗, else, s̃← ⊥. Output s̃.

From the above we have that for any s,
s̃← Df

Output s if s̃ = same∗, and ⊥ otherwise

 ≡


{

c← Enc(0), c̃← f(c), s̃← Dec(c̃)

if s̃ = 0, s̃← same∗, else, s̃← ⊥. Output s̃

}
Output s if s̃ = same∗, and ⊥ otherwise


≈


{

c← Enc(s), c̃← f(c), s̃← Dec(c̃)

if s̃ = s, s̃← same∗, else, s̃← ⊥. Output s̃

}
Output s if s̃ = same∗, and ⊥ otherwise


≈

{
c← Enc(s), c̃← f(c), s̃← Dec(c̃)

Output : s̃

}
,

where the first relation follows by the definition of Df , the second one follows from the

main assumption which states that for any pair of messages s0, s1, Tamperfs0 ≈ Tamperfs1 ,

and the third one follows from the assumption that Pr
[
Tamperfs /∈ {⊥, s}

]
≤ negl(k). This

concludes our proof since for any f ∈ F and any message s, Relation 3.1 is satisfied.

For encoding schemes in the CRS model the above lemma is similar, and Tamperfs

internally samples Σ← Init(1k).

3.3 An MD-NMC for partial functions, in the CRS model

In this section we consider Γ = {0, 1} and we construct a rate 1 MD-NMC for Fα, with

access rate α = 1− 1/Ω(log k).
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Before presenting the encoding scheme for Fα, we provide the intuition behind the con-

struction. As a staring point, we consider a naive scheme (which does not work), and then

show how we resolve all the challenges. Let (KGen,E,D) be a (symmetric) authenticated

encryption scheme and consider the following encoding scheme: to encode a message s, the

encoder computes (sk||e), where e ← Esk(s) is the ciphertext and sk ← KGen(1k), is the

secret key. We observe that the scheme is secure if the tampering function can only read-

/write on the ciphertext, e, assuming the authenticity property of the encryption scheme,

however, restricting access to sk, which is short, is unnatural and makes the problem triv-

ial. On the other hand, even partial access to sk, compromises the authenticity property

of the scheme, and even if there is no explicit attack against the non-malleability property

of the code, there is no hope for proving security based on the properties of (KGen,E,D),

in a black-box way.

A solution to the above problems would be to protect the secret key using an inner

encoding, yet the amount of tampering is now restricted by the capabilities of the inner

scheme, as the attacker knows the exact locations of the “sensitive” codeword bits, i.e.,

the non-ciphertext bits. In the proposed construction, we manage to protect the secret key

while avoiding the bottleneck on the access rate, by designing an inner encoding scheme

that provides limited security guarantees when used standalone, still when it is used in

conjunction with a shuffling technique that permutes the inner encoding and ciphertext

bit locations, it guarantees that any attack against the secret key will create an invalid

encoding with overwhelming probability, even when allowing access to almost the entire

codeword.

The proposed scheme is depicted in Figure 3.1 and works as follows: on input message

s, the encoder (i) encrypts the message by computing sk ← KGen(1k) and e ← Esk(s),

(ii) computes an m-out-of-m secret sharing, z, of (sk||sk3) (interpreting both sk and sk3

as elements in some finite field),11 and outputs a random shuffling of (z||e), denoted as

PΣ(z||e), according to the common reference string, Σ. Decoding proceeds as follows: on

input c, the decoder (i) inverts the shuffling operation by computing (z||e)← P−1
Σ (c), (ii)

reconstructs (sk||sk′), and (iii) if sk3 = sk′, it outputs Dsk(e), otherwise, it outputs ⊥.

The proposed instantiation yields a rate 1 computationally secure MD-NMC in the CRS

model, with access rate 1 − 1/Ω(log k) and codewords of length |s| + O(k2 log k), under

mild assumptions, e.g., one way functions.

11In general, any polynomial of small degree, e.g., skc, would suffice, depending on the choice of the
underlying finite field. Using sk3 suffices when working over fields of characteristic 2. We could also use
sk2 over fields of characteristic 3.
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(Bits)

z

e← Encryptsk(s)

← SecretShare
(
sk||sk3

)

Secret key: sk

Message: s

Locations defined by the CRS

Figure 3.1: Description of the MD-NMC scheme in the CRS model.

Below, we formally define our construction.

Construction 3.3.1. Let k, m ∈ N, let (KGen,E,D) be a symmetric encryption scheme,

(SSm,Recm) be an m-out-of-m secret sharing scheme, and let l← 2m|sk|, where sk follows

KGen(1k). We define an encoding scheme (Init,Enc,Dec), that outputs ν = l + |e| bits,

e← Esk(s), as follows:

• Init(1k): Sample r1, . . . , rl
rs← {0, 1}log(ν), and output Σ := (r1, . . . , rl).

• Enc(Σ, ·): for input message s, sample sk ← KGen(1k), e← Esk(s).

– (Secret share) Sample z ← SSm(sk||sk3), where z =
f2|sk|
i=1 zi, z ∈ {0, 1}2m|sk|,

and for i ∈ [|sk|], zi (resp. z|sk|+i) is an m-out-of-m secret sharing of sk[i]

(resp. sk3[i]).

– (Shuffle) Compute c← PΣ(z||e) as follows:

1. (Sensitive bits): Set c← 0ν . For i ∈ [l], c[ri]← z[i].

2. (Ciphertext bits): Set i ← 1. For j ∈ [l + |e|], if j /∈ {rp | p ∈ [l]}:
c[j]← e[i], i++.

Output c.

• Dec(Σ, ·): on input c, compute (z||e) ← P−1
Σ (c), (sk||sk′) ← Recm(z), and if sk3 =

sk′, output Dsk(e), otherwise output ⊥.

The set of indices of zi in the codeword will be denoted by Zi.
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In the above, we consider sk, sk3, as elements over GF(2poly(k)).

In a high level, the construction presented above, combines authenticated encryption

with an inner encoding that works as follows. It interprets sk as an element in the finite

field GF(2|sk|) and computes sk3 as a field element. Then, for each bit of (sk||sk3), it

computes an m-out-of-m secret sharing of the bit, for some parameter m (we note that

elements in GF(2|sk|) can be interpreted as bit strings). Then, by combining the inner

encoding with the shuffling technique, we get an encoding scheme whose security follows

from the observations that we briefly present below:

• For any tampering function which does not have access to all m shares of a single

bit of (sk||sk3), the tampering effect on the secret key can be expressed essentially

as a linear shift, i.e., as ((sk+ δ)||(sk3 + η)) for some (δ, η) ∈ GF(2|sk|)×GF(2|sk|),

independent of sk.

• By permuting the locations of the inner encoding and the ciphertext bits, we have

that with overwhelming probability any tampering function who reads/writes on a

(1− o(1)) fraction of codeword bits, will not learn any single bit of (sk||sk3).

• With overwhelming probability over the randomness of sk and the CRS, for non-zero

η and δ, (sk + δ)3 6= sk3 + η, and this property enables us to design a consistency

check mechanism whose output is simulatable, without accessing sk.

• The security of the final encoding scheme follows by composing the security of the

inner encoding scheme with the authenticity property of the encryption scheme.

Below we present the formal security proof of the above ideas.

Theorem 3.3.2. Let k, m ∈ N and α ∈ [0, 1). Assuming (SSm,Recm) is an m-out-of-

m secret sharing scheme and (KGen,E,D) is 1-IND-CPA secure (cf. Definition 2.1.6),12

authenticated encryption scheme, the code of Construction 3.3.1 is a MD-NMC against

Fα (cf. Definition 2.2.1), for any α, m, such that (1− α)m = ω(log(k)).

Proof. Let I be the set of indices chosen by the attacker and Ic = [ν]\I, where ν =

2m|sk|+ |e|. The tampered components of the codeword will be denoted using the symbol

“˜” on top of the original symbol, i.e., we have c̃ ← f(c), the tampered secret key sk

(resp. sk3) that we get after executing Recm(z̃) will be denoted by s̃k (resp. s̃k
′
). Also the

12This is an abbreviations for indistinguishability under chosen plaintext attack, for a single pre-challenge
query to the encryption oracle.
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tampered ciphertext will be ẽ. We prove the needed using a series of hybrid experiments

that are depicted in Figure 5.1. Below, we describe the hybrids.

Expf,s0 :
Σ← Init(1k)
c← Enc(Σ, s), c̃← 0ν

c̃[I]← fΣ(c|I ), c̃[I
c]← c|Ic

s̃← Dec(c̃)

Output same∗ if s̃ = s and s̃ otherwise.

Expf,s1 :
Σ← Init(1k)
c← Enc(Σ, s), c̃← 0ν

c̃[I]← fΣ(c|I ), c̃[I
c]← c|Ic

If ∃i : |(I ∩ Zi)| = m:

s̃← ⊥
Else:
s̃← Dec(c̃)

Output same∗ if s̃ = s and s̃ otherwise.

Expf,s2 :
Σ← Init(1k)

sk ← KGen(1k), e← Esk(s)

z∗ ← S̄S
f
m(Σ, sk), c← PΣ(z∗||e)

c̃← 0ν , c̃[I]← fΣ(c|I ), c̃[I
c]← c|Ic

If ∃i : |(I ∩ Zi)| = m:
s̃← ⊥

Else:

If ∃i :
⊕

j∈(I∩Zi) c[j] 6=
⊕

j∈(I∩Zi) c̃[j]:

s̃← ⊥
Else:

s̃← Dsk(ẽ)

Output same∗ if s̃ = s and s̃ otherwise.

Expf,s3 :
Σ← Init(1k)
sk ← KGen(1k), e← Esk(s)

z∗ ← S̄S
f
m(Σ, sk), c← PΣ(z∗||e)

c̃← 0ν , c̃[I]← fΣ(c|I )

If ∃i : |(I ∩ Zi)| = m:
s̃← ⊥

Else:

If ∃i :
⊕

j∈(I∩Zi) c[j] 6=
⊕

i∈(I∩Zi) c̃[j]:

s̃← ⊥
Else: s̃← ⊥

If ẽ = e:

s̃← same∗

Output s̃.

Figure 3.2: The hybrid experiments for the proof of Theorem 3.3.2. The gray part signifies
the portion of the code of an experiment that differs from the previous one.

• Expf,s0 : We prove security of our code using Lemma 3.2.2, i.e., by showing that (i) for

any s0, s1, Tamperfs0 ≈ Tamperfs1 , and (ii) for any s, Pr
[
Tamperfs /∈ {⊥, s}] ≤ negl(k),

where Tamperfs is defined in Lemma 3.2.2. For any f , s, the first experiment, Expf,s0 ,

matches the experiment Tamperfs in the CRS model, where Σ is sampled by Tamperfs .
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• Expf,s1 : In the second experiment we define Zi, i ∈ [2|sk|], to be the set of codeword

indices in which the secret sharing zi is stored, |Zi| = m. The main difference from

the previous experiment is that the current one outputs ⊥, if there exists a bit of

sk or sk3 for which the tampering function reads all the shares of it, while accessing

at most αν bits of the codeword. Intuitively, and as we prove in Claim 3.3.3, by

permuting the location indices of z||e, this event happens with probability negligible

in k, and the attacker does not learn any bit of sk and sk3, even if it is given access

to (1− o(1))ν bits of the codeword.

• Expf,s2 : By the previous hybrid we have that for all i ∈ [2|sk|], the tampering function

will not access all bits of zi, with overwhelming probability. In the third experiment

we unfold the encoding procedure, and in addition, we substitute the secret sharing

procedure SSm with S̄S
f
m that computes shares z∗i that reveal no information about

sk||sk3; for each i, S̄S
f
m simply “drops” the bit of zi with the largest index that is

not being accessed by f . We formally define S̄S
f
m below.

S̄S
f
m(Σ, sk):

1. Sample
(
z1, . . . , z2|sk|

)
← SSm

(
sk||sk3

)
and set z∗i ← zi, i ∈ [2|sk|].

2. For i ∈ [2|sk|], let li := maxd {d ∈ [m] ∧ Ind (zi[d]) /∈ I)}, where Ind returns the

index of zi[d] in c, i.e., li is the largest index in [m] such that zi[li] is not accessed

by f .

3. (Output): For all i set z∗i [li] = ∗, and output z∗ :=‖2|sk|i=1 z∗i .

In Expf,s1 , z =
f2|sk|
i=1 zi, and each zi is an m-out-of-m secret sharing for a bit of sk or

sk3. From Claim 3.3.3, we have that for all i, |I ∩Zi| < m with overwhelming prob-

ability, and we can observe that the current experiment is identical to the previous

one up to the point of computing f(c|I ), as c|I and f(c|I ) depend only on z∗, that

carries no information about sk and sk3.

Another difference between the two experiments is in the external “Else” branch:

Expf,s1 makes a call to the decoder while Expf,s2 , before calling Dsk(ẽ), checks if the

tampering function has modified the shares in a way such that the reconstruction

procedure ((s̃k, s̃k
′
) ← Recm(z̃)) will give s̃k 6= sk or s̃k

′ 6= sk′. This check is done

by the statement “If ∃i :
⊕

j∈(I∩Zi) c[j] 6=
⊕

j∈(I∩Zi) c̃[j]”, without touching sk or
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sk3.13 In case modification is detected the current experiments outputs ⊥. The

intuition is that an attacker that partially modifies the shares of sk and sk3, creates

shares of s̃k and s̃k
′
, such that s̃k

3
= s̃k

′
, with negligible probability in k. We prove

this by a reduction to the 1-IND-CPA security of the encryption scheme: any valid

modification over the inner encoding of the secret key gives us method to compute

the original original secret key sk, with non-negligible probability. The ideas are

presented formally in Claim 3.3.4.

• Expf,s3 : The difference between the current experiment and the previous one is that

instead of executing the decryption, Dsk(ẽ), we first check if the attacker has modified

the ciphertext, in which case the current experiment outputs ⊥, otherwise it outputs

same∗. By the previous hybrid, we reach this newly introduced “Else” branch of

Expf,s3 , only if the tampering function didn’t modify the secret key. Thus, the indis-

tinguishability between the two experiments follows from the authenticity property

of the encryption scheme in the presence of z∗: given that s̃k = sk and s̃k
′
= sk′, we

have that if the attacker modifies the ciphertext, then with overwhelming probability

Dsk(ẽ) = ⊥, otherwise, Dsk(ẽ) = s, and the current experiment correctly outputs ⊥
or same∗ (cf. Claim 3.3.5).

• Finally, we prove that for any f ∈ Fα, and message s, Expf,s3 is indistinguishable from

Expf,03 , where 0 denotes the zero-message. This follows by the semantic security of the

encryption scheme, and gives us the indistinguishability property required by Lemma

3.2.2. The manipulation detection property is derived by the indistinguishability

between the hybrids and the fact that the output of Expf,s3 is in the set {same∗,⊥}.

In what follows, we prove indistinguishability between the hybrids using a series of claims.

Claim 3.3.3. For k, m ∈ N, assume (1 − α)m = ω(log(k)). Then, for any f ∈ Fα and

any message s, we have Expf,s0 ≈ Expf,s1 , where the probability runs over the randomness

used by Init, Enc.

Proof. The difference between the two experiments is that Expf,s1 outputs ⊥ when the

attacker learns all shares of some bit of sk or sk3, otherwise it produces output as Expf,s0

does. Let E be the event “∃i : |(I ∩ Zi)| = m”. Clearly, Expf,s0 = Expf,s1 conditioned on

¬E, thus the statistical distance between the two experiments is bounded by Pr[E]. In

the following we show that Pr[E] ≤ negl(k). We define by Ei the event in which f learns

13Recall that our operations are over GF(2poly(k)).
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the entire zi. Assuming the attacker reads n bits of the codeword, we have that for all

i ∈ [2|sk|],

Pr
Σ

[Ei] = Pr
Σ

[ |I ∩ Zi| = m ] =
m−1∏
j=0

n− j
ν − j

≤
(n
ν

)m
.

We have n = αν and assuming α = 1− ε for ε ∈ (0, 1], we have

Pr[Ei] ≤ (1− ε)m ≤ 1/emε,

and

Pr[E] = Pr
Σ

2|sk|⋃
i=1

Ei

 ≤ 2|sk|
emε

,

which is negligible when (1−α)m = ω(log(k)), and the proof of the claim is complete.

Claim 3.3.4. Assuming (KGen,E,D) is 1-IND-CPA secure, for any f ∈ Fα and any

message s, Expf,s1 ≈ Expf,s2 , where the probability runs over the randomness used by Init,

Enc.

Proof. In Expf,s2 we unfold the encoding procedure, however instead of calling SSm, we

make a call to S̄S
f
m. As we have already stated above, this modification does not induce

any difference between the output of Expf,s2 and Expf,s1 , with overwhelming probability,

as z∗ is indistinguishable from z in the eyes of f . Another difference between the two

experiments is in the external “Else” branch: Expf,s1 makes a call on the decoder while

Expf,s2 , before calling Dsk(ẽ), checks if the tampering function has modified the shares in

a way such that the reconstruction procedure will give s̃k 6= sk or s̃k
′ 6= sk′. This check

is done by the statement “If ∃i :
⊕

j∈(I∩Zi) c[j] 6=
⊕

j∈(I∩Zi) c̃[j]”, without touching sk or

sk3 (cf. Claim 3.3.3).14 We define the events E, E′ as follows

E: Dec(c̃) 6= ⊥, E′: ∃i :
⊕

j∈(I∩Zi) c[j] 6=
⊕

j∈(I∩Zi) c̃[j].

Clearly, conditioned on ¬E′ the two experiments are identical, since we have s̃k = sk and

s̃k
′

= sk′, and the decoding process will output Dsk(ẽ) in both experiments. Thus, the

statistical distance is bounded by Pr[E′]. Now, conditioned on E′ ∧¬E, both experiments

output ⊥. Thus, we need to bound Pr[E∧E′]. Assuming Pr[E∧E′] > p, for p = 1/poly(k),

we define an attacker A that simulates Expf,s2 , and uses f , s to break the 1-IND-CPA

security of (KGen,E,D) in the presence of z∗, with probability at least 1/2 + p′′/2, for

p′′ = 1/poly(k).

14Recall that our operations are over GF(2poly(k)).
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First we prove that any 1-IND-CPA secure encryption scheme, remains secure even

if the attacker receives z∗ ← S̄S
f
m(Σ, sk), as z∗ consists of m − 1 shares of each bit of sk

and sk3, i.e., for the entropy of sk we have H(sk|z∗) = H(sk). Towards contradiction,

assume there exists A that breaks the 1-IND-CPA security of (KGen,E,D) in the presence

of z∗, i.e., there exist s, s0, s1 such that A distinguishes between (z∗,Esk(s),Esk(s0)) and

(z∗,Esk(s),Esk(s1)), with non-negligible probability p. We define an attackerA′ that breaks

the 1-IND-CPA security of (KGen,E,D) as follows: A′, given (Esk(s),Esk(sb)), for some b ∈
{0, 1}, samples ŝk ← KGen(1k), ẑ∗ ← S̄S

f
m(Σ, ŝk) and outputs b′ ← A(z∗,Esk(s),Esk(sb)).

Since (z∗,Esk(s),Esk(sb)) ≈ (ẑ∗,Esk(s), Esk(sb)) the advantage of A′ in breaking the 1-

IND-CPA security of the scheme, is equal to the advantage of A in breaking the 1-IND-

CPA security of the scheme in the presence of z∗, which by assumption is non-negligible,

and this completes the current proof. We note that, the proof idea presented in the current

paragraph also applies for proving that other properties that will be used in the rest of the

proof, such as semantic security and authenticity, of the encryption scheme, are retained

in the presence of z∗.

Now we prove our claim. Assuming Pr[E ∧ E′] > p, for p = 1/poly(k), we define an

attacker A that breaks the 1-IND-CPA security of (KGen,E,D) in the presence of z∗, with

non-negligible probability. A receives the encryption of s, which corresponds to the oracle

query right before receiving the challenge ciphertext, the challenge ciphertext e← Esk(sb),

for uniform b ∈ {0, 1} and uniform messages s0, s1, as well as z∗. A is defined below.

A
(
z∗ ← S̄S

f
m(Σ, sk), e′ ← Esk(s), e← Esk(sb)

)
:

1. (Define the shares that will be accessed by f): For i ∈ [2|sk|], define wi :=

(z∗i )|[m]\{li}
and for i ∈ [m− 1] define Ci =

f|sk|
j=1wj [i], Di =

f2|sk|
j=|sk|+1wj [i].

2. (Apply f) Set c ← PΣ(z∗||e), compute c̃[I] ← fΣ(c|I ) and let C̃i, D̃i, i ∈ [m], be

the tampered shares resulting after the application of f to c|I .

3. (Guessing the secret key) Let U =
∑m−1

i=1 Ci, V =
∑m−1

i=1 Di, i.e., U , V denote

the sum of the shares that are being accessed by the attacker (maybe partially), and

Ũ =
∑m−1

i=1 C̃i, Ṽ =
∑m−1

i=1 D̃i, are the corresponding tampered values after applying

f on U , V . Define

p(X) := (U − Ũ)X2 + (U2 − Ũ2)X + (U3 − Ũ3 − V + Ṽ ),

and compute the set of roots of p(X), denoted as X , which are at most two. Then

set
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ŜK := {x+ U |x ∈ X} . (3.2)

4. (Output) Execute the following steps,

a) For ŝk ∈ ŜK, compute s′ ← Dŝk(e
′), and if s′ = s, compute s′′ ← Dŝk(e).

Return b′ such that sb′ = s′′.

b) Otherwise, return b′ ← {0, 1}.

In the first step A removes the dummy symbol “∗” and computes the shares that will

be partially accessed by f , denoted as Ci for sk and as Di for sk3. In the second step,

it simulates the codeword partially, applies the tampering function on it, and defines the

tampered shares, C̃i, D̃i. Conditioned on E′, it is not hard to see that A simulates perfectly

Expf,s2 . In particular, it simulates perfectly the input to f as it receives e ← Esk(s) and

all but 2|sk| of the actual bit-shares of sk, sk3. Part of those shares will be accessed by

f . Since for all i, |I ∩ Zi| < m, the attacker is not accessing any single bit of sk, sk3.

Let Cm, Dm, be the shares (not provided by the encryption oracle) that completely define

sk and sk3, respectively. By the definition of the encoding scheme and the fact that sk,

sk3 ∈ GF(2poly(k)), we have
∑m

i=1Ci = sk,
∑m

i=1Di = sk3, and

(U + Cm)3 = V +Dm. (3.3)

In order for the decoder to output a non-bottom value, the shares created by the attacker

must decode to s̃k, s̃k
′
, such that s̃k

3
= s̃k

′
, or in other words, if(

Ũ + Cm

)3
= Ṽ +Dm. (3.4)

From 3.3 and 3.4 we receive

(U − Ũ)C2
m + (U2 − Ũ2)Cm + (U3 − Ũ3) = V − Ṽ . (3.5)

Clearly, Pr[E ∧E′ ∧ (U = Ũ)] = 0. Thus, assuming Pr[E ∧E′] > p, for p > 1/poly(k),

we receive

p < Pr
[
E ∧ E′ ∧ (U 6= Ũ)

]
≤ Pr

[
Dec(c̃) 6= ⊥ ∧ E′ ∧ U 6= Ũ

]
≤ Pr

[
s̃k

3
= s̃k

′ ∧ E′ ∧ (U 6= Ũ)
]

(3.5,3.2)
= Pr [Cm ∈ X ]

(3.2)

≤ Pr
[
sk ∈ ŜK

]
, (3.6)
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and A manages to recover Cm, and thus sk, with non-negligible probability p′ ≥ p. Let W

be the event of breaking 1-IND-CPA security. Then,

Pr[W ] = Pr[W |sk ∈ ŜK] · Pr[sk ∈ ŜK]

+ Pr[W |sk /∈ ŜK] · Pr[sk /∈ ŜK]

(3.6)
= p′ +

1

2
(1− p′) =

1

2
+
p′

2
, (3.7)

and the attacker breaks the IND-CPA security of (KGen,E,D). Thus, we have Pr[E∧E′] ≤
negl(k), and both experiments output ⊥ with overwhelming probability.

Claim 3.3.5. Assuming the authenticity property of (KGen,E,D), for any f ∈ Fα and any

message s, Expf,s2 ≈ Expf,s3 , where the probability runs over the randomness used by Init,

KGen and E.

Proof. Before proving the claim, recall that the authenticity property of the encryption

scheme is preserved under the presence of z∗ (cf. Claim 3.3.4). Let E be the event

s̃k = sk ∧ s̃k′ = sk3 and E′ be the event ẽ 6= e. Conditioned on ¬E, the two experiments

are identical, as they both output ⊥. Also, conditioned on E ∧ ¬E′, both experiments

output same∗. Thus, the statistical distance between the two experiments is bounded by

Pr[E∧E′]. Let B be the event Dsk(ẽ) 6= ⊥. Conditioned on E∧E′∧¬B both experiments

output ⊥. Thus, we need to bound Pr[E ∧ E′ ∧B].

Assuming there exist s, f , for which Pr[E∧E′∧B] > p, where p = 1/poly(k), we define

an attacker A = (A1,A2) that simulates Expf,s3 and breaks the authenticity property of

the encryption scheme in the presence of z∗, with non-negligible probability. A is defined

as follows: sample (s, st) ← A1(1k), and then, on input (z∗, e, st), where e ← Esk(s), A2,

samples Σ ← Init(1k), sets c̃ ← 0ν , c ← PΣ(z∗||e), computes c̃[I] ← f(c|I ), c̃[I
c] ← c|Ic ,

(z̃∗||ẽ)← P−1
Σ (c̃), and outputs ẽ. Assuming Pr[E ∧ E′ ∧B] > p, we have that Dsk(ẽ) 6= ⊥

and ẽ 6= e, with non-negligible probability and the authenticity property of (KGen,E,D)

breaks.

Claim 3.3.6. Assuming (KGen,E,D) is semantically secure, for any f ∈ Fα and any

message s, Expf,s3 ≈ Expf,03 , where the probability runs over the randomness used by Init,

KGen, E. “≈” may refer to statistical or computational indistinguishability, and 0 denotes

the zero-message.

Proof. Recall that (KGen,E,D) is semantically secure even in the presence of z∗ ← S̄S
f
m(Σ, sk)

(cf. 3.3.4), and towards contradiction, assume there exist f ∈ Fα, message s, and PPT
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distinguisher D such that∣∣∣Pr
[
D
(

Σ,Expf,s3

)
= 1
]
− Pr

[
D
(

Σ,Expf,03

)]
= 1
∣∣∣ > p,

for p = 1/poly(k). We are going to define an attacker A that breaks the semantic security

of (KGen,E,D) in the presence of z∗, using s0 := s, s1 := 0. A, given z∗, e, executes

Program.

Program(z∗, e) :

c← PΣ(z∗||e), c̃← 0ν , c̃[I]← f(c|I )

If ∃i : |(I ∩ Zi)| = m: s̃← ⊥
Else:

If ∃i :
⊕

j∈(I∩Zi) c[j] 6=
⊕

j∈(I∩Zi) c̃[j]:

s̃← ⊥
Else: s̃← ⊥

If ẽ = e:

s̃← same∗

Output s̃.

It is not hard to see that A simulates Expf,sb3 , thus the advantage of A against the semantic

security of (KGen,E,D) is the same with the advantage of D in distinguishing between

Expf,s03 , Expf,s13 , which by assumption is non-negligible. We have reached a contradiction

and the proof of the claim is complete.

From the above claims we have that for any f ∈ Fα and any s, Expf,s0 ≈ Expf,03 , thus

for any f ∈ Fα and any s0, s1, Expf,s00 ≈ Expf,s10 . Also, by the indistinguishability between

Expf,s0 and Expf,03 , the second property of Lemma 3.2.2 has been proven as the output of

Expf,03 is in {s,⊥}, with overwhelming probability, and non-malleability with manipulation

detection of our code follows by Lemma 3.2.2, since Expf,s0 is identical to Tamperfs of Lemma

3.2.2.

On the CRS. In the above, the tampering function, and consequently the codeword

locations that the function is given access to, are fixed before sampling the CRS and this

is critical for achieving security. However, by the proof of Theorem 3.3.2, we observe that

proving security in this setting is highly non-trivial. In addition, the tampering function

receives full access to the CRS when tampering with the codeword, which is in contrast

to the work by Faust et. al. [FMVW14] in the information-theoretic setting, where the

(internal) tampering function receives partial information over the CRS.
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In addition, the proposed scheme tolerates adaptive selection of the codeword locations,

with respect to the CRS, in the following way: each time the attacker requests access to

a location, he also learns if it corresponds to a bit of z or e, together with the index of

that bit in the original string. In this way, the CRS is gradually disclosed to the adversary

while picking codeword locations.

Finally, our CRS sustains a substantial amount of tampering that depends on the code-

word locations chosen by the attacker: an attacker that gets access to a sensitive codeword

bit is allowed to modify the part of the CRS that defines the location of that bit in the

codeword. The attacker is allowed to modify all but O(k log(|s|+k)) bits of the CRS, that

is of length O(k2 log k log(|s| + k)). To our knowledge, this is the first construction that

tolerates, even partial modification of the CRS. In contrast, existing constructions in the

CRS model are either using NIZKs [LL12, FN17, FMNV14, DKS18], or they are based on

the knowledge of exponent assumption [KLT16], thus tampering access to the CRS would

compromise security.

3.4 Removing the CRS

In the present section we show how to construct an MD-NMC for partial functions, in the

standard model.

A first approach would be to store the CRS of Construction 3.3.1, inside the codeword

together with PΣ(z||e), and give to the attacker read/write access to it. However, the

tampering function, besides getting direct (partial) access to the encoding of sk, it also

gets indirect access to it by (partially) controlling the CRS. Then, it can modify the CRS

in a way such that, during decoding, ciphertext locations of its choice will be treated as

bits of the inner encoding, z, increasing the tampering rate against z significantly. This

makes the task of protecting sk hard, if not impossible (unless we restrict the access rate

significantly).

To handle this challenge, we embed a structure recovering mechanism inside the code-

word and we emulate the CRS effect by increasing the size of the alphabet, giving rise to

a block-wise structure.15 Notice that, non-malleable codes with large alphabet size (i.e.,

poly(k) + |s| bits) might be easy to construct, as we can embed in each codeword block

the verification key of a signature scheme together with a secret share of the message, as

15Bigger alphabets have been also considered in the context of error-correcting codes, in which the
codeword consists of symbols.
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well as a signature over the share. In this way, partial access over the codeword does not

compromise the security of the signature scheme while the message remains private, and

the simulation is straightforward. This approach however, comes with a large overhead,

decreasing the information rate and access rate of the scheme significantly. In general,

and similar to error correcting codes, we prefer smaller alphabet sizes – the larger the size

is, the more coarse access structure is required, i.e., in order to access individual bits we

need to access the blocks that contain them. The present thesis aims at minimizing this

restriction by using small alphabets, as described below.

Our approach on the problem is the following. We increase the alphabet size to O(log k)

bits, and we consider two types of blocks: (i) sensitive blocks, in which we store the inner

encoding, z, of the secret key, sk, and (ii) non-sensitive blocks, in which we store the

ciphertext, e, that is fragmented into blocks of size O(log k). The first bit of each block

indicates whether it is a sensitive block, i.e., we set it to 1 for sensitive blocks and to 0,

otherwise. Our encoder works as follows: on input message s, it computes z, e, as in the

previous scheme and then uses rejection sampling to sample the indices, ρ1, . . . , ρ|z|, for

the sensitive blocks. Then, for every i ∈ {1, . . . , |z|}, Cρi is a sensitive block, with contents

(1||i||z[i]), while the remaining blocks keep ciphertext pieces of size O(log k). Decoding

proceeds as follows: on input codeword C = (C1, . . . , Cbn), for each i ∈ [bn], if Ci is a

non-sensitive block, its data will be part of e, otherwise, the last bit of Ci will be part of

z, as it is dictated by the index stored in Ci. If the number of sensitive blocks is not the

expected, the decoder outputs ⊥, otherwise, z, e, have been fully recovered and decoding

proceeds as in the previous scheme. The proposed scheme is depicted in Figure 3.3.

The security of our construction is based on the fact that, due to our shuffling technique,

the position mapping will not be completely overwritten by the attacker, and we prove later

in this section, this suffices for protecting the inner encoding over sk. We prove security

of the current scheme (cf. Theorem 3.4.8) by a reduction to the security of the scheme in

the CRS model. Our instantiation yields a rate 1− 1/Ω(log k) MD-NMC in the standard

model, with access rate 1 − 1/Ω(log k) and codewords of length |s|(1 + 1/O(log k)) +

O(k2 log2 k), assuming one-way functions.

It is worth pointing out that the idea of permuting blocks containing sensitive and

non-sensitive data was also considered by [SS16] in the context of list-decodable codes,

however the similarity is only in the fact that a permutation is being used at some point

in the encoding process, and our objective, construction and proof are different.
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z

e← Encryptsk(s)

← SecretShare
(
sk||sk3

)

Secret key: sk

Message: s

1||index||z[index]

Randomly chosen blocks

0||epart

(Blocks) (Contents)

Figure 3.3: Description of the scheme in the standard model.

In what follows, we consider alphabets of size O(log(k)) and we provide a computa-

tionally secure, rate 1 − 1/Ω(log k) encoding scheme in the standard model, tolerating

modification of (1− o(1))ν blocks, where ν is the total number of blocks in the codeword.

The projection operation will be also used with respect to bigger alphabets, enabling the

projection of blocks.

Our construction is defined below.

Construction 3.4.1. Let k, m ∈ N, let (KGen,E,D) be a symmetric encryption scheme

and (SSm,Recm) be an m-out-of-m secret sharing scheme. We define an encoding scheme

(Enc∗,Dec∗), as follows:

• Enc∗(1k, ·): for input message s, sample sk ← KGen
(
1k
)
, e← Esk(s).

– (Secret share) Sample z ← SSm(sk||sk3), where z =
f2|sk|
i=1 zi, z ∈ {0, 1}2m|sk|,

and for i ∈ [|sk|], zi (resp. z|sk|+i) is an m-out-of-m secret sharing of sk[i]

(resp. sk3[i]).

– (Construct blocks & permute) Set l ← 2m|sk|, bs← log l + 2, d← |e|/bs,
bn ← l + d, sample ρ := (ρ1, . . . , ρl)

rs← {0, 1}log(bn) and compute C ← Πρ(z||e)
as follows:

1. Set t← 1, Ci ← 0bs, i ∈ [bn].

2. (Sensitive blocks) For i ∈ [l], set Cρi ← (1||i||z[i]).
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3. (Ciphertext blocks) For i ∈ [bn], if i 6= ρj, j ∈ [l], Ci ← (0||e[t :

t+ (bs− 1)]), t← t+ (bs− 1).16

Output C := (C1|| . . . ||Cbn).

• Dec∗(1k, ·): on input C, parse it as (C1|| . . . ||Cbn), set t ← 1, l ← 2m|sk|, z ← 0l,

e← 0, L = ∅ and compute (z||e)← Π−1(C) as follows:

– For i ∈ [bn],

∗ (Sensitive block) If Ci[1] = 1, set j ← Ci[2 : bs − 1], z [j] ← Ci[bs],

L ← L ∪ {j}.

∗ (Ciphertext block) Otherwise, set e[t : t + bs − 1] = Ci[2 : bs], t ←
t+ bs− 1.

– If |L| 6= l, output ⊥, otherwise output (z||e).

If Π−1(C) = ⊥, output ⊥, otherwise, compute (sk||sk′)← Recm(z), and if sk3 = sk′,

output Dsk(e), otherwise output ⊥.

The set of indices of the blocks in which zi is stored will be denoted by Zi.

We prove security for the above construction by a reduction to the security of Con-

struction 3.3.1. We note that our reduction is non-black box with respect to the coding

scheme in which security is reduced to; a generic reduction, i.e., non-malleable reduction

[ADKO15], from the standard model to the CRS model is an interesting open problem

and thus out of the scope of the present thesis.

In the following, we consider Γ = {0, 1}O(log(k)).17 The straightforward way to prove

that (Enc∗,Dec∗) is secure against FαΓ by a reduction to the security of the bit-wise code

of Section 3.3, would be as follows: for any α ∈ [0, 1), f ∈ FαΓ and any message s, we

have to define α′, g ∈ Fα′ , such that the output of the tampered execution with respect

to (Enc∗,Dec∗), f , s, is indistinguishable from the tampered execution with respect to

(Init,Enc,Dec), g, s, and g is an admissible function for (Init,Enc,Dec). However, this

approach might be tricky as it requires the establishment of a relation between α and α′

such that the sensitive blocks that f will receive access to, will be simulated using the

sensitive bits accessed by g. Our approach is cleaner: for the needs of the current proof

we leverage the power of Construction 3.3.1, by allowing the attacker to choose adaptively

16Here we assume that bs−1, divides the length of the ciphertext e. We can always achieve this property
by padding the message s with zeros, if necessary.

17Recall that, whenever Γ is omitted from the notation, we assume that Γ = {0, 1}.



3.4. Removing the CRS 51

the codeword locations, as long as it does not request to read all shares of the secret key.

Then, for every block that is accessed by the block-wise attacker f , the bit-wise attacker

g requests access to the locations of the bit-wise code that enable him to fully simulate

the input to f . We formally present our ideas in the following sections. In Section 3.4.1

we introduce the function class Fad that considers adaptive adversaries with respect to the

CRS and we prove security of Construction 3.3.1 in Corollary 3.4.3 against a subclass of

Fad, and then, we reduce the security of the block-wise code (Enc∗,Dec∗) against FαΓ to

the security of Construction 3.3.1 against Fad (cf. Section 3.4.2).

3.4.1 Security against adaptive adversaries

In the current section we prove that Construction 3.3.1 is secure against the class of

functions that request access to the codeword adaptively, i.e., depending on the CRS,

as long as they access a bounded number of sensitive bits. Below, we formally define

the function class Fad, in which the tampering function picks up the codeword locations

depending on the CRS, and we consider Γ = {0, 1}.

Definition 3.4.2 (The function class Fνad (or Fad)). Let (Init,Enc,Dec) be an (κ, ν)-coding

scheme and let � be the range of Init(1k). For any g = (g1, g2) ∈ Fνad, we have g1 : � →
P ([ν]), gΣ

2 : {0, 1}|range(g1)| → {0, 1}|range(g1)| ∪ {⊥}, and for any c ∈ {0, 1}ν , gΣ (c) =

g2

(
c|g1(Σ)

)
. For brevity, the function class will be denoted as Fad.

Construction 3.3.1 remains secure against functions that receive full access to the ci-

phertext, as long as they request to read all but one shares for each bit of sk and sk3. The

result is formally presented in the following corollary.

Corollary 3.4.3. Let k, m ∈ N. Assuming (SSm,Recm) is an m-out-of-m secret sharing

scheme and (KGen,E,D) is 1-IND-CPA secure authenticated encryption scheme, the code

of Construction 3.4.1 is an MD-NMC against any g = (g1, g2) ∈ Fad, assuming that for

all i ∈ [2|sk|], (Zi ∩ g1(Σ)) < m, where sk ← KGen(1k) and Σ← Init(1k).

Proof. Let g = (g1, g2) be as stated above. For any message s, the tampered execution

with respect to g and (Init,Enc,Dec), is defined as follows.

Tampergs :=


Σ← Init(1k), c← Enc(Σ, s), I ← g1(Σ)

c̃← gΣ
2 (c|I ), s̃← Dec(Σ, c̃)

If s̃ = s, output same∗, otherwise, output s̃.


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The proof is along the lines of the proof of Theorem 3.3.2, i.e., we prove that for any g

having the properties stated above, and any pair of messages s0, s1, Tampergs0 ≈ Tampergs1 ,

and the output of the tampered execution is either the original message, or ⊥, with over-

whelming probability. Below, we revisit the hybrids of Theorem 3.3.2 and we prove that

the indistinguishability between adjacent hybrids, holds with respect to g.

• Expg,s0 : For any f , s, the first experiment, Expg,s0 , is identical to the experiment

Tampergs.

• Expg,s1 : In the second experiment we have Zi, i ∈ [2|sk|], to be the set of indices

in which zi is stored, |Zi| = m. The main difference from the previous experiment

is that the current one outputs ⊥, if there exists a bit of sk or sk3 for which the

tampering function reads all shares of it. However, by the definition of g we know

that this happens with zero probability, thus we have that the following claim holds,

Claim 3.4.4. Let k, m ∈ N. For any g = (g1, g2) ∈ Fad, assuming that for all

i ∈ [2|sk|], (Zi ∩ g1(Σ)) < m and any message s, we have Expg,s0 = Expg,s1 , where

sk ← KGen(1k), Σ← Init(1k).

• Expg,s2 : In the current experiment we unfold the encoding procedure, and in addition,

we substitute the secret sharing procedure SSm with S̄S
g
m, where S̄S

g
m is defined as

S̄S
f
m does with respect to f , in Claim 3.3.4 of Theorem 3.3.2. From the above claim

we have that for all i, |I ∩ Zi| < m, and we observe that the current experiment is

identical to the previous one up to the point of computing g(c|I ), as c|I carries no

information about sk and sk3. Thus, the transition between the current experiment

and the previous one is identical to that of Theorem 3.3.2: an attacker that partially

modifies the shares of sk and sk3, creates shares of s̃k and s̃k
′
, such that s̃k

3
= s̃k

′
,

with negligible probability in k, which is proved by a reduction to the 1-IND-CPA

security of the encryption scheme in the presence of z∗. Thus, we have the following

claim.

Claim 3.4.5. Assuming (KGen,E,D) is 1-IND-CPA secure (cf. Definition 2.1.6),

for any g ∈ Fad and any message s, Expg,s1 ≈ Expg,s2 , where the probability runs over

the randomness used by Init, Enc.

• Expg,s3 : As in Theorem 3.3.2, the indistinguishability between the two experiments

follows from the authenticity property of the encryption scheme in the presence of

z∗. Thus, the following holds.
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Claim 3.4.6. Assuming the authenticity property of (KGen,E,D), for any g ∈ Fad

and any message s, Expf,s2 ≈ Expf,s3 , where the probability runs over the randomness

used by Init, KGen and E.

• Finally, since g learns nothing about sk, we have that for any g ∈ Fad, and message

s, Expg,s3 is indistinguishable from Expg,03 , where 0 denotes the zero-message. This

follows by the semantic security of the encryption scheme (Definition 2.1.6). Formally,

we prove the following claim.

Claim 3.4.7. Assuming (KGen,E,D) is semantically secure, for any g ∈ Fad and any

message s, Expg,s3 ≈ Expg,03 , where the probability runs over the randomness used by

Init, KGen, E, “≈” may refer to statistical or computational indistinguishability, and

0 is the zero-message.

From the above claims we have that for any g ∈ Fad and any s0, s1, assuming that for all

i ∈ [2|sk|], (Zi ∩ g1(Σ)) < m, Expg,s00 ≈ Expg,s10 , and non-malleability with manipulation

detection follows by Lemma 3.2.2, since Expg,s0 is identical to Tampergs of Lemma 3.2.2, and

by the indistinguishability between Expg,s0 and Expg,s3 , the second property of Lemma 3.2.2

has been proven as the output of Expg,s3 is in {s,⊥}, with overwhelming probability.

3.4.2 MD-NMC security of the block-wise code

In the current section we prove security of Construction 3.4.1 against FαΓ , for Γ = {0, 1}O(log(k)).

Theorem 3.4.8. Let k, m ∈ N, Γ = {0, 1}O(log(k)) and α ∈ [0, 1). Assuming (SSm,Recm)

is an m-out-of-m secret sharing scheme and (KGen,E,D) is a 1-IND-CPA secure authen-

ticated encryption scheme, the code of Construction 3.4.1 is an MD-NMC against FαΓ ,

for any α, m, such that (1− α)m = ω(log(k)).

Proof. Following Lemma 3.2.2, we prove that for any f ∈ FαΓ , and any pair of messages s0,

s1, Tamperfs0 ≈ Tamperfs1 , and for any s, Pr
[
Tamperfs /∈ {⊥, s}

]
≤ negl(k), where Tamper

denotes the experiment defined in Lemma 3.2.2 with respect to the encoding scheme of

Construction 3.4.1, (Enc∗,Dec∗). Our proof is given by a series of hybrids depicted in

Figure 3.7. We reduce the security (Enc∗,Dec∗), to the security of Construction 3.3.1,

(Init,Enc,Dec), against Fad (cf. Corollary 3.4.3). The idea is to move from the tam-

pered execution with respect to (Enc∗,Dec∗), f , to a tampered execution with respect to

(Init,Enc,Dec), g, such that the two executions are indistinguishable and (Init,Enc,Dec) is

secure against g.
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Let Ib be the set of indices of the blocks that f chooses to tamper with, where |Ib| ≤ αν,

and let l← 2m|sk|, bs← log l+2, bn← l+ |e|/bs. Below we describe the hybrids of Figure

3.7.

• Expf,s0 : The current experiment is the experiment Tamperfs , of Lemma 3.2.2, with

respect to (Enc∗,Dec∗), f , s.

• Exp
(g1,g2),s
1 : The main difference between Expf,s0 and Exp

(g1,g2),s
1 , is that in the latter

one, we introduce the tampering function (g1, g2), that operates over codewords of

(Init,Enc,Dec) and we modify the encoding steps so that the experiment creates

codewords of the bit-wise code (Init,Enc,Dec). (g1, g2) simulates partially the block-

wise codeword C, while given partial access to the bit-wise codeword c ← Enc(s).

As we prove in Claim 3.4.9, it simulates perfectly the tampering effect of f against

C ← Enc∗(s).

g1 operates as follows (cf. Figure 3.4): it simulates perfectly the randomness for the

permutation of the block-wise code, denoted as ρ, and constructs a set of indices I,

such that g2 will receive access to, and tamper with, c|I . The set I is constructed

g1(Σ = (r1, . . . , rl)) :

– (Simulate block shuffling):
Sample ρ := (ρ1, . . . , ρl)

rs← {0, 1}log(bn)

– (Construct I): Set I = ∅,
∗ (Add ciphertext locations to I):

For j ∈ [|e|+ l], if j /∈ {ri|i ∈ [l]}, I ← (I ∪ j).
∗ (Add sensitive bit locations to I according to Ib):

For j ∈ [bn], if j ∈ Ib and ∃i ∈ [l] such that j = ρi, I ← (I ∪ ri).
– Output: Output I.

Figure 3.4: The function g1 that appears in the hybrid experiments of Figure 3.7.

with respect to the set of blocks Ib, that f chooses to access, as well as Σ, that

reveals the original bit positions, i.e., the ones before permuting (z||e). g2 receives

c|I , reconstructs I, simulates partially the blocks of the block-wise codeword, C, and

applies f on the simulated codeword. The program of g2 is given in Figure 3.5. In

Claim 3.4.9, we show that g2, given c|I , simulates perfectly C|Ib
, which implies that

gΣ
2 (c|I ) = f(C|Ib

), and the two executions are identical.
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gΣ
2 (c|I ):

t← 1, C∗i ← 0bs, i ∈ [bn].

– (Reconstruct I): Compute I ← g1(Σ).

– (Simulate ciphertext blocks):
For i ∈ [bn], if i 6= ρj for j ∈ [l], C∗i ← (0||e[t : t+ (bs− 1)]), t← t+ (bs− 1).

– (Simulate sensitive blocks):

∗ For i ∈ [|I|], if ∃j ∈ [l], such that Ind(c|I [i]) = rj , set C∗ρj ←
(
1||j||c|I [i]

)
.

∗ Set C∗ := (C∗1 || . . . ||C∗bn) and C̃∗ := C∗.

– (Apply f): compute C̃∗[Ib]← f(C∗|Ib
).

– (Output): Output C̃∗|Ib
.

Figure 3.5: The function g2 that appears in the hybrid experiments of Figure 3.7.

• Exp
(g1,g3),s
2 : In the current experiment, we substitute the function g2 with g3, and

Dec∗ with Dec, respectively. By inspecting the code of g2 and g3 (cf. Figures 3.5,3.6,

respectively), we observe that latter function executes the code of the former, plus

the “Check labels and simulate c̃[I]” step. Thus the two experiments are identical up

to the point of computing f(C∗|Ib
). The main idea here is that we want the current

gΣ
3 (c|I ):

t← 1, C∗i ← 0bs, i ∈ [bn].

– (Reconstruct I): Compute I ← g1(Σ).

– (Simulate ciphertext blocks):
For i ∈ [bn], if i 6= ρj , j ∈ [l], C∗i ← (0||e[t : t+ (bs− 1)]), t← t+ (bs− 1).

– (Simulate sensitive blocks):

∗ For i ∈ [|I|], if ∃j ∈ [l], such that Ind(c|I [i]) = rj , set C∗ρj ←
(
1||j||c|I [i]

)
.

∗ Set C∗ := (C∗1 || . . . ||C∗bn) and C̃∗ := C∗.

– (Apply f): compute C̃∗[Ib]← f(C∗|Ib
).

– (Check labels and simulate c̃[I]): For i ∈ {ρj |j ∈ [l]}\Ib, C∗i ← (1||i||0). If
Π−1(C̃∗) = ⊥, set d← 1, otherwise set (z̃∗||ẽ)← Π−1(C̃∗), c̃∗ ← PΣ(z̃∗||ẽ).

– (Output): If d = 1 output ⊥, otherwise output c̃∗|I .

Figure 3.6: The function g3 that appears in the hybrid experiments of Figure 3.7.
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execution to be with respect to (Init,Enc,Dec) against (g1, g3). Thus, we substitute

Dec∗ with Dec, and we expand the function g2 with some extra instructions/checks

that are missing from Dec. We name the resulting function as g3 and we prove that

the two executions are identical.

• Finally, we prove that for any f and any s,

Pr
[
Exp

(g1,g3),s
2 /∈ {⊥, s}

]
≤ negl(k).

We do so by proving that (g1, g3) is admissible for (Init,Enc,Dec, ), i.e., (g1, g3) ∈ Fad,

and g3 will not request to access more that m− 1 shares for each bit of sk, sk3 (cf.

Corollary 3.4.3). This implies security according to Lemma 3.2.2.

In what follows we prove indistinguishability between the hybrids.

Claim 3.4.9. For any f ∈ FαΓ and any s, Expf,s0 = Exp
(g1,g2),s
1 .18

Proof. The main difference between Exp0 and Exp1, is that in Exp1, we introduce the tam-

pering function g = (g1, g2), that operates over codewords of (Init,Enc,Dec), and simulates

partially the block-wise code. We observe that g1 simulates perfectly the randomness of the

permutation for the block-wise code, denoted as ρ. Thus, the computation C ← Πρ(z||e)
does not induce any statistical difference between the two experiments. By the definition

of g1 we have that c|I consists of all ciphertext bits, as well as the indices ri, for which

ρi ∈ Ib, i ∈ [l], i.e., if f requests access to the sensitive block with index ρi, containing

z[i], g1 will request access to the ri-th bit of c, which is z[i]. Thus, g2 will receive as input

the entire ciphertext and all the sensitive bits that f will request access to, with respect

to Ib, thus it can fully simulate C|Ib
while being consistent with the distribution of blocks

in C|Ic
b
, as ρ is generated by g1. Thus we have that gΣ

2 (c|I ) is identical to f(C|Ib
), and the

proof of the claim is complete.

Claim 3.4.10. For any f ∈ FαΓ and any s, Exp
(g1,g2),s
1 = Exp

(g1,g3),s
2 .

Proof. In Exp2 we substitute the function g2 with g3, and Dec∗ with Dec, respectively.

By inspecting the code of g2 and g3, we observe that latter function executes the code of

the former, plus the “Check labels and simulate c̃[I]” step. Thus the two experiments are

identical up to the point of computing f(C|Ib
). We unfold the code of the two experiments

from that point of the computation and on (cf. Figure 3.8). They idea is that the consis-

18For random variables X, Y , X = Y denotes that the random variables are identical.
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Expf,s0 :
sk ← KGen

(
1k
)
, e← Esk(s)

z ← SSm(sk||sk3)

ρ := (ρ1, . . . , ρl)
rs← {0, 1}log(bn)

C ← Πρ(z||e), C̃ ← C

C̃[Ib]← f(C|Ib
)

s̃← Dec∗(C̃)

Output same∗ if s̃ = s and s̃ otherwise.

Exp
(g1,g2),s
1 :

sk ← KGen
(
1k
)
, e← Esk(s)

z ← SSm(sk||sk3)

Σ← Init(1k), c← PΣ(z||e)
I ← g1(Σ)

C ← Πρ(z||e), C̃ ← C

C̃[Ib]← gΣ
2 (c|I )

s̃← Dec∗(C̃)

Output same∗ if s̃ = s and s̃ otherwise.

Exp
(g1,g3),s
2 :

Σ← Init(1k)
sk ← KGen

(
1k
)
, e← Esk(s)

z ← SSm(sk||sk3)

c← PΣ(z||e), c̃← c
I ← g1(Σ)

c̃[I]← gΣ
3 (c|I )

s̃← Dec(Σ, c̃)

Output same∗ if s̃ = s and s̃ otherwise.

Figure 3.7: The hybrid experiments for the proof of Theorem 3.4.8.

tency check on the labels of the block-wise code is transferred from Dec∗ in Exp1 to g3 in

Exp2, and Dec∗ is substituted by Dec, so that Exp
(g1,g3),s
2 is the tampering experiment of

Lemma 3.2.2 with respect to (Init,Enc,Dec) and (g1, g3).

In order to show that Exp
(g1,g2),s
1 = Exp

(g1,g3),s
2 , is suffices to prove that Dec∗(C̃) =

Dec(c̃). By inspecting Exp
(g1,g3),s
2 , we have that c̃ = ⊥ if and only if Π−1(C̃∗) = ⊥. By

the definition of Π−1 (cf. Construction 3.4.1), Π−1(C̃∗) = ⊥, if and only if the tampering

function creates an inconsistent set of labels, an effect that can be decided by g3 by only

partially accessing C, since it fully simulates the labels for the block-wise code. By Claim
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Exp
(g1,g2),s
1 :

...

gΣ
2 (c|I ) :



...

C̃∗[Ib]← f(C∗|Ib
)

C̃[Ib]← C̃∗|Ib

Dec∗(C̃) :



If Π−1(C̃) 6= ⊥ :

(z̃||ẽ)← Π−1(C̃)

(s̃k||s̃k′)← Recm(z̃)

If s̃k
3

= s̃k
′
: s̃← Ds̃k(ẽ)

Else: s̃← ⊥
Else: s̃← ⊥
Output s̃

...

Exp
(g1,g3),s
2 :

...

...

C̃∗[Ib]← f(C∗|Ib
)

If Π−1(C̃∗) = ⊥ : d← 1
Else:

(z̃∗||ẽ)← Π−1(C̃∗)
c̃∗ ← PΣ(z̃∗||ẽ)

If d = 1: output ⊥
Else: output c̃∗|I


: gΣ

3 (c|I )

If c̃ 6= ⊥ :

(z̃||ẽ)← P−1
Σ (c̃)

(s̃k||s̃k′)← Recm(z̃)

If s̃k
3

= s̃k
′
: s̃← Ds̃k(ẽ)

Else: s̃← ⊥
Else: s̃← ⊥
Output s̃


: Dec(c̃)

...

Figure 3.8: The unfolded code of Exp1 and Exp2.

3.4.9, C|Ib
= C∗|Ib

and thus C̃|Ib
= C̃∗|Ib

, which implies that Π−1(C̃∗) = ⊥ if and only if

Π−1(C̃) = ⊥. We conclude that c̃ = ⊥ if and only if Π−1(C̃) = ⊥. Let E be the event

in which c̃ 6= ⊥. Clearly, conditioned on ¬E the two experiments are identical, as both

output ⊥. It remains to prove the same conditioned on E.

By inspecting the two experiments, and conditioned on E, we have

c̃|I = c̃∗|I =
[
PΣ

(
Π−1(C̃∗)

)]
|I

=
[
PΣ

(
Π−1(C̃)

)]
|I
, (3.8)

where the last equality follows from the fact that
[
PΣ

(
Π−1(C̃∗)

)]
|I

is independent of the

blocks of C̃ that Exp2 does not have access to. Moreover,

c̃|Ic = c|Ic =
[
PΣ

(
Π−1(C)

)]
|Ic

=
[
PΣ

(
Π−1(C̃)

)]
|Ic
, (3.9)

where the last equality follows from the fact that c̃|Ic is not being accessed by the tampering

function. From the above relations we have that c̃ = PΣ

(
Π−1(C̃)

)
, thus P−1

Σ (c̃) = Π−1(C̃),

and the two executions are identical conditioned on E.
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Claim 3.4.11. Assuming (1− α)m = ω(log(k)), for any f ∈ FαΓ and any s,

Pr
[
Exp

(g1,g3),s
2 /∈ {⊥, s}

]
≤ negl(k),

over the randomness of Exp2.

Proof. Assuming (1 − α)m = ω(log(k)), it suffices to prove that for any f ∈ FαΓ , the

function (g1, g3) ∈ Fad is admissible for (Init,Enc,Dec, ), i.e., g1 will not request to access

more that m − 1 shares for each bit of sk, sk3, and the proof of the claim will follow by

Corollary 3.4.3 and Lemma 3.2.2. We prove that for any f ∈ FαΓ , the corresponding (g1, g3)

will not access the entire zi, for all i ∈ [|2sk|], with overwhelming probability. Such an

event takes place if and only if ∃i : |(Ib ∩ Zi)| = m. We define by Ei the event in which f

request access to all blocks in which zi is stored. Assuming f reads n blocks, we have that

for all i ∈ [2|sk|],

Pr
ρ

[Ei] = Pr
ρ

[ |Ib ∩ Zi| = m ] =

m−1∏
j=0

n− j
ν − j

≤
(n
ν

)m
.

We have n = αν and assuming α = 1− ε for ε ∈ (0, 1], we have Pr[Ei] ≤ (1− ε)m ≤ 1/emε

and

Pr[E] = Pr
ρ

2|sk|⋃
i=1

Ei

 ≤ 2|sk|
emε

,

which is negligible when (1− α)m = ω(log(k)).

The security of the block-wise code follows from the above claims and the MD-NMC

security of (Init,Enc,Dec).

3.5 Continuous MD-NMC with light updates

In this section, we enhance the block-wise scheme of Section 3.4 with an update mech-

anism, that uses only shuffling and refreshing operations. The resulting code is secure

against continuous attacks, for a notion of security that is weaker than the original one

[FMVW14], as we need to update the codeword after each round of execution. However, our

update mechanism is using cheap operations, avoiding the full decoding and re-encoding

of the message, which is the standard way to achieve continuous security [LL12, DPW10]

using a one-time NMC. In addition, our solution avoids the usage of a self-destruction

mechanism that produces ⊥ in all subsequent rounds after the first round in which the

attacker creates an invalid codeword, which was originally proposed by [FN17]. Avoiding
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the self-destruction mechanism, was originally proposed by [FN17], and it is an important

step towards practicality, as (i) the mechanism is subjective to denial of service attacks,

and (ii) it renders the device useless in the presence of non-adversarial hardware faults.

Our solution enables normal use of the device in the presence of such faults and provides

security against malicious attacks.19

The update mechanism of the proposed scheme, works as follows: in each round, it

randomly shuffles the blocks and refreshes the randomness of the inner encoding of sk.

The idea here is that, due to the continual shuffling and refreshing of the inner encoding

scheme, in each round the attacker learns nothing about the secret key, and every attempt

to modify the inner encoding, results to an invalid key, with overwhelming probability.

Our update mechanism can be made deterministic if we further encode the seed of a PRG

together with the secret key, which is similar to the technique presented in [LL12].

Below we define the update mechanism, which is denoted as Update∗.

Construction 3.5.1. Let k, m ∈ N, and let (KGen,E,D), (SSm,Recm), Enc∗, Dec∗, be as

in Construction 3.4.1. We define the update procedure, Update∗, for the encoding scheme

of Construction 3.4.1, as follows:

• Update∗(1k, ·): on input C, parse it as (C1|| . . . ||Cbn), set l ← 2m|sk|, L̂ = ∅, and

set Ĉ := (Ĉ1|| . . . ||Ĉbn) to zeros.

– (Secret share 02|sk|): Sample z ← SSm
(
02|sk|), where z =

f2|sk|
i=1 zi, z ∈

{0, 1}2m|sk|, and for i ∈ [2|sk|], zi is an m-out-of-m secret sharing of the 0

bit.

– (Shuffle & Refresh): Sample ρ := (ρ1, . . . , ρl)
rs← {0, 1}log(bn). For i ∈ [bn],

∗ (Sensitive block) If Ci[1] = 1,

· (Shuffle): Set j ← Ci[2 : bs− 1], Ĉρj ← Ci.

· (Refresh): Set Ĉρj [bs]← Ĉρj [bs]⊕ z[j].

∗ (Ciphertext block)

If Ci[1] = 0, set j ← minn

{
n ∈ [bn]

∣∣n /∈ L̂, n 6= ρi, i ∈ [l]
}

, and Ĉj ← Ci,

L̂ ← L̂ ∪ {j}.

Output Ĉ.

19We assume that the attacks against the memory are non-persistent.
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The following definition of security is along the lines of the one given in [FMVW14],

adapted to the notion of non-malleability with manipulation detection. Also, after each

invocation the codewords are updated, where in our case the update mechanism is only

using shuffling and refreshing operations. In addition, there is no need for self-destruct

after detecting an invalid codeword [FN17].

Definition 3.5.2 (Continuous MD-NMC with light updates). Let CS = (Enc,Dec) be an

encoding scheme, F be a function class and k, q ∈ N. Then, CS is a q-continuously non-

malleable code with manipulation detection (q-MD-CNMC) with light updates, if for every,

sufficiently large k ∈ N, any pair of messages s0, s1 ∈ {0, 1}poly(k), and any algorithm A,{
TamperAs0(k)

}
k∈N ≈

{
TamperAs1(k)

}
k∈N ,

where,

TamperAs (k) :

C ← Enc(1k, s), s̃← 0

For τ ∈ [q] :

f ← A(s̃), C̃ ← f(C), s̃← Dec(C̃)

If s̃ = s : s̃← same∗

C ← Update∗(1k, C)

out← A(s̃)

Return : out

and for each round the output of the decoder is not in {s,⊥} with negligible probability in

k, over the randomness of TamperAs .

Below we prove that the scheme of Construction 3.5.1 is continuously non-malleable

with manipulation detection and light updates.

Theorem 3.5.3. Let q, k, m, ∈ N, Γ = {0, 1}O(log(k)) and α ∈ [0, 1). Assuming

(SSm,Recm) is an m-out-of-m secret sharing scheme and (KGen,E,D) is a 1-IND-CPA,

authenticated encryption scheme, the scheme of Construction 3.5.1 is a MD-CNMC with

light updates, against FαΓ , for any α, m, such that (1− α)m = ω(log(k)).

Proof. Let A be any adversary playing against TamperAs , for any s. Let Ib be the set of

indices chosen by the attacker in each round and Ic = [ν]\I. The tampered components of

the codeword will be denoted using the symbol “˜” on top of the original symbol. Our proof

follows the strategy of the one given in Theorem 3.3.2, using a series of hybrid experiments

that are depicted in Figure 3.9. Below, we describe the hybrids.



3.5. Continuous MD-NMC with light updates 62

ExpA,s,q0 :

C ← Enc(s), s̃← 0, C̃ ← C
For τ ∈ [q] :
f ← A(s̃)

C̃|Ib
← f(C|Ib

), s̃← Dec(C̃)

If s̃ = s :
s̃← same∗

C ← Update∗(1k, C)

out← A(s̃)
Return : out

ExpA,s,q1 :

C ← Enc(s), s̃← 0, C̃ ← C
For τ ≤ [q] :

f ← A(s̃), s̃← ⊥
If ∀i : |(Ib ∩ Zi)| < m:

C̃|Ib
← f(C|Ib

), s̃← Dec(C̃)

If s̃ = s :
s̃← same∗

C ← Update∗(1k, C)

out← A(s̃)
Return : out

ExpA,s,q2 :

ρ
rs← {0, 1}log(bn)

sk ← KGen(1k), e← Esk(s)

s̃← 0
For τ ∈ [q] :
f ← A(s̃), s̃← ⊥
z∗ ← S̄S

f,ρ
m (sk), C ← Πρ(z

∗||e)
If ∀i : |(Ib ∩ Zi)| < m:

C̃|Ib
← f(C|Ib

)

wi ←
⊕

j∈(Ib∩Zi)Cj [bs]

w̃i ←
⊕

j∈(Ib∩Z̃i) C̃j [bs]

If ∀i : wi = w̃i:

s̃← Dsk(ẽ)

If s̃ = s :
s̃← same∗

C ← Update∗(1k, C)

out← A(s̃)
Return : out

ExpA,s,q3 :

ρ
rs← {0, 1}log(bn)

sk ← KGen(1k), e← Esk(s)
s̃← 0

For τ ∈ [q] :
f ← A(s̃), s̃← ⊥
z∗ ← S̄S

f,ρ
m (sk), C ← Πρ(z

∗||e)

If ∀i : |(Ib ∩ Zi)| < m:

C̃ ← f(C|Ib
)

wi ←
⊕

j∈(Ib∩Zi)Cj [bs]

w̃i ←
⊕

j∈(Ib∩Z̃i) C̃j [bs]

If ∀i : wi = w̃i :

If ẽ = e:

s̃← same∗

C ← Update∗(1k, C)

out← A(s̃)
Return : out

Figure 3.9: Hybrids for the proof of Theorem 3.5.3. The gray part signifies the portion of
the code of an experiment that differs from the previous one.

• ExpA,s,q0 : For any A, s, q, the experiment ExpA,s,q0 , is the experiment TamperAs , of

Definition 3.5.2.



3.5. Continuous MD-NMC with light updates 63

• ExpA,s,q1 : In the second experiment and for each round of the execution, we define

Zi, i ∈ [2|sk|], to be the set of indices in which zi is stored, |Zi| = m. Intuitively, in

each round, by calling the Update∗ procedure that permutes the blocks using a fresh

permutation key and updates the shares of sk and sk3, we achieve the following:

in each round, the attacker finds all shares for a bit of sk, and sk3, with negligible

probability in k, thus the tampering function is not accessing any bit of sk and

sk3, even if it is given access to (1 − o(1))ν blocks of the codeword. Thus, the

indistinguishability between the current experiment and the previous one comes from

a claim analogous to Claim 3.3.3, made in the proof of Theorem 3.3.2. In particular,

we have the following claim.

Claim 3.5.4. For k, q, m ∈ N, assume (1 − α)m = ω(log(k)). Then, for any A
that chooses its tampering strategy from FαΓ , and any message s, we have ExpA,s,q0 ≈
ExpA,s,q1 , where the probability runs over the randomness used by Enc∗, Update∗.

• ExpA,s,q2 : In the third experiment we define by Z̃i to be the set of indices in which

z̃i is stored, |Z̃i| = m. The main difference with the previous experiment is that

we unfold the encoding procedure, and in addition, we substitute the secret sharing

procedure SSm with S̄S
f,ρ
m , defined as follows:

S̄S
f,ρ
m (sk):

1. Sample
(
z∗1 , . . . , z

∗
2|sk|

)
← SSm

(
sk||sk3

)
.

2. For i ∈ [2|sk|]:
li := max

d
{d ∈ [m] ∧ Ind (zi[d]) /∈ Ib)} ,

where Ind returns the index of zi[d] in C, i.e., li is the largest index in [m] such

that the codeword block containing zi[li], is not accessed by f .

3. (Output): For all i set z∗i [li] = ∗, and output z∗ :=‖2|sk|i=1 z∗i .

In ExpA,s,q1 , we have z =
f2|sk|
i=1 zi, and each zi is an m-out-of-m secret sharing for a

bit of sk or sk3. From the first transition we have that for all i, |Ib ∩ Zi| < m with

overwhelming probability, and the current experiment is identical to the previous one

up to the point of computing f(C|Ib
), as C|Ib

and f(C|Ib
) depend only on z∗, that

gives no information about sk and sk3.

Another difference between the two experiments is that, after applying the tampering

function, ExpA,s,q1 makes a call on the decoder while ExpA,s,q2 , checks if the tampering
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function has modified the shares in a way such that the reconstruction procedure will

give s̃k 6= sk or s̃k
′ 6= sk′. In case modification is detected the current experiments

sends ⊥ to the attacker. The main idea here is that, a tampering function that

modifies the shares of sk and sk3, creates shares of s̃k and s̃k
′
, such that s̃k

3
= s̃k

′
,

with negligible probability in k. We prove this by a reduction to the 1-IND-CPA

security of the encryption scheme in the presence of z∗, that as we have already stated,

it gives no information about the secret key. The indistinguishability between the

two experiments comes from the following claim, whose proof is similar to the one

given in Claim 3.3.4.

Claim 3.5.5. Assuming (KGen,E,D) is 1-IND-CPA secure (cf. Definition 2.1.6),

for any A choosing its tampering strategy from FαΓ , and any message s, ExpA,s,q1 ≈
ExpA,s,q2 , where the probability runs over the randomness used by Enc∗, Update∗.

• ExpA,s,q3 : In the final experiment, in each round of the execution, instead of calling

the decryption Dsk(ẽ), we first check if the attacker has modified the ciphertext,

in which case the current experiment outputs ⊥, otherwise it outputs same∗. This

part of the program is reached only if the tampering function does not modify the

secret key. Thus, the indistinguishability between the two experiments follows from

the authenticity property of the encryption scheme in the presence of z∗, which is

updated in each round depending on the set Ib. Clearly, requesting z∗ adaptively in

each round does not compromise the security of the encryption scheme, as z∗ carries

no information about sk. Thus, in each round, given that s̃k = sk and s̃k
′
= sk′, we

have that if the attacker modifies the ciphertext, then with overwhelming probability

Dsk(ẽ) = ⊥, otherwise, Dsk(ẽ) = s, and the current experiment correctly sends

s̃ = same∗ to the attacker. Thus, we have the following claim.

Claim 3.5.6. Assuming the authenticity property of (KGen,E,D), for any A choosing

its tampering strategy from FαΓ , and any message s, ExpA,s,q2 ≈ ExpA,s,q3 , where the

probability runs over the randomness used by KGen, E and Update∗.

• Finally, we have that for any A choosing its tampering strategy from FανΓ , and any

message s, ExpA,s,q3 is indistinguishable from ExpA,0,q3 , where 0 denotes the zero-

message. This follows by the semantic security of the encryption scheme in the

presence of z∗, for the multi-round case.
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Claim 3.5.7. Assuming (KGen,E,D) is semantically secure, for any A choosing its

tampering strategy from FαΓ , ExpA,s,q3 ≈ ExpA,0,q3 , where the probability runs over the

randomness used by KGen, E, Update, “≈” may refer to statistical or computational

indistinguishability, and 0 denotes the zero-message.

The above claims conclude our proof. Clearly, the manipulation detection property follows

from the fact that the output of Exp3 is in {same∗,⊥}, with overwhelming probability.

In the above theorem, q can be polynomial (resp. exponential) in k, assuming the

underlying encryption scheme is computationally (resp. unconditionally) secure.

3.6 Instantiations

Below, we define a rate 1, computationally secure authenticated encryption scheme.

Instantiation 3.6.1 (IND-CPA secure authenticated encryption (computational)). Let

Fr be a pseudo-random function, Fr : {0, 1}k → {0, 1}k, let PRG be a pseudo-random gen-

erator, PRG : {0, 1}k → {0, 1}|s|, and let (MKGen,Mac,Vrfy) be a message authentication

code that outputs tags of length k (cf. [KL14]). We define a symmetric encryption scheme

(KGen,E,D), as follows:

• KGen(1k): sample r ← {0, 1}k, mk ← Mac(1k) and output sk = (r,mk).

• Esk(·): On input s, sample τ ← {0, 1}k, set e = (PRG(Fr(τ))⊕ s, τ), t = Macmk(e),

and output (e, t).

• Dsk(·): On input (e, t), if Vrfymk(e, t) = 1, parse e as (e′, τ) and output s = (PRG(Fr(τ))⊕ e′),
otherwise output ⊥.

It is not hard to see that the scheme defined above is a rate 1, computationally secure

authenticated encryption scheme [KL14]. By instantiating Construction 3.3.1 with the

above scheme, Theorem 3.3.2, for m = k log k, α = 1 − 1/Ω(log k), yields a rate 1 MD-

NMC, with access rate 1− 1/Ω(log k) and codewords of length |s|+O(k2 log k), assuming

one-way functions. In addition, by instantiating Constructions 3.4.1, 3.5.1 with the above

scheme, Theorems 3.4.8, 3.5.3, for m = k log k, α = 1−1/Ω(log k), yield rate 1−1/Ω(log k)

MD-NMC, with access rate 1− 1/Ω(log k) and codewords of length |s|(1 + 1/O(log k)) +

O(k2 log2 k), assuming one-way functions.

Below we define a generic, one-time secure, information theoretic construction.
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Instantiation 3.6.2 (1-IND-CPA secure authenticated encryption (information theo-

retic)). Let H, H̄, be pair-wise independent hash function families, such that for any

h ∈ H, h : {0, 1}O(|s|) → {0, 1}|s| and for any h̄ ∈ H̄, h̄ : {0, 1}O(|s|) → {0, 1}|s|. We

define a symmetric encryption scheme (KGen,E,D), as follows:

• KGen(1k): sample h← H, h̄← H̄ and set sk = (h, h̄).

• Esk(·): On input s, sample r ← {0, 1}|s|, set e = (r||(h(r) + s)) and output (e, h̄(e)).

• Dsk(·): On input (e, t), if h̄(e) = t, parse e as (r||e′) and output s = h(r) + e′,

otherwise output ⊥.

The security of the above scheme comes from the pair-wise independence of H, H̄. By

instantiating Construction 3.3.1 with the above scheme, Theorem 3.3.2, for m = |s| log |s|,
α = 1 − 1/O(log(|s|)), yields an unconditionally secure MD-NMC in the CRS model,

with concrete information rate 1/O(|s| log(|s|)), access rate 1 − 1/Ω(log(|s|)) and code-

words of length O(|s|2 log |s|). In addition, by instantiating Constructions 3.4.1, 3.5.1 with

the above scheme, Theorems 3.4.8, 3.5.3, for m = |s| log |s|, α = 1−1/O(log(|s|)), yield un-

conditionally secure, rate 1/O(|s| log2(|s|)) MD-NMC in the standard model, with access

rate Ω(1− 1/ log(|s|)) and codewords of length O(|s|2 log2 |s|).



Chapter 4

Extractable hash function families

4.1 Introduction

The notion of extractable collision-resistant hash functions (ECRHs) was originally pro-

posed by [BCCT12, GLR11, BCC+14] as a tool for building efficient succinct non-interactive

arguments of knowledge (SNARKs). Informally, a family of functions, H, is extractable,

if for a uniform h ∈ H, sampling an element v ∈ Image(h) without actually evaluating

the function on a pre-image s, i.e., by computing h(s) = v, is infeasible. This concept is

formalized in the following way: for any algorithm A that produces some v ∈ Image(h),

there exists an extractor that, possibly depending on the code of A, outputs a preimage

s, such that h(s) = v. Typically, such families are interesting only if they posses some

sort of hardness property, like one-wayness, or otherwise the problem can be trivial. In

[BCC+14] the authors propose two constructions for ECRH: the first one is based on a

variant of the Knowledge of Exponent assumption, called t-KEA(cf. Assumption 2.1.7),

and the hardness of the discrete logarithm problem (cf. Definition 2.1.5), while the latter

uses a lattice based knowledge assumption, called Knowledge of Knapsack [BCCT12].

An important observation regarding the setting described above is that ECRHs provide

no guarantee against attackers that receive access to precomputed hash values, prior to

producing their own. However, there are applications of the primitive that can deviate

from the above setting. For instance, the attacker might be given access to a number

of valid hash values for which it does not know the pre-images, prior to delivering its

own hash value. In this setting, creating a new valid hash value could be achieved by

mauling the received ones without knowing the pre-image. To tackle this issue, the present

thesis introduces the notion of `-more extractable hash functions. Briefly speaking, `-more

extractable hash function families capture the following idea: if an adversary is given access

67
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to ` ∈ N precomputed hash values v1, . . . , v`, and produces a new valid hash value ṽ, then

it must know a pre-image of ṽ. As we prove later, this notion is not implied by the one by

Bitansky et al. [BCCT12] and Goldwasser et al. [GLR11], which considers adversaries that

get no access to precomputed hash values prior to producing their own value, assuming

the hardness of the discrete logarithm problem. Moreover, by requiring the attacker not

only to produce some ṽ ∈ Image(h) but also to come up with a valid pre-image for ṽ,

we prove that `-more extractable hash functions are feasible under the same assumptions

used in [GLR11, BCCT12]. This puts forth a weaker form of extractability (we refer to

is as wECRH) in the sense that the extractor is allowed to fail in case a pre-image exists

but is not somehow efficiently computable based on the view of the adversary. It should

be noted that there is no contradiction in terms here: this extra requirement does not

trivialize the notion of `-more wECRH, since the extractor is required to depend only on

the adversarial program that produces ṽ and is independent of the program that produces

the valid pre-image for ṽ.

In this chapter, we show how to construct efficient, leakage-resilient `-more wECRHs,

and in subsequent chapters, we show that this weaker form of extractability is sufficient

for constructing efficient, computationally secure, non-malleable codes (cf. Chapter 5) and

continuous non-malleable codes (cf. Chapter 6), against split-state attackers, as well as

efficient non-interactive, non-malleable commitments, with respect to opening (cf. Chapter

7). The next section summarizes (informally) our results on `-more wECRH.

4.1.1 Results

In this chapter, a new cryptographic primitive is introduced and constructed, called `-

more extractable hash function families. Briefly speaking, `-more extractable hash function

families capture the idea that, if an adversary, that given ` ∈ N precomputed hash values

v1, . . . , v`, manages to produce a new valid hash value ṽ, then it must know a pre-image

of ṽ. This is a generalization of the notion of extractable hash functions by Bitansky et

al. [BCCT12] and Goldwasser et al. [GLR11], which corresponds to the ` = 0 case (i.e.,

the adversary gets no access to valid hash values, prior to producing its own value), and

is somewhat reminiscent of the strengthening of simulation-soundness in the context of

zero-knowlege proofs [Sah99].

The proposed generalization is strict, as the following, informally stated theorem, is

proved later in this chapter.

Theorem 4.1.1 (Informal). Extractable hash 6=⇒ 1-more extractable hash.
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The subtlety comes from the fact that the `-more attacker might get an “unfair advan-

tage” in producing a valid hash value, for which it does not possess a pre-image, because

of the ` additional inputs; e.g., by modifying the vi’s in some suitable way. Indeed, as it

is proven below, the hash function family of Bitansky et al. [BCCT12] is easily malleable,

and thus exploitable by “1-more” attackers. This demonstrates that `-more extractability

is strictly stronger than the original notion [BCCT12].

The next step is to construct this notion. We prove that, by requiring the attacker

not only to produce a valid hash ṽ, but also to come up with a valid pre-image for ṽ, `-

more extractability can be achieved under the same assumptions used by the construction

of Bitansky et al. [BCCT12], i.e., a variant of the Knowledge of Exponent Assumption

KEA and DLOG. As a conclusion, KEA and DLOG are still sufficient to achieve `-more

extractable hash functions with a weaker form of extractability (wECRH). In detail, the

following, informally stated theorem can be derived.

Theorem 4.1.2 (Informal). DLOG and t-KEA imply `-more wECRH.

At this point, it should be noted that KEA is non-falsifiable (cf. [Nao03]), and it is in-

deed a strong assumption. However, one can argue that non-falsifiability might be inherent

for extractable hash functions, and thus for `-more extractability, by recalling the results

of Bitansky et al. [BCCT12] and Gentry and Wichs [GW11]: in [BCCT12] the authors

showed that extractable hash function families imply succinct non-interactive arguments

of knowledge (SNARKs), while Gentry and Wichs [GW11] showed that SNARKs are un-

likely to be constructed based on falsifiable assumptions. Thus, non-falsifiable assumptions

are likely to be inherent for achieving (`-more) extractability. It should be also noted that

some variants of KEA were shown to contradict (public-coin) differing-inputs obfuscation

and indistinguishability obfuscation [BCPR14, BP15], however the variant used in the

present thesis is suitably defined to circumvent this contradiction.

Next, we prove that any hash function that is modeled as a random oracle, is an `-more

wECRH, receiving the following informal theorem.

Theorem 4.1.3 (Informal). Let h be a hash function. If h is modeled as a random oracle,

then it is an `-more wECRH.

We note that, even though any function h that is modeled as a random oracle is an

`-more wECRH, it cannot be extractable according to [BCCT12, BCC+14], as the range

of the function is dense, thus an attacker can just output a random element in the range
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of the hash, and then there is no knowledge to extract, as the extractor needs to invert a

uniform valid hash value [BCCT12].

Finally, as an extension of the notion of `-more wECRH, we formalize the notion of

leakage-resilient, `-more, weakly extractable hash function families, considering attackers

that, in addition to receiving access to ` precomputed hash values, they also receive bounded

leakage over the randomness used to compute those values. Then, we prove security for the

construction of the Informal Theorem 4.1.2, in the presence of leakage over the randomness

that is used to compute the hash. In particular, we prove the following, informally stated,

theorem.

Theorem 4.1.4 (Informal). DLOG and t-KEA imply leakage-resilient `-more wECRH.

For the construction of the Informal Theorem 4.1.3, leakage-resilience is straightfor-

ward, as the adversary receives black box access to the hash function.

4.1.2 KEAs and previous work

In [Dam92], Damg̊ard introduces KEA to construct a CCA-secure encryption scheme.

In [HT98, BP04], the authors extend the assumption of [Dam92], and construct three-

round, zero-knowledge arguments. Abe and Fehr [AF07] construct the first perfect NIZK

for NP with adaptive soundness, by extending the assumption of [BP04]. Prabhakaran and

Xue [PX09] constructed statistically-hiding sets for trapdoor DDH groups, by introducing a

new knowledge assumption. Gennaro et al. [GKR10] proved that a modified version of the

Okamoto-Tanaka key-agreement protocol [Oka88] satisfies perfect forward secrecy against

fully active attackers, by introducing a new knowledge assumption. In [BCCT12, BCC+17,

Gro10, BCCT13, GGPR13], the authors construct succinct, non-interactive, arguments of

knowledge (SNARKs), and NIZKs, while in [CD08, CD09], Canetti and Dakdouk provide

an extensive study on extractable functions. In [PHGR13], Parno et al. show how to

perform verifiable computation, efficiently.

In [BCPR14, BP15], the authors show that, assuming indistinguishability obfuscation

[BGI+01], extractable one-way functions, and thus ECRHs, do not exist against adver-

saries receiving arbitrary, polynomial-size, auxiliary input, if the code of the extractor is

fixed before the attacker’s auxiliary input. On the other hand, they show that, under

standard assumptions, extractable one-way functions, may exist against adversaries with

bounded auxiliary input.
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In this work, and as it is suggested by [BCPR14], we consider individual auxiliary input,

i.e., we allow the auxiliary input of the extractor to depend on the attacker’s auxiliary

input, and therefore, we do not contradict the impossibility results of [BCPR14, BP15].

4.2 `-more weakly extractable hash function families

In this section we define the notion of `-more weakly extractable hash function families,

and we provide a general discussion on the primitive.

Definition 4.2.1 (`-more weakly extractable hash function families). For ` ∈ N, an ef-

ficiently samplable hash function ensemble H = {Hk}k∈N, is `-more extractable, if for

any PPT algorithm Av and any zv ∈ {0, 1}poly(k), there exist a PPT extractor EHAv and

zE ∈ {0, 1}poly(k), such that for all PPT algorithms As, any large k ∈ N and any vector of

messages s = (s1, . . . , s`),

Pr
h←Hk

[
Exps,hAv ,As,EHAv

(`, zv, zE) = 1

]
≤ negl(k),

where,

Exps,hAv ,As,EHAv
(`, zv, zE) :

∀i ∈ [`], τi ← U{0,1}poly(k) , vi ← h(si; τi) ( hash computation )

t := (τ1, . . . , τ`),v := (v1, . . . , v`)

(ṽ, st)← Av(h,v, zv) ( hash tampering )

(τ̂ , ŝ)← EHAv(h,v, zE) ( pre-image extraction )

(τ̃ , s̃)← As (h, t, s, st) ( pre-image tampering )

If h(s̃; τ̃) = ṽ ∧ ∀i : ṽ 6= vi ∧ h(ŝ; τ̂) 6= ṽ, return 1

otherwise, return 0

The main steps in the above experiment are the following. Initially, we sample the ran-

domness that is required for computing the hashes, and we perform the hash computation

over ` ∈ N, pre-images. For deterministic hash function families we just omit randomness

sampling, and we compute the hashes directly over the messages. The challenge for the

adversary Av, is to produce a valid hash value ṽ, given ` has values, denoted as v, and

auxiliary information zv; it also produces state information, denoted as st. Then, the

extractor EHAv is executed, given v and its own auxiliary input zE . Notice, that, we allow
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the auxiliary input of the extractor to depend on the attacker’s auxiliary input, thus our

definition is not contradicting the impossibility results of [BCPR14, BP15]. Finally, the

adversary As is required to produce a valid pre-image for ṽ, while given all information

generated during the execution. The output of the experiment is 1, if Av produces a valid

hash value ṽ, As produces a valid pre-image for ṽ, while the extractor fails.

Leaving aside the fact that the above definition considers randomized function families,

the major difference between the current definition and the one given by Bitansky et al.

[BCCT12, BCC+14] (cf. Definition 2.1.8), is two-fold: first the “`-more” generalization

that allows the attacker to have access to ` ∈ N precomputed hash values for which it does

not know the corresponding randomness, prior to delivering its own hash value. Second,

the introduction of the algorithm As, that takes the place of the existential quantifier that

appears in the original definition. This is in fact a weakening of the original definition, in

the sense that the extractor is allowed to fail in case a pre-image exists but is not efficiently

computable based on the view of the adversary, which would not be allowed in the original

definition.

Note that, weaker extractability does not hurt the applicability of the primitive, as

there are many settings in which the attacker, is not only required to produce a valid hash

value ṽ, but also to provide a valid pre-image for it. For instance, in our application on

non-malleable codes later in the thesis, our codeword stores a secret key and its hash value,

and any attacker that modifies the hash value, also needs to come up with a valid pre-

image, otherwise it creates an invalid codeword, assuming the collision resistance property

of the hash function family. In addition, the existence of As does not trivialize the problem

for the extractor since the extractor is challenged to produce a valid pre-image for ṽ, given

only the code of Av and its own auxiliary input, and in particular it lacks access to the

state and the program of As.
It is easy to see that, constructing `-more extractable hash function families that are

non-compressing, can be achieved using existing tools, such as robust NIZKs [DDO+01].

In the present thesis, we construct `-more weakly extractable, collision resistant, hash

function families (wECRH), achieving length-efficiency comparable to that of a regular

hash function.

In the following lemma we prove that, for any `-more wECRH function family, the

output of the extractor should match the output of As, in case both of them output valid

pre-images, otherwise we break collision resistance.

Lemma 4.2.2. Let H = {Hk}k∈N be a collision resistant, `-more weakly extractable,
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efficiently samplable, hash function ensemble. Then, for any Av, zv, EHAv , zE , As, s =

(s1, . . . , s`), `, as they were defined in Definition 4.2.1, we have

Pr
h←Hk

 Exps,hAv ,As,EHAv
(`, zv, zE) = 0, h(s̃; τ̃) = ṽ, ṽ 6= vi, i ∈ [`] :

(τ̂ , ŝ) 6= (τ̃ , s̃)

 ≤ negl(k).

Proof. We are given that the output of Exps,hAv ,As,EHAv
(`, zv, zE) is 0, and As succeeds in

producing a valid pre-image (τ̃ , s̃) for a new hash, ṽ. Since the output of the experiment

is 0, we know that EHAv produces a valid pre-image (τ̂ , ŝ) for ṽ. Assuming, (τ̂ , ŝ) 6= (τ̃ , s̃),

we break the collision resistance property of Hk.
Concretely, assume there exist Av with auxiliary input zv, extractor EHAv with auxiliary

info zE , algorithm As, and vector of messages s, such that

Pr
h←Hk

 Exps,hAv ,As,EHAv
(`, zv, zE) = 0, h(τ̃ , s̃) = ṽ, ṽ 6= vi, i ∈ [`] :

(τ̂ , ŝ) 6= (τ̃ , s̃)

 > ε,

(4.1)

for ε = 1/poly(k). We define a PPT adversary A who simulates Exps,hAv ,As,EHAv
(`, zv, zE)

while playing against the collision finding experiment HcollA,Hk (cf. Definition 2.1.4):

A, after receiving the key of the hash function, it simulates Exps,hAv ,As,EHAv
(`, zv, zE), and

outputs x1 = (τ̃ , s̃) and x2 = (τ̂ , ŝ), i.e., x1 is the output of As and x2 is the output of

EHAv , computed while executing the experiment. Then, assuming Relation 4.1 holds, we

have h(x1) = h(x2), and the collision resistance property of h breaks, with non-negligible

probability.

Next, we show a separation between extractability and general `-more extractability,

as we discussed in earlier. In particular, we prove that the extractable hash of [BCCT12]

is not 1-more (weakly) extractable. Before doing so, we first revisit their construction, and

t-KEA (Assumption 2.1.7), upon which the constructions is based.

Assuming a group G, of prime order p, the Knowledge of Exponent Assumption KEA,

introduced by Damg̊ard [Dam92], states the following: any adversary that is given a gener-

ator, g, of G, and a random group element ga, produces the pair (gs, gas), only if it “knows”

the exponent s. The assumption was later extended by [HT98, BP04], by requiring that,

given gr1 , gar1 , gr2 , gar2 , it is infeasible to produce v = gr1s1+r2s2 and va, without “know-

ing” s1, s2. This assumption, generalized for t = poly(log |G|) pairs gri , gari , is referred to

as t-KEA by [BCCT12].
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An element from the hash function family of [BCCT12] is described by the pair (gr, gar),

for uniformly random vector r, and element a. Note that, gr denotes the value (gr1 , . . . , grt),

where r = (r1, . . . , rt). The hash of a message s = (s1, . . . , st), is the pair (g〈r,s〉, ga〈r,s〉),

where 〈r, s〉 denotes the inner product of r, s. It is not hard to see that the hash value can

be computed efficiently given the message and the description of the hash function, and

assuming the t-KEA, the above hash function family is extractable according to [BCCT12].

We formally define the construction below.

Construction 4.2.3 (Extractable hash from t-KEA [BCCT12]). Let G be a group-generation

algorithm. An instance of a (kt, 2k)-compressing, hash function family, H∗ = (Gen∗, h∗),

with respect to G, is defined as follows:

1. Gen∗(1k): sample (G, g, p)← G(1k), p ∈ (2k−1, 2k), (a, r)← Zp × Ztp, where p = |G|,
and output z := (G, gr, gar).

2. Hashing computation: on input s, compute h∗z(s) := (g〈r,s〉, g〈ar,s〉).

For brevity, in what follows G will be omitted from the description of the hash, and

we will use h∗ to refer both to the program of the hash and the key of a specific element

(gr, gar), i.e., z is omitted.

In [BCCT12] the authors prove that Construction 4.2.3 is collision resistant, which is

revisited in the following lemma.

Lemma 4.2.4 (Collision resistance for Construction 4.2.3 [BCCT12]). Assuming the hard-

ness of the discrete logarithm problem, with respect to a group G, Construction 4.2.3 is

collision resistant, with respect to G.

The intuition behind the fact that Construction 4.2.3 is not 1-more extractable, is the

following. Suppose the adversary receives a hash value v := h(s) = (g〈r,s〉, ga〈r,s〉), for some

unknown message s, and then computes v′ := vx = (g〈r,xs〉, ga〈r,xs〉), for some non-zero

x, of its choice. Clearly, the new hash value v′ equals h(xs), and thus, it is valid. Then,

assuming an extractor for the current family, under the “1-more” setting, the original

message s can be retrieved, by first extracting xs and then dividing each coordinate of s

by x. This idea can be turned into a DLOG solver, and thus, assuming the hardness of

DLOG with respect to G, it is shown in Lemma 4.2.5, that the above construction is not

1-more extractable.
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Lemma 4.2.5 (Construction 4.2.3 is not 1-more extractable). Let H∗ be the hash func-

tion family of Construction 4.2.3, with respect to a group generation algorithm G. Then,

assuming the hardness of the discrete logarithm problem for G (Definition 2.1.5), H∗ is not

1-more weakly extractable.

Proof. Let k ∈ N, t = O(poly(k)), and let G be a group-generation algorithm, for which

the discrete logarithm problem is hard. Assuming the hash function family H∗ is 1-more

extractable with respect to G, we define a PPT adversary A = (A1,A2) that breaks the

hardness assumption on the discrete logarithm problem, with non-negligible probability in

k. A executes the following steps

1. (Define Av, zv): Av(h∗, v, zv) = (vx, st), where x is a fixed, non-zero, element in Zp,

and zv, st, are zero-length strings.

2. (Define As): As(h∗, s, st) = xs.

3. A executes the following steps while playing against DLogA,G :

a) On input (G, g, p, w), where w = gs
′
and s′ is uniform over Zp, sample (a, r, s)←

Zp×Ztp×Zt−1
p , s = (s1, . . . , st−1), i.e., it sample a hash function from H∗ and a

vector message s with t− 1 coordinates. Then sets h∗ := (gr, gar) and partially

simulates Exps
′,h∗

Av ,As,EH
∗
Av

(1, zv, zE), where s′ = (s′, s1, . . . , st−1), without accessing

s′. Here, EH∗Av and zE are totally defined by Av and zv, since we assume that H∗

is 1-more extractable.

b) Compute h∗(s′, s1, . . . , st−1) while not having access to s′, i.e., compute v =

((gs
′
)r1 · gd, (gs′)ar1 · gad), where d = 〈[r](2:t), s〉.

c) Sample (ṽ, st)← Av(h∗, v, zv), where by definition

ṽ = vx =
((
g(r1s′+d)

)x
,
(
ga(r1s′+d)

)x)
.

d) Sample ŝ← EH∗Av (h∗, v, zE), and output s = r−1
1 (x−1〈r, ŝ〉 − d).

It is not hard to see that v and ṽ are valid hash values with respect to H∗, and the

execution of As(h∗, s′, st) would yield xs′ = (xs′, xs1, . . . , xst−1), which is a valid pre-

image for ṽ. Moreover, A, that is not having access to s′, does not need to fully simulate

Exps
′,h∗

Av ,As,EH
∗
Av

(1, zv, zE), since the extractor, EH∗Av , does not depend on As. In other words,

with overwhelming probability, over the execution of Exps
′,h∗

Av ,As,EH
∗
Av

(1, zv, zE), As would

output the right pre-image for ṽ while having access to s′, still this event does not need to



4.3. Constructing 1-more weakly extractable hash functions from KEA 76

be triggered in order for EH∗Av to output a valid pre-image for ṽ. Concretely, and assuming

H∗ is 1-more extractable we have

Pr
h∗←H∗k

[h∗(ŝ) = ṽ] ≥ 1− negl(k), (4.2)

where

Pr
h∗←H∗k

[h∗(ŝ) = ṽ] = Pr
[(
g<r,ŝ>, g<ar,ŝ>

)
=
(
gx(r1s′+d), gax(r1s′+d)

)]
= Pr[< r, ŝ >= x(r1s

′ + d)]

= Pr[r−1
1 (x−1 < r, ŝ > −d) = s′] = Pr[s = s′]. (4.3)

By Relations (4.2) and (4.3) we have

Pr[s = s′] ≥ 1− negl(k),

and DLogA,G(k) = 1, i.e., gs = gs
′
, with non-negligible probability in k.

From the above lemma, we derive that the notion of extractability according to [BCCT12],

does not imply 1-more, weak extractability. By inspecting the above proof, we can also

derive a similar relation between extractability [BCCT12] and 1-more extractability (not

the weaker form), i.e., for the general notion of 1-more extractability that does not require

As. This is due to the fact that, in the above proof, the attacker against the hardness

of DLOG does not require access to As, thus a similar proof holds for proving that ex-

tractability [BCCT12] does not imply 1-more extractability, and thus the latter notion is

strictly stronger than the one by [BCCT12]. Later in the thesis, we present a construction

which is 1-more weakly extractable, but it is not extractable according to [BCCT12], which

gives us a separation between the notions.

4.3 Constructing 1-more weakly extractable hash functions

from KEA

In the current section we construct 1-more wECRH under t-KEA, but before doing so, we

present the main idea behind our technique. Having in mind Lemma 4.2.5 and its proof,

the main observation is that, even though the hash function family of Construction 4.2.3

is malleable, the modified hash value, ṽ, has some structure: it is the hash value of the

message yielded after applying an affine transformation on the original message, s (in the

above case, the affine transformation was xs). Interestingly, we prove later in this section,
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that under t-KEA, applying an affine transformation is the only thing the adversary can

do! In particular, it is shown that, if the adversary outputs a valid, new hash value, ṽ, then

there exists an extractor that extracts an affine transformation on the underlying message.

So, in order to make the hash function family non-malleable (and then 1-more extractable),

first we encode the message s (i.e., we compute c← Enc(s)), using a non-malleable encoding

scheme, (Enc,Dec), against affine functions, and then v = (g〈r,c〉, ga〈r,c〉) is computed as

the output of the hash function. This approach can be viewed as a computational analogue

of a non-malleable reduction, as previously used by [ADL14], and then formally presented

by [ADKO15] (both works are in the information-theoretic setting).

It turns out that, in order to apply the methodology described above, a slightly stronger

flavor of non-malleability is required for the underlying code, formalized in the present the-

sis as randomness simulatable non-malleable codes (RSS-NMC). The results of the present

section are presented as follows: (1) we first construct 1-more wECRH assuming any ran-

domness simulatable non-malleable encoding scheme, against affine tampering functions,

and (2) we show how to construct such a code. Finally, we present Corollary 4.3.10 to

summarize our overall construction, by putting all things together in a single statement.

4.3.1 1-more weakly extractable hash functions from RSS-NMC codes

against affine functions

In this section we construct a collision resistant, 1-more extractable hash function family

(wECRH). Before doing so, we present the notion of randomness simulatable, strongly

non-malleable codes (RSS-NMC). This notion is stronger than strong non-malleability

(cf. Definition 2.3.3) in the sense that besides simulating the tampered message, s̃, the

simulator also needs to produce the randomness of the encoder, s̃r, such that the encoding of

s̃ with randomness s̃r, produces the tampered codeword. To ease the presentation of RSS-

NMC, we modify the syntax of non-malleable codes, so that the decoder, Dec, returns,

not only the decoded message, s̃, but also the randomness string, s̃r, for the encoder Enc.1

Definition 4.3.1 (Randomness simulatable, strongly non-malleable code). Let (Enc,Dec)

be a (κ, ν)-coding scheme and F be a family of functions f : {0, 1}ν → {0, 1}ν . For every

1It is possible to define RSS-NMC without modifying the operation of Dec at the expense of slightly
complicating the definition of non-malleability. Due to the fact that our RSS-NMC construction conforms
to the modified syntax, we opt for the simpler alternative.
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f ∈ F and s ∈ {0, 1}κ, define the tampering experiment

Tamperfs :=

{
c← Enc(s), c̃← f(c), (s̃r, s̃)← Dec(c̃)

Output same∗ if c̃ = c, and (s̃r, s̃) otherwise.

}

which is a random variable over the randomness of Enc and Dec. An encoding scheme

(Enc,Dec) is randomness simulatable, strongly non-malleable (RSS-NM), with respect to

the function family F , if for every f ∈ F and any s0, s1 ∈ {0, 1}κ, we have:{
Tamperfs0

}
k∈N
≈
{
Tamperfs1

}
k∈N

.

Here, “≈” may refer to statistical, or computational, indistinguishability. For encoding

schemes in the common reference string model, the definition is analogous.

Next we present our construction.

Construction 4.3.2 (1-more weakly extractable hash). Let G be a group-generation al-

gorithm and let (Enc,Dec) be a (kt, kt′)-encoding scheme, t, t′ = poly(k). An instance of a

(kt, 2k)-compressing hash function family H = (Gen, h) is defined as follows:

1. Gen(1k): sample (G, g, p) ← G(1k), (a, r) ← Zp × Zt
′
p , where p = |G|, and output

z := (G, gr, gar).

2. Hashing computation: on input message s = (s1, . . . , st), sample sr ← U{0,1}poly(k),

and compute hz(s; sr) := (g〈r,c〉, g〈ar,c〉), where c← Enc(s; sr).

For encoding schemes (Init,Enc,Dec) in the CRS model, Gen(1k) outputs (z,Σ), where

Σ← Init(1k).

For brevity, in what follows G will be omitted from the description of the hash, and

we will use h to refer both to the program of the hash and the key of a specific element

(gr, gar), i.e., z is omitted. Also, notice that, the description of the hash function family

defined above matches the one of Construction 4.2.3.

In what follows, we prove that Construction 4.3.2, which is a composition of an encoding

scheme (Enc,Dec), with construction 4.2.3 (the extractable hash function by Bitansky et

al. [BCCT12]), is a 1-more wECRH, assuming that (Enc,Dec), satisfies certain properties.

Then, in Section 4.3.2, we instantiate (Enc,Dec) with the desired properties. Below, we

prove that Construction 4.3.2 is collision resistant.
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Lemma 4.3.3. Let G be any group generation algorithm. Then, assuming the hardness

of the discrete logarithm problem on G, and the underlying encoding algorithm is injective,

Construction 4.3.2 is collision resistant with respect to G.

Proof. In [BCCT12], the authors prove that the hash function family of Construction 4.2.3,

H∗, is collision resistant, assuming the hardness of the discrete logarithm problem. We

recall that Construction 4.3.2 is a composition of Enc(·) and H∗. Following a simple fact

that any injective function composed with a collision resistant hash function still results in a

collision resistant hash function (composition in any order), we can conclude that the hash

function family of Construction 4.3.2 is collision resistant, under the same assumption.

In the following theorem, we prove that, under certain assumptions, Construction 4.3.2,

is a 1-more wECRH.

Theorem 4.3.4. Let t(k), t′(k) = poly(k) and let (Enc,Dec) be an RSS-NMC (kt, kt′)-

encoding scheme, against Faff (cf. Definition 2.2.2), such that that for any message s,

H∞ (Enc(s)) ≥ k + ω(log k). Then, assuming (t′ + 1)-KEA and the hardness of DLOG,

the hash function family of Construction 4.3.2, H, is 1-more weakly extractable, with respect

to (Enc,Dec).

Proof. For k ∈ N, let (Enc,Dec) be an RSS-NMC (kt, kt′)-coding scheme, against Faff ,

t(k), t′(k) = poly(k), and let H be the (kt, 2k)-compressing, collision-resistant, hash func-

tion family of Construction 4.3.2, with respect to (Enc,Dec). Following Definition 4.2.1, we

need to prove that for any PPT algorithm Av with auxiliary input zv, there exist extractor

EHAv and auxiliary input zE , such that for any PPT algorithm As, any large k and every

message s = (s1, . . . , st) ∈ Ztp,

Pr
h←Hk

[
Exps,hAv ,As,EHAv

(1, zv, zE) = 1

]
≤ negl(k). (4.4)

Clearly, if Av fails to produce a new valid hash value, or, if As fails to produce a valid pre-

image for the new hash value, the experiment simply outputs 0, and there is no challenge

for the extractor. Therefore, the interesting case is when Av produces a valid hash value,

say ṽ, while having access to an element in the range of the hash, say v, and As produces

a valid pre-image for ṽ, while having access to the message s,2 the randomness used to

compute the hash, s̃r, and any other state information produced by Av, denoted as st.

Hence, for the rest of the proof we assume ṽ 6= v, and (s̃r, s̃) is a valid pre-image for ṽ, i.e.,

h(s̃; s̃r) = ṽ.

2Since we prove 1-extractability, s denotes a single message, which is a vector over Ztp.
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The description of an element in H is h = (gr1 , . . . , grt′ , gar1 , . . . , gart′ ), while a hash

value with respect to h is a pair of the form v = (gr
′
, gar

′
), for some r′ ∈ Zp; Av receives as

input (h, v) and the auxiliary input zv. Having these in mind, the main steps in our proof

are the following: (1) we prove that, by appending appropriately v to the description h, we

receive a description h∗ which is statistically close to an element in H∗ (cf. Construction

4.2.3), for messages with t′+ 1 coordinates, (2) given Av we define an attacker Āv against

H∗, (3) since H∗ is an extractable hash function family [BCCT12] assuming (t′+ 1)-KEA,

we can use the extractor of H∗ against Āv, to extract a valid pre-image of ṽ with respect

to H∗, (4) we prove that the extracted pre-image yields an affine transformation, which is

the one that Av applied to the original pre-image in order to construct ṽ, and we use the

RSS-NMC simulator to extract a valid pre-image for ṽ, this time with respect to H.

First we define an adversary, Āv, against the hash function family H∗, of Construction

4.2.3, for vector messages with t′ + 1 coordinates. Concretely, we have,

Āv (h∗ = (gr1 , . . . , grt′+1 , gar1 , . . . , gart′+1), zv):

1. Set h := (gr1 , . . . , grt′ , gar1 , . . . , gart′ ) and v := (grt′+1 , gart′+1).

2. Output: Execute Av(h, v, zv) and output Av’s output.

Here, Āv, first interprets the description of the hash function h∗, as (h, v), i.e., as a descrip-

tion of a hash function and hash value, with respect to H, and then executes Av(h, v, zv).

Under (t′+1)-KEA, H∗ is an extractable hash function family [BCCT12]. Then, assuming

h∗ is indistinguishable from an element in H∗ (we prove it below), there exists an extractor

ĒH∗Āv with its auxiliary input zE , that extracts a valid pre-image for ṽ, with respect to h∗

(see Claim 4.3.5). We define the auxiliary input zE := zĒ .

The extractor is defined below.

The extractor EHAv :
Input: (h = (gr, gar), v = (gr

′
, gar

′
), zE).

1. Set h∗ := (gr, gr
′
, gar, gar

′
). Here, we interpret h∗ as a description of hash function

h∗ ∈ H∗, for vector messages with t′ + 1 coordinates.

2. Sample (b1, . . . , bt′ , d)← ĒH∗Āv (h∗, zE) and set f := ((b1, . . . , bt′), d) = (b, d) ∈ Zt
′
p ×Zp.
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3. Interpret f as an affine function that on input (x1, . . . , xt′) outputs (dx1 + b1, dx2 +

b2, . . . , dxt′ + bt′), and then sample (ŝr, ŝ)← Daff
f , where Daff

f is the simulator of the

underlying RSS-NMC, (Enc,Dec), parameterized by the affine function f .3

4. Output: (ŝr, ŝ).

The extractor is defined with respect to any input v, still by the definition of the `-

more experiment, v is always a valid hash value, i.e., v = h(s) = (g〈r,c〉, ga〈r,c〉), where

c← Enc(s), for some message s. Then, for any As, and message s, we are going to analyze

the execution of Exps,hAv ,As,EHAv
(1, zv, zE). We first prove that with overwhelming probability,

the following events happen:

• E1: h∗(b1, . . . , bt′ , d) = ṽ, where ṽ is the output of Av on input (h, v).

• E2: Enc(s̃; s̃r) = f(c), where (s̃r, s̃) is the output of As.

We formalize those ideas in the following claims.

Claim 4.3.5. Let h, Av, zv, EHAv and zE , be as they where defined above. Then, for any

As and message s, assuming (t′ + 1)-KEA and H∞ (Enc(s)) ≥ k + ω(log k), we have that

Pr[¬E1] < negl(k), over the randomness of the experiment Exps,hAv ,As,EHAv
(1, zv, zE).

Proof. We recall that the experiment selects a uniform element h = (gr, gar) ∈ H, and

then computes v = h(s) = (g〈r,c〉, ga〈r,c〉), where c ← Enc(s; sr). In order to show

that (b1, . . . , bt′ , d) is a valid pre-image for ṽ with respect to h∗, we prove that h∗ :=

(gr, g〈r,c〉, gar, ga〈r,c〉) is indistinguishable from an element in H∗. Concretely, by assump-

tion we have that H∞ (Enc(s)) ≥ k+ω(log k). Since the randomness of the encoder is inde-

pendent of Z = (zv, h), (those values are fixed before sampling randomness for the hash),

we have H∞ (Enc(s) | Z) ≥ k + ω(log k), and therefore, H̃∞(Enc(s) | Z) ≥ k + ω(log k).

By the above argument, the Left-Over Hash Lemma (Lemma 2.1.11) and the universality

of the inner product function (Lemma 2.1.13), the distribution 〈r, c〉 is statistically close

to uniform, under the partial execution of the “1-more” experiment, i.e., up to the point

we execute the extractor. This implies that the distribution (gr, g〈r,c〉, gar, ga〈r,c〉) is sta-

tistically close to (gr, gr
′
, gar, gar

′
), for a uniformly random r′, and thus Pr[E1] differs by a

negligible quantity under the two distributions, denoted as D1 and D2, respectively.

3Given that the underlying encoding scheme is an RSS-NMC, defining the simulator is straightforward:
given f , the simulator executes Tamperf0 , where 0 denotes the zero message, and outputs the output of the
experiment.
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In [BCCT12] the authors showed that H∗ is extractable assuming (t′+ 1)-KEA, which

implies that the extractor ĒH∗Āv extracts a pre-image for ṽ, with respect to h∗, i.e., the

event E1 happens with overwhelming probability, under the distribution D2. Therefore,

by the statistical closeness between D1 and D2, we conclude that the event E1 happens

with overwhelming probability, under the distribution D1. This completes the proof of the

claim.

Claim 4.3.6. Let h, Av, zv, EHAv and zE , be as they where defined above. Then, for any As
and message s, Pr[¬E2] < negl(k) over the randomness of the experiment Exps,hAv ,As,EHAv

(1, zv, zE).

Proof. We have Pr[¬E2] = Pr[¬E2 ∧ E1] + Pr[¬E2 ∧ ¬E1], and by the previous claim we

have Pr[¬E1] < negl(k). Therefore, it suffices to show that Pr[¬E2 ∧E1] < negl(k). Thus,

below we focus on the event ¬E2 ∧ E1.

Let h̄∗ := (gr, gar) = h. We treat h̄∗ as an element in H∗ operating over in Zt
′
p , i.e.,

for any message s ∈ Zt
′
p , h̄∗(s) = (g〈r,s〉, ga〈r,s〉). By the definition of H and H∗, for any

message s ∈ Zt
′
p , we have that,

h(s; sr) = h̄∗(Enc(s; sr)). (4.5)

Now, recall that, in order to exclude the trivial cases, we have assumed that the output

of As, (s̃r, s̃), is a valid pre-image for ṽ, i.e., h(s̃; s̃r) = ṽ, which by Equation 4.5 implies

that h̄∗(Enc(s̃; s̃r)) = ṽ. Whenever E1 takes place we have that h∗(b1, . . . , bt′ , d) = ṽ, and

by the definition of h∗ = (gr, g〈r,c〉, gar, ga〈r,c〉), it is implied that
(
g〈r,dc+b〉, ga〈r,dc+b〉) =(

g〈r,f(c)〉, ga〈r,f(c)〉) = ṽ. From the last relation we receive that h̄∗(f(c)) = ṽ. Now,

recall that, by Lemma 4.2.4, the family H∗ is collision resistant, assuming the hardness

of DLOG. Assuming that Pr[¬E2 ∧ E1] happens with non-negligible probability, we have

that Enc(s̃; s̃r) 6= f(c), while h̄∗(Enc(s̃r, s̃)) = h̄∗(f(c)), with non-negligible probability.

Thus, by simulating the 1-more experiment, we find such a collision with non-negligible

probability, as long as ¬E2 ∧E1 happens. This reaches a contradiction and completes the

proof of the claim.

Finally, we argue that, with overwhelming probability the output of the extractor,

(ŝr, ŝ), is a valid pre-image for ṽ, i.e., h(ŝ; ŝr) = ṽ. Here, recall that (ŝr, ŝ) is the output

of the simulator Daff
f , of the underlying RSS-NMC. Concretely, we prove the following

claim.
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Claim 4.3.7. Let h, Av, zv, EHAv and zE , be as they where defined above, and assume

that (Enc,Dec) is an RSS-NMC. Then, for any As and message s, Pr[(s̃r, s̃) 6= (ŝr, ŝ)] <

negl(k), over the randomness of the experiment Exps,hAv ,As,EHAv
(1, zv, zE).

Proof. As above, we can upper bound Pr[(s̃r, s̃) 6= (ŝr, ŝ)], by Pr[(s̃r, s̃) 6= (ŝr, ŝ)∧E1∧E2]+

Pr[(s̃r, s̃) 6= (ŝr, ŝ)∧¬E1∧E2]+Pr[(s̃r, s̃) 6= (ŝr, ŝ)∧E1∧¬E2]+Pr[(s̃r, s̃) 6= (ŝr, ŝ)∧¬E1∧¬E2].

By the above claims, we have Pr[¬E1],Pr[¬E2] < negl(k). Therefore, in order to show the

current claim, it suffices to prove that Pr[(s̃r, s̃) 6= (ŝr, ŝ)∧E1∧E2] < negl(k). Thus, in the

rest of the proof we focus on the event (s̃r, s̃) 6= (ŝr, ŝ) ∧ E1 ∧ E2.

By Claims 4.3.5, 4.3.6, we have that Enc(s̃; s̃r) = f(c) and h̄∗(f(c)) = ṽ, with over-

whelming probability. Moreover, in order to exclude the trivial cases with respect to the

task that needs to accomplished by the extractor, we have assumed that ṽ 6= v = h̄∗(c).

Since v 6= ṽ, we have c 6= f(c); since f(c) = Enc(s̃; s̃r), f(c) is a valid codeword. Thus, by

the previous observations we have that Dec(f(c)) 6= ⊥. Moreover, by the security of the

RSS-NMC scheme, we know that with overwhelming probability Pr[Enc(ŝr; ŝ) 6= f(c)] <

negl(k). Since Enc is injective, this implies that Pr[(s̃r, s̃) 6= (ŝr, ŝ) ∧ E1 ∧ E2] < negl(k),

and the proof of the claim is complete.

Note, that, for any As and message s, the experiment Exps,hAv ,As,EHAv
(1, zv, zE) outputs 1

if h(s̃; s̃r) = ṽ ∧ ṽ 6= v ∧ h(ŝ; ŝr) 6= ṽ. By the above claims, h(ŝ; ŝr) 6= ṽ, with negligible

probability, assuming that h(s̃; s̃r) = ṽ and ṽ 6= v. Therefore, we conclude that

Pr
h←Hk

[
Exps,hAv ,As,EHAv

(1, zv, zE) = 1

]
≤ negl(k).

This completes the proof of the theorem.

4.3.2 Constructing RSS-NM codes

In the present section, we construct an RSS-NMC as required by the 1-more wECRH of

Construction 4.3.2. A simplified version of the proposed construction is presented in the

next paragraph.

For any message s, our encoder secret shares s into (s1, s2), using a two-out-of-two,

additive, secret sharing scheme, and outputs c = (s1, s2, s
2
1, s

2
2). Then, for any codeword

c = (s1, s2, s
′
1, s
′
2), decoding proceeds as follows: if s2

i = s′i, for i ∈ {1, 2}, the decoder

outputs s1 + s2, otherwise, it outputs ⊥. An affine tampering function, f , against the

code is described by the pair (b, d), where b = (b1, b2, b3, b4), and the application of f

on a codeword c, yields the codeword d · c + b. Briefly, security of the scheme is proven
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by considering the following cases. If d = 0, then the tampered codeword is completely

overwritten by b, and clearly, the output of the decoder depends only on b. If d 6= 0,

then, we prove that, either the attack leaves the codeword intact, i.e., d = 1,b = 0, or the

decoding of the tampered codeword is equal to ⊥, with overwhelming probability.

Construction 4.3.8 (An RSS-NMC against Faff). For any k ∈ N, t = poly(k), we define

a (kt, (2t+ 4)k)-encoding scheme (Init,Enc,Dec) in the CRS model,4 as follows:

• Init(1k): sample a k-bit prime p ∈ (2k−1, 2k) and set Σ := p.

• Enc(Σ, ·): let s = (s1, . . . , st) ∈ Ftp be the input to Enc. Sample two random field

elements v, r ← Fp, and then output

c =
(
v, v2, r, r2, u1, u

2
1, . . . , ut, u

2
t

)
∈ F2t+4

p ,

where ui = si − r for i ∈ [t].

• Dec(Σ, ·): on input c = (v, v̄, r, r̄, u1, ū1, . . . , ut, ūt), the decoder checks whether v̄ =

v2, r̄ = r2, and ūi = u2
i for all i ∈ [t]. If so, then it outputs (v, r, u1 +r, u2 +r, . . . , ut+

r), otherwise, outputs ⊥.

All operations are performed modulo p. We also consider the deterministic version of Enc

by allowing the randomness to be given on the input. In that case we have c← Enc(Σ, sr, s),

where sr = (v, r).

Notice, that, the randomness employed by the above construction is 2k, independently

of the message length.

Theorem 4.3.9. The code of Construction 4.3.8 is randomness simulatable, strongly non-

malleable (Definition 4.3.1), against Faff . In addition, for any message s, H∞ (Enc(s)) ≥
k + ω(log k).

Proof. Let f ∈ Faff be a tampering function against the code, defined by the pair (b, d) ∈
F2t+4
p × Fp, where b = (bv, b

′
v, br, b

′
r, b1, b

′
1, . . . , bt, b

′
t) and f(c) = dc + b. Following the

definition of RSS-NMC, we need to show that for any pair of messages s0, s1,{(
Σ,TamperΣ,fs0

)}
k∈N
≈
{(

Σ,TamperΣ,fs1

)}
k∈N

,

4Note that the CRS is not essential for this encoding, but for simplicity we describe the code in this
model.
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i.e., the output of the tampering experiment is independent of the message and decidable

only by inspecting the function f .

Now, recall that any codeword has the following form

c =
(
v, v2, r, r2, u1, u

2
1, . . . , ut, u

2
t

)
.

We then consider the following cases:

1. (d = 0): such an attack completely overwrites c with b, which is independent of the

original message, s. Therefore, for any of the two messages s0 and s1, the tampering

experiment outputs Dec(c̃) = Dec(b), independently of the message.

2. (d = 1 and b = 0): this attack leaves the codeword intact for both experiments, and

the output of the experiment should be same∗, independently of the message.

3. (d = 1 and b 6= 0): assume that (bz, b
′
z) 6= (0, 0) for some z ∈ [t] ∪ {v, r}.5 We

know that the tampering experiment outputs a non-bottom value only if the follow-

ing equation is satisfied: (duz+bz)
2 = du2

z+b′z. (For simplicity, and in order to cover

the cases of r, v, we denote ur := r, uv := v). We argue that this happens with negli-

gible probability, which implies that both experiments output ⊥, with overwhelming

probability.

By expanding the equation and plugging in d = 1, we have 2bzuz + b2z − b′z = 0. We

consider two cases with respect to (bz, b
′
z): (a) bz 6= 0; (b) bz = 0, b′z 6= 0. For case

(b), clearly, the output in both experiments is ⊥. Regarding case (a), the equation

is linear, and therefore, it possesses at most one solution. By our choice of uz (recall

that uz = sz − r where r is a random field element), we know that its marginal

distribution is uniform, and thus the probability that the equation is satisfied is at

most 1/p.

4. d ∈ Fp \ {0, 1}: as above, we argue that the two experiments output ⊥ with

overwhelming probability. As we discussed above, the tampering experiments out-

put non-bottom values only if (duz + bz)
2 = du2

z + b′z is satisfied, for all z ∈
[t] ∪ {r, v}. This probability can be upper bounded by the probability that a par-

ticular equation is satisfied. Without loss of generality, we consider the equation

d(d − 1)u2
1 + 2db1u1 + b21 − b′1 = 0. Since a ∈ Fp \ {0, 1}, the above equation is of

degree 2, and by the Schwartz-Zippel lemma, it possesses at most two solutions. As

5Here, we treat v, r, as special symbols, not as integers.
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we argued above, the marginal distribution of u1 is uniformly random. Thus, the

probability that the equation is satisfied is at most 2/p.

The above case analysis covers all possibilities for (b, d), and the proof of the first

part of the theorem is complete. For the second part, by construction we have that

any codeword consists of two random field elements (r, v), having length 2k, and thus

H∞ (Enc(s)) = 2k > k + ω(log k). This completes the proof of the theorem.

4.3.3 Our resulting instantiation

By plugging Construction 4.3.8, as the underlying encoding scheme to Construction 4.3.2,

we receive the following corollary.

Corollary 4.3.10. Under the DLOG assumption and t-KEA, there exists an explicit

1-more wECRH.

Proof. Let (Init,Enc,Dec) be the (kt, (2t+4)k) RSS-NMC of Construction 4.3.8. Then we

construct Hk by plugging in (Init,Enc,Dec), as the underlying encoding scheme to the hash

function family of Construction 4.3.2. Clearly, by Lemma 4.3.3, Hk is collision resistant as

the underlying encoder is injective. By Theorem 4.3.9, the underlying encoding scheme is

an RSS-NMC against Faff , and moreover, for any message s, H∞ (Enc(s)) ≥ k+ω(log k).

Thus, by Theorem 4.3.4, Hk is a 1-more wECRH. This concludes the proof of this

corollary.

4.3.4 Constructing `-more weakly extractable hash under KEA

In the “`-more” setting, the attacker is given v1, . . . , v`, precomputed hash values, and

produces a new hash value ṽ. Having the techniques from the “1-more” setting, we can

argue that any attack against ṽ (in the `-more setting), can be reduced to an affine attack

against the codewords c1, . . . , c`, that are related to v1, . . . , v`, respectively. In order to

construct `-more wECRH, for ` > 1, we generalize the notion of RSS-NMC, for multiple

codewords. The generalization is a straightforward extension of Definition 4.3.1, where

the tampering function receives ` ∈ N codewords and the simulator needs to recover the

message and the randomness, in case the output of the tampering function is not among

the given codewords. The formal is definition is given below.

Definition 4.3.11 (Multi-codeword RSS-NMC). Let (Enc,Dec) be a (κ, ν)-coding scheme

and F be a family of functions f : {0, 1}ν → {0, 1}ν . For every f ∈ F and s = (s1, . . . , s`) ∈
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({0, 1}κ)`, define the tampering experiment

MultiTamperfs :=

{
ci ← Enc(si), i ∈ [`], c̃← f(c1, . . . , c`), (s̃r, s̃) = Dec(c̃)

Output same∗ if ∃i : c̃ = ci, and (s̃r, s̃) otherwise.

}

which is a random variable over the randomness of Enc and Dec. An encoding scheme

(Enc,Dec) is multi-codeword, randomness simulatable, strongly non-malleable, with respect

to the function family F , if for every f ∈ F and any s0, s1 ∈ ({0, 1}κ)`, we have{
MultiTamperfs0

}
k∈N
≈
{
MultiTamperfs1

}
k∈N

.

Here, “≈” may refer to statistical, or computational, indistinguishability. For encoding

schemes in the common reference string model, the definition is analogous.

Clearly, for ` = 1, the notion of multi-codeword RSS-NMC matches the one presented in

Definition 4.3.1. In order to construct, `-more wECRH, for ` > 1, we need an RSS-NMC,

for the following function class.

Definition 4.3.12 (The function class F̄ `aff). We define the following function class

F̄ `aff = {f(x1, . . . , x`) = f1(x1) + . . .+ f`(x`) | fi ∈ Faff}.

We present the following lemma.

Lemma 4.3.13. The encoding scheme of Construction 4.3.8, (Enc,Dec), is a multi-

codeword RSS-NMC against F̄ `aff , for ` > 1.

Proof. Recall that, any f ∈ Faff produces a valid, new codeword, c̃, with respect to

(Enc,Dec), only when c̃ is independent of the original codeword. Moreover, the output

of Tamperfs is same∗, only if f = (0, 1), where Tamper is the tampering experiment of

Definition 4.3.1 (for brevity we omit the CRS). Based on those facts and using similar

arguments with the proof of Theorem 4.3.9, it is not hard to see that when consider-

ing multiple codewords/messages and the encoding (Enc,Dec) against Faff , any tampering

function f = (f1, . . . , f`) ∈ F̄ `aff , makes the tampering experiment of Definition 4.3.11 to

output same∗, only if a single fm = (bm, dm) is the identity function, i.e., bm = 0, dm = 1,

while the remaining functions are the zero-functions, i.e., bj = 0, dj = 0, j ∈ [`]\{m}. We

will refer to such a tampering function using the term projection function. Now, given a

tampering function f = (f1, . . . , f`) ∈ F̄ `aff , and messages s = (s1, . . . , s`), we can easily

construct f ′ ∈ Faff , s′, for which MultiTamperfs = Tamperf
′

s′ , where MultiTamper is the tam-

pering experiment of Definition 4.3.11. If f ′ is a projection function with respect to index
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m, we set f ′ = (0, 1) and s′ = sm, and clearly, both experiments output same∗. Otherwise,

assuming f1 = (b1, d1), we compute b =
∑`

i=2 fi(Enc(si)) and we set f ′ = (b + b1, d1),

s′ = s1, and we can prove, exactly as in the proof of Theorem 4.3.9, that either the tam-

pered codeword is independent of the original, and the outputs for both experiments are

decidable by inspecting the tampering function, or both experiments output ⊥. Thus,

assuming that we can distinguish between MultiTamperfs0
and MultiTamperfs1

, for some

f ∈ F̄ `aff and messages s0, s1, we can construct f ′ ∈ Faff , s′0, s′1, and distinguish between

Tamperf
′

s′0
and Tamperf

′

s′1
, breaking the security of the RSS-NMC of Construction 4.3.8.

In the “`-more” setting the attacker receives vi = (g〈r,ci〉, ga〈r,ci〉), i ∈ [`], and constructs

a valid hash ṽ. The proof of Theorem 4.3.4 easily extends to the “`-more” setting by

proving that ṽ =
(
g〈r,

∑`
i=1 fi(ci)〉, ga〈r,

∑`
i=1 fi(ci)〉

)
, where (f1, . . . , f`) ∈ F̄ `aff , and we achieve

extractability using the simulator of the underlying RSS-NMC, for multiple codewords.

Thus, we are able to show the following theorem.

Theorem 4.3.14. Under the DLOG assumption and t-KEA, Construction 4.3.2, instan-

tiated with the encoding scheme of Construction 4.3.8, is an `-more wECRH.

The proof is essentially the same as that of Theorem 4.3.4, as we discussed above.

4.3.5 Leakage-resilient `-more wECRH under KEA

In the current section, we present the notion of leakage-resilient `-more wECRH and we

prove that Construction 4.3.2 satisfies this notion. The proposed definition is along the

lines of Definition 4.2.1.

Definition 4.3.15 (`-more weakly extractable, leakage-resilient hash function families).

Let `, λ ∈ N and let g : {0, 1}∗ → {0, 1}λ. An efficiently samplable hash function ensemble

H = {Hk}k∈N, is `-more weakly extractable against λ bits of leakage, if for any PPT algo-

rithm Av and any zv ∈ {0, 1}poly(k), there exist a PPT extractor EHAv and zE ∈ {0, 1}poly(k),

such that for all PPT algorithms As, any large k ∈ N and any vector of messages s =

(s1, . . . , s`),

Pr
h←Hk

[
Exps,hAv ,As,EAv

(`, λ, zv, zE) = 1
]
≤ negl(k),
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where,

Exps,hAv ,As,EAv
(`, λ, zv, zE) :

τi ← {0, 1}poly(k), vi = h(si; τi), i ∈ [`] ( hash computation )

t = (τ1, . . . , τ`),v = (v1, . . . , v`)

(ṽ, st)← Av(h,v, g(t), zv) ( hash tampering )

(τ̂ , ŝ)← EAv(h,v, zE) ( pre-image extraction )

(τ̃ , s̃)← As (h, t, s, st) ( pre-image tampering )

If h(s̃; τ̃) = ṽ ∧ ∀i : ṽ 6= vi ∧ h(ŝ; τ̂) 6= ṽ, return 1

otherwise, return 0

The main requirement for proving security of Construction 4.3.2, is that, the underlying

encoding scheme, (Enc,Dec), is an RSS-NMC against affine functions, and Enc(s) has

sufficient entropy. Given a scheme that satisfies such properties, we prove that Construction

4.3.2 is an `-more wECRH under the t-KEA and DLOG (cf. Theorem 4.3.2).

In the following theorem, we reduce the `-more extractability in the presence of leak-

age, to standard, i.e., `-more extractability without leakage, under the same assumptions.

Briefly, the main idea behind the proof presented below, is that if Enc(s; τ) has sufficient

entropy even given bounded leakage over τ , then v is indistinguishable from uniform due

to the universality property (cf. Definition 2.1.13) of the inner product, and we manage to

reduce `-more extractability in the presence of leakage, to `-more extractability without

leakage, using a series of hybrids. Our result is formally presented in the following theorem.

Theorem 4.3.16. For k ∈ N, let H be the `-more wECRH family of Construction 4.3.2

instantiated with an RSS-NMC encoding scheme, (Enc,Dec), such that for any message

s, H∞ (Enc(s)) ≥ λ + k + ω(log k). Then, H is an `-more wECRH against λ bits of

non-adaptive leakage.

Proof. We prove the needed for the 1-more case (the `-more case is identical) using a series

of hybrid experiments that we describe below and they are depicted in Figure 4.1.

• For any g : {0, 1}∗ → {0, 1}λ, PPT Av with auxiliary input zv, any As, any message s

and h ∈ H, Exp0 is the `-more experiment under leakage, Exps,hAv ,As,EAv
(`, λ, zv, zE), of

Definition 4.3.15. In order to fully define the experiment we need to define E , zE : for

any g, Av, zv, we define the non-leakage attacker A′v, such that A′v(h, v, zv) samples
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independent randomness τ ′ ← {0, 1}poly(k) and executes (ṽ, st)← Av(h, v, g(τ ′), zv).

By the 1-more extractability of H (without leakage) there exists extractor EHA′v with

hardcoded auxiliary information zE , for A′v, and we define E := EHA′v . We prove that

for any Av, zv, As and any message s, Pr[Exp0 = 1] ≤ negl(k), otherwise we break

1-more extractability, without leakage, of H, with non-negligible probability.

• In Exp1 we modify Exp0 in two ways. First the leakage is computed over the in-

dependent randomness τ ′, instead of τ , which is used to compute v. As we prove,

if the adversary is not leaking more than λ bits in total, v is statistically close

to a uniform element in the range of the hash, even if the attacker receives leak-

age over τ , and this modification does not induce any statistical difference be-

tween the two experiments. Thus, Av cannot distinguish between the two ex-

periments. However, As might do so since for some leakage query g we might

have g(τ) 6= g(τ ′). Hence, for any As, we define an A′s, that given τ , s, com-

putes the output of As, exactly as it happens in Exp0, i.e., A′s (h, τ, s, st) computes

(i) v ← h(s; τ), (ii) (ṽ, st) ← Av(h, v, g(τ), zv), (iii) outputs (τ̃ , s̃) ← As (h, τ, s, st),

and clearly, the output of As in Exp0, matches the output of A′s in Exp1.

• In Exp2, for any Av, we substitute Av with A′v such that A′v(h, v, zv) samples τ ′ ←
{0, 1}poly(k) and outputs (ṽ, st) ← Av(h, v, g(τ ′), zv). Exp2 is the original `-more

experiment (without leakage) and it is not hard to see that Exp1 ≈ Exp2.

In the following claims we prove statistical indistinguishability between the hybrids.

The statistical distance between Exp0 and Exp1 is bounded by the distance of the in-

put/output variables to Av, As, A′s and E .

Claim 4.3.17. For any any leakage function g, any s, Av, As, zv, (h(s; τ), g(τ)) ≈
(h(s; τ), g(τ ′)), over the randomness of Exp0, Exp1.

Proof. By assumption we have that for any s, H∞ (Enc(s)) ≥ λ+ k + ω(log k). Moreover,

each leakage query g can leak at most λ bits of τ (as all queries cannot leak more than λ

bits, in total). Since the randomness of the encoder is independent of zv, h, we have that for

Z = (zv, h, g(h)), H∞ (Enc(s) | Z) ≥ k + ω(log k). Thus, H̃∞(Enc(s) | Z) ≥ k + ω(log k).

By the Left-Over Hash Lemma (Lemma 2.1.11) and the universality of the inner product

function (Lemma 2.1.13), the distribution 〈r,Enc(s; τ)〉 is statistically close to uniform over
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Exp0 :

τ ← {0, 1}poly(k), v = h(s; τ)

(ṽ, st)← Av(h, v, g(τ), zv)
(τ̂ , ŝ)← E(h, v)
(τ̃ , s̃)← As (h, τ, s, st)

If h(s̃; τ̃) = ṽ ∧ ṽ 6= v ∧ h(ŝ; τ̂) 6= ṽ :
return 1

otherwise, return 0

Exp1 :

τ, τ ′ ← {0, 1}poly(k) , v = h(s; τ)

(ṽ, st)← Av(h, v, g(τ ′) , zv)
(τ̂ , ŝ)← E(h, v)

(τ̃ , s̃)← A′s (h, τ, s, st)

If h(s̃; τ̃) = ṽ ∧ ṽ 6= v ∧ h(ŝ; τ̂) 6= ṽ :
return 1

otherwise, return 0

Exp2 :

τ ← {0, 1}poly(k), v = h(s; τ)

(ṽ, st)← A′v(h, v, zv)
(τ̂ , ŝ)← E(h, v)
(τ̃ , s̃)← A′s (h, τ, s, st)

If h(s̃; τ̃) = ṽ ∧ ṽ 6= v ∧ h(ŝ; τ̂) 6= ṽ :
return 1

otherwise, return 0

Figure 4.1: The hybrid experiments for the proof of Theorem 4.3.16. The gray part signifies
the portion of the code of an experiment that differs from the previous one.

Zp and we have

(h(s; τ), g(τ)) =
((
g〈r,Enc(s;τ)〉, ga〈r,Enc(s;τ)〉

)
, g(τ)

)
≈ ((gr, gar), g(τ)) ,

for uniform r, τ . Since τ , τ ′, r, are uniform and independent we have ((gr, gar), g(τ))

≈ ((gr, gar), g(τ ′)), and thus (h(s; τ), g(τ)) ≈ (h(s; τ), g(τ ′)). This concludes the proof of

the claim and the input and output distributions for Av and E in both experiments are

the same.

By the above claim and the fact that the input and output distributions of As and A′s
are the same (by the definition of A′s), we have that Exp0 ≈ Exp1.

Finally, in Exp2, A′v is just sampling τ ′ internally and then executes Av. Again the

output distributions of Av and A′v are the same, thus Exp1 ≈ Exp2.
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From the above we have that Exp0 ≈ Exp2 and |Pr[Exp0 = 1]−Pr[Exp2 = 1]| ≤ negl(k).

Thus, assuming Pr[Exp0 = 1] > ε, for ε = 1/poly(k), we receive that Pr[Exp2 = 1] >

ε′ = ε− negl(k), and the 1-more extractability of H breaks with non-negligible probability

(recall that Exp2 is the 1-more experiment without leakage). Thus, Pr[Exp0 = 1] ≤ negl(k),

and 1-more extractability under leakage for H follows.

By plugging the non-malleable encoding scheme, (Init,Enc,Dec), against affine func-

tions (cf. Construction 4.3.8), with |p| = k + λ, as the underlying encoding scheme to

Construction 4.3.2, we have that for any message s, H∞ (Enc(s)) ≥ λ+ k + ω(log k), and

Construction 4.3.2 is an `-more wECRH against λ bits of leakage (cf. Definition 4.3.15).

4.4 `-more weakly extractable hash functions in the

random oracle model

In the current section, we prove that any hash function is an `-more wECRH (cf. Defi-

nition 4.2.1) when it is modeled as a random oracle. Since in the random oracle model,

the randomness comes from the oracle, we do not hash the message using independent

randomness, τ , and in addition, the adversary and the extractor receive black box ac-

cess to the hash function, h. In this setting, leakage resilience (cf. Definition 4.3.15) is

straightforward.

In what follows, we briefly discuss the main idea behind the proof of Theorem 4.4.1,

presented below. Any adversary, (Av,As), against the `-more extractability, is required

(i) to produce a new valid hash value ṽ (this value is produced by Av) and (ii) to produce

a valid pre-image for ṽ (this value is produced by As). The extractor, who is given access

only to the queries made by Av, checks if there is any query (pre-image) that hashes to ṽ,

and if so, it correctly outputs that pre-image, otherwise it outputs ⊥. In the latter case,

the extractor fails only if As manages to output a valid pre-image for ṽ, which happens

with negligible probability, as for any s̃ output by As, when querying the oracle with s̃,

the probability of receiving ṽ as a reply, is negligible. This idea is formally presented in

the following theorem.

Theorem 4.4.1. Let k, ` ∈ N and let h be a function, h : {0, 1}∗ → {0, 1}k. Assuming h

is modeled as a random oracle, then h is an `-more wECRH (cf. Definition 4.2.1).

Proof. Let h be a random function that will be accessed by the extractor and the attacker in

a black-box way. For any Av with auxiliary input zv we define zE := zv and Eh(·) as follows:
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Eh(·)(v, zE):

1. (Initialization): Set Qv := ∅.

2. (Execute Av): Execute Av(v, zv) and for each oracle query q of Av, query the oracle

with q, set Qv = Qv ∪ {q} and send h(q) to Av. At the end of the execution receive

ṽ from Av.

3. (Output): If there exists q ∈ Qv, such that h(q) = ṽ, set ŝ := q, otherwise, set

ŝ := ⊥. Output ŝ.

Clearly, the running time of Eh(·) is linear in the running time of Av. According to Defini-

tion 4.2.1, we need to prove that for any any PPT algorithm Av, any zv ∈ {0, 1}poly(k), all

PPT algorithms As, any large k ∈ N and any vector of messages s = (s1, . . . , s`),

Pr
h

[
Exps,hAv ,As,E(`, zv, zE) = 1

]
≤ negl(k),

where,

Exps,hAv ,As,E(`, zv, zE) :

vi = h(si), i ∈ [`]

v = (v1, . . . , v`)

(ṽ, st)← Ah(·)
v (v, zv)

ŝ← Eh(·)(v, zE)

s̃← Ah(·)
s (s, st)

If h(s̃) = ṽ ∧ ∀i : ṽ 6= vi ∧ h(ŝ) 6= ṽ, return 1

otherwise, return 0

Let Q = {si | i ∈ [`]}. We define the following events,

B: Exps,hAv ,As,E(`, zv, zE) = 1, E: h(s̃) = ṽ ∧ ∀i : ṽ 6= vi.

Clearly, Pr[B ∧ ¬E] = 0, thus we only need to bound Pr[B ∧ E].

Pr[B ∧ E] = Pr[h(s̃) = ṽ ∧ ∀i : ṽ 6= vi ∧ h(ŝ) 6= ṽ]

= Pr[h(s̃) = ṽ ∧ ∀i : s̃ 6= si ∧ ŝ = ⊥]

≤ Pr[h(s̃) = ṽ ∧ s̃ /∈ (Q∪Qv)] =
1

2k
≤ negl(k),

where the last inequality follows from the fact that s̃ does not belong to the set of queries

made to h, thus h(s̃) is completely random over {0, 1}k. This completes the proof of the

theorem.



Chapter 5

Non-malleable codes in the

split-state model

5.1 Introduction

The split-state model was originally introduced and studied in the context of non-malleable

codes, by Dziembowski et al. [DPW10] and Liu and Lysyanskaya [LL12], that considered

the case of two split states. Briefly speaking, in the split-state model with two states,

private memory is split into two parts, c0, c1, and the attacker may apply any function

f = (f0, f1) that results in a tampered memory equal to (f0(c0), f1(c1)). The critical point

here is that each fi, for i ∈ {0, 1}, tampers with ci independently of c1−i. This is a plausible

model to assume since there are many scenarios in which sensitive data may be split into

two storage devices that are physically separated for security reasons. In this setting, an

adversary that receives tampering access over the two devices modifies the contents of each

memory independently of the contents of the other. Note that, the model can generalize to

multiple split states, with the two-state variant being the hardest to achieve. In the present

chapter, we consider the problem of constructing practically efficient non-malleable codes

against split-state attackers with two states, and any reference to the split-state model is

with respect to the two-state variant. Before presenting the contributions of the present

chapter, the state of the art of split-state non-malleable codes is reviewed.

Broadly speaking, explicit constructions of non-malleable codes in the split-state model

can be categorized into information-theoretic and computational.1 In a recent break-

1The work of [DPW10] showed that in the random oracle model, there exist efficient non-malleable
codes against split-state tampering functions. However, their approach uses a probabilistic argument thus
providing only a proof of existence and not an explicit construction.

94
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through result, Aggarwal et al. [ADL14], provide the first polynomial-time, information-

theoretic, non-malleable code for multi-bit messages, significantly improving over the work

by Dziembowski et al. [DKO13], which only supports single-bit messages. The encoder

of [ADL14] produces codewords of length O((|s|+k)7), where |s| denotes the length of the

encoded message, s, and k is the security parameter. Later, Aggarwal et al. [ADKO15] pro-

posed another construction that achieves codeword length roughly O(|s|), for sufficiently

large |s|, however as the authors point in the conclusion of their work, the hidden constants

may be “astronomical”, as they depend on results from additive combinatorics.

The first computationally secure non-malleable code is presented by the work of Liu and

Lysyanskaya [LL12], that construct an efficient non-malleable code for split-state attackers,

using cryptographic tools such as leakage resilient public-key encryption [NS09], and robust

non-interactive zero-knowledge (NIZK) proofs [DDO+01]. The rate of their construction is

not provided in the original paper and a textbook instantiation with public-key encryption

combined with NIZKs, does not yield a rate 1 code, since the length of the NIZK proof is

proportional to the message length. However, using state of the art tools, a better instan-

tiation of [LL12] could be provided, by combining the results of [LL12] together with the

compiler of [AAG+16], the public-key leakage resilient encryption of [NS09] and the effi-

cient NIZKs of [GS08], yielding a scheme with codeword length |s|+O(k2) (cf. Table 5.1).

In another work, Aggarwal et al. [AAG+16] presented a compiler that transforms any low

rate, non-malleable code, to a rate 1, computationally secure, non-malleable code. The

underlying encoding must satisfy a notion, strictly stronger than non-malleability, called

augmented non-malleability, which, as it is stated in [AAG+16], can be satisfied by the con-

struction of [ADL14]. By instantiating the compiler of [AAG+16] with the construction of

[ADL14], the codeword’s length becomes |s|+O(k7).

Although the above constructions achieve rate 1 asymptotically, i.e., the ratio of mes-

sage to codeword length is 1, as the message length, |s|, goes to infinity, in practice, the

induced overhead can still be too large when considering short messages, e.g., a 160-bit

cryptographic key, even without counting the potentially large hidden constants in the

asymptotic notation. Thus, even though the problem of “optimal-rate” has been solved

in theory, it is still unclear what the practical implications of those constructions are.

Given the current state of the art, as discussed above, constructing codes with very small

overhead, including the hidden constant, remains still one of the most important open

questions in the area. Note, that the natural lower bound for code length is merely |s|+k,

and none of the existing, computational or information-theoretic, constructions, match it,
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even asymptotically.

5.1.1 Contributions

In the present chapter we tackle the problem of constructing truly efficient non-malleable

codes in the split-state model, based on the notion of `-more weakly extractable hash func-

tion families (wECRH), that was presented in Chapter 4. Recall that, `-more extractable

hash function families capture the idea that, if an adversary, that given ` ∈ N precomputed

hash values v1, . . . , v`, manages to produce a new valid hash value ṽ, then it must know a

pre-image of ṽ.

The main result, which is informally presented in the next theorem, states that non-

malleable codes against split-state attackers are implied from `-more weakly extractable

hash functions. The crux of the underlying methodology is to adapt the “public-key-

encrypt-and-prove” method of [LL12], using the notion of `-more weakly extractable hash

function families, yielding effectively a “(one-time-symmetric-key-encrypt)-and-hash” ap-

proach for obtaining non-malleable codes. In particular, the following, informally stated

theorem is proved:

Theorem 5.1.1 (Informal). Assuming 1-more wECRH, DLOG, and one-time leakage-

resilient authenticated encryption, there exists an explicit, information rate 1, non-malleable

code in the split-state model.

Assuming the KEA-based 1-more wECRH of Section 4.3.1, the proposed scheme pro-

duces codewords of length |s|+ 9k+ 2 log2(k) (or |s|+ 18k depending on the instantiation,

while for the random oracle based one, the codeword length is |s| + 6k + 2 log2(k) (cf.

Section 5.3). In Table 5.1, a comparison of the new scheme with the current state of

the art on the split-state setting, is provided. The new construction is truly efficient in

terms of codeword length, and it is one order of magnitude better than the combination

of [LL12] + [AAG+16] + [NS09] + [GS08], which is the most competitive scheme that can

be constructed,2 based on the current state of the art. It should be noted that, existing

constructions in the information-theoretic setting, such as [ADL14, ADKO15], and the

works built on top of them, e.g., [AAG+16], might require very large constants, inherited

by the results in additive combinatorics (cf. the conclusion of [ADKO15]).

2For the sake of this comparison, [LL12] is instantiated with the efficient zero-knowledge proofs of [GS08]
and the leakage resilient public-key encryption of [NS09]; moreover it can be observed that the resulting
encoding scheme is compatible with the compiler of [AAG+16] (it satisfies “augmented non-malleability”,
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Scheme Codeword length Model Assumption

[ADL14] O
(
(|s|+ k)7 log7(|s|+ k)

)
IT N/A

[ADKO15]3 O(max{|s|, k}) IT N/A

[ADL14] + [AAG+16] |s|+O
(
k7
)

Comp. AE

[LL12] + [AAG+16]
+ [NS09] + [GS08]

|s|+O
(
k2
)

Comp., CRS4 LR-PKE + robust NIZK

This thesis |s|+ 9k + 2 log2(k) Comp., CRS 1-time LR-AE + KEA

This thesis |s|+ 6k + 2 log2(k) Comp., RO 1-time LR-AE

Table 5.1: Comparison of multi-bit NMCs in the split-state model. k is the security
parameter, “IT” stands for information-theoretic security, “Comp.” for computational
security, “AE” for authenticated encryption, and “LR” for leakage-resilient, respectively.
In the information-theoretic setting, typically security breaks with probability ε = 2−Ω(k);
in the computational setting, we have ε = negl(k), e.g., ε = k−ω(1) or 2−Ω(k), depending on
how strong the underlying computational assumption is.

5.1.2 Technical overview

The proposed NMC construction against split-state attackers is inspired by the one of

Liu and Lysyanskaya [LL12], so we first revisit their construction. To encode a message

s, the encoder of [LL12] outputs (sk, (pk,Epk(s), π)), where E is the encryption algorithm

of a leakage-resilient, semantically secure, public-key encryption scheme (KGen,E,D), sk,

pk, denote the secret key and public key, respectively, and π is a non-interactive proof of

knowledge (robust NIZK), that proves the existence of a valid secret key, decrypting the

ciphertext to the message s.

The construction proposed in the present thesis significantly improves the efficiency of

[LL12] by refining their approach in two ways: (1) by replacing the leakage-resilient public-

key encryption scheme, with a one-time, symmetric-key, leakage-resilient authenticated

encryption scheme, and (2) by replacing the (robust) NIZK proof with a 1-more wECRH,

which was introduced in Chapter 4. The encoder works as follows: to encode a message

s, the encoder outputs
(

(τ, sk), (e = Esk(s), v = h(sk; τ))
)

, where E is the encryption

algorithm of a symmetric, leakage-resilient, authenticated encryption scheme, sk is the

corresponding secret key, h is a randomized 1-more wECRH, and τ denotes its randomness.

Here the reader can observe that, using a function h that is extractable according to

[BCCT12], i.e., not 1-more extractable, is not a good idea. Since generic authenticated

encryption schemes guarantee security only if the secret key remains the same, it is possible

a property defined in the latter paper) and thus the resulting system is of rate 1. This provides codeword
length |s|+O(k2), cited in Table 5.1.

4The size of the CRS is O(k), see [GS08]. The size of the CRS in the constructions presented in the
current chapter, is roughly 32k bits, cf. Section 5.2, and it is independent of |s|.
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to break security if the adversary modifies sk as well. In fact, it is possible to construct

an authenticated encryption scheme such that it becomes insecure if the secret key is

modified. Therefore, if the hash function family is malleable, then the tampering function

may compute (ẽ = Es̃k(s + 1), ṽ = h(s̃k)), where s̃k is a bad key that does not provide

security. In this setting, the tampered codeword decodes to a related message, and non-

malleability is impossible to prove. The 1-more extractability property resolves this issue:

even if the attacker is given access to a valid hash value v, it cannot produce a valid hash

value ṽ, unless it knows a valid pre-image. Proving security for the above construction

requires to handle multiple subtleties, and the reader is referred to Section 5.2 for further

details.

The proposed one-time, symmetric, leakage-resilient authenticated encryption scheme,

in order to sustain 2k + log2 k bits of leakage, it requires key and ciphertext length |s| +
5k + 2 log2(k) (cf. Section 5.3). In addition, the KEA based 1-more wECRH satisfies

|τ | = |v| = 2k (see Constructions 4.3.8 and 4.3.2). Therefore, the total codeword length is

|s|+ 9k + 2 log2(k) (or |s|+ 18k, cf. Section 5.3). The encoding and decoding procedures

require 128 group operations (64 exponentiations plus 64 multiplications), independently

of the message length, plus the cost of one-time authenticated encryption and decryption,

respectively. The random oracle-based construction produces codewords of length |s|+6k+

2 log2(k), while the encoding and decoding procedures require the computation of a hash

function, plus the cost of one-time authenticated encryption and decryption, respectively.

5.1.3 Related work on split-state NMC

The first explicit non-malleable code in the split-state model, for the information-theoretic

setting was proposed by [DKO13], yet their scheme can only encode single-bit messages.

Subsequent constructions for multi-bit messages are discussed in the previous section.

Non-malleable codes for other function classes have been extensively studied, e.g., bit-wise

independent tampering [DPW10], bounded-size function classes [FMVW14], the k-split

setting [CZ14], block-wise tampering [CKM11, CGM+15], and bounded depth and fan-in

circuits [BDKM16]. The work of [ADKO15] develops beautiful connections among different

function classes.

Other aspects of non-malleable codes have also been studied, such as rate-function class

tradeoff, in the information-theoretic setting [CG14]. Other variants of non-malleable

codes have been proposed, such as continuous non-malleable codes [FMNV14, JW15],

augmented non-malleable codes [AAG+16], locally decodable/updatable non-malleable
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codes [DLSZ15, DKS17b, FMNV15, CKR16], which were used to secure the implementa-

tion of RAM computation, and non-malleable codes with split-state refresh [FN17]. Leak-

age resilience was also considered as an additional feature, e.g., [LL12, DLSZ15, CKR16,

FN17].

A related line of work in tamper resilience aims to protect circuit computation against

tampering attacks on circuit wires [IPSW06, FPV11, DK12, DK14] or gates [KT13]. In this

setting, using non-malleable codes for protecting the circuit’s private memory is an option,

still in order to achieve security the encoding and decoding procedures should be protected

against fault injection attacks using the techniques from [IPSW06, FPV11, DK12, DK14,

KT13].

5.2 A non-malleable code against split-state tampering

In this section, we present our construction of non-malleable codes against split-state

tampering functions. Our construction requires (i) a one-time, authenticated, symmetric-

key encryption scheme that is also leakage resilient, and (ii) a 1-more wECRH.

Construction 5.2.1. Let Hk = (Gen, h) be a hash function family, and let (KGen,E,D)

be a symmetric encryption scheme. We define a coding scheme (Init,Enc,Dec), as follows:

• Init(1k): sample z ← Gen(1k) and set Σ := z.

• Enc(Σ, ·): let s be the input to the encoder. The encoder samples sk ← KGen(1k),

τ ← {0, 1}poly(k), e← Esk(s), and outputs
(
τ, sk, e, hz(sk; τ)

)
. In particular, the left

part of the codeword is (τ, sk), while the right part is (e, hz(sk; τ)).

• Dec(Σ, ·): let (τ, sk, e, v) be the input to Dec. If hz(sk; τ) = v, the decoder outputs

Dsk(e), otherwise, it outputs ⊥.

Since the input message to hz, sk, possesses sufficient entropy, it is possible to omit τ

in the above construction, still for the sake of clarity we stick to the formulation provided

in Definition 4.2.1 and we use independent randomness for hashing sk. Also, for brevity we

will use h to refer both to the program of the hash function and the key, i.e., z is omitted.

In what follows we prove that Construction 5.2.1 is strongly non-malleable (cf. Defi-

nition 2.3.3) against the class of split-state functions Fss (cf. Definition 2.2.3), assuming
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that for any f = (f0, f1) ∈ Fss, f0, f1, tamper with (τ, sk) and (e, v), respectively, i.e., we

assume the strings r||sk, e||v, are of length ν/2, where ν is the length the codeword.5

Before formally analyzing the security of the construction presented above, we first

discuss the ideas on why our construction is secure. Consider a split-state tampering

function (f0, f1), where f0 is applied to (τ, sk) and f1 is applied to (e, v). To prove non-

malleability, one of the primitives that we rely on, is leakage-resilient semantically secure

encryption. In our proof, the simulator is provided with the ciphertext, e, and the hash,

v, where the latter is treated as leakage over the secret key sk, and clearly, the simulator

can compute (ẽ, ṽ) ← f1(e, v). However, in case ṽ 6= v, the simulator needs to be able

to produce the decoding of the codeword, and this is where 1-more weak extractability

will be used as the tool for obtaining a valid preimage, (τ̂ , ŝk), for ṽ. It might be very

tempting to conclude the simulation by outputting the decrypted message Dŝk(ẽ) (where

ẽ is the modified ciphertext). However, this may not be consistent with the real-world

experiment, as the values produced by the extractor (τ̂ , ŝk) might not be consistent with

the output of f0. To check consistency, the simulator would want to check the output of

f0, yet such a simulation would be impossible to prove since it depends on sk, and the

semantic security of the encryption does not hold in the presence of it. To go around this,

we use a similar technique to Liu and Lysyanskaya [LL12], who observed that, the equality

test between f0(τ̂ , ŝk) and f0(τ, sk) can be performed via leakage of over sk, i.e., by leaking

the output of a universal hash function (cf. Definition 2.1.10) with log2 k bits of output,

over sk. Putting this to our setting, by requiring the encryption scheme (KGen,E,D) to

be one-time semantically secure, symmetric-key authenticated encryption, that is secure

under 2k + log2 k bits of leakage, is sufficient to facilitate the simulation. We also note,

that the case where ṽ is not modified by f1, can be easily taken care of by the security

of the authenticated encryption and the collision resistance property of h: if v = ṽ, then

with overwhelming probability sk = s̃k, and any attempt to modify the ciphertext results

in an invalid ciphertext, with overwhelming probability.

Below we prove strong non-malleability for Construction 5.2.1.

Theorem 5.2.2. Let k be the security parameter, Hk be a 1-more wECRH that outputs

β(k) bits, β(k) = poly(k), and let (KGen,E,D) be an authenticated, semantically secure,

symmetric encryption scheme, that is leakage resilient against λ(k) := ω(log k)+β(k), bits

of leakage. Then, Construction 5.2.1 is strongly non-malleable against Fss.

5This can always be achieved using padding.
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Proof. Following the definition of strong non-malleability (Definition 2.3.3), we need to

prove that for any f = (f0, f1) ∈ Fss and any pair of messages s0, s1, (Σ,Tamperf,Σs0 ) ≈c
(Σ,Tamperf,Σs1 ), where Σ ← Init(1k). We introduce a series of hybrid experiments (see

Figure 5.1), and non-malleability can be derived directly from the indistinguishability

between adjacent hybrids. We first explain the hybrids and define the notation used in

those experiments.

• Given a tampering function f = (f0, f1) and message s, the first experiment, Expf,Σ,s0 ,

is exactly the original tampering game, Tamperf,Σs , of Definition 2.3.3, and Σ ←
Init(1k).

• In Expf,Σ,s1 , we slightly modify the previous hybrid by checking whether the function

f1 has modified the hash value v. Intuitively, by the collision resistance property of

the hash function family Hk, if f1 does not modify v, then the attack produces a valid

codeword, c̃, only if the parts of c̃ that constitute the preimage of ṽ, are kept intact,

i.e., (τ, sk) = (τ̃ , s̃k), otherwise there is a collision. In addition, assuming sk = s̃k,

we have that, if ẽ 6= e, then the output of the decoder should be ⊥, otherwise we

break the authenticity under leakage (v is considered as leakage over sk) property

of the encryption scheme. On the other hand, if v 6= ṽ, the output of the current

experiment is produced as in Expf,Σ,s0 .

• In Expf,Σ,s2 , we modify the previous experiment for the case in which v is modified.

For this case, instead of using the real decoding procedure, we use the extractor of the

hash function family, to extract a preimage (τ̂ , ŝk), for ṽ, and then we compute the

output, s̃, with respect to that preimage. However, we cannot output s̃ directly as

we still need to check consistency with the output of f , i.e., we need to check whether

(τ̂ , ŝk) is equal to (τ̃ , s̃k). The indistinguishability between the current hybrid and

the previous one, follows by the 1-more weak extractability property of the hash

function, which, informally, guarantees that if c̃ is a valid codeword, then there exists

an extractor EHAv (denoted as E in Figure 5.1) that produces a valid preimage for ṽ,

with overwhelming probability. If the extracted preimage is consistent with the one

output by f , the current hybrid outputs a non-bottom value, equal to the one output

by the decoding procedure of Expf,Σ,s1 . On the other hand, if (τ̂ , ŝk) 6= (τ̃ , s̃k), the

collision resistance property of Hk (cf. Lemma 4.2.2) guarantees that (τ̃ , s̃k) is not

a valid preimage for ṽ, with overwhelming probability, and the current experiment
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properly outputs ⊥. Finally, it is straightforward to see, that if ṽ is invalid, both

experiments output ⊥.

In order to define the extractor EHAv (or E for brevity), introduced in Expf,Σ,s2 , we first

need to define Av, zv, with respect to h, v, e, and f = (f0, f1). Formally, we define

the following:

1. (Define Av): Av(h, v, zv) := ([f1(zv, v)]2, st), where

st := (f1(zv, v), zv, v).

2. (Choose auxiliary info for Av): define zv := e.

3. (Existence of the extractor, EHAv , and auxiliary input, zv): Given Av and

zv, by the 1-more weak extractability property of Hk, there exists an extractor

EHAv , with hardwired auxiliary input, zE , that computes (τ̂ , ŝk)← EHAv(h, v). The

extractor EHAv is used in Expf,Σ,s2 and all subsequent experiments (for brevity we

denote it as E).

We remind, that, for any vector x, [x]i, denotes the i-th coordinate of x.

• In Expf,Σ,s3 , we modify the consistency check procedure, so that we access the right

part of the codeword, only through leakage. Instead of checking consistency using

directly the output of f0, we do the check using a uniformly random hash function,

h̄, from a universal family (cf. Definition 2.1.10), applied to the output of f0; we also

leak an additional bit that indicates whether f0 has modified its input. Here, the

hash v is computed through leakage over the secret key, sk. The experiment differs

from the previous one only when there is a collision against h̄, which happens with

negligible probability, as h̄ is a universal hash function.

In what follows, we formalize the procedure described above. Let h̄ ← H̄λ−1 be a

uniformly random element from a universal hash function family, that outputs λ− 1

bits. We define the function gh̄,h(·) as follows:

gh̄,h(x, y) =

(0, h̄(f0(x, y)), h(x, y)), if f0(x, y) = (x, y),

(1, h̄(f0(x, y)), h(x, y)), if f0(x, y) 6= (x, y).

We view gh̄,hz as a leakage function that outputs λ = ω(log k) + β(k) bits in total.

The experiment will then use the leaked value to check consistency, instead of using

the whole string output by f0. Concretely, we introduce the random variable b,
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which depends on the output of the leakage function, and we modify Expf,Σ,s2 , so

that the condition “If (b = 1)”, introduced in Expf,Σ,s3 , is exactly the same as the

condition “If (τ, sk, e) = (τ̃ , s̃k, ẽ)”, in experiment Expf,Σ,s2 . This modification does

not induce any statistical difference. In the next modification, we check equality

between (τ̂ , ŝk), (τ̃ , s̃k), by checking if h̄(τ̂ , ŝk) = h̄(f0(r, sk)). Clearly, this part

induces a statistical difference only if there is a collision against h̄, which happens

with negligible probability, since h̄ is a universal hash function, chosen by the current

experiment, independently.

• Finally, we are going to show that Expf,Σ,s3 is indistinguishable from Expf,Σ,03 , for any

message s, where 0 denotes the zero-message. This follows by the semantic security

of the leakage resilient encryption scheme (Definition 2.1.6).

A concrete presentation of the hybrids, is given in Figure 5.1.

In the following claims we prove indistinguishability between the hybrids.

Claim 5.2.3. Assuming Hk is collision resistant and (KGen,E,D) is an authenticated

leakage-resilient scheme against β(k) bits of leakage, for any f = (f0, f1) ∈ Fss and any

message s, Expf,Σ,s0 ≈c Expf,Σ,s1 , over the randomness of Init, Enc, where Σ follows Init(1k).

Proof. We observe, that the only difference between the two experiments, is that Expf,Σ,s1

introduces the following branches of conditions: (1) (v = ṽ) ∧ (τ, sk, e) = (τ̃ , s̃k, ẽ), (2)

(v = ṽ)∧ (τ, sk, e) 6= (τ̃ , s̃k, ẽ), and (3) v 6= ṽ. It follows directly that for the conditions (1)

and (3), the two experiments are identical. Denote as B the event in which (2) happens

and the output of Expf,Σ,s0 is not ⊥. From the above we have that Expf,Σ,s0 = Expf,Σ,s1

conditioned on ¬B. By a standard analysis, we know that the statistical distance between

the two experiments is bounded by Pr[B].

Let E be the event in which (τ, sk) = (τ̃ , s̃k). Then we have Pr[B] = Pr[B∧E]+Pr[B∧
¬E]. We will prove that Pr[B ∧E],Pr[B ∧¬E] ≤ negl(k). Towards contradiction, suppose

there exist function f ∈ Fss and message s, such that Pr[B ∧ ¬E] > ε, for ε = 1/poly(k).

Then, there exists a PPT adversary, A, that breaks the collision resistance property of

Hk: the adversary A simulates the experiment Expf,Σ,s1 and outputs (τ, sk), (τ̃ , s̃k). The

function f is computable in polynomial time, so the adversary is also polynomial-time. The

adversary wins if the event B∧¬E happens, where by assumption we have Pr[B∧¬E] > ε.

Hence, the attacker breaks collision resistance with non-negligible probability. Similarly,
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Expf,Σ,s0 :
(τ, sk, e, v)← Enc(s), c← (τ, sk, e, v)

(τ̃ , s̃k)← f0(τ, sk), (ẽ, ṽ)← f1(e, v)

c̃← (τ̃ , s̃k, ẽ, ṽ)
s̃← Dec(c̃)

Output same∗ if c̃ = c and s̃ otherwise.

Expf,Σ,s1 :
(τ, sk, e, v)← Enc(s)

(τ̃ , s̃k)← f0(τ, sk), (ẽ, ṽ)← f1(e, v)

c̃← (τ̃ , s̃k, ẽ, ṽ)

If v = ṽ :

If (τ, sk, e) = (τ̃ , s̃k, ẽ) : set s̃← same∗

Else : set s̃← ⊥
If v 6= ṽ :

Set s̃← Dec(c̃)

Output s̃.

Expf,Σ,s2 :
(τ, sk, e, v)← Enc(s)

(τ̃ , s̃k)← f0(τ, sk), (ẽ, ṽ)← f1(e, v)

If v = ṽ :

If (τ, sk, e) = (τ̃ , s̃k, ẽ) : set s̃← same∗

Else : set s̃← ⊥
If v 6= ṽ :

(τ̂ , ŝk)← E(h, v)

set s̃← ⊥
If (τ̂ , ŝk) = (τ̃ , s̃k) :

If h(ŝk; τ̂) = ṽ, set s̃← Dŝk(ẽ)

Output s̃.

Expf,Σ,s3 :

sk ← KGen(1k), e← Esk(s)

τ ← {0, 1}poly(k), h̄← H̄λ−1

(lmod, lhash, v)← gh̄,h(τ, sk) , (ẽ, ṽ)← f1(e, v)

b← (lmod = 0 ∧ e = ẽ)

If v = ṽ :

If (b = 1) : set s̃← same∗

Else : set s̃← ⊥
If v 6= ṽ :

(τ̂ , ŝk)← E(h, v)
set s̃← ⊥

If h̄(τ̂ , ŝk) = lhash :

If h(ŝk; τ̂) = ṽ, set s̃← Dŝk(ẽ)
Output s̃.

Figure 5.1: Hybrid experiments for the proof of Theorem 5.2.2. Their programs are based
on the encoding scheme, (Init,Enc,Dec), the encryption scheme, (KGen,E,D), and the
extractor that is specified in the proof, E . The gray part signifies the portion of the code
of an experiment that differs from the previous one.

assuming there exist function f ∈ Fss and message s, such that Pr[B ∧ E] > ε, for some

non-negligible ε, we have an attacker against the authenticity, under leakage, property

of the encryption scheme: the attacker samples h ← Hk, τ ← {0, 1}poly(k), and issues a

leakage query gh(x) := h(x; τ), against the secret key of the encryption scheme. Then, it

receives v = h(sk; τ) and e← Esk(s), executes (ẽ, ṽ)← f1(e, v), and outputs ẽ. Assuming

Pr[B ∧ E] > ε, we have that ẽ 6= e, and ẽ is a valid ciphertext with respect to the secret

key sk. Thus, the authenticity under leakage property of the encryption scheme breaks

with non-negligible probability ε.

Claim 5.2.4. Assuming Hk is a 1-more wECRH, for any f = (f0, f1) ∈ Fss and any

message s, we have that Expf,Σ,s1 ≈c Expf,Σ,s2 , over the randomness of Init, Enc, E, where
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Σ follows Init(1k).

Proof. Expf,Σ,s2 differs from Expf,Σ,s1 , in the following way: instead of using the real decod-

ing procedure, it produces output using the extractor of the 1-more weakly extractable

hash function family, Hk. Below we show that the two experiments are computationally

indistinguishable.

We first notice that if (τ̂ , ŝk) = (τ̃ , s̃k), i.e., if the extracted value matches the corre-

sponding value output by f , then, the two experiments are identical. So, it remains to ana-

lyze the case where the values are not the same, i.e., the case in which (τ̂ , ŝk) 6= (τ̃ , s̃k). We

denote such an event with E. Then, we partition E into three cases: (1) E∧
(
h(s̃k; τ̃) 6= ṽ

)
;

(2) E ∧
(
h(s̃k; τ̃) = h(ŝk; τ̂) = ṽ

)
; and (3) E ∧

(
h(s̃k; τ̃) = ṽ ∧ h(ŝk; τ̂) 6= ṽ

)
. We denote

those events by E1, E2, E3, respectively, and we analyze them as follows:

• First, we observe that, whenever E1 takes place, the two experiments are identical,

as both output ⊥. Thus, the statistical distance between those two experiments can

be upper bounded by Pr[E2] + Pr[E3].

• Next, we observe, that E2 happens exactly when there is a collision against Hk, i.e.,

(r̂, ŝk) 6= (r̃, s̃k), and their hash values collide. By Lemma 4.2.2, we have Pr[E2] <

negl(k).

• Finally, we argue that Pr[E3] < negl(k), based on the 1-more extractability property

of Hk. In order to exploit that property, we need to relate Expf,Σ,s2 , with the ex-

periment of Definition 4.2.1, Exps
′,h
Av ,As,EHAv

(1, zv, zE), for some message s′, algorithms

Av, As, EHAv , and strings zv, zE . Recall, that, Av, zv, EHAv and zE , have already been

defined with respect to h, v, sk, e, and f = (f0, f1), in the beginning of the proof.

For the remaining we have:

1. (Define As): on input τ , s, st, As(h, τ, s, st), samples (τ̃ , s̃) ← f0(τ, s) and

outputs (τ̃ , s̃).

2. (Define message s′): set s := sk.

By the 1-more weak extractability property of Hk, we have

Pr
h←Hk

[
Exps

′,h
Av ,As,EHAv

(1, zv, zE) = 1

]
≤ negl(k),

and notice, that whenever E3 happens, we also have Exps
′,h
Av ,As,EHAv

(1, zv, zE) = 1,

since Av produces a valid, new hash, ṽ, As, produces a valid preimage for ṽ, still the

extractor fails. Thus, Pr[E3] < negl(k).
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Therefore, we have Pr[E2] + Pr[E3] < negl(k), and the two experiments are computa-

tionally indistinguishable.

Claim 5.2.5. Assuming H̄λ−1 is a universal hash function family that outputs λ− 1 bits,

where λ = ω(log k), we have that Expf,Σ,s2 ≈c Expf,Σ,s3 , over the randomness of Init,Enc, E,

where Σ← Init(1k).

Proof. In Expf,Σ,s3 we unfold the encoding procedure and we treat v as leakage over sk (those

modifications do induce any statistical difference). The main difference between Expf,Σ,s2

and Expf,Σ,s3 is in the way we check the “if” statements of the program that indicate whether

the preimage has been modified. We note that the first condition, “If (b = 1)”, is exactly

the same as the condition “If (τ, sk, e) = (τ̃ , s̃k, ẽ)”, since the first bit output by the leakage

function indicates weather f0 has modified (τ, sk). Therefore, this modification does not

induce any statistical difference. Then, we analyze the next condition and we observe that

there is a difference only when h̄(τ̂ , ŝk) = lhash, still (τ̂ , ŝk) 6= (τ̃ , s̃k). This happens when

the following event, denoted as B, takes place: h̄(τ̂ , ŝk) = h̄(τ̃ , s̃k) ∧ (τ̂ , ŝk) 6= (τ̃ , s̃k).

Clearly, the statistical difference between the two experiments is bounded by Pr[B]. Now,

since the universal hash function h̄ is chosen independently from its inputs, the collision

probability is bounded by 2λ−1 = negl(k). The event B, is exactly the collision event,

therefore we have Pr[B] ≤ negl(k). The proof of the claim is complete.

Claim 5.2.6. Assuming (KGen,E,D) is semantically secure against λ bits of leakage, we

have that for any f ∈ Fss and any message s, Expf,Σ,s4 ≈c Expf,Σ,04 , over the randomness

of Init, Enc, E, where Σ← Init(1k) and 0 denotes the zero message.

Proof. Towards contradiction, assume there exist f ∈ Fss, message s, and PPT distin-

guisher D such that |Pr[D(Σ,Expf,Σ,s4 ) = 1] − Pr[D(Σ,Expf,Σ,04 )] = 1| > ε, for ε =

1/poly(k). We are going to define an attacker A that breaks the semantic security against

one-time leakage of (KGen,E,D).

A has hardwired the leakage function g′
τ,h̄,h

(sk) := gh̄,h(τ, sk) where τ ← {0, 1}poly(k), h̄←
H̄λ−1, h← Hk, and two messages, s0 := s, s1 := 0. Then, on input(

e← Esk(sb), (lmod, lhash, v) = g′τ,h̄,h(sk)
)
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it sets q = Program(h, h̄, e, v, lmod, lhash), Σ = h, and outputs D(Σ, q), where Program is

defined as follows
Program(h, h̄, e, v, lmod, lhash) :

(ẽ, ṽ)← f1(e, v)

b← (lmod = 0 ∧ ẽ = e)

If v = ṽ :

If (b = 1) : set s̃← same∗

Else : set s̃← ⊥
If v 6= ṽ :

(τ̂ , ŝk)← E(h, v)

set s̃← ⊥
If h̄(τ̂ , ŝk) = lhash :

If h(ŝk; ŝ) = ṽ, set s̃← Dŝk(ẽ)

Output s̃.

It is straightforward to see that A simulates Expf,Σ,sb3 , so the advantage of A in breaking

the semantic security of the leakage-resilient encryption scheme matches the advantage of

D in distinguishing between Expf,Σ,s03 and Expf,Σ,s13 , which by assumption is non-negligible.

This leads to a contradiction and the proof of the claim is complete.

From the above claims we have that for any function f and any message s, TamperΣ,fs ≈c
Expf,Σ,03 , which implies that for any f and any pair of messages s0, s1, TamperΣ,fs0 ≈c
TamperΣ,fs1 , and the proof is complete.

Length of the CRS. For our KEA based construction, the length of the CRS is roughly

32k bits, as we need to hash a 6k-bit key of an authenticated encryption scheme and then

encrypt the message using that key; this would require the parameters for the 16-KEA to

be on the CRS, yielding a CRS with 32k bits.

5.3 Instantiating authenticated encryption

In the following we provide an instantiation for a one-time leakage-resilient, authenticated,

semantically secure symmetric encryption (Definition 2.1.6), against λ bits of leakage.

The idea is to combine a leakage-resilient pseudorandom generator [Pie09] with a message

authentication code that outputs k bits.
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Construction 5.3.1 (Authenticated encryption). Let PRG be a pseudo-random generator,

PRG : {0, 1}2λ → {0, 1}|s|+k, and let (Gen,Mac,Vrfy) be a message authentication code

that outputs tags of length k (cf. [KL14]). We define a symmetric encryption scheme

(KGen,E,D), as follows:

• KGen(1k): sample sk ← {0, 1}2λ.

• Esk(·): On input message s, compute (r0||r1) = PRG(sk), where |r0| = |s| and |r1| =
k, e = r0 + s, t = Macr1(e), and outputs (e, t).

• Dsk(·): On input (e, t), compute (r0||r1) = PRG(sk), and if Vrfyr1(e, t) = 1, output

s = r0 − e, otherwise output ⊥.

The PRG of [Pie09] considers |sk| = 2λ/α, and sustains αλ bits of leakage (cf. [SPY+10]),

where α ∈ [0, 1] depends on how strong the underlying assumption is. In the above con-

struction we use the strongest assumption, i.e., α = 1, which yields |sk| = 2λ, assuming

weak pseudorandom functions against exponential adversaries. The ciphertext length is

|s| + k, and by setting λ = 2k + log2 k, which is sufficient for our needs, we receive

|sk|+ |e|+ |t| = 5k + 2 log2 k + |s|. By plugging the above instantiation to our split-state

non-malleable code, the total codeword length with respect to the KEA-based `-more

wECRH (cf. Section 4.3.4) is |s|+ 9k + 2 log2(k), since the hash and the randomness for

computing it, are of size 2k, each, while with respect to the random oracle-based wECRH

(cf. Section 4.4), the total codeword length is |s|+ 6k + 2 log2(k).

In what follows, we provide an instantiation that uses regular PRG, but first we present

a useful lemma.

Lemma 5.3.2. Any ε-secure one-time message authentication code Π = (Gen,Mac,Vrfy)

is 2λε-secure against λ bits of leakage.

Proof. (proof sketch) Towards contradiction, assume an attacker A = (A1,A2,A3), issu-

ing a single leakage query g with λ bits of output, against the secret key sk of Π, and

breaking its security with probability greater than 2λε. We build an attacker A′ that acts

as follows: it samples g ← A1(1k), makes a guess g on g(sk), and executes the rest of the

LRMAC− forge experiment with (A2,A3). Clearly, the probability of wining is equal to the

probability of making a correct guess on g(sk), say p1, times the probability that A breaks

Π in the presence of leakage, say p2, which by assumption is greater then 2λε. Assuming

H∞(g(sk)) ≤ λ, the winning probability of A′ is p1 · p2 > ε, which is a contradiction.
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Construction 5.3.3 (One-time MAC). Let Hpi be a pair-wise independent hash function

family, Hpi = {h : K×M→ T }. A one-time message authentication code (Gen,Mac,Vrfy)

is defined as follows:

• Gen: sample z ← K, and output hz.

• Mac(z, ·): on input message s, output t := hz(s).

• Vrfy(z, ·): on input s, t, if hz(s) = t, output 1, otherwise output 0.

It is not hard to see that by instantiating the above construction with ha,b(s) = a ·s+ b

mod p, where p is a k-bit prime, (a, b) is a 2k-bit key and M = T = Zp, we receive an

1/2k-secure message authentication code (this is standard one-time information theoretic

MAC). By combining that code with a semantically secure, leakage resilient encryption

scheme, we construct an authenticated, semantically secure encryption scheme against λ

bits of leakage.

Construction 5.3.4 (Authenticated one-time LR-encryption against λ bits of leakage).

Let H̄ be a hash function family, that outputs k bits, let PRG be a pseudo-random gener-

ator, PRG : {0, 1}k → {0, 1}|s|, where |s| denotes the length of the message. We define a

symmetric encryption scheme (KGen,E,D), as follows:

• KGen(1k): sample r ← {0, 1}(k+log2 k+λ), and two random integers a, b, over {0, 1}k+λ,

and output sk := (r, a, b).

• Esk(·): On input message s, the encryption algorithm computes h̄← H̄, e = PRG(h̄(r))+

s, t = ha,b(h̄||e) and outputs (h̄, e, t), where ha,b(s) := as + b mod p and p is a

k + log2 k + λ+ |s|-bit prime.

• Dsk(·): On input (h̄, e, t), if t = ha,b(h̄||e) output s = PRG(h̄(r))−e, otherwise output

⊥.

Theorem 5.3.5. Assuming H̄ is a universal hash function family, H is pairwise indepen-

dent (ha,b ∈ H), and one-way functions, Construction 5.3.4 is a one-time leakage-resilient,

semantically secure, authenticated encryption scheme against λ bits of leakage.

Proof. (proof sketch)

Clearly, the above scheme satisfies correctness. Regarding semantic security, by construc-

tion we have H∞(r|g(sk)) ≥ k + log2 k, for any g that outputs λ bits. Thus, by the
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LeftOver Hash Lemma (Lemma 2.1.11), h̄(r) is statistically close to uniform over {0, 1}k,
and PRG(h(r))+s, is computationally indistinguishable from a uniform element in {0, 1}|s|.
Since the tag, t, is computed over (h̄, e), it does not reveal any information about the mes-

sage s, and semantic security follows.

Now, since ha,b belongs to a pairwise independent hash function family (see above), any

attacker without leakage access on (a, b), makes a forgery against the above scheme with

probability at most 1/2(k+λ). Thus, by Lemma 5.3.2 unforgeability against λ bits of leakage

breaks with probability at most 2λ · 1/2(k+λ) = negl(k), and the unforgeability property of

the scheme breaks with negligible probability in k, even given λ bits of leakage.

In the above construction, the length of the secret key is 3k + 3λ + log2 k bits while

the length of the ciphertext is 2k + 2 log2 k + 2λ + 2|s| bits, giving a total of l(λ, s) :=

5k + 5λ+ 3 log2 k + 2|s| bits.

Clearly, the above scheme is not sufficient for getting a rate 1 non-malleable code,

thus we combine the above scheme with the following authenticated encryption scheme for

which we do not require leakage resilience.

Construction 5.3.6 (Authenticated encryption). Let PRG be a pseudo-random gener-

ator, PRG : {0, 1}k → {0, 1}|s|+k, where |s| denotes the length of the message, and let

(Gen,Mac,Vrfy) be a CBC message authentication code that outputs tags of length k (cf.

[KL14]). We define a symmetric encryption scheme (KGen′,E′,D′), as follows:

• KGen′(1k): sample r ← {0, 1}k, and output sk := r.

• E′sk(·): On input message s, the encryption algorithm computes (r0||r1) = PRG(sk),

where |r0| = |s| and |r1| = k, e = r0 + s, t = Macr1(e), and outputs (e, t).

• D′sk(·): On input (e, t), compute (r0||r1) = PRG(sk), and if Vrfyr1(e, t) = 1, output

s = e− r0, otherwise output ⊥.

It is not hard to see that the above construction is secure: r0 is indistinguishable from

random, thus e is indistinguishable from random over the message space. Moreover, the

unforgeability property of the message authentication code guarantees the authenticity of

the encryption scheme. In the above construction the length of secret key and ciphertext

is 2k + |s|.
The final construction is a combination between constructions 5.3.6 and 5.3.4, for λ =

2k + log2 k bits of leakage. In order to encrypt a message s, we execute sk′ ← KGen′(1k)
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and sk ← KGen(1k) and we output (e1 = Esk(sk
′), e2 = E′sk′(s)), i.e., we encrypt the

secret key of an authenticated encryption scheme using leakage-resilient authenticated

encryption, and then we encrypt the message using the former scheme. The decryption

procedure is straightforward: if Dsk(e1) = sk′′ 6= ⊥, output D′sk′′(e2), otherwise, output ⊥.

Correctness and semantic security follow directly by the correctness and semantic security

of the underlying schemes. Now, if the attacker modifies e1, then with high probability

sk′′ = ⊥ by the authenticity property of Construction 5.3.4. Assuming, the attacker does

not modify e1, if e2 is modified then, D′sk′′(e2) = ⊥, with overwhelming probability, by the

authenticity property of Construction 5.3.6. The final construction has ciphertext and key

length l(2k + log2 k, k) + k + |s| = 18k + 8 log2 k + |s|.



Chapter 6

Continuous non-malleable codes

6.1 Introduction

The notion of continuous non-malleable codes (CNMCs) was introduced by Faust et

al. [FMNV14], as an extension to the original notion [DPW10], which considered a one-

time adversary. Informally, CNMCs provide simulation-based security, in a setting where

the adversary tampers repeatedly with the same codeword (a notion which is known as

non-persistent tampering), until the first time he produces an invalid one, in which case

the codeword is erased and the adversary looses access to it. The main advantage of

CNMCs over the original notion, is that they provide continuous security while avoiding

memory erasures, which, as we have already discussed in Chapter 1, is a feasible but highly

problematic process.

6.2 Contributions

In the present Chapter, we leverage the power of leakage-resilient `-more wECRH (cf.

Chapter 4) in the continuous setting, and we construct efficient, continuously non-malleable

leakage-resilient codes, against split-state adversaries [FMNV14]. Our result is summarized

in the following, informally stated theorem.

Theorem 6.2.1 (Informal). Assuming leakage resilient, 1-more wECRH, there exists an

explicit, leakage-resilient, continuously non-malleable code, against split-state functions.

By instantiating the above theorem with the leakage-resilient `-more wECRH of the

Informal Theorem 4.1.4, we receive continuous non-malleable codes in the CRS model

against non-adaptive leakage, and for at least poly-logarithmic (in the security parameter)

112
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number of rounds (cf. Corollary 6.4.13 and the discussion that follows). In addition, from

the Informal Theorem 3.1.2, we obtain leakage-resilient continuous non-malleable codes,

for polynomially many rounds, assuming random oracles. Our starting point is the con-

struction of [FMNV14], which combines leakage-resilient storage with non-interactive zero-

knowledge (NIZK). In our construction we combine leakage-resilient storage with leakage

resilient, 1-more wECRH, and as a result we improve the efficiency of [FMNV14] while

avoiding the need for trapdoor CRS.1 In addition, the simulator of [FMNV14] requires

leakage proportional to O(k log(q) + λ), while we only require O(k+ λ), where k is the se-

curity parameter, q is the number of rounds that the attacker tampers with the codeword,

and λ is the leakage requested by the tampering adversary. As a result, the size of the

code becomes independent of q.

6.3 Related work

In [FMNV14], the authors introduce the notion of continuous non-malleable codes and

construct computationally secure encoding schemes, for split-state adversaries. In addi-

tion to that, they provide an impossibility result for CNMC in the information-theoretic

setting, against the same class. Slightly later, Jafargholi and Wichs [JW15], propose an

unconditionally secure CNMC, for any class of functions F , such that for any f ∈ F ,

(i) the output of f has high entropy, and (ii) f has a limited number of fixed points.

The work of Aggarwal et al. [AKO17], builds information-theoretic CNMCs for split-state

functions, against persistent tampering, which considers adversaries that in round i, re-

ceive access to the tampered codeword of round i− 1, as opposed to the stronger model of

non-persistent tampering, in which the adversary always tampers with the original code-

word. In [OPVV18], the authors construct continuously secure CNMCs in the computa-

tional setting, using as a main ingredient a one-time, information-theoretic NMC, while

in [DKO+18], Damg̊ard et al., construct information-theoretic CNMC s, against permu-

tations and overwrites. In [FN17], Faonio et al., construct CNMCs for split-state adver-

saries, using NIZKs. Finally, in [CMTV15, CDTV16], the authors construct information-

theoretically secure, continuously non-malleable codes, for bit-wise independent tampering

adversaries.

1The construction of [FMNV14] requires four NIZK proofs, while we only require two hashes of size at
most 2k.
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6.4 Continuous NMC from `-more wECRH

In the current section, we construct leakage-resilient continuous non-malleable codes from

any leakage-resilient, `-more weakly extractable, hash function family, and then, in Section

6.4.1, we provide instantiations. For the needs of the current section, we present a defini-

tion of leakage-resilient `-more wECRH, which is stronger than the notion presented in

Definition 4.3.15.

Definition 6.4.1 (`-more weakly extractable, leakage-resilient hash function families).

Let `, λ ∈ N. An efficiently samplable hash function ensemble H = {Hk}k∈N, is `-more

weakly extractable against λ bits of leakage, if for any PPT algorithm Av and any zv ∈
{0, 1}poly(k), there exist a PPT extractor EHAv and zE ∈ {0, 1}poly(k), such that for all PPT

algorithms As, any large k ∈ N and any vector of messages s = (s1, . . . , s`), we have

Prh←Hk

[
Exps,hAv ,As,EAv

(`, λ, zv, zE) = 1
]
≤ negl(k), where,

Exps,hAv ,As,EAv
(`, λ, zv, zE) :

τi ← {0, 1}poly(k), vi = h(si; τi), i ∈ [`] ( hash computation )

t = (τ1, . . . , τ`),v = (v1, . . . , v`)

(ṽ, st)← AO
λ(t,·)

v (h,v, zv) ( hash tampering )

(τ̂ , ŝ)← EAv(h,v, zE) ( pre-image extraction )

(τ̃ , s̃)← As (h, t, s, st) ( pre-image tampering )

If h(s̃; τ̃) = ṽ ∧ ∀i : ṽ 6= vi ∧ h(ŝ; τ̂) 6= ṽ, return 1

otherwise, return 0

Below, we define the notion of leakage-resilient storage due to [DDV10, DF11, FMNV14],

which is one of the main building blocks of the proposed scheme.

Definition 6.4.2 (Leakage-resilient storage [FMNV14]). Let (LRSenc, LRSdec) be a coding

scheme. For any algorithm A, message m, θ ∈ {0, 1}, and k ∈ N we define

LeakθA,m(k) :=
{

(s0, s1)← LRSenc(1
k,m); out← AOλ(s0,·),Oλ(s1,·); Output: (sθ, out)

}
.

Then, (LRSenc, LRSdec) is a λ-leakage-resilient storage (λ-LRS), if for any algorithm A,

messages m0, m1 ∈ {0, 1}poly(k), θ ∈ {0, 1}, and all, sufficiently large k ∈ N,{
LeakθA,m0

(k)
}
k∈N
≈
{
LeakθA,m1

(k)
}
k∈N

.
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Here, we follow the definition of [FMNV14], which is stronger than previous definitions

in the sense that the attacker is allowed to see one of the two shares, after the completion

of the leakage experiment. As the authors suggest in [FMNV14], the scheme of [DF11]

satisfies this stronger notion.

Our construction of non-malleable codes is inspired by [FMNV14], thus we first revisit

their construction. To encode a message m, the encoder of [FMNV14], computes (s0, s1)←
LRSenc(m) and outputs ((s0, v1, π1, π0), (s1, v0, π0, π1)), where LRSenc is the encoder of a

leakage-resilient storage (LRS) scheme, vi = h(si) and h is a member of a collision resistant

hash function family, and πi is a robust non-interactive zero knowledge proof, proving

knowledge of the witness (pre-image) si of vi, with label v1−i.
2

Our construction, which is defined below, improves the efficiency of [FMNV14] by

combining LRS with leakage-resilient 1-more wECRH.

Construction 6.4.3 (Continuous NMC from wECRH and LRS.). Let Hk, H̄k, be hash

function families and (LRSenc, LRSdec) be a leakage-resilient storage scheme. We define an

encoding scheme (Init,Enc,Dec) as follows:

• Init(1k): Sample h← Hk, h̄← H̄k, and set Σ := (h, h̄).

• Enc(Σ, ·): Let m be the input to the encoder. The encoder samples (s0, s1) ←
LRSenc(1

k,m), τ0, τ1 ← {0, 1}poly(k), computes v̄0 ← h̄(τ0||s0), v̄1 ← h̄(τ1||s1), and

outputs ((τ0, s0, v1), (τ1, s1, v0)), where v0 ← h(s0||v̄1; τ0), v1 ← h(s1||v̄0; τ1).

• Dec(Σ, ·): On input ((τ0, s0, v1), (τ1, s1, v0)), for i ∈ {0, 1}, if h
(
si||h̄(τ1−i||s1−i); τi

)
=

vi, output LRSdec(1
k, (s0, s1)), otherwise, output ⊥.

In what follows we will assume that H is a 1-more wECRH and this is essential for

proving security. Observe that, if H is 0-more extractable, then it can be malleable (as it is

proven in Chapter 4 and [KLT16]) and security cannot be proved, as generic LRS schemes

do not provide non-malleability, thus the attacker could create related codewords. The

1-more extractability property resolves this issue: even if the attacker is given access to a

valid hash value vi, it cannot produce a valid hash value unless it knows a valid pre-image.

In what follows, we briefly discuss the main ideas behind our proof, while highlighting

the differences from [FMNV14]. The security of our scheme relies on three primitives,

namely, on leakage-resilient 1-more wECRH, on the collision resistance property of H̄ and

2The labels are used to bind together the two parts of the memory.
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the security of LRS. Our adversary is denoted by A′ and is depicted in Figure 6.1, while its

main subroutine, TComp, is depicted in Figure 6.2. A′ simulates the tampering experiment

against the codeword, while given split-state leakage over (s0, s1) ← LRSenc(m), where m

denotes the message. In step 1, A′ samples the elements required for simulating the

codewords inside the leakage oracles, i.e., it samples hash functions h, h̄, and randomness

τi, for h. Then, it makes a guess, j∗, on the index of the round in which the attacker

produces an invalid codeword. Such a round is called a “self-destruct” round.3 Then,

in step 2, the adversary leaks the actual hashes over s0, s1, and in this way it simulates

perfectly the codewords inside the leakage oracles without using a trapdoor CRS, i.e., for

i ∈ {0, 1}, ci = (τi, si, v1−i) is perfectly simulated inside Oλ(si, ·). This approach is in

contrast to [FMNV14], in which the authors use robust NIZKs, and simulate the codeword

inside the oracles using simulated proofs, that require a trapdoor CRS.

In step 3, A′ executes A inside the leakage oracles and verifies if j∗ is a correct guess for

the self-destruct round. As we prove, this holds, if for all rounds before j∗ the executions

inside the two oracles are identical, while they differ in round j∗. The challenge here, is to

execute A inside the oracles, as each Oλ(si, ·) gives access to ci = (τi, si, v1−i), but provides

no information about s1−i (recall that τ1−i, vi can be simulated), thus it is unclear how to

provide the adversary with c̃1−i. We discuss how to resolve this issue, by first considering

a non-leakage tampering adversary, A. The main idea behind step 3 of A′, is as follows:

A′ executes A inside Oλ(si, ·), and for each tampering query (f0, f1) of A, A′ computes

c̃i ← fi(ci), and uses the 1-more wECRH property of H to extract c̃1−i. When considering

adversaries that issue leakage queries, A′ replies to those queries by executing repeatedly

TComp (cf. Figure 6.2) against the two oracles (cf. step 3-(a) in Figure 6.1). In steps

3-(b),(c), A′ verifies if j∗ is a self-destruct round, by leaking the hashes of the replies sent

to A inside the oracles. We note that, our strategy is similar to [MSD16], but different than

[FMNV14] in which the adversary executes binary search to compute the exact value of the

index, requiring leakage proportional to O(k log(q)+λ), while we only require O(k+λ). In

Step 4, A′ learns s0 and simulates the tampered execution in the same way it does in Step

3. Finally, in contrast to [FMNV14], in which extractability is easily implied by the robust

NIZKs, proving extractability in the continuous setting using `-more wECRH, which is a

one-time primitive, is non-trivial.

For starters, we prove that the above construction satisfies the uniqueness property

3We can always assume that such a round exists, since for any A that is not producing an invalid
codeword, we can construct another adversary that does so and has the same advantage with A, cf.
[FMNV14].



6.4. Continuous NMC from `-more wECRH 117

(cf. Definition 2.3.4), which is required for achieving non-malleability in the continuous

setting.

Lemma 6.4.4. Assuming Hk is a collision resistant hash function family, the split-state

code of Construction 6.4.3 satisfies the uniqueness property.

Proof. Let (h, h̄) ∈ Hk × H̄k, and let Hk be a collision resistant hash function family.

Towards contradiction, assume there exists a PPT attacker A that, given (h, h̄), it produces

two distinct, valid codewords, (c0, c1), (c0, c
′
1), with probability greater than ε = 1/poly(k),

i.e., A produces c0 = (τ0, s0, v1), c1 = (τ1, s1, v0), c′1 = (τ ′1, s
′
1, v
′
0), where c1 6= c′1,4 with

probability ε. We construct an adversary A′, that given h ← Hk, it breaks the collision

resistance property of Hk with non-negligible probability: A′ samples h̄← H̄k and

(τ0, s0, v1), (τ1, s1, v0), (τ ′1, s
′
1, v
′
0)← A(h, h̄),

and outputs (τ1, s1), (τ ′1, s
′
1). Let v̄0 ← h̄(τ0||s0). By the validity of the codewords and

Construction 6.4.3, we have that h(s1||v̄0; τ1) = v1 = h(s′1||v̄0; τ ′1). Conditioned on c1 6= c′1

we have that (τ1, s1) 6= (τ ′1, s
′
1): if (τ1, s1) = (τ ′1, s

′
1), we also have that v0 = v′0 and the

codewords are equal. Thus, conditioned on c1 6= c′1 we have that (τ1, s1) 6= (τ ′1, s
′
1) and A′

breaks the collision resistance property of Hk with non-negligible probability, ε.

Below we prove non-malleability of Construction 6.4.3 in the continuous setting with

respect to any 1-more wECRH.

Theorem 6.4.5. Let k, λ, λ′ ∈ N, and let b be polynomial in k. Assuming Hk is a

leakage-resilient 1-more wECRH function family against λ bits of leakage, that outputs

b(k) bits, H̄k, Ĥk, are collision resistant hash function families that output k bits, and

(LRSenc, LRSdec) is a λ′-LRS, for λ′ ≥ 2λ + 2b(k) + 4k + 1. Then, the encoding scheme

(Init,Enc,Dec) of Construction 6.4.3 is a (q, λ)-CNMLR code (cf. Definition 2.3.7), for

q = poly(k).

Proof. Towards contradiction, assume there exists a pair of messages m0, m1, PPT adver-

sary A and PPT distinguisher D, such that for infinitely many k ∈ N,∣∣∣Pr
[
D
(
Tampercnmlr

A,m0
(k)
)

= 1
]
− Pr

[
D
(
Tampercnmlr

A,m1
(k)
)

= 1
]∣∣∣ > ε,

for ε = 1/poly(k). Here, Tampercnmlr
A,mi(k) is the experiment of Definition 2.3.7 with respect

to A, mi. We will use m0, m1, A, D, to construct m′0, m′1, A′, D′, for which∣∣∣Pr
[
D′
(
Leak0

A′,m′0
(k)
)

= 1
]
− Pr

[
D′
(
Leak0

A′,m′1
(k)
)

= 1
]∣∣∣ > ε′,

4The case where c0 6= c′0 is symmetric.
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for ε′ = 1/poly(k) and infinitely many k, where Leak0
A′,m′i

(k) is the experiment of Definition

6.4.2, with respect to A′, m′i. The idea is that A′ will play in Leak0
A′,m′b

(k), for b ∈ {0, 1},
interacting with Oλ(s0, ·), Oλ(s1, ·), where (s0, s1) follows LRSenc(mb), and it will simulate

Tampercnmlr
A,mb(k), through its access to the aforementioned oracles. A′ executes A using

always the same randomness. Assume A issues q leakage/tampering queries and that

there is always a round in which self-destruct occurs, i.e., a round in which the output

of the decoder in the real experiment will be ⊥. This round is denoted by jd. We define

m′0 := m0, m′1 := m1 and A′ is defined in Figure 6.1.

The definition of the distinguisher D′ against Leak0
A′,mb(k) follows.

Algorithm D′: D′ receives the output of A′, (out, d), and if d = 1 it outputs b′ ← D(out),

otherwise it outputs b′ ← {0, 1}.

Claim 6.4.6. For any message m and all sufficiently large k, A′ simulates perfectly

Enc(Σ,m) inside the leakage oracles by leaking 2k + 2b(k) bits during the execution of

Leak0
A′,sb(k), where Σ← Init(1k).

Proof. By Construction 6.4.3 and the definition of A′, it is not hard to see that c0 (resp.

c1) is perfectly simulated inside the oracle Oλ(s0, ·) (resp. Oλ(s1, ·)). A′ initially samples

h ← Hk, h̄ ← H̄k (the CRS), and τ0, τ1 ← {0, 1}poly(k). Then, by querying the leakage

oracles with (L0,L1), where Li(si) := h̄(τi||si), it receives v̄0, v̄1 and finally, by leaking

(L′0,L′1), where L′i(si) := h(si||v̄1−i; τi), it receives v0, v1. All the remaining leakage queries

against Oλ(s0, ·) (resp. Oλ(s1, ·)) depend on τ0, v1 (resp. τ1, v0), and the execution inside

the oracles takes place over (c0, c1).

Claim 6.4.7. Let lkReal and tReal be the vectors of the replies to the first j∗ − 1 leakage

and tampering, respectively, queries made by A in Tampercnmlr
A,mb(k). Then, conditioned

on jd = j∗, for any message m and all sufficiently large k, lk[1 : j∗ − 1] ≈c lkReal,

tReal ≈c ti[1 : j∗ − 1], for i ∈ {0, 1}, over the randomness of Tampercnmlr
A,mb(k), Leak0

A′,mb(k).

Proof. Using strong induction, we prove that conditioned on jd = j∗, lk[1 : j∗−1] ≈c lkReal,

tReal ≈c ti[1 : j∗−1], for i ∈ {0, 1}, assuming that jd > 1, otherwise the claim holds trivially.
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Algorithm A′

1. (Setup): Sample h← Hk, h̄← H̄k, ĥ← Ĥk, τ0, τ1 ← {0, 1}poly(k), j∗ ← [q].

2. (Hash leaking):

a) For i ∈ {0, 1}, define Li(si) := h̄(τi||si) and issue the leakage query (L0,L1)
against Oλ(s0, ·), Oλ(s1, ·). Let v̄0, v̄1, be the corresponding leaked values.

b) For i ∈ {0, 1}, define L′i(si) := h(si||v̄1−i; τi) and issue the leakage query
(L′0,L′1) against Oλ(s0, ·), Oλ(s1, ·). Let v0, v1, be the leaked values.

3. (Verifying j∗): Let lk be a q×2 zero matrix and for j ∈ [q], i ∈ {0, 1} define the
leakage function Lji (si, lk) that computes TCompq(i, τi, si, v1−i, lk, j) (cf. Figure
6.2) and outputs its first coordinate, i.e., lk.

a) For j = 1, . . . , q: (i) lk′ ← Lj0(s0, lk), lk′′ ← Lj1(s1, lk
′), (ii) set lk← lk′′.

b) Let L̄0(·) be the leakage function that on input s0, it computes (∼, t0) ←
TCompq(0, τ0, s0, v1, lk, q), lk ← ĥ(t0[1 : j∗ − 1]), lk′ ← ĥ(t0[j∗]), and

outputs (lk, lk′). Send L̄0(·) to Oλ(s0, ·).
c) Define L̄1(s1) that,

i. Computes (∼, t1)← TCompq(1, τ1, s1, v0, lk, q).

ii. If lk = ĥ(t1[1 : j∗ − 1]) and lk′ 6= ĥ(t1[j∗]), output 1, otherwise output
0.

L̄1(·) is executed against Oλ(s1, ·), and let d be the bit output by the leakage
query.

d) Receive s0 (the leakage queries have ended).

4. (Simulating tampering and leakage queries): Set c0 := (τ0, s0, v1).
Execute A and for j = 1, . . . , q:
Receive (gj0, g

j
1) from A, send lk[j] to it, receive f j = (f j0 , f

j
1 ) from A and:

• if j ≥ j∗ send ⊥ to A,

• otherwise, compute c̃0 := (τ̃0, s̃0, ṽ1) = f j0 (τ0, s0, v1) and

a) If c̃0 = c0, send same∗ to A.

b) If c̃0 6= c0:
If ṽ1 = v1, send ⊥ to A, otherwise, (τ̂1, ŝ1, v̂0)← E0,j(h, v1, zE0,j ).
– If h̄(τ̃0||s̃0) = v̂0 and h(ŝ1||v̂0; τ̂1) = ṽ1, set v0 :=
h
(
s̃0||h̄(τ̂1||ŝ1); τ̃0

)
, and c̃1 := (r̂1, ŝ1, v0). Send (c̃0, c̃1) to A.

– Otherwise, send ⊥ to A.

5. (Output): Let out be the output of A after the completion of the previous step.
A′ outputs (out, d).

Figure 6.1: The algorithm A′ playing in Leak0
A′,mb(k).
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Algorithm TCompq
Input: i, τi, si, v1−i, lk, r.
Set ci := (τi, si, v1−i) and let t be the zero vector with q coordinates.

For j = 1, . . . , r:

• Receive (gj0, g
j
1) from A and

1. If j < r, send lk[j] to A and receive (f j0 , f
j
1 ) from it.

2. If j = r, set lk[j, i+ 1] = gji (si) and break.

• Compute c̃i := (τ̃i, s̃i, ṽ1−i) = f ji (τi, si, v1−i).

1. If c̃i = ci, set t[j] = same∗ and send same∗ to A.

2. If c̃i 6= ci, then if ṽ1−i = v1−i, set t[j] = ⊥i and send ⊥ to A, otherwise,
sample (τ̂1−i, ŝ1−i, v̂i)← Ei,j(h, v1−i, zEi,j ).

– If h̄(τ̃i||s̃i) = v̂i and h(ŝ1−i||v̂i; τ̂1−i) = ṽ1−i, set t[j] = (c̃0, c̃1), where c̃i
is defined above, c̃1−i = (r̂1−i, ŝ1−i, vi) and vi = h

(
s̃i||h̄(τ̂1−i||ŝ1−i); τ̃i

)
.

Send t[j] to A.

– Otherwise, set t[j] = ⊥i and send ⊥ to A.

Output (lk, t).

Figure 6.2: The algorithm TComp executed by A′.

Base, j = 1: By executing TCompq(i, τi, si, v1−i, lk, 1), for i ∈ {0, 1} (Step 3-a), it is

clear that A′ computes the replies to (g1
0, g

1
1) as in the real execution. Thus, lk[1] =

lkReal[1]. Regarding, the replies to the tampering queries produced by the execution of

TCompq(i, τi, si, v1−i, lk, 1) inside Oλ(si, ·), we consider the following cases.

• ∃i : c̃i = ci: Assume that for some i ∈ {0, 1}, c̃i = ci. Then by assumption we

have that j is not a round in which self-destruct occurs, and in order for the tam-

pered codeword to be valid, it must be the case that c̃1−i = c1−i with overwhelming

probability, otherwise we can use (f1
0 , f

1
1 ) to break the uniqueness property of the

encoding scheme (cf. Lemma 6.4.4), by simulating the first round of execution. Thus,

for i ∈ {0, 1}, ti[j] = same∗, which matches the reply tReal[1] of the tampering oracle

in the real execution, since by Claim 6.4.6, ci is perfectly simulated inside Oλ(si, ·).

• ∀i : c̃i 6= ci ∧ ∃j : ṽj = vj : Let Ei be the event in which c̃i 6= ci∧ṽ1−i = v1−i, and E the

event of not having a round with self-destruct. We prove that Pr[Ei∧E] ≤ negl(k), for

i ∈ {0, 1}. Towards contradiction, assume that for some i in {0, 1}, Pr[Ei ∧ E] > ε′i,



6.4. Continuous NMC from `-more wECRH 121

for ε′i = 1/poly(k). Then, we have a valid codeword for which (τi, si) 6= (τ̃i, s̃i) and

ṽ1−i = h(s̃1−i||h̄(τ̃i||s̃i); τ̃1−i) = h(s1−i||h̄(τi, si); τ1−i) = v1−i, and we can use f j to

break the collision resistance property of h with non-negligible probability εi, by

simulating Tampercnmlr
A,mb(k). Thus, such an event never happens with non-negligible

probability during the execution of Tampercnmlr
A,mb(k) and Leak0

A′,m(k).

• ∀i : ṽi 6= vi: In order to prove consistency between Tampercnmlr
A,mb(k) and Leak0

A′,m(k),

we need to define two extractors, Ei,1, for i ∈ {0, 1}, and the corresponding auxiliary

inputs, and prove that the extracted values are consistent with Tampercnmlr
A,mb(k). For

this reason we relate (see below) the execution of TComp inside the oracles, with the

`-more experiment of Definition 6.4.1.

In the execution inside Oλ(si, ·), the adversary is given direct access to ci = (τi, si, v1−i)

and leakage access over c1−i, and tampers with the hash v1−i and some auxiliary values

(τi, si). We relate this adversary to Av of Definition 6.4.1 by defining a program Av,i with

auxiliary input zv,i, as follows:

1. Program AO
λ(τ1−i,·)

v,i (h, v1−i, zv,i):

• Sample (g1
0, g

1
1)← A(h) and parse zv,i as (τi, si, s1−i).

• Query Oλ(τ1−i, ·) with gs1−i(x) := h̄(x||s1−i) and let v̄1−i be the answer.

• Set vi = h(si||v̄1−i; τi).

• Define gvi,s1−i(τ1−i) := g1
1−i(τ1−i, s1−i, vi), send gvi,s1−i to Oλ(τ1−i, ·) and let

w1−i be the answer.

• Compute wi ← g1
i (τi, si, v1−i), send (w0, w1) to A and receive (f1

0 , f
1
1 ).

• Output: ([f1
i (τi, si, v1−i)]3, st), where st := (f ji (τi, si, v1−i), zv,i, v1−i).

2. (Auxiliary input for Av,i): set zv,i = (τi, si, s1−i).

3. (Existence of the extractor, Ei,1, and auxiliary input, zEi,1): Given Av,i and

zv,i, by the 1-more extractability property of Hk under leakage, there exists an

extractor Ei,1 for Av,i, with auxiliary input, zEi,1 , that computes (τ̂1−i, ŝ1−i, v̂i) ←
Ei,1(h, v1−i, zEi,1).

Clearly, Av,i is an admissible attacker against Hk, that produces a tampered hash value

ṽ1−i, as A does in the first round of the execution inside Oλ(si, ·). Now we relate the

execution inside Oλ(s1−i, ·) with a program As,1−i that outputs a tampered pre-image,

and we define the message s of the experiment of Definition 6.4.1.
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1. Program As,1−i(h, τ, s, st):

• Parse s as s1−i||v̄i, and set τ1−i := τ .

• Compute vi := h(si||h̄(τi−1||si−1); τi),
5 (τ̃1−i, s̃1−i, ṽi) = f1

1−i(τ1−i, s1−i, vi).

• Output: (τ̃1−i, s̃1−i||h̄(τ̃i, s̃i)).

2. (Define message s): set s := s1−i||h̄(τi||si).

By the 1-more extractability property of Hk under leakage, we have

Pr
h←Hk

[
Exps,hAv,i,As,1−i,Ei,1(1, λ, zv,i, zEi,1) = 1

]
≤ negl(k).

Let B be the event in which the extractor fails to produce a valid pre-image. Then, if

B happens, and since we are not in a self-destruct round (an event denoted as E), we

have that Av,i produces a valid hash and As,1−i, produces a valid pre-image, still the

extractor fails, i.e., we have Exps,hAv,i,As,1−i,Ei,1(1, λ, zv,i, zEi,1) = 1. Thus, by the above

relation we receive Pr[B ∧ E] ≤ negl(k), and the extractor outputs a valid pre-image for

ṽ1−i, i.e., h(ŝ1−i||v̂i; τ̂1−i) = ṽ1−i. Since the attacker creates a valid codeword, we also

have h(s̃1−i||h̄(τ̃i||s̃i); τ̃1−i) = ṽ1−i. We prove that the extracted values are consistent with

the ones produced by the attacker in Tampercnmlr
A,mb(k), i.e., we prove that (τ̂1−i, ŝ1−i||v̂i) =

(τ̃1−i, s̃1−i||h̄(τ̃i||s̃i)), with overwhelming probability.

Let B′ be the event in which (τ̂1−i, ŝ1−i||v̂i) 6= (τ̃1−i, s̃1−i||h̄(τ̃i||s̃i)). Then, assuming

there exist m, A, A′, for which Pr[¬B ∧ E ∧ B′] > ε′′, for ε′′ = 1/poly(k), we build an

attacker A′′ that breaks the collision resistance property of Hk, with non-negligible proba-

bility: given m, A′′ simulates Leak0
A′,s(k) while having full access to (s0, s1)← LRSenc(m),

and outputs (τ̂1−i, ŝ1−i||v̂i), (τ̃1−i, s̃1−i||h̄(τ̃i||s̃i)). We conclude that ti[1] ≈c tReal[1]. The

case of t1−i[1] is symmetric.

Inductive step:

Inductive hypothesis: For i ∈ {0, 1}, lk[1 : n] ≈c lkReal[1 : n], ti[1 : n] ≈c tReal[1 : n].

In particular, for j ∈ [n], i ∈ {0, 1}, there exist Ei,j with auxiliary inputs zEi,j , that output

valid pre-images in rounds 1, . . . , n.

Proving that lk[n+ 1] ≈c lkReal[n+ 1] is straightforward, as the tampering and leakage

queries are simulated correctly in the previous rounds: by leaking the first coordinate

5As knows (τi, si), (τ̃i, s̃i), since they are stored in st.
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of TCompq(i, τi, si, v1−i, lk, n + 1), for i ∈ {0, 1}, it is clear that A′ computes the replies

to (gn+1
0 , gn+1

1 ) as in the real execution, as previous tampering and leakage queries are

simulated correctly. Thus, lk[n+1] ≈c lkReal[n+1]. Regarding, the replies to the tampering

queries the proof for the two cases, “∃i : c̃i = ci” and “∀i : c̃i 6= ci ∧ ∃j : ṽj = vj” are

identical to the base case. For the last case “∀i : ṽi 6= vi”, the proof slightly changes, as

the extractors Ei,n+1 for the round n+ 1 depend on all previous extractors, and A. As in

the base case, we define Av,i, zv,i and As,1−i.

1. Program AO
λ(τ1−i,·)

v,i (h, v1−i, zv,i):

Parse zv,i as (τi, si, s1−i), query Oλ(τ1−i, ·) with gs1−i(x) := h̄(x||s1−i) and let v̄1−i

be the answer. Compute vi ← h(si||v̄1−i; τi).

For j = 1, . . . , n+ 1:

• Sample (gj0, g
j
1)← A(h).

• Define gvi,s1−i(τ1−i) := gj1−i(τ1−i, s1−i, vi), send gvi,s1−i to Oλ(τ1−i, ·) and let

w1−i be the answer.

• Compute wi ← gji (τi, si, v1−i).

• Send (w0, w1) to A and receive (f j0 , f
j
1 ).

• Compute (τ̃i, s̃i, ṽ1−i)← f ji (τi, si, v1−i) and set c̃i := (τ̃i, s̃i, ṽ1−i).

• If j ≤ n:

– Sample (τ̂1−i, ŝ1−i, v̂i)← Ei,j(h, v1−i, zEi,j ).

– Compute vi ← h
(
s̃i||h̄(τ̂1−i||ŝ1−i); τ̃i

)
and set c̃1−i := (r̂1−i, ŝ1−i, vi).

– Send (c̃0, c̃1) to A.

Output: (ṽ1−i, st), where st = (τ̃i, s̃i, ṽ1−i, τi, si, v1−i).

2. (Auxiliary input for Av,i): set zv,i = (τi, si, s1−i).

3. (Existence of the extractor, Ei,n+1, and auxiliary input, zEi,n+1): Given Av,i
and zv,i, by the 1-more extractability property of Hk under leakage, there exists an

extractor Ei,n+1 forAv,i, with auxiliary input, zEi,n+1 , that computes (τ̂1−i, ŝ1−i, v̂i)←
Ei,n+1(h, v1−i, zEi,n+1).

The definition of As,1−i, s, follows.

1. Program As,1−i(h, τ, s, st):
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• Parse s as s1−i||v̄i, and set τ1−i := τ .

• Compute vi ← h(si||h̄(τi−1||si−1); τi).
6

• Compute (τ̃1−i, s̃1−i, ṽi)← fn+1
1−i (τ1−i, s1−i, vi).

• Output: (τ̃1−i, s̃1−i||h̄(τ̃i, s̃i)).

2. (Define message s): set s := s1−i||h̄(τi||si).

By the 1-more extractability property of Hk under leakage, Ei,n+1 outputs a valid pre-

image with overwhelming probability and using the same arguments that we used for the

base case, we prove that the extracted value is consistent with tReal[n+ 1]. This concludes

the proof of the claim and implies the correctness of the values computed by A′ in step 3,

lk, t0, t1, up to round j∗ − 1, conditioned on jd = j∗.

Claim 6.4.8. Conditioned on jd = j∗, for any message m and all sufficiently large k,

t0[jd] 6= t1[jd], with overwhelming probability over the randomness of Leak0
A′,m(k).

Proof. By Claim 6.4.7, we have that the output of the decoder in Tampercnmlr
A,mb(k), is sim-

ulated perfectly for the first jd − 1 rounds, by the execution of TComp inside the leakage

oracles. Thus, the tampering query made by the attacker in round jd inside the oracles

is consistent with the jd-th tampering query made by the attacker in the execution of

Tampercnmlr
A,mb(k). By assumption, jd is self-destruct round, thus there exists i ∈ {0, 1},

for which h(s̃i||h̄(τ̃1−i||s̃1−i); τ̃i) 6= ṽi. We denote such an event by Ei and analyze the

execution of TComp under the event E0 ∨ E1. We consider the following cases.

• ∀i ṽi = vi: Since E0 ∨ E1 has occurred we know that for some i ∈ {0, 1}, (τ̃i, s̃i) 6=
(τi, si), and by the definition of TCompq, ti[jd] = ⊥i 6= t1−i[jd], independently of the

value in t1−i[jd].

• ∃i : ṽi 6= vi ∧ ṽ1−i = v1−i: If (τi, si) = (τ̃i, s̃i), we have that ti[jd] = same∗ 6= t1−i[jd],

since c̃1−i 6= c1−i, else if (τi, si) 6= (τ̃i, s̃i), we have that ti[jd] = ⊥i 6= t1−i[jd],

independently of the value in t1−i[jd].

• ∀i ṽi 6= vi: We prove the needed for the non-trivial case in which for all i ∈ {0, 1},
ti[jd] 6= ⊥i. Assuming the extractors executed inside the oracles output valid pre-

images, we have t0[jd] = ((τ̃0, s̃0, ṽ1) , (τ̂1, ŝ1, v0)) , t1[jd] = ((τ̂0, ŝ0, v1) , (τ̃1, s̃1, ṽ0)) .

Conditioned on Ei, we have h(s̃i||h̄(τ̃1−i, s̃1−i); τ̃i) 6= ṽi = h(ŝi||h̄(τ̃1−i, s̃1−i); τ̂i),

which implies that (τ̂i, ŝi) 6= (τ̃i, s̃i). Thus t0[jd] 6= t1[jd], under E0 ∨ E1.

6As knows (τi, si), (τ̃i, s̃i), since they are stored in st.
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Claim 6.4.9. For any message m and all sufficiently large k, j∗ = jd iff d = 1, with

overwhelming probability over the randomness of Leak0
A′,m(k).

Proof. By Claims 6.4.7, 6.4.8, we have that for all j ∈ [jd − 1], t0[j] = t1[j] and t0[jd] 6=
t1[jd], and clearly, assuming j∗ = jd, we have that ĥ(t0[1 : j∗ − 1]) = ĥ(t1[1 : j∗ − 1]) and

ĥ(t0[j∗]) 6= ĥ(t1[j∗]), with overwhelming probability, otherwise we can break the collision

resistance property of ĥ by simulating Leak0
A′,m(k). Thus d = 1. Symmetrically, assuming

d = 1 we know that t0[j∗] 6= t1[j∗], and using the collision resistance property of ĥ, with

overwhelming probability, t0[1 : j∗ − 1] = t1[1 : j∗ − 1]. Thus, d = 1 iff A′ makes a correct

guess on jd.

Claim 6.4.10. Conditioned on j∗ = jd, out ≈c Tampercnmlr
A,mb(k), over the randomness of

Leak0
A′,m(k).

The main arguments that prove the current claim, have already been proved in Claim

6.4.7, as the execution in of A′ in Step 4, is similar to the TComp.

Claim 6.4.11. For any pair of messages m0, m1, PPT adversary A, all sufficiently large

k, and all PPT distinguishers D, assuming that∣∣∣Pr
[
D
(
Tampercnmlr

A,m0
(k)
)

= 1
]
− Pr

[
D
(
Tampercnmlr

A,m1
(k)
)

= 1
]∣∣∣ > ε,

for ε = 1/poly(k), we have∣∣Pr
[
D′
(
Leak0

A′,m0
(k)
)

= 1
]
− Pr

[
D′
(
Leak0

A′,m1
(k)
)

= 1
]∣∣ > ε/q − negl(k),

where D′, A′, have already been defined above with respect to D, A, respectively.

Proof. Let Li := Leak0
A′,mi(k) and Ti := Tampercnmlr

A,mi(k). For i ∈ {0, 1} we have,

Pr
[
D′(Li) = 1|j∗ = jd

]
≥ Pr

[
D′(Li) = 1|j∗ = jd, d = 1

]
· Pr[d = 1|j∗ = jd]

≥ Pr [D(Ti) = 1]− negl(k).

The last inequality follows from Claims 6.4.9, 6.4.10 and the definition of D′. Symmetri-

cally,

Pr
[
D′(Li) = 1|j∗ 6= jd

]
≥ Pr

[
D′(Li) = 1|j∗ 6= jd, d 6= 1

]
· Pr[d 6= 1|j∗ 6= jd]

≥ 1

2
− negl(k). (Claim 6.4.9, D′)
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and from the above relations we receive

Pr
[
D′(Li) = 1

]
= Pr

[
D′(Li) = 1|j∗ = jd

]
· Pr[j∗ = jd]

+ Pr
[
D′(Li) = 1|j∗ 6= jd

]
· Pr[j∗ 6= jd]

≥ Pr [D(Ti) = 1] · 1

q
+
q − 1

2q
− negl(k). (6.1)

Similarly, we obtain an upper bound on Pr [D′(Li) = 1],

Pr
[
D′(Li) = 1

]
≤ Pr [D(Ti) = 1] · 1

q
+
q − 1

2q
+ negl(k). (6.2)

From 6.1, 6.2 we receive∣∣∣∣Pr
[
D′(Li) = 1

]
−
(

Pr [D(Ti) = 1]

q
+
q − 1

2q

)∣∣∣∣ ≤ negl(k). (6.3)

Let δ := |Pr[D′(L0) = 1]− Pr[D′(L1) = 1]|. We compute,

δ =

∣∣∣∣Pr [D(T0) = 1]

q
− Pr [D(T1) = 1]

q
+ Pr[D′(L0) = 1]− Pr[D′(L1) = 1]

−
(

Pr [D(T0) = 1]

q
+
q − 1

2q

)
+

(
Pr [D(T1) = 1]

q
+
q − 1

2q

)∣∣∣∣
≥ ε/q −

∣∣∣∣Pr [D(T0) = 1]

q
+
q − 1

2q
− Pr[D′(L0) = 1]

+ Pr[D′(L1) = 1]− Pr [D(T1) = 1]

q
− q − 1

2q

∣∣∣∣ ≥ ε/q − negl(k). (6.4)

The above inequalities follow from 6.3, the triangle inequality, and the assumption that D

distinguishes between Tampercnmlr
A,m0

(k) and Tampercnmlr
A,m1

(k), with non-negligible probability

ε. Assuming such an attacker A, we proved that D′ distinguishes between Leak0
A′,m0

(k) and

Leak0
A′,m1

(k), with non-negligible probability ε/q− negl(k), and the proof is complete.

The above claim completes the proof of the theorem.

6.4.1 Instantiations

It is not hard to see that, the `-more wECRH of Theorem 4.4.1 satisfies definition 6.4.1,

thus by plugging that construction to Theorem 6.4.5, we obtain a leakage-resilient contin-

uous NMC for polynomially many rounds, as the extractor of Theorem 4.4.1 has running

time linear in the running time of the adversary (cf. Section 4.4). In particular, we receive

the following corollary.

Corollary 6.4.12. Assuming random oracles and collision resistant hash function fami-

lies, construction 6.4.3 is a q-CNMLR code against λ bits of leakage, for any q = poly(k),

assuming λ′ ≥ 2λ+ 6k + 1.
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It should be noted that, the proof of Theorem 6.4.5 is with respect to any `-more

wECRH. When considering the random oracle model, and similarly to [FHMV17], the

random oracle can be simulated inside the leakage oracles using a pseudo-random function.

By plugging the leakage-resilient `-more wECRH of Section 4.3.5,7 against λ bits of

leakage, to Theorem 6.4.5, we receive a continuous NMC for a number of rounds which is

at least poly-logarithmic in the security parameter, and tolerating λ bits of non-adaptive

leakage. In particular, we receive the following corollary.

Corollary 6.4.13. For k, t, λ′ ∈ N, assuming DLOG, t-KEA, and collision resistant hash

function families, Construction 6.4.3 is a q-CNMC against λ bits of non-adaptive leakage,

for λ′ ≥ 2λ+ 8k+ 1 and any q that is at least poly-logarithmic in k. Here, λ′ is the leakage

parameter of the underlying LRS scheme.

Our t-KEA based construction tolerates at least poly-logarithmic number of rounds due

to the fact that, in the current proof, the extractor for round i depends on the extractor for

round i− 1 and extraction is non-black box, thus by considering poly-logarithmic number

of rounds, we avoid the super-polynomial blow-up in the size of the final extractor. If

the extractor’s overhead is linear, then the construction can tolerate polynomially many

rounds of tampering. In addition, our KEA based construction guarantees extractability

only if the hash is indistinguishable from uniform, which is a property that cannot be

achieved when the adversary is given access to the CRS and split-state leakage over both

parts of the codeword. However, the weaker form of leakage resilience that we prove in

Section 4.3.5, yields continuous non-malleable codes against non-adaptive leakage, in which

the adversary can request leakage over the randomness only at the very beginning of the

experiment.

7Here, leakage resilience is with respect to Definition 4.3.15, which is non-adaptive with respect to the
CRS.



Chapter 7

Non-malleable commitments

7.1 Introduction

A commitment scheme is a cryptographic primitive that enables an entity to commit to a

chosen value, while ensuring that: (i) the committed value remains private until the com-

mitter decides to reveal it (hiding property) (ii) the committer cannot decommit to value

different than the one he committed to (binding property) [KL14]. Commitment schemes

can be classified to interactive or non-interactive, and as far as security is concerned, they

may provide perfect, statistical or computational security, with respect to the hiding and

binding properties. For instance, a commitment scheme is said to be statistically hiding,

if for any two messages s, s′, the distribution of commitments over s, is statistically close

to the distribution of commitments over s′.1 Analogously, a commitment scheme is said

to be statistically binding, if the probability that a computationally unbounded adversary

manages to decommit to a different value, is negligible.

The notion of non-malleable commitments was introduced in the seminal work of Dolev,

Dwork and Naor [DDN91], as a countermeasure against man-in-the-middle adversaries. In

the man-in-the-middle setting, we consider two parties that wish to execute a protocol

in the presence of an adversary, that fully controls the communication channel between

the parties. The adversary is allowed to modify, block, or introduce messages, and also

schedule the order of delivery, while the parties might not be aware of the adversarial

presence. Protocols that remain secure against man-in-the-middle adversaries are said to

be non-malleable [DDN91].

The capabilities of man-in-the-middle adversaries are strong, thus the task of designing

1The process of committing is randomized.
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and analyzing non-malleable protocols is highly non-trivial. In the seminal paper [DDN91],

Dolev, Dwork and Naor propose security definitions for the notions of non-malleable com-

mitments and non-malleable zero-knowledge, and assuming the existence of one-way func-

tions, they construct secure protocols that require log(k) rounds of interaction, where k

denotes the security parameter. Informally, a commitment scheme is non-malleable, if any

man-in-the-middle adversary that is given a commitment over a message v, is not able to

create a valid commitment of a message ṽ, which is related to v. This notion has been

modeled in two ways:

• Non-malleability with respect to commitment [DDN91]: According to this notion, the

adversary succeeds in breaking security, if he manages to commit to a related value,

even without being able to produce a valid decommitment. This notion is meaningful

only for statistically-binding commitments.

• Non-malleability with respect to opening [DIO98]: In this setting, the adversary

breaks security if he manages to both commit and decommit to a related value. This

notion is meaningful, both for the case of statistically-binding and statistically-hiding

commitments.

In the present chapter, we construct succinct,2 non-interactive non-malleable commit-

ments with respect to opening, from `-more wECRHs. Our result is summarized in the

following informal theorem.

Theorem 7.1.1 (Informal). Assuming `-more wECRH, there exists an explicit succinct

non-interactive, non-malleable commitment scheme with respect to opening.

Our primitive achieves a stronger definition of non-malleability, that allows the adver-

sary’s auxiliary input to depend on the message (this is not allowed in [DIO98]), and in

contrast to [PR05], our simulator is weaker, in the sense that it does not need access to the

original message in order to simulate the decommitment phase. Our KEA based instan-

tiation produces commitments of size 2k, while for the random oracle based construction

the commitment size is k.

7.2 Related work

The notion of non-malleable commitments (NMCOM) was introduced in the seminal

work of Dolev, Dwork and Naor [DDN98], as a countermeasure against man-in-the-middle
2The length of the commitment is independent of the message length.
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(MIM) adversaries, and assuming one-way functions, the authors built NMCOM re-

quiring at least logarithmic number of rounds of interaction and zero-knowledge proofs.

In [DIO98, DKOS01, DG03], the authors construct non-interactive NMCOM, by either

assuming that the adversary’s auxiliary input does not depend on the message, or that

the process of sampling a message that is consistent with the adversarial auxiliary input,

is efficient. The work of [PR05], allows the adversarial auxiliary input to depend on the

message, however the simulator requires access to the original message in order to sim-

ulate a valid decommitment. In [GPR16, LP11, CVZ10, LPS17, COSV17, COSV16] the

authors construct interactive (concurrent) non-malleable commitments using various as-

sumptions, while in [Pas13] Pass proves that non-interactive NMCOM cannot be proved

using a black-box reduction to standard assumptions.

7.3 Non-malleable commitments from `-more wECRH

We start by presenting the notion of non-interactive commitments in the CRS model.

Definition 7.3.1 (Non-interactive commitment in the CRS model).

Let (Init,Commit,Open) be a commitment scheme and let Σ ← Init(1k). Then, it satisfies

the following properties:

• (Computational binding): It is computationally infeasible to find s 6= s′, and τ ,

τ ′, such that Commit(Σ, s; τ) = Commit(Σ, s′; τ ′).

• (Statistical hiding): For any two messages s, s′, Commit(Σ, s) ≈ Commit(Σ, s′).

For brevity, the CRS is omitted when calling Commit and Open.

We define the notion of non-malleable, non-interactive commitments, in the standalone

setting, following the definition of Pass and Rosen [PR05], with some simplifications for

the non-interactive settings. First, present the man-in-the-middle execution with respect

to the real game and the ideal experiment, as follows.

Man-in-the-middle experiment (real game). Here we consider a two-stage man-in-

the-middle adversary, A = (A1,A2), where A1 participates in the commitment stage and

A2 participates in the opening stage. More specifically, given a binary relation R(·, ·),
a man-in-the-middle adversary, A = (A1,A2), a sender, Sender, a receiver, Receiver, a

message s, and auxiliary input z, we define the real experiment RealA(R, s, z) as follows:
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(1) Sender sends a commitment c← Commit(s; τ) to A; (2) A1(c, z) sends a commitment c̃

to Receiver; (3) Sender sends the opening of c to A; (4) A2(z, s, τ) sends the opening of c̃ to

Receiver. The experiment outputs 1 if and only if A produces a valid s̃ for the commitment

c̃, and R(s, s̃) = 1. The message s is chosen prior to the experiment and A is allowed to

receive auxiliary input, z, that might depend on s.

The Ideal experiment. Given a binary relation R(·, ·), an ideal adversary, S, a sender,

Sender and receiver Receiver, message s, and auxiliary input z, the Ideal experiment,

IdealS(R, s, z), is defined as follows: S only interacts with Receiver by (1) sending a com-

mitment to c̃ it and (2) sending the corresponding decommitment. The experiment outputs

1 if and only if S produces a valid decommitment, s̃, for c̃ and R(s, s̃) = 1. The message

s is chosen prior to the experiment and S receives the auxiliary input z, as A does in the

real experiment.

Having defined the real and ideal executions, we define the notion of non-malleable

(non-interactive) commitments.

Definition 7.3.2 (Non-malleable non-interactive commitment). A non-interactive com-

mitment scheme is said to be non-malleable (with respect to opening) if for every PPT man-

in-the-middle adversary A, there exists a PPT adversary S and a negligible function negl(·),
such that for every non-reflexive polynomial-time computable relation R ⊆ {0, 1}n×{0, 1}n,

every s ∈ {0, 1}n and every z ∈ {0, 1}∗, we have that

Pr [RealA(R, s, z) = 1] < Pr [IdealS(R, s, z)] + negl(n).

It should be noted that, the definition presented above is stronger from the ones pre-

sented in [DIO98, PR05], since (1) we allow the attacker’s auxiliary input to depend on the

message s, and (2), our simulator does not need the original message in order to simulate

the decommitment phase.

In the CRS model, both the real and ideal experiments will generate the CRS by

running Init and all parties will receive access to it.3

Below we define our construction.

Construction 7.3.3 (Non-malleable non-interactive commitment). Let Hk be a hash func-

tion family. We define a non-interactive commitment scheme (Init,Commit,Open), as fol-

lows:

3There is a weaker model called trapdoor CRS, in which the simulator S generates an indistinguishable
CRS with a trapdoor. The construction that is proposed in the present thesis uses the honestly generated
CRS, i.e., it does not require trapdoor information.
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• Init(1k): Sample h← Hk and set Σ := h.

• Commit(Σ, ·): on input string s ∈ {0, 1}poly(k), the algorithm selects random string

τ ∈ {0, 1}poly(k) and outputs h(s; τ).

• Open(Σ, ·): on input a commitment c, the algorithm outputs s, τ . The receiver accepts

if h(s; τ) = c.

In the following statement we formalize the properties that Hk should meet, in order

for the above scheme to be non-malleable.

Theorem 7.3.4. Let Hk collision resistant hash function family, such that for h ← Hk
and any message s, h(s) is statistically close to uniform. Then the commitment scheme

of Construction 7.3.3 is statistically hiding and computationally binding. Furthermore,

if the hash function family Hk, is a 1-more wECRH, then the commitment scheme is

non-malleable with respect to opening (cf. Definition 7.3.2).

Intuitively, if the hash function produces outputs that are indistinghuishable from uni-

form, then the commitment scheme achieves the hiding property. In addition, if it is

collision resistant, then the scheme is also binding. Finally, if the hash function is a 1-more

wECRH, then for any man-in-the-middle attacker that produces a commitment (hash

value) c̃, given c, where c̃ 6= c, there exists an extractor that extracts (ŝ, τ̂), such that

h(ŝ; τ̂) = c̃. Since c reveals no information about s, the extracted value, ŝ, is unrelated to

s. Below we provide a formal proof of security, based on those ideas.

Proof. (of Theorem 7.3.4) The first part of the proof, i.e., proving the statistical hiding

property of the scheme, is straightforward, as by assumption, the distribution of h(s; τ)

is statistically close to uniform. In addition, since the hash function family is collision

resistant, no PPT adversary can find two distinct valid openings for the same commit-

ment, i.e., computing efficiently (s, τ) 6= (s′, τ ′), for which h(s; τ) = h(s′; τ ′), happens only

with negligible probability, assuming the collision resistance property of Hk. The binding

property of the scheme follows.

Next we are going to prove non-malleability. Given any man-in-the-middle adversary

A, we define an ideal adversary S as follows: S, (1) samples τ ← {0, 1}poly(k) and sends

c := h(0; τ) to A, (2) then executes c̃← A1(h, c, z) and forwards c̃ to the external receiver

Receiver, and (3) for the opening, if c̃ = c, then S just sends (0, τ). Otherwise, S runs the

extractor E (defined below) to extract (s̃, τ̃) and forwards the extracted value to Receiver.
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Below, we relate the above execution, with the execution of the `-more ECRH experi-

ment, of Definition 4.2.1.

We first define Av:

Av on input the description of a hash function h, a hash value c = h(s; τ), and

the auxiliary input z, outputs c̃← A1(h, c, z). By the properties of the 1-more

wECRH (cf. Definition 4.3.15), there exist auxiliary input z′ and ex tractor E
that on input z′ and c outputs (ŝ, τ̂).

We will prove that for any A,

Pr [RealA(R, s, z) = 1] < Pr [IdealS(R, s, z)] + negl(k),

using a hybrid argument presented below.

H1: this hybrid is the same as the Real execution, for the first two steps. In the third

step, the sender Sender does not provide an opening for the commitment. Instead, if the

man-in-the middle adversary A forwards the commitment sent by Sender, i.e., c̃ = c the

experiment just outputs R(s, s). Otherwise, the experiment runs the extractor E (defined

above) to extract a value (ŝ, τ̂), and sends (ŝ, τ̂) to Receiver. The experiment finally out-

puts R(s, ŝ).

H2: this hybrid is the same as H1 except that Sender commits to zero in the first step.

Claim 7.3.5. Assuming that Hk is a 1-more wECRH, then for any non-reflexible poly-

nomially computable relation R and any s, z we have

Pr[RealA(R, s, z) = 1] < Pr[H1 = 1] + negl(k).

Proof. Let Av and E be the adversary and extractor as defined above, and let (ŝ, τ̂) be the

extracted value in H1. We further define As as follows: on input (h, τ, s, z), As outputs

(s̃, τ̃)← A2(h, τ, s, z). We define the following events:

• E1: h(s̃; τ̃) = h(ŝ; τ̂) ∧ (s̃; τ̃) 6= (ŝ; τ̂).

• E2: h(s̃; τ̃) = c̃ ∧ c̃ 6= c ∧ h(ŝ; τ̂) 6= c.

Since Hk is collision resistant, Pr[E1] = negl(k). Otherwise, one can find a collision

with non-negligible probability by simulating H1 with A = (A1,A2) and E . By the 1-more

extractability property of Hk, we have that Pr[E2] = negl(k).
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Finally, we observe that Real outputs 1 and H1 = 0 only when the extractor E fails

to extract a valid decommitment, or it extracts a value such that (ŝ, τ̂) 6= (s̃, τ̃). This is

captured by the events E1, E2. Therefore, conditioned on ¬(E1 ∨ E2), RealA(R, s, z) = 1

implies that H1 = 1. We can then conclude:

Pr[RealA(R, s, z) = 1] < Pr[H1 = 1] + Pr[¬(E1 ∨ E2)] = Pr[H1 = 1] + negl(k).

This completes the proof of the claim.

Claim 7.3.6. Assuming the hiding property of the commitment scheme, we have

|Pr[H1 = 1]− Pr[H2 = 1]| < negl(k).

Proof. We observe that both H1 and H2 do not depend on the opening of the commitment.

Therefore, if one can distinguish H1 from H2, then it can distinguish between Commit(0)

from Commit(s).

It is clear that Pr[IdealS(R, s, z) = 1] = Pr[H2 = 1], as S simulates perfectly the

experiment H2. By the above claims, we receive

Pr [RealA(R, s, z) = 1] < Pr[H1 = 1] + negl(k)

≤ Pr[H2 = 1] + negl(k)

= Pr [IdealS(R, s, z)] + negl(k).

This concludes the proof of the theorem.

Instantiations. Construction 7.3.3 can be instantiated using the 1-more (`-more) wE-

CRH of Construction 4.3.2, since it produces hashes that are indistinguishable from uni-

form (see Claim 4.3.17 in the proof of Theorem 4.3.16). It can also be instantiated in

the random oracle model, as the uniformity property of the random oracle based `-more

wECRH (cf. Theorem 4.4.1) is straightforward.



Chapter 8

Secure circuit outsourcing

8.1 Introduction

The fabrication process of integrated circuits (ICs) adopted by the semiconductor industry

is fundamentally global, involving several parties that may not be trusted. As a result, inte-

grated circuits (ICs) are susceptible to the so-called hardware Trojans, which are hardware

components maliciously implanted to the original circuitry, having as a purpose to alter

its functionality, while remaining undetected. Hardware Trojans are aiming at disabling

or compromising the security defences of a system, or covertly leaking information related

to the systems’ private state [LKG+09, CNB09, BRPB14]. Their implantation may occur

during the design phase, by a malicious designer, or during the manufacturing phase, by

a malicious fabrication facility. Once the Trojan is implanted, it may be active the entire

time, or it may be triggered by some special event, e.g., when the user supplies the circuit

with some special input, or after a specific number of circuit invocations.

Reliable detection of compromised circuits via testing and reverse engineering tech-

niques, seems to be an impossible task [BR15], as in practice, all non-destructive testing

techniques can easily be circumvented by properly obfuscating the implanted Trojans. The

U.S. military recognized this threat and started two programs, namely, Trust and IRIS,

with the intent of developing techniques and metrics for certifying ICs that are designated

for weapon systems. The main concern behind this decision, is that non-certified advanced

weapon systems can be potential Trojan carriers, thus while they may appear to function

property when tested, they could be deactivated during combat, after being triggered by

some specific event. Furthermore, even if they remain partially functional, there is no way

to verify that they are not programmed to leak sensitive information [Sha07].
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Inspired by the above considerations, in this chapter we put forward a formal security

model for the problem of utilizing off-shore fabrication facilities, for IC manufacturing.

8.1.1 Contributions

The present chapter proposes a formal framework for assessing security of circuits, whose

production has been partially outsourced to a set of untrusted, and possibly adversarial,

manufacturers. Our security definition ensures that, any black-box execution of the pro-

duced circuit in the wild, leaks no information over its private state, even if the adversary

has modified the outsourced components, arbitrarily. The only requirement is that during

the execution, the circuits communicate with the user/adversary, through its input and

output gates. In the following paragraphs, we briefly summarize the contributions of the

present chapter.

Secure circuit fabrication. Let Γ be any circuit that needs to be produced. We propose

a compiler that, given the description of Γ, returns the description of a circuit Γ̂, together

with some auxiliary information, specifying (i) how Γ̂ can be divided into sub-components

whose production can be outsourced to a set of possibly malicious facilities, and (ii) how

the circuit designer should combine the outsourced components with the ones built in-

house, so as to assemble Γ̂. After assembling Γ̂, the circuit’s private state is initialized

with some private value M1, and the circuit is ready to be used in the wild.

In order for the above approach to make sense, certain requirements need to be satisfied.

First of all, our compiler needs to be functionality preserving, meaning that the compiled

circuit, Γ̂, should compute the same functionality with the original circuit, Γ, for all possible

initial memories M1, and for all possible inputs.1 Secondly, our compiler should be secure

under plausible assumptions over the set manufacturers that construct the outsourced

components, ensuring that no information over the private state is leaked, when Γ̂ is used

in the wild.

Our security definition is simulation-based, and is inspired by similar definitions in the

setting of tamper-proof circuit compilers [IPSW06, FPV11, DK12, DK14, KT13]. In a

nutshell, our security definition requires that, whatever the adversary can learn by inter-

acting with the fabricated circuit, Γ̂, it can be simulated given only black-box access to

the original circuit, Γ. This implies that, even if the outsourced components have been

1For randomized functionalities, we require the outputs of the circuits to be statistically close.
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maliciously modified, e.g., by implanting a hardware Trojan, using Γ̂ is as secure as using

the original circuit Γ, and thus, no information over the private state is leaked.

We also consider a weaker version of the above definition, in which the simulator is

allowed to receive a short advice (leakage) over the circuit’s private state, M1. This models

the setting in which the adversary might be able to learn a short amount of information

over the secret memory, and provides security whenever the original circuit is resilient in

the presence of leakage. An appealing advantage of the weaker definition is that, it might

allow for more efficient circuit compilers.

A compiler based on MPC. In Section 8.3, we show how to construct secure outsourc-

ing compilers, for arbitrary circuits, in the setting where m ≥ 2 outsourcing manufacturers

are available, and a certain unknown subset of them is malicious. Our construction utilizes

a general client-server secure multiparty computation (MPC) protocol, i.e., a protocol that,

for any functionality, enables a set of clients to privately communicate their inputs to a set

of servers that will perform a computation and return the output to a single designated

recipient. We stress that many MPC protocols follow this paradigm (e.g., [DI05]), while

others, as we comment later, can be easily adapted to it.

Given such a protocol, the compiler operates in the following way. For a given circuit Γ

it produces the MPC protocol implementing it, isolates the client and recipient computation

for manufacturing in-house, and outsources each of the other components (representing a

server in the MPC protocol) to the untrusted manufacturers. The key points of this

compiler construction are as follows: (i) The client and recipient computation are typically

quite lightweight; the client, in many protocols, simply performs an encryption or a secret-

sharing operation, and the recipient a secret-reconstruction protocol; in either case, the

computation is independent of the circuit that is outsourced, and (ii) there are MPC

protocols that can tolerate up to m − 1 malicious servers, something we can leverage to

argue that, if at least one of the outsourcing manufacturers is honest, the compiled circuit

would be safe for use.

Additional properties of the underlying MPC protocol can also be very valuable by

our compiler: for instance, if the underlying MPC protocol supports guaranteed output

delivery, we can use this guarantee to argue that the final circuit will be resilient to a

certain faulty outsourced sub-component. Moreover, if the underlying protocol satisfies

the identifiable abort property, cf. [IOZ14], we can enable our compiled circuit to switch-off

an outsourced sub-component that is discovered to be faulty (or malicious), thus reducing

energy consumption.
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8.1.2 Related work

The work of Seifert and Bayer [SB15] proposes a security model for the fabrication of

Trojan-resilient circuits, requiring that the final circuit always produces the same output

as the original one. In this setting, the authors present a secure construction, only for very

limited classes of Trojans, that are allowed to “corrupt”, only a small fraction of the gates

in each layer of the IC and a small fraction of the wires connecting different layers.

Recently, Wahby et al. [WHG+16] introduced a new approach to the problem of de-

feating hardware Trojans in fabless circuit manufacturing. Their model reflects the fact

that the IC specification and design are trusted, but the fabrication facility is not. Rather

than testing or reverse engineering the IC hardware, which only provides limited security,

they consider a class of solutions where the IC’s operations are continuously verified. Such

an approach makes sense as long as the verification circuitry: (i) is not costly to construct,

and (ii) it is efficient. These properties are achieved by leveraging a verifiable computation

(VC) scheme for the function implemented by the original circuit. Verifiable computation

(see, e.g., [GGP10]) is a recent paradigm in which resource-constrained clients can delegate

the computation of some function, F , on possibly private input X, to an untrusted and

computationally powerful server, without the server being able to lie about the outcome

of the computation, and with the property that verifying the server’s answer is much more

efficient than computing the function from scratch. In a nutshell, the goal of [WHG+16] is

to ensure that the output of the produced circuit is either invalid, or equal to the output

of the original circuit. The main drawback in this setting is that, invalid outputs might be

arbitrarily correlated, and thus leak, part of the circuit’s private state.

In [DFS16], the authors show how to protect against hardware Trojans using testing-

based mechanisms. Their work is based on two existing techniques for Trojan detection,

called “input scrambling” and “split manufacturing” [IEGT13], for which the authors

provide formal models. In this setting, they present a generic compiler that transforms

any circuit into a functionally equivalent one, that satisfies the following: Assuming the

attacker invokes the circuit q ∈ N times, and that the device is being tested t times, for

t > q uniformly random over on a specific range which is not known to the adversary,

the compiled circuit is secure with probability at least 1 − (q/t)`/2, were ` is the number

of sub-circuits whose production is outsourced. The assumption of [DFS16] is an a-priori

known bound on the number q of interactions between the adversary and the device; in

fact, without such a bound, their construction would require a super-polynomial number of

tests. Unfortunately, in many important applications, it is not realistic to assume an upper
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bound on the value q, and thus it is an important open problem to design a methodology

that provides security for an arbitrary polynomial number of interactions between the

adversary and the device.

The approach of applying secure distributed computing to defeat hardware Trojans

has also been recently explored by [MCS+17]. However, this work is more focused on the

implementation aspects of this idea, and moreover it assumes that the possibly malicious

circuit components run applications that are developed and signed by a trusted software

developer.

Prevention of hardware Trojans in ICs might take place during the design, manufactur-

ing, and post-manufacturing stage [Pot10, LJM11]. However, since it is not always possible

to prevent Trojan insertion, Trojan detection has also been vastly explored [BR15]. Com-

mon methodologies used to perform Trojan detection vary from invasive ones, that destroy

the IC to examine its inner parts, to non-invasive ones, in which the circuit is executed

and its output is compared to the output of a trusted copy, or against some already known

output values. Trojan detection is typically an expensive and unreliable process for circuit

protection, explicit countermeasures have also been proposed. For instance, the so-called

“data guards” are designed to prevent a Trojan from being activated and/or to access

sensitive data [WS11], while in [MWPB09, WS11] the authors propose the duplication of

logic elements and the division of the sensitive data to independent parts of the circuit.

Our security definition shares similarities with analogous definitions in the context of

protecting circuit implementations against tampering attacks, which received considerable

attention in the past few years [IPSW06, FPV11, DK12, DK14, KT13]. The main difference

between this setting and the one considered in this chapter, is that tamper-proof circuit

compilers are typically used to protect against fault injection and tampering attacks, during

run-time. Such attacks are usually carried out in an adaptive manner, depending on

the outcome of previous attempts. Outsourcing compilers, instead, only protect against

non-adaptive tampering, taking place during the circuit fabrication process. Importantly,

the latter restriction allows to obtain security against arbitrary modifications, whereas

in circuit tampering, one needs to consider a restricted class of adversaries, e.g., wire

tampering [IPSW06] or gate tampering [KT13].

8.2 Definitions

In the current section, we put forward a formal model for assessing security of a (crypto-

graphic) circuit, whose production is outsourced to one or more untrusted facilities. We
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start by recalling the notion of a Boolean circuit.

8.2.1 Boolean Circuits

A Boolean circuit, is represented by a directed graph Γ = (V,E), where the set of nodes, V ,

represents the set of logical gates, and the set of edges, E, represents wires that establish

connections between gates. For the case of deterministic circuits, the gates can be of type

AND, XOR and copy, where AND (resp. XOR) have fan-in two and fan-out one, and output

the outcome of the AND (resp. XOR) operation over the input bits; a copy gate, which

is denoted as copy, simply forwards the input bit into two output wires. The depth of a

circuit is defined as the longest path from an input to an output gate and the size of a

circuit is defined as its total number of gates. For simplicity, we will use Γ, to denote both

a circuit and its description.

A circuit is clocked, if it executes in clock cycles (or rounds). The input and output

values of a circuit in clock cycle i, are denoted by Xi and Yi, respectively. A circuit is

probabilistic if it uses internal randomness as part of its logic. This randomness is produced

by gates that we call randomness gates and we denote them as $. In each clock cycle, a

gate $ outputs a fresh random bit.

Circuits may also possess memory gates, that maintain the circuit’s state. Each memory

gate has a single incoming edge (wire) and any number of outgoing edges. At any clock

cycle, each memory gate sends its current state to the outgoing edges and updates it

according to the value of the input edges. Any cycle in the circuit graph must contain at

least one memory gate. The state of all memory gates at clock cycle i is denoted by Mi,

with M1 denoting the initial state. When a circuit is executed with state Mi and input Xi,

it produces output Yi and the memory gates will reach the new state Mi+1. This process

is denoted by (Yi,Mi+1)← Γ[Mi](Xi).

Next, we introduce the notion of an outsourcing circuit compiler (or simply compiler).

In a nutshell, a circuit compiler is an efficient algorithm, Φ, that takes as input the descrip-

tion of a circuit Γ, 〈Γ〉, and outputs the description of a compiled circuit Γ̂. Additionally,

Φ returns a list of sub-components Γ̂i, of Γ̂, whose production can be outsourced to one

or more external manufacturers, together with the relevant information on how to connect

those sub-components with the remaining ones (that need to be built in-house) in order

to re-assemble the compiled circuit Γ̂.

Definition 8.2.1 (Outsourcing circuit compiler). Let Γ be an arbitrary circuit. A (ρ,m)-

outsourcing compiler Φ is a PPT algorithm (Γ̂, z)← Φ(Γ), such that the following holds:
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Figure 8.1: On the left side we present the description of a (compiled) circuit. On the
right side the same circuit is represented as three different components. The mapping
function M establishes the connections between the blue component and the green and
red components.

• z := ((Γ̂1, . . . , Γ̂n),M, (I1, . . . , Im)), with n ∈ N and Ij ⊆ [n], for j ∈ [m], mutually

disjoint subsets.

• (Γ̂1, . . . , Γ̂n) forms a partition of Γ̂ with n components, where Γ̂i := (Vi, Ei).

• M : V × V → {0, 1} is a function such that M(v, v′) = 1 iff v, v′ ∈ Vi, Vj for some

i 6= j, for i, j ∈ [n] and (v, v′) ∈ E, i.e., M defines the connectivity between the

sub-components (Γ̂1, . . . , Γ̂n).

We call ρ :=

∑
i∈[n]\I1∪...∪Im

|Γ̂i|
|Γ| the outsourcing ratio of the compiler.

Informally, the outsourcing ratio ρ, is the ratio of the size of the circuit that is built

in-house, over the total size of the original circuit, Γ. Also, the sub-components (Γ̂i)i∈[n]

“cover” the entire compiled circuit Γ̂, without any overlap, and the mapping function M
specifies the connectivity between the sub-components (Γ̂1, . . . , Γ̂n), enabling the recon-

struction of Γ̂. For j ∈ [m], the set of indices Ij ⊆ [n], defines the set of sub-components

that will be outsourced to the manufacturer with index j, i.e., the total number of manu-

facturers is m. See Fig. 8.1, for a pictorial representation of a simple toy example.

Correctness of an outsourcing compiler requires that the compiled circuit realizes the

same functionality with the original one.

Definition 8.2.2 (Correctness). We say that an outsourcing compiler Φ, is functionality

preserving, if for all circuits Γ, for all values of the initial memory M1, and for any set

of public inputs X1, . . . , Xq, the sequence of outputs Y1, . . . , Yq produced by running the

original circuit Γ with initial state M1, is identical to the sequence of outputs produced by
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running the compiled circuit Γ̂, with initial state M1 (with all but negligible probability over

the randomness of the compiler and the randomness of the original and compiled circuit).

For randomized functionalities, we require the output distributions of the original and

the compiled, circuits, to be statistically close.

8.2.2 Simulation-based security

In what follows we define security using the real/ideal paradigm. Our approach is similar

in spirit to previous works in tamper resilient cryptography (see, e.g., [IPSW06, FPV11,

KT13]), which aims at protecting cryptographic circuits, against active physical attacks. In

a nutshell, in the real/idea paradigm, security is defined by comparing two experiments. In

the real experiment, the circuit designer compiles the circuit and outsources the production

of some of the resulting components, to a set of m untrusted manufacturers. A subset of

size at most t of those manufacturers can be malicious, and be controlled by a monolithic

adversary A, and the circuit designer cannot distinguish between honest and malicious

manufacturers. During production, A is allowed to modify the outsourced circuit compo-

nents, arbitrarily, e.g., by adding, removing or modifying gates and/or wires. Later, the

designer assembles the circuit by combining all the components (the outsourced ones and

the ones built in-house). Finally, A accesses the assembled circuit in a black-box way, that

is, it is allowed to execute the circuit and observe the output of it on inputs of its choice,

with some initial and unknown memory value M1. The purpose of the adversary in the

real execution, is to leak information over the circuit’s private memory, by exploiting the

fact that some circuit components have been maliciously modified during the production

process.

In the ideal experiment, a simulator S, is given black-box access to the original circuit,

with initial memory M1. The goal of the simulator is to produce an output distribution,

which is indistinguishable from the one in the real experiment, without accessing M1. In

its most general form, our definition allows the simulator to obtain a short leakage over

M1, and this captures a real world scenario in which the adversary could possibly learn a

short amount of information over the circuit’s private memory.

Below, we formally define the real/ideal experiment.

Real experiment. The distribution RealA,Φ,C,Γ,M1(k) is parameterized by the adversary

A = (A0,A1), the set of corrupted manufacturers C, the compiler Φ, and the original circuit

Γ, with initial memory M1.
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1. (Γ̂, z) ← Φ(Γ): In the first step, the description of the original circuit Γ is given as

input to the compiler Φ; the compiler outputs the description of the compiled circuit

Γ̂ plus the auxiliary information z := ((Γ̂1, . . . , Γ̂n),M, (I1, . . . , Im)) which specifies

(1) how the compiled circuit is split into sub-components, (2) how the different sub-

components are connected (via the mapping function M), and (3) the subset of

sub-components whose production is outsourced to each manufacturer (in the index

sets Ij , for j ∈ [m]).

2. ({Γ̂′i}i∈I , st)← A0(1k, {Γ̂i}i∈I ,Γ, Γ̂): The adversary is given as input the description

of the components from the index set I = ∪j∈CIj , the description of the original cir-

cuit Γ, the description of the compiled circuit Γ̂, and returns the modified components

along with some auxiliary state information, st.

3. Γ̂′ := (V̂ ′, Ê′): The compiled circuit Γ̂′ is rebuilt by replacing the components (Γ̂i)i∈I

with the modified components (Γ̂′i)i∈I , and by connecting the different components

as specified by the mapping M.

4. AΓ̂′[M1](·)
1 (1k, st): The adversary A1, with auxiliary information st, is given oracle

access to the circuit Γ̂′, with private memory M1.

Below, we define the ideal experiment.

Ideal experiment. The distribution IdealS,A,Φ,C,Γ,M1,`(k) is parameterized by the sim-

ulator S, the adversary A = (A0,A1), the compiler Φ, the set of corrupt manufacturers C,
the original circuit Γ with initial memory M1, and some value ` ∈ N.

1. f ← S(1k,Γ,Φ,A, C, `): Given as input a description of the original circuit, of the

compiler and the adversary, the subset of corrupt manufacturers, and the parameter

` ∈ N, the simulator specifies an arbitrary polynomial-time computable function

f : {0, 1}∗ → {0, 1}`.

2. SA,Γ[M1](·)(1k, L) : The simulator takes as input leakage L = f(M1), and is given

oracle access to the adversary A = (A0,A1) and the original circuit Γ, with private

memory M1. We remark that the simulator is restricted to be fully black-box. In

particular, S only accesses the modified sub-components returned by A0 in a black-

box way, i.e., without knowing their description.

Having the above definitions, we formally define security for outsourcing circuit compilers.
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Definition 8.2.3 (Security). We say that a (ρ,m)-outsourcing circuit compiler Φ is (`, t)-

secure, if the following conditions are met.

(i) Non-triviality: ρ < 1, for sufficiently large values of k ∈ N.

(ii) Simulatability: For all C ⊆ [m] of size at most t, for all circuits Γ, and for all PPT

adversaries A, there exists a simulator S with running time poly(|A|, |Γ|), such that

for all initial values of the memory M1 ∈ {0, 1}∗,

{RealA,Φ,C,Γ,M1(k)}k∈N ≈c {IdealS,A,Φ,C,Γ,M1,`(k)}k∈N .

In the above definition, the adversary is allowed to modify each Γ̂i arbitrarily, i.e., there

is no restriction on the edges and nodes of Γ̂′i, as long as the input and output gates enable

connectivity with the remaining components. Also, observe that, the above definition is

only interesting for small values of ` (as, e.g., it becomes trivial in case ` = |M1|). Finally,

the non-triviality condition requires that the ratio of the size of the sub-components built

in-house, over the size of the original circuit, should be less than one, as otherwise a

manufacturer could simply produce the entire circuit by itself, without using any off-shore

facility. Clearly, smaller values of ρ, enable outsourcing of larger fractions of the original

circuit.

8.3 A circuit outsourcing compiler based on MPC

In the current section, we construct a compiler based on multi-party computation (MPC).

Before presenting our compiler, we first revisit the core ideas of MPC and then we give a

generic definition for MPC protocols in the client-server model, along the lines of [Bea97].

MPC in the Client-Server Model. We consider p ∈ N parties, where each party Pi,

for 1 ≤ i ≤ p, possesses an input Xi and they all wish to jointly compute the vector

(Y1, . . . , Yp) := F(X1, . . . , Xp), where Yi is the output for party Pi. In the client-server

model, the parties are divided into two categories: the clients, that provide inputs and wish

to receive the output of the computation, and the servers, that perform the computation. A

t-private MPC protocol guarantees that any adversary who controls up to t servers, cannot

leak any information related to the private inputs of the clients, besides the information

that can be inferred by the output of the computation, and regardless of the number of

corrupted clients.
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In our construction, the circuits that correspond to the code executed by the servers,

will be outsourced to a number of possibly malicious manufacturers, that may apply arbi-

trary modifications against the circuit components. Thus, we require MPC protocols that

are secure against active (malicious) attackers. The general idea behind our compiler is

the following. Let F be any functionality, let Γ be a circuit implementing F , and let ΠF

be a t-private MPC protocol, realizing F . Then, assuming that the number of malicious

manufacturers is at most t < m, the circuit Γ̂ will implement the code of ΠF , and each Γ̂i

will implement the code of the i-th server.

Below, we define the protocol framework that we are going to use for the rest of this

section. The idea is to describe any MPC protocol using its next message function, denoted

as Next.

Definition 8.3.1 (Protocols using the ). Let C, S, be sets of probabilistic interactive Tur-

ing machines, with cardinalities p, m, respectively. An r-round protocol Π for p clients and

m servers is a tuple (C, S,Enc,Dec,Next), where Next = (Next1, . . . ,Nextm), is described

as follows.

• Setup: Each client computes (X1
i , . . . , X

m
i ) ← Enc(Xi), and sends Xj

i to the server

indexed by j. For j ∈ [m], let inj := (Xj
1 , . . . , X

j
p) and stj := 0.2

• Computation:

– In each round, for j ∈ [m] execute (oj1, . . . , o
j
m, st′j) ← Nextj(in

j , stj), send ojk,

k 6= j, to the server with index k. Set inj ← (o1
j , . . . , o

m
j ) and stj ← st′j.

– In the final round, for j ∈ [m] execute oj ← Nextj(in
j , stj) and send oj to Dec.

• Output: Execute (Y1, . . . , Yp)← Dec(o1, . . . , om), and send Yj to the client with index

j.

For any function F , the protocol computing F will be denoted by ΠF .

Informally, in the first step of the protocol execution, the clients encode their inputs, as

it is prescribed by Enc, and then the main computation begins. The code executed by the

servers at each round is defined by the function Next, the next message function. Hence,

in the i-th round, server Sj computes Nextj over the outputs and the state information,

st, produced by the other servers in round i− 1. One can also consider deterministic next

2Here, we assume that the network is fully connected, still the properties of the communication channel
depend on the instantiation.
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message functions, assuming the randomness is given as input in each round. Below, we

formally define correctness and privacy for MPC protocols.

Definition 8.3.2 (Correctness). Let F be a p-party functionality. We say that Π realizes

F with perfect (resp., statistical) correctness if for any input (X1, . . . , Xp), the probability

that the output delivered to the i-th client, for i ∈ [p], after the protocol execution, is

different from Yi, is 0 (resp., negligible in the security parameter), where (Y1, . . . , Yp) :=

F(X1, . . . , Xp).

The definition of privacy follows.

Definition 8.3.3 ((t,m)-privacy). Let k be the security parameter, p be the number of

clients and m be the number of servers, and let A be an adversary that may corrupt any

set of parties Ic ⊆ [p], and servers Is ⊂ [m], where |Is| ≤ t. We say that the protocol Π

realizes F with (t,m)-privacy, if there exists a PPT algorithm S such that for all sufficiently

large k ∈ N,

ViewIs,Ic(k,X1, . . . , Xp) ≈c S(1k, Ic, Is, (Xi, Yi)i∈Ic),

where ViewIs,Ic(k,X1, . . . , Xp) denotes the joint view of the servers and clients in Is and

Ic, respectively, within an execution of the protocol upon inputs X1, . . . , Xp, and (Y1, . . . ,

Yp) = F(X1, . . . , Xp).

The main idea behind the above definition is that the view of the adversary during the

protocol execution depends only on its own input and output.

Below we present our compiler.

The compiler ΦΠF . Let Γ be a circuit implementing the function F(M1, ·), where for

any X and i ∈ N, we have (Y,Mi+1) = F(Mi, X). Let ΠF = (C, S,Enc,Dec,Next) be a

protocol realizing F , over a set of m servers and a single client. The compiler produces

(Γ̂, aux)← ΦΠF (Γ), where

• Γ̂ is the circuit that implements ΠF (depicted in Figure 8.2 for the case m = 2 and

p = 1), having as a sub-circuit Γ̂Memory, which is a circuit consisting only of memory

gates, as needed by the original circuit Γ. During initialization, Γ̂Memory stores the

initial private memory value, M1.

• z = ((Γ̂1, . . . , Γ̂m+2),M, (I1, . . . , Im)), where
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Figure 8.2: The MPC compiler for the case ofm = 2 outsourcing facilities. The components
Γ̂1 and Γ̂2 can be outsourced, while the connectivity between them and the remaining
components are built in-house. Γ̂1 and Γ̂2 exchange the outputs of the next message
functions Next1, Next2, and they internally update their states. The dotted line depicts
the circuit boundaries.

– Γ̂m+1 = Γ̂Enc and Γ̂m+2 = Γ̂Dec, i.e., the circuits Γ̂m+1 and Γ̂m+2 implement the

encoder, Enc, and the decoder, Dec, of ΠF , respectively.

– For i ∈ [m], Γ̂i is the circuit that implements the code of the i-th server, for the

entire execution of ΠF . Those circuits can be implemented in a straightforward

way using the next message function Nexti (cf. the sub-components Γ̂1 and Γ̂2

in Figure 8.2).

– The mapping function M describes the physical connections between the cir-

cuits described above, and Ij , for j ∈ [m], specifies the components that will be

outsourced to the manufacturer with index j. In our case Ij = {j}.

– In case the original circuit is randomized, in addition to the components de-

scribed above, Φ also outputs a circuit Γ̂$ producing randomness Ri, that is

needed in each invocation of the circuit.

Our construction must be non-trivial (cf. Definition 8.2.3), thus the underlying protocol

Π must satisfy the following outsourceability property.

Definition 8.3.4 (Outsourceability of procotols). A protocol Π = (C, S,Enc,Dec,Next)

that realizes the function F can be outsourced if it satisfies the following condition: The

circuit computing the encoding and decoding procedures (Enc,Dec) must be smaller than

the circuit computing the function F .
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Below we prove security for the proposed compiler.

Theorem 8.3.5. Let F be any function, and let ΠF be a (t,m)-private MPC protocol for

F , satisfying the correctness and outsourceability properties. Then, the compiler ΦΠF is a

correct, (0, t)-secure, (ρ,m)-outsourcing circuit compiler, for ρ < 1.

Proof. The correctness and outsourceability of ΦΠF follow directly by the corresponding

properties of ΠF .

Let F be any functionality and let Γ be the circuit implementing F . Assuming that

ΠF is a (t,m)-private MPC protocol for F , we will prove that ΦΠF is a (0, t)-secure, circuit

compiler. Concretely (cf. Definition 8.2.3), we need to prove that for all C ⊆ [m] of size

at most t, all circuits Γ, all PPT adversaries A, and for all initial values of the memory

M1 ∈ {0, 1}∗, there exists a simulator S with running time poly(|A|, |Γ|) such that

{RealA,Φ,C,Γ,M1(k)}k∈N ≈c {IdealS,A,Φ,C,Γ,M1,`(k)}k∈N , (8.1)

for all sufficiently large values of k. Let A be an attacker ΦΠF . The idea behind the proof is

to relate the interaction between A and the circuits produced by ΦΠF , with the interaction

between an attacker A′ corrupting up to t servers, while executing ΠF . Then, we will

use the simulator S ′ that is given by the (t,m)-privacy of ΠF to construct a simulator S,

satisfying equation 8.1. In what follows, and for the sake of simplicity, we prove the needed

assuming A is a single round attacker, and then we discuss how the proof easily extends

to the setting of multiple executions.

By the compiler definition, the protocol ΠF that ΦΠF is based on, consists of two clients,

C1, C2, where C1 is the corrupted client that provides the public input to the circuit, X,

and C2 supplies the circuit with private input, M , and m servers. Let Γ be the circuit

implementing F . Given the adversary A for ΦΠF we define the adversary A′ = (A′0,A′1)

against ΠF as follows:

• (server corruption): A′0 runs (Γ̂, z)← Φ(Γ), where z := ((Γ̂1, . . . , Γ̂n),M, (I1, . . . , Im)),

and samples ({Γ̂′i}i∈I , st) ← A0(1k, {Γ̂i}i∈I ,Γ, Γ̂). Then corrupts the server Si, for

i ∈ I, so that Si will execute the possibly modified circuit Γ̂′i.

• (protocol execution): A′1 participates in the protocol ΠF choosing the input for

client C1 (the corrupted client), according to the input value chosen by A1. Con-

cretely, A′1 executes the following steps: samples X ← A1(1k, st), defines the input

of client C1 to be equal to X, receives the output of ΠF for C1, Y , for inputs (X,M),

and forwards Y to A1.
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We define the random variable ViewIs,Ic(k,X,M), Is = C, Ic = {1}, to be the view of A
in the executing defined above. Clearly, by the definition of A′, the view of A matches its

view while executing the real world experiment of Definition 8.2.3, thus we have

ViewIs,Ic(k,X,M) = RealA,Φ,C,Γ,M1(k). (8.2)

Assuming ΠF is (t,m)-private against A′, there exists exists a simulator S ′′ that simulates

the view of A′ during the protocol execution. Let S ′ be code of S ′′ that only outputs the

view of A. Then we have that for all sufficiently large k ∈ N,

ViewIs,Ic(k,X,M) ≈c S ′(1k, Ic, Is, (X,Y )i∈Ic). (8.3)

Now we define the simulator S for A against ΦΠF . S on input (1k,Γ,Φ,A, C, 0) executes

the following steps:

• executes A1 with oracle access to Γ[M1](·), and constructs the pair (X,Y ), i.e., it

constructs the valid output of F on input X, chosen by A1.

• executes o← S ′(1k, Ic, Is, (X,Y )i∈Ic), where Is = C and Ic = {1}, and outputs o.

Clearly, from equation 8.3 we have that S ′ produces output which is computationally

indistinguishable from ViewIs,Ic(k,X,M), and then using equation 8.2 we receive,

RealA,Φ,C,Γ,M1(k) ≈c IdealS,A,Φ,C,Γ,M1,`(k),

and this concludes the proof for the case of single round adversaries.

For multi-round attackers against the circuit compiler, we need to have multiple, se-

quential executions, of the same protocol, as a single execution computes a single circuit

output. Moreover, the attacker is non-adaptive, and corrupts the servers only before the

first protocol execution. By the composition theorem of [Can00], we have that any secure

MPC protocol is also secure against sequential composition, even against adaptive adver-

saries. Using a standard hybrid argument, this gives rise to a simulator, S ′, that simulates

the view of the attacker for all executions, and the proof idea is identical to one given

above: we relate the attacker against the compiler to an attacker against the protocol, and

we use S ′ to construct a simulator S for the circuit compiler.

Our compiler is generic, thus any MPC protocol with an efficient preprocessing phase

could be used to instantiate the above compiler, when adapted to the client-server model.

For instance, in the recent work by Wang et al. [WRK17], the preprocessing phase has
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complexity O(m2k/ log(|Γ|)) and achieves security against m − 1 malicious parties. Note

that, cost minimization might not be the primary goal behind circuit outsourcing, as

the lack of technical expertise is also an important factor. In this setting, the size of

the components built in-house could be proportional to (or greater than) the size of the

outsourced ones.



Chapter 9

Conclusions

9.1 Contributions and future directions

The present dissertation deals with the problem of protecting cryptographic hardware

against physical and hardware Trojan injection, attacks, based on the notions of non-

malleable codes and multi-party computation. Besides that, our techniques find useful

application the problem of establishing secure communication in the presence of man-in-

the-middle adversaries. Our results are briefly summarized below.

• [KLT18a]: We construct efficient non-malleable codes for the class of partial func-

tions, with the additional property of manipulation detection, which guarantees that

any tampered codeword will either decode to the original message, or to ⊥.

• [KLT16]: We introduce the notion of `-more weakly extractable, collision resistant,

hash functions (wECRH) and we use it as the main tool for constructing practically

efficient non-malleable codes for split-state adversaries.

• [KLT18b]: We introduce the notion of leakage-resilient `-more wECRH and we use it

as the main tool for building efficient, continuous non-malleable codes, for split-state

adversaries. In addition, we prove that any `-more wECRH, with some additional

properties, yields efficient, succinct, non-interactive non-malleable commitments.

• [AKM+18]: Finally, we provide a simulation-based definition for the problem of se-

cure circuit outsourcing, ensuring privacy of the circuit’s private memory, even in

the presence of hardware Trojans. As a feasibility result for the problem at study,

we propose a multi-party computation-based compiler that transforms any crypto-
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graphic circuit, into another, that can be securely outsourced, even in the presence

of malicious manufacturers.

The current thesis makes an important step towards bridging the gap between theory

and practice, especially with respect to the notion of non-malleable codes and its appli-

cations in the real-world setting. This is derived from the fact that, besides providing

rigorous mathematical models of security, together with provable secure solutions, the

current thesis develops practically efficient solutions, under realistic security models that

comply with existing attacks. As such, our constructions yield efficient solutions against

memory-tampering attacks on cryptographic hardware, as well as for establishing secure

communication in the presence of adversarial channels. Non-malleable codes with addi-

tional properties, such as manipulation detection, broaden the applicability of the primitive

beyond the scope of tamper-resilient cryptography, thus, investigating new, realistic adver-

sarial models, for which manipulation detection, or similar properties, could be achieved,

as well all exploring other applications of the primitive, are research directions that worth

to be pursued.
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