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a b s t r a c t

Under a standard derivation, the stiffness modulus for the non-associated flow rule is asymmetric since
its plastic potential (for the plastic strain increment under the normality rule) differs from the plastic
yield stress function (to define the elastic range). A new formulation was developed in this work, which
leads to the symmetric stiffness modulus for the non-associated flow rule, under the framework of the
combined isotropic-kinematic hardening law for generalization purposes. As for its application, the
non-quadratic Yld2000-2d (Barlat et al., 2003) function (and Hill’s (1948) function for comparison)
was utilized to validate the formulation for earing in circular cup drawing of AA2090-T3 and AA5042
sheets, which successfully represented 6 and 8 ears, respectively.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction tials) is supposed to simultaneously represent all measured aniso-
For the optimization of sheet forming processes utilizing com-
putational methods, the constitutive model which can properly ac-
count for forming related phenomena such as failure and spring-
back as well as wrinkling is required. Therefore, to ensure the capa-
bility to predict such phenomena, various material models have
been developed for isotropic and anisotropic sheets to describe
their plastic behavior such as the plastic strain increment, yielding
and hardening behavior. In this effort, the most common practice
has been to formulate the plastic deformation based on the nor-
mality rule, in which the (anisotropic) plastic strain increment is
normal to the (anisotropic) yield surface (therefore, the plastic
potential to define the plastic strain increment by the normality
rule is identical with the plastic stress function to define the yield
surface or the elastic stress field): the associated flow rule. Besides
its intrinsic simplicity, the associated flow rule amply satisfies
Drucker’s (1959) stability postulate regarding the dissipative
nature of the plastic work defined for a class of stable materials.

In order to account for planar anisotropy (of sheets), various yield
functions have been developed. Hill (1948) proposed one of the most
popular quadratic yield functions, while Hill (1979), Barlat et al.
(1991, 1997, 2003, 2005), Banabic et al. (2005) and Cazacu et al.
(2006) developed non-quadratic yield functions. Besides, Hill
(1987), Barlat and Chung (1993), Barlat et al. (1993), Kim et al.
(2007) described planar anisotropy based on plastic strain rate
potentials. Under the framework of the associated flow rule, each
of these plastic yield stress functions (or plastic strain rate poten-
ll rights reserved.
tropic quantities such as yield stresses and R-values (width-to-
thickness strain ratio), which is not always so successful since plastic
yield functions (or plastic strain rate potentials) have a limited num-
ber of anisotropic coefficients to account for all the measured aniso-
tropic quantities, especially for sheets whose anisotropy is so strong.

A non-associated flow rule is an alternative way to effectively
represent anisotropy utilizing a plastic yield stress function (or a
plastic strain rate potential) having a limited number of anisotropic
coefficients. In the non-associated flow rule, the plastic potential
(to derive the anisotropic plastic strain increment by the normality
rule) is different from the plastic yield stress function (to describe
anisotropic yield stresses) in principle, unlike the associated flow
rule. Since two separate sets of anisotropic coefficients can be as-
signed for each of the plastic potential and the plastic stress func-
tion, respectively, the required number of the anisotropic
coefficients for each plastic stress function or plastic potential to
describe measured anisotropic quantities reduces to half for the
non-associated flow rule, compared to the associated flow rule
(Lademo et al., 1999). Stoughton (2002), Taherizadeh et al.
(2010) and Mohr et al. (2010) proposed a non-associated model
based on Hill’s (1948) quadratic function, while Cvitanic et al.
(2008), Taherizadeh et al. (2011) considered the Karafillis and Boy-
ce (1993) non-quadratic function as well as Hill’s (1948) function.
In addition, experiments by Spitzig et al. (1975) reported that the
associated flow rule was violated during the plastic deformation
under hydrostatic pressure so that Brunig (1999), Brunig et al.
(2000), Stoughton and Yoon (2004) proposed non-associated flow
models based on pressure sensitive yield criteria. As for the issue
of stability, Stoughton and Yoon (2006, 2008) derived and dis-
cussed general constraints on a non-associated flow model

http://dx.doi.org/10.1016/j.ijsolstr.2012.02.015
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required to guarantee uniqueness and positive plastic work, as well
as to avoid yield point elongation in proportional loading.

The most common practice to evaluate the anisotropy of sheets
is to experimentally measure earing in circular cup drawing, which
is also an important operation to form a cylindrical cup (for such as
beverage can applications). The non-associated flow model in
which Hill’s (1948) function, or similar functions with at most four
anisotropic coefficients (for sheet forming processes) was used for
both the plastic potential and the yield function has been so effec-
tive and popular to simulate anisotropy which would require at
most eight anisotropic coefficients for a single anisotropic function
that was based on the associated flow rule. For such a case, at most
four ears develop in cylindrical cup drawing.

However, if the anisotropy of sheets requires more than eight
anisotropic coefficients for the associated flow rule (which signifies
that more than four ears develop in cylindrical cup drawing),
sophisticated plastic functions having more than four anisotropic
coefficients are necessary for the application of the non-associated
flow rule. Therefore, a non-associated flow rule was developed in
this work utilizing the Yld2000-2d (Barlat et al., 2003) anisotropic
yield function having eight anisotropic coefficients, in particular
for AA2090-T3 and AA5042 sheets, which developed six or eight
ears in cylindrical cup drawing (refer to the NUMISHEET bench-
mark for earing of AA5042 sheets proposed by Yoon and Dick
(2011)). If the associated flow rule were applied for these cases,
plastic yield functions such as Yld2004–18p (Barlat et al., 2005)
or CPB06ex2 (Cazacu et al., 2006) having 12 to 18 coefficients
would have been required to simulate six or eight ears (Yoon
et al., 2000, 2004, 2010; Soare and Barlat, 2011).

Under a standard derivation, the stiffness modulus for the non-
associated flow rule is asymmetric since its plastic potential (for
the plastic strain increment under the normality rule) differs from
the plastic yield stress function (to define the elastic range). Note
that a new formulation was also developed in this work, which
lead to a symmetric stiffness modulus for the non-associated flow
rule, under the framework of the Chaboche (1986, 1991) type iso-
tropic-kinematic hardening model (Chung et al., 2005) for general-
ization purposes. The symmetric stiffness modulus provides a basis
of much more effective numerical formulations compared to the
asymmetric stiffness modulus.

2. Non-associated flow rule

2.1. Flow formulation for asymmetric and symmetric stiffness moduli

In the non-associated flow rule, the yield criterion to define
anisotropic yield stresses (or elastic range) is described by

f ðr� aÞ � �risoð�eÞ ¼ 0; ð1Þ

where f(r � a) is the yield stress function (to define the yield sur-
face), r is the Cauchy stress and a is the back-stress for the kine-
matic hardening, while the effective stress (related to the
isotropic hardening), �riso, is the size of the yield surface as a func-
tion of the accumulative effective strain, �eð�

R
d�eÞ. As for the aniso-

tropic plastic strain increment, the normality flow rule is

dep ¼ d�ep
og

oðr� aÞ ; ð2Þ

where g(r � a) and d�ep are the plastic potential and its conjugate
effective quantity defined by the following plastic work equivalence
principle (Chung et al., 2005), respectively; i.e.,

dwiso ¼ ðr� aÞ : dep ¼ �risod�e ¼ �rpotd�ep: ð3Þ

Here, �rpot is the effective quantity to describe the size of the plastic
potential, which is defined by the following potential criterion as
similarly done for the effective stress in the yield criterion; i.e.,
gðr� aÞ � �rpotð�epÞ ¼ 0: ð4Þ

with �epð�
R

d�epÞ. Therefore,

d�e
d�ep
¼

�rpot

�riso
¼ gðr� aÞ

f ðr� aÞ : ð5Þ

Note that f and g are first order homogeneous functions sharing the
same back-stress (as their centers) as schematically shown in
Fig. 1(a), in which the reference value to define their sizes is
r1 � a1 (as an example in the 2-D space). Fig. 1(a) illustrates that,
when a yield stress surface f is defined with its size, �riso, the ratio
between the effective quantities defined in Eq. (5) varies according
to �risod�e ¼ �rpot=Ad�ep=A ¼ �rpot=Bd�ep=B where A and B represent differ-
ent stress states on the yield stress surface f. Therefore, when the
isotropic hardening (the expansion of the yield stress surface during
plastic deformation) is expressed by �risoð�eÞ, equivalent hardening
expressions are also obtained for each stress state as �rpot=Að�ep=AÞ or
�rpot=Bð�ep=BÞ after considering the ratio obtained in Eq. (5), as sche-
matically shown in Fig. 1(b).

The linear elastic constitutive law for the Jaumann (or co-rota-
tional) stress rate of the Cauchy stress is

dr ¼ C
�

e � dee ¼ C
�

e � ðde� depÞ: ð6Þ

Here, C
�

e, dee and dep are the elastic stiffness tensor, the elastic strain
increment and the plastic strain increment, respectively. Consider-
ing Eqs. (2) and (6) becomes,

dr ¼ C
�

e � de� og
oðr� aÞd

�ep

� �
¼ C
�

e � de� og
oðr� aÞ

f ðr� aÞ
gðr� aÞd

�e
� �

: ð7Þ

Then, the yield criterion described in Eq. (1) leads to, by the consis-
tency condition,

of
oðr�aÞ : dðr�aÞ�o�riso

o�e
d�e

¼ of
oðr�aÞ : C

�
e � de� f ðr�aÞ

gðr�aÞd
�e

og
oðr�aÞ

� �
�oa

o�e
d�e

� �
�o�riso

o�e
d�e¼0: ð8Þ

Note here that oa
o�e is defined by the hardening model to represent the

translation of the yield surface. In this work, the back-stress incre-
ment of Chaboche (1986, 1991) type nonlinear kinematic hardening
model (Chung et al., 2005) was utilized to define the back-stress
evolution; i.e.,

oa
o�e
¼ h2

h1

h2

ðr� aÞ
�risoðr� aÞ � a

� �
ð9Þ

where h1 and h2 are kinematic hardening parameters to define the
rate of kinematic translation. As discussed by Chung et al. (2005),
the back-stress evolution law described in Eq. (9) guarantees the
same hardening as the full isotropic hardening under monotonous
proportional loading condition since the translation rate of the yield
surface is proportional to the initial (anisotropic) yield stresses,
preserving the initial stress anisotropy.

After further manipulations from Eq. (8), the effective strain
increment becomes,

d�e ¼
of

oðr�aÞ : C
�

e � de

f ðr�aÞ
gðr�aÞ

of
oðr�aÞ : C

�
e � og

oðr�aÞ þ
of

oðr�aÞ : oa
o�e þ

o�riso
o�e

ð10Þ

or

d�ep ¼
of

oðr�aÞ : C
�

e � de

of
oðr�aÞ : C

�
e � og

oðr�aÞ þ
of

oðr�aÞ : oa
o�ep
þ o�riso

o�ep

: ð11Þ
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Fig. 1. Schematic views of (a) the yield stress and plastic potential surfaces and (b) the isotropic hardening (the expansion of the surfaces) defined for each surface
considering the stress state.
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Substituting Eq. (10) or Eq. (11) into Eq. (7), the following asymmet-
ric elasto-plastic tangent (or stiffness) modulus is obtained

dr
de
¼ C
�

e �
f ðr�aÞ
gðr�aÞC�

e : og
oðr�aÞ �

of
oðr�aÞ : C

�
e

f ðr�aÞ
gðr�aÞ

of
oðr�aÞ : C

�
e � og

oðr�aÞ þ
of

oðr�aÞ : oa
o�e þ

o�riso
o�e

ð12Þ

or

dr
de
¼ C
�

e �
C
�

e : og
oðr�aÞ �

of
oðr�aÞ : C

�
e

of
oðr�aÞ : C

�
e � og

oðr�aÞ þ
of

oðr�aÞ : oa
o�ep
þ o�riso

o�ep

: ð13Þ

Since the asymmetric stiffness modulus is cumbersome for numer-
ical formulations, a symmetric stiffness modulus is derived here
considering the consistency condition applied for the plastic poten-
tial defined in Eq. (4); i.e.,

og
oðr�aÞ : dðr�aÞ�o�rpot

o�ep
d�ep¼

og
oðr�aÞ

: C
�

e � de� f ðr�aÞ
gðr�aÞd

�e
og

oðr�aÞ

� �
�oa

o�e
d�e

� �
�o�rpot

o�e
d�e¼0: ð14Þ

Therefore,

d�e ¼
og

oðr�aÞ : C
�

e � de

f ðr�aÞ
gðr�aÞ

og
oðr�aÞ : C

�
e � og

oðr�aÞ þ
og

oðr�aÞ : oa
o�e þ

o�rpot

o�e

ð15Þ

and

d�ep ¼
og

oðr�aÞ : C
�

e � de

og
oðr�aÞ : C

�
e � og

oðr�aÞ þ
og

oðr�aÞ : oa
o�ep
þ o�rpot

o�ep

: ð16Þ

Substituting Eq. (15) or Eq. (16) into Eq. (7), the following symmet-
ric stiffness modulus is obtained:

dr
de
¼ C
�

e �
f ðr�aÞ
gðr�aÞC�

e : og
oðr�aÞ �

og
oðr�aÞ : C

�
e

f ðr�aÞ
gðr�aÞ

og
oðr�aÞ : C

�
e � og

oðr�aÞ þ
og

oðr�aÞ : oa
o�e þ

o�rpot

o�e

; ð17Þ
or

dr
de
¼ C
�

e �
C
�

e : og
oðr�aÞ �

og
oðr�aÞ : C

�
e

og
oðr�aÞ : C

�
e � og

oðr�aÞ þ
og

oðr�aÞ : oa
o�ep
þ o�rpot

o�ep

: ð18Þ

Here, after considering Eqs. (10) and (15), the derivatives of the
plastic potential size, o�rpot

o�e and o�rpot

o�ep
, are dependent on the strain

increment, de:

o�rpot

o�e
¼

og
oðr�aÞ : C

�
e �de

of
oðr�aÞ : C

�
e �de

f ðr�aÞ
gðr�aÞ

of
oðr�aÞ : C

�
e � og

oðr�aÞþ
of

oðr�aÞ

�

:
oa
o�e
þo�riso

o�e

�
� f ðr�aÞ

gðr�aÞ
og

oðr�aÞ : C
�

e � og
oðr�aÞþ

og
oðr�aÞ :

oa
o�e
: ð19Þ

and

o�rpot

o�ep
¼

og
oðr�aÞ : C

�
e �de

of
oðr�aÞ : C

�
e �de

of
oðr�aÞ : C

�
e � og

oðr�aÞþ
of

oðr�aÞ :
oa
o�ep
þo�riso

o�ep

� �

� og
oðr�aÞ : C

�
e � og

oðr�aÞþ
og

oðr�aÞ :
oa
o�ep

: ð20Þ

Note here that, for a given strain increment, the stress increment
calculated by the asymmetric tangent modulus in Eq. (12) or Eq.
(13) is the same as that calculated by the symmetric tangent
modulus in Eq. (17) or Eq. (18) as rigorously proven in Appendix
A. The symmetric tangent modulus can be implemented into a finite
element analysis when the non-symmetric equation solver is not
available. Also, the elasto-plastic tangent moduli are indifferent to
the reference states of the yield stress function and the plastic po-
tential because their gradients used in calculating the moduli are
0th order homogenous functions. Since the hardening is commonly
described by the effective strain, Eqs. (12) and (17) are more conve-
nient for numerical applications.
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2.2. Hill (1948) yield function

Under the plane stress condition, the quadratic yield function
proposed by Hill (1948) becomes

f 2 ¼ ðGþ HÞr2
xx þ ðH þ FÞr2

yy � 2Hrxxryy þ 2Nr2
xy ¼ �r2 ð21Þ

where F, G, H and N are anisotropic coefficients and x, y and z are
orthogonal principal anisotropic axes materially embedded along
the rolling, transverse and thickness directions of sheets, respec-
tively. The effective strain increment, d�e, which is conjugate to Eq.
(21) considering the plastic work equivalence principle, becomes

d�e2 ¼
Fde2

xx þ Gde2
yy þ Hðdexx þ deyyÞ2

FGþ GH þ HF
þ 2

N
de2

xy: ð22Þ

Under the plane stress condition, the following relationships are ob-
tained to calibrate the four anisotropic coefficients based on the
yield stress along the rolling (x-) direction, r0, which is considered
a reference (therefore, G + H = 1) and three R-values (R0, R90 and R45,
width-to-thickness strain ratio in the uni-axial tension test along
the x, y and 45� directions, respectively):

F ¼ R0

ð1þ R0ÞR90
; G ¼ 1

1þ R0
; H ¼ R0

1þ R0
and

N ¼ ð1þ 2R45ÞðR0 þ R90Þ
2ð1þ R0ÞR90

: ð23Þ

Also, the following relationships are obtained for four yield stresses
when r0 is the reference value:

2F ¼ r0

r90

� �2

� 1þ r0

rb

� �2

; 2G ¼ 1� r0

r90

� �2

þ r0

rb

� �2

2H ¼ 1þ r0

r90

� �2

� r0

rb

� �2

; 2N ¼ 2r0

r45

� �2

� r0

rb

� �2

;

ð24Þ

where r0, r90 and r45 are yield stresses along the x, y and 45� direc-
tions, while rb is the balanced biaxial yield stress.

2.3. Yld2000-2d yield function

The plane stress yield stress function Yld2000-2d proposed by
Barlat et al. (2003) is defined as

f ¼ /0 þ /00

2

� �1
m

¼ �r with /0 ¼ eS0I � eS0II��� ���m and

/00 ¼ 2eS 00II þ eS 00I��� ���m þ 2eS 00I þ eS 00II��� ���m; ð25Þ

where eS0k and eS00k (k = I, II) are the principal values of the deviatoric
stress tensor ~s (~s0 or ~s00Þ modified by the following linear
transformations:

~s0 ¼ C0 � s ¼ C0 � T � r ¼ L0 � r;
~s00 ¼ C00 � s ¼ C00 � T � r ¼ L00 � r:

ð26Þ

Here, C0 and C00 (therefore, L0 and L00) contain eight independent
anisotropic coefficients and T transforms the Cauchy stress tensor
r to its deviator s; i.e.,

C0 ¼
c011 0 0
0 c022 0
0 0 c066

264
375 and C00 ¼

c0011 c0012 0
c0021 c0022 0
0 0 c0066

264
375: ð27Þ
3. Implicit numerical formulation

For the numerical formulation, the predictor–corrector scheme
proposed by Chung (1984) and Simo and Hughes (1998) based on
the incremental deformation plasticity theory (Chung and
Richmond, 1993) was used in this work. Assuming elastic stress–
strain relationship, the stress is initially updated for a given dis-
crete strain increments, Den:
rT

nþ1 ¼ rn þ C
�

e � Den: ð28Þ
where the superscript T denotes a trial state and the subscripts, n
and n + 1, denote the discretized process time step. Also, assuming
purely (trial) elastic step, state variables are preserved from the pre-
vious step; i.e.,

�eT
nþ1 ¼ �en and aT

nþ1 ¼ an: ð29Þ

Then, the following yield condition is checked using the updated
trial state variables:

f rT
nþ1 � aT

nþ1

	 

� �riso �eT

nþ1

	 

< 0: ð30Þ

If the yield condition is satisfied, the process at the (n + 1) th step is
elastic. Otherwise, the step is elasto-plastic and the increment of the
effective plastic strain, D�enþ1, is iteratively obtained to satisfy the fol-
lowing consistency condition as explained next, in which the up-
dated stress stays on the new yield surface:

Unþ1 ¼ f ðrnþ1 � anþ1Þ � �risoð�en þ D�enþ1Þ ¼ 0: ð31Þ
where

rnþ1 ¼ rT
nþ1 � C

�
e � og

oðrnþ# � anþ#Þ
f ðrnþ# � anþ#Þ
gðrnþ# � anþ#Þ

D�enþ1 ð32Þ

and

anþ1 ¼ an þ h2ð�enþ#Þ
h1ð�enþ#Þ
h2ð�enþ#Þ

rnþ# � anþ#
�riso;nþ#

� �
� anþ#

� �
D�enþ1: ð33Þ

Here, the effective stress, �riso, and the kinematic hardening param-
eters, h1 and h2, are prescribed values obtained from experiments,
while # is a design parameter (between 0.0 and 1.0), which defines
the implicit algorithm.

3.1. Initialize state variables

At first, the trial state variables (including the trial stress) are ta-
ken as initial variables for a plastic corrector scheme; i.e.,

rk¼1
nþ1 ¼ rT

nþ1;

ak¼1
nþ1 ¼ aT

nþ1;

�ek¼1
nþ1 ¼ �eT

nþ1;

D�ek¼1
nþ1 ¼ �ek¼1

nþ1 � �en ¼ 0:

ð34Þ

where the superscript, k, denotes the iteration number. Note here
that the conjugate effective strain discrete increment, D�ep, is up-
dated from the relationship in Eq. (5).

3.2. Update the effective strain

In order to update the effective plastic strain, which satisfies the
consistency condition in Eq. (31), the increment of the effective
strain at the kth iteration is obtained by

dðD�enþ1Þkþ1 ¼ �
Uk

nþ1

oU
oD�e

	 
k
nþ1

; ð35Þ

where

D�ekþ1
nþ1 ¼ D�ek

nþ1 þ dðD�enþ1Þkþ1
: ð36Þ

Here, by the chain rule, the linearized form of the denominator in
Eq. (35) is

oU
oD�e

� �k

nþ1
¼ oU

or

� �k

nþ1

or
oD�e

� �k

nþ1
þ oU

oa

� �k

nþ1

oa
oD�e

� �k

nþ1

þ oU
o�riso

� �k

nþ1

o�riso

oD�e

� �k

nþ1
; ð37Þ
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where

oU
or

� �k

nþ1
¼ � oU

oa

� �k

nþ1
¼ of

o rk
nþ# � ak

nþ#
	 
 ;

oU
o�riso

� �k

nþ1
¼ �1;

ð38Þ

and

or
oD�e

� �k

nþ1
¼ �C

�
e � og

o rk
nþ# � ak

nþ#
	 
 f rk

nþ# � ak
nþ#

	 

g rk

nþ# � ak
nþ#

	 
 : ð39Þ

Here, rk
nþ# ¼ rn þ # rk

nþ1 � rn
	 


¼ rn þ #Drk
n and ak

nþ# ¼ anþ
# ak

nþ1 � an
	 


¼ an þ #Dak
n. Neglecting the second order variations

for simplicity,

oa
oD�e

� �k

nþ1
¼ �h2 �ek

nþ1

	 
 �h1 �ek
nþ1

	 

�h2 �ek

nþ1

	 
 rk
nþ1 � ak

nþ1

�rk
iso;nþ1 rk

nþ1 � ak
nþ1

	 
 !
� ak

nþ1

" #
:

ð40Þ
3.3. Update the stress

Then, the effective strain is updated by

�ekþ1
nþ1 ¼ �en þ D�ekþ1

nþ1 ¼ �ek
nþ1 þ dðD�enþ1Þkþ1

;

�ekþ1
nþ# ¼ �en þ # �ekþ1

nþ1 � �en
	 


¼ �en þ #D�ekþ1
nþ1;

ð41Þ

while the stress is updated by

rkþ1
nþ1 ¼ r1

nþ1 � C
�

e � Dep;kþ1
nþ1 ;

rkþ1
nþ# ¼ rn þ # rkþ1

nþ1 � rn
	 


¼ rn þ #Drkþ1
n :

ð42Þ

Here,

Dep;kþ1
nþ1 ¼

og
o rk

nþ# � ak
nþ#

	 
 f rk
nþ# � ak

nþ#
	 


g rk
nþ# � ak

nþ#
	 
D�ekþ1

nþ1 ð43Þ

Therefore, Eq. (42) becomes,

rkþ1
nþ1 ¼ r1

nþ1 � C
�

e � og
o rk

nþ# � ak
nþ#

	 
 f rk
nþ# � ak

nþ#
	 


g rk
nþ# � ak

nþ#
	 
D�ekþ1

nþ1: ð44Þ
3.4. Update state variables and confirmation of the consistency
condition

From the updated effective plastic strain, the back-stress is up-
dated by

akþ1
nþ1 ¼ an þ h2 �ek

nþ#
	 
 h1 �ek

nþ#
	 


h2 �ek
nþ#

	 
 rk
nþ# � ak

nþ#
�rk

iso;nþ#

 !
� ak

nþ#

" #
D�ekþ1

nþ1;

akþ1
nþ# ¼ an þ # akþ1

nþ1 � an
	 


¼ an þ #Dakþ1
n :

ð45Þ

And then, the satisfaction of the consistency condition is confirmed:

Ukþ1
nþ1 ¼ f rkþ1

nþ1 � akþ1
nþ1

	 

� �riso �ekþ1

nþ1

	 

¼ 0 ð46Þ

If the condition is violated, updating the iteration number, k = k + 1,
repeat the above scheme, from Section 3.2–3.4, until the consis-
tency condition is satisfied. After satisfaction of the condition, the
tangent stiffness modulus should be calculated using one of Eqs.
(12), (13), (17) and (18) for implicit analysis to obtain the strain
increment balancing the moment equation under a specific bound-
ary condition.
4. Material characterization

In this work, AA2090-T3 sheets with 1.6 mm thickness and
AA5042 sheets with 0.208 mm thickness were considered. The
mechanical properties of AA2090-T3 have been referred in the pre-
vious works by Chung et al. (1996, 1997, 2011) and Yoon et al.
(2000, 2006, 2011), while those of AA5042 have been provided
by the benchmark problem of the NUMISHEET 2011 conference
(Yoon and Dick, 2011).

4.1. Coefficients of plastic potential and yield stress function

The eight yield stresses and eight R-values of each material
measured for the simple tension test and the balanced biaxial ten-
sile tension test are summarized in Tables 1 and 2. In order to
incorporate anisotropy, the Yld2000-2d function was applied both
for the plastic potential (for R-values) and the yield stress function
(for yield stresses) based on the non-associated flow rule in this
work and its performance was compared with that of the non-
associated model based on the (Hill, 1948) function. Note that sim-
ple tension in the rolling direction was considered the reference
state throughout this characterization work.

For the (Hill, 1948) function under the plane stress condition,
the anisotropy coefficients of the yield function, f, were determined
by using the equations shown in Eq. (24), while those of the plastic
potential, g, were determined from Eq. (23). The resulting coeffi-
cients of each material are listed in Table 3.

As for the Yld2000-2d function, the eight anisotropic coeffi-
cients of the yield function, f, were determined by eight mechan-
ical measurements, r0, r15, r30, r45, r60, r75, r90 and rb, which
are yield stresses obtained in simple tension at 0�, 15�, 30�, 45�,
60�, 75� and 90� to the rolling (x-) direction as well as yield stress
under the balanced biaxial tension condition, respectively. The
coefficients in the plastic potential, g, were determined by eight
mechanical measurements, R0, R15, R30, R45, R60, R75, R90 and Rb,
which are R-values obtained in simple tension at 0�, 15�, 30�,
45�, 60�, 75� and 90� to the rolling (x-) direction as well as
in-plane principal strain ratio under balanced biaxial tension,
respectively (see Appendix B for the characterization procedure).
For convenience, the eight independent coefficients ai (i = 1 � 8)
were defined, replacing eight components of C0 and C00 in Eq.
(27), as

L011
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L022
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26666664

37777775 ¼
2=3 0 0
�1=3 0 0

0 �1=3 0
0 2=3 0
0 0 1
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37777775
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a2

a7
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375;
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26666664
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1
9
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4 �4 �4 1 0
�2 8 2 �2 0
0 0 0 0 9
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37777775
a3

a4

a5

a6

a8

26666664

37777775;
ð47Þ

such that isotropy is recovered when unit values are assigned for
each ai. Resulting coefficients of each material are listed in Table
4. Here, the anisotropic coefficients of the Yld2000-2d function for
the associated flow model determined by eight anisotropic mea-
surements, r0, r45, r90, R0, R45, R90, rb and Rb are also summarized
for comparison.

Calculated simple tension yield stresses and R-values based on
the resulting yield functions and plastic potentials for AA2090-T3
and AA5042 are compared with experiments in Figs. 2 and 3, while
yield stress function and plastic potential contours are shown in
Figs. 4 and 5, respectively. Distributions of the calculated R-values



Table 1
Normalized initial yield stresses of AA2090-T3 and AA5042.

r0/r0 r15/r0 r30/r0 r45/r0 r60/r0 r75/r0 r90/r0 rb/r0

AA2090-T3 1.0000 0.9605 0.9102 0.8114 0.8096 0.8815 0.9102 1.035
AA5042 1.0000 1.0000 1.0174 1.0149 1.0174 1.0373 1.0448 1.1090

Table 2
R-values of AA2090-T3 and AA5042.

R0 R15 R30 R45 R60 R75 R90 Rb

AA2090-T3 0.2115 0.3269 0.6923 1.5769 1.0385 0.5384 0.6923 0.67
AA5042 0.384 0.1920 0.650 0.860 1.299 1.224 1.436 0.991

Table 3
Anisotropic coefficients of the Hill (1948) function for AA2090-T3 and AA5042.

F G H N

AA2090-T3
Yield f 0.6035 0.3965 0.6035 2.538
Potential g 0.2522 0.8254 0.1746 2.238

AA5042
Yield f 0.3946 0.4485 0.5515 1.5350
Potential g 0.1873 0.7386 0.2614 1.4526
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and normalized initial yield stresses confirm that the non-associ-
ated model based on the Yld2000-2d function well captures the
anisotropy of three materials under the uniaxial and biaxial tensile
conditions.

4.2. Isotropic/isotropic-kinematic hardening parameters

For the uni-axial (monotonously proportional) deformation, the
following relationship is valid:

�r ¼ �riso þ �a ¼ �risoð�e ¼ 0Þ þ ½�riso � �risoð�e ¼ 0Þ� þ �a;
d�r ¼ d�riso þ d�a ¼ ud�rþ ð1�uÞd�r; 0 6 u 6 1:

ð48Þ

Here, �riso is the size of the yield stress function (equivalently, differ-
ence between the yield stress and the back stress in the rolling direc-
tion as a reference state), �a is the effective quantity of the back-stress
obtained from the yield stress function by replacing r � a with a,
(equivalently, the back-stress in the rolling direction), while u is a
parameter to determine the ratio between the isotropic hardening
increment and the back-stress increment. For general deformation
including non-monotonous deformation cases, u should be character-
ized through various non-monotonous experiments (since u does not
affect hardening for monotonously proportional loading). However,
only monotonously proportional data were available in this work;
therefore, the parameter, u, was assumed 0.0 (full isotropic harden-
ing), 0.5 and 1.0 (full kinematic hardening) initially for comparison
purposes and it was confirmed that u insignificantly affected the ear-
ring profiles so that the results of u = 0.5 are reported here; i.e.,

�riso ¼ �risoð0Þ þ D�riso ¼ �rð0Þ þ 0:5½�r� �rð0Þ�
�a ¼ �að0Þ þ D�a ¼ 0:5½�r� �rð0Þ�;

ð49Þ

where �risoð0Þ ¼ �rð0Þ and �að0Þ ¼ 0. Based on the measured harden-
ing curves of each material, the isotropic hardening and kinematic
hardening laws were obtained using Eq. (49) as summarized in Ta-
ble 5. Eq. (9), when applied for the reference state, becomes the first
order differential equation, d�a=d�e ¼ h1 � h2 �a, whose solution is

�a ¼ h1

h2
ð1� e�h2�eÞ: ð50Þ
Using the obtained kinematic hardening laws in Table 5, the kine-
matic hardening parameters, h1 and h2, were obtained for each
material as summarized in Table 6.

5. Cylindrical cup drawing simulation

The non-associated flow rule and characterized material prop-
erties were implemented into the commercial FE program ABA-
QUS/Explicit with the aid of user defined material subroutine.
And then, for verification purposes, the developed constitutive
model was applied for the simulation of cylindrical cup drawing
tests. Schematic views of tools are shown in Fig. 6, while their
dimensions are summarized in Table 7. Note that the radius of
the die profile, Rd, for AA2090-T3 was slightly modified to
51.24 mm from that used for experiments (50.74 mm) to accom-
modate severe thickening in simulation results of the non-associ-
ated model with (Hill, 1948) function.

In the simulations, the tool surfaces were modeled by analytical
rigid surfaces and the blank was modeled with 4-noded shell ele-
ments with reduced volume integration (S4R) and with 9 integra-
tion points through the thickness. For AA2090-T3, the element size
of the blank was approximately 1.0 mm � 1.0 mm except for the
center region as shown in Fig. 7(a), while those for AA5042 were
approximately 0.4 mm � 0.4 mm considering the die corner pro-
file radius, rp, as shown in Fig. 7(b). A blank holding force of 22.2
kN (for AA2090-T3) and 8.9 kN (for AA5042) was maintained
throughout the simulation and the friction coefficient was as-
sumed to be a constant of 0.005 for all materials. Ignoring strain
rate sensitivity, the dynamic analysis, ABAQUS/Explicit, was ap-
plied for simulations. Young’s modulus, Poisson’s ratio and density
used for simulations for each material were 68.9 GPa, 0.33 and
2.72 g/cm3, respectively.

As for the material models, the developed non-associated mod-
els based on the (Hill, 1948) and Yld2000 functions were used for
each material as well as the associated model based on the
Yld2000 yield function. Here, the isotropic-kinematic hardening
was applied for each material model with u = 0.5 as an example.
In Figs. 8 and 9, the simulated earing profiles are compared with
experiments. The simulation results based on the non-associated
flow model with the Yld2000 function successfully predicted 6
and 8 ears measured in the cylindrical cup drawing tests for
AA2090-T3 and AA5042, respectively, while those based on the
non-associated flow model with the (Hill, 1948) function and the
associated model with the Yld2000 yield function predicted only
4 ears for each material. Even the earing profiles have good agree-
ment in particular for AA5042, while some discrepancy observed
for AA2090-T3 for heights at 0�, 180� and 360�. However, for an
orthotropic material, the reflection of earing profile between 0�
and 90� with respect to the 90� axis is supposed to coincide with
the profile between 90� and 180�. But, the measured earing profile
for AA2090-T3 shown in Fig. 8 does not comply well with this



Table 4
Anisotropic coefficients of Yld2000-2d function for AA2090-T3 and AA5042.

m a1 a2 a3 a4 a5 a6 a7 a8

AA2090-T3
Yield f 8 �0.7128 2.0368 1.6288 0.6895 0.5524 �1.0570 1.2545 1.2626
Potential g 8 �1.2694 1.7314 �0.0734 0.6589 1.0234 0.7210 1.1688 1.5449
Associated 8 0.4878 1.3773 0.7539 1.0245 1.0362 0.9037 1.2314 1.4849

AA5042
Yield f 8 �0.8052 1.6285 0.1199 0.7976 1.0216 0.8131 0.7547 1.3230
Potential g 14 �1.2243 1.8246 �1.0709 0.3568 1.0023 0.9091 0.9997 1.8108
Associated 8 0.4489 1.2811 1.0174 0.8894 0.9738 0.6454 0.9735 1.0775
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condition, which might suggest slight error in the measurement
(Chung et al., 1997).
6. Summary

A constitutive formulation to represent the planar anisotropy of
sheets based on the non-associated flow rule was developed under
the isotropic-kinematic hardening framework (Chung et al., 2005)
for generalization purposes along with its numerical formulation
for the finite element method. Besides the asymmetric stiffness
modulus, the symmetric stiffness modulus was successfully de-
rived in this work, which would significantly improve numerical
efficiency. In order to simulate 6 and 8 ears, respectively for
AA2090-T3 and AA5042 sheets, observed in the circular cylindrical
cup drawing test, the non-quadratic function Yld2000-2d proposed
by Barlat et al. (2003) was applied for the plastic potential and the
yield stress function in this work, which successfully predicted 6
and 8 ears, respectively.
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Appendix A. Asymmetric and symmetric tangent moduli of the
non-associated flow rule

The stress increment for a given strain increment based on Eq.
(12) for the asymmetric modulus is,

dr ¼ C
�

e � de�
f ðr�aÞ
gðr�aÞC�

e : og
oðr�aÞ �

of
oðr�aÞ : C

�
e � de

f ðr�aÞ
gðr�aÞ
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oðr�aÞ : C

�
e � og

oðr�aÞ þ
of

oðr�aÞ : oa
o�e þ

o�riso
o�e

; ðA:1Þ

while that based on Eq. (17) for the symmetric modulus is,

dr ¼ C
�
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: ðA:2Þ

Then, the difference between the stress increments in Eqs. (A.1) and
(A.2) is, after considering Eqs. (10) and (15),
Ddr ¼ �
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Appendix B. Characterization of Yld2000-2d coefficients

A procedure for the characterization of the eight anisotropy
coefficients for the Yld2000-2d function based on eight measured
properties such as initial yield stress or R-value is summarized



Table 5
Isotropic/isotropic-kinematic hardening laws for AA2090-T3 and AA5042.

�r (MPa) �riso (MPa) �a (MPa)

AA2090-T3 646ð0:025þ �eÞ0:227 323ð0:025þ �eÞ0:227 þ 139:81 323ð0:025þ �eÞ0:227 � 139:81
AA5042 375:08� 107:28e�17:859�e 321:44� 53:64e�17:859�e 53:64� 53:64e�17:859�e

Table 6
Kinematic hardening parameters for AA2090-T3 and AA5042.

h1 (MPa) h2

AA2090-T3 1057.15 11.898
AA5042 957.957 17.859

(a)

(b)
Fig. 6. Schematic view of tools for (a) AA2090-T3 and (b) AA5042.
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here. In order to determine the convergence of the anisotropy coef-
ficients ai(i = 1 � 8), the following condition is applied during
iteration:

eR ¼X8

j¼1

wjR
2
j 6 TOL ðA:4Þ

where eR is the total residual, Rj is the residual value for the jth con-
dition (or measurement), wj is the weight factor for each condition,
TOL is tolerance. If the total residual, eR, is greater than the tolerance,
TOL, the increments of the anisotropy coefficients are updated
based on the Newton–Raphson method until the following condi-
tion is satisfied:
Table 7
Dimensions of tools for AA2090-T3 and AA5042 (unit: mm).

Rp Rd Rh Rb

AA2090-T3 48.73 51.24 51.24 79.3
AA5042 22.860 23.368 23.114 38.06
eRkþ1 ¼
X8

j¼1

wj Rk
j þ DRkþ1

j

� �2
6 TOL: ðA:5Þ

Here, k denotes the iteration number, while the anisotropy coeffi-
cients are updated by

akþ1
i ¼ ak

i þ Dakþ1
i ¼ ak

i �
oRj

oai

� ��1

Rk
j : ðA:6Þ

For the measured (initial) yield stress, the following equation
should be satisfied:

RF ¼ �rðr
_
Þ � �r ¼ /ðr

_
Þ

2

 !1
m

� �r ¼ 0; ðA:7Þ

where �r is the (initial) effective yield stress and r
_

is the (initial)
yield stress components based on the reference coordinate system
(which is aligned along the rolling direction in this work). The stress
components for the reference coordinate system are obtained from
the following equation

r
_
¼

rxx

ryy

rxy

264
375 ¼ cos2 h sin2 h �2 cos h sin h

sin2 h cos2 h 2 cos h sin h

cos h sin h � cos h sin h cos2 h� sin2 h

264
375 r11

r22

r12

264
375:
ðA:8Þ

Here, r11,r12 and r22, are the stress components for the coordinate sys-
tem rotated h degrees from the reference configuration as shown in
Fig. B.1. For instance,r11,r22 andr12 arerh, 0 and 0 for the simple tension,
while r11, r12 and r22 are rb, rb and 0 for the balanced biaxial tension.

As for the measured R-value, the following equations should be
satisfied for the simple tension conditions and balanced biaxial
condition, respectively:

RG;ST ¼
o�rðr

_
Þ

or22

o�rðr
_
Þ

or33

� RST ¼ �
o/ðr

_
Þ

or22

o/ðr
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or11
þ o/ðr

_
Þ

or22

� RST ¼ 0; ðA:9Þ

RG;BB ¼
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or11

o�rðr
_
Þ

or22

� RBB ¼
o/ðr

_
Þ

or11

o/ðr
_
Þ

or22

� RBB ¼ 0: ðA:10Þ

In this work, the condition in Eq. (A.7) was used for the characteriza-
tion of the yield function, while the conditions in Eqs. (A.9) and (A.10)
were utilized for the characterization of the plastic potential function.

The derivatives, o�rðr
_
Þ

or , are obtained by applying the chain rules; i.e.,
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where ~s0 and ~s00 are principal values of the deviatoric stress tensors,
s0 and ~s00, respectively, while r and r

_
are stress components of the h

degree rotated configuration and the reference configuration,
respectively. Here,
rp rd H1 a1 (degree)

8 12.70 12.70 – –
2 2.229 1.905 12.7 1.905



Fig. 7. Blank Meshes for (a) AA2090-T3 and (b) AA5042.
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Fig. 8. Comparison of measured and calculated earing profiles of AA2090-T3: (a)
based on the non-associated model with Hill48 and the associated model with
Yld2000, (b) based on the non-associated model with Yld2000.
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Fig. 9. Comparison of measured and calculated earing profiles of AA5042: (a) based
on the non-associated model with Hill48 and the associated model with Yld2000,
(b) based on the non-associated model with Yld2000.
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As for the derivatives, o�rðr
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, the following chain rules can be applied

neglecting the high order variations for simplicity,
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