
Louisiana State University
LSU Digital Commons

LSU Doctoral Dissertations Graduate School

2009

Methods and design issues for next generation
network-aware applications
Andrei Hutanu
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in
LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu.

Recommended Citation
Hutanu, Andrei, "Methods and design issues for next generation network-aware applications" (2009). LSU Doctoral Dissertations.
2803.
https://digitalcommons.lsu.edu/gradschool_dissertations/2803

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2803&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2803&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2803&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2803&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2803&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/2803?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2803&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

METHODS AND DESIGN ISSUES FOR NEXT GENERATION
NETWORK-AWARE APPLICATIONS

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in

The Department of Computer Science

by
Andrei Huţanu

Computer Engineering Diploma,
Politehnica University Bucharest, 2002

December 2009

Acknowledgments

This work would not be possible without the help and support of my current and former colleagues

at the Center for Computation & Technology (Louisiana State University) and Zuse Institute Berlin,

Germany.

I would like to thank all my collaborators from LONI, Masaryk University, MCNC, National

Lambda Rail, Internet2, CESNET, the G-Lambda project team.

It is a pleasure to thank my advisory committee (Gabrielle Allen, Edward Seidel, Tevfik Kosar,

Daniel Katz) and the eaviv team: Jinghua Ge for developing the parallel renderer and helping to

integrate it in eaviv and Cornelius Toole for integrating tangible interaction in eaviv and for designing

the optimization algorithm for remote data access.

I shall thank all my collaborators, in particular the following (not in any particular order): Ravi

Paruchuri, Adam Yates, Steffen Prohaska, Andre Merzky, Jon MacLaren, Brygg Ullmer, Petr Holub,

Miloš Lǐska, Erik Schnetter, Luděk Matyska, Peter Diener, Robert Kooima, Mehmet Balman, Ken-

neth Welshons, Lonnie Leger, Gigi Karmous-Edwards, Jon Vollbrecht, Rajesh Sankaran, Thomas

Sterling, Tomohiro Kudoh, Brian Cashman, Shalini Venkataraman, Jarek Nabrzyski, Steven R.

Thorpe, Yufeng Xin, John Moore, Stephan Hirmer, Hartmut Kaiser, Stephen David Beck, Archit

Kulshrestha, Sam White, Marc Steinbach, Hans-Christian Hege, Ralf Kähler.

I thank Radu Chişleag (see [Chi03]) and the ARSIP program1 for providing me the early oppor-

tunity to start my international career.

This work was supported by the EU GridLab project, the NSF Enlightened and CyberTools (NSF

award #EPS-0701491) projects, the eaviv project (NSF award #OCI 0947825) and by the Center

for Computation & Technology at LSU.

This project has been supported by a research intent “Optical Network of National Research and Its

New Applications” (MŠM 6383917201) and “Parallel and Distributed Systems” (MŠM 0021622419).

1http://www.arsip.com/

ii

http://www.arsip.com/

Portions of this research were conducted with high performance computational resources provided

by the Louisiana Optical Network Initiative (http://www.loni.org/).

Finally, I would like to thank my family and friends for their support throughout this journey.

iii

Table of Contents

Acknowledgments . ii

List of Tables . vi

List of Figures . vii

Abstract . ix

Chapter 1: Introduction . 1
1.1 Commercial Internet . 3
1.2 Research Networks; Scheduling . 5
1.3 Applications . 7
1.4 Research Contribution . 8
1.5 Related Work . 9

Chapter 2: Distributed Interactive Visualization 12
2.1 Related Work . 14

2.1.1 Visualization of Remote Data . 18
2.1.2 Video Streaming . 19

2.2 System Architecture and Design . 20
2.2.1 Remote I/O . 22
2.2.2 Rendering . 24
2.2.3 Video Streaming . 24
2.2.4 Interaction . 25
2.2.5 Deployment (Grid Computing and Co-Allocation) 26

2.3 Results and Discussion . 26
2.3.1 iGrid 2005 System . 27
2.3.2 iGrid 2005 Results . 29
2.3.3 eaviv System . 29
2.3.4 eaviv Results . 31

2.4 Conclusions and Future Work . 36

Chapter 3: Remote Data Access . 38
3.1 Implementation Architectures for Remote Data Access 41

3.1.1 Related Work . 42
3.1.2 Architectures Description . 44
3.1.3 Benchmarks and Performance Analysis . 48
3.1.4 Conclusions . 59

3.2 eavivdata System Architecture . 60
3.2.1 Related Work . 61
3.2.2 System Design . 63
3.2.3 Integrated System Architecture . 66
3.2.4 Benchmarks and Results . 71

iv

3.2.5 Application Integration . 74
3.3 Conclusions and Future Work . 76

Chapter 4: Transport Protocols . 78
4.1 TCP and Alternatives . 79
4.2 Application Options . 82
4.3 Benchmarks . 83
4.4 Conclusions . 86

Chapter 5: HD Classroom . 88
5.1 Overview . 89
5.2 Network . 89
5.3 Conclusions . 90

Chapter 6: Conclusions and Future Work . 92

Bibliography . 97

Vita . 113

v

List of Tables

2.1 Data throughput and rendering scalability results. 32

2.2 Resolution effect on frame rate and video streaming bandwidth requirements 33

2.3 Comparison of visualization systems features and performance 34

3.1 Transfer time and computed throughput depending on message size using UDT and
TCP . 50

3.2 Operations throughput when multiple operations are executed using the five imple-
mentation architectures . 51

3.3 Overhead per operation when a single operation is executed using the five implemen-
tation architectures . 53

3.4 Execution time/operation of the asynchronous architecture with varying number of
operations active at the same time, using TCP over WAN 55

3.5 Connection set-up time for pool system . 56

3.6 Average data throughput for eavivdata and GridFTP with variable number of operations 73

4.1 Transfer rate (in Gbps) achieved over a shared 10 Gbps link (7.6 ms round-trip-time)
using various transport protocol algorithms . 84

4.2 Transfer rate (in Mbps) achieved over a dedicated 10 Gbps link (149 ms round-trip-
time) using various congestion control algorithms in the UDT library 85

vi

List of Figures

2.1 Illustration of a motivating visualization scenario . 13

2.2 Visualization pipeline showing the five different stages 15

2.3 Visualization pipeline for remote data access: data server and filtering are on the server;
rendering and display on the client . 19

2.4 Visualization pipeline for video streaming, all the stages except for the display are
carried out on the server; the display is carried out on the client 20

2.5 Architecture of the eaviv system providing three-way distributed visualization using
video streaming and remote data access. 21

2.6 Remote data access in the eaviv visualization system 23

2.7 Four stages in the progressive visualization process of a single dataset 25

2.8 Illustration of the eaviv architecture used for the visualization server-based collabora-
tive environment at iGrid 2005 . 28

3.1 The five implementation architectures positioned in a phase space with axes 45

3.2 Synchronous implementation architecture . 46

3.3 Bulk implementation architecture . 46

3.4 Threaded/pool implementation architecture . 47

3.5 Pipeline implementation architecture . 48

3.6 Computed throughput of TCP and UDT depending on message size 51

3.7 Maximum throughput (operations per second) when multiple operations are executed
using the three implementation architectures with the highest throughput (Bulk, Pool
and Pipeline) . 52

3.8 Overhead per operation when a single operation is executed using the three implemen-
tation architectures with the lowest overhead (Synchronous, Bulk and Pipeline) . . . 54

3.9 Execution time/operation on the WAN when executing 300000 operations using the
pool system . 57

vii

3.10 Execution time/operation when using the pipeline system over WAN 58

3.11 Proposed system architecture combining the best features of the bulk and pipeline
architectures . 60

3.12 Control channel design including encoding and decoding of the RPC request as well
as encoding and decoding of the RPC response . 64

3.13 Complete eavivdata system diagram . 67

3.14 Average throughput for remote data access using single data streams and variable
number of operations . 73

3.15 Average throughput for remote data access using parallel data streams and variable
number of operations . 75

4.1 TCP congestion control showing initial rapid increase of the congestion window during
the “slow start” phase, then slow congestion avoidance increase of the window 80

5.1 HD classroom . 91

viii

Abstract

Networks are becoming an essential component of modern cyberinfrastructure and this work de-

scribes methods of designing distributed applications for high-speed networks to improve application

scalability, performance and capabilities. As the amount of data generated by scientific applications

continues to grow, to be able to handle and process it, applications should be designed to use paral-

lel, distributed resources and high-speed networks. For scalable application design developers should

move away from the current component-based approach and implement instead an integrated, non-

layered architecture where applications can use specialized low-level interfaces.

The main focus of this research is on interactive, collaborative visualization of large datasets. This

work describes how a visualization application can be improved through using distributed resources

and high-speed network links to interactively visualize tens of gigabytes of data and handle terabyte

datasets while maintaining high quality. The application supports interactive frame rates, high res-

olution, collaborative visualization and sustains remote I/O bandwidths of several Gbps (up to 30

times faster than local I/O).

Motivated by the distributed visualization application, this work also researches remote data ac-

cess systems. Because wide-area networks may have a high latency, the remote I/O system uses an

architecture that effectively hides latency. Five remote data access architectures are analyzed and

the results show that an architecture that combines bulk and pipeline processing is the best solution

for high-throughput remote data access. The resulting system, also supporting high-speed transport

protocols and configurable remote operations, is up to 400 times faster than a comparable existing

remote data access system.

Transport protocols are compared to understand which protocol can best utilize high-speed network

connections, concluding that a rate-based protocol is the best solution, being 8 times faster than

standard TCP.

An HD-based remote teaching application experiment is conducted, illustrating the potential of

network-aware applications in a production environment.

ix

Future research areas are presented, with emphasis on network-aware optimization, execution and

deployment scenarios.

x

Chapter 1
Introduction

With high-end distributed computational infrastructure, experimental devices and large data storage

now becoming connected through new high-speed networks with the capacity to transport over one

Gigabyte of data each second, networks should be considered an essential component of modern

cyberinfrastructure.

One such infrastructure is the Louisiana Optical Network Initiative (LONI) [LON09]. LONI con-

nects Louisiana and Mississippi research universities with a 10 Gbps research network, providing over

85 teraflops of computational capacity distributed across the network. On a national level, the NSF

TeraGrid connects 11 sites, providing researchers with more than a petaflop of distributed computing

capacity connected by high-speed networks [Ter09].

The work described in this thesis investigates fundamental issues and methodologies for how these

networks can be used to build a new generation of applications designed to provide new capabilities

by using existing and emerging cyberinfrastructure.

One pressing issue facing today’s researchers is data. The amount of data consumed, manipulated

and produced by large scale applications in science and engineering domains is increasing rapidly. This

is because scientific instruments such as the Laser Interferometer Gravitational Wave Observatory

(LIGO), or image acquisition devices such as computer tomography have increased their resolution

and are collecting more data but also because local and national infrastructure for computation such

as the LONI and the TeraGrid are expanding. Simulations in fields such as astronomy or climate

modeling today routinely generate tens of terabytes of data per simulation as described in the DOE

Office of Science report [DOE04]. The rate of data production increases every year, and the growth

of digital data has been called a “data deluge” [HT03].

Applications are reaching their scalability limits in dealing with this data. One of the fundamental

issues is the fact that we are close to hitting the limits of hardware scalability (single CPU perfor-

mance), network performance (backbone capacity and utilization), disk, I/O and software scalability.

1

As the performance of these different systems improves we see a diminishing ability for applications

to take advantage of all these resources at their maximum capacity.

A problem lies within the current approach of designing systems and applications which is to

carefully separate the functionality of systems into independent and interacting components, each of

the components being generally developed and optimized in separation, and only as a last step be

integrated into complete systems.

These components then interact with each other using well defined interfaces that facilitate com-

bining components easily into new types of systems and products. This approach has been a great

enabler of discovery and innovation, and constant improvements in hardware performance has pushed

back on the idea of using a different approach to build better, faster applications given the belief that

the next, faster generation of hardware will achieve the desired performance improvement even if the

application design process is unchanged. The result is that applications today do not adequately take

into account improvements in parallel and distributed systems or networks, and as a consequence

are not able to solve challenging problems such as the interactive visualization of terabytes of data,

or provide a path for future scalability. This thesis describes a different approach for developing

applications, one that uses an integrated, non-layered architecture.

Most codes today remain sequential, and the vast majority (around 90% [ENS05]) of programmers

do not feel confident in writing parallel programs. However, single CPU performance has now hit the

limit, and in consequence, the future is in multi-core, multi-processor systems [HP07] and parallel

applications and not in sequential applications. While a small fraction of system designers are now

able to use parallel computing, the resulting applications that can only use single parallel resources

have a limited scalability potential.

A potential solution for further improving scalability is given by the grid [FKT01] and distributed

computing. Distributed applications can use multiple clusters at various geographical locations to

access more compute power than available from a single cluster. To be able to handle and process

the large data being produced today, and to provide a scalability path for the future, it is crucial for

applications to be able to utilize both parallel and distributed resources.

2

Networks represent the next frontier for distributed application development. The design philos-

ophy [Cla88] of the Internet was to offer simple, robust and cost-effective access to all users and

applications. The design has been an enormous success in that it has simplified network deployment

and has facilitated ease of utilization for a wide range of applications. TCP/IP is currently the dom-

inant network design and the system of choice for the Internet. The design principle for TCP/IP is

based on the layered approach where the complexity of network operations is completely hidden from

applications. Despite its advantages, such as ease of use and implementation, the layered approach

hinders optimizations and the development of advanced applications. Information about network

bandwidth, latency or capacity is not available to applications that use the TCP/IP system. The

layered approach only allows communicating parties to attempt to transfer data between them, not

knowing in advance how fast the data will be transferred, and does not allow the communicating

parties to make optimization decisions (such as choosing the best network route) in order to transfer

data faster. This is a significant shortcoming, one that is difficult or impossible to mitigate.

With a focus on interactive visualization, this work will show how by taking into account networks

as first class resources, and using an integrated, non-layered approach along with parallel and dis-

tributed resources we can now design applications that provide better performance, scalability and

improved capabilities over existing applications.

Next we look at usability and performance issues that appear in two types of networks: the public,

commercial Internet infrastructure and research networks, the second being the main focus of the

research presented in this work.

1.1 Commercial Internet

We look first at the commercial Internet as issues seen here will also have relevance for research and

scientific applications. This section provides a few examples of what will happen in the future if the

existing issues are ignored.

In the commercial world, architectural and historical reasons have produced an economy based

on paying for network access rather than the actual cost of utilization. In fact, the existing network

architecture does not currently support cost accountability [Bri07] making a cost-based economy

3

impossible to implement. As a result of the pay for access model, applications that have been more

successful in utilizing the network capacity, such as file sharing using parallel and peer-to-peer trans-

fers, video streaming, spam or tools crawling for information for search engines have succeeded and

have done so at the cost of other, less adept applications such as web browsing.

Increases in the bandwidth of access networks have now moved the network bottleneck, from the

“first-mile” (connection to the end-user) to the “middle-mile” [Lei09] (or the Internet backbone) and

has led to various conflicts in the utilization of the congested network resources. A similar situation is

now seen in cellular networks [Wor09]. We are currently witnessing conflicts in the Internet between

Internet Service Providers and the applications that can successfully use the network where, in order

to resolve conflict network providers are limiting access for particular users [Com09b] or applications

such as bulk data transfer, peer to peer, software updates and newsgroups [Com09d]. These actions

are changing the way the Internet is functioning, moving it away from its original design philosophy.

This conflict will probably lead to regulatory actions such as the 2008 decision on the Comcast Peer-

to-Peer case [Com08a, Com08b]. Specifically, in this case Comcast has used special network devices

that would investigate the data in a customers connections, and if there were too many connections

from a particular type of file sharing application they were terminated by transmitting reset packets

to both ends of the connection channel. The Federal Communications Commission (FCC) decision

was to order termination of the Comcast practice. These regulatory actions will inevitably change

the way the Internet works for users. For example Comcast’s newest (FCC compliant) protocol-

agnostic congestion scheme that resulted from the regulatory actions degrades the quality of VoIP

applications just as much as it degrades any other applications, creating a difference between the

quality of VoIP applications running over the Internet and those running over dedicated telephony

circuits [Com09c]. This shows that any method of solving the congestion issue will have possibly

unexpected consequences.

Internet consumers are now limited in the way in which they are able to utilize network services

and capacity; and usage limits enforced by ISP’s are common [Com07b, Com09a].

Congress hearings by the Federal Trade Commission and the FCC on “Network neutrality” may

result in legislation [ea08] that will dramatically change the way the Internet functions as well as how

4

we view and use the Internet in the future. Unfortunately the technical issues that are creating the

economical issues that we have to deal with today are not well understood and the arguments that

are made by one side [Cer07] or the other [Coh06] seldomly tackle the underlying technical issues.

As computer scientists we need to facilitate a better understanding of the technical issues and of

architectural options to influence future policy decisions so that they are made for the right reasons.

The following references provide additional informative and balanced views on this issue [Com07a,

Yoo08, For08, AW06, Ou08, vS08, Far08, Wal08, vSF09].

This section has illustrated some of the issues of the commercial Internet, indicating that changes

in the way users and applications will use the network are probable in the future and showing the

need for application developers as well as for network providers to consider new ways of thinking

about the network. The current architecture is showing its limits and the growing conflicts between

application and network providers indicate that a closer cooperation between them is needed in the

future. Such cooperation is also needed between research network providers and scientific application

developers and users.

1.2 Research Networks; Scheduling

In high-end computing the explosion of data generated by simulations and scientific experiments is

increasing the data transfer volumes to the point that they cannot be managed using regular Internet

services.

To move towards providing sufficient network capacity for scientific applications a number of high

capacity networks have been deployed for the use of the scientific community. These are regional

(such as LONI in Louisiana or NCREN [MCN09] in North Carolina), national (Internet2 [Int09] or

NLR [NLR09] in the United States, CESNET [CES09] in the Czech Republic, PIONIER [PIO09]

in Poland, DFN [DFN09] in Germany and JGN2 [JGN09] in Japan) and transnational (GÉANT2

[GEA09] across Europe).

The network capacity however is only one part of the problem experienced by applications. In-

creased capacity, from the tens of Mbps in the case of Internet, to tens of Gbps in the case of research

networks also increases expectations that users have on the performance of their tools. Existing tools

5

and applications based on the current Internet architecture and protocols fail to provide the perfor-

mance that scientists expect. For example, in Chapter 4, this thesis will show that applications using

standard Internet transport protocols can only use a fraction of the available network capacity.

Another issue is the non-deterministic nature of shared infrastructure. In the compute world most

applications are run in a time-share mode where each application has exclusive use of allocated re-

sources for a period of time (managed by batch schedulers). This is a consequence of the unpredictable

behavior that would be seen if applications run in a space-share mode, even though such use might

lead to improved resource usage. For network resources a similar method, using dedicated, scheduled

networks (see Section 1.5), can similarly be used to provide better performance for applications.

This thesis will show how applications can be developed using a different approach in dealing with

the network, achieving a closer integration of the application and the network by: using experimen-

tal transport protocols; taking into account the properties of the network (such as bandwidth and

latency); and relying on deterministic network services.

Distributed applications require the concurrent use of multiple resources. Existing infrastructure,

such as LONI, although implemented as a distributed infrastructure does not routinely support

execution of distributed applications. There are both technical and policy issues that prevent such

usage.

On the technical side, management mechanisms for compute resources (job schedulers) were not

designed to fundamentally support distributed applications, but to optimize the utilization of the

local resource.

On the policy side, the decisions implemented by resource providers often inhibit the coordinated

use of multiple resources. For example on LONI advance reservation is currently limited to a single

node on each machine, making execution of distributed applications requiring more than one node

on each machine possible only with administrator intervention. The majority of compute resources

continue to be managed locally in all their aspects, and are controlled by a local scheduler, implement-

ing local optimization policies. To utilize multiple resources in distributed applications, management

systems and policies need to be changed so that multiple resources are managed together, not in

separation.

6

Solutions to the technical issues are available, common mechanisms for data management, job man-

agement, security and accounting, information and monitoring are being developed and standardized

by a strong community (OGF) and teams around the world (e.g. Globus, EGEE, NAREGI). With

some effort, it should be possible to routinely use these tools in production compute infrastructure

environments.

Local schedulers such as LoadLeveler, Torque (with Maui), LSF, PBSPro have been improved to

support advance reservation mechanisms. Using advance reservation, a distributed application can be

executed by reserving all the resources it needs in advance. Deployment of co-allocation tools is still

experimental, for example in TeraGrid (see [Gro08]), however plans are underway that will hopefully

enable TeraGrid co-allocation as a fundamental grid service.

1.3 Applications

An important issue today is that many application developers are relying on optimizations and feature

enhancement in hardware or software subsystem implementations, without considering the need of

changing the interfaces that they are using to interact with each individual subsystem. Because

generic interfaces limit further improvements, applications that were written and designed to be

run on current infrastructure have to be restructured in order to take advantage of next generation

infrastructure (for example UNIX cp is not a good application for remote data copy).

A fundamental engineering trade-off exists between generic interfaces and specialized, high per-

formance interfaces. Blocking I/O, sockets, OpenGL are examples of standard, generic interfaces

that are suitable for applications that do not push the limits of the individual subsystems (storage,

network or graphics). As we move towards using remote storage, high-speed networks and complex

graphics hardware these interfaces are showing their design limits. Applications that need to take

full advantage of hardware power should use more complex interfaces such as: asynchronous I/O, low

level network provisioning services, and toolkits for parallel application development on the GPU

(such as NVIDIA CUDA, OpenCL). Examples from distributed computing show the complexity of

attempting to hide new semantics under old interfaces, e.g. RPC (attempting to execute remote

operations as local) or Parrot [TL05] (attempting to make remote I/O look like local I/O).

7

The trade-off between generic, simple to use and inefficient APIs on one side, and specialized,

complex but efficient APIs on the other side is becoming clear. Applications that are designed to use

generic interfaces are inevitably designed to not be able to fully take advantage of existing hardware

capabilities. To benefit from the continuous hardware improvements we need to design and use other,

specialized high-performance interfaces.

1.4 Research Contribution

Although the research infrastructure combining high-speed networks and computational resources

(such as LONI and TeraGrid) is available, the number of distributed applications that can fully take

advantage of these combined resources is very small (see Section 1.5).

This thesis bridges this gap between network and compute resources, and analyses implementa-

tion and algorithmic approaches for the coordinated and integrated use of network and distributed

compute resources for scientific applications. My research in designing a new class of distributed

applications has led to the following theses:

• A network-aware interactive visualization application provides more capabilities, better perfor-

mance and can handle larger data than existing visualization applications. The visualization

application can actually be improved when using distributed resources.

• Taking into account network latency and network bandwidth utilization from the design stages

of a remote data access system leads to a pipeline-based asynchronous architecture that enables

higher operations throughput and faster data transfer than existing remote data access systems.

• High-speed networks can be efficiently utilized if a user-defined rate-based data transport pro-

tocol without congestion control is used.

• Other network-aware applications can use high-speed network services to improve overall per-

formance, for example to improve frame-rate and resolution as demonstrated in a distributed

high-definition classroom environment.

In short, this research has the following components:

8

• The design and implementation of a three-way distributed visualization system that uses stor-

age, network, compute, rendering, display and interaction resources in a coordinated way and

takes advantage of networks to improve I/O and rendering performance (Chapter 2).

• The research and design of a new remote data access architecture that enables efficient coupling

of the data and rendering stages of the distributed visualization application. The implementa-

tion of a high-throughput remote data access system following this design (Chapter 3).

• Analysis of experimental benchmarks of appropriate transport protocols for dedicated networks

connecting the data access and rendering stages of the distributed visualization application

(Chapter 4). Analysis of experiments carried out for a network intensive application of high

definition video for remote teaching (Chapter 5).

This research will help in defining future network services and new ways for applications to interact

with networks, as well as contributing to an understanding of how network and compute service

providers need to cooperate to create future cyberinfrastructures.

1.5 Related Work

Only a limited number of applications have been designed specifically for high-speed networks.

OptIPuter [SCD+03] is a large project that has built an advanced infrastructure connecting com-

putational infrastructure with high-speed “lambda” networks to create virtual distributed meta-

computers. The OptIPuter project has produced a wide range of high-speed network tools, such

as the SAGE [RJH+09] video distribution system, the LambdaRAM [VZL08] distributed network

cache, the LambdaStream [XLH+05] data transport protocol and the OptiStore data management

system [Zha08]. OptIPuter technologies are being applied to scientific applications in areas such as

microbiology [SGP+09] and climate analysis [VBLS09].

The Sector/Sphere system [GG08] has been designed to support scalable distributed data storage

(sector) and distributed processing (sphere) using high-speed networks.

The CineGrid community [dLH09] is developing tools that enable the production, use and ex-

change of high-quality digital media over high-speed networks, for example uncompressed 4K video

streaming [SKF+09].

9

The CoUniverse framework is focused on automatic organization of collaborative environments,

adaptation on changing network conditions, and high-quality video streaming tools supported by

high-speed networks [LH08].

Lambda Station [BCD+06] is a tool that automatically allocates network services and steers traffic

to them, as needed by large size data transfers.

Several other experiments with applications of high-speed networks have been performed, for ex-

ample with distributed visualization [SBSdL06], simulation of the human arterial system [DIK+06],

and computational astrophysics [MGYC06].

One method for tightening the integration of applications and networks is to use reserved, exclusive

access to network resources controlled by the user. This requires a mechanism that allocates, reserves

and separates network resources for different applications.

One promising approach, on-demand provisioning of lightpaths, has already been used in a series of

experiments around the world (Phosphorus, G-Lambda, EnLIGHTened, described below). A different

approach is to separate traffic on the same physical medium using Virtual LANs1.

Some of the first networks that provided dedicated dynamic connections (with bandwidths of

50 Mbps to 10 Gbps) were DOE UltraScienceNet [RWCW05, N. 08] and NSF CHEETAH [ZVR+05].

The EnLIGHTened computing project [BHKE+07] designed an architectural framework that allows

Grid applications to dynamically request (in advance or on-demand) any type of Grid resource: com-

puters, storage, instruments, and deterministic network paths, including lightpaths and implemented

co-allocation of compute and network resources.

The Phosphorus project [FCL+07] focused on delivering network services to Grid users and making

applications aware of their complete Grid environment (including both computational and network

resources). The project enabled the use of the heterogeneous network infrastructure across multi-

domain or multivendor networks.

The goal of the G-lambda project [THN+06] was to define a standard interface (GNS-WSI) that

could be used by grid services to allocate network resources provided by commercial network opera-

tors.

1Defined as a part of IEEE standards: http://standards.ieee.org/getieee802/

10

http://standards.ieee.org/getieee802/

The StarPlane network enables dynamic provisioning of lightpaths for use in the DAS-3 distributed

metacomputer [GMM+09] in the Netherlands.

The VIOLA project worked to improve the UNICORE middleware to enable co-allocation of com-

pute and network resources in Germany [EWW+07].

Internet2 has recently introduced the ION service. ION is a new virtual circuit network service

that allows users and applications to allocate on-demand network circuits that provide guaranteed,

dedicated network bandwidth [ION09].

ESnet has recently activated a dynamic circuit network dedicated solely to scientific research, called

the Science Data Network (SDN).

Various systems have been developed to support the above mentioned user or grid application con-

trol of network links, for example UCLP [BGI+03] or OSCARS [GRT+06]. The TeraPaths [KYGM07]

project investigates creating end-to-end virtual paths with bandwidth guarantees. These are used to

prioritize and protect network flows according to user requests. For more information on networks

for grid systems see “Grid Networks” [TMKE06].

11

Chapter 2
Distributed Interactive Visualization

As data sets continue to increase in size, scientists need to address the growing issue of effectively

visualizing and analyzing their data. This chapter describes how scalability in interactive visualization

can be greatly improved by using networks to take advantage of diverse distributed resources.

One motivating scientific application producing large data sets requiring interactive visualization

is the numerical modeling of relativistic astrophysical systems, such as the collision of black holes and

the supernovae collapse of neutron stars [CBB+07]. These simulations routinely generate terabytes

of data, where a single time-step for one variable has a resolution of 40963 data points or higher, and

simulations involve tens of variables and thousands of time-steps. Future simulations of gamma-ray

bursts are predicted to produce petabytes of data as early as 2011 [OSA+08].

A second scientific application area is the interactive visualization of image datasets. Tomography

datasets acquired by x-ray scans of flame retardant solution have a size of 32 Gigabytes (20483

resolution), and a single experiment can generate 24 or more datasets [HHB08].

In both cases, it is common for the data to be stored remotely at the supercomputer or instrument

where it is created. For researchers to progress in their scientific endeavors they need interactive and

collaborative visualization tools that can be used from their offices and laboratories on university

campuses to analyze this data.

The goal of this work is to design a visualization system that is interactive, collaborative and

supports large data. Such a system must have the following characteristics: interactive frame rate

(5 frames per second or higher), large data (tens of gigabytes per time-step, terabytes in total data

size), high resolution images (1 million pixels and higher), fast data transport, and fast updates

(less than one second/update) of visualization as data is being read into the system, good quality

(no visualization artifacts, quick response to interaction), support for collaborative visualization

(multiple, possibly distributed users are able to see and interact with the visualization) and use an

approach that will support expanding future technology.

12

Such visualization is a challenging problem, the interactive, real-time nature of the process adding

an additional degree of difficulty compared to non-real-time applications. This challenge motivates

the use of new methods and ideas that leverage emerging technology in graphics processing units

(GPUs), networks, clusters and compute architecture.

The numerical relativity use case provides a motivating scenario for this work, illustrated in Fig-

ure 2.1. The large data to be visualized is stored near the supercomputer where the simulation was

run. The scientist is connected via a high-speed network infrastructure to the server holding the data.

At various locations in the network; compute and graphics resources are available that can be used

to provide interactive visualization to the scientist at her location. To enable the scientist to better

collaborate with her colleagues the system supports collaborative use from multiple users at different

locations.

FIGURE 2.1: Illustration of a motivating visualization scenario with remote data, distributed visu-
alization components, and collaboration over high speed network links.

13

In addition to the situation when the nature of the application (distributed data, distributed

users) require using distributed technologies, there are real examples that perform better when using

distributed resources than on a single local resource. Distributed applications can both use multiple,

distributed resources, but also can access powerful remote resources that are not available locally.

This defines a second motivating scenario for this work, distributing the visualization application

because it brings a real benefit to the user, not because it is required logistically. High-speed networks

provide the opportunity to use powerful remote resources that are not available locally, and to

combine multiple distributed resources in a single visualization application. As dataset size increases

it is crucial to take advantage of all available resources to construct and execute next-generation

visualization applications.

In this work I describe how it is possible to build a distributed visualization system that is truly

interactive, handles large remote data, produces high resolution images, and supports collaboration,

using an integrated, network-aware, application design. The resulting system (called eaviv) has been

built over the past four years and has provided a number of research challenges, not only in designing

the visualization system (described in this chapter) but also in other areas such as remote data

access, transport protocols and optimization. The work to address these challenges is described in

the following chapters. I designed and implemented the complete visualization system except the

parallel renderer and the integration of interaction devices. These components were developed by

CCT collaborators. Where available, existing technologies such as UDT [GG07] and SAGE [RJH+09]

were used to construct the system. The next section describes related and background work for

the visualization system, Section 2.2 describes the overall architecture and design of the system

and Section 2.3 presents implementation details, results and evaluation for two systems: an early

implementation that was used for a distributed visualization experiment at iGrid 2005 and the current

eaviv system.

2.1 Related Work

The visualization process, in particular when distributed, is described as a visualization pipeline (see

Figure 2.2). The pipeline is composed of five stages: a data source (which may be either a disk or

14

memory), a data filter (for example selecting the data of interest), geometry generation (for example

creating triangles), rendering, and finally image display. Rendering is the process that transforms

visualization primitives (such as points, or triangles) into images.

FIGURE 2.2: Visualization pipeline showing the five different stages

Desktop visualization tools provide a wealth of advanced visualization algorithms optimized for

interactive control, however these are limited by the size of available memory, and do not scale to

the large data sets researchers deal with today.

For large datasets, a common approach used to create visualization systems is to build distributed

visualization pipelines. Some distributed visualization applications have been motivated by the idea

of improving performance by taking advantage of distributed resources while other applications have

been motivated by the need to facilitate visualization of remote data.

The existing distributed systems that have been motivated by performance improvements do not

provide the level of performance needed for current scientific applications. For example the RAVE

system is able to visualize a few megabytes of data at under 10 frames per second, rendering at

400x400 pixel resolution and unknown latency for interaction or data transfer speed [GAW09]. The

pipeline optimization by Zhu et. al. [ZWRI07] resulted in a system that can visualize datasets smaller

than 10 megabytes at a speed of one frame every 5 or more seconds. Other systems are described

by their architecture but have as now no implementation. For example the distributed visualization

architecture proposed by Shalf and Bethel [SB03] could support a variety of distributed visualization

applications and inspired the development of the eaviv system.

The limitations of desktop-based visualization led to the development of parallel visualization sys-

tems and frameworks such as ImageVis3D [Ima09], Chromium [HHN+02] and Equalizer [EMP08] that

can take advantage of computational clusters to visualize large datasets. Equalizer and Chromium are

parallel rendering frameworks that can be used to build parallel rendering applications. ImageVis3D

15

is a parallel rendering tool for interactive volume rendering of large datasets. These and other tools

and techniques are being developed (for example as part of the Institute for Ultra-Scale Visualiza-

tion [MWY+09, MRH+07]) to be able to take advantage of parallel resources for visualization. Some

of these tools focus only on parallelizing the rendering process and do not deal with the issue of data

or image transfer over the network.

Other visualization systems such as ParaView [CGM+06] and VisIt [CBB+05] were designed to

facilitate the visualization of remote data and, while they have the capability to transmit data and

images over the network, they are not able to take advantage of the full capacity of high-speed

networks and thus have low data transport performance, can suffer from a lack of interactivity and

image quality, and do not support collaborative visualization.

ParaView is a parallel visualization application designed to handle large datasets. It supports two

distribution modes: client–server and client–rendering server–data server. In the client–server mode

the client connects to a parallel renderer running on a cluster. The rendering is performed either on

the server (if data is too large) or locally, after transferring the data to the client. The system makes

a decision based on configurable parameters, and video or data are transmitted from the server to the

client for viewing or rendering respectively. In the client–rendering server–data server distribution,

the server is separated into two components, a data server that is responsible for filtering operations

and runs where the data is located and the rendering server which does only rendering, no data

processing. These two components are usually executed within the same local area network.

VisIt is a visualization software designed to handle large datasets using client–server distribution

of the visualization process. Similar to ParaView’s client–server distribution, VisIt uses a parallel

rendering server and a local viewer and interaction client. Visit’s visualization pipeline can be either

server-side rendering with image streaming to the client for visualization methods such as parallel

ray-tracing, or server performing data processing with data being transferred to the client machine

for interactive accelerated visualization. Most commonly, the server is as a stand-alone process that

reads data from files. An alternative exists where a simulation code delivers data directly to VisIt,

separating the server into two components. This allows for visualization and analysis of a live running

simulation. In the current implementation, VisIt’s server-side component and the simulation need to

16

be executed on the same cluster. VisIt has recently been shown to be able to render (although not

interactively) more than 1012 cells [BJA+09].

On the TeraGrid [Ter09] visualization of remote data is supported through two different models:

Server provided visualization where remote visualization sessions are launched using VNC [RSFWH98].

Within VNC, a wide variety of visualization applications can be executed. VNC transports the images

from the remote machine to the local client and keyboard or mouse interaction commands from the

client to the remote machine; Web portal assisted client–server visualization where the TeraGrid’s

visualization gateway1 launches a ParaView server to which users can connect using a ParaView

client running on a local machine.

Visapult [BS03] is a distributed, parallel, volume-rendering application. Visapult’s processing pipe-

line has three components: a raw data source, a viewer, and a visapult back-end. The data source

component, usually placed near a distributed parallel storage system, feeds the multi-process visapult

back-end using multiple parallel data streams. Each process of the visapult back-end renderer feeds

images to the viewer which combines them using an image-based rendering-assisted volume rendering

(IBRAVR) [MSHC99].

Semotus Visum [LH02], is a framework for distributing the visualization pipeline into two compo-

nents between the client and server machines. This framework allows several server-client configura-

tions in which the visualization stages can either reside within the client, server or shared between

both.

gViz [BDG+04] developed an XML format to describe the visualization process and grid enabling

of modular visualization environments that can be combined in a flexible way. gViz is used in a

system called eViz whose goal is to provide an adaptive infrastructure for distributed collaborative

visualization [BBC+07].

VIRACOCHA [GHW+04] is a distributed post-processing and visualization tool that combines a

parallel data filtering and processing system with parallel rendering, these two components being

executed at possibly different locations in the network.

1https://viz.teragrid.org/

17

https://viz.teragrid.org/

VLMIC [SPM06] combines image caching and distributed rendering into a system that can inter-

actively browse multiresolution datasets, independent of the rendering algorithm that is utilized.

Many other distributed visualization systems have been proposed, however none of the existing

systems provide the performance and quality (described at the beginning of the chapter) necessary

to support the motivating scenarios.

As the number and quality of parallel rendering tools increases, taking into account networks to

be able to take advantage of remote parallel rendering systems or high-speed storage systems will

become an important part of the visualization application development process.

The visualization method that this work is focused on is volume rendering, a method that does

not require intermediate geometry so the number of stages in the visualization pipeline is four. These

are: data source (disk or memory), data filtering (selecting the area of interest, such as a sub-sampled

version of a data volume, or a timestep), rendering (volume rendering) and display on the screen.

In initial background work on distributed visualization, we built two experimental systems for

the visualization of remote data and collaborative visualization using video streaming respectively.

These two systems represent initial stages in the eaviv application design, but are also representative

of existing visualization systems that are not able to take advantage of high-speed networks.

2.1.1 Visualization of Remote Data

The design of the first experimental system was focused on investigating mechanisms to interactively

visualize and explore large remote datasets. Here we separated the visualization pipeline in just two

sections: a section containing the data stages and a section containing the rendering and display

stages, with a network link connecting the two (Figure 2.3).

Only a low network capacity was available at the time for these experiments, and so the distributed

visualization system [HHK+05, PHKH04, SMHS04] was designed to reduce the amount of data

transferred over the network. The data source and filter components of the visualization pipeline

were located on the server storing the data to be visualized, while the rendering and display were

placed on a workstation local to the user.

The system used a progressive visualization approach which allowed us to meet the goal of sup-

porting visualization updates every one or two seconds. The visualization was interactive (the frame

18

FIGURE 2.3: Visualization pipeline for remote data access: data server and filtering are on the server;
rendering and display on the client

rate and resolution were controlled locally), however mainly because of network speed limitations,

the total amount of data visualized at any time was limited. Another issue was that I/O operations

were serialized, which led to network latency having a damaging effect the on overall application

performance. Where possible, I/O operations that could be combined into a single remote operation,

were executed together, an approach that was very effective in reducing the remote data access time.

(by a factor of up to 30 [HHK+05]). The size of data that was visualized at any given time was limited

by the capacity of the workstation used for the visualization client.

2.1.2 Video Streaming

Another method of building a distributed visualization application is to separate the visualization

pipeline in two sections, the first section containing all the pipeline stages except display, this section

being run on the server containing the data and the second section being the image display which

is run on the client machine (Figure 2.4). Examples of popular systems supporting this architecture

are VNC and SGI Vizserver [Sil05]. Image transport over the network between the two sections is

called video streaming.

In the second experimental system leading up to eaviv this distribution approach was used to

enable collaborative and remote visualizations [ZSH05, HBH+04, HHS+04]. The advantage of the

video streaming approach is that multiple users can receive a copy of the video stream (by using

multicasting), enabling collaborative remote visualization when multiple users have the necessary

remote interaction mechanisms. Network speed limitations restricted the system to a low-bandwidth,

19

FIGURE 2.4: Visualization pipeline for video streaming, all the stages except for the display are
carried out on the server; the display is carried out on the client

low resolution, thin client multicast solution. The sender was directly integrated as a streaming server

in the visualization application (Amira [SWH05]). Remote interaction was available for a single user

using the mouse and keyboard, the other participants being able to passively participate in the

visualization session and interact with each other by other means (audio and videoconferencing).

The system could achieve a high frame rate, but because of bandwidth limitation this was at the cost

of using high compression (resulting in image artifacts) and low resolution.

This system illustrated the potential of collaborative visualization and thin client visualization

based on video streaming. More specifically it highlighted the need to provide interaction devices for

each user and the need for high-speed networks for good quality video.

2.2 System Architecture and Design

The eaviv system is designed to use distributed resources to create a visualization application that is

better than applications using only local resources. The introduction of LONI in Louisiana in 2005

provided access to 10 Gbps network connections. With the improved network distributed resources

could now be used to improve the capabilities of the visualization process itself, not because it is

required by the application scenario. Three main features are made possible by the use of distributed

resources and high-speed networks:

• The first improvement is to increase the I/O bandwidth of the visualization application to

reduce the data loading time. The data-rendering separation described in Section 2.1.1 is used

20

to separate the visualization front-end from a distributed data access server with high-speed

networks connecting the machines running these components.

• The second improvement of the visualization system is to use high-speed networks to enable

high-quality collaborative visualization.

• The final improvement is to integrate parallel rendering methods in the distributed visualization

system to take advantage of powerful graphics clusters located in the network. Remote, network-

connected graphics resources are used to increase the amount of data that is interactively

visualized.

The architecture of the three-way distributed eaviv system is provided in Figure 2.5.

FIGURE 2.5: Architecture of the eaviv system providing three-way distributed visualization using
video streaming and remote data access.

21

2.2.1 Remote I/O

The first component of the eaviv system is I/O, or remote data access. Using high-speed networks

can improve the data transfer speed of the remote data access component, as described below.

Separating the data from the rendering components improves performance because the storage

resources local to the rendering process can be a bottleneck for the data transfer rate of the appli-

cation. Disk speeds lag behind the speed of network interfaces and by distributing the data into the

network the load time experienced by the visualization application is reduced. A distributed data

server can sustain higher data transfer rates than a single, local data source, and transferring data

from the memory of remote machines is faster than transferring it from the local disk. This improves

the responsiveness of the application as seen by the user.

In effect, the system can use a large pool of memory distributed over multiple remote computers,

similar to the approach in LambdaRAM/Optiputer [ZLD+03]. The amount of data for which the high

network bandwidth can be sustained when using distributed resources is higher than the capacity of

the local main memory. The idea of utilizing network RAM for application speed-up is derived from

the concept of virtual memory and its roots can be traced back to the 90’s [CG90].

With distributed resources network latency can become an issue for the application. The I/O system

needs to be restructured to take advantage of the fast network speeds. eaviv uses a pipeline remote

data access architecture that allows for data requests and responses to be transmitted and processed

in parallel, thus supporting fast execution of a large number of remote data access operations (high

operation throughput). This is used to support the many operations generated by the progressive

visualization process described next in Section 2.2.2. An important feature of the data access system

is that it is non-blocking. This ensures that the interactive usage is not degraded and the application

does not freeze while reading in the data. Issues related to the remote data access system are described

in full detail in Chapter 3.

High-performance data transmission over wide-area networks is difficult to achieve. One of the main

factors influencing data transport performance is the network transport protocol. Using unsuitable

protocols on a wide area network can result in very poor performance, for example 10 Mbps on a

22

dedicated 10 Gbps long-distance (200 ms round-trip-time) network connection using TCP (Transmis-

sion Control Protocol). This issue and possible solutions are described in Chapter 4.

The eaviv system uses high-speed transport protocols such as UDT that support a high network

throughput on long-distance and high-capacity network links.

Figure 2.6 illustrates the interactions between the components of the visualization system as trig-

gered by a user request for new data to be visualized. When a user requests that a new portion

of the dataset should be visualized, the visualization application determines which section of the

data needs to be supplied by each server and communicates the individual selection to the servers.

Upon receiving the requests the servers start delivering their data in parallel to the visualization

application.

FIGURE 2.6: Remote data access in the eaviv visualization system

23

User interactions that do not require any modifications to the visualization data, such as viewpoint

changes (rotations) do not trigger any communication between the visualization client and the data

servers.

2.2.2 Rendering

The second component of the system is rendering, the visualization pipeline stage that transforms

raw data into images.

As discussed in the results section (2.3.4.1), because of fundamental scalability issues of parallel

rendering even the capabilities of the most powerful graphics clusters today will not be able to inter-

actively render data in the terabyte or petabyte range, so in eaviv only particular sections of interest

(for example a single time-step) that can be rendered interactively are transferred to the rendering

machine (and not the entire entire file at once). When the data is received, the visualization is updated

and the user can move to another section of interest, interactively exploring the dataset [PHKH04].

Loading data into the application is a lengthy process, particularly for large data sizes. To address

this, progressive visualization was implemented in eaviv. Each data request is split into multiple

smaller requests so that when a subset of data has been transferred the visualization can already be

updated, and the user does not have to wait for the data object to be transferred completely before

seeing an update to the visualization. This approach is illustrated in Figure 2.7.

The number of updates that can be handled by the visualization application is limited by the

rendering frame rate.

2.2.3 Video Streaming

The third component of the system is video streaming. Images generated by the remote rendering

process need to be transported to the local client for viewing by the user.

High-speed network connections used in conjunction with the remote rendering architecture pre-

sented in Section 2.1.2 also enable collaborative visualization at high resolution, high-frame rate and

no compression. By using video distribution, each user of the system can receive a copy of the video

stream and by using appropriate interaction mechanisms (described in Section 2.2.4) the users can

steer and control the visualization process.

24

FIGURE 2.7: Four stages in the progressive visualization process of a single dataset

Compression of video streams is useful for reducing the data rate [BPS+03] but it comes at the

cost of inducing additional latency and having to deal with the issue of quality degradation due to

data loss in the network. Using low resolution videoconferencing technologies may require separation

of the interactive and collaborative part from the high-resolution visualization [KPB+03].

The solution adopted for eaviv is to use uncompressed video transmission. While having higher

bandwidth requirements, uncompressed video transmission supports high quality video transmission

as well as low latency in the interaction loop, an important feature for interactive visualization.

2.2.4 Interaction

As the rendering is separated from the user, a remote interaction system is necessary for the user

to connect to and steer the visualization. Interaction with the remote renderer is used to modify

visualization parameters such as the viewing direction or the level of zoom and to move between

different regions of interest in the data.

25

For interaction, in the initial stages of developing eaviv, we saw how remote mouse control (e.g.,

via the Synergy2 program) can grow practically unusable over high-latency (> 1 second) image-

streaming pipes. Even with lower latency, there are major practical challenges in allowing numerous

users to collaboratively manipulate a shared visualization via mouse-based interaction. In response,

we made experimental use of specialized physical interaction devices called “viz tangibles”. These

devices [USJ+08], developed by the Tangible Interaction group at CCT3 support both local and

remote collaborative use, providing a key functionality enabling collaborative use of eaviv.

2.2.5 Deployment (Grid Computing and Co-Allocation)

The final issue concerning the eaviv system is the system deployment and execution. Regarding the

data servers, there is an option to execute them as always running services on remote machines,

however if the data selection/filtering operations are non-trivial (i.e. they are CPU intensive) or if

any type of caching is used on the server side, as it is the case for eaviv the clean solution adopted in

the eaviv system is to schedule their execution as a regular job.

To execute the distributed visualization application, a component is needed that can co-allocate

the required compute and network resources. To this end, the HARC [Mac07] (The Highly-Available

Resource Co-allocator) framework was utilized. HARC is a system that is able to reliably co-allocate

both network and compute resources.

HARC uses the advance reservation mechanisms provided by the local compute schedulers to

co-allocate nodes across all the compute resources that are used by the application. HARC also

implements a basic network resource allocation module that uses underlying network provisioning

mechanisms. After co-allocation, the application is initiated by submitting compute jobs to the

advance reservations created by HARC, to be executed at the time when the reservations start.

2.3 Results and Discussion

This section describes details of two visualization systems designed using the proposed architecture:

an early prototype termed the “iGrid 2005 system”, and the current eaviv system. The iGrid system

2http://synergy2.sourceforge.net/
3devices integrated in eaviv by Cornelius Toole

26

http://synergy2.sourceforge.net/

includes video conferencing and integrated use of grid deployment technologies while the eaviv system

supports parallel rendering on GPU clusters. Results of each system are presented and discussed.

2.3.1 iGrid 2005 System

The first experiments using distributed resources and high-speed networks to improve the perfor-

mance and features of a visualization application were performed during the iGrid 2005 international

conference [iGr05] and later at the Supercomputing 2005 conference.

The iGrid experiment used a three-way distribution of the visualization pipeline: data, render-

ing and display by combining the remote data access and remote rendering methods described in

Sections 2.1.1 and 2.1.2.

As described in Section 2.2.1, for remote data access, compute resources connected with high-speed

networks to the rendering machine were used to cache data in their main memory to improve the

data transfer speed of the application.

To limit the effect of latency on the visualization system, a remote data access system that sep-

arates data selection from data transport was used [KPHH05, PH05]. This allowed pipelining and

asynchronous execution and reduced the overhead of executing a remote data access operation to a

maximum of one network Round-Trip Time (or RTT). The iGrid system however did not support

high-speed transport protocols, and used standard TCP for data transport.

Image streaming was handled in the iGrid system [HAB+06] (see Figure 2.8) by using video and

audio transport software and hardware to connect three sites in a video conference session. One

site (LSU) served as the host for the visualization application, whose output (rendered images) was

directly connected to the video conference using specialized video conversion hardware (Doremi XDVI

20s). A solution based on uncompressed high-definition video [HML+06] was used for video transport.

The videoconferencing system that was used captures video with full 1080i resolution (1920× 1080

image, 60 fps interlaced) and sends the data over the network resulting in a bandwidth requirement

of 1.5 Gbps per each video stream. For three video streams (one visualization, two video conference)

this totals 4.5 Gbps required at each of the participating sites. The video data was distributed to

the other participating sites using UDP packet reflector technology [HHD04]. The total bandwidth

capacity required by this setup is equal to the number of participants × number of video streams ×

27

FIGURE 2.8: Illustration of the eaviv architecture used for the visualization server-based collaborative
environment at iGrid 2005 (Brno, Baton Rouge, and San Diego)

1.5 Gbps. For three sites and three video streams this adds up to 13.5 Gbps network usage showing

the need of high-speed networks to support high-quality collaborative visualization.

Interaction devices were deployed at all sites and, together with high-resolution uncompressed

videoconferencing, allowed to add high-quality remote and collaborative capabilities to the visualiza-

tion application.

For the rendering component, the Amira visualization package running on a single visualization

workstation was used. Parallel rendering was not supported for the iGrid experiment and progressive

rendering was not implemented.

Regarding deployment, HARC was utilized in the iGrid system to co-allocate the compute resources

needed to execute the remote data servers. After successful co-allocation, the Grid Application Toolkit

28

(GAT) [ADG+05], which provides a simple generic job-submission interface, was used to submit the

jobs to the compute resource reservations, through the Globus GRAM resource management system

and the PBSPro compute scheduler.

2.3.2 iGrid 2005 Results

The distributed visualization system showed that using a pool of networked memory can improve the

data transfer rate of the visualization application. The measurements showed a reduction in load time

from over 5 seconds when using a single locally-mounted file system to 1.4–1.5 seconds per timestep

(256 Mbyte timesteps) when using the distributed cache. The end-to-end bandwidth observed by

the application (including network transfer, data request, endian conversions) was approximately

1.2 Gbps.

The latency induced by the video system was approximately 200 ms. Even with network round-trip

times of up to 150 ms for the transatlantic connection to Brno (aerial distance between Baton Rouge

and Brno is approximately 5400 miles, network path distance is longer) the distributed collaborative

environment remained interactive.

A visualization application meeting many of the requirements described at the beginning of the

chapter (high frame rate, good response time, high resolution, good video quality and collaborative

visualization) was thus created.

The remaining issue is to increase the size of data that can be visualized, where the iGrid system

is still limited by the rendering capacity of a single visualization workstation and, indirectly, also

by network protocol transport performance. Also, using a fixed-resolution videoconferencing system,

as that used by the iGrid system to enable collaborative visualization is an effective, convenient

method of adding collaboration capabilities to an existing visualization system however it is limited

in resolution by the video capture and conversion equipment.

2.3.3 eaviv System

Building on the previous experience, the current eaviv system retains and enhances many of the

features used in the iGrid experiment such as: pipeline remote data access, using distributed compute

resources to improve data transfer speed, tangible interaction and uncompressed video transmission.

29

A major improvement over the iGrid system is the integration of parallel rendering methods in the

visualization system to take advantage of powerful graphics clusters. A second improvement is the

integration of progressive rendering methods.

2.3.3.1 Parallel Rendering

eaviv uses a GPU-based parallel volume renderer4. Each node renders a portion of data and the

resulting images are collected and composited together for a single 3D view of the complete dataset.

2.3.3.2 Progressive Rendering

The rendering system has been designed to support progressive visualization, as data transfer takes

place the 3D volume texture (stored on the graphics card) is continuously and asynchronously updated

allowing the user to continue to interact with the visualization while the data is loading.

2.3.3.3 Video Streaming

In eaviv, the images generated by the rendering nodes are streamed to the viewer using the SAGE

software-based video streaming system.

SAGE supports both TCP and UDP-based video streaming, making it suitable for high-speed

long-distance networks as well as high-resolution and tiled displays. Excepting network latency, this

system supports a video quality similar to that produced by a local rendering system.

Each rendering process uses SAGE to stream its section of the final image directly to the viewing

client(s), avoiding the bottleneck of sending images through a single node in the parallel rendering

system. This improves rendering performance and enables the system to use parallel network links

for a higher video throughput. SAGE also supports video distribution to multiple users using SAGE

bridges, thus providing an essential feature supporting collaborative visualization.

The eaviv system has been designed to support collaborative visualization, however this feature has

not yet been tested. Regarding deployment, the same co-allocation and remote execution mechanisms

used at iGrid (HARC and Globus) can be used for eaviv, however this remains to be tested in the

future.

4Implemented by Jinghua Ge

30

2.3.4 eaviv Results

eaviv’s performance was tested and compared using a sample dataset with a resolution of 40963 bytes

with a total size of 64 GB (generated by Cactus [GAL+03]).

The first benchmark analyzes rendering speed and I/O speed as the data size and number of

rendering processes is increased. A second benchmark analyzes the relationship between rendered

image resolution and rendering speed. The final analysis compares eaviv with two other distributed

visualization systems: ParaView and VisIt.

The benchmarks were performed on an 8-node visualization cluster, each node having two Quad-

core Intel Xeon E5430 processors (2.66 GHz), 16 GB RAM, 1 Gbps network interface cards. The

system has four NVidia Tesla S1070 graphic units. Each Tesla contains 4 GPUs, has 16 GB video

memory and services two rendering nodes, each node thus having access to two GPU units and 8 GB

video memory. The disk system of the cluster is a 22 Terabyte RAID array connected to the rendering

nodes via NFS. The cluster interconnect is 4x Infiniband and the software was compiled and executed

using MPICH2, version 1.1.1p1 using IP emulation over Infiniband.

2.3.4.1 Data Throughput and Rendering Scalability

The rendering frame rate was measured and local throughput was compared with remote (network)

throughput for three scenarios: rendering 15 GB data using 8 processes, rendering 30 GB data using

16 processes (two processes per node), and rendering 60 GB data using 32 processes (four processes

per node, two processes per GPU).

The network data servers were deployed on two LONI clusters, using up to 32 distributed compute

nodes to store data in the main memory. The network protocol used for data transfer was UDT.

For reference, the performance of the system when running on a single workstation was measured

(workstation specifications: Intel Core2 CPU X6800, 2.93 GHz, 4 GB RAM, graphics: GeForce 8800

GTX, 1 GB video memory, 1 Gbps network interface). The rendering resolution for the benchmark is

1024x800 pixels.

The results are shown in Table 2.1. We can see that as we increase the number of rendering

processes we can render more data, however the frame rate is decreasing. At 32 processes the system

is not able to achieve more than 5 frames per second (requirement for interactivity). This reduction

31

in speed is expected because the communication overhead increases with the number of processes.

The effect is a reduction in frame rate, showing a fundamental issue with parallel rendering: at some

point as the data size (and thus number of processes required to render it) increases, the frame rate

drops to a level below the point of interactivity. However the results show that the system is able to

utilize the rendering cluster to interactively render 35 times more data than a typical workstation,

and maintain an acceptable level of interactivity while rendering more than 70 times more data than

on the workstation.

TABLE 2.1: Data throughput and rendering scalability results.

processes Data size Frame rate (fps) Local speed Network speed

1 (workstation) 0.8 GB 30 0.68 Gbps 0.8 Gbps
8 (cluster) 15 GB 15-21 (18 avg) 0.11 Gbps 6.6 Gbps
16 (cluster) 30 GB 11-13 (12 avg) 0.12 Gbps 5.3 Gbps
32 (cluster) 60 GB 4-5 (4.5 avg) 0.2 Gbps 4.3 Gbps

Regarding data speed, we see a big advantage when using network I/O on the cluster, proving the

value of the proposed approach of designing the system to be able to take advantage of high-speed

networks. The system achieves 6.6 Gbps throughput over the LONI wide-area network (the limit

being the network interfaces on the cluster) when using 8 processes. As we increase the number of

processes the network speed decreases slightly because of the increased contention on the network

interface on the same node (analyzed in Chapter 4). The difference in speed on the workstation is

not as large, because of the lower network capacity of the workstation, and because the visualization

cluster disk system is relatively slow.

The results show that the system is able to successfully sustain interactive frame rates when

rendering 30 GB data and nearly interactive frame rates for 60 GB as well as achieve high data

transfer rates when using the LONI network.

2.3.4.2 Resolution Scalability and Video Streaming Needs

The performance of the system as the rendering resolution is increased was measured. The impor-

tant result is the the bandwidth requirement for video streaming which is computed by multiplying

the number of pixels by the frame rate and by 24 bits of color information per pixel. This gives

32

an indication of the network service needed to support remote visualization using the system, with-

out having to reduce the video quality or reduce the frame rate. The rendering speed for different

screen size configurations was measured by running experiments on the 8-node cluster for a 2 GB

dataset using 8 rendering processes. The results in Table 2.2 show that the bandwidth required for

video streaming is between 500-600 Mbps with a slight increase in the bandwidth requirement as the

resolution is increased.

TABLE 2.2: Resolution effect on frame rate and video streaming bandwidth requirements

Resolution Frame rate Streaming requirements

1024x800 28 fps 525 Mbps
1920x1080 11.5 fps 546 Mbps
2048x2048 6 fps 576 Mbps

The results illustrate the need for high-speed network services to sustain the bandwidth require-

ments for full-quality video streaming.

2.3.4.3 Comparison with Other Systems

To better understand the features and the trade-offs of eaviv a comparison with alternative visual-

ization systems was made. Two appropriate comparison systems were identified, ParaView (version

3.6.1) and VisIt (version 1.12.0).

The comparison was made in four different areas: data input; parallel rendering; video streaming

and interaction, and miscellaneous items. Both qualitative and quantitative items were analyzed.

Slightly different data sizes were used due to the different modes of selecting the section of interest

in each system.

Starting with data input, the first feature of interest is data loading style. eaviv uses progressive

visualization which, for data input, means that large data read operations are split into multiple

smaller operations. eaviv also uses asynchronous data loading, so that data operations are executed

in the background and do not block the visualization system. ParaView loads the entire data at once,

and blocks the system while the load operation is executed. Data protocols are used to transfer data

between the data servers and rendering. eaviv supports multiple data protocols allowing it to take

advantage of high-speed networks. The benchmark executed on the rendering cluster shows how eaviv

33

TABLE 2.3: Comparison of visualization systems features and performance: I/O methods, rendering,
interaction, streaming and other items

Feature eaviv ParaView VisIt

Data loading Progressive, Asyn-
chronous

Single operation,
Blocking

Single operation,
Asynchronous

Data protocols UDT, TCP, fully config-
urable

TCP only TCP only

Data servers Distributed and parallel Parallel only (MPI) Parallel only, must be
on same cluster

Data throughput 5.3 Gbps Network
(30 GB data)

0.12 Gbps Local
(32 GB data)

0.12 Gbps Local
(32 GB data)

High-speed data limit Yes: Main memory No: Disk size No: Disk size

Parallel volume ren-
dering

GPU CPU CPU

Frame rate 11-12 fps (30 GB) 0.5-1 fps (32 GB) 0.28-0.35 fps (32 GB)
Render size limit 60 GB (GPU memory) 120 GB (CPU mem-

ory)
120 GB (CPU mem-
ory)

Time to first image 5 s 35 minutes (load time
30 GB)

35 minutes (load time
30 GB)

Visualization updates 0.1 s (frame rate) N.A. N.A.

Video streaming Parallel (SAGE) Serial Serial
Video transmission TCP, UDP (SAGE) TCP only TCP only
Interaction Tangible devices (mouse

& keyboard with VNC)
Mouse & keyboard Mouse & keyboard

Collaborative support Yes: SAGE video distri-
bution, tangible devices

No No

Direct simulation con-
nectivity

No No Yes

Fully-featured visual-
ization application

No (Prototype) Yes Yes

Programming effort High Lower Lower
Execution complexity High Low Low

can take advantage of the high-speed network to achieve a high data throughput. This throughput

can however only be sustained for an amount of data equal to the main memory size available in the

network. Both ParaView and VisIt throughput is limited by disk speed.

The second area of interest is the parallel rendering component. eaviv uses a GPU-based parallel

renderer, allowing it to take advantage of graphics acceleration for volume rendering and enabling

high frame rate. ParaView and VisIt do not currently support parallel GPU acceleration, and in

consequence the frame rate that they can achieve is below 1 frame per second. For VisIt the ray-casting

34

parallel rendering method was used for comparison. GPU-based rendering is however limited in the

data size that it can render by the amount of video memory of the graphics cards. CPU-based

rendering can usually render more data, as the amount of main memory in a system is generally

higher than that of video memory. The benefits of progressive visualization are clearly seen in the

time needed for the system to produce the first visual image which for the eaviv system, when being

set-up to render 30 GB of data is only about 5 seconds, equaling the set-up time and the time needed

for the first data to be transferred. The visualized data is updated continuously as data is being

loaded into the system, at the update rate limited by the rendering frame rate. ParaView and VisIt

do not support progressive visualization, so the wait time for the first image and each other data

update is equal to the data load time (35 minutes).

Parallel video streaming is a feature supported by eaviv’s use of the SAGE system. Each rendering

node, after generating a section of the final image can transmit it directly to the viewer client. In

contrast, VisIt and ParaView rendering processes transmit their results first to the master node which

combines them and transmits the complete image to the client. Serial video streaming introduces

additional overhead and latency into the system. The video transmission protocols influence the

video throughput, and support for UDP video streaming is essential for using the system in wide-

area networks. The eaviv prototype has integrated support for tangible interaction devices while

allowing mouse and keyboard interaction through the use of third-party software, such as VNC. The

use of SAGE and tangible interaction devices enables direct support of collaborative visualization,

where multiple users, potentially at different locations around the world can simultaneously interact

and collaborate using the visualization system. SAGE bridges can be used to multicast the video

stream from the application to multiple users, and interaction devices deployed at each user location

can be used to interact with the visualization.

One of the important missing features of eaviv is the current lack of support for direct connectivity

to simulations, in order to visualize live data, as it is being generated (this feature is already supported

by VisIt). eaviv is designed as a prototype to explore the possibilities of network-aware distributed

visualization, it only supports volume rendering of uniform scalar data, and has only a small fraction

of the features of complete visualization systems such as VisIt and ParaView.

35

The programming effort to implement the eaviv system to take advantage of high-speed networks,

asynchronous visualization updates, GPU rendering and specialized interaction devices is considerable

and starting and running the system, with its dependence on distributed grid resources, networks

and specialized hardware is a complex process. VisIt and ParaView are thus much easier to use. As

grids, network services and software matures this process should become simpler and accessible for

a wide range of users.

2.4 Conclusions and Future Work

This chapter has shown how the proposed integrated approach in designing visualization applications

helps to decrease the gap between the ever increasing data sizes generated by scientific applications

and the data handling capabilities of interactive visualization systems. eaviv can take advantage

of parallel rendering clusters to increase the amount of data that is visualized while keeping the

interaction quality to an acceptable level. eaviv can use remote parallel rendering without reduction

in video quality using high-speed networks and the SAGE streaming system.

eaviv can take advantage of high-speed networks to improve its data throughput and reduce data

load time. At the same time it uses techniques such as progressive visualization and asynchronous data

loading to improve the user experience when dealing with large datasets. Using tangible interaction

devices and video distribution supports collaborative use by distributed users. An important next

step is to conduct an experiment where eaviv is used for collaborative visualization.

The eaviv system is a prototype that shows visible performance improvements over existing, more

complex distributed visualization systems; potentially guiding the development approach and direc-

tions of existing and future visualization systems. Although past experience using the eaviv archi-

tecture in existing systems such as Amira and Equalizer have shown that fundamental issues may

appear that are hard to solve, it may be possible to integrate the eaviv system architecture in existing

visualization systems such as ParaView and Visit.

The path for further scaling the size of the data rendered interactively will not likely be to increase

the number of rendering nodes as that may decrease the frame rate below an acceptable rate for

interaction. To further increase the data size a system that uses multiple loosely synchronized 3D

36

views of different sections of the data (as opposed to a single 3D view of the complete dataset) or of

different datasets is a possible future solution. Multiple clusters at different locations in the network

can be used to support such a scenario.

An important question when instantiating the distributed visualization application is, assuming

that a selection of resources is possible, what resources should be selected, and how should the

visualization application be instantiated. This is a part of future work, possible ideas being discussed

in Chapter 6.

A particular characteristic of the distributed visualization application is that it requires coordi-

nated, parallel use of multiple resources. A system that allocates all these resources for executing

a single application is needed. If only the network resources, the data servers, or the visualization

resources are allocated alone the application cannot be executed. Reintegrating use of co-allocation

mechanisms in eaviv remains an important step for the future.

37

Chapter 3
Remote Data Access

An important component of distributed, network-based applications is data communication between

application modules.

The work described in this chapter was mainly motivated by the eaviv application, described in

detail in Chapter 2. In the eaviv architecture the rendering component uses remote data access to

connect to the data servers (see Figure 2.5).

In the eaviv visualization scenario the user selects a region of interest to be visualized, and the

rendering component splits the data request that describes this region and distributes it to the data

servers (See section 2.3.1). The data is then progressively rendered by each node as it is continuously

transferred over the network. The visualization system defines the requirements for the remote data

access system: high speed, high operations throughput, non-blocking execution and ease of configu-

ration, as follows.

• Speed.

The main requirement of the remote data access system is that data needs to be transferred as

fast as possible from the data servers to the rendering processes. As described later in Chapter 4,

in order to achieve maximum speed the system needs to be aware of the network situation and

use the appropriate data transfer system for the particular network conditions in which it is

executed. To meet this requirement the following two design principles are proposed. First, the

remote data access system should support parallelism: a single data consumer (or in the case

of the visualization application a single rendering process) should be able to retrieve data from

multiple data servers in parallel. Second, the remote data access system should support high-

speed data transport protocols. As will be shown, on high-speed optical networks, the standard

TCP protocol is not suitable for fast data transfer so the remote data access system needs to

be able to use other, more suitable protocols.

38

• Operations Throughput.

To improve interactiveness, the visualization application uses progressive rendering. This is

achieved by splitting large data transfer operations into multiple smaller operations, so that

when a subset of data has been transferred the visualization can already be updated, and the

user does not have to wait for the data object to be transferred completely before seeing an

update in his visualization. An important question is how many (sub-)operations should remote

data access operations be split into. The answer to this question, for the visualization scenario

is: as many operations as the visualization application can handle. The number of operations,

or updates that can be handled by the visualization application is limited by the rendering

frame rate. For example, if the visualization application is working at 100 frames per second,

the number of data updates should also be 100 each second (meaning the remote data access

system will need to support 100 remote data operations per second)1.

The eaviv system, depending on the rendered data size achieves a frame rate of 5–30 frames

per second. In general, a rate of tens of frames per second for a visualization system is a rea-

sonable generalization. This means that the remote data access systems needs to support the

execution of a minimum of tens of operations per second. For generality to other applications

however, the remote data access system should be designed to achieve the highest possible oper-

ations throughput. The following section (Section 3.1) analyzes and compares implementation

architectures for remote data access systems focusing on operations throughput.

• Non-Blocking, Non-Serialized Execution.

When multiple remote data operations are executed, for example in the visualization scenario

where the visualization needs to be updated as often as possible, if blocking or serialized I/O

is used, network latencies are added together, thus limiting the overall performance of the

remote I/O system. For example, on a 250 ms RTT, 10 Gbps network link, using serialized I/O

at most four remote operations can be executed each second. If the operations have a size

1If we define a remote data access operation as that of transferring a contiguous sequence of bytes from a remote data object, it should
be noted that sometimes, for example if every second byte of a dataset is requested the data requests of the visualization application are

composed of multiple separate sequences of bytes. In effect, single visualization requests can be considered to already be defined as multiple
remote data access operations thus further increasing the number of operations that the system needs to support. Section 3.1 will show
that combining multiple operations into a single one is an effective method of increasing operation throughput

39

of 1 byte, the resulted throughput is limited to 4 bytes per second, independent of transport

protocol performance. Clearly, one solution to this is to increase the operation size. However, a

system that serializes operations creates an artificial upper limit on the achievable throughput

because serialized execution introduces breaks in network transfer every time the client sends

its requests to the server (during that time the server does not transmit any data to the client).

The goal is to eliminate this limit, and to design a system that enables high-throughput by

allowing multiple operations to be executed at the same time. For quality interaction it is also

important that the visualization does not block while I/O operations are executed. The system

needs to remain responsive to user interaction even when data transfer operations are executed.

To achieve this the proposed remote data access supports non-blocking, non-serialized execution

of operations.

• Configurability.

A visualization system should support a variety of file formats and data models, as well as

various modes of interaction defined by the user. A variety of data access patterns need to

be supported, the choice of which depends on the type of analysis required and the type of

data involved. For example, the visualization application may request the transfer of different

sections of the remote dataset to the rendering process. To support this, a remote data access

mechanism that supports the encoding of arbitrary requests is needed. A remote data access

system that only supports simple file operations (where operations are defined by file offset and

data size) is not suitable for the eaviv system.

• Library Implementation.

The data is delivered to a live running visualization application and it should be possible to

extend the system to support live data streaming from a running simulation this describing the

final requirement for our system: the ability to integrate both the client and the server side in

independent applications, thus it should be constructed as a library.

40

The proposed system (called eavivdata) while mainly designed to support the visualization ap-

plication can also be used in other applications requiring configurable, high-performance and high-

throughput remote data access.

This chapter describes the eavivdata remote data access system, starting with an analysis of im-

plementation architectures that can support high operation throughput and continuing with the

description of the eavivdata architecture and system evaluation showing how it enables high data

transfer speed, high throughput, user-defined remote operations, non-blocking execution and paral-

lelism while being implemented as a library, unlike any other system available today.

The next section (3.1) analyzes and compares remote data access implementation architectures,

and the following section (3.2) describes and evaluates the complete remote data access system.

3.1 Implementation Architectures for Remote Data Access

Communication-intensive applications should be designed to minimize the overhead of network com-

munication between application components. If we define a message to be an arbitrary sized unit

of information used for communication between application components, then the communication

overhead will be larger when an application uses a large number of messages, large message sizes or

both.

This section analyzes methods of reducing the communication overhead incurred when an applica-

tion uses a large number of paired request/response messages, or more specifically a large number of

remote data access operations as is the case of the motivating distributed visualization application.

Network latency is ofter overlooked when designing a distributed system although it is an im-

portant factor influencing application performance, in particular when executed over wide-area net-

works [Smi09]. This section is focused on analyzing implementation architectures that help reduce

the damaging effect of network latency on application performance (and because network latency can

not be reduced this reduction is named “latency hiding”) and increase the operations throughput, or

the number of executed operations in a given unit of time.

We look at five remote data access architectures: a simple synchronous architecture included for ref-

erence and four existing approaches for reducing the effect of network latency/increasing throughput:

41

a threaded architecture which creates a new thread to execute each operation; a pool architecture

that uses a fixed number of threads; a bulk architecture which bundles multiple operations together

in a single remote operation; and a pipeline architecture which executes remote operations in a

pipeline-parallel mode.

This section briefly introduces the various programming architectures used by RPC (remote proce-

dure call) systems to reduce the effect of network latency and shows that there currently appears to

be no clear understanding on which one of them should be preferred over the others. RPC is used as

a starting point because remote data access operations are seen as special types of RPC operations.

Next, the relevant implementation architectures are described in detail starting with the syn-

chronous architecture. It is generally agreed that for communication-intensive applications, com-

putation and communication should be overlapped whenever possible and as the visualization sce-

nario also requires non-blocking execution the three architectures supporting non-blocking execution

(threaded, pool and pipeline) are described next. Another method for reducing communication time

is to combine multiple operations into a single remote operation. This mechanism is included in the

analysis as a fourth architecture (bulk).

The various architectures were implemented and their performance measured on networks of both

low and of high latency. These measurements were made on deterministic, dedicated networks. Such

a network infrastructure is required for deterministic results. The parameters and technical require-

ments of each architecture are analyzed and general properties that guide the design of the eavivdata

system are identified.

3.1.1 Related Work

Much work has been carried out in reducing the overhead and latency of one-way message passing

and the latency of a single remote call [BALL89, vECGS92]. The work presented here evaluates

methods of reducing the effect of network latency for multiple remote operations. This is referred to

by many authors as obtaining “high-throughput” as opposed to obtaining “low-latency”. This work

actually shows that these two goals are conflicting as the methods that increase total throughput

when executing a large number of operations do so at the cost of increasing the latency of each

individual operation.

42

RPC implementations appeared around twenty years ago [BN84] and since then, with CORBA

[OMG91] and more recently Web Services (SOAP) [BEK+00] architectures, RPC can be used in the

abstraction of computer architectures, operating systems and programming languages.

The synchronous nature of the RPC model was recognized as a major limitation soon after its

introduction and much work has been done trying to overcome this by using asynchronous semantics.

A notable early adopter of asynchronous RPC is the X Window system [SG86].

Multilisp [RHH85] introduced the “future” concept of asynchronous method evaluation. “Promises”

[LS88] and “futures” [WFN90] extended the concept to distributed systems and asynchronous remote

procedure calls. The early implementations used heavy-weight processes, but later the multithreaded

model proved its value for improving the performance of communicating processes [FM92] and for

hiding communication latency [BR92] and was adopted by some RPC implementations.

One method of reducing the overhead in the thread creation for each remote operation is to

use thread pools [PSH04, Sch97]. Another mechanism used to reduce the overhead associated with

remote procedure calls is to aggregate multiple operations in batches or bulk operations [BL94].

Other systems, such as HTTP [NGBS+97] and CORBA [AOS+00] take advantage of the pipeline

nature of the network to improve performance. This approach was also considered for SOAP-based

implementations of GridRPC [SNS02].

There is no good understanding of what programming method should be utilized to address the

issue of network latency. This becomes apparent when looking at some of the more recent RPC

implementations and specifications.

CORBA did not include support for asynchronous method invocation until late in the standardiza-

tion process, when it was introduced in such a way as to not break backwards compatibility [DSOB02].

The SOAP specification includes asynchronous method invocation [Gro03] but toolkit implementa-

tions do not generally support the advanced two-way asynchronous method scenarios. It can be argued

however that SOAP was never designed to facilitate high-throughput method invocation [BD05].

From the implementations of the more recent GridRPC [SNM+02] standard: Ninf-G [TTNS04]

aggregates multiple operations in a single one, and OmniRPC [SHTS01] executes RPC methods

in individual threads. The initial version of the new RPC system Babel RMI (Remote Method

43

Invocation) did not include asynchronous invocation [KLE07] however implementing non-blocking

RMI in Babel is a part of the development plan.

Although surveys of RPC and asynchronous implementations exist, no quantitative and qualitative

comparison of the various implementation methods is available. This work, extending and revisiting

the previously published results of Hutanu et al. [HHAM06] addresses this, providing guidelines for

the development and design of eavivdata as well as information to aid middleware and application

developers.

3.1.2 Architectures Description

In the following we refer to a client as the entity that initiates the communication, and the server as the

side that responds to the communication. In this analysis a single client/server pairing is considered

and for simplicity it is assumed that if there are dependencies (hazards) between operations, then none

of the optimized implementation architectures (threaded, pool, bulk and pipeline) can be applied.

Since read-only remote data access operations (as those used by the visualization application) do

not produce hazards, this assumption does not have an influence on the conclusions of this analysis.

The following benchmarks use equally sized messages and identical operations, but this can easily be

generalized.

Figure 3.1 illustrates how all architectures are positioned in relation to each other. Three dimensions

are used to categorize the architecture in question: the number of communication threads used to

process requests; the number of remote operations initiated by the client (client operations); and

the number of remote requests these client operations are encoded into when using the various

architectures.

In the following the number of communication threads is considered equal to the number of com-

munication channels2 that are established between the client and the server. This reasoning is ap-

plied since it makes little sense for a thread to establish more than a single communication channel

and if multiple threads share a communication channel their accesses need to be serialized thus

effectively combining them into a single communication thread. The total number of threads serving

2considered broadly: some communication protocols may actually use multiple low-level communication links to implement a communi-
cation channel, for example a UDP channel for bulk data transmission and a TCP channel for control or multiple TCP channels for striped
transfer. From the remote data access system perspective we can safely consider this to be a single communication channel

44

FIGURE 3.1: The five implementation architectures positioned in a phase space with axes (number
of threads, number of client operations, number of remote requests).

the communication channels is actually double (each thread on the client side is precisely matched

by a thread on the server side) but this is omitted for simplicity.

The synchronous architecture executes one single operation (e.g. a file access request) through one

remote request using one single thread or process at any time. Hence, it is located at the intersection

of the 3 axes: (1, 1, 1). The bulk architecture executes n client operations through one single re-

mote request, also using one thread: (1, n, 1). The threaded architecture executes n client operations

through n remote requests, invoking them in parallel, using n threads: (n, n, n). The pool architecture

executes n client operations through n remote requests, invoking them in parallel using 1 ≤ k ≤ n

threads: (k, n, n). The number of threads in the pool can be larger than the number of operations

n, however in that case only k = n threads from the pool will be activated. Finally, the pipeline ar-

chitecture executes n client operations through n remote operations, using 2 communication threads

(one for sending and one for receiving), its position (2, n, n) is thus close to (1, n, n).

The following text discusses these different approaches, outlining their requirements, advantages

and drawbacks.

45

3.1.2.1 The Synchronous Architecture

The synchronous architecture (Figure 3.2) is, of course, not suitable for high-throughput execution

as it serializes all operations.

FIGURE 3.2: Synchronous implementation architecture. All operations are completely serialized

Sequential execution of operations is a common programming paradigm, utilized by all major

programming languages: each operation is executed after the previous one has completed. Only one

single thread of execution exists and only one operation is active at any given point of time. The

advantages of this architecture are the low overhead which makes it suitable for low latency invocation

of single operations and low implementation effort.

3.1.2.2 The Bulk Architecture

The bulk architecture (Figure 3.3) clusters multiple operations into one single remote invocation.

FIGURE 3.3: Bulk implementation architecture. Similar to synchronous architecture except multiple
operations are processed together

These operations must be started and packed together on the client side. The implementation

can ensure this by offering bulk interfaces to the application programmer, or in some cases by

46

automatically combining multiple remote methods into a single remote invocation [YK03]. On the

server-side, bulk interfaces are required for this approach to be applicable; these are offered by various

Grid middleware frameworks such as gLite [BKS05].

3.1.2.3 The Threaded Architecture

The threaded architecture (Figure 3.4) uses multithreaded execution to hide remote operation la-

tencies: the application spawns a new thread for every remote operation (each client-side operation

is executed through exactly one remote operation). Since threaded operations are non-blocking, the

main application continues execution while the time-consuming remote operation is executed in a

separate thread.

FIGURE 3.4: Threaded/pool implementation architecture. As many threads as there are operations
(threaded architecture) or a fixed number of threads (pool architecture)

This architecture raises the usual multithreaded application issues, such as race conditions, dead-

locks, and data (in)consistency. Application programmers must be aware that execution order is

not guaranteed, unless the middleware programmer ensures operation serialization. Further, the

server should be able to handle multiple requests in parallel to make this architecture work ef-

fectively [WFN90].

3.1.2.4 The Pool Architecture

The pool architecture is very similar to the threaded architecture, but with a fixed number of threads

used to invoke remote operations. This significantly reduces the overhead of executing multiple op-

erations (but can increase the overhead of executing few operations) and ensures that the system re-

sources are not depleted. Since the total number of threads is limited this architecture also introduces

47

a queue of operations that are waiting for a processing thread to become available for them to be

processed.

3.1.2.5 The Pipeline Architecture

The pipeline architecture (Figure 3.5) considers the client-server system to be composed of three

segments: the “send command” segment (client → server), the “execution” segment on the server,

and the “receive response” segment (server → client).

FIGURE 3.5: Pipeline implementation architecture. Showing threads for sending and receiving data
and a separate thread for server-side processing

All the operations initiated on the client are queued and sent to the server by a dedicated thread

over a single persistent connection. On the server side, a receiving thread queues the incoming requests

for processing by the execution unit, which in turn adds its results to the response queue, to be sent

back to the client. Another thread on the client side receives the results and notifies the client

application.

This architecture has complex requirements for both the client and server implementation. On

the client side, similar to the threaded and pool architectures, the application must support a non-

blocking execution model and be able to allow multiple operations to be executed in parallel. This

architecture also prescribes the server implementation details, ordering of operations is, however,

implicitly preserved, with no additional overhead.

3.1.3 Benchmarks and Performance Analysis

A series of experiments were performed to compare the different architectures and understand how

various factors influence execution time.

All benchmarks use self-implemented middleware emulations using the five execution architec-

tures. The significant portions of the code (C++) use the boost thread library, the BSD sockets

48

implementation and the UDT library. The operations used for these benchmarks are simple file ac-

cess operations (defined by file offset and read size), suitable for the analysis of the implementation

architectures. The benchmarks were constructed to be network intensive, network being the impor-

tant factor in this analysis.

The first benchmark measures the time needed to execute a fixed number of remote operations,

using the various implementation architectures and when all operations are initiated at the same

time. This is clearly an advantage for architectures that can optimize execution time when multiple

operations are active, but it helps us gain an understanding on how effective all these architectures

are by eliminating other factors from the measurements.

The second benchmark measures the time needed to execute a single operation using each archi-

tecture. This indicates the overhead added by each architecture and how this increases the latency

of a single operation.

Additional benchmarks were made for individual architectures to understand some of their spe-

cific details such as the effect of changing the number of threads or changing the number of active

operations on overall throughput.

3.1.3.1 Benchmark Setup

The benchmarks were performed using dual quad-core Intel(R) Xeon(R) machines, CPU frequency

2.66 GHz, 16 GB RAM located at LSU, Baton Rouge and on dual double-core AMD Opteron(tm)

machines, CPU frequency 2.6 GHz, 4 GB RAM machines in Brno, Czech Republic. All machines

were running Linux (kernel 2.6.*) and the code was compiled using the GNU compiler collection.

The code was executed in two network environments: (1) a local fiber connection between the LSU

machines: RTT (round-trip-time measured with the ping utility) < 0.1 ms, named “LAN”, and (2) a

long distance dedicated fiber connection between LSU and Brno: RTT 149.3 ms named “WAN”.

For these benchmarks, the size of the “request” and “response” messages are equal to 24 bytes

each.

TCP throughput over wide area networks is highly dependent on factors such as RTT, buffer

settings on the end hosts and message size. To reduce the effect of network protocol performance

variance, the performance of the system was also measured when using a fixed rate transmission

49

protocol implemented under the UDT library, a protocol that has less performance variance under

different network conditions.

Table 3.1 and Figure 3.6 show data transfer time and computed bandwidth for various message

sizes when using two different transfer protocols: TCP, and rate-based data transmission using the

UDT library.

TABLE 3.1: Transfer time and computed throughput depending on message size using UDT and TCP.
UDT refers to fixed rate data transmission using the UDT library (The rate was set at 3 Gbps). TCP
is the standard Linux TCP implementation. Mbps = Megabits/second. 1Megabit = 1048576 bits =
131072 bytes. speed = throughput. Time is one-way transmission time and throughput is computed
as size divided by time

size(bytes) time(UDT) speed(UDT) time(TCP) speed(TCP)
100000 0.003 s 254 Mbps 0.3 s 2.5 Mbps
1000000 0.019 s 401 Mbps 1.2 s 6.3 Mbps
5000000 0.085 s 448 Mbps 1.8 s 21.2 Mbps
10000000 0.12 s 635 Mbps 2.15 s 354 Mbps
50000000 0.26 s 1467 Mbps 4.39 s 869 Mbps
100000000 0.59 s 1616 Mbps 7.1 s 1074 Mbps
500000000 1.95 s 1956 Mbps 29.07 s 1312 Mbps
1000000000 3.69 s 2067 Mbps 56.9 s 1340 Mbps

The results show how the throughput increases with increased data size, and how the variance

is much higher for TCP than for rate-based transmission with UDT. Also, for small data sizes the

transport protocol performance is quite low meaning that for a small number of operations we should

expect a lower performance than for a large number of operations.

3.1.3.2 Operations Throughput

The main goal of this analysis is to find out what implementation architecture(s) are well suited for

hiding network latency and to achieve high operations throughput. Table 3.2 and Figure 3.7 show

the maximum throughput that can be achieved using the different implementation architectures.

The results clearly show that the bulk and pipeline architectures are those that can best increase

operation throughput.

Both bulk and pipeline architecture achieve higher performance as the number of operations is

increased. However, the number of operations needed to achieve maximum throughput in the bulk

and pipeline cases are different. In the case shown here, for example for the bulk case in WAN

50

FIGURE 3.6: Computed throughput of TCP and UDT depending on message size

TABLE 3.2: Operations throughput when multiple operations are executed using the five implemen-
tation architectures. Italics numbers indicate the best performing architectures

Network Synchronous Bulk Threaded Pool Pipeline
WAN TCP 6.6 op/s 125000 op/s 305 op/s 3311 op/s 125000 op/s
WAN UDT 6.6 op/s 35714 op/s 111 op/s 3215 op/s 32258 op/s
LAN TCP 18518 op/s 333333 op/s 9259 op/s 83333 op/s 125000 op/s
LAN UDT 14.6 op/s 50000 op/s 372 op/s 27777 op/s 40000 op/s

when using TCP, over 800000 operations are needed to reach the maximum throughput of 125000

operations per second, whereas for the pipeline about 50000 operations are sufficient to reach the

same throughput.

The number of operations used for the threaded architecture in this benchmark was 100, limited

to avoid thrashing (discussed in detail later), the number of operations for the pool architecture is

300000 and the number of threads in the pool is 500.

The LAN results show a higher throughput not only because of the lower network latency but

also because of the slightly better performance of the LSU machines used exclusively for the LAN

measurements over the Brno machines involved in the WAN benchmarks.

51

FIGURE 3.7: Maximum throughput (operations per second) when multiple operations are executed
using the three implementation architectures with the highest throughput (Bulk, Pool and Pipeline).
The number of operations for which this throughput is achieved is different for the three architectures

3.1.3.3 Single Operation Overhead

The second benchmark analyzes the overhead of each programming architecture when executing a

single operation. The results in Table 3.3 and Figure 3.8 show that the synchronous architecture,

which is not optimized for high throughput, has the lowest per-operation overhead. This is because of

the complexity and additional processing steps needed by all the other architectures. The results in

the WAN case are, as expected, dominated by the network latency. The LAN measurements illustrate

the programming architecture overhead more clearly. For both throughput and overhead benchmarks

teb measurements were made for each experiment, the results showing the average execution time.

Standard deviation was not significant.

The bulk architecture has the second-lowest overhead, and the pipeline the third-lowest. The bulk

architecture has a higher overhead than the synchronous architecture because of the additional encod-

ing and decoding of the bulk operation, for example encoding the number of operations composing the

bulk (needed even for a single operation, for consistency). Similar to pipelines in CPU architectures,

52

TABLE 3.3: Overhead per operation when a single operation is executed using the five implementation
architectures. µs = microseconds. Italics indicate the architectures with the lowest overhead

Network Synchronous Bulk Threaded Pool Pipeline
WAN TCP 151040µs 151064µs 302488µs 151257µs 151084µs
WAN UDT 151059µs 151854µs 492458µs 151344µs 151120µs
LAN TCP 45µs 70µs 199µs 449µs 107µs
LAN UDT 126µs 161µs 58603µs 3904µs 210µs

the pipeline architecture has an even higher overhead, caused by the multiple segments a single op-

eration needs to pass through. The pool and threaded architectures have very high overheads, and in

the case of the threaded architecture the overhead is extremely high because in addition to starting

a new thread, a new connection needs to be established for each operation. This can easily be seen

even in the network-latency dominated WAN results.

In the following we take a closer look at the individual implementation architectures, with a

particular focus on two architectures of interest: bulk and pipeline, as the previous results show that

these architectures have the highest operations throughput as well as the lowest overhead of the

architectures that enable high throughput.

3.1.3.4 Synchronous Architecture

The synchronous approach can be used for distributed applications but has no latency hiding meaning

that remote operations can easily have a damaging effect on overall application performance. On the

other hand, the synchronous architecture is trivial to implement and use, and may be a valid option if

remote execution performance is negligible for the overall application performance, or if concurrency

constraints inhibit communication and computation to overlap.

The main advantage of the synchronous architecture is that it has the least overhead of all the

five proposed systems, which makes it the best choice for applications that don’t need high operation

throughput, but rather require low overhead for single operations.

As all the operations are serialized, the time required to execute n identical operations is exactly

n times the time needed to execute a single operation.

53

FIGURE 3.8: Overhead per operation when a single operation is executed using the three implemen-
tation architectures with the lowest overhead (Synchronous, Bulk and Pipeline)

3.1.3.5 Bulk Architecture

In the case of the bulk architecture, latency is “hidden” since it is accounted only once for multiple

operations. The higher the number of operations executed, the more operations is the one-time

network overhead split into thus reducing the effect of the network overhead on each operation.

The results for the LAN show that the execution time of a single bulk operation can be as low as

3 microseconds. This can be considered to be equal with the per-operation overhead of parsing and

processing.

On the WAN the situation changes because execution time is dominated by the network data

transfer time. Data transfer time variability on the total data size mentioned earlier becomes a

factor. In consequence, the average execution time/operation depends on the number of executed

operations. The higher the number of operations executed, the lower the execution time/operation.

54

The execution time/operation cannot be decreased indefinitely as a minimum per-operation overhead

cannot be eliminated.

Performance improvements over the synchronous architecture occur mainly due to the fact that

only one remote request is necessary to invoke n remote operations, thus drastically reducing overall

communication latency.

3.1.3.6 Threaded Architecture

The threaded architecture adds two additional factors to the execution time. The first factor is the

time needed to establish a new connection for each operation. The second added factor is the time

needed to spawn a new thread. The time spent for these two additional operations is considered an

integral part of the execution time of a remote operation.

Table 3.4 shows how the execution time/operation decreases as the number of operations executed

at a given time is increased. However, the number of operations that are executed at any given

time using this architecture must be limited. Allowing the number of spawned threads to increase

indefinitely creates thrashing and the program may even crash. This happens when an excessive

number of threads are started at the same time and compete for resources. In this benchmark the

number of active operations was limited to 100 as further increases of the number of active operations

actually degraded throughput. As shown earlier, we can see that the minimum execution time is much

worse (higher) than that which is achieved by the bulk and the pipeline systems.

TABLE 3.4: Execution time/operation of the asynchronous architecture with varying number of
operations active at the same time, using TCP over WAN

operations time per operation
1 318513µs
2 151351µs
3 100987µs
4 75803µs
5 60697µs
10 30474µs
30 10326µs
50 6301µs
70 4572µs
100 3275µs

55

3.1.3.7 Pool Architecture

In this architecture, the number of threads and communication channels is fixed, thus amortizing

their set-up cost over multiple operations. This cost can be considered a part of the set-up time but

it can substantial for large number of threads (see Table 3.5). This however could be optimized by

allowing multiple connections to be set-up in parallel, while taking care to avoid thrashing.

TABLE 3.5: Connection set-up time for pool system

number of threads connection time (LAN UDT) connection time (WAN UDT)
50 0.065 s 15.15 s
500 0.841 s 151.91 s

For the pool architecture, in addition to the dependency on the number of operations, where in

general the higher the number of operations, the lower the execution time/operation, the minimal

execution time also depends on the number of threads in the pool.

As the number of threads increases, the execution time for each operation in the WAN decreases

(see Figure 3.9), however the total number of threads needs to be limited so that system resources

are not depleted. In this benchmark, it was limited to 500. The decrease in the execution time with

the number of threads is attributed to the increased parallelism in executing the operations. We can

see however that the parallelism of the pool system, limited by the number of threads in the pool is

not as high as that of the pipeline system where the parallelism is only limited by the capacity of the

network pipes.

3.1.3.8 Pipeline Architecture

In the case of the pipeline architecture it is useful to first attempt to understand its performance.

For pipeline execution, we consider the generic case of a pipeline with k segments. The overall

execution time is determined by the time the operations spend in the slowest pipeline segment (that

element will always be busy), plus the time to process the complete pipeline once:

tpipeline(n) = (n− 1)maxi=1..k(tsegm[i]) +
k∑

i:=1

tsegm[i] (3.1)

where tsegm[i] is the time needed for one operation to go through the i’th segment of the pipeline, k

is the number of segments and n the number of operations.

56

FIGURE 3.9: Execution time/operation on the WAN when executing 300000 operations using the
pool system, UDT protocol, with varying number of threads. Pipeline (31 µs) included for reference

For the remote data access system we may consider the pipeline to have three segments: send,

receive and server processing. However this would not be an accurate model since it doesn’t account

for the fact that more than one operation can be active in the send or in the receive channels at any

given time. We need to consider the pipeline system to have a larger number of segments for the send

and receive channels. The number of segments is equal to the maximum number of messages that can

be active in a network channel at any time. This (in the case of equal size messages) is determined

by the size of the request and response messages and the network link capacity:

#segmentssend =
network capacity

request size
(3.2)

#segmentsreceive =
network capacity

response size
(3.3)

In addition to the data transfer segments we have additional overhead segments for placing data

to- and for retrieving data from the network as well as the server processing segment.

57

The performance model tells us that if the pipeline is full, then the execution time/operation will

be determined by the slowest segment. To fill the pipeline both network channels: the send pipe

and the receive pipe have to be filled. If the pipeline is not full the execution time is given by a

combination of the number of segments that are not occupied plus the time of the slowest segment

from those occupied.

This performance model could be refined to predict the execution time for any number of opera-

tions, however this comparative analysis does not require such predictions, as the goal of the analysis

is only to compare and understand the performance of the relevant architectures to make a decision

for the eaviv system.

To understand the relation between the performance of the pipeline system and the number of

operations in the pipeline the execution time/operation for variable numbers of operations in the

pipeline was measured. The results for WAN (Figure 3.10) show how the execution time decreases

as the number of operations in the pipeline increases.

FIGURE 3.10: Execution time/operation when using the pipeline system over WAN, UDT protocol,
and varying the number of operations in the pipeline

58

Starting from a certain number of operations (in this case around 50000) the execution time remains

constant. This indicates that starting with that number of operations, the data transfer segment is

not the slowest one, and the execution time is determined by the overhead segments. In the LAN,

because of the smaller capacity of the network channel (because of short distance) this number is only

2000 operations. Even with a single operation in the pipeline though, the execution time is smaller

than that of the threaded or pool systems, as seen in Table 3.3.

3.1.4 Conclusions

The results clearly show that the bulk and pipeline methods are well suited to hide network latency,

while the threaded and pool systems fail to provide good performance. The results also show that

the threaded and pool systems have a high overhead, making them less suitable than the bulk and

pipeline systems for any kind of optimization.

The bulk architecture has the highest throughput of all five proposed systems and has the second-

lowest overhead however it doesn’t overlap communication and execution. One disadvantage of the

“pure” bulk system is that bulk operations are serialized, subsequent sets of operations thus needing

to wait for the first set to complete.

The pipeline architecture is the best of those that do not require blocking on the previous operation

however its overhead is slightly higher than that of the bulk architecture. The cause of this is likely

the high cost of many context switches for each operation.

From the two other implementation architectures that allow for parallelism, the pool system shows

potential high overhead in connections and threads set-up time and it cannot reach the level of

parallelism of the pipeline. This is because the pipeline allows more operations to be executed in

parallel than the thread pool. The pool only allows as many operations to be executed in parallel as

there are threads in the pool.

The overhead of executing a single operation using each architecture gives a direct indication of

the system load of each system. The higher the measured overhead, the higher the load caused by

the architecture. The threaded and pool systems, with their high number of threads will have the

highest system load. The pipeline has a higher load than the bulk and synchronous systems because

of the multiple threads.

59

The goal was to find the best architecture for high-throughput remote data access, and the final

conclusion of this analysis is that the pipeline architecture is the best architecture for executing

multiple non-blocking operations while the bulk architecture offers the highest throughput when

multiple operations are executed at the same time. The remote data access system architecture will

thus be designed to support a combination of the pipeline and bulk architectures, meaning that when

possible, multiple operations will be encoded into a single bulk, and these bulk operations will be

executed using a pipeline system. The configurability requirement outlined at the beginning of this

chapter provides a crucial capability for supporting bulk operations in conjunction with pipeline

execution. A remote data access where operations are configurable can easily be adapted to include

bulk operations.

The alternative of a simple non-blocking bulk architecture without pipeline support would not

be suitable for eaviv as it combines multiple operations in a bulk, whereas in eaviv’s progressive

visualization we need to have multiple asynchronous updates of the data rather than a single, large

update. The proposed architecture is illustrated in Figure 3.11.

FIGURE 3.11: Proposed system architecture combining the best features of the bulk and pipeline
architectures

3.2 eavivdata System Architecture

We have so far analyzed the available options for implementing high throughput, non-blocking remote

data access. The conclusion is that the remote data access system needs to support pipeline execution

as well as bulk operations. As described at the beginning of the chapter, the remote data access system

has three other requirements: speed, configurability and needs to be implemented as a library. This

60

section describes the complete system design, architecture and implementation supporting all the

required features, analyzes its performance and compares it with relevant existing work.

3.2.1 Related Work

An alternative to remote data access is file staging, or copying of the entire file locally [STBK08], an

approach that is of limited use for this system seeking to use high-speed networks to improve I/O

speed.

The German TIKSL [BHM+00] and GriKSL [HHK+05] projects developed technologies for remote

data access in Grid environments to provide visualization tools for numerical relativity applications.

Based on GridFTP [ABKL05b] and the HDF5 library3, these projects prototyped a number of remote

data access scenarios on which this work is based.

Remote Procedure Call systems such as CORBA4, SOAP5, Java RMI6 provide good options for

encoding requests because they are designed for flexible and simple encoding of complex operations.

They are also well suited for integration in independent applications. Their data transfer options and

performance are however limited. RPC systems usually have integrated transport mechanisms (for

example TCP-based HTTP for SOAP) which limit their performance on high-speed networks.

While not specifically designed for remote data access, one the most utilized data transfer systems

for grid and distributed applications today is GridFTP. GridFTP can be utilized for remote data

access operations using extended retrieve (ERET) operations. With ERET, the client can encode its

specific request (as a string), the request being interpreted on the server by a server-side processing

plug-in which feeds the data to the client. GridFTP can use various transport protocols through the

XIO [ABKL05a] library, with a recent integration of the UDT protocol [BLKF09], supports parallel

data streams and has an efficient implementation. GridFTP satisfies for the most part the require-

ments of supporting of arbitrary data requests and efficient transport protocols. High-throughput

execution of multiple non-blocking operations is currently not well supported by GridFTP. Asyn-

chronous execution of single operations is well supported and recently, pipeline support has been

3http://www.hdfgroup.org/HDF5/
4http://www.omg.org/gettingstarted/corbafaq.htm
5http://www.w3.org/TR/soap/
6http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp

61

http://www.hdfgroup.org/HDF5/
http://www.omg.org/gettingstarted/corbafaq.htm
http://www.w3.org/TR/soap/
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp

added to the protocol to enable efficient execution of multiple asynchronous operations 7. This is

however only available for transfers between two GridFTP servers and is not supported in the client

library therefore it cannot be used for eaviv.

Parrot [TL05] performs remote I/O by intercepting local application I/O calls and redirecting them

to a remote system. Parrot can directly attach to an application binary without any changes to the

application, making it very convenient for use. The throughput and data transfer performance are

however limited and Parrot does not support user-defined remote operations.

FUSE [FUS09] is a library that can be used to implement access to remote file systems. FUSE is

used by many remote file system implementations, however it only supports a limited set of remote

operations.

Nallipogu et al. [NOL02] show how pipelining provides significant performance improvement in

SRB [BMRW98] remote data access, however not addressing transport protocol performance or user-

defined remote data access operations.

iRODS8 is a data and file management system for grids. iRODS supports user-defined operations by

enabling the implementation of “micro-operations” on the server, supports parallel data transfer and

the high-speed RBUDP protocol [Dav08]. iRODS does not support non-blocking execution of multiple

operations, requiring additional work to enable high throughput over wide-area networks [BAK09].

The MPI-IO standard provides asynchronous I/O interfaces and non-contiguous file reads which

allow for efficient, high throughput implementations. RIO (Remote I/O) [FDKKM97] implements

pipelining of MPI-IO operations, and RFS uses buffering, bulk operations, and a threaded architecture

to improve throughput [LRT+04]. The ADIO layer of MPI-IO enables implementations to support

efficient remote file access for example by using Logistical Networking [LRA+06] or GridFTP [BW04].

MPI-IO’s support for user-defined I/O operations is however limited to file views and user-defined

data types and current implementation support for high-performance wide area transport protocols

is limited.

7See [BLK+07] although the architecture and implementation of the feature are not well documented
8https://www.irods.org/

62

https://www.irods.org/

DataCutter [BKC+01] has introduced an architecture for data processing based on user-defined

filters and pipeline execution.

The Network File System (now at version 4.1) is a widely used protocol for remote file access,

however with limited performance over wide area networks.

The Internet Backplane Protocol (IBP) is a middleware for managing and using remote storage

that provides a uniform, application independent interface to storage in the network and supports

optimization and scheduling of data transfers based on a model that takes into account the network

physical resources [BBM+03].

Many other remote data access systems, including Kangaroo [TBSL01], Condor I/O [TTL05],

Lustre [Lus09], GPFS [GPF09], DPSS [TLC+99], HPSS [WC95] have been proposed, however no

system today supports all the features required by the eaviv application: high-speed protocols, high

throughput and non-blocking execution, configurable operations and availability as a library.

Much work has been done on the improvement of remote data access throughput via tuning and

optimization of the underlying transport protocol. This is discussed in Chapter 4.

3.2.2 System Design

This section describes the eavivdata system design including flexible operation encoding and sup-

port for transport protocols and the following section (Section 3.2.3) describes the overall system

architecture and implementation.

3.2.2.1 Flexible Operations Encoding (Control Channel)

The eavivdata system needs to support a wide range of user requests. Client requests can take many

forms depending on the data model and the particular application scenario. Simple requests can be

represented as “(file, offset, size)” for basic remote file access but can be as complex as “(hyperslab

selection of remote Cactus HDF5 file)” for the more complex remote data access and visualization

scenario described in Chapter 2. The system needs the ability to represent complex queries and we

need the possibility to extend the system capabilities for as yet unknown future types of requests.

The solution I propose to support encoding of arbitrary operations is to use RPC encoding. RPC

systems already provide the mechanisms for encoding complex data types and method invocations

but are limited in their data transport performance. For eavivdata this problem is solved by using

63

only the encoding and decoding capabilities offered by RPC systems, data transfer being handled

separately in order to support high-performance data transfer.

Similar to FTP and GridFTP, two separate channels are used by eavivdata: a control channel for

request and response communication and a separate data channel for bulk data transmission. RPC

systems generally provide their own transport for requests and responses however in eavivdata the

RPC encoding and decoding is separated from the transport mechanisms. This enables the system

to support high-speed protocols allowing high performance data transmission even over the control

channel.

The control channel is utilized to implement the send request stage of the remote data access

pipeline that is at the core of the eavivdata architecture. Conceptually, the RPC response processing

is considered to be a part of the control channel as illustrated in Figure 3.12. The encoders and

decoders translate the request between the internal data format of the eavivdata system and the

network format used to transmit the requests over the wire. The control channel is also used by the

client to communicate the required endianess of the data to the server, in case there is a difference

between the native endianess of the machines running the server and the client.

FIGURE 3.12: Control channel design including encoding and decoding of the RPC request as well
as encoding and decoding of the RPC response

There are many available RPC systems today, and eavivdata uses XML-RPC since XML encoding

provides a clean, standard interface and format and allows easy debugging. A possible drawback is

that XML processing can limit the performance of the system (maximum number of operations per

64

second). The XML-RPC9 for C and C++ library implementation was chosen. This library provides

XML encoding and decoding methods that are independent of the underlying transport mechanism,

an essential feature for eavivdata.

3.2.2.2 Configurable Transport Protocols

This section addresses the requirement of providing maximum performance for data transfers.

To enable high-performance data transfers eavivdata does not encode raw data as text and does

not perform unnecessary per-byte processing (for example copying between buffers).

For high data throughput, the system is designed to support transport protocols that are able to

saturate the network link between the server and client. The approach used for eavivdata is to define

a data transport interface independent of the transport protocol that is actually used. This interface

is implemented using various protocols or libraries. The interface between the eavivdata library and

the transport protocol implementation is the following:

AsyncResultRef beginSend (BlockRef iData,\

AsyncResultCallback cb);

void endSend (AsyncResultRef handle)

AsyncResultRef beginKnownReceive (BlockRef block,\

AsyncResultCallback cb)

BlockRef endKnownReceive (AsyncResultRef handle)

AsyncResultRef beginUnknownReceive \

(AsyncResultCallback cb)

BlockRef endUnknownReceive (AsyncResultRef handle)

There are a few notable characteristics of these interfaces. First, reference-counted pointers are used

to enable simple management of data buffers without requiring expensive memory copy operations.

Second, the interfaces are message-oriented, “BlockRef” being a reference-counted block of raw data.

9http://xmlrpc-c.sourceforge.net/

65

http://xmlrpc-c.sourceforge.net/

There are two reasons for this: (i) the eavivdata library operates only on data blocks or messages, so

there is no reason to adopt a byte-oriented interface; (ii) message-oriented interfaces may enable in

the future more efficient data transport protocols implementations that allow for byte reordering at

the lower level.

Other characteristics are the callbacks used to notify the higher layers when an operation is finished

(“AsyncResultCallback”) and the operation handles (“AsyncResultRef”) that can be called by the

user to block and wait for the operations to finish (“endSend, endReceive”).

Finally, there are two data transport methods supported by eavivdata. The first method (named

“Unknown”) is used when the receiver does not know in advance the size of the data to be received.

In eavivdata configurable transport protocols are used for the control channel as well as for the data

channel. The “Unknown” transport method is required for the control channel as the receiver does

not apriori know the size of the message when receiving an RPC request or response. The size of the

message is dependent on the actual operation, can have data structures with variable size, all this

information being encoded inside the actual message. The “Unknown” data transport mode encodes

the size of the message inside the data using the first 64 bits of the communication so that the

receiver, after decoding the 64 bit header knows exactly how much data to expect.

The second mode (named “Known”) is used for the data channel, since for bulk data transfers the

receiver knows beforehand what the size of the data to be received is, based on the RPC response

received in advance of the bulk data transfer.

The current version of eavivdata supports two data transport implementations: TCP sockets (BSD

interface) and the UDT library (currently version 4.5). There is a separate set of interfaces from

those described above for setting up and configuring connections, and most of the transport protocol

tuning parameters (such as congestion control in UDT) are supported.

3.2.3 Integrated System Architecture

This section shows the overall system architecture (Figure 3.13), describes the steps a single operation

goes through, top-level initialization of the system and technical details about what needs to be

implemented in an application by a user of the eavivdata library.

66

FIGURE 3.13: Complete eavivdata system diagram. Dotted lines indicate bypass options - when there
is no RPC response message and/or no bulk data. Dashed lines on client and server indicate forward-
ing of operation information to a future pipeline stage. Solid lines indicate the flow of operations.
(A), (B) and (C) indicate stages of execution for an operation (described in the text)

3.2.3.1 Execution Steps

To better understand the system this section describes the processing steps a single operation passes

through, following the diagram in Figure 3.13 and the actions taken by the system as the operation

is being processed. For clarity, the execution steps are separated in three stages (A, B, C).

(A): The operation is created by the client which then starts the execution process.

67

The operation is added to a queue that feeds the encoder thread. The encoder transforms the

operation into a string by serializing the method name and its parameters and the string is passed

to the request sender data thread.

The request sender simply sends the request over the network to the server and subsequently adds

the operation to the queue of operations that need to be processed by the response receiver. The

request sender has two bypass options. The first bypass option, activated when there is no RPC

response to the operation (the operation is a one-way request not requiring a response), has the

effect that the operation is directly passed to the bulk data receiver. The second bypass option is

activated when there is no bulk data to be received for the operation and has the effect that the

operation is finished and the client is notified (callback is called). If no bypass options are applicable

and the operation does require an RPC response, the response receiver will receive this response (as

a string) over the control channel.

(B): Between the time the RPC request is transmitted to the server and the arrival of the re-

sponse back to the client, the operation processing takes place on the server side. After receiving the

string-encoded request from the client, the request is passed to a decoder that parses the operation

parameters and method name.

Using the method name, the appropriate server processing unit is chosen from a list and the

operation is transferred to this unit. Because the server processing unit implementation (provided

by the application developer) is not actually required to finalize the requests in the order they are

received, the server reorders the operations using a sequencer. This is needed to maintain the order

of operations as seen by the client10.

The sequencer waits for operations to finish in the order they were received before passing them

further to the response encoder and sender units. The encoder serializes the RPC response of the

operation and passes the resulting string to the response sender. The response sender transmits this

response to the client and adds the operation to the queue of bulk data transfers to be processed by

the data sender.

10A possible improvement of the system for the unlikely situation where the sequencer is a bottleneck would be to implement reordering
on the client side, this requiring a slightly more complex handling of the operations on both the server and client side

68

(C): Back to the client side, the RPC response is received and then parsed by the decoder unit. The

operation is then added to the queue of bulk data transfers (receive) that is serviced by the data

receiver. Another bypass option is available here, if the server responds that there is no data attached

to the message then the operation is immediately finished. If the bypass is not activated, after the

bulk data transfer is finished, the operation is finalized and the client application is notified.

Of note, there are no bypass options implemented on the server side. This is because if the operation

is a one-way operation, the encoder response string will have a size of zero so the response sender

will not have anything to send back to the client. If the size of the data transfer is zero, the data

sender will in turn have nothing to send to the client.

Some of the operation queues were omitted from the diagram to reduce its complexity however

every two connected stages (for example request encoder and request sender) communicate through

a queue. There is no blocking in the system, other than waiting on an empty queue. Providing an

option to limit the size of the queues may be useful in the future to prevent memory overload, however

limiting the queues size produces the risk of reducing the overall system throughput.

3.2.3.2 Top Level Initialization; Tear-down

So far it was shown how the remote data access system works after is initialized, this section describing

the initialization process for the pipeline system. One of the characteristics of the pipeline is that,

to provide the expected benefit, the pipeline needs to remain connected after is initialized. If the

pipeline is destroyed after each operation, no benefit will be seen.

In eavivdata the initialization of the system is done through a high level RPC dialog between the

client and the server. The server is initially listening on a well defined port for connections from the

client. The client creates a connection to the server (this connection is then reused for the control

channel) and uses it to communicate the parameters to be used for establishing the data channel.

The data channel can be constructed either by the client connecting actively to the listening server

or by the server connecting to the client (useful for traversing firewalls). The data channel options

include connection parameters such as port and network interface address as well as transport protocol

and tuning parameters (buffer sizes, congestion control, etc.).

69

The result of the initialization process is an object that is used by the client to execute remote

operations. When this object is deleted, the network socket connections are removed. This is detected

on the server that then automatically deletes its data structures associated with the connection.

3.2.3.3 Parallel Data Servers

In addition to operation parallelism supported by the pipeline system, eavivdata enables parallel

data servers by facilitating a single client to use multiple servers at the same time. The servers can

be executed on different machines or on the same machine. Running multiple servers on the same

machine enables parallel data streams between a single server machine and the client.

This feature is implemented as an additional layer on the client side, on top of the pipeline remote

data access system. This new layer manages multiple server connections and distributes the data

requests to servers according to application-specific data distribution rules. These rules depend for

example on the data that is actually available on each server, or on the speed of each server. No

modifications are required on the server to support this type of parallelism.

3.2.3.4 Implementation Requirements for User-Defined Operations

One of the goals of the eavivdata library is to minimize the work needed to implement the methods

required to support new user-defined operations. This section describes the minimal list of methods

that need to be implemented for new operations.

On the client side, the application developer needs to implement a common interface providing the

following four methods:

1. “getParams”, a method that converts the parameters describing a remote request into a list of

XML-RPC parameters

2. “getMethodName” returns the name of the server method that processes requests of this type

3. “oneWay” returns a boolean indicating if the remote operation requires an RPC response or

not

4. “parseResponse” takes an XML-RPC response object received from the server and processes it

70

On the server side, for each type of remote operations a common interface providing the following

two methods needs to be implemented:

1. “beginProcessing” takes the list of XML-RPC parameters received from the client and returns

a server-side operation object. This new object stores the bulk data and the RPC outcome

object that are sent back to the client at the end of the execution

2. the “doProcessing” method receives the server-side object created by “beginProcessing”, exe-

cutes the actual operation and then sets the bulk data and the RPC outcome objects to the

appropriate values (bulk data response and RPC response)

3.2.4 Benchmarks and Results

The eavivdata library11 was evaluated by performing a series of benchmarks and also by integrating

it into the eaviv distributed visualization application. The benchmarks measure the technical perfor-

mance of the library and the visualization application shows successful integration in a real usage

scenario. Two benchmarks were performed, one that analyzes the implementation performance of data

transport protocols within eavivdata and a second one that compares eavivdata with a representative

remote data access system existing today: GridFTP (version 4.2.1).

For the benchmarks we used the same 10 Gbps network connection between LSU, Baton Rouge

and Brno, Czech Republic (RTT of 149.3 ms), and the following machines:

In Brno: a Linux machine with two dual-core AMD Opteron processors (2.6 GHz) 4 GB RAM. In

Baton Rouge: for the first benchmark a Linux machine with two dual-core AMD Opteron processors

(2.6 GHz) 4 GB RAM and for the comparison with GridFTP (second benchmark) a dual quad-core

Intel(R) Xeon(R) machine, CPU frequency 2.66 GHz, 16 GB RAM.

The first benchmark analyzes the data transport performance of the eavivdata library. This analysis

is made by comparing the data transfer rate achieved by the eavivdata library with the transfer rate

achieved by the data transport protocol alone. This illustrates the overhead added by the additional

eavivdata library processing.

11available for download at http://www.cct.lsu.edu/~ahutanu/codes/eavivdatalib.tgz

71

http://www.cct.lsu.edu/~ahutanu/codes/eavivdatalib.tgz

The results of this benchmark, for a data size of 2 GB are the following: the stand-alone UDT

library transfers the data in 10.05 seconds; the UDT library, when used within eavivdata transfers

the data in 10.38 seconds.

The 10.38 seconds measured transfer time of the eavivdata library also includes the time needed

to initiate the request by the client and the time needed by the server to respond to the data

operation and to send this response back to the client. The difference of 0.3 seconds (twice the RTT)

is attributed to this additional time that is needed to transfer the (acknowledged) XML request and

response between the client and the server. With this consideration, the actual bulk data transfer

performance is nearly identical and the eavivdata overhead minimal.

The eavivdata library was profiled (using callgrind12) for this benchmark and the results show that,

as expected, most of the execution time is spent within the UDT library. An interesting note, the

time used by UDT for memory copy reaches up to 60% of overall execution time, this showing the

importance of avoiding memory copy and being a bottleneck for the data transport performance.

There is no additional memory copy inside the eavivdata library.

The second benchmark analyzes the influence of the number of operations on the data performance

and compares the performance of eavivdata with GridFTP. This analysis is based on measurements of

the data throughput for transferring a 2 GB data block when split in a variable number of operations,

using both eavivdata and GridFTP. The operations used for this benchmark are simple remote file

read operations defined by file offset and data size. To eliminate file system influence from the

measurements, the special /dev/zero file was used as the remote data file for both eavivdata and

GridFTP. The size of 2 GB was chosen as it is representative for the amount of data that is transferred

by the visualization application between a single data server and a single visualization node (see

Section 3.2.5).

To analyze the influence of parallel data streams on transport performance measurements were

taken for both single stream and parallel stream data transfers.

The results for a single data stream (Table 3.6 left, Figure 3.14) show that for eavivdata there is

no significant decrease in throughput (computed as data size divided by execution time) when the

12http://valgrind.org/info/tools.html

72

http://valgrind.org/info/tools.html

number of operations is increased as long as the number of operations is not too large (not over 10000

operations). In this case the execution time is dominated by data transfer time.

For a larger number of operations, the throughput is reduced (Figure 3.14 right) because operation

processing on the client and the server becomes the dominant factor in execution time.

TABLE 3.6: Average data throughput for eavivdata and GridFTP with variable number of operations,
with single and parallel streams, total data size 2 GB. s = single stream, p = parallel streams

operations eavivdata (s) GridFTP (s) eavivdata (p) GridFTP (p)
1 1959 Mbps 419 Mbps 4625 Mbps 1698 Mbps
10 1920 Mbps 404 Mbps 4608 Mbps 499 Mbps
100 2049 Mbps 311 Mbps 4818 Mbps 235 Mbps
500 2094 Mbps 87 Mbps 4595 Mbps 50 Mbps
1000 2186 Mbps 44 Mbps 4147 Mbps 26 Mbps
5000 2295 Mbps 9 Mbps 2478 Mbps 5 Mbps
10000 2151 Mbps – 1760 Mbps –
30000 1927 Mbps – 777 Mbps –
50000 1816 Mbps – 464 Mbps –
100000 1108 Mbps – 328 Mbps –
500000 269 Mbps – 74 Mbps –

FIGURE 3.14: Average throughput for remote data access using single data streams and variable
number of operations. Left: eavivdata and GridFTP comparison, centered on 500 operations. Right:
eavivdata throughput evolution with a large number of operations.

Comparing the performance with GridFTP (Figure 3.14 left), we can see the decrease in throughput

appears only for a much larger number of operations in eavivdata than when it appears for GridFTP.

This shows the benefits of pipelining for eavivdata. Because of the serialization of remote operations

73

and the damaging effect of network latency the GridFTP throughput starts to decrease immediately

as the number of operations is increased. The execution time for a large number of operations using

GridFTP was not measured as it becomes very large and is completely dominated by network latency

(150 ms/operation).

The results also show that eavivdata has a higher throughput than GridFTP even for a single

operation. This is because of the additional transport protocol tuning options supported by eavivdata.

For the data transfers using parallel streams, for eavivdata the benchmarks were performed using

the optimal numbers of 6 parallel rate based UDT streams. The analysis leading to this configuration

is described in Chapter 4. For GridFTP, because it does not support rate based UDT, parallel TCP

streams were used. The optimal number of parallel TCP streams for transferring the 2 GB data using

GridFTP was determined to be 50 after a series of measurements. In consequence, for GridFTP the

benchmarks were performed using 50 TCP streams.

The results (Table 3.6 right, Figure 3.15) show that although the data throughput increases when

using parallel transfer, the operation throughput is slightly decreased compared to the single stream

case. This is indicated by the more sudden decrease in data throughput as the number of operations

increases. The reduced operation throughput is likely caused by the high system load generated by

parallel data streaming. The high load reduces the operation processing speed of both the server and

the client.

Somewhat surprising is the slight increase in data throughput of eavivdata, for both single and

parallel streams as the number of operations is increased. Not only the throughput is not reduced by

splitting the operation into multiple smaller operations, thus achieving the design goal of eavivdata

but throughput is actually increased. The maximum throughput is reached at around 5000 operations

in the single stream scenario and at 100 operations for parallel streams before starting to decrease.

This is an unexpected benefit of pipeline parallelism.

3.2.5 Application Integration

To evaluate its effectiveness and ease of use for a real world scenario, the eavivdata library was

integrated into the eaviv distributed visualization application which has motivated its development.

74

FIGURE 3.15: Average throughput for remote data access using parallel data streams and variable
number of operations. Left: eavivdata and GridFTP comparison, centered on 500 operations. Right:
eavivdata throughput evolution with a large number of operations.

The eaviv benchmarks in Chapter 2 have been performed with the integrated system using eavivdata

remote access. The configurability feature of the eavivdata system was tested by implementing remote

access to Cactus format HDF5 files. HDF5 data selection operations (simple “hyperslabs”13) were

implemented, as well as remote caching methods used to instruct the eavivdata servers to pre-load data

of interest in main memory. Data selections are defined as 4D arrays (three spacial dimensions plus

time), with start coordinates, size, and strides14. Helper operations such as file open, cached read,

file close were also implemented. Cached read is used by the visualization application to retrieve

the data of interest from the server and file close releases the resources on the server side. The

complexity of implementing these operations were not related to the eavivdata system, but to the

inherent complexity of implementing a 4D cache. Integrating these operations in eavivdata was not

a difficult task.

eavivdata was used by the visualization application to achieve up to 6.6 Gbps throughput on a

8 Gbps network link showing the real-world applicability of eavivdata for high-speed remote data

access.

The visualization tests were run using up to 32 data servers, each of them serving a single rendering

process. The eavivdata servers allow the visualization application to access datasets with multiple

13See http://www.hdfgroup.org/HDF5/Tutor/select.html
14strides = number of elements to be skipped in each direction

75

http://www.hdfgroup.org/HDF5/Tutor/select.html

timesteps. This means that although an interactively rendered timestep can currently only be up to

60 GB in size, the total data size that can be visualized using eavivdata can be terabytes or more,

the only limit being the storage capacity of the systems running the servers. The quantity of data

that can be cached in main memory and transferred at maximum speed is however limited by the

amount of available main memory.

High operation throughput, non-blocking execution and pipelining are well supported by eavivdata

and used to facilitate progressive visualization. Splitting the remote data access operation of each

visualization node in 500 sub-operations showed no reduction in overall transfer time, while substan-

tially improving the user experience by offering visualization updates for each rendered frame (on

average). The number of 500 operations, equaling the total number of updates, was chosen as the

result of the multiplication of the overall data transfer time (approximately 50 seconds) by the frame

rate (approximately 10 frames per second). For 16 rendering processes this comes to a total of 8000

remote data access operations executed for each data transfer.

3.3 Conclusions and Future Work

This chapter described a comprehensive approach to the remote data access problem. A remote data

access system supporting high-speed, high operations throughput, non-blocking execution and user-

defined operations, not available in this combination in any other system existing today was designed

and implemented.

A detailed analysis of implementation architectures was made, showing the need to support both

pipeline execution and bulk operations processing to enable high operations throughput.

The design and architecture of the eavivdata system allow the efficient execution of the large num-

ber of operations needed to support progressive visualization. The system enables the visualization

application to split large data transfer operations into multiple smaller ones to improve responsiveness

without suffering any performance degradation.

Flexible operation encoding is facilitated by the use of RPC libraries. The system supports config-

urable high-speed transport protocols enabling it to achieve a higher data and operations throughput

than any other system available today.

76

For the eaviv application the current operation throughput is sufficient, however if future case

scenarios require it, binary encoding options can be added to eliminate the XML overhead. One

area of development for the visualization system is to use the data servers as clients for other servers

(chaining of servers). The system was designed with this capability in mind, as this feature will enable

significant data transfer optimizations with the application controlling the routing and flow of data

in the network.

A further planned usage scenario is to integrate the server-side of the eavivdata library into sim-

ulation code (such as the numerical relativity application described in Chapter 2) to enable live

visualization of generated data.

Although the system was motivated by the interactive visualization of remote data the design is

applicable to a wide range of applications and the resulting library can be used to construct data

transfer services or by other data processing applications.

Parallelism should be considered in all the components of a distributed system and the solution

proposed here can be used as a model for other applications. The eavivdata implementation can

directly be used today in other applications that require its capabilities.

77

Chapter 4
Transport Protocols

Computer networks use a layered organization for data transmission. The lowest layer (or layer 1) –

the physical layer – transmits data between two network entities connected by a single network link,

for example a workstation or a laptop and the router it connects to. The next layer (layer 2) is the

data link layer that transmits data packets from node to node based on its physical address (MAC).

The next layer (layer 3) is the network layer, which creates network paths between communicating

partners by selecting a series of links over which the data flow is directed. A network path is composed

by multiple links and usually there are multiple possible paths that data can take, the network layer

being responsible for choosing a particular path for the data. The next layer (layer 4) is the transport

layer, responsible for delivering data to the appropriate application processes on the host computers.

The transport layer can provide reliable or unreliable data transport. Data can get lost or delayed in

the network, and to achieve reliable, lossless data communication reliable transport protocols are used.

They define the sequence of messages and actions (such as retransmission or receipt acknowledgments)

the communicating partners need to take to ensure the complete data is transmitted from the source

to its destination.

For distributed visualization, remote data access, and other applications a reliable transport pro-

tocol that is able to utilize as much as possible of the network capacity is needed1. There are big

performance differences between different reliable transport protocols. Network performance measure-

ments have shown that the Transmission Control Protocol (TCP), the standard reliable transport

protocol in TCP/IP networks such as the Internet has limited performance when used on high-speed

networks, and cannot take full advantage of the available network bandwidth. The goal of the work

presented here is to understand the options available for transport protocols and to select a protocol

suitable for the eaviv application.

1For certain visualization scenarios, unreliable data transport that may result in errors in the data may actually be acceptable, however
reliable data transfer can be used for any visualization application

78

This chapter discusses transport protocols (Section 4.1), options that are available for applications

and users (Section 4.2), compares the performance of a selected set of transport protocols (Section 4.3)

leading to a final selection and conclusions for the eaviv system (Section 4.4).

The evaluation made here is necessary because while other transport protocol evaluations exist

(e.g. [LAQ+08, KHJ08, AAB05, BCHJ03, GACHJ05]), most of them are motivated by simple file

copy applications or are made for long lived data transfers (minutes, hours). The analysis presented

here is made from the perspective of the eaviv distributed visualization application which involves

relatively short-lived data transfers (tens of seconds) which have different requirements, and will lead

to different results.

4.1 TCP and Alternatives

Traditionally, distributed applications have been designed to use TCP for reliable data communica-

tion. TCP provides reliable, ordered, bidirectional, connection oriented data transport. An important

feature of TCP is that it implements congestion avoidance. Congestion may appear when multiple

concurrent streams travel through the same link or network element (router) or when a stream tra-

verses a low capacity link. If congestion occurs, the overall utility of the network is reduced because

of the capacity wasted with retransmissions and transmission of data that eventually is dropped.

In particular, TCP’s congestion control characteristics, reducing the window to half when conges-

tion is detected and the slow increase of the congestion window afterward (see Figure 4.1) create

performance issues on high-capacity wide area networks.

The congestion window size used by the transport protocol determines how much data is in the

process of being transmitted over the network and directly influences the performance of the protocol.

TCP’s response to a congestion event means that on a network link with no concurrent traffic TCP

will not be able to sustain utilization of the full link capacity. The slow increase of the congestion

window during the congestion avoidance stage when at most one segment is added to the congestion

window each round-trip time means that on long-distance, high-capacity links the time needed to

increase the congestion window to reach the link capacity can be measured in hours [Flo03]. Also in

practice, bandwidth utilization as a fraction of the total capacity is lower on higher capacity networks

79

FIGURE 4.1: TCP congestion control showing initial rapid increase of the congestion window during
the “slow start” phase, then slow congestion avoidance increase of the window with at most one
segment each RTT followed by congestion response, reducing the window to half

since the probability of a single packet loss occurrence that is not caused by congestion is higher when

the number of packets traversing the network increases.

Another related issue of the TCP protocol is the unfair distribution of bandwidth between long-

distance and short-distance flows to the advantage of short-distance flows. This and other limitations

have been shown to appear [KTO07] even in the newer TCP variants that are mentioned below.

In the remainder of this section I give a brief overview of the most common alternative transport

protocols, several of which are used for benchmarks.

Many variants of the TCP protocol have been proposed, and most of them introduce modified con-

gestion avoidance algorithms. Congestion control algorithms can differ in how congestion is detected,

how congestion avoidance is implemented (what actions are taken to mitigate congestion), or what

is communicated between the sender and the receiver.

Scalable TCP [Kel03] and HighSpeed TCP [Flo03] differ from TCP in that they use a different

congestion response function.

80

While TCP detects congestion based on unacknowledged packets, TCP Vegas [BOP94], FAST

TCP [WJLH06] and Compound TCP [KTS06] detect congestion by measuring the time delay of

transmitting individual packets.

TCP changes its congestion windows size by constantly increasing it as long as congestion is not

detected and abruptly reducing when congestion is detected while protocols such as BI-TCP [XHR04]

or CUBIC [RX05] use a search method for determining the congestion window size. A similar approach

is used by TCP Westwood and TCP Westwood+ [MGF+04].

UDP, or User Datagram Protocol is a standard, connectionless transport protocol for unreliable

data transfer. Reliable protocols are implemented on top of UDP by retransmitting the packets that

are lost in the network.

Another set of protocols, such as LambdaStream [XLH+05] and UDT [GG07], instead of using a

congestion window like TCP use a rate-based congestion control algorithm, thus directly manipulating

the transfer rate.

While TCP and other congestion control algorithms are design to transfer data between a single

sender and a single receiver, the Group Transport Protocol or GTP [WC04] optimizes congestion

control for a multiple senders–single receiver scenario.

Another possibility for data transport, particularly useful for dedicated networks with no concurrent

traffic is to avoid protocols that implement congestion control. The alternative is to use data transport

protocols that, instead of automatically setting the transmission rate to match the congestion level

(like UDT or LambdaStream), allow the transmission rate to be set by the application or the user.

Allowing the user to set the transmission rate effectively means that the protocol does not implement

congestion control. Reliable Blast UDP, or RBUDP [HLYD02] is an example such protocol where the

user sets the data transmission rate.

While most protocols use only the sender and the receiver, other protocols, like XCP [KHR02]

have proposed to use network elements (routers) assistance to enable fast data transport.

Applications and users can utilize these protocols and tweak their parameters to improve through-

put, for example for TCP parameters such as buffer size and number of parallel streams can be

tuned [SBG00, LGT+01, LQD05]. Parallel streams are an effective method of circumventing the

81

limitations of transport protocols, and it has been shown [YSK08] that the optimal number of streams

for peak performance using TCP can be predicted using mathematical modeling.

Solutions that do not use the IP protocol (in TCP/IP networks, IP represents the network layer

below TCP), such as wide-area extensions to Infiniband [RYW+08] have also been proposed as a

possible solution to the transport protocol problem.

4.2 Application Options

Many of the protocols that have been proposed as alternatives to TCP are not generally available

for use in applications, having been designed only as a prototype or just simulated using a network

emulator. Some TCP variants are however available as patches for the Linux kernel and since kernel

2.6.7 they are a part of it and can be enabled or disabled. Continuously switching TCP variants in

the kernel on a production resource such as a compute cluster is currently not feasible, although

theoretically it may be possible.

Clearly, for an application to be able to use a non-standard transport protocol, a user space

implementation that does not require kernel modifications is desirable.

Fortunately, the UDT library provides a user space implementation as well as a framework for

user-space implementations of congestion-control algorithms [GG05]. UDT has provided2 reference

implementations for the congestion control algorithms of some of the protocols described above

including the following TCP variants: HighSpeed, Scalable, BiC, Westwood, Vegas, and Fast. The

UDT library also implements a “native” UDT (“UDP-based Data Transfer Protocol”) protocol, as

well as rate-based reliable transmission without congestion control (named RATE in the following).

In addition to the congestion control algorithm, the performance of the transport protocols is

influenced by other parameters such as: buffer size, packet size, data rate (for the rate-based protocol)

and total data size.

The buffer size directly influences protocol performance because it may limit the quantity of data

that can be “in flight”, or in transmission between the sender and the receiver. For best results, the

buffer size should be set such that the network link can be filled with data. The capacity of a network

2in older, not the latest release

82

link is computed by multiplying its one-way latency by its bandwidth. For example, for a 75 ms,

10 Gbps network link the link capacity is 0.75 Gigabits = 93 Megabytes.

Another factor influencing performance is the maximum packet size supported by the network (or

MTU). The smaller the size of the data packets, the more packets are needed to transfer a given

amount of data. More packets means more processing on the receiver and sender ends, therefore

higher load and lower overall performance.

An important issue when using user defined rate-based transmission is determining the data trans-

mission rate that produces maximum overall throughput. In the benchmarks several measurements

were needed to determine the best transmission rate for each particular network and execution sce-

nario. A too low transmission rate under-utilizes the network while a too high rate overflows either

the network, or more commonly will overwhelm the receiver resulting in dropped packets and lower

overall throughput.

In this work the UDT library is used to compare the performance of the various protocols because of

its flexibility in choosing the congestion control algorithm. The next section describes two benchmarks

performed using the UDT library, comparing it with TCP and analyzing the protocol parameters

that are best suitable for the eaviv application. The goal is to gain an understanding of how network-

related parameters can be controlled by the application or the user to minimize data transfer time.

4.3 Benchmarks

The benchmarks were performed directly using the eavivdata library (Chapter 3).

The first experiment was run using eavivdata inside the eaviv application, for data transfer from

a single LONI cluster (Painter, housed at Louisiana Tech University, Ruston, Louisiana; 16 nodes

used as data servers). to an 8-node visualization cluster running the parallel renderer at LSU (aerial

distance between Ruston and Baton Rouge is approximately 170 miles). This was part of the eaviv

distributed visualization benchmarks and the goal of these measurements was to determine what is

the best transport protocol option for data transfer within the visualization application.

83

The protocols used for the benchmark are those supported by the UDT library (native UDT, and

the TCP, BIC TCP, HighSpeed TCP, TCP Westwood, Scalable TCP and RATE congestion control

plug-ins for the UDT library) plus the native Linux implementation of TCP.

The theoretical capacity of the link is 8 Gbps (network cards on LSU nodes have a capacity of 1 Gbps

each), round-trip-time was measured as 7.6 ms. The LONI network is shared by all its users and has

a capacity of 10 Gbps. A total of 30 GB of data was used for the benchmark, equally distributed

between the 16 data nodes.

The results (Table 4.1) show that RATE achieves the best performance, followed by native UDT

and the various TCP versions implemented using the UDT library. The lowest performance was

obtained using native TCP which was 8 times slower than RATE.

TABLE 4.1: Transfer rate (in Gbps) achieved over a shared 10 Gbps link (7.6 ms round-trip-time) using
various transport protocol algorithms. 30 Gigabyte data total transfer, 16 data clients (running on 8
machines) and servers (running on 16 machines). BIC, HS=HighSpeed TCP, Ww = TCP Westwood,
Scal = Scalable TCP are all TCP variants, RATE is user defined rate-based transport. TCP (nat) is
the kernel implementation of TCP, TCP (UDT) is TCP congestion control implemented in UDT

TCP (nat) TCP (UDT) BIC HS RATE Scal UDT Ww
0.64 3.52 3.75 3.11 5.3 2.35 4.4 3.63

The second experiment used the stand-alone eavivdata library under a simple scenario of several

data senders performing a short-lived data transfer to a single data consumer over a dedicated long

distance high-capacity network link.

The benchmark was executed on a network link with an RTT of 149 ms between Baton Rouge,

Louisiana and Brno, Czech Republic, with a capacity of 10 Gbps. A 2 GB data size was used with a

single data receiver in Baton Rouge and one to six network flows. The six network flows correspond

to six remote data servers which were run on one or two machines in Brno. The Brno machines

were running Linux and were equipped with two dual-core AMD Opteron processors (2.6 GHz) and

4 GB RAM. The receiver at LSU was a dual quad-core Intel(R) Xeon(R) machine, CPU frequency

2.66 GHz, 16 GB RAM.

84

The goal of this benchmark was to investigate the effect of a truly long-distance network on

transport protocol performance, the effect of data streaming parallelism and also to see the difference

between parallelism on a single server and parallelism on multiple servers.

The same set of protocols as in the first benchmark was used, however, for clarity, the results in

Table 4.2 show only the three best and most stable protocols.

TABLE 4.2: Transfer rate (in Mbps) achieved over a dedicated 10 Gbps link (149 ms round-trip-time)
using various congestion control algorithms in the UDT library. 2 GB data messages were used. The
number of streams is equal to the number of data servers and the servers were run on one and two
machines (shown in parentheses next to protocol). Scal = Scalable TCP plug-in inside the UDT
library, UDT is the native UDT protocol and RATE is the user-defined rate-based protocol plug-in
inside the UDT library. Best results are shown in italics. ∼ indicates great variance in measurements

streams RATE (1) RATE (2) UDT (1) UDT (2) Scal (1) Scal (2)
1 1858 1858 808 808 1619 1619
2 3361 1501 954 991 2361 ∼ 1633
3 4093 1932 1096 1111 183 ∼ 1321
4 4307 2174 1222 1274 202 ∼ 1038
5 4683 2504 1296 1343 219 ∼ 219
6 4880 2629 1383 1443 236 ∼ 805

Three to five measurements were taken for each experiment, the results presented here being the

average over all measurements. Some of the protocols show great variance in performance (standard

deviation), up to a factor of 10 in performance difference between measurements for Scalable TCP

and TCP Westwood, something that should not happen on a dedicated link like that used for these

measurements. This indicates that these protocols are not suitable for applications such as eaviv.

Of note, the measured performance of the kernel TCP implementation was 16 Mbps (with 6 servers

running on two machines) and less.

The results show that the rate-based approach is the best one, followed by UDT for parallel streams

and Scalable TCP for single streams respectively. The results for Scalable TCP when data servers

were executed on two machines show great variance, showing the unreliable performance of Scalable

TCP when parallel streams are used.

The theoretical capacity of the link is near 10 Gbps and the performance of the best protocol

(RATE) is limited by the CPU speed. There is room for further improvement and valgrind profiling

85

shows that up to 60% of data transfer time is spent doing possibly unnecessary memory copy inside

the UDT library.

When the servers are executed on two machines, although it still shows the best performance, the

rate-based approach has a reduced performance compared to the case when the servers are run on

a single machine. The most likely reason for this is that when the servers are executed on multiple

machines the different machines may send their data at the same time, creating artificial bottlenecks,

and bursts of traffic in the network (a possible solution to this problem is discussed in the next

section).

4.4 Conclusions

The benchmarks show that the user defined rate-based protocol has the highest data transfer per-

formance, which was expected, making this the current protocol of choice for eaviv. The rate-based

protocol aggressively consumes as much bandwidth as it is instructed by the user. On shared net-

works, such as LONI this type of aggressive network use may compete unfairly with TCP-based

applications, and depending on the network provider policy, the native UDT or other TCP-friendly

protocols may need to be used.

TCP variants, as well as native UDT have problems in taking advantage of the network capacity

making them unsuitable for eaviv. Their problems arise from the premises of uncertainty that they

are designed to work under: unknown available network capacity and possible concurrent traffic that

needs to be accommodated. The rate-based approach works under the assumption that concurrent

traffic either does not exist or is precisely known, and can achieve much better performance than the

other protocols.

Determining the best transmission rate for the rate-based protocol is an important issue, and

setting the rate automatically is an useful next step. Chapter 6 provides some ideas about how this

issue can be addressed in the future.

Future work will include continuous evaluation of transport protocols for various network situations

as well as for other application scenarios and searching for new transport protocol implementations

and integrating them in eavivdata.

86

The performance issues seen when multiple data servers transmit data to a single client machine

are probably related to burstiness of data transfer (see PSPacer [TMK+07]). This issue will need to

be addressed in the future, so that as the number of data servers is increased the performance will

not drop. PSPacer may be able to provide a solution to this issue.

The transport protocol options that are available for network-aware application today are very

limited. There is a strong need for transport protocol implementations that will enable applications

to take advantage of high-speed networks. The UDT library provides a great tool today but more

such implementations are needed.

87

Chapter 5
HD Classroom

Most of the work described in the previous chapters (visualization, remote data and transport pro-

tocols) has been motivated by the eaviv visualization application. This chapter illustrates the use

of high-speed networks in an area unrelated to eaviv showing network-aware application design in a

completely different field by describing a different application: the “HD Classroom”.

Motivated by the previous development and successful demonstrations of video conferencing us-

ing uncompressed high-definition video, an experiment assessing the value and applicability of the

new technology for distributed and collaborative teaching has been conducted. This experiment has

been designed to be conducted in a production environment (classroom teaching) with very strong

application quality requirements.

The opportunity was given by the introduction of a new course, “Introduction to High Performance

Computing”, taught at Louisiana State University by Professor Thomas Sterling.

With the participation of Masaryk University in Brno (Czech Republic), University of Arkansas in

Fayetteville, Louisiana Tech University in Ruston and later joined by North Carolina State University

in Raleigh (through MCNC, North Carolina) LSU has initiated the “HD Classroom” experiment

attempting to create a highly interactive environment to allow students and teachers from all these

universities to actively participate in the HPC course. The goal was to both provide the tools needed

for remote teaching of the HPC course and to analyze the requirements for utilizing the supporting

research technology in a stable production environment.

The class took place in the spring semester (January – May) of 2007. This chapter briefly presents

the design and technology utilized for the HD classroom experiment, starting with an application

overview (Section 5.1), continuing with details of the supporting network infrastructure (Section 5.2)

and finishing with conclusions (Section 5.3). A complete description of the experiment can be found

in: Hutanu et al. [HPE+07].

88

5.1 Overview

At the core of the experiment was the decision to use uncompressed high-definition video. HD video

offers high detail, allowing students to see detailed facial expressions of the lecturers and providing

a realistic remote presence experience.

This comes at the cost of generating large amounts of data. This data could be compressed however

even on dedicated hardware this takes a long time. Additionally, the lag created by compressing

and decompressing video without dedicated hardware (unavailable at the time of the experiment)

is unacceptable for a real-time collaborative environment. Compression overhead can be avoided

by using uncompressed video. This however comes at a cost: uncompressed video uses much more

network bandwidth.

The videoconferencing system used for the experiment was based on the Ultragrid [HML+06] soft-

ware and enabled multi-party video-conferencing using uncompressed 1080i HD (1920x1080 pixels)

video.

The video communication using UltraGrid is point-to-point only. However the five partners par-

ticipating in the virtual classroom needed a multi-point distribution of the video stream. To create a

multipoint conference and deliver the class contents to all participants an overlay network was built

where specific nodes took care of data distribution. These distributing nodes receive a copy of the

video stream and distribute it to up to 4 other nodes, and they can also be chained.

Previous measurements of end-to-end latency caused by video processing alone showed that cap-

turing, sending, receiving and displaying of the 1080i video takes 175±5 ms. More details on this

can be found in [HML+06]. Adding network latency and distribution latency, the end-to-end latency

on the longest link (from LSU to Brno) was about 250–300 ms, still barely noticeable for human

perception and generally not disturbing interactive communication.

5.2 Network

The HD video transmission has substantial network requirements. In addition to the raw bandwidth

needed (1.5 Gbps for each stream including the overhead generated by packetization) a real-time

HD video transmission requires minimal transmission latency. The transmission latency is influenced

89

by the wire latency (fixed) but also by the presence of data rate fluctuations (jitter). Jitter can be

compensated by using buffering but this comes at the cost of additional latency and is undesirable

in an interactive environment. Additionally, large data packets are necessary for the software on the

end hosts to be able to sustain the high transmission rates, so “jumbo” packets need to be enabled

in the entire network.

Commodity Internet cannot normally meet these requirements and even specialized shared network

services are generally not suitable for this application, dedicated circuits being the only network ser-

vice that can with certainty meet all network requirements. Since any unnecessary packet processing

comes at a cost (adds jitter) routing should also be avoided whenever possible.

The network for the experiment was built from a combination of dedicated point-to-point (layer 1)

and switched (layer 2) network links offered by various providers combined into a switched network

using minimal bridging over routed (layer 3) networks where necessary.

Dedicated circuits are able to provide the necessary service but the cost of having all these resources

dedicated for a single application that runs occasionally such as the HD classroom is not cost effective.

The Enlightened project, which provided part of its testbed for the experiment has developed

HARC [Mac07], a software package used for co-allocating multiple types of resources at the time

the application needs them. Using HARC, resource utilization can be maximized as the resources are

freed when the application execution time is over and can be allocated and used by other applications.

HARC can be utilized to allocate both network and compute resources, however in this experiment

the compute end nodes were dedicated for the application so HARC was only utilized to allocate

network links.

The experiment showed that although not widely deployed, all the network-related components

needed to execute such a demanding application in a production environment are available and the

experiment proved that they can be effectively utilized to support a real application.

5.3 Conclusions

“HD Classroom” was the first ever teaching experiment using uncompressed HD video with applica-

tion driven network provisioning.

90

FIGURE 5.1: HD classroom: Professor Thomas Sterling teaching remotely to students in Brno (left)
and Arkansas (right).

The experiment showed that despite the high development, deployment and maintenance costs

plus a wide range of technical difficulties (for details see [HPE+07]) we could provide the necessary

service for students around the world to effectively participate in the “Introduction to HPC” class.

This experiment illustrates how developing network-aware applications that may drive the deploy-

ment of high-speed networks can lead to applications and environments that have a strong impact

on the society. Education is an important area in all parts of the world, and this experiment showed

how network-aware tools can help change the classic classroom and education model. High-quality

remote teaching tools enable students from potentially anywhere in the world to get access to the

best specialists in any particular field and participate in their classes, even if they are not physically

located at the local university.

Following the experiment, a new classroom space, specifically designed for remote teaching was

prepared at LSU. The teaching of “Introduction to HPC” to remote students continued in 2008

and 2009, and a new distributed class for video game design has been initiated (using a different

videoconferencing technology that has lower bandwidth requirements). The HD classroom experiment

has been a motivating factor for new developments such as the “High Performance Digital Media

Network” testbed [HPD09] and the CoUniverse [LH08] application manager, all of these showing the

enabling potential of this application.

91

Chapter 6
Conclusions and Future Work

This thesis has shown how networks can be used effectively to build next-generation distributed

applications. Using an integrated approach and taking into consideration all the building blocks of an

application from the design stages enables the creation of applications that have higher performance,

improved scalability and more features than comparable applications existing today.

A main focus of this work is on interactive visualization of large data where I have shown how

high-speed networks can be used to increase the amount of data that can be interactively visualized,

improve I/O performance and enable collaboration while maintaining high quality for the interactive

visualization environment. The results show that remote I/O using high-speed networks can be up

to 30 times faster than local I/O and that, by using remote rendering clusters, up to 60 times more

data than on a typical workstation can be interactively visualized.

For the visualization application to be able to effectively access remote distributed data servers

without degrading the user experience we need to take into account network latency and design

the remote data access system to reduce its damaging effect on application performance. This work

evaluated five alternative mechanisms for remote data access and concluded that an architecture

that combines bulk and pipeline processing is the best solution for high-throughput remote data ac-

cess. The resulting system, combining high-throughput remote access with high-speed data transport

protocols and configurable remote data access operations is, depending on the transport protocol

configuration and number of operations, from 3 to over 400 times faster than a comparable existing

remote data access system.

The evaluation of transport protocols on dedicated wide-area networks showed that rate-based

protocols designed for high-speed networks achieve a transfer rate of over 8 times faster than that of

the standard Internet transport protocol TCP.

The experiment with HD video conference supported remote teaching illustrated the enabling

potential of high-speed network applications for areas other than visualization.

92

Each system component presented in this work has a future development path. The visualization

application can be enhanced to use multiple distributed rendering clusters. Direct visualization of

streamed simulation data could be supported by integrating the remote data access server into a live

running simulation.

More transport protocols need to be evaluated, and methods for eliminating the burstiness of data

transfer need to be investigated to further improve the performance of the data transport system.

Other application areas should be investigated, and more applications should be modified or de-

veloped to take advantage of emerging network infrastructure, to further research the generality of

this approach. Education is a particularly promising area for future development, and considering the

emergence of specialized hardware architectures so are distributed simulations where each component

of the simulation is executed on the most suitable hardware in the network. Other possible appli-

cations that may benefit from the new high-speed network infrastructure are emergency response

applications that require immediate access to a vast pool of interconnected resources.

For applications such as the presented eaviv distributed visualization it is important that all re-

sources required are allocated together so that a single application can use them at the same time.

In the future we will need to work with both compute and network resource providers to enable

coordinated service provisioning and co-allocation of resources.

An important part of (distributed) application execution is optimizing the application performance,

which involves both choosing the resources where the applications runs, and configuring the applica-

tion to achieve optimal performance. Since initial investigations have already been undertaken in this

area and because of its crucial importance for application performance and scalability, the following

text describes the future work in optimization in more detail.

Assuming that the network and compute resources are scheduled (a reasonable assumption for

dedicated networks and grids) so for any given time period a user can discover what resources are

available for execution, the proposed methodology is:

1. user requests the resource (network, compute, etc) schedule for the time period of interest;

93

2. based on the application requirements, an optimization algorithm leads to the selection of an

appropriate subset of the available resources including configuration details;

3. using co-allocation middleware the selected resources are allocated and the application executed

on these resources at the selected start time;

To address the issue of how to optimize a general distributed application we first need to answer two

questions: (1) what are the elements to be optimized and (2) what are the inputs for the optimization

problem.

Regarding the first question, the performance of an application such as the eaviv visualization

system, as described in Chapter 2, is defined by multiple parameters, including frame rate, resolution,

data size and data transfer rate. They can each be optimized individually, but that can have severe

limitations. For example, there would be no purpose in having a system that to improve video

quality allocates so much bandwidth for video transmission that it leaves no bandwidth available for

data transfer. For an application such as eaviv multiple system parameters should be considered for

optimization.

Regarding the second question, the input for the optimization problem is defined by the set of

resources available for execution and the parameters describing them, as well as performance models

that give reasonable predictions on how application components perform on various resources. In the

case of a distributed application the performance model should accurately model both application

component performance and the performance of the network.

Resource selection and optimization algorithms cannot use information about network resources

in making decisions if that information is hidden, as is the case in the standard layered Internet

architecture (see Chapter 1). Since network performance is crucial for distributed applications, some

optimization algorithms circumvent the issue by relying on estimates or guesses of available network

bandwidth using tools such as Pathchirp [RRB+03] and Pathload [JD02]. However, assuming a ded-

icated, deterministic network infrastructure is available, the approach we will follow is to design and

utilize optimizations algorithms that have exact knowledge of network resources [TC07, CT09].

94

An example optimization problem that uses information about the network is minimizing data

transfer time. For the eaviv application it has been shown (Chapter 2) that the I/O bandwidth

of the application can be increased when using network data servers. In the visualization scenario,

distributed data servers are used to serve data to the rendering component. The problem is, assum-

ing the rendering component is executed at a particular fixed location, to select and configure the

resources used for data server deployment to get maximum data throughput.

If network topology and capacity are known, which is the assumption that we work under, network

flows can be used to model network and application performance, and the data transfer optimization

problems are translated to maximum network flow problems, as shown in Toole and Hutanu [TH08].

Applications needing optimizations of a single criteria such as the data transfer rate already present

some very challenging and interesting problems but for applications such as eaviv multiple criteria

optimization problems need to be formulated and solved. In the previous data transfer example the

location of the rendering component is fixed, however by changing this and including the selection

of the renderer location in the optimization, the problem immediately transforms into a multiple

criteria optimization problem.

In eaviv the user should be able to select a set of preferences or importance factors for the various

optimization criteria (frame rate, data size, etc.) and the system should take some or all these criteria

into consideration to provide one or more configuration options to the user. Using a multi-criteria op-

timization approach [KNOW08] may be a promising method, however the eaviv optimization problem

remains an open issue for future work.

Concluding Remarks

The National Science Foundation has recently funded our “Strategies for Remote Visualization on a

Dynamically Configurable Testbed” project [NSF09] that, with a focus on distributed visualization,

will develop and research strategies for designing and optimizing distributed applications on config-

urable high speed networks where the networks are considered of the same importance as compute

and storage resources. The project will build a state-of-the-art real world testbed for distributed

applications development between LSU (Baton Rouge, LA), NCSA (Urbana-Champaign, IL), ORNL

95

(Oak Ridge, TN), TACC (Austin, TX) and MU (Brno, Czech Republic) connected by Internet2 ION

dynamic network services.

Deterministic, dedicated network services should become available outside the research network

community and accessible for a wide range of users. Following this approach, considering for exam-

ple HD video streaming applications, we should believe that instant streaming of at least blu-ray

quality movies, HD videoconferencing to any place in the world, remote medical consultations or live

streaming of any event will be possible in the near future, for any broadband network subscriber.

For the past 20 years, networks have continuously changed our lives and by taking the right steps

forward and enabling collaboration between application developers and network providers we can

ensure that future generations will be even closer connected than today, in a truly global community.

96

Bibliography

[AAB05] Eitan Altman, Konstantin Avrachenkov, and Chadi Barakat. A stochastic model of
TCP/IP with stationary random losses. IEEE/ACM Trans. Netw., 13(2):356–369, 2005.

[ABKL05a] William Allcock, John Bresnahan, Rajkumar Kettimuthu, and Joseph Link. The Globus
eXtensible Input/Output System (XIO): A Protocol Independent IO System for the
Grid. In IPDPS ’05: Proceedings of the 19th IEEE International Parallel and Distributed
Processing Symposium (IPDPS’05) - Workshop 4, page 179.1, Washington, DC, USA,
2005. IEEE Computer Society.

[ABKL05b] William Allcock, John Bresnahan, Rajkumar Kettimuthu, and Michael Link. The
Globus Striped GridFTP Framework and Server. In SC ’05: Proceedings of the 2005
ACM/IEEE conference on Supercomputing, page 54, Washington, DC, USA, 2005.
IEEE Computer Society.

[ADG+05] G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann, A. Merzky, R. van
Nieuwpoort, A. Reinefeld, F. Schintke, T. Schütt, E. Seidel, and B. Ullmer. The Grid
Application Toolkit: Toward Generic and Easy Application Programming Interfaces for
the Grid. Proceedings of the IEEE, 93(3):534–550, March 2005.

[AOS+00] Alexander B. Arulanthu, Carlos O’Ryan, Douglas C. Schmidt, Michael Kircher, and Jeff
Parsons. The design and performance of a scable ORB architecture for CORBA asyn-
chronous messaging. In Middleware ’00: IFIP/ACM International Conference on Dis-
tributed systems platforms, pages 208–230, Secaucus, NJ, USA, 2000. Springer-Verlag
New York, Inc.

[AW06] Robert D. Arkinson and Philip J. Weiser. A ”Third Way” on Network Neutrality. The
Information Technology and Innovation Foundation, May 2006. http://www.itif.

org/files/netneutrality.pdf.

[BAK09] Mehmet Balman, Ismail Akturk, and Tevfik Kosar. Intermediate Gateway Service to
Aggregate and Cache the I/O Operations into Distributed Storage Repositories. In
FAST09 Poster Session, 2009.

[BALL89] B. Bershad, T. Anderson, E. Lazowska, and H. Levy. Lightweight remote procedure
call. In SOSP ’89: Proceedings of the twelfth ACM symposium on Operating systems
principles, pages 102–113, New York, NY, USA, 1989. ACM Press.

[BBC+07] K. W. Brodlie, J. Brooke, M. Chen, D. Chisnall, C. J. Hughes, Nigel W. John, M. W.
Jones, M. Riding, N. Roard, M. Turner, and J. D. Wood. Adaptive Infrastructure for
Visual Computing. In Theory and Practice of Computer Graphics, pages 147–156, 2007.

[BBM+03] Alessandro Bassi, Micah Beck, Terry Moore, James S. Plank, Martin Swany, Rich Wol-
ski, and Graham Fagg. The internet backplane protocol: a study in resource sharing.
Future Gener. Comput. Syst., 19(4):551–562, 2003.

[BCD+06] A. Bobyshev, M. Crawford, P. DeMar, V. Grigaliunas, M. Grigoriev, A. Moibenko,
D. Petravick, and R. Rechenmacher. Lambda Station: On-Demand Flow Based Routing
for Data Intensive Grid Applications Over Multitopology Networks. In Broadband

97

http://www.itif.org/files/netneutrality.pdf
http://www.itif.org/files/netneutrality.pdf

Communications, Networks and Systems, 2006. BROADNETS 2006. 3rd International
Conference on, pages 1–9, Oct. 2006.

[BCHJ03] Hadrien Bullot, R. Les Cottrell, and Richard Hughes-Jones. Evaluation of Advanced
TCP Stacks on Fast Long-Distance Production Networks. Journal of Grid Computing,
1(4):345–359, December 2003.

[BD05] Sean Baker and Simon Dobson. Comparing Service-Oriented and Distributed Object
Architectures. In On the Move to Meaningful Internet Systems 2005: CoopIS, DOA,
and ODBASE, volume 3760 of Lecture Notes in Computer Science, pages 631–645.
Springer Berlin / Heidelberg, October 2005.

[BDG+04] K. Brodlie, D. Duce, J. Gallop, M. Sagar, J. Walton, and J. Wood. Visualization in
grid computing environments. IEEE Visualization, pages 155–162, 2004.

[BEK+00] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn,
Henrik Frystyk Nielsen, Satish Thatte, and Dave Winer. Simple Object Access Pro-
tocol (SOAP) 1.1. W3C Note, May 2000. http://www.w3.org/TR/2000/NOTE-SOAP-

20000508.

[BGI+03] Raouf Boutaba, Wojciech Golab, Youssef Iraqi, Tianshu Li, and Bill St. Arnaud. Grid-
Controlled Lightpaths for High Performance Grid Applications . Journal of Grid Com-
puting, 1(4):387–394, December 2003.

[BHKE+07] L. Battestilli, A. Hutanu, G. Karmous-Edwards, D.S. Katz, J. MacLaren, J. Mambretti,
J.H. Moore, Seung-Jong Park, H.G. Perros, S. Sundar, S. Tanwir, S.R. Thorpe, and
Yufeng Xin. EnLIGHTened Computing: An architecture for co-allocating network,
compute, and other grid resources for high-end applications. High Capacity Optical
Networks and Enabling Technologies, 2007. HONET 2007. International Symposium
on, pages 1–8, Nov. 2007.

[BHM+00] Werner Benger, Hans-Christian Hege, André Merzky, Thomas Radke, and Edward Sei-
del. Efficient Distributed File I/O for Visualization in Grid Environments. In B. En-
gquist, L. Johnsson, M. Hammill, and F. Short, editors, Simulation and Visualization
on the Grid, volume 13 of Lecture Notes in Computational Science and Engineering,
pages 1–6. Springer Verlag, 2000.

[BJA+09] E.W. Bethel, C.R. Johnson, S. Ahern, J. Bell, P.-T. Bremer, H. Childs, E. Cormier-
Michel, M. Day, E. Deines, P.T. Fogal, C. Garth, C.G.R. Geddes, H. Hagen, B. Hamann,
C.D. Hansen, J. Jacobsen, K.I. Joy, J. Krüger, J. Meredith, P. Messmer, G. Ostrouchov,
V. Pascucci, K. Potter, Prabhat, D. Pugmire, O. Rübel, A.R. Sanderson, C.T. Silva,
D. Ushizima, G.H. Weber, B. Whitlock, and K. Wu. Occam’s Razor and Petascale
Visual Data Analysis. In Proceedings of SciDAC 2009, volume 180 of Journal of Physics:
Conference Series, page (published online), 2009.

[BKC+01] Michael D. Beynon, Tahsin Kurc, Umit Catalyurek, Chialin Chang, Alan Sussman,
and Joel Saltz. Distributed processing of very large datasets with DataCutter. Parallel
Comput., 27(11):1457–1478, 2001.

98

http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://www.w3.org/TR/2000/NOTE-SOAP-20000508

[BKS05] Rüdiger Berlich, Marcel Kunze, and Kilian Schwarz. Grid computing in Europe: from
research to deployment. In CRPIT ’44: Proceedings of the 2005 Australasian work-
shop on Grid computing and e-research, pages 21–27, Darlinghurst, Australia, 2005.
Australian Computer Society, Inc.

[BL94] Phillip Bogle and Barbara Liskov. Reducing cross domain call overhead using batched
futures. SIGPLAN Not., 29(10):341–354, 1994.

[BLK+07] John Bresnahan, Michael Link, Rajkumar Kettimuthu, Dan Fraser, and Ian Foster.
GridFTP Pipelining. In Proceedings of the 2007 TeraGrid Conference, June 2007.

[BLKF09] John Bresnahan, Michael Link, Rajkumar Kettimuthu, and Ian Foster. UDT as an Al-
ternative Transport Protocol for GridFTP. In Proceedings of the International Work-
shop on Protocols for Future, Large-Scale and Diverse Network Transports (PFLDNeT),
2009.

[BMRW98] C. Baru, R. Moore, A. Rajasekar, and M. Wan. The SDSC Storage Resource Broker.
In Conference of the Center for Advanced Studies on Collaborative Research, 1998.

[BN84] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure calls. ACM
Trans. Comput. Syst., 2(1):39–59, 1984.

[BOP94] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. TCP Vegas: new
techniques for congestion detection and avoidance. In SIGCOMM ’94: Proceedings
of the conference on Communications architectures, protocols and applications, pages
24–35, New York, NY, USA, 1994. ACM.

[BPS+03] Arthurine Breckenridge, Lyndon Pierson, Sergiu Sanielevici, Joel Welling, Rainer Keller,
Uwe Woessner, and Juergen Schulze. Distributed, on-demand, data-intensive and col-
laborative simulation analysis. Future Generation Computer Systems, 19(6):849–859,
2003.

[BR92] Bob Boothe and Abhiram Ranade. Improved multithreading techniques for hiding com-
munication latency in multiprocessors. SIGARCH Comput. Archit. News, 20(2):214–
223, 1992.

[Bri07] Bob Briscoe. Flow rate fairness: Dismantling a religion. ACM SIGCOMM Computer
Communication Review, 37(2):63–74, April 2007.

[BS03] E. Wes Bethel and John Shalf. Grid-Distributed Visualizations Using Connectionless
Protocols. IEEE Comput. Graph. Appl., 23(2):51–59, 2003.

[BW04] T. Baer and P. Wyckoff. A parallel I/O mechanism for distributed systems. Cluster
Computing, IEEE International Conference on, 0:63–69, 2004.

[CBB+05] H. Childs, E. Brugger, K. Bonnell, J. Meredith, M. Miller, B. Whitlock, and N. Max.
A Contract Based System For Large Data Visualization. Visualization, IEEE 2005,
pages 25–25, 2005.

[CBB+07] Joan M Centrella, John G Baker, William D Boggs, Bernard J Kelly, Sean T
McWilliams, and James R van Meter. Binary black holes, gravitational waves, and
numerical relativity. Journal of Physics: Conference Series, 78:012010 (10pp), 2007.

99

[Cer07] Vinton G. Cerf. Prepared statement. U.S. Senate Committee on Commerce, Sci-
ence, and Transportation Hearing on ”Network Neutrality”, February 2007. http:

//commerce.senate.gov/pdf/cerf-020706.pdf.

[CES09] CESNET, Czech NREN operator. Web page, 2009. http://www.ces.net/.

[CG90] Douglas Comer and James Griffioen. A New Design for Distributed Systems: The
Remote Memory Model. In USENIX Association, editor, Proceedings of the USENIX
Summer 1990 Technical Conference, pages 127–136, June 1990.

[CGM+06] A. Cedilnik, B. Geveci, K. Moreland, J. Ahrens, and J. Favre. Remote Large Data
Visualization in the ParaView Framework. Proceedings of the Eurographics Parallel
Graphics and Visualization, pages 162–170, 2006.

[Chi03] Radu Chisleag. Providing Central and East European Engineering Students with In-
ternational Experience. In Enhancement of the Global Perspective for Engineering
Students by Providing an International Experience, 2003. http://services.bepress.
com/eci/enhancement/19/.

[Cla88] D. Clark. The design philosophy of the DARPA internet protocols. In SIGCOMM ’88:
Symposium proceedings on Communications architectures and protocols, pages 106–114,
New York, NY, USA, 1988. ACM.

[Coh06] David L. Cohen. Testimony before the committee on the judiciary United States Sen-
ate, June 2006. http://netcompetition.org/docs/pronetcomp/Cohen-Testimony-

6-14-06.pdf.

[Com07a] Federal Trade Commission. Broadband Connectivity Competition Policy. Staff Report,
June 2007. http://www.ftc.gov/reports/broadband/v070000report.pdf.

[Com07b] Cox Communications. Limitations of Service. http://www.cox.com/policy/

limitations.asp, November 2007.

[Com08a] Federal Communications Commision. Commision orders Comcast to end discriminatory
network management practices. News release, August 2008. http://hraunfoss.fcc.

gov/edocs_public/attachmatch/DOC-284286A1.pdf.

[Com08b] Federal Communications Commision. In the Matters of Formal Complaint of Free
Press and Public Knowledge Against Comcast Corporation for Secretly Degrading
Peer-to-Peer Applications; Broadband Industry Practices Petition of Free Press et al.
for Declaratory Ruling that Degrading an Internet Application Violates the FCC’s
Internet Policy Statement and Does Not Meet an Exception for Reasonable Network
Management. Memorandum opinion and order, August 2008. http://hraunfoss.fcc.
gov/edocs_public/attachmatch/FCC-08-183A1.pdf.

[Com09a] Comcast. Acceptable Use Policy. http://www.comcast.net/terms/use/, 2009.

[Com09b] Comcast. Network Management Policy. http://www.comcast.net/terms/network/,
2009.

100

http://commerce.senate.gov/pdf/cerf-020706.pdf
http://commerce.senate.gov/pdf/cerf-020706.pdf
http://www.ces.net/
http://services.bepress.com/eci/enhancement/19/
http://services.bepress.com/eci/enhancement/19/
http://netcompetition.org/docs/pronetcomp/Cohen-Testimony-6-14-06.pdf
http://netcompetition.org/docs/pronetcomp/Cohen-Testimony-6-14-06.pdf
http://www.ftc.gov/reports/broadband/v070000report.pdf
http://www.cox.com/policy/limitations.asp
http://www.cox.com/policy/limitations.asp
http://hraunfoss.fcc.gov/edocs_public/attachmatch/DOC-284286A1.pdf
http://hraunfoss.fcc.gov/edocs_public/attachmatch/DOC-284286A1.pdf
http://hraunfoss.fcc.gov/edocs_public/attachmatch/FCC-08-183A1.pdf
http://hraunfoss.fcc.gov/edocs_public/attachmatch/FCC-08-183A1.pdf
http://www.comcast.net/terms/use/
http://www.comcast.net/terms/network/

[Com09c] Federal Communications Commission. In the Matters of Formal Complaint of Free
Press and Public Knowledge Against Comcast Corporation for Secretly Degrading
Peer-to-Peer Applications; Broadband Industry Practices Petition of Free Press et al.
for Declaratory Ruling that Degrading an Internet Application Violates the FCC’s In-
ternet Policy Statement and Does Not Meet an Exception for Reasonable Network
Management. Communication, January 2009. http://hraunfoss.fcc.gov/edocs_

public/attachmatch/DOC-288047A1.pdf.

[Com09d] Cox Communications. Congestion Management FAQ. http://www.cox.com/policy/

congestionmanagement/, January 2009.

[CT09] Andrew A. Chien and Nut Taesombut. Integrated resource management for lambda-
grids: The Distributed Virtual Computer (DVC). Future Gener. Comput. Syst.,
25(2):147–152, 2009.

[Dav08] Sashka Davis. Progress Towards Efficient Data Ingestion into iRODS. Technical report,
UCSD, 2008. https://www.irods.org/pubs/SCEC_iRODS_Transfer_Report-0902.

pdf.

[DFN09] DFN – Deutsches Forschungsnetz. Web page, 2009. http://www.dfn.de/index.php?

id=74989&L=2.

[DIK+06] Suchuan Dong, Joseph Insley, Nicholas T. Karonis, Michael E. Papka, Justin Binns,
and George Karniadakis. Simulating and visualizing the human arterial system on the
teragrid. Future Gener. Comput. Syst., 22(8):1011–1017, 2006.

[dLH09] Cees T. de Laat and Laurin Herr. Ultra high definition media over optical networks
(cinegrid). In Optical Fiber Communication Conference, page OWK1. Optical Society
of America, 2009.

[DOE04] The Office of Science Data-Management Challenge. Report from the DOE Office of
Science Data-Management Workshops, March–May 2004.

[DSOB02] Mayur Deshpande, Douglas C. Schmidt, Carlos O’Ryan, and Darrell Brunsch. Design
and Performance of Asynchronous Method Handling for CORBA. In On the Move to
Meaningful Internet Systems, 2002 - DOA/CoopIS/ODBASE 2002 Confederated Inter-
national Conferences DOA, CoopIS and ODBASE 2002, pages 568–586, London, UK,
2002. Springer-Verlag.

[ea08] Edward Markey et. al. Internet Freedom Preservation Act of 2008. Congress Bill,
February 2008. http://www.opencongress.org/bill/110-h5353/show.

[EMP08] Stefan Eilemann, Maxim Makhinya, and Renato Pajarola. Equalizer: A Scalable Par-
allel Rendering Framework. In IEEE Transactions on Visualization and Computer
Graphics, 2008.

[ENS05] R. Eccles, B. Nonneck, and D.A. Stacey. Exploring parallel programming knowledge
in the novice. High Performance Computing Systems and Applications, 2005. HPCS
2005. 19th International Symposium on, pages 97–102, May 2005.

101

http://hraunfoss.fcc.gov/edocs_public/attachmatch/DOC-288047A1.pdf
http://hraunfoss.fcc.gov/edocs_public/attachmatch/DOC-288047A1.pdf
http://www.cox.com/policy/congestionmanagement/
http://www.cox.com/policy/congestionmanagement/
https://www.irods.org/pubs/SCEC_iRODS_Transfer_Report-0902.pdf
https://www.irods.org/pubs/SCEC_iRODS_Transfer_Report-0902.pdf
http://www.dfn.de/index.php?id=74989&L=2
http://www.dfn.de/index.php?id=74989&L=2
http://www.opencongress.org/bill/110-h5353/show

[EWW+07] Thomas Eickermann, Lidia Westphal, Oliver Wäldrich, Wolfgang Ziegler, Christoph
Barz, and Markus Pilz. Co-allocating compute and network resources - bandwidth on
demand in the Viola testbed. In Towards Next Generation Grids, volume V, pages
193–202. Springer US, 2007.

[Far08] David J. Farber. Predicting the Unpredictable - Future Directions in Internetworking
and their Implications. Testimony before the Federal Communications Commission,
July 2008. http://www.fcc.gov/broadband_digital_future/072108/farber.pdf.

[FCL+07] S. Figuerola, N. Ciulli, M. De Leenheer, Y. Demchenko, W. Ziegler, and A. Binczewski
on behalf of the PHOSPHORUS consortium. PHOSPHORUS: Single-step on-demand
services across multi-domain networks for e-science. In Proceedings of the European
Conference and Exhibition on Optical Communication ’07, 2007.

[FDKKM97] Ian Foster, Jr. David Kohr, Rakesh Krishnaiyer, and Jace Mogill. Remote I/O: fast
access to distant storage. In IOPADS ’97: Proceedings of the fifth workshop on I/O in
parallel and distributed systems, pages 14–25, New York, NY, USA, 1997. ACM Press.

[FKT01] Ian Foster, Carl Kesselman, and Steven Tuecke. The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. International Journal of Supercomputer Applications,
15, 2001.

[Flo03] Sally Floyd. HighSpeed TCP for Large Congestion Windows. Internet draft, work in
progress ftp://ftp.rfc-editor.org/in-notes/rfc3649.txt, December 2003.

[FM92] Edward W. Felten and Dylan McNamee. Improving the Performance of Message-
Passing Applications by Multithreading. In Proceedings of the Scalable High Perfor-
mance Computing Conference SHPCC-92, pages 84–89, 1992.

[For08] George S. Ford. Testimony before the Federal Communications Commission. Writ-
ten Testimony, April 2008. http://www.fcc.gov/broadband_network_management/

041708/ford.pdf.

[FUS09] FUSE: Filesystem in userspace. http://fuse.sourceforge.net, 2009.

[GACHJ05] Ruchi Gupta, Saad Ansari, R. Les Cottrell, and Richard Hughes-Jones. Characteriza-
tion and Evaluation of TCP and UDP-based Transport on Real Networks. In Third
International Workshop on Protocols for Fast Long-Distance Networks, February 2005.

[GAL+03] Tom Goodale, Gabrielle Allen, Gerd Lanfermann, Joan Masso, Thomas Radke, Ed Sei-
del, and John Shalf. The Cactus Framework and Toolkit: Design and Applications.
In High Performance Computing for Computational Science – VECPAR 2002, volume
2565 of Lecture Notes in Computer Science, pages 15–36. Springer Berlin / Heidelberg,
2003.

[GAW09] I. J. Grimstead, N. J. Avis, and D. W. Walker. RAVE: the resource-aware visualization
environment. Concurrency and Computation: Practice and Experience, 21(4):415–448,
2009.

[GEA09] GÉANT2, the high-bandwidth, academic Internet serving Europe’s research and edu-
cation community. Web page, 2009. http://www.geant2.net/.

102

http://www.fcc.gov/broadband_digital_future/072108/farber.pdf
http://www.fcc.gov/broadband_network_management/041708/ford.pdf
http://www.fcc.gov/broadband_network_management/041708/ford.pdf
http://fuse.sourceforge.net
http://www.geant2.net/

[GG05] Yunhong Gu and Robert Grossman. Supporting Configurable Congestion Control in
Data Transport Services. In Supercomputing 2005, November 2005.

[GG07] Yunhong Gu and Robert L. Grossman. UDT: UDP-based data transfer for high-speed
wide area networks. Comput. Networks, 51(7):1777–1799, 2007.

[GG08] Robert Grossman and Yunhong Gu. Data mining using high performance data clouds:
experimental studies using sector and sphere. In KDD ’08: Proceeding of the 14th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 920–
927, New York, NY, USA, 2008. ACM.

[GHW+04] Andreas Gerndt, Bernd Hentschel, Marc Wolter, Torsten Kuhlen, and Christian Bischof.
VIRACOCHA: An Efficient Parallelization Framework for Large-Scale CFD Post-
Processing in Virtual Environments. In SC ’04: Proceedings of the 2004 ACM/IEEE
conference on Supercomputing, page 50, Washington, DC, USA, 2004. IEEE Computer
Society.

[GMM+09] Paola Grosso, Damien Marchal, Jason Maassen, Eric Bernier, Li Xu, and Cees de Laat.
Dynamic photonic lightpaths in the StarPlane network. Future Gener. Comput. Syst.,
25(2):132–136, 2009.

[GPF09] IBM General Parallel File System, 2009. http://www.ibm.com/systems/clusters/

software/gpfs.html.

[Gro03] W3C Working Group. SOAP Version 1.2 Usage Scenarios . W3C Note, July 2003.
http://www.w3.org/TR/xmlp-scenarios/.

[Gro08] TeraGrid Scheduling Working Group. Advance Reservation and Co-Scheduling
Report, 2008. http://www.teragridforum.org/mediawiki/images/c/cd/Schedwg_

RsrvCoschedReport.pdf.

[GRT+06] Chin Guok, David Robertson, Mary Thompson, Jason Lee, Brian Tierney, and William
Johnston. Intra and Interdomain Circuit Provisioning Using the OSCARS Reservation
System. In Proceedings of the 3rd International Conference on Broadband Communi-
cations, Networks and Systems, pages 1–8, 2006.

[HAB+06] Andrei Hutanu, Gabrielle Allen, Stephen D. Beck, Petr Holub, Hartmut Kaiser, Ar-
chit Kulshrestha, Miloš Lǐska, Jon MacLaren, Luděk Matyska, Ravi Paruchuri, Steffen
Prohaska, Ed Seidel, Brygg Ullmer, and Shalini Venkataraman. Distributed and collab-
orative visualization of large data sets using high-speed networks. Future Generation
Computer Systems. The International Journal of Grid Computing: Theory, Methods
and Applications, 22(8):1004–1010, 2006.

[HBH+04] Hans-Christian Hege, Daniel Baum, Andrei Hutanu, Andre Merzky, Brygg Ullmer, and
Stefan Zachow. CoDiSP - Project web page. http://www.zib.de/visual/projects/
codisp/codisplong.en.html, 2004.

[HHAM06] Andrei Hutanu, Stephan Hirmer, Gabrielle Allen, and Andre Merzky. Analysis of remote
execution models for grid middleware. In MCG ’06: Proceedings of the 4th international
workshop on Middleware for grid computing, page 11, New York, NY, USA, 2006. ACM.

103

http://www.ibm.com/systems/clusters/software/gpfs.html
http://www.ibm.com/systems/clusters/software/gpfs.html
http://www.w3.org/TR/xmlp-scenarios/
http://www.teragridforum.org/mediawiki/images/c/cd/Schedwg_RsrvCoschedReport.pdf
http://www.teragridforum.org/mediawiki/images/c/cd/Schedwg_RsrvCoschedReport.pdf
http://www.zib.de/visual/projects/codisp/codisplong.en.html
http://www.zib.de/visual/projects/codisp/codisplong.en.html

[HHB08] Kyungmin Ham, H.A. Harriett, and L.C Butler. Burning Issues in Tomography Anal-
ysis. In Computing in Science & Engineering, pages 78–81, 2008.

[HHD04] Eva Hladká, Petr Holub, and Jǐŕı Denemark. An Active Network Architecture: Dis-
tributed Computer or Transport Medium. In 3rd International Conference on Network-
ing (ICN’04), pages 338–343, Gosier, Guadeloupe, March 2004.

[HHK+05] Hans-Christian Hege, Andrei Hutanu, Ralf Kähler, André Merzky, Thomas Radke, Ed-
ward Seidel, and Brygg Ullmer. Progressive Retrieval and Hierarchical Visualization of
Large Remote Data. Scalable Computing: Practice and Experience, 6(3):57–66, Septem-
ber 2005. http://www.scpe.org/?a=volume&v=23.

[HHN+02] Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean Ahern, Peter D. Kirch-
ner, and James T. Klosowski. Chromium: a stream-processing framework for interactive
rendering on clusters. ACM Trans. Graph., 21(3):693–702, 2002.

[HHS+04] Felix Hupfeld, Andrei Hutanu, Thorsten Schütt, Brygg Ullmer, and Stefan Zwierlein.
Deliverable D8.7 - Evaluation of Data Management & Visualization Services. GridLab
Deliverable, 2004. http://www.gridlab.org/Resources/Deliverables/D8.7.pdf.

[HLYD02] Eric He, Jason Leigh, Oliver Yu, and Thomas A. DeFanti. Reliable Blast UDP: Pre-
dictable High Performance Bulk Data Transfer. In CLUSTER ’02: Proceedings of the
IEEE International Conference on Cluster Computing, pages 317–324, Washington,
DC, USA, 2002. IEEE Computer Society.

[HML+06] Petr Holub, Ludek Matyska, Miloš Lǐska, Lukás Hejtmánek, Jiŕı Denemark, Tomás
Rebok, Andrei Hutanu, Ravi Paruchuri, Jan Radil, and Eva Hladká. High-definition
multimedia for multiparty low-latency interactive communication. Future Generation
Computer Systems, 22(8):856–861, 2006.

[HP07] John L. Hennessy and David A. Patterson. Computer Architecture - A Quantitative
Approach. Morgan Kaufmann, fourth edition, 2007.

[HPD09] HPDMnet. Project web page, 2009. http://www.hpdmnet.net.

[HPE+07] Andrei Hutanu, Ravi Paruchuri, Daniel Eiland, Miloš Lǐska, Peter Holub, Steven R.
Thorpe, and Yufeng Xin. Uncompressed HD video for collaborative teaching – an ex-
periment. Collaborative Computing: Networking, Applications and Worksharing, 2007.
CollaborateCom 2007. International Conference on, pages 253–261, Nov. 2007.

[HT03] Tony Hey and Anne Trefethen. The data deluge: an e-Science perspective, chapter 36,
pages 809–824. John Wiley & Sons Ltd., 2003.

[iGr05] iGrid 2005, the 4th community-driven biennial International Grid. Web page, 2005.
http://www.igrid2005.org/.

[Ima09] 2009. ImageVis3D: A Real-time Volume Rendering Tool for Large Data. Scientific
Computing and Imaging Institute (SCI).

[Int09] Internet2. Web page, 2009. http://www.internet2.edu/.

[ION09] Internet2 ION. Web page, 2009. http://www.internet2.edu/ion/.

104

http://www.scpe.org/?a=volume&v=23
http://www.gridlab.org/Resources/Deliverables/D8.7.pdf
http://www.hpdmnet.net
http://www.igrid2005.org/
http://www.internet2.edu/
http://www.internet2.edu/ion/

[JD02] Manish Jain and Constantinos Dovrolis. Pathload: A measurement tool for end-to-end
available bandwidth. In In Proceedings of Passive and Active Measurements (PAM)
Workshop, pages 14–25, 2002.

[JGN09] JGN2plus Official Web Site: Advanced Testbed Network for R&D. Web page, 2009.
http://www.jgn.nict.go.jp/english/index.html.

[Kel03] Tom Kelly. Scalable TCP: improving performance in highspeed wide area networks.
SIGCOMM Comput. Commun. Rev., 33(2):83–91, 2003.

[KHJ08] Stephen Kershaw and Richard Hughes-Jones. Transfer of real-time constant bit-rate
data over TCP and the effect of alternative congestion control algorithms. In Sixth
International Workshop on Protocols for Fast Long-Distance Networks, March 2008.

[KHR02] Dina Katabi, Mark Handley, and Charlie Rohrs. Congestion control for high bandwidth-
delay product networks. In SIGCOMM ’02: Proceedings of the 2002 conference on
Applications, technologies, architectures, and protocols for computer communications,
pages 89–102, New York, NY, USA, 2002. ACM.

[KLE07] Gary Kumfert, James Leek, and Thomas Epperly. Babel Remote Method Invocation.
In Parallel and Distributed Processing Symposium, pages 1–10, 2007.

[KNOW08] Krzysztof Kurowski, Jarek Nabrzyski, Ariel Oleksiak, and Jan Weglarz. A multicriteria
approach to two-level hierarchy scheduling in grids. J. of Scheduling, 11(5):371–379,
2008.

[KPB+03] Nicholas T. Karonis, Michael E. Papka, Justin Binns, John Bresnahan, Joseph A. Insley,
David Jones, and Joseph M. Link. High-resolution remote rendering of large datasets
in a collaborative environment. Future Generation Computer Systems, 19(6):909–917,
2003.

[KPHH05] R. Kaehler, S. Prohaska, A. Hutanu, and H.-C. Hege. Visualization of time-dependent
remote adaptive mesh refinement data. Visualization, 2005. VIS 05. IEEE, pages 175–
182, Oct. 2005.

[KTO07] Kazumi Kumazoe, Masato Tsuru, and Yuji Oie. Performance of high-speed transport
protocols coexisting on a long distance 10-Gbps testbed network. In Proceedings of the
First International Conference on Networks for Grid Applications, 2007.

[KTS06] Qian Zhang Kun Tan, Jingmin Song and Murari Sridharan. Compound TCP: A Scal-
able and TCP-Friendly Congestion Control for High-speed Networks. In Fourth Inter-
national Workshop on Protocols for Fast Long-Distance Networks, 2006.

[KYGM07] D. Katramatos, Dantong Yu, B. Gibbard, and S. McKee. The TeraPaths Testbed:
Exploring End-to-End Network QoS. In Testbeds and Research Infrastructure for the
Development of Networks and Communities, 2007. TridentCom 2007. 3rd International
Conference on, pages 1–7, May 2007.

[LAQ+08] Douglas J. Leith, Lachlan L. H. Andrew, Tom Quetchenbach, Robert N. Shorten, In-
jong Rhee, and Lisong Xu. Experimental Evaluation of Delay/Loss-based TCP Con-
gestion Control Algorithms. In Sixth International Workshop on Protocols for Fast
Long-Distance Networks, March 2008.

105

http://www.jgn.nict.go.jp/english/index.html

[Lei09] Tom Leighton. Improving performance on the Internet. Commun. ACM, 52(2):44–51,
2009.

[LGT+01] J. Lee, D. Gunter, B. Tierney, B. Allcock, J. Bester, J. Bresnahan, and S. Tuecke.
Applied Techniques for High Bandwidth Data Transfers across Wide Area Networks.
In Proc. International Conference on Computing in High Energy and Nuclear Physics
(CHEP 01), Beijing, China, September 2001.

[LH02] Eric J. Luke and Charles D. Hansen. Semotus Visum: a flexible remote visualization
framework. In VIS ’02: Proceedings of the conference on Visualization ’02, pages 61–68,
Washington, DC, USA, 2002. IEEE Computer Society.

[LH08] Milos Liska and Petr Holub. CoUniverse: Framework for Building Self-organizing Col-
laborative Environments Using Extreme-Bandwidth Media Applications. In Eduardo
César, Michael Alexander, Achim Streit, Jesper Larsson Träff, Christophe Cérin, An-
dreas Knüpfer, Dieter Kranzlmüller, and Shantenu Jha, editors, Euro-Par Workshops,
volume 5415 of Lecture Notes in Computer Science, pages 339–351. Springer, 2008.

[LON09] LONI: Louisiana Optical Network Initiative. Web page, 2009. http://www.loni.org/.

[LQD05] D. Lu, Y. Qiao, and P. A. Dinda. Characterizing and Predicting TCP Throughput
on the Wide Area Network. In Proc. IEEE International Conference on Distributed
Computing Systems (ICDCS 05), pages 414–424, June 2005.

[LRA+06] Jonghyun Lee, R. Ross, S. Atchley, M. Beck, and R. Thakur. MPI-IO/L: efficient
remote I/O for MPI-IO via logistical networking. In Parallel and Distributed Processing
Symposium, 2006. IPDPS 2006. 20th International, page 10, April 2006.

[LRT+04] Jonghyun Lee, R. Ross, R. Thakur, Xiaosong Ma, and M. Winslett. RFS: efficient and
flexible remote file access for MPI-IO. In CLUSTER ’04: Proceedings of the 2004 IEEE
International Conference on Cluster Computing, pages 71–81, Washington, DC, USA,
2004. IEEE Computer Society.

[LS88] B. Liskov and L. Shrira. Promises: linguistic support for efficient asynchronous proce-
dure calls in distributed systems. SIGPLAN Not., 23(7):260–267, 1988.

[Lus09] Lustre File System, 2009. www.lustre.org.

[Mac07] Jon MacLaren. HARC: The Highly-Available Resource Co-allocator. In On the Move to
Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS, volume
4804/2009 of Lecture Notes in Computer Science, pages 1385–1402. Springer Berlin /
Heidelberg, 2007.

[MCN09] MCNC. Web page, 2009. https://www.mcnc.org/.

[MGF+04] S. Mascolo, L. A. Grieco, R. Ferorelli, P. Camarda, and G. Piscitelli. Performance
evaluation of Westwood+ TCP congestion control. Perform. Eval., 55(1-2):93–111,
2004.

[MGYC06] Joe Mambretti, Rachel Gold, Fei Yeh, and Jim Chen. Amroeba: computational astro-
physics modeling enabled by dynamic lambda switching. Future Gener. Comput. Syst.,
22(8):949–954, 2006.

106

http://www.loni.org/
www.lustre.org
https://www.mcnc.org/

[MRH+07] Kwan-Liu Ma, Robert Ross, Jian Huang, Greg Humphreys, Nelson Max, Kenneth More-
land, John D. Owens, and Han-Wei Shen. Ultra-Scale Visualization: Research and Ed-
ucation. Journal of Physics, 78, June 2007. (Proceedings of SciDAC 2007 Conference).

[MSHC99] K. Mueller, N. Shareef, J. Huang, and R. Crawfis. IBR-Assisted Volume Rendering. In
Proc. IEEE Visualization, pages 5–8, 1999.

[MWY+09] Kwan-Liu Ma, Chaoli Wang, Hongfeng Yu, Kenneth Moreland, Jian Huang, and Rob
Ross. Next-Generation Visualization Technologies: Enabling Discoveries at Extreme
Scale. SciDAC Review, 12:12–21, February 2009.

[N. 08] N. S. V. Rao, W. R. Wing, S. Hicks, S. Poole, F. Denap, S. M. Carter, and Q. Wu.
Ultrascience net: research testbed for high-performance networking. Proceedings of
International Symposium on Computer and Sensor Network Systems, April 2008.

[NGBS+97] Henrik Frystyk Nielsen, James Gettys, Anselm Baird-Smith, Eric Prud’hommeaux,
H̊akon Wium Lie, and Chris Lilley. Network performance effects of HTTP/1.1, CSS1,
and PNG. In SIGCOMM ’97: Proceedings of the ACM SIGCOMM ’97 conference on
Applications, technologies, architectures, and protocols for computer communication,
pages 155–166, New York, NY, USA, 1997. ACM Press.

[NLR09] National LambdaRail. Web page, 2009. http://www.nlr.net/.

[NOL02] E. Nallipogu, F. Ozguner, and M. Lauria. Improving the Throughput of Remote Storage
Access through Pipelining. In Third International Workshop on Grid Computing, 2002.

[NSF09] Strategies for Remote Visualization on a Dynamically Configurable Testbed. Award
Web Page, September 2009. http://www.nsf.gov/awardsearch/showAward.do?

AwardNumber=0947825.

[OMG91] OMG. The Common Object Request Broker: Architecture and Specification. Technical
report, Object Management Group and X/Open. OMG Document Number 91.12.1,
1991.

[OSA+08] C. D. Ott, E. Schnetter, G. Allen, E. Seidel, J. Tao, and B. Zink. A case study for
petascale applications in astrophysics: simulating gamma-ray bursts. In MG ’08: Pro-
ceedings of the 15th ACM Mardi Gras conference, pages 1–9, New York, NY, USA,
2008. ACM.

[Ou08] George Ou. Why Network Management is Essential to the Internet. Testimony be-
fore the Federal Communications Commission, April 2008. http://www.fcc.gov/

broadband_network_management/041708/ou-stmt.pdf.

[PH05] Steffen Prohaska and Andrei Hutanu. Remote Data Access for Interactive Visualization.
In Proceedings of 13th Annual Mardi Gras Conference: Frontiers of Grid Applications
and Technologies, pages 17–22, 2005.

[PHKH04] S. Prohaska, A. Hutanu, R. Kahler, and H.-C. Hege. Interactive exploration of large
remote micro-CT scans. Visualization, 2004. IEEE, pages 345–352, Oct. 2004.

[PIO09] PIONIER – Polish Optical Internet. Web page, 2009. http://www.pionier.gov.pl/

eindex.html.

107

http://www.nlr.net/
http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0947825
http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0947825
http://www.fcc.gov/broadband_network_management/041708/ou-stmt.pdf
http://www.fcc.gov/broadband_network_management/041708/ou-stmt.pdf
http://www.pionier.gov.pl/eindex.html
http://www.pionier.gov.pl/eindex.html

[PSH04] Polyvios Pratikakis, Jaime Spacco, and Michael Hicks. Transparent proxies for java
futures. In OOPSLA ’04: Proceedings of the 19th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications, pages 206–223,
New York, NY, USA, 2004. ACM Press.

[RHH85] Jr. Robert H. Halstead. MULTILISP: a language for concurrent symbolic computation.
ACM Trans. Program. Lang. Syst., 7(4):501–538, 1985.

[RJH+09] Luc Renambot, Byungil Jeong, Hyejung Hur, Andrew Johnson, and Jason Leigh. En-
abling high resolution collaborative visualization in display rich virtual organizations.
Future Gener. Comput. Syst., 25(2):161–168, 2009.

[RRB+03] Vinay J. Ribeiro, Rudolf H. Riedi, Richard G. Baraniuk, Jiri Navratil, and Les Cottrell.
pathchirp: Efficient available bandwidth estimation for network paths. In In Passive
and Active Measurement Workshop, 2003.

[RSFWH98] Tristan Richardson, Quentin Stafford-Fraser, Kenneth R. Wood, and Andy Hopper.
Virtual Network Computing. IEEE Internet Computing, 2(1):33–38, 1998.

[RWCW05] N.S.V. Rao, W.R. Wing, S.M. Carter, and Q. Wu. Ultrascience net: network testbed
for large-scale science applications. Communications Magazine, IEEE, 43(11):S12–S17,
Nov. 2005.

[RX05] Injong Rhee and Lisong Xu. CUBIC: A New TCP-Friendly High-Speed TCP variant. In
Third International Workshop on Protocols for Fast Long-Distance Networks, February
2005.

[RYW+08] Nageswara S. V. Rao, Weikuan Yu, William R. Wing, Stephen W. Poole, and Jeffrey S.
Vetter. Wide-area performance profiling of 10GigE and InfiniBand technologies. In SC
’08: Proceedings of the 2008 ACM/IEEE conference on Supercomputing, pages 1–12,
Piscataway, NJ, USA, 2008. IEEE Press.

[SB03] J. Shalf and EW Bethel. The grid and future visualization system architectures. Com-
puter Graphics and Applications, IEEE, 23(2):6–9, 2003.

[SBG00] H. Sivakumar, S. Bailey, and R. L. Grossman. PSockets: The case for Application-
level Network Striping for Data intensive Applications using High Speed Wide Area
Networks. In Proc. IEEE Super Computing Conference (SC 00), pages 63–63, Texas,
USA, November 2000.

[SBSdL06] M. Scarpa, R. G. Belleman, P. M. A. Sloot, and C. T. A. M. de Laat. Highly interactive
distributed visualization. Future Gener. Comput. Syst., 22(8):896–900, 2006.

[SCD+03] Larry L. Smarr, Andrew A. Chien, Tom DeFanti, Jason Leigh, and Philip M. Pa-
padopoulos. The optiputer. Commun. ACM, 46(11):58–67, 2003.

[Sch97] Douglas C. Schmidt. Applying Patterns and Frameworks to Develop Object-Oriented
Communication Software. In Handbook of Programming Languages, volume I. MacMil-
lan Computer Publishing, 1997.

[SG86] Robert W. Scheifler and Jim Gettys. The X window system. ACM Trans. Graph.,
5(2):79–109, 1986.

108

[SGP+09] Larry Smarr, Paul Gilna, Phil Papadopoulos, Thomas A. DeFanti, Greg Hidley, John
Wooley, E. Virginia Armbrust, Forest Rohwer, and Eric Frost. Building an opti-
planet collaboratory to support microbial metagenomics. Future Gener. Comput. Syst.,
25(2):124–131, 2009.

[SHTS01] Mitsuhisa Sato, Motonari Hirano, Yoshio Tanaka, and Satoshi Sekiguchi. OmniRPC: A
Grid RPC Facility for Cluster and Global Computing in OpenMP. In WOMPAT ’01:
Proceedings of the International Workshop on OpenMP Applications and Tools, pages
130–136, London, UK, 2001. Springer-Verlag.

[Sil05] SGI OpenGL Vizserver 3.5, Visualization and Collaboration. White Paper, 2005. http:
//www.sgi.com/pdfs/3263.pdf.

[SKF+09] Daisuke Shirai, Tetsuo Kawano, Tatsuya Fujii, Kunitake Kaneko, Naohisa Ohta, Sa-
dayasu Ono, Sachine Arai, and Terukazu Ogoshi. Real time switching and stream-
ing transmission of uncompressed 4K motion pictures. Future Gener. Comput. Syst.,
25(2):192–197, 2009.

[SMHS04] T. Schütt, A. Merzky, A. Hutanu, and F. Schintke. Remote partial file access using
compact pattern descriptions. In CCGRID ’04: Proceedings of the 2004 IEEE Inter-
national Symposium on Cluster Computing and the Grid, pages 482–489, Washington,
DC, USA, 2004. IEEE Computer Society.

[Smi09] Jonathan M. Smith. Fighting physics: a tough battle. Communications of the ACM,
52(7):60–65, 2009.

[SNM+02] Keith Seymour, Hidemoto Nakada, Satoshi Matsuoka, Jack Dongarra, Craig Lee, and
Henri Casanova. Overview of GridRPC: A Remote Procedure Call API for Grid Com-
puting. In GRID ’02: Proceedings of the Third International Workshop on Grid Com-
puting, pages 274–278, London, UK, 2002. Springer-Verlag.

[SNS02] Satoshi Shirasuna, Hidemoto Nakada, and Satoshi Sekiguchi. Evaluating Web Services
Based Implementations of GridRPC. In HPDC ’02: Proceedings of the 11th IEEE In-
ternational Symposium on High Performance Distributed Computing, page 237, Wash-
ington, DC, USA, 2002. IEEE Computer Society.

[SPM06] Jonathan Strasser, Valerio Pascucci, and Kwan-Liu Ma. Multi-Layered Image Caching
for Distributed Rendering of Large Multiresolution Data. In Alan Heirich, Bruno Raffin,
and Luis Paulo dos Santos, editors, Proceedings of Eurographics Symposium on Parallel
Graphics and Visualization, pages 171–177, May 2006.

[STBK08] I. Suslu, F. Turkmen, M. Balman, and T. Kosar. Choosing between remote I/O ver-
sus staging in large scale distributed applications. In Proceedings of ISCA 21st Int.
Conference on Parallel and Distributed Computing and Applications, PDCCS, 2008.

[SWH05] Detlev Stalling, Malte Westerhoff, and Hans-Christian Hege. Amira: A highly interac-
tive system for visual data analysis. In Charles D. Hansen and Christopher R. Johnson,
editors, The Visualization Handbook, chapter 38, pages 749–767. Elsevier, 2005.

[TBSL01] Douglas Thain, Jim Basney, Se-Chang Son, and Miron Livny. The Kangaroo Approach
to Data Movement on the Grid, 2001.

109

http://www.sgi.com/pdfs/3263.pdf
http://www.sgi.com/pdfs/3263.pdf

[TC07] Nut Taesombut and Andrew A. Chien. Evaluating network information models on
resource efficiency and application performance in lambda-grids. In SC ’07: Proceedings
of the 2007 ACM/IEEE conference on Supercomputing, pages 1–12, New York, NY,
USA, 2007. ACM.

[Ter09] Teragrid, web page, documentation, publications: http://www.teragrid.org/

userinfo/data/vis/vis_portal.php, 2009.

[TH08] Cornelius Toole, Jr. and Andrei Hutanu. Network flow based resource brokering and
optimization techniques for distributed data streaming over optical networks. In MG
’08: Proceedings of the 15th ACM Mardi Gras conference, pages 1–8, New York, NY,
USA, 2008. ACM.

[THN+06] Atsuko Takefusa, Michiaki Hayashi, Naohide Nagatsu, Hidemoto Nakada, Tomohiro
Kudoh, Takahiro Miyamoto, Tomohiro Otani, Hideaki Tanaka, Masatoshi Suzuki, Ya-
sunori Sameshima, Wataru Imajuku, Masahiko Jinno, Yoshihiro Takigawa, Shuichi
Okamoto, Yoshio Tanaka, and Satoshi Sekiguchi. G-lambda: coordination of a grid
scheduler and lambda path service over GMPLS. Future Gener. Comput. Syst.,
22(8):868–875, 2006.

[TL05] Douglas Thain and Miron Livny. Parrot: An Application Environment for Data-
Intensive Computing. Scalable Computing: Practice and Experience, 6(3):9–18, 2005.

[TLC+99] Brian L. Tierney, Jason Lee, Brian Crowley, Mason Holding, Jeremy Hylton, and Fred L.
Drake Jr. A Network-Aware Distributed Storage Cache for Data Intensive Environ-
ments. In HPDC ’99: Proceedings of the 8th IEEE International Symposium on High
Performance Distributed Computing, page 33, Washington, DC, USA, 1999. IEEE Com-
puter Society.

[TMK+07] Ryousei Takano, Motohiko Matsuda, Tomohiro Kudoh, Yuetsu Kodama, Fumihiro
Okazaki, and Yutaka Ishikawa. Effects of packet pacing for MPI programs in a Grid en-
vironment. In CLUSTER ’07: Proceedings of the 2007 IEEE International Conference
on Cluster Computing, pages 382–391, Washington, DC, USA, 2007. IEEE Computer
Society.

[TMKE06] Franco Travostino, Joe Mambretti, and Gigi Karmous-Edwards, editors. Grid Networks:
Enabling Grids with Advanced Communication Technology. Wiley, 2006.

[TTL05] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed computing in prac-
tice: the Condor experience. Concurrency - Practice and Experience, 17(2-4):323–356,
2005.

[TTNS04] Yoshio Tanaka, Hiroshi Takemiya, Hidemoto Nakada, and Satoshi Sekiguchi. Design,
Implementation and Performance Evaluation of GridRPC Programming Middleware for
a Large-Scale Computational Grid. In GRID ’04: Proceedings of the Fifth IEEE/ACM
International Workshop on Grid Computing, pages 298–305, Washington, DC, USA,
2004. IEEE Computer Society.

[USJ+08] Brygg Ullmer, Rajesh Sankaran, Srikanth Jandhyala, Blake Tregre, Cornelius Toole,
Karun Kallakuri, Christopher Laan, Matthew Hess, Farid Harhad, Urban Wiggins, and

110

http://www.teragrid.org/userinfo/data/vis/vis_portal.php
http://www.teragrid.org/userinfo/data/vis/vis_portal.php

Shining Sun. Tangible menus and interaction trays: core tangibles for common phys-
ical/digital activities. In Albrecht Schmidt, Hans Gellersen, Elise van den Hoven, Ali
Mazalek, Paul Holleis, and Nicolas Villar, editors, Tangible and Embedded Interaction,
pages 209–212. ACM, 2008.

[VBLS09] Venkatram Vishwanath, Robert Burns, Jason Leigh, and Michael Seablom. Accelerating
tropical cyclone analysis using lambdaram, a distributed data cache over wide-area
ultra-fast networks. Future Gener. Comput. Syst., 25(2):184–191, 2009.

[vECGS92] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik Schauser.
Active messages: a mechanism for integrated communication and computation. In ISCA
’92: Proceedings of the 19th annual international symposium on Computer architecture,
pages 256–266, New York, NY, USA, 1992. ACM Press.

[vS08] Barbara van Schewick. Official testimony. Federal Communications Commis-
sion Second Public En Banc Hearing on Broadband Network Management Prac-
tices, April 2008. http://www.fcc.gov/broadband_network_management/041708/

vanschewick-written.pdf.

[vSF09] Barbara van Schewick and David Farber. Point/Counterpoint: Network neutrality nu-
ances. Commun. ACM, 52(2):31–37, 2009.

[VZL08] V. Vishwanath, L.D. Zuck, and J. Leigh. Specification and verification of lambdaram-
a wide-area distributed cache for high performance computing. In Formal Methods
and Models for Co-Design, 2008. MEMOCODE 2008. 6th ACM/IEEE International
Conference on, pages 187–198, June 2008.

[Wal08] Scott Wallsten. Official testimony. Federal Communications Commission Third Public
En Banc Hearing on Broadband Network Management Practices, July 2008. http:

//www.fcc.gov/broadband_digital_future/072108/wallsten.pdf.

[WC95] R.W. Watson and R.A. Coyne. The parallel I/O architecture of the high-performance
storage system (HPSS). Mass Storage Systems, IEEE Symposium on, 0:27, 1995.

[WC04] Ryan X. Wu and Andrew A. Chien. GTP: Group Transport Protocol for Lambda-Grids.
In Cluster Computing and the Grid, pages 228–238, April 2004.

[WFN90] E.F. Walker, R. Floyd, and P. Neves. Asynchronous remote operation execution in
distributed systems. Proceedings of the 10th International Conference on Distributed
Computing Systems Distributed Computing Systems, pages 253–259, 1990.

[WJLH06] David X. Wei, Cheng Jin, Steven H. Low, and Sanjay Hegde. FAST TCP: motiva-
tion, architecture, algorithms, performance. IEEE/ACM Trans. Netw., 14(6):1246–
1259, 2006.

[Wor09] Jenna Wortham. Customers Angered as iPhones Overload AT&T. New York Times,
September 2009. http://www.nytimes.com/2009/09/03/technology/companies/

03att.html.

[XHR04] Lisong Xu, Khaled Harfoush, and Injong Rhee. Binary Increase Congestion Control for
Fast Long Distance Networks. In INFOCOM 2004, volume 4, pages 2514–2524, March
2004.

111

http://www.fcc.gov/broadband_network_management/041708/vanschewick-written.pdf
http://www.fcc.gov/broadband_network_management/041708/vanschewick-written.pdf
http://www.fcc.gov/broadband_digital_future/072108/wallsten.pdf
http://www.fcc.gov/broadband_digital_future/072108/wallsten.pdf
http://www.nytimes.com/2009/09/03/technology/companies/03att.html
http://www.nytimes.com/2009/09/03/technology/companies/03att.html

[XLH+05] Chaoyue Xiong, Jason Leigh, Eric He, Venkatram Vishwanath, Tadao Murata, Luc
Renambot, and Thomas A. DeFanti. LambdaStream – a Data Transport Protocol for
Streaming Network-intensive Applications over Photonic Networks. In Third Interna-
tional Workshop on Protocols for Fast Long-Distance Networks, February 2005.

[YK03] K.C. Yeung and P.H.J. Kelly. Optimising Java RMI programs by communication re-
structuring. In Proceedings of the 4th Middleware Conference, pages 324–343. Springer
Berlin / Heidelberg, 2003.

[Yoo08] Christopher S. Yoo. Hearing on Broadband Network Management Practices. Written
Testimony, February 2008. http://www.fcc.gov/broadband_network_management/

022508/yoo.pdf.

[YSK08] E. Yildirim, I. H. Suslu, and T. Kosar. Which Network Measurement Tool is Right for
You? A Multidimensional Comparison Study. In Proc. IEEE International Conference
on Grid Computing (GRID 08), sep 2008.

[Zha08] Charles Zhang. OptiStore: An On-Demand Data Processing Middleware for Very Large
Scale Interactive Visualization. PhD thesis, Computer Science, University of Illinois at
Chicago, 2008.

[ZLD+03] Chong Zhang, Jason Leigh, Thomas A. DeFanti, Marco Mazzucco, and Robert Gross-
man. TeraScope: distributed visual data mining of terascale data sets over photonic
networks. Future Generation Computer Systems, 19(6):935–943, 2003.

[ZSH05] Hans-Florian Zeilhofer, Robert Sader, and Hans-Christian Hege. CoDiSP - Collab-
orative Distributed Surgery Planning. Project report(Schlussbericht), March 2005.
http://webdoc.sub.gwdg.de/ebook/ah/dfn/codisp.pdf.

[ZVR+05] Xuan Zheng, M. Veeraraghavan, N.S.V. Rao, Qishi Wu, and Mengxia Zhu. CHEETAH:
circuit-switched high-speed end-to-end transport architecture testbed. Communications
Magazine, IEEE, 43(8):s11–s17, Aug. 2005.

[ZWRI07] Mengxia Zhu, Qishi Wu, Nageswara S. V. Rao, and Sitharama Iyengar. Optimal pipeline
decomposition and adaptive network mapping to support distributed remote visualiza-
tion. J. Parallel Distrib. Comput., 67(8):947–956, 2007.

112

http://www.fcc.gov/broadband_network_management/022508/yoo.pdf
http://www.fcc.gov/broadband_network_management/022508/yoo.pdf
http://webdoc.sub.gwdg.de/ebook/ah/dfn/codisp.pdf

Vita

Andrei Huţanu was born in Bucharest, Romania, in 1979. He graduated in 2002 from “Politehnica”

University of Bucharest with an Engineer Diploma in Computer Science, with the final two years

of his studies done as an exchange student at “Freie” University of Berlin, Germany. Between 2000

and 2002 he also worked as a student employee in the Scientific Optimization Department of Zuse

Institute Berlin.

After graduating, he joined the Scientific Visualization Department of Zuse Institute Berlin, where

he worked two years as a Research Employee. In 2004 he joined Louisiana State University and

has since been working as an IT Analyst at the Center for Computation & Technology. In 2006

he enrolled as a part-time student in computer science at Louisiana State University to pursue the

doctoral degree.

He co-authored 20 peer-reviewed articles and participated in over 15 major technical demonstra-

tions. He contributed to 7 research projects, participated to 2 panels and reviewed articles for 8

conferences.

He led the visualization team part of the team that won SCALE 2009 (The second IEEE Interna-

tional Scalable Computing Challenge at CCGrid 2009) by demonstrating a prototype of an end-to-end

problem solving system combining numerical simulation and distributed visualization.

He is the main author, co-PI and leader of the technical team of the “Strategies for Remote

Visualization on a Dynamically Configurable Testbed” project that has been awarded with $299,447

by NSF and is senior investigator in 4 other funded research projects.

His research is in distributed computing and high-speed network applications with emphasis on

distributed visualization, data management and collaborative applications. He is also interested in

system design and software engineering, and design of large, complex applications as well as the

exploration future needs of high end scientific applications.

His most significant publications are:

113

• A. Hutanu, J. Ge, C. Toole, R. Kooima, B. Ullmer, G. Allen: “eaviv: Network-aware interactive

visualization of large datasets”, submitted to IEEE Computer Graphics and Applications

• T. Kosar, A. Hutanu, J. MacLaren, D. Thain: “Coordination of Access to Large-scale Datasets in

Distributed Environments” to appear in Scientific Data Management: Challenges, Technology,

and Deployment, Editors: A. Shoshani and D. Rotem, CRC Press/Taylor and Francis Books,

2009.

• A. Hutanu, E. Schnetter, W. Benger, E. Bentivegna, A. Clary, P. Diener, J. Ge, R. Kooima,

O. Korobkin, K. Liu, F. Loffler, R. Paruchuri, J. Tao, C. Toole, A. Yates, G. Allen: “Large-scale

Problem Solving Using Automatic Code Generation and Distributed Visualization”, CCT TR

Series, 2009

• A. Hutanu, G. Allen: “A case for application-level control of network resources”, in Proceedings

of CESNET Conference 2008, pp 69–76

• A. Hutanu, M. Lǐska, P. Holub, R. Paruchuri, D. Eiland, S. Thorpe, Y. Xin: “Uncompressed

HD video for collaborative teaching - an experiment”, in Proceedings of CollaborateCom 2007,

pp. 253–261

• A. Hutanu, G. Allen, S. D. Beck, P. Holub, H. Kaiser, A. Kulshrestha, M. Lǐska, J. MacLaren,

L. Matyska, R. Paruchuri, S. Prohaska, E. Seidel, B. Ullmer, S. Venkataraman: “Distributed

and collaborative visualization of large data sets using high-speed networks” Future Genera-

tion Computer Systems: The International Journal of Grid Computing: Theory, Methods and

Applications, Volume 22, Issue 8, pp. 1004–1010 (2006)

• EnLIGHTened: S. Thorpe, L. Battestilli, G. Karmous-Edwards, A. Hutanu, J. MacLaren,

J. Mambretti, J. Moore, K. S. Sundar, Y. Xin; G-lambda: A. Takefusa, M. Hayashi, A. Hi-

rano, S. Okamoto, T. Kudoh, T. Miyamoto, Y. Tsukishima, T. Otani, H. Nakada, H. Tanaka,

A. Taniguchi, Y. Sameshima, M. Jinno: “G-lambda and EnLIGHTened: Wrapped In Middleware

Co-allocating Compute and Network Resources Across Japan and the US”, in Proceedings of

GridNets 2007, pp. 1–8

114

• A. Hutanu, S. Hirmer, G. Allen, A. Merzky: “Analysis of Remote Execution Models for Grid

Middleware” in Proceedings of the 4th International Workshop on Middleware for Grid Com-

puting (MGC 2006), pp. 62–67

• H.-C. Hege, A. Hutanu, R. Kähler, A. Merzky, T. Radke, E. Seidel, B. Ullmer: “Progressive Re-

trieval and Hierarchical Visualization of Large Remote Data” in Scalable Computing: Practice

and Experience: Volume 6, No. 3, pp. 57–66

• S. Prohaska, A. Hutanu, R. Kähler, H.-C. Hege: “Interactive Exploration of Large Remote

Micro-CT Scans” in Proc. IEEE Visualization 2004, H. Rushmeier, J. J. van Wijk, G. Turk

(eds.), Austin, Texas, pp. 345–352, (2004)

115

