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Abstract
The long stated vision of persistent memory is set to be realized with the release of

3D XPoint memory by Intel and Micron. Persistent memory, as the name suggests,

amalgamates the persistence (non-volatility) property of storage devices (like disks)

with byte-addressability and low latency of memory. These properties of persistent

memory coupled with its accessibility through the processor load/store interface enable

programmers to design in-memory persistent data structures.

An important challenge in designing persistent memory systems is to provide sup-

port for maintaining crash consistency of these in-memory data structures. Crash con-

sistency is necessary to ensure the correct recovery of program state after a crash. Or-

dering is a primitive that can be used to design crash consistent programs. It provides

guarantees on the order of updates to persistent memory. Atomicity can also be used

to design crash consistent programs via two primitives. First, as an atomic durability

primitive which guarantees that in the presence of system crashes updates are made

durable atomically, which means either all or none of the updates are made durable.

Second, in the form of ACID transactions that guarantee atomic visibility and atomic

durability.

Existing systems do not support ordering, let alone atomic durability or ACID.

In fact, these systems implement various performance enhancing optimizations that

deliberately reorder updates to memory. Moreover, software in these systems can-

not explicitly control the movement of data from volatile cache to persistent memory.

Therefore, any ordering requirement has to be enforced synchronously which degrades

performance because program execution is stalled waiting for updates to reach persis-

tent memory. This thesis aims to provide the design principles and efficient implemen-

tations for three crash consistency primitives: ordering, atomic durability and ACID

transactions.

A set of persistency models have been proposed recently which provide support for

the ordering primitive. This thesis extends the taxonomy of these models by adding

buffering, which allows the hardware to enforce ordering in the background, as a new

layer of classification. It then goes on show how the existing implementation of a

buffered model degenerates to a performance inefficient non-buffered model because

of the presence of conflicts and proposes efficient solutions to eliminate or limit the

impact of these conflicts with minimal hardware modifications. This thesis also pro-

poses the first implementation of a buffered model for a server class processor with

multi-banked caches and multiple memory controllers.
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Write ahead logging (WAL) is a commonly used approach to provide atomic dura-

bility. This thesis argues that existing implementations of WAL in software are not only

inefficient, because of the fine grained ordering dependencies, but also waste precious

execution cycles to implement a fundamentally data movement task. It then proposes

ATOM, a hardware log manager based on undo logging that performs the logging op-

eration out of the critical path. This thesis presents the design principles behind ATOM

and two techniques that optimize its performance. These techniques enable the mem-

ory controller to enforce fine grained ordering required for logging and to even perform

logging in some cases. In doing so, ATOM significantly reduces processor stall cycles

and improves performance.

The most commonly used abstraction employed to atomically update persistent

data is that of durable transactions with ACID (Atomicity, Consistency, Isolation

and Durability) semantics that make updates within a transaction both visible and

durable atomically. As a final contribution, this thesis tackles the problem of pro-

viding efficient support for durable transactions in hardware by integrating hardware

support for atomic durability with hardware transactional memory (HTM). It proposes

DHTM (durable hardware transactional memory) in which durability is considered as

a first class design constraint. DHTM guarantees atomic durability via hardware redo-

logging, and integrates this logging support with a commercial HTM to provide atomic

visibility. Furthermore, DHTM leverages the same logging infrastructure to extend the

supported transaction size, from being L1-limited to the LLC, with minor changes to

the coherence protocol.
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Lay Summary

Modern computer systems consist of two separate tiers to store data. The fast but

volatile memory tier, which is also known as random access memory (RAM), stores

data that programs can directly operate on. The slow but durable storage tier, which in-

cludes devices like hard disks and solid state drives (SSDs), stores durable data in files

that users require accesses to across system restarts. Many important applications, that

people interact with daily, need to perform frequent updates to their data in the storage

tier. Consider a banking system for example, a large number of customers perform

multiple banking transactions daily. All the updates because of those transactions need

to applied to some database in the storage tier. Because the storage tier is slow, such

applications have poor performance as opposed to applications that operate only on the

data in memory.

Intel and Micron have recently announced the release of 3D XPoint memory. 3D

XPoint belongs to a new class of memories known as persistent memory, as it combines

the durability property of storage with low latency of memory. Persistent memory can

significantly improve the performance of applications, like banking, which perform

frequent updates to durable data. However, writing applications to operate on durable

data in persistent memory is not straightforward. In the absence of appropriate sup-

port from the system, an application interrupted by a power failure could corrupt the

durable data in persistent memory. For example, consider a system that is executing a

banking transaction which consists of debiting money from account A and crediting it

to account B. If a power failure happens while this transaction is executing, then it is

possible that money is debited from account A but not credited to account B.

To avoid such scenarios, systems with persistent memory need to provide primi-

tives that allow programmers to design programs in a fail safe manner. Such fail safe

programs would keep all the data in persistent memory in a consistent state, even in

the presence of system crashes. In this instance, a primitive called atomic durability is

required which guarantees that either all updates are performed or none are performed.

Let us consider the same example of the banking transaction discussed earlier. If the

system supports atomic durability, it will guarantee that either the money is debited

from A and credited to B, or it is neither debited from A nor credited to B. This thesis

presents efficient designs of primitives like atomic durability, which allow program-

mers to write crash consistent programs for systems with persistent memory.
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Chapter 1

Introduction

Traditionally, computer systems have been designed to store data in two different

tiers: storage and memory. The storage tier is characterized by the properties of non-

volatility and higher density. Non-volatility guarantees that the data in the storage

device will be retained even if power supply to the device is disconnected. Higher den-

sity means that, compared to memory, a higher number of bits can be stored per unit

area. The memory tier on the other hand is characterized by two different properties:

low latency and fine granularity. Low latency means that, compared to storage, it takes

lesser time to access memory. Finer granularity means that, compared to storage which

is typically accessed at a block or a page granularity, the contents of memory can be

accessed at a finer granularity like a cache line. This two tier architecture has lead to

the design of computer systems where programs typically operate on byte-addressable

data in memory while storage is accessed with block based abstractions such as files

and operating system managed paging. In summary, traditional computing systems

have been designed and optimized for such a two tier architecture because neither

memory nor storage possess all the desired properties.

The emergence of multiple viable memory technologies like 3D XPoint [1],

PCM [2], STT-MRAM [3], etc., has lead to a promising class of memory known as

non-volatile memory (NVM) or persistent memory which combines the best proper-

ties of both storage and memory. It has non-volatility and density properties similar

to storage while having access latency and access granularity characteristics similar

to memory. Owing to these properties, persistent memory is widely expected to re-

place or complement the existing memory technology (DRAM) in future computing

systems [4, 5]. We envision that a traditional memory hierarchy shown in Figure 1.1(a)

with volatile caches, volatile memory and persistent storage would evolve into a sys-

1
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Figure 1.1: Memory hierarchy with and without persistent memory.

tem shown in Figure 1.1(b) where only caches are volatile while memory and storage

are persistent. In the rest of this thesis, we consider this new hierarchy (Figure 1.1(b))

as a representative memory architecture for emerging computer systems with persistent

memory.1

Persistent memory, by virtue of being attached to the memory bus, allows pro-

grammers to access a non-volatile medium through the processor load-store interface.

Thereby it opens up a new world of low overhead durability. Durability, also known

as persistence, is the property that guarantees that data has safely been written to a

non-volatile medium. Access to durable data in memory enables applications like in-

memory persistent data structures, low overhead checkpointing, fast databases and key

value stores, etc. Irrespective of the application, programmers need guarantees on what

updates would have happened to durable data in the event of a system crash. This guar-

antee is necessary to maintain a property called crash consistency, which is required

to ensure the correct recovery of program state and durable data after a system crash.

For example, consider a program that is operating on an in-memory durable linked list.

While adding a new node to the list, the program first writes to the new node and then

1However, it is important to note that the principles presented in this thesis will equally apply to an
architecture which has both volatile and persistent memory, without loss of generality.
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updates a pointer to point to the new node. At the time of failure, the cache might have

flushed the pointer update to persistent memory, but the write to the newly created node

might still be in the volatile cache leading to an inconsistent state of the durable linked

list. This inconsistency can be avoided by ensuring that the write to the newly created

node reaches persistent memory before the pointer update. Therefore, to support crash

consistency, systems need to provide guarantees on the order in which updates will

reach persistent memory. We call this guarantee as the ordering primitive.

Ordering is a fundamental primitive that can be used to durably compose and main-

tain any arbitrary data structure. But it is not the only primitive, as many classes of

programs including databases and file systems reason about crash consistency using

higher level primitives like atomic durability. Atomic durability guarantees that, in the

presence of system crashes, either all the updates will be made durable or none of them

will be made durable. Consider a scenario where more than one cache line needs to be

modified to perform a consistent update to a durable data structure. This is a common

scenario applicable to many data structures including the previous example of linked-

list. While adding a new node to the linked-list, the write to the new node and the write

to update the pointer can potentially map to two different cache lines. If the system

crashes after only the pointer update reaches persistent memory, then the linked-list is

left in an inconsistent state because of the partial update. However, if the writes to both

the new node and the pointer are made durable atomically then this inconsistency can

be avoided. Therefore, it is necessary to have primitives like atomic durability which

guarantee that a group of updates will be made durable atomically.

ACID transactions is another higher level primitive which is widely used in

databases [6]. ACID which stands for Atomicity, Consistency, Isolation and Durabil-

ity reasons about atomic visibility and atomic durability of updates. Atomic visibility

deals with concurrency and provides guarantees on the order in which updates will be-

come visible to other threads. In summary, atomic visibility reasons about consistency

with respect to other threads in the system whereas atomic durability reasons about

consistency with respect to system crashes. All of these higher level primitives not

only ease the burden of reasoning about crash consistency on programmers but also

provide them with powerful abstractions to compose structured programs.

Existing memory systems do not provide any sort of ordering guarantees, let alone

atomicity or ACID. In fact, these systems implement various optimizations which de-

liberately reorder updates to memory, at multiple levels in the memory hierarchy, to

improve performance. For example, the order is which dirty lines (which have been
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written to) are replaced from the cache to memory is governed by replacement policies

that are solely designed to maximize locality. Other optimizations like write coalesc-

ing, that reduce pressure on the memory bandwidth, can also lead to reordering if

writes to different cache lines happen between multiple writes to the same cache line.

Therefore, while implementing primitives for crash consistency it is desirable to allow

reordering to the extent possible.

A key challenge with persistent memory systems is that software cannot explicitly

control the boundary between volatile caches and persistent memory. In other words,

modified data can move from volatile caches to persistent memory without the permis-

sion and even knowledge of software. Therefore, any ordering requirement has to be

enforced synchronously. This means that if the software wants to ensure that all the

updates till a given point have been made durable, it has to explicitly flush the modi-

fied data from caches to persistent memory before performing any further updates. If

the software does not do so, a subsequent update might become durable before some

of the previous updates and therefore violate the ordering requirement of crash con-

sistency. Enforcing the ordering requirement synchronously stalls program execution

waiting for updates to reach persistent memory and can therefore significantly degrade

performance. In summary, the problem in persistent memory systems is that the infor-

mation on when data moves from volatile to persistent domain is not available at the

level of instruction set architecture abstraction (software). And therefore, we argue that

for performance efficiency, the functionality of moving data from volatile to persistent

domain should be implemented at a lower level of abstraction (in the hardware).

In the presence of fast persistent memory, this thesis aims to answer the question:

How to design architectural support for guaranteeing various crash consistency primi-

tives while maximizing performance? The rest of the chapter provides a brief overview

of the main proposals and contributions of this thesis.

1.1 Efficient Persist Barriers for Multicores

To ensure consistency, a set of persistency models [7] have been proposed in the lit-

erature that specify the order in which updates can be made durable. This order can

be enforced using what is known as a persist barrier. A persist barrier ensures that

all the updates that happened before the barrier will reach persistent memory before

any of the updates that happen after the barrier. Implementing a persist barrier requires

periodic flushing of cache lines from volatile caches to persistent memory.
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We extend the taxonomy of persistency models by adding buffering, which al-

lows the hardware to enforce ordering in the background, as a new layer of classifica-

tion. Buffering decouples program execution from persistence by allowing cache line

flushes to happen out of the critical path. But, we show that current persist barrier

implementations for buffered models [8] can add cache line flushes back to the critical

path in the presence of conflicts. A conflict occurs when the same cache line is updated

or accessed across an ordering point leading to an ordering dependency. We categorize

these ordering dependencies as inter-thread and intra-thread conflicts and propose two

solutions to mitigate them. We propose an Inter-thread Dependence Tracking (IDT)

mechanism for dynamically tracking inter-thread dependencies in hardware, which al-

lows us to reduce the overhead of preserving ordering in the presence of inter-thread

conflicts. We also propose a Proactive Flushing (PF) scheme to write back cache lines

proactively as opposed to the reactive approach of existing implementations. PF re-

duces the probability of encountering inter-thread and intra-thread conflicts in the fu-

ture.

Our main contribution is an efficient persist barrier that integrates IDT and PF

mechanisms and therefore reduces the number of cache line flushes happening in the

critical path. We detail the complete implementation of this efficient persist barrier for

a server class processor with multi-banked caches and multiple memory controllers.

We evaluate our proposed persist barrier by using it to enforce a persistency model

known as buffered epoch persistency. Experimental evaluations show that using our

persist barrier reduces the probability of encountering conflicts by 15% and improves

the performance by 22% on average over the state-of-the-art.

1.2 Hardware Support for Atomic Durability in Persis-

tent Memory

One of the common ways of supporting atomic durability is to employ recovery

mechanisms like write-ahead logging [9] as has been detailed in many propos-

als [10, 11, 12, 13, 14]. Write-ahead logging writes undo or redo log entries for all

data updates and requires the ordering constraint that log writes happen before data

updates (log → data ordering). Current proposals for implementing logging, rely on

software instructions to create log entries and enforce ordering. Since the software has

no control over when a cache line is flushed out of the cache, any data update cannot
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be performed until the corresponding log entry is made durable. This brings logging

operations in the critical path and can result in significant performance degradation.

We aim to provide efficient support for atomic durability by moving logging op-

erations out of the critical path. We observe that logging is, fundamentally, a data

movement task associated with stores in a program and therefore it can be efficiently

supported in hardware. Towards this end we propose ATOM: a hardware log manager

to guarantee atomic durability through transparent and efficient logging which man-

ages log allocation, ordering and log truncation in hardware. Our logging design is in

many ways similar to the data movement tasks offloaded to a DMA (direct memory

access) engine. Offloading logging to a log manager in hardware frees up core execu-

tion resources, and relieves the programmer from explicitly implementing the logging

logic.

In particular, we implement two performance enhancing optimizations in ATOM.

The posted log optimization allows ATOM to efficiently enforce the log→ data order-

ing constraint at the memory controller level, and thereby moves the ordering overhead

out of the critical path. We also propose an optimization called source logging in which

the memory controller eagerly performs logging for read exclusive requests, thereby

eliminating wasteful data movement. We evaluate ATOM on a server class processor

and show that it can improve performance by 27% to 33% for micro-benchmarks and

by 60% for large-scale transactional workload (TPC-C) over a baseline undo log de-

sign. ATOM also compares favorably with a competing approach [15] which provides

support for redo logging.

As an application of the primitives, we propose a new mechanism which couples

the efficient persist barrier from the previous section with ATOM, for efficiently check-

pointing programs in persistent memory systems. Our experiments using a subset of

PARSEC, SPLASH and STAMP benchmarks show that doing so enables checkpoint-

ing of applications with only a 30% execution time overhead over a non-persistent

execution which does not create any checkpoints.

1.3 Durable Hardware Transactional Memory

In an ACID transaction, the updates within a transaction are made both visible as well

as durable in an atomic manner. Existing proposals for supporting ACID transactions

either support atomic visibility [10, 11, 13, 16] or atomic durability [16, 17, 18] or both

in software and therefore suffer from significant performance overheads.
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Here we ask the question, can we support both atomic visibility and durability in

hardware for persistent memory systems? A promising approach to hardware ACID is

to leverage commercially available Hardware Transactional Memory (HTM) to support

atomic visibility. However, current commercially available HTM systems support only

small transactions [19, 20, 21, 22, 23]; typically limited by the size of the L1 cache.

Moreover, existing systems that support ACID by leveraging HTMs also perform log

writes to support atomic durability [16, 17, 18]. This worsens the transaction size

problem of HTMs by adding log writes to the transaction write set that the HTM has

to track. Alternatively, proposals that do not add log writes to the transaction write set

introduce significant changes to the cache hierarchy [24].

We propose the design of a Durable Hardware Transactional Memory (DHTM)

which provides hardware support for both atomic visibility and atomic durability

to overcome the above stated limitations. For atomic visibility DHTM employs an

RTM [21] like HTM, whereas for achieving durability DHTM employs a hardware

logging mechanism. Logging is supported in hardware via a bandwidth conserving

implementation of a redo log, which enables faster commits. DHTM also extends the

supported transaction size from being L1 limited to the size of the last level cache by

leveraging the same logging infrastructure and without adding additional hardware.

Our evaluation shows that DHTM outperforms the state-of-the-art by an average of

26% on a set of micro-benchmarks and by a minimum of 21% for TATP and TPC-C.

We believe DHTM is the first complete and practical hardware based solution for ACID

transactions that has the potential to significantly ease the burden of crash consistent

programming.

1.4 Integrating Primitives in the System Stack

Programmers need mechanisms to employ the proposed primitives for writing crash

consistent programs. In this section we first present the programming model for these

primitives followed by a discussion on how they compose with each other.

1.4.1 Programming Model

The proposed primitives can be integrated into the system stack by either extending

the instruction set architecture (ISA) or by extending the semantics of existing instruc-

tions. The ordering primitive, for example, can be enforced by extending the ISA to
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include a new instruction, namely persist barrier. A persist barrier will guarantee that

the updates that happened before the barrier will reach persistent memory before any

of the updates that happen after the barrier. The atomic durability primitive can be

implemented by extending the ISA with two instructions, namely Atomic Begin and

Atomic End (§4.3.1), to demarcate the region of code that needs to be made durable

atomically. Similarly, ACID transactions can be demarcated in programs by either ex-

tending the semantics of existing instructions like XBEGIN and XEND provided for

HTMs [21] or by extending the ISA with two new instructions like Begin Transaction

and End Transaction (§5.3). In addition to the HTM semantics of atomic visibility,

these instructions also provide the atomic durability guarantee.

Reasoning about crash consistency is not straightforward and the usage of these

primitives will depend on the properties of the application being made crash consis-

tent. Therefore, in most cases, application programmers will either use these primitives

directly or through a library [25] to compose crash consistent programs. However, in

certain cases, the compiler might be able to insert them automatically [10].

1.4.2 Compositionality of Primitives

The proposed primitives can either be used standalone, or the can be composed using

other primitives to provide crash consistency. For example, a fundamental primitive

like the ordering primitive can be used to guarantee atomic durability. Many mech-

anisms to provide crash consistency implement logging in software [11, 13]. These

mechanisms leverage the ordering primitive, to enforce the log → data ordering re-

quirement of logging, to guarantee atomic durability. Similarly, as described in Chap-

ter 5, atomic durability primitive can be leveraged to support ACID transactions in

conjunction with a concurrency control mechanism (locks or transactional memory).

Therefore, the ordering primitive can also be used to support ACID transactions. How-

ever, as we highlight in this thesis, composing a primitive using an existing primitive

is inefficient and therefore we need to provide architectural support for each of these

primitives.

1.5 Summary

Emerging persistent memory, which combines the best properties of memory and stor-

age, has the potential to enable new applications such as in-memory persistent data
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structures, low overhead checkpointing, fast databases and key-value stores, etc. To

realize this potential, persistent memory systems need to provide support for primi-

tives to guarantee crash consistency while minimizing restrictions on existing perfor-

mance enhancing optimizations like reordering and write coalescing. In this thesis,

we present efficient designs of three primitives: ordering, atomic durability and ACID

transactions.

The rest of this thesis is structured as follows. We begin with the necessary back-

ground material in Chapter 2. In Chapter 3, we show how to design persist barriers to

efficiently support the ordering primitive for server class processors. Then in Chap-

ter 4, we present the design of an atomic durability primitive by way of hardware undo

logging that not only moves log writes out of the critical path but also reduces redun-

dant data movement in certain cases. We then show the design of a primitive to support

ACID transactions in hardware that employs a hybrid version management mechanism

and also extends the write set size of hardware transactions from being L1 limited to

being LLC limited in Chapter 5. Finally, we conclude and provide perspectives on

future directions in Chapter 6.





Chapter 2

Background

This chapter presents the background material necessary to understand the main con-

tributions of this thesis.

2.1 Persistent Memory Technologies

We define persistent memory as a device that is non-volatile, that sits on the memory

bus of the processor and that provides access latency and access granularity character-

istics similar to DRAM main memory. There are multiple candidate technologies that

can be used to realize persistent memory. These technologies can be broadly classified

into two categories based on the mechanism they use to store data. Resistive memo-

ries, like Phase Change Memory (PCM) [2, 4] and Resistive Random Access Memory

(ReRAM) [26, 27], store data by varying the resistance of the material that is used

to make the memory cell. Magnetoresistive random access memory (MRAM) [28]

and Spin-Transfer Torque MRAM (STT-MRAM) [3] on the other hand store data by

changing the magnetic polarity of the material used to make the memory cell.

Although these technologies are promising, they pose challenges like limited en-

durance and high write power and/or latency [29]. Owing to these challenges, persis-

tent memory is likely to have limited endurance and higher access latency compared

to DRAM. Access latency is also expected to be asymmetric with write latency being

higher than read latency. However, many of these technologies are in a very advanced

state of development and in fact Intel and Micron have already announced products

based on a new technology which they call 3D XPoint [1]. Additionally, multiple

techniques have already been proposed to mitigate the endurance problem [30, 31, 32].

Therefore, we believe that persistent memory is highly likely to be available in com-

11
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puter systems in the near future.

2.2 Memory Consistency Models

Most modern multicore systems support shared memory in hardware which allows

multiple cores to operate on a single shared address space. To be able to write cor-

rect parallel programs in such systems, programmers need guarantees on the order in

which memory accesses from a given core appear to perform (i.e. take effect) from the

perspective of other cores in the system. A memory consistency model specifies this

order. Four kinds of orderings are possible:

1. load −→ load

2. load −→ store

3. store −→ store

4. store −→ load

Sequential consistency (SC), for example, requires that all the memory accesses

happen in program order. So it enforces all the above memory orderings. Total store

order (TSO) on the other hand, variants of which are supported by Intel, AMD and

SPARC processors, enforces all but the last (store −→ load) ordering constraint. By

relaxing this constraint, TSO allows processors to commit stores by writing them to a

local store queue and without waiting for them to be performed with respect to other

cores. Let us better understand the differences between SC and TSO with examples.

Consider the flag synchronization example shown in Figure 2.1. The final state where

rax has the value 1 and rbx has the value 0 is not valid for both SC and TSO because it

violates store−→ store ordering. On the other hand, the final state shown for Dekker’s

algorithm in Figure 2.2 is valid only for TSO and not for SC. This is because TSO

relaxes store −→ load ordering, and therefore the values of x and y can be read before

the stores to those variables are performed with respect to other cores.

For the purposes of this thesis, we are less concerned with the precise definition of

memory consistency models; we are rather interested in one specific aspect of memory

consistency models which is that they reason about when a store from one core will be

performed (made visible) with respect to other cores. We will use this aspect as a tool

to introduce and explain memory persistency models in the next section. For a broader

perspective on memory consistency models, the reader is referred to the book by Sorin

et al. [33].
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//Initial State
flag=0; data=0; rax=0; rbx=0;

Core 0
data=1;
flag=1;

Core 1
rax=flag;
rbx=data;

//Final State
rax=1; rbx=0;

Figure 2.1: A flag synchronization example where the final state is not valid for both SC

and TSO.

//Initial State
x=0; y=0; rax=0; rbx=0;

Core 0
x=1;
rax=y;

Core 1
y=1;
rbx=x;

//Final State
rax=0; rbx=0;

Figure 2.2: Dekker’s algorithm where the final state is valid for TSO but not for SC.

2.3 Memory Persistency Models

Our focus in this thesis is on leveraging persistent memory technologies to enable fast

persistence of programs. In order to enable correct recovery, program state in persis-

tent memory needs to be in a consistent state. The definition of what constitutes a

consistent state depends on the programming model or more specifically, on the mem-

ory persistency model [7]. One easy way to understand memory persistency models

is to think about them in relation to memory consistency models. Just as consistency

models allow us to reason about visibility of stores, persistency models allow us to rea-

son about durability of stores. In other words, a memory persistency model defines the

behaviour of an ordering primitive which specifies the order in which stores become

durable. Pelley et al. [7] introduce three persistency models: Strict, Epoch and Strand

persistency. Here we focus only on Strict and Epoch persistency.

Strict persistency (SP) couples memory persistency with memory consistency. So at

the point of failure, whatever updates are visible are guaranteed to have been persisted.

For example, TSO systems under strict persistency operate under the following rules:

S1.) stores persist in program order and S2.) a store cannot be made visible until the
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previous store (in program order) has persisted. A sequence of stores to different cache

lines under SP is shown in Figure 2.3(a). As shown in the figure, SP creates persist

ordering constraints at the level of each store operation. Hence, caches effectively have

a write-through behaviour. Essentially, these fine grained persist ordering constraints

conflict with two key optimizations employed in most modern processors. First, multi-

ple stores to a cache line are coalesced in the caches and only written back to memory

on a cache line replacement. Under SP since a store operation cannot be issued until

the previous store operation persists (rule S2) multiple stores to a cache line cannot

be coalesced (as shown in Figure 2.3(a) for cache line a). Second, processors reorder

cache line persists to improve performance by exploiting temporal and spatial locality.

This reordering happens in caches as well as in memory controllers. But under SP,

cache lines have to be flushed in program order (rule S1), eliminating any possible

performance gain from reordering of writes to memory.

Epoch persistency (EP)1relaxes persist ordering constraints compared to SP and en-

forces ordering at the granularity of epochs [8]. An epoch is a contiguous group of

instructions which are demarcated using a primitive known as a persist barrier. A

system with EP operates under the following rules: E1.) stores belonging to different

epochs persist in the order of their respective epochs and E2.) a new epoch cannot

begin until all stores belonging to the previous epoch have persisted. Thus, EP allows

coalescing of stores and reordering of persists for stores belonging to the same epoch.

A sequence of stores to different cache lines under EP is shown in Figure 2.3(b). As

shown in the figure, EP allows coalescing for cache line a which reduces the over-

all time taken to complete the sequence of accesses compared to SP. Moreover, since

cache lines belonging to the same epoch can persist out of order, cache line b can per-

sist before cache line a. In EP, persist operations are in the critical path of execution

upon completion of an epoch. Even though EP allows write coalescing and reorder-

ing of persists within an epoch, it still has a high performance overhead over volatile

execution.

2.3.1 Buffering

The fundamental reason for overhead in SP and EP is that persist operations are in

the critical path of execution (because of rules S2 and E2 respectively). To overcome

this limitation, Pelley et al. [7] propose buffering as an optimization. With buffering,

1Pelley et al. [7] do not explicitly differentiate between epoch persistency and buffered epoch per-
sistency that we introduce in §2.3.1.
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Figure 2.3: Timeline for completion of memory requests for various persistency models.

program execution is allowed to carry past the persist ordering point by only commu-

nicating the persist ordering dependency to hardware and not necessarily enforcing it.

The hardware is expected to enforce these persist dependencies asynchronously in the

background.

With the buffering optimization there are no guarantees on what updates would

have been written to persistent memory at the time of a system crash. It only guaran-

tees that any update that would have reached persistent memory, would have happened

in the order specified by the underlying persistency model. In the absence of such

guarantees programs need to be remodeled to ensure crash consistency with buffer-

ing. Therefore, we take a different approach and view buffering as mechanism that

enables a new class of persistency models. The goal of buffered persistency models is

to decouple program execution from persistence and thereby improve performance by

moving persist operations out of the critical path.

Buffered strict persistency (BSP) [7] is a result of relaxing constraint S2 from strict
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persistency. Although it removes persistence from the critical path, the problems of

being unable to coalesce writes and reorder persists would still remain. These prob-

lems in turn would trigger frequent conflicts resulting in a larger percentage of persist

operations being in the critical path. We present an optimized implementation of BSP

in bulk mode with logging support in Chapter 4.

Buffered epoch persistency (BEP) is a result of relaxing constraint E2 from epoch

persistency. Thus, BEP only requires that stores belonging to different epochs persist

in the order of their respective epochs. BEP allows program execution to continue

across epoch boundaries without waiting for previous epochs to persist. In this case,

the cache sub-system has to ensure that epochs are flushed in the correct epoch order.

Figure 2.3(c) shows the timeline for a sequence of stores under BEP. Persist barrier af-

ter E poch1 does not prevent E poch2 from executing before all the cache lines modified

by E poch1 persist. While the program execution continues, modified cache lines can

persist naturally because of replacement as shown in the figure for cache lines b and a.

In BEP, persist operations are not in the critical path of execution as long as there are

no epoch conflicts. An epoch conflict is a scenario where a memory request triggers

an epoch flush. In Figure 2.3(c) a store to cache line f conflicts with E poch2 because

cache line f has been modified in E poch2 which has not yet persisted. The store re-

quest has to wait until all epochs up to E poch2 are flushed. Only epoch conflicts bring

the persist operation in the critical path of execution for BEP.

2.4 Atomic Durability

Atomic durability guarantees that for a group of writes, either all writes will be made

durable or none of them. Consider the example shown in Figure 2.4. In the initial state,

the durable variables X and Y have the value 0. If the shown transformation needs to

be applied to the initial state atomically, then the only valid outcomes are either both

X and Y have the value 1 or both of them have the value 0. That is, either all of the

updates from the transformation are applied or none are applied. The states where

partial updates from the transformation are applied are not valid. Storage systems use

the atomic durability primitive as a tool to design crash consistent programs. There

are multiple ways to implement atomic durability, and the most common among them

are write-ahead logging (WAL) [9] and shadow paging [34]. While shadow paging is

useful if writes belonging to an atomic update happen at page granularity, WAL works

better for atomic updates consisting of scattered writes which happen at a cache line or
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Invalid StatesValid States

//Initial State
X=0; Y=0; //Final State

X=1; Y=1;

//Final State
X=0; Y=0;

//Final State
X=1; Y=0;

//Final State
X=0; Y=1;

//Transformation
Begin

X=1;
Y=1;

End

Figure 2.4: An example to demonstrate the concept of atomic durability.

finer granularity [10, 11, 12, 13, 14, 35].

WAL is based on the principle of physical logging: maintaining a persistent copy

of the old and new versions at all times during the atomic update so that state can

be recovered to either of the versions. To implement physical logging, a log entry is

created which consists of the address and the old or the new value of the data being

modified. Additionally, a constraint is imposed that log entries should be made persis-

tent before data entries. To enforce this constraint WAL requires support in the form of

an ordering primitive. WAL can be implemented by using either a redo log or an undo

log. When the system crashes in the middle of an atomic update, the atomic update

can either be reapplied (for a redo log) or undone (for an undo log). There are different

trade-offs in implementing a redo or undo based logging mechanism which we discuss

next.

Redo Log. In a redo log based design, a log entry contains the address and the new

value of the data being modified. Therefore, the in-place data needs to retain the old

value to maintain the principle of physical logging. When all the redo log entries have

been made durable only then can the in-place data be updated with new value. If any

in-place data is durably overwritten with new value before all the redo log entries have

been made durable, then principle of physical logging is violated. At this point, the

system does not have a persistent copy of the old version of the one data item which

was overwritten nor does it have the new version of all data items (redo log entries).

If the system were to crash at this point of time, the state can neither be recovered to

the old or the new version, thereby violating crash consistency. However, if physical

logging is not violated, then the atomic update can be considered as complete as soon

as all the redo log entries have been made durable, without waiting for all the in-place

data updates to be made durable.
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Undo Log. In an undo log based design, a log entry contains the address and the old

value of the data being modified. Unlike a redo log based design, the in-place data

update can be made durable as soon as the corresponding log entry is made durable

without waiting for the log entries of the entire atomic update to be made durable. If

the system were to crash before completing the atomic update, then the state can be

recovered to the old version as a durable undo log entry would exist for any data that

has been updated in-place. However, in an undo log based design the atomic update

can be considered complete only when all the in-place data updates have been made

durable.

2.5 Hardware Transactional Memory

Hardware Transactional Memory (HTM) is a primitive that allows programmers to

write concurrent programs without using explicit synchronization mechanisms like

locks. In other words, HTMs provide support for atomic visibility which guarantees

that either all the updates of a transaction will be applied and made visible to other

transactions and threads or none will be applied. If all the updates of a transaction are

applied then the transaction is said to have committed and if none of the updates are

applied it is said to have aborted. From idea inception [36] to mainstream commer-

cial adoption, HTMs have come a long way. An important parameter of HTMs is the

size of the transaction that they support. Although some prior works have explored

unbounded transactions, current commercial HTMs predominantly provide only a best

effort service with transaction sizes being limited by the size and associativity of the

L1 cache. Below, we briefly describe an HTM system which is similar to state-of-

the-art commercial HTM designs [19, 20, 22] and is specifically modelled on Intel’s

Restricted Transactional Memory (RTM) [21] design. For a broader perspective, the

reader is referred to Harris et al.’s book [37].

Commercial HTMs. HTMs primarily provide support for three functionalities:

buffering the speculative state, tracking read and write sets and detecting conflicts.

Commercial HTMs typically buffer speculative state in private caches (typically L1).

Each L1 cache line is associated with a write bit to keep track of the write set of a

transaction. If a cache line belonging to the write set of a transaction is evicted from

the L1, the transaction is aborted. Thus, the supported write-set size is limited by the

size and the associativity of the L1 cache. Commercial HTMs avoid supporting over-

flows from the private L1 caches to reduce the design complexity, and in particular that
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of the LLC.

Similar to the write bit, a read bit is also associated with each cache line in the L1

cache. This bit is set when the corresponding cache line is read within a transaction.

When such a cache line is evicted, the transaction is typically not aborted, but the

address of the cache line is added to a read-set overflow signature (also maintained in

the L1 cache). Thus, the read set of a transaction is tracked using both the read bits in

the L1 cache and the read-set overflow signature.

Conflict detection happens at the L1 cache, with help from the cache coherence

substrate. Specifically, when the L1 receives an invalidate request for a cache line in

the read set, or an invalidate/data forwarding request for a cache line in the write set,

a conflict is detected, triggering an abort of one of the transactions. What transaction

must abort is determined by the conflict resolution policy. Two of the commonly used

policies are the requester wins policy [21] and the (first) writer wins policy [22].

Overflow Support. Multiple techniques [38, 39, 40] have been proposed to sup-

port write set overflows from private caches. Techniques with lazy version manage-

ment [39, 40] allow the write set to overflow into a redo log. On a commit, these values

need to be copied in-place. Consequently, these techniques stall any transaction that

conflicts with a committed transaction that is still copying its updates in-place. Tech-

niques with eager version management, such as LogTM [38], allow the write set to

overflow in-place in memory but maintain an undo log that is applied in case of an

abort. Therefore, they have to stall transactions that conflict with an aborting trans-

action that is applying its undo log. Stalling adds significant design complexity as it

requires support for retrying requests using a NACK based coherence protocol. Our

goal with DHTM (Chapter 5) is to support overflows from the L1 cache to the LLC

while maintaining the simplicity of an RTM like protocol (§5.3.3).

2.6 ACID Transactions

ACID transactions have been widely deployed in databases as a crash consistency

mechanism [6]. ACID stands for atomicity, consistency, isolation and durability.

Atomicity provides an all or nothing guarantee, indicating that either all the updates of

the transaction are applied or none are applied. Consistency ensures that a successful

transaction preserves consistency of the database. Isolation ensures that the intermedi-

ate results or partial updates of the transaction are not visible to other concurrently ex-

ecuting transactions. Finally, durability guarantees that all the updates of a committed



20 Chapter 2. Background

Core

Volatile
Cache

Persistent
Memory

Memory Bus

Figure 2.5: System Architecture.

transaction have been made durable such that they will survive any subsequent system

crash. Programmers can leverage support for ACID transactions to perform updates to

in-memory persistent data structures in a consistent manner. We view ACID transac-

tions as supporting two properties: atomic visibility and atomic durability. Therefore

we envision that ACID transactions can be supported by employing HTMs for atomic

visibility in conjunction with a suitable write-ahead logging mechanism for atomic

durability. We explore this direction in Chapter 5.

2.7 System Architecture and Evaluation

In this section we briefly discuss the system architecture including the failure model

and then provide an overview of the evaluation mechanism.

2.7.1 System Architecture

In this thesis we consider the architecture as shown in Figure 2.5, where persistent

memory is accessible to the processor (via the load/store interface) over the memory

bus. This architecture is an abstraction for multiple alternate architectures which can

either have DRAM as memory at the same level as persistent memory or have a DRAM

cache as an additional (volatile) caching layer between volatile caches and persistent
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memory. In a model where DRAM and persistent memory are at the same level in

the memory hierarchy, application programs can map non-persistent data that is not

required across system crashes to DRAM and persistent data to persistent memory.

Alternatively, in a model where DRAM is an additional layer of cache, it will be trans-

parent to the application programmers and the operating system like any other hard-

ware managed cache. Therefore, the proposed architecture is largely representative of

architectures for systems with persistent memory.

An alternative model, where persistent memory is not accessible via the processor

load/store interface but is rather exposed as a block based device is not covered by the

proposed architecture. However, such a model is beyond the scope of this thesis as it

would largely leverage existing mechanisms for providing crash consistency that have

been proposed for systems with secondary storage based persistence.

2.7.1.1 Failure Model

The crash consistency primitives proposed in this thesis are designed to handle failures

like power failures and software crashes. Such failures are modelled using a fail-stop

failure model [41], which models a scenario where a failure would halt the system

or the application and they will have to be restarted. In other words, a failure would

prevent the application from performing any further updates to persistent memory. Re-

covery in these systems is performed using backward error recovery schemes, wherein

the persistent state is recovered to known pre-failure safe state.

2.7.2 Evaluation

For evaluating all the proposals of this thesis we use the gem5 [42] simulator with the

Ruby memory model. We model persistent memory in gem5 by modifying the access

latency and the bandwidth of existing memory model to represent the characteristics of

persistent memory. We evaluate all the proposals on a multicore processor with a two

level cache hierarchy consisting of private L1 caches (split between instruction and

data) and a shared multi-banked last level cache. The precise system configurations

are detailed in the evaluation section in all the chapters.

It is important to note that all designs for crash consistency primitives proposed

in this thesis have always been compared to a hardware baseline design in addition to

other designs. This comparison is important as it improves the fairness of evaluation

and offsets the impact of error margins of the simulator.
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2.7.2.1 Benchmarks

We evaluate all the proposals in this thesis on a set of micro-benchmarks and some

existing workloads. The micro-benchmarks implement operations on data structures

which are typically used in applications that operate on persistent data. The set of

micro-benchmarks we use in our evaluations are similar to those in the benchmark suite

used by NVHeaps [12] and [7]. For evaluating the combination of ordering and atomic

durability primitive to implement checkpointing of applications, we use a subset of

PARSEC [43], SPLASH-2 [44] and STAMP [45] benchmark suites (§4.6). Finally, for

evaluating the primitives for atomic durability and ACID transactions we also use in-

memory implementations of TPC-C and TATP, which are traditional online transaction

processing workloads. All of the above benchmarks are typically used to evaluate crash

consistency proposals for persistent memory systems [7, 12, 46, 47, 48].



Chapter 3

Efficient Persist Barriers for Multicores

3.1 Introduction

To ensure consistency of persisted data, an ordering primitive like a persist barrier

is needed to enforce the correct ordering of writes to persistent memory. A persist

barrier will ensure that stores appearing before the barrier persist before the stores

appearing after the barrier. One way to implement a persist barrier is by using existing

instructions like clflush and mfence1 [10, 11, 12, 13, 14]. However, this implementation

tightly couples visibility and persistence. This coupling forces persistence (e.g., cache

line flushes) to happen in the critical path of execution, which can lead to significant

performance degradation [7].

Condit et al. [8] propose hardware support for realising an improved persist barrier,

that enforces persist ordering lazily. We refer to this barrier as Lazy Barrier (LB).

Their key idea is to decouple visibility from persistence, allowing program execution

to continue beyond the persist barrier, without waiting for stores from previous epochs2

to persist; their memory system ensures that stores persist in the correct order, out of

the critical path.

In LB, the memory system delays the flushing of cache lines; a cache line is only

flushed, either due to natural eviction (e.g., replacement), or due to a forcible eviction.

Forcible evictions are required in case of epoch conflicts, where old epochs need to

be flushed in the critical path to ensure consistency of data in persistent memory. For

example, before a dirty cache line belonging to a newer epoch can be replaced, cache

1Although these instructions ensure the correct order of cache line flushes, they provide no guaran-
tees on the order in which these cache lines persist (are written to persistent memory by the memory
controller) [35]. For this, additional instructions like the new pcommit [21] need to be used.

2Epochs are instruction groups divided by persist barriers.

23
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lines written in older epochs need to be flushed first. Thus, in case of an epoch conflict,

the conflicting request has to wait until all the relevant epochs have been flushed to

memory. Epoch conflicts bring persist ordering constraints, and consequently cache

line flushes, back in the critical path. This again couples visibility with persistence for

the duration of conflicts.

In this chapter, we design and implement an efficient persist barrier (LB++) which

improves upon LB. We first categorize epoch conflicts into inter-thread and intra-thread

conflicts. We then propose optimizations to reduce the overhead due to the conflicts.

We propose an Inter-thread Dependence Tracking (IDT) mechanism for dynamically

tracking inter-thread dependencies in hardware, which allows us to reduce the over-

head of inter-thread conflicts. We then propose a Proactive Flushing (PF) scheme to

flush epochs proactively as opposed to the reactive approach of LB. Once an epoch

completes, the values of all its cache lines are final. PF exploits this property and starts

flushing cache lines on completion of epochs. A related issue in multi-threaded pro-

grams is that deadlocks can occur on inter-thread epoch conflicts if the programmer

does not correctly place persist barriers. We present a solution to break persistence

deadlocks, by splitting epochs, on detecting scenarios which could potentially lead to

deadlocks. Finally, we propose a detailed protocol for flushing epochs in the correct

order for a system with multi-banked caches.

We demonstrate the efficacy of LB++ by employing it to enforce Buffered Epoch

Persistency [7]. Using micro-benchmarks we show that using LB++ (as opposed to

LB) improves performance by 22%.

3.2 Motivation

In this section, first highlight the limitations of current implementation [8] of buffered

epoch persistency. We then present the system configuration that we consider for our

work.

3.2.1 Buffered Epoch Persistency

As described in Chapter 2, buffering allows program execution to be decoupled from

persistence. Hence, buffered epoch persistency (BEP) allows program execution to

continue past epoch boundaries without waiting for previous epochs to persist. The

persist barrier proposed by Condit et al. [8] (LB) is basically an implementation of
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BEP. To track the current epoch, each core is extended with an epoch ID counter which

is incremented by one each time a persist barrier is encountered. Whenever a store

completes, it is tagged with the value of current epoch ID and core ID3. To track the

status of cache lines, cache tags are extended to include epoch ID and core ID fields.

Core ID identifies the core that last modified the cache line and epoch ID identifies

the epoch in which the cache line was modified. Using these hardware extensions,

cache controllers can track and enforce persist ordering dependencies between epochs

belonging to the same core.

We call persists happening in the critical path as online persists and persists hap-

pening out of the critical path as offline persists. Online persists have a direct perfor-

mance impact because they delay program execution while waiting for persist opera-

tions to complete. Offline persists on the other hand have no direct performance impact

since they are not in the critical path. The current implementation LB delays persist op-

erations by buffering epochs and relies on offline persists in the form of natural cache

line replacements. Although this design improves performance, this is not optimal for

two reasons. First, conflicts trigger online persists thus delaying program execution.

Second, this design does not actively reduce the number of online persist operations.

We elaborate on these limitations and present solutions in Section 3.3.

3.2.2 System Configuration

We consider a multicore system as shown in Figure 3.1. In this system each core (C)

has a private cache and all the cores share a multi-banked last level cache (LLC). All

the caches are volatile. It has multiple memory controllers (MC) to provide sufficient

memory bandwidth for large number of cores. These memory controllers are con-

nected to persistent memory. This system is similar to most modern server processors,

with the only difference being that memory in our system is non-volatile memory.

3.3 Persist Barrier Design

The goal of LB is to decouple persistence from visibility, which allows persist opera-

tions to happen out of the critical path. LB achieves this goal as long as there are no

epoch conflicts. In this section, we first describe two types of conflicts and propose op-

3Condit et al. [8] partition the epoch ID counter and use the high order bits as core ID and remaining
bits as epoch ID. We show them as 2 fields for the sake of simplicity.
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Figure 3.1: System Configuration: Multiple cores (C), a volatile shared multi-banked

last level cache (LLC) and multiple memory controllers (MC) connected by an on-chip

interconnection network.

timizations to reduce the overheads because of conflicts. We also illustrate the problem

of epoch deadlocks and present a solution for the same.

3.3.1 Resolving Inter-thread Conflicts with IDT

An inter-thread conflict is a scenario where a thread tries to read or write to a cache

line which has been modified by some other thread in an epoch which has not yet been

flushed. Consider the example shown in Figure 3.2(a). Thread T0 consists of epoch E00

and E01. Thread T1 consists of epoch E10 and E11. T0 tries to read address Y in epoch

E01 after T1 has written to it in epoch E11. This creates a new persist ordering constraint

that epoch E11 of thread T1 should persist before epoch E01 of thread T0. The epoch

tracking hardware in LB can only track persist ordering constraints between epochs

from the same core. Since this is an inter-thread ordering constraint, before completing

Ld Y request from T0, epoch E11 needs to be persisted; if not, epoch E01 might persist

before epoch E11, leaving persistent data in an inconsistent state. It is important to note

here that a read request Ld Y creates an epoch conflict since it leads to persist ordering

constraints which LB cannot track.

Inter-thread conflicts can lead to significant performance degradation as shown in
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Figure 3.2: Examples illustrating epoch conflicts. (a) Highlights inter-thread conflict

where epoch E01 tries to read cache line Y modified in epoch E11 (b) Highlights intra-

thread conflict where epoch E02 tries to modify cache line B modified in epoch E00.

Figure 3.3(a), which shows memory requests issued by 2 threads T0 and T1. T1 issues

request RB to read cache line B. Since B has been modified by T0 in epoch E00, it

triggers an inter-thread conflict which triggers online persist of E00. This delays the

completion of request RB.

Inter-thread Dependence Tracking (IDT). If hardware support is provided for track-

ing inter-thread ordering constraints, the impact of inter-thread conflicts can be re-

duced. We define the epoch from which a request triggered an inter-thread conflict

as dependent epoch and the epoch which last modified the requested cache line as the

source epoch.

To avoid online persists of epochs in case of inter-thread conflicts, we propose

a mechanism called inter-thread dependence tracking (IDT). On detecting a conflict,

instead of waiting for the conflicting epoch to flush, IDT records source and dependent

epochs and enforces this dependence offline. Thus a conflicting request does not have

to wait for older epochs to persist. Figure 3.3(b) illustrates the possible performance

improvement by using IDT. Request RB from thread T1 does not wait for the persist

of epoch E00 to complete. IDT records the dependence between epochs E00 and E11

and allows request RB to complete. When epoch E11 completes, cache line E is not

allowed to persist until E00 has persisted. Thus the overall completion time is reduced

while enforcing the correct persist ordering constraints.
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Figure 3.3: Example showing the benefit of IDT optimization. (a) Shows an example of

how completion of conflicting requests is delayed waiting for persist of source epochs

to complete. (b) Shows with the same example that by reducing the completion time

of conflicting request and allowing the source epoch to persist offline, while enforcing

persist ordering constraints, IDT improves performance.
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3.3.2 Resolving Intra-thread Conflict with PF

An intra-thread conflict is a scenario where a thread tries to write to a cache line which

it has already modified in some prior epoch and the cache line has not yet been flushed.

Consider the example shown in Figure 3.2(b). Thread T0 writes to address B in epoch

E00. It then again tries to write to the same address in epoch E02. At this point in time

the previous value of B has not yet persisted. If operation St B in epoch E02 completes,

then the value of B will be overwritten. Now if the system crashes after persisting

epoch E00 but before persisting epoch E01 then it will lead to an inconsistent state.

To prevent this scenario, before completing St B in epoch E02, epoch E00 needs to be

persisted. It is important to note here that a read request (Ld A) does not create a con-

flict, as the persist ordering constraint between epochs within a thread is already being

tracked by LB. On an intra-thread conflict, the epoch that last wrote to the conflicting

cache line (B in the example) and all the epochs before it need to be flushed. The only

way to minimize the performance impact of this type of conflicts is to minimize the

number of such conflicts.

Proactive Flushing (PF). To mitigate the problem of intra-thread conflicts, we propose

to persist epochs proactively. Proactive flushing would increase the number of epochs

persisting offline. An intra-thread conflict happens because a cache line modified by

some older epoch has not yet persisted because of natural cache line eviction. By

flushing a cache line proactively we reduce the probability of a conflict arising out of

a subsequent access to it. This decrease in the probability of an intra-thread conflict

results in improved performance. It is worth noting that proactive flush will similarly

reduce the probability of inter-thread conflicts too. For ease of explanation, we have

introduced it in relation to intra-thread conflicts.

While persisting epochs proactively, care also needs to be taken to ensure that we

do not increase the number of flushes to memory. In other words, a cache line should

be persisted only when its value is final. This will avoid multiple writes to memory for

persisting the same cache line. Therefore, we propose persisting epochs proactively

after epochs complete. Naturally, we cannot start proactive persist of an epoch if the

previous epoch is not yet fully persisted.

An epoch persist operation consists of durably writing all the modified cache lines,

belonging to the epoch being persisted, to persistent memory. An important aspect

when persisting epochs proactively should be to ensure that epoch persist operation

does not invalidate cache lines. If hardware employs mechanisms similar to clflush
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Figure 3.4: (a) Shows an example of persistent epoch deadlock. Epoch Ei and E j

belonging to threads T0 and T1 respectively have a circular dependence. E j reads

cache line A modified by Ei and Ei reads cache line X modified by E j. (b) Possible

epoch deadlock between epochs Ei and E j is avoided by splitting the ongoing epoch Ei

into epochs Ei1 and Ei2 on detecting conflict with epoch E j.

instruction, cache lines are also invalidated while being written back to memory. This

will have a negative impact on the overall system performance as the persist operation

will start evicting working sets from the cache. We implement a non-invalidating flush

operation similar to the new clwb instruction [21]. This mechanism will not invalidate

the cache line being persisted, thus avoiding any negative impact on performance.

3.3.3 Epoch Deadlocks and their Avoidance

In multi-threaded applications, epochs belonging to different threads are independent

and can persist in parallel, as long as there are no inter-thread dependencies. In the

presence of dependencies, epochs need to persist in the order specified by the depen-

dencies. For the example shown in Figure 3.2(a), epochs E00 and E10 are independent

and can persist in parallel. Whereas, epoch E01 is dependent on epoch E11, so E01

cannot persist before E11 to ensure consistent state of memory. This dependence is en-

forced by the epoch persistence mechanism by either flushing epoch E11 before com-

pleting Ld Y request of epoch E01 or by tracking the inter-thread dependence relation

between epochs E01 and E11 and ensuring that E11 persists before E01.

The epoch persistence mechanism can enforce epoch ordering constraints when

the dependence relation between epochs is linear. Consider the example shown in

Figure 3.4(a). Epochs Ei and E j have a circular dependence between them. On en-
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countering Ld A request by T1 LB identifies Ei to E j dependence and will try to flush

Ei before completing the request. But a flush for epoch Ei cannot complete because

the epoch is ongoing. Then on encountering Ld X request by T0 the epoch persistence

mechanism tries to flush E j before completing the request. This leads to a deadlock.

To prevent deadlocks, a scenario where a circular dependence relation arises needs

to be avoided. We propose a solution to epoch deadlocks by conservatively preventing

a scenario which can lead to circular dependence. This solution is based on the obser-

vation that circular dependence can only occur if a request triggers an inter-thread de-

pendence with an ongoing epoch. By ongoing epoch we mean an epoch whose persist

barrier has not yet occurred – in other words, an epoch which has not yet completed. If

a request triggers an inter-thread dependence with a completed epoch, then there is no

chance of having an inverse dependence since no memory operations are pending in

the completed epoch. On detecting an inter-thread dependence with an ongoing epoch,

our proposal is to divide the source epoch into two parts: the first part includes all the

operations completed at the time of detection and the second part is the remaining por-

tion of the epoch. Without IDT we would have had to flush the first part of the epoch,

whereas with IDT it suffices to register the inter-thread dependence in hardware, before

completing the request. It is worth noting that, by breaking the source epoch, we have

ensured that there is no chance of having an inverse dependence. Figure 3.4(b) shows

the solution with an example. When the first dependence is detected with respect to

ongoing epoch Ei, Ei is split into epoch Ei1 which consists of the part of the epoch that

has already completed (until St C) and the remaining epoch which is called Ei2.

Discussion. To prevent epoch deadlock scenarios from happening, persist barriers

need to be placed appropriately. One way to prevent epoch deadlocks from happening

is to place persist barriers at the start and end of each critical section [49]. However,

there can be programs where it is difficult to identify where to place epoch barriers

to prevent deadlock (e.g., lock-free programs, programs with user-defined synchroni-

sation, etc.) The deadlock avoidance scheme described above can be useful in such

programs.

3.4 Persist Barrier Implementation

In this section, we describe the implementation of our persist barrier. We first present

a detailed epoch flush protocol that enforces persist ordering correctly in systems with

multi-banked caches. We then describe how IDT and PF are implemented. We sum-
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marize by highlighting the additional hardware required for our persist barrier imple-

mentation.

3.4.1 Epoch Flush Protocol

To ensure consistency of data in persistent memory, epochs need to be persisted in

the correct order. The union of the intra-thread program order and inter-thread shared

memory dependencies define this epoch happens-before order. The goal of the epoch

flush protocol is to ensure that order in which epochs are persisted is consistent with

this happens-before order.

In the system presented in Section 3.2.2 caches are volatile, so persistence happens

only when epochs have been written back to persistent memory. Hence, it is sufficient

to ensure that for any two epochs E1 and E2 such that E1 happens-before E2, the last

level cache (LLC) will not flush a cache line belonging to epoch E2 until all the cache

lines belonging to epoch E1 have persisted.

To satisfy the above constraint LLC has to identify two pieces of information: first,

the set of all the cache lines belonging to each epoch; second, it has to know when

a cache line has persisted. These two pieces of information will help in identifying

when an epoch has persisted, based on which LLC can potentially start persisting its

successor(s). LLC needs to identify when the L1 cache has written back all the cache

lines belonging to an epoch. To convey this information the L1 controller sends an

epoch completion message (EpochCMP) to LLC after writing back all the cache lines

belonging to an epoch. This informs the LLC that it has seen all the cache lines belong-

ing to that epoch. It is important to note here that receiving an EpochCMP message

for a given epoch is a prerequisite for completing the flush of that epoch. If LLC has

to flush an epoch but has not received EpochCMP message for the same, it can request

L1 to flush all the cache lines belonging to that epoch.

Monolithic LLC. If the LLC is monolithic, it can flush epochs independently after

receiving EpochCMP messages for the epochs being flushed. Figure 3.5 illustrates the

protocol. After flushing the epoch preceding epoch E, LLC in step 1© starts flushing

cache lines belonging to epoch E. Memory controllers respond with a PersistACK mes-

sage after durably writing cache lines to persistent memory in step 2©. On receiving

PersistACK messages for all the cache lines flushed, LLC registers epoch E as having

persisted and can start persisting the subsequent epoch. It is important to note that LLC

has already received EpochCMP message for epoch E and hence it can consider the
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Figure 3.5: Line diagram explaining the handshaking protocol for Epoch Flush imple-

mentation in a multicore with monolithic last level cache.

flush of E as having been completed.

Multi-banked LLC. The two step protocol presented above works for monolithic

caches, but when extended to a system with multi-banked caches it might not work.

Consider the example shown in Figure 3.6(a). The system consists of an L1 cache and

two banks of LLC. Epoch E1 consist of two cache lines A and B mapping to LLCB0

and LLCB1 respectively. Epoch E2 consists of cache line C mapping to LLCB1. L1 first

flushes epoch E1 and then epoch E2. LLCB1 decides to flush epoch E1 and hence flushes

cache line B. Meanwhile LLCB0 delays flushing cache line A. When LLCB1 receives

cache line C belonging to epoch E2, it flushes the cache line. LLCB1 is allowed to

flush epoch E2, because all its cache lines belonging to previous epoch E1 have already

been flushed. This leads to a violation of epoch ordering constraints since a cache line

belonging to epoch E2 persists before the previous epoch E1 is flushed completely. If

the system crashes at this point, persistent memory will be left in an inconsistent state.

The violation shown in Figure 3.6(a) happened because, in a multi-banked cache or-

ganisation, each bank only handles a range of addresses and has no information about

the status of cache lines outside that range. In the example, LLCB1 had no information

about the pending cache line belonging to epoch E1 in LLCB0. To avoid this scenario,

a bank of LLC should not start flushing a cache line until all the banks have completed

persisting the previous epoch. With this constraint, LLCB1 will not flush cache line C

until LLCB0 has also flushed all the cache lines belonging to epoch E1. This scenario

where epoch ordering constraint is correctly enforced is shown in Figure 3.6(b), where

LLCB1 does not flush cache line C belonging to epoch E2 until LLCB0 has flushed cache

line A belonging to epoch E1.
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Figure 3.6: (a) Shows an example of how epoch ordering constraint is violated. Cache

line C belonging to epoch E2 persists before cache line B belonging to the previous

epoch E1. (b) Shows the correct enforcement of epoch ordering constraints. LLCB1

delays persisting cache line C belonging to epoch E2 until all the cache lines belonging

to the previous epoch E1 have persisted.

To persist epochs in correct order all the banks of the LLC need to communicate

with each other to co-ordinate flushing of every epoch. If all the banks send messages

informing epoch completion to each other directly, it will require O(n2) messages,

where n is the number of banks. This can be a prohibitively large overhead, espe-

cially considering the fact that this will have to be incurred for each epoch that is being

flushed. Instead we propose using an arbiter module to control flushing of epochs. All

the banks will inform the arbiter when they have completed persisting an epoch. The

arbiter in turn on receiving messages from all the banks will broadcast a message indi-

cating that the relevant epoch has persisted. After receiving this message, LLC banks

can start flushing the next epoch. Using an arbiter in this way requires O(n) messages

only. In a multicore, the arbiter can become a bottleneck if there is a single arbiter for

persisting epochs belonging to all the threads. Instead we propose using a per thread

arbiter, which is responsible for coordinating the persist operations belonging to a sin-

gle thread. This per thread arbiter is placed along with private L1 caches in all the

cores and is responsible for coordinating the persist of epochs belonging to the thread

executing on that core.

We propose a handshaking protocol by using an arbiter module sitting in the L1

cache to orchestrate epoch flush. The protocol is shown in Figure 3.7. The arbiter in

the L1 cache will start epoch flush by first flushing all the cache lines, belonging to the

epoch being flushed, from L1. In step 1©, L1 will flush all the cache lines belonging
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Figure 3.7: Line diagram explaining the handshaking protocol for Epoch Flush imple-

mentation in a multicore with multi-banked last level cache.

to that epoch to LLC and also send a FlushEpoch message to all LLC banks. In step

2© each LLC bank will start flushing all the cache lines belonging to the epoch being

flushed. On receiving PersistAcks for all the cache lines flushed, each LLC bank will

send a BankAck message to the arbiter in the L1 controller in step 3©. Finally in step 4©,

after receiving BankAck from all LLC banks, the arbiter will signal flush completion

(PersistCMP) to all the LLC banks. This final step will update the state corresponding

to last flushed epoch in all the banks.

3.4.2 IDT and PF Implementation

Enforcing inter-thread persist ordering constraints out of the critical path requires two

things. First, preventing the dependent epoch from persisting before the source epoch

persists. For this, an entry called dependence register is created in the arbiter corre-

sponding to the dependent epoch. The arbiter before persisting an epoch will check

(in addition to its predecessor epochs in program order) the dependence register to see
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Figure 3.8: Hardware extensions.

if that epoch is dependent on an epoch belonging to some other thread. If so, the ar-

biter will not flush until the source epoch has been flushed. The second aspect is to

inform the dependent epoch when source epoch has been flushed. For this, an entry

called inform register is created in the arbiter corresponding to the source epoch. On

completing the persist for an epoch, the arbiter will send an epoch persist completion

message to the dependent epochs listed in the inform registers.

To implement a proactive flushing scheme, once an epoch completes, a request is

sent to the corresponding arbiter to start flushing the epoch. The arbiter starts flushing

the completed epoch after ensuring that all its predecessor epochs have persisted.

3.4.3 Hardware Extensions

Hardware extensions required to implement a persist barrier are shown in Figure 3.8.

To track the epoch status of each cache line, cache tags in both L1 and LLC are ex-

tended with EpochID. Cache tags in shared LLC need to be extended with CoreID

information to detect inter-thread conflicts. Apart from the cache tags we add a flush

engine in each cache controller to flush epochs as and when required. Flush engine will

trigger a flush for the dirty cache lines of the epoch being flushed. An epoch arbiter is

added in the L1 cache controller to co-ordinate epoch flush operation in the presence of

multi-banked caches. To track inter-thread dependencies as proposed in IDT, we add a

pair of registers called dependence and inform registers in L1 cache controller to iden-

tify the source and dependent epochs (using a combination of EpochID and CoreID).

These registers are added per in-flight epoch.

In our implementation we support 8 in-flight epochs in a 32-core machine. So
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(a) Queue insert pseudo-code
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Figure 3.9: (a) Pseudo-code for a queue insert operation using persist barriers for re-

covery in case of a system crash. (b) Example illustrating the status of the queue on

completion of different epochs within the insert function.

EpochID is 3 bits wide and CoreID is 5 bits wide. The overhead of tagging cache lines

is 5 bits and 8 bits per cache line in L1 and LLC respectively. We add 4 pairs of IDT

registers per epoch to allow tracking of as many inter-thread dependencies per epoch.

The overhead of adding these registers is 64 bytes in each L1 cache. The per core

arbiter contains a 5-bit counter to track BankAck messages received from all the banks.

Even though multiple epochs can be in flight, only one of them will be flushed at a

time; so one counter is sufficient. Our flush engine maintains bookkeeping information

similar to [8], in order to reduce the overhead of searching. In our implementation,

we maintain a bitmap per epoch, where each bit corresponds to 64 sets in the cache,

amounting to an overhead of 512 bytes for 16-way 1MB LLC bank.

3.5 Enforcing Persistency Models

In this section, we illustrate how our efficient persist barrier can be used to implement

Buffered Epoch Persistency (BEP). In BEP [7], programmer inserted persist barriers

divide the program into epochs and persist ordering is enforced at epoch granularity.

Consider the sample queue insert function (similar to [7]) shown in Figure 3.9(a).

Queue insert operations consist of two epochs. In Epoch A from lines 2 to 3, a new

entry is copied in the queue at the location pointed to by Head pointer. In Epoch B from

lines 4 to 5, Head pointer is updated to point to the next empty location. Figure 3.9(b)
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Cores 32 OoO cores @ 2GHz

ROB Size 192 Entry

Write Buffer 32 Entry

L1 I/D Cache 32KB 64B lines, 4−way

L1 Access Latency 3 cycles

L2 Cache 1MB×32 tiles, 64B lines,

16−way

L2 Access Latency 30 cycles

Memory Controllers 4

Memory Access Latency 360 (240) cycles write (read)

On-chip network 2D Mesh, 4 rows, 16B flits

Table 3.1: System Parameters.

shows the status of the queue on completion of Epoch A and Epoch B. If the system

crashes after Epoch A persists but before Epoch B persists then the new entry Ek is

ignored on recovery. If the system crashes after persisting Epoch B then on recovery

the program will see successful completion of insert operation.

3.6 Experimental Methodology

We evaluate our proposed persist barrier (LB++) using gem5 [42] with Ruby in full

system simulation mode. The on-chip interconnect is modelled using Garnet [50].

We evaluate a 32-core multicore (1 thread per core) with multi-banked LLC and 4

memory controllers placed on 4 corners of the chip. Table 3.1 shows the parameters of

the system. Our aim is to evaluate BEP for applications that maintain persistent data

structures by using micro-benchmarks.

Workloads: We use micro-benchmarks listed in Table 3.2 to evaluate the proposal of

using LB++ to implement BEP. These micro-benchmarks implement data structures

that are similar to those in the benchmark suite used by NVHeaps [12], except for the

queue micro-benchmark which is similar to the copy-while-locked queue presented

in [7]. The size of data entry (table entries, tree nodes, queue entries etc.) for each

micro-benchmark is 512 bytes. Each benchmark performs search, delete and insert

operations on the corresponding data structure. We inserted persist barriers at appro-

priate points to ensure persistency (as illustrated in Figure 3.9(a)).
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Hash Insert/delete entries in a hash table

Queue Insert/delete entries in a queue

RBTree Insert/delete nodes in a red-black tree

SDG Insert/delete edges in a scalable graph

SPS Random swaps between entries in an array

Table 3.2: Micro-benchmarks used in our experiments.

3.7 Results

In this section we evaluate our key contribution, which is our proposed persist barrier

(LB++). More specifically, we evaluate the additional speedup provided by LB++,

over the state-of-the-art persist barrier LB [12], in enforcing BEP (Section 3.5). We

also present performance improvements provided by inter-thread dependence track-

ing (LB+IDT) and proactive flush (LB+PF) optimizations individually on top of the

unoptimized barrier. Recall that LB++ is a result of combining both IDT and PF opti-

mizations.

Both optimized and unoptimized barrier implementations involve cache line

flushes. Should the cache line flush be an invalidating (similar to clflush instruction)

or a non-invalidating flush (similar to recently introduced clwb instruction)4? We an-

alyzed the performance impact and found that using a non-invalidating flush is signif-

icantly faster (around 30% faster). This is not surprising, since an invalidating flush

would disrupt locality by evicting lines from cache, which on subsequent accesses need

to be fetched again from persistent memory. For the remainder of the section we only

consider using non-invalidating cache line flushes to implement all persist barriers.

3.7.1 Impact of Optimizations

We study the performance improvement due to the two optimizations, first individ-

ually, and then in combination. Figure 3.10 shows the transaction throughput for

micro benchmarks, normalized to throughput of LB. On average, LB+IDT improves

throughput by only 3%. Recall that IDT improves performance by reducing the la-

tency of memory requests that trigger inter-thread conflict. The primary reason why

LB+IDT does not have a high performance improvement is because the performance

4The reason for making this comparison is that many processors today only offer flush instructions
that invalidate the cache line on completion.
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Figure 3.10: Transaction throughput normalized to LB.

is dominated by intra-thread conflicts for these micro-benchmarks (it should be noted

that IDT provides significant performance improvement for implementing other per-

sistency models - §4.8). LB+PF on the other hand improves transaction throughput by

17%. This improvement is because LB+PF reduces the number of conflicts, thereby

reducing the overall latency of memory requests. LB++, which is obtained by com-

bining IDT and PF optimizations, achieves an improvement in throughput of 22% over

LB.

3.7.2 Epoch Conflicts

In the presence of epoch conflicts persist operations happen in the critical path. This is

contrary to the objective of LB, which is to perform offline persists. Figure 3.11 shows

the percentage of epochs that are flushed because of a conflict. On an average 90% of

epochs are flushed because of a conflict in LB. LB+IDT has a similar percentage of

epoch conflicts, because IDT optimization does not directly impact the percentage of

conflicting epochs but only reduces the latency of conflicting requests. PF optimiza-

tion, on the other hand, decreases the probability of an epoch conflicting by persisting

epochs proactively. Therefore, we can see that, on average LB+PF reduces the per-

centage of epoch conflicts from 90% to 77%. LB++ (LB+IDT+PF) reduces the epoch

conflict percentage further down to 75%, as IDT can help PF. Recall that PF will start

flushing an epoch only after the epoch completes. Since IDT allows epochs to com-

plete faster, the scope of flushing epochs proactively increases.
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Figure 3.11: Percentage of conflicting epochs (out of the total number of epochs).

3.8 Related Work

There have been many proposals for enabling fast persistence with persistent memory

systems [8, 10, 11, 12, 13]. All these techniques provide a programming framework

to expose persistent memory to programmers. BPFS and NVHeaps [8, 12] rely on LB

for ensuring correct order of persists, whereas others [10, 11, 13] rely on instructions

like clflush and mfence provided by existing processors. It is important to note that

these instructions are neither optimal nor sufficient to enforce correct order of persists.

Newly proposed clwb instruction is optimal because it does not invalidate a cache

line while writing it back to memory and another instruction pcommit is required to

avoid reordering of persists at memory controller level. All of these techniques can

seamlessly benefit from our efficient persist barrier implementation.

LOC [51] provides hardware logging support to reduce the overhead of persis-

tence. Kiln [46] proposes a technique to reduce persist latency by using a non-volatile

last level cache (NVLLC) along with persistent memory. Using a non-volatile cache

also eliminates the requirement of logging by allowing NVLLC and persistent mem-

ory to store two versions of a cache line, and one of the versions can be conceptually

considered as a log entry. NVM Duet [52], FIRM [53] and DP2 [54] propose optimiza-

tions in memory controller to improve the performance of persistent applications. All

these proposals broadly help in reducing persist latency which is complimentary to our

proposal of efficient persist barrier, in which we reduce conflicts and online persists.

Pelley et al. [55] present designs for implementing transactions for a system with

persistent memory. Central to their design is the notion of persisting a batch of trans-

actions together to amortize cost. However, their persists happen in the critical path; in



42 Chapter 3. Efficient Persist Barriers for Multicores

contrast, we seek to move the persists out of the critical path using hardware support.

In memory persistency [7] various models for persistency including epoch and strict

persistency have been proposed. They also identify the possibility of inter-thread de-

pendence tracking. However, they do not discuss how these can be realized. Our work

presents a detailed design and implementation of the same.

3.9 Summary

Ensuring consistency of data in persistent memory requires support in the form of an

ordering primitive like a persist barrier. We illustrate that even for buffered imple-

mentations of persist barrier, persist operations happen in the critical path because of

inter-thread and intra-thread conflicts. We proposed an optimization called proactive

flush (PF), which eagerly flushes cache lines on completion of an epoch, to reduce the

probability of encountering conflicts. We also proposed an inter-thread dependence

tracking (IDT) mechanism, which tracks the dependencies between epochs belonging

to different threads in hardware, to reduce the overhead of inter-thread conflicts. We

presented the design of an efficient persist barrier (LB++) which incorporates PF and

IDT optimizations for a server class processor with multi-banked caches and multiple

memory controllers. Using LB++ to implement buffered epoch persistency (BEP) for

a set of micro-benchmarks reduces the probability of encountering conflicts by 15%

and thereby improves the performance by 22%. In the next chapter we will present the

design of an efficient hardware checkpointing mechanism that leverages the efficient

persist barrier (LB++) proposed here.
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Atomic Durability in Non-volatile

Memory through Hardware Logging

4.1 Introduction

In the previous chapter a design for an efficient ordering primitve was presented. In

this chapter, we focus on the design for an efficient atomic durability primitive which

is important for many classes of applications.

Atomic durability can be supported by employing recovery mechanisms like write-

ahead logging [9]. These mechanisms operate on the principle of physical logging:

maintaining a persistent copy of the old and new versions at all times during the

atomic update so that state can be recovered to either of the versions. Write ahead

logging writes log entries for all data updates, and enforces the ordering constraint

that log entries become durable before any data update (log→ data ordering). In sys-

tems with non-volatile memory (NVM), log implementations rely on instructions like

non-temporal stores and cache-line write backs to durably write log entries to mem-

ory. Moreover, ordering constraints to memory have to be explicitly enforced using

instructions like pcommit and sfence [21, 35, 25].

Support for atomic durability using the above method has a fundamental draw-

back: durably writing log entries to NVM is in the critical path of execution which can

result in significant performance degradation. Our experiments with a set of micro-

benchmarks show that durably writing log entries in the critical path degrades through-

put by 40% on average and upto 70% (Figure 4.5: BASE vs NON-ATOMIC).

Our goal is to reduce the overhead of logging by moving it out of the critical path.

We observe that logging, fundamentally, is a data movement task associated with stores

43



44 Chapter 4. Atomic Durability in Non-volatile Memory through Hardware Logging

in the original program. Our insight is to perform logging transparently in hardware

by: (i) coupling log writes with data stores; and (ii) co-locating data and their corre-

sponding log entries at the same memory controller. In doing so, we not only minimize

wasteful data movement, but also enforce log→ data ordering constraint in the mem-

ory controller (out of the critical path).

We propose ATOM: a hardware log manager to guarantee atomic durability

through transparent and efficient logging. ATOM manages log allocation, ordering

and log truncation in hardware. At the same time, ATOM is distributed across memory

controllers and handles logging for multiple threads on a multicore processor. Our log-

ging design is in many ways similar to the data movement tasks offloaded to a DMA

engine. Offloading logging to a log manager in hardware frees up CPU resources, and

relieves the programmer from explicitly implementing the logging logic. In ATOM,

we expose atomic durable regions to hardware via ISA support (Atomic Begin and

Atomic End instructions). Stores in this region that require logging (i.e., the first store

to a cache line) are detected dynamically and the log write corresponding to the store

is performed transparently.

We leverage operating system (OS) support to reserve log space behind each mem-

ory controller. ATOM ensures that a log write is sent to the same memory controller

as that of the corresponding data. This allows us to efficiently enforce the log→ data

ordering constraint at the memory controller level, thereby moving the ordering over-

head out of the critical path. We also propose an optimization called source logging

in which the memory controller eagerly performs logging for read exclusive requests,

thereby eliminating wasteful data movement. Finally, we ensure that the log structure

is preserved for recovery by forcing every memory controller to flush critical hardware

structures (128 bytes per memory controller) to the NVM. Recovery is then ensured

through a routine implemented as a system call that undoes all the updates that were

incomplete at the time of the crash.

We also propose a new mechanism for checkpointing applications in persistent

memory systems. This mechanism implements Buffered Strict Persistency (BSP)

(§2.3.1) in bulk mode by combining the efficient persist barrier (LB++) from the pre-

vious chapter (§3.3) with ATOM. Here, instead of enforcing ordering constraints at

the granularity of each store, it is enforced at the granularity of a group of stores or

epochs. However, with the logging support provided by ATOM any epoch which has

persisted partially at the time of a system crash will be rolled back, thus satisfying the

strict persistency semantics.
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In summary the contributions of this chapter are:

– We propose a log organization that allows us to eliminate log persist operations

from the critical path of program execution by enforcing log→ data ordering at the

memory controller (§4.3.3).

– We propose an optimization to minimize data movement for log entries by dynami-

cally identifying when logging can be done at the source (§4.3.4).

– We propose an efficient log manager in hardware that manages allocating log space,

writing log entries and truncating logs transparently with only 3.125 KB overhead

per memory controller (§4.4).

– We evaluate ATOM and show that it can improve performance by 27% to 33% for

micro-benchmarks and by 60% for large-scale transactional workload (TPC-C) over

a baseline undo log design. ATOM also compares favorably with a competing ap-

proach which provides support for redo logging (§4.7).

– We propose to implement Buffered Strict Persistency in bulk mode by combining

efficient persist barrier (LB++) with ATOM.

– We evaluate BSP implementation and show that it can be used to checkpoint appli-

cations with only a 30% runtime overhead compared to an implementation without

checkpointing.

4.2 Motivation

As discussed in the background chapter (§2.4), write-ahead logging (WAL) is typically

employed to support atomic durability. WAL can be implemented by using either an

undo log or a redo log. We consider an undo log based WAL implementation as it

enables in-place data writes, so the program can read the latest value without any

redirection. In a redo log based implementation, data writes happen in the log area and

read requests need to be redirected to the redo log for the latest value. Alternatively, if

in-place writes are allowed, cache overflows need to be stored in a victim cache [15].

4.2.1 Traditional Undo Logging

Traditional systems with volatile main memory and persistent secondary storage typi-

cally follow the sequence of actions shown in Figure 4.1(a) for implementing atomic

durability through an undo log. An atomically durable update using WAL is divided

into two phases. The first phase is volatile execution: for each data item that is part of
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(a) Undo logging in disk based systems with a clear separation of execution and persistence phases.

Write LogCompute Persist Log Write Data Persist Data Truncate

(b) Undo logging in NVM based systems with overlapping volatile execution and persistence phases.
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Legends:

Create log entry before modifying data in−place in cache.

Persist log entry before persisting data in−place in NVM.
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(c) Undo logging in NVM based systems with decoupling of execution and logging by enforcing two

invariants.

Figure 4.1: Sequence of actions to be performed for undo logging in various scenarios.

the atomic update, new values are computed in the compute stage, an undo log entry

is written to in the Write Log stage and the data locations are updated in-place in the

Write Data stage. The second phase is persistence: first the entire log is made durable

in the Persist Log stage and then all the data updates are made durable in the Persist

Data stage. After updating data, the log is truncated. Note here the clear separation of

the volatile and persistence phases, which is justified due to two reasons. First, sec-

ondary storage is many orders of magnitude slower than memory and hence making

any data durable incurs high latency. Second, secondary storage devices like disks are

block based devices, so any update will write an entire page or block to secondary stor-

age. Thus, traditional systems have a separate persistence phase to amortize the cost

of performing the atomic update. Moreover, the boundary between volatile memory

and persistent storage is software controlled: no data can persist without software’s

knowledge; this enables the separation.

4.2.2 Undo Logging with NVM

In contrast, in systems with non-volatile memory (NVM), the boundary between

volatile caches and non-volatile memory is hardware controlled. Cache line replace-

ments can move data from volatile caches to NVM without software’s knowledge.

Therefore, such systems cannot completely separate volatile execution from persis-

tence. Moreover, NVM has very different properties than secondary storage. It is ex-
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pected to have close to DRAM speed, while allowing for updates at a much finer (cache

line) granularity. Because of the relatively lower cost (low latency and fine granular-

ity) of persistence there is little need for amortization. Therefore it is not necessary to

separate volatile execution from persistence. In fact, it is important to begin persisting

data as soon as it is modified to avoid being limited by the write bandwidth, which can

happen if all data is simultaneously flushed to persist at the end of the update.

Since we cannot and need not decouple volatile execution from persistence, let us

examine the challenges (or constraints) for an undo log implementation in systems

with NVMs. Undo log WAL implementation requires that the system maintain a per-

sistent copy of the old version of all data items that are part of the atomic update at

all times during the update. Hence, the in-place version of data cannot be modified

until the undo log entry of the corresponding data has been made durable. Therefore,

it is necessary to persist undo log entries before modifying data structures in-place.

Figure 4.1(b) shows the sequence of actions performed for an undo log WAL imple-

mentation in NVM. The update process is split into two phases. In the first phase,

there is an interaction between volatile execution and persistence operations; the com-

pute stage takes place and an undo log entry is written to; then, the undo log entry

is persisted and data is modified in-place. In the second phase the data updates are

persisted and finally the log is truncated.

The bottleneck in this approach is that undo log entries have to be made durable in

the critical path of execution. Our goal is to decouple log management from volatile

execution and move the operation of persisting log entries out of the critical path of

execution. As shown in Figure 4.1(c), writing an undo log entry and persisting log

entries can be safely moved out of the critical path only if the following two invariants

are satisfied.

Invariant 1. A store should not complete until an undo log entry is created for the data

being modified by the store.

Invariant 2. In-place data should not be made durable until the corresponding log

entry is made durable.

Invariant 1 ensures that an undo log entry exists for every data that is being modified as

part of an atomically durable update. Invariant 2 ensures that if the atomically durable

update fails, undo log entries for all the data items updated in-place are durable. These

log entries can be used to undo the partial changes of the failed update.
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While (!Done) {

}

Flush Modified Data

Write Undo Log

Flush Log

Write Data

(a) Traditional Model

Flush Modified Data

Write Data

While (!Done) {

}

Atomic_Begin

Atomic_End

(b) Proposed Model

Figure 4.2: Undo Log Programming Model.

4.3 ATOM Design

In this section we introduce the conceptual design for ATOM, a hardware log manager

for undo logging. We begin the section by first introducing the programming model

with and without ATOM and then go on to establish a baseline design for an undo log

manager in hardware. We then propose two optimizations: (i) to eliminate log persist

operations from the the critical path, and (ii) to minimize data movement.

4.3.1 Programming Model

A typical approach towards atomic durability in software using an undo log is shown in

Figure 4.2(a). An undo log entry is created and flushed before writing to data in-place.

After completing the update, the modified data is flushed to NVM to complete the

atomic update. In ATOM, we introduce two primitives, Atomic Begin and Atomic End

to demarcate the start and end of the code segment performing an atomic update. Using

these two primitives, the programmer does not have to create and flush undo log entries,

but only write data in-place and flush data on completion of the update (Figure 4.2(b)).

In ATOM, the hardware log manager, will create undo log entries and flush them to

memory before the in-place data modifications are written to memory.

The Atomic Begin and Atomic End construct only guarantees atomic durability and

not isolation in a multi-threaded context. We require software to provide isolation.

Specifically, following Chakrabarti et al. [10], we require the durable regions to coin-

cide with outermost critical sections.
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4.3.2 Baseline Design

The purpose of ATOM is to provide atomic durability for updates in NVM. Recall that

to provide atomic durability, an undo log manager has to perform two tasks. First, cre-

ating a log entry consisting of: the old value of the data being modified, and its address.

Second, ensuring that the log entry persists before the corresponding data is persisted.

For the purposes of our discussion, we consider a generic chip multi-processor with

private L1 caches, a multi-banked shared L2 cache and multiple memory controllers.

ATOM is implemented as a distributed log manager, that is distributed across L1 caches

and memory controllers – with the former responsible for creating log entries and the

latter responsible for enforcing log→ data ordering constraint. Finally, the OS reserves

log space behind each memory controller for ATOM to write log entries into.

Creating a log entry. A log entry (old value, address pair) has to be created before

modifying any data in an atomic update. Hence we use a store operation, belonging

to an atomic update, to trigger the creation of log entries. We propose that the log

manager in L1 cache couple the creation of a log entry with the processing of a write

request from a store operation. Specifically, when the L1 cache controller receives

a write request for a cache line, it first sends a log entry to the memory controller

by piggy backing on the cache write-back interface. This ensures that the log entry

is created before completing the write request, satisfying Invariant 1. The memory

controller then writes the log entry into the log area in the NVM.

Note that while a cache line can get modified multiple times during an atomic

update, it does not have to be logged every time it gets modified. Since an undo log

stores the old value, it is sufficient to log a cache line only once: on the first write. To

detect the first write to a cache line, we augment all the cache blocks with an additional

log bit. The log bit is set when a cache line is written to for the first time during an

atomic update. It is cleared when the modified value of the cache line is durably written

to memory. This mechanism is similar to the log mechanism employed in LogTM [38].

The critical difference is that the log write in this case is not cached but has to be written

to NVM. The log bit is only maintained during the lifetime of a cache line in the cache.

As soon as a cache line is replaced, information about whether that cache line is logged

or not is lost. Therefore, after being flushed to memory, when a cache line is modified

again in the same atomic update the log bit is not set and the log manager logs it again.

However, this is not a problem for ensuring correct recovery. During recovery the roll

backs are applied in the order of newest first. This ensures that, at the end of recovery,
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the value of a cache line is restored to the one before the atomic update started.

Enforcing log → data ordering. The next task is to enforce ordering between log

writes and in-place data writes. Therefore, upon detecting the necessity to log a cache

line, the log manager first durably writes a log entry to the log area in NVM. After

completing the write, it updates the value of the cache line in the cache and retires the

store from the store queue (SQ). This ensures that an in-place data write cannot become

durable before the corresponding log entry, thus satisfying Invariant 2. Figure 4.3(a)

shows the sequence of operations. The log manager in the cache controller, upon

receiving a write request from the SQ, checks if the log bit is set for the cache line (A)

being updated. If the log bit is not set, the log manager creates a log entry (CL(A))

and sends it to the memory controller. The memory controller issues a write request

for the log entry (WL(A)). After durably writing the log entry to NVM (PL(A)), the

memory controller sends an acknowledgement (Ack(A)) back to the log manager in

the cache controller. The log manager then completes the write request by modifying

data in-place in the cache (WI(A)), which allows the store to be retired from the SQ.

Under this baseline design, durably writing the undo log entry is in the critical path of

completing the corresponding store operation from the SQ.

Sources of reordering. The log manager cannot allow the update of data in the cache

until it receives an acknowledgement that the log entry has been made durable. This

is because the cache line containing the modified data can be replaced at any time

from the cache and could possibly overtake the log entry to NVM, which in turn will

violate Invariant 2. This overtaking can happen because of the possible reordering in

either the on-chip network (between the cache and NVM) or at the memory controller.

Reordering is possible even if we consider the network and the memory controllers to

be strictly ordered. It can arise if the log area and the data (cache line) are mapped to

different memory controllers.

Logging cost. Store operations are typically not in the critical path in modern proces-

sors because they employ a queue to buffer store operations. But durably writing the

undo log to memory is in the critical path of store operations. This reduces the rate at

which store operations are completed from the SQ, which leads to a back pressure that

can fill up the SQ and eventually stall the processor pipeline. Thus, it is important to

reduce the critical path of store operations.
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(a) Baseline Undo Log Implementation: On receiving a write request ((St(A)) from the SQ, the cache

creates a log entry (CL(A)) and sends it to the memory controller. The memory controller issues a write

log (WL(A)) command to memory and after persisting it (PL(A)) sends an ack (Ack(A)) to cache which

writes data in-place (WI(A)), then store is retired (Ret(A)).
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(b) Posted Log Optimization: Similar to baseline implementation to the point where the cache creates a

log entry (CL(A)) and sends it to the memory controller. But the memory controller instead of waiting

for the log write to complete, locks the cache line (LA(A)), sends an ack (Ack(A)) to the cache and

issues a write log (WL(A)) in that order. The cache then writes data in-place (WI(A)), then store is

retired (Ret(A)). When log entry has been persisted (PL(A)), the memory controller unlocks the line

(UA(A)).
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(c) Write Miss in a Posted Log Design: On a cache miss (Miss(A)) for a store (St(A)) in a posted log

design, the cache sends a read request to the memory controller. The memory controller issues a read

command (Rd(A)) and reads the cache line from memory (Read(A)) and sends it back to the cache

(Data(A)). The cache then follows the posted log procedure.
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(d) Source Logging Optimization: After reading the cache line (Read(A)) on a store miss (MissX (A)),

the memory controller locks the cache line (LA(A)). It then sends the cache line back to the cache

(Data*(A)) with log bit set, so the cache does not send a log write request. The cache then writes data

in-place (WI(A)), then store is retired (Ret(A)). The memory controller, meanwhile issues a write log

(WL(A)) request and unlocks the cache line (UA(A)) after persisting the log entry (PL(A)).

Figure 4.3: Sequence of actions of store queue (SQ), cache, memory controller (Mem

Ctrl) and non-volatile memory (NVM) for undo logging in NVM based systems.

4.3.3 Posted Log Optimization

Currently, for each store, the critical path includes writing the log durably to memory

as shown in Figure 4.3(a). To minimize the performance overhead of enforcing the
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log→ data ordering constraint, we propose to allow the log manager in the cache con-

troller to perform posted log writes to the memory controller, where the log manager

enforces log → data ordering at the memory controller level. By doing so, we move

the performance overhead of durably writing log entry to NVM, out of the critical path.

Figure 4.3(b) shows the sequence of operations for logging with a posted write

feature. Upon receiving a write request from the SQ, the log manager in the cache

controller sends a log entry to the memory controller. The memory controller locks

the cache line (LA(A)) for which the log entry is being persisted and then sends an

acknowledgement back to the cache controller. Upon receiving the acknowledgement,

the cache controller completes the write request, allowing the store to retire from the

SQ (without having to wait for the log write to persist). When the log write eventually

completes, the log manager in the memory controller unlocks the cache line (UA(A)).

Whenever a write entry is ready to be scheduled out of the memory controller, the log

manager is first consulted; only if the cache line is not locked, the write is allowed to

go to NVM. In effect, this is a simple and efficient approach to enforcing the log →
data ordering at the memory controller.

The posted log optimization cannot be applied if the log and data are mapped to

different memory controllers. It can be challenging to ensure log-data co-location in

software because an application program might be modifying data scattered behind

multiple memory controllers. But because we perform logging in hardware, we are

able to ensure that the log entry is sent to the same memory controller as the corre-

sponding data (§4.4.2). Thus, by co-locating log and data behind the same memory

controller, we can enable the posted log optimization. With posted log optimization

even though a store completes before durably writing the log entry to NVM, log →
data ordering is enforced by the memory controller and hence Invariant 2 is satisfied.

4.3.4 Source Log Optimization

Performing a posted write to the memory controller still incurs the cost of writing to

and receiving an acknowledgement from the memory controller in the critical path of

the store operation. But this can be further optimized in certain scenarios. Consider

the scenario shown in Figure 4.3(c). The cache controller receives a write request for

a cache line (A). It misses in the cache (Miss(A)), so the cache controller sends a

fetch request to the memory controller. When the memory controller responds with

the data (Data(A)), the cache controller checks for the log bit, which in this instance
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is not going to be set since the cache line has just been read from NVM. So the cache

sends a log entry for cache line A to the memory controller. In a posted log design, the

memory controller locks the cache line and responds with an acknowledgement, which

completes the write request enabling the SQ to retire the store.

In the above example, however, there is unnecessary data movement from the cache

controller to the memory controller in performing the log write. If a cache line is not

present in the cache, then the in-place data in NVM is actually the old value of the

cache line that needs to be written to the undo log. So the data that the cache controller

sent back along with the undo log request is actually the same data that it just received

from the memory controller because of its fetch request. This data movement from

the cache controller to the memory controller can be avoided if the memory controller

itself can write the old value of the cache line in the log area. We call this optimiza-

tion source log optimization and is shown in Figure 4.3(d). The cache controller on

detecting a miss on a write request (MissX (A)), sends a fetch exclusive request to

the memory controller. The memory controller follows the posted log procedure after

reading the cache line from NVM (Read(A)). It first locks the cache line (LA(A)), and

then sends a data response to the cache with the log bit set (Data*(A)). On receiving

data with the log bit set, the cache controller completes the write to the cache line. The

memory controller, after sending the data to the cache, writes the log entry to NVM

and eventually unlocks the cache line (UA(A)) on completion of the log write (PL(A)).

Thus, this technique completely removes logging out of the critical path for stores that

miss in the cache. It also eliminates redundant data movement.

4.4 ATOM Architecture

In this section, we present the architectural and implementation details of ATOM.

4.4.1 Overview

The primary functions of ATOM are initiating log writes, managing log space (log

allocation and clearing) and enforcing the log→ data ordering constraint. These func-

tions are implemented across two modules. The log write initiate module (LogI) and

the log manage (LogM) module. The LogI module is embedded in the L1 cache con-

troller as shown in Figure 4.4(a) and is responsible for initiating log write requests. The

LogM module is embedded in the memory controller as shown in Figure 4.4(a) and is
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responsible for managing log space and enforcing the log→ data ordering constraint.

ATOM supports one atomic update per core. But it allows for concurrent execution of

atomic updates across different cores by creating multiple (one per core) instances of

the tracking structures in the LogM module.

4.4.2 Log Write Initiate (LogI) Module

As discussed in §4.3.1 we extend the processor-to-memory system interface to include

two new commands, Atomic Begin and Atomic End. These commands signify the

start and the end of an atomic update respectively. The memory system, upon seeing

the Atomic Begin command, will start logging for the cache lines being modified by

subsequent stores. It will stop logging upon receiving an Atomic End command. We

handle nested atomic sections by flattening them.

The LogI module looks at the log bit of each cache line before completing a write

request. If the bit is set, the write request is immediately serviced. Otherwise the write

request is stalled, a miss status handling register (MSHR) is allocated and a log write

request is initiated to the memory controller associated with the corresponding cache

line. The memory controller associated with the cache line is easily determined from

the cache line address. By sending the log request to the same memory controller as

the data, we ensure log-data co-location.

4.4.3 Log Manage (LogM) Module

ATOM’s LogM module manages a central log space which is shared across all threads

and is statically allocated by the OS. ATOM manages this log space in terms of records

and buckets as is described next.

Log Record Organization. We consider a system with 64 byte cache lines and ATOM

performs logging at a cache line granularity. Therefore, each log entry consists of a

cache line as data and address as meta-data. The simplest way to organize logging is to

allow all threads to create individual log entries in the central log space. Writing a log

entry to NVM in this way would require 2 write requests to memory since the size of

a log entry is greater than a cache line. To minimize the overhead of multiple write re-

quests we propose log entry collation (LEC), in which multiple log entries are collated

into a single log record. The size of each log record is 512 bytes (or 8 cache lines).

A log record can contain up to 7 log entries, and is divided into data (7 cache lines)

and header (1 cache line) as shown in Figure 4.4(c). The header contains the addresses
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Figure 4.4: ATOM Components.

of all the 7 cache lines, the number of cache lines logged in the current record, and

some reserved bits. On receiving a log write request, only the data field is written to

memory at first. The meta-data for the log entry (consisting of its address) is added to

the record header. A log entry is not considered durable until its corresponding record

header persists. After logging 7 cache-lines, the header is written to memory, thus

persisting the entire log record. When all 7 log entries in a log record are occupied,

LEC reduces the overhead of writing a log entry: from 2 write requests for 1 log entry

to 8 write requests for 7 log entries, which is a 57% reduction in the number of write

requests to memory for logging.

LEC can lead to a violation of Invariant 2 if the cache line containing an in-place

update is replaced from the cache and is made durable before the log header corre-

sponding to its log entry. To avoid this, and before writing any data cache line to

NVM, the memory address is compared to the addresses in the record header. The data

cache line is written to memory only if there is no match in the header. If there is a

match, then the header is first made durable to complete the log write and then the data

write is allowed to persist in NVM. Adding the address of a cache line in the record

header corresponds to the concept of locking the cache line described in §4.3.3. The

record header is cleared after persisting it in NVM, which corresponds to unlocking
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the cache lines.

The centralized shared log space can potentially be managed at a log record gran-

ularity. The log manager can maintain a log record head pointer and keep adding new

log records to the central log space based on the requests received from different atomic

updates. There are two ways to clear such a log. In the first approach, on completion of

an atomic update, the log manager can read the log space starting from the beginning

of log and clear all records belonging to the corresponding atomic update individually

until the corresponding commit record is encountered. Unfortunately this will generate

additional memory read requests to read log record headers sequentially and additional

memory write requests to clear records corresponding to the completed update. More-

over, this will leave the log space fragmented. In the second approach the log manager

– instead of clearing log records on completion of atomic updates – can wait for the

completion of all concurrent atomic updates and then clear the log space. This method

will avoid fragmentation, but will stall the processing of new atomic updates during

the wait.

Log Bucket Organization. To overcome these limitations we propose dividing the

shared log space into buckets of log records and managing log space allocation

and deallocation at a bucket granularity, resulting in the organization shown in Fig-

ure 4.4(c). An atomic update has an associated bit-vector, known as bucket bit vector,

indicating the buckets allocated to that update. Using a bit-vector alleviates the first

problem of requiring additional memory read and write requests to allocate or clear the

log as it can be used to identify free buckets and to clear allocated buckets. Along with

the bit vector, there is a current bucket register that identifies the bucket to which log

records are being added currently; a current record register that indicates the record in

the current bucket being written to; and, finally, a record header register that stores the

meta-data for the log record currently being updated as shown in Figure 4.4(b). A new

bucket is allocated from the free list bit vector, which is generated by NORing all the

bucket bit vectors.

The bucket bit vector and current bucket, current record and record header registers

– together track a single atomic update and are collectively known as an atomic update

structure (AUS). So to support concurrent atomic updates, these need to be replicated

as shown in Figure 4.4(b). We support up to 32 concurrent updates in our system (1

per core). The sizes of all the registers is shown in Figure 4.4(b). The space overhead

of LogM module amounts to 3.125 KB.

The bucket organization, by allocating log buckets from a central pool, allows for



4.4. ATOM Architecture 57

dynamic sharing of log space by concurrent atomic updates. It also simplifies log

clearing on completion of an atomic update. LogM does not have to read the log space,

but only has to clear the bit vector corresponding to the atomic update and update the

free list bit vector. This is a single cycle operation and will be completed even if a

power failure occurs at the moment of clearing the log.

4.4.4 Recovery

After a power failure, the incomplete atomic updates need to be undone to restore the

system to a consistent state. The enforcement of Invariant 2 guarantees that at any

point of time during execution, if a log entry has not persisted then the correspond-

ing data would not have persisted either. Hence in the event of a power failure, all

the pending log writes in the memory controller store buffers can be safely discarded.

Only those log entries that have already persisted need to be considered during re-

covery. However, on a power failure the information about valid log buckets in the

memory controller will be lost. To correctly access the log space we need to be able to

identify which buckets are valid (contain valid log records). This can be identified by

taking a complement of the free list bit vector. Also, some of the valid buckets might

be partially filled because log entries were being added to them when the power fail-

ure occurred. These partially filled buckets can be identified from the current bucket

register. And finally the number of valid log records in those partially filled buckets

can be identified from the current record register. The total size of the above 3 critical

structures is 128 bytes. To ensure that these critical structures are preserved, we uti-

lize a feature similar to Asynchronous DRAM Refresh (ADR) [56] supported by Intel.

ADR ensures that on a power failure, all the memory controller buffers (24 or more

cache lines) are flushed to memory. In our implementation, only the critical structures

(amounting to only 2 cache lines) need to be written to NVM on detecting a power

failure.

Recovery after a power failure is accomplished in software through a generic re-

covery routine provided as a system call which relieves the programmer from having

to implement custom recovery schemes. The recovery routine will read the bucket bit

vectors and current bucket and record information from NVM and reconstruct the state

of the log space at the time of the crash. It will then perform undo operations in the re-

verse order starting from the last log record to the first one for each incomplete atomic

update. The recovery routine performs undo operations for all the cache lines recorded
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in the log even though some of the cache lines may not have been updated in memory

at the time of crash. This might impose a performance overhead during recovery but

does not affect the correctness.

4.4.5 Log Allocation and Overflow

In our design, a central log space is allocated by the operating system (OS) which is

shared between concurrent atomic updates. The OS is aware of the number of physical

pages associated with each memory controller. It reserves a proportional number of

these pages as the log area. The OS then ensures that no virtual page is mapped to any

of these reserved log pages. Recall that the LogI module ensures that each log entry is

correctly directed to the memory controller where the corresponding data page resides.

There can be two kinds of overflows in the system. The first type of overflow,

known as structural overflow, occurs when the number of concurrent update requests

are higher than the number of updates supported by the hardware. An Atomic Begin

instruction checks for the availability of an AUS. If an AUS is not available it will

stall. Eventually as other atomic updates complete (execute Atomic End instruction),

an AUS will free up and will be allocated to the stalled update. The waiting update

does not have any resources reserved and hence cannot block any other update. Thus,

a structural overflow cannot result in a deadlock.

The second type of overflow, known as log overflow, occurs when a new bucket

needs to be allocated behind a memory controller, but no more buckets are available

in the corresponding free list bit vector. In other words, all of the reserved log pages

in the memory controller have been exhausted. In this scenario, the OS is interrupted

to allocate additional log pages for that memory controller, which will be used to store

subsequent log records. Because this additional resource (log space) is allocated to

the requesting update, it will make forward progress and not block any other update.

Hence, a log overflow will also not result in a deadlock. Moreover, dynamically shar-

ing the log space between atomic updates reduces the probability of log overflow as

opposed to a design where the log space is statically partitioned.

4.5 Hardware Checkpointing

As an application of the ordering and atomic durability primitives, we propose a new

mechanism to efficiently checkpoint programs in this section. This mechanism lever-
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ages the persist barrier from Chapter 3 to create checkpoints and combines it with

ATOM to guarantee atomic durability of those checkpoints. This is analogous to im-

plementing a strict persistency model albeit in bulk mode.

Recall that, strict persistency couples memory persistency with memory consis-

tency (§2.3). With buffering, although program execution is decoupled from persist

operations, stores still need to persist in the same order as they are made visible. So

in systems with Total-Store-Order (TSO) as the memory consistency model, buffered

strict persistency (BSP) enforces that stores persist in program order. Therefore, even

with buffering, there would be frequent conflicts resulting in a larger percentage of

persist operations happening in the critical path.

We propose to enforce BSP in bulk mode, to minimize the number of persist opera-

tions happening in the critical path. Instead of enforcing persist ordering constraints at

memory operation granularity, we enforce them at an epoch granularity. This is similar

in spirit to the way Sequential Consistency is enforced by BulkSC [57].

BSP is implemented completely in hardware. Hence, no programmer annotations

in the form of persist barriers are required. A hardware persistence engine divides the

sequence of stores from a program execution into epochs. Persistency is enforced at the

granularity of epochs using the efficient persist barrier (LB++) presented in Chapter 3

(§3.3). At the end of each epoch, along with the modified cache lines, processor state

is also saved to persistent memory. This state can be used to restart the process, similar

to the way it is done in [58]. It is worth noting that epoch boundaries are the points

at which BSP holds. At the time of a crash though, some epochs might have persisted

partially and therefore BSP might be violated. To overcome this problem we propose

to employ ATOM, which will log all the updates performed in an epoch and undo any

partially persisted epochs.

Another issue that can arise in this mechanism is the possibility of epoch dead-

locks. Since hardware dynamically creates epochs, it is oblivious to dependencies

between threads. This could lead to epoch deadlocks. We use the solution presented

in Chapter 3 (§3.3.3) to overcome this problem.

4.6 Experimental Setup

We now describe our simulation infrastructure, system configuration, benchmarks and

designs that we evaluate. We implemented ATOM and BSP on gem5 [42] with Ruby in

full system simulation mode. The on-chip interconnect is modelled using Garnet [50].
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Cores 32 OoO cores @ 2GHz

ROB Size 192 Entry

Store Queue 32 Entry

L1 I/D Cache 32KB 64B lines, 4−way

L1 Access Latency 3 cycles

L2 Cache 1MB×32 tiles, 64B lines,

16−way

L2 Access Latency 30 cycles

MSHRs 32

Memory Controllers 4

NVM Access Latency 360 (240) cycles write (read)

On-chip network 2D Mesh, 4 rows, 16B flits

Table 4.1: System Parameters.

We extend the Ruby memory model to implement the proposed log manager. We

evaluate ATOM and BSP on a 32-core multicore (1 thread per core) with multi-banked

LLC and 4 memory controllers placed on the corners of the die. We consider a MESI

based coherence protocol for our evaluation. Table 4.1 shows the main parameters of

the system. The memory write latency that we consider is 10× that of typical DRAM

latency. We assume a single memory channel per memory controller unless otherwise

stated. The peak memory bandwidth in our setup is 5.3 GB/s per memory channel.

We model an address match latency of 1 cycle in the memory controller to check if the

data write request has a corresponding log entry pending in the record header.

Workloads. We use the micro-benchmarks listed in Table 4.2 to evaluate ATOM and

the proposed optimizations. These micro-benchmarks implement data structures that

are similar to those in the benchmark suite used by NVHeaps [12], except for the queue

micro-benchmark, which is similar to the copy-while-locked queue of [7]. We evaluate

these workloads with two data set sizes (table entries, tree nodes, queue entries etc.):

small (512 bytes) and large (4 KB). Each benchmark performs search and atomic insert

and delete operations on the corresponding data structure.

We also evaluate ATOM using the TPC-C benchmark where the TPC-C schema is

implemented using B+-Trees [11]. We use a scaling factor of 1 and use 32 threads to

simulate the 32 terminals issuing new order transactions. Our goal is to measure the

overhead in write-intensive operations. Therefore, the new order transaction is the best

choice as it is the most write-intensive TPC-C transaction. We slightly modified the
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Hash Insert/delete entries in a hash table

Queue Insert/delete entries in a queue

RBTree Insert/delete nodes in a red-black tree

BTree Insert/delete nodes in a b-tree

SDG Insert/delete edges in a scalable graph

SPS Random swaps between entries in an array

Table 4.2: Micro-benchmarks used in our experiments.

benchmark and removed the wait times (implemented using sleep system call) to allow

us to execute the benchmark in a reasonable amount of time.

We employ BSP for a scenario where long running applications that are period-

ically checkpointed to reduce the amount of lost work due to system crashes. To

evaluate the same, we use benchmarks from PARSEC [43], SPLASH-2 [44] and

STAMP [45] benchmark suites. The benchmarks were unmodified; persist barriers are

inserted transparently by the hardware to ensure BSP. In our experiments, we model

the overhead of checkpointing all general purpose, special registers, privilege registers

and floating point registers (non-AVX) as part of the processor state. We ran all the

workloads to completion.

4.7 ATOM Evaluation

This section first lists the various designs for atomic durability that we consider and

then presents an evaluation of those designs.

4.7.1 Designs

– BASE: The baseline hardware undo log which performs logging transparently in

hardware (without additional instructions for logging), but the log write happens in

the critical path of a store operation (§4.3.2).

– ATOM: Proposed design with posted log optimization (§4.3.3).

– ATOM-OPT: The above with source log optimization as well (§4.3.4).

– NON-ATOMIC: No logging operations are performed, and hence this design rep-

resents upper bound on performance for a logging implementation. On completion

of each atomic update, all the data modified within the atomic update is still written

back to NVM.
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– REDO: The redo log design of Doshi et al. [15] with a couple of modifications

(that actually benefit their design). First, although their implementation requires

additional log write instructions in software, we do this in hardware by allowing

the cache to issue log writes on receiving a store, for the sake of fair comparison.

Second, we consider an infinite size victim cache. Similarly to their design, we

implement write combining for log writes.

4.7.2 Evaluation

We first present the speed-up due to ATOM and analyze the impact of both posted log-

ging and source logging optimizations. We then show how ATOM reduces the critical

path of logging operations by looking at the occupancy of the store queue and also

analyze the reasons behind the magnitude of performance improvement due to source

logging. We also compare ATOM with a REDO log based design [15] and perform a

sensitivity study by varying memory latency. Finally we present the performance of

ATOM for the TPC-C benchmark.

4.7.2.1 Transaction Throughput

Figure 4.5(a) shows transaction throughput for the ATOM, ATOM-OPT and NON-

ATOMIC designs, normalized to BASE for small dataset sizes. On average, ATOM

improves transaction throughput by 23%. Recall that the posted log optimization re-

duces the critical path of store operations by enforcing log → data ordering at the

memory controller. ATOM-OPT improves the throughput by 27% on average over

BASE which is a 4% improvement over ATOM. Recall that source logging optimiza-

tion further reduces the critical path of stores that miss in the cache by eliminating the

log write request from cache to memory controller. The improvement because of this

optimization will depend on the percentage of log writes that are source logged. We

analyze this further in §4.7.2.3.

The NON-ATOMIC design has a 38% higher throughput than BASE. The ATOM-

OPT design, by improving the throughput by 27%, is able to close about 71% of the

performance gap between BASE and the optimal (NON-ATOMIC) design.

Figure 4.5(b) shows the normalized transaction throughput for large dataset sizes.

On average, ATOM improves the transaction throughput by 24%, while ATOM-OPT

improves it by 33% over BASE which is a 9% improvement over ATOM. For large

dataset sizes NON-ATOMIC design improves the throughput over BASE by 41%
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Figure 4.5: Transaction throughput normalized to BASE for micro-benchmarks.

and ATOM-OPT design is able to close 83% of this performance gap between NON-

ATOMIC and BASE designs.

4.7.2.2 Impact on Critical Path

Store operations are not typically in the critical path of program execution because

most processors employ store queues (SQ) to complete stores out of the critical path.

But with logging, writing to NVM is in the critical path of completing store operations

from the SQ. This creates a back pressure, which eventually fills up the SQ and stalls

the processor pipeline. Figure 4.6(a) shows the number of SQ-full events for ATOM-

OPT and NON-ATOMIC designs, normalized to BASE for benchmarks with small

dataset sizes. ATOM-OPT reduces the SQ-full cycles by 21% on average which cor-

relates with the increase in throughout. Benchmarks with high reduction, like queue
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Figure 4.6: SQ full cycles normalized to BASE for micro-benchmarks with small dataset

size.

(43%) and rbtree (35%) also show high improvement in throughput: 47% and 46%

respectively. Similarly, sps which has the minimum reduction (1%) shows the mini-

mum improvement in throughput (4%). On average ATOM-OPT has only 10% more

SQ-full cycles than NON-ATOMIC.

Benchmarks with large dataset sizes show a similar trend (Figure 4.6(b)). In these

benchmarks the average reduction in the number of SQ-full cycles drops to 11% from

the high 21% seen for benchmarks with small dataset sizes. With increasing dataset

sizes, the number of cache lines to be written back at the end of an atomic update

increases. This places additional pressure on the SQ occupancy and hence the scope

for reducing SQ-full cycles decreases.
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btree hash queue rbtree sdg sps

small 0.12 0.12 0.07 0.01 0.04 0.01

large 0.4 0.4 0.7 0.4 0.07 0.01

Table 4.3: % of source logged cache lines for ATOM-OPT

4.7.2.3 Source Logging

The source logging optimization removes log writes from the critical path for store

operations that miss in the cache. ATOM-OPT logs the cache lines for which a fetch

exclusive request is received by the memory controller during an atomic update. Ta-

ble 4.3 shows the percentage of source logging for benchmarks with small and large

datasets. We see that even with as little as 0.12% of log writes being source logged,

ATOM-OPT provides a transaction throughput improvement of 10% and 13% over

ATOM for btree and hash benchmarks respectively, for small datasets.

As the dataset size grows, the percentage of store operations missing in the cache

increases. We see that queue, which has the highest percentage (0.7%) of source

logging, provides the highest throughput improvement (16%) for ATOM-OPT over

ATOM. Moreover, sps, which has the lowest percentage of source logged cache lines

for both small and large datasets does not show any improvement compared to ATOM.

4.7.2.4 Comparison with Redo Log

We compare ATOM-OPT with the recently proposed REDO log design [15]. In ad-

dition to the setup of §4.6, we also evaluate these designs in a configuration with two

memory channels at each memory controller (*-2C), where one channel is used for

data while the other channel is used for logging, in order to mimic the configuration

used by the authors in [15]. Figure 4.7 shows the transaction throughput normalized to

ATOM-OPT. In the single channel configuration REDO is only able to achieve 22% of

the transaction throughput of ATOM-OPT while in the two channel configuration it is

able to achieve 30%. We identified that the disparity in performance between ATOM-

OPT and REDO is because of the difference in their memory bandwidth requirements.

REDO generates 19×more log entries than ATOM-OPT. This is because in REDO,

every store operation in an atomic section generates a log entry. Whereas in ATOM, a

log entry is generated only on the first write to a cache line. These log entries increase

the pressure on the memory write bandwidth. Moreover, in REDO the log entries have

to be read from memory to perform in-place data updates. These log read requests



66 Chapter 4. Atomic Durability in Non-volatile Memory through Hardware Logging

btree
hash queue

rbtree
sps gmean

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 T

ra
n
sa

ct
io

n
 T

h
ro

u
g
h
p
u
t ATOM-OPT ATOM-OPT-2C REDO REDO-2C

Figure 4.7: Transaction throughput for REDO and ATOM-OPT designs normalized to

ATOM-OPT for benchmarks with small dataset size.

interfere with the critical data read requests from the cores, thus slowing down execu-

tion. In the two channel configuration, the log and data reads go to separate channels

and hence the log read requests do not interfere with the critical data read requests.

Therefore, the throughput of REDO-2C increases by 9% over REDO.

4.7.2.5 Sensitivity to Memory Latency

Figure 4.8 shows the transaction throughput for the rbtree benchmark with small

dataset size for varying memory latencies (as a ratio of DRAM latency). At NVM la-

tencies similar to DRAM, REDO provides higher transaction throughput than ATOM-

OPT because of two reasons. First, the low latency memory is quickly able to absorb

the large number of log writes generated by REDO. So this is no more a bottleneck for

REDO. Second, REDO performs in-place updates of data in the background, whereas

ATOM-OPT has to persist all the in-place modifications to NVM at the end of each

atomic update. But on increasing the latency, the performance of REDO degrades

super-linearly because of the relatively high memory bandwidth requirement. The

throughput of ATOM-OPT degrades almost linearly because its memory bandwidth

requirement is lower than REDO.

4.7.2.6 TPC-C

As a case study we evaluate ATOM using TPC-C, annotating all the critical sections

as atomic regions. Table 4.4 shows the throughput for TPC-C normalized to BASE.

ATOM provides a throughput improvement of 58% over BASE whereas ATOM-OPT



4.8. Evaluation of Hardware Checkpointing 67

 0

 20000

 40000

 60000

 80000

 100000

 120000

1x 5x 10x 20x 40x

Tr
a
n
sa

ct
io

n
 T

h
ro

u
g
h
p
u
t 

(t
x
n
/s

)

Memory Latency (in multiples of DRAM latency)

ATOM-OPT
REDO

Figure 4.8: Transaction throughput variation (ATOM-OPT vs REDO) with varying mem-

ory latency.

BASE ATOM ATOM-OPT REDO

Throughput 1 1.58 1.6 1.47

Table 4.4: TPC-C throughput normalized to BASE.

provides an improvement of 60% over BASE. ATOM-OPT provides negligible im-

provement over ATOM because only 0.02% of log operations were source logged.

ATOM-OPT reduces the SQ-full cycles by 42%.

REDO on the other hand provides a throughput improvement of 47% over BASE

(13% lesser improvement than ATOM-OPT). It is worth noting that both ATOM and

REDO provide higher gains for TPC-C as opposed to micro-benchmarks. This is

because TPC-C has relatively lower frequency of updates in comparison to micro-

benchmarks, and hence memory bandwidth is less of a problem.

4.8 Evaluation of Hardware Checkpointing

Recall that, we have proposed to implement strict persistency (BSP) in bulk mode as an

application of the ordering and the atomic durability primitives. We use this implemen-

tation as a mechanism to checkpoint programs in hardware. Our primary goal in this

section is to understand the overheads of checkpointing programs. A secondary goal is

to use the implementation of strict persistency in bulk mode as a tool to quantitatively
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evaluate the benefits of buffering, buffering optimizations and hardware logging. In

this section, we first present the designs that we consider followed by their evaluation.

4.8.1 Designs

As stated above, one of our goals in this evaluation is to understand the performance

benefits of buffering, optimizations for buffering and hardware logging. To evalu-

ate the benefits of ATOM-OPT (hardware logging) we consider two designs of strict

persistency (without buffering), where one design implements unoptimized hardware

logging (§4.3.2) for atomic durability while the other design leverages ATOM-OPT

with both posted log (§4.3.3) and source log (§4.3.4) optimizations. We contrast these

designs with designs for implementing buffered strict persistency to evaluate the bene-

fits of buffering. The designs for implementing buffered strict persistency use ATOM,

with both of its optimizations, for atomic durability and leverage lazy barrier with

and without optimizations to understand their benefits. To understand the overheads

of checkpointing, we compare all the above stated designs with respect to a design

that does not perform checkpointing. Below, we list the designs along with their brief

description.

– NP: A design that provides no guarantees on what will be present in persistent mem-

ory on a system crash. In other words, this design does not create any checkpoints,

so in case of a system crash applications will have to be restarted from the beginning.

We use this design as a baseline to understand the overheads of checkpointing.

The following design implements unoptimized hardware logging (§4.3.2), to guarantee

atomic durability.

– SB-BASE: Strict persistency implementation without buffering where all the up-

dates of an epoch have to be made persistent before executing the next epoch (§2.3).

The following designs implement ATOM-OPT to guarantee atomic durability.

– SB: Same as SB-BASE except that logging is not performed in software (§2.3).

– LB: Baseline lazy barrier implementation without any optimization (§3.2.1).

– LB+IDT: Baseline lazy barrier implementation with inter-thread dependence track-

ing optimization (§3.3.1).

– LB++: Baseline lazy Barrier implementation with both proactive flush and inter-

thread dependence tracking optimizations. (§3.3).
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Figure 4.9: Execution time with varying epoch sizes normalized to NP.

4.8.2 Evaluation

In this section, we evaluate the performance overhead of achieving BSP in bulk mode.

We target the x86 architecture which supports a variant of TSO, hence the resultant

persistency model is also the same. We compare the performance of achieving BSP

relative to a baseline that provides no guarantees: No Persistency (NP). It is worth

noting that NP also stores its data in persistent memory and hence incurs its relatively

high latency. Since persist barriers are inserted dynamically by hardware in BSP, we

first perform a study to find the optimum granularity at which to insert these barriers.

We then compare the performance of various designs.

4.8.2.1 Epoch Size

In BSP, store operations are divided into epochs dynamically by hardware. How large

should the epoch size be? Smaller epochs are desirable as that would mean lesser work

lost, whereas larger epochs are expected to be more efficient. Therefore, we analyze the

performance impact of varying epoch size; we consider sizes (dynamic stores) of 300

(LB300), 1000 (LB1K) and 10000 (LB10K). We use the unoptimized persist barrier

(LB) for this study. Figure 4.9 shows the execution time of benchmarks for designs

with varying epoch sizes normalized to NP.

We observe that, on average, performance improves with increasing epoch size.

LB300 has an execution time overhead of 1.9×, whereas LB1K has a significantly

lower overhead (40% reduction with respect to the baseline). This is because increas-

ing the epoch sizes provides the opportunity for multiple writes to same cache line (be-

longing to the same epoch) to be coalesced, thereby decreasing the number of persists.
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For the same reason, we observe that LB10K performs marginally better than LB1K

– although interestingly on some benchmarks like canneal, dedup, intruder and vaca-

tion LB1K outperforms LB10K. We believe this is because epoch size increases the

number of epoch conflicts, so with persist coalescing providing diminishing returns,

epoch conflicts starts to dominate. This also explains why performance improvement

saturates beyond epoch size greater than 10000 stores (not shown).

4.8.2.2 Performance Analysis of Optimizations.

In this section, we analyze the overheads associated with checkpointing programs and

also the performance benefits of buffering, the optimizations proposed for buffering

and the impact of ATOM-OPT for enforcing strict persistency in bulk mode. We con-

sider an epoch size of 10000 for this study, as this is what gave the best results. Fig-

ure 4.10 shows the execution time of all the designs normalized to the non-persistent

design (NP).

We being by looking at the performance of a barrier enforcing strict persistency

in bulk mode, without buffering and by employing baseline logging (SB-BASE). As

shown in Figure 4.10, SB-BASE has a 126% higher execution time compared to NP.

This is primarily because all the updates in an epoch in SB-BASE have to be written to

persistent memory before executing the next epoch. Moreover, because of logging each

store translates into two writes, one for log and other for data, and the log write has

to reach persistent memory before data write can complete. When support for atomic

durability in the form of ATOM-OPT is added to a strict persistency barrier (SB) the

execution time overhead reduces to 67%, which is 59% lower than SB-BASE. ATOM-
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OPT significantly improves performance compared to baseline logging by moving log

writes to persistent memory out of the critical path. ATOM-OPT provides the maxi-

mum improvement of 138% for ssca2 because it is a write intensive benchmark and

thus generates a large number of log writes.

Now we look at the overhead of ensuring strict persistency with a buffered im-

plementation using a lazy barrier combined with ATOM-OPT to guarantee atomic

durability. The unoptimized lazy barrier (LB), reduces the execution time overhead

to 50%. Buffering without optimization reduces the execution time overhead by only

17% compared to a non-buffered implementation (SB) because on average 88% of

epochs persist due to conflicts. However, we observe that adding the IDT optimiza-

tion (LB+IDT) reduces the overhead of strict persistency to 35%. LB+IDT is able to

achieve a 15% improvement over LB because a large number (86%) of conflicts are

inter-thread conflicts, which IDT is able to optimize on. LB++ further reduces the

overhead to 30%, an improvement of 20% with respect to LB and 37% with respect

to a non-buffered implementation (SB). The performance improvement provided by

LB++ over LB is much more pronounced for some benchmarks. For instance, ssca2

sees an execution time reduction of 160% because it is a write intensive benchmark

with fine grained interaction between threads and the number of epochs that need to

persist for it is very high.

Although using our optimized persist barrier provided a significant improvement,

there is still an overhead of 30% over NP which we quantify as the overhead of check-

pointing. Since our implementation of BSP requires logging, we wanted to understand

how much of the residual overhead is due to logging. To this end, analyzed execu-

tion time for an implementation of bulk persistency using the optimized persist barrier

without performing logging (in software or hardware). We find this overhead to be

16% over NP. From this we can conclude that about half of the residual overhead of

30% on LB++ is due to logging.

We can draw the following conclusions from this evaluation. First, hardware sup-

port for logging that moves persist operations out of the critical path is essential for

performance as can be seen from the results where SB, which employs ATOM-OPT,

improves the performance over SB-BASE by 59% on average. This is primarily be-

cause logging introduces fine grained (memory operation granular) persist dependen-

cies which degrade performance even if the underlying persistency model supports re-

laxed ordering at epoch granularity. Second, buffering can help improve performance

by decoupling program execution from performance. But the extent of performance
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improvement will depend on the design of buffered models and the characteristics of

the underlying program. A sub-optimal design that does not avoid or handle conflicts

efficiently will provide limited improvement (17% improvement of LB over SB). Al-

though an optimized design can provide further performance improvement (20% im-

provement of LB++ over LB) it will vary depending on the ratio of conflicting epochs.

4.9 Related Work

Non-volatile memory (NVM) technologies have been studied for various application

scenarios, e.g., program checkpointing [59, 60, 61], databases [55, 62, 63, 64], in-

memory persistent data structures [10, 11, 12, 13, 14, 60, 65] and file systems [8, 35].

All these scenarios require support for atomic durability, which can be implemented

using either WAL or shadow paging.

Systems like Mnemosyne [13], REWIND [11] and Atlas [10] support atomic dura-

bility through write ahead logging implemented in software. Hence they rely on the

pcommit instruction which enforces the log → data ordering in the critical path of

execution. In [66], the authors propose a software approach to reducing ordering over-

head for providing atomic durability, by reducing the number of copy operations and

by persisting data in bulk. In [55], the authors propose a group commit mechanism to

amortize the cost of persist ordering constraints within a transaction. All these tech-

niques have to persist the log in the critical path.

Many hardware techniques have been proposed to avoid persisting the log in the

critical path of execution. NVHeaps [12] relies on epoch barriers [7, 8] to persist the

log out of the critical path. Implementing epoch barriers, however, requires significant

changes to the cache hierarchy. Besides, their efficacy is limited (and hence perfor-

mance sub-optimal) for smaller epoch sizes (§4.8.2.1). In a concurrent proposal [48],

the authors propose delegated persist ordering that, similar to our posted log opti-

mization, enforces ordering constraints at the memory controller. However, they only

provide ordering but not atomic durability. In LOC [51], the authors provide hardware

support for atomic durability through redo logging. Their proposal again requires ex-

tensive changes to the cache hierarchy along with support for multi-versioned caches.

Kiln [46] provides atomic durability in presence of a non-volatile cache (NVC).

Having an NVC eliminates the requirement of logging by allowing NVC and NVM to

hold two versions of a cache line where one of the versions can conceptually be con-

sidered as a log. Memory controller optimizations [53, 52, 54] have been proposed to
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improve the performance by differentiating between log writes and data writes. These

proposals are broadly aimed at reducing latency of persist operations and are comple-

mentary to our proposal of removing log writes from the critical path.

Pelley et al. propose the concept of memory persistency models in terms of per-

sist ordering constraints [7]. In [47] the authors analyze dependencies that need to

be satisfied to implement transactions under various persistency models and propose

optimizations to improve performance. These proposals broadly deal with reducing

dependencies across transactions and are complimentary to our approach of reducing

dependencies within a transaction.

Recently, redo logging for atomic durability was proposed in [15]. After complet-

ing an atomic update, the backend controller reads the log entries from the log area in

memory and updates data in-place. Reading log entries after each update places addi-

tional pressure on the memory read bandwidth and can significantly delay the critical

read requests coming from the processor. Another drawback is that it can lead to mul-

tiple log entries for the same data if the data gets modified multiple times during an

atomic update (§4.7.2.4). They also need a victim cache to avoid spilling dirty cache

lines into memory.

NVM cannot be used as a drop-in replacement for disks without modifying the

surrounding software stack [55, 63, 67]. In systems with NVM, the synchronization

overheads of a centralized log are high and hence there have been proposals for using

per-thread distributed logs [62, 63]. In ATOM, however, the log space is centralized

and shared across all threads to reduce fragmentation and improve utilization. We

overcome the synchronization overhead by partitioning the log space into buckets and

managing log space at bucket granularity in hardware.

ATOM provides atomic durability and relies on software locks to provide isola-

tion [10]. But it can be adapted to leverage other ways to provide isolation such as

hardware transactional memory (including but not limited to Intel’s Transactional Syn-

chronization Extentions [21] and [38]).

Techniques like WSP [58] have been proposed, which save the entire execution

state in persistent memory on a power failure. They rely on a small battery backup

to flush caches and store processor state. Although this technique works in case of

power failure, it is not clear as to how it can be used in case of other failures such as

software crashes. In contrast, BSP guarantees persistence and recovery for any kind of

failure. TSP [68], on the other hand, discusses tradeoffs in fault tolerance mechanisms,

depending on the failure model (software crashes, power failures etc.).
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4.10 Summary

Many classes of applications, like databases, reason about crash consistency by using

primitives like atomic durability. We highlighted that the common approach to provide

support for atomic durability via software logging is inefficient in persistent memory

systems. Specifically, we showed that software logging adds log writes to the criti-

cal path of programs and can severely degrade performance. We proposed ATOM, a

hardware log manager for undo logging, based on the observation that logging is pri-

marily a data movement task. To move log write operations out of the critical path,

we proposed a posted log optimization, where the log writes are posted to the memory

controller. Additionally, we presented a source log optimization to reduce redundant

data movement by allowing the memory controller to perform logging in certain sce-

narios. Our evaluations showed that ATOM improves performance by 27% to 33% for

micro-benchmarks and by 60% for large-scale transactional workload (TPC-C) over a

baseline undo log design.

We also presented a hardware checkpointing mechanism by implementing buffered

strict persistency in bulk mode. Specifically, we showed that the efficient lazy bar-

rier (LB++) can be used to create checkpoints which can made atomically durable by

leveraging ATOM. Our evaluations using a subset of PARSEC, SPLASH and STAMP

benchmarks showed that applications can be checkpointed with only a 30% execution

time overhead compared to a non-checkpointed execution.



Chapter 5

DHTM: Durable Hardware

Transactional Memory

5.1 Introduction

Previous chapters presented the design of an ordering and an atomic durability prim-

itive. This chapter presents the design of a primitive to support ACID transactions,

where updates within a transaction are made visible (to other transactions) as well as

durable (to non-volatile medium), in an atomic manner. While the database community

has developed a plethora of techniques to guarantee ACID efficiently, these techniques

have predominantly been developed with slow block based media in mind. When ap-

plied to in-memory settings, such techniques tend to spend a significant amount of time

on concurrency control [69, 70, 71] and logging [63, 69, 72]. This leads us to ask the

question: How fast can we enforce ACID in the presence of fast persistent memory?

Our Approach. Our primary goal is to design an HTM that can support ACID trans-

actions efficiently. A secondary goal is to extend the supported transaction size by

supporting overflows from the L1 cache to the last level cache (LLC) without adding

significant complexity to the coherence protocol or the LLC.

One way of achieving these goals is to leverage existing unbounded HTM de-

signs [38, 39, 40] that rely on logging to support overflows and make those logs

durable [73]. However, such an approach, where durability is treated as a secondary

consideration, will have poor performance as persisting the log and/or the data will be

in the critical path.

We advocate an alternative approach in which durability is a first class design con-

straint. We propose Durable Hardware Transactional Memory (DHTM) in which we

75
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integrate a commercial HTM like RTM [21] with hardware support for redo logging.

DHTM achieves atomic visibility by leveraging RTM. Whereas for achieving dura-

bility, DHTM provides architectural support for transparently and efficiently writing

redo log entries to a durable transaction log maintained in persistent memory; the key

efficiency enabler here is our novel mechanism for collating and flushing log entries

without consuming excessive memory bandwidth. The redo log based design allows

us to commit a transaction as soon as all the log entries have been written to persis-

tent memory, without waiting for data to be made durable. DHTM then extends the

supported transaction size, by leveraging the same logging infrastructure for also sup-

porting L1 overflows. When the write set of a transaction overflows from the L1 cache,

DHTM logs the address of the overflowed cache line and leverages the log to commit

(or abort) the transaction. DHTM supports this with minor changes to the coherence

protocol and without adding any additional transaction tracking hardware to the LLC.

In summary, our key contributions are:

– We propose DHTM, the first complete hardware solution for an ACID compliant

transactional memory system which is not bound by the size of the L1 cache.

– We enforce ACID efficiently by leveraging RTM [21] for atomic visibility and by

providing atomic durability via hardware support for redo logging. We also propose

a mechanism for coalescing log entries to reduce the required memory bandwidth.

– We extend the supported transaction size by allowing for the transaction’s write set

to overflow from the L1 to the LLC by leveraging the same logging infrastructure for

handling these overflows. We accomplish this with only minor changes to coherence

protocol.

– Our evaluation shows that DHTM outperforms the state-of-the-art [73] by 21% to

25% on average across TATP, TPC-C and a set of micro-benchmarks.

5.2 Related Work

Recently, there have been multiple proposals for providing ACID updates to persis-

tent memory. These proposals are classified in Table 5.1 based on how they enforce

atomic visibility and atomic durability. The first class of designs [10, 11, 13, 16]

support atomic durability via software logging by employing flushing and ordering

instructions. Ensuring atomic durability in software, however, comes at a signif-

icant performance cost [15, 51, 53, 48, 74] which motivated the development of

the second class of designs that either employ hardware support for atomic durabil-
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Designs Atomic
Visibility

Atomic
Durability

Transaction
Size

LLC Ex-
tenstions

Atlas [10],

REWIND [11],

Mnemosyne [13],

DudeTM [16]

Locks or

STM

Software Not limited None

NVHeaps [12]*,

WrAP [15], LOC [51],

Kiln [46], [60],

DPO [48]*, DCT [47]*,

ATOM [73],

HOPS [74]*, [75],

[76], [77]

Locks or

STM

Hardware Not limited [12], [15],

[51], [46],

[60], [75]

DudeTM [16],

PHyTM [17],

cc-HTM [18], [78]

HTM Software L1 limited None

PTM [24] HTM Hardware L1 limited Yes

DHTM HTM Hardware LLC Limited None

Table 5.1: Classification of techniques supporting ACID updates on persistent memory.

(* Leverage hardware support for ordering to provide atomic durability.)

ity [15, 51, 46, 73, 75, 76] or leverage hardware support for ordering to guarantee

atomic durability [12, 48, 47, 74]. However, both of these classes enforce atomic visi-

bility in software using software transactional memory (STM) or locks.

Another approach to ACID is to leverage commercially available Hardware Trans-

actional Memory (HTM), which is the focus of the remaining classes of designs. How-

ever, current commercially available HTM systems have two limitations. First, they

efficiently support only small transactions [19, 20, 21, 22, 23]; if a cache line written

within a transaction is evicted from the L1, the transaction must abort. The severity

of the problem has been highlighted by a recent study which finds that transactions

whose write-set size is larger than 128 cache lines (quarter of L1 size) is highly likely

to abort [79]. This L1 limitation can significantly limit usability and efficiency for

ACID transactions, which tend to have relatively large write working-set sizes (Sec-
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tion 5.5).

Second, HTM systems only provide ACI guarantees, i.e., atomic visibility but not

atomic durability. To guarantee ACID, the third class of designs [16, 17, 18] leverages

the HTM for atomic visibility and integrates it with software support for atomic dura-

bility. The latter requires the writing of a log entry for every modified object within

the transaction, thereby increasing the transaction write-set (and the abort rate). The

fourth class supports ACID by integrating HTM with hardware support for durability.

However, PTM [24] (the only proposal in this class) not only introduces significant

changes to the cache hierarchy, but also continues to suffer from the L1 limitation.

5.3 DHTM Design

In this section we present the design of our durable HTM (DHTM), that adds support

for durability on top of a commercial RTM-like HTM design.

System Model. For the following discussion, we assume a multicore processor with a

two level cache hierarchy consisting of private L1 caches and a shared last level cache

(LLC). The private L1s are kept coherent using a MESI directory based coherence

protocol with forwarding (similar to the one in section 8.2 in [33]). We assume the

directory is held in the LLC with each cache line maintaining the coherence state and

sharing vector. We assume a baseline HTM similar to Intel’s RTM. We assume that the

HTM supports strong isolation. Finally, we assume that memory is non-volatile and

byte addressable. It is worth noting that the above model is mainly to help anchor our

description and as such, none of these choices are fundamental to DHTM.

Overview. At a conceptual level, adding durability to an HTM requires some form of

logging. Figure 5.1(a) shows a volatile transaction at the top and the corresponding

read and write sets at the bottom. The transaction reads X (read set) and writes to X

and Y (write set). One way for this transaction to be made durable is by executing the

code sequence shown on the top in Figure 5.1(b), which additionally writes log entries

for the data being modified. The resultant read set of the persistent transaction remains

the same, but the write set consists of Log X , X , Log Y and Y . Thus, adding support for

durability essentially doubles the write-set size of transactions. This is a challenge on

current RTM-like HTM designs which already limit the write-set size. To compound

matters, applications that demand ACID tend to have relatively large transaction sizes.

Therefore, one of our goals is to support transactions with a larger write-set size rel-
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Begin_Transaction
Read (X)
Write (X)
Write (Y)

End_Transaction

Begin_Transaction
Read (X)
Write (Log X)
Write (X)
Write (Log Y)
Write (Y)

End_Transaction

Read Set = {X}
Write Set = {X, Y}

Read Set = {X}
Write Set = {Log X, X, Log Y, Y}

(a) (b)

Figure 5.1: Working set sizes for transactions (a) without including durability log and (b)

with durability log.

ative to those supported by current commercial HTMs. But in the quest for larger

transactions, we do not want to introduce significant hardware complexity; in partic-

ular, we do not want to introduce changes to the shared LLC like adding transaction

tracking hardware or searching the LLC for cache lines belonging to the write set –

something that current HTM designs avoid.

Our approach is to integrate hardware based redo logging to an RTM-like HTM.

For atomic visibility DHTM leverages the RTM-like HTM and for atomic durability

it employs hardware redo logging. Since logging is performed transparently, DHTM’s

programming interface is similar to that of volatile transactions (Figure 5.1(a)).

DHTM’s redo logging mechanism leverages the L1 cache write-back interface to dy-

namically write redo log entries to persistent memory for cache lines being modified

within a transaction. Furthermore, DHTM allows dirty cache lines to overflow from the

L1 cache into the LLC without causing an abort. This increases the transaction size

with minor changes to the coherence protocol and without adding significant design

complexity (in particular, without adding transaction tracking hardware to the LLC).

Below, we first describe DHTM’s hardware logging mechanism. Then, we describe

how logging integrates with the HTM, followed by the description on how DHTM

manages overflow.

5.3.1 Logging for Durability

We ensure atomic durability using write-ahead logging. The idea is to maintain a

persistent copy of the old and new versions at all times during the transaction, so that
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the state can be recovered to either of the versions. This persistent copy is maintained

in the form of log entries which consist of the address and the old or new version of

data. In this section we provide a design for a redo-log based implementation to work

in conjunction with HTM.

Why Redo-Logging? We choose a redo-log based design as it allows us to have

both fast commits as well as fast aborts. In volatile transactions, undo-logging sup-

ports faster commits because, on transaction completion all the in-place updates would

have already taken place (in the cache); commit therefore only requires two simple

steps: discarding the undo-log and flash-clearing the speculative write-bits to make the

write-set visible to other threads. Durable transactions, however, impose additional

constraints. Both the undo-log entries and the write-set (data) have to be written to

persistent memory – only then, can the transaction be committed. While techniques

have been proposed for minimizing the fine grained ordering overheads while writing

log entries [73], flushing the write-set can significantly increase commit time.

Redo-logging, in contrast, requires only the redo-log entries to be written to per-

sistent memory at commit time. This is because the redo-log, in addition to serving as

a recovery log in case of a failure, can also provide the up-to-date values on commit.

This allows for the data updates to be written to persistent memory in the background,

and out of the commit critical path. One traditional drawback of redo-logging is that,

because writes are not allowed to overwrite previous values, subsequent reads to those

addresses need to be redirected to the redo log. Our proposed hardware based redo-

logging mechanism overcomes this limitation by allowing writes to overwrite previous

values in the cache. A subsequent read can therefore directly read the updated value

from the cache. It is worth noting, however, that the writes do not overwrite the old

values in memory but are written to a separate redo-log area. Lastly, aborts are also

faster with redo-logging and only require two simple steps: discarding the redo-log

and invalidating the modified lines in the cache.

Log management. In the DHTM design, the transaction log space is thread private and

is allocated by the operating system (OS) when the thread is spawned. The OS keeps

track of all the logs it has allocated so that it can recover transactions from logs in case

of a system crash. This per thread transaction log is organized as a circular log buffer

similar to Mnemosyne [13]. On a log overflow, DHTM aborts the transaction with an

indication that the abort is because of log overflow. The OS in this case allocates a

larger log space for the thread and the transaction is retried.
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Hardware Support. One of the design goals of DHTM is to write log entries to the

transaction log in persistent memory without adding them to the write-set. To this end,

logging is performed in hardware in DHTM, allowing DHTM to differentiate between

log writes and data writes. The L1 cache controller is modified to enable it to write

log entries to persistent memory by bypassing the LLC as shown in the Figure 5.2(a).

The L1 cache controller creates these log entries on the fly at a word granularity for

every store within a transaction. Figure 5.2(b) shows the log writes that the L1 cache

controller performs.

Log coalescing. Writing a word-granular redo-log entry for every store can generate a

large number of log entries which can consume significant amounts of memory write

bandwidth. Figure 5.2(b) highlights this with an example. Let us assume that each

cache line consists of two words (all words belonging to cache lines A and B are ini-

tially 0); the subscript for each cache line refers to the word in the cache line that is

being modified. Performing word-granular logging generates 5 log writes across the

memory bus for 5 store requests to different words in cache lines A and B. The band-

width consumed can be mitigated to some extent by coalescing multiple log entries

into one cache line before writing them to memory. Nonetheless, creating a log entry

for every store request is problematic. Recall that each log entry is composed of the

data and the address (metadata). The finer the granularity of logging, the greater the

amount of metadata, which in turn translates into higher bandwidth consumption. Sec-

ond, logging for every store request might miss opportunities for coalescing multiple

stores to the same word via a single log entry. For example, in Figure 5.2(b) the word

A0 gets written to twice which leads to the creation of 2 log entries, however only the

second log entry would have sufficed.

An alternative is to perform logging at cache line granularity. But naively creating a

log entry for every store request will only worsen the memory bandwidth consumption.

At the same time, the final state of a cache line (at the end of a transaction) must be

logged for correctness. If we can predict the final store to a cache line, that would be

an opportune moment to log that cache line, since that would minimize the number of

entries logged for that cache line. It is important to note that the prediction must be

conservative, in that, it must not miss the last store under any circumstance.

We conservatively predict the final store to a cache line via a simple structure called

log buffer that is added to the L1. The log buffer is a fully associative structure with a

small number of entries that keeps track of cache lines with their cache line addresses

(our design has 64 entries). When a store is performed, the corresponding cache line
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L1 $ L1 $

LLC

Persistent Memory Log

Log Writes

(a) Log Write Path

Memory Bus

L1 $

Log Area

Begin A₀ = 1 A₁ = 2 A₀ = 3 B₀ = 1 B₁ = 2 End

A₀ : 1 A₁ : 2 A₀ : 3 B₀ : 1 B₁ : 2

(b) Hardware redo-log at word granularity. Each redo-log entry consists of (address, new value) pair.

Log Area

Memory Bus

L1 $

Log Buffer

Begin A₀ = 1 A₁ = 2 A₀ = 3 B₀ = 1 B₁ = 2 End

A:32 B:12

A:10 A:12 A:32 B:10 B:12

(c) Hardware redo log at cache line granularity using a log buffer.

Figure 5.2: Redo logging in hardware.

address is added to the log buffer (if not already present). A log entry is written to per-

sistent memory only when an entry is evicted from the log buffer. An entry is evicted

from the log buffer under two situations: (a) when the log buffer is full, an eviction
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has to happen in order to make space for a new cache line address; (b) when an L1

cache line is replaced and the log buffer holds the corresponding address, the address

is evicted from the log buffer. Thus, we use eviction from the log buffer as a proxy

for predicting the last store to a cache line; in practice, this simple policy works well

because write reuse distance (when there is reuse) is typically low for transactional

workloads. When an entry is evicted from the log buffer, the redo-log entry for that

cache line is created as usual by composing the address with the contents of that cache

line from the L1 cache. Then, the redo-log entry is written to persistent memory –

in doing so, the stores to one cache line are temporally coalesced, such that all these

coalesced stores get only one log write. Finally, at the end of the transaction, all of the

cache lines being tracked in the log buffer are logged to persistent memory. It is im-

portant to note that this log buffer is different from the log buffer used in LogTM [38].

LogTM uses a buffer to reduce the contention for the L1 cache port and to hide L1

cache miss latency whereas the buffer in DHTM is to coalesce log writes to the same

cache line and to predict the last write to a cache line.

Figure 5.2(c) shows the previous example in the presence of a single entry log

buffer. Initially the buffer holds cache line A while it is being modified. When cache

line B has to be written to, the updated value of cache line A is written to the log area in

memory and the buffer now holds cache line B. Eventually when the transaction ends,

a redo log entry for B is also written to the log area. In this simple example, 5 store

requests now need only 2 log writes over the memory bus.

5.3.2 Integrating Logging with HTM

In this section, we will describe how to integrate our logging mechanism with an RTM-

like HTM. This section will assume that the transaction will abort on a write-set over-

flow from the L1; we will handle write-set overflows in the next section.

Overview. Committing a volatile transaction requires that the read/write-set tracking

structures be cleared and that the speculative state be made visible to other threads.

In addition to the above steps, in order to commit a durable transaction (with redo-

logging), the redo-log entries must be written to persistent memory. Recall that the

data updates (write-set) can be written to persistent memory lazily and out of the com-

mit critical path. Conflict detection works identically to a volatile transaction. Non-

transactional accesses also safely integrate with DHTM, similar to RTM, by aborting

an ongoing transaction if it conflicts with a non-transactional access. Aborts also are



84 Chapter 5. DHTM: Durable Hardware Transactional Memory

End Transaction
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Log Records
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Begin 
Transaction

In-place Data 
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Conflict
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Abort
Complete
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(a) States of a transaction (without overflows).
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(b) States of a transaction (with overflows).

Figure 5.3: Transaction States. A core can start executing subsequent non-

transactional instructions after reaching Commit /Abort and can start a new transaction

after reaching Commit Complete/Abort Complete.

largely identical, with an added step of (logically) clearing the redo-log for the trans-

action. Thus, a durable transaction can be expressed in the form of a state diagram as

shown in Figure 5.3(a), with the following states: Active, Commit, Commit Complete

and Abort Complete. Below, we discuss these in more detail.

Commit. Upon reaching the end of the transaction, and having written all redo-log

entries to persistent memory, the transaction effectively commits. To mark that the

transaction has committed, DHTM writes a commit log record to the log area. The L1

cache controller then starts writing back the cache lines belonging to the write set of

the committed transaction via the cache write-back interface. DHTM does not flash

clear the write bit associated with cache lines on a commit, instead it clears those bits

once a write-back is issued for the corresponding cache line. After writing back all the

modified cache lines to persistent memory, DHTM marks the transaction as completed

by writing a complete log record to the log area. Writing a complete log record is not

a correctness requirement but reduces recovery time on a failure (as we shall see in the
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section on recovery). Once a transaction has committed, DHTM can start executing

non-transactional code following the transaction. But since DHTM has only one set of

write bits per cache line, it cannot start executing a new transaction until the previous

transaction has completed. This is because, in order to complete a transaction, DHTM

relies on these write bits to identify the modified cache lines that need to be written

back to persistent memory.

In the DHTM design, there is a window between the commit point of a transaction

and its completion point (when the cache lines modified in the transaction are being

written back to persistent memory and are being marked as non-speculative) during

which a conflict might be detected incorrectly. For example, consider that a transaction

TA tries to modify a cache line X . But X has already been modified by a committed but

not yet complete transaction TB, and has not yet been marked as non-speculative. In

such a scenario a conflict will be detected incorrectly. DHTM sidesteps this problem by

also consulting the state of the transaction during conflict detection; as the transaction

status of TB indicates that it has committed, DHTM does not raise a conflict in this

situation. Additionally, DHTM inserts a sentinel log entry in the transaction log of

both TA and TB indicating that transaction TA is dependent on the updates of transaction

TB. This sentinel log entry enables the recovery manager to decide the correct order of

replay for transactions with conflicting updates.

Abort. In DHTM a transaction can be aborted for various reasons including, write-set

overflows, context switches etc. However, irrespective of the reason, the abort proce-

dure remains the same. Aborting a volatile transaction requires that the read/write-set

tracking structures be cleared and that the speculative state be invalidated. To abort a

durable transaction, in addition to the above steps, the log entries need to be cleared.

DHTM logically clears the log entries by writing an abort log record, effectively mark-

ing the log entries as being part of an aborted transaction.

Recovery. At the time of failure, a durable transaction can be in one of the following

states: Active, Commit, Commit Complete, or Abort Complete. The recovery manager

does not have to do anything for transactions in Active or Abort Complete state as none

of the updates of the transactions would have been written back in-place in persistent

memory. In other words, persistent memory has the pre-transaction state for those

transactions. For committed but not completed transactions (transactions in Commit

state), the recovery manager reads the log entries and writes the updated values in-

place in persistent memory, thus recovering the updates of the transaction. Finally,
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for completed transactions (in Commit Complete state) the recovery manager does not

have to do anything, since all of their updates would have already been written back

in-place in persistent memory. In the absence of a complete log record, the recov-

ery manager would have had to copy all the updates from the log area to in-place in

persistent memory. Thus the writing a complete log record helps reduce the recovery

time.

The replay order of committed but not complete transactions does not matter as

long as they do not have conflicting updates. For transactions with conflicting updates,

the recovery manager infers the required replay order by looking at the sentinel log

entries in the relevant transaction logs.

The recovery manager is implemented as an operating system service which is in-

voked upon system re-start. As described earlier, the OS keeps track of all the logs

it has allocated which it also registers with the recovery manager on creation and de-

registers when the the log is deallocated. When the recovery manager is invoked, it

scans all the registered logs and restores all the committed but not completed transac-

tions.

5.3.3 Handling Overflow

The design described above continues to suffer from the transaction size limitation that

is typical of an RTM design. We now describe an extension that allows the write-set

of a transaction to overflow the L1 cache without aborting the transaction. Consistent

with current commercial HTM designs, our proposed extension also does not require

expensive operations at the LLC (e.g., searching for cache lines belonging to a partic-

ular transaction), making it amenable to commercial adoption. We first summarize the

challenges in supporting overflow efficiently and then describe our approach.

Challenges. Commercial HTM designs like RTM allow the read-set to overflow the

L1 cache. Conflicts are detected with the help of the overflow signature maintained

in the L1 cache, which tracks the addresses of cache lines that have overflowed. On a

transaction commit or an abort, the overflow signature is cleared; importantly, nothing

needs to be updated in the LLC. In contrast, RTM-like designs do not support write-

set overflows from L1. This is because, aborting a transaction requires that the HTM

invalidate all the cache lines belonging to the write-set. Whereas this can be done in

private L1 cache by flash invalidating the cache lines, doing this for a shared struc-

ture as large as the LLC is expensive and involves non-trivial changes (indexing and
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searching operations). With durable transactions, a commit would also require a sim-

ilar operation at the LLC: all the cache lines that have overflowed must be identified

and written back to persistent memory.

Overview. Our DHTM design allows for the write set to overflow from the L1, with

minor changes to the coherence protocol and without requiring any structural changes

to the LLC. Our key idea is to leverage the redo log (which holds the speculative

state of the transaction) for handling write-set overflows, thus obviating the need for

expensive changes to the shared LLC.

DHTM handles write-set overflow by allowing for cache lines belonging to the

write-set to be replaced from L1 to LLC; 1 in order to enable conflict detection the

coherence state of the cache line in LLC is kept unchanged, however. This ensures

that the LLC continues to show the cache line as being owned by the core executing

the transaction. Therefore any coherence message will continue to be forwarded to the

owner’s L1, wherein a potential conflict can be detected. It is worth noting that our

idea of using stale coherence state for conflict detection is similar to the sticky state

solution used in LogTM [38]. Therefore, the resulting coherence protocol extensions

in DHTM are similar to the sticky state extensions of LogTM.

While maintaining stale state in the LLC helps in conflict detection, we also need

a mechanism to identify all the cache lines that have overflowed from L1 to LLC for

versioning. To this end, DHTM maintains an overflow list along with the redo log

in memory. When a dirty cache line overflows from L1 to LLC, DHTM writes the

address of the overflowed cache line to the overflow list. On a commit or an abort,

DHTM uses the overflow list to identify the write-set cache lines that have overflowed,

and writes them back to persistent memory (in case of a commit), or invalidates the

corresponding LLC cache line (in case of an abort).

The recovery procedure remains the same with overflows, since the cache lines be-

longing to the write-set that overflowed the L1 cache are already present in the redo

log. In summary, a durable transaction with write-set overflows can be expressed in the

form of a state diagram as shown in Figure. 5.3(b) with the following states: Active,

Commit, Commit Complete, Abort and Abort Complete. One key difference with over-

flows is that like commits, aborts now require a completion phase. Below, we discuss

this in more detail.

Commit. After writing the commit log record to the log area and issuing write backs

1If LLC cache line is already dirty, the old LLC dirty block is first written back to memory.
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for all the write-set cache lines in the L1 cache, DHTM reads the overflow list corre-

sponding to the committing transaction (recall that the overflow list contains addresses

of all the dirty cache lines that have overflowed from the L1 cache). It then sends write

back messages for those cache lines to the LLC. On receiving a write back request, the

LLC writes back the relevant cache line in-place in persistent memory and also tran-

sitions the cache line to a clean state and clears its sharer vector. After writing back

all the cache lines in place in persistent memory, DHTM writes a complete log record

to the transaction log and then transitions the transaction status to Commit Complete.

This completion operation ensures that the LLC correctly reflects the status of over-

flowed write-set cache lines belonging to the transaction and eliminates any need for

LLC modifications to clear such state.

Conflict Detection. Recall that conflicts are detected at the L1 controller, by checking

coherence requests against the read/write-bits associated with cache lines or the read

overflow signature. In order to enable conflict detection in the presence of write-set

overflows, we need to ensure that coherence requests for the overflowing cache lines

continue to reach L1. To this end, when a dirty block overflows from the L1, the

coherence state of the LLC is kept unchanged. Specifically, when an L1 receives a

Fwd-GetM request or a Fwd-GetS request for a cache line that is not present in L1,

DHTM infers that the request corresponds to a cache line that has overflowed from the

L1. Therefore, a conflict is detected and the transaction issuing the request is aborted

(because of first writer wins policy).

Abort. To abort a transaction, DHTM first invalidates the cache lines belonging to the

write-set in L1 as described in Section 5.3.2. But additionally, the cache lines in LLC

that overflowed from the L1 will also need to be invalidated. Therefore, in the presence

of overflows, abort also has a completion phase as shown in Figure 5.3(b).

In the completion phase, DHTM reads the cache line addresses from the overflow

list in the transaction log and issues invalidate requests for those cache lines to the

LLC. The LLC invalidates the cache lines on receiving an invalidate message. Similar

to the completion phase of commit (Section 5.3.2), the completion phase for abort can

continue in parallel with the execution of other non-transactional instructions, but a

subsequent transaction cannot begin until this phase completes. However, differently

from a commit, DHTM does not (need to) write an abort complete log record for an

aborted transaction as the state that needs to be invalidated is in volatile caches and

will anyway be lost on a system crash.
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One corner case concerns cache lines that have been reread back into the L1 during

the transaction, after overflowing from the L1 to the LLC. When such a transaction

aborts, these reread cache lines must be identified as belonging to the write-set and

invalidated by the L1. Such reread cache lines are correctly identified by DHTM as

follows. When being reread, DHTM will look at the state of the cache line and the

sharer vector; if the cache line is dirty and its state is in modified state with the requester

marked as its owner, DHTM will identify the cache line as belonging to the write-set

and will set the write-bit in the L1. This ensures that such reread cache lines are

invalidated on an abort.

It is worth noting that, as opposed to existing proposals for supporting overflow

(such as LogTM) DHTM does not stall requests from other transactions. Consider

the case where transaction TA has modified cache line X which then overflowed to the

LLC. TA is subsequently aborted because of a conflict. While TA is in the process of

aborting, another transaction TB issues a read for cache line X . Because of the eager

version management of LogTM, the read for X cannot be completed until X has been

reverted to a non-speculative state from the undo log. Therefore, LogTM would NACK

the read request for X while waiting for the abort process of TA to end and TB will have

to subsequently re-issue the read. This adds significant complexity to the coherence

protocol. DHTM on the other hand has non-speculative data in memory because it

maintains a redo log for atomic durability. Therefore, it can immediately complete the

read for X by fetching it from memory. In summary, DHTM maintains the simplicity

of an RTM like design while allowing for overflows from the L1 to the LLC.

5.4 Putting it Together

In this section we first explain through detailed examples, the life cycle of a transaction.

We also quantify the overall hardware overhead and finally describe a software fallback

mechanism for transactions that do not fit in DHTM.

Transaction Lifecycle. Figures 5.4 and 5.5 collectively show the life cycle of a trans-

action. Figure 5.4 shows the initial setup phase (steps (a) through (d)) of a transaction

and Figure 5.5 shows commit ((e) and (f)) and abort ((g) and (h) steps. For this exam-

ple, let us assume a dual-core processor. Each figure shows three views: (i) L1 view

from the perspective of core 1, showing L1 cache lines with their read/write-bits, a

single entry log buffer, the read overflow signature and transaction status register; (ii)

LLC view, showing for each cache line, its coherence state, sharer vector and dirty
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bit; and (iii) Persistent memory view, showing the overflow list, log area and in-place

values of cache lines in persistent memory.

(a) Initial state. The transaction is in Active state and has already modified cache line

A with a value of 15 and has already read cache line B. No transactional data has

overflowed from the L1. The LLC has cache lines A and B owned by the core 1 in

modified state.

(b) Write B. The transaction modifies the value of cache line B to 25. Therefore,

DHTM sets the write-bit for cache line B. Also, cache line A needs to be evicted from

log buffer (to make space for cache line B), so its updated value of 15 is written to the

redo log area.

(c) Read C. The transaction reads cache line C, because of which cache line A gets

replaced from the L1 cache. Therefore, cache line A is written back to LLC and its

dirty bit is set, but the coherence state of cache line A is not changed. Also, the address

of cache line A is written to the overflow list in memory. Cache line C is present in the

LLC in shared state, its sharer vector is updated to add core 1 as a sharer and the cache

line is brought to the L1 with its read-bit set.

(d) Write E. The transaction writes 55 to cache line E. This leads to cache line C

being replaced from L1. Before being replaced, the address of cache line C is added

to the read overflow signature (but because of inherent imprecision, let us assume that

the signature conservatively shows both C and D as its members). Since cache line E

is not present in the cache hierarchy, it is brought to the LLC in modified state with the

sharer vector showing core 1 as the owner. The cache line is also added to L1 cache

where it is updated and its write-bit is set. Since cache line E also needs to be added to

the log buffer, cache line B is removed from the buffer and its updated value is written

to the transaction log.

(e) Commit. When the transaction commits, cache line E is written from L1 to the

transaction log and a commit log record is also written to the log. Simultaneously, the

read-bits and the read overflow signature in the L1 are cleared and the transaction state

is updated to Commit. The transaction commits at this point and core 1 may continue

executing non-transactional instructions.

(f) Commit Complete. In the commit completion stage, the L1 writes back cache lines

B and E to LLC and clears their respective write-bits. On receiving the write backs, the

LLC updates them and also writes them back to persistent memory. Then the memory

controller reads the overflow list and issues a write back request to LLC for cache line

A. LLC on receiving the request, clears the sharer vector and dirty bit for cache line
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Figure 5.4: Flow of a transaction - Part 1.



92 Chapter 5. DHTM: Durable Hardware Transactional Memory

(e)

Persistent Memory

B = 20
C = 30
D = 40
E = 50

In-place 

A = 10

F = 60

A = 15
B = 25
E = 55
Commit

Transaction
Log

A

Write Overflow   
List

LLC

A = 15
B = 20
C = 30
E = 50

Cache Line

M
M
S
M

State

1
1
1 1
1

Sharer
Vector

1

Dirty
Bit

L1 Cache

E = 55 1
B = 25 1

Cache Line R  W

Commit

Transaction 
State

Read Overflow 
Signature

Log Buffer

(f)

Persistent Memory

B = 25
C = 30
D = 40
E = 55

In-place 

A = 15

F = 60

A = 15
B = 25
E = 55
Commit

Transaction
Log

Complete

Write Overflow   
List

LLC

A = 15
B = 25
C = 30
E = 55

Cache Line

M
M
S
M

State

1
1 1
1

Sharer
Vector

Dirty
Bit

L1 Cache

E = 55
B = 25

Cache Line R  W

Commit- 
Complete

Transaction 
State

Read Overflow 
Signature

Log Buffer

(g)

Persistent Memory

B = 20
C = 30
D = 40
E = 50

In-place 

A = 10

F = 60

A = 15
B = 25
Abort

Transaction
Log

A

Write Overflow   
List

LLC

A = 15
B = 20
C = 30
E = 50

Cache Line

M
M
S
M

State

1
1
1 1
1

Sharer
Vector

1

Dirty
Bit

L1 Cache

E = 55 1
B = 25 1

Cache Line R  W

Abort

Transaction 
State

Read Overflow 
Signature

Log Buffer

(h)

Persistent Memory

B = 20
C = 30
D = 40
E = 50

In-place 

A = 10

F = 60

A = 15
B = 25
Abort

Transaction
Log

Write Overflow   
List

LLC

B = 20
C = 30
E = 50

Cache Line

M
S
M

State

1 1

Sharer
Vector

Dirty
Bit

L1 Cache

Cache Line R  W

Abort 
Complete

Transaction 
State

Read Overflow 
Signature

Log Buffer

Figure 5.5: Flow of a transaction - Part 2.
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Register Description

Log Buffer Tracks cache lines pending log

writes

Transaction

State

Identify the state of a transaction

Log Area

Start Pointer The start address of the log space

Next Pointer Address to write the next log entry

Size Size of the log space

Overflow List

Start Pointer The start address of the overflow list

Next Pointer Address to write the next entry

Size Size of the overflow list

Table 5.2: Hardware Overhead.

A and writes it back in-place in persistent memory. Finally, a complete log record is

written to the log area, the overflow list is cleared and the transaction state is updated

to Commit Complete. At this point the transaction has completed and core 1 may begin

a new transaction.

(g) Abort. Shows the state of the system if the transaction were to abort after (d). An

abort log record is written to the log area, the read-bits and the read overflow signature

in the L1 are cleared, and the transaction status is updated to Abort. The transaction has

aborted at this point and core 1 may continue executing subsequent non-transactional

instructions.

(h) Abort Complete. In the abort completion phase, the L1 invalidates cache lines

B and E belonging to the write-set and sends invalidate messages to LLC which then

clears the sharer vector for cache lines B and E. Then the memory controller reads the

overflow list and issues invalidate message for cache line A to LLC. On receiving the

invalidate message, the LLC invalidates cache line A and clears its sharer vector and

dirty bit. Finally the transaction status is updated to Abort Complete and at this point,

core 1 may begin a new transaction.

Hardware Overhead. Table 5.2 shows the hardware overhead that DHTM adds on top

of an RTM-like HTM design. DHTM adds to the L1 cache a full-associate structure
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called the log-buffer, for keeping track of cache lines for which redo log entries need

to be written to persistent memory. It also adds a transaction state register to identify

the current state of the transaction. DHTM also adds two sets of registers to keep track

of the log area and the overflow list. The registers in each set consist of a start pointer

to identify the start address of the corresponding area, a next pointer to identify the

address where the next entry can be written to and finally a size register to keep track

of the size of each area so that an overflow can be detected.

Fallback Path. DHTM increases the limit for the transaction size from L1 cache to

LLC. However, if a transaction aborts continually because of a overflow from LLC (or

due to any other reason) then it might not be able to make forward progress. Therefore,

a fallback path must be provided. In principle integrating a software fallback path to

DHTM is no different from the ones proposed for RTM [80] because both employ a

similar mechanism for atomic visibility. In particular, this software fallback path does

not interact with hardware logging because, before initiating the fallback path DHTM

would abort the transaction (taking it to abort complete state) which clears the log. The

only difference is that our fallback will provide both atomic visibility and durability

similar to Mnemosyne [13].

5.5 Experimental Setup

We now describe our simulation infrastructure, system configuration, benchmarks and

designs that we evaluate. We implemented DHTM on the gem5 [42] simulator with

Ruby. We extend the Ruby memory model to implement DHTM functionality, with a

log buffer size of 64 entries. We evaluate DHTM on an 8-core multicore (one thread

per core) with each core containing a 32 KB private L1 and a multi-banked LLC. The

local L1s are kept coherent using a MESI based directory protocol. DHTM is built

on top of HTM that is based on an RTM-like implementation. Conflicts are detected

by piggybacking on top of the coherence protocol and the HTM employs a first-writer

wins conflict resolution policy similar to IBM POWER8 [22]. However, it is important

to note that the choice of conflict resolution policy is not fundamental to DHTM design

and it can be implemented with other policies (like requester wins) as well. Table 5.3

shows the main parameters of our system. The peak memory bandwidth in our setup

is 5.3 GB/s.

Workloads and their Characteristics. We considered two classes of workloads for
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Cores 8 In-order cores @ 2GHz

L1 I/D Cache 32KB 64B lines, 4−way

L1 Access Latency 3 cycles

L2 Cache 1MB×8 tiles, 64B lines, 16−way

L2 Access Latency 30 cycles

MSHRs 32

NVM Access Latency 360 (240) cycles write (read)

Table 5.3: System Parameters.

Workload Description Write Set

TPC-C Online transaction processing 590

TATP Mobile carrier database 167

Queue Insert/delete entries in a queue 52

Hash Insert/delete entries in a hash table 58

SDG Insert/delete edges in a scalable graph 56

SPS Random swaps between entries in an array 63

BTree Insert/delete nodes in a b-tree 61

RBTree Insert/delete nodes in a red-black tree 53

Table 5.4: Benchmarks used in our experiments along with their descriptions and write

set sizes (# cache lines).



96 Chapter 5. DHTM: Durable Hardware Transactional Memory

our study. TPC-C and TATP (the first two rows from Table. 5.4) are traditional online

transaction processing (OLTP) workloads that require ACID guarantees. We use in-

memory implementations of these workloads [11]. It is worth noting that the OLTP

workloads have write working-set sizes exceeding or comparable to the size of the L1

cache. Indeed, the write-set size of TPC-C (37 KB) exceeds the L1 cache size (32

KB) and can cause both capacity and conflict L1 misses which in turn can cause aborts

when run on an HTM. Although TATP has a write-set size of around 10 KB, because

of its access patterns, we find that there are significant conflict misses, which can lead

to aborts.

The second class of workloads (the last six rows from Table. 5.4) are micro-

benchmarks that perform atomic search, insert and delete operations on the corre-

sponding data structure. The micro-benchmarks are similar to those in the benchmark

suite used by NVHeaps [12]. We evaluate each of these micro-benchmarks with a data

set size of 3 KB, similar to ATOM [73]. It is worth noting that the write-set sizes of the

micro-benchmarks are significantly smaller than the L1 size, in contrast to the OLTP

workloads.

Evaluated Designs:

– SO: This software only design uses locks for atomic visibility and software log-

ging for atomic durability. For the OLTP workloads, we use the default software

concurrency control mechanism which uses fine-grained locking. For the micro-

benchmarks, we partition the data-structure into coarse-grained partitions with a

lock associated with each partition, to allow for concurrency across the different par-

titions. We use a software logging mechanism similar to Mnemosyne [13], wherein

log entries are flushed synchronously as soon as their values are finalized (thus ben-

efiting from coalescing as well).

– sdTM: This design (software durability + hardware transactional memory) is based

on PHyTM [17], which uses HTM similar to Intel’s RTM for atomic visibility. We

disable the software concurrency control mechanism in the benchmarks and instead

enclose each transaction within a hardware transaction. We use software logging

similar to Mnemosyne for atomic durability.

– ATOM: This design uses locks (similar to the SO design) for atomic visibility.

It uses the state-of-the-art hardware undo logging mechanism for atomic durabil-

ity [73].

– LogTM-ATOM: This design uses LogTM [38] like HTM for atomic visibility and
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integrates it with ATOM [73] for atomic durability, thus employing an eager version

management mechanism. It is worth noting that this represents a new design that

has not been studied previously.

– DHTM: This is our proposed design which supports atomic visibility by using HTM

similar to Intel’s RTM and atomic durability by using hardware based redo logging.

It also allows the write set to overflow from the L1 to the LLC.

5.6 Results

In this section, we quantitatively compare the performance of the evaluated designs on

the micro-benchmarks. We then present studies to better understand where the DHTM

gains are coming from. One important parameter that could affect the efficacy of

DHTM is the size of the log-buffer. Therefore, we quantify its impact. We also evaluate

the efficacy of the designs on TPC-C and TATP workloads. Finally, we analyze the

overheads of persistence by comparing our design with a non-persistent design.

5.6.1 Transaction Throughput

Figure 5.6 shows the transaction throughput of all the evaluated designs normalized

to the software-only (SO) design, on the micro-benchmarks. As we can see, sdTM

provides an average throughput improvement of 20% over SO. Recall that sdTM uses

HTM for concurrency control which can potentially uncover more concurrency, espe-

cially in workloads where locking is coarse-grained. On the other hand, sdTM can

suffer the negative effects of rollbacks in situation where the HTM aborts frequently.

Table 5.5 shows the abort rates for the workloads for the sdTM design. In general,

we can observe a correlation between the abort rates experienced by various work-

loads and the throughput improvement over SO. In particular, for the rbtree workload

which experiences a significant 46% abort rate, sdTM provides only a minimal 5%

improvement over SO.

We can also observe than ATOM provides a more robust average improvement of

35% over SO. Recall that ATOM uses the same concurrency control mechanism as SO

(locks), but provides faster atomic durability by performing undo-logging in hardware.

Interestingly, we can see that ATOM has a comfortable 15% advantage over sdTM

because of the aborts experienced by the latter.

Our DHTM design provides the best throughput improvement amongst all compet-



98 Chapter 5. DHTM: Durable Hardware Transactional Memory

Figure 5.6: Transaction throughput normalized to SO.

queue hash sdg sps btree rbtree Ave.

sdTM 68 19 23 27 37 46 37

DHTM 46 5 13 16 18 26 21

Table 5.5: Abort rates for sdTM and DHTM designs.

ing designs. On average, DHTM improves transaction throughput by 61% compared to

SO. In comparison to SO, it can achieve faster durability by way of hardware logging

and can also uncover more concurrency. In comparison with sdTM, DHTM improves

transaction throughput by 41%. It not only benefits from faster durability, but also

benefits from fewer aborts because DHTM supports write-set overflows from the L1.

This is evidenced in Table 5.5, where we can see that DHTM suffers from a relatively

lower 21% abort ratio in comparison with the 37% abort ratio of sdTM. In comparison

with ATOM, DHTM provides a 26% higher improvement in transaction throughput.

DHTM not only benefits from better concurrency (because of HTM), but also because

logging is faster in DHTM. Indeed, because ATOM uses undo-logging, it suffers from

the overhead of persisting in-place data in the commit critical path. In contrast, because

DHTM uses redo-logging, data can be persisted out of the critical path.

Finally, we look at LogTM-ATOM which implements eager version management

for both atomic visibility and atomic durability as opposed to hybrid version manage-

ment on DHTM. On average, DHTM provides 17% higher improvement in throughput

compared to LogTM-ATOM. Since both designs implement eager version manage-

ment for atomic visibility, the difference in performance between the two designs is
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SO ATOM DHTM

TPC-C 1 1.67 1.88

TATP 1 1.27 1.53

Table 5.6: Transaction throughput for ATOM and DHTM normalized to SO for TPC-C

and TATP benchmarks.

primarily because of difference in atomic durability mechanisms. In other words, the

low transaction commit latency in DHTM enabled by the redo log leads to performance

improvement over LogTM-ATOM. From this we can also infer that more than half of

the DHTM’s 26% improvement over ATOM is because of faster durability (and the

rest owing to higher concurrency). In summary, DHTM provides a significant perfor-

mance improvement, because of faster logging and/or integration with HTM, over the

state-of-the-art design (ATOM [73]) and over a (novel) design combining LogTM [38]

with ATOM.

5.6.2 Sensitivity to the size of the log-buffer

Figure 5.7 shows the impact of the size of log buffer on the performance of DHTM for

the hash benchmark (other benchmarks show similar trends). We run the benchmark

with buffer sizes ranging from 4 through 128 entries. As the number of entries are

increased, the throughput increases, saturates at the size of 64 entries (default config-

uration in DHTM) and then marginally reduces upon further increase in the size. A

small persist buffer size leads to creation of multiple redo log entries which consumes

higher amount of memory bandwidth and adversely impacts other memory requests.

On the other hand, a larger buffer delays log writes which results in those log writes

happening in the critical path of commit. Recall that a transaction cannot commit until

all the redo log entries have been made persistent. In summary, we find that a 64-entry

log-buffer provides the best coalescing effect.

5.6.3 TPC-C and TATP Throughput

Table 5.6 shows the transaction throughput of ATOM and DHTM normalized to the

throughput of SO for the TPC-C and TATP workloads. We have not shown sdTM

results because it performs quite poorly. Because of the significant number of HTM

aborts (owing to the large write working-set size of the OLTP workloads), these con-
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Figure 5.7: Normalized transaction throughput sensitivity towards log-buffer size for

hash benchmark.

ventional HTM designs revert to the software concurrency mode often.

As we can see, DHTM continues to provide impressive speedups, not only over the

SO baseline, but also over ATOM. Specifically, for the TPC-C workload, DHTM pro-

vides a 88% improvement over SO and 21% higher improvement compared to ATOM.

For the TATP workload, DHTM provides a 53% improvement over SO and 26% higher

improvement compared to ATOM.

5.6.4 The Cost of Atomic Durability

In this section, we wanted to see how close DHTM is compared to a non-persistent

(volatile) HTM design that we call NP. For micro-benchmarks, we find that NP pro-

vides 2.2× higher transaction throughput compared to SO which is 59% better than

DHTM.

Next, we wanted to better understand the reason for the performance gap. Are their

inefficiencies in DHTM or is it fundamentally limited by the cost of durability? There

are two primary sources of overheads in DHTM compared to NP. First, the overhead

of log writes and data writes that are in the critical path. These include log writes

that are pending when a transaction execution completes and is waiting to commit and

data writes from the committed but yet to complete transaction pending when a core

encounters the next transaction. To evaluate the performance impact of these overheads

we implemented a DHTM design where these writes happen instantaneously. This

design is able to improve performance over DHTM by 16% for micro-benchmarks

Therefore log/data writes in the critical path of execution appear not to be the major

source of overhead.
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1× 2× 10×
NP 2.9 3.0 3.3

DHTM 1.9 2.4 3

Table 5.7: Transaction throughput for NP and DHTM normalized to SO for hash bench-

mark with varying memory bandwidth.

The second source of overhead corresponds to a fundamental difference in memory

write bandwidth requirements for DHTM and NP. Recall that, in comparison with NP,

DHTM needs to flush cache lines for atomic durability. To analyze the impact of

this overhead, we performed experiments by varying the available memory bandwidth.

Table 5.7 shows the transaction throughput for NP and DHTM designs normalized to

SO design for the hash micro-benchmark with varying memory bandwidth. With the

baseline bandwidth (5.3 GB/s) the difference between NP and DHTM designs is 100%

whereas with 10× the baseline bandwidth the difference is only 30%. Thus in a system

with higher memory bandwidth DHTM can achieve performance similar to that of a

volatile only (NP) design.

5.7 Summary

ACID transactions are a well-understood and widely adopted programming model. In

this chapter we tried to answer the question: How fast can we achieve ACID in the pres-

ence of fast persistent memory? We have proposed DHTM, a HTM design in which

durability is treated as a first class design constraint. It extends a commercial HTM

like RTM with hardware support for atomic durability. It supports atomic visibility by

employing an RTM like HTM and atomic durability by employing a hardware logging

infrastructure which transparently and efficiently writes redo log entries to persistent

memory. A redo-log based design allows us to commit a transaction as soon as all the

log entries have been made persistent, without waiting for the data to persist.

One of our design goals was to support larger transactions, since ACID transactions

tend to be considerably larger than those supported by current L1-limited RTM like

HTM designs. But in supporting larger transactions we did not want to introduce

significant hardware complexity. In particular, we did not want to introduce changes to

the shared LLC – something that current HTM designs avoid. Our key insight here is to

reuse the logging infrastructure that is necessary for durability for also supporting L1
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overflows. Our experimental results showed that our proposal outperforms the state-

of-the-art ACID design by an average of 26% on a set of micro-benchmarks and by a

minimum of 21% on TATP and TPC-C.



Chapter 6

Conclusions and Future Work

This thesis has explored the design space of various crash consistency primitives that

are necessary to enable the adoption of persistent memory. These primitives guar-

antee crash consistency by placing restrictions on the order in which updates reach

persistent memory. Additionally, they also require that the updates be made durable

periodically. Enforcing these constraints in a performance efficient manner is challeng-

ing for two reasons. First, these constraints go against certain performance enhancing

optimizations which reorder updates to memory to maximize locality. Second, these

constraints need to be enforced synchronously because software cannot explicitly con-

trol the movement of updated data from volatile cache to persistent memory.

This thesis has highlighted the fact that buffered models for implementing ordering

primitives like persist barrier are important, but they need to be carefully designed. In

particular, we have demonstrated that existing implementation of buffered persist bar-

rier largely fails in achieving its goal of enforcing ordering constraints asynchronously

because of the presence of conflicts. We incorporated two simple optimizations, to re-

duce the probability and the overhead of conflicts, in the design of an efficient persist

barrier (LB++). We showed that using LB++ to enforce buffered epoch persistency

can improve the performance by 22%.

Next, we highlighted that supporting atomic durability via undo logging performs

log writes to persistent memory in the critical path. Based on the observation that

logging is fundamentally a data movement task, we proposed ATOM: a hardware log

manager. We showed that leveraging the existing memory hierarchy to perform posted

log writes to the memory controller can remove log writes from the critical path. In

fact, by having access to additional information, like whether a read request is for ex-

clusive access, the memory controller can additionally eliminate redundant data move-

103



104 Chapter 6. Conclusions and Future Work

ment by performing source logging. ATOM improved the performance by 27% to

33% for microbenchmarks and by 60% for a large scale transactional workload (TPC-

C). We also proposed an efficient hardware mechanism for checkpointing programs

which leverages LB++ to create checkpoints and ATOM to ensure atomic durability of

those checkpoints. This approach enables checkpointing of applications at only a 30%

execution time overhead compared to an execution without checkpointing.

Although atomic durability is an important primitive, the ease of programming can

be significantly improved if persistent memory systems provide primitives to support

ACID transactions which provide both atomic visibility and atomic durability. We

argued that to achieve the best performance, ACID primitive has to be completely sup-

ported in hardware. We proposed durable hardware transactional memory (DHTM) in

which durability is treated as a first class design constraint. Leveraging an RTM like

HTM for supporting atomic visibility enables in-place updates and supporting atomic

durability by employing a hardware logging infrastructure for a redo log enables faster

commits. We also demonstrated that the existing logging infrastructure can be lever-

aged to support larger transactions, up to the size of the last level cache, without adding

any additional hardware. DHTM outperforms the state-of-the-art ACID design by an

average of 26% on a set of micro-benchmarks and by a minimum of 21% on TATP and

TPC-C.

6.1 Critical Analysis

The proposed implementations of all the primitives in this thesis had one common

design principle behind them: moving persist operations out of the critical path. How-

ever, in certain scenarios that might not be possible and such scenarios would be ad-

versarial for these primitives. The ordering primitive moved persist operations out of

the critical path by buffering epochs and tracking intra-thread and inter-thread persist

dependencies in hardware. At the same time, it could maintain only 1 version of any

cache line in the cache. Therefore, if all the epochs modified a common set of cache

lines, the proposed ordering primitive would not be able to buffer epochs and would

have to persist them in the critical path. In such a scenario, the proposed buffered

implementation of persist barrier would degenerate to a non-buffered implementation.

ATOM was able to move log persist operations out of the critical path by enforcing

log→ data ordering at the memory controller level. To enable ordering at the memory

controller, ATOM needed to track every ongoing atomic update in an atomic update
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structure (AUS). If the number of concurrent atomic updates exceeded the number of

available AUS’s then it would either have to stall the new atomic updates or enforce

the necessary ordering requirements for those updates in software, which would bring

persist operations in the critical path. Similarly, DHTM could support ACID transac-

tion as long as the transaction write-set size did not exceed the LLC. If the write-set

of a transaction overflows from the LLC then the transaction would be aborted and it

will have revert to the software fallback path. And, as was the case with ATOM, the

software fallback path would bring persist operations in the critical path.

In summary, the designs proposed in this thesis improved the performance of crash

consistency primitives in most scenarios by moving persist operations out of the critical

path. However, adversarial scenarios do exist in which the proposed designs cannot

move persist operations out of the critical path. More importantly though, even in such

scenarios, the performance of the proposed designs would not be any worse than a

software implementation of these primitives.

6.2 Discussion

This section presents a discussion on certain design decisions and trade-offs that affect

the performance of crash consistency primitives. It ends by presenting a common

thread that underlines this thesis.

6.2.1 When to persist?

The performance of all crash consistency primitives can be improved by minimizing

online persists that lie in the critical path and by maximizing write coalescing. How-

ever, these are conflicting requirements which make it difficult to answer the question

when to persist? Delaying persist operations is necessary to allow write coalescing,

but at the same time it is important to be proactive to avoid performing them online.

A proactive flush operation in buffered epoch persistency (BEP) is started after an

epoch completes (§3.3.2), thereby maximizing coalescing of writes belonging to that

epoch. This results in dirty cache lines remaining in the cache for a longer duration,

in turn increasing the probability of a conflict. As a result cache lines persist online,

as opposed to a scenario in which proactive flush would have been started sooner by

potentially sacrificing some amount of write coalescing. Thus proactive flushing in

BEP traded off offline persist operations for maximizing write coalescing. Similarly,
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ATOM also maximized write coalescing by employing an undo log which requires

only one log entry per cache line for each atomic update and by flushing the in-place

updates at the end of the atomic update. This was again a trade-off with respect to

offline persists in two ways. First, flushing of in-place updates could be started sooner

at the cost of sacrificing some coalescing. Second, a redo-log could be employed

which would require one log entry for every write in an atomic update but would allow

an atomic update to complete without waiting for in-place updates to reach persistent

memory.

DHTM strove to balance the trade-off between write coalescing and online persists.

It employed a redo log for durability which allowed the transaction to commit as soon

as all the redo log entries had been written to persistent memory, without waiting for

in-place updates to persist in the critical path. Therefore, in-place updates could be co-

alesced throughout the transaction and still persist out of the critical path. At the same

time, DHTM also employed a log buffer that supported coalescing of log entries by

combining multiple log entries for the same cache line into one log entry. In hindsight,

a similar approach could have been applied to BEP and ATOM in the form of a data

buffer to funnel in-place updates to persistent memory eagerly. Such a design could

potentially improve their performance by better balancing the trade-off.

6.2.2 How to buffer?

Buffering (§2.3.1) has been proposed as a mechanism to enable offline (out of the

critical path) persists. However, the extent to which offline persists are possible is

determined by the frequency of conflicts. As shown in §3.7.2 for a lazy barrier, even

with various optimizations, a large percentage of epochs might still encounter conflicts.

Conflicts arise in this case because buffering is performed across two epochs which

could modify the same cache line.

ATOM proposed an alternate model of buffering, which allowed buffering of undo

log entries for an atomic update. This was different from the lazy barrier primitive

because buffering here was performed only for log writes which would not overlap

to trigger a conflict. Such a design had the twin benefits of eliminating conflicts and

of incurring a negligible hardware overhead. In fact for checkpointing applications,

ATOM improved performance by 59% while lazy barrier could improve it by only

37% (§ 4.8.2.2). DHTM also proposed a similar model of buffering, where redo log

entries were buffered. With a redo log, two log entries could be created for the same
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cache line but that did not create a conflict because the log entries were part of the same

transaction. Rather DHTM exploited this nature of redo log to coalesce multiple redo

log entries for the same cache line (§5.3.1) and write the coalesced entry to persistent

memory, thereby conserving memory bandwidth.

Employing buffered models, like buffered epoch persistency, could also be chal-

lenging for programmers because they do not provide any guarantees on what would

have persisted at the time of a system crash. They only guarantee that persist opera-

tions would have happened in epoch order. Therefore it is desirable to have support

analogous to the fsync system call in file systems, which guarantees that all the up-

dates up to the point of the function call have been made persistent. Support for a sync

operation was proposed in [74] which we believe is necessary to ease the adoption of

models like buffered epoch persistency. It is important to note however, that support

for a sync operation is implicitly provided by the Atomic End and End Transaction

constructs in ATOM and DHTM respectively.

In summary, buffering is a useful construct but it needs to be carefully designed

to avoid conflicts. Additionally, it important for buffered models to support a sync

operation for ease of programming.

6.2.3 Undo vs. Redo

Atomic durability via write-ahead logging can be provided by using either an undo

log or a redo log and both these approaches have different trade-offs. An undo log

requires less memory bandwidth as only one log entry needs to be created per cache

line, whereas a redo log allows for faster commits as the transaction can be committed

as soon as all the redo log entries persist. However, the impact of these trade-offs will

vary with certain design choices. For example, the number of log entries created for

both undo and redo log can be the similar if logging is performed at a word granularity

because the probability of the same word being modified multiple times in a transac-

tion is low. On the other hand, an optimization like the log buffer (§5.3.1) which was

used to allow coalescing of redo log entries, can be used for data writes in a design with

an undo log. A small buffer for data writes could be viewed as a mechanism to proac-

tively persist in-place data updates and thereby enable faster commits for transactions

implementing an undo log.

Therefore, the choice between implementing an undo log or a redo log based design

is not always straightforward. This choice should be carefully made by taking into
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consideration other design parameters and the scope for optimizations.

6.2.4 Intelligent Memory Systems

This thesis has argued for pushing more work into the memory system to provide

efficient support for crash consistency primitives. In designing an efficient persist bar-

rier [60] we moved the support for ordering into the cache hierarchy. In ATOM [73],

the memory controller primarily handled the logging functionality in conjunction with

the cache hierarchy. Again in DHTM [81], the cache hierarchy and the memory con-

troller together supported the necessary operations to guarantee atomic visibility and

atomic durability. In essence, this thesis has argued for the design of intelligent mem-

ory systems to efficiently support primitives for persistent memory.

6.3 Future Work

This thesis has presented the design of efficient crash consistency primitives for single

node systems. However, more work needs to be done to efficiently enable the adoption

of persistent memory. We provide our perspective on future directions below.

Addressing Memory Write Bandwidth. Although multiple optimizations have been

proposed to enable write coalescing and thus reduce the memory write bandwidth,

it is still a major bottleneck (§5.6.4). This is primarily because all the updates in a

transaction need to be made durable for that transaction to commit, which significantly

increases the number of writes to persistent memory. One of the potential ways of

addressing this issue further is to look at optimizations like group commit [55], that

commit transactions at the granularity of a group of transactions as opposed to individ-

ual transactions. Another promising direction is to look at an in-memory computing

model for logging. It has been already observed in this thesis that logging is fundamen-

tally a data movement task. If logging is completely offloaded to memory, then it can

significantly reduce the pressure on memory write bandwidth as log writes contribute

to more than half of the memory write bandwidth consumption of each transaction.

Verification. This thesis has proposed implementations of various primitives for crash

consistency. These primitives place constraints on the order in which updates reach

persistent memory and closely interact with memory consistency models and cache

coherence. It is well known that verification of memory consistency models and cache

coherence is a difficult problem. Adding persistency to the picture makes it even more
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challenging. But this is an important problem to address and significant work needs to

be done in this direction to enable the adoption of persistent memory.

Programming Models. Although multiple programming models have been proposed

for systems with persistent memory, there is no consensus on which model is the most

suitable. More work needs to be done in this direction to standardize the interface

available to the programmer to not only improve the ease of programming these sys-

tems but, more importantly, to enable efficient mechanisms to debug these systems.

Scale-Out Persistent Memory Systems. This thesis addresses the problem of design-

ing crash consistency primitives for single node systems with persistent memory. How-

ever, the wide adoption of technologies like Remote Direct Memory Access (RDMA)

enables low latency access to the memory of remote machines. This has lead to the

emergence of scale-out systems for performing distributed transaction processing [82].

These scale-out systems would certainly benefit from persistent memory, not only for

supporting ACID transactions efficiently but also to provide high availability via repli-

cation. We believe that the design of efficient crash consistency primitives for scale-out

persistent memory systems is an important challenge that needs to be addressed in the

future.
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