Louisiana State University

LSU Digital Commons

LSU Master's Theses Graduate School

2009

Asynchronous replication of metadata across multi-
master servers in distributed data storage systems

Ismail Akturk
Louisiana State University and Agricultural and Mechanical College, iakturl @lsu.edu

Follow this and additional works at: https://digitalcommons.Isu.edu/gradschool theses

b Part of the Electrical and Computer Engineering Commons

Recommended Citation

Akturk, Ismail, "Asynchronous replication of metadata across multi-master servers in distributed data storage systems" (2009). LSU
Master’s Theses. 4113.
https://digitalcommons.lsu.edu/gradschool_theses/4113

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU

Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4113&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/4113?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4113&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

ASYNCHRONOUS REPLICATION OF METADATA ACROSS MULTI-MASTER SERVERS IN
DISTRIBUTED DATA STORAGE SYSTEMS

A Thesis

Submitted to the Graduate Faculty of the
Louisiana State University and
Agricultural and Mechanical College
in partial fulfillment of the
requirements for the degree of
Master of Science in Electrical Engineering

in

The Department of Electrical and Computer Engineering

by
Ismail Akturk
B.S., Dogus University, 2007
December, 2009

All praise is due to God alone, the Sustainer of all the worlds,

the Most Gracious, the Dispenser of Grace

i

Acknowledgments

I would like to express my deepest appreciation to my adviser Dr. Kosar for his support, invaluable advices,
suggestions and steadfast guidance during my study at Louisiana State University. He is the one who made
it possible to achieve graduate experience, work on the state-of-art projects, meet with scholars in different
fields, and get a master’s degree. No word, no sentence can fully express my gratitude to him.

Also, I would like to thank Dr. Vaidyanathan, co-chair of my thesis committee, for his guidance to
obtain engineering approach and intuition. I am privileged to meet with him and take courses that have
changed my perspective and give me a clear idea regarding how to solve engineering problems and be a
better engineer.

Special thanks to Dr. Trahan for his grammatical suggestions while revising thesis, and Dr. Ramanujam
for his time to be a part of my thesis committee. I would like to thank Distributed Systems Lab members at
Computer Science Department, especially Mehmet Balman who was always excited to discuss and give pos-
itive comments, as well as the faculty and staff members of Center for Computation and Technology(CCT)
for supporting me through out my study.

Finally, I would like to express my heartfelt gratitude to my family for their patience towards my absence

during their hard times.

1l

Table of Contents

ACKNOWLEDGMENTS .+ . &« v v v v v e e e e e e e e e e e e e e e e e e e

LISTOFTABLES o e e e e e e e e e e e e e

LiIsTOFFIGURES e e e e e e e e e

ABSTRACT . & v v v v v e

I INTRODUCTION o o o e

1.1 Distributed Data Storage Systems L

1.2 Metadata Management in Distributed Data Storage Systems

1.3 Problem Definition

1.4 Thesis Organization it e e e e e e e

2 REPLICATION SCHEMES AND TYPES et e e e e e e e e

2.1 Synchronous Replication

2.2 Asynchronous Replication e

2.3 Master-Slave Replication

2.4 Multi-Master Replication e

2.5 Metadata Server Replication in Distributed Data Storage Systems

3 ASYNCHRONOUS MULTI-MASTER METADATA SERVER REPLICATION
3.1 Challenges Associated With Asynchronous Multi-Master Metadata Server Replication

3.1.1 Conflict Avoidance

3.1.2 Conflict Detection and Resolution

3.2 Implementation of Asynchronous Multi-Master Metadata Server Replication

3.3 Feasibility of Asynchronous Multi-Master Metadata Server Replication in Distributed Data

Storage System L e e

4 Use CASE: PETASHARE L e e e

4.1 PetaShare OVerview o i e e e e e e e e

4.2 PetaShare Clients o . e

4.3 Asynchronously Replicated Multi-Master Metadata Servers in PetaShare

5 EXPERIMENTAL RESULTS AND EVALUATION

5.1 Deployment Details e

5.2 TestCases o o e e e e e e e e

5.3 Evaluation e e e e e e

6 RELATED WORK e e e e e e e

T CONCLUSION . & v v v v v e

7.1 Contribution e e e

v

X

0 O\ W = =

10
11
12
13
15

List of Tables

2.1

22

5.1

5.2

53

Combination of Replication Schemes and Types 10
Comparison of Metadata Server Replication Settings 18
Time Table of Two Data Sets for Writing to Local PetaShare Resource 47
Time Table of Two Data Sets for Reading from Remote PetaShare Resources 48
Time Table of Two Data Sets for Reading from Local PetaShare Resource 49

vi

List of Figures

1.1

1.2

1.3

2.1

22

2.3

3.1

3.2

33

34

3.5

3.6

3.7

4.1

4.2

4.3

4.4

4.5

4.6

5.1

5.2

Central Metadata Server e
Distributed Metadata Servers L L
Federated Metadata Servers L
Two-phase Commit Protocol in Synchronous Replication
Master-Slave Replication L
Multi-master Replication
Uniqueness Conflict in Asynchronous Multi-Master Replication
ID Space Partitioning to Avoid Uniqueness Conflict in Asynchronous Multi-Master Replication
Components of Asynchronous Multi-Master Replication Tool
Replication Cycle e
Flowchart of Replication Process
Access Pattern of Sample Data Set During Its Lifetime
Relationship Between Access Pattern and ReplicationCycle
Louisiana Optical Network Initiative and PetaShare Sites
Global name space and transparent aCCeSS« v v v e e e e e e e e e e e e e
Mapping System I/O Calls to Remote I/O Calls via Petashell
Interaction between PetaFs and FUSE kernel module
PetaShare Deployment with Central Metadata Server
PetaShare Deployment with Replicated Metadata Servers
Replication of Metadata Servers with Pgpool

Replication of Metadata Servers Asynchronously

Vil

11

13

14

21

53

54

5.5

5.6

Average Duration of Writing to Remote PetaShare Resources 46
Average Duration of Writing to Local PetaShare Resource 47
Average Duration of Reading from Remote PetaShare Resources 48
Average Duration of Reading from Local PetaShare Resource 49

viil

Abstract

In recent years, scientific applications have become increasingly data intensive. The increase in the size
of data generated by scientific applications necessitates collaboration and sharing data among the nation’s
education and research institutions. To address this, distributed storage systems spanning multiple institu-
tions over wide area networks have been developed. One of the important features of distributed storage
systems is providing global unified name space across all participating institutions, which enables easy data
sharing without the knowledge of actual physical location of data. This feature depends on the “location
metadata” of all data sets in the system being available to all participating institutions. This introduces new
challenges. In this thesis, we study different metadata server layouts in terms of high availability, scalability
and performance. A central metadata server is a single point of failure leading to low availability. Ensuring
high availability requires replication of metadata servers. A synchronously replicated metadata servers lay-
out introduces synchronization overhead which degrades the performance of data operations. We propose an
asynchronously replicated multi-master metadata servers layout which ensures high availability, scalability
and provides better performance. We discuss the implications of asynchronously replicated multi-master
metadata servers on metadata consistency and conflict resolution. Further, we design and implement our
own asynchronous multi-master replication tool, deploy it in the state-wide distributed data storage system
called PetaShare, and compare performance of all three metadata server layouts: central metadata server,
synchronously replicated multi-master metadata servers and asynchronously replicated multi-master meta-

data servers.

1X

Chapter 1

Introduction
1.1 Distributed Data Storage Systems

Today, we are in the post-“Moore’s Law”-era in which computational power doubles in every 14 months
rather than every 18 months [43], as a result of the advances in multi-core technology. Furthermore, having
shared wide area high speed networks brings the potential of building more powerful supercomputers in the
form of distributed clusters. As of now, 82% of the supercomputers listed in the TOP500 are the composition
of clusters that provide more than 13 Peta-FLOPS of computational power [12].

These advancements in hardware and network technologies make the number of computation-intensive
scientific disciplines and applications increasing. The data volume commensurate with the increase of com-
putational power exceeds Petabyte boundary for a number of scientific disciplines and applications, such
as high energy physics [21, 42], computational biology [50, 49], coastal modeling [22, 56], computational
fluid-dynamics [30], numerical relativity [14], and astrophysics [13, 62]. Such scientific applications re-
quire allocating computational and storage resources, as well as organizing, moving, visualizing, analyzing
and storing massive amounts of data at multiple sites around the nation and the world [61]. Having stringent
performance requirements, large volume of data sets, and geographically distributed human, computational
and storage resources makes existing data management infrastructures insufficient [23]. Simply purchasing
high-capacity, high-performance storage systems and adding them to the existing computing infrastructure
of the collaborating institutions do not solve the underlying and highly challenging data handling problems.
Scientists are compelled to spend a great amount of time and energy on solving basic data-handling issues,
such as how to find physical location of data, how to access it, and/or how to move it to visualization and/or
compute resources for further analysis.

There is a wide variety of distributed file systems developed to alleviate data management challenges in
clusters, such as AFS [34], NFS [5], Lustre [2], PVFS [37], GFS [11], GPFS [54] and Panasas [41]. These
file systems are sufficient and widely used in LANSs as a cluster file system. However, when the volume of

generated data sets increases and data sets are distributed over the clusters through WANSs, it becomes very

expensive to maintain a unified shared file system running across distributed clusters. This is due to the con-
straints of WAN, heterogeneity of distributed resources and environments, and authorization/authentication
policies of different administration domains. To address the challenges of data handling issues in geograph-
ically distributed and heterogeneous environments, distributed data storage systems have been proposed and
implemented.

Distributed data storage systems provide flexible mechanisms for controlling, organizing, sharing, ac-
cessing and manipulating data sets over widely distributed resources that are under the control of different
administration domains. One of the important features of distributed storage systems is providing global
unified name space across distributed resources, which enables easy data sharing and accessing without
the knowledge of actual physical location of data. This is known as ’location transparency’. The location
transparency of distributed data sets is provided efficiently by distributed data storage systems. Distributed
storage systems enable scalable, efficient and transparent access to the distributed resources including repli-
cated data sets in different resources to enable fast access while ensuring data coherency. They can issue
fine-grained authentication and authorization policies over shared and distributed resources as well as data
sets.

The distributed data management challenge has also been discussed in the grid environments [36],
known as data grids [23]. Current distributed data management solutions in data grids are largely based
on replica catalogs [24]. However, they require to use customized APIs to access replica catalogs which
brings burden of modifying existing applications according to the particular API. This is inconvenient for
scientist and makes their applications restricted by certain APIs which degrades the portability of the appli-
cations [38]. A promising approach is to collect distributed data storage resources together under the unified
logical global name space and provide a posix compatible interface which allows applications to access dis-
tributed resources and data sets transparently. This approach is taken while designing and implementing
most of the distributed data storage systems [18, 57, 60, 65].

In the context of distributed data storage systems, the unified global name space and the information
regarding data, such as file name, file size and physical location of the file, constitute the metadata(a.k.a
“data about data”). In general, the data sets stored in distributed resources are accessed through data servers,

while metadata is managed separately by metadata servers in distributed data storage systems for efficiency.

1.2 Metadata Management in Distributed Data Storage Systems

In the context of distributed data storage systems, metadata consists of the relevant information of data
objects and system components (i.e. storage and network resources, users), such as physical location of
resources, logical hierarchy of unified global name space, file name and size, physical location of file, file
permission, and user information. Basically, metadata describes what is where, how and who can access it.
In general, data and metadata are handled separately for making system design and management easier in
distributed data storage systems. For this reason, physical data access is controlled by data servers while
metadata is stored in and managed by metadata server(s). Topologically, we have the following server

layouts for metadata [19]:

e Centralized Metadata server
e Distributed Metadata servers

e Federated or Hybrid Metadata servers

The centralized metadata server layout is the easiest one to implement and widely used in distributed
data storage systems. A central metadata server enables convenient and easy access to metadata since it is
located in a well known location. Also, it makes system management easier since it is the only administra-
tive point in the system. However, a centralized metadata server is a single point of failure in the system
leading to low availability. In the case of failure of the central metadata server, there is no way to retrieve
metadata information regarding data objects which enable to locate the data sets stored in distributed storage
resources. Another problem with the centralized metadata server is that all the requests have to be processed
by the single metadata server which slows down the data operations and become a performance bottleneck
in the system. Furthermore, the scalability of the overall system suffers as the number of storage resources
increases which increases the load on the metadata server. Although the overhead of accessing metadata
information is generally neglected compared to the time spent on data movement, it is noticed that 50% to
80% of all file system accesses are to metadata information [44]. This implies that having efficient metadata

information retrieval is critical. A sample central metadata server deployment is illustrated in Figure 1.1.

metadata
server

data server data server data server data server

Figure 1.1: Central Metadata Server

In this thesis, we assume that each metadata server contains complete metadata information in the dis-
tributed metadata servers layout. A distributed metadata server layout provides high availability and avoids
the limitation on scalability of the system as opposed to centralized metadata server layout. The load can be
distributed among existing metadata servers. Distributed metadata servers enable faster metadata retrieval
since metadata is often stored physically close to the data sets to which it refers. However, distributed
metadata servers must be synchronized somehow to ensure metadata consistency. The way of synchroniz-
ing metadata servers has an impact on the metadata consistency as well as performance and scalability of
the system. This makes it challenging to find a balance between metadata consistency, performance and
scalability. A sample distributed metadata server layout is shown in Figure 1.2.

A federated metadata servers layout consists of servers which contain separate portions of the overall
metadata information. The metadata information is partitioned among available metadata servers. There are
two main approaches to partition the metadata among metadata servers. The first one is directory sub-tree
partitioning which partitions the logical global name space according to logical directory sub-trees [67, 52].
The major disadvantage of directory sub-tree partitioning is that the workload may not be evenly distributed

among metadata servers. This happens if one of the sub-tree is accessed heavily while other sub-trees are

4

e — .

—

c— L/s‘yn Xhronization =

metadata
server

metadata
server

metadata
server

data server data server data server data server

Figure 1.2: Distributed Metadata Servers

accessed rarely. The second approach is hash-based partitioning which splits metadata among metadata
servers according to the hash values generated by using file name, file size or other related information [27].
Although it randomizes the distribution of workload among metadata servers, it requires to compute hash
values of data objects which takes time. There are also dynamic and hybrid partitioning approaches which
try to avoid the shortcomings of directory sub-tree partitioning and hash-based partitioning to achieve a de-
sirable load distribution across metadata servers and faster processing [20, 29]. A sample layout of federated
metadata servers based on sub-tree partitioning is shown in Figure 1.3. Federated metadata servers do not
need to be synchronized as opposed to the distributed metadata servers since each metadata server contains
mutually exclusive part of the overall metadata information. The federated metadata servers layout seems
to be appropriate to distribute the workload and to scale; however, it comes with an extra cost of requiring
to traverse multiple metadata servers, if relevant metadata is not stored in the current metadata server, which
degrades the system performance. Also, federated metadata servers layout suffers from availability similar

to the centralized metadata server layout. There is no way to retrieve metadata which is stored in the failed

x
3
>

data server data server data server data server

Figure 1.3: Federated Metadata Servers

server. However, it is not as severe as it is in the centralized metadata server layout. Only the data sets that
are represented by the failed metadata servers become unavailable.

Due to the above mentioned limitations of central metadata server layout and federated metadata servers
layout, we focus on distributed metadata servers in which complete metadata has been stored and repli-
cated. This ensures high availability of complete metadata and provides load distribution across metadata
servers. We discuss the implications of the synchronization methods on scalability, performance and load

distribution as well as metadata consistency and conflict resolution in the following chapters.

1.3 Problem Definition

There are two main components in distributed data storage systems; one is data server which coordinates
physical accesses (i.e. writing/reading data sets to/from disks) to the storage resources, and the other one is
metadata server which provides global name space to ensure location transparency of data sets and keeps

all kinds of related information regarding data objects. As well as other design issues and system com-

ponents, metadata server layout has impact on the following system metrics: availability, scalability, and
performance. An efficient metadata server layout should maximize these system metrics. In this thesis, we
address the pros and cons of different metadata server layouts and propose the asynchronously replicated
multi-master metadata server layout which maximizes the metrics mentioned above in distributed data stor-
age systems.

Centralized metadata server layout is widely used approach to provide global name space in distributed
data storage systems. We have three evident problems in this layout: i) the centralized metadata server
becomes a single point of failure leading to low availability; ii) all read/write requests need to go through
this metadata server first decreasing the overall performance; and iii) the scalability suffers as the number
of participating sites increases due to increased load on the metadata server.

Replication of metadata is necessary to ensure high availability in distributed data storage systems. To
achieve better availability, a metadata server should be deployed along with a data server on each storage
site. This enables a data server to have the advantage of cooperating with a local metadata server which
minimizes the cost of metadata retrieval. If a metadata server fails in one of the storage sites, there are
available metadata servers located in the other storage sites which ensure high availability.

The existence of multiple metadata servers requires to define the role of each of the metadata servers.
A metadata server can be either a master which has the capability of updating metadata, or a slave which
can only read metadata. In distributed metadata servers layout, we have two main approaches: either all
metadata servers are masters called multi-master, or only one metadata server is master while others are
slaves called master-slave. In the one master option, any operation that requires updating metadata, such as
writing a data set, must be processed by the master server which is similar to the central metadata server
layout. The main benefit of master-slave replication is to have an alternative metadata server to use in
the case of failure in the master metadata server which alleviates the availability problem of the system.
If failure occurs in the master metadata server, one of the slaves temporarily becomes master. Although,
master-slave replication provides better availability, it does not scale well since the write operations can
only be processed by the master server. Master server becomes overwhelmed when the volume of write
operations increases and drifts to low performance. For this reason, we focus on multi-master replication

instead.

Having a master metadata server in each storage site relieves the burden on the single master metadata
server that is the case in central and master-slave metadata server layouts. However, it is challenging to
find the balance between performance, scalability and consistency while updating multi-master metadata
servers. Metadata servers can be updated either synchronously or asynchronously. In synchronous repli-
cation, an incoming request that requires metadata update is propagated to all metadata servers before it is
committed. Metadata information is updated if and only if all metadata servers agree to commit the incom-
ing request. Propagating incoming requests to all metadata servers and receiving corresponding acknowl-
edgments take time which degrades the performance. We exploit asynchronous replication to eliminate the
overhead of synchronous replication while updating metadata servers. Asynchronous replication allows a
metadata server to process incoming request on its own without propagating the request to others immedi-
ately. Metadata servers are updated asynchronously in the background by delaying update messages. This
increases performance, especially for write operations since immediate synchronization is not enforced. A
challenge of asynchronous multi-master metadata server replication is that it yields to have inconsistent
metadata unless all metadata servers are synchronized. We further discuss the implications of asynchronous

replication in multi-master layout on metadata consistency and conflict resolution in this thesis.

1.4 Thesis Organization

The rest of this thesis is organized as follows: in Chapter 2, we give background information about existing
replication models used in the database community. Further, we look into metadata server replication in
distributed data storage systems in Section 2.5. Then, we move into the details of asynchronous multi-
master replication in Chapter 3. We discuss the challenges of asynchronous replication, such as conflict
detection and resolution, in Section 3.1. In Section 3.3, we examine the characteristics of the distributed
data storage systems and demonstrate the feasibility of deploying asynchronously replicated multi-master
metadata servers in such systems. In Chapter 4, we introduce the state-wide distributed data archival in-
frastructure called PetaShare, in which we have deployed asynchronously replicated multi-master metadata
servers. We compare three replication layouts in PetaShare and provide performance results in Chapter 5.
In Chapter 6, we compare our work with the most relevant related work. We summarize and conclude our

thesis in Chapter 7.

Chapter 2

Replication Schemes and Types

In general, metadata is stored in a relational database, so when we refer to a metadata server we basically
mean a database server that contains metadata. For this reason, replication schemes and types discussed
for metadata servers here can be used interchangeably with database replication. However, the distributed
storage system type of applications are different than traditional database applications which require special
system requirement and characteristics analysis to fully exploit the potential of the replication and over-
come the constraints of different replication scenarios. We discuss system requirements and characteristics
of distributed storage systems in database replication point of view in Section 2.5; thus, here we discuss
replication schemes and types in general domain.

Metadata server replication is used to sustain high availability and enhance system performance. Ac-
cessing metadata through local metadata server improves performance, meanwhile distributing workload
among metadata servers leads system to balance the load on metadata servers. Having replicated metadata
servers ensures metadata to remain available through replicated metadata server in the case of failure in
particular metadata server. However, most of the replication settings used for high availability often lack of
performance and scalability which makes it challenging to exploit replicated metadata servers [25].

The word “replication” implies the existence of more than one server. Having more than one server
requires to define the capabilities and responsibilities of each server. Basically, replication scheme indicates
the capabilities as well as responsibilities of each metadata server to be replicated. There are two replication
schemes: master-slave and multi-master replication scheme. In broad sense, there is only one master server
that is designated to process all the requests and has capability to update database by itself in master-slave
replication scheme, while slaves can only replicate the updates that have been committed by master server.
Contrary, all the replicating servers have capability of processing the requests and updating database in the
multi-master replication scheme.

In general, replication should ensure that there is more than one copy of the database at any point in time.
No matter what replication scheme is used, the need of having copies of database requires synchronization

among replicating servers. The replication type specifies the synchronization policy that is employed to

replicate servers. The replicating servers can be updated either synchronously or asynchronously [26, 31].
Synchronous replication enforces immediate synchronization among replicating servers. On the other hand,
asynchronous replication does not enforce immediate synchronization; instead, it delays the propagation of
update messages committed by metadata server which have to be replicated in all metadata servers in order
to synchronize metadata servers. Table 2.1 shows possible combinations of replication schemes and types

that can be deployed as a layout.

Table 2.1: Combination of Replication Schemes and Types

Synchronous Asynchronous
Master-Slave Master-Slave
Synchronous Asynchronous
Multi-Master Multi-Master

2.1 Synchronous Replication

In synchronous replication, incoming requests are propagated to and processed by all replicating servers im-
mediately. The benefit of synchronous replication is to guarantee that all ACID (i.e. atomicity, consistency,
isolation, durability) [32] requirements are fulfilled.

While propagating requests and synchronizing servers, two-phase commit protocol is used [55]. When
a request comes in a server, the same request is also forwarded immediately to all replicating servers. All
servers have to process incoming request to see if it is OK to be committed, and have to inform propagating
server in this regard. If and only if all replicating servers inform that request can be committed, then second
message is propagated to commit the request in all replicating servers. If any replicating server complains
about the request, then abort message is propagated and all servers have to disregard the request. An
illustration of two-phase commit protocol is shown in Figure 2.1.

Although it ensures that replicating servers are synchronized immediately when a request is committed
and prevents consistencies may occur otherwise, it generates huge network traffic due to high number of
sends and receives to decide to commit or abort. It increases processing latency which degrades operation

performance since operation has to wait until all replicating servers have been synchronized. Scalability also

10

is everybody

OK?

phase |

phase Il

Figure 2.1: Two-phase Commit Protocol in Synchronous Replication

suffers from increasing number of replicating metadata servers that tends to create exponentially growing

network traffic and processing latency that ends up with longer response time.

2.2 Asynchronous Replication

In asynchronous replication, an incoming request is processed and get committed on the receiving server
without propagating it to other replicating servers simultaneously. Instead, committed requests are deferred
and sent to all other replicating servers asynchronously. Once replicating servers receive these deferred
requests, they process them and make themselves synchronized. Contrast to synchronous replication, asyn-
chronous replication may suffer from inconsistencies due to possibility of simultaneous updates occurred
in different replicating servers for the same metadata. Although there are ways to detect and resolve the

conflicts, deployment of asynchronously replicated servers is extremely application dependent. To deploy

11

asynchronously replicated servers, the application must have tolerance to the inconsistencies at least for
a certain amount time (i.e. until all servers are synchronized. Thus, asynchronous replication requires
meticulous analysis of characteristics of targeted application domain.

Although, asynchronous replication has consistency and conflict challenges to deal with, it utilizes net-
work resources intelligently, creates less traffic, and provides higher performance. Deferring multiple re-
quests and propagating them all as a big chunk of requests is much more efficient rather than to propagate
each of them separately [35]. Operation latency is reduced as opposed to synchronous replication because
a server can go ahead and process a request without need to talk with other servers to commit it. It also
provides better scalability since response time of a server is independent from the number of replicating
servers, and generated network traffic is proportional to the number of replicating servers. Moreover, net-
work latency introduced due to the geographical distance between replicating servers can be tolerated and

hidden since requests are deferred and propagated asynchronously.

2.3 Master-Slave Replication

In master-slave replication, there is only one server in the system which is capable of updating database
called master server. All other replicating servers are called slaves and can only accept read-only requests.
Any operation that requires to update database must go through and processed by master server. The updates
performed by master server can be propagated on slave servers either synchronously or asynchronously.

In master-slave replication, the master server becomes overwhelmed and system suffers from scalability
and drifts to low performance for the write intensive applications. However, the load for read operations
can be distributed among the slave servers. For this reason, master-slave replication is mostly used in
read-intensive applications for load distribution purposes. Moreover, master-slave replication provides high
availability and easy fail-over mechanisms. If a master fails, one of the slaves can be promoted as a master
and starts to accept requests that need database update. When the master server is back, it can stay as a
slave, or master role can be given back to it after being synchronized and temporary master becomes slave

again. An illustration of master-slave replication is shown in Figure 2.2.

12

AN

QY . %

o= == = = S
repllcatlon - repllcatlon
read-only ﬂ \ read-only

master
metadata
server

slave slave

Figure 2.2: Master-Slave Replication
2.4 Multi-Master Replication

In multi-master replication, all the servers run as master servers, thus can update database by their own.
This makes system highly flexible in a way that any operation can be processed in any server which enables
better load balancing. However, capability of updating database of multiple servers brings the challenge
of keeping servers consistent. A conflict occurs if more than one server tries to update the same object in
the database simultaneously. Detecting and resolving such conflicts require advance resolution schemes to
be designed and deployed that is the most challenging issue in multi-master replication. Most widely used
strategy for avoiding conflicts in multi-master layout is to use synchronous replication. Since each server has
to agree to commit the given request, it is possible to avoid the request that cause a conflict in synchronous
replication. Although, this approach is straightforward and efficient in many cases, it introduces high latency
and network overhead due to synchronous replication which slow down all the system. An illustration of
multi-master replication is shown in Figure 2.3.

Multi-master replication can be fully exploited if the consistency requirement can be relaxed for the

application. However, relaxing consistency requirement is extremely application dependent and it is not

13

o

- K

write read

write | read

~ S5 write read
7 master

"-1?"(replication replication \

U

- Ve replication

master T oo master

Figure 2.3: Multi-master Replication

always possible. In some applications relaxing consistency requirement may cause catastrophic failures.
However, for applications that can relax consistency requirement and survive with inconsistencies for a
while, it is possible use asynchronous replication to obtain high performance and make system highly scal-
able. In such applications, synchronization can be done asynchronously which eliminates the bottlenecks
of synchronous replication.

It is worth to mention that asynchronous multi-master replication has its own merit to provide high
availability, scalability and performance; however, it is not possible to deploy this replication method in all
kind of applications since it relaxes the consistency requirement. For example, banking applications can not
tolerate inconsistencies which might cause unintended results. In this thesis, we investigate on and show
feasibility of asynchronous multi-master metadata replication in distributed data storage systems to achieve
high availability, scalability and increased performance while keeping system away from catastrophic fail-

ures caused by possible inconsistencies.

14

2.5 Metadata Server Replication in Distributed Data Storage Sys-
tems

As mentioned in Section 1.2 before, central metadata server is most widely used approach while designing
and deploying a distributed data storage system. This is because it is easy to configure, control and manip-
ulate system settings from a single point of administration. Also, it is convenient to implement applications
for developers because they do not need to write complex algorithms to locate metadata server (i.e. it is lo-
cated in well known location), as opposed to ones who need to write complex algorithms to locate relevant
metadata server in federated metadata servers layout.

Although central metadata server provides convenience to system administrators and application devel-
opers, it makes system vulnerable to the failures. In the case of failure in metadata server for some reason,
such as power outage, network disconnection and hardware failure, overall system becomes offline. Even-
though data servers are up and running on distributed resources, there is no way to access and manipulate
data sets stored in storage resources, because no one can translate logical path given in global name space
into the physical location of storage resources and data sets. Being single point of failure in the system,
central metadata server makes overall system suffer from low availability.

Increasing number of data storage resources distributed among geographical locations, as well as op-
erations made in the system overwhelms the central metadata server. It has to keep track of metadata
information of all storage resources and data sets associated with them, and it has to process all incoming
requests made to access distributed resources and data sets. The scalability of the system suffers as the num-
ber of storage resources increases (i.e. it also implies increased number of requests) in the central metadata
server layout.

As it is observed over the several years in high-performance computing community, write performance
bottleneck is more than read performance bottleneck [43]. A metadata server has to be updated at the end
of each write operation which introduces metadata access and processing latency in distributed data storage
management. This latency is correlated with the distance between client and metadata server, as well as
the workload metadata server has. In most cases, central metadata server is located in remote site and

overwhelmed by high volume of requests. Thus, write performance may suffer even more due to increased

15

latency in central metadata server layout. It is not only the write performance, but read performance may
also suffer in central metadata server layout because of the same reasons.

A federated metadata servers layout can be used to relieve the burden on central metadata server. In this
model, global name space maintained in metadata server is partitioned among metadata servers in a certain
manner, and each metadata server becomes responsible for only part of the global name space. Global
name space can be partitioned by directory sub-tree partitioning or hash-based partitioning techniques. The
directory sub-tree partitioning splits the logical global name space according to logical directory hierarchy
into the sub-trees [52, 67]. Then, each sub-tree is assigned to particular metadata server. On the other hand,
hash-based partitioning uses hash values generated by using file name, file size or other related metadata
to split global name space and other metadata information of the system over federated metadata servers.
Hash-based partitioning is used to distribute the workload among metadata servers as arbitrary as possible
for balancing the workload in a much fair manner. Metadata servers may suffer from imbalanced workload
in directory sub-tree partitioning, if any particular directory sub-tree becomes a hot-spot (i.e. accessed
heavily) in the global name space.

Although federated metadata servers layout provides better scalability and load balancing than central
metadata server layout, it introduces inconveniences for clients who are accessing data sets in distributed
storage resources. This is because they have to look for corresponding metadata server in which relevant
metadata information of requested data set is stored. This may require to traverse more than one metadata
server in the case of metadata of requested data set is not stored in current metadata server. Traversing
federated metadata servers until finding out respective metadata introduces high latency which degrades the
performance of read operations. Similarly, write operations may slow down because of latency introduced
while deciding the metadata server that will store the corresponding metadata of data set that is being
written.

Federated metadata servers layout does not fulfill the high availability requirement of the system either.
If a failure occurs in a particular metadata server, the portion of the global name space that is maintained by
failed metadata server becomes inaccessible. Any data set that is mapped under that portion of global name
space becomes inaccessible during the failure of corresponding metadata server. The failure in federated

metadata server layout is less severe compared to the central metadata server layout in which a failure causes

16

all system to be unavailable.

On the other hand, distributed metadata servers (i.e. replicated metadata servers) have a potential to al-
leviate the challenges of availability, scalability, load balancing and performance in distributed data storage
systems. As opposed to federated metadata servers, all replicating metadata servers have complete metadata
information of the system. Having multiple copies of metadata information on multiple metadata servers
that are geographically apart from each other ensures high availability as well as faster metadata access. If
any metadata server fails, there is always at least one metadata server that contains complete information
of global name space which ensures high availability. Moreover, it is no longer needed to traverse multi-
ple metadata servers to find out metadata of requested data set which is the case in the federated metadata
servers layout if metadata of requested data set is not stored in the current metadata server.

Although replicated metadata servers ensure high-availability in any setting, scalability, load balancing
and overall performance are extremely bound to the scheme and type of replication used in the system.
In general, master-slave replication settings suffer from scalability due to imbalanced workload. All the
operations that require metadata update, such as writing a data set into the storage, have to be processed by
master metadata server. Although slave metadata servers can help to balance the load for read operations
(i.e. do not require metadata update), the volume of write operations overwhelm the master server, and
scalability may start to suffer from the increased number of write operations. Moreover, processing all write
operations in master metadata server that is running on remote site introduce processing latency as well
as network latency which degrades the performance. Moreover, using synchronous replication in master-
slave layout introduces synchronization overhead which makes this setting extremely inefficient. We do not
consider to deploy any master-slave replication setting due to the shortcomings mentioned above.

On the other hand, multi-master replication releives the burden on single master server and allows repli-
cating metadata servers process both read and write operations. The capability of processing read and write
operations on any replicating metadata servers brings the flexibility of distributing loads among metadata
servers fairly.

Similar to the master-slave replication, the scalability and performance of the system are bound with
the type of replication used. Synchronous multi-master replication introduces synchronization overhead as

well as network traffic. It is worse than synchronous master-slave replication since each of the replicating

17

metadata server is a master and capable of updating metadata information. This synchronization overhead
increases exponentially with respect to the number of replicating metadata servers which limits the system
to scale. Especially, write operations suffer from the synchronization overhead introduced by synchronous
replication. Although synchronous multi-master replication ensures consistency among metadata servers
and provides high availability, we look forward to achieve a better performance and scalability by employing
asynchronous multi-master replication in distributed data storage system.

Asynchronous replication eliminates the replication overhead due to immediate synchronization by de-
ferring the propagation of the updates messages to all replicating metadata servers. Allowing metadata
server to commit all operations on its own and send updates at a later time allows data operations to be
processed without suffering from synchronization overhead. Since there is a metadata server along with
data server in a storage site, write and read operations can be processed faster due to local access to meta-
data server which increases the performance. Keeping the consistency issue of asynchronous replication in
mind, we argue that asynchronous multi-master metadata server replication satisfy all of the requirements of
high-availability, scalability, load-balancing and performance of the system. A comparison of metadata

server layouts in different replication settings is summarized in Table 2.2.

Table 2.2: Comparison of Metadata Server Replication Settings

Central Server | Sync. Master-Slave | Async. Master-Slave | Sync. Multi-Master | Async. Multi-Master
Availability low high high high high
Scalability low low mid low high
Write Perf. low low low low high
Read Perf. low mid high low high
Inconsistency none none may occur none may occur

In the following sections, we discuss consistency issues of asynchronous multi-master metadata replica-
tion as well as conflict detection/resolution schemes, analyze the characteristics of distributed data storage
systems, and explain feasibility of asynchronous multi-master metadata replication in distributed data stor-

age systems in practice.

18

Chapter 3

Asynchronous Multi-Master Metadata Server
Replication

3.1 Challenges Associated With Asynchronous Multi-Master Meta-
data Server Replication

Allowing each metadata server to update metadata information on its own and deferring the propagation of
update messages to other metadata servers brings the issue of inconsistency between replicating metadata
servers. As opposed to the synchronous replication, asynchronous replication does not enforce immedi-
ate update of metadata servers. A metadata server does not propagate update requests to the replicating
metadata servers and does not wait to receive confirmation from all of them before committing the update
request. Instead, it processes and commits an update request on its own, and propagates the committed
updates to other metadata servers asynchronously. If a metadata server updates metadata information of an
object, such as file, that has been already updated by another metadata server, but respective update request
has not been received yet, then conflict occurs on replicating metadata servers. They receive two update
requests for the same object with different values, so they need to know which one is correct and must be
committed.

Basically, there are three types of conflicts that may occur in replicating metadata servers [6]: update
conflicts, uniqueness conflicts, delete conflicts.

An update conflict occurs when a metadata server updates metadata information of an object that has
been updated recently by another metadata server, but respective update request has not been propagated to
all metadata servers yet.

A uniqueness conflict occurs when different metadata servers create data objects with the same metadata
information which have to be unique. For example, all the files in the same logical directory must have
unique logical file names.

A delete conflict occurs when a metadata server updates metadata information of an object that has

been deleted by another metadata server already, but delete request has not been propagated to all metadata

19

servers yet.

Some of the conflicts that are mentioned above can be avoided at the time of designing internal structure
of metadata servers; however, some of them not. For the conflicts that can not be avoided in asynchronous
multi-master metadata server replication, there are ways to detect and resolve them later. However, metadata
servers will stay inconsistent until all updates requests have been propagated and all the conflicts have been
resolved.

In distributed data storage systems, it can be tolerated to have inconsistent metadata servers until all
metadata servers synchronize themselves to achieve better performance. However, it is unpleasing to have
metadata servers that can not update themselves accordingly and remain inconsistent forever due to con-
flicts occurred while propagating update requests asynchronously. For this reason, any conflict that makes
replicating metadata servers remain inconsistent must be detected and resolved, or avoided if possible.

In the next section, we discuss the ways of avoiding some of the uniqueness conflicts at the time of
designing metadata servers in a distributed data storage system. Further, we discuss the resolution of up-
date and delete conflicts without causing any catastrophic failures in the system, as well as creating any

inconvenience for the users.

3.1.1 Conflict Avoidance

Each object in the system, such as files, directories, physical storage resources and users, is associated with
a unique ID which is a value obtained from monotonically increasing sequence of numbers. If an object is
assigned an ID that has a value x, then the next object will be assigned with an ID has a value x+1.

In asynchronous replicated multi-master metadata server layout, if two metadata servers create new
objects in their sites before receiving metadata create request of each other’s, then both metadata servers
will assign the same ID for created objects. In this case, uniqueness conflict occurs when they propagate
create requests to all metadata servers, because there are two requests which assign same ID for different
objects. This scenario is illustrated in Figure 3.1.

Uniqueness conflicts can be avoided at the time of designing internal structure of metadata servers. As
mentioned above, ID is a value obtained from monotonically increasing sequence of numbers. We call this

sequence of numbers as ID space. The ID space can be partitioned into the mutually exclusive sub-spaces

20

Y S

write: foo_file1 write: foo_file2

= = ————

i = .
- asynchronous
L replication

- Np==== \ FessesesssessssesToTseTeeToT N

N
\ Start
\ Transaction <

[next ID=1000H get next ID ‘
generate
statement

===

occurred
1!

insert 'foo_file2' with ID 1000’ ...
insert 'foo_file1' with ID '1000'...

L commit commit 0
do something else successtul successiul do something else
update
messages
e received yes
[next ID = 1001 H updatenextID | | TTTTmmooosoossoomsoosssoooooos update next ID H next ID = 1001]
7 4k Y
send statement to) \) send statement to
all metadata I\ all metadata
servers v 0 servers
____________________________ ey //7 Q‘, N
data update ge from J A\ data update ge from
1 Q 2
server 7,}/ asynchronous ©_ server
¢ replication A
insert foo_file1' with ID 1000" ... | , = = <~ P 7 % = — | insert ‘foo_file2' with ID '1000' ...
update 'next ID' to '1001" ... update 'next ID' to '1001" ...

Figure 3.1: Uniqueness Conflict in Asynchronous Multi-Master Replication

and each sub-space can be associated with one of the metadata servers. Each metadata server is restricted to
assign an ID to a new object from its ID sub-space. This ensures that metadata servers assign different IDs
when they create new objects; although, they have not received metadata create request one from the other.
It is worth to mention that although metadata servers are associated with mutually exclusive ID sub-spaces
(i.e. they can only assign an ID from their ID sub-spaces), they still have capability of updating metadata
information of objects created in other metadata servers. An illustration of ID space partitioning and conflict

avoidance is shown in Figure 3.2.

21

[ID=2x1 0"18] [ID=3x10"18] (ID=4x10’\18}

S ., R %I

write: foo_file2

-

-~ “|asynchronous

- - replication TS e
~ N
- next ID = 3x10M8 |
next ID = 2x10M8 .

[
=
fe==i Start
e I ! Transaction
) O -_ = o L '
1
t <Y
» get next ID
generate
statement

Server is
synchronized

commit statement

do something else

[next ID =1x10M8 + 1 H update next ID |

do something else

commit
successful
yes

update next ID }—P[next ID = 3x10M8 + 1]

{insen foo_file1' with ID '1x10718' ... ’

insert foo_file2' with ID '3x10718' ...

send statement to update send statement to
all metadata messages all metadata
servers received servers
_______________________________ . e Y L O o _——___
d d ge from server1 ‘{ "\ update ge from server2
— 05 —m = = ~ TS s e e —
insert 'foo_file1' with ID '1x10/18' ... asynchronous replication insert foo_file2' with ID '3x10718' ...
\

Figure 3.2: ID Space Partitioning to Avoid Uniqueness Conflict in Asynchronous Multi-Master Replication

3.1.2 Conflict Detection and Resolution

It is not possible to avoid all types of conflicts in asynchronously replicated multi-master metadata server
layout. Especially update and delete conflicts are challenging to avoid unless the capabilities of meta-
data servers are restricted; however, we insist on exploiting multi-master replication without introducing
any restriction on any of the replicating metadata servers. Although we can not design conflict-free asyn-
chronously replicated multi-master metadata servers layout for our application domain, we can detect and
resolve the conflicts efficiently. All replicating metadata servers become consistent again, after all the con-
flicts have been resolved.

Update conflicts occur only when more than one metadata server update the same metadata information

before any one of the update requests has been received by all metadata servers. For example, a metadata

22

server X updates the file size of file F1 and commits this update. It defers to propagate this update request
to the other metadata servers. Assume that metadata server Y updates the file size of the same file F1 before
metadata server X propagates the update request. When both metadata server X and Y propagate their
update requests, other metadata servers will have two update requests for the same file. It is not known
which one is correct, thus causing a conflict. This conflict can not be avoided because all metadata servers
are masters and can update metadata information of any object in the system. However, it is straightforward
to resolve such conflicts by using timestamps. Metadata servers need to check the timestamps of both update
requests when a conflict is detected. Then, they must process the update request that has the most recent
time stamp and discard the other one.

There are update conflicts that timestamps are not sufficient to resolve them. Data servers in storage sites
do not allow simultaneous updates for the same file, so timestamps of update requests will be different. For
this reason, using timestamps is sufficient for metadata update requests which are generated due to physical
access to the data, such as editing a file. However, there are operations that do not involve physical access
to the data, but update metadata information of an object, such as changing permission of the file. For
such operations, it is possible to update metadata information of the same object from different metadata
servers simultaneously, which results in having exactly the same time stamp for both of the metadata update
requests for the same object which are propagated from different metadata servers. Update conflict occurs
when metadata servers receive these update requests with the same time stamp. A solution is to use Site-
priority to resolve this kind of conflicts which is a unique numeric value assigned to all metadata servers.
The metadata update request is accepted of whose site-priority is highest and the others are discarded.

There is a possibility of having uniqueness conflict if more than one metadata server create a new file
in the same global directory with the same file name in different storage resources; although the files have
different IDs (i.e. ID conflict is avoided by ID space partitioning). These conflicts are resolved by renaming
the conflicted files.

For example, metadata server X creates a file called F1 in storage resource S1 under logical directory
called DIR. Similarly, metadata server Y creates a file called F1 in storage site S2 under logical directory
DIR before it receives metadata create request from metadata server X. When both metadata servers X and

Y propagate metadata create requests, all metadata servers receive conflicting requests. Two different files

23

have been mapped by the same file name under the same logical directory. It is undesirable to discard
any one of the requests. If any one of the requests is discarded, then there would be no way to access the
file which has been already stored in storage resources since metadata information is missing for the file.
Thus, to make both files accessible and to resolve the conflict, renaming is used. In the given example, file
created in S1 is renamed as F1.X.S1 (i.e. metadata server name and storage name are appended), and the file
created in S2 is renamed as F1.Y.S2. This renaming are also done in originating metadata servers. Although
renaming of files seems unpleasant for users, it is more important to resolve the conflict that would cause
serious inconveniences otherwise.

Delete conflict occurs when a file is deleted in one metadata server while it is updated in another meta-
data server. A temporary location is maintained for deleted files before moving them out from the system
permanently. Deleted files are kept in temporary location unless all the metadata servers are synchronized
and any one of the metadata servers ask for it. If there is a request made for a deleted file, then it is possible

to roll-back the delete request, and file can be restored.

3.2 Implementation of Asynchronous Multi-Master Metadata Server
Replication

Metadata information is kept in a relational database and managed by metadata server. Thus, metadata
server replication and database replication can be used interchangeably. Implementing replication logic in
database itself is complicated and creates extra work for database. For this reason, we design and implement
our own replication tool called MASREP (Multi-master ASynchronous REPlication) which is maintained
separately from the database. MASREP runs on the background and lets metadata server to run on its own.
This allows database not deal with replication, and makes all replication related issues transparent to the
database and users. Moreover, it provides flexibility of changing replication settings without interrupt or
stop metadata servers.

Our replication strategy is based on transaction logs generated by databases. The databases to be repli-
cated are configured to log only Data Manipulation Language (DML) statements (i.e. insert, update, delete)
in their transaction logs. All statements in the transaction log correspond to one of the metadata update

made in that metadata server. For this reason, these statements have to be replicated among all other meta-

24

data servers to make them all consistent and synchronized. Other operations, such as read operations, are
handled by running select statements on metadata server. Since select statements do not change metadata in-
formation of any object, they are not needed to be replicated; thus, we avoid them to be logged in transaction
log.

MASREP is responsible for processing transaction logs and sending/receiving them to/from its coun-
terparts in all other replicating metadata servers. MASREP acts as a database client when it processes
requests received from other metadata servers. It consists of five main components which are coordinating
replication and synchronization related operations in the system. These components are extractor, dis-
patcher, collector, injector and conflict resolver. Along with these components, MASREP maintains two
types of statement queues: outgoing-queues and incoming-queue. Outgoing-queu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>