
 
 
 
 
 
 
 
 
 
 
 

 
 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

 

This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



Machine learning for inductive theorem

proving

Yaqing Jiang

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Centre for Intelligent Systems and their Applications

School of Informatics

University of Edinburgh

2019





Abstract
Over the past few years, machine learning has been successfully combined with au-

tomated theorem provers (ATPs) to prove conjectures from various proof assistants.

However, such approaches do not usually focus on inductive proofs. In this work, we

explore a combination of machine learning, a simple Boyer-Moore model and ATPs as

a means of improving the automation of inductive proofs in HOL Light. We evaluate

the framework using a number of inductive proof corpora. In each case, our approach

achieves a higher success rate than running ATPs or the Boyer-Moore tool individu-

ally. An attempt to add the support for non-recursive type to the Boyer-Moore waterfall

model is made by looking at proof automation for finite sets. We also test the frame-

work in a program verification setting by looking at proofs about sorting algorithms in

Hoare Logic.
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Lay Summary
Theorem proving systems can perform formal verification of mathematical proofs to

prevent unjustified steps and errors in them. One of the major challenges in formal

verification is induction, which is required when reasoning about recursion. This is

encountered in structures such as the loops of programs or natural numbers where

the properties of such infinite types can be proven in a finite number of steps. There

have been systems about the automation of inductive proofs, among which figures the

Boyer-Moore model which we use for our work. Performing proofs by induction is dif-

ficult because intermediate lemmas are often needed to be figured out and proven first

for the main proof to proceed. Machine learning has been successfully used to select

useful lemmas from existing proofs and, combined with automated theorem provers

(ATPs), to prove conjectures in many areas, but with limited support for inductive

proofs. Therefore, we explore a combination of machine learning, the Boyer-Moore

model, and ATPs as a means of improving the automation of such proofs. We evaluate

the framework using a number of inductive proofs previously performed by humans.

Machine learning is used to learn from these proofs and select the pre-proven theo-

rems for Boyer-Moore. In each case, our approach is able to prove more theorems than

running ATPS or the Boyer-Moore tool individually. We also test the framework in a

program verification setting by looking at proofs about sorting algorithms. We extract

mathematical problems from the algorithm and use our system to prove them.
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Chapter 1

Introduction

Over the past few years, machine learning has been successfully combined with auto-

mated theorem provers to prove conjectures from proof assistants by selecting appro-

priate lemmas. One of the limitations of such approaches is that inductive proofs are

usually not supported. In this work, we try to combine machine learning techniques

with an existing model for inductive proofs and investigate possible ways of improving

it. We begin by describing the main involved concepts in the next sections.

1.1 Inductive theorem proving

Recursive data types and function definitions are widely used in theorem proving to

deal with concepts such as natural numbers and lists. Theorems about recursive defi-

nitions often require inductive proofs. However, most theorem provers do not perform

well with goals that require inductive theorem proving. For such cases, the user is

usually required to provide a skeleton of the proof while the automated tools handle

smaller sub-goals, such as those generated by induction.

Automated methods for inductive theorem proving do exist. ACL2 (Kaufmann et al.,

2000), for example, is a system that evolved from the so-called Boyer Moore approach

(which we use in our current work) and is successfully being used for the formal-

ization of industrial problems. However, due to the failure of Cut Elimination (see

Section 2.3.2), such methods often require the manual provision of suitable lemmas to

help with the inductive proof (for example as hints in ACL2). Identifying such lemmas

is a major challenge and the system relies on human expertise and understanding of

1
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the problem and its context.

Proof planning (Bundy et al., 2005) has been applied to guide the proof search mainly

for inductive proofs, which is implemented as the system CLAM and the IsaPlanner

tool (Dixon and Fleuriot, 2003) for the proof assistant Isabelle (Nipkow et al., 2002).

Proof planning usually incorporates lemma discovery techniques, which try to auto-

matically speculate intermediate lemmas based on the productive use of failure. In

this, the cause of failure is analysed and used to direct the search process (Ireland,

1992; Ireland and Bundy, 1996). The lemma discovery techniques include, for exam-

ple, generalisation, which was also incorporated in the original Boyer Moore prover,

but have had relatively limited success.

1.2 Machine learning and lemma selection

Automated theorem provers (ATPs) like Vampire (Kovács and Voronkov, 2013) and

E (Schulz, 2013) and satisfiability modulo theories (SMT) solvers like Z3 (De Moura

and Bjørner, 2008) are increasingly being used to facilitate the development of large

proof corpora in systems such as Isabelle and HOL Light.

In order to use such external tools effectively, machine learning (ML) infrastructures

have been developed to automatically select hundreds of potentially relevant lemmas

whenever the user tries to prove a goal automatically. Sledgehammer (Paulson and

Blanchette, 2010) in Isabelle and HOL(y)Hammer (Kaliszyk and Urban, 2015) in HOL

Light are examples of two such ML systems.

Hammers, the collective name that is sometimes used for the lemma selection systems,

generally focus on the problems that can be proven in one step or on a sub-problem

inside a big proof. For instance, they might be able to prove the subgoals generated

from induction. This then requires users to provide the skeleton of the proofs.

1.3 Improving inductive theorem proving with machine

learning in HOL Light

Our main hypothesis is that machine learning techniques can be used to improve the

existing automated inductive theorem proving model in HOL Light.
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Figure 1.1: Our approach

Our investigation involves the integration of machine learning technology into the

Boyer-Moore model and covers:

Selecting lemmas for proving subgoals: We investigate the potential use of machine

learning to select lemmas that are available in big corpora to support automated

inductive theorem proving. We aim to select suitable lemmas that can then be

used to prove the subgoals that are generated after induction is applied or directly

prove the goal without induction. According to the failure of Cut Elimination

such lemmas are sometimes necessary for the inductive proof (see Section 2.3.2).

Selecting variable for induction scheme: We try to learn the selection of variable for

induction from existing proofs.

The Boyer Moore implementation in HOL Light is used (see Chapter 2). During the

development of our approaches various limitations of the Boyer Moore model were dis-

covered, and attempts were made to solve them. Particularly, as we incorporate proof

strategies that make use of machine learning techniques and ATPs within a Boyer-

Moore style model, we decided to run these in parallel in a new environment we call

a multi-waterfall. This can help circumvent the long waiting time that may arise due

to large number of selected lemmas being provided to the Boyer Moore heuristics.

More importantly, it allows various combination of proof steps, such as induction with

simplification, and so on. Other fixes were also made, e.g. adjusting the heuristics in

the model, which played an important role in supporting our proof techniques. These

approaches are summarised in Fig 1.1.

We evaluate and compare our approaches with both Hammers and the Boyer Moore
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model available in HOL Light. Libraries involving algorithm verifications were also

manually created to test our approach on some formal verification problems. Proof

metrics were also designed to measure the effort of proving theorems, instead of com-

paring the results just against success rate.

We consider the improved Boyer Moore system in HOL Light the main practical out-

comes of our research. Along the way we also developed other tools such as the visu-

alisation that helps us analyse the data.

Although our work is based on HOL Light, most of our ideas and approaches are

generic and extensible. We believe that the multi-waterfall model, the improvements

made to the Boyer Moore model as well as lemma selection process can also be used

as a basis for the developments of automated inductive theorem proving tools in other

proof systems.

1.4 Structure of the thesis

We organise the thesis as follows:

Overview of the theorem proving context (Chapter 2): We review aspects of theo-

rem proving relevant to our work. In particular, inductive theorem proving and

relevant techniques are introduced.

Machine learning methods and their applications in theorem proving (Chapter 3):
Some relevant background information about machine learning techniques and

existing work combining it with theorem proving are discussed.

Description of the methodology and datasets (Chapter 4): The general strategy and

datasets used in our development of Boyer-Moore system are introduced in this

chapter.

Improvements to the Boyer Moore Model (Chapter 5): We introduce the multi-waterfall

model, adding support for more general recursive definitions, and providing the

visualisation e.g. proof attempts of multi-waterfalls.

The Boyer Moore Model with machine learning methods (Chapter 6): We add lemma

selection for use by ATPs as a heuristic, i.e. as a procedure of the Boyer Moore

waterfall model. We investigate the use of machine learning methods to select
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induction variables.

Evaluation and discussion (Chapter 7): The experiments and evaluation of the Boyer

Moore Multi-waterfall model and other methods for proofs involving recursive

types are discussed.

Induction for non-recursive types (Chapter 8): We investigate and add support for

non recursive types and finite sets in Boyer-Moore multi-waterfall model.

Experiments with algorithm verification (Chapter 9): A corpus about sorting algo-

rithm expressed in Hoare logic is created and used to investigate the potential

usefulness of our approach for the formal verification of algorithms.

Conclusion and future work (Chapter 10): The thesis concludes with a summary of

the achievements and limitations, and with pointers to future work.





Chapter 2

Theorem proving

We now give a brief overview of the theorem proving context for our work. We start

with an overview of interactive theorem proving, followed by a description of some

relevant automated theorem provers. We also introduce hammer systems, which use

automated theorem provers to find proofs for interactive theorem proving. In addition,

we review the Boyer Moore model for inductive theorem proving, on which our work

is based. Finally, various systems for inductions are reviewed.

2.1 Interactive Theorem Proving

General purpose interactive theorem provers (ITPs) help users formalize proofs and

check them automatically, typically in some form or other of higher-order logic. The

proof often progresses by the user performing forward and backward reasoning steps.

As is mentioned in Chapter 1, our research is based on HOL Light. It is one of the most

popular ITPs and has been used to verify many famous mathematical theorems1, in-

cluding big projects such as the Kepler Conjecture (the Flyspeck project)(Hales, 2006)

and along the way historical results such as the Jordan Curve theorem.

HOL Light comes with a simple logic core, which allows users to extend its functions

while retaining soundness (Harrison, 1996a). It is also lightweight and the user inter-

actions are implemented as Objective CAML (OCaml) (Leroy et al., 2014) functions,

which allow us to modify their behaviours in a straightforward way. This makes the

1http://www.cs.ru.nl/∼freek/100/

7
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Symbol Meaning

T >, Truth

F ⊥, Falsity

∼ ¬, Negation

/\ ∧, Conjunction

\/ ∨, Disjunction

==> =⇒ , Implication

<=> ⇐⇒ , Logic equality

=> and <= ≥ and ≤
? ∃, Existential quantifier

! ∀, Universal quantifier

[] Empty list

CONS h t List constructor (put element h in front of the list t)

SUC n Successor of the natural number n

Table 2.1: HOL Light syntax

implementation and experimentation with HOL Light somewhat easier than in Isabelle,

for instance, as we have direct access to the underlying proof engine (see Section 2.1.2)

Other ITPs such as Coq, Isabelle, HOL4 (Slind and Norrish, 2008), etc., mentioned

in Chapter 1, may have differences in syntax, logics and purpose, but share many key

features. Since they are not directly relevant to our work, we will focus on HOL Light

and introduce its features. In what follows we refer to the formula we want to prove

as a goal 2. There are two ways of proving a goal: by conversions or creating a goal

stack and reducing it with tactics.

2.1.1 HOL Light Syntax

We briefly introduce HOL Light’s syntax in this section. It uses ASCII approximations

for propositional connectives and quantifiers as shown in Table 2.1. The last two are

the constructors for lists and natural numbers, which are given as recursive datatypes

in HOL Light (see Section 2.3).

2Actually in the HOL Light manual, only the statement on the goalstack is called a goal, others are
called terms, but we think it is easier here to just call both of these instances goals.
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τ (HOL Light types) :: =

| bool | ind primitive types (boolean and individuals)

| α variable type

|τ⇒ τ function type

term :: =

| c constant

| v variable (identifier)

| f t function application

| λ x. t function abstraction

theorem ::= term list (assumptions) ` term (conclusion)

Figure 2.1: HOL Light abstract syntax

The structure of HOL Light types, terms, and theorems is revealed in Fig 2.1. The

basic component of HOL Light terms are variables and constants. Then function and

predicate applications are both represented as combinations. Finally, lambda abstrac-

tions are pairs of bound variables and bodies, which are both terms. Quantified terms

(e.g. ∀x. P(x)) are combinations of the quantifier, which is treated as a predicate, and

lambda abstractions. Each theorem consists of a list of terms, which are assumptions

and a term as the conclusion.

2.1.2 Edinburgh LCF

HOL Light is an LCF system (Gordon et al., 1979). In LCF, types (in theorem proving

context), terms, formulae, and theorems are represented by types in the ML metalan-

guage (e.g. OCaml for HOL Light). The logical inference rules are implemented as

ML functions.

The benefit of LCF systems is that all theorems have a special type (e.g. thm in HOL

Light), which is protected (i.e. private type in OCaml) and can only be accessed by

the functions from the kernel. New theorems must be created via the inference rules

implemented as kernel functions, i.e. their proofs are verified by the kernel. This allows

the user to guarantee that a theorem is proven by checking its type (thm), so there
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is no need to store the whole proof of a theorem, which may be expensive storage-

wise. HOL Light’s kernel is small: 672 lines, which makes it practical for the user to

investigate further and create trust in it.

In addition, with the underlying OCaml environment, one can compose custom pro-

cedures on top of the kernel functions to obtain higher-level proof procedures, which

provides high extensibility and convenience.

With the features mentioned above, large corpora of proofs can be developed using the

customised proof procedures known as conversions and tactics.

2.1.3 Conversions

A conversion transforms a goal t to an equational theorem of the form ` t = t ′. We can

also prove t with a series of conversions by reducing it to true. In our work, we mainly

work with the following conversions:

Simplifiers These are available for rewriting in HOL Light. There are two main sim-

plifiers: SIMP_CONV performs conditional rewriting while REWRITE_CONV does

not. They use an efficient implementation of lexicographic term ordering, which

can give normalisation under associative and commutative laws with appropri-

ate rules (Harrison, 2016). However, looping or very long search time may still

result, especially when too many rewrite rules are given. These methods will

be used as the Simplify Heuristic in our Boyer-Moore implementation (see Sec-

tion 2.5.2).

Decision procedures HOL Light provides decision procedures that can prove goals

in some restricted domains. For example, ARITH_RULE solves linear arithmetic

goals, and TAUT proves propositional tautologies. The latter is used as our Tau-

tology Heuristic (see Section 2.5.2).

Automated procedures There are various automated proof procedures: MESON (Har-

rison, 1996b) and METIS (Hurd, 2003) try to prove goals using first-order rea-

soning based on techniques such as model elimination (Loveland, 1968) and

resolution (see Section 2.2). They can also have lemmas as input. They are more

powerful than simplifiers when doing proof search but can easily get stuck when

a large number of lemmas are given. SET_RULE deals with goals about set the-

ory by first simplifying them with set-theoretic definitions, followed by MESON,
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which tries to prove any remaining goal.

2.1.4 Tactics

As mentioned, the other approach to theorem proving is to put the goal in a stack,

like an agenda of problems for the user to solve. It is sometimes more natural to

prove backwards, simplifying a goal or splitting it into simpler ones until they are

all eliminated (proven), especially when the goal is complicated. A tactic takes in a

goal (from the stack), processes it in the ways just mentioned, and adds the resulting

subgoals to the goal stack. Meanwhile, it keeps track of the information that will be

used to construct a proof of the original goal.

Many tactics have their corresponding conversions. For instance, REWRITE_TAC and

SIMP_TAC correspond to REWRITE_CONV and SIMP_CONV, but instead of outputting a

converted theorem, these two tactics attempt to return a simplified goal; MESON_TAC

and METIS_TAC try to directly finish the current goal. Inductive proofs are usually

complicated and involve the generation of subgoals, so they are usually accomplished

with tactics.

In HOL Light, a theorem can be proven by tactics in two ways: Either with the prove

function, which takes a formula and tactic as input and returns a theorem; Or with

the g function to create a goal stack and then using the e function to apply tactics in

succession. Normally, it is easier for the user to prove a goal with g and e functions

interactively. After that, packaging its proof with the prove function and tacticals will

make it more compact and readable, which is particularly suitable for the development

of large libraries.

2.1.5 Conversionals and tacticals

When the user wants to apply several conversions in succession, it would be tedious to

get the converted term from the theorem generated by each conversion i.e. get t ′ from

` t = t ′ and then apply the next conversion to t ′ repeatedly. The conversional THENC

can compose a series of conversions to produce a single conversion and directly apply

it to t.

Similar to conversionals, tacticals help users to manipulate tactics and form a compact
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proof. For instance, THEN connects tactics that are applied to the goal stack succes-

sively. A tactic may perform a goal split and result in multiple subgoals. In this case,

the tactics after THEN will be applied to all subgoals, while THENL can take in a list

of tactics and apply them to each subgoal respectively.

Note that although tactics are usually more useful to users during interactive proofs,

it is easier to automate proofs with conversions. This is because they can prove theo-

rems independently of the goalstack enabling easy composition to prove complicated

lemmas in automated systems. Other conversions about induction will be introduced

in Section 2.3.1 when we describe the topic in more detail.

2.1.6 Clausal Form

Many techniques used in our work depend on statements being in clausal form, so we

briefly introduce it here. A clause is a disjunction of literals, i.e. L1∨L2∨ ...∨Ln. A

literal Li is an atomic formula or its negation.

For example, m+n= 0 =⇒ m= 0∧n= 0 becomes two clauses: ¬(m+n= 0)∨m= 0

and ¬(m+n = 0)∨n = 0 when converted to clausal form. Clauses have no quantifiers,

and universally quantified variables become free variables. Existentially quantified

variables are replaced by Skolem functions or constants (Harrison, 2009, Section 3.6) .

2.2 ATP and SMT solvers

Automatic theorem provers (ATPs) try to prove logical statements automatically. Most

ATPs use resolution (2.1) and variants based on it, where φ is the most general unifier

(mgu) for all Ps and P′s. The unifier for two formulae P and P′ is the substitution

that has P[φ] ≡ P′[φ] (Bundy, 1983, Section 5.1.2). Resolution in refutation systems

is complete for first-order logic. Therefore, ATPs are mainly intended for first order

problems.

(C∨P1∨ ...∨Pm) (C′∨¬P′1∨ ...∨¬P′n)
(C∨C′)φ

(2.1)

In order to reduce the search space of resolution, paramodulation is designed, which

treats equality as part of the logic language and is shown as (2.2), where φ is the mgu
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of T and T ′. Superposition extends paramodulation, which restricts the inference with

respect to term ordering so that the proof search space is further reduced (Robinson

and Wos, 1969).

C[T ′] T = S∨D (or S = T ∨D)

(C[S]∨D)φ
(2.2)

The refutation approach tries to prove a conjecture by adding its negation to the as-

sumptions and then checking the unsatisfiability of these formulae by deriving false

(the empty clause) i.e. if these formulae are unsatisfiable then we can prove that the

conjecture is the logical consequence of these lemmas and assumptions.

2.2.1 METIS

METIS is an ATP which can work as a first order proof procedure in ITPs (Hurd, 2003),

and has been integrated in Isabelle, HOL4 and HOL Light. It runs different proof

procedures such as model elimination (Loveland, 1968) and resolution and allows them

to cooperate by sharing the clauses.

In addition, an “LCF-style” logical kernel is implemented to provide an interface that

translates the proof found by these proof procedures to ITP proofs. This kernel includes

five primitive inference rules that are complete for the first order logic it uses and also

ensures that theorems can only be proven with these rules (or the procedure consisting

of them) like the LCF kernel. Meanwhile, the ATP proof is a chain of these rules

and can be easily translated by mapping the corresponding ITP procedures to these

inference rules.

2.2.2 Vampire

Vampire is a powerful ATP (Kovács and Voronkov, 2013) and a winner of several

CASC competitions (Sutcliffe, 2016). It is a theorem proving system that uses infer-

ence rules that include resolution, factoring, superposition, etc. It has a unique limited

resource strategy that tries to adjust proof search to meet the time and memory limit,

and is especially efficient for short time limits, which makes it suitable for use as an

assistant for ITPs (Kovács and Voronkov, 2013). It has been used in systems like

Sledgehammer (Paulson and Blanchette, 2010) and HOL(y)Hammer (Kaliszyk and
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Urban, 2015). Redundancy elimination technique helps Vampire to reduce the search

space, e.g. by removing clauses that are tautologies.

In addition, Vampire has other features such as consequence elimination, which re-

moves the formulae that are implied by others in a set of formulae and program analy-

sis, which automatically generates properties of loops for programs written in a subset

of the programming language C.

2.2.3 E prover

E prover is a first order ATP that also uses approaches such as superposition and proof

by refutation. It is highly flexible and has a number of search control strategies, which

may significantly affect its performance (Schulz, 2013). Such strategies include the se-

lection of term orderings, inference literals, and the order in which clauses are picked

for processing. There are also automatic modes that analyse the problem and choose

the strategies. HOL(y)Hammer includes a wrapper of E, Epar, which tries 14 of the

aforementioned strategies successively with a short time slice for each one (Urban,

2013). It outperforms the old auto-mode of E 1.4 and has a performance close to Vam-

pire 2.6 when tested with Flyspeck theorems (see Section 2.4) (Kaliszyk and Urban,

2014).

2.2.3.1 Z3

Satisfiability modulo theories (SMT) solvers are also automatic tools (Harrison, 2009,

p.449–450). In SMT problems, constraints are given and the solvers check their satisfi-

ability. They extend the boolean satisfiability (SAT) by adding first order theories such

as equality reasoning, arithmetic, fixed-size bit-vectors, arrays, etc. Different parts of

a problem containing these theories are processed separately with certain solvers and

therefore are good at problems in domains such as arithmetic. Z3 developed at Mi-

crosoft Research (De Moura and Bjørner, 2008) is a state-of-the-art SMT solver, and

is often used for software verification. It also deals with first order problems in TPTP

syntax (Section 2.4.1) like Vampire and E. However, Z3 does not handle TPTP prob-

lems well, particularly when it is required to output the used lemmas after checking the

validity of the problem (Kaliszyk and Urban, 2014), a feature which is indispensable

for hammers (see Section 2.4).



2.3. Recursive data type and Induction 15

There are many other ATPs, but we only cover the ones that are used in our project.

In the rest of this thesis, both ATPs and SMT solvers will be referred to as ATPs for

convenience. Modern ATPs are more powerful than HOL Light’s MESON and METIS

partly due to the compromise of these automated procedures on LCF support. For

instance, an ATP can often accept hundreds of lemmas to try to prove a goal. Irrelevant

lemmas can often be sent to ATPs together with the useful ones and a proof will still be

found. Finally, ATPs will generate a proof, which indicates which lemmas are actually

used. The number of lemmas used is often small enough that HOL Light can use them

to reconstruct its own proof of the goal automatically to guarantee the proof accepted

by the LCF kernel, which will be introduced in Section 2.4.1.

2.3 Recursive data type and Induction

Recursive data types are usually used in inductive theorem proving. For instance,

the natural numbers can be represented and defined as 0,s(0),s(s(0)), ..., where any

numbers can be represented as the constant 0, called the bottom object, or by applying

the successor function s, called the constructor, recursively to 0.

Inductive inference involves the use of particular logical rules to prove properties of

recursive datatypes that are not otherwise provable (Bundy, 2001). The induction rule

for natural numbers where s(n) is the successor of n is given as (2.3):

P(0),∀n. P(n) =⇒ P(s(n))
∀x. P(x)

(2.3)

Induction is also applied to more general recursively defined data types in a process

known as structural induction. A typical example is the list type, which will be often

used in this thesis. A list is either empty ([]) or constructed by adding an element,

usually called the head to another list, the tail, using the cons operation. The induction

rule for lists can be given as (2.4):

P ([]),∀ head tail.P (tail) =⇒ P(cons head tail)
∀list.P (list)

(2.4)

Applying the induction rule allows us to break a goal about a particular property P into

new subgoals, which come from the hypotheses of the rule. They are known as “base”
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let ADD_SYM = prove

(‘!m n. m + n = n + m‘,

INDUCT_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES]);;

(a) Statement and proof of ADD SYM
‘!n. 0 + n = n + 0‘

(b) Subgoal from induction (base case)
0 [‘!n. m + n = n + m‘] (induction hypothesis)

‘!n. SUC m + n = n + SUC m‘ (induction conclusion)

(c) Subgoal from induction (step case)

Figure 2.2: Inductive proof for ADD SYM

and “step” cases. The base case (e.g. P([])) claims that P holds for the minimal struc-

ture of the definition. The step case usually assumes that if P holds for any substructure,

e.g. P (tail), then P also holds for the whole structure, e.g. “P (cons head tail)”.

2.3.1 Induction in HOL Light

In HOL Light, a recursive data type always comes with a corresponding induction rule.

For natural numbers, for instance, (2.3) is in the form of the theorem num_INDUCTION

shown as (2.5).

∀P. P 0∧ (∀n. P n =⇒ P (s n)) =⇒ (∀n.P n) (2.5)

An example of an inductive proof in HOL Light is that of ADD_SYM (the commutative

property of addition for natural numbers), whose statement and proof are shown in

Fig 2.2a. The proof contains two steps:

1. Perform induction on m and generate subgoals shown as Fig 2.2b and Fig 2.2c.

2. Prove the subgoals with rewriting. ASM_REWRITE_TAC writes the goal just like

REWRITE_TAC, except that it also uses the assumption (∀n. m+n= n+m), which

is known as the induction hypothesis.

In the first step, the outermost variable in the goal is always matched with the induction

rule, i.e. m in this example. This can be used to control the variable for induction.

However, the user is responsible for choosing such variables, which can be tricky when

there are two or more variables in the goal, e.g. to choose between m and n here. Users
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also need to apply the induction rule corresponding to the variable type. For instance,

INDUCT_TAC only performs induction on a natural number, and LIST_INDUCT_TAC is

for lists. This is not always necessary in other systems like Isabelle and HOL4, where

it can be automatically figured out based on the type of the variable.

Note that there could also be alternative induction rules, in addition to the one that

corresponds to the type definition, even for the same data type. For instance, (2.6)

is another induction rule for list type in the formalization of Hilbert’s Foundations of

Geometry (see Section 4.3.1) where (::) for readability denotes the cons operation as

an infix operator. The choice of variable and rule for induction is called an induction

scheme.

∀P. P []∧ (∀x. P [x]∧ (∀y ys. P (y :: ys) =⇒ P(x :: y :: ys)) =⇒ (∀xs. P xs) (2.6)

Aside from the difficulty in choosing a suitable induction scheme, users still need to

prove the subgoals from induction or apply induction repeatedly. These are some of

the reasons why the automation of induction is a challenging area.

2.3.2 The failure of Cut Elimination

There is a theoretical limitation on the automation of induction that arises due to the

failure of Cut Elimination (Gentzen, 1969). The cut rule (2.7) allows us to prove the

goal ∆ with additional lemma ψ, which is called the cut formula and then to eliminate

ψ by proving ψ from Γ. Since ψ can be any formula, using the cut rule results in

infinite branches for proof search.

ψ,Γ ` ∆ Γ ` ψ

Γ ` ∆
(2.7)

The Cut Elimination Theorem shows that for first-order logic, the cut rule is redundant

(Gentzen, 1969). However, Kreisel showed that cut rule is necessary for inductive

theories (Kreisel, 1965). For this reason, sometimes extra lemmas required by an in-

ductive proof may not be available and need to be proven by induction themselves.

Lemma speculation has been used to handle this issue in systems such as λCLAM and

IsaPlanner (see Section 2.5.6).
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2.4 Using ATPs to find ITP proofs

As already mentioned, in addition to various built-in proof procedures, ITPs now in-

corporate so-called hammers, which act as intermediates between powerful, external

ATPs and internal proof procedures. With the help of machine learning, they allow

users to reconstruct complex formal proofs within ITPs with just one click. They usu-

ally consists of four parts (Blanchette et al., 2016):

• A lemma selection module to filter relevant lemmas that can be used by ATPs

from a large number of results available in the library. More details will be given

in Section 3.3.1.

• A translation module that translates ITP problems to a first order syntax accept-

able to ATPs, as described in Section 2.4.1.

• Links to external ATPs i.e. send goals to ATPs and get lemmas used by them if

a proof is found.

• A proof reconstruction module that reconstructs the output of ATPs to corre-

sponding ITP proofs.

The workflow of a typical hammer is shown as Fig 2.3. After (hundreds of) lemmas

relevant to the goal are selected, they are translated, together with the goal, to an ATP

problem (e.g. using the TPTP syntax, described in Section 2.4.1). ATPs are then called

in parallel to find a proof. If a proof is found, the lemmas that they used are sent back

to the ITP, which then attempts to reconstruct the proof internally using its own proof

procedures.

Sledgehammer is the original tool that started the whole effort: it is integrated into the

Isabelle proof assistant and carries out lemma selection using a combination of rele-

vance filtering MePo (Meng and Paulson, 2009) and machine learning methods (Kühlwein

et al., 2013), including Naive Bayes (see Section 3.3.1).

Heavily inspired by Sledgehammer, HOL Light now includes HOL(y)Hammer, which

also uses machine learning for lemma selection. In our work, we incorporate ele-

ments from its latest released version3, such as its feature extraction algorithm (see

Section 3.3.2). In Kaliszyk and Urban’s experiment with 14185 Flyspeck theorems,

39% of the theorems were proven with a combination of 14 different machine learn-

3http://cl-informatik.uibk.ac.at/software/hh/hh-0.13.tgz
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ITP problem
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ATP problem
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ATP proof:
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Figure 2.3: The workflow of a hammer

ing methods (some are the same methods with different parameters) and three ATPs

(Vampire, Z3 and a modified version of E) within 30 seconds (Kaliszyk and Urban,

2014).

2.4.1 Translation between ITPs and ATPs

In order to use ATPs to solve ITP problems, translations are required. Usually, sev-

eral ATPs may be used to generate the proof and they each have their own particu-

lar input format, so a unified format can avoid the need for multiple translators. In

HOL(y)Hammer, HOL Light formulae are translated to the “Thousands of Problems

for Theorem Provers” (TPTP) format (Sutcliffe, 2009), which is supported by many

ATPs. The TPTP syntax is shown as the BNF in Fig 2.4 4, where only the entries used

in the translation are given.

For instance, the formula ∀x. x < x+1 translated to TPTP syntax by HOL(y)Hammer

is:

![X]: p(s(bool,l_(s(num,X),

s(num,p_(s(num,X),

s(num,numeral(s(num,bit1(s(num,u_0))))))))))

4http://tptp.cs.miami.edu/TPTP/SyntaxBNF.html



20 Chapter 2. Theorem proving

%----FOF formulae.

<fof_formula> ::= <fof_logic_formula> | <fof_sequent>

<fof_logic_formula> ::= <fof_binary_formula> | <fof_unary_formula> |

<fof_unitary_formula>

<fof_binary_formula> ::= <fof_binary_nonassoc> | <fof_binary_assoc>

<fof_binary_nonassoc> ::= <fof_unit_formula> <nonassoc_connective>

<fof_unit_formula>

<fof_binary_assoc> ::= <fof_or_formula> | <fof_and_formula>

<fof_or_formula> ::= <fof_unit_formula> <vline> <fof_unit_formula> |

<fof_or_formula> <vline> <fof_unit_formula>

<fof_and_formula> ::= <fof_unit_formula> & <fof_unit_formula> |

<fof_and_formula> & <fof_unit_formula>

<fof_unary_formula> ::= <unary_connective> <fof_unit_formula> |

<fof_infix_unary>

%----Atomic formula

<fof_unit_formula> ::= <fof_unitary_formula> | <fof_unary_formula>

<fof_unitary_formula> ::= <fof_quantified_formula> | <fof_atomic_formula> |

(<fof_logic_formula>)

<fof_quantified_formula> ::= <fof_quantifier> [<fof_variable_list>] :

<fof_unit_formula>

<fof_variable_list> ::= <variable> | <variable>,<fof_variable_list>

<fof_atomic_formula> ::= <fof_plain_atomic_formula> |

<fof_defined_atomic_formula> |

<fof_system_atomic_formula>

<fof_plain_atomic_formula> ::= <fof_plain_term>

<fof_plain_atomic_formula> :== <proposition> | <predicate>(<fof_arguments>)

%----FOF terms.

<fof_plain_term> ::= <constant> | <functor>(<fof_arguments>)

%----Arguments recurse back to terms (this is the FOF world here)

<fof_arguments> ::= <fof_term> | <fof_term>,<fof_arguments>

<fof_term> ::= <fof_function_term> | <variable>

<fof_function_term> ::= <fof_plain_term> | <fof_defined_term> |

<fof_system_term>

%----Connectives

<fof_quantifier> ::= ! | ?

<nonassoc_connective> ::= <=> | => | <= | <˜> | ˜<vline> | ˜&

Figure 2.4: TPTP abstract syntax
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As can be seen TPTP uses a prefix notation so, for example, the variable ‘x:num‘ and

the predicate a< b are represented as “s(num,X)” and “p(s(bool,l (s(num,a),s(num,b))))”

respectively. Terms are represented recursively taking type information as arguments

(i.e. num), see <fof_arguments> in Fig 2.4.

In order to let ATPs support some aspects of higher order logic, a suitable translation

to first order logic is necessary before translation to TPTP syntax. For instance, a

translation for EQ EXT from HOL Light where functions are universally quantified

over is (Kaliszyk and Urban, 2014):

EQ_EXT: !f g. (!x. f x = g x) ==> f = g

EQ_EXT(Translated):!f g. (!x. happ f x = happ g x) ==> f = g

In the original theorem, f and g are polymorphic typed functions. After the transla-

tion, they become arguments and the only function is the newly introduced constant

happ. The theorem is then in first order, and is ready to be translated to TPTP syntax

afterwards. The changes in syntax (Fig 2.1 vs Fig 2.4) and other steps such as the

aforementioned conversion to first order logic make it challenging to translate a HOL

Light problem to an ATP acceptable version.

Note that all the lemmas are labelled (with their names) before they are sent to ATPs.

As long as the ATPs find a proof, these labels will be sent back for the reconstruction

of ITP proofs. This means that only lemma names are available for reconstruction.

Therefore the reconstruction is usually a group of attempts with the methods in ITPs,

such as the conversions and tactics for simplification in HOL Light. For instance,

HOL(y)Hammer uses REWRITE TAC, SIMP TAC, and MESON TAC 5 for recon-

struction. METIS TAC was added later when building our own system. We remark

here that none of these tactics can guarantee the success of reconstruction. The main

reason is that tactics are still slower than ATPs and may not find the proof within the

time constraints usually imposed during interactive theorem proving.

2.5 Systems for induction

Originally the Boyer-Moore model covered some of the key components of an auto-

mated theorem prover for inductive proofs (Boyer and Moore, 1979). It focused on

5The HOL(y)Hammer version we acquired was for the old version of HOL Light, where METIS was
not available.
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recursive data types and functions. Many of its techniques are still in use for research

on automated inductive proofs, e.g. ACL2, which was mentioned in Chapter 1.

Our work uses a Boyer-Moore system implemented in HOL-Light (Papapanagiotou

and Fleuriot, 2018), which is itself a reimplementation of Boulton’s work in HOL90

(Boulton, 1992). An important advantage of this implementation in HOL Light, par-

ticularly in comparison with more sophisticated evolutions of the Boyer-Moore ap-

proach on ACL2, is that it is lightweight with simple structures and easy, direct ac-

cess to the inner workings. This makes it relatively easy to manipulate and adjust the

Boyer-Moore waterfalls and heuristics, and analyze the effects of machine learning

thoroughly.

2.5.1 The Boyer-Moore Model

The Boyer-Moore Model revolves around the notion of a waterfall, as shown in Fig. 2.5.

In this, conjectures (or proof goals) are poured at the top and then fall through a series

of procedures, called heuristics. Each heuristic in the waterfall tries to either prove or

simplify the goal and has one of the following outcomes:

• The goal may be proven, in which case it “evaporates”.

• The goal may be simplified or transformed, and sometimes split into small sub-

goals. In this case, the transformed goal (or subgoals) is poured from the top of

waterfall again.

• The goal or subgoal is disproved, where the whole proof fails.

• The goal cannot be processed. For instance, a heuristic tries to simplify the goal,

but there are no relevant rules to apply. In this case, the goal remains unchanged,

and the heuristic has “failed”.

Induction is applied when all heuristics have failed, and the goals have trickled down

to the pool at the bottom of the waterfall. Applying the appropriate induction rule

results in new sub-goals, i.e. the base and step cases of the induction rule, which are

then poured over new waterfalls again. This process is repeated recursively until all

subgoals are proven, as shown in Fig. 2.6, in which case a proof of the original goal is

reconstructed and proven. If any subgoal is determined to be unprovable, the original

goal cannot be proven in this model. Although very rare, the induction procedure may
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Figure 2.5: Diagram of the Waterfall Model

be unable to proceed, e.g. fail to find a variable for induction, which also makes the

model fail to prove the goal.

In some cases, this model may not terminate. Firstly, looping can result from endlessly

pouring the subgoals on top of the waterfall , although some of these situations have

been solved (Papapanagiotou and Fleuriot, 2018). Secondly, the process may get stuck

at some heuristic, e.g. those that involve simplifiers.

2.5.2 The heuristics

All heuristics have the same input and output structure, so the organisation of waterfalls

can easily be adjusted in a modular way. We now introduce the heuristics in the Boyer-

Moore Model together with some of the additional heuristics from the HOL Light

implementation (Papapanagiotou and Fleuriot, 2018) (Papapanagiotou, 2007).

The Clausal Form heuristic This transforms the goal to Clausal Normal Form (CNF)

(see Section 2.1.6), which other Boyer-Moore heuristics take advantage of.
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The Simplify heuristic This applies rewriting to the goal in order to simplify or prove

it using function definitions and rewrite rules. This is implemented by the con-

ditional rewriting function SIMP_CONV in HOL Light (see Section 2.1.3). Note

that termination is not guaranteed and depends on the selection of rewrite rules.

The Substitution heuristic This simplifies the goal in clausal form by eliminating

negations of equalities between a variable and a term. For instance, suppose in

the clause 2.8, x does not occur in L1, L2, L3, or t. This heuristic simplifies it to

(2.9) by substituting t for x in P(x) and F can then be removed.

L1∨¬(x = t)∨L2∨P(x)∨L3 (2.8)

L1∨F ∨L2∨P(t)∨L3 (2.9)

The Equality heuristic This is similar to the Substitution heuristic, but instead of

looking for equality between a variable and a term, the term that is not an ex-

plicit value template is eliminated. An explicit value template is a non-variable

term composed of only the bottom objects or constructor applications (to bottom

objects or variables) e.g. 0 and s(0). For instance, n×0 is not an explicit value

template, so ¬(n× 0 = 0)∨ (n× 0)+ 0 = 0 is simplified to F ∨ 0+ 0 = 0 and

finally to 0+0 = 0.

The Generalization heuristic This attempts to propose a stronger goal than the cur-

rent one, which may be easier to prove. One of the approaches is to elimi-

nate minimal common subterm. For instance, in (m× n) + n = n + (m× n),

m×n occurs on both sides of the equation, so the equation can be generalised to

n′+n = n+n′, which implies the original goal, does not affect its validity, but is

simpler. Another approach is to generalise variables apart. For example, (2.10)

(i.e. the length of the list from appending two same lists x is equal to summing

up the lengths of two lists x) requires generalisation, because x appears in both

recursion and non-recursion position, which interferes with recursion analysis

(see Section 2.5.4). It can be generalised to (2.11) where x is renamed so that the

variable for induction can be chosen. However, there is a risk that such a process

over-generalises the goal and makes it unprovable.

LENGT H (APPEND x x) = LENGT H x+LENGT H x (2.10)

LENGT H (APPEND x′ x) = LENGT H x′+LENGT H x (2.11)
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The Irrelevance heuristic This tries to eliminate irrelevant literals from the goal in

clausal form. For instance, with the generalization heuristic, (2.12) is generalised

to (2.13) where p = [] is no longer relevant because it has no common variables

with other literals. In this case, it can be replaced by F , i.e. removed from the

clause (see (2.14)). Unfortunately, this heuristic is also unsafe and may remove

literals that are actually relevant.

p = []∨REV ERSE (APPEND (REV ERSE p) [a])

=CONS a (REV ERSE (REV ERSE p))
(2.12)

p = []∨REV ERSE (APPEND l [a]) =CONS a (REV ERSE l) (2.13)

F∨REV ERSE (APPEND l [a]) =CONS a (REV ERSE l) (2.14)

The Tautology heuristic This is a propositional tautology checker which is added in

the HOL Light implementation. Note that the atomic formulae do not have to be

propositional, i.e. a = 0∨¬(a = 0) can also be proven.

The Setify heuristic This eliminates redundant literals, which often result from ap-

plying the Simplify heuristic e.g. A∨B∨A is simplified to A∨B. This is added

in the HOL Light implementation because SIMP_CONV does not perform such

elimination.

The MESON heuristic The HOL Light implementation of Boyer Moore has MESON

as a heuristic. However, note that it can probably run for a long time without

finding a proof when given rewrite rules and definitions.

As mentioned, many heuristics rely on having formulae in clausal form. Therefore,

the Boyer-Moore Model takes quantifier-free formula as input and converts it to CNF

before trying other heuristics.

2.5.3 The Shell Principle

The Shell Principle was originally used to introduce new recursive datatypes in the

Boyer-Moore Model (Boyer and Moore, 1979). Although HOL Light supports recur-

sive data types, the shell properties are stored as theorems separately, i.e. not bound

directly to the data types as part of the Boyer-Moore tool. The Shell Principle is still

needed in the HOL Light implementation of the Boyer Moore Model to give access to

important properties of data types that are needed to run the waterfall in a systematic
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Name “num”

Type variable(s) [](none)

Bottom Object 0

Constructor SUC

Induction rule ` ∀P. P 0∧ (∀n. P n =⇒ P (SUC n)) =⇒ (∀n. P n)

Table 2.2: Shell for the natural number type

Name “list”

Type variable(s) [A]

Bottom Object []

Constructor CONS

Induction rule ` ∀P. P []∧ (∀a0 a1. P a1 =⇒ P (CONS a0 a1)) =⇒ (∀x. P x)

Table 2.3: Shell for the list type

way. Some important properties that are frequently used are shown in Table 2.2 and

Table 2.3 for natural numbers and lists respectively.

2.5.4 Induction procedure

Boyer-Moore uses an additional procedure at the pool of the waterfall to:

1. Choose the appropriate variable for induction.

2. Apply induction rule based on the type of the selected variable and generate

subgoals.

The choice of induction variable is based on the definitions of recursive functions and

is known as recursion analysis (Boyer and Moore, 1979). This prefers the variable that

occurs in a recursion argument position for each recursive function. For instance, the

definition of addition is shown as (2.15), and its first argument is recursive. As shown

in the proof in Fig 2.2a, the first argument is often used for induction.

(∀n. 0+n = n)∧ (∀m n. s(m)+n = s(m+n)) (2.15)

In order to perform recursion analysis, it is clear that recursive function definitions

are required. Note that in the HOL Light implementation, this heuristic only supports
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primitive recursive definitions (Boulton, 1992), which means there can be only one

recursion argument position in a function definition, like (2.15). The induction rule is

provided by the shell, so it is fixed for each data type.

2.5.4.1 Destructor-style and constructor-style definition

The definition shown in (2.15) is called constructor-style, where constructor is used

in the recursion argument position. In some Boyer-Moore implementations such as

ACL2, destructor-style definition is used. For instance, the definition of addition can

be (2.16), where p(n) is the predecessor function defined as (2.17). Most recursive

function definitions in HOL Light are constructor-style.

x+ y = IF x = 0 T HEN y ELSE s(p(x)+ y) (2.16)

p(n) =

0, n = 0

m, n = s(m)
(2.17)

2.5.5 Extensibility

Based on the above, the system configuration can be tailored to deal with different

problems. The most common customizations are the following (Papapanagiotou and

Fleuriot, 2018):

• As shells are an essential part of the Boyer-Moore model, when we want the sys-

tem to deal with a particular datatype, the corresponding shell must be prepared,

with all the properties provided, e.g. like in Table 2.3.

• The rewrite rules for the Simplify heuristic can be chosen by the user to improve

its effectiveness towards proving the subgoals.

• The order and combination of heuristics can also be adjusted for different situ-

ations. For instance, some heuristics are unsafe and may render the goal more

complicated or result in an infinite loop. Apart from this, new heuristics can

be made and added, which may help the system to deal with certain kinds of

problems.
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2.5.6 Other systems for induction

There are some other systems for the automation of inductive proofs.

CLAM (and the higher-order version λCLAM) are tools for automated theorem prov-

ing and particularly in inductive theorem proving. They both use the Proof Plan-

ning (Bundy, 1988, 1996) technique, which provides a global control strategy

proof search. One of its main technique is rippling (Bundy et al., 2005), which

guides the rewriting process. Rippling is based on the observation that the parts

of the induction conclusion which differ from the induction hypothesis (wave-

fronts) can ripple-out of the induction conclusion so that the remaining part is

identical to the induction hypothesis. Sometimes, additional lemmas need to be

introduced, with methods like lemma speculations and generalisations.

IsaPlanner (Dixon and Fleuriot, 2003) is a generic framework for proof planning in

Isabelle. It allows proof planning to take advantages of the powerful tactics in

Isabelle such as the simplifier. Dynamic rippling (Smaill and Green, 1996) is

used in IsaPlanner, so it is suitable for higher order logic (Dixon and Fleuriot,

2004). The combination with induction and lemma speculation improves its

ability to automate proofs in Isabelle. It can also generate Isar proof scripts.

HipSpec (Claessen et al., 2012), is a system that derives and proves properties about

the functional programming language Haskell automatically. It uses a bottom-

up approach to try and generate theorems from the source file (the definitions

in a program) and use them to prove more complicated properties about the

program. As a theorem prover, when tested against the IsaPlanner benchmark

(see Section 4.3.3), it also has a competitive performance (80 of the 85 theorems

proven) compared with ACL2 Sedan (Chamarthi et al., 2011) (74 proven), and

Zeno (Sonnex et al., 2012) (82 proven), which is also an automated proof system

for Haskell.

CVC4 with induction Reynolds and Kuncak developed an approach to extend SMT

solvers with induction support and implemented it in CVC4 (Reynolds and Kun-

cak, 2015). It performs inductive strengthening on the conjecture about recursive

datatypes. It also has a subgoal generation module which generates and proves

relevant subgoals which are required to prove the conjecture. When tested with

933 benchmarks (331 theorems in three encodings) constructed from the bench-

marks for IsaPlanner, Clam, Hipspec, etc., it improved the success rate of CVC4
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from 17% to 67% after adding induction support and up to 78% with the subgoal

generation module.

Superposition with induction A system that supports structural induction as an ex-

tension to superposition-based provers also exists (Cruanes, 2017). Strategies

such as heuristics for selecting induction variable and generalisation are used,

which allow the prover to do induction, while retaining the performance in first-

order reasoning. When testing with the Tons of Inductive Problems (TIP) bench-

mark (Claessen et al., 2015) (484 theorems) and given 30 seconds for each prob-

lem, it had a similar performance to CVC4 with induction support (Reynolds and

Kuncak, 2015) (139 vs 138 proven), but a little weaker than the special mode of

CVC4 (160 proven), which uses a bottom-up approach similar to HipSpec.

ACL2 A Computational Logic for Applicative Common Lisp (ACL2) is both a logic

and programming language and a theorem prover made in Common LISP (Kauf-

mann et al., 2000). It is the latest system based on the Boyer-Moore model with

a number of improvements and has been successfully applied in industry e.g.

the verification of microcode programs for complex arithmetic processors and

the kernel of the floating-point division operation on the AMD microprocessor

(Brock et al., 1996). It allows users to create program functions, and prove prop-

erties on them in untyped first-order logic where all variables are indicated as

universally quantified.

ACL2 proves theorems with a high degree of automation. Meanwhile, it allows

users to advise the theorem proving process with “hints”, which are intermediate

lemmas like the cut formula (see Section 2.3.2) to help ACL2 resolve failures.

As expected, it is sometimes challenging for the user to provide such hints.

Compared with the HOL Light implementation that we use in our investiga-

tion, ACL2 is more powerful and has more support for special proof features

e.g. its induction procedure allows non-primitive recursive function definitions.

However, the HOL Light implementation allows higher order logic, is easier for

modification (see Section 2.5), and aims to improve automated inductive proof

support within in the general settings of a proof assistant.
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2.6 Conclusion

In this chapter, we gave the context for our work i.e. interactive theorem prov-

ing. Theorem provers i.e. ITPs and ATPs as well as other background knowledge

involved in our work were introduced. After that, techniques about proof by in-

duction and its automation were also reviewed. The Boyer-Moore model for

automated inductive theorem proving was introduced. We also reviewed other

automated systems for inductive theorem proving. In the next chapter, some

machine learning techniques and their applications in theorem proving are intro-

duced.





Chapter 3

Machine learning for theorem proving

Since our work is about combining machine learning techniques with theorem proving,

in this chapter, we first introduce relevant machine learning methods (Section 3.1) and

then discuss the lemma selection problem (Section 3.2), followed by the techniques

used for lemma selection (Section 3.3).

3.1 Machine learning

Machine learning is about data analysis. A simplified example of the type of data that

is used for training is shown in Table 3.1. Each row represents a piece of data called an

instance, which is usually collected from a single test or item. The two key elements

of the data are:

Feature In each instance from the data set, the features F1,F2, ...,Fn form a vector of

values which represent the properties of the object. For instance, in Table 3.1,

the features are represented as a vector of binary digits.

Label In each instance there is sometimes also one or more outputs or response vari-

ables, called labels. In particular, when a classification task is used, as in this

thesis, they are also called class labels. Table 3.1 is an example that contains

two classes (0 and 1), which yields a binary classification problem.

There are two kinds of tasks in machine learning: supervised and unsupervised learn-

ing. A supervised learning task tries to learn the “mapping” from features to labels.

This procedure, called the training process, is “supervised” by the training set, where

33
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Features Label

F1 F2 F3 ... Fn

0 1 1 ... 0 1

0 0 1 ... 0 1

0 1 1 ... 0 0

... ... ... ... ... ...

1 1 1 ... 0 0

Table 3.1: An example of training data

each instance contains such a mapping. After the training, classifiers are obtained and

can be used to predict the label for new item based on its features.

3.1.1 Supervised learning

In what follows we give a brief overview of supervised learning algorithms, which are

the main approaches used for theorem proving:

Naive Bayes is a probabilistic learning algorithm based on Bayes’ theorem with a

strong (naive) independence assumption between the features (Zhang, 2004),

i.e. in our case that the value of each feature is independent of any other feature

for the same goal. It is a generative approach which models the probability based

on Bayes’ theorem, and the classification is done by choosing the class with a

higher probability. The theorem for a two-class case (A and B) is shown as (3.1).

“P(Y ),Y ∈ {A,B}” is called the prior, i.e. the probability of label Y to appear in

an instance, which is computed as P(Y ) = n/m, where m is the total number of

instances, and n is the number with label Y . P( f |Y ),Y ∈ {A,B} is the likelihood,

which is computed as (3.2), where Y ∈ {A,B}. Data in Table 3.1 can be used as

an example, if we have fi fit to Fi by having fi ∈ {0,1} and A,B = 1,0. P( fi|Y )
is computed as (3.3) where m is the total number of instances labelled Y , and n

is the number of the ones that also have feature fi = 1. Note that a more efficient

form, in (3.4), with log likelihood, is more commonly used, and a minimal value

σ is used to avoid extreme, i.e. P( fi|Y ) = 0.

P(A| f ) = P( f |A)P(A)
P( f |A)P(A)+P( f |B)P(B)

(3.1)
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P( f |Y ) =
n

∏
i=1

P( fi|Y ) (3.2)

P( fi|Y ) = (n/m) fi(1−n/m)1− fi (3.3)

logP( f |Y ) = ∑
P( fi|Y )6=0

lnP( fi|Y )+ ∑
P( fi|Y )=0

σ (3.4)

Naive Bayes has advantages when it comes to training: the training process,

explicitly shown in (3.4), can be quickly computed (compared with other al-

gorithms), and when a new instance is added to the data, only small changes

need to be done to update P(Y ) and P( fi|Y ), instead of recalculating with all the

previous data.

k-Nearest Neighbours (k-NN) algorithm considers features as vectors in a high-

dimensional space, and computes the Euclidean distances between each of them

(Cover and Hart, 1967). When predicting for a new item, based on the distance,

k nearest instances (neighbours) can be picked out. Different strategies can then

be applied: use the mode (the value that appears most often) of the neighbours’

class labels as the label for the new item or use the weighted average to estimate

the label. For instance, in a two-class problem, 1 and 0 are assigned to the neigh-

bours labelled A and B respectively. A weighted average is assigned to the new

item, where the weights are usually the distance to the neighbour and can also

be customised by the user. The label for the new item will be A if the average

value is closer to 1, but B if closer to 0.

k-NN requires no training by default, so the data can be directly used for predic-

tion. However, all the training data have to be kept, which can be a big space

consumption and, as their size grows, the prediction will extremely slow down.

Tree-based data structures can accelerate the search process, and therefore the

prediction. However, this will require extra training time as a result (Bishop,

2006, p.127). Another issue is the choice of k, which is very important, but may

strongly depend on the training data.

Regularized Least Squares with Kernel methods Regularized Least Squares (RLS)

classification also considers features as high-dimensional vectors, and try to

find a model f that fits all the vectors by minimising the error function like

(3.5)(Rifkin et al., 2003). It contains the RLS part, i.e. (yi− f (xi))
2, where xi

and yi are the feature and label we just mentioned. The regularizer ‖ f‖2
k helps

reduce over-fitting, which means that the classifier works better on known data
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Features Labels

F1 F2 F3 ... L1 L2 L3 ... Lm

0 1 1 ... 1 0 0 ... 0

0 0 1 ... 1 1 0 ... 0

0 1 1 ... 0 0 1 ... 1

... ... ... ... ... ... ... ... ...

1 1 1 ... 0 1 1 ... 1

Table 3.2: An example of training data for ranking

while worse on new data. Similar to k-NN, the value f (x) can be used for pre-

diction, based on its difference from 1 and 0.

min
f

n

∑
i=1

(yi− f (xi))
2 +λ‖ f‖2

k (3.5)

The minimizer of (3.5) has the form (3.6) (Rifkin et al., 2003), where K(x,x′) is

the kernel. Kernel methods allow the user to change the learning model by using

a different kernel, while still use the minimizer (3.6) (Bishop, 2006, p.292).

f ∗(x) =
n

∑
i=1

ciK(x,xi) (3.6)

3.1.1.1 Learning to rank

Sometimes, a ranking is preferred to absolute values. For instance, if we want to

predict the most relevant lemmas rather than only the relevant ones. In this case, we

want to have a rank of labels. To be more precise, the label ranking task is to find a

total rank of the multiple labels L1,L2, ..., instead of their values.

A common solution is to rank by the output values. For instance, all the machine

learning algorithms in this section return either P(Yi| f ), which is a probability of hav-

ing label Yi with feature f , or fi(X), which is a value computed from feature vector

X . Here Yi and fi(X) are the output values for Li. In both cases, labels can be ranked

by comparing their values. Assume that there are m labels for ranking, e.g. the data in

Table 3.2. The training procedure works as:

1. For each label Li, train a classifier (ci) with all features (i.e. all the columns under

Features) and the labels from one column Li. Therefore, m classifiers (c1,c2, ...)
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are trained separately, with all the features shared but label information indepen-

dent.

2. When predicting for a new item with feature fnew, each classifier ci makes pre-

diction with fnew independently and get m output values: vi = ci( fnew).

3. The label Li has a rank based on its vi.

3.1.2 Unsupervised learning

In unsupervised learning, no label is given, and the task is to discover “interesting

structure” in the data (Murphy, 2012). Unsupervised learning is occasionally used in

the theorem proving field for clustering via the k-Means algorithm.

K-Means clustering (Arthur and Vassilvitskii, 2007) considers features as vectors in

high-dimensional space (like some supervised learning methods we just mentioned).

The process of clustering (shown as (3.7)) is to find k “centres” (represented as the

vector µi) in the space, so that each vector point (x) is assigned to the cluster that

contains its nearest centre (i.e. Si), and the sum of all (squared) distances between the

centres and the vectors is minimised. The k value can be customised by the user.

min
S

k

∑
i=1

∑
x∈Si

||x−µi||2 (3.7)

3.1.3 Online learning

If the machine learning approach is performed with a batch of data, it is said to be

offline. However, when the data come as a stream, i.e. as separate data points, it is

better if we can update the classifiers right after new data come, so that the classifiers

are always available with the updated information. In this case, we need to perform

online learning (Murphy, 2012, Section 8.5). Another situation where we need online

learning is when the batch of training data is too large to hold in main memory and

perform an offline training, they need to be split and learnt as a stream. Thanks to the

mechanism of Naive Bayes and k-NN, online learning is supported for them and can

thus be applied to lemma selection in theorem proving.
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3.2 Lemma selection

Lemma selection is an important component of hammers as they provide the pre-

proved results that may be used by the external ATPs to lead to a proof (see Sec-

tion 2.4).

Target of lemma selection. For a given goal and a group of candidate lemmas, rank

all the lemmas based on their likelihood of being used to prove the goal. (For machine

learning approaches) Previous goals and their lemmas can be provided, so that the

relevance between the lemmas and the goals can be learnt.

3.2.1 Non-machine learning methods for lemma selection

Before machine learning approaches were applied in lemma selection, there was some

work already on lemma selection.

MePo is a filter developed by Meng and Paulson, used in Sledgehammer, which fil-

tering the lemmas based on their relevance (Meng and Paulson, 2009). This approach

computes the relevance distance between two clauses, based on a group of relevant

symbols, where symbol could refer to a constant, function or predicate. The use of

MePo results in a relatively high success proof rate and can often set users free from

hand-selection of suitable lemmas.

The key idea is to compute the relevance of a lemma to a goal based on the proportion

of symbols in both the lemma and the goal to the total number of symbols in the

lemma. With 7000 known theorems as candidates, it had an increase in proof success

rate from 10 to 20% after lemma selection on their problem sets (Meng and Paulson,

2009). Other ideas that are paid attention to in this approach included:

1. The iterative selection of lemmas, where in each round, the relevance between

the new lemma and the selected ones is considered.

2. The rarity of symbols, which assigns higher weights to uncommon symbols.

There are other non-machine learning methods which we briefly mention. SInE (SUMO

Inference Engine) is a symbol based lemma selection algorithm for ATPs, which has

been implemented in Vampire (Hoder and Voronkov, 2011). SRASS (Semantic Rele-

vance Axiom Selection System) is also a lemma selection method for ATP guidance
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which is based on syntactic relevance (Sutcliffe and Puzis, 2007). APRILS (Automated

Prophesier of Relevance Incorporating Latent Semantics) is a method that applies la-

tent semantic analysis (LSA), and is used in an ATP meta-system called Divvy (Roed-

erer et al., 2009). These methods are more intended for the selection within ATPs, e.g.

the order of applying lemmas in resolution, so are not directly related to our work and

will not be described further here.

3.3 Machine learning for theorem proving

In this section, we first introduce the application of machine learning algorithms in the-

orem proving. After that we explain how features and dependencies are generated from

HOL Light proofs, and then represented as the training data in Section 3.1. Finally, the

related work about combining machine learning for inductive theorem proving is in-

troduced. In this section, we are using a similar way to define the terminology used in

lemma selection (e.g. the feature and dependency matrix) as in the work by (Alama

et al., 2014).

3.3.1 Machine learning algorithms used for lemma selection

In this section, the application of the machine learning algorithms mentioned in Sec-

tion 3.1.1 to lemma selection will be reviewed.

Naive Bayes is most commonly used in lemma selection. In HOL(y)Hammer (Kaliszyk

and Urban, 2014), the implementation of Naive Bayes used for lemma selection is from

SNoW (Sparse Network of Winnows) (Carlson et al., 1999). In Sledgehammer, Mash

initially used an implementation in Python and later on in Standard ML (Kühlwein

et al., 2013). These implementations are sparse naive Bayes, where only the features

that appear in the current goal being learnt are considered (i.e. for (3.3) P( fi|Y ) =
(n/m) fi), so they are faster than standard Naive Bayes. This method was tested in both

Sledgehammer and HOL(y)Hammer. In the experiment for HOL(y)Hammer, Naive

Bayes was able to prove up to 29.4% Flyspeck theorems with different settings (e.g.

the choice of features) (Kaliszyk and Urban, 2014). In Sledgehammer, the experiment

by Kühlwein et al. was to compare the results from reproving the theorems in three

formalizations in the Isabelle distribution and the Archive of Formal Proofs between
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using the advice from MePo and Mash. Mash solved many more goals than MePo alone

(when comparing the peak value of the proof rate curve1, it was 44.8% vs. 38.2%)

(Kühlwein et al., 2013).

Mesh is a combination of Mash and MePo in Sledgehammer (Kühlwein et al., 2013).

It uses the weighted average of the outputs (the relevance of the lemma i.e. the value

for ranking) from MePo and Mash. When reproving the theorems in the Judgment

Day benchmarks (Böhme and Nipkow, 2010), Mesh solved more goals than MePo and

Mash alone (69.8% vs. 65.6% and 63.0% ).

k-NN was explored for lemma selection. When introducing inverse document fre-

quency (IDF) as weights, k-NN had improvement (from 39.0% to 45.5% Flyspeck

problems solved) overall coverage by the combinations of different machine learning

methods (Kaliszyk and Urban, 2013).

Kernel methods were used in the MOR (multi-output ranking) with Gaussian ker-

nel (Kühlwein et al., 2011). In MOR-CG (multi-output ranking conjugate gradient)

(Kühlwein et al., 2012), a linear kernel was applied and conjugate-gradient was used

for optimisation, which accelerated the algorithm. When testing on the MPTP2078

benchmark 2, which has 2078 theorems, it increased the proven theorems from 788

(by Naive Bayes) to 824 (Alama et al., 2014). We refer the interested reader to the

cited papers for more technical details.

3.3.2 Feature extraction

Statements of theorems and goals are characterised by features during machine learn-

ing. In this section, various approaches to generating features for different systems are

reviewed.

1It is difficult to decide the best number of lemmas that ATPs require to find a proof. ATPs usually
run faster with fewer lemmas, while more lemmas need to be selected so that all the ones required to
prove the goal may be included. In this case, a curve was drawn to show the results with different
number of lemmas sent to ATPs

2http://wiki.mizar.org/twiki/bin/view/Mizar/MpTP2078
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3.3.2.1 HOL Light

Below is an example of feature extraction in HOL Light for the theorem “EVEN_OR_-

ODD” (3.8) using the methods of HOL(y)Hammer (Kaliszyk and Urban, 2014).

∀ n. EV EN n∨ODD n (3.8)

Given (3.8), the features in (3.9) are extracted as strings.

“num”,“ f un”,“bool”,“ODD”,“EV EN”,

“Anum”,“EV EN Anum”,“ODD Anum”
(3.9)

These are generated using several approaches. First, all the constants (e.g. “ODD”,

“EV EN”) and data types (e.g. “num” ) are collected except for logical connectives

and quantifiers (e.g. “∨ ”, “∀”). Then subterms of the statement (e.g. “EV EN Anum”

and “ODD Anum”) are collected where variables are normalised in several ways. For

instance, in the default method, the identifier of a variable “n” is normalised to “A”, and

the feature is then the identifier “A” followed by the type of “n” (i.e. “EV EN n : num is

normalised to “EV EN Anum”, where “: num” means the type of “n” is natural number).

Structure information is kept as subterms (e.g. “EV EN Anum”), which provides more

information for learning (Kühlwein et al., 2013).

From these symbolic features, a feature matrix is then generated. The feature matrix

Fea is defined by (3.10). Each row in the feature matrix is the feature vector of a state-

ment, say si, i.e. Fea(si) = (Fea(i,1),Fea(i,2), ...). This corresponds to the feature

(i.e. left) part of Table 3.1 and Table 3.2.

Fea(i, j) =

1 if (string) feature f j appears in statement si

0 otherwise
(3.10)

3.3.2.2 ACL2

In the work of (Heras et al., 2013), features based on the structures of terms are used
rather than strings. For instance, (3.11) is a definition in ACL2.

(defthm fact-fact-tail (implies (natp n) (equal (fact-tail n) (fact n))))

(3.11)
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implies

natp

n

equal

fact-tail

n

fact

n

Figure 3.1: Tree of Statement 3.11

variables arity 0 arity 1 arity 2

td0 0 0 0 [implies]

td1 0 0 [natp] [equal]

td2 [n] 0 [fact-tail]::[fact] 0

td3 [n]::[n] 0 0 0

Table 3.3: Matrix for tree in Figure 3.1

The statement in (3.11) is represented in Figure 3.1. The tree is transformed into a

matrix, which is shown in Table 3.3. This table sorts the nodes by tree-depth (td). The

nodes at the same depth are split according to the arities of the operators. This is a

compact way of representing the tree, compared with adjacency matrices. According

to the authors, with arities up to 5 and tree-depth up to 7, the matrix is sufficient for

all libraries considered in that paper, i.e. the JVM library (Moore, 2003) and the List

library (Kaufmann and Moore, 2004). Finally, all symbols in Table 3.1, i.e. the symbols

of the statements in (3.11) are converted to rational numbers based on the number and

order of unique variables in the statement, the termination function ACL2 assigned to

a function definition, etc. (Heras et al., 2013).

Compared with the feature extraction from HOL(y)Hammer, a notable change is that

the rational number is used instead of a binary digit (see (3.10)). However, the biggest

difference is that the structure information (e.g. the term tree, and the variable order) is

given more attention than when just using function and constant names (e.g. the string

“EVEN” in (3.9)).
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3.3.2.3 ATPs

Bridges for his part used totally different features (static and dynamic ones) in his ap-

proach for ATPs (Bridge, 2010). Static features such as the size and structure of the

clauses were used instead of function and variable names. For instance, the features

could be separated into two main types: “Fraction of clauses that are unit/horn/ground

clauses” and “Maximum/Average clause length/depth/weight”. Dynamic features, which

were generated when running the prover with a heuristic were also used. The idea of

extracting features from running the prover was creative, although the improvement

was not significant. There was also a problem that it was difficult to pick a heuristic to

generate the features before knowing which heuristic would be the best. In the paper,

the heuristic that was most often selected by E in auto mode was used, and it was used

for only a short time to avoid introducing a bias.

3.3.3 Dependency tracking

We refer to the lemmas used to proven a theorem as its dependencies. Dependency

information is necessary for predicting whether a theorem might be used again (i.e.

to predict new dependencies). This information provides the class label for machine

learning mentioned (see Section 3.1.1). The procedure that involves gathering depen-

dency information is called dependency tracking. This is mainly done by automatically

processing the proof, either via a patched kernel in systems like HOL Light (Kaliszyk

and Urban, 2014), or a background process for systems like Sledgehammer in Isabelle

(Kühlwein et al., 2013).

Specifically, for each manual proof, we can get l1, l2, ... ` t, where l1, l2, ... are the

lemmas, i.e. dependencies, and t is the theorem. The dependency matrix is then

organised as (3.12). This corresponds to the label (i.e. right) part of Table 3.2. If we

fit both the feature matrix and dependency matrix to Table 3.2, each row (i.e. an

instance) exactly corresponds to a whole data point collected from one manual proof,

the features are extracted from the statement of the theorem, and the labels are from

the proof script.

Dep(i, j) =

1 if ti depends on l j

0 otherwise
(3.12)
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The dependencies form a graph which is built according to the following requirements:

• When the theorem is a conjunction, it is better to split it (Kaliszyk and Urban,

2014). This is helpful for ATPs to search and generate proofs, especially when

many theorems are conjoined (e.g. ARITH in HOL Light is a conjunction of 108

theorems).

• Each theorem is also considered to depend on itself, i.e. ∀i. Dep(i, i)= 1 (Kaliszyk

and Urban, 2014). This is because most machine learning approaches only se-

lect theorems that have been used in a proof. We want all theorems to be used

in at least one proof so that they can be selected, otherwise, a theorem just being

proven will never be selected for the next proof.

The dependency tracking tool that comes with HOL(y)Hammer follows the following

procedure (Kaliszyk and Urban, 2014):

1. Load all the libraries for dependency tracking, and get the set T of all the visible
theorems, which means a theorem is accessible via its identifier.

2. Reload the libraries, and construct the dependency list for each theorem with the

ones in T

This approach results in a problem: a theorem Ti may be recorded as depending on

theorem Tj, which is proven after Ti. This is because Tj may be generated while prov-

ing Ti, but not stored as a theorem at this time. However, if Tj is stored later then a

seemingly impossible dependency is recorded.

In order to have dependency information that consists with the HOL Light proof script,

we started to use another dependency tracking tool HOListic, which was developed as

part of the Proofpeer project3.

In addition to an accurate tracking of dependencies, it also collects meta data of theo-

rems. Fig 3.2 is an example of the meta information about theorem “ADD”, i.e. the file

and line it locates, and its id tracked. Note that there are two id records. One is source

id, which identifies a theorem in the source file, and the information is collected as

the data structure in Fig 3.2. Tracked id is derived from source. For instance, “ADD”

is tracked as two theorems, because it is a conjunction (see its definition in Fig 3.2).

Fig 3.3 focuses on the individual theorem, and has information about its dependencies,

3http://www.proofpeer.net/
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ADD in source file:

(!n. 0 + n = n) /\

(!m n. SUC m + n = SUC (m + n))

identifier data:

{

"source_id" : 203,

"name" : "ADD",

"location":

{

"filename" : "arith.ml",

"line" : 46

},

"tracked_ids" : [236,237]

}

Figure 3.2: Tracked identifier

i.e. a list of tracked ids of other theorems, constant symbols, etc. These meta data are

organised as JSON files and we discuss their visualisation in Section 4.2.1.

Some theorems are no longer visible where their identifiers are reused for other theo-

rems. For instance, one may name a theorem T “A” and then name another theorem

T ′ “A” again, making only T ′ is visible by referring to “A” from this point onwards.

However, such theorems are still tracked when using HOListic. Therefore, lemma se-

lection with such dependency information may select lemmas that appear no longer

accessible for a proof. The solution is to rename the affected theorems, to retain the

visibility of the original theorems. This avoids the problem that HOL(y)Hammer’s

tracking mechanism suffers from.

3.3.4 A quick note on incremental learning

When developing a new theory accumulatively, the training data updates rapidly, i.e.

new proofs and lemmas are added every time a new theorem is proven. This requires

the training procedure, feature extraction, and dependency tracking to be fast. As men-

tioned in Section 3.1.3, some machine learning algorithms can support online learning.

SNoW, which is used as part of HOL(y)Hammer, has such an option (Carlson et al.,

1999). In principle, this should be efficient, but we will outline a problem when it

comes to using it later.
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dependency data

{

"src_id": 203,

"tracked_dependencies": [228, 140, 105, 5, 4, 3, 2, 1],

"type_constants": ["bool", "fun", "num"],

"new_type_constants": [], "as": ["conjunct", "0"],

"stringified": "|- !n. 0 + n = n",

"source_code_theorem_dependencies": [197],

"tracking_id": 236,

"new_constants": ["+"],

"source_code_tactic_dependencies": [],

"constants": ["!", "=", "+", "NUMERAL", "_0"]

}

Figure 3.3: Tracked dependency

3.3.5 Experimental methodology

When evaluating a lemma selection method, we need to make sure that the proof of

the conjecture (or goal) for testing has not been learnt during the training. We follow

the approach to evaluate HOL(y)Hammer (Kaliszyk and Urban, 2014):

Suppose the dependency matrix Dep and feature matrix Fea have been obtained from

the data set for evaluation. Theorems are evaluated in order according to Dep. When

theorem Ti, i.e. the theorem corresponding to the ith row of Dep is to be tested, the

procedure mentioned in 3.1.1.1 is used, and:

• The training data are the submatrices Dep[1,2, ..., i−1; 1,2, ..., i−1] and Fea[1,

2, ...i−1; 1,2, ..., j], where j is the number of features that have been extracted

up to theorem Ti−1, i.e. the subset of the proofs that are “known” to Ti.

• The testing data, which is the feature vector (i.e. fnew) is Fea[i;1,2, ...,k], where

k is the number of features up to Ti.

3.3.6 Machine learning for inductive theorem proving

There has been related work that has attempted to combine machine learning tech-

niques with inductive theorem proving.

Machine learning for ACL2 has resulted in several extensions, collectively known as
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ACL2(ml) (Heras et al., 2013; Heras and Komendantskaya, 2014):

Theorem clustering using the feature extraction method shown in Table 3.3 to cluster

theorems based on their similarity. This extension detects the redundancies, and

can help users reuse previous theorems and definitions.

Lemma analogy tries to construct a lemma that helps ACL2 to complete a proof. For

a theorem that requires auxiliary lemmas (called target theorem, TT), Analogy

Mapping firstly looks for a source theorem (ST) that has a similar structure as

TT with theorem clustering. Then the Source Lemma (SL), which has assisted

the proof of ST, will be reconstructed as a lemma for TT by a process called

Term Tree Mutation.

Machine learning for HipSpec (Lindhé and Logren, 2016) The investigation involves

several extensions to HipSpec (see Section 2.5.6), with machine learning techniques

being applied to two aspects:

Selecting the induction variable. Features are extracted as strings, like (3.9), but are

separated into different groups. For instance, function and lemma features are

extracted from (Haskell) functions (see Section 2.5.6) and the lemmas. Sym-

bolic features are directly from constant names, and abstract features are from

generalisation, e.g. a function is generalised to Func. The induction variables

used in proofs are converted to class labels for training, based on their order,

e.g. if the first, second, or third, ... variable in a statement is used for induction,

the label will be “0”, “1”, or “2”, ... respectively. When testing with 96 proven

theorems using Naive Bayes, 72.47% of the selection was correct.

Clustering similar lemmas This is used to find the common pattern of certain def-

initions (e.g. tail-recursive function), with the same features used for selecting

induction variables. Abstract features had better performance on grouping lem-

mas about tail-recursive functions.

3.4 Conclusion

Machine learning methods and its application to lemma selection were reviewed in this

chapter. The general notions underlying hammer systems were introduced as well as

some existing work on the application of machine learning methods applied to induc-
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tive theorem proving.

In the next chapter, we describe the methodology and the main development and test

sets used in this work.



Chapter 4

Methodology

In this chapter, the general strategy used to develop our Boyer-Moore implementation

and to combine it with machine learning methods is introduced in Section 4.1. After

that, the infrastructure and data sets for our development are introduced in Section 4.2

and Section 4.3. Finally, some of the existing approaches for measuring proof “com-

plexity” are discussed in Section 4.4.

4.1 Research strategy

As mentioned in Section 1.3, our hypothesis is whether the automation of inductive

theorem proving in HOL Light can be improved by applying machine learning tech-

niques.

This hypothesis will be tested using the Boyer-Moore Model in HOL Light (see Sec-

tion 2.5) and evaluated on its ability to prove theorems that require proof by induction.

Our empirical approach follows the general strategy summarised in Fig 4.1. We make

choices about new methods to incorporate in the Boyer-Moore Model based on the re-

sults, e.g. we pick the method that proves the most theorems. We now give some more

details about the steps involved:

Implementation of new methods We:

• Start with the original implementation of Boyer-Moore in HOL Light (see

Section 2.5).

• Derive new methods inspired by proof failures.

49
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Implement new heuristics / methods

Run tests with data

Investigate failed goals

Figure 4.1: Research strategy

Figure 4.2: Major iterations of improving Boyer-Moore

• Try to incorporate potentially useful machine learning approaches into the

Boyer-Moore model.

Run tests with data We test the new implementation with the development data sets

in Section 4.3.

Investigate failed goals We look for issues or bugs in our methods, with the ap-

proaches described in Section 4.1.1.

During our investigation, we did a number of iterations and the major ones are shown in

Fig 4.2. The initial fix involved the improvements made to the original Boyer-Moore,

which will be discussed in Section 5.1. Then machine learning approaches were ap-

plied and optimised. These are introduced in Section 6.3 and Section 5.2 respectively.

In Section 6.4, we describe how we investigate machine learning methods to choose

variables for induction and in Section 5.3 briefly discuss lexicographic induction. We

also discuss a special implementation that supports induction for finite sets in Chap-

ter 8.
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4.1.1 Investigating failures

As Fig 4.1 shows, our strategy tests the new methods and is then followed by the most

important part: investigating the failures i.e. the theorems that are not proven in the ex-

periment. The cause for failure ranges from problems in the original implementation

to the new issues and limitations of any added methods. When running Boyer-Moore,

the goal (or subgoals) is passing through various heuristics in the waterfall and induc-

tion procedures repeatedly, so such issues are sometimes hard to find. We try to locate

them in the following ways:

Classify the theorems Although we are eager to go through the theorems that are not

proven in each experiment, it is more efficient to group them as follows than to

see all the tens of failed examples:

• The theorems that could be proven before the new method is applied but

now are not. These problems can usually be found by comparing the

changes to the system.

• Easy theorems: If a theorem has an easy manual proof, we expect the sys-

tem to prove it with only a few heuristics. Therefore, the problem within

the system can be found by testing it with such heuristics. Meanwhile, the

failure of easy theorems may relate to fundamental issues which also af-

fects complicated theorems, so we need to deal with them first. Some of

our initial fixes (see Section 5.1) are from these theorems.

• Theorems in the same domain, e.g. containing the same function defini-

tion, or having a similar structure. We often start from the easiest theorem

among them.

Target the failed procedure For each theorem not proven by Boyer-Moore, the next

step is to detect the procedure that failed. However, it is sometimes difficult

(maybe even impossible) to answer “why was this theorem not proven?”, be-

cause there may be different proofs for the same theorem and we do not know

why none of them were found by Boyer-Moore. Instead, in each case, we focus

our investigation on the proof script for the manual proof. We compare it to the

steps Boyer-Moore took and detect where the latter could have done better. We

look at the manual proofs as follows:

• The proof skeleton, i.e. whether the system chose the correct induction
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scheme. If not, the problem or limitation of the induction procedure is then

looked into.

• For theorems whose proofs do not involve induction or the induction has

been correctly applied, we focus on the waterfall, i.e. the heuristics that

make insufficient progress towards proving the goal or subgoals. We are

particularly interested in the failures in lemma selection. The dependencies

from the manual proof are used:

– If some of the tracked dependencies are missing from the list of auto-

matically selected lemmas, it is a failure of lemma selection. However,

rather than adjust the lemma selection approach for a single example,

we look into more examples and compare the performance between

the new and old implementations.

– If no dependencies are missing, the simplify heuristic (see Section 2.5.2)

and hammer (see Section 6.3) are looked into. There could be a prob-

lem with the ATPs, the translation of the goal (from ITP to ATP) or the

reconstruction (see Section 2.4).

Although this is a general, systematic strategy, we adapt our investigation in each case,

depending on the context of the proof. There are two particular types of cases that

we choose not to investigate further. First, theorems with complicated proofs may not

be found using our implementation, e.g. because some lemmas required in a proof are

proven locally (and not named or stored) rather than cut into the proof as pre-proven

theorems, so they cannot be learnt and suggested by our implementation. Second,

ATPs are tried as black boxes and although efforts have been made to improve the

translation from ITP to ATP problems, we do not directly investigate ATP-related fail-

ures.

4.2 Infrastructure

In order to support the systematic analysis of our results and investigate the proof

attempts of our implementation, we built a number of tools. Some of the more salient

ones are described next.
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4.2.1 Proof library

A common demand during this research was to look up a theorem in the source file

by its name and then see its statement and proof. Thanks to dependency tracking (see

Section 3.3.3), each theorem is recorded with key metadata, including the file it belongs

to, its dependencies, etc. There is a similar demand for the analysis of the results when

we need to look up the output for each theorem from Boyer-Moore and compare the

results between different settings (i.e. iterations in Section 4.1)

A web-based, graphical user interface was created using DataTables1, such that it al-

lows searching and filtering of the tracked theorem metadata. This includes three ta-

bles: identifier table, dependency table, and result table.

As shown in Fig 4.3, the theorems are organised in an identifier table, which supports

filtering using properties of each theorem: its name (identifier), source file, or id. Hy-

perlinks also allow the user to directly jump to the line in the source file. For instance,

AND_CLAUSES is in the file theorems.ml and is tracked as five conjuncts.

The dependency table shown in Fig 4.4 contains the tracked dependencies, the con-

stants in the statements, etc. It is a very wide table, so buttons are added to hide unused

fields. For example, we can learn from table that theorem with id 103 depends on 1, 2,

3, 4, 102.

The result table created is shown in Fig 4.5. Each line shows the outputs from Boyer-

Moore for a certain theorem, such as the status (whether it is proven), number of the

induction steps used, the last subgoal that the system succeeded/failed to prove etc.

Meanwhile, some information from the source file is also listed for convenience, e.g.

whether induction is used in the manual proof (“Source induction”). For the theo-

rems that were proven, its data record can be expanded to show the subgoals and the

heuristics used to prove them (see ALL_MEM in the Fig 4.5).

At the top of the table, various options are available for changing the view on the data.

For instance, the first drop-down list is used to choose the test data set. With the drop-

down lists on the second line detailing the approach used in the experiment and the

options available in the third line. We can compare different methods, e.g. find the

theorems proven by one method, but not by another.

1https://datatables.net/
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hilbert/lists.ml  Load

Table for theorem_idents

Table for tactic_idents

Show 10  entries Search:

Showing 31 to 40 of 2,565 entries Previous 1 2 3 4 5 … 257 Next

src_id name file tracked_ids

Searc Search name Search file Search tracked_ids

30 EXISTS_SIMP /theorems.ml 38

31 EQ_IMP /theorems.ml 39

32 EQ_CLAUSES /theorems.ml 40,41,42,43

33 NOT_CLAUSES_WEAK /theorems.ml 44,45

34 AND_CLAUSES /theorems.ml 46,47,48,49,50

35 OR_CLAUSES /theorems.ml 51,52,53,54,55

36 IMP_CLAUSES /theorems.ml 56,57,58,59,60

37 EXISTS_UNIQUE_THM /theorems.ml 61

38 EXISTS_REFL /theorems.ml 62

39 EXISTS_UNIQUE_REFL /theorems.ml 63

Show 10  entries Search:

Showing 1 to 10 of 239 entries Previous 1 2 3 4 5 … 24 Next

src_id name file

Search src_id Search name Search file

0 VALID /tactics.ml

1 then_ /tactics.ml

2 thenl_ /tactics.ml

3 BOX_TAC /tactics.ml

4 RENAME_BOX_TAC /tactics.ml

5 orelse_ /tactics.ml

6 FAIL_TAC /tactics.ml

7 NO_TAC /tactics.ml

8 ALL_TAC /tactics.ml

9 TRY /tactics.ml

Figure 4.3: Table of tracked theorem identifiers

4.2.2 Boyer-Moore waterfall analysis

As mentioned in Section 4.1, an important step in our main strategy is to look into

failures. The data tables in Fig 4.5 do not show the subgoals Boyer-Moore failed to

prove. This is due to the difficulty of tracking the processes when running our Multi-

waterfall model (see Section 5.2). Meanwhile, even when all the proof attempts (e.g.

the subgoals generated and the waterfalls tried) were collected, it is still difficult to find

the ones that caused problems. To solve this, we track and visualise the proof attempts

(see Section 5.4.1) and organise them as shown in Fig 4.6 and Fig 4.7.

Trees that show the proof attempts provide a useful, intuitive visualisation of proof

search. However, such trees can be very big. Fig 4.6 shows an example where the goal

cannot be proven, so induction is applied repeatedly causing infinite branching. It is

difficult to locate and focus on where Boyer-Moore gets stuck by scrolling a big graph,

so an interactive tree graph 2 implemented using the D3.js library3 was also used. This

solves this issue: Any parent node can be expanded or contracted with the tree below

2http://bl.ocks.org/d3noob/8375092
3https://d3js.org/
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Table for tracked_theorems
Use buttons to show or hide columns.

Source code tactic looks like proofs (for convenience), but they are different. e.g. a step like REWRITE_TAC[SYM SUC;SUC]
is tracked as REWRITE_TAC[SUC].
Toggle column: Src_id  - tracked_id_deps  - source_code_deps  - Constants  - Stringified
Show 10  entries Search:

Showing 101 to 110 of 2,902 entries Previous 1 … 10 11 12 … 291 Next

src_id as tracked_id tracked_dependencies

Searc Search as Search trac Search tracked_dependencies

76 EXISTS_UNIQUE 100 1,2,3,4,12,14,20,56,57,58,59,60,62,70,89,99

77 ETA_AX 101

78 EQ_EXT 102 1,2,3,4,56,57,58,59,60,101

79 FUN_EQ_THM 103 1,2,3,4,102

80 SELECT_AX 104

81 EXISTS_THM 105 1,2,3,4,5,101,102,104

82 SELECT_REFL 106 1,2,3,4,5,12,16,105

83 SELECT_UNIQUE 107 1,2,3,4,12,101,106

84 EXCLUDED_MIDDLE 108 1,2,3,4,5,6,8,12,16,40,41,42,43,44,51,52,53,54,55,56,57,58,59,60,105

85 BOOL_CASES_AX 109 1,2,3,4,6,7,8,40,41,42,43,44,45,51,52,53,54,55,108

Figure 4.4: Table of dependencies
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Explanation

Data: lists.ml with MESON, without clausal form heuristic. 
 Columns:

      Status: True: proven by Boyer Moore; False: Failed to prove (unprovable); Time out: Time out
      Total steps: Total number of heuristic applied to all the clauses generate 

      Induction steps: Total number of inductions used
      Source induction: 1: induction is used in the source code ("X_INDUCT" appeared)

      Success/Failed Clause: the last clause Boyer Moore tried to prove, usually useful for failed theorems
      Tracked dependencies: tracked dependencies, which were the ones sent to ATPs and Boyer Moore. Missing lemmas are in red

      Proven clauses and used heuristic: Clauses generated by Boyer Moore, and the heuristics that finally proved them.
  

Usage: You can serch each column with the box below.
  

Methods
 NB(ml): Result from using top ranked 64 rewrite rules by Naive Bayes (based on sml implementation in Isabelle 2016)

 tracked: Result from using tracked dependencies
 tracked-NB(ml) : the theorems proven with tracked dependencies but not by Naive Bayes

  
More details about these theorems can be found here, and click "Arithmetic" button.

  
list_core  
3w_defsel  - ori  - ori  

  
Load  Sub  Sub2  Intersect  

Remove first  elements from the 1st result
 Remove first  elements from the 2nd result

Table

Tracked dependencies
Show 10  entries Search:

Showing 11 to 20 of 141 entries Previous 1 2 3 4 5 … 15 Next

name Status Total
steps

Induciton
steps

Source
induction I node N node Success/Failed Clause

Proven
clauses

and
used

heuristic

Search name Search St Search To Search In Search So
1457(1457

total)
2817(2817

total) Search Success/Failed Clause Search P

ALL_APPEND true 1 0 1 12 23 ALL P (APPEND l1 l2) <=> ALL P l1 /\ ALL P l2

ALL_conjunct0 is def 0 0 0 4 6 DEF

ALL_conjunct1 is def 0 0 0 4 6 DEF

ALL_EL true 1 0 0 9 20 (!i. i < LENGTH l ==> P (EL i l)) <=> ALL P l

ALL_FILTER time out -1 -1 1 17 32 Fail

ALL_IMP true 4 1 1 14 27
(!P Q. (!x. MEM x a1 /\ P x ==> Q x) /\ ALL P a1 ==> ALL Q a1) ==> (!x.
MEM x (CONS a0 a1) /\ P x ==> Q x) /\ ALL P (CONS a0 a1) ==> ALL Q
(CONS a0 a1)

ALL_MAP time out -1 -1 1 13 24 Fail

ALL_MEM true 4 1 1 12 24 (!P. (!x. MEM x a1 ==> P x) <=> ALL P a1) ==> ((!x. MEM x (CONS a0 a1)
==> P x) <=> ALL P (CONS a0 a1))

Clause (0) : (!P. (!x. MEM x a1 ==> P x) <=> ALL P a1) ==> ((!x. MEM x (CONS a0 a1) ==> P x) <=> ALL P (CONS a0 a1))#,

End heuristic: hh:ALL_conjunct1,MEM_conjunct1

Clause (1) : (!x. MEM x [] ==> P x) <=> ALL P []#,

End heuristic: hh:ALL_conjunct0,MEM_conjunct0

ALL_MP time out -1 -1 1 13 25 Fail

ALL_T true 4 1 1 7 14 ALL (\x. T) a1 ==> ALL (\x. T) (CONS a0 a1)

Figure 4.5: Table of results
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ind:Theorems proven by FINITE_INDUCT. 
strong: Theorems proven by FINITE_INDUCT_STRONG 
ind_tracked_dep  FINITE_UNION_IMP  Load  
Open File  Open File1

(FINITE {} /\ FINITE t ==> FINITE ({} UNION t)) ==> FINITE {x} /\ FINITE t ==> FINITE ({x} UNION t)

Waterfall:None

Waterfall:REWR

FINITE s /\ FINITE t ==> FINITE
(s UNION t)

(FINITE s /\ FINITE t ==>
FINITE (s UNION t)) ==> FINITE
(x INSERT s) /\ FINITE t ==>
FINITE (x INSERT s UNION t)

Proven: FINITE {} /\ FINITE t
==> FINITE ({} UNION t)

Waterfall:None

Waterfall:REWR (FINITE {} /\ FINITE t ==>
FINITE ({} UNION t)) ==>
FINITE {x} /\ FINITE t ==>
FINITE ({x} UNION t)

Waterfall:None

Waterfall:REWR

Figure 4.6: Visualisation example

it by click. When a branch is not needed, it can be hidden.

In Fig 4.6, the tree shows the proof attempts for FINITE_UNION_IMP where it could

not be proven due to the lack of a lemma (see Section 8.5.2). There are two kinds of

nodes: the nodes named “Waterfall” indicate the waterfall being run (among the mul-

tiple waterfall, see Section 5.2), and the other show the subgoals. “Proven” indicates

the proven subgoals. Fig 4.7 displays a completed proof which also shows the variable

used for each induction step.

When using this tree graph to investigate the failure, we can gradually expand the sub-

goals not proven by Boyer-Moore and investigate the reason for failure. For instance,

we first check whether the subgoal is provable. If the goal is unprovable then there

might be a bug, or some heuristics are over-strengthening the goal e.g. the general-

isation heuristic. After that, we inspect the proof search applied to the subgoal e.g.

whether induction should be applied, or whether the correct variable is used for induc-

tion. This can be achieved by comparing with the manual proof or checking whether

the lemmas selected from machine learning are enough to simplify the subgoal.
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ind_cheat:Theorems proven by FINITE_INDUCT. 
strong_cheat: Theorems proven by FINITE_INDUCT_STRONG 
thesis_lex  NOT_EMPTY_EXISTS  Load  
Open File  Open File1

Waterfall:None

Waterfall:NoneIndvar: Proven: IS_PREFIX_OF
xs ys ==> IS_PREFIX_OF
(ADJACENT xs) (ADJACENT
ys)

Indvar: xs,ys Proven:
(IS_PREFIX_OF xs ys ==>
IS_PREFIX_OF (ADJACENT xs)
(ADJACENT ys)) ==>
IS_PREFIX_OF (CONS h0 xs)
(CONS h1 ys) ==>
IS_PREFIX_OF (ADJACENT
(CONS h0 xs)) (ADJACENT
(CONS h1 ys))

Indvar: xs,ys Proven:
IS_PREFIX_OF xs [] ==>
IS_PREFIX_OF (ADJACENT xs)
(ADJACENT [])

Indvar: xs,ys Proven:
IS_PREFIX_OF [] ys ==>
IS_PREFIX_OF (ADJACENT [])
(ADJACENT ys)proven in
wf:IS_PREFIX_OF [] ys ==>
IS_PREFIX_OF (ADJACENT [])
(ADJACENT ys)

Figure 4.7: Visualisation example
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4.3 Experiment data

We use the following data sets for the implementation and evaluation of our Boyer-

Moore approach: List theories, used mainly for the Boyer-Moore Model experiments

(Section 4.3.1), An arithmetic theory used in the initial experiments for the Boyer-

Moore Model (Section 4.3.2), and some libraries ported from Isabelle, and mainly

for the evaluation of support for non-primitive recursive definitions (Section 4.3.3 and

Section 4.3.4). We describe our datasets in more detail next.

4.3.1 List theory

We use the following corpora in our Boyer-Moore Model experiments (see Appendix A.2

also):

The core list library in HOL Light, which is loaded by default in HOL Light and

we will refer to as List(core). It contains the basic definitions of list theory,

such as the head and tail, length, reverse, etc. Most proofs in it do not contain

many lemmas, i.e. they are generally proven using only definitions. Since it

is a file loaded by HOL Light in a very early stage, there are only round 700

theorems available for selection. This amount is relatively small as we usually

select more than two hundred lemmas for the ATPs (see Section 6.3), so we need

extra libraries. See Appendix A.2.1 for the list of theorems.

Hilbert List library This is used in the formalization of Hilbert’s Foundations of Ge-

ometry (Scott, 2015). We refer to this as List(hilbert). It has more definitions

and theorems about lists, such as TAKE and DROP i.e. the functions that keep

and remove the first n elements of a list respectively. These definitions are non-

primitive recursive (see Section 5.3). It also has a customised induction scheme,

which performs a two-step induction. If we use a fixed induction scheme pro-

vided by Boyer-Moore (see Section 2.3.1), two induction steps will be required,

which is thus more challenging. See Appendix A.2.2 for these theorems.

Polynomials library This contains properties about real polynomials represented as

lists of coefficients. We refer to this as Poly. This will only be used for evalua-

tion.

In this, a polynomial “a1 + a2x+ a3x2...” is defined as “poly [a1;a2;a3...] x =



60 Chapter 4. Methodology

Definitions Theorems Inductive

List(core) 44 97 73 (75.26%)

List(hilbert) 22 115 80 (69.57%)

Poly 20 123 67 (54.47%)

Table 4.1: List theory datasets

a1 + x(a2 + x(a3 + ...))”, where [a1;a2;a3] is the list of coefficients. The formal

definition of poly is given in (4.1). An example of polynomial operation is (4.2).

It calculates the addition of polynomials e.g. (a1 + a2x+ a3x2...)+ (b1 + b2x+

b3x2...) = (a1 + b1)+ (a2 + b2)x+(a3 + b3)x2... as the entry-wise sum of the

coefficient lists: [a1;a2; ...]++[b1;b2; ...] where “++” stands for the addition of

polynomials. See Appendix A.2.3 for these theorems.

poly [] x = 0∧ poly (CONS h t) x = h+ x∗ (poly t x) (4.1)

[]++l = l∧(CONS h t)++l =

(i f l = [] then (CONS h t) else (CONS (h+HD l) (t ++T L l))

(4.2)

The sizes of the datasets are shown in Table 4.1. Note that conjunctions have been

split, meaning that a theorem (or definition) P∧Q is automatically split into P and Q

as separate goals (or definitions).

Note that the number of inductive proofs is a lower bound, obtained by tallying the

proofs containing the string “INDUCT”. In our current datasets, we did not observe any

inductive proofs that were not captured in this way, but this is not necessarily true for

other libraries. Since induction can be applied in various ways in HOL Light (e.g. by

matching different induction rules), it is somewhat difficult to automatically determine

the exact number of inductive proofs. However, we believe that our approach is pretty

accurate.
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Definitions Theorems Inductive

Arithmetic 351 754 109 (14.46%)

Table 4.2: Arithmetic (Gödel) dataset

4.3.2 Arithmetic

When we started our investigation, the arithmetic in HOL Light core library4 was

used for the development of our Boyer-Moore implementation. It contains theorems

about basic arithmetic over the natural numbers. The Boyer-Moore implementation al-

ready contains definitions and lemmas, and can be directly used to prove the theorems.

Therefore, it was suitable for our initial experiment. However, the theorems are gen-

erally easy and the theorems about linear arithmetic can usually be proven with HOL

Light’s decision procedure ARITH_RULE (see Section 2.1). This library will be referred

to as Arith(core).

Another library about arithmetic, called Arithmetic5 was also considered. It contains

definitions and theorems about Gödel’s incompleteness theorem and the Sigma-1 com-

pleteness of Robinson’s arithmetic. This library rebuilds first order logic to provide a

language for arithmetic, so it has its own recursive type for numbers and formulae.

Note that the symbols are different from the default syntax in Section 2.1.1 to avoid

conflict.

After further investigation, we found it unsuitable for our experiments, because it only

contains a relatively small proportion of inductive proofs, (see Table 4.2). In addition,

many of the inductive proofs are not about recursive data types, so the Boyer-Moore

model is not generally applicable. Therefore, it was not used for later experiments and

evaluations.

4.3.3 The IsaPlanner Benchmark

The IsaPlanner benchmark consists of theorems about natural numbers, lists, and bi-

nary trees (Johansson et al., 2010).

The test data is self-contained i.e. all definitions are included, independent from the

4https://github.com/jrh13/hol-light/blob/master/arith.ml
5https://github.com/jrh13/hol-light/tree/master/Arithmetic
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Definitions Theorems

Natural Numbers 9 24

Lists 22 62

Binary Trees 5 1

Total 36 87

Table 4.3: IsaPlanner benchmark

Topic Definitions Theorems Inductive

TAKE, DROP 0 4 3

List update 3 20 13

Sorted 2 9 3

Total 5 33 19

Table 4.4: Hoare Logic dataset characteristics

corresponding types and definitions in HOL Light. No other lemmas are provided and

the ones from HOL Light cannot be used, therefore lemma selection and ATPs are

not helpful. For this reason, this corpus was only used in the Boyer-Moore evaluation

that does not involve machine learning techniques. See Appendix A.2.4 for the list of

theorems.

4.3.4 Lemmas for Hoare Logic

A group of definitions and lemmas were ported from Isabelle proof assistant6 for

the experiments in Chapter 9. Some of the main characteristics of this dataset are

shown in Table 4.4. Here List update means the updating of one element of a list

i.e. list update l i n replaces the ith element of list l with n, as shown in (4.3). See

Appendix A.2.5 for the list of theorems.

list update [] i n = []∧

list update (cons h t) 0 n = cons n t∧

list update (cons h t) (s(i))n = cons h (list update t i n)

(4.3)

6https://isabelle.in.tum.de/library/HOL/HOL/List.html
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Library Definitions Theorems Inductive Dev Eval

List(core) 44 97 73 BM

List(hilbert) 22 115 80 BM Lex, IndMl

poly 20 123 67 BM, IndMl

Arithmetic 351 754 109 BM

IsaPlanner (Sec. 4.3.3) 36 87 - Lex

Hoare Logic (Sec. 4.3.4) 5 33 19 Lex

Table 4.5: Summary of all datasets

All the data sets in this section are summarised in Table 4.5. “Dev” or “Eval” means the

data set is used for the development or evaluation respectively for the three main tasks:

improving Boyer-Moore (“BM”), machine learning for selecting induction variables

(“IndMl”), and introducing lexicographic induction (“Lex”). The Isaplanner bench-

mark does not contain proofs, so we could not determine the number of inductive

proofs.

4.3.5 Data split

When using the aforementioned data, we need to make sure that no proofs or lem-

mas used for training are used for testing. We follow the approach mentioned in Sec-

tion 3.3.5 and split the data such that training is done on the first n theorems in a library

and testing is on the (n+1)th theorem.

4.4 Proof metrics

An automated theorem proving system may achieve a high proof rate, but the diffi-

culty of the proven theorems is sometimes not clear. Therefore, in addition to calculat-

ing the success rate, we are interested in the question “how much do automated tools

like HOL(y)Hammer, or our Boyer-Moore based system help the user?”. The answer

should be from the user’s point of view, thus we propose that the difficulty of a goal is

correlated to the complexity of its manual proof (rather than dependencies).

A direct way of analysing the manual proof is to count the number of lines. However,

the number of lines cannot be used as a criterion in HOL Light. An arbitrary number

of tactic applications can be written in a single line, so the number of lines of proof
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can vary according to the users’ proof style and how its steps are packaged together.

In order to measure the “complexity” of a proof in a more reliable way, we decided to

count the number of nodes in the parse tree of the proof instead.

4.4.1 Proof complexity

There has been some research on characterising notions of proof complexity when it

comes to ITP proofs. In some of the approaches, the results from ATPs are used for

comparison as shown below. In this context, we call proofs from ITP libraries manual

proofs to contrast them to the automatic proofs generated by ATPs.

Number of lemmas in the proof. Here, this refers to the number of necessary lem-

mas gathered from dependency tracking in manual proofs (see Section 3.3.3), or

directly from ATP proofs. This was used for comparing the manual proofs and

ATP proofs (Alama et al., 2012) (Kaliszyk and Urban, 2014). The limitation of

this approach is that the tactics in HOL Light can result in irrelevant lemmas. For

example, VEC3 TAC tactic results in 121 lemmas when tracking the dependen-

cies (Kaliszyk and Urban, 2014). However, even if all the lemmas in the tactic

are relevant, the user only needs to remember the tactic, rather than a group of

lemmas, which suggests that the number of lemmas may not reflect the actual

difficulty of the goal for humans.

Number of manual proof lines. The number of proof steps (lines) was used as a met-

ric of measuring proof complexity in Mizar. The assumption was that “the Mizar

weak refutational checker enforces a relatively uniform degree of derivational

complexity on all Mizar proof steps” (Alama et al., 2012), which is close to the

number of proof lines. For ATP proofs, the ATP inference lines (i.e. ATP proof

steps) were used, and there was a conversion ratio proposed for the convenience

of comparing between ATP and Mizar proof (Alama et al., 2012).

In Mizar and Isabelle with Isar syntax, the proofs are well structured, so the

number of lines of proof are not strongly affected by the proof style, and can be

viewed as correlated to the difficulty of the goal. However, this is not the case

in HOL Light: The proof steps are not separated by lines and are often one line

long. Therefore, the number of lines does not seem to be a uniformly reliable

metric either.
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prove

(‘!n. CARD(1..n) = n‘,

REWRITE_TAC[CARD_NUMSEG] THEN ARITH_TAC)

Figure 4.8: Proof of ”CARD NUMSEG 1”

Transitive recursions. Some dependencies of a theorem may also have their own de-

pendencies. For instance, if A ` B and B, C `D, we can replace B with A and get

A, C `D. This process can be recursively repeated until all the dependencies are

definitions or axioms. In Mizar, Alama et al. recursively obtained the dependen-

cies of the lemmas until they had the transitive closure of all the lemmas used in

a proof, and count the number of lemmas and proof lines (i.e. the previous two

metrics) by summing up the values (e.g. the number of proof lines) in the tran-

sitive closure. The motivation was to “capture the mathematician’s intuition of

proof complexity as the set of the proofs that need to be understood” (Alama

et al., 2012).

Some conclusions have been made based on these metrics: hammers tend to provide

proofs with fewer lemmas than manual ones, because they “learn” new lemmas faster

than humans, i.e. newly proven lemmas are likely to be used by hammers. Such lem-

mas have larger transitive lemma numbers and proof lines (Alama et al., 2012), which

indicates that they tend to have more complicated statements than basic definitions and

theorems (Kaliszyk and Urban, 2014).

4.4.2 Methodology

HOL Light is written in OCaml (see Section 2.1), and the proof structures can be

obtained from the parse tree of OCaml. For instance, in each assignment of a theorem,

such as “let A = B” (A is a theorem, and B is its proof), we process the parse tree and

count the number of nodes in it.

A simple example is the theorem ”CARD NUMSEG 1” (a theorem stating that the

cardinality of the set {1,2,3, ...n} is n), given below. Its proof as found in the HOL

Light library is shown in Fig 4.8.

The corresponding OCaml parse tree is shown in Fig. 4.9, where labels like “Texp apply”

are constructors used by OCaml, and names in brackets are the identifiers and constants
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Figure 4.9: Parse tree of the proof of ”CARD NUMSEG 1”

(e.g. the statement of the goal) in the manual proof. We introduce two metrics based

on the parse tree:

1. I metric: Counting the number of identifiers, i.e. all the items visible in the proof

script. According to Fig 4.8, our method extracts the following nodes from this

proof:

“prove”, “A T ERM”, “REWRIT E TAC”,

“CARD NUMSEG”, “T HEN”, “ARIT H TAC”

There are six nodes, which is consistent with the proof size. Note that I metric

actually counts the number of leaf nodes, such as “Texp ident”.

2. N metric: Counting the total number of nodes in the parse tree. There are 14

nodes in Fig 4.9.

We believe that the I metric can actually reflect the number of steps in a proof. Each

step here can be:

1. A tactic. For users, more complicated goals usually require more steps, or

2. The number of lemmas used by tactics, which we believe is related to the effort

by users to think of or look for them.
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These two aspects can reflect a user’s effort in figuring out a proof. In both I and

N metric, only the tactic itself is considered, which we believe to be what the user

actually has in mind, rather than the dependencies of the tactic. For instance, if we use

the number of lemmas from tracking dependencies in this manual proof (Fig 4.8) as a

proof metric, there will be 124 lemmas (mostly from ARITH TAC). Intuitively, humans

just need to remember the tactic name, rather than all its dependencies. For the same

reason, we do not gather lemmas recursively (see Section 4.4.1). On the other hand,

the I and N metrics are also more precise than using the line count for proofs, which

would be one in this example.

There are some issues while applying this method across the whole library (i.e. the

manual proof scripts in HOL Light). These two proof metrics currently cannot deal

with theorems in the following situations:

1. Sometimes theorems are proven as a group (e.g. “let A, B=...” will assign two

theorems proven in one proof on the right hand side to A and B respectively). We

have not figured out a way of assigning the nodes to each theorem.

2. Theorems may be proven several times, or assigned different names, so a theo-

rem may have multiple proofs. It is difficult to choose a proof for such theorems

legitimately. For instance, after defining a theorem A, one may define theorem

“let B = A”. In this case, B is proven by just copying A, which does not corre-

spond to its complexity, because B and A should have the same complexity.

Nevertheless, we believe that we have a good way of characterising proof differently,

especially when compared with relatively coarse ones such as the number of lines in a

proof. We will apply these metrics in our evaluation to compare the theorems proven

by HOL(y)Hammer and our Boyer-Moore implementation in Section 7.1.6.

4.5 Conclusion

We introduced an empirical methodology aimed at improving the Boyer-Moore tool

and its supporting infrastructure in HOL Light. The datasets used for the evaluation

of our approach as well as a metric for quantifying proof “complexity” were also pro-

vided.

In the following chapters, we will carry out our investigation of the Boyer-Moore
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model and its combination with machine learning based on these concepts.



Chapter 5

Improving the Boyer-Moore Model

5.1 Improve the waterfall with experiment

In this section, the improvements made to the Boyer-Moore model with the strategy

described in Section 4.1 are examined. Some of the datasets in Section 4.3.1 are used

for the development and improvement. In particular, List(core) and List(hilbert) are

mainly used for the development. Arithmetic and Arith(core) were also used in initial

experiments.

5.1.1 Removing clausal form heuristic

During our initial experiments, some goals became unprovable by Boyer-Moore after

the CNF heuristic was applied. For instance, when testing with the theorem NOT_EVEN

(a natural number is not even, if and only if it is odd) in Arith(core), the CNF heuristic

splits ¬EV EN x ⇐⇒ ODD x into two clauses: EV EN x∨ODD x and ¬EV EN x∨
¬ODD x. In the manual proof, NOT_EVEN is actually proven independently and then

used to prove the two clauses, so it is unreasonable to expect Boyer-Moore to now

prove them as subgoals for NOT_EVEN. This is an indication that the CNF heuristic

does not always make progress in the right direction towards a proof.

Moreover, the CNF heuristic breaks goals that contain if-and-only-if into subgoals con-

taining implication, leading to a generation of a number of subgoals that is exponential

to the number of equalities encountered in the original goal. Therefore, removing it

can significantly reduce the total number of subgoals.

69
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Statement: coprime(a,b) ==> coprime(a EXP n,b EXP n)

CNF: ˜coprime (a,b) \/ coprime (a EXP n,b EXP n)

Figure 5.1: COPRIME EXP IMP and its CNF

It is worth noting that removing the CNF heuristic directly affects some of the heuris-

tics that come later in the waterfall e.g. the Substitution heuristic, which rely on

CNF (see Section 2.5.2). However, SIMP_CONV in the Simplify heuristic performs

conditional rewriting (see Section 2.5.2) and works better without CNF because the

implication in the theorem is removed in CNF. For instance, COPRIME_EXP_IMP in

Arithmetic, whose statement and its CNF is shown in Fig 5.1, could be proven without

CNF by SIMP_CONV and lemmas. Therefore, despite the side-effect, our experiments

showed a significant overall improvement in the performance of Boyer-Moore without

the CNF heuristic. For example, the original Boyer-Moore implementation can prove

47% of the theorems in List(core), whereas removing the CNF heuristic allows it to

prove 60% (see Table 5.1). ) Although some goals were no longer provable by Boyer-

Moore without the CNF heuristic, we considered the CNF heuristic detrimental to the

Boyer-Moore model in HOL Light and removed it.

5.1.2 Generalising variables

While testing with List(hilbert), the theorem TAKE_DROP could not be proven after

most fixes had been done and even after lemma selection was added to the Boyer-

Moore model (see Section 6.3). This states that appending the sub-list that takes the

first n elements of a given list xs to the sub-list that drops the first n elements of xs

yields xs (5.1).

∀ n xs. APPEND (TAKE n xs) (DROP n xs) = xs (5.1)

We carried out a comparison with the manual proof. Both manual proof and Boyer-

Moore performed induction on xs. The manual induction produced the subgoal (5.2)

for induction step, but Boyer-Moore produced (5.3), which it could not prove.

∀ n. APPEND (TAKE n t)(DROP n t) = t

` ∀ n. APPEND (TAKE n (CONS h t)) (DROP n (CONS h t)) =CONS h t
(5.2)
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APPEND (TAKE n t)(DROP n t) = t

=⇒ APPEND (TAKE n (CONS h t)) (DROP n (CONS h t)) =CONS h t
(5.3)

We explain this issue with a general and easy example. When applying induction to

a formula with more than one universally quantified variable, only one is typically

selected for induction, and the others are not affected (Bundy, 2001). For example,

applying induction on variable n in the formula ∀ n m. Q(n,m) yields the following

step case:

∀ n. (∀m. Q(n,m)) =⇒ (∀m. Q(s(n),m)) (5.4)

Notice that the other universally quantified variable m remains unaffected (Bundy,

2001). However, in Boyer-Moore the input formula is always quantifier-free (see Sec-

tion 2.5.2), so the step case generated is the following instead:

Q(n,m) =⇒ Q(s(n),m) (5.5)

This subgoal may be more difficult to prove in certain cases compared to its general

counterpart (5.4), since m is the same in the induction hypothesis and conclusion. Our

solution is to firstly universally quantify all free variables other than the one for induc-

tion. Applying induction then yields the same subgoal as (5.4), which is shown as (5.6),

though we then remove the quantifiers again to fit to the quantifier-free environment of

Boyer-Moore.

(∀m. Q(n,m)) =⇒ Q(s(n),m′) (5.6)

Generally, this fixes the problem in (5.5) and allows induction on multiple variables

successively. It gives the flexibility to instantiate m to not only m′ in (5.6). However,

this remains an open issue when to just match m to m′ and yield a simpler goal.

5.1.3 HOL Light’s automated procedures

During early experiments, we identified (sub)goals that could be proven by HOL

Light’s automated model elimination procedure MESON. For instance, the theorem

list_CASES from List(core) has the subgoal shown in (5.7), which is a tautology.

Such subgoals with existential quantifiers are usually difficult for Boyer-Moore be-

cause the heuristics such as the Substitution heuristic and the Tautology heuristic
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Arithmetic METIS MESON METIS ∩MESON

Original Boyer-Moore 131 135 129

Removing CNF 161 167 160

List(core) METIS MESON METIS ∩MESON

Original Boyer-Moore 48 46 46

Removing CNF 58 58 57

Table 5.1: Initial experiment for comparing MESON and METIS

only deal with the literal in the goal (see Section 2.5.2); The Simplify heuristic re-

quires suitable lemmas to eliminate such quantifiers. On the other hand, HOL Light’s

automated procedures MESON and METIS can easily handle such goals.

a1 = []∨ (∃ h t. a1 =CONS h t) =⇒ (∃ h t.a0 = h∧a1 = t) (5.7)

Some experiments summarised in Table 5.11 showed that METIS and MESON had

similar performance, so we decided to only add MESON as a heuristic in the waterfall.

5.1.4 Forced induction

As mentioned previously (Section 2.5.4), the induction heuristic in Boyer-Moore can

perform recursion analysis only for primitive recursive function definitions. This means

the original Boyer-Moore fails to perform induction when faced with non-primitive re-

cursive functions as it is unable to choose an appropriate variable. We address this

problem by forcing Boyer-Moore to pick the first free variable with a recursive type

for induction if no other suitable selection is found by the original heuristic. Random

picking was avoided to make the results reproducible. So, for example, when trying

to prove TAKE_DROP (5.1), our strategy will pick n for induction. In the later part of

the thesis, we also consider the use of machine learning techniques (see Section 6.4)

as well as the Lexicographic induction (see Section 5.3) as a more sophisticated mech-

anism for the selection of variables for induction.

1we used all lemmas tracked from manual proofs as rewrite rules, so the results were higher than
those in Section 7.1
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Total Induction

List(core) List(hilbert) List(core) List(hilbert)

Original 41.24% 14.78% 36.99% 8.75%

Initial 52.58% 20.00% 45.21% 17.50%

Table 5.2: Success rates comparison after applying initial fix to Boyer-Moore

5.1.5 Summary

When the optimisations and changes mentioned in the previous sections are combined

and tested, the results shown in Table 5.2 are obtained. We can already observe some

improvements in proof automation for the two libraries List(core) and List(hilbert).

5.2 The Multi-waterfall model

The original setup of the waterfall works in a serial, monolithic way. Each heuristic

is tried sequentially in a static order. However, certain proofs may require different

configurations or strategies for different subgoals. Moreover, some of the Boyer-Moore

heuristics may naturally get stuck during a proof. For example, certain combinations

of rewrite rules may cause the Simplify heuristic to loop endlessly. This is particularly

important in the context of automated lemma selection where we have less control over

looping rewrite rule sets. Using a different configuration might help unlock and make

progress with the proof.

In order to achieve a more flexible implementation that does not rely on a single con-

figuration, we introduce a Multi-waterfall model. In this, we run multiple waterfalls

with different configurations in parallel and with a preset timeout. We then have the

following possible outcomes:

1. One of the waterfalls succeeds and the corresponding (sub)goal is proven. The

proof of the (sub)goal is reconstructed and propagated upwards (as in the stan-

dard waterfall model), ensuring the soundness of the overall proof.

2. One of the waterfalls completes, having generated new subgoals that reached

their pools. In this case, we apply induction to all unproven goals as in the

standard waterfall model (see Section 2.5.1). We then apply the same set of
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Waterfall 1

Goal/Subgoal
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Theorem

Waterfall 2

.

.
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Distribute

Fastest waterfall to finish

...

.

.

.

Figure 5.2: Two waterfalls in parallel

multiple waterfalls to each of the new subgoals generated by induction.

3. All the waterfalls determine the goal is unprovable, or the timeout is reached. In

this case, the whole branch of proof search fails and is discarded.

An example of this model is shown as Fig 5.2. The timeout applied to each waterfall

ensures that any waterfalls that take too long are assumed to have failed and are forcibly

stopped and their corresponding branches abandoned. This allows the other waterfalls

running in parallel to still potentially make progress towards the proof.

An example search tree with two waterfalls is shown in Fig. 5.3. The waterfalls are

run in parallel on the same goal. When a waterfall finishes, we apply induction to

any unproven subgoals in its pool, constructing new subgoals indicated by the dashed

arrows. We then start new waterfalls for each generated subgoal until all subgoals are

proven or deemed unprovable.

A full proof can be reconstructed by tracking all successful waterfalls in a branch. This

means a proof may be found by a chain of different waterfalls. In Fig. 5.3, for example,

the proof is reconstructed by the waterfalls enclosed in the marked area. Notice that

both types of waterfalls were used to make progress on or prove different subgoals.

In our implementation, we spawn the waterfalls for a particular goal using threaded

concurrency. If a waterfall fully proves a goal (such as Waterfall 1” in Fig. 5.3), the

other waterfalls working on the same goal (such as Waterfall 2”) and their children

no longer need to run and are forcibly stopped in order to release system resources.

Waterfalls could be tried sequentially instead, for example in a machine with limited
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Figure 5.3: Proof search with multi-waterfall

capabilities for parallel computation or memory capacity, but this would dramatically

increase the times for a proof to complete. For instance, the user will need to wait for

different waterfalls to timeout for each and every subgoal.

5.3 Extending induction heuristic to support non-primitive

recursive definitions

5.3.1 Motivation

As mentioned in Section 5.1.4, non-primitive recursive definitions are not supported

by the HOL Light version of Boyer-Moore. One solution is to use machine learning

approaches to select the induction variable. Meanwhile, heuristics for selecting induc-

tion variables for goals containing general recursive definitions do exist (Kaufmann

et al., 2000, Chapter 15). We mainly adapt the lexicographic induction approach, in-

dependently from the machine learning approach, with the following motivations:

• Supporting non-primitive recursive definitions.

• Comparing its performance with our machine learning approaches for selecting

induction variable.
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5.3.2 Lexicographic induction and related techniques

Here we look at some of the induction heuristics described by (Boyer and Moore,

1979). Some heuristics may not be applicable to HOL Light (because, for example,

they refer to systems with destructive style definitions, see Section 2.5.4.1), so only

applicable heuristics are introduced.

Lexicographic induction For primitive recursive definition, there is only one recur-

sion argument position, so the induction rule for the recursive type can be directly used.

For non-primitive recursive definition, the recursion position is not fixed. For instance,

in the definition of TAKE shown in (5.8) (s is the successor function), both n and xs

are at the recursion argument in TAKE n xs, and the tuple (n,xs) has the lexicographic

relation. This relation forms an induction rule (5.9).

TAKE 0 xs = []∧

TAKE n [] = []∧

TAKE (s(n)) (cons x xs) = cons x (TAKE n xs)

(5.8)

∀P. (∀l : (A)list. P 0 l)∧

(∀n : num. P n [])∧

(∀n h t. P n t =⇒ P (s(n)) (cons h t))

=⇒ (∀n l. P n l)

(5.9)

Merging induction schemes When there is more than one induction scheme (see

Section 2.3.1) suggested, the schemes should be merged. For instance, in the goal

a < b∧ b < c =⇒ a < c, about natural numbers, both {a,b} and {b,c} are consid-

ered for induction2, based on the general recursive definition of <. This heuristic will

merge these schemes and apply induction on {a,b,c}, i.e. all three variables. Note that

merging heuristic is only applied under certain conditions.

Tie breaking rules Tie breaking rules are necessary when there is more than one

induction scheme remaining. Such rules are choosing the scheme

• that has the maximum number of variables,
2The general recursive definition of < is: (x < 0 ⇐⇒ F)∧ (0 < s(y) ⇐⇒ T )∧ (s(x)< s(y) ⇐⇒

x < y)
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• whose variables are all in unflawed position, i.e. a variable is always in the re-

cursion argument position (see Section 2.5.4)

There are more tie breaking rules, but they are rarely applicable. Often an arbitrary

pick (e.g. the first scheme) is used after all tie breaking rules failed.

5.3.3 Methodology

These heuristics need to be implemented in Boyer-Moore for HOL Light. The imple-

mentation of Merging induction schemes and Tie breaking rules are straightforward.

It takes more work to have Lexicographic induction in HOL Light: A new function

for adding definitions is required, which is able to figure out more than one induction

position from the definition. The detection of the recursive argument is achieved by

extending the existing Boyer-Moore implementation, which looks for the application

of a constructor (e.g. s(n)). We make it accept more than one such arguments.

A lexicographic relation L can be constructed by two relations R and S :

L (a1,b1) (a2,b2) ⇐⇒ R a1 a2∨

a1 = a2∧S b1 b2

(5.10)

Various induction rules can be derived based on such relation. Unfortunately, HOL

Light does not provide a corresponding induction rule for a recursive function defini-

tion like Isabelle (Nipkow, 2013, Section 2.3.4). In our current implementation, all

variables recur simultaneously with the relation shown as (5.11), so the induction rule

is like (5.9). In the future, a sophisticated method should be used, which detects the

decrease of the measure for the variable tuples and provides more induction rules.

(n,xs)≺ (n′,xs′) ⇐⇒ n′ = s(n)∧ xs′ = cons h xs (5.11)

In HOL Light, induction requires instantiating the induction rule, so induction rules for

lexicographic relations need to be generated and proven. This is challenging because

the induction rule is no longer limited to the one that comes with the type definitions,

but are based on any combinations of variables. For instance, the induction rule for the

combination of a natural (n) and a list (l) is shown in (5.9). This rule consists of two
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base cases, where each variable is in their base case respectively, followed by one step

case.

This rule can be generated automatically based on the induction scheme. The induc-

tion rule is proven by applying induction on the first variable and then rewriting all the

remaining variables. For instance, in order to prove (5.9), we firstly strip the quantifier

from P and match the implication consequent with the induction rule for natural num-

ber (see (2.5) in Section 2.3.1), which is the type of n and get (5.12). (5.12) is very

similar to (5.9) except for the underlined part. We then rewrite the consequent of this

part with the rule (5.13), which can be derived from the induction rule for lists (i.e. the

type of l) and get (5.14). Finally, we can prove that (5.9) is a consequence of (5.14) by

simplification.

` (∀l. P 0 l)∧ (∀n.(∀l.P n l) =⇒ (∀l. P (s(n)) l)) =⇒ (∀ n l. P n l) (5.12)

` (∀l. P l) ⇐⇒ P []∧ (∀h t. P (cons h t)) (5.13)

`(∀l. P 0 l)∧

(∀n.(∀l. P n l) =⇒ P (s(n)) []∧ (∀h t. P (s(n)) (cons h t)))

=⇒ (∀ n l. P n l)

(5.14)

5.4 Improving the user interface

5.4.1 Tracing proof attempts by Boyer-Moore

It is useful to track the proof attempts by the Boyer-Moore tool and to visualise the

search tree as was shown in Fig. 5.3. As mentioned in Section 4.2.2, this is necessary so

that we can detect when Boyer-Moore failed to prove a goal and come up with potential

improvements. It also shows how induction steps are applied and what subgoals are

proven, which gives a sketch of the proof by Boyer-Moore.

There are two main issues when tracking the information in diagrammatic form:

• Waterfalls are often stopped by the systems when running the Multi-waterfall

model, due to the time out or the success of another waterfall in parallel (see

Section 5.2). In this case, there is no time for the waterfall being stopped to

record its progress.
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• The waterfalls run asynchronously. Therefore, even though the progress records

of stopped waterfalls are collected, it is difficult to organise them chronologically

i.e. in the order in which these waterfalls were created.

To solve these issues, the following solutions are used:

1. Any subgoal is recorded before it is sent to a waterfall, and recorded again when

it is proven.

• This ensures that any subgoal being tried by a waterfall is recorded and

labelled with the information about its position in the proof i.e. the order of

the subgoal, which is obtained using a time stamp.

• We can tell that a subgoal is proven if it is recorded twice.

2. All records are collected together in the main process, which will never be

stopped.

Each time information is recorded about a subgoal, a time stamp is added of the form

shown as (5.15), where gid and wid are the ids of the subgoal and waterfall respec-

tively. For instance, a goal g1 is recorded initially with time stamp [(0,x)] where x

is unknown, because it has not been sent to a waterfall. g1 is then sent to multiple

waterfalls. Assume that the second waterfall cannot prove g1, induction is applied

to it, and this generates two subgoals, these will have time stamps [(0,1);(0,x)] and

[(0,1);(1,x)] respectively (assuming ids start at 0).

[(gid0,wid0);(gid1,wid1); ...(gidn,widn] (5.15)

Each goal g is first recorded with {stamp;g} before sending it to the waterfall, where

stamp is its time stamp. If g is proven, a second record will be created as {stamp; terms},
where stamp is the same, but terms is the list of subgoals proven within the waterfall.

This is because a goal may be split into several subgoals, which are all proven within

the waterfall. When processing these records, two of them with the same time stamp

represent one proven goal, so are merged and labelled as “proven”. An example of

the processed records is shown in Fig 5.4 where # is used to separate the time stamp

and the (sub)goal, −1 stands for the aforementioned x, and the variable for induction

is also recorded. Note that the last subgoal was not proven, although it is recorded.

These records are then processed to a JSON file as shown in Fig 5.5. The time stamps
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0,-1# Indvar: Proven: ALL p (REVERSE xs) <=> ALL p xs

0,2;0,-1# Indvar: xs Proven: ALL p (REVERSE []) <=> ALL p []

0,2;1,-1# Indvar: xs Proven: (!p. ALL p (REVERSE a1) <=> ALL p a1)

==> (ALL p (REVERSE (CONS a0 a1)) <=> ALL p (CONS a0 a1))

0,2;1,2;0,-1#(!p. ALL p (REVERSE []) <=> ALL p []) ==> (ALL p (REVERSE [a0]) <=> ALL p [a0])

Figure 5.4: Records of (sub)goals

[{"node":

{"name": "Indvar: Proven: ALL p (REVERSE xs) <=> ALL p xs",

"children": [

{"name": "Waterfall:None",

"children": [

{"name": "Indvar: xs Proven: ALL p (REVERSE []) <=> ALL p []"},

{"name": "Indvar: xs Proven: (!p. ALL p (REVERSE a1) <=> ALL p a1)\n

==> (ALL p (REVERSE (CONS a0 a1)) <=> ALL p (CONS a0 a1))",

"children": [

{"name": "Waterfall:None",

"children": [

{"name": "(!p. ALL p (REVERSE []) <=> ALL p [])\n

==> (ALL p (REVERSE [a0]) <=> ALL p [a0])"}]

}]}]}]}, "name": "ALL_REVERSE", "tracking_id": 2806}]

Figure 5.5: JSON of (sub)goals

are turned into tree-structured data. There are two kinds of children nodes (i.e. children

in the file): the ones that show all subgoals, and the others that show the different

outcomes from running multiple waterfalls i.e. the node contain the name attribute

“Waterfall:x” (x = None means the waterfall that directly performs induction). This

file is then be used for visualisation, as shown in Fig 4.7 of Section 4.2.2.

5.4.2 Generating proof scripts

We also wanted our Boyer-Moore tool to generate proof scripts for proven theorems.

This is because:

• It takes significantly more resources (time and CPU threads) to prove the the-

orem using Boyer-Moore (which includes searching with multiple waterfalls)

than loading any proof script that has been generated and saved.

• The proof scripts can be used to track dependencies for lemma selection.
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In order to generate the proof script, information such as lemmas used for rewriting,

induction variable selection, etc. need to be tracked. This can be achieved by modifying

the waterfall heuristics to record the information used in the proof.

To store the Boyer-Moore steps, several data structures were used:

The data structure (5.16) used to store the steps from the waterfall heuristics keeps

track of the following information: For basic heuristics, like the Tautology heuristic,

only the heuristic name is required; For heuristics like Holy Hammer, extra information

such as the tactic and the lemma names used for proof reconstruction are stored.

type meta heu =

Taut(Tautology heuristic)

|Clausal(Clausal f orm heuristic)

| Seti f y(Seti f y heuristic)

| Subst(Substitution heuristic)

| Equality(Equality heuristic)

| Gen(Generalization heuristic)

| Nb o f string list(Simpli f y heuristic with lemmas)

| Hammer o f string∗ stringlist(Holy Hammer with tactic and lemmas)

| Auto o f string(Automated procedures)

| Inst(Induction related operation)

| Exception

(5.16)

The main data structure (5.17) that can fully record Boyer-Moore proofs has the fol-

lowing characteristics: p f s stores the list of waterfall heuristics in the order that they

were applied using the type that is defined in (5.16); indvar stores the list of induction

variables; sbg recursively stores the proofs for all the subgoals.

type meta proo f ={

p f s : meta heu list;

indvar : term list;

sbg : meta proo f list}

(5.17)
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Most proof steps can be directly recorded while running Boyer-Moore. One exception

is the Simplify Heuristic where the subgoal is often rewritten with a large number of

lemmas (e.g. 256), but only a few of them are actually required for a successful proof.

In order to avoid an extremely long proof script with all 256 lemmas in each rewrite

step and in order to more accurately record dependencies, we need to pick a minimal

list of used rewrite lemmas. A compromise solution is to repeatedly remove lemmas

for rewriting, comparing the result with the original one. If removing a lemma results

in a different result, the lemma is added back. We note here that this is similar to

the approach used in Isabelle’s Sledgehammer when it tries to minimise the lemmas

needed to reconstruct a proof found by one of the ATPs. In the future, a more efficient

approach which modifies the tactic such as REWRITE_CONV should be used. Note that

since there is a timeout restriction for Boyer-Moore multi-waterfalls, such solution

would have to be done in a second run of Boyer-Moore. In that second run, we would

only need to go through the successful waterfalls, which can be figured out by the time

stamps, and there is no need to set a timeout, because we already know the proof will

be successful.

The reconstruction of proof scripts replaces the proof steps tracked from Boyer-Moore

with corresponding HOL Light tactics. An additional tactic IND_MP_TAC is added to

generalise variables that are not used for induction (see Section 5.1.2), because there

is no HOL Light tactic that has this effect. As mentioned in Section 3.3.3, lemma

selection will suggest a specific conjunct of a conjunctive theorem, so a function conj

is also added for specifying the conjunct needed for the proof. One example of a

generated proof is shown in Fig. 7.2 (see Section 7.1.5).

5.5 Conclusion

We investigated a number of approaches towards improving Boyer-Moore model in

this chapter. This involved changes to the waterfall and the heuristics within it. Multi-

waterfalls were proposed as a means of unblocking the proof search using parallelism.

An initial approach using lexicographic induction was implemented for the support

of non-primitive recursive definitions. We also added some extra functions to Boyer-

Moore to facilitate our investigation e.g. by generating proof scripts and novel tracing

support for inductive proof attempts.



5.5. Conclusion 83

In the next chapter, machine learning techniques will be applied based on the improve-

ments in this chapter.





Chapter 6

Combining Boyer-Moore with machine

learning

In this chapter, we describe our approach to combining machine learning techniques

with the Boyer-Moore model. We first look at possible ways of improving the machine

learning for lemma selection in Section 6.1. We also examine how good HOL(y)Hammer

is at proving inductive theorems.

6.1 Improving machine learning for lemma selection

Lemma selection is one of the key aspect of investigating the application of machine

learning to theorem proving. It is also very important for the multi-waterfall model

because it can help select intermediate lemmas for proving subgoals. In this section,

we will briefly introduce our attempts at improving it.

Our first investigation was to try logistic regression (Walker and Duncan, 1967), which

in some early experiments (outside the scope of this thesis) looked promising. How-

ever, its training time proved to be too time-consuming and was not investigated fur-

ther.

85
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Total Induction

Arithmetic List(core) Arithmetic List(core)

Satallax 196 6 4 3

BM 167 58 7 39

First order ATP 379 5 19 0

Table 6.1: Performance of higher order ATP

6.2 Using HOL(y)Hammer to find inductive proofs

In order to gain an idea regarding the effectiveness of ATPs on inductive proofs, we

decided to run them, along with Satallax (Brown, 2012), a recent winner of the CADE

ATP System Competition(CASC) (Sutcliffe, 2016) for higher order problems, on some

of our datasets.

The results are shown as Table 6.1. Neither first order ATPs nor Satallax did well

on List(core), which contains mostly inductive problems. ATPs proved many more

theorems than Boyer-Moore(BM) in Arithmetic, because this contains quite a lot of

first order theorems. We also noticed that Satallax had worse performance in general

than first order ATPs, but it did prove a few more inductive theorems.

According to the results, it is not likely that the inductive proofs can be found with

only ATPs.

6.3 Adding lemma selection to waterfall

We now consider the application of machine learning inside Boyer-Moore to select

intermediate lemmas for proving subgoals from induction. The settings we used for the

experiments are introduced in Section 6.3.1, followed by a description of the approach

developed in Section 6.3.2. Some changes that were motivated by our experiments are

then mentioned in Section 6.3.3 and Section 6.3.4.



6.3. Adding lemma selection to waterfall 87

6.3.1 Development environment

In this section, the datasets mentioned in Section 5.1 are used to discover and fix the

issues resulting from combining Boyer-Moore with lemma selection.

Our framework will only consider the incremental learning algorithm, namely Sparse

Naı̈ve Bayes, which can be incrementally trained and has been showed to be effective

in HOL(y)Hammer (Kaliszyk and Urban, 2014) and Sledgehammer (Kühlwein et al.,

2013).

However, although HOL(y)Hammer supports Sparse Naı̈ve Bayes via SNoW, this was

found to be defective with respect to its incremental learning, so we ported an opti-

mised version from Isabelle Mash1 and adapted it to HOL Light.

When we run multiple waterfalls in parallel, there will be a number of ATPs running

simultaneously leaving few threads for the waterfalls, so we decided to use only two

ATPs: Vampire 4.12 and Epar (a wrapper of E included in HOL(y)Hammer) (Urban,

2013). Z3, although included in HOL(y)Hammer, was not used because in our experi-

ments, most theorems proven by it are covered by the other two.

We set the timeout for each waterfall to 30 seconds, which is a reasonable time that

a user would wait for the system as well as the default timeout of Sledgehammer and

HOL(y)Hammer (Kühlwein et al., 2013; Kaliszyk and Urban, 2014).

The number of lemmas to be sent to ATPs can be hard to figure out. A balance needs to

be struck between choosing a value that is high enough to make it likely that all lemmas

needed for the proof have been chosen and one that is low enough to prevent the ATPs

from getting stuck in their search for a proof. Because of this tension, the number of

proven theorems tends to increase with the number of lemmas sent to ATPs initially

and then decrease, as was shown for HOL(y)Hammer (Kaliszyk and Urban, 2014).

For our investigation, we also ran some experiments to determine a suitable value for

how many lemmas to select. For this, we used HOL(y)Hammer with the Jordan Curve

Theorem library3. In the HOL(y)Hammer source code, the available parameters for

lemma selection were 64 and 128. In our early experiments, we found that our chosen

ATPs could easily handle 128 chosen lemmas and prove more theorems than with 64.

1https://github.com/seL4/isabelle/blob/master/src/HOL/Tools/Sledgehammer/sledgehammer -
mash.ML

2http://www.cs.miami.edu/ tptp/CASC/J8/
3https://github.com/jrh13/hol-light/tree/master/Jordan
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Number of lemmas sent to ATPs 128 256 384

Number of proven theorems 1417 1564 1523

Table 6.2: Number of proven lemmas with different numbers of lemmas sent to ATPs

Therefore, we decided to set 128 as our base value and then test on multiples of 128

(i.e. 128, 256, and 384).

According to Table 6.2, the number of proven theorems was the highest when 256

lemmas were sent to ATPs. We could probably find a more precise value with further

experiments, and different lemma selection methods may have different peak values.

However, given that the number of proven theorems were actually quite close for the

values above, and the optimal value also depends on the corpora for evaluation, we

decided to set 256 as the value for all the methods in the current work.

Such parameters cannot be optimized globally as each goal may require different val-

ues (the user could tinker with the values in an interactive setting). We believe that the

current settings are reasonable for the automated evaluation of our implementation,

and further optimisations can be tested in future experiments.

In order to run multiple waterfalls in parallel, a multi-core machine was used with 2

Intel(R) Xeon(R) CPU E5-2690 v2 @ 3.00GHz (40 threads in total) with 64GB RAM.

Note that the actual CPU load varies for different problems and is relatively low in

most cases.

6.3.2 Lemma selection for internal and external tools

A straightforward way to apply lemma selection in the Boyer-Moore model is to select

rewrite rules for the Simplify heuristic or, more generally, any heuristic that requires

relevant lemmas.

The lemmas are usually used in the following two situations:

• As rewrite rules in the Simplify heuristic. A selection of suitable lemmas may

directly lead to a proof by rewriting without further induction steps.

• For automatically tracking definitions for selecting the suitable induction vari-

able (see Section 2.5.1). Although with the new dependency tracking method,

all definitions are clearly marked, we noticed a decrease of the success rate while
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pouring all definitions into Boyer-Moore. This is because Boyer-Moore uses all

definitions as rewrite rules. In this case, all the functions will be recursively

expanded so many lemmas involving them cannot be used.

The approaches to selecting these lemmas automatically are:

1. Train a classifier C on the proofs that are encountered before the current goal

(see Section 3.3.5).

2. Run Boyer-Moore with C

• At the beginning, C selects the definitions for the induction procedure.

• In the heuristics that requires rewrite rules (e.g. simplify heuristic), C is also

used for selecting relevant lemmas for the current goal/subgoal. Lemma

selection is applied to different subgoals individually.

Note that these approaches are different from those in ACL2(ml). The difference in

machine learning approaches (i.e. supervised vs unsupervised) and feature extraction

have been explained in Section 3.3. In addition, we apply lemma selection on each

subgoal independently, while ACL2(ml) generally applies its search only at the begin-

ning on the whole goal. Such fine grained changes are possible thanks to the simplicity

and accessibility of our HOL Light test bed (in contrast to the complicated structure of

ACL2).

The main issue with lemma selection in this context is that the number of selected

lemmas must be bounded. The larger the rewrite rule set, the more likely it is that the

Simplify heuristic will loop. Selecting fewer lemmas means that key lemmas may be

classified as ‘not relevant enough’ and not be selected.

Rewrite in simplify heuristic One way to mitigate the problem with the number of

lemmas that can be tackled by the simplifier is by replacing the conditional SIMP_-

CONV in the HOL Light Boyer-Moore implementation with the simpler REWRITE_CONV,

which can deal with more rewrite rules. One experiment was used to evaluate its per-

formance by sending different numbers of lemmas to it, as shown in Table 6.3. When

testing with List(core), sending fewer lemmas (i.e. 64) allowed Boyer-Moore to prove

more theorems, which indicated that more lemmas are slowing down REWRITE_CONV.

However, with Arithmetic, sending 128 lemmas had better results, which means that

some relevant lemmas were not selected within the top 64. Judging by the number

of lemmas for selection in these two libraries, which is around 750 vs around 2800,
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List(core) Arithmetic

Sending 128 47 72

Sending 64 56 62

Table 6.3: Using REWRITE CONV with lemma selection

Goal

Hammer
(ATP)

Theorem

(a) Using hammer to prove a goal di-

rectly

Waterfall

Goal

Induction

...Subgoal Subgoal

Hammer

(ATP)

Hammer

(ATP)

Theorem Theorem

... ...

(b) Using hammer to prove subgoals

Figure 6.1: Combining hammers in waterfalls

REWRITE_CONV is not suitable to support lemma selection when there are more lemmas

for selection. The same problem was observed with MESON and METIS as they could

not handle large sets of lemmas, and timed out. For that reason, MESON is currently

used on its own (see Section 5.1.3).

In contrast, ATPs are good at handling large numbers of lemmas in more ways than

just simplification. We take advantage of this by adding a modified version of HOL(y)

Hammer (see Section 6.3.1) as a heuristic that can directly prove a (sub)goal. We call

this heuristic the ATP heuristic.

There could be two ways to prove inductive goals with HOL(y)Hammer:

• The goal is directly proven by an ATP through HOL(y)Hammer, as is shown in

Fig 6.1a, without induction, or

• After induction is applied, the subgoals are proven by hammers, as is shown in

Fig 6.1b.

Two waterfalls in parallel We can fit these two strategies into the multi-waterfall
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List(core) List(hilbert)

two-waterfall 32.99% 57.39%

three-waterfall 57.73% 63.48%

Table 6.4: Success rates comparison between two and three-waterfall model

model, and run two waterfalls in parallel: one with and one without HOL(y)Hammer.

The simplify heuristic is removed in the waterfall containing hammer, because simpli-

fication is already incorporated in the ATP.

6.3.3 Direct induction

It is quite common in manual inductive proofs for the reasoning to begin with induc-

tion before any simplification or other proof steps. In the Boyer-Moore model such

proofs may get stuck at the ATP or Simplify heuristics and eventually time out and

fail, whereas applying induction directly could help unlock the proof. Moreover, some

goals in our initial experiments were being rewritten to a form that caused Boyer-

Moore to either choose a wrong variable for induction or have more complicated sub-

goals after induction (for example because complex definitions were expanded unnec-

essarily) and fail.

For these reasons, we constructed a new configuration of the waterfall with no heuris-

tics, but instead induction is applied directly. Including this in our multi-waterfall

model (see Section 5.2) enables proofs where induction is applied directly and another

waterfall that first uses heuristics to try to prove the subgoals.

To investigate the necessity of this third waterfall, a comparison between two and three-

waterfall setting was done, and the results are shown in Table 6.4. The detailed settings

are shown in Table 6.6 in Section 6.3.5. A big improvement can be noticed according

to the table, and in List(core), the success rate with two-waterfalls was worse than the

Boyer-Moore with our initial changes from Section 5.1.5 (see Table 6.7), therefore this

third waterfall is necessary.

Note that the waterfall containing the Simplify heuristic is still useful in some exam-

ples, because sometimes a goal cannot be proven immediately by HOL(y)Hammer,

but a simplified version may be proven after induction. The simplify heuristic is also

useful after induction has been applied.
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Figure 6.2: Optimised 3 waterfalls

However, there can be a redundancy if the waterfall with the simplifier fails to process

the goal. For this reason, we stop the waterfall for simplification if the goal remains

unchanged. Induction is only applied if the goal is actually simplified in the water-

fall. This is shown as Fig 6.2, which is an example of a 3-waterfall setting, including

waterfalls for simplification and direct induction.

6.3.4 Fixing the translation to TPTP

While HOL(y)Hammer provides a translation tool from a HOL Light goal to TPTP

format, it still has limitations. We addressed and tried to fix the following issues,

found during our experiment with the Boyer-Moore Model:

Utilise the TPTP built-in constants and functions TPTP has its own syntax $true

and $false for the constants T and F in HOL Light (see Section 2.1.1). Trans-

lating these constants to TPTP syntax may help ATPs because they do not need

lemmas like (x ⇐⇒ T ) ⇐⇒ x to eliminate such constants. If lemma selection

fails to find such lemmas, the proofs can still be found by ATPs. Ifthenelse ex-

pressions can also be converted to the corresponding TPTP format, for the same

reason. This is helpful with definitions like BUTLAST (6.1).

BUT LAST [] = []∧

BUT LAST (CONS h t) = i f t = [] then [] else CONS h (BUT LAST t)
(6.1)

Translate equality There are two kinds of equalities in both TPTP and HOL Light

syntax, one of which is term equality and the other is logical equality, and
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let must_pred tm =

is_forall tm || is_exists tm || is_conj tm || is_disj tm or

is_imp tm || is_eq tm || is_neg tm || is_abs tm;;

Figure 6.3: Function must pred

Number of proven

No translation fix 68

With translation fix 71

Common 63

Table 6.5: Performance comparison with fixed TPTP translation

will be referred to as “=” and “⇐⇒ ” here. The original translation module

in HOL(y)Hammer prefers “=” to “⇐⇒ ”. It has a function must pred shown

as Fig 6.3 to filter out non-atomic formulae, and “⇐⇒ ” is applied only when

an argument at one side is a non-atomic formula. This approach can reduce

the number of clauses during resolution (see Section 2.2) and thus reduce the

proof search time. However, it is necessary to use “⇐⇒ ” to translate T and F

correctly.

An experiment for this fix using multi-waterfall model (three waterfalls) on List(hilbert)

is shown in Table 6.5. There is an improvement after changing the translation. Note

that however that some of the originally proven theorems are now missing.

6.3.5 Intermediate evaluation

We compared the Boyer-Moore multi-waterfall with lemma selection and the version

with our initial fix. A three-waterfall was used, with its settings shown in Table 6.6

(see Section 7.1). More specifically, we used a waterfall with the ATP heuristic, a stan-

dard waterfall with the Simplify and MESON heuristics, and a waterfall with direct

induction (see Section 6.3.3). The results are shown as Table 6.7. The improvement

after applying these approaches can be observed, particularly in List(hilbert). This

indicates that the original Boyer-Moore’s built-in lemmas are enough to prove theo-

rems in List(core), so only small benefits can be gained. The significant improvements

for List(hilbert) demonstrate that lemma selection is effective for corpora that contain

more difficult theorems and a larger variety of useful lemmas.
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Heuristic Waterfall 1 Waterfall 2 Waterfall 3

Simplify ×
MESON ×
Other Heuristics × ×
HOL(y)Hammer ×
Induction × × ×

Table 6.6: Heuristic settings for three waterfalls

Total Induction

List(core) List(hilbert) List(core) List(hilbert)

Initial 52.58% 20.00% 45.21% 17.50%

Multi-waterfall 57.73% 63.48% 46.58% 62.50%

Table 6.7: Success rates comparison after combining machine learning and multi-

waterfall to Boyer-Moore

6.4 Machine learning for selecting induction variable

Induction variable selection, i.e. selecting suitable variables, is an important step of

induction. We decided to investigate the application of machine learning methods to

the selection of induction variables because recursion analysis only suggests induction

variables based on primitive recursive definitions. Advanced techniques, e.g. Lexico-

graphic Relation Induction (Boyer and Moore, 1979) have not been implemented in

our Boyer-Moore implementation (Note that this investigation was done before some

of the methods described in Section 5.3 were implemented). The current induction

procedure is insufficient sometimes, particularly when the definitions in List(hilbert)

are non-primitive recursive e.g. 5.8 in Section 5.3. The induction procedure cannot

figure out the recursive argument for such definitions. Therefore, it might be useful to

learn induction variable selection from existing inductive proofs.

In addition, we are also curious to know whether it is possible to learn patterns and

predict induction variables from induction procedures in manual proofs and how a

machine learning approach compared to the existing induction heuristics.
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6.4.1 Methodology

The learning approach for induction variable selection follows the same framework

as lemma selection, i.e. processing the manual proofs to get features and class labels,

training on them, and predicting for new items (Section 3.1). However, the features

and class labels need to be adjusted.

6.4.1.1 Induction variable tracking

Tracking induction variables is different from dependency tracking because in lemma

selection, all lemmas learnt from previous proofs are available for a new proof. How-

ever, the induction variable in previous proofs may not exist in a new statement. We

can only select the induction variable within the free variables in the statement to be

proven.

Moreover, the total number of variables in a statement is not fixed, so it is difficult to

make a prediction like “the ith variable is for induction”, because i can always exceed

the range of prediction. For instance, in the proofs for training, if we train with the

proofs whose statements contain at most three variables, when trying to prove a new

goal whose statement has five variables, the fourth and fifth variable will never be

considered. Thus, the approach described in (Lindhé and Logren, 2016), for instance,

which is based on such an indexing idea would not be suitable for our work.

We suggest a new approach of tracking induction variable, where variables are indexed

by their positions in functions i.e. argument positions in each non-trivial subterm of

the statement. For instance, in the statement m+(n+ p) = (m+n)+ p, m is indexed

by its position in “m+ n”, “m+(n+ p)” and “(m+ n)+ p”. Below are the detailed

approaches:

First, training data is gathered from manual proofs. We look for induction steps in the

proof. In each induction step, the goal statement looks like “∀vi. P v1 v2...vn” where

the outermost variable vi is used for induction:

1. A record is generated for each variable vx ∈ {v1 v2...vn} that is in recursive type

(i.e. suitable for induction), so n records are generated when there are n such

variables.

2. Each record is in the form (s,vx, label) where s is the goal statement, and label
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is T when vx = vi, otherwise F i.e. label is true (T ) or false (F) according to the

claim “vx is the induction variable for s”.

After this process, the manual proofs are converted to triples which consist of (statement,

variable, label). Note that the statement,variable pairs will be used to generate fea-

tures and replaced by f eature (see Section 6.4.1.3), so the training datasets will contain

instances like ( f eature, label) where label is a binary i.e. a binary classification prob-

lem.

6.4.1.2 Induction variable predicting

We then train on the dataset obtained in Section 6.4.1.1 and get a classifier C, which

can be used to predict the probability P(label = T ) =C( f eature). For a goal statement

g, all variables in the goal can be selected based on their probability of being used for

induction with the following steps:

1. Get all free variables FVs from g that have recursive type, assuming there are n

such variables.

2. Generate f eaturei for each xi ∈ FVs with the approach in Section 6.4.1.3 so that

n features are generated.

3. Compute P(labeli = T ) =C( f eaturei)

4. Pick xi with the highest P(labeli = T )

6.4.1.3 Feature extraction

We now introduce our approach for generating features. This process is based on the

feature extraction for lemma selection. It generates features shared globally, from the

local induction information represented as (statement,variable) pairs, which will be

referred to as s,v for short. The procedure is:

1. Get the free variables FVs with recursive type from s, i.e. all s,v generated from

the same statements share the same FVs

2. Track the features from s in the same way as for lemma selection (see Sec-

tion 3.3.2), except that for the terms or subterms that contain xi in FVs, whose

type is t:
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• If xi = v, normalise (i.e. rename) it to “Bt”

• Otherwise, normalise xi to “At” i.e. the same way as lemma selection

Here is an example for the conjecture s: “m+SUC n = SUC (m+n)” m was used for

induction in the manual proof:

First, there are two inductive variable m and n, so the two records generated are:

(s,m,T ) and (s,n,F).

Then the generated features are:

Variable Feature Label

m “Bnum + SUC Anum”, “SUC (Bnum + Anum)”,... T

n “Anum + SUC Bnum”, “SUC (Anum + Bnum)”,... F

Note that only “Feature” and “Label” are used for training, and the “Variable” column

is just used to show the relation between variables and data records.

Regarding the evaluation, this approach has a similar issue as lemma selection. When

trying to select the induction variable for a goal i.e. a theorem for testing, only the

inductive proofs before it (i.e. the proofs that are “known” to the theorem) are used for

training. For this reason, each record is labelled with the id of the theorem whose proof

it is tracked from. When training, only the data with ids smaller than the test theorem

are used for training.

6.4.1.4 Synthetic proof

A limitation of this approach above is that the definition cannot be learnt before it is

used in a proof, which is also mentioned in Section 7.2.2. We try to solve this by

adding a “synthetic” proof for training:

1. Whenever a new recursive function f is defined, we figure out its recursion ar-

gument vi by recursion analysis.

2. A statement “∀vi. f v1 v2...vn = f v1 v2...vn” is added for machine learning,

which indicates vi is used for induction. This is a synthetic proof that has the

same form as the tracked statement in Section 6.4.1.1. For instance, the sec-

ond argument is at the recursion position for addition, so its synthetic proof is

∀v1. v0 + v1 = v0 + v1.
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This approach can be viewed as the incorporation of recursion analysis. However, the

improvement was small: only one additional theorem BREAK_ACC_APPEND_conjunct1

(6.2) was proven after this change for the dataset List(hilbert), because the definition

of BREAK_ACC (BREAK ACC p l acc is a primitive function recurs on l) was learnt im-

mediately after the definition and before testing this theorem. Without this knowledge,

ys is selected according to the definition of APPEND. This theorem was only proven

when the dependencies tracked from its manual proof were provided to Boyer-Moore

multi-waterfalls, so the results were not updated in Section 7.2.2.

∀p xs y ys. SND (BREAK ACC p xs (APPEND ys [y])) = SND (BREAK ACC p xs ys)

(6.2)

6.5 Conclusion

The application of machine learning to inductive theorem proving was discussed in

this chapter. The attempt to use HOL(y)Hammer with a higher-order ATP did not

bring much success. Lemma selection was then integrated in Boyer-Moore model

with multi-waterfalls, which helped to unblock the proof search. An approach to using

machine learning to select induction variables was also described.

In the next chapter, we evaluate these methods on our various corpora.



Chapter 7

Evaluation

In this chapter, our approaches from Chapter 5 and Chapter 6 are evaluated. First,

the multi-waterfall model with lemma selection integrated is evaluated in Section 7.1

and the machine learning approach for selecting induction variable is in Section 7.2.

After that, in Section 7.3, the implementation of selecting induction variable for goals

involving non-primitive recursive definitions i.e. Lexicographic induction is tested and

compared with the existing approach in Boyer-Moore as well as the machine learning

approach. Finally, the generality of our approach is discussed in Section 7.4.

7.1 Multi-waterfall model

We evaluate our Boyer-Moore Multi-waterfall with machine learning for lemma selec-

tion in this section.

7.1.1 Choice of datasets

In order to evaluate our work, we use proven theorems about recursively-defined data

types, which are shown in Section 4.3.1. We note here that the IsaPlanner benchmark

is unsuitable in our case for the following reasons:

1. Many of the definitions use case-expressions, which are not currently supported

by HOL Light. After removing case-expression in the translation from Isabelle

to HOL Light, many test theorems are part of the recursive definitions of the

99
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corresponding functions and so can be proven trivially, which also happens in

the benchmark1.

2. In the evaluation of HipSpec, 67 theorems were proven without using any aux-

iliary lemmas, and more than 10 were proven using only rewriting (Claessen

et al., 2012). Therefore, lemma selection would not have any impact in these

examples.

7.1.2 Experiments

In practice, many users create inductive proofs which apply induction at the beginning

followed by simplifications using rewriting to the subgoals. This strategy generally

works well in a number of interactive theorem provers may be very useful especially

in some theorem provers, so is preferred to dedicated automated proof system for in-

duction such as Boyer-Moore.

In order to show that the Boyer-Moore model is a good starting point for inductive

theorem proving, a comparison between it and a simple “induction then rewriting”

proof strategy was therefore made. Such a strategy is commonly used in manual proofs

for a large number of (relatively simple) inductive theorems. We will refer to it as

Ind simp. Since this strategy has no heuristic about choosing induction variable, the

induction procedure from Boyer-Moore was applied.

We then performed the following experiments using the methods described in Chap-

ter 5:

1. Original: Running the original Boyer-Moore implementation as a baseline.

2. Initial: Running Boyer-Moore with the changes from Section 5.1.

3. Multi-waterfall: Running the multi-waterfall model described in Section 5.2,

using the three waterfalls shown in Table 6.6, see Section 6.3.5.

4. ATP: The combination of lemma selection with the ATP heuristic outside Boyer-

Moore, i.e. without induction, so that we evaluate and compare the performance

of ATPs on inductive proofs independently.

Note that in the experiments without lemma selection (Ind simp, Original and Initial),

1https://github.com/tip-org/benchmarks/tree/master/original/isaplanner
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List(core) List(hilbert) Poly

Ind simp 24.74% 13.04% 8.94%

Original 41.24% 14.78% 13.01%

Table 7.1: Success rate of Ind simp and the original Boyer-Moore.

the built-in rewrite rules and definitions in Boyer-Moore are used. We also use the

definitions from our List(hilbert) and Poly datasets.

7.1.3 Metrics

For each dataset, we compute the success rate as n/m where n is the number of the-

orems proven and m is the number of theorems in it. We also compute the inductive

success rate in the same way for the subset of inductive theorems in each dataset. All

results are given as percentages.

7.1.4 Results

The comparison between the original implementation of Boyer-Moore and Ind simp is

shown in Table 7.1. Ind simp has a lower success rate. Note that the Ind simp evaluated

is already enhanced with the induction procedure from Boyer-Moore, so this approach

can be seen to be generally weaker than Boyer-Moore. Boyer-Moore only failed on two

theorems proven by Ind simp mainly due to the issue with the CNF heuristic mentioned

in Section 5.1. Therefore, this provides a state of the art to build on and a higher bar

over which to show improvement.

The results of the experiments with the evaluation data set poly are shown in Table 7.2,

which are consistent with the experiments on our development sets (see Section 5.1.5

and Section 6.3.5). Initial generally outperformed Original, which was still able to

prove some theorems that Initial failed on though, due to the failure of some heuristics

that rely on CNF. Similar to List(hilbert), Multi-waterfall leads to major improvements

(see Section 6.3.5), because it contains many difficult theorems and quite a few useful

lemmas.

Table 7.3 is the comparison between the Boyer-Moore Multi-waterfall and ATPs. ATPs

performed relatively poorly on inductive theorems (which significantly affected their
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Total Induction

Original 13.01% 11.94%

Initial 14.63% 13.43%

Multi-waterfall 40.65% 37.31%

Table 7.2: Success rates of the different configurations of Boyer-Moore for Poly

Total Induction

List(core) List(hilbert) Poly List(core) List(hilbert) Poly

Multi-waterfall 57.73% 63.48% 40.65% 46.58% 62.50% 37.31%

ATP 25.77% 36.52% 24.39% 5.48% 30.00% 10.45%

Table 7.3: Success rates comparison between Boyer-Moore Multi-waterfall and ATP

total success rate as well). However, ATPs had a relatively good success rate on

List(hilbert). This shows that with appropriate lemma selection, ATPs can sometimes

be useful for problems that were inductively proved manually, indicating that ulti-

mately these are not inductive theorems.

Fig. 7.1 shows a Venn diagram representation of the theorems proven by Initial, Multi-

waterfall and ATP, demonstrating the percentage of theorems that could only be proven

by some of the methods, but not the others. Multi-waterfall could prove many theorems

that none of the other methods could. This reveals the enhanced potential of combining

lemma selection and Boyer-Moore in a multi-pronged, parallel proof strategy.

In List(core), Multi-waterfall failed to prove some theorems that were proven by Initial.

This is mainly due to the lack of conditional rewriting (see Section 6.3). Moreover,

some theorems were proven by ATP but not Multi-waterfall, because Multi-waterfall

requires quantifier-free goals as input and the quantifiers in each test statement are

removed. This affects how the goals are translated to the ATP format variables (they

are translated to constants by HOL(y)Hammer), and thus impacts the performance of

ATPs integrated in Boyer-Moore.

Examining failed proofs in Multi-waterfall, we discovered that some theorems are

proven with special tactics: a tactic can eliminate conditional expressions e.g. (7.10);

Or a case split on a list l can produce two subgoals, one with l = [] and the other ¬l = [];

Or a tactic can specialise the variable in the goal. In some cases the wrong variable

was chosen for induction, particularly when two or more induction steps are used in
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Figure 7.1: Coverage of proven theorems by the different methods in Table 7.2
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Total Induction

Multi-waterfall (lemma selection) 40.65% 37.31%

Multi-waterfall (tracked dependencies) 51.2% 49.3%

Table 7.4: Success rate comparison of using different lemmas for Poly

a proof which is very common in List(hilbert) and Poly and there are non-primitive

recursive definitions in List(hilbert) (see Section 4.3.1).

Other failed proofs can be attributed to lemma selection issues. For instance, if we

give Boyer-Moore multi-waterfall directly with the dependencies tracked from manual

proofs, the success rate can be further improved. The results for Poly is shown in

Table 7.4. Apart from missing key lemmas, another issue is that irrelevant lemmas

slow down ATPs (see the example of LENGTH_REVERSE in Section 7.1.5).

7.1.5 Examples

An inductive theorem proven by Multi-waterfall is DROP_DROP from List(hilbert) shown

in Fig. 7.2. It is worth comparing the manual proof to the one generated by Boyer-

Moore. With the push of a button, a theorem with a complex manual proof containing

three induction steps can be proven by Multi-waterfall automatically in only two induc-

tion steps. The corresponding proof script for the new proof is automatically generated

and verified in HOL Light. Also note that the ATPs used with HOL(y)Hammer were

unable to find a proof by themselves, neither when supplied with the same lemmas

used in Multi-waterfall nor with machine-learned selection of 256 lemmas.

An example of a case where there was a failure to find an automatic proof is for the

LENGTH_REVERSE theorem shown in Figure 7.3. It has a short manual proof with only

one induction step and was proven by Initial, but not by Multi-waterfall. Further in-

vestigation showed that when trying to prove a particular subgoal, although lemma

selection included the 6 lemmas that were sufficient for the proof, ATPs still failed to

find it (even after being allowed to run for 60 seconds, i.e. double the time). In our later

experiments, a list of 13 theorems (including definitions and common rewrite rules for

lists) can easily prove many subgoals when used on their own, but not as part of a

large selection, see Section 7.3.4. This shows that a small group of carefully picked

lemmas can be more effective than a large number of automatically selected lemmas.
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DROP DROP: ∀n,m,xs : DROP (n+m)=DROP n (DROP m xs)

Manual proof:

INDUCT_TAC THEN REWRITE_TAC [ADD_CLAUSES;DROP]

THEN INDUCT_TAC THEN ASM_REWRITE_TAC [LENGTH;ADD_CLAUSES;DROP]

THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC [LENGTH;ADD_CLAUSES;DROP]

THEN REWRITE_TAC [GSYM ADD] THEN ASM_REWRITE_TAC [DROP;ADD_CLAUSES]

Proof generated by Boyer-Moore Multi-waterfall:

REPEAT GEN_TAC THEN REWRITE_TAC[conj 0 ADD_AC] THEN

IND_MP_TAC [‘xs:(a)list‘] list_INDUCT THEN CONJ_TAC THEN

CONV_TAC (REPEATC (DEPTH_FORALL_CONV RIGHT_IMP_FORALL_CONV)) THEN

(REPEAT GEN_TAC) THENL [REWRITE_TAC[conj 1 DROP];

IND_MP_TAC [‘m:num‘] num_INDUCTION THEN CONJ_TAC THEN

CONV_TAC (REPEATC (DEPTH_FORALL_CONV RIGHT_IMP_FORALL_CONV)) THEN

(REPEAT GEN_TAC) THENL [REWRITE_TAC [conj 0 DROP;conj 0 ADD];

SIMP_TAC[conj 1 ADD;conj 2 DROP];];]

Figure 7.2: User and Boyer-Moore proofs for DROP DROP

LENGTH REVERSE: ∀xs. LENGTH (REVERSE xs) = LENGTH xs

Manual proof:

LIST_INDUCT_TAC THEN ASM_REWRITE_TAC

[LENGTH;REVERSE;LENGTH_APPEND] THEN ARITH_TAC

Figure 7.3: User proof for LENGTH REVERSE

This explains why Multi-waterfall failed to prove some theorems that Initial proved.

7.1.6 Proof metrics

We apply the proof metrics from Section 4.4.2 to the results in Section 7.1.4. Accord-

ing to our initial experiments, the I and N metrics seem largely undifferentiable, so

only the I metric is used. The average number of nodes is shown in Fig 7.4. Multi-

waterfall proves theorems with more nodes in proofs than the ATPs for List(core) and

Poly, which means it has proven more complicated theorems under our metrics. All

stands for the average number of nodes in the manual proofs of all the theorems in

each corpus, which is still higher than Multi-waterfall, particularly in Poly. This is be-

cause more than ten proofs in Poly have a hundred or more nodes and were not proven
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Figure 7.4: Average proof size of theorems by different methods in Table 7.2

by either of the systems. As expected, this is an indication that automated systems are

still unable to accomplish proofs with high complexity at the level that humans can.

In order to investigate why ATPs find proofs containing more nodes in List(hilbert),

consider the histograms in Fig 7.5. These show the number of theorems proved by

the two methods, with different proof sizes (Note that ATP is fully covered by Multi-

waterfall and is put in front, so Multi-waterfall cannot be seen when they have the

identical value). According to Fig 7.5, Multi-waterfall has proven more theorems

with more nodes in manual proofs (i.e. more than average) in List(core) and Poly.

In List(hilbert), Multi-waterfall proves more theorems with relatively fewer nodes in

proofs. For instance, many proofs are like “LIST INDUCT TAC THEN REWRITE -

TAC[...]”, which are very short, but ATPs could not prove. On the other hand, some

theorems with a lot of nodes in proofs were proven by hammers, giving the ATPs a

higher average number of nodes for proofs.

Our metrics failed to demonstrate the complexity of some proofs. First, though Boyer-

Moore cannot sometimes find proofs containing a lot of nodes, the proofs that have

fewer nodes but are inductive can still be challenging. In addition, sometimes the the-

orems with more nodes in manual proofs can be proven by ATP, because they can

find alternative proofs, which means they may not be as difficult as their proofs indi-

cated. Despite these limitations, these metrics reflected the complexity of most manual

proofs, so we believe they are good enough in the general case.
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Figure 7.5: Proof size of theorems by different methods in Table 7.2
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List(hilbert) Proven Proven (Ind)

IndMl 72 49

RecAna 73 50

Poly Proven Proven (Ind)

IndMl 48 23

RecAna 50 25

Table 7.5: Number of proven theorems

7.2 Selecting induction variables with machine learn-

ing

In this section, the performance of using machine learning methods to select induction

variables is evaluated.

7.2.1 Experiment settings

We compare recursion analysis, referred to as RecAna, which is originally used by

Boyer-Moore with our machine learning approach, IndMl.

The Multi-waterfall setting in Section 7.1.2 is used. List(hilbert) and Poly provide the

test data (see Table 4.5 in Section 4.3), because they contain many multi-step induction

proofs.

7.2.2 Results

The results, shown in Table 7.5, are very close, so the number of proven theorems

is used instead of the percentage. According to the results, IndMl proved one and

two fewer theorems in List(hilbert) and Poly respectively. After further investigation,

we found that the two approaches generally proved the same theorems (71 and 48 in

common respectively).

To have an in-depth comparison between the two approaches for selecting induction

variables, eight theorems, on which the two methods had different selection of induc-

tion variables, are examined. The number of induction steps used in each proof is
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Figure 7.6: Comparison of induction steps between IndMl and RecAna for List(hilbert)

shown in Fig 7.6 for List(hilbert). IndMl always used equal (in five proofs) or fewer

(in three proofs) induction steps on the same theorem and use no more than two in-

duction steps on all proofs, which indicates that it has a better selection of induction

variables. There are 32 theorems where both methods have chosen identical induction

variable(s), which also shows that it is possible to have a heuristic similar to recursion

analysis by learning from human proofs.

The theorem IS_PREFIX_OF_EXISTS_APPEND shown as (7.1a), i.e. if xs is the prefix

of ys, there exists a list zs so that ys is the result of appending xs and zs was proven only

with Indml. This was because the definition (7.1b) of IS PREFIX OF is non-primitive

recursive, RecAna could not work properly and picked xs for induction repeatedly.

Indml had induction on xs and ys in succession (by learning from an early proof) and

proved it.

IS PREFIX OF xs ys ⇐⇒ (∃zs. APPEND xs zs = ys) (7.1a)

(∀ys. IS PREFIX OF [] ys ⇐⇒ T )∧

(∀x xs. IS PREFIX OF (x :: xs)[] ⇐⇒ F∧

(∀x y xs ys. IS PREFIX OF (x :: xs) (x :: ys) ⇐⇒

x = y∧ IS PREFIX OF xs ys

(7.1b)

One of the theorems that IndMl failed to prove (but proved by RecAna) is TAKE_TAKE



110 Chapter 7. Evaluation

with the subgoal (7.2). IndMl erroneously chose m for induction. However, given the

definition of addition, n should have been chosen. This is because in the training data

(i.e. the HOL Light proofs), m is used slightly more often for induction than n (15

vs 14). This means the machine learning approach will select m for induction when

encountering the term n+m, if there is no other information to help the selection (e.g.

m and n do not occur elsewhere).

(∀m n. TAKE (n+m) a1 = APPEND (TAKE n a1) (TAKE m (DROP n a1)))

=⇒ TAKE (n+m) (CONS a0 a1) =

APPEND (TAKE n (CONS a0 a1)) (TAKE m (DROP n (CONS a0 a1)))

(7.2)

IndMl also failed to prove APPEND_EQ (7.3) i.e. if two lists xs and us has the same

length, the outcomes of appending them with ys and vs respectively are equal, if and

only if xs = us and ys = vs. RecAna applied induction on us and xs in succession, while

IndMl did this in reverse order i.e. xs and then us, which led to a subgoal essentially

the same as RecAna. However, ATPs failed to find a proof with all required lemmas

selected. The failure is due to irrelevant lemmas that slow down the ATPs rather than

the selection of the induction variable.

LENGT H xs = LENGT H us =⇒

(APPEND xs ys = APPEND us vs ⇐⇒ xs = us∧ ys = vs)
(7.3)

In Poly, the two approaches almost always select the same induction variables. One

exception is POLY_ADD_SYM: ∀x y. x++y = y++x (++ is the addition of lists i.e. the

commutativity of list addition), where the positions of the arguments are symmetric,

so it does not matter whether we start with x or y.

IndMl also failed to prove the theorem NOT_POLY_MUL_NIL (7.4) (the product of two

non-zero polynomials is non-zero) where ** is the multiplication operation for poly-

nomials . IndMl made the wrong choice between p2 and a1 in the subgoals after per-

forming induction on p1 twice as shown by (7.5) where ## is the scalar multiplication

for a single number and a list. According to the definitions of ## and **, p2 is in the

recursive position for ## (though non-recursive position for **), and is the only choice

for RecAna.
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However, IndMl found the feature “B(real)list ** A(real)list” (and “A(real)list** B(real)

list”, because the variable considered for induction is normalised to “B” (see Sec-

tion 6.4.1.3)) from the term “a1 ∗∗p2” in the induction hypothesis. The variable a1 is

at the recursive position in “a1∗∗p2”, so IndMl suggested that a1 is in a “better” choice

than p2 based on previous proofs. Conversely, RecAna only looks into the induction

conclusion i.e. the subterms without quantifiers. This reveals a flaw in the current ver-

sion of IndMl, namely that the (string) features tracked from induction hypothesis are

treated equally as those in the conclusion. In future work, different strings should be

assigned to the features to distinguish them.

∀p1 p2. ¬(p1 = [])∧¬(p2 = []) =⇒ ¬((p1 ∗∗p2) = []) (7.4)

(∀a0 p2. (∀p2. ¬(a1 = [])∧¬(p2 = []) =⇒ ¬(a1 ∗∗p2 = [])) =⇒

(i f a1 = [] then a0 ## p2 else

a0 ## p2 ++ CONS (& 0) (a1 ∗∗ p2)) = [] =⇒ p2 = [])

=⇒ (∀p2.¬(CONS a0 a1 = [])∧¬(p2 = []) =⇒ ¬(CONS a0 a1 ∗∗p2 = []))

=⇒ (i f CONS a0 a1 = [] then a′0 ##p2 else

a′0 ## p2 ++ CONS (& 0) (CONS a0 a1 ∗∗ p2)) = [] =⇒ p2 = []

(7.5)

Like all machine learning methods, the performance strongly depends on the data.

This results in some issues: Firstly, the training data may be misleading as mentioned,

e.g. in the case of TAKE_TAKE. Another limitation is that for a new function definition,

there is no available information about how to choose an induction variable from its

arguments before a manual proof that has induction involving this function has been

carried out. Therefore, IndMl cannot work properly the first time it encounters the

function. An alternative way would be to use recursion analysis as a supplement.

This is investigated in Section 6.4.1.4 although we have not made a notable progress.

Finally, the training data we have access to is relatively small, because only inductive

proofs can be used. When more training data are available, the selection may become

more accurate.

In our evaluation, IndMl achieved a close performance as RecAna by just learning from

manual proofs. Although it has not proven more theorems, better performance may be
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achieved if the issues mentioned above are addressed.

7.3 Support of non-primitive recursive definitions

In this section, Lexicographic induction is evaluated (see Section 5.3).

7.3.1 Dataset

List(hilbert) and the Lemmas for Hoare Logic (see Section 4.3.4) are used for evalu-

ation, since they contain non-primitive recursive definitions (see Section 4.3.1). The

IsaPlanner benchmark was also used (see Section 4.3.3), as it has many non-primitive

recursive definitions, so it fits the evaluation here.

7.3.2 Experiment settings

In the first test with List(hilbert), the Multi-waterfall setting in Section 7.1.2 is used

again except that Lexicographic induction, which will be referred to as Lex is used

for selecting induction variable.

When testing with the Lemmas for Hoare Logic, we tried to simulate the process of

building a new library with Boyer-Moore multi-waterfalls. If Boyer-Moore success-

fully proved a theorem, its generated proof is used for training instead of the manual

proof. We believe this approach is closer to how Boyer-Moore might be used in prac-

tice, because if the theorem can be automatically proven, the user will not create a

manual proof. The proofs generated by Boyer-Moore (see Section 5.4.2) are given to

the dependency tracking system to obtain the dependencies for training.

The IsaPlanner benchmark was ported from Isabelle. In order to make the translation

as close as possible to the original version, conditional expressions (i.e. “if then else”)

in definitions and goals were kept. This caused problems in HOL Light, especially

after the clausal form heuristic was removed (see Section 5.1) as it used to handle

such expressions, so a function that eliminates conditional expressions was added as a

heuristic for this evaluation. Note that a single waterfall with simplify heuristic (i.e.

Waterfall 2 in Table 6.6) was used for this experiment as, based on our experiments,

the multi-waterfall approach was problematic (worse results were achieved than with
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a single waterfall for reasons which, unfortunately, we could not figure out). So there

was no need to run other waterfalls because no lemma selection was involved (see

Section 4.3.3).

7.3.3 Results

Lex and RecAna had identical success rates on List(hilbert) and proved almost the same

theorems, except two. In particular, IS_PREFIX_OF_EXISTS_APPEND was proven after

applying Lex. The reason was the same as mentioned in Section 7.2.2: IS_PREFIX_OF

is non-primitive recursive and Lex successfully picked both xs and ys for induction.

APPEND_EQ was only proven by RecAna. This was due to the limitation of ATPs again,

see the discussion in Section 7.2.2 for the same theorem.

The same comparison of induction steps (as in Fig 7.6) is done for the 11 theorems

proven with different induction schemes in List(hilbert), as shown in Fig 7.7. The-

orems proven with Lex use equal or fewer inductions steps, except the 11th, IS_-

PREFIX_OF_ADJACENT. No induction was used by RecAna (or IndMl) because

HOL(y)Hammer waterfall found a proof before an inductive proof was found by other

waterfalls. With Lex, inductions were successfully applied and combined with sim-

plifications to prove the theorem before HOL(y)Hammer. This proof is similar to its

manual one, which used three induction steps with rewrites. Therefore, Lex appears

better when it comes to the number of inductive steps.

In the comparison between Lex and IndMl with List(hilbert), the same theorems are

proven, except that IndMl failed to prove TAKE_TAKE (see Section 7.2.2). The compar-

ison for the induction steps used by the two approaches is shown in Fig 7.8. In most

cases, both Lex and IndMl use one to two induction steps, and Lex often uses fewer

induction steps. This is because Lex applies induction on two variables at the same

time, while for the same problem, IndMl needs to perform two induction steps.

The only example where IndMl uses fewer induction steps (1 vs 3) is EL_TAIL, (the

10th theorem). Its statement (7.6) (if the list xs is longer than (n+ 1) then the (n+

1)th element of the tail of xs is equal to the (n+ 2)th element of xs). Both Lex and

RecAna chose n for induction, because xs is not in a recursive argument position for

EL. After further investigation, it was found that IndMl discovered the common pattern

from a previous proof, whose statement (7.7) is quite close to (7.6). They have the
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Figure 7.7: Comparison of induction steps between Lex and RecAna for List(hilbert)

Figure 7.8: Comparison of induction steps between Lex and IndMl for List(hilbert)
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Total Induction

RecAna 42% 32%

Lex 61% 47%

Table 7.6: Success rate of RecAna and Lexicographic induction(on lemmas for Hoare

logic)

Method Success rate

RecAna 40.2%

Lex 57.5%

Table 7.7: Success rate of RecAna and Lexicographic induction IsaPlanner benchmark

common features “EL (SUC Anum) B(A)list” and “SUC Anum< LENGT H B(A)list”.

Therefore, IndMl picked the same variable l (i.e. xs in EL_TAIL) for induction as the

previous proof.

∀ n xs. SUC n < LENGT H xs =⇒ EL n (TAIL xs) = EL (SUC n) xs (7.6)

SUC n < LENGT H l =⇒ EL (SUC n) (MAP f l) = f (EL (SUC n) l) (7.7)

The results on the lemmas for Hoare logic are shown in Table 7.6. There is a notable

increase of success rate after using Lex. Note that the increase is not only for induc-

tive theorem, because Boyer-Moore also proved some theorems by induction whose

manual proofs did not involve induction.

Lex has a better performance on the IsaPlanner benchmark, according to Table 7.7.

The increase is due to the success of Lex on non-primitive definitions. The performance

is close to IsaPlanner (57.5% vs 54%), but worse than HipSpec and ACL2s (92% and

85%) Claessen et al. (2013). This is partly because HipSpec and ACL2s are more

powerful, modern systems for inductive proofs, whereas the Boyer-Moore implemen-

tation in HOL Light (as discussed before) is relatively primitive. More importantly,

techniques like lemma speculation have not been fully applied to our Boyer-Moore

implementation.
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Lex might have a better performance if HOL Light could use a different style of defi-

nition. Specifically, definitions in HOL Light (core library) are always primitive recur-

sive and additional definitions are needed in some cases to achieve this. For instance,

consider the function EL that returns the nth elements of a list in HOL Light in (7.8),

where HD and T L return the head and tail of a list. This definition is only recursive on

the argument n, so l is usually not considered for induction (see EL_TAIL from Sec-

tion 7.3.3). However, a different definition (7.9) (as used in Isabelle) is not primitive

recursive and for that Lex works better. Another issue is that some definitions in HOL

Light are not recursive at all e.g. the definition of minimum (7.10) where no recursive

argument position can be found.

EL 0 l =HD l∧

EL (SUC n) l =EL n (T L l)
(7.8)

EL n (x :: xs) =

x, n = 0

EL k xs, n = SUC k
(7.9)

∀m n.min m n = i f m≤ n then m else n (7.10)

One solution could be to use more suitable formulations: the alternative definitions

(e.g. (7.9)) can then be proven as lemmas and used instead of the original definition in

HOL Light. If all definitions were replaced in this way, Lex should work better.

7.3.4 Simplification with preselected lemmas

During our investigation of failed subgoals, we found many theorems were not proven

because Boyer-Moore failed to prove the subgoals even though the right induction

scheme was chosen (e.g. LENGTH_REVERSE in Section 7.1.5). Many of them can be

proven by rewriting with a list of common lemmas, but when using lemma selec-

tion, such lemmas are sent together with more than two hundred others, which slows

down ATPs. Such lemmas consist of definitions (e.g. LENGTH, TAKE, DROP2) and ba-

sic arithmetic and list theorems (7.11a)-(7.11g). Since the group of lemmas is small,

2and other definitions: APPEND, EL, HD, TL
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Total Induction

Without Simp With Simp Without Simp With Simp

RecAna 42% 36% 32% 26%

Lex 61% 70% 47% 58%

Table 7.8: Success rate after adding simplification

conditional rewrite functions in HOL Light (i.e. SIMP_CONV) can be used. This then

becomes a new heuristic, which we will refer to as Simp.

NOT SUC :` ∀n. ¬(SUC n = 0) (7.11a)

LT 0 :` ∀n. 0 < SUC n (7.11b)

LT conjunct0 :` ∀m. m < 0 ⇐⇒ F (7.11c)

LT SUC :` ∀m n. SUC m < SUC n =⇒ m < n (7.11d)

SUC INJ :` ∀m n. SUC m = SUC n ⇐⇒ m = n (7.11e)

CONS 11 :` ∀h1 h2 t1 t2 =CONS h2 t2 ⇐⇒ h1 = h2∧ t1 = t2 (7.11f)

LE SUC :` ∀m n. SUC m≤ SUC n ⇐⇒ m≤ n (7.11g)

Experiments were done using RecAna and Lex on Lemmas for Hoare logic (Sec-

tion 7.3). It turns out that the special Simp approach has different effects on differ-

ent induction heuristics: it does worse with RecAna and better with Lex, as seen in

Table 7.8.

After a further investigation, the differences were found to be mainly from the second

induction step: After the first induction step, the subgoal from the step cases are like

“P n =⇒ P (SUC n)” for the natural number n, and “P l =⇒ P (h :: l)” for the list

l. In both cases, n and l are no longer in recursion positions, so RecAna will look

for other variables (or pick variable arbitrarily). In this case, Simp may sometimes

eliminate these constructors and simplify the term back to “P n” (or “P l”) where n (or

l) is still in recursion position.

On the other hand, Lex is free from this issue because firstly it usually combines two in-

duction steps, and there is usually a lexicographic induction on all the relevant variables

without a second induction step. In addition, it also has smarter choices of induction
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variables, for instance, it considers non-primitive recursive definitions and does not

usually choose induction variables arbitrarily.

The combination of Lex and Simp does improve the success rate (from 61% to 70%

and 47% to 58% respectively). This shows the potential for improving Boyer-Moore to

prove more subgoals and thus the original goal from which they originate. However,

it is important to figure out the strategy of choosing these lemmas, especially when

adding new recursive types. Some of the theorems are included in the shell i.e. NOT_-

SUC, SUC_INJ, and CONS_11. Alternatively, the user can help to select such lemmas.

7.4 Generality of our approach

We believe that our approach is a generic solution to combining machine learning with

automated inductive theorem proving. This is because:

• The Boyer-Moore implementation we use (see Section 2.5) is adaptable for most

HOL proving systems:

– The Shell Principle can be implemented in any systems that support recur-

sive datatypes.

– The functions (i.e. conversions) integrated as the Boyer-Moore heuristics

are also available in other systems. For instance, the simplifier SIMP_CONV

and the tautology checker TAUT in HOL Light are covered by the tactic

simp in Isabelle. Automated procedures like MESON and METIS are also

available in systems such as Isabelle and HOL.

• The machine learning approaches we use are generic:

– The machine learning algorithms are available as external software inde-

pendent from theorem provers and can also be implemented as internal

functions.

– The functionality offered by hammers are generic and not tied to particular

systems or logics. The techniques involved in building such systems e.g.

dependency tracking, feature extraction, etc. can be developed for most

modern interactive theorem proving systems, especially LCF-style ones.
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– The selection of induction variables requires the tracking of induction ap-

plication. Our approach in HOL Light may differ from some ITPs, but it

should be achievable to track the variable and statement for induction in

any ITPs.

– Our multi-waterfall model is generic and simply involved running several

versions of our tool in parallel in a coordinated fashion. We believe that

having more parallelism in theorem proving is becoming essential. In some

respect, our approach can be viewed as a secondary contribution towards

effective parallelism in mechanised theorem proving.





Chapter 8

Induction for finite set

As discussed previously, the Boyer-Moore model only deals with recursive types. It

is interesting (and useful) to investigate whether it can be extended to perform other

kinds of induction. For this purpose, the finite set theory in HOL Light was used.

8.1 Finite sets in HOL Light

In HOL Light, sets are defined as predicates, e.g. the set membership is defined as

∀x. x ∈ P ⇐⇒ P x, where P is a set on the left and a predicate on the right. Finiteness

is introduced as a precondition.

f inite /0∧ (∀x S. f inite S =⇒ f inite (x insert S)) (8.1)

The corresponding induction rule FINITE_INDUCT is (8.2). In addition, the rule FINITE_-

INDUCT_STRONG (8.3) is also used.

∀P. P /0∧ (∀x S. P S =⇒ P (x insert S)) =⇒ (∀A. f inite A =⇒ P A) (8.2)

∀P. P /0∧ (∀x S. P S∧¬(x ∈ S)∧ f inite S =⇒ P (x insert S))

=⇒ (∀A. f inite A =⇒ P A)
(8.3)

Reasoning about finite sets and primitive recursive types differs in the following as-

pects:
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• The property of “finite set” is not determined by the type only, but by the com-

bination of the type (i.e. ?→ bool) and a precondition (i.e. f inite S).

• The induction rule is not derived from type definition, but from the definition of

the function.

These aspects also apply to various other theories e.g. the theories about reflexive, sym-

metric and transitive closures in HOL Light. Therefore, we believe that the solutions

from our investigation in finite sets are more generally applicable.

8.2 Simplified shell

Since a recursive data type is not used to define finite sets, the normal Boyer-Moore

shell is no longer applicable. As an initial investigation, a simpler shell is used to

provide the basic functionality:

• Type information. In the original shell in Boyer-Moore, the type was stored as

strings. In the simpler shell, HOL types are used instead (i.e. the type of terms in

HOL Light). This is because the type name of (?→ bool) is “fun” i.e. function,

which is used by all function types in HOL Light, but only the ones that has a

return type bool is applicable here.

• The induction rules, i.e. (8.2) or (8.3) in this case.

8.3 Reformulation of induction rule

We found it necessary to reformulate the induction rule from the one in (8.2) to the one

shown in (8.6), because:

• It is preferable to have the consequent of the induction rule as “∀x. P x” instead

of “∀x. f inite x =⇒ P x”. This is more general and thus more likely to match

the goal we want to prove.

• The precondition f inite x is often entailed rather than given explicitly in the

assumptions or preconditions of the goal. For instance, when given the definition

of HAS_SIZE (8.4), the goal “S HAS SIZE 0 =⇒ s = /0” is actually reasoning

about finite sets.
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∀S n. S HAS SIZE n ⇐⇒ f inite S∧CARD S = n (8.4)

(8.5) is derived from (8.2) and moves the consequent to the antecedent:

∀P. P /0∧(∀x S. P S =⇒ P (x insert S))∧

(∀S. ( f inite S =⇒ P S) =⇒ P S) =⇒ ∀S. P S
(8.5)

This can then be simplified to (8.6). The same reformulation can be applied to (8.3) as

well.

∀P. P /0∧ (∀x S. P S =⇒ P (x insert S))∧ (∀S. f inite S∨P S) =⇒ ∀S. P S (8.6)

When applying (8.6), “∀S. f inite S∨P S” is generated as an extra subgoal, compared

with (8.2). In practice, we expect “ f inite S” to be discharged, rather than “P S”. This

procedure allows Boyer-Moore to make every effort (through the waterfall or maybe

by induction) to eliminate “ f inite S”. For instance, the definition in (8.4) contains

“ f inite S” and can be used for elimination when the goal has “S HAS SIZE n”.

8.4 Choosing suitable induction variable

Since there are no heuristics for choosing a suitable induction variable, a naive ap-

proach would be to pick the variable that has the set type (i.e. ?→ bool) and the prop-

erty of being finite. For instance, in the formula (8.7) (from the theorem FINITE_-

SUBSET), T already has the property finite, so it seems more promising to induct on

it.

∀S T. f inite T ∧S⊂ T =⇒ f inite S (8.7)

On the other hand, once we know a variable has the property finite, there is no need

to prove the subgoal like (∀S. f inite S∨P S) in (8.6). For any goal with statement

g = P v1 v2... vn (after removing all universal quantifiers) we:

1. Find all the free variables with set type in g, referred to as f vs e.g. f vs = {S,T}
for (8.7).
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2. Find one of the vi in f vs where the lemma “l = ` ∀vi. f inite vi∨P v1 v2... vi ...”

can be proven. This is achieved by running multiple waterfalls on all v∈ f vs and

picking the v for which l holds.

For instance, for (8.7), T is chosen, and the lemma (8.8) is generated.

` ∀T. f inite T ∨ ( f inite T ∧S⊂ T =⇒ f inite S) (8.8)

3. l can be reformulated as l′ (8.9) where the precondition P′ is simplified so that

the formula f inite vi inside (∀vi. P v1 v2 ... vi ...) is discharged (if there is any

such formula). For instance, (8.8) is reformulated to (8.10). The antecedent of l′

can be used to match the induction rule (i.e. (8.2) or (8.3)) and the consequent is

the goal (with vi generalised).

l′ = ` (∀vi. f inite vi =⇒ P′ v1 v2 ... vi ...) =⇒ (∀vi. P v1 v2 ... vi ...) (8.9)

` (∀T. f inite T =⇒ S⊂ T =⇒ f inite S) =⇒

(∀T. f inite T ∧S⊂ T =⇒ f inite T )
(8.10)

4. Boyer-Moore is used to prove antecedent of l′ and then prove g

8.5 Experiment

The above approach for reasoning about finite sets are evaluated in this section.

8.5.1 Test data and environment

There are two files involving induction for finite sets in the HOL Light core library:

sets.ml1 is about basic set theory. It will be referred to as set(basic). It contains

the operations and properties of finite sets such as union, subset, membership,

cardinality, etc. For instance, the union of the sets S and T is defined by (8.14).

iterate.ml2 contains:

• Generic iterated operations i.e. iterate op S f iteratively applies the binary

operator op to ( f x) for each x ∈ S with an initial value that is the neutral

(identity) element of op (e.g. 0 is the neutral element for addition).
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Definitions Theorems Induction Induction (Set)

set(basic) 20 284 40 23

set(iterated) 8 294 36 26

Table 8.1: Size of test data

• Sums over natural and rational numbers i.e. the sum of natural number is

defined as nsum = iterator (+).

For instance, the theorem about summing up a finite set of natural numbers (8.11)

where f has type ?→ num (num stands for natural number) is as follows:

(∀ f . nsum /0 f = 0)∧

(∀x f s. f inite(s)

=⇒ (nsum (x insert s) f =

i f x ∈ s then nsum s f else f (x)+nsum s f ))

(8.11)

This file will be referred to as set(iterated).

The induction rules FINITE_INDUCT and FINITE_INDUCT_STRONG are defined in set

(basic), so only the theorems proven afterwards are used. The general characteristics of

these datasets are shown in Table 8.1 where Induction means proven by induction and

Induction (Set) means involving induction over finite set. We use FINITE_INDUCT_-

STRONG as it seems more generally applicable than FINITE_INDUCT.

The same settings as for the Boyer-Moore Multi-waterfalls in Section 6.3.5 are used,

except that the automated procedure SET_RULE that attempts to prove set-theoretic lem-

mas in HOL Light is used instead of the MESON heuristic. SET_RULE tries to simplify

the goal with lemmas in set theory and actually integrates MESON as the last procedure,

so we believe that it is more appropriate than using MESON directly.

8.5.2 Results

The success rates for the two libraries are shown in Table 8.2. These are relatively low

compared with previous experiments. There are many reasons: The proofs in these

libraries are complex e.g. variables sometimes need to be instantiated with specific

values, lemmas need to be cut into the proofs, etc. ATPs were also tried with these

datasets. The two approaches have a similar success rate overall, mainly because they
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Total Induction Induction (Set)

set(basic) set(iterated) set(basic) set(iterated) set(basic) set(iterated)

Multi-waterfall 38% 24% 15% 3% 17% 4%

ATP 37% 20% 8% 3% 4% 4%

Table 8.2: Success rates of the different systems on finite set libraries

proved many theorems in common without induction. Multi-waterfalls has a better

performance on set(basic) by performing induction on finite sets. Both of them proved

only a few theorems with inductive proofs in set(iterated). Multi-waterfalls has a mod-

erate success rate because some theorems are proven by a simplification followed by

SET_RULE.

A theorem proven by Boyer-Moore with induction for finite set is FINITE_UNION_IMP

(8.12) i.e. the union of two finite sets is finite. Interestingly, the manual proof begins

with the reformulation of the statement to match the induction rule shown as (8.13),

which is achieved automatically with our approach. A subgoal was also proposed in

the manual proof, which is identical to a previously proven theorem and found by

lemma selection.

∀S T. f inite S∧ f inite T =⇒ f inite (S∪T ) (8.12)

∀S. f inite s =⇒ (∀T. f inite T =⇒ f inite (S∪T )) (8.13)

Boyer-Moore happened to pick the same variable S as the manual proof. It actually

makes no difference if T is chosen, because the union of set is defined as (8.14) which

is symmetric for S and T . In addition to this, we also found that Boyer-Moore often

picked the same variable as the manual proof, though sometimes by chance, so the

approach of choosing a set variable for induction is currently sufficient.

∀S T. S∪T = {x|x ∈ S∨ x ∈ T} (8.14)

A more complicated theorem INF_FINITE_LEMMA (8.15) (any non-empty finite set of

real numbers has an infimum) was proven with the help of lemma selection: after

induction applied, a one-step proof was found while the manual proof has three steps.
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This example shows the ability of combining machine learning and the HOL Light

implementation of Boyer-Moore, higher order theorems can be proven.

∀S. f inite S∧¬(s = /0) =⇒ ∃b : real. b ∈ S∧∀x. x ∈ S =⇒ b≤ x (8.15)

One failed example is NSUM_CONST (8.16) i.e. the sum of the natural number c (from

λ n. c) in finite set S is equivalent to the cardinality of the S times c (see the descrip-

tion for nsum in Section 8.5.1). The induction step is shown in (8.17) where c is

universally quantified by our induction procedure (see Section 5.1.2). This however

is undesired, not only because the goal is easier to prove when c is identical in the

induction hypothesis and conclusion, but also because HOL(y)Hammer translates the

λ-expressions containing them to different functions. Without the universal quantifier

for c, this goal can be proven by HOL(y)Hammer.

∀c S. f inite S =⇒ nsum S (λ n. c) = (card S)∗ c (8.16)

(∀c. f inite S =⇒ nsum S (λ n. c) = card S∗ c)∧

¬(x ∈ S)∧ f inite S =⇒

f inite (x insert S) =⇒ nsum (x insert S) (λ n. c) = card (x insert S)∗ c

(8.17)

Specifically, HOL(y)Hammer assigns f1 = λ c n. c and f2 = λ n. c in order to translate

the goal to first order (see Section 2.4.1), so (8.17) is translated to (8.18) where the

first two antecedents are added after the translation. HOL(y)Hammer chooses a dif-

ferent translation probably to reduce the nested happ formula, which leads to a more

complicated goal. However, this goal cannot be proven unless ATPs figure out that

f1 c = f2.

This issue may be fixed by changing the translation of HOL(y)Hammer and keeping

only f1. However, a more delicate heuristic could be developed which decides whether

the variable not used for induction should be universally quantified instead of the ap-

proach in Section 5.1.2.
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∀ f1. (∀c n. happ (happ f1 c) n = c) =⇒

(∀ f2. (∀n. happ f2 = c) =⇒

(∀c. f inite S =⇒ nsum S ( f1 c) = card S∗ c)∧

¬(x ∈ S)∧ f inite S =⇒

f inite (x insert S) =⇒ nsum (x insert S) f2 = card (x insert S)∗ c)

(8.18)

There are situations where we need to choose the induction variable between a finite

set and recursive datatype. For instance, HAS_SIZE_FUNSPACE (8.19), which states that

the set of all the functions which map the elements in a set S to T has size nm where

n and m are the cardinalities of S and T respectively (the definition of HAS_SIZE is

shown as (8.4)). With our approach, Boyer-Moore picked T for induction. However,

the manual proof chose m, i.e. induction over natural number. A heuristic is required

to choose the induction variable between these two kinds of variables.

∀d n T m S.S HAS SIZE m∧T HAS SIZE n =⇒

{ f |(∀x. x ∈ S =⇒ f (x) ∈ T )∧ (∀x. ¬(x ∈ S) =⇒ ( f (x) = d))} HAS SIZE (nm)

(8.19)

There are more theorems not proven because there are subgoals that are cut into the

manual proofs. Unlike the proof for FINITE_UNION_IMP, such subgoals are usually

not proven as named lemmas. In addition, EXISTS_TAC, which requires the user to

specify a value for an existential variable and COND_CASES_TAC, which eliminates the

conditional expressions (i.e. i f then else) in the goal are not supported by our Boyer-

Moore implementation.

8.6 Conclusion

In this chapter, we investigated induction for finite sets as a means of performing in-

duction on non-recursive datatypes. We had to reformulate induction rules for such

sets so that they can be used by the existing Boyer-Moore implementation.
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However, our experiments with these approaches achieved limited results. This was

partly due to the difficult test data e.g. because many proofs contain subgoals cut in by

the user. Other issues such as choosing a suitable variable for induction, particularly-

between finite sets and other recursive types.





Chapter 9

Application: verification of a sorting

algorithm

Program verification is a common use of inductive theorem proving. So, we decided

to investigate the performance of our approach by formally verifying the selection sort

algorithm for lists.

9.1 Data for evaluation

This sorting algorithm is simple but important in program design. There are no algo-

rithms formalised about sorting with Hoare logic in the ITP libraries such as Isabelle,

HOL Light and HOL4 that are suitable for our experiment 1. For this reason, an im-

perative version of selection sort is formalised using Hoare logic2 (Hoare, 1969)

9.1.1 Selection sort

Selection sort keeps a sorted sublist in the back (right) of the list, which is initially

empty and the unsorted sublist in the head. In each iteration, the biggest element is

picked from the unsorted sublist and added to the front of the sorted sublist. Finally,

all the elements are moved to the sorted sublist and the list is in ascending order.

1Although there are similar algorithms, they define lists using the notion of a heap, which is not a
recursive type.

2https://github.com/jrh13/hol-light/blob/master/Examples/prog.ml
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i=SIZE

while (1<i){

j=i-1;

k=j;

while(0<=j){

if(a[k]<=a[j])k=j;

j=j-1;

}

tmp=a[k];

a[k]=a[i-1];

a[i-1]=tmp;

i=i-1;

}

Figure 9.1: Selection sort algorithm

The program for investigation in Fig 9.1 sorts a list a of size SIZE in ascending order.

In each iteration of the outer loop, the biggest value is put in front of the sorted sublist

in the tail.

This algorithm involves the recursive datatype list and recursive function definitions

such as the property of being sorted and taking/droping elements from the list, so

its verification requires proof by induction. Meanwhile, this algorithm is challenging

because two nested loops are used and various changes to the list are made within each

iteration of loop. We also address an issue regarding termination checks for the nested

while loops in Section 9.2.

9.1.2 Hoare Logic

Hoare logic is a formal system with axioms and inference rules for verifying properties

of imperative programs (Hoare, 1969). The formulas of Hoare logic are Hoare triples

shown as (9.1) where P and Q are the precondition and postcondition respectively, and

C is a (program) command. This formula claims that if P is true before the execution

of C then Q is true after the execution of C.

{P}C {Q} (9.1)



9.1. Data for evaluation 133

The proof rules for Hoare logic are shown in (9.2a)-(9.2e) (Nipkow and Klein, 2014)

where SKIP means do nothing. These rules can be used to prove the partial correctness

and, if termination is also proven, the total correctness of programs. The rules below

are for partial correctness proofs:

{P} SKIP {P}
(9.2a)

Assignment :
{P[a/x]} x := a {P}

(9.2b)

Sequence :
{P1} c1 {P2} {P2} c2 {P3}

{P1} c1; c2 {P3}
(9.2c)

Conditional :
{P∧b} c1{Q} {P∧¬b} c2 {Q}
{P} IF b T HEN c1 ELSE c2 {Q}

(9.2d)

While loop :
{P∧b} c {P}

{P}WHILE b DO c {P∧¬b}
(9.2e)

In practice, verification conditions (VCs) are generated based on these proof rules such

that we can prove the Hoare triples by discharging VCs. VCs can be automatically gen-

erated by VC generators such as VC_TAC in HOL Light. However, the user still needs

to provide invariants (i.e. P in (9.2e)) for the verification of while loops. Invariants

remain true after each iteration of the loop.

9.1.3 Goal for the verification of selection sort

The HOL Light formalisation of a selection sort in Hoare logic is shown in Fig 9.2:

It is a mixture of assertions and program commands, which is parsed as a goal in HOL

Light. The sorting starts from the tail to the head of the list. We chose this order

because it is consistent with the recursive definition of lists i.e. cons an element to

another list. The program is similar to Fig 9.1 except that j− 1 is used instead of j.

This is because if we use j, the condition in the inner loop is changed to 0≤ j, which

is always true and so the loop never terminates. Note that ∀m n. n > m =⇒ m−n = 0

in HOL Light.

We provide an explanation for the code shown in Fig 9.2.

Definitions: LENGTH LENGTH lst returns the length of the list lst

TAKE TAKE i lst returns the first i elements of the list lst
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{T}

var i,j,k,lst,tmp;

i := LENGTH lst;

while SUC 0 < i do

[invariant SORTED (DROP i lst) /\ (i=LENGTH lst \/

(!x. MEM x (TAKE i lst) ==> ALL ((<=)x) (DROP i lst))/\i<LENGTH lst) ;

measure i]

(j:=i;

k:= j-1;

while 0 < j do [ invariant SUC 0 < i /\ SORTED (DROP i lst)/\ (j=i\/

ALL ((>=) ( EL k lst)) (DROP j (TAKE i lst))) /\

(i=LENGTH lst \/ (!x. MEM x (TAKE i lst) ==>

ALL ((<=)x) (DROP i lst)) /\i<LENGTH lst)/\j-1<=k/\k<i;

measure j]

(if EL k lst <= EL (j-1) lst then (k := (j-1));

j:= j-1);

tmp := EL k lst;

lst := ASG lst k (EL (i-1) lst);

lst := ASG lst (i-1) tmp;

i := i - 1)

end

{SORTED lst}

Figure 9.2: Evaluation of selection sort
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DROP DROP i lst returns the list lst after removing the first i elements

nth EL i lst returns the ith element of lst

MEM MEM x lst is true iff x is a member of lst:

(MEM x [] ⇐⇒ T )∧(MEM x (CONS h t) ⇐⇒ x = h∧MEM x t) (9.3)

ALL ALL P lst is true iff P holds for all elements in lst:

(ALL P [] ⇐⇒ T )∧ (ALL P (CONS h t) ⇐⇒ P h∧ALL P t) (9.4)

SORTED There are different definitions for sorted, here we use a recursive

definition:

(SORT ED [] ⇐⇒ T )∧

(SORT ED (CONS h t) ⇐⇒ (ALL ((≤)h) t)∧SORT ED t)
(9.5)

List update ASG lst i k means lst[i] := k (i.e. list update in Isabelle. Here ASG

stands assignment for short). Since in-place list update is not supported in

our Hoare logic environment, and it is usually implemented by complicated

approaches such as arrays or heaps, we simply assign the updated list to the

original one.

Program command The commands such as “:=” and “while” are the Hoare logic

ones. The conditional i f b then c is the same as IF b T HENc ELSE SKIP, so is

covered by (9.2d).

Precondition and Postcondition The expression “{T} ... {SORTED lst}” in 9.2

is the Hoare triple where T is just True as a precondition i.e. no precondition

is required in our case and the postcondition is the statement we want to prove:

{SORTED lst}, i.e. lst is sorted after the algorithm. Note that for a full veri-

fication of the sorting algorithm, we also need to prove that the sorted list is a

permutation of the original one. This aspect is left as future work.

Invariant The first part of the invariant is for the outer loop, which says that the tail

of the list (after ith element) is always sorted, and the elements in the tail (sorted

sublist) is always larger any elements in the front (unsorted sublist), after each

loop. The second invariant is for the inner loop, which says that the invariant

from the outer loop holds, and the kth element is the biggest one in the sublist

from jth to ith.
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Measure In the outer and inner loop, i and j decrease by one each loop respectively

9.2 Total correctness of nested loops

When directly generating verification condition goals for the algorithm in Fig 9.2, the

termination of the outer loop is unprovable. i.e. we cannot prove that i decreases at

each iteration. The reason will be explained in this section.

The rule for verifying the total correctness of while loops is shown in (9.6) (Nipkow

and Klein, 2014) (`t stands for total correctness).

∀n. `t {λ s.P s∧b∧n = f s}c{λ s.P s∧ f s < n}
`t {P}WHILE b DO c{λ s.P s∧¬b}

(9.6)

where f is the measure function for checking the termination and s is the state. The

global variable n stores the value of f in order to detect its decrease.

The corresponding VC generated by the VC_TAC in HOL Light is:

vc {P}WHILE b [I] DO c{Q}=

(∀s. P s =⇒ I s)∧ (∀s. ¬b∧ I s =⇒ Q s)∧

(∀n. vc {λs. I s∧b∧n = f s}

c

{λs. I s∧ f s < n})

(9.7)

Where I is the invariant given by the user and vc is a function that is recursively invoked

to generate the VC from the loop body c. n is the variable for the termination checking

and must be passed through the VC from c. However, when c contains other loops,

(9.7) will be used again, the n from outer loop is contained in P and Q, and will never

be eliminated. For instance, the VC generated from the inner loop in Fig 9.2 contains

i = n in P and i− 1 < n in Q, but they are in different conjuncts according to (9.7).

Such variable n cannot be given as invariant by the user, which is the only connection

between P and Q. Therefore, the termination of outer loop cannot be verified.

An existing approach that solves the issue of verifying the termination is to fix the

value of the outer loop variable (Schirmer, 2008). It requires the user to specify the
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variable that remains unchanged in the inner loop. This also avoids repeating the outer-

loop invariant that involves such variable, as we did in Section 9.1.3 (copying invariant

from outer loop to inner loop).

However, this approach assumes that there are variable that never changed in the inner

loop, which may not be always true and requires the user to pick such variables. So

we come up with a new approach, by introducing a Hoare quadruple, which we have

not found to exist already in the literature. The quadruple has an extra fixed part and is

just some additional syntax sugar over the usual Hoare triple (on the right hand side)

added for convenience:

{p}c{q}{ f ix} ⇐⇒ {p}c{λs. q s∧ f ix s} (9.8)

The Hoare triple in (9.7) is converted to a Hoare quadruple for the outer loop:

vc {P}WHILE b [I] DO c{Q}=

(∀s.P s =⇒ I s)∧ (∀s.¬b∧ I s =⇒ Q s)∧

(∀n. vc {λs.I s∧b∧n = f s}

c

{λs.I s}{λs. f s < n}︸ ︷︷ ︸
f ix

)

(9.9)

Then for the inner loop where there is already a Hoare quadruple shown as (9.10),

the two fixed parts can be eliminated when c does not have loop or passed to the loop

inside c again. The VC remains in the form of Hoare quadruple.

vc {P}WHILE b [I] DO c{Q}{ f ix}=

(∀s.P s =⇒ I s)∧ (∀s.¬b∧ I s =⇒ Q s)∧

(∀n. vc {λs.I s∧fix x∧b∧n = f s}

c

{λs.I s}{λs. f s < n ∧fix x})

(9.10)

Most rules for generating VCs in HOL Light can be reused by simply rewriting Hoare

quadruple back to triple. The only exception is that the VC from the sequence rule

shown as (9.11) (derived from (9.2c)) needs to be changed to (9.12):

vc {P}(c1;c2){Q}= (vc {P}c1{R})∧ (vc {R}c2{Q}) (9.11)
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vc {P}(c1;c2){Q}{ f ix}=

(vc {P}c1{R}{ f ix′})∧ (vc {λs.R s∧ f ix′ s}c2{Q}{ f ix})
(9.12)

Where R is still figured out with the existing VC generating approach i.e. from (9.11),

but f ix′ is adjusted:

• When c2 is not a (while) loop: f ix′ is figured out in the same way as R using

(9.11) but f ix is used instead of Q in the formula

• When c2 is a loop: f ix′ = f ix so that the information from outer loop in f ix is

passed to f ix through the inner loop.

Compared with the existing one, our method focus on passing the measure variable

(i.e. n in the f ix part), while leaving the rest part unchanged. Users do not have to pick

the fixed variable, but give the invariant as usual. Some of the invariant from outer

loop needs to be repeated in the inner loop, which makes this method a little tedious.

However, if stronger assumptions are given in the inner loop, the user does not have to

copy the identical invariant from the outer loop to the inner loop, so this also allows

some flexibility.

9.3 Experiments

9.3.1 Supporting library

Our proof about selection sort involves definitions about list operations (take, drop,

etc.). There were no theorems about list update or sorted in HOL Light libraries and

unsurprisingly our initial experiment that tried to prove the VC goals without such

lemmas did not achieve good results. Therefore, the relevant lemmas were ported

from Isabelle. The libraries finally used are mentioned in Table 9.1 .

9.3.2 Goal split & simplify

There are six VCs for the goal in Fig 9.2. When they cannot be proven by Boyer-Moore

automatically, a few strategies are tried to emulate how the user would split the goals

to easier ones. The most frequently used strategy is to use the HOL Light tactic to split

connectives (e.g. ∧, =⇒ , and etc.) in the conclusion (i.e. STRIP_TAC), then apply the
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Name Description

List(hilbert) See Appendix A.2.2 for the list of theorems

Lemmas for Hoare Logic Theorems ported from Isabelle about list update,

sorted, etc. see Appendix A.2.5 for the list of the-

orems

Table 9.1: Libraries for the verification of selection sorted

decision procedure for solving linear arithmetic problems (i.e. ARITH_TAC) to all the

split goals, which will eliminate the trivial goals, e.g. verifying the termination of the

loops (they are usually easy arithmetic problems about loop counters).

A goal may still be unproven after the split. Some methods to make the goal easier and

help Boyer-Moore to prove it are tried:

• The user performs some additional proof steps and then try Boyer-Moore again.

• The user comes up with some lemmas, proves them with Boyer-Moore, and then

tries Boyer-Moore with these lemmas on the goal at hand.

9.3.3 Prove subgoals by Boyer-Moore automatically

The subgoals split from Fig 9.2 are in Appendix A.1. The results of running Boyer-

Moore directly to prove the subgoals is shown in Table 9.2. The six VC goals have

been split in the way mentioned in Section 9.3.2, except for the first and third, which

can be proven by Boyer-Moore without splitting. Xand × stands for whether the goal

can be proven by Boyer-Moore automatically. We use the Multi-waterfall setting in

Section 7.1.2. According to the table, many goal could not be proven automatically,

and we investigate the reasons in Section 9.3.4.

9.3.4 Examples

Fig 9.3 shows the goal 2.2, which was proven by Boyer-Moore automatically. Note

that i can only be 0 or 1 in this goal and a case split can prove it. Case split is not

supported in Boyer-Moore, but it can achieve the same effects by doing induction on

i twice. Three induction steps were used (one on lst, and two on i), which shows the

potential Boyer-Moore’s power for solving complicated problems.
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Goal Proven Induction step

1 X 0

2.1 X 1

2.2 X 3

3 X 1

4.1 × -

4.2 × -

4.3 × -

4.4 × -

5.1 × -

5.2 × -

5.3 × -

5.4 × -

6.1 X 2

6.2 X 2

6.3 × -

6.4 × -

Table 9.2: Results of running Boyer-Moore to prove subgoals from Fig 9.2

0 [‘˜(SUC 0 < i)‘]

1 [‘SORTED (DROP i lst)‘]

2 [‘!x. MEM x (TAKE i lst) ==> ALL ((<=) x) (DROP i lst)‘]

3 [‘i < LENGTH lst‘]

‘SORTED lst‘

Figure 9.3: Goal 2.2
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0 [‘SUC 0 < i‘]

1 [‘SORTED (DROP i lst)‘]

2 [‘ALL ((>=) (EL k lst)) (DROP j (TAKE i lst))‘]

3 [‘!x. MEM x (TAKE i lst) ==> ALL ((<=) x) (DROP i lst)‘]

4 [‘i < LENGTH lst‘]

5 [‘j - 1 <= k‘]

6 [‘k < i‘]

7 [‘i - 1 < X‘]

8 [‘0 < j‘]

9 [‘X’ = j‘]

10 [‘EL k lst <= EL (j - 1) lst‘]

‘ALL ((>=) (EL (j - 1) lst)) (DROP (j - 1) (TAKE i lst))‘

Figure 9.4: Goal 5.4 (simplified)

A goal which Boyer-Moore failed to prove (goal 5.4) is shown in Fig 9.4. The main

idea of here is embodied by (9.13) (if a≤ b and a is larger than all elements in l, then b

is larger than all elements in l ) which can be proven by our system. A transformation

is required: cons “EL ( j−1) lst” “(DROP j (TAKE i lst))” giving us “(DROP ( j - 1)

(TAKE i lst))” (in the conclusion) i.e. (9.14). However, it is difficult for Boyer-Moore

to figure this out.

∀a b. a≤ b =⇒ ALL ((≥)a) l =⇒ ALL ((≥)b) l (9.13)

It is still possible to use Boyer-Moore to complete this proof. For instance, this goal

could be proven in the following way:

• Prove the lemma (9.14), which can be automatically dealt with by Boyer-Moore

(lst here has variable type A instead of natural number, which is its type in the

goal, because Boyer-Moore cannot prove the goal with the type instantiated.

This is discussed in Section 9.4). It then needs to be instantiate (i.e. j is instan-

tiated with j−1)

∀ j lst. j < LENGT H lst =⇒

DROP j lst =CONS (EL j lst) (DROP (SUC j) lst)
(9.14)
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• Prove the subgoal EL ( j− 1) (TAKE i lst)=EL( j− 1) lst, which Boyer-Moore

failed to prove, so the user need to provide extra lemmas for this subgoal.

• Prove the preconditions, for instance: j−1 < LENGTH (TAKE i lst) and 0< j

=⇒ SUC( j−1)= j. These preconditions can be automatically proven by Boyer-

Moore.

From this example, Boyer-Moore shows its ability to prove some lemmas automati-

cally for the user. However, a big effort is required to prove the goal, which are usually

unnoticeable when testing with corpora where the theorems are given in their general

form e.g. for the evaluation in Chapter 7. For instance, the difficulties of a VC goal

like Goal 5.4 are:

• The user needs to figure out the subgoals and (the statements of) the lemmas e.g.

(9.14).

• There is a mixture of arithmetic and other problems. e.g. the user has to prove

the precondition “0< j =⇒ SUC( j−1)= j” so that (9.14) can be used, which is

easy arithmetic, but difficult (or tedious) to figure out.

• There are irrelevant assumptions that makes Boyer-Moore select wrong induc-

tion variables and lemmas. For instance, X (for termination checking) is totally

irrelevant here, but may be chosen for induction. The assumption “SORTED

(DROP i lst)” is not used, but can result in irrelevant lemmas about “SORTED”

during lemma selection.

• Some variables e.g. lst has its type instantiated, i.e. list of natural numbers here,

while the lemmas in the library may have type list of unspecified variables. This

can affect lemma selection (see Section 9.4).

Goal 4.2 is even more complicated for Boyer-Moore shown as Fig 9.5. Its first conjunct

is: After swapping the max element l[k] with the last unsorted l[i-1], i.e. l′= (ASG

(ASG lst k (EL (i−1) lst)) (i−1) (EL k lst)) (Fig 9.6a), any element x in TAKE (i−1)

l′ is not larger than any y in DROP (i−1) l′(Fig 9.6b).

There are many cases to split. For instance, the swap may not happen (i.e. k = i−1),

x may be swapped (i.e. x is l’[k]), where different assumptions should be used. This is

complicated for both Boyer-Moore and the users.

During the investigation of the subgoals, we found Boyer-Moore could not prove the
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Goal 4.2:

0 [‘˜(0 < j)‘]

1 [‘SUC 0 < i‘]

2 [‘SORTED (DROP i lst)‘]

3 [‘ALL ((>=) (EL k lst)) (DROP j (TAKE i lst))‘]

4 [‘i = LENGTH lst‘]

5 [‘j - 1 <= k‘]

6 [‘k < i‘]

‘(!x. MEM x

(TAKE (i - 1) (ASG (ASG lst k (EL (i - 1) lst)) (i - 1) (EL k lst)))

==> ALL ((<=) x)

(DROP (i - 1)

(ASG (ASG lst k (EL (i - 1) lst)) (i - 1) (EL k lst))))/\

i - 1 < LENGTH (ASG (ASG lst k (EL (i - 1) lst)) (i - 1) (EL k lst))‘

Figure 9.5: Goal 4.2

k i-1

(a) Swapping l[k] and l[i-1] to get l’

x
i-1
(Value: l[k])

Take (i-1) DROP (i-1)

(b) Comparing Take (i-1) l’ and DROP (i-1) l’

Figure 9.6: Goal 4.2 viewed diagrammatically
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conjecture we suggested in (9.15a) with the three required lemmas shown below se-

lected from the corpora. The conjecture is finally simplified with these lemmas to

(9.15e) which can be solved by the decision procedure for linear arithmetic. Instead,

Boyer-Moore reproved this conjecture directly from definitions (with either lexico-

graphic induction or machine learning to select the induction variable because TAKE

and DROP are non-primitive recursive). The system failed to use the lemmas because:

• When trying to use the simplify heuristic (to get (9.15e), it does not rewrite

(9.15b) from right to left as desired.

• When trying to use HOL(y)Hammer to prove it, (9.15e) is required as a lemma

(or the more general one: ∀m n. (min m n)−m = 0).

∀l i. DROP i (TAKE i l) = [] (9.15a)

LENGTH EQ NIL : ∀l. LENGT H l = 0 ⇐⇒ l = [] (9.15b)

LENGTH DROP : ∀xs n. LENGT H (DROP n xs) = LENGT H xs−n (9.15c)

LENGTH TAKE : ∀xs n. LENGT H (TAKE n xs) = min n (LENGT H xs) (9.15d)

∀l i. (min i (LENGT H l))− i = 0 (9.15e)

This issue might be solved if more lemmas about minimum were made available for

selection (HOL Light has few such lemmas). We ported some additional lemmas from

HOL4, but no improvements were observed. We also attempted to use Z3 to help with

the problem but no improvement was observed.

9.4 Using terms as features

The string-based approach of generating features in HOL(y)Hammer (see Section 3.3.2)

has a limitation that the connection between the instantiated terms and the original one

may be lost during the feature extraction. For instance, the type of l in (9.15a) is in-

stantiated with natural number in order to prove our VC goals i.e. from l : A to l : num.

However, this causes a mismatch between the feature “LENGTH A(num)list” in the

conjecture and the feature “LENGTH A(A)list” from the theorem (e.g. (9.15d)). In this

case, lemma selection will not be able to find the corresponding more general lemmas.
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In an attempt to solve this problem, we tried to use the term as features instead of the

string so that the more general term “LENGTH l:(A)list” subsumes the specific one

“LENGTH l:(num)list”. The main difference between these two approaches are:

• When using string as features, the feature vector is generated by comparing the

strings i.e. if string str can be extracted from a statement s, then s has features

str.

• If terms are used as features instead of strings, the aforementioned instantiation

relation is used instead. i.e. if a term tm can be extracted from a statement s, for

any tm′ where tm is its instantiation, s has the feature tm′. This approach will be

referred to as term feature .

9.4.1 Generating term features

Many steps involved in the generation of term features are similar to those for string

features, except that the term is not converted to a string in the last step. However, there

are several changes that are needed when extracting and using term features. These are

described next.

9.4.1.1 Two round extraction

The first difference is that the features of each term changes dynamically. For example,

suppose there were two statements for feature extraction and (9.16) was processed

before (9.17) the term feature term “LENGTH l:(A)list” would be only extracted as a

feature for (9.17)However, (9.16) should also has this feature. In this case, two round

of lemma extraction is required:

1. In the first round, terms are extracted from each statements and collected as a

set.

2. In the second round, features corresponding to each statement are generated by

looking for instantiations between the terms extracted from it and the ones al-

ready collected in the set.

Note that when having incremental learning (see Section 3.3.4), we need to redo both

of the rounds, which makes it more complicated than the string feature approach.
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LENGT H (REV ERSE (l : num list)) = LENGT H l (9.16)

LENGT H (REV ERSE (l : A list)) = LENGT H l (9.17)

9.4.1.2 Feature Normalisation

The second difference is in feature normalisation (see Section 3.3.2). The normalisa-

tion to the same variable and type name may cause problem. For instance, the term

“f (x:A)” is normalised to “A:(A→A) A:A” (Identifiers “f” and “x” are renamed to A.

All the variable types are also renamed to A, so f is normalised to “A:(A→A)” and

“x” is to “A:A”). However, the extracted term feature fails to match the original term,

because it assumes f to have the same return type as x, which is too strong. A better so-

lution is to generalise “f x” to “A:(A2→A1) A:A2”. Note that we do not to rename the

variable names differently where the normalisation should be “A1:(A2→A1) A2:A2”.

In practice, only changing the type name is enough for HOL Light to match the two

terms.

The detailed feature extraction procedure for a library of statements S is:

1. Round 1: Create an empty feature set F. For each si ∈ S :

(a) Extract features Fi = fi1, fi2, ... in the same way as HOL(y)Hammer from

si (Section 3.3.2), except that the term is not converted to string, and nor-

malised in the way mentioned in this section.

(b) Add fi1, fi2, ... to F

2. Label features in F, so that F = f1, f2, ...

3. Round 2: Create an empty feature matrix, Fea with size |S|× |F|. For each si:

(a) Extract feature Fi as Round 1.

(b) Update Fea with (9.18).

Fea(i, j) =

1 if ∃ f ∈ Fi, f ′j ∈ F. f is an instantiation of f ′j

0 otherwise
(9.18)
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Fea can then be used for lemma selection in the same way as the feature matrix gener-

ated with string features (see Section 3.3.2).

9.4.2 Limitation

The time needed is the biggest weakness of the term feature approach, compared with

string feature. This is because: First, the two round feature extraction takes extra time.

Second, computing the instantiation of term features is slower than comparing string

features. Moreover, its implementation is more complicated compared with string fea-

ture, particularly when adding the support for incremental learning, which still requires

extra implementations and has not been done yet.

9.4.3 Evaluation of term feature

We evaluated this approach with HOL(y)Hammer but obtained only a relatively small

improvement compared with string features. We believe the reason is that the theorems

for evaluation are from libraries, particularly the supporting libraries, which usually

have only the most general forms i.e. polymorphic types are used rather than theorems

with specific (instantiated) types like (9.16). In this case, a “real world” problem such

as the VC goals in this chapter is more suitable for evaluation.

The statement (9.19) is a goal derived from Goal 5.2 in Appendix A.1 , which says

that when j is less than the length of a list lst of natural numbers, the outcome of

taking first j+ 1 elements and then removing first j elements is equal to the list that

contains only the jth element of lst. This goal was only proven after replacing the

type num to the generic type A. This seems to support our hypothesis that the lemmas

available for selection are only about lists with generic types, and some of the string

feature (e.g. “Anumlist”) from the term of the goal (e.g. “lst : num list”) do not match

the feature (e.g. “AAlist”) from the lemmas (e.g. “lst : A list”), which leads to the poor

performance of lemma selection.

j < LENGT H (lst : num list) =⇒ DROP j (TAKE (SUC j) lst) = [EL j lst] (9.19)

To see whether term features solve this issue, lemma selection is performed on the two
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Abbrev Explanation

str:A using string feature and change lst type to A

str:num using string feature and instantiate lst with type num

term:A using term feature and change lst type to A

term:num using term feature and instantiate lst with type num

Table 9.3: Methods for comparing different features

subgoals (9.20) and (9.21)3 obtained from performing induction on the goal (9.19) with

the settings shown in Table 9.3, i.e. by comparing whether string or term features are

used; whether the polymorphic type “A” or the specific type “num” is used, and then

outputting the rank of all the lemmas required to prove this subgoal for comparison.

(0 < LENGT H a1 =⇒ DROP 0 (TAKE (SUC 0) a1) = [EL 0 a1])

=⇒ 0 < LENGT H (CONS a0 a1)

=⇒ DROP 0 (TAKE (SUC 0) (CONS a0 a1)) = [EL 0 (CONS a0 a1)]

(9.20)

(∀ n.

(∀ lst.n < LENGT H lst =⇒ DROP n (TAKE (SUC n) lst) = [EL n lst]) =⇒

SUC n < LENGT H a1 =⇒ DROP (SUC n) (TAKE (SUC (SUC n)) a1) = [EL (SUC n) a1])

=⇒ (∀ lst.n < LENGT H lst =⇒ DROP n (TAKE (SUC n) lst) = [EL n lst])

=⇒ SUC n < LENGT H (CONS a0 a1)

=⇒ DROP (SUC n) (TAKE (SUC (SUC n)) (CONS a0 a1)) = [EL (SUC n) (CONS a0 a1)]

(9.21)

In this experiment, it turns out that all lemmas can be found without changing the type

of lst (i.e. both str:A and str:num have all lemmas within top 256, which is the number

of selected lemmas). Therefore, we believe that the failure was due to the irrelevant

lemmas that slow down ATPs (as discussed in Section 7.3.4).

According to Fig 9.7, most lemmas have similar rankings in different settings. Term

features generally provide a better ranking than string features, particularly str:num.

Moreover, they also give a more consistent ranking: the rankings using term features

do not change when the type of lst instantiated types.
3The other subgoals are proven with fewer than three lemmas
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(a) Lemma rankings for the subgoal (9.20)

(b) Lemma rankings for the subgoal (9.21)

Figure 9.7: Lemma ranking comparison among the methods in Table 9.3
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The only lemma where term features give a much poorer ranking than string feature

is “TAKE conjunct0”. String features give similar rankings for the lemmas “TAKE -

conjunct0” and “TAKE conjunct2”, which are the first and third conjunct in (9.22),

because only the string “TAKE” is found in common between the goal and the two

lemmas. Term features give “TAKE conjunct0” a significantly lower rank, by match-

ing term feature “TAKE (SUC A) (CONS A A)”. This is actually consistent with our

intuition: Only “TAKE conjunct2” is desired; “TAKE conjunct0” is only needed after

rewriting with “TAKE conjunct2” (the term then becomes “TAKE 0 a1”). This means

that term features do actually give more accurate selection here, or at least, it is not a

mistake that the “TAKE conjunct0” has a poor ranking.

TAKE 0 xs = []∧

TAKE n [] = []∧

TAKE (s(n)) (cons x xs) = cons x (TAKE n xs)

(9.22)

This example reveals one of the limitation of current lemma selection method that

some of the features are actually not contained in the goal, but in the lemmas. It is not

enough to consider lemmas related to the goal but also other lemmas, which was an

issue that was looked out for MePo. for MePo (Meng and Paulson, 2009).

We also noticed that when trying to prove the second conjunct in Goal 4.2 (see Fig 9.5),

term features approach was able to find the common (term) feature “LENGTH (ASG

A A A)” and “ASG A A A” between the goal and the lemma length_list_update

shown as (9.23), while the string features could only find the common string “ASG”.

Unfortunately, since the incremental feature extraction has not been implemented (see

Section 9.4.2), the lemmas about list update have not been learnt for selection and thus

the evaluation is not done for this example.

∀l i n. LENGT H (ASG l i n) = LENGT H l (9.23)

The experiments in this section have shown the some promising results of using term

as features. However, despite our expectations, it does not seem as convenient as string

features (see Section 9.4.2) and has not shown improvements in our evaluation.
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9.5 Conclusion

In this chapter, we test our approaches by looking at the verification of the selection

sort algorithm. An issue that arises when proving the termination of nested loops is

addressed and solved. Using Boyer-Moore to prove the VC goals in an interactive

settings (i.e. split the goal into subgoals), it had rather limited success as many inter-

actions were required during the proof process. Enhancing our Boyer-Moore tool with

notions of hints, as in ACL2, may be a worthwhile avenue for future work.





Chapter 10

Conclusion

In this thesis, we investigated the application of machine learning techniques to induc-

tive theorem proving. In this final chapter, we summarise the achievements and the

limitations of our work. We then provide some directions for future work.

10.1 Achievements and limitations

Our work is focused on the combination of machine learning methods with induc-

tive theorem proving tools. Existing state-of-the-art proof assistant tools, such as

HOL(y)Hammer which uses generic first order ATPs, are shown to perform poorly on

inductive problems. Therefore, we base our work on the Boyer-Moore system which

is tailored towards the automation of inductive proofs. Our main aim is to show that

it is possible to improve the automation of inductive proofs in HOL Light. Changes

were made to improve the HOL Light implementation of Boyer-Moore for inductive

theorem proving. These lead to the creation of a multi-waterfall Boyer-Moore model

that incorporates machine learning techniques and various other enhancements.

Other potential applications of machine learning were also investigated, such as se-

lecting suitable variables for induction. Induction for non-recursive data types was

also explored e.g. finite sets in HOL Light.

Proof metrics were proposed for measuring the difficulty or “complexity” of the proofs

that departed from unreliable criteria such as the length of the proof script.

We evaluated the potential of our Boyer-Moore Multi-waterfall system on various
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statements and also applied it to the verification of a sorting algorithm in a Hoare

Logic setting.

We breakdown our achievements and limitations from these investigations in the next

sections.

10.1.1 Lemma selection for Boyer-Moore Model

The success of an inductive proof procedure depends on two main conditions: the cor-

rect choice of induction variable and the selection of the right lemmas while avoiding

the irrelevant ones. This becomes dramatically more difficult when a (sub)goal is not

proven within the waterfall and induction steps are repeatedly applied.

The biggest challenge we faced was to find a proper way to deal with the large number

of lemmas suggested for selection: First, the waterfalls often get stuck when dealing

with these lemmas whether with the HOL Light simplifier or HOL(y)Hammer. Our

empirical Multi-waterfall Model (with three waterfalls in our particular case) was used

to unblock such waterfalls and was shown effective in proving quite a few inductive

theorems that HOL(y)Hammer and the original Boyer-Moore implementation failed to

prove (see Section 7.1.4). However, sometimes the selected lemmas still slowed down

ATPs and made them fail to find the proof within the time-out limit (see Section 7.3.4).

We also faced issues in the translation from ITP to ATP problems, which we tried to

address (see Section 6.3.4).

Although the hammer systems face similar issues to the above when it comes to lemma

selection, they are one-shot procedures that either prove a conjecture or fail there and

then. In our case though, the Boyer-Moore still has further actions in the form of the

heuristics in the waterfall and the induction procedure at the end. For instance, example

(9.15a) in Section 9.3.4 could be proven only if the right rewrite direction was picked.

We investigated term features as a way of getting over our perceived limitations of

string features, whereby the latter mismatched instantiated version of the statements

from which they were extracted. It has some good results in some examples but a

limited improvement compared with string features in general.

To summarize, we have shown that machine learning techniques were able to suc-

cessfully select lemmas for the Boyer-Moore Model and improved its ability to find

inductive proofs.
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10.1.2 Machine learning for selecting induction variable

We investigated and developed machine learning methods to select the induction vari-

able. The performance achieved was similar to that of recursion analysis, with small

differences resulting from the training data (see Section 7.2.2).

This aspect of our research seems to indicate that a good old-fashion heuristic cannot

massively be improved upon by a data-driven approach.

10.1.3 Proof metrics

We found that our Boyer-Moore Multi-waterfall model proved theorems whose proofs

have more nodes, which indicates that more complicated theorems are proven (see Sec-

tion 7.1.6). However, the metric we use i.e. the number of nodes counted in manual

proof may not always reflect the complexity of the theorem. This was because induc-

tive proofs are sometimes short, even though they are difficult to automate. Moreover,

the user sometimes finds a more complicated proof. In order to improve this metric,

the difficulty of the automation of the proof should also be considered by looking into

the special proof steps (e.g. induction) in it.

10.1.4 Finite sets

We attempted to extend our work to induction over finite sets, which involves non-

recursive data types. We tackled the challenge by adapting the Boyer-Moore system

(see Section 8.3 and Section 8.4). The system can prove some theorems with induction

successfully, but the results were not as good as the experiments on our other data sets.

Some of the problems arose because subgoals cut in by the user and special tactics are

frequently used in proofs (see Chapter 8). More test theorems whose proofs are more

likely to be automated may also be helpful for the evaluation of our approach.
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10.2 Future work

10.2.1 Machine learning for induction

Future work about improving the application of machine learning to inductive theorem

proving should involve more accurate selection of intermediate lemmas and a better

way of filtering them to cut down irrelevant ones before calling the ATPs.

10.2.1.1 Tweaking parameters

As mentioned in Section 6.3.1, there are many parameters in our system e.g. the length

of the time-outs (for ATP and the whole Boyer-Moore) and the number of lemmas

selected for ATPs. We use a fixed value for them in this work. A better performance

may be achieved by using different settings. Some parameters may need to be adjusted

dynamically e.g. depending on the problem at hand, particularly the number of lemmas

sent for ATPs, which is relevant to the number of lemmas available for selection. It

may also help to use a time-slice for scheduling the running of the multiple waterfalls

so that multi-thread machine is no longer required to run a number of waterfalls in

parallel.

10.2.1.2 Efficient Multi-waterfall

Redundant search for a proof may occur when running multiple waterfalls on the same

goal, leading to unnecessary steps. In order to reduce such redundancy, collaboration

between parallel waterfalls could be considered. For instance, a shared cache could be

used like a warehouse of already-seen subgoals, as a means of communication between

parallel proof search. If a subgoal has been processed (proven, disproven, or unprov-

able) in one waterfall, it could be added to the warehouse so that other waterfalls with

the same configuration do not need to try it again.

10.2.1.3 Lemma selection

In addition to selecting relevant lemmas, it is also important to filter out irrelevant

ones. As mentioned in Section 10.1.1, some lemmas slow down the ATPs. Manual

filtering has been made for HOL(y)Hammer, which only removes lemmas about logic
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symbols such as “¬”, “∧”, “∀” etc. (Kaliszyk and Urban, 2014). A more systematic

approach that might automatically filter out the lemmas that are not helpful for ATPs

may improve the performance of the hammer systems.

Different approaches to utilising the lemmas from selection may be considered. We

have tried the simplifiers and automated procedures in HOL Light (e.g. SIMP_CONV and

MESON), but they are less powerful compared to ATPs in terms of supporting a large

number of lemmas. Rippling analysis may help use these lemmas with its powerful

ability to control the rewrite direction (see the example in Section 9.3.4).

We have investigated the approach of using terms as features instead of strings (see

Section 9.4). Currently, further effort is required in order to deploy this in systems

such as Boyer-Moore effectively. For instance, incrementally adding features to the

training data. One of our test dataset poly involves instantiated list type (to the real

numbers), i.e. many list variables in this corpus are lists of real numbers rather than

polymorphic values, which may yield better results.

SMT solvers may be able to play a more important role. For instance, CVC4 now has a

support for induction, so its combination with machine learning could be investigated.

However, a different translation would be needed, which directly map the recursive

types including the natural numbers for arithmetic to the SMT syntax (rather than the

current TPTP syntax) so that they are treated accordingly.

10.2.1.4 Other applications of machine learning

The possibility of learning and predicting the variable for induction has been investi-

gated. Currently it only selects a single variable, because all the proofs for training in

HOL Light perform induction on a single variable. This needs to be extended to allow

the selection of multiple variables.

It is also possible to select the induction rule e.g. whether a two-step induction rule in

Section 2.3.1 should be used. This can also be useful for induction on non-recursive

types (e.g. the finite set, see Section 8.1) where the approach of analysing the recursion

of arguments does not work.

Other aspects of combining machine learning techniques and induction may also be in-

vestigated. Lemma speculation including generalisation may be looked into. Machine

learning approaches have been applied to support some of these approaches such as
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looking for the theorem with a similar structure and construct the intermediate lemma

by analogy (Heras et al., 2013). If proper data are available where the conjecture and

its corresponding intermediate lemma (e.g. cut formula) are provided for training, it

may be possible to predict intermediate lemmas for new conjectures.

10.2.2 Extending the Boyer-Moore functionality

Other features can be added to improve the Boyer-Moore Model, which may also help

improve the performance of machine learning methods.

First, more heuristics can be added to Boyer-Moore waterfall to handle certain kinds of

problems. For instance, a heuristic could be added to eliminate conditional expressions

resulting from definitions (e.g. (10.1a), see Section 7.1.2).

A better solution is to dynamically construct a waterfall for problems in different do-

mains. For example, we could attempt to employ machine learning techniques to select

the appropriate heuristics that can maximize both the effectiveness and efficiency of the

waterfall.

∀m n.min m n = i f m≤ n then m else n (10.1a)

∀m n. min 0 n∧

min s(m) 0 = 0∧

min s(m) s(n) = s(min m n)

(10.1b)

Some definitions can be replaced with alternative versions (see Section 7.3.3). It would

be useful if the Boyer-Moore system can keep a different function definition (10.1b)

that helps the recursion analysis particularly for the non-recursive ones e.g. (10.1a).

Such definitions are used to both selecting induction variable and simplifying the goal.

It will also be more convenient if the Boyer-Moore system could automatically add

corresponding shells for new recursive type definitions. The required information is

available but require automation: Most attributes in the shell can be obtained directly

from HOL Light e.g. the induction rule is returned by the type defining function and

other theorems can be produced by HOL Light functions.
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10.3 Concluding Remarks

In this thesis we presented a combination of machine learning techniques with the

Boyer-Moore implementation in HOL-Light. The latter has been greatly improved

and can now prove some complicated theorems with the lemmas selected by machine

learning. This approach can be further improved if the lemmas can be better used e.g.

by controlling the rewrite direction and removing the problematic ones that slow down

the system. In general, machine learning is helpful for the automation of inductive

proofs due to its ability to exploit the human knowledge from existing manual proofs.

According to our evaluation, although machine learning sometimes cannot compete

with carefully selected human heuristics, it can definitely improve the automation of

inductive proofs in a general proof assistant such as HOL Light.
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Appendix

A.1 Subgoals from splitting the VC goals in Fig 9.2

Goal 1:

‘i = LENGTH lst

==> SORTED (DROP i lst) /\

(i = LENGTH lst \/

(!x. MEM x (TAKE i lst) ==> ALL ((<=) x) (DROP i lst)) /\

i < LENGTH lst)‘

Goal 2.1:

0 [‘˜(SUC 0 < i)‘]

1 [‘SORTED (DROP i lst)‘]

2 [‘i = LENGTH lst‘]

‘SORTED lst‘

Goal 2.2:

0 [‘˜(SUC 0 < i)‘]

1 [‘SORTED (DROP i lst)‘]

2 [‘!x. MEM x (TAKE i lst) ==> ALL ((<=) x) (DROP i lst)‘]

3 [‘i < LENGTH lst‘]

161
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‘SORTED lst‘

Goal 3(easy goal: can be proven by SIMP_TAC[] THEN ARITH_TAC):

‘SORTED (DROP i lst) /\

(i = LENGTH lst \/

(!x. MEM x (TAKE i lst) ==> ALL ((<=) x) (DROP i lst)) /\ i < LENGTH lst) /\

SUC 0 < i /\

X = i

==> SUC 0 < i /\

SORTED (DROP i lst) /\

(i = LENGTH lst \/

(!x. MEM x (TAKE i lst) ==> ALL ((<=) x) (DROP i lst)) /\

i < LENGTH lst) /\

i - 1 <= i - 1 /\

i - 1 < i /\

i - 1 < X‘

Goal 4.1:

0 [‘˜(0 < j)‘]

1 [‘SUC 0 < i‘]

2 [‘SORTED (DROP i lst)‘]

3 [‘ALL ((>=) (EL k lst)) (DROP j (TAKE i lst))‘]

4 [‘i = LENGTH lst‘]

5 [‘j - 1 <= k‘]

6 [‘k < i‘]

7 [‘i - 1 < X‘]

‘SORTED (DROP (i - 1) (ASG (ASG lst k (EL (i - 1) lst)) (i - 1) (EL k lst)))‘

Goal 4.2:

0 [‘˜(0 < j)‘]

1 [‘SUC 0 < i‘]

2 [‘SORTED (DROP i lst)‘]

3 [‘ALL ((>=) (EL k lst)) (DROP j (TAKE i lst))‘]

4 [‘i = LENGTH lst‘]
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5 [‘j - 1 <= k‘]

6 [‘k < i‘]

7 [‘i - 1 < X‘]

‘i - 1 = LENGTH (ASG (ASG lst k (EL (i - 1) lst)) (i - 1) (EL k lst)) \/

(!x. MEM x

(TAKE (i - 1) (ASG (ASG lst k (EL (i - 1) lst)) (i - 1) (EL k lst)))

==> ALL ((<=) x)

(DROP (i - 1)

(ASG (ASG lst k (EL (i - 1) lst)) (i - 1) (EL k lst)))) /\

i - 1 < LENGTH (ASG (ASG lst k (EL (i - 1) lst)) (i - 1) (EL k lst))‘

Goal 4.3:

0 [‘˜(0 < j)‘]

1 [‘SUC 0 < i‘]

2 [‘SORTED (DROP i lst)‘]

3 [‘ALL ((>=) (EL k lst)) (DROP j (TAKE i lst))‘]

4 [‘!x. MEM x (TAKE i lst) ==> ALL ((<=) x) (DROP i lst)‘]

5 [‘i < LENGTH lst‘]

6 [‘j - 1 <= k‘]

7 [‘k < i‘]

8 [‘i - 1 < X‘]

‘SORTED (DROP (i - 1) (ASG (ASG lst k (EL (i - 1) lst)) (i - 1) (EL k lst)))‘

Goal 4.4:

0 [‘˜(0 < j)‘]

1 [‘SUC 0 < i‘]

2 [‘SORTED (DROP i lst)‘]

3 [‘ALL ((>=) (EL k lst)) (DROP j (TAKE i lst))‘]

4 [‘!x. MEM x (TAKE i lst) ==> ALL ((<=) x) (DROP i lst)‘]

5 [‘i < LENGTH lst‘]

6 [‘j - 1 <= k‘]

7 [‘k < i‘]

8 [‘i - 1 < X‘]
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‘i - 1 = LENGTH (ASG (ASG lst k (EL (i - 1) lst)) (i - 1) (EL k lst)) \/

(!x. MEM x

(TAKE (i - 1) (ASG (ASG lst k (EL (i - 1) lst)) (i - 1) (EL k lst)))

==> ALL ((<=) x)

(DROP (i - 1)

(ASG (ASG lst k (EL (i - 1) lst)) (i - 1) (EL k lst)))) /\

i - 1 < LENGTH (ASG (ASG lst k (EL (i - 1) lst)) (i - 1) (EL k lst))‘

Goal 5.1:

0 [‘SUC 0 < i‘]

1 [‘SORTED (DROP i lst)‘]

2 [‘j = i‘]

3 [‘i = LENGTH lst‘]

4 [‘j - 1 <= k‘]

5 [‘k < i‘]

6 [‘i - 1 < X‘]

7 [‘0 < j‘]

8 [‘X’ = j‘]

9 [‘EL k lst <= EL (j - 1) lst‘]

‘j - 1 = i \/ ALL ((>=) (EL (j - 1) lst)) (DROP (j - 1) (TAKE i lst))‘

Goal 5.2:

0 [‘SUC 0 < i‘]

1 [‘SORTED (DROP i lst)‘]

2 [‘j = i‘]

3 [‘!x. MEM x (TAKE i lst) ==> ALL ((<=) x) (DROP i lst)‘]

4 [‘i < LENGTH lst‘]

5 [‘j - 1 <= k‘]

6 [‘k < i‘]

7 [‘i - 1 < X‘]

8 [‘0 < j‘]

9 [‘X’ = j‘]

10 [‘EL k lst <= EL (j - 1) lst‘]
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‘j - 1 = i \/ ALL ((>=) (EL (j - 1) lst)) (DROP (j - 1) (TAKE i lst))‘

Goal 5.3:

0 [‘SUC 0 < i‘]

1 [‘SORTED (DROP i lst)‘]

2 [‘ALL ((>=) (EL k lst)) (DROP j (TAKE i lst))‘]

3 [‘i = LENGTH lst‘]

4 [‘j - 1 <= k‘]

5 [‘k < i‘]

6 [‘i - 1 < X‘]

7 [‘0 < j‘]

8 [‘X’ = j‘]

9 [‘EL k lst <= EL (j - 1) lst‘]

‘j - 1 = i \/ ALL ((>=) (EL (j - 1) lst)) (DROP (j - 1) (TAKE i lst))‘

Goal 5.4:

0 [‘SUC 0 < i‘]

1 [‘SORTED (DROP i lst)‘]

2 [‘ALL ((>=) (EL k lst)) (DROP j (TAKE i lst))‘]

3 [‘!x. MEM x (TAKE i lst) ==> ALL ((<=) x) (DROP i lst)‘]

4 [‘i < LENGTH lst‘]

5 [‘j - 1 <= k‘]

6 [‘k < i‘]

7 [‘i - 1 < X‘]

8 [‘0 < j‘]

9 [‘X’ = j‘]

10 [‘EL k lst <= EL (j - 1) lst‘]

‘j - 1 = i \/ ALL ((>=) (EL (j - 1) lst)) (DROP (j - 1) (TAKE i lst))‘

Goal 6.1:

0 [‘SUC 0 < i‘]

1 [‘SORTED (DROP i lst)‘]
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2 [‘j = i‘]

3 [‘i = LENGTH lst‘]

4 [‘j - 1 <= k‘]

5 [‘k < i‘]

6 [‘i - 1 < X‘]

7 [‘0 < j‘]

8 [‘X’ = j‘]

9 [‘˜(EL k lst <= EL (j - 1) lst)‘]

‘j - 1 = i \/ ALL ((>=) (EL k lst)) (DROP (j - 1) (TAKE i lst))‘

Goal 6.2:

0 [‘SUC 0 < i‘]

1 [‘SORTED (DROP i lst)‘]

2 [‘j = i‘]

3 [‘!x. MEM x (TAKE i lst) ==> ALL ((<=) x) (DROP i lst)‘]

4 [‘i < LENGTH lst‘]

5 [‘j - 1 <= k‘]

6 [‘k < i‘]

7 [‘i - 1 < X‘]

8 [‘0 < j‘]

9 [‘X’ = j‘]

10 [‘˜(EL k lst <= EL (j - 1) lst)‘]

‘j - 1 = i \/ ALL ((>=) (EL k lst)) (DROP (j - 1) (TAKE i lst))‘

Goal 6.3:

0 [‘SUC 0 < i‘]

1 [‘SORTED (DROP i lst)‘]

2 [‘ALL ((>=) (EL k lst)) (DROP j (TAKE i lst))‘]

3 [‘i = LENGTH lst‘]

4 [‘j - 1 <= k‘]

5 [‘k < i‘]

6 [‘i - 1 < X‘]

7 [‘0 < j‘]
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8 [‘X’ = j‘]

9 [‘˜(EL k lst <= EL (j - 1) lst)‘]

‘j - 1 = i \/ ALL ((>=) (EL k lst)) (DROP (j - 1) (TAKE i lst))‘

Goal 6.4:

0 [‘SUC 0 < i‘]

1 [‘SORTED (DROP i lst)‘]

2 [‘ALL ((>=) (EL k lst)) (DROP j (TAKE i lst))‘]

3 [‘!x. MEM x (TAKE i lst) ==> ALL ((<=) x) (DROP i lst)‘]

4 [‘i < LENGTH lst‘]

5 [‘j - 1 <= k‘]

6 [‘k < i‘]

7 [‘i - 1 < X‘]

8 [‘0 < j‘]

9 [‘X’ = j‘]

10 [‘˜(EL k lst <= EL (j - 1) lst)‘]

‘j - 1 = i \/ ALL ((>=) (EL k lst)) (DROP (j - 1) (TAKE i lst))‘

A.2 Testing goal for list theory

A.2.1 List core

HD:|- HD (CONS h t) = h

TL:|- TL (CONS h t) = t

APPEND_conjunct0:|- !l. APPEND [] l = l

APPEND_conjunct1:|- !h t l. APPEND (CONS h t) l = CONS h (APPEND t l)

REVERSE_conjunct0:|- REVERSE [] = []

REVERSE_conjunct1:|- REVERSE (CONS x l) = APPEND (REVERSE l) [x]

LENGTH_conjunct0:|- LENGTH [] = 0

LENGTH_conjunct1:|- !h t. LENGTH (CONS h t) = SUC (LENGTH t)

MAP_conjunct0:|- !f. MAP f [] = []

MAP_conjunct1:|- !f h t. MAP f (CONS h t) = CONS (f h) (MAP f t)
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LAST:|- LAST (CONS h t) = (if t = [] then h else LAST t)

BUTLAST_conjunct0:|- BUTLAST [] = []

BUTLAST_conjunct1:|- BUTLAST (CONS h t) = (if t = [] then [] else CONS h (BUTLAST t))

REPLICATE_conjunct0:|- REPLICATE 0 x = []

REPLICATE_conjunct1:|- REPLICATE (SUC n) x = CONS x (REPLICATE n x)

NULL_conjunct0:|- NULL [] <=> T

NULL_conjunct1:|- NULL (CONS h t) <=> F

ALL_conjunct0:|- ALL P [] <=> T

ALL_conjunct1:|- ALL P (CONS h t) <=> P h /\ ALL P t

EX_conjunct0:|- EX P [] <=> F

EX_conjunct1:|- EX P (CONS h t) <=> P h \/ EX P t

ITLIST_conjunct0:|- ITLIST f [] b = b

ITLIST_conjunct1:|- ITLIST f (CONS h t) b = f h (ITLIST f t b)

MEM_conjunct0:|- MEM x [] <=> F

MEM_conjunct1:|- MEM x (CONS h t) <=> x = h \/ MEM x t

ALL2_DEF_conjunct0:|- ALL2 P [] l2 <=> l2 = []

ALL2_DEF_conjunct1:|- ALL2 P (CONS h1 t1) l2 <=>

(if l2 = [] then F else P h1 (HD l2) /\ ALL2 P t1 (TL l2))

ALL2_conjunct0:|- ALL2 P [] [] <=> T

ALL2_conjunct1:|- ALL2 P (CONS h1 t1) [] <=> F

ALL2_conjunct2:|- ALL2 P [] (CONS h2 t2) <=> F

ALL2_conjunct3:|- ALL2 P (CONS h1 t1) (CONS h2 t2) <=>

P h1 h2 /\ ALL2 P t1 t2

MAP2_DEF_conjunct0:|- MAP2 f [] l = []

MAP2_DEF_conjunct1:|- MAP2 f (CONS h1 t1) l =

CONS (f h1 (HD l)) (MAP2 f t1 (TL l))

MAP2_conjunct0:|- MAP2 f [] [] = []

MAP2_conjunct1:|- MAP2 f (CONS h1 t1) (CONS h2 t2) =

CONS (f h1 h2) (MAP2 f t1 t2)

EL_conjunct0:|- EL 0 l = HD l

EL_conjunct1:|- EL (SUC n) l = EL n (TL l)

FILTER_conjunct0:|- FILTER P [] = []

FILTER_conjunct1:|- FILTER P (CONS h t) =

(if P h then CONS h (FILTER P t) else FILTER P t)

ASSOC:|- ASSOC a (CONS h t) = (if FST h = a then SND h else ASSOC a t)
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ITLIST2_DEF_conjunct0:|- ITLIST2 f [] l2 b = b

ITLIST2_DEF_conjunct1:|- ITLIST2 f (CONS h1 t1) l2 b =

f h1 (HD l2) (ITLIST2 f t1 (TL l2) b)

ITLIST2_conjunct0:|- ITLIST2 f [] [] b = b

ITLIST2_conjunct1:|- ITLIST2 f (CONS h1 t1) (CONS h2 t2) b =

f h1 h2 (ITLIST2 f t1 t2 b)

ZIP_DEF_conjunct0:|- ZIP [] l2 = []

ZIP_DEF_conjunct1:|- ZIP (CONS h1 t1) l2 = CONS (h1,HD l2) (ZIP t1 (TL l2))

ZIP_conjunct0:|- ZIP [] [] = []

ZIP_conjunct1:|- ZIP (CONS h1 t1) (CONS h2 t2) = CONS (h1,h2) (ZIP t1 t2)

PAIRWISE_conjunct0:|- PAIRWISE r [] <=> T

PAIRWISE_conjunct1:|- PAIRWISE r (CONS h t) <=> ALL (r h) t /\ PAIRWISE r t

list_of_seq_conjunct0:|- list_of_seq s 0 = []

list_of_seq_conjunct1:|- list_of_seq s (SUC n) =

APPEND (list_of_seq s n) [s n]

NOT_CONS_NIL:|- !h t. ˜(CONS h t = [])

LAST_CLAUSES_conjunct0:|- LAST [h] = h

LAST_CLAUSES_conjunct1:|- LAST (CONS h (CONS k t)) = LAST (CONS k t)

APPEND_NIL:|- !l. APPEND l [] = l

APPEND_ASSOC:|- !l m n. APPEND l (APPEND m n) = APPEND (APPEND l m) n

REVERSE_APPEND:|- !l m. REVERSE (APPEND l m) = APPEND (REVERSE m) (REVERSE l)

REVERSE_REVERSE:|- !l. REVERSE (REVERSE l) = l

CONS_11:|- !h1 h2 t1 t2. CONS h1 t1 = CONS h2 t2 <=> h1 = h2 /\ t1 = t2

list_CASES:|- !l. l = [] \/ (?h t. l = CONS h t)

LIST_EQ:|- !l1 l2.

l1 = l2 <=>

LENGTH l1 = LENGTH l2 /\ (!n. n < LENGTH l2 ==> EL n l1 = EL n l2)

LENGTH_APPEND:|- !l m. LENGTH (APPEND l m) = LENGTH l + LENGTH m

MAP_APPEND:|- !f l1 l2. MAP f (APPEND l1 l2) = APPEND (MAP f l1) (MAP f l2)

LENGTH_MAP:|- !l f. LENGTH (MAP f l) = LENGTH l

LENGTH_EQ_NIL:|- !l. LENGTH l = 0 <=> l = []

LENGTH_EQ_CONS:|- !l n. LENGTH l = SUC n <=>

(?h t. l = CONS h t /\ LENGTH t = n)

MAP_o:|- !f g l. MAP (g o f) l = MAP g (MAP f l)

MAP_EQ:|- !f g l. ALL (\x. f x = g x) l ==> MAP f l = MAP g l
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ALL_IMP:|- !P Q l. (!x. MEM x l /\ P x ==> Q x) /\ ALL P l ==> ALL Q l

NOT_EX:|- !P l. ˜EX P l <=> ALL (\x. ˜P x) l

NOT_ALL:|- !P l. ˜ALL P l <=> EX (\x. ˜P x) l

ALL_MAP:|- !P f l. ALL P (MAP f l) <=> ALL (P o f) l

ALL_T:|- !l. ALL (\x. T) l

MAP_EQ_ALL2:|- !l m. ALL2 (\x y. f x = f y) l m ==> MAP f l = MAP f m

ALL2_MAP:|- !P f l. ALL2 P (MAP f l) l <=> ALL (\a. P (f a) a) l

MAP_EQ_DEGEN:|- !l f. ALL (\x. f x = x) l ==> MAP f l = l

ALL2_AND_RIGHT:|- !l m P Q. ALL2 (\x y. P x /\ Q x y) l m <=> ALL P l /\ ALL2 Q l m

ITLIST_APPEND:|- !f a l1 l2. ITLIST f (APPEND l1 l2) a = ITLIST f l1 (ITLIST f l2 a)

ITLIST_EXTRA:|- !l. ITLIST f (APPEND l [a]) b = ITLIST f l (f a b)

ALL_MP:|- !P Q l. ALL (\x. P x ==> Q x) l /\ ALL P l ==> ALL Q l

AND_ALL:|- !l. ALL P l /\ ALL Q l <=> ALL (\x. P x /\ Q x) l

EX_IMP:|- !P Q l. (!x. MEM x l /\ P x ==> Q x) /\ EX P l ==> EX Q l

ALL_MEM:|- !P l. (!x. MEM x l ==> P x) <=> ALL P l

LENGTH_REPLICATE:|- !n x. LENGTH (REPLICATE n x) = n

EX_MAP:|- !P f l. EX P (MAP f l) <=> EX (P o f) l

EXISTS_EX:|- !P l. (?x. EX (P x) l) <=> EX (\s. ?x. P x s) l

FORALL_ALL:|- !P l. (!x. ALL (P x) l) <=> ALL (\s. !x. P x s) l

MEM_APPEND:|- !x l1 l2. MEM x (APPEND l1 l2) <=> MEM x l1 \/ MEM x l2

MEM_MAP:|- !f y l. MEM y (MAP f l) <=> (?x. MEM x l /\ y = f x)

FILTER_APPEND:|- !P l1 l2. FILTER P (APPEND l1 l2) =

APPEND (FILTER P l1) (FILTER P l2)

FILTER_MAP:|- !P f l. FILTER P (MAP f l) = MAP f (FILTER (P o f) l)

MEM_FILTER:|- !P l x. MEM x (FILTER P l) <=> P x /\ MEM x l

EX_MEM:|- !P l. (?x. P x /\ MEM x l) <=> EX P l

MAP_FST_ZIP:|- !l1 l2. LENGTH l1 = LENGTH l2 ==> MAP FST (ZIP l1 l2) = l1

MAP_SND_ZIP:|- !l1 l2. LENGTH l1 = LENGTH l2 ==> MAP SND (ZIP l1 l2) = l2

LENGTH_ZIP:|- !l1 l2. LENGTH l1 = LENGTH l2 ==> LENGTH (ZIP l1 l2) = LENGTH l2

MEM_ASSOC:|- !l x. MEM (x,ASSOC x l) l <=> MEM x (MAP FST l)

ALL_APPEND:|- !P l1 l2. ALL P (APPEND l1 l2) <=> ALL P l1 /\ ALL P l2

MEM_EL:|- !l n. n < LENGTH l ==> MEM (EL n l) l

MEM_EXISTS_EL:|- !l x. MEM x l <=> (?i. i < LENGTH l /\ x = EL i l)

ALL_EL:|- !P l. (!i. i < LENGTH l ==> P (EL i l)) <=> ALL P l

ALL2_MAP2:|- !l m. ALL2 P (MAP f l) (MAP g m) <=>
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ALL2 (\x y. P (f x) (g y)) l m

AND_ALL2:|- !P Q l m. ALL2 P l m /\ ALL2 Q l m <=>

ALL2 (\x y. P x y /\ Q x y) l m

ALL2_ALL:|- !P l. ALL2 P l l <=> ALL (\x. P x x) l

APPEND_EQ_NIL:|- !l m. APPEND l m = [] <=> l = [] /\ m = []

APPEND_LCANCEL:|- !l1 l2 l3. APPEND l1 l2 = APPEND l1 l3 <=> l2 = l3

APPEND_RCANCEL:|- !l1 l2 l3. APPEND l1 l3 = APPEND l2 l3 <=> l1 = l2

LENGTH_MAP2:|- !f l m. LENGTH l = LENGTH m ==>

LENGTH (MAP2 f l m) = LENGTH m

MAP_EQ_NIL:|- !f l. MAP f l = [] <=> l = []

INJECTIVE_MAP:|- !f. (!l m. MAP f l = MAP f m ==> l = m) <=>

(!x y. f x = f y ==> x = y)

SURJECTIVE_MAP:|- !f. (!m. ?l. MAP f l = m) <=> (!y. ?x. f x = y)

MAP_ID:|- !l. MAP (\x. x) l = l

MAP_I:|- MAP I = I

BUTLAST_APPEND:|- !xs ys. ˜(ys = []) ==> BUTLAST (APPEND xs ys) =

APPEND xs (BUTLAST ys)

APPEND_BUTLAST_LAST:|- !l. ˜(l = []) ==> APPEND (BUTLAST l) [LAST l] = l

LAST_APPEND:|- !p q. LAST (APPEND p q) = (if q = [] then LAST p else LAST q)

LENGTH_TL:|- !l. ˜(l = []) ==> LENGTH (TL l) = LENGTH l - 1

EL_APPEND:|- !k l m.

EL k (APPEND l m) =

(if k < LENGTH l then EL k l else EL (k - LENGTH l) m)

EL_TL:|- !n. EL n (TL l) = EL (n + 1) l

EL_CONS:|- !n h t. EL n (CONS h t) = (if n = 0 then h else EL (n - 1) t)

LAST_EL:|- !l. ˜(l = []) ==> LAST l = EL (LENGTH l - 1) l

HD_APPEND:|- !l m. HD (APPEND l m) = (if l = [] then HD m else HD l)

CONS_HD_TL:|- !l. ˜(l = []) ==> l = CONS (HD l) (TL l)

EL_MAP:|- !f n l. n < LENGTH l ==> EL n (MAP f l) = f (EL n l)

MAP_REVERSE:|- !f l. REVERSE (MAP f l) = MAP f (REVERSE l)

ALL_FILTER:|- !P Q l. ALL P (FILTER Q l) <=> ALL (\x. Q x ==> P x) l

APPEND_SING:|- !h t. APPEND [h] t = CONS h t

MEM_APPEND_DECOMPOSE_LEFT:|- !x l. MEM x l <=>

(?l1 l2. ˜MEM x l1 /\ l = APPEND l1 (CONS x l2))

MEM_APPEND_DECOMPOSE:|- !x l. MEM x l <=> (?l1 l2. l = APPEND l1 (CONS x l2))
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PAIRWISE_APPEND:|- !P xs ys.

PAIRWISE P (APPEND xs ys) <=>

PAIRWISE P xs /\ (!x. MEM x xs ==> ALL (P x) ys) /\ PAIRWISE P ys

PAIRWISE_MAP:|- !R f l. PAIRWISE R (MAP f l) <=> PAIRWISE (\x y. R (f x) (f y)) l

PAIRWISE_IMPLIES:|- !R R’ l.

PAIRWISE R l /\ (!x y. MEM x l /\ MEM y l /\ R x y ==> R’ x y)

==> PAIRWISE R’ l

PAIRWISE_TRANSITIVE:|- !R x y l.

(!x y z. R x y /\ R y z ==> R x z)

==> (PAIRWISE R (CONS x (CONS y l)) <=>

R x y /\ PAIRWISE R (CONS y l))

LENGTH_LIST_OF_SEQ:|- !s n. LENGTH (list_of_seq s n) = n

EL_LIST_OF_SEQ:|- !s m n. m < n ==> EL m (list_of_seq s n) = s m

LIST_OF_SEQ_EQ_NIL:|- !s n. list_of_seq s n = [] <=> n = 0

MONO_ALL:|- (!x. P x ==> Q x) ==> ALL P l ==> ALL Q l

MONO_ALL2:|- (!x y. P x y ==> Q x y) ==> ALL2 P l l’ ==> ALL2 Q l l’

char_INDUCT:|- !P. (!a0 a1 a2 a3 a4 a5 a6 a7. P (ASCII a0 a1 a2 a3 a4 a5 a6 a7))

==> (!x. P x)

char_RECURSION:|- !f. ?fn. !a0 a1 a2 a3 a4 a5 a6 a7.

fn (ASCII a0 a1 a2 a3 a4 a5 a6 a7) =

f a0 a1 a2 a3 a4 a5 a6 a7

A.2.2 List Hilbert

NOT_EMPTY_EXISTS:|- !xs. ˜(xs = []) <=> (?h t. xs = CONS h t)

ONE_ONE_INDUCT:|- !f g P. (!x. g (f x) = x) /\ (!x. P (g x)) ==> (!x. P x)

LIST_INDUCT_APPEND:|- !P. P [] /\ (!x xs. P xs ==>

P (APPEND xs [x])) ==> (!xs. P xs)

LIST_INDUCT2:|- !P. P [] /\

(!x. P [x] /\ (!y ys. P (CONS y ys) ==> P (CONS x (CONS y ys))))

==> (!xs. P xs)

APPEND_EQ:|- !xs ys us vs.

LENGTH xs = LENGTH us

==> (APPEND xs ys = APPEND us vs <=> xs = us /\ ys = vs)
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EL_EQ:|- !xs ys.

LENGTH xs = LENGTH ys

==> ((!n. n < LENGTH xs ==> EL n xs = EL n ys) <=> xs = ys)

EL_EQ_IMP:|- !xs ys.

LENGTH xs = LENGTH ys /\ (!n. n < LENGTH xs ==> EL n xs = EL n ys)

==> xs = ys

HEAD_conjunct0:|- HEAD [] = []

HEAD_conjunct1:|- HEAD (CONS x xs) = [x]

TAIL_conjunct0:|- TAIL [] = []

TAIL_conjunct1:|- TAIL (CONS x xs) = xs

ADJACENT:|- !xs. ADJACENT xs = ZIP (BUTLAST xs) (TAIL xs)

BREAK_ACC_conjunct0:|- BREAK_ACC p [] acc = REVERSE acc,[]

BREAK_ACC_conjunct1:|- BREAK_ACC p (CONS x xs) acc =

(if p x then REVERSE acc,CONS x xs else BREAK_ACC p xs (CONS x acc))

IS_PREFIX_OF_conjunct0:|- !ys. IS_PREFIX_OF [] ys <=> T

IS_PREFIX_OF_conjunct1:|- !x xs. IS_PREFIX_OF (CONS x xs) [] <=> F

IS_PREFIX_OF_conjunct2:|- !x y xs ys.

IS_PREFIX_OF (CONS x xs) (CONS y ys) <=> x = y /\ IS_PREFIX_OF xs ys

TAKE_conjunct0:|- TAKE 0 xs = []

TAKE_conjunct1:|- TAKE n [] = []

TAKE_conjunct2:|- TAKE (SUC n) (CONS x xs) = CONS x (TAKE n xs)

DROP_conjunct0:|- DROP 0 xs = xs

DROP_conjunct1:|- DROP n [] = []

DROP_conjunct2:|- DROP (SUC n) (CONS x xs) = DROP n xs

BREAK:|- BREAK p xs = BREAK_ACC p xs []

LENGTH_TAIL:|- !xs. LENGTH (TAIL xs) = PRE (LENGTH xs)

EL_TAIL:|- !n xs. SUC n < LENGTH xs ==> EL n (TAIL xs) = EL (SUC n) xs

TAIL_APPEND:|- !xs ys. ˜(xs = []) ==> TAIL (APPEND xs ys) = APPEND (TAIL xs) ys

LENGTH_REVERSE:|- !xs. LENGTH (REVERSE xs) = LENGTH xs

REVERSE_EQ_NIL:|- !xs. REVERSE xs = [] <=> xs = []

TAIL_REVERSE:|- !xs. TAIL (REVERSE xs) = REVERSE (BUTLAST xs)

REVERSE_EQ:|- !xs ys. REVERSE xs = REVERSE ys <=> xs = ys

APPEND_EQ_2:|- !xs ys vs us.

LENGTH ys = LENGTH vs

==> (APPEND xs ys = APPEND us vs <=> xs = us /\ ys = vs)
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HD_REVERSE:|- !xs. ˜(xs = []) ==> HD (REVERSE xs) = LAST xs

LAST_REVERSE:|- !xs. ˜(xs = []) ==> LAST (REVERSE xs) = HD xs

BUTLAST_APPEND:|- !xs ys. ˜(ys = []) ==>

BUTLAST (APPEND xs ys) = APPEND xs (BUTLAST ys)

BUTLAST_LENGTH:|- !xs. LENGTH (BUTLAST xs) = PRE (LENGTH xs)

BUTLAST_REVERSE:|- !xs. BUTLAST (REVERSE xs) = REVERSE (TAIL xs)

MEM_BUTLAST:|- !x xs. ˜(xs = []) ==>

(MEM x xs <=> LAST xs = x \/ MEM x (BUTLAST xs))

MEM_HD:|- !xs. ˜(xs = []) ==> MEM (HD xs) xs

MEM_LAST:|- !xs. ˜(xs = []) ==> MEM (LAST xs) xs

MEM_REVERSE:|- !p xs. MEM p (REVERSE xs) <=> MEM p xs

ALL_REVERSE:|- ALL p (REVERSE xs) <=> ALL p xs

EX_REVERSE:|- EX p (REVERSE xs) <=> EX p xs

ZIP_APPEND:|- !xs ys us vs.

LENGTH xs = LENGTH us /\ LENGTH ys = LENGTH vs

==> ZIP (APPEND xs ys) (APPEND us vs) = APPEND (ZIP xs us) (ZIP ys vs)

ZIP_REVERSE:|- !xs ys.

LENGTH xs = LENGTH ys

==> REVERSE (ZIP xs ys) = ZIP (REVERSE xs) (REVERSE ys)

MEM_REVERSE1:|- !xs x. MEM x (REVERSE xs) <=> MEM x xs

ZIP_SWAP:|- !xs ys.

LENGTH xs = LENGTH ys ==> ZIP xs ys = MAP (\(x,y). y,x) (ZIP ys xs)

APPEND_HEAD_TAIL:|- !xs. ˜(xs = []) ==> APPEND [HD xs] (TAIL xs) = xs

ADJACENT_APPEND:|- !xs ys.

˜(xs = []) /\ ˜(ys = [])

==> ADJACENT (APPEND xs ys) =

APPEND (ADJACENT xs) (APPEND [LAST xs,HD ys] (ADJACENT ys))

ADJACENT_CONS:|- !x y t. ADJACENT (CONS x (CONS y t)) =

CONS (x,y) (ADJACENT (CONS y t))

ADJACENT_CLAUSES_conjunct0:|- !x y t. ADJACENT [] = []

ADJACENT_CLAUSES_conjunct1:|- !x y t. ADJACENT [x] = []

ADJACENT_CLAUSES_conjunct2:|- !x y t. ADJACENT (CONS x (CONS y t)) =

CONS (x,y) (ADJACENT (CONS y t))

ADJACENT_MEM2:|- !xs x y. MEM (x,y) (ADJACENT xs) ==> MEM x xs /\ MEM y xs

EL_IS_PREFIX_OF:|- !xs ys n. IS_PREFIX_OF xs ys /\ n < LENGTH xs
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==> EL n xs = EL n ys

LENGTH_IS_PREFIX_OF:|- !xs ys. IS_PREFIX_OF xs ys ==> LENGTH xs <= LENGTH ys

IS_PREFIX_OF_APPEND:|- !xs ys. IS_PREFIX_OF xs (APPEND xs ys)

IS_PREFIX_OF_EXISTS_APPEND:|- !xs ys zs. IS_PREFIX_OF xs ys <=>

(?zs. APPEND xs zs = ys)

IS_PREFIX_OF_ADJACENT:|- !xs ys. IS_PREFIX_OF xs ys ==>

IS_PREFIX_OF (ADJACENT xs) (ADJACENT ys)

TAKE_ADJACENT:|- !xs n. TAKE n (ADJACENT xs) = ADJACENT (TAKE (SUC n) xs)

DROP_ADJACENT:|- !xs n. DROP n (ADJACENT xs) = ADJACENT (DROP n xs)

MEM_IS_PREFIX_OF:|- !xs ys. IS_PREFIX_OF xs ys ==> (!x. MEM x xs ==> MEM x ys)

MEM_ZIP_SWAP:|- !xs ys x y.

LENGTH xs = LENGTH ys

==> (MEM (x,y) (ZIP xs ys) <=> MEM (y,x) (ZIP ys xs))

MEM_ADJACENT_REVERSE:|- !xs x y. MEM (y,x) (ADJACENT (REVERSE xs))

<=> MEM (x,y) (ADJACENT xs)

APPEND_CONS_NOT_NIL:|- !xs ys y. ˜(APPEND xs (CONS y ys) = [])

HEAD_TAIL:|- !xs. APPEND (HEAD xs) (TAIL xs) = xs

BREAK_ACC_APPEND_conjunct0:|- !p xs y ys.

FST (BREAK_ACC p xs (APPEND ys [y])) =

CONS y (FST (BREAK_ACC p xs ys))

BREAK_ACC_APPEND_conjunct1:|- !p xs y ys.

SND (BREAK_ACC p xs (APPEND ys [y])) = SND (BREAK_ACC p xs ys)

BREAK_ACC_CONS_conjunct0:|- !p xs y.

FST (BREAK_ACC p xs [y]) = CONS y (FST (BREAK_ACC p xs []))

BREAK_ACC_CONS_conjunct1:|- !p xs y.

SND (BREAK_ACC p xs [y]) = SND (BREAK_ACC p xs [])

BREAK_CONS_conjunct0:|- !p x xs.

FST (BREAK p (CONS x xs)) =

(if p x then [] else CONS x (FST (BREAK p xs)))

BREAK_CONS_conjunct1:|- !p x xs.

SND (BREAK p (CONS x xs)) =

(if p x then CONS x xs else SND (BREAK p xs))

BREAK_APPEND_conjunct0:|- !p xs.

EX p xs ==> FST (BREAK p (APPEND xs ys)) = FST (BREAK p xs)

BREAK_APPEND_conjunct1:|- !p xs.
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EX p xs

==> SND (BREAK p (APPEND xs ys)) = APPEND (SND (BREAK p xs)) ys

BREAK_FST_ALL:|- !p xs. ALL (\x. ˜p x) (FST (BREAK p xs))

BREAK_SND_EX:|- !p xs. EX p xs ==>

˜(SND (BREAK p xs) = []) /\ p (HD (SND (BREAK p xs)))

APPEND_BREAK:|- !p xs. APPEND (FST (BREAK p xs)) (SND (BREAK p xs)) = xs

APPEND_HD_TL:|- !xs. ˜(xs = []) ==> CONS (HD xs) (TL xs) = xs

ALL_SUBSET:|- !P xs. ALL P xs <=> set_of_list xs SUBSET P

TAKE_APPEND:|- !xs ys. TAKE (LENGTH xs) (APPEND xs ys) = xs

DROP_APPEND:|- !xs ys. DROP (LENGTH xs) (APPEND xs ys) = ys

APPEND_TAKE:|- !n xs ys. APPEND xs (TAKE n ys) =

TAKE (LENGTH xs + n) (APPEND xs ys)

TAKE_LEFT_APPEND:|- !xs ys. TAKE (LENGTH xs) (APPEND xs ys) = xs

TAKE_DROP:|- !n xs. APPEND (TAKE n xs) (DROP n xs) = xs

LENGTH_TAKE:|- !xs n. LENGTH (TAKE n xs) = MIN n (LENGTH xs)

LENGTH_DROP:|- !xs n. LENGTH (DROP n xs) = LENGTH xs - n

LENGTH_ADJACENT:|- !xs. LENGTH (ADJACENT xs) = PRE (LENGTH xs)

EL_ADJACENT:|- !n xs. SUC n < LENGTH xs ==>

EL n (ADJACENT xs) = EL n xs,EL (SUC n) xs

MEM_EL_ADJACENT:|- !n xs. SUC n < LENGTH xs ==>

MEM (EL n xs,EL (SUC n) xs) (ADJACENT xs)

ADJACENT_EQ_NIL:|- !xs. ADJACENT xs = [] <=> xs = [] \/ (?x. xs = [x])

ADJACENT_EQ_CONS:|- !x xs ys.

SUC 0 < LENGTH xs /\ SUC 0 < LENGTH ys /\ ADJACENT xs = ADJACENT ys

==> ADJACENT (CONS x xs) = ADJACENT (CONS x ys)

ADJACENT_EQ:|- !xs ys.

SUC 0 < LENGTH xs /\ SUC 0 < LENGTH ys

==> (ADJACENT xs = ADJACENT ys <=> xs = ys)

REVERSE_EL:|- !xs n. n < LENGTH xs ==>

EL n xs = EL (LENGTH xs - SUC n) (REVERSE xs)

DROP_EL:|- !xs m n. n < LENGTH xs - m ==> EL n (DROP m xs) = EL (m + n) xs

TAKE_EL:|- !xs m n. n < MIN m (LENGTH xs) ==> EL n (TAKE m xs) = EL n xs

DROP_EQ_NIL:|- !xs n. LENGTH xs <= n <=> DROP n xs = []

TAKE_ID:|- !xs n. LENGTH xs <= n <=> TAKE n xs = xs

MEM_TAKE:|- !n x xs. MEM x (TAKE n xs) ==> MEM x xs
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MEM_DROP:|- !n x xs. MEM x (DROP n xs) ==> MEM x xs

ITER_conjunct0:|- ITER 0 f x = x

ITER_conjunct1:|- ITER (SUC n) f x = f (ITER n f x)

ITER_INJ:|- !n. ITER n SUC 0 = n

ITER_ADD:|- !n m f x. ITER (n + m) f x = ITER n f (ITER m f x)

ITER_SUC:|- !n f x. ITER (SUC n) f x = ITER n f (f x)

ITER_IND:|- !n P f x. P x /\ (!x. P x ==> P (f x)) ==> P (ITER n f x)

INDUCT_ITER:|- !f g. f 0 = b /\ (!n. f (SUC n) = g (f n))

==> (!n. ITER n g b = f n)

ITER_MAP:|- !f n x g h. (!y. f (g y) = h (f y)) ==>

f (ITER n g x) = ITER n h (f x)

ITER_MAP2:|- !f g n. (!x. f x = g x) ==> ITER n f x = ITER n g x

MAXIMUM:|- !ns b n. MEM n ns ==> n <= ITLIST MAX ns b

PAIRWISE_APPEND:|- !P xs ys.

PAIRWISE P (APPEND xs ys) <=>

PAIRWISE P xs /\ (!x. MEM x xs ==> ALL (P x) ys) /\ PAIRWISE P ys

ALL_DISTINCT_CARD:|- !xs. PAIRWISE (\x y. ˜(x = y)) xs <=>

CARD (set_of_list xs) = LENGTH xs

CHOOSE_PREFIX:|- !n xs. n <= LENGTH xs ==>

(?ys zs. xs = APPEND ys zs /\ LENGTH ys = n)

CHOOSE_SUFFIX:|- !n xs. n <= LENGTH xs ==>

(?ys zs. xs = APPEND ys zs /\ LENGTH zs = n)

BREAK_LAST:|- !p xs.

BREAK_LAST p xs =

(let ys,zs = BREAK p (REVERSE xs) in REVERSE zs,REVERSE ys)

LAMBDA_PAIRED:|- !f p. (\(x,y). f x y) p = f (FST p) (SND p)

APPEND_BREAK_LAST:|- !p xs.

APPEND (FST (BREAK_LAST p xs)) (SND (BREAK_LAST p xs)) = xs

BREAK_LAST_SND_ALL:|- !p xs. ALL (\x. ˜p x) (SND (BREAK_LAST p xs))

BREAK_LAST_FST_EX:|- !p xs.

EX p xs

==> ˜(FST (BREAK_LAST p xs) = []) /\ p (LAST (FST (BREAK_LAST p xs)))

list_CASES_APPEND:|- !xs. xs = [] \/ (?pre last. xs = APPEND pre [last])

MEM_IS_INFIX:|- !x xs. MEM x xs <=> (?ys zs. xs = APPEND ys (CONS x zs))

MEM_ADJACENT_IS_INFIX:|- !x y xs.
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MEM (x,y) (ADJACENT xs) <=>

(?ys zs. xs = APPEND ys (CONS x (CONS y zs)))

ADJACENT_MIDDLE:|- !xs ys m.

ADJACENT (APPEND xs (CONS m ys)) =

APPEND (ADJACENT (APPEND xs [m])) (ADJACENT (CONS m ys))

MAP_FST_ADJACENT:|- !Ps. MAP FST (ADJACENT Ps) = BUTLAST Ps

PAIRWISE_INFIX_EQ:|- !xs ws x.

PAIRWISE (\x y. ˜(x = y)) (APPEND xs (CONS x ys))

==> APPEND xs (CONS x ys) = APPEND ws (CONS x zs)

==> xs = ws /\ ys = zs

rotation:|- !xs ys. rotation xs ys <=> (?n. xs = APPEND (DROP n ys) (TAKE n ys))

APPEND_DROP:|- !n xs ys. n <= LENGTH xs ==>

APPEND (DROP n xs) ys = DROP n (APPEND xs ys)

DROP_LENGTH:|- !n xs. LENGTH xs <= n ==> DROP n xs = []

rotation_LENGTH_EQ:|- rotation xs ys ==> LENGTH xs = LENGTH ys

DROP_DROP:|- !n m xs. DROP (n + m) xs = DROP n (DROP m xs)

TAKE_TAKE:|- !n m xs. TAKE (n + m) xs = APPEND (TAKE n xs) (TAKE m (DROP n xs))

DROP_APPEND2:|- !n xs ys.

DROP n (APPEND xs ys) = APPEND (DROP n xs) (DROP (n - LENGTH xs) ys)

TAKE_APPEND2:|- !n xs ys.

TAKE n (APPEND xs ys) = APPEND (TAKE n xs) (TAKE (n - LENGTH xs) ys)

rot_of:|- !xs ys. rot_of xs ys <=> (?us vs. xs = APPEND us vs /\ ys = APPEND vs us)

CONS_EQ_EXISTS_CONS:|- !h t xs. xs = CONS h t ==> (?ys. xs = CONS h ys)

APPEND_lemma:|- !as bs xs ys.

APPEND as bs = APPEND xs ys /\ LENGTH as <= LENGTH xs

==> (?es. APPEND as bs = APPEND as (APPEND es ys))

rot_of_refl:|- !xs. rot_of xs xs

rot_of_sym:|- !xs ys. rot_of xs ys <=> rot_of ys xs

A.2.3 Poly.ml

poly_conjunct0:|- poly [] x = &0

poly_conjunct1:|- poly (CONS h t) x = h + x * poly t x

POLY_CONST:|- !c x. poly [c] x = c
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POLY_X:|- !c x. poly [&0; &1] x = x

poly_add_conjunct0:|- [] ++ l2 = l2

poly_add_conjunct1:|- CONS h t ++ l2 =

(if l2 = [] then CONS h t else CONS (h + HD l2) (t ++ TL l2))

poly_cmul_conjunct0:|- c ## [] = []

poly_cmul_conjunct1:|- c ## CONS h t = CONS (c * h) (c ## t)

poly_neg:|- neg = (##) (-- &1)

poly_mul_conjunct0:|- [] ** l2 = []

poly_mul_conjunct1:|- CONS h t ** l2 =

(if t = [] then h ## l2 else h ## l2 ++ CONS (&0) (t ** l2))

poly_exp_conjunct0:|- poly_exp p 0 = [&1]

poly_exp_conjunct1:|- poly_exp p (SUC n) = p ** poly_exp p n

poly_diff_aux_conjunct0:|- poly_diff_aux n [] = []

poly_diff_aux_conjunct1:|- poly_diff_aux n (CONS h t) =

CONS (&n * h) (poly_diff_aux (SUC n) t)

poly_diff:|- !l. poly_diff l =

(if l = [] then [] else poly_diff_aux 1 (TL l))

LENGTH_POLY_DIFF_AUX:|- !l n. LENGTH (poly_diff_aux n l) = LENGTH l

LENGTH_POLY_DIFF:|- !l. LENGTH (poly_diff l) = PRE (LENGTH l)

POLY_ADD_CLAUSES_conjunct0:|- [] ++ p2 = p2

POLY_ADD_CLAUSES_conjunct1:|- p1 ++ [] = p1

POLY_ADD_CLAUSES_conjunct2:|-

CONS h1 t1 ++ CONS h2 t2 = CONS (h1 + h2) (t1 ++ t2)

POLY_NEG_CLAUSES_conjunct0:|- neg [] = []

POLY_NEG_CLAUSES_conjunct1:|- neg (CONS h t) = CONS (--h) (neg t)

POLY_MUL_CLAUSES_conjunct0:|- [] ** p2 = []

POLY_MUL_CLAUSES_conjunct1:|- [h1] ** p2 = h1 ## p2

POLY_MUL_CLAUSES_conjunct2:|- CONS h1 (CONS k1 t1) ** p2 =

h1 ## p2 ++ CONS (&0) (CONS k1 t1 ** p2)

POLY_DIFF_CLAUSES_conjunct0:|- poly_diff [] = []

POLY_DIFF_CLAUSES_conjunct1:|- poly_diff [c] = []

POLY_DIFF_CLAUSES_conjunct2:|- poly_diff (CONS h t) = poly_diff_aux 1 t

POLY_ADD:|- !p1 p2 x. poly (p1 ++ p2) x = poly p1 x + poly p2 x

POLY_CMUL:|- !p c x. poly (c ## p) x = c * poly p x

POLY_NEG:|- !p x. poly (neg p) x = --poly p x
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POLY_MUL:|- !x p1 p2. poly (p1 ** p2) x = poly p1 x * poly p2 x

POLY_EXP:|- !p n x. poly (poly_exp p n) x = poly p x pow n

POLY_DIFF_LEMMA:|- !l n x.

((\x. x pow SUC n * poly l x) diffl

x pow n * poly (poly_diff_aux (SUC n) l) x)

x

POLY_DIFF:|- !l x. ((\x. poly l x) diffl poly (poly_diff l) x) x

POLY_DIFFERENTIABLE:|- !l x. (\x. poly l x) differentiable x

POLY_CONT:|- !l x. (\x. poly l x) contl x

POLY_IVT_POS:|- !p a b.

a < b /\ poly p a < &0 /\ poly p b > &0

==> (?x. a < x /\ x < b /\ poly p x = &0)

POLY_IVT_NEG:|- !p a b.

a < b /\ poly p a > &0 /\ poly p b < &0

==> (?x. a < x /\ x < b /\ poly p x = &0)

POLY_MVT:|- !p a b.

a < b

==> (?x. a < x /\

x < b /\

poly p b - poly p a = (b - a) * poly (poly_diff p) x)

POLY_MVT_ADD:|- !p a x.

?y. abs y <= abs x /\

poly p (a + x) = poly p a + x * poly (poly_diff p) (a + y)

POLY_ADD_RZERO:|- !p. poly (p ++ []) = poly p

POLY_MUL_ASSOC:|- !p q r. poly (p ** q ** r) = poly ((p ** q) ** r)

POLY_EXP_ADD:|- !d n p. poly (poly_exp p (n + d)) =

poly (poly_exp p n ** poly_exp p d)

POLY_DIFF_AUX_ADD:|- !p1 p2 n.

poly (poly_diff_aux n (p1 ++ p2)) =

poly (poly_diff_aux n p1 ++ poly_diff_aux n p2)

POLY_DIFF_AUX_CMUL:|- !p c n. poly (poly_diff_aux n (c ## p)) =

poly (c ## poly_diff_aux n p)

POLY_DIFF_AUX_NEG:|- !p n. poly (poly_diff_aux n (neg p)) =

poly (neg (poly_diff_aux n p))

POLY_DIFF_AUX_MUL_LEMMA:|- !p n. poly (poly_diff_aux (SUC n) p) =
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poly (poly_diff_aux n p ++ p)

POLY_DIFF_ADD:|- !p1 p2. poly (poly_diff (p1 ++ p2)) =

poly (poly_diff p1 ++ poly_diff p2)

POLY_DIFF_CMUL:|- !p c. poly (poly_diff (c ## p)) = poly (c ## poly_diff p)

POLY_DIFF_NEG:|- !p. poly (poly_diff (neg p)) = poly (neg (poly_diff p))

POLY_DIFF_MUL_LEMMA:|- !t h. poly (poly_diff (CONS h t)) =

poly (CONS (&0) (poly_diff t) ++ t)

POLY_DIFF_MUL:|- !p1 p2.

poly (poly_diff (p1 ** p2)) =

poly (p1 ** poly_diff p2 ++ poly_diff p1 ** p2)

POLY_DIFF_EXP:|- !p n.

poly (poly_diff (poly_exp p (SUC n))) =

poly ((&(SUC n) ## poly_exp p n) ** poly_diff p)

POLY_DIFF_EXP_PRIME:|- !n a.

poly (poly_diff (poly_exp [--a; &1] (SUC n))) =

poly (&(SUC n) ## poly_exp [--a; &1] n)

POLY_LINEAR_REM:|- !t h. ?q r. CONS h t = [r] ++ [--a; &1] ** q

POLY_LINEAR_DIVIDES:|- !a p. poly p a = &0 <=>

p = [] \/ (?q. p = [--a; &1] ** q)

POLY_LENGTH_MUL:|- !q. LENGTH ([--a; &1] ** q) = SUC (LENGTH q)

POLY_ROOTS_INDEX_LEMMA:|- !n p.

˜(poly p = poly []) /\ LENGTH p = n

==> (?i. !x. poly p x = &0 ==> (?m. m <= n /\ x = i m))

POLY_ROOTS_INDEX_LENGTH:|- !p. ˜(poly p = poly [])

==> (?i. !x. poly p x = &0 ==> (?n. n <= LENGTH p /\ x = i n))

POLY_ROOTS_FINITE_LEMMA:|- !p. ˜(poly p = poly [])

==> (?N i. !x. poly p x = &0 ==> (?n. n < N /\ x = i n))

FINITE_LEMMA:|- !i N P. (!x. P x ==> (?n. n < N /\ x = i n))

==> (?a. !x. P x ==> x < a)

POLY_ROOTS_FINITE:|- !p. ˜(poly p = poly []) <=>

(?N i. !x. poly p x = &0 ==> (?n. n < N /\ x = i n))

POLY_ENTIRE_LEMMA:|- !p q.

˜(poly p = poly []) /\ ˜(poly q = poly [])

==> ˜(poly (p ** q) = poly [])

POLY_ENTIRE:|- !p q. poly (p ** q) = poly [] <=>
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poly p = poly [] \/ poly q = poly []

POLY_MUL_LCANCEL:|- !p q r.

poly (p ** q) = poly (p ** r) <=> poly p = poly [] \/ poly q = poly r

POLY_EXP_EQ_0:|- !p n. poly (poly_exp p n) = poly [] <=> poly p = poly [] /\ ˜(n = 0)

POLY_PRIME_EQ_0:|- !a. ˜(poly [a; &1] = poly [])

POLY_EXP_PRIME_EQ_0:|- !a n. ˜(poly (poly_exp [a; &1] n) = poly [])

POLY_ZERO_LEMMA:|- !h t. poly (CONS h t) = poly [] ==> h = &0 /\ poly t = poly []

POLY_ZERO:|- !p. poly p = poly [] <=> ALL (\c. c = &0) p

POLY_DIFF_AUX_ISZERO:|- !p n.

ALL (\c. c = &0) (poly_diff_aux (SUC n) p) <=> ALL (\c. c = &0) p

POLY_DIFF_ISZERO:|- !p. poly (poly_diff p) = poly [] ==> (?h. poly p = poly [h])

POLY_DIFF_ZERO:|- !p. poly p = poly [] ==> poly (poly_diff p) = poly []

POLY_DIFF_WELLDEF:|- !p q.

poly p = poly q ==> poly (poly_diff p) = poly (poly_diff q)

divides:|- !p2 p1. poly_divides p1 p2 <=> (?q. poly p2 = poly (p1 ** q))

POLY_PRIMES:|- !a p q.

poly_divides [a; &1] (p ** q) <=>

poly_divides [a; &1] p \/ poly_divides [a; &1] q

POLY_DIVIDES_REFL:|- !p. poly_divides p p

POLY_DIVIDES_TRANS:|- !p q r.

poly_divides p q /\ poly_divides q r ==> poly_divides p r

POLY_DIVIDES_EXP:|- !p m n. m <= n ==> poly_divides (poly_exp p m) (poly_exp p n)

POLY_EXP_DIVIDES:|- !p q m n.

poly_divides (poly_exp p n) q /\ m <= n

==> poly_divides (poly_exp p m) q

POLY_DIVIDES_ADD:|- !p q r. poly_divides p q /\ poly_divides p r

==> poly_divides p (q ++ r)

POLY_DIVIDES_SUB:|- !p q r. poly_divides p q /\ poly_divides p (q ++ r)

==> poly_divides p r

POLY_DIVIDES_SUB2:|- !p q r. poly_divides p r /\ poly_divides p (q ++ r)

==> poly_divides p q

POLY_DIVIDES_ZERO:|- !p q. poly p = poly [] ==> poly_divides q p

POLY_ORDER_EXISTS:|- !a d p.

LENGTH p = d /\ ˜(poly p = poly [])

==> (?n. poly_divides (poly_exp [--a; &1] n) p /\
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˜poly_divides (poly_exp [--a; &1] (SUC n)) p)

POLY_ORDER:|- !p a.

˜(poly p = poly [])

==> (?!n. poly_divides (poly_exp [--a; &1] n) p /\

˜poly_divides (poly_exp [--a; &1] (SUC n)) p)

order:|- !a p.

order a p =

(@n. poly_divides (poly_exp [--a; &1] n) p /\

˜poly_divides (poly_exp [--a; &1] (SUC n)) p)

ORDER:|- !p a n.

poly_divides (poly_exp [--a; &1] n) p /\

˜poly_divides (poly_exp [--a; &1] (SUC n)) p <=>

n = order a p /\ ˜(poly p = poly [])

ORDER_THM:|- !p a.

˜(poly p = poly [])

==> poly_divides (poly_exp [--a; &1] (order a p)) p /\

˜poly_divides (poly_exp [--a; &1] (SUC (order a p))) p

ORDER_UNIQUE:|- !p a n.

˜(poly p = poly []) /\

poly_divides (poly_exp [--a; &1] n) p /\

˜poly_divides (poly_exp [--a; &1] (SUC n)) p

==> n = order a p

ORDER_POLY:|- !p q a. poly p = poly q ==> order a p = order a q

ORDER_ROOT:|- !p a. poly p a = &0 <=> poly p = poly [] \/ ˜(order a p = 0)

ORDER_DIVIDES:|- !p a n.

poly_divides (poly_exp [--a; &1] n) p <=>

poly p = poly [] \/ n <= order a p

ORDER_DECOMP:|- !p a.

˜(poly p = poly [])

==> (?q. poly p = poly (poly_exp [--a; &1] (order a p) ** q) /\

˜poly_divides [--a; &1] q)

ORDER_MUL:|- !a p q.

˜(poly (p ** q) = poly [])

==> order a (p ** q) = order a p + order a q

ORDER_DIFF:|- !p a.
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˜(poly (poly_diff p) = poly []) /\ ˜(order a p = 0)

==> order a p = SUC (order a (poly_diff p))

POLY_SQUAREFREE_DECOMP_ORDER:|- !p q d e r s.

˜(poly (poly_diff p) = poly []) /\

poly p = poly (q ** d) /\

poly (poly_diff p) = poly (e ** d) /\

poly d = poly (r ** p ++ s ** poly_diff p)

==> (!a. order a q = (if order a p = 0 then 0 else 1))

rsquarefree:|- !p. rsquarefree p <=>

˜(poly p = poly []) /\ (!a. order a p = 0 \/ order a p = 1)

RSQUAREFREE_ROOTS:|- !p. rsquarefree p <=>

(!a. ˜(poly p a = &0 /\ poly (poly_diff p) a = &0))

RSQUAREFREE_DECOMP:|- !p a.

rsquarefree p /\ poly p a = &0

==> (?q. poly p = poly ([--a; &1] ** q) /\ ˜(poly q a = &0))

POLY_SQUAREFREE_DECOMP:|- !p q d e r s.

˜(poly (poly_diff p) = poly []) /\

poly p = poly (q ** d) /\

poly (poly_diff p) = poly (e ** d) /\

poly d = poly (r ** p ++ s ** poly_diff p)

==> rsquarefree q /\ (!a. poly q a = &0 <=> poly p a = &0)

normalize_conjunct0:|- normalize [] = []

normalize_conjunct1:|- normalize (CONS h t) =

(if normalize t = []

then if h = &0 then [] else [h]

else CONS h (normalize t))

POLY_NORMALIZE:|- !p. poly (normalize p) = poly p

degree:|- !p. degree p = PRE (LENGTH (normalize p))

DEGREE_ZERO:|- !p. poly p = poly [] ==> degree p = 0

POLY_ROOTS_FINITE_SET:|- !p.

˜(poly p = poly []) ==> FINITE {x | poly p x = &0}

POLY_MONO:|- !x k p. abs x <= k ==> abs (poly p x) <= poly (MAP abs p) k

NOT_POLY_CMUL_NIL:|- !h p. ˜(p = []) ==> ˜(h ## p = [])

NOT_POLY_MUL_NIL:|- !p1 p2. ˜(p1 = []) /\ ˜(p2 = []) ==> ˜(p1 ** p2 = [])

NOT_POLY_EXP_NIL:|- !n p. ˜(p = []) ==> ˜(poly_exp p n = [])
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NOT_POLY_EXP_X_NIL:|- !n. ˜(poly_exp [&0; &1] n = [])

POLY_CMUL_LID:|- !p. &1 ## p = p

POLY_MUL_LID:|- !p. [&1] ** p = p

POLY_MUL_RID:|- !p. p ** [&1] = p

POLY_ADD_SYM:|- !x y. x ++ y = y ++ x

POLY_ADD_ASSOC:|- !x y z. x ++ y ++ z = (x ++ y) ++ z

TL_POLY_MUL_X:|- !p. TL ([&0; &1] ** p) = p

HD_POLY_MUL_X:|- !p. HD ([&0; &1] ** p) = &0

TL_POLY_EXP_X_SUC:|- !n. TL (poly_exp [&0; &1] (SUC n)) =

poly_exp [&0; &1] n

HD_POLY_EXP_X_SUC:|- !n. HD (poly_exp [&0; &1] (SUC n)) = &0

HD_POLY_ADD:|- !p1 p2. ˜(p1 = []) /\ ˜(p2 = []) ==>

HD (p1 ++ p2) = HD p1 + HD p2

HD_POLY_CMUL:|- !x p. ˜(p = []) ==> HD (x ## p) = x * HD p

TL_POLY_CMUL:|- !x p. ˜(p = []) ==> TL (x ## p) = x ## TL p

HD_POLY_MUL:|- !p1 p2. ˜(p1 = []) /\ ˜(p2 = []) ==> HD (p1 ** p2) =

HD p1 * HD p2

HD_POLY_EXP:|- !n p. ˜(p = []) ==> HD (poly_exp p n) = HD p pow n

POLY_ADD_IDENT:|- neutral (++) = []

POLY_ADD_NEUTRAL:|- !x. neutral (++) ++ x = x

MONOIDAL_POLY_ADD:|- monoidal (++)

POLY_DIFF_AUX_ADD_LEMMA:|- !t1 t2 n.

poly_diff_aux n (t1 ++ t2) = poly_diff_aux n t1 ++ poly_diff_aux n t2

POLYDIFF_ADD:|- !p1 p2. poly_diff (p1 ++ p2) = poly_diff p1 ++ poly_diff p2

POLY_DIFF_AUX_POLY_CMUL:|- !p c n. poly_diff_aux n (c ## p) =

c ## poly_diff_aux n p

POLY_CMUL_POLY_DIFF:|- !p c. poly_diff (c ## p) = c ## poly_diff p

POLY_CMUL_LENGTH:|- !c p. LENGTH (c ## p) = LENGTH p

POLY_ADD_LENGTH:|- !p q. LENGTH (p ++ q) = MAX (LENGTH p) (LENGTH q)

POLY_MUL_LENGTH:|- !p h t. LENGTH (p ** CONS h t) >= LENGTH p

POLY_EXP_X_REC:|- !n. poly_exp [&0; &1] (SUC n) =

CONS (&0) (poly_exp [&0; &1] n)

POLY_MUL_LENGTH2:|- !q p. ˜(q = []) ==> LENGTH (p ** q) >= LENGTH p

POLY_EXP_X_LENGTH:|- !n. LENGTH (poly_exp [&0; &1] n) = SUC n

POLY_SUM_EQUIV:|- !p x.
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˜(p = [])

==> poly p x = sum (0..PRE (LENGTH p)) (\i. EL i p * x pow i)

ITERATE_RADD_POLYADD:|- !n x f.

iterate (+) (0..n) (\i. poly (f i) x) = poly (iterate (++) (0..n) f) x

A.2.4 Isaplanner benchmark

Definitions (N means natural numbers, different constant names are used for natural

numbers and lists, to avoid conflict with the original types in HOL Light

N_INDUCT:!P. P Z /\ (!a. P a ==> P (Suc a)) ==> (!x. P x)

N_RECURSION:!f0 f1. ?fn. fn Z = f0 /\ (!a. fn (Suc a) = f1 a (fn a))

List_INDUCT:!P. P Nil /\ (!a0 a1. P a1 ==> P (Cons a0 a1)) ==> (!x. P x)

List_RECURSION:!f0 f1. ?fn. fn Nil = f0 /\

(!a0 a1. fn (Cons a0 a1) = f1 a0 a1 (fn a1))

Tree_INDUCT:!P. P Leaf /\

(!a0 a1 a2. P a0 /\ P a2 ==> P (Node a0 a1 a2)) ==> (!x. P x)

Tree_RECURSION:!f0 f1.

?fn. fn Leaf = f0 /\

(!a0 a1 a2. fn (Node a0 a1 a2) = f1 a1 a0 a2 (fn a0) (fn a2))

add_0:Z ++ y = y /\ Suc x ++ y = Suc (x ++ y)

mult_0:x ** Z = Z /\ x ** Suc y = x ++ x ** y

append:(!ys. append Nil ys = ys) /\

(!x ys xs. append (Cons x xs) ys = Cons x (append xs ys))

lastl:last (Cons x xs) = (if xs = Nil then x else last xs)

butlastl:butlast Nil = Nil /\

butlast (Cons x xs) = (if xs = Nil then Nil else Cons x (butlast xs))

mapl:(!f. map f Nil = Nil) /\

(!f x xs. map f (Cons x xs) = Cons (f x) (map f xs))

revl:rev Nil = Nil /\ rev (Cons x xs) = append (rev xs) (Cons x Nil)

filterl:filter P Nil = Nil /\

filter P (Cons x xs) = (if P x then Cons x (filter P xs) else filter P xs)

takeWhile:takeWhile P Nil = Nil /\

takeWhile P (Cons x xs) = (if P x then Cons x (takeWhile P xs) else Nil)
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dropWhile:dropWhile P Nil = Nil /\

dropWhile P (Cons x xs) = (if P x then dropWhile P xs else Cons x xs)

member:(!x. mem x Nil <=> F) /\ (!x. mem x (Cons y ys) <=> x = y \/ mem x ys)

delete:(!x. delete x Nil = Nil) /\

(!x y ys.

delete x (Cons y ys) =

(if x = y then delete x ys else Cons y (delete x ys)))

len:len Nil = Z /\ (!h t. len (Cons h t) = Suc (len t))

ins:(!n. ins n Nil = Cons n Nil) /\

(!n h t.

ins n (Cons h t) =

(if n less h then Cons n (Cons h t) else Cons h (ins n t)))

ins_1:(!n. ins_1 n Nil = Cons n Nil) /\

(!n h t.

ins_1 n (Cons h t) = (if n = h then Cons n t else Cons h (ins_1 n t)))

count:(!x. count x Nil = Z) /\

(!x y ys.

count x (Cons y ys) = (if x = y then Suc (count x ys) else count x ys))

insort:insort x Nil = Cons x Nil /\

insort x (Cons y ys) =

(if x leq y then Cons x (Cons y ys) else Cons y (Cons x ys))

sortl:sort Nil = Nil /\ sort (Cons x xs) = insort x (sort xs)

mirror:mirror Leaf = Leaf /\

mirror (Node l data r) = Node (mirror r) data (mirror l)

nodes:nodes Leaf = Z /\ nodes (Node l data r) = Suc Z ++ nodes l ++ nodes r

height:height Leaf = Z /\ height (Node l data r) =

Suc (maxn (height l) (height r))

sorted:(sorted Nil <=> T) /\

(sorted (Cons x Nil) <=> T) /\

(sorted (Cons x (Cons y ys)) <=> x leq y /\ sorted (Cons y ys))

minus:Z minus m = Z /\ Suc m minus Z = Suc m /\ Suc m minus Suc n = m minus n

less:(x less Z <=> F) /\ (Z less Suc y <=> T) /\

(Suc z less Suc y <=> z less y)

leq:(Z leq y <=> T) /\ (Suc x leq Z <=> F) /\ (Suc x leq Suc z <=> x leq z)

maxn:maxn Z y = y /\ maxn (Suc x) Z = Suc x /\
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maxn (Suc x) (Suc y) = Suc (maxn x y)

minn:minn Z y = Z /\ minn (Suc x) Z = Z /\ minn (Suc x) (Suc y) = Suc (minn x y)

drop:drop n Nil = Nil /\

drop Z (Cons x xs) = Cons x xs /\

drop (Suc m) (Cons x xs) = drop m xs

take:take n Nil = Nil /\

take Z (Cons x xs) = Nil /\

take (Suc m) (Cons x xs) = Cons x (take m xs)

zipl:(!xs. zip xs Nil = Nil) /\

(!y ys. zip Nil (Cons y ys) = Nil) /\

(!z y zs ys. zip (Cons z zs) (Cons y ys) = Cons (z,y) (zip zs ys))

Test goals:

append (take n xs) (drop n xs) = xs

count n l ++ count n m = count n (append l m)

count n l leq count n (append l (Cons m Nil))

Suc Z ++ count n l = count n (Cons n l)

n = x ==> Suc Z ++ count n l = count n (Cons x l)

n minus (n ++ m) = Z

(n ++ m) minus n = m

(k ++ m) minus (k ++ n) = m minus n

(i minus j) minus k = i minus (j ++ k)

m minus m = Z

drop Z xs = xs

drop n (map f xs) = map f (drop n xs)

drop (Suc n) (Cons x xs) = drop n xs

filter P (append xs ys) = append (filter P xs) (filter P ys)

len (ins x l) = Suc (len l)

xs = Nil ==> last (Cons x xs) = x

n leq Z <=> n = Z

i less Suc (i ++ m)

len (drop n xs) = len xs minus n

len (sort l) = len l

n leq (n ++ m)

maxn (maxn a b) c = maxn a (maxn b c)
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maxn a b = maxn b a

maxn a b = a <=> b leq a

maxn a b = b <=> a leq b

mem x l ==> mem x (append l t)

mem x t ==> mem x (append l t)

mem x (append l (Cons x Nil))

mem x (ins_1 x l)

mem x (ins x l)

minn (minn a b) c = minn a (minn b c)

minn a b = minn b a

minn a b = a <=> a leq b

minn a b = b <=> b leq a

dropWhile (\x. F) xs = xs

takeWhile (\x. T) xs = xs

˜mem x (delete x l)

count n (append x (Cons n Nil)) = Suc (count n x)

count n (Cons h Nil) ++ count n t = count n (Cons h t)

take Z xs = Nil

take n (map f xs) = map f (take n xs)

take (Suc n) (Cons x xs) = Cons x (take n xs)

append (takeWhile P xs) (dropWhile P xs) = xs

zip (Cons x xs) ys =

(if ys = Nil then Nil else Cons (x,(@y. Cons y t = ys)) (zip xs ys))

zip (Cons x xs) (Cons y ys) = Cons (x,y) (zip xs ys)

zip Nil ys = Nil

˜(xs = Nil) ==> butlast (append xs (Cons (last xs) Nil)) = xs

butlast (append xs ys) =

(if ys = Nil then butlast xs else append xs (butlast ys))

butlast xs = take (len xs minus Suc Z) xs

butlast (append xs (Cons x Nil)) = xs

count n l = count n (rev l)

count x l = count x (sort l)

(m ++ n) minus n = m

(i minus j) minus k = i minus (k ++ j)

drop n (append xs ys) = append (drop n xs) (drop (n minus len xs) ys)
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drop n (drop m xs) = drop (n ++ m) xs

drop n (take m xs) = take (m minus n) (drop n xs)

drop n (zip xs ys) = zip (drop n xs) (drop n ys)

ys = Nil ==> last (append xs ys) = last xs

˜(ys = Nil) ==> last (append xs ys) = last ys

last (append xs ys) = (if ys = Nil then last xs else last ys)

˜(xs = Nil) ==> last (Cons x xs) = last xs

n less len xs ==> last (drop n xs) = last xs

last (append xs (Cons x Nil)) = x

i less Suc (m ++ i)

len (filter P xs) leq len xs

len (butlast xs) = len xs minus Suc Z

len (delete x l) leq len l

n leq (m ++ n)

m leq n ==> m leq Suc n

x less y ==> (mem x (ins y l) <=> mem x l)

˜(x = y) ==> (mem x (ins y l) <=> mem x l)

rev (drop i xs) = take (len xs minus i) (rev xs)

rev (filter P xs) = filter P (rev xs)

rev (take i xs) = drop (len xs minus i) (rev xs)

˜(n = h) ==> count n (append x (Cons h Nil)) = count n x

count n t ++ count n (Cons h Nil) = count n (Cons h t)

sorted l ==> sorted (insort x l)

sorted (sort l)

(Suc m minus n) minus Suc k = (m minus n) minus k

take n (append xs ys) = append (take n xs) (take (n minus len xs) ys)

take n (drop m xs) = drop m (take (n ++ m) xs)

take n (zip xs ys) = zip (take n xs) (take n ys)

zip (append xs ys) zs =

append (zip xs (take (len xs) zs)) (zip ys (drop (len xs) zs))

zip xs (append ys zs) =

append (zip (take (len ys) xs) ys) (zip (drop (len ys) xs) zs)

len xs = len ys ==> zip (rev xs) (rev ys) = rev (zip xs ys)

height (mirror a) = height a
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A.2.5 Hoare logic

There are 39 theorems rather than 38 (see Tabel 4.4), because sorted_take and

sorted_drop are proven together in one theorem in Isabelle and we ported them in

the same way.

take_Suc_conv_app_nth:!xs i. i < LENGTH xs

==> TAKE (SUC i) xs = APPEND (TAKE i xs) [EL i xs]

id_take_nth_drop:!xs i.

i < LENGTH xs

==> xs = APPEND (TAKE i xs) (CONS (EL i xs) (DROP (SUC i) xs))

drop_take:!xs m n. DROP n (TAKE m xs) = TAKE (m - n) (DROP n xs)

take_take:!l a b. TAKE a (TAKE b l) = TAKE (MIN a b) l

ASG_conjunct0:ASG [] i n = []

ASG_conjunct1:ASG (CONS h t) 0 n = CONS n t

ASG_conjunct2:ASG (CONS h t) (SUC i) n = CONS h (ASG t i n)

length_list_update:!l i n. LENGTH (ASG l i n) = LENGTH l

nth_list_update:!xs i j x.

i < LENGTH xs ==> EL j (ASG xs i x) = (if i = j then x else EL j xs)

nth_list_update_eq:!xs i x. i < LENGTH xs ==> EL i (ASG xs i x) = x

nth_list_update_neq:!xs i j x. ˜(i = j) ==> EL j (ASG xs i x) = EL j xs

list_update_id:!l i. ASG l i (EL i l) = l

list_update_beyond:!l i n. LENGTH l <= i ==> ASG l i n = l

list_update_nonempty:!k x xs. ASG xs k x = [] <=> xs = []

list_update_same_conv:!xs i x. i < LENGTH xs

==> (ASG xs i x = xs <=> EL i xs = x)

list_update_append1:!xs i. i < LENGTH xs ==>

ASG (APPEND xs ys) i x = APPEND (ASG xs i x) ys

list_update_append:!xs n ys.

ASG (APPEND xs ys) n x =

(if n < LENGTH xs

then APPEND (ASG xs n x) ys

else APPEND xs (ASG ys (n - LENGTH xs) x))

list_update_length:!xs ys. ASG (APPEND xs (CONS x ys)) (LENGTH xs) y

= APPEND xs (CONS y ys)

map_update:!xs k. MAP f (ASG xs k y) = ASG (MAP f xs) k (f y)
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rev_update:!xs k.

k < LENGTH xs

==> REVERSE (ASG xs k y) = ASG (REVERSE xs) (LENGTH xs - k - 1) y

sorted_conjunct0:SORTED [] <=> T

sorted_conjunct1:SORTED (CONS h t) <=> ALL ((<=) h) t /\ SORTED t

sorted_single:SORTED [x]

sorted_many:x <= y ==> SORTED (CONS y zs) ==> SORTED (CONS x (CONS y zs))

sorted_many_eq:SORTED (CONS x (CONS y zs)) <=> x <= y /\ SORTED (CONS y zs)

sorted_tl:!xs. SORTED xs ==> SORTED (TAIL xs)

sorted_append:!xs ys.

SORTED (APPEND xs ys) <=>

SORTED xs /\ SORTED ys /\ (!x. MEM x xs ==> ALL ((<=) x) ys)

sorted_nth_mono:!xs i j. SORTED xs ==> i <= j ==>

j < LENGTH xs ==> EL i xs <= EL j xs

sorted_nth_monoI:!xs. (!i j. i <= j /\ j < LENGTH xs ==>

EL i xs <= EL j xs) ==> SORTED xs

sorted_butlast:!xs. ˜(xs = []) /\ SORTED xs ==> SORTED (BUTLAST xs)

sorted_take:SORTED xs ==> SORTED (TAKE n xs)

sorted_drop:SORTED xs ==> SORTED (DROP n xs)

list_update_overwrite:!l i x y. ASG (ASG l i x) i y = ASG l i y

list_update_swap:!xs i i’. ˜(i = i’) ==>

ASG (ASG xs i x) i’ x’ = ASG (ASG xs i’ x’) i x

take_update_cancel:!xs n m. n <= m ==> TAKE n (ASG xs m y) = TAKE n xs

drop_update_cancel:!xs n m. n < m ==> DROP m (ASG xs n x) = DROP m xs

upd_conv_take_nth_drop:i < LENGTH xs ==>

ASG xs i a = APPEND (TAKE i xs) (CONS a (DROP (SUC i) xs))

take_update_swap:n < m ==> TAKE m (ASG xs n x) = ASG (TAKE m xs) n x

drop_update_swap:m <= n ==> DROP m (ASG xs n x) = ASG (DROP m xs) (n - m) x
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and Hähnle, R., editors, Automated Reasoning, pages 107–121, Berlin, Heidelberg.

Springer Berlin Heidelberg.

Boulton, R. J. (1992). Boyer-Moore automation for the HOL system. In Claesen, L.

J. M. and Gordon, M. J. C., editors, Higher Order Logic Theorem Proving and its

Applications: Proceedings of the IFIP TC10/WG10.2 Workshop, volume A-20 of

IFIP Transactions, pages 133–142, Leuven, Belgium. North-Holland/Elsevier.

Boyer, R. and Moore, J. (1979). A Computational Logic. ACM monograph series.

Academic Press.

Bridge, J. P. (2010). Machine learning and automated theorem proving. PhD thesis,

University of Cambridge.

193



194 Bibliography

Brock, B., Kaufmann, M., and Moore, J. S. (1996). ACL2 theorems about commer-

cial microprocessors. In Srivas, M. and Camilleri, A., editors, Formal Methods in

Computer-Aided Design (FMCAD’96), pages 275–293. Springer-Verlag.

Brown, C. E. (2012). Satallax: An automatic higher-order prover. In International

Joint Conference on Automated Reasoning, pages 111–117. Springer.

Bundy, A. (1983). The computer modelling of mathematical reasoning, volume 10.

Academic Press London.

Bundy, A. (1988). The use of explicit plans to guide inductive proofs. In Lusk, R. and

Overbeek, R., editors, 9th International Conference on Automated Deduction, pages

111–120. Springer-Verlag.

Bundy, A. (1996). Proof Planning. In Drabble, B., editor, Proceedings of the 3rd

International Conference on AI Planning Systems, (AIPS) 1996, pages 261–267.

also available as DAI Research Report 886.

Bundy, A. (2001). The automation of proof by mathematical induction. In Robin-

son, A. and Voronkov, A., editors, Handbook of Automated Reasoning, Volume 1,

chapter 13. Elsevier.

Bundy, A., Basin, D., Hutter, D., and Ireland, A. (2005). Rippling: Meta-level Guid-

ance for Mathematical Reasoning, volume 56 of Cambridge Tracts in Theoretical

Computer Science. Cambridge University Press.

Carlson, A., Cumby, C., Rosen, J., and Roth, D. (1999). The SNoW learning architec-

ture. Technical report, Technical report UIUCDCS.

Chamarthi, H. R., Dillinger, P., Manolios, P., and Vroon, D. (2011). The ACL2 sedan

theorem proving system. In International Conference on Tools and Algorithms for

the Construction and Analysis of Systems, pages 291–295. Springer.

Claessen, K., Johansson, M., Rosén, D., and Smallbone, N. (2012). HipSpec: Au-

tomating Inductive Proofs of Program Properties. In ATx/WInG@ IJCAR, pages

16–25.

Claessen, K., Johansson, M., Rosén, D., and Smallbone, N. (2013). Automating in-

ductive proofs using theory exploration. In International Conference on Automated

Deduction, pages 392–406. Springer.

Claessen, K., Johansson, M., Rosén, D., and Smallbone, N. (2015). Tip: tons of



Bibliography 195

inductive problems. In Conferences on Intelligent Computer Mathematics, pages

333–337. Springer.

Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. IEEE transac-

tions on information theory, 13(1):21–27.

Cruanes, S. (2017). Superposition with structural induction. In International Sympo-

sium on Frontiers of Combining Systems, pages 172–188. Springer.

De Moura, L. and Bjørner, N. (2008). Z3: An efficient SMT solver. In Tools and

Algorithms for the Construction and Analysis of Systems, pages 337–340. Springer.

Dixon, L. and Fleuriot, J. D. (2003). IsaPlanner: A prototype proof planner in Isabelle.

In Proceedings of CADE’03, volume 2741 of LNCS, pages 279–283.

Dixon, L. and Fleuriot, J. D. (2004). Higher order rippling in IsaPlanner. In Theorem

Proving in Higher Order Logics’04, volume 3223 of LNCS, pages 83–98. Springer.

Gentzen, G. (1969). Investigations into logical deduction. The collected papers of

Gerhard Gentzen, pages 68–131.

Gordon, M. J., Milner, A. J., and Wadsworth, C. P. (1979). Edinburgh LCF - A mech-

anised logic of computation, volume 78 of Lecture Notes in Computer Science.

Springer-Verlag.

Hales, T. C. (2006). Introduction to the Flyspeck project. In Dagstuhl Seminar Pro-

ceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

Harrison, J. (1996a). HOL light: a tutorial introduction. In Srivas, M. and Camilleri,

A., editors, Proceedings of the First International Conference on Formal Methods

in Computer-Aided Design, pages 265–269.

Harrison, J. (1996b). Optimizing proof search in model elimination. In International

Conference on Automated Deduction, pages 313–327. Springer.

Harrison, J. (2009). Handbook of practical logic and automated reasoning. Cambridge

University Press.

Harrison, J. (2016). The HOL Light system reference. See URL:

https://www.cl.cam.ac.uk/ jrh13/hol-light/reference.pdf.

Heras, J. and Komendantskaya, E. (2014). ACL2(ml): Machine-Learning for ACL2.

arXiv preprint arXiv:1404.3034.



196 Bibliography

Heras, J., Komendantskaya, E., Johansson, M., and Maclean, E. (2013). Proof-pattern

recognition and lemma discovery in ACL2. In McMillan, K. L., Middeldorp, A., and

Voronkov, A., editors, Logic for Programming, Artificial Intelligence, and Reason-

ing - 19th International Conference, LPAR-19, Stellenbosch, South Africa, Decem-

ber 14-19, 2013. Proceedings, volume 8312 of Lecture Notes in Computer Science,

pages 389–406. Springer.

Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Communica-

tions of the ACM, 12(10):576–580.

Hoder, K. and Voronkov, A. (2011). Sine Qua Non for large theory reasoning. In

Automated Deduction–CADE-23, pages 299–314. Springer.

Hurd, J. (2003). First-order proof tactics in higher-order logic theorem provers. Design

and Application of Strategies/Tactics in Higher Order Logics, number NASA/CP-

2003-212448 in NASA Technical Reports, pages 56–68.

Ireland, A. (1992). The Use of Planning Critics in Mechanizing Inductive Proofs. In

Voronkov, A., editor, International Conference on Logic Programming and Auto-

mated Reasoning – LPAR 92, St. Petersburg, Lecture Notes in Artificial Intelligence

No. 624, pages 178–189. Springer-Verlag. Also available from Edinburgh as DAI

Research Paper 592.

Ireland, A. and Bundy, A. (1996). Productive use of failure in inductive proof. Journal

of Automated Reasoning, 16(1–2):79–111.

Johansson, M., Dixon, L., and Bundy, A. (2010). Case-analysis for Rippling and induc-

tive proof. In Kaufmann, M. and Paulson, L., editors, Interactive Theorem Proving,

volume 6172 of Lecture Notes in Computer Science, pages 291–306. Springer.

Kaliszyk, C. and Urban, J. (2013). Stronger automation for Flyspeck by feature weight-

ing and strategy evolution. In Third International Workshop on Proof Exchange for

Theorem Proving (PxTP 2013), page 87.

Kaliszyk, C. and Urban, J. (2014). Learning-assisted automated reasoning with Fly-

speck. Journal of Automated Reasoning, pages 1–41.

Kaliszyk, C. and Urban, J. (2015). Hol (y) hammer: Online ATP service for HOL

Light. Mathematics in Computer Science, 9(1):5–22.



Bibliography 197

Kaufmann, M., Manolios, P., and Moore, J. (2000). Computer-Aided Reasoning: An

Approach. Advances in Formal Methods. Springer US.

Kaufmann, M. and Moore, J. (2004). How to prove theorems formally. See URL:

http://www. cs. utexas. edu/users/moore/-publications/how-to-prove-thms/main. ps.
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