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Abstract

The goal of neural machine translation (NMT) is to build an end-to-end system that

automatically translates sentences from the source language to the target language.

Neural machine translation has become the dominant paradigm in machine translation

in recent years, showing strong improvements over prior statistical methods in many

scenarios. However, neural machine translation relies heavily on parallel corpora for

training; even for two languages with abundant monolingual resources (or with a large

number of speakers), such parallel corpora may be scarce. Thus, it is important to

develop methods for leveraging additional types of data in NMT training. This thesis

explores ways of augmenting the parallel training data of neural machine translation

with non-parallel sources of data. We concentrate on two main types of additional

data: monolingual corpora and structural annotations. First, we propose a method for

adding target-language monolingual data into neural machine translation in which the

monolingual data is converted to parallel data through copying. Thus, the NMT sys-

tem is trained on two tasks: translation from source language to target language, and

autoencoding the target language. We show that this model achieves improvements in

BLEU score for low- and medium-resource setups. Second, we consider the task of

zero-resource NMT, where no source ↔ target parallel training data is available, but

parallel data with a pivot language is abundant. We improve these models by adding a

monolingual corpus in the pivot language, translating this corpus into both the source

and the target language to create a pseudo-parallel source↔ target corpus. In the sec-

ond half of this thesis, we turn our attention to syntax, introducing methods for adding

syntactic annotation of the source language into neural machine translation. In partic-

ular, our multi-source model, which leverages an additional encoder to inject syntax

into the NMT model, results in strong improvements over non-syntactic NMT for a

high-resource translation case, while remaining robust to unparsed inputs. We also

introduce a multi-task model that augments the transformer architecture with syntax;

this model improves translation across several language pairs. Finally, we consider

the case where no syntactic annotations are available (such as when translating from

very low-resource languages). We introduce an unsupervised hierarchical encoder that

induces a tree structure over the source sentences based solely on the downstream task

of translation. Although the resulting hierarchies do not resemble traditional syntax,

the model shows large improvements in BLEU for low-resource NMT.
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Lay Summary

Machine translation, the process of automatically translating text from a source lan-

guage (e.g. English) to a target language (e.g. French), has achieved impressive results

in recent years. However, modern machine translation methods rely heavily on paral-

lel data – millions of sentences translated from the source to the target language. Such

parallel data is not readily available for most pairs of source and target languages. The

goal of this thesis is to explore ways of using other types of data to improve the trans-

lations generated by machine translation systems. We consider two main types of data.

The first is text in a single language, which for many languages is readily available.

This text could include news articles, government proceedings, books, online posts,

etc. We show that teaching a system to copy and translate text simultaneously can

help it improve translation when not much parallel data is available. We also introduce

a method where translation from the source language into the target language can be

improved using text from a third pivot language by first automatically translating the

sentences in the pivot language into both the source and the target language and then

using the resulting (pivot, source, target) sentence triples as additional training data.

The second type of data we explore in this thesis is information about the sentence

structure, such as the part-of-speech for each word and the phrases of the sentence.

We train our machine translation systems with this additional information about the

structure of the sentences in the source language, which results in higher-quality trans-

lations in the target language. Additionally, we propose a model where the machine

translation system automatically infers information about the sentence structure while

also learning to translate. Both types of data – additional text in one language only, and

information about the linguistic structure of the languages – help to improve machine-

generated translations in cases where little parallel training data is available.
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Chapter 1

Introduction

1.1 Motivation

Machine translation (MT) is the process of automatically translating a piece of text

from one language, the source language, into another language, the target language.

The current dominant paradigm for machine translation is neural machine translation

(NMT), which uses two neural networks: one (the encoder) reads in a sentence in

the source language, and the other (the decoder) generates its translation in the target

language (Cho et al., 2014b; Kalchbrenner and Blunsom, 2013; Sutskever et al., 2014).

Modern machine translation methods are most often trained using a parallel cor-

pus, which is a corpus consisting of text in the source language and their translations

in the target language (usually aligned on the sentence level). Such corpora can be cre-

ated from parliamentary proceedings of multilingual governments (e.g. Koehn, 2005)

or from multilingual news services (e.g. Tyers and Alperen, 2010), for example. Al-

though large parallel corpora exist, they are often in specific domains (e.g. government

or news) and only between a few languages (e.g. bilingual corpora with English, or

languages of the European Union). Less common domains or language pairs may not

have much parallel data available, making it hard to train strong NMT systems.

Neural machine translation has achieved impressive quality on very high-resource

tasks where large parallel corpora are available (Hassan et al., 2018; Wu et al., 2016).

However, its performance on lower-resource tasks tends to be far worse than on high-

resource tasks and can even lag behind older statistical machine translation (SMT)

methods when there is a domain mismatch (Koehn and Knowles, 2017). Since NMT

typically relies on parallel corpora, which are harder to come by than monolingual

corpora, it is not always possible to simply acquire more training data.

1
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Although parallel data may be relatively scarce for a given language pair or domain,

several other sources of data are available. There are many possible types of non-

parallel data, including:

• Monolingual data (in the source language, in the target language, or in a third

language e.g. a related language)

• Parallel corpora between the source/target language and another language (many

language pairs have little direct parallel data between them, but abundant source

↔ English and target↔ English parallel data)

• Linguistic annotations (morphological, syntactic, semantic, etc.)

However, neural machine translation is usually trained to maximize the probability

of a sentence in the target language, given its corresponding sentence in the source lan-

guage. Thus, the standard NMT training objective requires a (source, target) sentence

pair, and it is not immediately obvious how to train on monolingual sentences or text

in other languages. In addition, the encoder and decoder of standard neural machine

translation are usually long short-term memory networks (LSTMs), convolutional neu-

ral networks (CNNs), or transformer networks, all of which are constructed to take a

sequence of words as input. Using information about linguistic structure could po-

tentially aid neural machine translation, but doing so would require changes to these

standard architectures or to the linguistic annotations themselves. The goal of this the-

sis is thus to explore the question of how best to incorporate these existing non-parallel

data types into neural machine translation to improve its performance, particularly in

low-resource scenarios.

For the purposes of this thesis, we draw a distinction between a low-resource lan-

guage (a language for which few monolingual resources, including corpora and lin-

guistic annotators, are available) and a low-resource language pair (a language pair

that has a small amount of parallel data or no parallel data at all). A low-resource

language pair does not necessarily consist of two low-resource languages; it may be

made up of a high- and a low-resource language (e.g. English and Tagalog) or even two

high-resource languages (e.g. German and Russian), as long as the two languages have

little parallel data. In this thesis, we focus mainly on low-resource language pairs in

which at least one of the languages is a high-resource language (although we consider

other scenarios as well).
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1.2 Main Hypotheses

We explore two main types of non-parallel data in this thesis. The first is monolin-
gual corpora, which are particularly important because of their ubiquity (for many

languages) compared to other potential resources. We expect monolingual data to be

helpful partly because the NMT encoder and decoder are modified language mod-

els (Ramachandran et al., 2017), and language models are usually trained on mono-

lingual data. We propose ways of incorporating monolingual data from the source

and target language, as well as from a third high-resource pivot language, into NMT

training. In this thesis, we explore two main hypotheses relating to monolingual data:

• Adding target-side monolingual data using an autoencoding objective to NMT,

in which the system simultaneously learns to translate and copy, can lead to

improvements in low-resource NMT without requiring a costly pre-training step.

This hypothesis is evaluated in chapter 3.

• In zero-resource neural machine translation, where no direct parallel training

data is available, monolingual data in the pivot language can be leveraged to

improve translation performance. This hypothesis is evaluated in chapter 4.

The second type of non-parallel data that we use in this thesis is syntactic in-
formation about the source language. Syntactic parsers exist and achieve reasonably

good accuracy for most high-resource languages. Thus, when translating out of a high-

resource source language, it is relatively easy to generate relevant syntactic annotations

for the source side of the parallel corpus by applying an automatic parser to the source

data. We consider source syntax because neural machine translation tends to improve

over SMT much more in fluency than in adequacy (Castilho et al., 2017; Koehn and

Knowles, 2017), and we speculate that a better understanding of the source language

is important for improving translation adequacy. Our main hypotheses regarding syn-

tactic annotations are:

• Linearized versions of consistuency parses can be used within existing NMT

architectures to improve NMT performance without requiring data to be parsed

at inference time. This hypothesis is evaluated in chapters 5 and 6.

• Inducing an unsupervised binary tree over the source sentence is an effective

way of adding structure for very low-resource source languages where no parser

is available. This hypothesis is evaluated in chapter 7.
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1.3 Thesis Structure

The remainder of this thesis will be structured as follows.

• Chapter 2 gives an overview of the relevant literature, starting with an ex-

planation of neural machine translation. We also review related work on using

monolingual data in NMT, improving NMT with multilingual data, and injecting

syntactic structure into NMT.

• Chapter 3 is the first of two chapters that address augmenting the parallel

NMT training corpus with monolingual data. In this chapter, we introduce

a copied corpus method for adding target-side monolingual data into standard

NMT training that is able to leverage monolingual data without any pre-training.

This method starts with a monolingual target-language corpus, which we con-

vert into a bitext by copying it, making the source and target sides identical.

This pseudo-parallel corpus is then mixed with the true parallel data and the

back-translated monolingual data; the resulting mixture is used to train the NMT

system. We show that this method results in performance improvements for low-

and medium-resource language pairs, partly due to improved accuracy at copy-

ing words that should be identical in the source and target sentences. This chap-

ter also contains further analysis of the copied corpus method and the conditions

under which it is beneficial.

• Chapter 4 also addresses monolingual data for NMT; this time, the monolin-

gual data is in a pivot language. We consider a zero-resource neural machine

translation framework in which we are given a source ↔ pivot parallel corpus

and a pivot↔ target parallel corpus, but no direct source↔ target parallel train-

ing data. Our insight is that we can use monolingual data in the pivot language

to improve NMT performance; this is important because the pivot language is

often the highest-resource language of the three. We show that the monolingual

pivot data can be used to generate a pseudo-parallel source ↔ target corpus,

which can then be used to fine-tune the NMT model or re-train it from scratch.

The resulting systems yield strong improvements in direct translation over both

direct and pivot-based baselines.

• Chapter 5 considers the use of syntactic annotations as an augmentation to the

NMT parallel training data. We parse the source side of the parallel corpus using



1.4. Contributions 5

an off-the-shelf parser and introduce a method for training NMT on these parses

that consists of using two encoders simultaneously, one for parsed sentences and

the other for unparsed sentences. This method is advantageous over previous

work on syntactic NMT because it would be easy to apply to new architectures,

it does not fail when no parsed input is available, and it performs reasonably

well on long sentences. We also show preliminary work on an extension to this

multi-source model, the shared encoder model, which trains a single encoder on

both parsed and unparsed source sentences. The shared encoder model yields

even further improvements over the baseline.

• Chapter 6 builds on chapter 5 by adding source-side parses into transformer-

based NMT. We study a multi-task system that learns to both translate and parse

the source sentences with a single encoder and decoder. We perform cross-

lingual analysis for translation from English into several target languages, find-

ing that the multi-task system consistently improves over a non-syntactic base-

line. On a high-resource task, however, the non-syntactic model outperforms the

multi-task syntactic model. We further analyze the cross-lingual results, find-

ing that target language family does not seem to have an effect on translation

performance but may have an effect on parsing performance.

• Chapter 7 extends our work on syntactic NMT to very low-resource scenar-

ios. For low-resource source languages, there is often no available parser, so

the models proposed in chapters 5 and 6 cannot be applied. Thus, we intro-

duce an unsupervised hierarchical encoder based on a Gumbel tree-LSTM (Choi

et al., 2018) that induces a tree structure over the source sentences without any

syntactic supervision. This encoder results in strongly improved performance

compared to standard NMT for low- and very low-resource language pairs, even

though it does not seem to learn linguistic information.

• Chapter 8 is our conclusion chapter. We summarize the thesis and give some

ideas for possible future work.

1.4 Contributions

This thesis makes the following contributions:
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• A method for adding a monolingual target corpus to NMT that improves transla-

tion performance for low- and medium-resource language pairs, partially due to

improved accuracy on words that are identical in the source and target sentences.

This work is based on Currey et al. (2017).

• A novel source of data, pivot-language monolingual data, for zero-resource neu-

ral machine translation, as well as several methods for leveraging this data to

improve direct zero-resource translation performance.

• A way of adding source-side syntactic parses into NMT that is applicable to any

architecture, does not require parsed input sentences at inference time, and im-

proves translation on long sentences. This work is based on Currey and Heafield

(2018a).

• Two methods for adding syntactic information to transformer-based NMT using

linearized constituency parses of the source sentence, as well as experiments

showing that syntactic annotations can improve low-resource translation for 21

diverse target languages. This work is baesd on Currey and Heafield (2019).

• Experiments showing that inducing an unsupervised hierarchical structure over

the source sentences can improve LSTM-based neural machine translation in

very low-resource scenarios without requiring any external syntactic parser. This

work is based on Currey and Heafield (2018b).



Chapter 2

Background

2.1 Introduction

We start this chapter with a brief overview of neural machine translation in order to

facilitate understanding of the rest of this thesis. The remainder of this chapter dis-

cusses various strategies for incorporating additional non-parallel data into neural ma-

chine translation, focusing on monolingual data (section 2.3), multilingual corpora

(section 2.4), and syntactic annotations (section 2.5).

2.2 Neural Machine Translation

We use neural machine translation as the basis for all of the experiments in this thesis.

This section contains a brief introduction to how neural machine translation works, as

well as an overview of some of its limitations.

2.2.1 Sequence-to-Sequence Models

Neural machine translation is a neural network-based machine translation paradigm

that uses a sequence-to-sequence (seq2seq) model as its basis (Cho et al., 2014b;

Kalchbrenner and Blunsom, 2013; Sutskever et al., 2014). Seq2seq models consist

of two neural networks joined together; they are trained to match an input sequence

to an output sequence. In NMT, the first neural network is the encoder; it reads in

the sequence of source words and encodes it as a vector. The second neural network

is the decoder; it takes as input the source encoding and predicts the probability of

the target sentence, conditioned on the source sentence. Figure 2.1 depicts the basic

7
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the dog barks

der Hund bellt

Figure 2.1: Basic sequence-to-sequence model for neural machine translation. The

bottom half of the figure corresponds to the encoder, and the top half corresponds to

the decoder.

sequence-to-sequence architecture for NMT.

2.2.2 Training Objective

Neural machine translation is often trained on corpora of parallel sentences; it attempts

to directly model the probability P(t|s) of a target sentence t given a source sentence

s. Thus, the standard training objective in NMT, given a parallel corpus (S,T ) of N

training sentences (si, ti), is to minimize the negative log-likelihood of the training

corpus:

L((S,T ),θ) =− 1
N

N

∑
i=1

logP(ti|si,θ) (2.1)

where θ is the model parameters. Since standard NMT optimization is done on the

basis of sentence pairs, parallel data is usually important for NMT training.

2.2.3 Attention Mechanism

The basic seq2seq models described in section 2.2.1 achieve good performance when

translating short sentences. However, their performance deteriorates significantly as

sentence length increases (Bahdanau et al., 2015; Cho et al., 2014a) because the en-

coder maps the source sentence into a single vector of a fixed length, which can be

insufficient for modeling long sentences.

Bahdanau et al. (2015) propose adding an attention mechanism to neural machine

translation in order to remedy this issue. This is done by allowing the decoder to look

at different parts of the source sentence at each timestep, rather than limiting the source
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h1 h2 h3

+c2

s1 s2

a2

Figure 2.2: Illustration of the attention calculation at timestep j = 2 in the decoder. The

context vector c j is calculated based on the current decoder hidden state s j and all

the encoder hidden states hi. The final attention vector a j is then calculated from the

decoder hidden state and the context vector.

sentence representation to a single fixed-length vector. Figure 2.2 gives an overview of

the attention process at a given timestep in the decoder.

In attention-based NMT, the encoder first embeds the source sentence to create a

single vector representation of the sentence, as before. However, this vector is only

used to initialize the decoder. At each timestep j in the decoder, a context vector c j is

taken as additional input. This context vector is calculated as a weighted sum over the

hidden states hi of the encoder:

α j(i) =
exp(S(hi,s j))

∑k exp(S(hk,s j))
(2.2)

c j = ∑
i

α j(i)hi (2.3)

where s j is the hidden state of the decoder and S is a scoring function. In the original

formulation of attention by Bahdanau et al. (2015), the score is calculated using a

feed-forward network over the encoder and decoder hidden states:

S(hi,s j) = v> tanh(W1hi +W2s j) (2.4)

where v, W1, and W2 are the parameters of the feed-forward neural network. Other

scoring functions, such as a dot product, are also possible (Luong et al., 2015a). Fi-

nally, the attention vector a j is the concatenation of the context vector and the current

decoder hidden state:

a j = tanh(Wc[c j;s j]) (2.5)
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where Wc is a weight matrix. This attention vector can then be fed into the softmax

function to predict the next word in the target sentence.

2.2.4 Model Architectures

Seq2seq models are relatively flexible in that the two neural networks they consist of

can be constructed in different ways. Several different encoder and decoder architec-

tures for NMT have been proposed, including convolutional neural networks (Gehring

et al., 2017a,b), recurrent neural networks (Cho et al., 2014b), and fully attentional

transformer networks (Vaswani et al., 2017). In this thesis, we run our experiments

on recurrent neural network (chapters 3, 5, and 7) and transformer (chapters 4 and 6)

architectures; as such, we discuss those two architectures in more detail here.

RNN-Based Neural Machine Translation

A recurrent neural network (RNN) is a type of neural network that is particularly well-

designed for modeling sequences. At each timestep j, the RNN hidden state h j is

calculated as a function of both the current input x j and the previous timestep’s hidden

state h j−1:

h j = f (x j,h j−1) (2.6)

This allows the current state to take the history into account, so that information from

earlier in the sequence is not lost.

In practice, RNN cells are often augmented with gating mechanisms using either

long short-term memory units (LSTMs; Hochreiter and Schmidhuber, 1997) or gated

recurrent units (GRUs; Cho et al., 2014b). These gating mechanisms mitigate the

vanishing gradient issue that makes RNNs difficult to train through back-propagation.

At each timestep j, an LSTM cell contains an input gate i j, an output gate o j, and a

forget gate f j which are used to calculate the cell state c j and hidden state h j as follows:

f j = σ(W f x j +U f h j−1 +b f ) (2.7)

i j = σ(Wix j +Uih j−1 +bi) (2.8)

o j = σ(Wox j +Uoh j−1 +bo) (2.9)
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c j = f j� c j−1 + i j�σ(Wcx j +Uch j−1 +bc) (2.10)

h j = o j�σ(c j) (2.11)

where x j is the input at timestep j and W, U, and b are the weights and biases. The

GRU is calculated in a similar manner, although it does not have an output gate or a

cell state.

LSTMs and GRUs are commonly used as both the encoder and the decoder in

neural machine translation. The encoder is often a bidirectional LSTM (biLSTM) or

GRU (biGRU) that encodes both forward and backward versions of the source sen-

tence (Bahdanau et al., 2015). The forward model reads in the sentence left-to-right

and the backward model reads it in right-to-left; the forward and backward hidden

states for each word are then concatenated together to create the final representation

for the word. Thus, the final representation for each word contains information about

what comes before and after it in the sentence.

Transformer Model

The transformer model (Vaswani et al., 2017) is a self-attentional neural network model

that has recently outperformed RNN-based neural machine translation models in sev-

eral scenarios (Bojar et al., 2018). Transformer-based NMT uses the same encoder-

decoder-attention structure described in sections 2.2.1 and 2.2.3, but the internal archi-

tecture of the encoder and decoder is novel.

The transformer encoder is made up of several (often six) identical layers. Each

encoder layer consists of two sub-layers: a multi-headed attention layer and a fully

connected feed-forward neural network. These layers are stacked on top of each other

to generate the final encoding of the source sentence. The transformer decoder has a

similar structure, but with an additional layer to attend to the source sentence (similar

to the standard attentional layer described in section 2.2.3).

The main innovation of the transformer architecture is the self-attention layer in

both the encoder and the decoder; this is in addition to the standard attention in which

the decoder attends to the encoder. In the self-attention encoder layers, every word

in the source sentence attends to every other word in that sentence, and the resulting

attention vector is used as the representation of that word in that layer. In practice,

transformers use multi-headed attention, which means that multiple attention mecha-
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nisms are run for each word. The attention in the decoder works similarly, but words

in the sentence after the current word are masked (so that the model cannot use words

that have not yet been generated to generate the current word).

2.2.5 NMT with Subword Units

A major challenge for neural machine translation is the translation of rare words.

Word-based machine translation operates on a fixed vocabulary that is necessarily

much smaller than the vocabulary of the languages involved. At test time, new words

may be introduced, so it is important for an MT system to be robust to words that were

not seen during training. This is especially true in low-resource cases, where the train-

ing data may not be large enough to contain even relatively common words, and where

common words may not appear often enough in the training data for the model to be

able to learn a good representation for them.

One effective solution to this issue is to train neural machine translation on the sub-

word level, rather than on the word level. Throughout this thesis, we break words into

subwords using byte pair encoding (BPE), as introduced by Sennrich et al. (2016d).

In this framework, a subword vocabulary is learned from the training data based on

frequency as follows:

1. Initialize the subword vocabulary with the vocabulary of characters in the data.

2. Find the most frequently co-occurring pair of subwords within the words in the

data and merge them into a single subword; add this subword to the vocabulary.

3. Iterate until the desired vocabulary size is achieved.

In the experiments described in this thesis, unless otherwise noted, we create a common

subword vocabulary for both the source and the target languages by concatenating

source and target training data together before learning the vocabulary.

2.2.6 Limitations of NMT

Neural machine translation can achieve high translation quality in several tasks (Bojar

et al., 2017, 2018); however, NMT is not perfect. One of the main challenges facing

NMT is that it requires a large amount of training data in order to achieve good per-

formance. Although NMT does well in high-resource scenarios, Koehn and Knowles

(2017) found that SMT beats NMT in low- and moderate-resource cases (up to about
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15 million words of parallel data). Thus, systems that work well in high-resource cases

cannot necessarily be directly applied to low-resource cases. In addition, NMT does

poorly when there is a domain mismatch between training and test data, whereas SMT

is better able to generalize to an unseen domain (Koehn and Knowles, 2017). Since it is

important to be able to perform machine translation in cases where limited in-domain

parallel data is available, figuring out ways of adding monolingual or multilingual data

to low-resource NMT training is an interesting avenue for research. In this thesis, we

explore these areas in chapters 3 and 4.

Another issue with neural machine translation is that it is not able to perfectly

model source and target grammar, which can lead to inadequate or disfluent transla-

tions. Even though NMT has made gains over statistical machine translation in this

regard (Bentivogli et al., 2016), there is still room for further improvement. Bentivogli

et al. (2016) performed a fine-grained error analysis of English→German NMT out-

puts. They found that NMT performed strongly overall, but made errors on negation,

which requires a deep understanding of the source sentence. This caused the NMT

system to output fluent but inadequate translations. In addition, Sennrich (2017) intro-

duced a corpus of contrastive translation pairs for English→German in order to analyze

NMT performance on different linguistic phenomena. NMT had high accuracy over-

all, but did make some errors on negation and on finding the correct verb particle for

separable German verbs. The transformer architecture also seems to have some trou-

ble learning syntax for low-resource language pairs. Raganato and Tiedemann (2018)

found that transformer encoders trained on high-resource NMT could achieve high ac-

curacy on several grammatical tasks, whereas low-resource transformers did not do as

well on these tasks. Thus, there is some evidence that neural machine translation (par-

ticularly low-resource neural machine translation) stands to benefit from an improved

representation of syntax. We address adding source-side syntax to NMT in chapters 5

and 6, and in chapter 7, we add a hierarchical structure to low-resource NMT with the

goal of mimicking syntax.

2.3 Neural Machine Translation with Monolingual Data

For many language pairs, abundant monolingual data is available in both the source and

the target language but little parallel data exists. A natural questions is thus whether

such source and target monolingual data can be used to augment the parallel corpus

when training machine translation systems, creating a semi-supervised framework in
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which both labeled (i.e. parallel) and unlabeled (i.e. monolingual) data is used. This

section describes three common ways of doing this: leveraging monolingual language

models (2.3.1), creating pseudo-parallel corpora (2.3.2), and training models to recon-

struct translations (2.3.3). Finally, in section 2.3.4, we discuss systems that use these

techniques to perform fully unsupervised machine translation. Chapter 3 of this thesis

contains our proposal of an efficient method for using target-side monolingual data in

neural machine translation.

2.3.1 Language Models

Early attempts at incorporating target-language monolingual data into neural machine

translation mirrored prior statistical machine translation methods by leveraging a sep-

arately trained target language model. Gulcehre et al. (2015) propose two methods

for integrating the language model into neural machine translation: shallow fusion and

deep fusion. In shallow fusion, the pre-trained language model is used during infer-

ence to rescore NMT outputs, whereas in deep fusion, the language model and the

NMT model are fine-tuned together. The deep fusion model in particular is success-

ful at improving NMT with monolingual data; however, later back-translation methods

(described in section 2.3.2) give better improvements with a simpler training paradigm.

Similarly, Ramachandran et al. (2017) pre-train both source and target RNN lan-

guage models and use the resulting models to initialize the NMT encoder and decoder,

respectively. The resulting model achieves similar results to back-translation (Sennrich

et al., 2016c). One issue with the language modeling methods described here is that

they require a pre-training step to train the language model, thus potentially increas-

ing overall training time. In chapter 3, we propose a lightweight method for adding

monolingual data into NMT that does not require any pre-training.

2.3.2 Back-Translation

In this section, we discuss back-translation-based methods for adding monolingual data

into NMT. Our copied corpus system (chapter 3) uses back-translation as a baseline

and as an additional component to the model. In chapter 4, we propose using back-

translation to incorporate pivot-language monolingual data into NMT.

Back-translation is one of the most successful methods for semi-supervised neural

machine translation. Introduced by Sennrich et al. (2016c) based on similar techniques

for SMT (Bertoldi and Federico, 2009; Bojar and Tamchyna, 2011), back-translation is
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a versatile and effective way of injecting target monolingual data into neural machine

translation. In back-translation, a target → source NMT model is first trained. This

trained model is then used to translate the target monolingual data into the source

language. Finally, the resulting source’ → target pseudo-parallel corpus (where the

prime indicates machine-generated data) is combined with the parallel training data to

train a source→ target NMT model. Back-translation shows large gains over models

trained on only parallel data and has the advantage that it can be applied to any NMT

architecture. The main drawback of back-translation is the fact that it requires extra

training time (to train the reverse NMT system and to back-translate the monolingual

data); in chapter 3, we address this issue by proposing our copied corpus model, which

requires no pre-training and which does almost as well as back-translation on low-

resource NMT.

Several researchers have proposed extensions to back-translation. Niu et al. (2018)

leverage a bidirectional (source↔ target) neural machine translation system to incor-

porate both source and target monolingual data into NMT. First, they train a bidirec-

tional NMT system on only the parallel data. The bidirectional system is then used to

back-translate the source and target monolingual data to create source’ → target and

target’→ source pseudo-parallel data, which can then be used to improve the bidirec-

tional system. In chapter 4, we leverage a similar model: we use a multi-directional

NMT system to create source’↔ target’ pseudo-parallel corpora from a pivot-language

monolingual corpus.

Hoang et al. (2018) propose an iterative back-translation model, where separate

source → target and target → source NMT systems are iteratively improved using

back-translation and then used to generate additional back-translated data. Inspired by

this work, we try iterating our zero-resource systems described in chapter 4, but we

do not see strong improvements from running multiple iterations (this is described in

more detail in section 4.4.2).

2.3.3 Dual Learning for Neural Machine Translation

Dual learning methods for NMT bear some relation to the copied corpus method we

propose in chapter 3 in that both use an autoencoding task to incorporate monolingual

data into NMT. The insight behind dual learning methods is that source→ target and

target→ source machine translation systems are complementary and can form a closed

loop, where translating a sentence from the source language to the target language and
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back to the source language should ideally result in the original source sentence. Dual

learning methods use this intuition to inject source- and target-language monolingual

data into NMT by adding a reconstruction-based training objective.

Cheng et al. (2016) concatenate source → target and target → source neural ma-

chine translation models to create a source→ target→ source autoencoder (and simi-

larly for target→ source→ target). In addition to the standard NMT objective trained

on parallel data, they add a reconstruction objective trained on monolingual source

and target data: for a given sentence from the monolingual corpus, they maximize the

likelihood of getting the same sentence after it is fed through both NMT systems. Niu

et al. (2019) improve over this method by using the straight-through Gumbel softmax

estimator (Jang et al., 2017) to sample the intermediate translations in a differentiable

way, so that training can be done end-to-end. They also use a single bidirectional neu-

ral machine translation system for their autoencoder, rather than two separate systems;

however, they see only relatively small improvements from this method (compared to

a baseline without monolingual data). The dual learning technique proposed by He

et al. (2016) is similar to the method of Cheng et al. (2016), but it uses reinforcement

learning to train the model to maximize fluency of the translations and reconstruc-

tion of the monolingual data. Our copied corpus system is also trained to reconstruct

monolingual sentences, but without the two-step process of Cheng et al. (2016) and

without requiring reinforcement learning. This makes it easier to train, because only

one NMT system is required; however, we find in section 3.4.2 that the copied cor-

pus method is not an effective strategy for using source-side monolingual data, unlike

the NMT models trained with a reconstruction objective (although the copied corpus

method does yield improvements from using target-language monolingual data in low-

resource NMT).

2.3.4 Machine Translation Without Parallel Data

In chapter 3 of this thesis, we propose ways of using target and source monolingual data

to improve neural machine translation when little parallel data is available. However,

recent unsupervised machine translation methods (Artetxe et al., 2018; Lample et al.,

2018) have shown that it is possible to train a neural machine translation system using

only monolingual source and target data, with no parallel data at all.

These systems work by first training word embeddings for each language on the

monolingual data, then aligning the two embedding spaces using adversarial train-
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ing (Conneau et al., 2018). These aligned word embeddings are then used as a bilingual

dictionary to translate the sentences in one language word-by-word into the other lan-

guage, resulting in an initial pseudo-parallel corpus. Then, an encoder-decoder model

is trained using two objectives. The first is denoising autoencoding: given a corrupt

version of a sentence from the monolingual data, the model tries to reconstruct the

true version. This is similar to our copied corpus method in chapter 3, where we also

train with an autoencoding objective, although we do not use noisy source data. The

second objective is machine translation on the pseudo-parallel corpus. Additionally, a

discriminator that tries to detect the original language of a sentence based on its en-

coding is used to encourage the model to encode sentences in the same embedding

space regardless of language. Finally, training is done iteratively: the currently trained

model is used to generate back-translations, which are then used to further train the

translation model, and so on. We also incorporate an iterative training paradigm with

back-translation into our zero-resource NMT model described in chapter 4, but do not

see meaningful improvements with multiple iterations.

These and subsequent unsupervised NMT models have been remarkably successful

at translation without parallel data. However, they are unable to translate well when

one of the languages is morphologically rich or when the monolingual corpora are dis-

similar (Guzmán et al., 2019). In addition, it would be ideal to combine such methods

with other types of data (including parallel corpora, multilingual corpora, or linguistic

annotations) when such data is available. Thus, it is still interesting to explore super-

vised and semi-supervised methods for low-resource neural machine translation, as we

do in this thesis.

2.4 Multilingual Data in Neural Machine Translation

Machine translation is usually trained using only data from the two languages of inter-

est (the source language and the target language). However, corpora in other languages

have proven to be helpful in improving neural machine translation in many scenarios.

Two languages may have little parallel data between them but large amounts of par-

allel data with a third language (e.g. there is little German↔Chinese parallel data but

abundant German↔English and Chinese↔English parallel data). In this case, it can be

beneficial to perform pivot-based translation (section 2.4.1) or zero-shot/zero-resource

translation (section 2.4.3). Finally, there has been some research showing that it can be

helpful to combine parallel corpora in several languages to create multilingual neural
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machine translation systems (section 2.4.2). Chapter 4 of this thesis relates to using

multilingual data in NMT, specifically to using monolingual data in a third pivot lan-

guage to improve zero-resource NMT performance.

2.4.1 Neural Machine Translation Using Pivot Languages

Pivot-based machine translation methods can be helpful when we would like to trans-

late between two languages that have insufficient parallel data between them. It may

be the case that some parallel data with a third pivot language (often English) can be

found; we consider this exact experimental setup in chapter 4. Pivot-based machine

translation is trained on both source → pivot data and pivot → target data, but lit-

tle to no direct source → target data. Pivoting can be an important technique even

when translating between two high-resource languages, as those languages may not

have much direct parallel data but may have plenty of parallel data through the pivot

language.

A natural baseline for pivot-based machine translation would be to train a source

→ pivot and a pivot→ target system and then simply concatenate them: first translate

a source sentence to the pivot language using the first system, then translate the pivot

sentence to the target language using the second system. However, this has the poten-

tial to propagate errors from the source→ pivot translation into the target language. In

addition, information from the source language that is relevant to translation into the

target language may be lost in the pivot language. For example, grammatical gender

and case distinctions would be lost if the pivot language is English. Another issue in

pivot-based NMT is the two-step inference process, which is more time-consuming

than direct source→ target translation.

Cheng et al. (2017) propose joint training for pivot-based NMT in order to remedy

some of these problems. They do this by modifying the NMT training objective to

combine source→ pivot and pivot→ target translation into a single objective with a

connection term that encourages the model to connect the two systems. However, the

resulting model still has the issue that it requires two-step inference (source → pivot

and pivot → target). The zero-resource methods described in section 2.4.3 attempt

to solve this issue by fine-tuning on artificial direct data to allow for direct source→
target inference; we present a zero-resource NMT model that is successful without

two-step inference in chapter 4.
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2.4.2 Multilingual Neural Machine Translation

Even when we have a parallel corpus between the desired source language and tar-

get language, multilingual data can still be helpful in neural machine translation. In

this section, we discuss the task of multilingual neural machine translation, in which

parallel corpora in multiple languages are used to train a single NMT system. This

technique has the potential to improve machine translation between low-resource lan-

guages through transfer learning; in addition, using a single model to translate multiple

languages can be beneficial because it reduces the number of models needed (Johnson

et al., 2017). We use multilingual neural machine translation techniques as the basis

for our zero-resource models in chapter 4.

Multilingual NMT was first considered by Dong et al. (2015) for the case of one-

to-many multilingual translation, i.e. translating from a single source language into

several target languages. They use a multi-task framework with a single encoder for

their source language and a separate decoder and attention mechanism for each of their

target languages. However, the fact that this model requires a separate decoder and

attention mechanism for all target languages means that extending to more target lan-

guages or to multiple source languages could potentially be costly. Firat et al. (2016a)

expand on this to consider many-to-many translation; they use several encoders (one

for each source language), several decoders (one for each target language), and a sin-

gle shared attention mechanism for all language pairs. The multilingual models out-

perform single models in low-resource cases; for high-resource cases the multilingual

models are slightly worse for translating out of English but better for translating into

English (possibly because all of their training data was parallel with English). Both

of these models show that multilingual NMT trained in a multi-task framework can be

helpful for NMT performance, but both architectures require very large models with

several encoders and/or decoders.

Ha et al. (2016) and Johnson et al. (2017) simplify the multilingual NMT archi-

tecture by using a single encoder for all source languages and a single decoder for all

target languages. This is achieved by appending a tag to the source sentence to in-

dicate the desired target language (based on the method of Sennrich et al., 2016a for

controlling politeness). The model is then trained on multilingual data and learns to

translate from any of the source languages into the correct target language. We use

the model of Johnson et al. (2017) as the basis for our work in chapter 4, and also as

an inspiration for our multi-task model in chapter 6 (where instead of the tasks being
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translating into different languages, they are translation and parsing).

2.4.3 Zero-Shot and Zero-Resource NMT

Chapter 4 focuses on the tasks of zero-shot and zero-resource neural machine transla-

tion, which we describe in more detail here. Zero-shot neural machine translation, i.e.,

NMT between two languages for which no parallel data was used at training time, can

be achieved by leveraging the multilingual NMT systems described in section 2.4.2.

Firat et al. (2016b) first attempted zero-shot NMT with their multilingual model con-

sisting of several encoders and decoders, but found that without fine-tuning, the model

is not able to translate between the zero-shot language pairs. On the other hand, multi-

lingual NMT with a shared encoder and decoder (Ha et al., 2016; Johnson et al., 2017)

is more successful at zero-shot NMT, although its performance still lags behind that of

pivoting. In chapter 4, we use both zero-shot and pivoted multilingual NMT systems

as our baselines and improve over them using monolingual pivot-language data.

Zero-resource translation can be used to improve direct translation performance in

zero-shot neural machine translation systems. Zero-resource NMT starts from a mul-

tilingual NMT system and improves the zero-shot direction (the direction of interest,

for which no direct parallel training data is available) using pseudo-parallel corpora.

These pseudo-parallel corpora are generally created from the original parallel corpora.

Firat et al. (2016b) found that zero-shot NMT performance could be strongly improved

using zero-resource NMT as follows:

1. Take the pivot side of the target ↔ pivot parallel data and use the multilingual

NMT system to back-translate it into the source language.

2. Combine the resulting machine-translated source data with the target side of

the target ↔ pivot parallel corpus to create a source’ → target pseudo-parallel

corpus.

3. Fine-tune the multilingual NMT system on the source’→ target pseudo-parallel

corpus.

We replicate these results for the multilingual NMT model of Johnson et al. (2017) in

section 4.4.1. Because of this model’s success in direct translation, we build off of it to

create our zero-resource systems in chapter 4. Lakew et al. (2017) use a similar zero-

resource technique to improve the multilingual NMT system of Johnson et al. (2017).
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Their approach differs from that of Firat et al. (2016b) in that they back-translate di-

rectly from the target language to the source language when creating the source’ →
target pseudo-parallel corpus, instead of translating from the pivot language. They

show that their model is successful for low-resource NMT; however, in our experi-

ments in section 4.4.1, we find that the approach of Firat et al. (2016b) works better for

our high-resource task. Finally, Park et al. (2017) combine both of these methods and

also include NMT-generated sentences on the target side of the pseudo-parallel cor-

pora. Our work in chapter 4 similarly uses machine-generated sentences on the target

side as well as the source side, but we make the additional contribution that we use

monolingual data in the pivot language for this task.

2.5 NMT with Syntax and Structure

As described in section 2.2.6, neural machine translation in its standard form (trained

only on parallel data) makes some errors in modeling syntax. This may create prob-

lems in machine translation fluency (particularly target syntax) and adequacy (particu-

larly source syntax). Furthermore, this problem may be exacerbated for low-resource

scenarios, where the NMT model might not have enough data to infer even basic gram-

matical rules. Thus, a popular topic in recent years has been injecting syntax into neural

machine translation; we review some such work in this section. In chapters 5 and 6,

we consider the task of adding source syntax to RNN-based and transformer-based

NMT, respectively, while in chapter 7, we inject unsupervised structure into the NMT

encoder.

2.5.1 NMT with Source Syntax Using a Modified Encoder

Chapters 5 and 6 of this thesis focus on injecting source-side syntax into NMT. Both

chapters build on previous work that incorporates source syntax into RNN-based NMT

by modifying the encoder architecture; we review some of this previous work in this

section.

Eriguchi et al. (2016) augment the RNN encoder with a tree-LSTM (Tai et al.,

2015) to read in source-side parses. They combine this with a standard RNN decoder,

the only modification to the decoder being that it can attend to phrase nodes as well

as words. This model uses an external automatic parser to parse the source sentences

of the parallel training data. Zaremoodi and Haffari (2018) expand on this tree-to-
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sequence model by introducing a forest-to-sequence architecture that is able to capture

uncertainty by modeling multiple possible parses of the source sentence. Similarly,

Bastings et al. (2017) replace the RNN encoder with a graph convolutional network

(GCN) encoder. The GCN is able to encode graph-structured data, so source sentences

can be represented using their dependency parses.

These models improve over non-syntactic RNN-based NMT systems, showing that

source-side syntactic annotations can indeed help NMT performance. Thus, we con-

sider adding source syntax into NMT to be a promising area for research. However,

the models discussed in this section rely heavily on parsed data during both training

and inference. In chapters 5 and 6, we introduce models that take advantage of source-

side syntactic parses but are also able to deal with unparsed data at inference time; in

chapter 7, we present an architecture that uses a tree structure to model the source sen-

tences without requiring parsed training data. In addition, when the architecture of the

encoder is changed entirely, as in these models, it is not clear how to incorporate the

models into newly proposed architectures. For example, the transformer has improved

over LSTMs in many cases, but it may be hard to apply the improvements from using

a tree-LSTM or GCN encoder to the transformer architecture. Our models proposed in

chapters 5 and 6 attempt to address this issue by being architecture-agnostic.

2.5.2 Linearized Parses in NMT

Our work in chapters 5 and 6 relies on linearized parses of the source sentences to

inject source syntax into NMT in a flexible way that allows for different architectures

and for unparsed sentences. In using linearized parses, we build off a large body of

related work in syntactic NMT, which we review in this section.

Luong et al. (2016) use a single encoder and different decoders to train two tasks:

parsing the source sentence and translating from source to target. Kiperwasser and

Ballesteros (2018) also apply multi-task learning to syntactic NMT; they use a shared

RNN decoder for translation, dependency parsing, and part-of-speech tagging and

evaluate different scheduling techniques to combine the tasks. Our multi-task sys-

tem presented in chapter 6 builds off these two papers by training a joint NMT and

constituency parsing model using a single encoder and decoder in a transformer frame-

work, and we further evaluate the multi-task framework on several diverse language

pairs, rather than just on English↔German.

The mixed RNN encoder model of Li et al. (2017) is similar to the shared encoder
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model that we introduce in chapters 5 and 6. Their model uses an RNN to encode

a linearized parse of a source sentence, but attends only to the words of the parse,

whereas our shared encoder model is trained on both linearized parses and unparsed

sentences, but for the linearized parses we attend to words and to parse labels. Both

models are flexible enough to be used in different architectures, but the shared encoder

model has the advantage that it is able to translate just as well from unparsed as from

parsed source sentences.

In this thesis, we concentrate on source-side syntax, but linearized parses have also

been popular for incorporating target syntax into neural machine translation. Aharoni

and Goldberg (2017) and Nadejde et al. (2017) both train RNN-based neural machine

translation systems to translate from sequential source sentences into linearized parses

of target sentences. These methods have the advantage that no modifications to the

decoder architecture are necessary. These models are similar to the models we propose

for using source syntax in chapters 5 and 6, particularly to the shared encoder and

multi-task models.

2.5.3 NMT with Unsupervised and Semi-Supervised Structure

So far, we have discussed improving neural machine translation with explicit syntactic

annotation. Syntactic NMT models are often successful at improving NMT, but most

require a syntactic parser in order to create the parsed parallel data. Thus, it would

not be possible to apply most syntactic NMT models to very low-resource scenarios.

In chapter 7, we address this challenge by inducing a tree structure over the source

sentences in an unsupervised manner. Here, we review some other models that use

unsupervised or semi-supervised structure in NMT.

Kim et al. (2017) introduce structured attention networks. These models extend

the basic attention mechanism by allowing it to attend to latent structures such as sub-

trees. They evaluate their structured attention network on character-level and word-

level NMT, but their results are a bit inconsistent: structured attention does not make a

large difference for word-level NMT but yields improvements over standard attention

for character-based NMT. Our unsupervised tree2seq model (chapter 7) induces the

structure in the encoder, rather than in attention; it would be interesting to see whether

these two methods could be combined effectively.

Hashimoto and Tsuruoka (2017) add a latent graph parser to the NMT encoder,

allowing it to learn dependency-like soft parses in an unsupervised manner. Their fully
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unsupervised model does not yield meaningful improvements over a standard seq2seq

model. However, pre-training the parser with a small amount of gold dependency parse

annotations results in better performance than non-syntactic NMT. Our unsupervised

tree2seq model in chapter 7 also learns unsupervised parse-like structures, although our

model generates discrete parsing decisions and improves over seq2seq in low-resource

cases without requiring any syntactic pre-training.

2.6 Conclusions

In this chapter, we have given an overview of neural approaches to machine translation,

as well as several methods for using non-parallel data in neural machine translation. In

the remainder of the thesis, we discuss our contributions to the goal of incorporating

non-parallel data into NMT, focusing on monolingual data from the target language

(chapter 3) and from other languages (chapter 4), as well as on syntactic annotations

(chapters 5 and 6) and hierarchical structure (chapter 7).



Chapter 3

Augmenting Neural Machine

Translation with Copied Monolingual

Data

This chapter addresses the goal of augmenting the parallel neural machine translation

training data with a monolingual corpus in the target language. This chapter is based

on Currey et al. (2017). The technique introduced in this chapter was used in the best

constrained English↔Turkish NMT systems from the WMT17 news translation shared

task (Bojar et al., 2017; Sennrich et al., 2017a).

3.1 Introduction

Target-language monolingual data is one of the most popular forms of non-parallel

data used in neural machine translation, partly because it is readily available for many

language pairs. In section 2.3, we discussed several methods for incorporating target-

language monolingual data into neural machine translation. Two effective such meth-

ods are back-translation (Sennrich et al., 2016c) and adding a language model (Gul-

cehre et al., 2015). Both methods have proven to be effective at adding monolingual

data to standard NMT, but they suffer from some issues. First, they can be slow, since

they both require pre-training: back-translation trains a target→ source NMT model

and translates all of the monolingual data, while language modeling methods require a

language model to be trained separately. Second, back-translation in particular gener-

ally leads to larger improvements in NMT performance but depends on the quality of

the back-translations (Sennrich et al., 2016c), which is partially dependent on the qual-

25
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ity of the parallel data used to create the reverse system. In a low-resource scenario, the

small amount of parallel data might hinder the improvements that can be made through

back-translation. Our goal in this chapter is to develop a method for semi-supervised

neural machine translation that does not suffer from these issues. Our approach uses a

copied parallel corpus, i.e. one in which the target and source sentences are identical,

to augment the parallel data.

We focus on language pairs with small amounts of parallel data, since we ex-

pect monolingual data to have the most impact on such cases. On the relatively low-

resource language pairs of English↔Turkish and English↔Romanian, we find that our

copying technique is effective both alone and combined with back-translation. This is

the case even when no additional monolingual data is used (i.e. when the copied corpus

and the back-translated corpus are identical on the target side).

In this chapter, we introduce a straightforward and effective model for incorporat-

ing target-language monolingual data into neural machine translation. This method

converts a monolingual target-language corpus into a parallel corpus by copying it, so

that each source sentence is identical to its corresponding target sentence; the copied

corpus is then shuffled together with the original parallel data and used to train the

NMT system. The three main advantages of this method are:

• It requires no pre-training (of a reverse machine translation system or a language

model), making it faster than both language modeling-based methods and back-

translation.

• It does not depend on the parallel data, so it can be successful even when rela-

tively little parallel data is available.

• It is flexible: it can easily be combined with other methods (such as back-

translation) and applied to new model architectures.

3.2 Copied Monolingual Data

We propose a method for incorporating monolingual target-side data into low-resource

neural machine translation that does not rely heavily on the amount or quality of the

parallel data. Throughout this chapter, we refer to our proposal as the copied corpus

method. Figure 3.1 gives an overview of how this method words.

We first convert the target-language monolingual corpus into a bitext by making

each source sentence identical to its target sentence; i.e., the source side of the bitext is
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la maison est rouge .

j’ ai un petit chat .

. . .

the house is red .

I have a small cat .

. . .

the man drinks water .

we like football .

. . .

(a) Start with a parallel corpus and a

monolingual target corpus.

la maison est rouge .

j’ ai un petit chat .

. . .

the house is red .

I have a small cat .

. . .

the man drinks water .

we like football .

. . .

the man drinks water .

we like football .

. . .

(b) Copy the monolingual corpus to con-

vert it into a bitext.

la maison est rouge .

we like football .

the man drinks water .

j’ ai un petit chat .

. . .

the house is red .

we like football .

the man drinks water .

I have a small cat .

. . .

(c) Shuffle the parallel corpus and copied

corpus together.

la mai@@ son est rouge .

we like footb@@ all .

the man drinks water .

j’ ai un pe@@ tit chat .

. . .

the hou@@ se is red .

we like footb@@ all .

the man drinks water .

I have a sm@@ all cat .

. . .

(d) Use BPE to represent all data in the

same vocabulary.

NMT

la mai@@ son est rouge .

we like footb@@ all .

the man drinks water .

j’ ai un pe@@ tit chat .

. . .

the hou@@ se is red .

we like footb@@ all .

the man drinks water .

I have a sm@@ all cat .

. . .

(e) Train the NMT system like normal.

Figure 3.1: Process for training an NMT system using the copied corpus method. For

simplicity, we omit using back-translated data from this illustration.
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a copy of the target side. We refer to this bitext as the copied corpus. The copied corpus

is then mixed with the bilingual parallel corpus and no distinction is made between the

two corpora. Finally, we train our NMT system with a single encoder and decoder

using this mixed data. Since both source and target data is represented using identical

byte pair encoding vocabularies trained on the concatenation of the source and target

parallel data, we are able to use the same encoder for both the parallel and copied

source sentences.

This copied corpus method can also be combined with the back-translation method

of Sennrich et al. (2016c). This is done by shuffling the parallel, back-translated, and

copied corpora together into a single dataset and training the NMT system like normal,

again making no distinction between the three corpora during training. In the main

experiments (section 3.4.1), we use the same monolingual data as the basis for both

the back-translated and the copied corpora (so the target sides of the two corpora are

identical). This means that each sentence in the original monolingual corpus occurs

twice in the training data.

3.3 Experimental Setup

3.3.1 Data

We evaluate our proposed copied corpus method using three language pairs: English

(EN)↔Turkish (TR), EN↔Romanian (RO), and EN↔German (DE). These language

pairs were chosen because they represent low-, medium-, and high-resource scenarios,

respectively, with regard to the amount of parallel data. Each language used (EN, TR,

RO, and DE) has a large amount of high-quality monolingual data available.

The EN↔RO data comes from the WMT16 news translation shared task (Bojar

et al., 2016), while the EN↔DE and EN↔TR datasets come from the WMT17 news

translation shared task (Bojar et al., 2017). For each language pair, we use all avail-

able parallel data from the task. Validation is done on newsdev2016 for EN↔RO and

EN↔TR, and on newstest2015 for EN↔DE. We use newstest2016 as the test set for all

language pairs and additionally evaluate on newstest2017 for EN↔TR and EN↔DE.

The EN↔RO monolingual data is randomly sampled from News Crawl 2015, and

the EN↔TR and EN↔DE monolingual data is randomly sampled from News Crawl

2016. In addition to our copying method, we back-translate the monolingual data to

create a pseudo-parallel corpus with an artificial source as described in Sennrich et al.
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Language Pair Parallel Monolingual

EN↔TR 207 373 414 746

EN↔RO 608 320 608 320

EN↔DE 5 852 458 10 000 000

Table 3.1: Number of parallel and monolingual training sentences for each language

pair.

(2016c). We use the same monolingual data for both copying and back-translation,

unless otherwise noted. Table 3.1 displays the amount of parallel and monolingual

training data used for each language pair.

For all language pairs, we use the Moses tokenizer and truecaser (Koehn et al.,

2007) to tokenize and truecase the data. We remove training sentences with more than

80 words, as well as empty sentences. Finally, we use byte pair encoding to break

words into subword units (Sennrich et al., 2016d), with 89,500 BPE operations. The

BPE vocabularies are trained on the concatenation of the source and target parallel

data, without using the monolingual data. For RO→EN, we remove diacritics from the

source side of the data, following Sennrich et al. (2016b).

3.3.2 Implementation and Training

We train attentional sequence-to-sequence models (Bahdanau et al., 2015) with a GRU

encoder and decoder (Cho et al., 2014b). All models are implemented in Nema-

tus (Sennrich et al., 2017b) following the hyperparameter recommendations of Sen-

nrich et al. (2016b). We use hidden layers of size 1024 and word embeddings of size

512. The models are trained using Adam (Kingma and Ba, 2015) with a minibatch size

of 80 and a maximum sentence length of 50. We apply dropout (Gal and Ghahramani,

2016) in all of our EN↔TR and EN↔RO systems with a probability of 0.1 on word

layers and 0.2 on all other layers. Since EN↔DE is a high-resource language pair,

there is less of a risk of overfitting, so we do not use dropout for EN↔DE. For all

models, we use early stopping based on perplexity on the validation dataset. We de-

code using beam search on a single model with a beam size of 12, except for EN↔DE,

where we use a beam size of 5 (which showed best results in preliminary experiments).

For the experiments which use back-translated versions of the monolingual data, the

target → source systems used to create the back-translations have the same setup as

those used in the final source→ target experiments.



30 Chapter 3. Augmenting Neural Machine Translation with Copied Monolingual Data

EN→TR TR→EN EN→RO RO→EN EN→DE DE→EN
BLEU 2016 2017 2016 2017 2016 2016 2016 2017 2016 2017

baseline 12.8 14.2 18.5 18.3 23.8 34.5 33.3 26.6 40.1 33.8

copied 14.0 15.2 18.9 18.6 24.5 35.7 33.3 26.3 40.2 34.0

Table 3.2: Translation performance in BLEU with and without copied monolingual data

on the newstest2016 and newstest2017 datasets.

3.3.3 Baseline

As a baseline, we use a standard seq2seq neural machine translation model identical to

the one described in section 3.3.2. This model is trained using the exact same parallel

and monolingual data as our proposed copied model; the only difference is how the

monolingual data is used. In the baseline, we use only the back-translated version of

the monolingual target data, without any copied corpus.

3.4 Results

3.4.1 Main Experiments

This section contains our main results comparing the proposed copied corpus method

to the baseline. We first evaluate the translation performance, then further investigate

possible explanations for these BLEU results.

Translation Performance

Table 3.2 displays the translation quality for each language pair and each system, as

approximated by BLEU score (Papineni et al., 2002). We report case-sensitive deto-

kenized BLEU calculated using mteval-v13a.pl. The only difference between the

baseline and the copied systems is the use of the copied monolingual corpus; all sys-

tems include back-translated data.

We observe improvements of up to 1.2 BLEU when adding a copied corpus for the

low-resource (EN↔TR) and medium-resource (EN↔RO) language pairs. This indi-

cates that our copied corpus method improves neural machine translation performance

in cases where only a moderate amount of parallel data is available. For EN↔DE,

we do not see any improvements from adding the copied corpus. We conjecture that

this is because EN↔DE is a high-resource language pair. However, the EN↔DE sys-
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Perplexity EN→TR TR→EN EN→RO RO→EN EN→DE DE→EN

reference 700.0 146.7 202.4 118.1 231.0 116.5

baseline 921.1 341.6 328.2 248.4 490.6 317.3

copied 921.6 344.2 344.8 245.5 493.3 314.2

Table 3.3: Language model perplexities for the outputs of each NMT system.

tems trained with the copied corpus also do not perform significantly worse than those

without.

Fluency

Adding the target-side copied monolingual corpus to the training data results in im-

provements in translation performance as measured by BLEU score for EN↔TR and

EN↔RO, even over models that use the same monolingual data with only a back-

translated source. In this section and the next section, we further investigate the outputs

of each system in order to better understand the source of these BLEU gains.

One possible explanation for the improvements is that the incorporation of addi-

tional target-side data helps the system generate more fluent outputs. This would be

analogous to statistical machine translation, where a monolingual target corpus can be

used to improve the language model.

In order to evaluate this assumption, we train a language model for each target lan-

guage and use the trained language models to evaluate the perplexity of the translation

outputs. We use 5-gram language models trained using KenLM (Heafield, 2011) on

the full monolingual News Crawl 2015 and 2016 datasets. The data is preprocessed as

described in section 3.3.1, although no subword segmentation is used.

We compare perplexities of the baseline system outputs, the outputs of the pro-

posed system using the copied corpus, and the reference translations. For EN↔RO,

we use the newstest2016 output, while for EN↔DE and EN↔TR, we concatenate the

newstest2016 and newstest2017 sets into a single dataset before finding the perplex-

ity. The results for these experiments are shown in Table 3.3. For perplexity, lower is

better.

As expected, perplexities for the reference translations are significantly lower than

perplexities for the translation outputs (both of the baselines and of the copied corpus

systems). However, perplexities for the baselines and for the proposed copied corpus

systems are similar for all language pairs, and improvements in BLEU (see Table 3.2)
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Accuracy EN→TR TR→EN EN→RO RO→EN EN→DE DE→EN

baseline 77.3% 85.0% 71.5% 85.3% 78.5% 91.4%
copied 82.0% 89.1% 78.5% 91.5% 78.6% 91.1%

Table 3.4: Copying accuracy for the outputs of each NMT system.

do not correlate to improvements in perplexity. These results indicate that the BLEU

improvements in the copied corpus systems do not seem to be due to improvements in

fluency, at least as approximated by language model perplexity.

Copying Accuracy

Another possible explanation for the improvements in BLEU reported in Table 3.2 is

that the copied corpus systems are better able to copy relevant words (such as numbers

or named entities) to the output when appropriate. We test this hypothesis as follows:

1. For each sentence in the tokenized test data, we detect copied words: words that

occur in both the source and the reference (ignoring case and subword segmen-

tation).

2. We exclude words that only consist of one character.

3. We then count how many copied tokens occur in the corresponding sentence in

the translation output of each system.

4. Finally, we calculate copying accuracy as the percent of copied tokens that occur

in the corresponding sentence of the output.

The copying accuracy for each system is displayed in Table 3.4. These results

mirror the BLEU results: for all language pairs except EN↔DE, there is a large im-

provement in copying accuracy for our proposed copied corpus systems. These results

suggest that the copied corpus is able to train the model to pass appropriate words

through to the target output more successfully. Table 3.5 shows some examples of

translations with improved copying accuracy for the systems trained with the copied

corpus.

3.4.2 Additional English-Turkish Experiments

In addition to the main evaluation described in section 3.4.1, we perform several exper-

iments to further probe the behavior of our proposed method. We run these experiments
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RO→EN

source ... analist s,ef ı̂n cadrul Peterson Institute for International Economics.

reference ... senior fellow at the Peterson Institute for International Economics.

baseline ... chief analyst at the Carson Institute for International Economics.

copied ... chief analyst at Peterson Institute for International Economics.

source Les Dissonances a aparut pe scena muzicala n 2004 ...

reference Les Dissonances appeared on the music scene in 2004 ...

baseline Les Dissonville appeared on the music scene in 2004 ...

copied Les Dissonances appeared on the music scene in 2004 ...

TR→EN

source Metcash, Aldi istilasıyla mücadele etmek için halk kampanyası başlattı

ref Metcash launches grassroots campaign to fight Aldi incursion

base Mette launches public campaign to fight Maldi isticula

copied Metcash launches public campaign to fight aldi sisters

source PSV teknik direktörü Phillip Cocu, şöyle dedi: “Çok kötü bir sakatlanma.”

reference Phillip Cocu, the PSV coach, said: “It’s a very bad injury.”

baseline PSV coach Phillip Coker said: “It was a very bad injury.

copied PSV coach Phillip Cocu said: “It’s a very bad injury.”

Table 3.5: Comparison of translations generated by baseline and copied corpus sys-

tems.
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BLEU 2016

parallel + back-translated 12.8

parallel + double back-translated 13.1

parallel + back-translated + copied 14.0

Table 3.6: EN→TR translation performance when using the back-translated corpus

twice vs. the back-translated and copied corpora.

on the EN→TR data described in section 3.3.1 and evaluate them on the newstest2016

test set. We choose EN→TR as our test case for further analysis since this was the

language pair where the copied corpus yielded the largest improvements. It should be

noted that these experiments are not directly comparable with the ones in the previous

sections, because many of them use different monolingual corpora (e.g. of different

sizes).

Double Back-Translated Data

In our main experiments, we used each sentence from the monolingual corpus twice

in the training data: once with a back-translated source and once with a copied source.

However, the monolingual data that we used for these experiments is of high quality

and is from the same domain as the test data. Therefore, it is possible that the improve-

ments shown in the main experiments are simply due to using this high-quality data

twice (in the form of back-translated and copied data), rather than to using the copied

corpus itself.

In order to evaluate this possibility, we consider an alternative configuration that

uses the monolingual data twice without copying it. This system is trained on two

instances of the same back-translated data as well as on the parallel data. Thus, the

target side of this data is identical to the data used to train our proposed copied corpus

systems.

Table 3.6 displays the results for these experiments. Parallel + back-translated

is the baseline that uses a single instance of the back-translated data, parallel + dou-

ble back-translated is the novel configuration using two instances of the same back-

translated data, and parallel + back-translated + copied is our proposed copied corpus

system.

The system that uses the copied corpus performs better than the other two systems

by about one BLEU point. In addition, doubling the back-translated data does not
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BLEU 2016

baseline 12.4

same copied 13.6
different copied 13.3

Table 3.7: EN→TR translation performance when using the same or different data for

copied and back-translated corpora.

result in any meaningful improvement over the baseline. Thus, this indicates that the

improvements in our proposed copied corpus system are not simply due to the higher

weight given to the high-quality monolingual data.

Different Copied Data

Throughout the experiments presented in this chapter, we have used the same monolin-

gual data to create both the back-translated and the copied bitexts; thus, each monolin-

gual target sentence appears twice in the training data. An open question is whether the

same gains are seen when different data is used for back-translation and for copying.

We address this question by randomly splitting the target monolingual corpus in

half; we then back-translate one half of the corpus and copy the other half to create the

pseudo-parallel data. Therefore, in these experiments the monolingual corpus is the

same size as in the main experiments; however, the final training corpus contains each

monolingual sentence only once (rather than twice as in the original copied corpus

systems). We refer to this modified method as the different copied method.

Table 3.7 shows the results for using the different copied method, as well as the

baseline (without copied data) and our original (same copied) proposed method. Both

copied corpus systems outperform the baseline, as seen in other experiments, with the

different copied version doing slightly worse than the original version.

Copied Corpus Without Back-Translation

The main results in section 3.4.1 show that our proposed copied corpus method stacks

with back-translation to improve NMT quality for low- and medium-resource scenar-

ios, even when no additional monolingual data is used. However, it is worthwhile

to find out whether the copied corpus method can be used by itself, without any back-

translated data. This can be helpful in cases where back-translated data is not available,
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BLEU 2016

parallel only 9.4

parallel + small back-translated 12.0
parallel + large back-translated 12.4

parallel + small copied 11.7

parallel + large copied 12.0

Table 3.8: EN→TR translation performance without back-translated data.

for example because of time constraints that make it infeasible to train a backwards

system and back-translate all of the monolingual data.

The experiments examining this question are identical to the main experiments,

except that no back-translated version of the data is used; only parallel and copied

monolingual data make up the training corpus. We consider two scenarios: using a

small and large copied corpus. The large corpus contains roughly 400k sentences, as

in the main experiments, whereas the small corpus contain a randomly selected 200k-

sentence subset of the large corpus.

The results for these experiments are shown in Table 3.8. The first row of the ta-

ble shows the baseline system trained with parallel data only, and we include systems

trained with parallel and back-translated data (without copied data) for comparison

(rows two and three). In rows four and five, we display the results for the copied cor-

pus methods without back-translation. Both the small and the large copied corpora

yield strong improvements over the parallel-only baseline (2.3–2.6 BLEU), and their

performance is only slightly worse than that of the corresponding back-translation sys-

tems (0.3–0.4 BLEU). Thus, using copied data without back-translation is a relatively

quick and effective way to incorporate target monolingual training data, although re-

sults are best when both back-translated and copied corpora are used.

Source Copied Corpus

The main focus of this chapter has been adding a target-side monolingual corpus to

the training data. However, our copied corpus technique, when stacked with back-

translation, can also be used as a method for adding monolingual training data in the

source language. Source-side monolingual training data has the potential to aid the

encoder in better understanding the source language, possibly resulting in improved

translation performance.
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BLEU 2016

baseline 12.4

copied 13.6
+ EN data 13.6

Table 3.9: EN→TR translation performance with EN monolingual data.

We propose incorporating source monolingual data as follows:

1. Create a copied corpus from the source monolingual corpus by duplicating it.

2. Mix the copied source corpus with the parallel data.

3. Train a target→ source neural machine translation system using the mixed par-

allel and copied data.

4. Use the target→ source system to back-translate the target monolingual corpus.

5. Train the final source → target system on the parallel, back-translated, and

copied target data.

Thus, the source copied corpus is used to improve the back-translations of the target

monolingual data. This is similar to the iterative, bidirectional process used subse-

quently in unsupervised machine translation (described in more detail in section 2.3.4).

For these experiments, we use English monolingual data, in additional to the target

(Turkish) monolingual data. The EN monolingual data is randomly sampled from the

News Crawl 2015 corpus and preprocessed in the same way as for the parallel data

(described in section 3.3.1). We use 400k monolingual EN sentences, corresponding

to twice the size of the parallel corpus (and the same size as the target monolingual

corpus).

Table 3.9 displays the results for the source copied experiments. Adding in the

source (EN) monolingual data does not result in any improvements over the target-

only copied model, although both copied systems do improve over the baseline. Thus,

using copied monolingual source data to improve the back-translations does not yield

gains in the final system.

Amount of Copied Data

Although we used a 2:1 ratio of copied to parallel data in the main EN→TR experi-

ments (section 3.4.1), an open question is how effective the copied corpus method is
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BLEU 1:1 2:1 3:1

baseline 12.0 12.4 12.8

copied 13.0 13.6 13.8

Table 3.10: EN→TR translation quality on newstest2016 with different amounts of

monolingual data.

when the proportion of monolingual to parallel data is varied. We study this question

in this section.

Three monolingual corpus sizes are considered: 200k sentences (1:1 ratio of mono-

lingual to parallel data), 400k sentences (2:1 ratio), and 600k sentences (3:1 ratio),

where each smaller monolingual corpus is a subset of the larger one. We train baseline

systems using parallel and back-translated data, as well as copied corpus systems using

parallel, back-translated, and copied data. In all cases the amount of back-translated

data varies along with the amount of copied data. We do not oversample the parallel

data to balance the data sources.

Table 3.10 displays the translation performance on newstest2016 when a 1:1, 2:1,

and 3:1 ratio of monolingual to parallel data is used. The baseline BLEU scores vary

due to the different amounts of back-translated data in these systems; adding more

back-translated data consistently increases the BLEU score even when no more parallel

data is used.

The systems trained with copied monolingual data consistently perform at least 1

BLEU better than the corresponding baselines. This is especially surprising in light

of the fact that we do not oversample the parallel corpus; for the 2:1 and 3:1 cases,

the overall translation performances improve despite the system seeing far less parallel

than monolingual data during training. In addition, adding more monolingual data

consistently yields small improvements (0.2–0.6 BLEU).

3.5 Discussion

Our proposed method of using a copied target-language monolingual corpus to aug-

ment training data for NMT proved to be beneficial for EN↔TR and EN↔RO transla-

tion, resulting in improvements of up to 1.2 BLEU over a strong baseline. We showed

that our method stacks with the previously proposed back-translation method of Sen-

nrich et al. (2016c) for these language pairs. For EN↔DE, however, there was no sig-
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nificant difference between systems trained with the copied corpus and those trained

without it. There was much more parallel training data for EN↔DE than for EN↔RO

(nearly 10 times as much) and EN↔TR (about 28 times as much), so it is possible that

the gains that would have come from the copied corpus were already achieved with

the parallel data. Overall, the copied monolingual corpus either helped or was indiffer-

ent, so training with this copied target corpus is not risky, although subsequent work

found that training with copied source data could damage performance (Khayrallah

and Koehn, 2018). In addition, the proposed copied corpus method does not require

any more monolingual data besides what is used for back-translation.

We initially assumed that the copied monolingual corpus was helping to improve

the fluency of the target outputs. However, further study of the outputs did not support

this assumption, as noted in section 3.4.1. Our method did improve accuracy of copy-

ing words that are identical in the source and target languages; this may be part of the

explanation for the increases in BLEU score when using the copied corpus.

Besides our copied corpus method, there are several other techniques that could

improve copying from source to target. For instance, Luong et al. (2015b) detected

source alignments to out-of-vocabulary target words and either replaced the words with

their dictionary translations or copied the source words to the target as a postprocessing

step. Another option would be to assign a higher weight in the objective function

to words that are identical in the source and target to encourage the model to detect

those words and handle them properly. Pointer-generator networks (See et al., 2017),

which are trained to decide at each timestep between copying a word from the source

sentence and generating a new word, could also be an effective solution for helping an

NMT model learn to copy. However, there may be additional ways (besides improved

copying) in which our proposed copied corpus improves translation. Evidence for this

includes the experiments in section 3.4.2 that showed that using only the copied corpus

did almost as well as using only back-translation. In particular, the copied corpus might

help the encoder learn more universal encodings of the inputs. This could be because

the copied corpus method trains a multilingual encoder (since it sees data in the source

and target languages), and it combines NMT and autoencoding objectives, which has

proven to be helpful in very low-resource NMT in subsequent work (Artetxe et al.,

2018; Lample et al., 2018).

All of our experiments in this chapter were run on translation between languages

with the same script. In principle, our proposed copied corpus method could be applied

to translation between two languages with different scripts as well. However, this
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would require increasing the source vocabulary, since there would be little overlap

between the BPE subwords of the source language and the target language. In addition,

it is unlikely that the improvements in copying accuracy seen in section 3.4.1 would

carry over to languages with different scripts. One solution could be to transliterate

the source side of the copied corpus so that it is written in the same script as the

source language. Whether transliteration is better than simple copying and whether

the copied corpus method would be effective for translating between languages with

different scripts remain open empirical questions.

In addition to potential issues with using the copied corpus method on translation

between different scripts, the method proposed in this chapter has some other dis-

advantages. First, it did not result in any improvements in BLEU for high-resource

EN↔DE translation. Additionally, the copied corpus method alone did not outper-

form back-translation alone. Finally, although we found that copied corpus method

improves copying accuracy on words that should be copied from the source sentence

to the output, we did not check for false positives. It is possible that the model trained

with the copied corpus also learns to copy words that are not actually identical in the

source and the target.

3.6 Subsequent Work

Since the publication of the research in this chapter, there have been several papers

that further examined the use of copied or monolingual data in neural machine transla-

tion. Edunov et al. (2018) investigated back-translation and found that generating noisy

synthetic source sentences (e.g. through sampling or noised beam search) yielded im-

provements over beam search- and greedy search-based back-translation, especially as

more back-translated data was used. It is possible that the copied corpus benefits from

the same concept, since it uses extremely noisy synthetic source sentences (which are

identical to the target sentences) as well as synthetic source sentences generated from

beam search. This would also fit with the fact that the copied corpus method does well

even when the amount of monolingual data is three times as much as the amount of

parallel data (as described in section 3.4.2).

The effect of copying source-language sentences has also been analyzed. Ott

et al. (2018) discovered that in the WMT14 English↔French and English↔German

datasets, between 1.1% and 2% of training sentence pairs are in fact copies. They

showed that copies of the source-language sentence on the target side of the data can



3.7. Conclusions 41

significantly worsen model outputs, particularly when large beam sizes are used during

inference. Similarly, Khayrallah and Koehn (2018) showed that when the source train-

ing sentences are copies of the corresponding target sentences (i.e., when the source

side of the data contains target-language data), only small decreases in BLEU occur;

however, when the target sentences are copies of the source sentences, the model per-

formance is strongly degraded. In fact, they found that models learned to copy the

source sentence when only 20% of the target sentences were copies of the source.

Thus, although we have shown that training models to copy target-language text is an

effective secondary task that can improve NMT, it is likely that training them to copy

source-language text would worsen NMT performance.

3.7 Conclusions

In this chapter, we introduced a method for improving neural machine translation us-

ing monolingual data, particularly for low-resource scenarios. Augmenting the training

data with monolingual data in which the source side is a copy of the target side proved

to be an effective way of improving EN↔TR and EN↔RO translation, while not dam-

aging EN↔DE (high-resource) translation. This technique could be used in conjunc-

tion with back-translation but was also effective without back-translation (though not

quite as strong as back-translation). In addition, using much more monolingual than

parallel data did not hinder performance, which is beneficial for the common case

where a large amount of monolingual data is available but the language pair has little

parallel data.

The overarching goal of this thesis is to investigate ways of improving neural ma-

chine translation by using different types of training data in addition to the traditional

parallel corpora. This is particularly important in low-resource scenarios, where suffi-

cient parallel data may be unavailable. In this chapter, we have concentrated on mono-

lingual data in the target language, introducing a copied corpus method that can im-

prove neural machine translation significantly for low- and medium-resource language

pairs; we have also briefly explored using monolingual data in the source language. In

subsequent chapters, we will expand on this by using monolingual data from a third

pivot language and syntactic data.

This work invites natural extensions that we would like to investigate in the future.

Specific subtasks of machine translation, such as domain adaptation and translation

between similar languages, could potentially be improved using a copied monolingual
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corpus; it would be interesting to apply the methods and experiments in this chapter

to such subtasks. In addition, the quality of the monolingual data has been shown to

have an effect on NMT performance (Cheng et al., 2016), so applying a data selection

method when creating the copied corpus is also a promising avenue for future research.



Chapter 4

Zero-Resource NMT with Monolingual

Pivot Data

In this chapter, we build on the work of the previous chapter on using monolingual

data to improve neural machine translation. Here, we concentrate on pivot-based and

zero-resource NMT and use monolingual data from the pivot language. A paper based

on this chapter is currently in submission.

4.1 Introduction

Most modern neural machine translation methods depend heavily on the availability of

parallel data between the source and the target language. In chapter 3, we considered

the case of adding target-language monolingual data to a language pair that had some

parallel data available. However, even two high-resource languages, such as German

and Russian, may not have sufficient parallel data between them.

Although most language pairs may have little parallel data available, it is often

possible to find parallel corpora with a third pivot language. For example, while di-

rect German↔Russian parallel data is relatively scarce, both German↔English and

Russian↔English data is abundant. Pivot-based and zero-shot NMT systems have

been proposed as a means of taking advantage of this data to translate between e.g.

German and Russian.

In pivot-based machine translation, text is first translated from the source language

into the pivot language, and then from the pivot language into the target language.

Although such methods can result in strong translation performance (Johnson et al.,

2017), they have a few disadvantages. The two-step pivoting translation process dou-

43
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bles the latency during inference and has the potential to propagate errors from the

source → pivot translation into the final target output. Additionally, there is a risk

that relevant information in the source sentence can be lost in the pivot translation (e.g.

case distinctions if pivoting through English) and not represented in the target sentence.

Zero-shot methods that take advantage of multilingual NMT systems to perform direct

source→ target translation can help in addressing these problems, and zero-resource

methods build off of zero-shot methods by fine-tuning them on pseudo-parallel data to

improve direct translation.

The goal of this chapter is to augment zero-resource NMT with monolingual data

from the pivot language. Although there have been several explorations into using

parallel corpora through a pivot language to improve NMT (Firat et al., 2016b; Lakew

et al., 2017; Park et al., 2017) and using monolingual source and target corpora in

NMT (Edunov et al., 2018; Gulcehre et al., 2015; Hoang et al., 2018; Niu et al., 2018;

Sennrich et al., 2016c; Zhang and Zong, 2016), this is to our knowledge the first at-

tempt at using monolingual pivot-language data to augment NMT training. Leveraging

monolingual pivot-language data is worthwhile because the pivot language is often the

highest-resource language of the three (e.g. English), so we expect there to be more

high-quality monolingual pivot data than monolingual source or target data. Thus, we

make use of parallel source ↔ pivot data, parallel target↔ pivot data, and monolin-

gual pivot-language data to build a zero-resource NMT system. Although we use a

basic multilingual NMT system as the basis, the methods proposed here could easily

be applied to any zero-shot NMT architecture.

4.2 Zero-Resource NMT with Pivot Monolingual Data

In this chapter, we concentrate on zero-resource NMT between two languages X and

Y given a pivot language Z. We assume access to X↔Z and Y↔Z parallel corpora,

but no direct X↔Y parallel corpus. Our goal is to use monolingual data in the pivot

language Z to improve both X→Y and Y→X translation simultaneously. Figure 4.1

gives an overview of our proposed method.

4.2.1 Initial Multilingual Models

We start by reviewing the multilingual NMT models that are used as the basis for our

experiments. Here, we do not consider single-directional bilingual NMT models, only
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pivot

source

pivot

target

NMT
training

source

pivot

target

pivot

(a) An initial multilingual NMT model is trained on source↔ pivot and target↔ pivot parallel

data (section 4.2.1).

pivot monolingual
NMT

inference

source’

target’

(b) The pivot monolingual corpus is back-translated into the source and target languages using

the trained NMT model (section 4.2.2).

source’

target’ NMT
training target’

source’

(c) The source’→ target’ and target’→ source’ pseudo-parallel corpora are used to train the

final NMT system from scratch or fine-tune the initial model (section 4.2.3). In practice, we

concatenate this data with a subset of the original parallel data (not shown here).

Figure 4.1: Illustration of the basic steps in our zero-resource NMT model using pivot-

language monolingual data.
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multilingual NMT models. This is because we would like to translate directly between

language X and language Y at inference time without using the pivot language; trans-

lating through the pivot language would double the amount of time it takes to translate

and potentially lead to information loss or error propagation. In this work, we also do

not consider the case of adding monolingual data from the main languages of interest

(X and Y), although such data would likely further improve translation quality.

Our initial multilingual NMT model is based on the model introduced by Johnson

et al. (2017), although here we use the transformer architecture (Vaswani et al., 2017).

We train the initial model on mixed X→Z, Z→X, Y→Z, and Z→Y parallel data and

use tags at the beginning and end of each source sentence to indicate the desired target

language. We shuffle all of the data together randomly, regardless of source and target

language. We do not employ any extensions to the zero-shot architecture (Arivazhagan

et al., 2019; Lu et al., 2018; Platanios et al., 2018), although the methods described here

could easily be applied to such extensions as well.

4.2.2 Back-Translation of Pivot Monolingual Data

We turn now to the task of leveraging the monolingual corpus in the pivot language Z

to improve the multilingual NMT models. We aim to improve only X→Y and Y→X

translation, without regard to performance on the other language pairs that are included

in the multilingual system (X↔Z and Y↔Z).

We start by using the initial monolingual model described in section 4.2.1 to back-

translate the monolingual pivot data into both languages of interest (X and Y). Since

the initial multilingual model was trained on both these directions (Z→X and Z→Y),

we expect it to do reasonably well at back-translation. Thus, for each sentence in the

Z monolingual corpus, we have its translation in both X and Y, so we can create a

pseudo-parallel corpus X’↔Y’ (where the prime symbol indicates machine-translated

text). We concatenate both directions (X’→Y’ and Y’→X’) together to create our

back-translated pivot (BT-pivot) corpus. This resulting corpus contains synthetic data

on both the source and the target side.

4.2.3 Using the BT-Pivot Corpus

The BT-pivot corpus uses the monolingual corpus from the pivot language Z to create

a direct pseudo-parallel corpus between the two languages of interest, X and Y. In

this section, we introduce three methods for using this BT-pivot data to create a zero-
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resource NMT system for X↔Y translation. In all cases, we concatenate the BT-pivot

corpus with a subset of the original training data to train the zero-resource models;

in preliminary experiments, we found that using some original training data yielded

slightly higher BLEU scores than training on back-translated data alone. We take only

a subset of the original parallel training data rather than the entire corpus in order to

cut down on training time.

We dub our first method pivot from scratch. In this method, we discard the initial

NMT model and train a new NMT model from scratch using the BT-pivot data (con-

catenated with the subset of the original parallel corpora). We use the same model

hyperparameters as for the initial NMT model.

Our second method, pivot fine-tune, is similar to the first: both methods use the

BT-pivot data (along with the subset of the original parallel data). However, for pivot

fine-tune, we use the BT-pivot data and the subset of the parallel data to fine-tune the

original multilingual model described in section 4.2.1, rather than training a new model

from scratch.

Finally, we propose a pivot-parallel combined method. This method also fine-

tunes the original multilingual model, but uses an augmented fine-tuning dataset. In

addition to the BT-pivot corpus and the subset of the original training data, we add a

back-translated parallel (BT-parallel) corpus generated following Firat et al. (2016b)

as follows:

1. Use the initial multilingual model to translate the Z side of the subsetted X↔Z

parallel corpus into language Y.

2. Combine the resulting Y’ data with the X side of the subsetted X↔Z parallel

corpus to create a Y’→X parallel corpus.

3. Use the initial multilingual model to translate the Z side of the subsetted Y↔Z

parallel corpus into language X.

4. Combine the resulting X’ data with the Y side of the subsetted Y↔Z parallel

corpus to create a X’→Y parallel corpus.

5. Concatenate the two back-translated corpora (X’→Y and Y’→X) to create the

BT-parallel corpus.

The BT-parallel corpus is then combined with the BT-pivot corpus and the subset of

the original parallel data and used to fine-tune the initial multilingual model.
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Method Back-Translated Data Training Regime

pivot from scratch BT-pivot train from scratch

pivot fine-tune BT-pivot fine-tune initial model

pivot-parallel combined BT-pivot + BT-parallel fine-tune initial model

Table 4.1: Summary of the proposed methods for zero-shot NMT using pivot-language

monolingual data.

Corpus Sentences

EN↔DE 4 497 878

EN↔RU 2 500 502

EN monolingual 1 000 000

Table 4.2: Number of sentences in each training corpus for the DE↔RU experiments.

Table 4.1 summarizes the three proposed methods for zero-shot NMT. The three

methods vary in the back-translated data used (BT-pivot only vs. BT-pivot and BT-

parallel) and in the training regime (training a new model from scratch vs. fine-tuning

the initial multilingual model). In initial experiments, we also tried a version of the

pivot-parallel combined method that trained a new model from scratch, although this

did not do as well as the pivot-parallel combined method with fine-tuning.

4.3 Experimental Setup

4.3.1 Data

We run our experiments on a high-resource setting: translation between German (DE)

and Russian (RU) using English (EN) as the pivot. The data comes from the WMT16

news translation task (Bojar et al., 2016). We use all available parallel corpora for

EN↔DE (Europarl v7, Common Crawl, and News Commentary v11) and for EN↔RU

(Common Crawl, News Commentary v11, Yandex Corpus, and Wiki Headlines) to

train the initial multilingual system, but no direct DE↔RU parallel data. When the

parallel data is used alongside the back-translated corpora for fine-tuning or re-training

from scratch (as described in section 4.2.3), we randomly sample one million sentences

from each parallel corpus.

For pivot (EN) monolingual data, we take a random subset of one million sentences
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from the News Crawl 2015 corpus. Since the goal of this chapter is to study the ef-

fectiveness of using pivot-language monolingual data, we do not use any DE or RU

monolingual data; however, we expect that such data would also be beneficial. Ta-

ble 4.2 shows the size of each training corpus after preprocessing. We use the overlap-

ping DE and RU sentences from newstest2014 as the validation set (1505 sentences),

newstest2015 as the test set (1433 sentences), and newstest2016 as the held-out set

(1500 sentences). The overlapping sentences were originally written in English and

were translated by human translators into German and Russian (Bojar et al., 2016).

All data is tokenized and truecased using the Moses scripts (Koehn et al., 2007).

We use a joint byte pair encoding (Sennrich et al., 2016d) vocabulary for all three

languages (DE, EN, and RU) trained on all parallel data with 50k merge operations.

Similarly to Johnson et al. (2017), we use tags at the beginning and end of the source

sentence to indicate the desired target language.

4.3.2 Implementation and Training

All models in our experiments are based on the transformer architecture (Vaswani

et al., 2017). We use the Sockeye toolkit (Hieber et al., 2017) to run all experiments.

We find that the default Sockeye hyperparameters work well, so we stick with those

throughout. We use beam search with beam size 5 both when back-translating and

during inference.

4.3.3 Baselines

Initial Models Without Monolingual Data

We compare our models to three baselines that are trained without any monolingual

data. We refer to these baselines as initial models because they are used as the basis

for our proposed models: we use them to generate the BT-pivot data and we fine-tune

them using the generated data to create our proposed models.

The first baseline is a multilingual model based on Johnson et al. (2017), but we use

the transformer architecture and add target language tags at both the beginning and end

of the source sentences. This multilingual model is trained on the English↔German

and English↔Russian parallel data. We evaluate this model both with direct (zero-

shot) translation (German→Russian and Russian→German) and with pivot translation

through English.
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Secondly, we consider the zero-resource NMT method proposed by Lakew et al.

(2017). This method consists of selecting sentences from the DE↔EN parallel corpus

and back-translating them from DE into RU, resulting in a RU’→DE pseudo-parallel

corpus. The same is also done with the RU↔EN parallel corpus to create a DE’→RU

pseudo-parallel corpus. These corpora are then concatenated with the original parallel

data and used to fine-tune the multilingual model. This zero-resource method is only

evaluated on direct DE→RU and RU→DE translation (not on pivoting through EN).

We also compare our models to a zero-resource baseline based on the technique

introduced by Firat et al. (2016b). This method fine-tunes the initial multilingual model

with the BT-parallel corpus described in section 4.2.3 (concatenated with the origial

data). Like the other zero-resource baseline, this baseline is only evaluated on direct

translation (not on pivot translation).

Baselines with Monolingual Data

In addition to the initial models, we compare our proposed zero-resource NMT meth-

ods to two baselines trained with monolingual EN data. For both of these baselines,

we evaluate both direct zero-shot translation and pivot translation through EN.

The first is based on our copied corpus method (chapter 3). We train an iden-

tical model to the initial multilingual model, but with additional EN→EN pseudo-

parallel training data from the EN monolingual corpus. Thus, this model is trained

on DE↔EN, RU↔EN, and EN→EN data. We do not fine-tune this model with any

pseudo-parallel data.

The second baseline we consider is back-translation (Sennrich et al., 2016c). Start-

ing from the trained multilingual model, we back-translate the EN monolingual data

into both DE and RU, then fine-tune the multilingual model on the original training

data, plus the DE’→EN and RU’→EN pseudo-parallel corpora.

4.4 Results

4.4.1 Main Experiments

Table 4.3 shows translation performance (as estimated by BLEU score) for our main

experiments. We display results for initial multilingual models without any mono-

lingual data (rows 1–4), for copied corpus and back-translation baselines using the

monolingual data (rows 5–8), and for our proposed zero-resource models (rows 9–11).
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DE→RU RU→DE
BLEU test held-out test held-out

initial models

multilingual direct 3.4 2.7 15.2 14.5

multilingual pivot 21.3 19.3 21.7 20.2

Lakew et al., 2017 19.4 17.0 14.4 13.2

Firat et al., 2016b 22.6 20.7 21.0 18.3

baselines

copied corpus direct 3.7 3.1 10.2 9.5

copied corpus pivot 20.9 18.9 21.1 19.9

back-translation direct 3.7 2.9 14.8 14.1

back-translation pivot 22.3 20.4 22.4 20.9

proposed models

pivot from scratch 23.0 20.6 22.3 21.5

pivot fine-tune 23.0 20.3 22.4 21.5

pivot-parallel combined 23.6 21.1 22.5 21.6

Table 4.3: BLEU scores for the initial multilingual models and zero-resource models

without monolingual data, for the baselines with pivot monolingual data, and for our

proposed zero-resource models with pivot monolingual data. We report results on the

test set (newstest2015) and the held-out set (newstest2016). For the baselines and the

initial multilingual models, we use consider both direct (zero-shot) and pivot translation.
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Initial Models Without Monolingual Data

For the multilingual baseline, direct source → target translation does very poorly for

DE→RU. Although the performance is somewhat more reasonable for RU→DE, di-

rect translation still lags far behind pivot (source→ EN→ target) translation for this

model. Our results differ from those of Johnson et al. (2017), who showed reason-

able performance in both directions for zero-shot translation. However, they tested

their zero-shot systems only on closely related languages or very large-scale multi-

lingual systems, whereas we use somewhat smaller training sets and distantly related

languages. This might be an explanation for the discrepancy in results.

Both zero-resource models (Lakew et al., 2017 and Firat et al., 2016b) outperform

the multilingual baseline overall for direct translation. In addition, the latter closes the

gap with the pivot translation baseline for DE→RU and almost closes it for RU→DE.

Thus, fine-tuning on back-translated parallel data is very helpful in improving zero-

resource NMT. In the next sections, we evaluate methods for further improving zero-

resource NMT using EN monolingual data.

Baselines with Monolingual Data

The results for the copied corpus and back-translation baselines (using both direct

and pivot translation) are shown in rows 5–8 of Table 4.3. Both models are unable to

translate well using only direct translation, but when pivot translation is used, their per-

formance improves. In particular, the back-translation pivot baseline achieves slightly

higher BLEU scores overall than any of the initial models trained without monolingual

data.

In chapter 3, we showed that the copied corpus method was useful for adding

target-language monolingual data to NMT training. Here, we see that the same method

is not beneficial (and in fact is slightly harmful compared to the baseline) for adding

pivot-language monolingual data to NMT. This could be because the copied corpus is

used here to improve translation directions that are not of interest (i.e. translation into

and out of English, rather than DE↔RU translation).

Proposed Models with Monolingual Data

We display the results for our three proposed models in the last three rows of Table 4.3.

Compared to the best pivot-based model (back-translation), the pivot from scratch and

pivot fine-tune models perform slightly better overall in both translation directions
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(DE→RU and RU→DE). Additionally, the pivot-parallel combined model improves

over the best pivot-based model by about 1 BLEU for DE→RU and also does slightly

better for RU→DE. This BLEU gain is especially interesting since the proposed mod-

els do not require two-step inference, unlike the back-translation pivot-based model.

Comparing to the best direct translation model (the zero-resource model based on

Firat et al., 2016b) leads to similar conclusions. The pivot from scratch and pivot

fine-tune methods do similarly to this baseline for DE→RU translation and improve

over it by 1.3–3.2 BLEU for RU→DE translation. For the pivot-parallel combined

model, the gains over the baseline for DE→RU are stronger than for the other two

methods, and the gains for RU→DE are similar. Thus, we have shown that adding

pivot-language monolingual data through these methods can improve zero-resource

NMT performance.

All three of our proposed models improve over a strong direct translation baseline

and perform similarly to or better than a pivot-based translation baseline that uses

EN monolingual data without requiring the two-step inference process necessary for

pivot-based translation. The pivot from scratch and pivot fine-tune models give similar

results, while the pivot-parallel combined method, which adds in the back-translated

parallel corpus, yields the best BLEU scores out of all models across the board.

4.4.2 Iterating the Proposed Models

Inspired by Hoang et al. (2018) and Niu et al. (2018), we study whether iterating

the proposed models can improve translation performance. Starting from the trained

proposed models from section 4.4.1, we run a second iteration as follows:

1. Back-translate the same EN data using the new model to create a new BT-pivot

corpus (as described in section 4.2.2).

2. For the pivot-parallel combined method, back-translate the EN side of the paral-

lel data as well (following Firat et al., 2016b).

3. Fine-tune the model or train the model from scratch using the new data concate-

nated with the subset of the original parallel data (as described in section 4.2.3).

Table 4.4 shows the performance on the test dataset (newstest2015) when a second

iteration of back-translation and training is performed. For the pivot from scratch and

pivot fine-tune methods, we see small gains (up to 0.4 BLEU) from running a second

iteration. These small improvements help the pivot from scratch and pivot fine-tune
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DE→RU RU→DE
BLEU iter 1 iter 2 iter 1 iter 2

pivot from scratch 23.0 23.0 22.3 22.7
pivot fine-tune 23.0 23.3 22.4 22.8
pivot-parallel combined 23.6 22.7 22.5 21.2

Table 4.4: BLEU scores for the proposed models on the test set (newstest2015). We

show BLEU scores for one and two iterations (iter 1 and iter 2).

methods catch up to the single-iteration version of the pivot-parallel combined method.

On the other hand, running a second iteration is very costly in terms of training time,

since it requires another back-translation step and another training step. For the pivot-

parallel combined model, which was the best-performing model with one iteration,

adding a second iteration damages performance in terms of BLEU score. This seems

to match the results of Hoang et al. (2018) that indicate that there are diminishing

returns as more iterations are added.

4.5 Discussion

In this chapter, we have proposed a novel use of data for neural machine translation:

using monolingual data in a pivot language to improve zero-resource NMT. We have

introduced a way of generating a pseudo-parallel source↔ target training corpus using

the monolingual pivot-language corpus. We also showed three ways of leveraging

this corpus to train a final source↔ target NMT system. We compared these models

to standard zero-shot and zero-resource baselines, as well as to some common-sense

baselines that use monolingual data (back-translation and copied corpus).

Our proposed paradigm has several benefits. First, it shows that monolingual data

from a language other than the source and target languages can aid NMT perfor-

mance, complementing literature on using source- and target-language monolingual

data in NMT (reviewed in detail in section 2.3). Second, this paradigm is architecture-

agnostic, so it would be easy to apply to architectures that improve upon the basic

zero-shot and zero-resource models (e.g. Arivazhagan et al., 2019; Lu et al., 2018; Pla-

tanios et al., 2018). Additionally, there are some advantages from an efficiency stand-

point: the models proposed are successful at direct translation, which is faster than

pivot-based translation. We have shown that these models can achieve BLEU gains
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over both direct and pivot-based baselines, even without increased inference time, so

we expect that they will be easy to apply in practice.

However, the models we have proposed in this chapter are not without limitations.

First, using the pivot-language monolingual data might not work as well when the

source and target languages are closely related; this might be a case where source and

target monolingual data is more useful than pivot monolingual data. These models

also tune a multilingual NMT system for translation in two directions only (source→
target and target → source), so they would not be applicable in cases where a single

massively multilingual NMT system (Aharoni et al., 2019) is required. Finally, adding

multiple back-translation and re-training iterations (section 4.4.2) does not result in

gains in BLEU score for the best performing model.

4.6 Conclusions

This chapter introduced the task of zero-resource neural machine translation using

pivot-language monolingual data. We proposed three methods for improving zero-

resource NMT with monolingual pivot data: pivot from scratch, pivot fine-tune, and

pivot-parallel combined. All three methods improved over strong baselines that used

both direct translation and pivot translation; the pivot-parallel combined method was

the most successful.

Chapter 3 explored the use of copied monolingual data in the target language for

NMT; this worked well when some parallel data existed between the source and tar-

get language. In this chapter, we have expanded on the work done in chapter 3 by

considering the case of parallel data only being available through a high-resource

pivot language. We showed that adding monolingual data in this pivot language can

strongly improve zero-resource neural machine translation. In the remaining chapters

of this thesis, we will change tactics, concentrating on adding syntactic information

into NMT. Both sources of outside information (monolingual data and syntactic anno-

tations) are complementary and could be used in conjunction to improve low-resource

neural machine translation.

In the future, we hope to additionally study the use of source-language and target-

language monolingual data in zero-resource NMT. We would also like to test our pro-

posed zero-resource methods on other zero-shot NMT architectures and on other lan-

guage pairs. We also think that data selection methods on the back-translated data (Niu

et al., 2018) could be helpful, since zero-shot multilingual NMT models often generate
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translations in the wrong target language (Arivazhagan et al., 2019).



Chapter 5

Multi-Source Syntactic NMT with

Linearized Parses

This chapter explores a multi-source method for adding source syntactic information

into neural machine translation using linearized source parses. Much of the research

in this chapter was published in Currey and Heafield (2018a).

5.1 Introduction

After studying the use of monolingual data in NMT in chapters 3 and 4, we now turn

our attention to leveraging syntax to improve neural machine translation performance.

In this chapter, we look at adding syntax to recurrent neural network-based NMT;

chapter 6 considers syntactic transformer-based NMT. The recurrent encoders and de-

coders often used in NMT do not explicitly model syntax, and it has been shown that

RNNs do not fully learn syntax without supervision (Linzen et al., 2016). Therefore,

explicitly incorporating syntactic information into RNN-based NMT has the poten-

tial to improve performance. Here, we concentrate on syntactic representations of the

source sentences, which we hope will improve the model’s representation of the source

language.

Recently, there have been a number of proposals for adding source-side syntax into

neural machine translation by updating the encoder (section 2.5.1 contains a compre-

hensive review). These models tend to show gains in BLEU score, but they are not

without their disadvantages. Many syntactic NMT models consist of proposing a new

architecture for the encoder, making them difficult to transfer to novel NMT archi-

tectures. Additionally, the models tend to be trained and evaluated using only parsed

57
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source sentences; their performance can be poor on unparsed inputs. This can be a

problem for inference, since the external parser used to generate parsed data may be

too slow or fail on an input sentence, especially when dealing with potentially noisy

user inputs.

Using linearized representations of parsed sentences within standard neural ma-

chine translation frameworks (Aharoni and Goldberg, 2017; Li et al., 2017; Nadejde

et al., 2017) has the potential to remedy the first problem. These linearized parses can

inject syntactic information into NMT models without requiring significant changes

to the seq2seq architecture. However, the parsed sequences used in these models are

significantly longer than standard sentences (see Table 5.1 for an example), since they

contain node labels in addition to words. NMT already has trouble translating long sen-

tences, and adding source-side linearized parses could exacerbate this. Thus, it could

be beneficial to use the unparsed representation of the source sentence in addition to

the linearized parse.

In this chapter, we introduce a multi-source method for incorporating source syntax

into neural machine translation. This model is designed to address the issues described

above as follows:

• It uses linearized parses, so it can be adapted to any architecture that takes in a

sequence of words.

• It has two encoders, one for parsed and one for unparsed sentences. This means

that in the case that the parsed sentence is unavailable, the model can use the

unparsed encoder (which encodes the standard source sentence).

• Similarly, when the parsed source sentence is very long, the model can poten-

tially use the shorter unparsed input for information.

In addition, unlike standard non-syntactic NMT models, the multi-source syntactic

NMT model can incorporate syntactic information into NMT training to improve trans-

lation performance when such information is available. We perform experiments eval-

uating these aspects of the proposed multi-source model, finding that it improves trans-

lation over syntactic and non-syntactic baselines. It is also able to translate from both

parsed and unparsed source sentences reasonably well (and can do even better with

some simple modifications), and its performance does not deteriorate as much as that

of the baselines on long sentences.



5.2. Background 59

5.2 Background

5.2.1 Seq2seq Neural Parsing

Neural syntactic parsing has long made use of linearized parse trees within sequen-

tial neural models (e.g. recurrent neural networks). Vinyals et al. (2015) performed

constituency parsing using an attentional LSTM-based seq2seq model; they used lin-

earized, unlexicalized parse trees on the target side and standard unparsed sentences

on the source side. In addition, as in this work, they used an external parser to cre-

ate synthetic parsed training data, resulting in improved parsing performance. Choe

and Charniak (2016) adopted a similar strategy, using linearized parses in an RNN

language modeling framework. Here, we build off of this prior work and leverage lin-

earized parse trees in a multi-source NMT system. We reviewed related work using

linearized parses in NMT in section 2.5.2.

5.2.2 Multi-Source NMT

Multi-source methods in neural machine translation were first introduced by Zoph and

Knight (2016) for multilingual translation. They used one encoder per source lan-

guage, and combined the resulting sentence representations before feeding them into

the decoder. Firat et al. (2016a) expanded on this by creating a multilingual NMT

system with multiple encoders and decoders, but did not use the multiple encoders si-

multaneously. Libovickỳ and Helcl (2017) applied multi-source NMT to multimodal

machine translation and automatic post-editing and explored different strategies for

combining attention over the two sources. In this chapter, we apply the multi-source

framework to a novel task, syntactic neural machine translation.

5.3 Multi-Source Neural Machine Translation with Lin-

earized Source Parses

We propose a multi-source method for incorporating source syntax into neural machine

translation. This method makes use of linearized source parses, which we describe in

section 5.3.1. Throughout this chapter, we refer to standard sentences that do not

contain any explicit syntactic information as unparsed; see Table 5.1 for an example.

Section 5.3.2 describes the multi-source method in detail.
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unparsed

hi@@ story is a great teacher .

lexicalized parse

(ROOT (S (NP (NN hi@@ story ) ) (VP (VBZ is ) (NP (DT a ) (JJ great ) (NN teacher ) ) ) (. . ) ) )

unlexicalized parse

(ROOT (S (NP (NN ) ) (VP (VBZ ) (NP (DT ) (JJ ) (NN ) ) ) (. ) ) )

target

die Geschichte ist ein großartiger Lehrmeister .

Table 5.1: Example source training sentence with unparsed, lexicalized parse, and un-

lexicalized parse versions. We include the corresponding target sentence for reference.

5.3.1 Linearized Constituency Parses

Several different grammatical formalisms have been used to infuse syntax into neu-

ral machine translation, including dependency trees (Bastings et al., 2017; Hashimoto

and Tsuruoka, 2017), CCG supertags (Nadejde et al., 2017), and constituency parses

(Aharoni and Goldberg, 2017; Li et al., 2017). In this thesis, we use constituency

parses to represent the syntax of the source sentences. We choose this formalism be-

cause it is easy to linearize and it has shown good results in sequence-based neural

parsing (Choe and Charniak, 2016; Vinyals et al., 2015). In addition, off-the-shelf

constituency parsers can achieve high accuracy for English (the source language used

in our experiments) and are readily available in other high-resource languages (Man-

ning et al., 2014). On the other hand, compared to CCG parses, linearized constituency

parses are much longer; the longer input sequences can cause problems for NMT (see

section 5.5.2 for further analysis). In addition, constituency parses are trees whereas

dependency parses are graphs. This means that constituency parses are less flexible

and potentially worse at representing languages with freer word order than English.

However, to the best of our knowledge, there has been no systematic comparison of

different grammatical formalisms for syntactic NMT; it remains to be seen whether the

formalism chosen affects NMT performance.

Our proposed technique relies on linearized parses of the source sentences to inject

source syntax into neural machine translation. Linearizing the parses allows us to add
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syntactic information without modifying the standard NMT encoder architecture. We

generate and format the parsed data as follows:

1. In order to generate syntactically parsed training data, we use an off-the-shelf

constituency parser, in this case Stanford CoreNLP (Manning et al., 2014), to

parse the source side of the parallel corpus. This technique of parsing the parallel

data instead of using gold parses is common in syntactic NMT (Eriguchi et al.,

2016) and in neural parsing (Vinyals et al., 2015). Figure 5.1 shows an example

of the resulting parse trees.

2. We linearize the resulting parses similarly to Vinyals et al. (2015) by using a

depth-first tree traversal. We tokenize the opening parentheses with the node

label (so that each node label begins with a parenthesis) but keep the closing

parentheses separate from the words they follow. We do not use different clos-

ing parentheses for different phrase types. However, we do use a different clos-

ing parenthesis label from the one that is already in the unparsed training data.

Table 5.1 shows an example of the resulting parses.

3. Following Sennrich et al. (2016d), our networks operate at the subword level

using byte pair encoding with a shared vocabulary on the source and target sides.

However, the parser operates at the word level. Therefore, we break words into

subwords only after parsing the data. This means that a leaf may have multiple

tokens without internal structure. BPE subword segmentations are represented

in Table 5.1 by @@.

For our task, the parser failed on one training sentence of 5.9 million, which we dis-

carded, and succeeded on all validation and test sentences. It took roughly 16 hours to

parse the 5.9 million training sentences.

The proposed multi-source method (section 5.3.2) is trained with two variants: us-

ing unlexicalized parses and lexicalized parses. In unlexicalized parses, we remove

the words, keeping only the node labels and the parentheses. In lexicalized parses, the

words are included. Table 5.1 shows an example of the three source sentence formats:

unparsed, lexicalized parse, and unlexicalized parse. The lexicalized parse is a combi-

nation of the unparsed version and the unlexicalized parse; as such, it is significantly

longer than the other versions.
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history is a great teacher .NN VBZ DT JJ NN .
NPNP

VP
S

ROOT

Figure 5.1: Example of a constituency parse tree before linearization.

the dog barks

seq. encoder

(ROOT (S (NP (DT ) (NN ) ) (VP (VBZ ) ) ) )

parsed encoder

decoder

der Hund bellt

Figure 5.2: Illustration of the proposed multi-source model. Two encoders, the sequen-

tial (seq.) encoder and the parsed encoder, are used. Here, we show the unlexicalized

version of the parse; the lexicalized version is similar.

5.3.2 Multi-Source Syntactic NMT

We propose using a multi-source framework (Zoph and Knight, 2016) to inject these

linearized source parses into NMT. The proposed model consists of two identical

LSTM encoders with no shared parameters, as well as a standard LSTM decoder.

For each target sentence, two versions of the source sentence are used: the unparsed

(standard) version and the linearized parse (lexicalized or unlexicalized). Each of the

source sentence versions is encoded simultaneously using the encoders; the encodings

are then combined and used as input to the decoder. Figure 5.2 shows an illustration of

the multi-source model.

We combine the source encodings using the hierarchical attention combination pro-

posed by Libovickỳ and Helcl (2017). At each timestep j in the decoder, a separate

attention vector c j is calculated over each encoder l independently as follows:

Sl(h
(l)
i ,s j) = v>l tanh(Wlh

(l)
i +Uls j) (5.1)
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α
(l)
j (i) =

exp(Sl(h
(l)
i ,s j))

∑k exp(S(h(l)
k ,s j))

(5.2)

c(l)j = ∑
i

α
(l)
j (i)h(l)

i (5.3)

where s j hidden state of decoder and vl , Wl Ul are hyperparameters for each encoder.

The two attention vectors are then projected into a shared vector space:

e(l)j = v>a tanh(Was j +U(l)
a c(l)j ) (5.4)

where va and Wa are shared hyperparameters and U(l)
a are encoder-specific hyperpa-

rameters. Finally, the final attention vector d j is calculated by attending to the two

projected vectors:

β j(l) =
exp(e(l)j )

∑k exp(e(k)j )
(5.5)

d j = ∑
k

β j(k)U
(k)
b c(k)j (5.6)

where U(k)
b are encoder-specific hyperparameters. This multi-source method is thus

able to combine the advantages of both syntactic encodings and standard sequential

encodings.

5.4 Experimental Setup

5.4.1 Data

We run our experiments on the WMT17 (Bojar et al., 2017) English (EN)→German

(DE) news translation task. All 5.9 million parallel training sentences are used, but

no monolingual data is used for training. Validation is done on newstest2015, while

newstest2016 and newstest2017 are used as test and held-out data, respectively.

We train a shared BPE (Sennrich et al., 2016d) vocabulary with 60k merge opera-

tions on the parallel training data. For the parsed data, we break words into subwords

after applying the Stanford parser (Manning et al., 2014). We tokenize and truecase

the data using the Moses tokenizer and truecaser (Koehn et al., 2007).
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the dog barks

encoder

decoder

der Hund bellt

Figure 5.3: Seq2seq baseline model with a standard encoder and decoder.

5.4.2 Implementation and Training

The models are implemented in Neural Monkey (Helcl and Libovickỳ, 2017). They

are trained using Adam (Kingma and Ba, 2015) and have minibatch size 40, RNN size

512, and dropout (Gal and Ghahramani, 2016) probability 0.2. We train to convergence

on the validation set, using BLEU (Papineni et al., 2002) as the metric.

For unparsed inputs, the maximum sentence length is 50 subwords. For parsed

inputs, we increase maximum sentence length to 150 subwords to account for the in-

creased length due to the parsing labels.

5.4.3 Baselines

Seq2seq

The proposed models are compared against three baselines. The first, referred to here

as seq2seq, is the standard LSTM-based neural machine translation system with atten-

tion (Bahdanau et al., 2015). This baseline is purely sequential; it does not use any

parsed data. We show an example of this model in Figure 5.3.

Parse2seq

The second baseline we consider is a slight modification of the mixed RNN model

proposed by Li et al. (2017). This baseline uses an identical architecture to the seq2seq

baseline (except for a longer maximum sentence length in the encoder to account for

the parsing tags). Instead of using sequential data on the source side, however, the
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(ROOT (S (NP (DT the ) (NN dog ) ) (VP (VBZ barks ) ) ) )

encoder

decoder

der Hund bellt

Figure 5.4: Parse2seq baseline model. A single encoder reads in parsed source sen-

tences.

linearized, lexicalized parses are used. We allow the system to attend equally to words

and node labels on the source side, rather than restricting attention to words. We refer

to this baseline as parse2seq; it is shown in Figure 5.4.

Multi-Source Baseline

Finally, we compare our models to a multi-source unparsed baseline. This baseline

consists of a multi-source system like the one described in section 5.3.2. However,

both encoders encode the unparsed versions of the sentences (so both source sentences

are identical). Therefore, this data does not use any parsed data. We refer to this

baseline as multi-source baseline. Figure 5.5 depicts this baseline model.

5.5 Results

5.5.1 Main Experiments

Table 5.2 shows the performance on EN→DE translation for each of the proposed

systems and the baselines, as measured by BLEU score.

Both proposed multi-source systems improve over all baselines, with improve-

ments of up to 1.5 BLEU over the seq2seq baseline, up to 1.1 BLEU over the parse2seq

baseline, and up to 0.8 BLEU over the multi-source baseline. In addition, the lexical-

ized multi-source system yields slightly higher BLEU scores than the unlexicalized
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the dog barks

encoder 1

the dog barks

encoder 2

decoder

der Hund bellt

Figure 5.5: Multi-source baseline model. Both encoders encode the same unparsed

source sentence simultaneously.

System 2016 2017

baseline

seq2seq 25.0 20.8

parse2seq 25.4 20.9

multi-source baseline 25.7 21.4

proposed
lexicalized multi-source 26.5 21.9
unlexicalized multi-source 26.4 21.7

Table 5.2: BLEU scores on the newstest2016 and newstest2017 datasets for the base-

lines and proposed unlexicalized and lexicalized multi-source systems.
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multi-source system; this is surprising because the lexicalized system has significantly

longer sequences than the unlexicalized one.

In summary, we can gain reasonable improvements in translation performance by

allowing a model to see both parsed and sequential versions of the source sentence.

It is also interesting to compare the seq2seq and parse2seq baselines. Parse2seq out-

performs seq2seq by only a small amount compared to our multi-source models; thus,

while adding syntax to NMT can be helpful, some ways of doing so are more effec-

tive than others. The multi-source baseline also improves over the standard seq2seq

baseline despite not using any additional information, which implies that some of the

improvements may be due to the increased number of parameters from having two

encoders. However, the multi-source baseline still does worse than both proposed

multi-source systems, indicating that they are an effective way of adding syntactic data

to NMT.

5.5.2 Analysis

BLEU by Sentence Length

For models that rely on source-side linearized parses (multi-source and parse2seq), the

source sequences are significantly longer than for the seq2seq baseline. Since NMT

already performs relatively poorly on long sentences (Bahdanau et al., 2015), adding

linearized source parses may exacerbate this issue. To detect whether this occurs, we

calculate BLEU by sentence length.

We bucket the sentences in the held-out set (newstest2017) by source sentence

length. We then compute BLEU scores for each bucket for the baselines and the lexi-

calized multi-source system. The results are in Figure 5.6.

In line with previous work on NMT on long sentences (Bahdanau et al., 2015; Li

et al., 2017), we see a large deterioration in BLEU for all systems as sentence length

increases. In particular, the parse2seq model, which outperformed the seq2seq model

overall, does worse than seq2seq for sentences containing more than 30 words, indicat-

ing that parse2seq performance does indeed suffer due to its longer parsed sentences.

On the other hand, the lexicalized multi-source system outperforms the seq2seq and

multi-source baselines for all sentence lengths and does particularly well compared to

the baselines for sentences with over 50 words. This may be because the multi-source

system uses both unparsed and parsed inputs, so it can rely more on unparsed inputs as

source sentence length increases while still benefiting from the syntactic information
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Figure 5.6: BLEU by sentence length on newstest2017 for baselines and lexicalized

multi-source. ms-base refers to the multi-source baseline.

learned from the parsed inputs.

Inference Without Parsed Sentences

The parse2seq and multi-source systems require parsed source data at inference time.

Here, we examine BLEU scores for these systems when they are given only unparsed

source sentences at test time. This may be important when there are strict latency

requirements during inference (leaving not enough time to parse source sentences) or

when the parser fails at test time (e.g. when an out-of-domain sentence is used).

Table 5.3 displays the results of these experiments. For the parse2seq baseline, we

use only unparsed data as input. For the lexicalized and unlexicalized multi-source

systems, two options are considered: unparsed + unparsed uses identical unparsed

data as input to both encoders, while unparsed + null uses null input for the parsed

encoder, where every source sentence is simply ( ).

The parse2seq system fails to produce any reasonable output when given only stan-

dard (unparsed) source data. On the other hand, both multi-source systems perform

relatively well without parsed data, although the BLEU scores are worse than multi-

source with parsed data. This indicates that our proposed multi-source systems are

viable for cases when the test data cannot be parsed.
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System Test Source 2016 2017

parse2seq unparsed 0.6 0.5

lexicalized multi-source unparsed + unparsed 23.6 20.0

unparsed + null 23.1 19.3

unlexicalized multi-source unparsed + unparsed 23.7 19.9

unparsed + null 23.6 20.9

Table 5.3: BLEU scores on newstest2016 and newstest2017 when no parsed data is

used during inference.

System Test Source 2016

multi-source lex parsed 26.8

unparsed 26.7

multi-source unlex parsed 26.9
unparsed 26.8

Table 5.4: BLEU scores on newstest2016 when half of the training data is left unparsed.

Training Without Parsed Sentences

In the multi-source experiments described above, we used parsed and unparsed ver-

sions of each training sentence and discarded the training sentence for which the parser

failed. In this section, we examine how robust the multi-source experiments are to

parser failure during training.

For each parsed source sentence in the training data, we replace the parsed version

with the null version ( ) with a probability of 0.5, meaning that roughly 50% of the

source training data seen by the parsed encoder is actually blank. We do not make any

modifications to the unparsed data, so the unparsed encoder sees an unparsed source

version for each sentence. We then train the multi-source systems as before.

We evaluate each model in two ways. The first, parsed, uses only parsed source

sentences as input to the parsed encoder; the second, unparsed, uses only null inputs

to the parsed encoder. In both cases, the unparsed encoder uses unparsed inputs. The

results for these experiments are shown in Table 5.4.

When roughly half of the sentences are unparsed during training, the models yield

as good of translation performance as the original multi-source models (see Table 5.2)

and continue to outperform the baselines. In addition, Table 5.4 shows that these mod-

els do just as well when not using parsed source sentences for inference as when using



70 Chapter 5. Multi-Source Syntactic NMT with Linearized Parses

NMT

(ROOT (S (NP (DT the ) (NN dog ) ) (VP (VBZ barks ) ) ) )
the cat meows
the dog barks
. . .

der Hund bellt
die Katze miaut
der Hund bellt
. . .

Figure 5.7: Illustration of the proposed shared encoder model. Translation is done from

either the parsed or the unparsed source sentence.

them. This indicates that it would be possible to add unparsed data (e.g. synthetic

source sentences or the copied corpus described in chapter 3) during training using

blank parsed sentences.

5.5.3 Extension: Shared Encoder Model

Inspired by the results in the previous section for training without parsed sentences, we

propose an extension to the multi-source model, the shared encoder model. In order to

train this model, we create two copies of the training data, one with lexicalized parsed

source sentences and the other with unparsed source sentences. We then shuffle these

training corpora together and train the system like normal, with a shared encoder for

both parsed and unparsed source sentences. Thus, the model is trained to translate

both from parsed and from unparsed sources. Figure 5.7 illustrates this shared encoder

model.

The shared encoder model is similar to the proposed multi-source models. The

multi-source models generate each translation from the parsed and unparsed versions

of the same source sentence; this shared encoder model generates translations from

either the parsed version or the unparsed version of the source sentence. Unlike the

multi-source models, the shared encoder model does not use unlexicalized parses, since

it is unlikely that the model could learn to translate a sentence without information
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System Test Source 2016

multi-source baseline unparsed + unparsed 25.7

lexicalized multi-source unparsed + parsed 26.5

shared encoder parsed 26.6

unparsed 27.5

Table 5.5: Results for the shared encoder model with parsed and unparsed source

sentences. We include the results from the best baseline (the multi-source baseline)

and the best multi-source model (lexicalized multi-source) for comparison.

about the source words.

The motivation for this model is twofold. First, we introduce this model by analogy

with the many-to-one multilingual translation experiments of Johnson et al. (2017).

Instead of training the system to translate from two different source languages, we train

it to translate from two different source formats (parsed and unparsed). In addition,

since the model is trained explicitly to translate both parsed and unparsed inputs, we

expect that it will be able to use both parsed and unparsed data at inference time.

Thus, the model can take advantage of the parses to gain information about the source

language structure, while still not relying on the parses at inference time.

Table 5.5 shows the results for the shared encoder model using both parsed and

unparsed sentences as source sentences during inference. We also display the multi-

source baseline and lexicalized multi-source results for comparison.

The shared encoder model achieves even higher BLEU scores (by 1.0 BLEU) than

our proposed multi-source models when no parsed data is used during inference. When

parsed source data is used during inference, the results are comparable to the multi-

source models. In all cases, the shared encoder model outperforms the baselines. The

fact that inference with unparsed inputs does better than inference with parsed inputs

means that we do not have to worry about increased latency or parser availability at in-

ference time. In the next chapter, we use the shared encoder model as a baseline for our

multi-task syntactic NMT system and apply it to a new architecture, the transformer.

5.6 Discussion

Our multi-source syntactic NMT models achieved higher BLEU scores than both syn-

tactic and non-syntactic baselines and were better able to translate long sentences than
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the baselines. We attribute these improvements to the fact that the multi-source mod-

els have the best of both worlds. The syntactic annotations can help them learn the

structure of the source sentence, but the models can also take advantage of the shorter

unparsed source sentences when necessary. In addition, our multi-source models were

able to translate unparsed inputs reasonably well because they had seen both unparsed

and parsed sentences during training.

Based on our results, we proposed two extensions to the multi-source model that

yielded further improvements. First, we trained the multi-source model with some

empty parses, so that the model learned to translate both from the parsed + unparsed

sentence combination and from the unparsed sentences only. This allowed it to im-

prove inference on unparsed sentences while still preserving the gains in BLEU over

the baselines. We also introduced a shared encoder model that used a single encoder

for both translation from parsed sentences and translation from unparsed sentences.

This model showed even better translation performance than the multi-source syntac-

tic models.

The main limitation of the work in this chapter is the dependence on an external

parser. Although we showed ways to train the model to be robust to parser failure,

we were still required to parse millions of parallel training sentences. The models

proposed here would not be feasible for translating from lower-resource languages

that do not have parsers. In addition, although we showed strong improvements over

relevant baselines for our multi-source and shared encoder systems, our models could

still be further improved by using monolingual data and ensembles of multiple systems.

5.7 Conclusions

This chapter proposed a novel strategy for improving neural machine translation using

linearized source parses. Our multi-source method, in which parsed and unparsed

versions of the same source sentence were embedded using separate encoders, resulted

in gains of up to 1.5 BLEU on EN→DE translation. In addition, it was able to translate

reasonably well even when the source sentence was not parsed, which is useful in

the case that the external parser has failed on a test sentence. It also showed strong

performance on long sentences relative to the baselines.

Based on the success of the multi-source method in dealing with both parsed and

unparsed inputs, we proposed a second method, which we called shared encoder. This

method was trained on a mix of parsed and unparsed source sentences, as well as
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unparsed target sentences. The shared encoder method yielded even higher BLEU

scores than the multi-source method.

The goal of this thesis is to propose ways of using non-parallel training data to

improve NMT. In the previous two chapters, we explored using monolingual corpora as

our additional non-parallel training data. Here, we study a new tactic: using an external

constituency parser as another source of information. Unlike for the target monolingual

data case (chapter 3), we have seen here that adding syntactic information can help in

high-resource scenarios. In subsequent chapters, we will turn our attention to adding

syntax in low-resource scenarios and cases where a parser might be unavailable for the

source language.

In the future, we would like to further study our multi-source and shared encoder

models with respect to their syntactic behavior. Even though both models yielded

stronger BLEU scores than the baselines, we do not yet have a good understanding of

how the additional syntactic information helps. For example, it could be illuminating

to look at attention weights for different sentences or words in the multi-source model

to see in what cases the model attends to parsed vs. unparsed source sentences. In addi-

tion, we could see how well the models can predict syntactic or structural information

on the target side. In chapter 6, we introduce a multi-task syntactic NMT model and

analyze whether it learns to generate parses with balanced parentheses (section 6.6);

similar analysis would be interesting here.

Although our techniques showed improvements over seq2seq, parse2seq, and multi-

source baselines, they did not improve over the state of the art because we used only

parallel data to train all the systems in this chapter. An important avenue for future

work will be exploring ways of adding monolingual data to the multi-source systems;

this could take the form of back-translations (Sennrich et al., 2016c) or copied mono-

lingual data (chapter 3). Adding target monolingual data is a challenge for NMT meth-

ods that use source syntax, because the external parser might be unreliable for the syn-

thetic source sentences. However, the models presented in this chapter do not require

all training data to be parsed, making them a promising method for this task.





Chapter 6

Incorporating Source Syntax into

Transformer-Based NMT

This chapter builds on the previous chapter by examining whether source-side syntax

can also be helpful in a transformer-based neural machine translation setting. We pro-

pose a multi-task model for incorporating syntax into the transformer, which continues

to use the linearized parses introduced in chapter 5. This chapter is based on Currey

and Heafield (2019).

6.1 Introduction

In this chapter, we expand our methods for linearized parse-based syntactic neural

machine translation to a transformer architecture. There are two main motivations

for doing this. First, transformers have shown improvements over RNN-based NMT

models in many tasks (Bojar et al., 2018); as the field advances, we would like to

test whether syntactic NMT with linearized parses is still helpful on new architectures.

Second, transformer-based NMT may stand to benefit as much from explicit syntactic

annotations as RNN-based NMT, particularly in low-resource settings. On the one

hand, the transformer model already learns some syntax without explicit supervision

in high-resource cases. Vaswani et al. (2017) visualized a few encoder self-attentions

in a trained NMT model and found that they seemed to capture syntactic structure.

This was formalized by Raganato and Tiedemann (2018), who found that transformer

encoders trained on high-resource NMT were able to perform reasonably well at part-

of-speech tagging, chunking, and other tasks. However, for transformers trained on

low-resource NMT, the results on these tasks were not as strong. Additionally, Tran

75
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et al. (2018) found that a transformer language model did not do better at predicting

subject-verb agreement than an RNN language model; Tang et al. (2018) saw similar

results for transformer vs. RNN NMT models.

Thus, the goal of this chapter is to improve transformer-based NMT using source-

side syntactic supervision. We investigate two methods that incorporate source-side

linearized constituency parses into transformer-based NMT. The first, shared encoder,

was introduced in section 5.5.3; it learns to translate directly from both parsed and

unparsed source sentences. Since the shared encoder method performed better than the

multi-source model introduced in chapter 5, we use it as a baseline in this chapter and

test its applicability to a new architecture (the transformer). We also propose a second

method, multi-task, that uses the transformer to learn to parse and translate the source

sentence simultaneously. We empirically evaluate both methods on translation from

English into 21 diverse target languages, finding that the multi-task method improves

consistently over a non-syntactic baseline for low-resource NMT.

6.2 Transformer-Based NMT with Linearized Parses

We propose a multi-task model for incorporating linearized parses into transformer-

based NMT and further investigate the shared encoder model that was briefly intro-

duced in section 5.5.3. Both methods rely on linearized parses of the source sentences

to inject source syntax into transformer-based NMT. We described the process for lin-

earizing parses in section 5.3.1; we use the same process for these methods, except that

here we remove part-of-speech tags from the parses in order to shorten the lengths of

the parsed sequences (as was done by Aharoni and Goldberg, 2017). (We ran initial

experiments for the multi-task models with part-of-speech tags, but found that their

performance was slightly worse than the models without the tags.)

Figure 6.1 summarizes the two proposed methods. They are discussed in detail in

sections 6.2.1 and 6.2.2, respectively.

6.2.1 Shared Encoder Transformer

We start by reviewing the shared encoder model introduced in section 5.5.3. Since

this method was successful at incorporating linearized source parses into RNN-based

NMT, we use it as a baseline here and study its applicability to the transformer archi-

tecture. The shared encoder model learns to translate from both unparsed and parsed
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transformer

(ROOT (S (NP you ) (VP have not (VP been (VP elected ) ) ) . ) )

(ROOT (S (NP they ) (VP are (NP important issues ) ) . ) )

you have not been elected .
. . .

no ha sido elegido .

estas cuestiones son importantes .

no ha sido elegido .
. . .

(a) Shared encoder syntactic NMT model. The system learns to translate directly from both

parsed and unparsed source sentences into unparsed target sentences.

transformer

<TR> you have not been elected . <TR>

<TR> let me make a comparison . <TR>

<PA> you have not been elected . <PA>

. . .

no ha sido elegido .

permı́tanme utilizar una comparación .

(ROOT (S (NP ) (VP (VP (VP ) ) ) ) )
. . .

(b) Multi-task syntactic NMT model. The system is trained to translate (<TR>) and parse

(<PA>) source sentences using the same architecture.

Figure 6.1: Illustrations of the two proposed syntactic NMT methods.
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(ROOT (S (NP you ) (VP have not (VP been (VP elected ) ) ) . ) ) → no ha sido elegido .

you have not been elected . → no ha sido elegido .

Table 6.1: Example of the two formats of English→Spanish training data for the shared

encoder system.

source sentences into unparsed target sentences.

In order to train the shared encoder model, we create two copies of the training

data, one with parsed source sentences and the other with unparsed source sentences.

We then shuffle these training corpora together into a single corpus and train a standard

transformer NMT model on the final data, with a single shared encoder for both parsed

and unparsed source sentences. The training data contains (parsed source, unparsed

target) and (unparsed source, unparsed target) sentence pairs; Table 6.1 gives an exam-

ple of the two types of training sentence pairs for the shared encoder method. Since

the data is shuffled, these two sentence pairs (with identical target sentences) will not

necessarily be seen together during training.

Since the model is trained on both parsed and unparsed source sentences, during

inference it is able to translate from either source sentence format. Inference on un-

parsed source sentences is slightly faster (since it does not require parsing of the source

sentence) and achieves higher BLEU scores (as seen in Table 5.5), so we show results

using unparsed source sentences for our experiments (sections 6.4.2 and 6.5.2).

6.2.2 Multi-Task NMT and Parsing with Shared Decoder

Our main proposal in this chapter adopts a multi-task framework to incorporate source-

side syntax into transformer-based NMT. The primary task is translating the source

sentence into the target language; the secondary task is parsing the source sentence

using the seq2seq parsing technique of Vinyals et al. (2015). For the parsing task, we

employ the same encoder-decoder framework as for NMT, with the sequential source

sentence as input and the linearized, unlexicalized parsed source sentence as output.

Thus, both tasks are trained using a single model with a shared encoder and decoder.

This is similar to the multi-task framework proposed by Luong et al. (2016), with three

main differences: 1) we do not use separate decoders for each task, 2) we use the same

source data for both parsing and translation, and 3) we use a transformer rather than

recurrent neural network architecture.

We do not directly use gold parses to train the parsing task, nor do we split the
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translation

<TR> you have not been elected . <TR>→ no ha sido elegido .

parsing

<PA> you have not been elected . <PA>→ (ROOT (S (NP ) (VP (VP (VP ) ) ) ) )

Table 6.2: Example of English→Spanish training data for translation and parsing tasks

in the multi-task system.

training data between the two tasks. The reason for using the parallel corpus as the

basis for the training data for both tasks is that we expect it to be difficult to find a

sufficiently large amount of in-domain gold parses for training; additionally, our main

goal is to improve NMT, so we do not expect the lower quality of the synthetic parses

to matter.

In order to generate the training data for this model, we first create linearized parses

of the source side of the training corpus. Next, we add a tag at the beginning and

end of each source sentence indicating the desired task, similar to what was done by

Johnson et al. (2017) for multilingual NMT. Table 6.2 gives an example of the data

format. Finally, we shuffle the parsing and translation training data together and train

the shared encoder and decoder on both tasks, making no further distinction between

the tasks during training. Since we parse all of the training data, each source sentence

appears twice: once with a target-language sentence and once with a parse of the source

sentence. These copies are shuffled separately.

6.3 Experimental Setup

6.3.1 Data

We preprocess our data for all experiments as follows. First, we tokenize and truecase

the data using the Moses scripts (Koehn et al., 2007). We then train BPE (Sennrich

et al., 2016d) vocabularies with 30k merge operations. We use the Stanford CoreNLP

parser (Manning et al., 2014) to generate constituency parses of the source (English)

sentences; we linearize and format the parses as described in section 5.3.1 and addi-

tionally remove the part-of-speech tags. To create the shared encoder training data,

we apply BPE to the parses and mix the parsed source data with the unparsed source
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data. For the multi-task training data, we remove words from the parses and shuffle the

(source, target) and (source, parse) training corpora together. We do not use monolin-

gual training data. For the multi-task experiments, validation is done on the translation

task only (not on parsing), and for the shared encoder experiments, validation is done

on unparsed source sentences only. Sections 6.4.1 and 6.5.1 contain detailed informa-

tion on the target languages and data used.

6.3.2 Implementation and Training

All models are implemented in Sockeye (Hieber et al., 2017). For hyperparameter set-

tings, we follow the recommendations of Vaswani et al. (2017). For unparsed inputs

and outputs, sentence length is capped at 50 subwords, except in the case of the multi-

task systems, where sentences of up to 52 subwords are allowed because of the pars-

ing/translation tags. As in section 5.4.2, we allow a maximum length of 150 subwords

for parsed sentences. We evaluate our multi-task and shared encoder models compared

to a standard (non-syntactic) transformer baseline on translation from English into the

21 target languages.

6.4 Small-Scale Cross-Lingual Experiments

6.4.1 Data

We use the Europarl Parallel Corpus (Koehn, 2005) as the basis for our small-scale

cross-lingual experiments. We consider translation from English (EN) into each of the

twenty remaining target languages; Table 6.3 contains a full list of the target languages,

as well as their language families or branches. For these experiments, we train separate

subword vocabularies for the source and for each target language, in order to allow the

source data to be identical for all experiments. By using this data set, we are able

to evaluate the usefulness of syntactic information for several relatively diverse target

languages. However, all the languages in these experiments are Indo-European or

Uralic, since we are using Europarl.

In order to facilitate comparison between the target languages, we follow Cotterell

et al. (2018) by taking only the intersections of the Europarl training data. This means

that the source (EN) data is identical for all experiments, and the targets are all transla-

tions of each other in the different target languages. This results in 170k parallel train-

ing sentences for each language pair. We reserve a random subset of 10k sentences



6.4. Small-Scale Cross-Lingual Experiments 81

Family Language Abbreviation

Baltic Latvian LV

Lithuanian LT

Germanic Danish DA

Dutch NL

German DE

Swedish SV

Hellenic Greek EL

Romance French FR

Italian IT

Portuguese PT

Romanian RO

Spanish ES

Slavic Bulgarian BG

Czech CS

Polish PL

Slovak SK

Slovene SL

Uralic Estonian ET

Finnish FI

Hungarian HU

Table 6.3: Target languages used in our experiments, along with their language families

or branches and their abbreviations.
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from the original data to use as development data and an additional 10k sentences as

test data.

6.4.2 Results

Table 6.4 displays BLEU scores on the test data for each target language for the pro-

posed systems. The multi-task system outperforms the non-syntactic baseline for all

target languages. In addition, for all but four target languages (SV, EL, SK, and ET),

the multi-task system is at least 1 BLEU point better than the baseline. Thus, our pro-

posed multi-task method consistently improves over a non-syntactic baseline across

several diverse target languages in low-resource scenarios. Additionally, in all cases

but one (EN→ET), the multi-task model achieves the highest BLEU score of all mod-

els.

The performance of the shared encoder system in relation to the non-syntactic base-

line is less consistent than that of the multi-task systems. In most cases, shared encoder

improves only slightly (less than 1 BLEU) over the baseline, although for LV, LT, RO,

ES, PL, and FI, the improvements are stronger. However, for four target languages

(NL, EL, BG, and SK), the shared encoder system does worse than the non-syntactic

baseline.

Target language family does not seem to have a noticeable effect on the perfor-

mance of either the shared encoder or the multi-task method; this could be due to the

fact that the syntactic annotations were on the source sentence only. It remains to

be seen whether certain source languages are particularly amenable to incorporating

source syntax in NMT.

6.5 Full-Scale WMT Experiments

6.5.1 Data

The main goal of the previous section was to evaluate our proposed syntactic NMT

methods on a wide range of target languages and see whether target language or lan-

guage family had an effect performance. In this section, we run additional experiments

in order to evaluate the proposed methods on a standard set of benchmarks. We train

our models on the following tasks: English→Turkish (TR) from the WMT18 news

translation shared task (Bojar et al., 2018), English→Romanian WMT16 (Bojar et al.,

2016), and English→German WMT17 (Bojar et al., 2017).
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EN→* base shared encoder multi-task

LV 26.5 28.1 (+1.6) 28.2 (+1.7)

LT 23.5 24.6 (+1.1) 24.8 (+1.3)

DA 39.5 40.1 (+0.6) 40.7 (+1.2)

NL 28.8 28.7 (-0.1) 30.6 (+1.8)

DE 30.5 30.6 (+0.1) 32.1 (+1.6)

SV 35.9 36.4 (+0.5) 36.4 (+0.5)

EL 38.9 38.8 (-0.1) 39.7 (+0.8)

FR 38.3 38.5 (+0.2) 40.4 (+2.1)

IT 31.3 31.3 (==) 32.5 (+1.2)

PT 39.2 39.3 (+0.1) 40.5 (+1.3)

RO 36.3 37.8 (+1.5) 37.8 (+1.5)

ES 41.6 43.0 (+1.4) 43.1 (+1.5)

BG 39.0 38.6 (-0.4) 40.5 (+1.5)

CS 27.5 28.3 (+0.8) 28.8 (+1.3)

PL 23.7 24.8 (+1.1) 25.1 (+1.4)

SK 32.8 32.5 (-0.3) 32.9 (+0.1)

SL 33.3 34.2 (+0.9) 34.9 (+1.6)

ET 20.2 20.9 (+0.7) 20.8 (+0.6)

FI 21.5 22.8 (+1.3) 23.3 (+1.8)

HU 22.3 22.6 (+0.3) 23.4 (+1.1)

Table 6.4: BLEU scores on the test set for small-scale cross-lingual experiments. The

numbers in parentheses show difference with the non-syntactic baseline. All systems

use EN as the source language.
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System newstest2017 newstest2018

baseline 9.6 8.8

shared encoder 9.6 (==) 9.3 (+0.5)

multi-task 10.6 (+1.0) 10.4 (+1.6)

Table 6.5: BLEU scores (and improvement over the baseline) for EN→TR on the test

(newstest2017) and held-out (newstest2018) datasets.

For each experiment, we use all available parallel training data from the task, but no

monolingual training data. This gives us 200k parallel training sentences for EN→TR,

600k for EN→RO, and 5.9M for EN→DE. Note that the EN→RO and EN→DE train-

ing corpora contain some overlaps with the Europarl training data from section 6.4.1,

although the experiments in this section use significantly more training data. We val-

idate EN→TR on newstest2016, EN→RO on newsdev2016, and EN→DE on new-

stest2015.

6.5.2 Results

The results for the EN→TR experiments are displayed in Table 6.5. These results mir-

ror what was seen in the previous experiments: the shared encoder method gives mod-

est improvements over the non-syntactic baseline (0.0–0.5 BLEU), while the multi-task

method yields the strongest results, with an improvement of 1.0–1.6 BLEU points over

the baseline. Although Turkish is not related to any of the target languages studied in

section 6.4, the amount of training data for EN→TR is similar to what was used in that

section, which might be one explanation for the similar results.

Table 6.6 shows the performance of each model on the WMT EN→RO experi-

ments. Here, we see more modest improvements from adding the syntactic data: only

0.5 BLEU over the non-syntactic baseline for both the shared encoder and multi-task

methods. It is interesting to compare this with the results for the Europarl EN→RO

experiments (section 6.4.2); there, we saw a much larger improvement over the base-

line for the multi-task model (1.5 BLEU). This indicates that the effectiveness of the

multi-task model may depend on amount of data (the WMT models were trained on

about three times as much training data) rather than on target language.

Finally, we display our WMT EN→DE results in Table 6.7. In this case, very high-

resource EN→DE translation, the multi-task method does much worse than the non-

syntactic baseline (-2.1 BLEU points). In addition, the shared encoder method achieves
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System newstest2016

baseline 21.5

shared encoder 22.0 (+0.5)

multi-task 22.0 (+0.5)

Table 6.6: BLEU scores (and improvement over the baseline) for EN→RO on the test

set (newstest2016).

System newstest2016 newstest2017

baseline 31.7 25.5

shared encoder 31.9 (+0.2) 26.0 (+0.5)

multi-task 29.6 (-2.1) 23.4 (-2.1)

Table 6.7: BLEU scores (and difference with the baseline) for EN→DE on the test

(newstest2016) and held-out (newstest2017) datasets.

comparable BLEU scores to the baseline (only 0.2–0.5 BLEU higher). Thus, neither

proposed technique is particularly successful for high-resource EN→DE NMT. Again,

we can contrast this with the Europarl EN→DE experiments, where we saw strong

improvements from the multi-task model (1.6 BLEU). This lends further credence to

the hypothesis that these NMT models with linearized source parses are helpful cross-

linguistically in low-resource scenarios, but not in high-resource setups.

It is interesting to compare these EN→DE results to the results in Table 5.5. There,

we also used a shared encoder model, but with an RNN architecture rather than a

transformer. The RNN-based shared encoder model outperformed the non-syntactic

multi-source RNN baseline by 1.1-1.8 BLEU, much more than is the case for the

transformer-based models. However, all of the RNN-based models had much lower

BLEU scores than the transformer models.

We further investigated the WMT EN→DE multi-task model to find reasons for

the large drop in performance compared to the non-syntactic baseline. We found that

while the multi-task model was able to generate reasonable (albeit lower-quality) trans-

lations, it did not successfully learn to parse. During parsing inference, the model

learned to always output the same parse regardless of the input sentence: (ROOT (S (NP

) (VP (NP (NP ) (PP (NP (NP ) (PP (NP ) ) ) ) ) ) ) ) . This was a common parse in the

training data (it occurred 12k times in the data). This issue is partially due to the fact

that validation is only done on the translation task, not on the parsing task. However,
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we do not see this issue with the other language pairs and experiments. This failure

to learn to parse indicates that the WMT EN→DE multi-task model is not able to take

advantage of the syntactic annotations.

6.6 Analysis: Validity of Parses

The multi-task syntactic NMT models are trained both to translate and to parse the

input sentences. The main goal of these models has been to improve translation; those

results were reported in sections 6.4.2 and 6.5.2. In this section, we analyze the va-

lidity of the parses produced by the multi-task systems. We use a standard parsing

benchmark, Wall Street Journal section 23 of the Penn Treebank (Marcus et al., 1993),

as the evaluation dataset in this section. We preprocess this dataset as described in

section 6.3 before inputting it into the multi-task system.

The multi-task models were trained to generate unlexicalized parses. Since we re-

moved part-of-speech tags from the parses during preprocessing, it is not possible to

automatically relexicalize the parses. This is because there is no one-to-one correspon-

dence between the number of leaves of the parse tree and the number of words in the

sentence. Thus, rather than evaluating the parses directly, we count the number of valid

parses (i.e. parses with balanced parentheses) per target language.

Table 6.8 shows the percent of generated parses that are valid for the Europarl

multi-task models. For most target languages, over 90% of the generated parses are

valid.

Unlike for the translation results, target language family does seem to have an effect

on the parsing results. Overall, Romance, Germanic, and Hellenic target language

systems generate the fewest valid parses. This indicates that Baltic, Slavic, and Uralic

target languages are most helpful in learning to parse English in a multi-task system.

Thus, from our cross-lingual experiments, it seems that the parsing performance of a

multi-task system depends somewhat on target language family, whereas we saw in the

previous sections that the translation success depends more on the amount of training

data. Note, however, some caveats: 1) we did not perform validation on the parsing

task (only on the translation task), and 2) we are measuring only parsing validity here,

rather than parsing performance.

Table 6.9 shows the percent of valid parses for the three WMT multi-task experi-

ments. For EN→DE, all of the generated parses are valid because they are all identical

(as dicussed in section 6.5.2). For EN→RO, nearly all the parses are valid as well.
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EN→* % Valid Parses

LV 96.8%

LT 99.2%

DA 70.8%

NL 93.3%

DE 87.2%

SV 95.4%

EL 85.2%

FR 92.3%

IT 78.8%

PT 89.4%

RO 96.3%

ES 86.5%

BG 97.5%

CS 95.9%

PL 98.1%

SK 98.5%

SL 97.3%

ET 98.2%

FI 95.1%

HU 93.6%

Table 6.8: Percent of valid parses of the parses generated by the Europarl multi-task

systems.
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EN→* % Valid Parses

TR 86.3%

RO 99.8%

DE 100%

Table 6.9: Percent of valid parses of the parses generated by the WMT multi-task

systems.

However, this language pair did not have the same issue as EN→DE: the parses gener-

ated for each sentence were different, and a manual analysis indicated that the gener-

ated EN→RO parses were reasonable. The EN→TR system generated a large amount

of valid parses, but fewer than the EN→RO system; it is possible that the EN→TR

system would have done better with more training data.

6.7 Discussion

Our multi-task model showed strong improvements across twenty target languages

when trained on a small-scale task; however, as more data was added, the multi-task

model did worse in relation to the baseline. The shared encoder model was more

inconsistent on the small-scale tasks but did slightly better than the baselines on the

larger-scale WMT EN→DE task. This is an interesting result because the shared en-

coder model did much better than an RNN baseline for the same EN→DE task in

chapter 5; it seems that this shared encoder model had a harder time beating the much

stronger transformer baseline here.

The two methods studied in this chapter are straightforward to apply to different

architectures, since they rely only on linearized versions of syntactic parses. Neither

method requires data to be parsed at inference time, which can save translation time.

Additionally, the multi-task model is helpful across several language pairs in low-

resource NMT scenarios. On the other hand, neither model was particularly successful

compared to non-syntactic NMT for high-resource scenarios. Our models also relied

on an external parser to create parsed parallel training data; for a truly low-resource

source language with no parser, we would not be able to apply these models.



6.8. Conclusions 89

6.8 Conclusions

In this chapter, we have studied two methods for incorporating source-side syntac-

tic annotations into a transformer-based neural machine translation system. The first,

multi-task, uses a single encoder and decoder to train two tasks: translation and con-

stituency parsing. The second, shared encoder, learns to translate both linearized parses

of the source sentences and unparsed source sentences directly into unparsed target

sentences. We performed experiments from English into twenty target languages in

a low-resource setup; the multi-task system improved over the non-syntactic base-

line for all target languages. We further demonstrated the success of this method

on the EN→TR and EN→RO WMT datasets; however, for the very high-resource

EN→DE WMT setup, the multi-task model performed poorly. The shared encoder

model yielded some improvements in BLEU overall, but they tended to be small (less

than 1.0 BLEU).

The goal of this thesis is to incorporate non-parallel data into NMT training. In

the first half of the thesis, we focused on monolingual data; here, we add syntactic

information. This builds on the work in the previous chapter by expanding syntactic

NMT to transformer architectures and introducing a multi-task model that still uses

linearized parses to represent source syntax. Linearized parses have the advantage that

they can easily be applied to any encoder architecture. In the next chapter, we will

consider injecting structure into NMT without any explicit syntactic annotation.

In the future, we plan on extending these techniques to incorporate target-side syn-

tax into transformer-based NMT. In addition, we would like to experiment with dif-

ferent source languages in order to find out whether adding source-side syntax has a

greater effect on some source languages than others. Finally, the multi-task method

could easily be combined with back-translation (Sennrich et al., 2016c) and with the

copied corpus method (chapter 3) without needing to parse the synthetic source sen-

tences; we believe that combining our syntactic NMT methods with methods for in-

corporating monolingual data into NMT could lead to improvements in the state of the

art.





Chapter 7

Unsupervised Hierarchical Encoder

for Neural Machine Translation

In this chapter, we consider the goal of adding structure to the neural machine transla-

tion encoder when no syntactic parser is available. We propose an unsupervised hier-

archical encoder based on the Gumbel tree-LSTM of Choi et al. (2018). This chapter

is based on Currey and Heafield (2018b).

7.1 Introduction

In chapters 5 and 6, we introduced ways of incorporating syntactic information about

the source language into neural machine translation. The proposed methods made use

of linearized constituency parses during training; the constituency parses were gener-

ated by applying an off-the-shelf parser to the source side of the parallel corpora. We

showed that the proposed models, multi-source (chapter 5), shared encoder (chapters 5

and 6), and multi-task (chapter 6), are able to leverage this syntactic information to

improve overall translation performance.

However, in the previous two chapters, we only performed experiments using En-

glish as the source language. For translation out of English or a few other high-resource

languages, these syntactic NMT methods are viable because high-quality constituency

parsers exist for those languages. On the other hand, for low-resource languages, a

parser might not be available, making it impossible to apply these and other syntatic

NMT methods. This is particularly frustrating because neural machine translation al-

ready does relatively poorly in low-resource scenarios (Koehn and Knowles, 2017),

and because low-resource cases are exactly the cases where NMT models have most

91
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difficulty learning syntax (Raganato and Tiedemann, 2018). Adding source-side syn-

tactic information has the potential to improve low-resource NMT, but we would need

a way of doing so without an external parser.

We would like to mimic the improvements that come from adding source syn-

tactic structure to NMT without needing syntactic annotations of the training data.

Recently, there have been some proposals to induce unsupervised hierarchies over sen-

tences based on semantic objectives for sentiment analysis and natural language in-

ference (Choi et al., 2018; Yogatama et al., 2017). Here, we apply these hierarchical

sentence representations to low-resource neural machine translation.

In this work, we replace the standard NMT encoder with the Gumbel tree-LSTM

proposed by Choi et al. (2018) and apply this model to low-resource translation. This

allows unsupervised hierarchies to be injected into the encoder. In addition, the Gum-

bel tree-LSTM has the advantage that it is fully differentiable, so it can make dis-

crete parsing decisions without requiring reinforcement learning or other changes to

the training paradigm. We compare this model to sequential neural machine trans-

lation, as well as to NMT enriched with information from an external parser. Our

proposed model yields strong improvements in very low-resource NMT without re-

quiring parsers or outside data beyond what is used in standard NMT. This work is the

first to apply the Gumbel tree-LSTM model to neural machine translation.

7.2 Unsupervised Tree-to-Sequence NMT

We modify the LSTM-based neural machine translation architecture by combining a

sequential LSTM decoder with a Gumbel tree-LSTM (Choi et al., 2018) encoder. This

encoder induces a binary tree structure on the source sentence without syntactic su-

pervision. We refer to our proposed models containing this encoder as (unsupervised)

tree2seq.

In this section, we present our unsupervised tree2seq model. Section 7.2.1 de-

scribes the subword-level representations, while section 7.2.2 explains how the Gum-

bel tree-LSTM is used to add hierarchies in the encoder. We address top-down rep-

resentations of the word and phrase nodes in section 7.2.3 and explain the attention

mechanism in section 7.2.4.
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7.2.1 Word Node Representations

The hierarchical encoder that we propose consists of word nodes (nodes corresponding

to the subwords of the source sentence) and phrase nodes (internal nodes resulting

from the induced hierarchies). In order to obtain representations of the word nodes,

we run a bidirectional LSTM over the source sentence. We refer to this biLSTM as the

leaf LSTM.

7.2.2 Phrase Node Representations

Our proposed unsupervised hierarchical encoder uses a Gumbel tree-LSTM (Choi

et al., 2018) to obtain the representations of the phrase nodes in the source sentence.

This encoder leverages the straight-through Gumbel softmax estimator (Jang et al.,

2017) to induce unsupervised, discrete hierarchies over the source sentence without

modifying the maximum likelihood objective used to train NMT.

In a Gumbel tree-LSTM, the hidden state hp and memory cell cp for a given node

are computed recursively based on the hidden states and memory cells of its left and

right children (hl , hr, cl , and cr). This is done as in a standard binary tree-LSTM (Tai

et al., 2015) as follows: 
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cp = fl� cl + fr� cr + i�g (7.2)

hp = o� tanh(cp) (7.3)

where W is the weight matrix, b is the bias vector, σ is the sigmoid activation function,

and � is the element-wise product.

However, the Gumbel tree-LSTM differs from standard tree-LSTMs in that the

selection of nodes to merge (i.e. the selection of left and right children) is done in

an unsupervised manner at each timestep. At each timestep, each pair of adjacent

nodes is considered for merging, and the hidden states ĥi for each candidate parent

representation are computed using equation 7.3. A composition query vector q, which
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is simply a vector of trainable weights, is used to obtain a score vi for each candidate

representation as follows:

vi =
exp
(

q · ĥi

)
∑ j exp

(
q · ĥ j

) (7.4)

Finally, the straight-through Gumbel softmax estimator (Jang et al., 2017) is used

to sample a parent from the candidates ĥi based on these scores vi; this allows us to

sample a discrete parent selection while still maintaining differentiability. The straight-

through Gumbel softmax estimator is calculated by first sampling Gumbel noise gi for

each candidate:

gi =− log(− log(ui)) (7.5)

where ui is uniform over (0,1). This noise is then used to calculate the Gumbel softmax

over the scores vi:

yi =
exp((log(vi)+gi)/τ)

∑ j exp((log(v j)+g j)/τ)
(7.6)

where τ is a hyperparameter that models the temperature. In the forward pass, we take

the argmax over yi in order to make a discrete selection of a single parent state from the

candidates ĥi, whereas in the backward pass, the continuous, differentiable Gumbel

softmax from equation 7.6 is used.

This process continues until there is only one remaining node that summarizes the

entire sentence; we refer to this as the root node. The whole process is illustrated in

Figure 7.1.

At inference time, straight-through Gumbel softmax is not used. Instead, we greed-

ily select the highest-scoring candidate phrase.

This Gumbel tree-LSTM encoder induces a binary hierarchy over the source sen-

tence. For a sentence of length n, there are n word nodes and n− 1 phrase nodes

(including the root node). We initialize the decoder using the root node; attention to

word and/or phrase nodes is described in section 7.2.4.

7.2.3 Top-Down Encoder Pass

In the bottom-up tree-LSTM encoder described in the previous section, each node is

able to incorporate local information from its respective children; however, no global

information is used. Thus, we introduce a top-down pass, which allows the nodes to

take global information about the entire tree into account. We refer to models con-

taining this top-down pass as top-down tree2seq models. Adding a top-down pass has
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a b c d

ĥ0 ĥ1 ĥ2

(a) Consider merging each pair of adjacent nodes. Use equations 7.1, 7.2, and 7.3 to calculate

the hidden state ĥi for each phrase candidate.

a b c d

v0 v1 v2

(b) Score each phrase candidate using equation 7.4.

a b c d

(c) Select phrase node based on scores using straight-through Gumbel softmax estimator (by

taking the argmax over equation 7.6).

a b c d

(d) Continue the process until only a single root node remains.

Figure 7.1: Unsupervised induction of phrase nodes in the Gumbel tree-LSTM.
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been shown to aid in tree-based NMT with supervised syntactic information (Chen

et al., 2017; Yang et al., 2017); here, we add it to our unsupervised hierarchies.

Our top-down tree implementation is similar to the bidirectional tree-GRU intro-

duced by Kokkinos and Potamianos (2017). The root node from the bottom-up pass

already contains information about the entire tree; therefore, we define the top-down

root node h↓root as follows:

h↓root = h↑root (7.7)

where h↑root is the hidden state of the bottom-up root node calculated using the Gumbel

tree-LSTM described in section 7.2.2.

For each remaining node, including word nodes, the top-down representation h↓i
is computed from its bottom-up hidden state representation h↑i (calculated using the

Gumbel tree-LSTM) and the top-down representation of its parent h↓p (calculated dur-

ing the previous top-down steps) using a GRU:

[
z↓i
r↓i

]
= σ

(
Wtdh↑i +Utdh↓p +btd

)
(7.8)

h̃↓i = tanh
(

Wtd
h h↑i +Utd

h

(
r↓i �h↓p

)
+btd

h

)
(7.9)

h↓i =
(

1− z↓i
)

h↓p + z↓i h̃↓i (7.10)

where Wtd , Utd , Wtd
h , and Utd

h are weight matrices; btd and btd
h are bias vectors; and

σ is the sigmoid activation function. We do not use different weights for the left and

right children of a given parent. The entire top-down encoder pass is illustrated in

Figure 7.2.

Each node needs a final representation to supply to the attention mechanism. Here,

the top-down version of the node is used, because the top-down version captures both

local and global information about the node.

The decoder is initialized with the top-down representation of the root node. How-

ever, this is identical to the bottom-up representation of the root node, so no additional

top-down information is used to initialize the decoder. Since the root node contains

information about the entire sentence, this allows the decoder to be initialized with a

summary of the source sentence, mirroring standard sequential NMT.
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a b c d

(a) Top-down root node is identical to its bottom-up version.

a b c d

(b) Remaining nodes are calculated from their bottom-up version and their parents’ top-down

version.

a b c d

(c) Process continues recursively until top-down word nodes are calculated.

a b c d

(d) Once the top-down pass is completed, the phrase nodes are discarded and the decoder

attends only to the word nodes.

Figure 7.2: Calculation of the top-down pass in the unsupervised hierarchical encoder.
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Language Pair Sentences

TL↔EN 50 962

TR↔EN 207 373

RO↔EN 608 320

Table 7.1: Amount of parallel training sentences for each language pair after prepro-

cessing.

7.2.4 Attention to Words and Phrases

The bottom-up (section 7.2.2) and top-down (section 7.2.3) tree2seq models take dif-

ferent approaches to attention. The bottom-up model attends to the intermediate phrase

nodes of the tree-LSTM, in addition to the word nodes output by the leaf LSTM. This

follows what was done by Eriguchi et al. (2016). We use one attention mechanism for

all nodes (word and phrase), making no distinction between different node types.

When the top-down pass (section 7.2.3) is added to the encoder, the final word

nodes contain hierarchical information from the entire tree, as well as sequential infor-

mation. Therefore, in the top-down tree2seq model, we attend to the top-down word

nodes only, ignoring the phrase nodes. The idea behind this is that attention to the

phrase nodes is unnecessary since the word nodes summarize the phrase-level infor-

mation. Indeed, in preliminary experiments, attending to phrase nodes did not yield

any improvements in translation performance.

7.3 Experimental Setup

7.3.1 Data

The models are evaluated on Tagalog (TL)↔English (EN), Turkish (TR)↔EN, and

Romanian (RO)↔EN translation. These language pairs were selected because they

range from very low-resource to medium-resource, so we can evaluate the proposed

models at various settings. Table 7.1 displays the number of parallel training sentences

for each language pair.

The TR↔EN and RO↔EN corpora are from the WMT16 shared task (Bojar et al.,

2016). The models are validated on newsdev2016 and evaluated on newstest2016.

The TL↔EN data is from IARPA MATERIAL Program language collection release

IARPA MATERIAL BASE-1B-BUILD v1.0. We do not use any monolingual data
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during training.

The data is tokenized and truecased with the Moses scripts (Koehn et al., 2007).

We use byte pair encoding (Sennrich et al., 2016d) with 45k merge operations to split

words into subwords. Notably, this means that the unsupervised tree encoder induces

a binary parse tree over subwords (rather than at the word level).

7.3.2 Implementation and Training

All models are implemented in OpenNMT-py (Klein et al., 2017). They use word

embedding size 500, hidden layer size 1000, batch size 64, two layers in the encoder

and decoder, and dropout rate 0.3 (Gal and Ghahramani, 2016). We set maximum

sentence length to 50 (150 for the source side of the parse2seq baseline). Models are

trained using Adam (Kingma and Ba, 2015) with learning rate 0.001.

For tree-based models, we use a Gumbel temperature of 0.5, which performed best

in preliminary experiments. The tree-LSTM component of the unsupervised tree2seq

encoders has only a single layer.

We train until convergence on the validation set, and the model with the highest

BLEU on the validation set is used to translate the test data. During inference, we set

beam size to 12 and maximum length to 100.

7.3.3 Baselines

Seq2seq

We compare our models to an LSTM-based attentional NMT model; we refer to this

model as seq2seq. Apart from the encoder, this baseline is identical to our proposed

models. We train the seq2seq baseline on unparsed parallel data.

Parse2seq

For translations out of English, we also consider a baseline that uses syntactic su-

pervision; we dub this model parse2seq. This parse2seq baseline is identical to the

parse2seq model described in section 5.4.3. We only apply this baseline to transla-

tions out of English because we only have a constituency parser for English (Stanford

CoreNLP; Manning et al., 2014).
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BLEU TL→EN TR→EN RO→EN

seq2seq 17.9 11.1 29.3

bottom-up tree2seq 26.1 12.8 28.6

top-down tree2seq 25.3 13.2 28.6

Table 7.2: BLEU for the baseline and the unsupervised tree2seq systems on *→EN

translation.

BLEU EN→TL EN→TR EN→RO

seq2seq 15.9 8.5 27.3

parse2seq 17.1 9.0 28.4

bottom-up tree2seq 23.1 9.7 27.3

top-down tree2seq 22.5 9.8 27.0

Table 7.3: BLEU for the baselines and the unsupervised tree2seq systems on EN→*

translation.

7.4 Results

7.4.1 Main Experiments

Tables 7.2 and 7.3 display translation performance as estimated by BLEU scores for

our unsupervised tree2seq models translating into and out of English, respectively. For

the lower-resource language pairs, TL↔EN and TR↔EN, both tree2seq models con-

sistently improve over the seq2seq and parse2seq baselines. However, for the medium-

resource language pair (RO↔EN), the unsupervised tree models do not improve over

seq2seq, whereas the parse2seq baseline does. These results indicate that inducing hi-

erarchies on the source side is very helpful in low-resource scenarios, but the utility of

this method decreases as more data becomes available.

In Table 7.4, we display the number of parameters for each system on translation

from EN (translation into EN is similar). Both proposed tree2seq systems have signif-

icantly more parameters than the baseline systems, which may be an explanation for

the improvements on TL↔EN and TR↔EN translation. Additionally, the top-down

tree2seq model has roughly six million more parameters than the bottom-up version;

however, despite having more parameters, the top-down model does not consistently

outperform the bottom-up model.

Although the tree2seq models improve over the baselines for low- and very low-
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Parameters EN→TL EN→TR EN→RO

seq2seq 94M 93M 95M

parse2seq 94M 93M 95M

bottom-up tree2seq 102M 101M 103M

top-down tree2seq 108M 107M 109M

Table 7.4: Number of parameters for each model trained on EN→* translation. Number

of parameters for *→EN is similar.

resource translation, there are some trade-offs in terms of training time. Compared

to the seq2seq baseline, the bottom-up and top-down tree2seq models take roughly

twice as long to train, as does the parse2seq baseline. Additionally, inference using the

parse2seq and tree2seq models takes slightly longer than for the seq2seq model.

7.4.2 Analysis

Unsupervised Parses

Williams et al. (2018) observed that the parses resulting from Gumbel tree-LSTMs for

sentence classification did not seem to fit a known formalism. An examination of the

parses induced by our NMT models suggests this as well. Furthermore, the different

architectures (bottom-up and top-down tree2seq) do not seem to learn the same parses

for the same language pair, nor does the same architecture learn the same parses for

different language pairs. Figure 7.3 displays examples of parses induced by the trained

systems on a sentence from the test data.

Subword Recombination

The unsupervised parses are trained over subwords; if the induced hierarchies have

a linguistic basis, it would be reasonable to expect the model to combine subwords

into words as a first step. Figure 7.4 illustrates the expected and unexpected subword

combinations from a linguistic point of view.

In order to evaluate whether the models have a notion of words, we calculate the

percentage of subwords that are recombined correctly for each model; these results are

in Table 7.5. We also include results for right-branching and randomly combined trees

for contextualization.1

1The right-branching subword combination accuracy is very low because only the last two units in a
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others have dismissed him as a j@@ oke .

(a) EN→TR bottom-up.

others have dismissed him as a j@@ oke .

(b) EN→TR top-down.

others have dismissed him as a joke .

(c) EN→RO bottom-up.

others have dismissed him as a joke .

(d) EN→RO top-down.

Figure 7.3: Induced parses on an example sentence from the test data.

a j@@ oke

(a) Expected subword combination.

a j@@ oke

(b) Unexpected subword combination.

Figure 7.4: Expected and unexpected subword combination for the phrase a j@@ oke.
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Language Pair right branch random bottom-up top-down

EN→TL 0.0% 39.8% 22.1% 16.4%

EN→TR 0.8% 34.7% 29.3% 21.3%

EN→RO 0.9% 34.3% 27.2% 27.2%

TL→EN 0.2% 32.7% 12.7% 22.7%

TR→EN 0.4% 34.2% 27.7% 22.9%

RO→EN 0.7% 34.0% 30.8% 11.4%

Table 7.5: Recombined subwords in the test data. We include results for our proposed

bottom-up and top-down tree2seq models, as well as for right-branching and randomly

combined subwords.

Corroborating the observations in the previous section, only a very low percentage

of subwords is correctly recombined for each tree2seq model. For all language pairs,

the percent of correctly recombined subwords for both proposed models is much lower

than for the random parse trees. This gives further indication that the parses the model

learns do not seem to be based on linguistics. In addition, subword recombination ac-

curacy does not seem to correlate with translation performance (as shown in Tables 7.2

and 7.3).

7.5 Discussion

Our unsupervised tree2seq models leverage a hierarchical encoder to add structural in-

formation to neural machine translation. For the low-resource language pairs EN↔TR

and EN↔TL, the proposed models achieve strong improvements in BLEU over the

syntactic and non-syntactic baselines. However, for medium-resource EN↔RO, stan-

dard seq2seq does better than our unsupervised tree2seq. Our two proposed models,

bottom-up and top-down tree2seq, did not differ much in translation performance, so

it seems that adding the top-down pass to incorporate global sentence information is

not particularly helpful.

Our unsupervised tree2seq models have several advantages in addition to the im-

provements shown in low-resource NMT. Since they do not rely on a syntactic parser,

they can be applied to any source language, including a very low-resource language

without outside resources. These models are also very flexible and could easily be

sentence can be directly combined in a right-branching tree.
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augmented with monolingual target data or some syntactic supervision, since the en-

coder is able to induce a hierarchy over any sequence of tokens. These benefits do not

come at a large training cost, since the use of the straight-through Gumbel softmax es-

timator (Jang et al., 2017) allows our model to induce discrete parses while still being

fully differentiable.

The proposed models have the disadvantage that they do not work well for translat-

ing medium-resource language pairs; when more parallel data is available, it is better to

use a standard seq2seq or syntactic NMT model (such as those proposed in chapters 5

and 6). They are also not as easily transferable to new architectures as our models in

chapters 5 and 6 that used linearized parses. Additionally, as discussed in section 7.4.2,

they do not seem to learn any consistent linguistic information. Finally, although we

show improvements over our baselines for low- and very low-resource language pairs,

these models do not improve in BLEU over the state of the art, since we did not use

back-translation (Sennrich et al., 2016c), a copied corpus (chapter 3), or ensembles

of multiple models. However, we expect that the improvements from using our unsu-

pervised tree2seq model might be orthogonal to the gains that can be made through

monolingual data and multiple models.

7.6 Subsequent Work

Concurrent or subsequent papers to the work in this chapter have further studied the

Gumbel tree-LSTM and the use of hierarchical structure in neural machine translation.

Here, we give a brief overview of these papers.

Williams et al. (2018) examined the latent tree structures learned by Gumbel tree-

LSTMs (and other models) trained on a textual entailment task. Their results mirrored

the results in this chapter. First, they found that the Gumbel tree-LSTM outperformed

other models (including syntactic and LSTM baselines) on the main textual entailment

task. They also found that the Gumbel tree-LSTM did not produce consistent trees

across different training runs, and that the grammar learned by the Gumbel tree-LSTM

did not resemble Penn Treebank grammar.

Shi et al. (2018) studied various tree-based encoders for a variety of tasks, includ-

ing moderate-resource neural machine translation. On NMT, they found that right-

branching trees resulted in the highest BLEU scores. The vanilla Gumbel tree-LSTM

encoder performed similarly to parse trees and to balanced binary trees, while the

left-branching trees and the standard LSTM performed worst. They argued that right-



7.7. Conclusions 105

branching trees’ strong performance is due to the fact that the leftmost words are clos-

est to the final sentence representation (this is similar to the reversal of the source

sentence in NMT done by Sutskever et al., 2014).

7.7 Conclusions

In this chapter, we proposed a method for incorporating unsupervised structure into

the source side of neural machine translation. For low-resource language pairs, this

method yielded strong improvements over both sequential and parsed baselines. This

technique is useful for adding hierarchical structure into low-resource NMT when a

source-language parser is not available. Further analysis indicated that the structures

induced by the proposed encoder are not similar to known linguistic structures, cor-

roborating other work that has analyzed these models. Overall, we found that unsuper-

vised source structure was beneficial for low-resource cases, while supervised source

structure (i.e. parses of the source sentence) was beneficial for medium-resource neural

machine translation.

In this thesis, we have proposed ways of incorporating both monolingual and syn-

tactic data into neural machine translation training. This chapter builds on the syntactic

aspect by considering the case of low-resource NMT. Low-resource neural machine

translation is a task where we expect non-parallel data to be particularly helpful; how-

ever, for low-resource source languages, we may not have a parser or even a treebank,

so it can be hard to add syntactic information into NMT in these cases. This chap-

ter addresses this issue by inducing an unsupervised hierarchical structure over source

sentences; in very low-resource cases, the induced structure actually outperforms su-

pervised syntactic parses. Thus, this chapter can be considered a complement to the

previous two syntactic NMT chapters.

There are several potential extensions of this work that we hope to address in the

future. First, we would like to explore ways of inducing unsupervised hierarchies in

the decoder; such work would build on Wang et al. (2018). To our knowledge, using

hierarchies on both the encoder and the decoder has not yet been studied, so this could

be an interesting area for future work. Additionally, we would like to try adding some

syntactic supervision to the source trees, for example in the form of pre-training on

parses, in order to see whether actual syntactic parses can improve our models.
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Conclusions and Future Work

8.1 Conclusions

The goal of this thesis has been to explore ways of using non-traditional data to im-

prove neural machine translation, where we defined non-traditional data as anything

besides sentence-aligned parallel data in the source and target languages. This is an

important task because while neural machine translation performs well when large

amounts of parallel data are available (Hassan et al., 2018; Wu et al., 2016), large

amounts of parallel data are unavailable for all but the highest-resource language pairs.

Thus, it is necessary to find ways to reduce NMT’s reliance on parallel data by adding

in other types of data. This thesis has been a step in that direction.

We have taken two main approaches to adding non-traditional data to neural ma-

chine translation. The first is using monolingual data in addition to the parallel training

data. Unlike parallel data, monolingual data is relatively abundant for many languages,

so it is an important source of outside training data for NMT. We have concentrated

on using monolingual target-language data and monolingual data in a pivot language

(i.e. neither the source nor the target language), and briefly looked at using source

monolingual data as well. Our second source of non-traditional data has been syntac-

tic annotations. We have mainly worked on translating from English using additional

information about English syntax, which has proven to be helpful particularly in low-

resource scenarios. Although we focused on translating from a high-resource language

(English), we also presented a method for incorporating source-side hierarchies with-

out requiring syntactic annotations; this method can be applied to any source language

and was beneficial in very low-resource scenarios.

Chapters 3 and 4 addressed injecting monolingual data into neural machine transla-

107
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tion. In chapter 3, we introduced a straightforward method for adding target-language

monolingual data into NMT. This method consisted of converting a monolingual cor-

pus into a bitext by copying it, so that the source and target sides of the text were identi-

cal. This pseudo-parallel corpus was then mixed with the parallel training data in order

to train the NMT system. This method had the advantage that it did not require a poten-

tially time-consuming pre-training step, unlike the popular back-translation method of

Sennrich et al. (2016c). In addition, for low-resource language pairs, the copied mono-

lingual corpus could also be combined with a back-translated corpus in order to achieve

further improvements in BLEU. Further analysis indicated that this copied monolin-

gual corpus helped the model learn to copy words that were identical in the source and

target text. However, this method had some disadvantages, as well. First, it did not im-

prove translation performance for a high-resource language pair (English↔German),

although it did not damage the translation performance either. Second, the copied

corpus alone did not outperform back-translation alone, although it did outperform a

baseline without monolingual data. Finally, we tried to use the copied corpus system

in order to incorporate source-side monolingual data in addition to the target data, but

we did not see any improvements for this setup, even for a low-resource language pair.

To summarize, the copied corpus method was very effective for adding target monolin-

gual data into low- and medium-resource neural machine translation, with or without

back-translation, but it was less effective for source monolingual data or high-resource

NMT.

Our second proposal for adding monolingual data into NMT was presented in chap-

ter 4. In that chapter, we considered zero-shot and zero-resource NMT, where no di-

rect source ↔ target parallel data is available but parallel data with a pivot language

is used. We introduced a novel type of data for this task: monolingual data in the

pivot language. In many cases, the pivot language is the highest-resource language of

the three (e.g. it is often English), so we can expect it to have the most high-quality

monolingual data; thus, it is logical to choose the pivot language as the language of the

monolingual corpus. However, while monolingual source and target data could easily

be added through an extension of bidirectional NMT with back-translation (Niu et al.,

2018), it is not immediately clear how to apply monolingual pivot-language data to this

task. Our proposal was to use the initial zero-shot system to translate the pivot mono-

lingual data into both the source and the target language, and then to use the resulting

source’ → target’ and target’ → source’ parallel corpora to fine-tune or re-train the

model. We found that doing so improved over zero-shot and zero-resource baselines,
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as well as over back-translation and the copied corpus method. Our methods for using

pivot monolingual data were also successful at direct translation, so inference was not

costlier than for standard NMT. The main disadvantage of this method was that it re-

quired a source↔ target NMT system be trained specifically for this task, so it would

not be usable in a single massively multilingual system that translates between several

languages (although such a multilingual system could be used as a starting point for

our method).

In chapters 5, 6, and 7, we turned our attention from monolingual corpora to syn-

tactic annotations as our type of non-parallel data. Chapter 5 proposed a multi-source

method for adding source syntax into a high-resource NMT system that took both

parsed and unparsed source sentences as simultaneous input. This model had several

advantages over previous syntactic NMT work: it would be easily applicable to any ar-

chitecture (LSTMs, transformers, CNNs, etc.), it was able to translate reasonably well

from unparsed sentences, and it could be trained with a mix of unparsed and parsed

data. Additionally, the proposed model improved in BLEU over both syntactic and

non-syntactic baselines. We further found that the multi-source model was better at

translating long sentences than the baselines, but it was a bit slower in both training

and inference when parsed sentences were used (due to the time it took to parse the

sentences). Finally, we introduced a shared encoder method that trained a single NMT

model to translate from a source sentence in either its parsed or unparsed versions; this

model also strongly outperformed the baselines. However, we showed in chapter 6 that

these improvements were not as large when the shared encoder model was used in a

stronger transformer system.

Chapter 6 built on the work in chapter 5 by adding syntax into the transformer

model. The multi-task model proposed in this chapter, like the multi-source and shared

encoder models, used linearized parses to inject source syntax into NMT. We used a

multi-task parsing and translation framework to leverage these linearized parses; this

model had the advantage that it could be used with different architectures and did not

require parsed data at inference time. We evaluated our multi-task model on several

diverse target languages for low-, medium-, and high-resource data scenarios; this was

to our knowledge the first work to perform a comprehensive cross-linguistic evalua-

tion of syntactic NMT. We found that the multi-task model aided translation for low-

resource scenarios whereas it was not helpful for high-resource cases. Further analysis

showed that language family seemed to have an effect on parsing performance, but not

on translation performance. The main limitation of this model was its inability to aid
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high-resource NMT; it may be that a more elaborate scheduling regime (Kiperwasser

and Ballesteros, 2018) would have improved performance in these cases.

We showed in chapters 5 and 6 that source-side syntax could improve neural ma-

chine translation performance in low-resource scenarios. However, when translating

out of a low-resource language, syntactic annotation might not always be available.

Thus, in chapter 7, we introduced an unsupervised tree2seq model that used a Gum-

bel tree-LSTM (Choi et al., 2018) encoder to induce unsupervised hierarchies on the

source sentences. This model was very successful in improving low-resource NMT

performance, without requiring significantly more training or inference time. How-

ever, for medium-resource cases, it did not do any better than a vanilla seq2seq model.

In addition, the hierarchies that were induced over the source sentences did not seem to

have a linguistic basis, and the models did not learn to combine subwords into words

consistently.

8.2 Future Work

In this thesis, we have explored leveraging monolingual and syntactic information to

augment the parallel corpora typically used in neural machine translation. There are

several other options for adding non-parallel data to NMT, as well. Here, we give

some ideas for future work on the topic of using non-parallel data in neural machine

translation.

• Adding monolingual data to neural machine translation is an important area

for future work because of the ubiquity of monolingual data (compared to par-

allel data). In this thesis, we have looked at adding monolingual target-language

(chapter 3) and pivot-language (chapter 4) corpora to NMT training. Other op-

tions to explore in the future include adding source-language data, data in multi-

ple pivot languages, or data in a language related to the source or target language;

various types of monolingual data could also be added simultaneously. Addi-

tionally, unsupervised machine translation (Artetxe et al., 2018; Lample et al.,

2018) has recently been shown to be viable; we would like to see whether the

methods proposed in this thesis could further improve the unsupervised machine

translation models.

• Improving syntax-based neural machine translation is an interesting future

direction. First, we would like to extend the multi-source and multi-task mod-
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els proposed in chapters 5 and 6 to the target side, in order to add target syntax

into NMT as well. This would be a relatively straightforward extension of these

models; we could even add source and target syntax simultaneously for high-

resource language pairs. It would also be interesting to add an unsupervised

hierarchical decoder to match the unsupervised hierarchical encoder proposed in

chapter 7; however, there is some indication in prior literature that this may not

be successful (Wang et al., 2018). On the topic of the unsupervised hierarchies,

we would also like to see whether it is possible to add semi-supervised syntax,

for example by pre-training the hierarchies on gold syntactic data. Finally, cur-

rent research does not have a thorough understanding of when and why syntactic

annotations can help NMT. More analysis is needed to better understand these

models in order to make them useful to apply in practice.

• Combining monolingual corpora and syntactic annotations will be impor-

tant in order to build state-of-the-art systems. Throughout this thesis, we have

evaluated each of our proposed improvements separately. However, for our syn-

tactic NMT models in particular, we have taken care to ensure that it would be

straightforward to add pseudo-parallel corpora created using monolingual data

into the systems. In the future, we would like to combine the methods pro-

posed here and see whether they successfully stack together. Additionally, to

our knowledge, there has been little research on combining syntactic NMT with

other techniques, such as zero-shot NMT or unsupervised machine translation.

• Other types of non-parallel data are also available; in the future, a natural

extension to this work would be to study adding such data to further improve

neural machine translation. One of the most ubiquitous types of data is out-

of-domain (parallel or monolingual) corpora. Neural machine translation does

well when trained on in-domain data, but it can do much worse than statisti-

cal machine translation when tested on a domain different from the one it was

trained on (Koehn and Knowles, 2017). Thus, domain adaptation is an impor-

tant problem to solve in order to be able to incorporate all available data into

NMT training. Another source of non-traditional training data for neural ma-

chine translation is data from related languages. This can be helpful in cases

where a low-resource language is closely related to a high-resource language.

Currently, most research done on this topic uses multilingual NMT models di-

rectly, but there may be better ways to leverage the data when some languages
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are very closely related. Finally, multi-modal information, such as images and

speech data, is becoming popular in neural machine translation research; in the

future, we would like to extend our work to multi-modal neural machine trans-

lation as well.
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