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The aim of this paper is to validate experimentally a nonlinear model of a kinematically excited hinged-simply 

supported beam with a spring subjected to one end. An experimental setup configuration enables to test dif- 

ferent variants of axial boundary conditions: first a typical simply supported beam (no spring), and next two 

different spring systems. The prototype is kinematically excited with different amplitudes of excitation and then 

full frequency response curves are drawn wherein hardening/softening dichotomy is recognized. A set of me- 

chanical properties of the system is identified and then used to reproduce tests with finite element simulations. 

Consequently numerical vs. experiment results are compared. The analysis demonstrates amplitude dependent 

damping as well as that the natural frequency depends on environmental conditions, and thus may change over 

experiments. 
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. Introduction 

Beams are deformable structural elements used in civil, electrical,

echanical, ocean and space engineering due to their capacity of carry-

ng payloads, compound complex structures, or being a main working

art of sensors. Simultaneously they are one of the basic element of

heoretical interest in applied mechanics and are modeled in numerous

ays. The essential difference in the beam response may be observed if

he model is nonlinear [1–4] . Recent advances in computational power

llows us to introduce sophisticated mechanical effects, compute the

ystems with higher order nonlinearities and consequently realize a so-

ution of higher accuracy [5–7] . Discrepancies between a real structure

nd theoretical models may be also due to some approximations in the

escription of real boundary conditions (BCs). In fact, BCs are commonly

ssumed to ideal, i.e. they exact eliminate the corresponding displace-

ent, while in practice they often have a stiffness allowing some, minor,

ovements. As presented in [8–11] , properly describing the behaviour

f BCs can be essential for response of the whole system. 

Studies on hinged-simply-supported and hinged-hinged beams are

otivated by the occurrence of hardening/softening phenomena and

ifurcation of solutions existing for large amplitudes of oscillations to-

ether with strong nonlinearity of the system [12,13] . Furthermore, an

ntermediate case of the simply-supported and hinged-hinged beams can

e considered by applying a boundary spring in the axial direction, so

hat we can continuously go from simply-supported (axially movable)
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o hinged (axially immovable) cases by increasing from 0 to ∞ the stiff-

ess of the spring (see Fig. 1 ). As a matter of fact, by modifying spring

tiffness the dynamical response of the structure changes from softening

o hardening. This phenomenon can be used for passive control of the

eam dynamics [14] . 

The planar hinged-simply supported beam model with axial spring

t one end was derived in [15,16] . The geometrical nonlinearities were

aken into account in the model. Apart from the longitudinal, transver-

al and rotational inertia, the geometric nonlinear curvature included

lso shearable rotation of a beam cross-section. A lot of attention was

aid to development of that model on free [17–19] and forced-damped

scillations [20–23] , where various perturbation techniques and finite

lement methods were used. 

In general, the analytical and numerical methods were in excellent

greement close to resonant frequencies. Hovewer, in contrast to the an-

lytical solution, the numerical simulations performed in time domain

explicitly) by FE method enable to capture multi-mode response and

ives reliable outcomes also even far away from the resonant frequen-

ies. For these reasons we decided to use this method, despite the time-

onsuming simulation process. 

Although, numerical and analytical analysies accurate the final cor-

ectness of the results must be confirmed experimentally: ”Experiment is

he sole source of truth. It alone can teach us something new; it alone can

ive us certainty ” [24] . Thus, the main purpose of this work is to sup-

lement the extensive theoretical research on simply supported beams
 Technology ul. Nadbystrzycka, 36 20-618 Lublin, Poland. 
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Fig. 1. Simply supported beam with an axial spring. 

Fig. 2. Beam-spring system mounted on the 

slip table: front (a) and top (b) views. 

Schematic representation (top view) of the 

kinematically excited system with transla- 

tional and rotatory inertia (c). 
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ith spring boundary conditions [16–22] and carry out the important

xperimental test, which is aimed to practically demonstrate the change

rom softening phenomenon (simply supported beam) to hardening be-

avior (hinged-hinged beam). As it is shown in this paper, research has

evealed new phenomena, which need a further development in the fu-

ure. 

The paper is organized as follows. Section 2 describes prototype and

dentification of the static properties of the beam-spring system; the

nalysis involves beam material characteristics, effective springs stiff-

ess as well inertia element related to hinges and translational tip mass.

ynamic tests of free oscillations in two different temperatures and full

requency response curves of the kinematically excited system are pre-

ented. Next, finite element modeling, static and dynamic analysis as

ell as of method of fitting frequency response curves are shown in

ection 3 . Finally, a cross-check of experiments and numerics is per-

ormed in Section 4 . The paper ends with some conclusions. 

. Experimental test 

.1. Setup 

The experimental setup consists of a homogeneous rectangular plex-

glass slender beam, bearing shaft on the left hand side, platen coupled

ith sliding supports through two triples and four springs arranged ax-

ally, see Fig. 2 a and b. The system is grounded with robust modules

o a plane of slip table. Immovable elements are made of steel, while

ovable parts are designed of aluminum, which limit effect of rotary

nd translational inertia. Sliding contact surfaces have been covered

ith thin Teflon sleeves. The system of four push springs is tightened
ith an appropriate preload, which works in positive and negative di-

ections. The elastic bound can be replaced as well as removed. The

eam is mounted to the holder at the last stage of assembly, it prevents

re-stresses of the beam and allows sufficient clamp. In order to avoid

ending in two perpendicular directions and reduce the system to a pla-

ar problem, the dimensions of the cross-section of the beam are set as

n Table 1 . To prevent axial-transversal internal resonance, the dimen-

ions of the beam are chosen so that natural frequencies of longitudinal

nd flexural vibrations are well separated. To represent the real system

ore adequately, the model in Fig. 1 is modified by additional com-

onents presented in Fig. 2 c, i.e. we add in the numerical model new

asses that may move along the axial direction of the beam ( M t ) and

otate in horizontal plane ( I 0 , I L ). This generates dynamical boundary

ondition involving additional inertia terms. 

.2. Static properties identification of the beam-spring system 

Material properties of the beam are listed in Table 1 . Modulus of

lasticity is determined on the testing machine, see Fig. 3 . In spite of

ood agreement between strength test and literature [25] , the modulus

f elasticity is also calculated from the first natural frequency and its

orresponding bending mode. This procedure tuned natural frequencies

f the prototype and finite element model [26] . We refer Poisson’s ratio

oefficient to [25] . The density is calculated from beam’s volume and

ass measured on a precision balance. 

The effective stiffness of two pairs of springs in the longitudinal di-

ection has been tested on Shimatzu AGS-X 5kN strength machine by

ompression and extension tests (see Fig. 3 a). The beam-specimen was

wapped with robust steel bar, axial tensile load is limited by the con-
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Table 1 

The physical properties and dimensions of the Plexiglas prismatic beam. 

Young’s modulus Poison’s ratio Mass density Length Width Height 

E 𝜈 𝜌 L b h 

3.3 GPa 0.35 1245.05 kg/m 

3 0.45 m 20 mm 4.75 mm 

Fig. 3. Spring system stiffness identification: strength test 

(a) and results (b). 
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iderable mass of the module (18.3 kg). Relatively slow test’s feed rate

50 mm/min) neglects dynamical effects. The suspension composed of

our springs 43.5 × 33.5 × 3 mm and 67 × 28.5 × 1.8 mm have linear

ature ( Fig. 3 b) and dummyTXdummy- can be defined by linear stiff-

ess coefficients 𝑘 𝑠 = 29254 N/m and 𝑘 𝑠 = 5798 . 5 N/m, respectively. The

ip mass is 𝑀 𝑡 = 0 . 155 kg which includes also mass of the shaft and two

riples presented in Fig. 2 a. The left hinge has mass moment of inertia

 0 = 1 . 0928 × 10 −5 kg m 

2 while that on the right, which in mounted on

he shaft which is movable along beam’s axis is 𝐼 𝐿 = 7 . 556 × 10 −6 kg m 

2 .

n the forthcoming Section 2.3 more details are presented about the

etup prepared for experimental tests. 

.3. Experimental dynamic tests 

The laboratory equipment has some physical limitations [27] . The

sed oil film slip table TGT MO 48 XL enabled to run the shaker and

pply frequency of excitation Ω between 15 Hz and 30 Hz and four am-

litudes of excitation 𝜉 = 1 mm, 𝜉 = 1 . 5 mm, 𝜉 = 2 mm and 𝜉 = 2 . 5 mm.

he control accelerometer C is placed on the movable table while a

hree-axial sensor S is fixed to the midpoint of the beam (see Fig. 2 a).

he frequency of excitation has been swept backward ( Ω− ) from 30 Hz

o 15 Hz, then chirp sweep forward ( Ω+ ). Total time of the sweep for-

ard and backward is 308 s, wherein start-up (30 Hz) took 2 s, then

weep backward duration is 150 s and shutdown (15 Hz) lasted 2 s. The

rocess has been repeated in opposite direction, beginning from 2 s of

tart-up (15 Hz), has been continued by sweep forward by 150 s and

ne full course ended with 2 s of shutdown (30 Hz). The sweep rate has

een set as 0.1 Hz/s. Absolute displacement E a ( Ω) and its time shift 𝜑 ( Ω)

ith respect to controller C have been recorded. In post processing, the

xperimental relative amplitude ( E r ( Ω)) of oscillations with respect to

he moving coordinate system preset on the slip plate is calculated as: 

 𝑟 (Ω) = 𝐸 𝑎 (Ω) + 𝜉 cos [ 𝜑 (Ω) ] (1)

Examples of the frequency response curves are shown in Fig. 4 and

ull experimental results will be collectively presented in Section 4 . Anal-

sis will include four amplitudes of excitation for three types of bound-

ry conditions and sweeps forward/backward for all of them, in total 24

xperimental curves. Laboratory results will be compared with precisely

atched numerical simulations performed in Section 3.2 . 
Before developing numerical simulations, system’s free vibration

ests are also performed in two different room temperatures 23 ∘C

 Fig. 5 a) and 28 ∘C ( Fig. 5 b). Firstly, the structure has been perturbed

nd then free oscillations of the reflective marker R (see Fig. 2 a) has been

ecorded with the use of contactless laser scanner vibrometer Polytec

SV-500. Test is repeated four times for the system with spring stiffness

 𝑠 = 29254 N/m. Time histories show a large difference in the course of

atural vibration in both temperatures. We interpret that the structure

ndergoes a hardening phenomenon. It means that period of oscillations

ecreases as the maximum amplitude falls dawn. The damping coeffi-

ient is lower for higher amplitudes of oscillations as well as in all cases

maller for higher temperature. These preliminary tests are presented

o highlight the complexity of the problem. The laboratory tempera-

ure grows naturally during the day and the structure is additionally

eated by the vibration generator. It is very unlikely to reconstruct a

mooth backbone curve because the amplitude of oscillations decreases

ery fast (5 cm of initial deflection vanish in 5–6 cycles), consequently

nergy absorption in the system takes place much faster than one full pe-

iod and the experiment is difficult to repeat in constant environmental

onditions. For the above-mentioned reasons, in comparable numerical

alculations, the damping factor is adjusted individually for each of the

esonance curves [28–30] . 

. Finite element analysis 

.1. Beam model 

Numerical model is composed of 100, B21 type finite elements. B21 is

baqus_CAE© basic planar beam element that uses linear interpolation

etween nodes. Additionally, true stress and strain are calculated with

se NLgeom function, suitable for large amplitudes vibrations [31] . In

est condition, each beam element has equal length and its properties

re defined as in Table 1 . Kinematic constraints are defined as follows: 

(0 , 𝑇 ) = 𝑈 ( 𝐿, 𝑇 ) = 0 , 𝑊 (0 , 𝑇 ) = 0 (2) 

eaving the freedom of axial movement and rotation, the additional mo-

ent of inertia I 0 and I L as well as the tip mass M t are included in the

umerical model. The axial spring links the end of the beam and origin
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Fig. 4. Absolute frequency response curves 

E a ( Ω± ) together with shift angle 𝜑 ( Ω± ) and 

corresponding relative amplitudes E r ( Ω± ); 𝑘 𝑠 = 
29254 N/m, 𝜉 = 1 . 5 mm. 

Fig. 5. Free oscillations (solid lines) and 

matched logarithmic decrements of damping 

(dashed lines) for the beam-spring system 

tested in two temperatures. 

Fig. 6. The numerical model (top) and the an- 

alyzed mode shape (bottom) obtained for nat- 

ural frequency 𝜔 0 = 19 . 75 Hz (a). The natural 

frequency of first bending mode related to mod- 

ulus of elasticity (b). Computations performed 

in Linear perturbation, Frequency module with 

use of Lanczos Eigensolver . 
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l  
f the local coordinate system (movable with a beam). The FE model dis-

layed in Fig. 6 a (top) reflects the setup arrangement shown in Fig. 2 c.

Fig. 6 displays undeformed beam and the image of the first natural

ending mode resultant deformations. It is worth to remark that nat-

ral frequencies and corresponding flexural modes are independent of

oundary conditions like sliding mass inertia and spring in axial direc-

ion [22] , but moment of inertia does affect and cannot be ignored in

he model. Both, tip mass and rotatory inertia decreases natural fre-
uencies in longitudinal and transverse directions, respectively. On the

ther hand, axial spring increases the linear natural frequencies in the

ongitudinal direction. 

.2. Path following 

Investigations in the linear regime are now extended to study non-

inear dynamics of the system. Calculations involve kinematic excitation
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Fig. 7. Post processing method: full time history of 

relative amplitude (a), selected interval of time sig- 

nal (b) and its conversion to frequency domain (c); 

𝑘 𝑠 = 5798 . 5 N/m, 𝜉 = 2 . 5 mm, 𝜁 = 9 %. 
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l  
n the neighborhood of the primary resonance, and boundary conditions

2) accordingly change into 

(0 , 𝑇 ) = 𝑈 ( 𝐿, 𝑇 ) = 𝜉 cos ( Ω𝑇 ) , 𝑊 (0 , 𝑇 ) = 0 . (3) 

imulation have been performed in 121 computational steps, wherein

ach step is responsible for n th frequency of excitation, and the fre-

uency is slightly increased of 0.25 Hz starting at Ω = 10 Hz and fin-

shing at Ω = 40 Hz. Maintaining constant frequency Ω and amplitude 𝜉

f excitation for 50 periods (if necessary 100), the transient oscillations

anish and the motion becomes periodic. The deformation at the end

f the simulation ( 𝑛 = 𝑗 − 1 ) becomes the initial condition for the next

requency ( 𝑛 = 𝑗). The frequencies jump gradually step by step, creating

ust a slight disturbance of the system. The time history is presented in

ig. 7 a. Recording relative displacements of beam’s midpoint, the max-

mum amplitude N r ( Ω± ) is assigned to the corresponding frequency Ω
which is known from the excitation). 

The indicated procedure is presented in Fig. 7 b and c. For different

alues of the damping 𝜁 the frequency response curves 𝑁 𝑟 (Ω− ) are drawn

n Fig. 8 . This approach allows to follow only stable paths, and when

tability is lost a jump to another solution or other different phenomena

an be detected, as presented in [20] . The considered case does not

how any irregular of unexpected behaviour. The maximum amplitude

f the frequency response curve is slightly shifted toward the right with

espect to 𝜔 0 = 19 . 75 Hz, showing a weak hardening nature; the jump

henomenon does not occur. 

The dynamical analysis includes investigation on the effects of the

amping coefficient. In our approach a linear viscous damping is always

ssumed. For each frequency response curve it is determined by the best

tting between numerical and experimental results. The damping coef-

cient is crucial in the neighborhood of resonance ( 18 − 24 Hz), while

way it has a minor effect on the results. To match results, which in-

eed are temperature dependent, the Young modulus is also fitted to

une natural frequency. Changes of natural frequency in experiment are

bout 0.75 Hz, between 19.25 Hz and 20.00 Hz, therefore in the numer-

cal model the modulus of elasticity is tuned to 4.4 GPa ± 4 %, see the

elation 𝜔 0 ( E ) presented in Fig. 6 b. 
. FEM vs. experiment 

The nonlinear response of simply supported beam is constructed on

he laboratory prototype. Then identification procedure allowed to get

 very good agreement of the FE model with experimental tests for all

hree cases which demonstrate different behaviors. 

Lack of spring generates softening phenomenon, as shown in Fig. 9 .

n this case the experimental curves have the highest noise ratio, and for

onstant amplitude of excitation two-way sweep responses are slightly

hifted and also small amplitude change appears. This is likely due to the

oise observed in the output signal, which is generated by the moving

arts. Micro-gaps between those parts generate micro impacts, which

re present in the measured signal. Additional set of springs suppresses

his effect. The procedure of constructing curves started from the high-

st amplitude 𝜉 = 2 . 5 mm and then the amplitude was decreased about

.5 mm up to 𝜉 = 1 mm, accordingly to columns in plot label. It is ob-

erved that damping ratio 𝜁 decreases as (i) the amplitude of excitation

ecreases (this is clearly visible in Figs. 9–11 ) and (ii) when the temper-

ture increases (not reported results). This effect has been confirmed in

ig. 5 a and b. 

The addition of an axial end spring, even of lower stiffness, generates

light hardening phenomenon ( Fig. 10 ). Quality of the plots is much

etter, with almost no shifts of forward and backward branches. Again,

amping decreases for decreasing amplitudes. 

Fig. 11 shows the third case with the spring of higher stiffness, which

emonstrates strong hardening. Here hystereses of frequency response

urves appear for amplitudes of excitation equal or higher than 1.5 mm.

urves 𝐸 𝑟 (Ω± ) , 𝜉 = 1 . 5 mm are shifted with respect to each other of

bout 0.5 Hz. It may be caused by rapid change of the length of the

eam, which could be a result of combined temperature-preload issues.

t is very likely that both effects appear simultaneously. 

. Conclusions 

The forced-damped nonlinear dynamics of a beam, hinged at the left

ide and simply supported at the right side with an axial spring, have

een studied experimentally and numerically. Based on identified me-

hanical properties of the prototype, the FE model of the beam with a

inear spring has been created. To match the real structure the rotation
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Fig. 8. Frequency response curves FEM: damping 

test. The black dot-dashed vertical line reflects the 

natural frequency of the system. 

Fig. 9. Frequency response curves FEM (circles) 

vs. experiment (lines). Amplitude of excitation: 𝜉 = 
2 . 5 mm, 𝜉 = 2 mm, 𝜉 = 1 . 5 mm, 𝜉 = 1 mm. 
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Fig. 10. Frequency response curves FEM (circles) 

vs. experiment (lines). Amplitude of excitation 

𝜉 = 2 . 5 mm, 𝜉 = 2 mm, 𝜉 = 1 . 5 mm, 𝜉 = 1 mm. 

Fig. 11. Frequency response curves FEM (circles 

and crosses) vs. experiment (horizontal and verti- 

cal lines). Amplitude of excitation 𝜉 = 2 . 5 mm, 𝜉 = 
2 mm, 𝜉 = 1 . 5 mm, 𝜉 = 1 mm. 
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nd translation inertia of the hinges and tip mass have been taken into

ccount as well. Four different amplitudes of excitation and three vari-

us boundary conditions in the axial direction has been considered and

hen numerical simulations with adjusted natural frequency (by Young

odulus) and damping factor have been compared. 

Previous sophisticated analytical and numerical results [16–22] ,

hich describe a smooth change from softening to hardening by increas-

ng the stiffness of the spring, are thoroughly confirmed. Presented re-

ults (numerics vs. experiment) are in excellent agreement, much better

han analytics vs. experiments shown for similar systems in [7,13,14] ,

lthough in our study the beam has been excited kinematically, not para-

etrically. Excitation in the longitudinal direction of the system could

enerate another interactions. 

The analysis shows that the nonlinear dynamics depends not only on

oundary conditions, which of course are of great importance, but also

n the environmental temperature where tests are performed. It empha-

izes the importance as well as disadvantages associated with carrying

ut the experiment. Problems that arise in the experiment like ampli-

ude and temperature dependent damping can have a big impact on the

uture work on this topic. 
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